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Abstract

With recent developments in deep networks, there have been significant

advances in visual object detection and recognition. However, some of these

networks are still easily fooled/hacked and have shown ”bag of features” kinds

of failures. Some of this is due to the fact that even deep networks make only

marginal use of the complex structure that exists in real-world images. Primate

visual systems appear to capture the structure in images, but how?

In the research presented here, we are studying approaches for robust pattern

matching using static, 2D Blocks World images based on graphical representations

of the various components of an image. Such higher-order information represents

the ”structure” or ”shape” of the visual object. This research led to a technique for

representing an object’s structural information in a Sparse Distributed Represen-

tation (SDR) loosely based on the kinds of cortical circuits found in primate visual

systems.

We apply probabilistic graph isomorphism and subgraph isomorphism to our

2D Blocks World images and achieve O(1) and O(nk) complexity for an approxi-

mate match. The image labeled graph is created using OpenCV to find the object

contours and objects’ labels and a fixed radius nearest neighbor algorithm to build

the edges between the objects. Pattern matching is done using the properties of

SDRs. Next, we use SVM to learn and distinguish images. SVM partitions the vec-
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tor space where classification accuracy on noisy images gives us an assessment of

how much information the SDR is capturing.
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Chapter 1

Introduction

Part of the work has been published in an International Conference on Neuromor-

phic Systems (ICONS) paper in 2019 [1]. Some passages included in the thesis have

been taken from this paper.

With the recent advances in deep networks, there has been significant progress

in visual object detection and recognition. However, some of these networks have

shown “bag of features” failures [2] similar to the other traditional object recog-

nition techniques such as HOG (histogram of oriented gradients) [3], SIFT (Scale-

invariant feature transform) [4], [5] and special envelope [6]. Bag of features is a

collection of features with no order, structure, or spatial relationship [7] like, we

have all the features of a bicycle in an image but not in the right structure. Deep

networks make only marginal use of the complex structure that exists in real-world

images, even after training on large numbers of images. None of these techniques

actually captures the spatial relationships of the low level or high-level features,

which biological networks appear to do [8], [9]. There has been some previous

work trying to understand shapes and objects [10].

Efficient graph representations capture the higher-order information content of

the objects and provide algorithmic benefits when recognizing complex images

[11], [12]. Such higher-order information represents the “structure” of the visual
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objects. Also, an important difference in the work described here is that we are

using a non-standard representation of the graphical data based on sparse dis-

tributed representations (SDR). SDRs are large binary vectors with a few active

bits. We are representing structure by a graph and then graph via SDRs. This

helps us in reducing complexity.

Neuromorphic techniques such as Sparse distributed representations (SDR) of

data, shapes, and graphs can play an important role in complex image process-

ing. The use of sparse representations of data is motivated by a) the abundance

of visual data b) the abundance of features in real-life images and c) the ability of

sparse representations to provide speed up via unique properties (e.g. union) of

the representations. An SDR encodes any type of data into a binary vector which

consists mostly 0’s with a few 1’s. SDR is very memory efficient, as only a few

bits would have to be stored in the memory as the indices of the active bits [11].

SDRs are the result of various research efforts into understanding the operation of

cortical circuits [13], [14].

In the research described here, we are exploring new ways to represent images

as hierarchical graphs to preserve the relative connectivity information among the

objects and perform pattern matching using graph isomorphism. The hierarchy

allows us to reuse the low-level information into higher-levels. The graph of an

image uses objects as the nodes. It contains the spatial information (connected-

ness, adjacency) of the objects in the image. The connections can represent the

Euclidean distance between the nodes. We formulate SDRs for all the nodes in the

graph using their attribute information such as the number of edges, their sizes,

connectivity, and attributes of their neighbors. Then we use Euclidean distance cri-

teria to represent the hierarchy in the graph, which can be used for efficient pattern

matching.
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An example of a hierarchical graph construction for an image containing mul-

tiple individual components can be used with three levels. For the first level, we

can consider small body parts such as nose, mouth, eyes, etc. as nodes for a graph

representing the face of a person. Each of these small body parts can be repre-

sented by SDRs with their attributes. Similarly, graphs of other large body parts,

such as hands, legs, etc., can be defined. With the properties of SDRs, such as

union, one can define SDRs for the entire graph, in this case of large body parts

such as hands, legs, and face, etc. As a second-level hierarchy, the graph can be

constructed of these large body parts as nodes and connectivity between them and

the graph representing an entire individual. Again, an SDR of this entire graph

can be obtained by performing a union over the SDRs of the individual nodes. To

construct the graph of the entire image with different individual components, the

SDRs of each person can be considered as a node of the graph. This type of rep-

resentation promises an efficient pattern-matching algorithm when implemented

using graph isomorphism. Figure 1.1 shows ways an object can be seen as a group

of blocks.

Figure 1.1: Object seen as a group of blocks.

To demonstrate these ideas, assume simple objects, e.g., rectangles and trian-
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gles, from a 2D blocks world. These are recognized using traditional algorithms

(OpenCV). We then create graphs of these objects to allow the efficient recognition

of more complex objects, built from the simple objects. Figures 1.2 and 1.1 show

how real-world objects can be broken into simple blocks that can be easily and

effectively represented using SDRs.

(a) Simple Blocks-World image

(b) Complex Blocks-World image

Figure 1.2: Real world images seen as Blocks-World, similar to a (a) vehicle, and
(b) human

In this work, we use probabilistic graph isomorphism and sub-graph isomor-

phism to perform efficient approximate pattern matching in images. The optimal

match is an NP-hard problem. However, with the help of SDR properties, we can

perform graph matching in O(1) time and further choose k nodes sub-graph out of

the main graph of n nodes in O(nk) and do the matching in O(1). k is the number

of nodes in the other graph (n > k). By combining the SDRs and graphs, we can

perform pattern matching, which leverages structural information in an efficient

manner. Here, pattern matching is based on the shape of the object, not so much

on individual features.

Next, to evaluate and assess how much information the SDR is capturing of

shapes and structure in an image, we use the Support Vector Machine (SVM). Us-
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ing image graphs and SDRs, we train the SVM model. SVM classifies the new test

image SDR to the already leaned classes. Thus it helps us in recalling the original

image from a noisy or incomplete version of it. Our definition of noise encom-

passes not only traditional measures of noisy, such as speckled images, partial

occlusion, but also ”shape” noise, which involves missing, extra, or poorly placed

components.

1.1 Contributions

The contributions of this thesis include:

1. We create a hierarchical graph representation to capture the structural infor-

mation of an image.

2. We implement Sparse Distributed Representations (SDR) for the hierarchies

of a graph, which leverages algorithmic parallelism and makes computation

faster and more power-efficient.

3. We demonstrate the approximate graph matching in O(1) and by choosing

k nodes’ sub-graph out of n nodes’ big graph in O(nk), sub-graph matching

in O(1) instead of solving in non-polynomial times with the help of SDR

properties.

4. We use SVM to partition the SDR vector space, which gives us 94% accu-

racy for shape and traditional image noise, and 98% accuracy with only the

addition of traditional noise for the retrieval of original images from noisy

versions of it.

5. Our encoding, currently with blocks world objects, is a reasonably robust

encoding of the structure of an object. This allows us to do a better job of rec-

5



ognizing an object by its shape. In addition, we have expanded the definition

of image noise to include ”shape” noise.

Our method allows us to capture structural information in images for doing

pattern matching and uses very little data.

The work described in this thesis builds on the work presented in my M.Tech

thesis at Indian Institute of Information Technology Allahabad (IIITA), India [15].

The work was done in the guidance of Dr. Dan Hammerstrom (PSU) and Dr. Uma

Shanker Tiwary (IIITA). A basic idea of combining graph analytic and SDRs to

do pattern matching was developed in the IIITA thesis. For this, a preliminary

implementation using simple block images was done.

In this thesis, we deal with much more complex figures generated using the

BlocksWorld tool. The SDR encoding is further re-implemented in Python and

improved using flocet codes to evaluate the similarity of vectors. Attribute height-

width ratio is introduced in SDR encoding for node and their neighbors to ensure

scale invariance. Attribute orientation angle for nodes and their neighbors is also

incorporated to improve the capturing of structure. For example, in a face, the

correct position and the correct angle of all the parts, both are important for iden-

tifying the face. In the IIITA thesis, we introduced the algorithms for doing graph

isomorphism and sub-graph isomorphism separately. Here, we propose and im-

plement an algorithm given two graph SDRs to check whether two graphs are

isomorphic and if not, whether they are sub-graph isomorphic. The sub-graph iso-

morphism algorithm is improved by leveraging the hierarchical image graph. We

only check for the sub-graphs which respect the hierarchy which involves small,

local neighborhood graphs and not an entire image.
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In addition to the improvement of previous work, we assess the ability of SDRs

to learn the images and their structures. For this, we train the image SDRs and

then try to retrieve the shape and image information from a noisy or incomplete

version of it. We introduce the shape noise notion for the Blocks-World images.

The retrieval accuracy is observed for two types of noise, traditional image noise

(partially blocked components, speckle or colored patches on the components),

and shape noise (extra, missing components).

We first trained the object SDRs of an image using a simple auto-associative

memory model. Then we test the model in three ways, (a) with the same SDR

vectors without adding noise, (b) with the same SDR vectors with added bit noise,

and (c) with noisy object SDRs. Associative memory works well when the number

of training vectors is less, and the images are less complex. The auto-associative

memory model did not work when we train the image SDRs. Image SDRs are

much more complex as they store the information of all the individual objects and

their relationship with others.

Therefore, we moved to the Support Vector Machine (SVM) that allows for

more complex and non-linear partition. While training, SVM partitions the vec-

tor space for the training image SDRs. Each image is considered a different class.

When inputting an image, the SVM model classifies the image and recalls the clos-

est matched image SDR. We train the SVM model on 10 image SDRs and test it

on 180 noisy image SDRs (shape and traditional noise). For this, we achieve the

retrieval accuracy of 94%.

To further improve the retrieval accuracy, we worked with Dr. Rod Rinkus

on Sparsey. Sparsey is a multi-layered network with a property that similar in-

puts are mapped to more similar codes (SISC). Sparsey maps the SDRs to more

distributed sparsified vectors. The vectors are now more distinct from each other
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which should help in achieving better retrieval accuracy. We continue to work on

Sparsey for the classification of SDRs and also for using the sparsified vectors with

the SVM model.

1.2 Thesis Organization

Here, we describe the organization of this thesis. First, we discuss the steps to

create a hierarchical image graph (chapters 2, and 3) and the encoding with which

we can store the structural and connectivity information of an image (chapter 4).

Then we discuss the approach we can use image graph and their SDRs to do pat-

tern matching (chapter 5). In chapter 6, we show another application of an image

graph and SDR in retrieving the data (image in our case) from a noisy version of it.

And, chapter 7 summarizes the thesis work and discusses some future directions.

The approaches and steps described in chapters 2, 3, and 4 are applied to both

our image graph + SDR applications (pattern matching, and retrieval of informa-

tion). The chapters are organized into four sections (a) introduction and Motiva-

tion (b) related work, (c) approach, and (d) results. In chapter 2, we describe the

process of object detection and the features extracted using OpenCV. In chapter 3

we describe how to form a hierarchical graph from the detected objects as nodes

with a fixed-radius nearest neighbors algorithm. Then in chapter 4, we discuss the

possibility of representing graphs in SDRs and leveraging the massive parallelism,

for example, in massively parallel associative memories, that is enabled by SDRs.

In chapter 5, we present an algorithm using SDRs for exact and approximate

matching using the generated image graph SDRs. Figure 1.3 shows the data flow

of approximate pattern matching using the combination of graphs and SDRs. In

chapter 6, we show how SVM partitions the image graphs’ SDR space to classify
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the test image. Here, the test image is a corrupted version of an already learned

image. SVM helps us in recovering the originally stored/learned image from a

corrupted/noisy version of it.

Figure 1.3: Data flow pipeline for pattern matching [1]. Input is a Blocks-World
image. OpenCV is used to detect the object contours and to extract the features of
the contours. Using the contours and their features, we generate image graphs and
encode object attributes into SDRs. Pattern matching of two images is done using
their SDRs.
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Chapter 2

Object Detection

2.1 Introduction and Motivation

Object detection has been a very important task of any computer vision appli-

cation. Humans can easily detect an object irrespective of the scene or position

they are in. It is critical in many applications such as optical character recognition,

surveillance, self driving cars, and medical imaging. Given an image or a Region

of Interest (ROI), the goal of object detection is to find the locations of objects in the

image and to classify them. Object detection can be used to identify the number

of objects present in the image. We can also track their precise locations, all while

labeling them. Figure 2.1 shows the objects detected in a scene using bounding

boxes.

In this chapter, We take a blocks-world image and use OpenCV functions to get

the image parts. These parts belong to composite objects in the image. OpenCV

finds the contours in the image as well as their features such as centroid, minimum

area bounding box, and perimeter. The features are used to calculate the attributes

which will be encoded into SDRs to store the image information.

10



Figure 2.1: Objects detected in a scene using bounding boxes.

2.2 Related work

Many researchers and scientists have been working in this field for many decades

now. There are many applications from face detection and pedestrian detection to

image and video retrieval. Currently, object detection is an integral part of many

common areas like video surveillance, image captioning, video summarization etc.

There are many techniques to detect the objects in an image. Some techniques use

feature extractors, like SIFT [4], [5], and HOG [6]. Some use bounding boxes and

contour detection. Deep learning techniques also efficiently localize and classify

the objects in an image, such as R-CNN [16], Faster R-CNN [17], SSD [18], and

YOLO [19]. Figure 2.2 shows low-level features detected from SIFT in an image

and figure 2.3 illustrate the YOLO model on an image.
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Figure 2.2: Low level features detected in an image using SIFT [20].

Figure 2.3: YOLO model for object detection [19].

2.3 Approach

Traditional computer vision uses low-level features from the images. In this thesis,

we use high-level features obtained from OpenCV. The objective is to capture the
12



connectivity of components in an object. In this thesis, instead of using a bounding

box, we use shape contours to locate the components of the image. OpenCV gives

us the contours of the components as well as the features of the contour shapes. We

utilize these features to further determine the shape attributes. After calculating

the attributes, we would encode them into a Sparse Distributed Representation

(SDR) for further processing.

Contour tracing/extraction is an important technique in image processing for

shape analysis and object detection. A contour is defined as the curve joining all

the points along the boundary of a shape having the same intensity or color. For

the shape contours, we use OpenCV’s findContours() method. The function is ap-

plied on a binary image with shapes in white and background in black. To achieve

better accuracy, an image is pre-processed before applying the function. Images

used in this thesis are with black objects and white background. Hence, the image

is converted using bitwise NOT operation. The findContours() method has three

essential parameters, source image, contour retrieval mode and, contour approxi-

mation method. There are five types of retrieval mode. We use RETR EXTERNAL

mode to retrieve only the extreme outer contours. For the approximation method,

we choose the CHAIN APPROX SIMPLE method to extract only the end points of

horizontal, vertical, and diagonal segments by removing all the redundant points,

thereby saving memory. The outputs of findContours() are a modified image, con-

tours (list of all the contours in the image) and, hierarchy. Each contour has (x, y)

coordinates of boundary points. Hierarchy contains the information about the

image topology. Figure 2.4 represents the computed contour from findContours()

method.
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Figure 2.4: Shape contours detected from OpenCV’s findContours() function.

2.3.1 Attribute Computation

Using the contour list, we compute the features of the shapes, such as centroid,

area, size of the minimum bounding box, angle of rotation, and perimeter using

OpenCV’s functions. After that, based on our application and the images used,

2D Blocks world images (section 2.3.2), we define the attributes of the shapes as

(a) Number of edges (b) Height-width ratio (c) Orientation angle (d) Connectivity

(number of connected neighbors), and (e) Relative position (angle with the neigh-

bor) for further processing.

To determine the contour centroids, we use image moments. An image moment

is a particular weighted average of the image pixel’s intensities. For an image in-

tensity function I(x, y), raw image moments Mij are calculated from equation 2.1.

Centroids can be derived using these raw image moments as shown in equation

2.2. To calculate image moments, we use OpenCV’s moments() function which
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takes a contour and outputs moments.

Mij = ∑
i

∑
j

xi yj I(x, y) (2.1)

Cx =
M10

M00
, Cy =

M01

M00
(2.2)

For area and perimeter, we use OpenCV functions contourArea() and arcLength()

respectively. Area can also be obtained by moment M[′m00′]. Size of the min-

imum area bounding box and angle of rotation are calculated using function

minAreaRect(). All of these functions take contour as inputs. Figure 2.5 shows a

shape’s bounding boxes. The red box is a rotated one from function minAreaRect()

which also gives us the angle of rotation.

Figure 2.5: Green rectangle represents normal bounding box and red rectangle box
represents minimum area bounding box.

All these features are further used to calculate the shape attributes for SDR.

Figure 2.6 represents a shape in the image with the computed attributes. How

each attribute is computed is shown below:
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1. Number of edges is calculated from the perimeter of the shape contour from

equations 2.3 to 2.5. Equation 2.4 approximates the shape with the specified

precision. epsilon is the accuracy parameter. To get the correct output, a good

epsilon needs to be selected, x% of perimeter.

perimeter = cv2.arcLength(contour) (2.3)

approx = cv2.approxPolyDP(contour, epsilon) (2.4)

numberOfSides = len(approx) (2.5)

2. As discussed above, function minAreaRect() gives us the size of the bounding

box, width and height, from this we calculate the height-width ratio. The

function also gives us the angle of the bounding box which is the orientation

angle of the shape. Note, one result of using these functions means that the

resulting parameters are independent of position and scale.

(center, size, angle rotation) = cv2.minAreaRect(contour) (2.6)

HW ratio =
size[1]
size[0]

, Orientation angle = angle rotation (2.7)

3. Connectivity and relative position are calculated after constructing the image

graph. Once we have the graph, the number of connected neighbors for every

shape is determined by the adjacency list. Relative position is the angle with

the neighbor, which we calculate using the centers of both the shapes.
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Figure 2.6: Attributes of a triangle. Red rectangle represents the minimum area
bounding box. Height, width, and orientation angle of the bounding box are the
height, width, and orientation angle of triangle.

2.3.2 Image generation tool

To generate simple blocks world images, we use the BlocksWorld tool [21]. We can

build several blocks world images from this. A blocks world image is an image

where the objects are made of a few blocks (shapes). The number of blocks in each

object is random. First, it generates a central object around a center of randomly

chosen vertices. Then it randomly takes one of the available edges and creates

another shape along with it. This continues until we get the required number of

blocks in the object. It can generate 2.5D images since it is planar but allows objects

to occlude each other.

With the help of BlocksWorld, we can create various objects in an image con-

sisting of several blocks. For the work described in this thesis, we require that the

blocks are not overlapped. While using the tool, we have set an offset between
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each block so that the blocks don’t overlap. For every block created, BlocksWorld

checks whether the block obstruct any of the existing ones. Figure 2.7 shows some

example images from the BlocksWorld tool used in this work.

Figure 2.7: BlocksWorld images generated with BlocksWorld tool [21].
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Chapter 3

Hierarchical Graph Creation

3.1 Introduction and Motivation

In this chapter, to capture the image structure, we will generate a hierarchical

image graph and will consider the OpenCV’s detected parts’ centers as nodes.

Graphs are useful when one wants to represent the connectivity or structure of ob-

jects. A hierarchical graph is useful to reuse the low-level features to further com-

bine them at higher levels. Figure 3.1 shows a giraffe in the jungle on the left side

and a structure of its features’ connections on the right side. Applications, such as

document processing, scene processing, image retrieval [22]–[25] and video sum-

marization [26] could benefit from such connectivity information. However, due

to the complexity of working with graphs, traditional Computer Vision techniques

mostly use a ”bag of features” [27], [28] approach and so are missing information

on object structure.

Humans factor shape into object recognition consequently features being in the

wrong position degrade recognition accuracy. Imagine two images of bicycles, one

being with the right position and orientations and other being with only the right

components and wrong locations. When we classify this image using a ”bag of

features” approach both images will be classified as bicycles, but the second image

is not the correct form of a cycle. Being able to utilize such structure or connectivity
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Figure 3.1: Features of giraffe called out to show the structure.

information will be of significant value in image understanding. One approach to

representing structure in deep networks is the development of Capsules [29] by

Geoffrey Hinton and his group. Capsules take advantage of the fact that spatial

relationships can be modeled by matrix multiplications.

To capture the connectivity between the objects and to reduce the complexity

and memory usage, we generate a hierarchical image graph. And, there is no

question that cerebral neo-cortex processes data and represents it in a hierarchies

[30]–[32]. For this, we use fixed-radius nearest neighbors algorithm with a radius r.

The fixed-radius near neighbor problem is a variation of nearest neighbor search.

Nearest neighbor search is the problem of finding the closest point n to a given

query point q among a set of points S. The proximity between the points can

be defined from a distance matrix. The goal of the variant, fixed-radius nearest

neighbors problem is to find all points N in the Euclidean space of points S within

a given fixed distance r > 0 from a specified point q [33]. Figure 3.2 shows an

20



Figure 3.2: Example of fixed-radius nearest neighbor problem. Area inside green
circle is the euclidean space for radius r1.

example fixed-radius nearest neighbor solution. There are two points for which the

solution is found separately with different radii. Red points in two circles belong

to their respective Euclidean spaces, hence the solution.

3.2 Related work

Traditional computer vision techniques typically do not capture the locality and

connectivity of objects [34]. Traditional (pre-deep network) systems find complex

information associated with each feature, using feature detection algorithms, such

as SIFT [35]. Then the discovered features are matched somewhat independently

to a set of features associated with each object, which has been termed a “bag of

features” approach. Determining the presence of an object solely by its features

gives unsatisfactory results [34], [36]–[38].
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3.3 Approach

In this thesis, we leverage the properties of hierarchical graphs for pattern match-

ing. In a hierarchy, we store the lowest level of information for reuse when com-

bined in novel ways at higher levels for complex information [13]. Hierarchies

reduce training time and memory usage. We represent the images using hierarchi-

cal graphs to get better accuracy with simple and complex images. Graphs help in

keeping the connectivity information intact while processing and hierarchy help

in sharing the information among different levels. It is clear that biological vision,

at least in mammals, takes advantage of the geometric relationships of the features

with each other, which we refer to as the “structure” of the object. It appears that

the visual cortex at the lowest level of the processing hierarchy stores informa-

tion about tiny sections of the visual field such as edges and corners [13]. These

low-level patterns are recombined at higher levels for more complex components.

Here, we assume that all the detected shape contours from OpenCV in the im-

age are parts of much more complex objects. Therefore, in our 2D blocks world

images, we assume three levels of hierarchy in an image graph. The level 1 graph

is among the detected parts which are treated as nodes. All the connected com-

ponents from level 1 are treated as separate objects in a level 2 graph. These ob-

jects are made of the parts from level 1 based on their proximity to each other.

Level 3 is the image itself. The number of levels can vary based on the complex-

ity of the image and the application. The graph is constructed using the fixed-

radius nearest neighbors algorithm. For this, we use the NearestNeighbors()

function of the sklearn.neighbors module with the radius parameter on centers

as shown in equation 3.1. r1 is the radius and centroids are the image parts’ cen-

ters. NearestNeighbors() is the unsupervised learner for implementing neighbor
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searches and radius neighbors find the neighbors within a given radius of a point

or points [39]. indices arrays are the indices of neighbors and distances array rep-

resents the distances to each neighbor point.

neighbors = NearestNeighbors(radius = r1). f it(centroids)

distances, indices = neighbors.radius neighbors(centroids)
(3.1)

The level 1 image graph is built using the fixed-radius nearest neighbors al-

gorithm with radius r1, parts’ centers are considered as nodes. This level shows

the spatial relationship between the parts. We calculate the connected components

from the level 1 graph. In graph theory, a connected component of an undirected

graph is a sub-graph in which any two vertices are connected to each other by more

than one path, and which is not connected to additional vertices in the super-graph

[40]. These connected components are considered objects in the image and will be

treated as nodes for the level 2 graph.

Level 2 of the graph is constructed between these objects by applying the fixed-

radius nearest neighbors algorithm with radius r2 (r2 > r1) 1 to the new centers.

Radius r1 is a constant which we choose so that all the components belonging to an

object are connected whereas for r2, also a constant, we assume that all the objects

would be connected in level 2. r1 and r2 are determined such that while scaling

certain component or object to an extant the connections in the image graph don’t

change and the height-width ratio ensures the scale invariance. The new centers

are calculated by finding the spatial arithmetic mean of the parts’ centers, parts

that belong to that specific object. If we need more levels for complex images then

they can be created by applying the fixed-radius nearest neighbors algorithm to

new calculated centers from the previous level’s connected component centers’

1r1 and r2 are manually set based on image size and complexity.
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arithmetic mean. Figure 3.3 shows an example of a graph with three connected

components.

(a) Hierarchical graph with 3 connected
components in level 1 (b) Corresponding graph hierarchy

Figure 3.3: Hierarchical graph demonstration, blue nodes are the parts, red are the
objects, and green nodes represent the image. In (a), solid lines belong to level 1
graph and dashed lines belong to level 2 graph [1].

3.4 Results

Here, we show the detected parts and their generated graphs for the blocks world

images. In figure 3.4, we have five images and all of them have only one object

made of composite parts. These images have only 2 graph levels, one is the part

level and the second is the whole object or image level. Here, the graph is only

between the object’s parts and how they are connected to each other.

Figure 3.5 has images with multiple objects, made of some parts, far enough to

be separate objects. Left side images represent level 1 graphs and right side im-

ages represent corresponding level 2 graphs. The lowest level (level1, represented

by blue) of the graph represents connectedness between the basic detected parts,

which, in turn, make complex objects in the image. The second level (represented

by red) shows the graph of more complex objects. The third level is the image

itself. Because of our simple Blocks World images and to illustrate algorithm oper-
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(a) (b)

(c) (d)

(e)

Figure 3.4: Detected shapes and generated image graphs (level 1) with one con-
nected component.
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ation, we assume three levels of hierarchy. However, the number of levels can be

increased with the complexity of an image.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Detected shapes and generated image graphs with more than one con-
nected components; (a), (c), (e) Level 1 image graphs with two, three, and two
connected components respectively; (b), (d), (f) Level 2 image graphs by consider-
ing image components as different objects.
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Chapter 4

Sparse Distributed Representation

4.1 Introduction and Motivation

The concept of representing large data in a form of a sparse vector is inspired by the

neocortex. The number of neurons in the neocortex is in billions. However, only

a low percentage of neurons are highly active at a time. It is believed that brains

represent information using a method called Sparse Distributed Representations

(SDR) [13]. They represent and store the neurons in a sparse vector, 1 for active

neurons, and 0 for inactive neurons. In this chapter, we will encode the image

information into SDRs. It is done in a bottom-up hierarchical manner. Attributes

of image parts and their neighbors are encoded into SDRs. We perform a Boolean

OR to get the object and image SDRs. After that, we can perform graph matching

using the image SDRs.

Sparse Distributed Representation is a data representation with special prop-

erties for the probability of mismatches, robustness in noise, sub-sampling, clas-

sifying vectors, and unions. It is a binary vector where only a few bits are active

represented by 1. The active bits can vary from 1% to a few. Each bit generally

carries some semantic meaning, so if two SDRs have more than a few overlapping

1’s, then those two SDRs have similar meanings [41]. We can encode any type of

data into an SDR while observing this aspect of the data. However, there is no sin-
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gle fixed approach to encoding (“sparsifying”) the data into an SDR. An effective

encoder should capture as much information about the data as possible, which

will be different for different types of data. Scott [41] discusses several objectives,

which should be considered while encoding the data, and it also presents a few

encoder examples.

Below are some of the SDR properties which are useful for our work [14]:

1. Overlap: To determine the similarity between two SDR vectors, we compute

the dot product. The number of bits ‘ON’ in both the vectors in the same

locations is the overlap score.

overlap(X, Y) ≡ X.Y (4.1)

2. Matching: A match between two SDRs is realised if their overlap exceeds

some threshold θ. If wx is the number of bits active in X and wy is the number

of bits active in Y then wx ≥ θ and wy ≥ θ.

match(X, Y) ≡ overlap(X, Y) ≥ θ (4.2)

3. Union: This is one of the most surprising and fascinating properties of the

SDRs. We can store a number of vectors in a single SDR by simply taking

a Boolean OR of the vectors. The size of the final vector is the same as the

other vectors with a few more active bits. Because of their sparseness there

are typically few overlapping bits which would lead to loss of information.

Example: Let’s consider that we have 3 vectors represented as x1, x2 and, x3.
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To store these vectors into one X, we take the Boolean OR of all these vectors.

x1 = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 1]

x2 = [1 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

x3 = [0 0 0 0 0 0 1 0 0 0 0 1 0 0 0]

=⇒ X = x1 OR x2 OR x3

X = [1 0 1 0 0 0 1 0 1 0 0 1 0 0 1]

This property can also be used in classification where we have

c (number of classes) OR’ed SDRs and to determine the class of a new vector,

we compute the overlap score and realises a match if it exceeds the threshold.

Example: Let’s assume we have 3 classes and there 3 union’ed SDRs

X1, X2 and, X3. We have a new test vector y. The number of active bits in

y is w = 2. For the exact match, we put the threshold θ = w.

X1 = [1 0 1 0 0 0 1 0 1 0 0 1 0 0 1]

X2 = [0 1 1 0 0 1 0 0 1 0 1 0 1 0 0]

X3 = [0 0 0 1 1 0 1 0 0 1 0 0 1 1 0]

y = [1 0 0 0 0 0 0 0 1 0 0 0 0 0 0]

We calculate the overlap scores of y with X1, X2 and, X3. The overlap score
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with X1 is 2 = θ. Therefore, vector y belongs to class 1.

overlap(X1, y) = 2, overlap(X2, y) = 1, overlap(X3, y) = 0

By taking union, there is no risk of false negatives and a small probability

of false positives. However, the probability of false positives increases while

dealing with a sufficiently large number of vectors. If the size of the vector is

n, the number of vectors to be stored in the set is M and the number of active

bits in the new vector is w then the probability of false positives is,

p = (1− (w/n)M)w (4.3)

4. Uniqueness and Exact Matches: The number of unique SDRs with fixed n

and w is, (
n
k

)
=

n!
w!(n− w)!

(4.4)

If we were to check whether two SDRs with same parameters (n, w) are iden-

tical (exact match), the probability of this is,

P(x = y) = 1/
(

n
k

)
(4.5)

5. Storing in a memory: SDR vectors are very large and sparse, most of the bits

are 0’s. Therefore, to store the whole vector as it is in the memory would be

inefficient. To store it in a compact and efficient way, we use sparse matrix

techniques and only store the locations/indices of the active bits. Example:

x = [0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 . . . ]
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x′ = [2 8 17 . . . ]

x is the original vector and x′ is the vector to store into the memory.

4.2 Related Work

Sparse distributed representation is a way to leverage cortical techniques by which

we can process our data in an efficient way. Numenta [13] has been using SDRs for

a long time and is continuously improving the procedure and application. SDR has

a number of mathematical properties which are aligned to biological intelligence

[12]. Further, it has been used in their Hierarchical Temporal Memory (HTM)

[13], [42]. HTM is a cortical simulator that processes the input data from multi-

ple streams for various applications such as anomaly detection [11], [43], classifi-

cation, etc. SDRs are being used in Computer Vision, Neuromorphic Computing

and many more areas [44]–[46].

The exploration of SDRs has been a topic of significant interest. Kanerva [47]

proposed Sparse Distributed Memory in his 1988 book as a model of human long

term memory. He modeled the architecture that could store the large sensory pat-

terns and retrieve them based on partial matches to the input. Denning [48] effi-

ciently summarizes the architecture and properties of Sparse Distributed Memory

in the 1989 paper. Later in 1993, Kanerva [49] describes the Sparse Distributed

Memory and relates it to other models and circuits. The representation was used

for robot control navigation [50] and reinforcement learning [51]. Sensory auditory

and visual features are also expressed in sparse representations [52], [53].
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4.3 Approach

In the previous sections, we constructed an image hierarchical graph and com-

puted the attributes of the objects in the image. Here, we will discuss the rep-

resentation of the image objects. In the hierarchy, the SDRs are determined in a

bottom-up manner. Sharing representations in a hierarchy leads to a generaliza-

tion of expected behavior. The corresponding graph hierarchy patterns learned

at each level are reused when combined in novel ways at higher levels [13]. The

higher levels inherit the properties of lower level components. It makes the com-

putation faster and also reduces memory requirements.

First, we compute the SDRs for the lowest level and then take a union of them

to form the higher levels. As we mentioned earlier, we are only considering three

levels in this paper. The technique will definitely handle more levels, but as the

number of levels increase, the false positives increase. 3 is a reasonable compro-

mise and is more than adequate for Blocks World images. For level one, all the

detected contours in the image, which are the components at that level, will have

a separate and distinct SDR. The fields and length of the SDR are fixed for all the

nodes and levels. We compare and operate on SDRs bit-by-bit, with each bit hav-

ing a semantic meaning so we do need the SDRs of the same dimensionality.

The significance of SDR in a graph is that a single node’s SDR will be able to

store its own information as well as its neighbors’. The neighbors are defined from

the one-hop connectivity. While designing the encoder, we fix the number of nodes

a node can be connected to. In this thesis, we design an encoder, which encodes

and stores the graph nodes’ attributes into the SDR. Here we will be dealing with

the block polygons in a simple 2D “blocks world” image space.

The two considerations for encoding the data into the SDR are described below:
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1. SDRs should be sparse. The sparsity for encoders can vary but should be

relatively fixed for a given application of an encoder [41]. A very rough rule

of thumb is that the number of 1’s should be the log2 of the dimension. For

this, we assign each field of an SDR a fixed number of bits assuming b and

keeping only w bits ON. This way, each dimension is sparsified by a w/b

factor.

2. The use of SDRs should be mostly independent of the indexing scheme rep-

resenting the graph, for example, the adjacency list or matrix. A single SDR

should have a reasonable knowledge of its surroundings, regardless of the

predefined indexing. Having a certain level of independence in the index-

ing is important for the usefulness of the SDR for pattern matching. When

storing the neighbors’ attributes into the SDR, we process them in the clock-

wise direction, keeping a particular, invariant, geometric coordinate as the

reference.

This way, we can compare the SDRs of two different nodes and find similarity

metrics between the two. Therefore, as desired, the usefulness of SDRs becomes

independent of how the nodes in the graph were originally indexed. However, this

approach does limit rotation invariance. Though few systems (including biological

vision) provide robust rotation invariance.

The attributes are defined as the number of edges, the height-width ratio, and

connectivity (number of neighbors). To store the relative positions of neighbors,

we compute an angle between the node and the neighbor node. An SDR has two

information fields, one for the node and other for the neighbors as described in

Figure 4.1. The final SDR of a node has m + 1 fields, one for the node and m for the

neighbors. Each field has sub-fields to store that node’s attributes and the neighbor
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node’s relative positions.

Figure 4.1: A graph node’s SDR organization [1].

To understand the encoder algorithm, assume a 2D planar labeled graph, G,

having n nodes, where every node is connected sparsely to, at most m, other nodes,

and the nodes are labeled with their attributes (such as number of edges, height -

width ratio, orientation and connectivity, information that is easily attainable from

OpenCV). Each node will have a distinct SDR. The length of the each SDR field

and the number of active bits are fixed.

To encode individual attribute information in SDR fields, we use flocet codes.

We can understand the flocet code from the sliding window in the fields. Let’s

assume that we have a sliding window of a specific size. Instead of just activating

one bit, we would set some consecutive bits active from an index. And, this whole

window moves by one place to the next bit. We split the range of numerical values

into buckets and then map the buckets to the values. From the bucket index itself,

we set w consecutive bits ‘ON’. The algorithm for determining the bucket a value

falls into is presented in algorithm 4.1 [41].
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Algorithm 4.1 Value Encoder
Input A numeric value v (It can either be height-width ratio, orientation angle

or relative position), minimum range minV, maximum range maxV and, the num-
ber of buckets nb

Output Bucket index i, the value falls into.
procedure ENCODER(v, minV, maxV, nb)

/* Calculate the range of values */
rangeV = maxV −minV

/* Compute bucket index i */
i = f loor(nb× v − minV

rangeV )

return i

As we see in figure 4.1, there are 5 different types of attributes in an SDR, (1)

Number of edges, (2) Height - width ratio, (3) Orientation angle, (4) Connectivity

and, (5) Relative position. (1) and (4) are smaller in size. We choose the flocet size

3 for these two fields and 6 for the three other fields as the number of active bits in

them. Therefore, the criteria for encoding these into SDR fields are different.

1. For the number of edges and connectivity of the nodes, we assume s and c

bits respectively. This means that we are limiting the maximum number of

sides a polygon can have and to how many other nodes it can be connected.

Whatever the values of number of edges and connectivity are, we set 3 (slid-

ing window size) consecutive bits ‘ON’ from that value among the total s and

c bits. The sparsity of these fields is 3/s and 3/c respectively.

2. For height-width ratio and angle fields, we assume 2b and b bits respectively.

Starting from the calculated index i from algorithm 4.1, we will take 6 (sliding

window size) consecutive bits and set them ‘ON’. This makes the sparsity

6/2b and, 6/b. For the height-width ratio and angle, we set the range from 0

to 360. Here, we choose the number of buckets nb to 4, and the field length

36



becomes 90. There is a trade-off on bucket size. The larger the bucket, the

higher the probability of false positives, less specific values, but the more

efficient the encoding.

Example: Let’s assume a graph where one of the nodes is connected to 2 other

nodes. The node is a triangle object and connected nodes are rectangle and pen-

tagon objects. Figure 4.2 represents the SDR of the node (with individual fields

shown here). We assume that a triangle is connected to a rectangle in an image.

The vector shows the information of the triangle node and its neighbor rectangle

node. In the representation, we assume a node can have a maximum of 10 neigh-

bors. If a node has less than 10 neighbors then all the other neighbor fields are all

0’s. These fields are not shown in figure 4.2.

Figure 4.2: A node’s SDR. Two fields for the node and its neighbor with flocet
codes in the sub-fields. Trailing 0’s are not shown here.

Adding more bits per field yields more accuracy, fewer bits lumps more figures

into each field. Different applications may have different preferences. We choose

10 as the maximum number of edges. This could also be more than 10. Humans are

not going to be able to easily tell an object with 10 neighbors from an object with 11

neighbors, probably not 9 and 10 either. You can say the same thing about number

of edges and orientation angle, at some point a human can’t tell the difference.

So the numbers of bits (resolution) and maximum values can be related to the

limitations of human vision. One could also think of a logarithmic encoding that

emphasises smaller number of edges vs. large number of edges.
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Sparse distributed representation for higher levels

After calculating the SDRs for each and every node of a level 1 graph, we move

up to the hierarchy. For level 2, to determine the SDRs of the nodes, we combine

the SDRs of level 1 by taking the connected component nodes. We perform ‘union’

operations for every node present in level 2 and these union SDRs represent a

hierarchical graph’s structure. For example, assume we have a graph that consists

of nine objects and three connected components. We compute three SDRs for level

2 by performing ‘union’ operations on the objects which belong to the connected

components. These three SDRs are the fixed-length binary representation of a level

two graph.

By the union property, a single SDR is able to store a dynamic set of elements,

so when we see the final SDR after performing the union, it has the information

presented in the component node SDRs. We can also represent the whole graph

in a single SDR by taking the union of all its nodes’ SDRs. This resultant SDR

will have relevant information about the graph and represents our level 3, which

is the entire image. Even if we have more than three levels in the graph we still

only require this bottom-up approach: calculate the SDR for the lowest level and

then start combining (union operation) the SDRs for higher levels motivated by

the approach our brain takes when processing a piece of new visual information.

The SDRs of image-graphs have four important characteristics, which allow

them to achieve their goal of fast pattern matching in graphs.

1. Each bit in an SDR has semantic meaning.

2. Computations with SDRs are independent of the indexing in graphs and

their components.
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3. SDRs are sparse enough to reduce spatial complexity.

4. The SDRs form a representation that contains the “structure” of the object

and so is useful in downstream object recognition.

4.4 Results

The generated SDRs are large binary vectors representing the important attributes

of the objects. Each detected part in the image has an SDR of length l. The length of

the SDRs is large compared to the number of active bits. For limiting the size of the

SDR, we assume that the maximum connected nodes and the maximum number

of edges for a node are 10. The height and width can be in a range from 1 to

360. To represent the very sparse SDRs, we show only the indices of ON bits. The

computation with SDRs is memory and time efficient as the computation happens

only with the active bits.

Figure 4.3 shows a simple blocks-world image, and it’s corresponding graph

and SDRs. Blue nodes are the centers of detected parts from OpenCV. Here, we

show individual part nodes’ SDRs to illustrate the encoding of information. Initial

bits from 0 to 299 represent the node information and from 300 to 4119 bits rep-

resent the connected neighbor nodes’ information and their relative position with

the node.
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(a) A simple level 1 image graph with four parts. (0, 1) and (2, 3) are the connected com-
ponents and considered different objects for level 2 graph.

(b) Level 1 SDRs for the four parts of image. Only the indices of active bits are shown here.

Figure 4.3: Level 1 image graph and SDRs of the parts (blue nodes) are shown here.
Each part has only one neighbor node. Initial bits from 0 to 299 represent the part
information and the rest bits describe the neighbor information.
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Chapter 5

Graph Matching

5.1 Introduction and Motivation

In this thesis, our goal is to recognize the pattern in an image by constructing the

image graph and then match the patterns of images by doing the graph matching.

Graph matching is done by comparing their SDRs. Graphs are used to encode

the structural information of images. Graph matching algorithms are key in the

pattern recognition field [54], [55].

Graph matching is a problem of finding the similarity between two graphs.

There are two types of matching, exact matching or inexact matching. Exact graph

matching is also known as the graph isomorphism problem. The sub-graph iso-

morphism problem is also called exact graph matching. In graph isomorphism,

we determine whether two graphs are isomorphic and in sub-graph isomorphism,

we determine whether the smaller graph is graph isomorphic to a part of the big-

ger graph. Two graphs G1 and G2 are said to be isomorphic if (a) their number

of components (vertices and edges) are same, and (b) their edge connectivity is

retained. There exists a bijection function f from vertices of G1 to vertices of G2,

[ f : V(G1) =⇒ V(G2)] then G1 ' G2. Subgraph isomorphism is an NP-complete

problem. Figure 5.1 shows three graphs which are isomorphic to each other. Two

graphs G1 and G2 are said to be subgraph isomorphic if, for a subgraph G0 of G1,
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G0 ⊆ G1, there exists a bijection function ’ f ’ from vertices of G0 to vertices of G2,

[ f : V(G0) =⇒ V(G2)]. Figure 5.2 displays two graphs and the node to node

matching between them. It shows that the smaller graph is present in the bigger

graph.

Figure 5.1: Two isomorphic graphs are shown here with their bijection function
mapping f [56].

Figure 5.2: A subgraph matching; the object graph is matched to the scene graph.
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5.2 Related work

Object recognition is the primary operation of any computer vision system. One

obvious method of recognizing an object is by comparing it to a database of known

objects, template matching is an example of this approach. One way to incorpo-

rate more flexibility into the recognition process is to represent objects by graphs,

which incorporate the structural information in the image. For example, in com-

puter vision, graphs have been shown to be a useful tool for representing images.

Labeled graphs can capture and represent a significant amount of information on

the “structure” of objects. Using graphs, object recognition requires graph match-

ing [34], [37], [38], [57], [58].

5.3 Approach

Graph isomorphism, which is also known as exact graph matching is used in the

area of image recognition. This problem is known to be solved in non-polynomial

time, but here we are proposing a new method for solving approximate graph iso-

morphism to reduce the complexity of pattern matching by combining graph an-

alytics and sparse distributed representations. The algorithm is heuristic. Graph

isomorphism can only be applied when the number of nodes in the graphs are the

same. Also, two graphs cannot be isomorphic if the distribution of in-degree/out-

degree of their nodes are different, e.g., 3 nodes with 2 connections, 2 nodes with 4

connections. Therefore, we check the number of nodes in the graphs’ level repre-

sentation, if equal; we check the isomorphism between the level 1 SDRs. If not iso-

morphic, we move to level 2 and calculate the sub-graphs of the bigger graph. The

sub-graphs respect the hierarchy. We check the isomorphism for all the sub-graphs

whose number of nodes are equal to the smaller graph’s nodes. If the smaller graph
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exists in the bigger graph, the graph is sub-graph isomorphic.

The computational savings come at the cost of capturing and representing more

complete information in the SDR. Although, SDR vectors are large, the operations

using SDRs depend on the number of active bits, which are much fewer than the

total number of bits. This is an advantage of sparse representations. SDR vectors

contain most of the information about the objects’ geometries and the structure

of an image. More information can be added based on the application and the

dataset. Adding information improves robustness. However, this comes with the

cost of more false positives. False positives are possible but for very sparse en-

codings very unlikely [14]. We realize the match between the SDRs using SDR’s

union property and a threshold θ. Decreasing θ also results in more false positives.

One advantage of the union property is that there is no risk of false negatives since

the overlap gives the perfect match if the SDR is within the set. However, it does

increase the chance of false positives [14], by increasing the number of active bits

in the resultant SDR.

With the help of SDRs, we have developed a powerful heuristic search for

graph isomorphism in O(l) time, l is the SDR length which is a constant in our

case. A variation of exact match isomorphism is called subgraph isomorphism.

Here one must determine whether a graph contains a subgraph, which is isomor-

phic to another graph. This problem is also known to not be solvable in polyno-

mial time. Here, we choose k nodes’ subgraph out of a big graph of n nodes in

O(nk) time and with the help of SDRs, do the matching in O(1). All the k nodes’

subgraphs should respect the hierarchy (shown in figure 3.3). k is the number of

nodes in the small graph. For efficient image matching, an SDR should be invari-

ant to position, scale, brightness and, rotation of an object. In this paper, our SDR

provides both scale and position invariance. The graph-matching algorithm using
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our SDR is shown in algorithm below. In the future, we can apply this technique

of merging graph matching and SDRs to find a solution for probabilistic matching,

by, for example, finding matching patterns in an image using probabilistic associa-

tive memory, which is known to approximate Bayesian Inference.
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Algorithm 5.1 Graph Matching
Input First level image graphs (GA, GB) and their 2D SDR arrays (SA, SB) with

nA and nB nodes.
Output Whether graphs are matched or not. If matched, they are isomorphic

or sub-graph isomorphic.
1: procedure GRAPHMATCHING
2:
3: /* If number of nodes are equal - check graph isomorphism*/
4: if nA == nB then
5: Ans← GRAPHISOMORPHISM(SA, SB)
6:
7: /* else - check sub-graph isomorphism */
8:
9: /* If GA has more nodes then GB */

10: else if nA > nB then
11: calculate level 2 graph GA2 and a 2D SDR array SA2 for graph GA
12:
13: /* Iterate through all the sub-graphs of GA. */
14: for i in len(SA2) do
15:
16: /* If the number of nodes are equal to of GB then check for
17: isomorphism */
18: if number of nodes in SA2[i] == nB then
19: Ans← GRAPHISOMORPHISM(SA2[i], SB)
20: end if
21: end for
22:
23: /* If GB has more nodes then GA */
24: else then
25: calculate level 2 graph GB2 and a 2D SDR array SB2 for graph GB
26:
27: /* Iterate through all the sub-graphs of GB. If the number of
28: nodes are equal to of GA then check for isomorphism */
29: for i in len(SB2) do
30: if number of nodes in SB2[i] == nA then
31: Ans← GRAPHISOMORPHISM(SA, SB2[i])
32: end if
33: end for
34: end if
35:
36: if Ans == ‘Yes’ then
37: “Graphs are sub-graph isomorphic”
38: else then
39: “Graphs are not sub-graph isomorphic”
40: end if
41: end procedure=0
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1: procedure GRAPHISOMORPHISM
2: calculate union of the SDR arrays and create 1D SDRs
3: Take dot product of SA and SB to get the overlap score for the SDRs to
4: determine the similarity.
5: We realise a match between the SDRs if their overlap exceeds some
6: threshold θ.
7: end procedure

5.4 Results

In this section, we calculate the match between the generated graphs using SDR

overlap. In figure 5.3, we take two sets of graphs and check whether the first graph

contains a graph which is isomorphic to the second graph. This demonstrates

whether the object present in the second image exists somewhere in the first image.

Here we also show that this check is independent of the graph/object indices. As

one can see in the images, some of the detected parts in the second image are

indexed differently from the first image, which does not affect the final result. This

match also demonstrates the scale and position invariance. For the graphs in figure

5.3, image (a, c) and image (b, d) have two and one objects respectively in level 2

which are represented by a red node. We take one object SDR of graph 1 at a time

and compare it with the graph 2 SDR, which realizes a match. For the given images

in figure 5.3 the SDR overlap exceeds the threshold. We conclude that graph 2 is

sub-graph isomorphic to graph 1 which also means that the object in the second

image exists in the first image. It should be noted, that such matching can be done

in a straightforward manner by cortical-like associative memories as we will show

with Sparsey in chapter 6.

Here, we explain figures 5.3 (c) and (d) to show their SDRs and matching. In

figure 5.3(c), components {0, 2, 4, 5, 6, 9, 11, 14, 15, 17, 18, 20, 21} of level 1 belong
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(a) (b)

(c) (d)

Figure 5.3: Graphs with sub-graph isomorphism, right images (b) and (d) are
smaller graphs which are isomorphic to a part of the left bigger graphs (a), (c)
respectively.
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to object 0 in level 2 and components {1, 3, 7, 8, 10, 12, 13, 16, 19, 22} of level 1

belong to object 1 in level 2 graph. Using algorithm 1, we first check the number

of nodes in both the image graphs. Figure 5.3(c) has two nodes and 5.3(d) has one

object. Therefore, we take all the sub-graphs of 5.3(c). There is only one sub-graph

which has equal number of nodes as 5.3(d). Hence, we match the SDR of object 1 of

5.3(c) and SDR of 5.3(d). The match exceeds the threshold of 90%. The threshold is

determined by the number of active bits in both the graphs. Thus these two graphs

are sub-graph isomorphic.

Table 5.1: Result Analysis: Techniques and their complexity

Algorithm Complexity

Graph Isomorphism NP-Intermediate

Sub-graph Isomorphism NP-Complete

Approximate Graph

Isomorphism w/SDR O(1)

Approximate Sub-graph Choosing a k node subgraph out of a

Isomorphism w/ SDR big graph with n nodes – O(nk)

and matching subgraph with k nodes is O(1)
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Chapter 6

Retrieval of Information From Noisy or Incomplete Data

6.1 Introduction and Motivation

In this chapter, we will use the SDRs to recognize blocks-world images. We retrieve

the images from a noisy version of it. Most humans can recall information from an

incomplete or a noisy variation of it. Let’s assume we remember the sentence ”All

work and no play makes Jack a dull boy” then we can recall it from ”All work and

no play makes” (incomplete) and ”All work and no play makes Jack a happy boy”

(noisy).

There are two kinds of noise we want to investigate. There are the usual sources

of noise, such as speckle and partial occlusion, and there is Shape Noise, which is

a different kind of noise: resulting from missing or spurious and poorly placed

components. Using SDRs to retrieve shape information helps us in assessing how

much information SDRs capture of objects and images. The approach is unique,

and there isn’t any competing data that we can compare.

6.1.1 Associative Memory

Associative memory is a Content-Addressable Memory (CAM) that allows the re-

trieval of data based on the similarity of input data with stored data in the memory.

There are two general classes of Associative Memory: exact match and best match.
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Exact match is used extensively in computer science (caches do exact match on

memory addresses), database systems, IP address lookup, etc. It is straight for-

ward to do, say with hashing. The best match finds the closest match if an exact

match is not possible. Best match association can be done in a probabilistic manner.

It is more complex and expensive and used less often. Here, we look at best match

association of which there is both auto-associative memory and hetero-associative

memory.

Auto-associative Memory: In auto associative memory, we retrieve the con-

tent/pattern already stored in the memory from the noisy/incomplete input data.

The pattern in the memory which is closest to the input pattern would be the out-

put. Figure 6.1 shows an auto-associative model. We can see that there are 4 shapes

stored and when we input a noisy shape, it returns the original corresponding

shape without noise. Most humans can recall the missing information from a por-

tion of data.

Figure 6.1: Auto-associative memory model as a black box. Four shapes are stored
in the memory. When a shape is input, it retrieves the closest matched shape from
the memory.

Figure 6.3 shows an example of how the auto-associative memory stores the
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original data and recalls it from noisy/incomplete data. Here, we have x = y as

there is no associated data/pattern. Therefore, the weight matrix is calculated as

equation 6.1. X is orthonormal matrix of all stored bit vectors and p is the number

of bit vectors stored the memory. To retrieve the vector o from the memory using

noisy/incomplete vector t the operation can be written as equation 6.2 [59].

W = XXT =
p

∑
i=0

xi × xi (6.1)

oj = ∑
i

Wijti (6.2)

Hetero-associative Memory: In hetero-associative memory, we retrieve the clos-

est associated content/pattern to the input data. The output is different from input

not only in content, but also in type and format. For auto-association, the input and

output spaces are the same (equation 6.1) whereas for hetero-association, X 6= Y

which could be of different dimensions. Therefore, the weight matrix is calculated

as equation 6.3. Using the generated weight matrix, we retrieve the associated data

from the memory using equation 6.2.

W = XYT =
p

∑
i=0

xi × yi (6.3)

Figure 6.2 shows a hetero-associative model. There are 3 sets of shapes, when

we input a shape, it returns the associated shape as output.
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Figure 6.2: Hetero-associative memory model as a black box. Three associated
pairs of shapes are stored in the memory. When input a triangle, it retrieved the
associated diamond from the memory.

6.1.2 Support Vector Machine

The Support Vector Machine (SVM) is a supervised learning model used for clas-

sification, regression, and outlier detection. It’s objective is to construct a hyper-

plane or set of hyperplanes in a high dimensional space to distinctly classify the

data points [61]. The high dimensional spaces can also be non-linear wrt the orig-

inal parameters. A hyper plane in a high dimensional, non-linear space can be a

complex partition of the original data space. SVMs do not do higher level hier-

archical abstraction, they just create complex non-linear partitions. This is ideal

for us, since we are trying to determine how much useful information our SDR

encoding captures of the original object.

SVM uses a subset of training points in the decision function (called support

vectors), so it is also memory efficient [62]. A good hyperplane is found when it

has the maximum margin, i.e., maximum distance to the support vector points.

Maximizing the margin provides the low generalization error of the classifier [61].
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(a) Training data (b) Weight matrix

(c) Noisy input data
(d) Retrieved output data

Figure 6.3: Recalling of data from auto-associative memory [60].
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Figure 6.4: Maximum margin hyperplane for two linearly separable classes [61].

For two linearly separable classes, given a training dataset of n points,

(~x1, y1), (~x2, y2), . . . , (~xn, yn), where yi = ±1, an hyperplane can be written as

equation 6.4 [61].

~w.~x− b = 0 (6.4)

~w is the normal vector to the hyperplane. An example of linearly classifying

data points using SVM is shown in figure 6.4. The parameter b
‖~w‖ determines the

offset of the hyperplane from the origin along the normal vector ~w. Two parallel

hyperplanes make the region called margin between the two classes. These hyper-

planes can be written as equations 6.5 and 6.6.

~w.~xi − b ≥ 1, if yi = 1 and ~w.~xi − b ≤ −1, if yi = −1 (6.5)

yi(~w ·~xi − b) ≥ 1 for all 1 ≤ i ≤ n (6.6)
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SVM can also efficiently do non-linear classification using the kernel trick as

shown in figure 6.5. This operates on the data points in a high-dimensional space.

SVM works only when the data is labeled since it is a supervised learning model.

SVM works for multi-class classification too. This is done by reducing one multi-

class problem into multiple binary problems [61]. SVM uses two approaches for

multi-class classification (a) one-vs-one (b) one-vs-rest. In one-vs-one approach, it

takes any two classes and form the hyperplane. In one-vs-rest approach, it takes

one class as class 1 and all the other classes as class 2. This proceeds iteratively for

all the classes present in the input data. In figure 6.6, there are three class input

points and both the approaches are explained.

Figure 6.5: SVM with kernel given by φ((a, b)) = (a, b, a2 + b2)[61]
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Figure 6.6: Example of multi-class classification approaches to three class points.

6.1.3 Sparsey

Sparsey [44], [45] is a neuromorphic associative memory model where informa-

tion is represented using a SDR format. It is a hierarchical model with each level

consisting of an array of macs (macro-columns). Each mac has three types of con-

nections, bottom-up (U), top-down (D) and horizontal (H). It learns and retrieves

the best-match stored sequence in fixed time [63]. In sparse distributed coding

(SDC), item (part of an input vector) is coded by a small subset of the mac’s units.

A single coding field in Sparsey consists of Q Winner-Take-All (WTA) Competitive

Modules (CMs). Figure 6.7 shows the connection between input-mac and mac-

mac.

A code selection algorithm [45] determines which cells are chosen to represent

an input, during both learning and retrieval. While learning the data, it ensures
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Figure 6.7: Afferent projections to a mac [44].

that similar codes are assigned to similar inputs (SISC property) that leverages

similar shape characteristics of our SDR code. When we input a new test pattern,

it would assign similar codes if the model has already learned a pattern close to it.

If the test pattern is completely unfamiliar to the model, it will assign a new code.

Figure 6.8 shows the architecture of input encoding using CLA.

Our hypothesis is that this will open up the space making it easier to distin-

guish neighboring representations. This hypothesis depends on our assumption

that the SDR provides enough information to distinguish different shapes (i.e., re-

solve shape noise). Sparsey is a re-encoding of the vector space, but it does not add

any new information.
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Figure 6.8: Functional architecture of CLA [45].

6.2 Related work

The concept of associative memory has been studied for some time. Around 1960,

Steinbuch [64] invented an associative memory like architecture of an artificial neu-

ral network. In 1980, Palm [65] presented a model where the information stored

in the network is obtained from the retrieved result. He calculates the information

storing capacity of associative memories.

Kosko [66] introduced Bidirectional Associative Memory (BAM) in 1988, a

hetero-associative memory. BAM transforms the binary data into bipolar form.

It could recall a pattern from another pattern which can be of a different sizes.

Sparse Distributed Memory (SDM) [47] is another associative memory like model.

SDM is sensitive to the similarity of data. It retrieves the word stored at an address

with an address close to it. It checks for the similarity of addresses by calculating

the hamming distance between them. Zhu [67] investigates several models based

on associative memory and proposes a solution of building a hierarchical network

of Bayesian Memories to solve the scaling issue of the large networks. Taha [68]
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designed a Hamming Distance Associative Content Addressable Memory (HDA-

CAM) which leverages in-memory parallel computing and achieves low-power

and faster computation.

6.3 SVM Approach

To retrieve the shape information from noisy or incomplete data, we use an SVM.

SVM chosen since it needs only a modest number of training vectors to create en

effective partition, as opposed to an MLP, which typically requires a fairly large

training set, which is difficult for us to us to generate artificially. The training input

is the shapes’ sparse distributed representations as calculated in chapter 4. Here,

an SVM is used for doing multi-class classification. We use 2D blocks world images

which have one object made of multiple components (1 connected component in

level 1 graph) and consider each image as different class. We calculate image SDRs

and train the SVM on these vectors. SVM partitions underlying SDR vector space

(i.e. input image SDR vectors) into the classes. This helps us in learning the shapes

and structural information of images. Figure 6.9 is an example of a vector space

partitioned into 10 classes.

To implement the training of images, we use the scikit-learn machine learning

library for Python [62]. The support vector machines in scikit-learn has 3 versions

SVC, NuSVC and LinearSVC capable of performing binary and multi-class clas-

sification. Both SVC (C-Support Vector Classification) and NuSVC (Nu-Support

Vector Classification) are similar methods except for the parameters to control the

number of support vectors. For multi-class classification, they always use ‘one-vs-

one’ strategy (‘ovo’).

The primal problem for the SVC is, given training vectors xi ∈ Rp, i =
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Figure 6.9: Linear partitioning of a vector space into 10 classes

1, 2, . . . , n in two classes, and a vector y = {−1, 1}n, can be written as equation

6.7. The goal is to find w ∈ Rp and b ∈ R such that the prediction given by

sign(wTφ(x) + b) is correct for most samples [69]. φ and C are the identity function

and regularization parameter respectively. ζ is the distance allowed from samples

to their correct margin boundary.

minw,b, ζi

1
2

wTw + C
n

∑
i=1

ζi

subject to yi(wTφ(xi) + b) ≥ 1− ζi,

ζi ≥ 0, i = 1, . . . , n

(6.7)

LinearSVC is faster than SVC and NuSVC. The kernel in this case is assumed to

be linear. It implements a ‘one-vs-the-rest’ (‘ovr’) strategy, thus training n classes

models. The primal problem for LinearSVC can be formulated as equation 6.8 [69].
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It makes use of the hinge loss.

min
w,b

1
2

wTw + C ∑
i=1

max(0, yi(wTφ(xi) + b)) (6.8)

SVC, NuSVC and LinearSVC take two arrays as input, training sample X (SDR

matrix of all the images) and class labels y (corresponding image). Class labels can

be of string or integer type of shape n images. Each of our training samples is a

shape (n images, length SDR). Equation 6.9 shows the python implementation of

these functions. After defining the model, we fit the input arrays to the model as

shown in equation 6.10.

svmModel = svm.SVC()

svmModel = svm.NuSVC()

svmModel = svm.LinearSVC()

(6.9)

svmModel. f it(X, y) (6.10)

After the training of image SDRs, we provide testing SDRs to the SVM model

and predict their classes. Here, testing SDRs are SDRs of noisy images formed from

trained images. This process gives us the corresponding undistorted/original im-

age classes the distorted SDRs belong to. Equation 6.11 outputs the image classes

for the test SDRs which will have the closest trained SDR.

classes = svmModel.predict(TestVectors) (6.11)
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6.4 Results

6.4.1 Associative Memory Results

To retrieve the shape information from noisy or incomplete data, the first step

was to try a simple Associative Memory (AM). We implement the auto-associative

memory using the image’s component SDR (level 1) vectors without noise for

training inputs and noisy image SDR vectors for testing. We calculate the weight

matrix W using equation 6.1. X is the 2D matrix of shape (n, l). n is the number of

training vectors and l is the length of one training vector. After calculating W in

the training phase, we multiply the testing vector t to W to get the vector o. Then

we use k Winner-Take-All (WTA) on vector o. k is determined such that active bits

in input vector xi and output vector y remains the same.

The basic associative memory did not work very well. We speculate that the

vector space was not conducive to AM functionality, that is, similar vectors (in

Hamming distance) did not necessarily represent similar shapes. We decided that

re-engineering a more complex AM for our data was not worth it, so we moved to

the SVM which allows more complex nonlinear partitions.

6.4.2 SVM Results

We conducted experiments to assess the ability of the SVM to learn and recognize

the distorted shapes. Figure 6.10 shows 10 images which we used for training. The

images are generated from the blocks world tool [21]. Each of these images is a

different class.

Once training is completed, we then test on noisy versions of trained images.

The noise is added in 4 ways, (a) Extra component such that it forms a connection

in the graph with other components, (b) Missing component such that an existing
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.10: 10 Training images.

connection is broken, (c) One or two components are partially blocked, and (d)

One or two components are distorted by adding noise (figure 6.11). We can group

the noise into two types, (a) shape noise (extra and missing components), and (b)

traditional image noise (partial occlusion and component pixel distortion). The

SVM maps the SDRs of these images to the partitions of the SDR vector space it

created while training original images. Based on the mapping, it returns the corre-

sponding original / undistorted image that will have the closest SDR for the given

noisy image. An image SDR stores the geometrical and structural information of

shapes.

There are actually two characteristics we are trying to measure: the information

the SDR captures and the efficiency of the encoding of that information. The SVM

accuracy depends on both.
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(a) Original image

(b) Extra compo-
nent

(c) Missing com-
ponent

(d) Partially
blocked compo-
nent

(e) Noisy compo-
nent

Figure 6.11: Types of noisy versions of an image

Figure 6.12 shows 18 noisy variations of image 6.10 (b). Similarly, for all the im-

ages in Figure 6.10 used in training, we create 18 noisy variations and test the SVM

model on these 180 images. We observe the classification/retrieval accuracy in two

ways (a) with all the 18 variation (shape + traditional noise) and (b) with only the

addition of traditional image noise, component partially blocked and distorted by

noise shown in figure 6.12 (m)-(r). Table 6.1 shows the different accuracies we get

from using SVC, NuSVC and LinearSVC methods.

Table 6.1: SVM model analysis for 2D blocks world images using SDRs
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Images used for testing Method Accuracy

SVC 91%

180 (10 classes, 18 noisy versions NuSVC 92%

- shape noise + traditional image noise) LinearSVC 94%

SVC 97%

100 (10 classes, 10 noisy versions NuSVC 97%

- only with the traditional image noise) LinearSVC 98%

As expected, the classification is less accurate for component variations (shape

noise). However, we see that the inaccurate classifications are mostly for compara-

tively smaller images. Smaller images are like artificial images and large/complex

images are more relevant to the real world. One missing or extra component can

significantly change a small image which can even puzzle humans.

6.4.3 Sparsey Results

The reason for trying Sparsey is our belief that Sparsey will modify the encoding in

ways that will spread the vector space, making classification more robust leading

to a more effective encoding. At the time of this writing we have not received

Sparsey Results from Dr. Rinkus.
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Figure 6.12: Testing images which are noisy variations of trained image 6.10(b),
(a)-(d) extra component, (e)-(h) missing component / complete blocked, (i)-(l) One
or two components partially blocked, (m)-(p) one or two noisy components, (q)
and (r) one partially blocked component such as it is seen as two.
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Chapter 7

Conclusions And Future Work

Object recognition continues to be the most important capability in computer vi-

sion. Traditional object recognition techniques were based on capturing complex

features, but the features were mostly treated as unrelated in any way, the “bag

of features” approach. The actual relationship of the features with respect to each

other was rarely addressed, though there has been some work in this area [18],

[70]. The bag of features approach loses important information about the struc-

tural relationships of the features with respect to each other, for example, the spa-

tial relationship between the limbs of an animal or the formation and shape of

vehicles. The structure captured by our SDR contains important information that

may help with object recognition and complex variations of it are most likely used

in primate vision. Deep networks appear to be limited in how much structure they

capture. And, they are easily fooled with minor modifications of test images [2].

These failures often have to do with a common pattern in an arbitrary position a

“bag of features” kind of mistake.

Graph techniques, when paired with biologically inspired representations,

have the potential to be an effective method for object recognition. These tech-

niques leverage the information about the connectedness between the features,

i.e., the “structure” of an image rather than the traditional methods in which we
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have no connectivity between features and objects of the image. In this thesis, we

have presented a novel technique to perform object detection and pattern match-

ing in images with the help of graph algorithms and Neuromorphic computing

techniques. With these techniques, we can identify connections in images and rep-

resent those as graphs. This enables us to use many graph-based algorithms for

this pattern matching in images. We showed that we can perform approximate

graph matching in O(1) time with the SDR representations, and further choose k

nodes subgraph in O(nk) and perform subgraph matching with O(1), whereas the

classic techniques take a non-polynomial amount of time. Moreover, we can also

identify partial matching in images based on the inherent properties of SDRs. This

work shows a way of using graph-based techniques for object recognition related

tasks in images and demonstrates the use of Neuromorphic computing techniques

for providing orders of magnitudes of speedups.

There are the usual sources of noise, such as speckle and partial occlusion.

However, shapes also makes possible a different kind of noise: missing, extra or

poorly placed components. Traditional vision algorithms generally do nor recog-

nize shape noise. It is not clear how deep models like CNN will do in this regard.

An important next step to this research is to assess that approach. The idea is to

learn objects and retrieve them from any noisy or incomplete version of it. For this,

we use support vector machines. The SVM partitions the image SDR vector space

and maps the new test image’s SDR vector to one of these vector space partitions.

Therefore, it retrieves the original/uncorrupted version of test image. We trained

an SVM on 10 image classes and tested on 180 images (10 classes, 18 noisy shape

variations) achieving 94% accuracy. The accuracy for retained shape, but with only

the addition of more traditional noise, is 98%. The classification accuracy gives us

an assessment of how much information the SDR is capturing.
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Future Work: The research described here has laid the ground work for a number

of possible directions. Here are just a few examples.

1. Move from blocks world to more real world images. The most obvious next

step is to move from blocks world to real world images. It is possible that

the SDR encoding techniques will need to be expanded to accommodate real

images.

2. Benchmarking against more traditional Deep Networks. Specifically it is

important to compare how well traditional Deep Network models do with

shape noise. This was not addressed in this thesis due to the significant ef-

fort required have the Blocks World software generate the thousands of im-

ages that Deep Models require, which put the effort beyond the scope of this

thesis.

3. Studying ways to capture and represent shape using more biologically in-

spired networks. A major goal of our group is to understand how biological

networks handle structure in data, which includes image data. Some of the

specific techniques used here, such as counting the number of edges of the

polygons and the relative angles of neighboring components do not appear

to have direct biological equivalents. However, it is clear that biological net-

works capture structure, so we suspect that there are biological equivalents

that roughly capture similar information.

4. Adding a probabilistic framework in graph matching. Ultimately these net-

works are doing probabilistic inference, adding Bayesian like measure to the

shape recognition process will lead to more accurate recognition.
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5. Speculating the likelihood of false positives in real applications, beyond

blocks world.

6. Image SDRs can be used in big data graph analytic, which can make them

faster and efficient for big database that are generally very compute intensive

to process.
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Appendix A

Software and Code

IDE: PyCharm

Github code: https://github.com/aakanksha14/ApproximatePatternMatching

Image generation tool: https://github.com/abidalrekab/blocksWorld/tree/

version3

Libraries:

1. NumPy - for vector and matrix handling

2. OpenCV - object detection and feature extraction

3. NetworkX and Scikit-learn - graph generation

4. Matplotlib - to plot figures
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