
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

10-19-2020

Exploring the Potential of Sparse Coding for Exploring the Potential of Sparse Coding for

Machine Learning Machine Learning

Sheng Yang Lundquist
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Applied Mathematics Commons, and the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lundquist, Sheng Yang, "Exploring the Potential of Sparse Coding for Machine Learning" (2020).
Dissertations and Theses. Paper 5612.
https://doi.org/10.15760/etd.7484

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5612
https://doi.org/10.15760/etd.7484
mailto:pdxscholar@pdx.edu

Exploring the Potential of Sparse Coding for Machine Learning

by

Sheng Y. Lundquist

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Melanie Mitchell, Chair

Feng Liu
Bart Massey

Garrett Kenyon
Bruno Jedynak

Portland State University
2020

© 2020 Sheng Y. Lundquist

Abstract

While deep learning has proven to be successful for various tasks in the field of

computer vision, there are several limitations of deep-learning models when com-

pared to human performance. Specifically, human vision is largely robust to noise

and distortions, whereas deep learning performance tends to be brittle to modifi-

cations of test images, including being susceptible to adversarial examples. Addi-

tionally, deep-learning methods typically require very large collections of training

examples for good performance on a task, whereas humans can learn to perform

the same task with a much smaller number of training examples.

In this dissertation, I investigate whether the use of a biologically informed,

unsupervised sparse coding algorithm can help to alleviate these shortcomings

within classification networks. I find that (1) the non-linear encoding scheme of

convolutional sparse coding, as opposed to the dictionary learned, contributes

to classification performance when used within a model. In addition, (2) sparse

coding helps classification models trained on clean images to be more robust to

adversarial examples and images corrupted with high frequency noise. Finally,

(3) sparse coding helps alleviate the number of human-annotated training labels

needed for classification on stereo-video data. Overall, using unsupervised sparse

coding within supervised models can help alleviate various shortcomings of tradi-

tional deep neural networks.

i

Dedication

To my mother Jie Lundquist, my best friend Mackenzie Gray, and the best boy

Bowser. Without your love and support, this dissertation would have forever been

unfinished.

Artist: Laura Connelly

ii

Acknowledgements

First and foremost, I’d like to thank my friend and colleague Dylan Paiton. Our

collaborations and endless discussions has pushed me to be a better scientist, and

I value your feedback in all of my work.

I would also like to thank John Lipor, Anthony Rhodes, Max Quinn, Jordan

Witte, Erik Cosner, Will Landecker, Callie Bee, and Mackenzie Gray for valu-

able feedback regarding work done for this dissertation. Additionally, I’d like to

thank my dissertation committee Melanie Mitchell, Feng Liu, Bart Massey, Garrett

Kenyon, and Bruno Jedynak for your feedback. The supervised image classifica-

tion section was work done in conjunction with Melanie Mitchell. The adversarial

examples section was work done in conjunction with Dylan Paiton and Melanie

Mitchell. The limited data section was work done in conjunction with Melanie

Mitchell and Garrett Kenyon.

I would like to thank Garrett Kenyon in particular for introducing me to the

field of computational neuroscience and machine learning, as well as the continued

support and advisement. Thanks also to all my colleagues in the Kenyon lab.

I’d like to thank the people of the ultimate community for the countless friend-

ships I’ve made there, while also keeping me healthy both physically and mentally.

I can’t wait to see all of you again soon.

Finally, I’d like to thank my PhD advisor Melanie Mitchell for overseeing and

providing endless feedback and advice through my time at Portland State Univer-

sity. I couldn’t have done it without you.

iii

Table of Contents

Abstract . i

Dedication . ii

Acknowledgements . iii

List of Tables . vii

List of Figures . viii

1 Introduction . 1

2 Background for Deep Neural Networks . 4

2.1 Supervised vs. Unsupervised Learning . 4

2.2 Deep Convolutional Neural Networks . 6

2.2.1 Fully Connected Layer . 7

2.2.2 Convolutional Layer . 8

2.2.3 Pooling Layer . 10

2.3 Gradient Descent . 10

2.4 Cross-Entropy Supervised Loss Function . 13

3 Background for Sparse Coding . 14

3.1 Encoding . 16

3.2 Dictionary Learning . 17

3.3 Convolutional Sparse Coding . 18

3.4 Implementation . 19

4 Exploring Convolutional Sparse Coding for Supervised Image

Classification. 22

iv

4.1 Related Work . 24

4.2 Experiments . 26

4.2.1 Dataset . 27

4.2.2 Dictionary Learning Methods . 28

4.2.3 Encoding Methods . 31

4.2.4 Classifier . 32

4.2.5 Fully Supervised Model . 33

4.3 Results . 34

4.4 Summary . 37

5 Sparse Coding for Model Robustness . 39

5.1 Background on Adversarial Examples . 41

5.2 Related Work . 43

5.3 Robustness of Sparse Coding on Adversarial Examples 46

5.3.1 Effect of Sparsity on Adversarial Robustness 50

5.3.2 Calibration of Classification Models . 52

5.4 Robustness of Sparse Coding on Corrupted Images 56

5.5 Summary . 60

6 Sparse Coding with Limited Labels . 61

6.1 Related Work . 61

6.2 Sparse Coding of Stereo-Video for Vehicle Detection 63

6.2.1 Experiments . 65

6.2.2 Results . 68

7 Final Conclusions . 74

v

References . 77

Appendix A Sparse Coding Results . 82

Appendix B Effect of Sparsity on Classification . 88

Appendix C Adversarial Attacks on Sparse Coding . 90

Appendix D Classification on Corrupted Images . 94

vi

List of Tables

1 Encoding versus dictionary learning accuracy . 34

2 ECE of classification models . 54

3 Average precision scores on stereo-video classification 69

vii

List of Figures

1 Autoencoder illustration . 5

2 Deep convolutional neural network illustration . 6

3 Fully connected layer illustration . 7

4 Convolutional layer illustration . 9

5 Example dictionary on natural images . 15

6 Convolutional sparse coding illustration . 20

7 CIFAR-10 example images . 27

8 Encoding versus dictionary learning accuracy range 36

9 Adversarial image illustration . 42

10 Adversarial images attacking fully supervised and convolutional

sparse coding models . 48

11 Accuracy versus mean adversarial distance . 49

12 Effect of sparisty on adversarial robustness . 51

13 Range of ECE between fully supervised and convolutional sparse coding 53

14 Range of ECE for calibrated models . 55

15 Accuracy versus mAD for calibrated models . 55

16 CIFAR-10-C corrupted images examples . 57

17 Mean corruption error on types of corruption . 59

18 Number of training labels versus area under curve 71

19 Activation map comparison on stereo-video . 72

viii

1 Introduction

The field of machine learning has made immense progress in automating vision

tasks such as image classification and object detection (e.g., [23,56,63]) within the

past decade, with some studies claiming performance near or surpassing humans

(e.g., [23,68]). Most if not all of these studies employ a deep convolutional neural

network (DCNN) trained through supervised learning (i.e., training from hand-

labeled data). Despite the success of DCNNs, there still exist limitations to what

these types of models can do.

A clear indicator of the limitations of deep learning is to compare it to biological

vision. In terms of image classification, humans are generally able to successfully

classify images given a few examples of a class [34]. In contrast, supervised deep

learning pipelines require millions of examples with corresponding ground truth

labels that are typically labeled by humans (from datasets such as CIFAR-10 [32]

or ImageNet [8]). Although humans have years of infancy to “train” our visual

systems, we do so largely without explicit supervision [74]. Here, one potential

solution for deep learning’s need for huge labeled training sets is to use unsuper-

vised training (i.e., training from data without explicit labels) within a supervised

DCNN to help alleviate the amount of labeled training data required for a task.

Another limitation of deep learning is the lack of robustness in such models.

Previous studies have shown that human performance on vision tasks dramatically

surpass that of DCNNs when test images are blurred or distorted [9,15,16,28],

which suggests that deep learning is brittle and dependent on superficial image

1

statistics rather than human-like image understanding (e.g., the presence of an

animal within a picture can be detected by looking at the blurriness of the back-

ground rather than ”understanding” the animal [35]). Furthermore, there have

been recent studies showing that DCNNs tend to be sensitive to adversarial ex-

amples [67], i.e., targeted perturbations that is imperceptible to humans but that

completely changes the output of DCNNs. In all, these results show that deep-

learning based classifiers and object detectors can be brittle to modifications to

which humans are robust.

Sparse coding [50] is an unsupervised learning algorithm that aims to create

efficient, non-redundant (i.e., sparse) encodings of an input (e.g., photographs and

videos). The idea of sparse coding was originally inspired by theories of neural

computation from Barlow and colleagues [3]. In particular, sparse coding has been

shown to exhibit similar properties to biological neurons in the early stages of

mammalian visual processing [50,77]. It follows that investigating biologically in-

spired algorithms could provide novel insights into alleviating the aforementioned

limitations of deep learning.

In this dissertation, I explore the use of sparse coding within deep learning, and

to test the effect on learning with limited data and for performance generalization.

Specifically, I address the following questions:

1. What is the relative contribution of the network weights trained by unsuper-

vised dictionary learning versus the activations from the nonlinear encoding

computation of sparse coding when used within a supervised network for im-

age classification (Section 4)?

2

2. Does using unsupervised sparse coding within a supervised network help the

model be more robust to adversarial and corrupted images (Section 5)?

3. Does unsupervised sparse coding help reduce the number of labeled training

examples needed by typical deep learning pipelines (Section 6)?

3

2 Background for Deep Neural Networks

2.1 Supervised vs. Unsupervised Learning

An artificial neural network is a type of machine learning model that aims to

learn a nonlinear mapping from an input signal to a desired output. Here, the

input can be from various domains, such as images, videos, time series, or text.

The output can vary as well, such as a single label for supervised whole image

classification, coordinates of a bounding box around an object of interest within

an image for supervised object detection, or a reconstruction of the input image

itself for unsupervised autoencoders.

In supervised learning, the objective of the network is to learn a mapping

from an input (e.g., an image) to a target (e.g., an image label). In this domain

of learning, a model requires corresponding inputs and targets for training, with

human annotators typically providing the ground-truth targets. To train a super-

vised neural network for an image labeling task, the network takes an image as

input and returns a “prediction”: an object class label or a probability distribu-

tion over possible object class labels. An error is calculated based on some metric

of similarity (e.g., cross-entropy distance, see Section 2.4) between the true class

provided by ground-truth annotations and the prediction from the neural network.

This error drives learning, which adjusts the weights of the neural network such

that when the same image is presented again, the new prediction will be closer

to the true class than before. The goal is to generalize to unseen examples after

training on a sufficient number of training examples.

4

Figure 1: Illustration of an autoencoder. The autoencoder aims to encode input
data to activations over hidden units. The goal is to learn the encoder and decoder
weights such that the input is reconstructed with minimal degradation.

In contrast with supervised learning, unsupervised learning aims to learn struc-

ture from the data without the use of ground truth labels. For example, clustering

algorithms such as K-means [41], which aim to find clusters from a set of data

points, are considered to be a (non-neural) unsupervised learning algorithm. In

the domain of neural networks, one form of unsupervised learning is an autoen-

coder, whose objective is to map input data to activations over hidden units such

that the original data is recoverable with minimal degradation. Figure 1 illustrates

this concept. During training, the network aims to find the best weights to mini-

mize the difference between the original data and the reconstruction. Constraints

are usually added to the objective to avoid the degenerate solution of an identity

mapping. For example, a bottleneck autoencoder (shown in Figure 1) constrains

the dimensions of the hidden units to be less than the dimensions of the image,

which can be useful for image compression [2]. Such a representation can also

5

decompose images in terms of recurring structures (e.g., edges), which can be

more useful for image classification than using raw pixels as input to a supervised

classifier [55].

2.2 Deep Convolutional Neural Networks

Figure 2: Illustration of a Deep Convolutional Neural Network (DCNN). DCNNs
are comprised of different layers. Three common types of layers are convolutional,
pooling, and fully connected layers. These layers are stacked in a hierarchy such
that the output activations from one layer are fed into the next layer as input.
Figure from [5].

When applied to image recognition tasks, Deep Convolutional Neural Networks

(DCNNs) are trained to represent a nonlinear mapping from an input image to a

class label (e.g., image category). Here, a neural network is composed of layers,

where a single layer encapsulates an operation on the input to the layer. These

layers are stacked in a hierarchy to form a deep network (the depth of the network

corresponds to the number of layers that are stacked together) such that the output

activations of a layer are fed as the input to the next layer. Figure 2 illustrates

this concept. Three common types of layers are fully connected (Section 2.2.1),

convolutional (Section 2.2.2), and pooling (Section 2.2.3) layers.

6

2.2.1 Fully Connected Layer

A fully connected layer (illustrated in Figure 3) applies an operation to an input

vector, which can either be an input signal or the output of another layer within

a DCNN. One common use of a fully connected layer is within a network that

produces a single label for an input image. In this case, the model uses a fully

connected layer at the end of the network to reduce the dimension of the output

to the number of classes so that the output of the network can be interpreted as

a probability distribution over all possible classes.

Figure 3: Illustration of a fully connected layer. The output activations are cal-
culated by computing the matrix-vector product between a weight matrix and an
input vector (which can either be of the input or the output of other layers in the
DCNN). The output is then fed through a nonlinear activation function, such as
the ReLU activation function.

Formally, given an m dimensional input vector x ∈ Rm, a trainable weight

matrix W ∈ Rm×f , and a trainable bias vector b ∈ Rf , a fully connected layer

with f units computes a = σ(xW + b) with a ∈ Rf as the output activations

of the fully connected layer. Here, σ(·) denotes a nonlinear activation function,

7

which allows nonlinear mappings from the input to the output. Typically, the

activation takes the form of σ(a) = max(0, a), i.e., a Rectified Linear Unit (ReLU)

activation function [17], but can also take the form of a sigmoid or hyperbolic

tangent function.

2.2.2 Convolutional Layer

Similar to a fully connected layer, a convolutional layer computes a linear trans-

form of a given input, followed by some nonlinear activation function. Specifically,

given an input image x and a collection of trainable filters W (i.e., a filter is a set

of weights), a convolution is defined as the dot product of an input patch and a

filter, calculated for all filters over every input patch given a stride (i.e., the dis-

tance between two neighboring locations of input patches). Figure 4 illustrates this

concept for one location. The output of the convolutional layer is downsampled by

a factor of the stride. A convolutional layer typically takes the output activations

of the previous layer in the hierarchy (the input to a convolution is not restricted

to be an image).

In contrast with fully connected layers, a convolutional layer assumes transla-

tional invariance. Specifically, a single filter is used repeatedly across the image,

and hence is invariant to the absolute position within the input. This in particular

has the advantage of using fewer weights overall in the layer, which reduces the

memory requirements of the model, as well as making the layer easier to train.

8

Figure 4: Illustration of a convolutional layer. The output activations for one
location (in green) are calculated by taking the dot product between each of a set
of filters and an image patch, followed by a nonlinear activation function, such as
the ReLU activation function. This process is repeated for other image patches at
different locations with the same set of filters (not shown here). Here, each filter is
a set of weights, shown as a gray-scale image to indicate weight values. Activations
values here are for illustration purposes only.

9

2.2.3 Pooling Layer

In a DCNN, a pooling layer is typically used to reduce the dimensions of the

previous layer. Similar to a convolution, pooling is done on input patches (typically,

on the output of convolutional layers). In contrast with a convolutional layer, a

pooling layer’s operation is to produce the maximum (for max pooling layers) or

the average (for average pooling layers) of the input to the layer, over the spatial

dimensions of the input. Additionally, pooling layers typically have no weights to

optimize during training.

2.3 Gradient Descent

The objective of training a DCNN is to update the model’s weights to minimize

a loss function. These loss functions typically express the overall objective of the

network. For example, minimizing the cross-entropy distance (see Section 2.4)

between the provided ground truth class expressed as a one-hot vector (i.e., a

vector where only one element has value 1 and the rest 0) and the output of a

DCNN over an entire dataset optimizes the weights of a model for image labeling.

Formally, given a loss function J(θ,X,Y) that takes a set of trainable pa-

rameters (e.g., weights of a DCNN) θ, input data X, and the target output (i.e.,

ground truth) Y , the objective is to find

θ̂ = arg min
θ

J(θ,X,Y) . (1)

10

A common way to solve this optimization problem is via gradient descent (or

backpropogation). Specifically, the procedure iteratively updates the parameters

θ relative to the partial derivative of the loss function with respect to the model

weights, i.e.,

∆θ = −η∇θJ = −ηδJ(θ,X,Y)

δθ
(2)

where η is a user-set parameter that controls the learning rate of the model.

Intuitively, the algorithm iteratively takes a descending step in the direction of

the steepest gradient repeatedly until convergence.

As written, Equation 1 optimizes over the entire training setX,Y . In practice,

it is common to use mini-batch stochastic gradient descent:

θ̂ = arg min
θ

Ex,y∈X,Y [J(θ,x,y)] . (3)

Here, the algorithm randomly samples a collection of input data and target outputs

x,y from the dataset X,Y (the number of data points sampled is defined by a

user-set parameter, or the mini-batch size), and optimizes the expected value of

the loss function with the sampled input.

Gradient descent has been shown to be inefficient at solving Equation 1 and

Equation 3 [60]. One solution is to use momentum. In its simplest form, momentum

updates Equation 2 to

∆θ = −η∇θJ + β∆θ (4)

11

with β as a user-set parameter that controls the momentum term. Intuitively, the

model adds a fraction of the previous update to the current update, which speeds

up learning.

A common implementation of momentum in gradient descent is the Adam op-

timizer [30]. Here, Adam uses an adaptive learning rate for individual parameters

within θ based off of estimates of the first and second moments of the gradient of

the loss function J . Formally, the update rule is defined below.

mt = (1− β1)∇θJ + β1mt−1 (5)

vt = (1− β2)(∇θJ)2 + β2vt−1 (6)

η̂ = η

√
1− βt2

1− βt1
(7)

∆θt = −η̂ mt√
vt + ε

(8)

Here, η is a user defined learning rate, β1 = 0.9 and β2 = 0.999 are the momentum

terms for the first and second moments respectively, ε = 1 × 10−8 as a small

constant for numeric stability1, t is the iteration time-step, and βt1 and βt2 denoting

β1 and β2 to the power of t. The momentum variables m and v are initialized to

0 at the start of optimization.

Here, Equation 5 and 6 iteratively updates an estimate of the first and second

moments of the gradient respectively. Equation 7 adjusts the learning rate to

account for the biases in the moment estimations. See the work by Kingman et

a. [30] for additional information on the Adam optimizer.

1 These values of β1, β2, and ε are used for the Adam optimizer throughout this dissertation.

12

2.4 Cross-Entropy Supervised Loss Function

A common supervised loss function for multi-class classification is the cross-entropy

loss function. In particular, the cross-entropy function defines a distance metric

between an estimated probability distribution and a true probability distribution.

In terms of multi-class classification, the true probability distribution is the

ground truth one-hot vector y, which denotes probability of 1 for the true class

and 0 otherwise. The estimated probability ŷ is the output of the estimator, which

encompasses rescaling the output of a DCNN a to be a probability distribution

via the softmax function σ(·):

ŷi = σ(a)i =
eai∑
j e
aj

. (9)

The cross-entropy loss function is defined as

J(θ,x,y) = −
∑
i

yi log(f(θ,x)i) = −
∑
i

yi log(ŷi) , (10)

which measures the distance between the output of the model ŷ = f(·) inter-

preted as the estimated probability distribution over possible classes and the true

distribution y.

13

3 Background for Sparse Coding

Sparse coding [50] is an unsupervised learning algorithm based on Barlow and

colleagues’ theory of neural computation [3]. Specifically, sparse coding aims to

encode an input as a set of sparse hidden unit activations such that the orig-

inal signal is recoverable with minimal degradation. Such an encoding applied

to the domain of images has achieved state-of-the-art results in image denoising

(e.g., [10,43,44]) and classification (e.g., [42,45,55]).

Sparse coding shares the same goal as an autoencoder, in that both networks

are unsupervised and calculate an encoding (i.e., activations over a set of hidden

units) to represent a given input. Autoencoders however typically calculate acti-

vations for an input in a single forward pass (i.e., a feed-forward autoencoder),

whereas sparse coding solves an optimization problem to find the sparse set of

hidden unit activations that encode the input. In contrast with bottleneck autoen-

coders, sparse coding uses a sparsity constraint on the hidden units (i.e., most of

the hidden unit activations should be zero). Both autoencoders and sparse coding

learn a set of weights (called a dictionary for sparse coding) over a training set

that optimizes the model for reconstruction.

Sparse coding is split into two parts: (1) learning a dictionary (i.e., the set

of weights) from a training set, such that the dictionary is optimized for sparse

representation, and (2) encoding a given input into its sparse representation (i.e.,

calculating the hidden unit activations) in terms of a dictionary. While encoding

may be done with any dictionary, the aim is to learn a dictionary that enables

14

better sparse representations. Here, encoding aims to represent an input using the

sum of a sparse set of dictionary elements, where each dictionary element is a

subset of weights called an atom.

Figure 5 shows a dictionary trained on natural scenes. Each square is a dic-

tionary atom (or a set of weights), with white being the highest value and black

being the lowest value. Note that weights in most patches enhances specific ori-

ented lines, similar to the receptive fields of biological neurons found in the early

stages of the visual cortex pipeline [50,77].

Figure 5: Example of a dictionary trained on natural images. Dictionary atoms
are sensitive to oriented edges at certain frequencies. Figure from [50].

15

3.1 Encoding

In sparse coding, the mathematical formulation of encoding an input is that of

a constrained least squares problem. The well-known least squares problem aims

to decompose an m dimensional signal x ∈ Rm (e.g., a vectorized image) such

that x ≈Da. Here, D ∈ Rm×p corresponds to a dictionary composed of p atoms,

weighted by hidden unit activations a ∈ Rp. Sparse coding aims to solve an under-

determined least squares problem (i.e., the dictionary D is over-complete, or p >

m) under the constraint that the activations should be sparse (i.e., a should have

few non-zero elements).

Formally, sparse coding aims to solve the following optimization problem:

S(x,D) = â = arg min
a

1

2

Reconstruction︷ ︸︸ ︷
‖x−Da‖22 +λ

Sparsity︷︸︸︷
‖a‖1 . (11)

In other words, the problem of encoding consists of finding a sparse set of dic-

tionary atoms (the columns of D) multiplied by activations a that best represent

the data (i.e., x ≈
∑p

i=0 diai for di being the ith column of D), as defined by

the Euclidean distance (i.e., ‖ · ‖2, or the `2 norm). Here, a is constrained to be

sparse via ‖ · ‖1 or the `1 norm2, with λ as a user-set parameter that controls the

trade-off between reconstruction error and sparsity. The activations â are taken

to be the encoding of the signal x.

In this dissertation, I use the Locally Competitive Algorithm (LCA) [59], an

iterative, hardware friendly, and biologically inspired optimization algorithm to

2 The `1 norm is used as a surrogate to the `0 norm (i.e., the number of nonzero elements), as Equa-
tion 11 is nonconvex with respect to a if the `1 norm is replaced with an `0 norm.

16

solve for â in Equation 11. The LCA algorithm defines an activation potential

variable u that takes the form of a leaky integrator, with the same dimensions as

a. Specifically, the update rule is defined as

∆u = τ

Input drive︷︸︸︷
xD −

Leak︷︸︸︷
u −

Competition︷ ︸︸ ︷
(DTD − I)a

 (12)

a = T (u, λ) = max(0,u− λ) (13)

where T (·) is the soft threshold operator, with λ set as the sparsity parameter

in Equation 11. The activation potential vector u is driven by the similarity of

the signal with each dictionary atom, and is inhibited by other activations a pro-

portional to the similarity of the dictionary atoms. In other words, each atom

competes for representation of the input with other atoms. τ denotes a user-set

parameter that controls the learning rate, and I denotes the identity matrix to

remove self competition. Rozell et al. [59] show that these dynamics solve Equa-

tion 11 to find â.

3.2 Dictionary Learning

Learning the dictionary D within sparse coding is analogous to learning filters

in a convolutional layer and is done via gradient descent. However, the resulting

dictionary is trained in an unsupervised manner; the training objective (i.e., re-

construction of the input) only requires a set of unlabeled examples, as opposed

to a classification task which requires explicit labels.

17

Given a dataset of n training inputs X ∈ Rn×m, dictionary learning aims to

optimize a dictionary that allows for the best sparse representation of the dataset.

Specifically, dictionary learning is defined as

D̂ = arg min
D

Ex∈X [S(x,D)], (14)

where x is sampled from X via mini-batches. When a dictionary is trained on

images, the resulting dictionary atoms typically correspond to oriented edges at

certain frequencies. Figure 5 shows an example of a dictionary trained on natural

images.

There exists a degenerate solution to Equation 14 as it’s written, in that the

sparsity term in Equation 11 drives the magnitude of activations to be small,

which in turn drives the magnitude of the dictionary atoms to be large. To avoid

this, each dictionary atom is constrained to have unit `2 norm.

3.3 Convolutional Sparse Coding

Sparse coding defined in Equation 11 is analogous to a fully connected layer in a

DCNN (Section 2.2.1), in that each dictionary atom spans the size of the input. In

particular, previous works use image patches as input for fully connected sparse

coding, e.g., the learned dictionary in Figure 5 [50]. One extension of sparse cod-

ing is using the convolution operation for reconstruction. Here, each dictionary

element is used for all image patches within an image given a stride, analogous to

a convolutional layer in a DCNN (Section 2.2.2).

18

Convolutional sparse coding is formally defined by changing Equation 11 to

Sc(x,D) = â = arg min
a

1

2

Reconstruction︷ ︸︸ ︷
‖x− a~D‖22 +λ

Sparsity︷︸︸︷
‖a‖1 . (15)

Here, x and D are multidimensional tensors corresponding to images and dic-

tionaries respectively, and the ~ operation is the transposed convolution opera-

tion [75]. A transposed convolution is similar to a convolution, with the difference

that the output is upsampled based on the stride as opposed to downsampled.

Similar to a convolutional layer, convolutional sparse coding assumes translational

invariance and replicates a dictionary across the entire image. See Figure 6 for an

illustration of convolutional sparse coding.

In terms of encoding, each dictionary atom competes with other atoms for

encoding (as seen in Equation 12) in a fully connected sparse coding model (i.e.,

Equation 11). In convolutional sparse coding, each atom additionally competes

against other atoms (including itself) spatially translated based on the stride.

This in particular results in a unique sparse coding model that is able to find an

encoding for an entire image as a whole. See the work by Schultz et al. [62] for

additional information on convolutional sparse coding and LCA.

3.4 Implementation

I use Tensorflow [1] for all models and experiments in this dissertation. In par-

ticular, I developed a novel implementation of the LCA algorithm (Equation 12)

for this dissertation, such that the algorithm is GPU accelerated and fully dif-

ferentiable for adversarial attacks done in Section 5. The code used for Section 4

19

Figure 6: Illustration of convolutional sparse coding. Sparse coding aims to recon-
struct the input x through a linear combination of dictionary atoms d drawn from
a dictionary D. Activations a are constrained to be sparse (i.e., to contain few
nonzero activations). The reconstruction is calculated via a transposed convolu-
tion operation [75]. The input shown here is a patch (in green) from the whole
image. Activations values here are for illustration purposes only.

20

and Section 5 is publicly available at [51]. The code used for Section 6 is publicly

available at [38].

21

4 Exploring Convolutional Sparse Coding for Supervised Image

Classification

Sparse coding is an unsupervised learning algorithm that aims to reconstruct data

in terms of a linear combination of a sparse set of dictionary atoms. Despite the

algorithm being optimized for image reconstruction, previous works have shown

success in using sparse coding for discriminative tasks [4,42,45,72]. Most of these

works combine both supervised and unsupervised learning (i.e., semi-supervised

learning) for the ultimate task of classification. In this section, I focus on exploring

the cause of the success of sparse coding in discriminative tasks.

Most learning algorithms can be split into two stages: a feature learning

(or dictionary learning for sparse coding) stage that trains the parameters (e.g.,

weights) of the model, and an encoding stage that encodes a given input into a

set of activations using the aforementioned features. In supervised DCNN layers,

feature learning consists of training weights to optimize them for the supervised

task, and encoding consists of computing the activations by convolving the in-

put with the weights. Sparse coding follows this through dictionary learning and

encoding. Here, dictionary learning optimizes weights for reconstruction and spar-

sity, and encoding consists of finding the sparse set of activations that represents

the input. In this part of the dissertation, I explore the following question: to

what extent does the success of sparse coding in discriminative tasks come from

the learned dictionary (i.e., features) versus the encoding procedure (i.e., the

sparse activations)?

22

Coates et al. [6] previously explored the question of why sparse coding is suc-

cessful in classification. In particular, the authors claimed that the performance

of sparse coding in supervised discriminative tasks comes from the encoding pro-

cedure. Specifically, they compare different dictionaries used by sparse coding and

its effect on classification performance. One dictionary they use is optimized for

a 1-sparse model (i.e., an encoding that only uses one active element per input),

which is computationally cheaper than finding a dictionary optimized for sparse

coding. They show that the difference of classification performance on the CIFAR-

10 dataset [32] between the suboptimal 1-sparse dictionary versus the dictionary

optimized for sparse coding is minimal, as long as the full encoding procedure of

sparse coding is used.

The authors used a fully connected sparse coding model on patches in iso-

lation, followed by stitching together the resulting sparse codes. Convolutional

sparse coding defined in Section 3.3 differs from the patch-based sparse coding

in that convolutional sparse coding solves for the encoding of the entire image.

In patch-based sparse coding, all activations only compete with each other for

representation on each patch in isolation. In convolutional sparse coding, activa-

tions compete spatially as well, as any activations with overlapping receptive fields

contribute to the same pixels. This section aims to expand on the results shown

by Coates et al., particularly with the use of convolutional sparse coding on the

whole image instead of using fully connected sparse coding on patches as is done

by Coates et al.

23

I compare the classification performance of sparse coding using different combi-

nations of dictionary (i.e., feature) learning models with encoding to test the effect

of dictionary versus encoding methods. I show that the encoding process con-

tributes more to classification than the dictionary (i.e., feature) learning process.

In particular, I find that the spatial competition utilized by the encoding proce-

dure is crucial for performance in image classification with sparse coding. Finally,

I show that although patch-based sparse coding achieves similar results to a feed-

forward baseline, convolutional sparse coding achieves the best results, matching

the performance of a fully supervised model optimized for image classification.

4.1 Related Work

The basis of this work stems from the work done by Coates et al. [6]. In particular,

the authors show that the key to performance of sparse coding for classification

comes from the nonlinear encoding scheme as opposed to the dictionary learned

by sparse coding. Additionally, the authors claim that a simple nonlinear feed-

forward soft threshold function achieves competitive results to sparse coding, even

when the soft threshold encoding model uses random patches as a dictionary. In

this section, I test if these results hold with the use of convolutional sparse coding.

One issue that arises is the computational complexity of the models trained in

Coates et al. Specifically, one requirement of the models I test is the necessity of

being able to adversarially attack these models in Section 5, especially through the

sparse encoding optimization as described in Section 3.1. To this end, I reduced

the number of dictionary atoms from 1600 to 512. To offset the loss of output

24

activations per image, I maintain more spatial information by pooling over less

spatial area. Overall, Coates et al. uses 12800 activations per image, versus 8192

activations used in the experiments I describe in Section 4.2.

Another issue related to adversarially attacking these models is that the model

must be differentiable from end to end for the attacks defined in Section 5.1.

Specifically, Coates et al. use an L2-SVM as their classifier of the output activations

from their encoder, whereas I use a supervised fully connected layer trained via

gradient descent for classification.

Finally, Coates et al. use whitening (i.e., removing linear dependencies within

the image) as a preprocessing step. I find that whitening is unnecessary, as the

model is able to learn a similar dictionary to dictionary learning algorithms that

train on whitened images. In addition, removing the preprocessing step simplifies

the model overall.

Another work by Coates et al. [7] compares various unsupervised first layers

with a supervised classifier on an image classification task. In particular, the au-

thors test the effect of receptive fields, number of dictionary atoms, and the stride

of the unsupervised encoding on classification. Additionally, work done by Zhang

et al. [76] tests the effect of patch sizes in a convolutional sparse coding model on

classification results while holding the degree of over-completeness fixed. In this

work, I aim to test the relative effects of dictionary learning versus encoding using

sparse coding for classification.

Rigamonti et al. [57] test the effect of sparsity in sparse coding for dictionary

learning and encoding on classification. The authors find that having a convo-

25

lutional sparse encoding does not improve performance on image classification

over a simple feed-forward encoder, but is key for learning useful features for

classification. Specifically, the authors suggest that the performance from using a

dictionary trained from convolutional sparse coding with a feed-forward encoder

(i.e., an encoder that uses a single convolution to calculate its activities) matches

that of using the encoding of convolutional sparse coding. In this section, I find

contradicting results, in that a feed-forward encoder using unsupervised features

performs much worse on image classification than an encoder that uses convolu-

tional sparse coding.

4.2 Experiments

I aim to distinguish the effect of dictionary learning versus encoding on image

classification tasks. I build a two layer model for classifying thumbnail images into

one of 10 categories. I vary the first layer by choosing one of 3 encoding models

(Section 4.2.3), while also choosing the dictionary the encoder uses from 4 different

unsupervised dictionary learning models (Section 4.2.2). I also compare the un-

supervised methods to a supervised feed-forward encoder with features optimized

for image classification. All dictionary learning and encoding models for the first

layer use 512 elements with a patch size of 8× 8, with a stride of 2 in both spatial

directions.

The second layer of the model is a fully connected layer trained for supervised

image classification (Section 4.2.4). All models train with a mini-batch size of 8.

26

4.2.1 Dataset

I use the CIFAR-10 [32] dataset for training and evaluating. In particular, the

CIFAR-10 dataset is a collection of 32 × 32 pixel color thumbnail images, with

each image annotated by a human to belong to one of ten classes. Figure 7 shows

example images from the dataset. This dataset in particular is useful for explor-

ing models such as sparse coding due to the small image sizes, which allows for

computational savings.

Figure 7: Examples of images from the CIFAR-10 dataset. Each image is human-
annotated to be one of ten classes. Figure from [31].

CIFAR-10 contains a total of 60000 images, which is split into a training set

of 50000 images and a test set of 10000 images. From the training set, I hold out

an additional 10000 images as a validation set for parameter tuning, which leaves

40000 images and labels to train the models on.

27

As a preprocessing step, each image is normalized to have zero mean and

unit standard deviation. During training, I augment the training dataset of by

randomly cropping CIFAR-10 images from 32× 32 to 28× 28 pixels, followed by

randomly horizontal flipping of the image. These types of augmentations during

training allows us to artificially expand the dataset to contain more image samples

without changing the semantic content of the image. During evaluation, each test

image is center cropped to 28× 28 pixels.

4.2.2 Dictionary Learning Methods

I use two different types of sparse coding algorithms to learn dictionary features: a

patch-based sparse coding method as done by Coates et al. [6] and a convolutional

sparse coding method. Here, I aim to explore the addition of spatial competi-

tion provided by convolutional sparse coding on the effects of dictionary learning

for classification. As baselines, I additionally test random features and features

extracted from random image patches in the dataset (denoted as an imprinted

dictionary). These learning algorithms are described below.

Patch Sparse Coding: The first sparse coding model I use is a patch-based

sparse coding model (Patch SC). Here, 8 × 8 pixel image patches are extracted

from the dataset from valid image locations. These patches are vectorized (i.e.,

reshaped from the image dimensions into a one-dimensional vector), then encoded

using the fully connected sparse coding model defined in Equation 11. Using these

encodings, a dictionary is trained using Equation 14.

28

The sparse coding model has a hyper-parameter λ that controls the trade-off

between sparsity and reconstruction error. I train the model with several values of

λ to see the effect of sparsity for dictionary learning and classification. Specifically,

I use λ = {0.5, 1.0, 1.5, 2.0, 2.5}.

To solve for Equation 11, I use LCA (Equation 12) with an encoding learning

rate τ = 0.033 and iterate for 50 steps.

The Patch SC dictionary learning method required pre-training with a lower

value of λ (i.e., a less sparse encoding) before training the dictionary at the desired

value. I found that this was required to train models with higher values of λ, as

starting from random dictionaries resulted in elements that were never activated.

Specifically, I train all patch-based sparse coding models using stochastic gradient

descent (Equation 3) for 1×105 steps first with λ = 0.5 with a dictionary learning

rate of η = 5× 10−3, followed by training the dictionary for an additional 9× 105

steps with the desired λ value with a dictionary learning rate of η = 2× 10−3.

I train the Patch SC model with a batch size of 8. Here, the algorithm trains

on all patches extracted from these 8 images for a single time-step.

Convolutional Sparse Coding: The second sparse coding model I use is con-

volutional sparse coding (Conv SC), as defined in Section 3.3. In particular,

convolutional sparse coding solves for the whole image, which results in competi-

tion between elements shifted based on some stride. When learning a dictionary

with convolutional sparse coding, the dictionary is more over-complete than that

of a patch-based sparse coding method with similar patch sizes and strides [62].

29

Similar to patch-based sparse coding, I use several values of λ to compare

effects of sparsity and reconstruction error on dictionary learning and classification.

Specifically, I use λ = {0.1, 0.2, 0.3, 0.4, 0.5}.

To encode images using convolutional SC for dictionary learning, I used LCA

(Equation 12) for convolutional sparse coding, using τ = 0.005 for 75 steps. For

dictionary learning, I train the dictionary using stochastic gradient descent for

1× 106 steps using a dictionary learning rate of η = 1× 10−3.

Random Features: As a control, I generate a set of random features as a dic-

tionary. In particular, these random features help determine the impact that dic-

tionary learning has on encoding and classification.

The random features are generated from a normal distribution with zero mean

and a standard deviation of 0.5, and truncated such that any values more than

two standard deviations from the mean are resampled. These features are then

normalized such that each feature has an `2 norm of one.

Imprinted Features: As an intermediate step between random and learned

features, I use an set of imprinted features as a control. Here, the idea is to generate

a set of features that contains more structure than random features. Imprinted

features, along with random features, help determine the impact of learning a

dictionary from sparse coding.

To generate the dictionary, features are set to be patches randomly sampled

from the dataset. Each patch selected from the dataset are preprocessed to have

30

zero mean and unit standard deviation, followed by normalization such that each

patch has an `2 norm of one.

4.2.3 Encoding Methods

In the previous section, I describe methods for dictionary learning. In this section,

I describe the following methods for encoding (i.e., representing the input as a

set of activations: a patch-based sparse coding model as done by Coates et al. [6]

and a convolutional sparse coding model to see the effect of spatial competition

on encoding. I additionally test a simple feed-forward soft threshold model as a

control for the contribution of sparse encoding for classification.

Patch Sparse Coding: The patch-based sparse coding method (Patch SC)

uses the encoding defined in Equation 11. Here, patches are extracted from a zero

padded input image such that the output size is a factor of the input size defined

by the stride. After encoding each patch in isolation, the sparse codes are then

stitched back together as the output.

I additionally test the effect of the trade-off parameter λ on encoding and

classification. Here, I mirror the values used for dictionary learning, i.e., λ = {0.5,

1.0, 1.5, 2.0, 2.5}. I also use the encoding parameters described in Section 4.2.2

for Patch Sparse Coding.

Convolutional Sparse Coding: The convolutional sparse coding method (Conv

SC) solves for the entire image as a whole. Here, the encoding is unique in that

a single activation is nonlinearly dependent on all other activations within its

receptive field.

31

Similar to dictionary learning, I use several values of λ for testing its effect on

classification. I mirror the values used for dictionary learning, i.e., λ = {0.1, 0.2,

0.3, 0.4, 0.5}. I also use the encoding parameters described in Section 4.2.2 for

Convolutional Sparse Coding.

Soft Threshold: For the soft threshold encoding, the layer simply encodes the

image by computing the convolution of the input with the dictionary. In particular,

this is a control for testing the effectiveness of the computationally expensive

encoding methods used by sparse coding.

The resulting activations are then fed through a soft threshold T (u, α) =

max(0, u − α), where u is a single activation and α is a parameter controlling

the threshold. Given a large enough α, the resulting set of activations is sparse.

I use several values of α for testing its effects on classification: α = {0.5, 1.0,

2.0, 3.0, 4.0}.

4.2.4 Classifier

After encoding the input image using one of the encoding methods defined in

Section 4.2.3, which uses one of the dictionaries defined in Section 4.2.2, the output

is then fed into a classifier trained via supervised learning for image classification.

First, the output encoding is max pooled with a patch size of 5× 5 with a stride

of 4 in both spatial directions. This pooled encoding is then fed into a supervised

fully connected layer with ten output activations corresponding to the ten output

classes of CIFAR-10. The output is fed through a softmax function and uses the

supervised cross-entropy loss function (see Section 2.4) to train the classifier.

32

I use the Adam optimizer (Equation 8) to train the weights of the supervised

classifier, with a learning rate η = 1×10−3 for 3×105 steps. Additionally, I anneal

(i.e., lower over time) the learning rate by a factor of 0.9 every 1× 105 steps.

4.2.5 Fully Supervised Model

The models I’ve described in the sections above consist of a sparse-coding layer

that feeds into a fully connected (classification) layer; the weights and activations

in the sparse-coding layer are computed in an unsupervised way, whereas the

weights in the fully connected layer are trained in a supervised way (i.e., using

labeled training data).

In this section, I describe a fully supervised model of the same size as the other

models. The first layer of the fully supervised model is a convolutional layer with

a leaky ReLU activation function [40] defined below:

σ(ai) =


ai ai > 0

βai otherwise

. (16)

Here, the leaky ReLU is similar to the ReLU, but adds a positive gradient β = 0.2

when the activation a is below 0 (i.e., the derivative of σ(·) is β when a ≤ 0). This

allows units to not be stuck when a ≤ 0 during gradient descent. I find better

performance for the fully supervised layer using the leaky ReLU as opposed to the

normal ReLU nonlinear activation function.

The weights in all layers of the fully supervised model are trained via backprop-

agation of the supervised loss function. That is, the weights for the first layer of

33

this model, in contrast with the models incorporating sparse coding, are optimized

for image classification.

4.3 Results

Recall that the purpose of these experiments is to explore the relative contributions

of dictionary (i.e., feature) learning and encoding to classification performance.

Further results on the sparse coding models can be found in Appendix A, and

further classification results can be found in Appendix B.

Table 1 shows the best accuracy achieved while varying either λ or α for each

dictionary learning and encoding combination. In general, I find that Conv SC

encodings with Conv SC dictionaries achieves the best result with an accuracy

of 73.55%.

Encoding

Fully Supervised Soft Threshold Patch SC Conv SC

D
ic
ti
o
n
a
ry

L
ea
rn
in
g Fully Supervised 0.7298 - - -

Random - 0.6614 0.5852 0.6383

Imprinted - 0.5674 0.6284 0.6911

Patch SC - 0.6391 0.6639 0.7184

Conv SC - 0.6441 0.6717 0.7355

Table 1: Table of the highest accuracies with varying parameters for each combi-
nation of dictionary learning and encoding model. This table is a subset of Table 6
in the appendix.

One question that arises is the significance of the differences in accuracies

between all of the models tested. For example, is the difference between the values

in the right most column of Table 1 simply due to the stochastic nature of training

34

a classifier (random initial weights, random ordering of training examples, and

stochastic data augmentation)? To this end, I take a subset of the experiments

tested and train the classifier 10 times with different initial conditions and data

augmentations. The results are shown in Figure 8. Ideally, each dictionary would

also be retrained with random initial conditions, but I held the dictionary fixed

through each independent run due to the computational expense.

I found that the effect of random initial conditions with soft threshold and

Patch SC vary approximately 3%. Conv SC and fully supervised networks vary

approximately 1%.

I first examine the effect of using different dictionaries. Overall, most mod-

els perform similarity across different trained dictionaries. For example, Table 1

shows that the Conv SC encoding model achieves within 2% accuracy from us-

ing a suboptimal Patch SC dictionary versus using a Conv SC dictionary. This

difference in accuracies can be explained by random initial conditions (from Fig-

ure 8). I find similar results for the Patch SC encoding model. Surprisingly, I

find that the Patch SC encoding model achieves the best performance using a

Conv SC dictionary. However, this could also explained through random initial

conditions, as the difference in accuracies fall within the range shown in Figure 8.

Finally, using an imprinted dictionary for both sparse coding models gets within

5% accuracy of the sparse coding dictionaries. This is surprising, since the im-

printed dictionary did not require any training, compared to the computationally

expensive dictionary training procedures of sparse coding.

35

Figure 8: Range of accuracies with different initial conditions for the classifier from
a subset of dictionary learning (rows) and encoder (columns) combinations. Each
model was ran 10 times. The resulting plot shows accuracies across the 10 runs.
Here, the box-and-whiskers plot’s circles show outliers (i.e., points above or below
1.5 of the interquartile range), and the notches shows (from top to bottom) the
maximum (excluding outliers), 75% quartile, median, 25% quartile, and minimum
(excluding outliers) of the data.

36

Unlike the effects of using different dictionaries, there are substantial differ-

ences in performance when using a convolutional sparse coding method to encode

images versus the other tested encoding methods. In particular, similar to the find-

ings from Coates et al. [6], I find that using a random dictionary with a simple soft

threshold achieves competitive results against Patch SC encoding models. How-

ever, neither model reaches the performance of convolutional sparse coding, which

suggests that the more complex encoding method is crucial for good classification

performance.

Overall, I find that the encoding model is more important than the dictio-

nary used for each model, with convolutional encodings being key to achieve good

classification performance. In addition, I find that a simple feed forward encod-

ing model, while competitive against the patch-based sparse coding models, is

outperformed by the convolutional sparse coding models.

4.4 Summary

In this section, I explored the relative contribution of dictionary learning versus

encoding of sparse coding for supervised image classification. I find that, similar

to Coates et al., the nonlinear encoding method of sparse coding contributes more

to the classification performance than the dictionary learned from sparse coding.

However, I find that a feed-forward soft threshold encoder does not outperform

a convolutional sparse coding model as an encoder, but does perform similarity

to the patch-based sparse coding model. Overall, this suggests that there may be

computational savings in using a sub-optimal dictionary for classification.

37

Future work entails testing different types of dictionaries, such as handcrafted

dictionaries or trained from different, more efficient dictionary learning models.

In particular, I found that performance using a dictionary of imprinted features

achieved relatively high accuracy independent of encoding models. Here, the hope

is to find a middle ground in finding a good set of features between the compu-

tationally cheap imprinted features and computationally expensive sparse coding

dictionaries. For example, Coates et al. [6] suggests using K-means for learning

features.

Overall, I find that the model with an unsupervised first layer does not signif-

icantly outperform a fully supervised model of the same size. However, I explore

various situations in which an unsupervised sparse coding model could benefit

classification. Specifically, I test cases when inputs are corrupted by either adver-

sarial or random noise in Section 5, and when the number of training labels are

limited in Section 6.

38

5 Sparse Coding for Model Robustness

DCNNs have been shown to generalize well to a test set, i.e., images that have not

been used for training the model, and are therefore unseen by the model. However,

recent literature has questioned the true generalization ability of DCNNs, as such

models perform poorly on test images that contain visually irrelevant differences in

statistics or corruptions from the training images, some of which are imperceptible

to humans. The classical example for showcasing the brittleness of DCNNs is that

of adversarial examples. In particular, Szegedy et al. [67] showed that, in the

domain of image classification, it is easy to fool a DCNN into classifying an image

incorrectly with high confidence by adding an imperceptibly small change to the

image (Figure 9 shows an example of an adversarial example). Furthermore, the

authors showed that such adversarial examples are generalizable across multiple

architectures.

Other studies show the brittleness of DCNNs with examples of modifications

that are not explicitly constructed to fool such models. For example, DCNNs

have been shown to perform poorly on blurred or distorted images when trained

on clean images [9,16]. Worse yet, it has been found that statistics of images

(e.g., the frequency components of a given image) tend to be a strong cue for

image classification [69]. DCNNs tend to overfit to such statistics, resulting in

brittle performance when a test image does not contain these statistical cues.

Specifically, one particular study by Jo et al. [28] shows that the performance of

DCNNs degrades drastically when applied to test images that are simply filtered

39

to contain different frequency statistics than training images. In all these cases,

humans correctly classify the modified images. Overall, these studies bring into

question the ability of DCNNs to learn high level semantics instead of simply

learning statistical regularities.

Unsupervised learning provides a method for learning high level abstractions

that are not class specific, which may help such models to generalize better to

unseen examples. In particular, recent studies showed that sparse coding is re-

sistant to adversarial examples that affect a wide set of supervised DCNNs in a

face detection task [64]. Furthermore, sparse coding has been shown to de-noise

image inputs [10,27], which can help denoise small perturbations in test examples

while not losing key information from the image. Finally, previous work done by

my colleagues and I suggest that the population nonlinearity (i.e., an activation

value is dependent on other activations within the layer) of sparse coding helps

classification models be more robust to adversarial examples [52].

In this section, I aim to explore how effective sparse coding is in alleviating the

poor performance of traditional DCNNs on modified test examples. Specifically,

Section 5.3 explores the use of sparse coding against adversarial examples, and

Section 5.4 tests the use of sparse coding to generalize against common corruptions

of images.

40

5.1 Background on Adversarial Examples

Given a trained neural network ŷ = f(x,θ) which classifies input x using model

parameters θ, adversarial examples are formed by finding

arg min
x∗

‖x− x∗‖2 s.t. f(x∗,θ) 6= ŷ . (17)

Here, the image x∗ an adversarial example for the network f(·): the goal is for x∗

to be as similar as possible to x (e.g., using `2 distance as a metric of similarity),

but for f(·) to misclassify x∗ with high confidence (assuming the network correctly

classified the input, i.e., ŷ = y).

In particular, one method for finding adversarial examples is the fast gradient

sign method [18]. Here, the original loss function J(θ,x,y) of a classifier aims to

minimize the difference of the calculated output ŷ = f(x,θ) and the ground truth

y. The fast gradient sign method computes an adversarial image using a single

step in the direction of the gradient (i.e., the opposite direction of Equation 1 used

during training) using the true class y:

x∗ = x+ ε sign(∇xJ(θ,x,y)) (18)

where ε is a hyper-parameter that is typically small in magnitude. This method

has been shown to consistently find adversarial examples for networks. Figure 9

shows an example of an adversarial example derived using the fast gradient sign

method on a popular image classification task.

41

Figure 9: Example of an adversarial image on a trained image classification DCNN.
An image classified as a “panda” is then classified as a “gibbon” with 99% confi-
dence when structured noise is added to the image. Figure from [18].

As written, Equation 18 aims to find an adversarial image x∗ to simply mis-

classify: this is defined as an untargeted attack. In contrast, one can define a target

class ȳ 6= y, in which the goal is to create an adversarial image to be classified to

the target class. Formally, Equation 18 can be rewritten as follows:

x∗ = x− ε sign(∇xJ(θ,x, ȳ)) . (19)

Note that the sign is changed from Equation 18, as the objective of Equation 19

is to step towards the adversarial target class ȳ.

An extension of the fast gradient sign method is to apply it multiple times with

a step size γ. For example, for the targeted method, the update rule for finding

the adversarial image is as follows:

∆x∗ = −γ sign(∇xJ(θ,x, ȳ)) . (20)

42

I use this attack throughout this section.

5.2 Related Work

Brittleness of DCNNs: There are various papers that showcase the lack of ro-

bustness in DCNNs on classification tasks. In particular, previous papers [9,16,28]

show that neural networks perform poorly when statistics of test images differ

from those in the training set. Rosenfeld et al. [58] show that placing a cropped

object into an image results in non-local changes on an object detection model.

In addition, Szegedy et al. [67] have shown the existence of adversarial examples.

Overall, these studies show that the performance of DCNNs can be brittle to small

changes to test images.

Towards Robustness to Adversarial Examples: One technique to improve

overall robustness is to augment the training set with adversarial examples. In

particular, Goodfellow et al. [18] has suggested training on adversarial example

to improve robustness to such examples. Other studies [20,48,71] use an adver-

sary within the model to implicitly augment the dataset, or to regularize against

small perturbations. Here, I propose unsupervised sparse coding as an alternative

model to help improve robustness of DCNNs, and note that data augmentation

techniques are readily applicable to the techniques proposed here.

Gu et al. [20] explores several other types of preprocessing techniques to help al-

leviate adversarial examples. In particular, the authors show that adding Gaussian

noise and Gaussian blurring tend to help alleviate poor performance on adversar-

ial examples, but show that such preprocessing techniques tend to hurt overall

43

performance. The authors also show that using a denoising autoencoder to map

from noisy to clean example as a preprocessing step tends to help performance

on adversarial examples. However, the authors find that new adversarial examples

can be found from the stacked network (i.e., autoencoder plus classifier), and that

the stacked network overall is more sensitive than the original network to adver-

sarial examples. I extend this work by exploring using sparse coding to test the

network’s robustness to adversarial examples generated for the whole classification

model.

Efficient Representations and Adversarial Examples: Previous works sug-

gest that efficient representations within models provide robustness to adversarial

examples. In particular, it has been shown that compressing the model to have

fewer overall free parameters [73] or reducing the dimensions of the input data

as a preprocessing step [61] helps classification models to be more robust to ad-

versarial examples. Other works have shown that constraining a model to have

sparse weights or activations [19,47,22] allows for more robust models to adver-

sarial examples. In this dissertation, I explore the use of an over-complete (i.e.,

dimensionality expansion) sparse representation for adversarial robustness.

Sparse Coding and Adversarial Examples: Springer et al. [64] showed that

a sparse coding model trained for face detection is robust to adversarial exam-

ples that are generated to fool fully supervised DCNNs via the fast gradient sign

method [18]. Additionally, Kim et al. [29] showed that sparse coding provides ro-

bustness against adversarial examples by minimally distorting the input image

44

while achieving minimal degradation of accuracy on clean data. Finally, recent

work by Sun et al. [66] showed that using a convolutional sparse coding algorithm

as the first layer of a DCNN provides a robust defense to adversarial examples.

While these adversarial examples have been shown to generalize to multiple archi-

tectures [67], all the above works have explored adversarial examples in a black-box

setting (i.e., attacks that are model agnostic), and do not test adversarial examples

generated explicitly to attack sparse coding. In contrast, I propose to find adver-

sarial examples that attack the model as a whole, including the sparse coding

layer.

Previous work done my colleagues and I showed that the population non-

linearity (i.e., activations are non-linearity dependent on other activations) exhib-

ited by sparse coding result in activations that are less sensitive to adversarial

examples [52]. In particular, we present a theoretical explanation to the selectivity

of sparse coding activations versus point-wise non-linearity (i.e., nonlinear activa-

tion functions that are independent of other activations in a layer, e.g., RELU or

sigmoid non-linearity activation functions). We show that sparse coding activa-

tions exhibit more selectivity towards preferred image features (e.g., edges), and

less selectivity towards perceptually irrelevant features, such as adversarial pertur-

bations. Consequently, adversarial attacks against a sparse coding model within a

classification model result in the image looking more like the targeted class. Over-

all, we show that a supervised model incorporating unsupervised sparse coding

is more robust to adversarial attacks than a model incorporating only point-wise

non-linearities, such as the typical supervised convolutional layer.

45

One limitation of the results on adversarial robustness of our previous work [52]

is the dataset; we found convincing results on adversarial robustness on the MNIST

dataset [36], but less so for the more complicated gray-scale CIFAR dataset. Addi-

tionally, the sparse coding model tested was a fully connected sparse coding model

on the entirety of the image, as opposed to a convolutional model that exhibits

better scalability to large image sizes.

In this dissertation, I aim to further explore the adversarial robustness of sparse

coding. Specifically, I aim to test the robustness of convolutional sparse coding

on the color CIFAR dataset, and to explore the effect of sparsity on adversarial

robustness.

5.3 Robustness of Sparse Coding on Adversarial Examples

I aim to test the susceptibility of models that incorporate unsupervised sparse

coding to adversarial examples. Specifically, I aim to compare the performance

between a classification model that uses unsupervised convolutional sparse coding

as the first layer versus a fully supervised model.

One goal of these experiments is to use a “white-box” attack on the classi-

fication model, in that the attack is done on the model with known parameters

(as opposed to a “black-box attack”, which assumes the model parameters are

unknown to the attacker). Consequently, the sparse coding and classifier model

must be differentiable from end to end, so that the gradient with respect to the

images can be calculated in Equation 20. To achieve this, I unroll the iterative

46

encoding method in Equation 12 and propagate the adversarial loss to the input

through the sparse encoder.

I adversarially attack the convolutional sparse coding model defined in Sec-

tions 4.2.2 and 4.2.3 with λ = 0.2 (for both encoding and dictionary learning), as

well as the fully supervised model defined in Section 4.2.5. Both the sparse coding

model and the fully supervised model have 10 runs with random initial weights,

random ordering of training examples, and random data augmentations, as well

as random target labels during the adversarial attack.

To compare the robustness of various models to adversarial examples, I attack

the models using Equation 20. Here, I perturb the adversarial image x∗ until the

model reaches 90% confidence on a given target class ȳ. Figure 10 shows several

examples of adversarial images for the two models.

The metric I use to measure robustness to adversarial examples is the absolute

distance (AD) between the original and adversarial image, i.e.,
∑
|x− x∗|, aver-

aged across test images for which the attack was successful (mean AD, or mAD).

The pixel values of the image is ranged from 0 to 255 when calculating this metric.

Here, the mAD can be interpreted as the average change in pixel intensity needed

to fool the model to 90% confidence. A high mAD means that the adversary has

to make a larger perturbation to an image in order to fool the model to 90% con-

fidence, which means the model is more robust to attacks – it forces an adversary

to “work harder” to fool it.

Note that the attack is unbounded (i.e., there is no bound on the magnitude

of the perturbation). I find that this results in a successful attack (i.e., the model

47

Figure 10: Example adversarial images for the fully supervised model and the
convolutional sparse coding model. The output class of the model given the image
is shown above the image. The difference denotes the adversarial perturbation,
scaled to the range of the image.

48

misclassified a perturbed image to be the target class) for 99% of the tested images.

Table 8 in the appendix shows the success rates for all models tested.

Figure 11: Accuracy on the clean test set versus mean adversarial distance (mAD)
between the original and adversarial image, averaged across each image of the test
set. Adversarial images are created by perturbing the image until the model reaches
90% confidence on a randomly selected target class. Here, the fully supervised and
sparse coding models is run 10 times with random initial weights, random data
augmentation, random presentation of training images, and random adversarial
target classes.

Tsipras et al. [70] has shown that there exists a trade-off between model ro-

bustness and accuracy. In other words, a model that achieves better accuracy (on

a clean test set) typically is less robust to adversarial examples. To account for

this trade-off with different models, I compare each model’s accuracy on the clean

test set versus the mAD. Figure 11 shows the results for the 10 runs per model for

the two models tested. I find that the sparse coding model takes approximately

49

0.7 mAD more to achieve 90% confidence on a target class than the fully super-

vised model. Overall, this suggests that sparse coding is slightly more robust to

adversarial examples than the fully supervised model, in that it takes a bigger

perturbation of the initial image to fool the network to 90% confidence.

5.3.1 Effect of Sparsity on Adversarial Robustness

One question that arises is how the sparsity level (controlled by the λ hyper-

parameter) of the sparse coding models affects adversarial robustness. While I

only focus on convolutional sparse coding in this section, I adversarially attack all

the models defined in Sections 4.2.2 and 4.2.3 with the same set of target labels

for each test image across all models. The mAD for these results are shown in

Table 7 in the appendix.

I take the convolutional sparse coding models using the five different λ values

tested. Each λ value is used for both dictionary learning and encoding. Figure 12

compares the mAD versus the clean accuracy for these five models.

Here, the figure shows there exists a correlation between the sparsity value and

the mAD. Specifically, I find that the sparser the code, the larger the perturbation

needed to achieve 90% confidence to a target class at the expense of accuracy.

However, the loss in accuracy is minimal, in that the difference in accuracy between

the five models is within the range of accuracies due to random training conditions

shown in Figure 8. Overall, this finding supports other works that have shown that

sparse representations help protect against adversarial examples.

50

Figure 12: Accuracy on the clean test set versus mAD on sparse coding models
with different λ values, averaged across each image of the test set. The fraction of
nonzero elements (nnz) is shown next to each data point. The target adversarial
class is set to be identical between different models.

51

5.3.2 Calibration of Classification Models

One explanation of the difference in adversarial robustness between the sparse

coding and fully supervised models can be due to the confidence calibration of the

model. Here, confidence calibration is defined as tuning the output of the softmax

function (Equation 9) to represent the likelihood of an estimate to be the correct

class [21]. While the calibration of a model’s output to represent a likelihood is

outside the scope of this work, the metric of the calibration is important when

comparing different models on adversarial robustness. In particular, the stopping

criteria for adversarial perturbation is set to be when the output reaches 90%

confidence on a target class. Hence, different calibrations of confidence can result

in different stopping points between models.

I use the expected calibration error (ECE) as a measure of calibration [49] in

order to equate the different models to have similar confidence outputs. Here, the

ECE is computed by binning a set of confidence outputs of size n into M equally

spaced intervals. Let Bm be all samples that fall into a given interval m. The ECE

is defined as

ECE = 100
M∑
m=1

|Bm|
n

∣∣∣acc(Bm)− conf(Bm)
∣∣∣ (21)

where acc(Bm) and conf(Bm) measures the accuracy and average confidence of

the given samples Bm respectively. Note that the ECE is multiplied by 100 to

interpret the result as a percentage. Intuitively, a low ECE implies that the output

confidence values accurately represents the likelihood of being the correct class. I

use 50 intervals for all experiments.

52

Figure 13 shows the ECE values for the 10 independent runs for the fully

supervised model and the convolutional sparse coding model corresponding to

Figure 11. Table 2 shows the ECE values for the sparse coding models while

varying the sparsity level corresponding to Figure 12. Table 9 in the appendix

shows the ECE for all tested models. Here, I find a substantial difference in ECE

between the fully supervised networks and the convolutional sparse coding, but

less so when comparing the same model while varying λ.

Figure 13: The Expected Calibration Error (ECE) values of the 10 independent
runs for fully supervised versus convolutional sparse coding. The ECE reflects the
errors of the confidence values of a given model.

In order to calibrate the models’ probability, I use temperature scaling [21].

Here, let T be a scalar parameter that scales the activation values before computing

the softmax. Formally, Equation 9 is updated to

ŷi = σ(a/T)i (22)

53

Model ECE

λ = 0.1 13.7190

λ = 0.2 12.3581

λ = 0.3 11.3411

λ = 0.4 13.0975

λ = 0.5 12.1165

Table 2: Expected Calibration Error of classification models using convolutional
sparse coding with different λ values for encoding and dictionary learning.

where I calculate the output of the model ŷ by dividing the activations a by a

scalar T before feeding into the softmax function σ. If T > 1, the output confi-

dences are “softened”, i.e., make the model less confident overall. Conversely, if

T < 1, the output overall is more confident in its predictions. Note that the tem-

perature scaling does not change the output class prediction, and therefore does

not change the accuracy of the model.

I calibrate the 10 runs for both the fully supervised model and the sparse

coding model. Here, I use T = 0.2 for the fully supervised network and T = 0.16

for the sparse coding model to lower the ECE for both models. Figure 14 shows

the resulting ECE values for both models.

Figure 15 shows the accuracy versus mAD on the calibrated models. Overall,

both calibrated models exhibit slightly less robustness to adversarial examples

than the uncalibrated models. The convolutional sparse coding model is still more

robust to adversarial examples than the fully supervised model. However, the

calibration has lessened the difference in adversarial distance between the two

models to approximately 0.25 mAD.

54

Figure 14: Box-and-whisker plot of the Expected Calibration Error (ECE) values
of the 10 independent runs for fully supervised versus convolutional sparse coding
after calibration. T is the scalar temperature value used.

Figure 15: Accuracy versus mean adversarial distance (mAD) on temperature
calibrated model.

55

5.4 Robustness of Sparse Coding on Corrupted Images

Section 5.3 explored sparse coding and adversarial examples. In this section, I

explore the ability of sparse coding within a classification model versus a fully

supervised model to generalize to (non-adversarial) common corruptions on images

when trained on clean images.

The dataset I use for corrupted images is the CIFAR-10-C dataset [25]. Here,

the dataset contains 19 different types of corruptions, classified into 4 categories

defined below:

– Noise: Gaussian noise, impulse noise, shot noise, spatter, speckle

– Blur: Defocus blur, Gaussian blur, glass blur, motion blur, zoom blur

– Weather: Brightness, fog, frost, snow

– Digital: Contrast, elastic transform, JPEG compression, pixelate, saturate

Each corruption has 5 different levels of severity. Figure 16 shows examples of all

corruptions at the highest corruption severity. Figure 21 in the appendix shows

examples of all 5 severity levels.

I use the convolutional sparse coding model defined in Section 4.2.2 and 4.2.3

with λ = 0.2 (for both encoding and dictionary learning), along with the fully

supervised model defined in Section 4.2.5. Here, both models are trained 10 in-

dependent times on the clean training set with random initial weights, random

ordering of training examples, and random data augmentations. After training, I

test each model with the test set for each of the 19 corruption at the 5 severity

levels. The full results are shown in Figure 22 in the appendix.

56

Figure 16: Examples of corrupted images from the CIFAR-10-C dataset.

57

In order to aggregate the performance across corruptions of varying difficulty,

I use the Corruption Error (CE) as defined by Hendrycks et al. [25]. Here, the CE

aims to normalize each accuracy based on the performance of a baseline model

per corruption. Formally, the CE is defined as

CEf
c =

(
5∑
s=1

Ef
s,c

)/(
5∑
s=1

Ef∗

s,c

)
. (23)

Here, each classification error E for model f , corruption type c, and severity level s

is normalized by the performance per corruption and severity on a baseline model

f ∗. I use the fully supervised model with the median accuracy out of the 10 runs

as the baseline model. The normalized CE scores can then be averaged to find

the mean CE (mCE) across collections of different corruptions. Here, lower values

of mCE correspond to more robustness for the corruption type. Figure 17 shows

the mCE averaged across all corruptions, as well as the four different corruption

types.

Here, I find that sparse coding is able to generalize to noise corruptions better

than a fully supervised model. This is expected, as sparse coding has been shown to

remove high frequency noise [10,27]. However, sparse coding tends to achieve worse

performance than the fully supervised model on weather and digital corruptions,

which tended to keep low frequency features. While the fully supervised model

tended to be slightly more robust to low frequency blur corruptions, the range for

fully supervised mCE is wider than that of the sparse coding model. One possible

58

Figure 17: Mean corruption error (mCE) for a fully supervised model versus con-
volutional sparse coding on different types of corruption. Lower values of mCE
corresponds to more robustness to the corruption type. Each model is trained 10
times with random conditions. The mCE is normalized per corruption and severity
on a baseline model, such that the baseline model has an mCE of 1.

59

explanation of the difference in range is that the unsupervised sparse coding layer

was not retrained for each of the 10 runs.

5.5 Summary

In summary, I find that using sparse coding within a classification framework

results in robustness against adversarial examples. This is likely due to the pop-

ulation nonlinearity exhibited by sparse coding models, which makes activations

more selective to image features instead of adversarial noise [52]. Another expla-

nation could be the denoising nature of sparse coding. However, the adversarial

attacks were done in a white-box setting, which takes into account the sparse

coding model itself.

For non-adversarial corruptions, sparse coding is able to generalize better than

fully supervised networks to unseen high frequency noise corruptions. However,

the fully supervised network tended to be more robust to corruptions that kept

low frequency image features. One possible explanation is that the fully supervised

model can be using low frequency features (e.g., color) for classification more than

the sparse coding model.

Future work entails exploring the effect of the denoising nature of sparse cod-

ing for model robustness. In particular, testing other types of less computationally

expensive denoising algorithms would determine the relative contribution of de-

noising versus the nonlinear encoding of sparse coding.

60

6 Sparse Coding with Limited Labels

One limitation of DCNNs is that they rely on large collections of human-labeled

training data, e.g., ImageNet [8]. As such, DCNNs are restricted to domains for

which large datasets of labeled examples are available.

In this section, I will explore the use of unsupervised sparse coding within a

supervised DCNN to help alleviate the need for an abundance of training labels.

Here, I explore the use of unsupervised sparse coding on stereo-video data on

the task of a binary object classification task. I show that replacing a traditional

convolutional layer trained via supervised learning with an unsupervised sparse

coding layer allows for better and more consistent performance on the task when

there are limited amounts of training labels. I additionally show that by applying

unsupervised sparse coding to stereo-video data, the coding exhibits depth selec-

tivity (i.e., activations are selective to elements based on the distance from the

camera) as an emergent property of the model. In contrast, a comparable convo-

lutional layer trained with supervised learning for the classification task does not

exhibit depth selectivity. This may explain the difference in performance between

the two models.

6.1 Related Work

Data Augmentation: One classical method of machine learning to help over-

come limited training examples is to artificially enlarge a dataset via data augmen-

tation. For example, Krizhevsky et al. [33] augmented the ImageNet dataset by

randomly cropping and mirroring dataset images. Additionally, the authors sys-

61

tematically adjusted the intensity values of images. These techniques, while useful

in practice, still suffer from limited data, as the resulting augmented examples

are highly correlated. In this dissertation, I focus on exploring modifications to

neural network architectures and training losses for alleviating limited data prob-

lems, and note that augmentation techniques are readily applicable to the models

presented in this dissertation.

Transfer Learning: One solution to learning with limited data (and the solution

I explore in this section) is that of transfer learning. For example, in the supervised

setting, Marmanis et al. [46] takes a model trained on ImageNet and fine-tunes

the model to classify overhead satellite imagery. In terms of using unsupervised

learning, Raina et al. [55] poses this problem as self-taught learning and trains

features using sparse coding for transfer to supervised tasks. Additionally, Erhan

et al. [11] suggests theoretical reasons as to why unsupervised pre-training for

supervised learning works. While these studies of unsupervised transfer learning

explore the use of unsupervised learning techniques within a supervised network,

they do not explore performance on natural scenes (instead, focusing on datasets

such as MNIST [36] for handwritten digit recognition). Here, I extend these studies

to domains of data captured “in the wild”. Additionally, I explicitly compare

performance between the use of unsupervised sparse-coding layer within a DCNN

versus a fully supervised model.

Few-Shot Learning: Fei-Fei et al. [12] aimed to achieve one-shot or few-shot

learning (i.e., learning a new class using one or few labeled training examples)

62

using a Bayesian model that incorporates previously learned object categories

into learning a target novel object. In contrast, this dissertation proposes to utilize

unsupervised sparse coding to help alleviate the need for many labeled data points.

Unsupervised Learning for Classification: Lotter et al. [37] utilizes unsu-

pervised learning to alleviate the need for labeled training data. Specifically, the

authors use a recurrent neural network (RNN) [26] to predict future frames of

a video. They additionally show that their network achieves better performance

than standard DCNNs when each is trained on only a limited amount of training

data. In contrast to future frame prediction, this dissertation proposes to achieve

image representation through sparse coding.

Sparse Coding of Stereo Images: My colleagues and I have demonstrated

that representations of stereo images obtained through sparse coding allow for an

encoding that achieves better performance than a convolutional layer in the task of

pixel-wise depth estimation [39]. We showed that the sparse encoding is inherently

depth selective, whereas the convolutional encoding is not. In this dissertation, I

extend this study to encode stereo-video clips and compare encodings on a vehicle-

detection task.

6.2 Sparse Coding of Stereo-Video for Vehicle Detection

One domain in which sparse coding should be useful is in multi-view sensing, i.e.,

sensing an environment given multiple views of the scene. A sparse encoding, which

must efficiently represent a given scene, should learn correlated visual features

(that is generated from some physical object) between different viewpoints of the

63

same scene, with some offset based on the viewpoints. These correlated offsets

represent disparity in stereo images and optic flow in consecutive frames from a

video. It follows that an encoding that accounts for such offsets should have some

notion of depth [13,54].

I compare two types of convolutional network models that differ only in the

first layer: (1) a sparse-coding network, in which the weights and activations in the

first layer are computed via unsupervised convolutional sparse coding, and (2) a

fully-supervised network, in which the first-layer weights are learned via supervised

training and activations are computed using these layer weights. In both network

models, the weights and activations in all subsequent layers are computed via

supervised convolutional layers.

The data I use here is stereo-video data from KITTI [14]. The KITTI dataset

consists of videos captured from two horizontally offset cameras (i.e., stereo cam-

eras) mounted on a car. Multiple views of a scene are obtained from the stereo

cameras, as well as multiple views in time due to the moving car. The final task

is to detect vehicles in the scene.

I show that sparse-coding networks are able to achieve better performance than

fully supervised networks on a vehicle detection task on stereo-video data with a

minimal amount of training labels. Additionally, I show that the performance of

sparse-coding networks is more consistent—i.e., more robust to randomized order

of training data and random initializations—than comparable fully supervised

networks. Finally, I show that activations in the first (sparse-coding) layer in the

64

sparse-coding networks are depth selective, which may provide an explanation for

the differences in performance I observe in this study.

6.2.1 Experiments

I compare fully supervised networks with networks incorporating an unsupervised

sparse-coding layer by testing performance on a vehicle detection task using stereo-

video. I test the effect of training set size by varying the number of labeled training

examples available to the network. The KITTI dataset contains of approximately

7000 examples, which I split into 6000 for training and 1000 for testing. Each

example consists of three stereo frames ordered in time, with bounding box an-

notations for various objects in the left camera’s last frame as ground truth. I

normalize the stereo-video inputs to have zero mean and unit standard deviation

and I downsampled them to be 256× 64 pixels. I concatenated stereo inputs such

that the input contains six features, i.e., RGB inputs from both left and right

cameras. I kept time in a separate dimension for three-dimensional convolutions

for convolutional layers or transposed convolution for sparse-coding layers (see

Section 3.3) across the time, height, and width axes of the input.

I generated the ground truth for this task by sliding a 32 × 16-pixel non-

overlapping window across the left camera’s last frame. I considered a window

to be a positive instance if the window overlaps with any part of a car, van, or

truck bounding box provided by the original ground truth. The final output of

each network is the probability of a window containing a vehicle, for all windows

in the frame. I use the cross-entropy (see Section 2.4) between the ground truth

65

and estimated probabilities as the supervised cost function to train all supervised

layers within the network.

I tested various encoding schemes along with various weight initializations for

the first layer of n-layer networks, as follows:

– ConvSup: Convolutional encoding. Weights are initialized randomly and train-

ed via supervised training for vehicle detection.

– SparseUnsup: Unsupervised sparse encoding to learn activations and weights.

– ConvRand: Convolutional encoding. Weights are initialized randomly and are

not updated. This gives a random-weight baseline for the networks.

– ConvUnsup: Convolutional encoding. Weights are initialized from weights

trained via unsupervised sparse coding and are not updated. Here, the activa-

tions are calculated from a single convolution, as opposed to SparseUnsup

which finds a sparse encoding. This control tests the effect of weights versus

encoding scheme on performance.

– ConvFinetune: Convolutional encoding. Weights are initialized from weights

trained via unsupervised sparse coding. The weights were additionally trained

via supervised training for vehicle detection. This control is similar to Conv-

Unsup but tests the effect of additional training on the first-layer weights.

Once the first layer is set to one of the five possible options, the remaining n−1

layers contain convolutional layers learned via backpropagation of the supervised

loss. Each model was trained six times on the training data with different random

initial conditions and random presentation order of the training data to get a

66

range in performance for each network. Here, each model was limited to running

six times due to computational complexity constraints.

Detection Metrics: The metric commonly used in classification tasks is accu-

racy: the percent of correct estimates versus the total number of samples. This

metric works well when the number of samples per class is balanced, such as the

CIFAR-10 dataset used in previous sections. When there is an imbalance of sam-

ples per class, such as the number of tiles that contains cars within the dataset,

precision and recall are better metrics to use to assess a model’s performance. In-

tuitively, precision measures the correct number of predictions out of all positive

cases predicted, and recall measures the correct number of predictions out of all

actual positive cases. Formally, precision is defined as TP
TP+FP

and recall as TP
TP+FN

,

where TP are true positives, FP are false positives, and FN are false negatives.

To aggregate both precision and recall into a single metric, I use the area under

the precision versus recall plot (AUC under the PvR), or the Average Precision

(AP). Here, the metric calculates the precision of a detection system at different

recall values. Specifically, a precision versus recall curve can be made by varying a

threshold on detection confidence to measure the trade-off between precision and

recall. Finally, finding the area under this curve gives the AP score. The AP score

ranges from 0 to 1, and a higher AP score corresponds to a better detection system

overall.

67

6.2.2 Results

Table 3 shows the Average Precision (AP) of all models trained on all available

training data and evaluated on the test data, each tested with two, three, and

four layers. Each network was trained on the vehicle-detection task six times, with

random weight initialization in higher layers and random ordering of training

examples, in order to obtain the range of AP scores. The range columns in Table

1 gives the difference between the maximum and minimum scores over the six runs.

A lower range in AP scores represent a model that is less susceptible to random

training conditions.

Here, I find that SparseUnsup performs worse than ConvSup and Conv-

Finetune with two layers, which agrees with the findings of Coates et al. [7].

However, SparseUnsup outperforms ConvSup in networks with three or more

layers. This difference in performance due to the number of layers is likely because

of the lack in capacity of the two layer model to solve the detection task; more

layers are needed.

One key finding is that SparseUnsup is much more consistent (i.e., much

less susceptible to random initial conditions and ordering of training examples)

compared to all other models, as shown by the low range of AP scores. This con-

sistency is favorable, for example, when a model is too computationally expensive

to run multiple times. Interestingly, SparseUnsup has a smaller range in perfor-

mance than ConvUnsup, where both models use unsupervised weights learned

via sparse coding and only differ in encoding scheme. This suggests that inferring

68

Model 2 layers Range 3 layers Range 4 layers Range

ConvSup 0.672 0.045 0.672 0.021 0.681 0.086

SparseUnsup 0.619 0.004 0.681 0.009 0.693 0.014

ConvRand 0.467 0.009 0.574 0.052 0.592 0.033

ConvUnsup 0.561 0.044 0.609 0.028 0.609 0.033

ConvFinetune 0.660 0.020 0.641 0.081 0.691 0.117

Table 3: The Average Precision (AP) scores for all models tested with varying
depths. Each model was run six times with different random training conditions.
Each value represents the median AP score over the six runs, and the range rep-
resents the difference between the highest score and the lowest score. Bold face
determines the highest median AP and lowest range of models tested.

activations in sparse coding is likely the reason for the additional consistency in

performance.

Figure 18 gives the performance of SparseUnsup and ConvSup while vary-

ing the number of labeled training examples that each network was trained on.

Here, the unsupervised weights were learned from all available training data, with-

out using training labels. I find that SparseUnsup achieves better performance

than ConvSup across all numbers of labeled training examples tested for three

and four layer networks. Additionally, SparseUnsup achieves better performance

with two layer networks when the number of training examples is limited to only

100 training labels. Finally, SparseUnsup is much more consistent (as shown by

the low range in AP scores) in performance than that of ConvSup, for all models

tested. Overall, these results show that a sparse coding network achieves better

69

and more consistent results than fully supervised networks when training data is

limited.

I compare activation maps for the first layer of SparseUnsup, ConvUnsup,

and ConvSup in Figure 19a, 19b, and 19c respectively. I find that the sparse-

coding activations are selective to certain depths. For example, in Figure 19a,

the top row shows a fast moving edge detector with a large binocular shift that

corresponds to image features close to the camera, whereas the bottom row shows

a static edge detector with no binocular shift that corresponds to image features

far from the camera. In contrast, no convolutional layers show depth selectivity.

One explanation of the depth selectivity seen in SparseUnsup is the level

of sparsity exhibited in the model. In particular, I aim to see if sparsity alone,

achieved with simply thresholding activation values, can account for depth se-

lectivity instead of the sparse coding process. Shown in Figure 19d, I applied a

threshold to convolutional activations in ConvSup (Figure 19c) to match the

number of nonzero activations in sparse coding across the test set. Sparse controls

for ConvUnsup produced all zero activations for the shown example. Here, I show

that simply applying a threshold to activations from ConvSup is insufficient to

explain depth selective activations. Overall, the depth selectivity of SparseUnsup

(and the lack of depth selectivity in the other models) may explain the difference

in performance in vehicle detection.

In this section, I have shown that a neural network that incorporates unsuper-

vised learning is able to outperform a fully supervised network when there exists

limited labeled training data. Additionally, I show that performance of fully super-

70

a

b

c

Figure 18: Number of training examples available versus Area Under Curve (AUC)
of Precision versus Recall (PvR) scores for SparseUnsup (red) and ConvSup
(blue) for two (a), three (b), and four (c) layer networks. Each point is the median
score over six independent runs, with the area between the maximum and mini-
mum score filled in. The leftmost point in each plot uses 100 training examples.
Note that SparseUnsup (red) range is minimal, and therefore not visible in the
plot.

71

Figure 19: Nonzero activations of example weights overlaid on the input image.
Magnitude of pixel values in green correspond to magnitude of activations. a:
Activations of SparseUnsup for near tuned (top) and far tuned (bottom) weights
for the sparse-coding layer. d: Activations from ConvSup with a threshold applied
such that the number of activations matched that of sparse coding across the
dataset. Sparse encodings show depth selectivity, whereas convolutional encodings
do not.

72

vised networks can vary substantially based on initial conditions when compared

to networks with a sparse-coding layer. Finally, I compare activations and show

that depth selective activations emerge from applying sparse coding to stereo-video

data. In all, these results show that unsupervised sparse coding can be useful in

domains where there exists a limited amount of available labeled training data.

Further work entails determining if the result is constrained to highly correlated

stereo-video data. In particular, further work must be done to see if these results

generalize to multi-class classification on static images such as those from CIFAR-

10. In addition, work must be done to see if these results generalize to multi-class

object detection, where the objective is to draw tight bounding boxes around

objects of interest.

73

7 Final Conclusions

In this dissertation, I explored the potential of using sparse coding within super-

vised DCNNs to help alleviate some shortcomings of such models. In particular, I

explore the lack of robustness shown in DCNNs to adversarial and corrupted im-

ages not seen during training. Additionally, I explore the necessity of an abundance

of human-annotated training examples used by DCNNs.

In Section 4, I test the relative contribution of dictionary learning versus en-

coding of unsupervised sparse coding when used within a supervised classification

model. I find that the encoding method of unsupervised sparse coding, as opposed

to the unsupervised dictionaries learned, contributes more to better classification

results. In particular, the convolutional sparse coding method is key for getting

good results on classification. Overall, however, the performance of a model that

uses sparse coding is similar to that of a fully supervised model.

In Section 5, I test if using unsupervised sparse coding helps build a more robust

classification model. Specifically, I test sparse coding’s ability to protect against

adversarial examples (Section 5.3) and find that using sparse coding within super-

vised networks helps alleviate the model’s susceptibility to adversarial examples,

even when attacking the sparse coding model in a white-box setting. I also test

the robustness of sparse coding within classification models on common corrup-

tions (Section 5.4), and find that sparse coding is robust to high frequency noise

corruptions, but less so to corruptions that remove high frequency image features,

such as blurring.

74

In Section 6, I test if unsupervised sparse coding helps alleviate the number of

labeled training examples typically needed by DCNNs on stereo-video data. I find

that using unsupervised sparse coding within a classification model helps achieve

better performance than a fully supervised model when limiting the number of

training labels.

Overall, this dissertation shows that the use of unsupervised sparse coding

within DCNNs for classification tasks can help augment existing fully supervised

solutions to classification. In addition, the advantages of sparse coding shown in

the domain of model robustness and limited data can help confirm the ideas of

efficient representations in biology.

While these results shows potential for using sparse coding within classifica-

tion networks, there are some potential issues with the experiments done in this

dissertation. In particular, most state-of-the-art DCNNs contain a large number of

layers, whereas the models tested in this dissertation contain relatively few layers.

Additionally, other DCNN methods use methods such as residual learning [24] to

achieve state-of-the-art results. Overall, these cases show that classification per-

formance for the models tested in this dissertation is far from saturated. To this

end, future work entails testing larger and deeper networks for classification, such

as incorporating recent work on deep sparse coding models (e.g., [65]).

Another aspect for future work entails comparing the performance of sparse

coding for model robustness and with limited labels to other methods. For exam-

ple, one common solution to alleviate these shortcomings is to use data augmen-

tation. Data augmentation in particular can be used to train DCNNs to account

75

for common types of corruptions, including adversarial examples [18,20,48,71]. In

addition, data augmentation can artificially make a dataset larger to alleviate

the number of training labels required [33]. While these techniques are easy to

implement and use during evaluation, the goal of this dissertation is to explore

substantial architectural changes to DCNNs as an alternative. Here, I note that

these data augmentation techniques are readily applicable to the architectural

changes proposed in this dissertation, and future work must be done in combin-

ing these techniques to explore overall performance of these models in cases of

corrupted images and limited labels.

Finally, future work entails comparing sparse coding to other types of unsuper-

vised feature and encoding techniques. For example, variational autoencoders [53]

are a commonly used unsupervised learning technique, where the latent represen-

tation can even be trained to represent image labels for classification.

76

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-
berg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on hetero-
geneous systems (2015), https://www.tensorflow.org/, software available
from tensorflow.org

2. Baldi, P., Hornik, K.: Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks 2(1), 53–58
(1989)

3. Barlow, H.B.: Unsupervised learning. Neural Computation 1(3), 295–311
(1989)

4. Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for
recognition. In: 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. pp. 2559–2566. Citeseer (2010)

5. Britz, D.: Understanding convolutional neural networks for NLP (2015),
"http://www.wildml.com/2015/11/understanding-convolutional-

neural-networks-for-nlp/", Online; accessed Feburary-25-2020
6. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse

coding and vector quantization. In: Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11). pp. 921–928 (2011)

7. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsuper-
vised feature learning. In: International Conference on Artificial Intelligence
and Statistics (AISTATS). pp. 215–223 (2011)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-
scale hierarchical image database. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 248–255. IEEE (2009)

9. Dodge, S., Karam, L.: A study and comparison of human and deep learning
recognition performance under visual distortions. In: Computer Communica-
tion and Networks (ICCCN), 2017 26th International Conference on. pp. 1–7.
IEEE (2017)

10. Elad, M., Aharon, M.: Image denoising via sparse and redundant representa-
tions over learned dictionaries. IEEE Transactions on Image Processing 15(12),
3736–3745 (2006)

11. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.:
Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research 11(Feb), 625–660 (2010)

12. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories.
IEEE transactions on pattern analysis and machine intelligence 28(4), 594–
611 (2006)

77

https://www.tensorflow.org/
"http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/"
"http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/"

13. Ferris, S.H.: Motion parallax and absolute distance. Journal of Experimental
Psychology 95(2), 258 (1972)

14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2012)

15. Geirhos, R., Janssen, D.H., Schütt, H.H., Rauber, J., Bethge, M., Wichmann,
F.A.: Comparing deep neural networks against humans: Object recognition
when the signal gets weaker. arXiv preprint arXiv:1706.06969 (2017)

16. Geirhos, R., Temme, C.R.M., Rauber, J., Schuett, H.H., Bethge, M., Wich-
mann, F.A.: Generalisation in humans and deep neural networks. arXiv
preprint arXiv:1808.08750 (2018)

17. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In:
Aistats. p. 275 (2011)

18. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

19. Gopalakrishnan, S., Marzi, Z., Madhow, U., Pedarsani, R.: Combating adver-
sarial attacks using sparse representations. arXiv preprint arXiv:1803.03880
(2018)

20. Gu, S., Rigazio, L.: Towards deep neural network architectures robust to ad-
versarial examples. arXiv preprint arXiv:1412.5068 (2014)

21. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern
neural networks. arXiv preprint arXiv:1706.04599 (2017)

22. Guo, Y., Zhang, C., Zhang, C., Chen, Y.: Sparse DNNs with improved ad-
versarial robustness. In: Advances in Neural Information Processing Systems.
pp. 242–251 (2018)

23. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 1026–1034 (2015)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 770–778 (2016)

25. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to
common corruptions and perturbations. arXiv preprint arXiv:1903.12261
(2019)

26. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computa-
tion 9(8), 1735–1780 (1997)

27. Hyvärinen, A., Hoyer, P.O., Oja, E.: Sparse code shrinkage: Denoising by
nonlinear maximum likelihood estimation. In: Advances in Neural Information
Processing Systems. pp. 473–479 (1999)

28. Jo, J., Bengio, Y.: Measuring the tendency of CNNs to learn surface statistical
regularities. arXiv preprint arXiv:1711.11561 (2017)

29. Kim, E., Yarnall, J., Shah, P., Kenyon, G.T.: A neuromorphic sparse coding
defense to adversarial images. In: Proceedings of the International Conference
on Neuromorphic Systems. pp. 1–8 (2019)

30. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014)

78

31. Krizhevsky, A.: The CIFAR-10 dataset. "https://www.cs.toronto.edu/

~kriz/cifar.html" (2009), Online; accessed Feburary-25-2020
32. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny

images. Tech. rep., University of Toronto (2009)
33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep

convolutional neural networks. In: Advances in Neural Information Processing
Systems. pp. 1097–1105 (2012)

34. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building ma-
chines that learn and think like people. Behavioral and Brain Sciences 40
(2017)

35. Landecker, W.: Interpretable machine learning and sparse coding for computer
vision. Ph.D. thesis, Portland State University (2014)

36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11), 2278–2324
(1998)

37. Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video
prediction and unsupervised learning. In: International Conference on Learn-
ing Representations (ICLR) (2017)

38. Lundquist, S.Y.: TFSparseCode. https://github.com/slundqui/

TFSparseCode (2020)
39. Lundquist, S.Y., Paiton, D.M., Schultz, P.F., Kenyon, G.T.: Sparse encoding

of binocular images for depth inference. In: IEEE Southwest Symposium on
Image Analysis and Interpretation (SSIAI). pp. 121–124. IEEE (2016)

40. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neu-
ral network acoustic models. In: International Conference on Machine Learn-
ing Workshop on Deep Learning for Audio, Speech and Language Processing
(2013)

41. MacQueen, J., et al.: Some methods for classification and analysis of mul-
tivariate observations. In: Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability. University of California (1967)

42. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative
learned dictionaries for local image analysis. In: Computer Vision and Pat-
tern Recognition (CVPR), 2008. IEEE Conference on. pp. 1–8. IEEE (2008)

43. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse
models for image restoration. In: Computer Vision, 2009 IEEE 12th Interna-
tional Conference on. pp. 2272–2279. IEEE (2009)

44. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restora-
tion. IEEE Transactions on Image Processing 17(1), 53–69 (2008)

45. Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., Bach, F.R.: Supervised dic-
tionary learning. In: Advances in Neural Information Processing Systems. pp.
1033–1040 (2009)

46. Marmanis, D., Datcu, M., Esch, T., Stilla, U.: Deep learning earth observa-
tion classification using ImageNet pretrained networks. IEEE Geoscience and
Remote Sensing Letters 13(1), 105–109 (2016)

47. Marzi, Z., Gopalakrishnan, S., Madhow, U., Pedarsani, R.: Sparsity-based
defense against adversarial attacks on linear classifiers. In: 2018 IEEE Inter-
national Symposium on Information Theory (ISIT). pp. 31–35. IEEE (2018)

79

"https://www.cs.toronto.edu/~kriz/cifar.html"
"https://www.cs.toronto.edu/~kriz/cifar.html"
https://github.com/slundqui/TFSparseCode
https://github.com/slundqui/TFSparseCode

48. Miyato, T., Maeda, S.i., Koyama, M., Nakae, K., Ishii, S.: Distributional
smoothing with virtual adversarial training. arXiv preprint arXiv:1507.00677
(2015)

49. Naeini, M.P., Cooper, G.F., Hauskrecht, M.: Obtaining well calibrated prob-
abilities using Bayesian binning. In: Proceedings of the Association for the
Advancement of Artifical Intelligence (AAAI) Conference on Artificial Intelli-
gence. vol. 2015, p. 2901. NIH Public Access (2015)

50. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision Research 37(23), 3311–3325 (1997)

51. Paiton, D.M.: DeepSparseCoding. https://github.com/dpaiton/

DeepSparseCoding (2020)
52. Paiton, D.M., Frye, C.G., Lundquist, S.Y., Bowen, J.D., Zarcone, R., Ol-

shausen, B.A.: Selectivity and robustness of sparse coding networks. Journal
of Vision (2020), In press.

53. Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., Carin, L.: Variational
autoencoder for deep learning of images, labels and captions. In: Advances in
Neural Information Processing Systems. pp. 2352–2360 (2016)

54. Qian, N.: Binocular disparity and the perception of depth. Neuron 18(3), 359–
368 (1997)

55. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning:
transfer learning from unlabeled data. In: Proceedings of the 24th Interna-
tional Conference on Machine Learning. pp. 759–766. ACM (2007)

56. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Advances in Neural Information
Processing Systems (NIPS). pp. 91–99 (2015)

57. Rigamonti, R., Brown, M.A., Lepetit, V.: Are sparse representations really
relevant for image classification? In: Computer Vision and Pattern Recognition
(CVPR), 2011. IEEE Conference on. pp. 1545–1552. IEEE (2011)

58. Rosenfeld, A., Zemel, R., Tsotsos, J.K.: The elephant in the room. arXiv
preprint arXiv:1808.03305 (2018)

59. Rozell, C., Johnson, D., Baraniuk, R., Olshausen, B.: Locally competitive
algorithms for sparse approximation. In: IEEE International Conference on
Image Processing (ICIP). vol. 4, pp. IV–169. IEEE (2007)

60. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747 (2016)

61. Sahay, R., Mahfuz, R., El Gamal, A.: Combatting adversarial attacks through
denoising and dimensionality reduction: A cascaded autoencoder approach. In:
2019 53rd Annual Conference on Information Sciences and Systems (CISS).
pp. 1–6. IEEE (2019)

62. Schultz, P.F., Paiton, D.M., Lu, W., Kenyon, G.T.: Replicating kernels with
a short stride allows sparse reconstructions with fewer independent kernels.
arXiv preprint arXiv:1406.4205 (2014)

63. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICLR) (2015)

80

https://github.com/dpaiton/DeepSparseCoding
https://github.com/dpaiton/DeepSparseCoding

64. Springer, J.M., Strauss, C.S., Thresher, A.M., Kim, E., Kenyon, G.T.: Clas-
sifiers based on deep sparse coding architectures are robust to deep learning
transferable examples. arXiv preprint arXiv:1811.07211 (2018)

65. Sulam, J., Papyan, V., Romano, Y., Elad, M.: Multilayer convolutional sparse
modeling: Pursuit and dictionary learning. IEEE Transactions on Signal Pro-
cessing 66(15), 4090–4104 (2018)

66. Sun, B., Tsai, N.h., Liu, F., Yu, R., Su, H.: Adversarial defense by stratified
convolutional sparse coding. arXiv preprint arXiv:1812.00037 (2018)

67. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfel-
low, I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

68. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap
to human-level performance in face verification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1701–
1708 (2014)

69. Torralba, A., Oliva, A.: Statistics of natural image categories. Network: Com-
putation in Neural Systems 14(3), 391–412 (2003)

70. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness
may be at odds with accuracy. arXiv preprint arXiv:1805.12152 (2018)

71. Wang, X., Shrivastava, A., Gupta, A.: A-Fast-RCNN: Hard positive generation
via adversary for object detection. In: IEEE Conference on Computer Vision
and Pattern Recognition (2017)

72. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching us-
ing sparse coding for image classification. In: IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1794–1801. IEEE (2009)

73. Ye, S., Xu, K., Liu, S., Cheng, H., Lambrechts, J.H., Zhang, H., Zhou, A.,
Ma, K., Wang, Y., Lin, X.: Adversarial robustness vs. model compression, or
both? In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 111–120 (2019)

74. Zaadnoordijk, L., Besold, T.R., Cusack, R.: The next big thing(s) in unsu-
pervised machine learning: Five lessons from infant learning. arXiv preprint
arXiv:2009.08497 (2020)

75. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional net-
works. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 2528–2535. IEEE (2010)

76. Zhang, X., Kenyon, G.: A deconvolutional strategy for implementing large
patch sizes supports improved image classification. In: Proceedings of the 9th
EAI International Conference on Bio-inspired Information and Communica-
tions Technologies (formerly BIONETICS). pp. 529–534 (2016)

77. Zhu, M., Rozell, C.J.: Visual nonclassical receptive field effects emerge from
sparse coding in a dynamical system. PLoS Computational Biology 9(8),
e1003191 (2013)

81

Appendix A

Sparse Coding Results

In this section, I report various results of the sparse coding algorithm on both

dictionary learning (Section 4.2.2) and encoding (Section 4.2.3).

Table 4 shows the reconstruction error for each tested model. Specifically, the

error is calculated as ‖x−Da2
2‖, or the `2 norm of the difference between the

input and reconstruction, averaged across the entire test set. Table 5) shows the

percent of active elements for all models tested.

I find that using the same λ value for both encoding and dictionary learning

doesn’t necessarily result in lower reconstruction error. For example, shown in

Table 4, the best reconstructions using Patch SC with λ = 1.5 for encoding uses

a dictionary trained with λ = 0.5. Conv SC encoding models tend to have the

lowest reconstruction errors using the dictionary with the same value of λ as the

encoding model. However, using a dictionary trained with a patch-based model in

a convolutional sparse coding model encoder results in much worse reconstruction

errors, and vice versa.

The percent of active elements (shown in Table 5) is highly dependent on the

λ value used for encoding, but isn’t dependent on the dictionary used, with the

exception of imprinted and random dictionaries.

Figure 20 shows a subset of elements trained from the dictionary learning mod-

els defined in Section 4.2.2. Here, I find that the Conv SC dictionary are small

edge detectors in a localized area. In contrast, the Patch SC dictionary contains

82

E
n
co
d
in
g
M
o
d
el

P
a
tc
h
S
C

C
o
n
v
S
C

λ
=

0
.5
λ
=

1
.0

λ
=

1
.5

λ
=

2
.0

λ
=

2
.5

λ
=

0
.1

λ
=

0
.2

λ
=

0
.3

λ
=

0
.4

λ
=

0
.5

DictionaryLearningModel

Im
p
ri
n
te
d

8
.6
0
9
8

1
2
.1
5
0
7

1
5
.4
0
1
6

1
8
.4
9
8
5

2
1
.5
8
3
6

3
9
.1
5
3
6

4
1
.0
9
0
1

5
4
.8
4
9
0

6
8
.5
8
3
7

8
1
.8
3
3
7

R
a
n
d
o
m

3
8
.9
8
2
5
5
9
.0
1
1
6

7
2
.3
5
5
0

7
9
.4
2
3
8

8
2
.6
7
9
0

2
1
.5
0
2
0

7
7
.7
0
9
0

1
7
4
.2
9
4
4
3
1
1
.5
9
8
4
4
7
5
.7
5
8
6

PatchSC

λ
=

0
.5

3
.6
3
9
6

6
.8
2
1
0
1
0
.2
3
0
4

1
3
.7
7
8
2

1
7
.4
6
5
3

1
1
.2
5
8
6

2
0
.5
2
9
8

3
1
.0
6
0
3

4
2
.5
0
3
5

5
4
.6
4
2
5

λ
=

1
.0

4
.4
9
6
9

7
.3
4
0
2

1
0
.4
0
2
8

1
3
.6
1
5
4

1
6
.9
8
1
0

1
6
.3
9
7
2

2
5
.9
5
0
4

3
6
.1
2
6
5

4
6
.9
0
6
0

5
8
.2
1
0
0

λ
=

1
.5

5
.4
6
0
2

8
.0
7
7
3

1
0
.8
6
6
0

1
3
.8
0
4
7

1
6
.9
1
0
8
2
1
.5
6
2
0

3
1
.8
7
6
5

4
2
.1
8
0
7

5
2
.6
7
0
3

6
3
.4
2
6
5

λ
=

2
.0

6
.4
6
5
3

8
.9
2
6
5

1
1
.4
9
7
2

1
4
.2
1
6
6

1
7
.1
1
9
1

2
7
.7
9
5
5

3
8
.1
1
4
4

4
8
.6
0
1
7

5
8
.8
9
1
9

6
9
.2
2
5
1

λ
=

2
.5

7
.3
2
2
4

9
.7
1
7
6

1
2
.1
5
8
1

1
4
.7
2
4
3

1
7
.4
6
7
0

3
3
.9
9
8
8

4
3
.5
0
8
2

5
4
.4
2
1
2

6
4
.8
4
4
5

7
5
.1
1
5
3

ConvSC

λ
=

0
.1

1
2
.7
3
4
4
1
6
.8
0
0
4

2
0
.3
4
9
7

2
3
.7
3
8
7

2
7
.1
2
5
0

4
.4
0
5
9

1
1
.7
0
2
5

2
1
.1
7
1
2

3
1
.9
5
3
9

4
3
.5
8
0
9

λ
=

0
.2

1
0
.8
6
1
4
1
4
.9
9
7
7

1
8
.6
0
7
5

2
2
.0
1
8
5

2
5
.3
9
8
1

5
.1
8
1
6

1
1
.3
9
1
4

1
9
.6
3
9
6

2
9
.5
3
5
3

4
0
.6
7
8
1

λ
=

0
.3

1
0
.1
3
7
5
1
4
.0
4
5
7

1
7
.5
8
9
9

2
1
.0
3
3
8

2
4
.4
9
7
5

6
.5
0
1
3

1
2
.3
0
4
8

1
9
.6
0
5
9
2
8
.3
6
3
2

3
8
.4
1
9
4

λ
=

0
.4

9
.4
5
0
5

1
3
.3
9
2
4

1
6
.9
7
0
3

2
0
.4
3
8
9

2
3
.9
3
3
1

8
.0
4
7
0

1
3
.8
0
8
0

2
0
.5
5
9
5

2
8
.4
2
8
0

3
7
.4
2
1
0

λ
=

0
.5

9
.3
9
9
1

1
3
.1
8
2
1

1
6
.6
3
6
7

2
0
.0
3
2
7

2
3
.4
9
9
8

9
.6
9
1
8

1
5
.6
4
9
7

2
2
.1
9
4
9

2
9
.5
3
6
0

3
7
.7
6
7
9

T
ab

le
4:

T
ab

le
of

re
co

n
st

ru
ct

io
n

er
ro

rs
fo

r
ea

ch
co

m
b
in

at
io

n
of

d
ic

ti
on

ar
y

le
ar

n
in

g
an

d
en

co
d
in

g.
T

h
e

lo
w

es
t

re
co

n
st

ru
ct

io
n

er
ro

r
fo

r
ea

ch
en

co
d
in

g
m

o
d
el

(i
.e

.,
ea

ch
co

lu
m

n
)

is
b

ol
d
.

83

E
n
co
d
in
g
M
o
d
el

S
o
ft

T
h
re
sh
o
ld

P
a
tc
h
S
C

C
o
n
v
S
C

α
=

0
.5
α
=

1
.0
α
=

2
.0
α
=

3
.0
α
=

4
.0
λ
=

0
.5
λ
=

1
.0
λ
=

1
.5
λ
=

2
.0
λ
=

2
.5
λ
=

0
.1
λ
=

0
.2
λ
=

0
.3
λ
=

0
.4
λ
=

0
.5

DictionaryLearningModel

Im
p
ri
n
te
d

0
.4
7
4
7

0
.4
2
9
1

0
.3
4
3
9

0
.2
6
9
9

0
.2
0
8
1

0
.1
1
2
7

0
.0
7
1
2

0
.0
5
3
4

0
.0
4
3
1

0
.0
3
6
0

0
.0
8
8
0

0
.0
5
4
7

0
.0
4
1
1

0
.0
3
3
5

0
.0
2
8
4

R
a
n
d
o
m

0
.2
7
4
4

0
.1
2
7
9

0
.0
2
2
1

0
.0
0
3
6

0
.0
0
0
6

0
.1
8
1
9

0
.0
6
9
9

0
.0
2
4
8

0
.0
0
8
4

0
.0
0
2
9

0
.1
7
2
9

0
.1
0
3
5

0
.0
6
7
1

0
.0
4
3
4

0
.0
2
7
4

PatchSC

λ
=

0
.5

0
.4
4
3
9

0
.3
7
7
2

0
.2
6
9
2

0
.1
9
0
1

0
.1
3
2
3

0
.1
0
6
6

0
.0
6
5
1

0
.0
4
7
6

0
.0
3
7
6

0
.0
3
0
9

0
.0
8
4
8

0
.0
5
1
6

0
.0
3
7
9

0
.0
3
0
1

0
.0
2
5
0

λ
=

1
.0

0
.4
5
3
7

0
.3
9
3
9

0
.2
9
1
5

0
.2
1
2
0

0
.1
5
1
8

0
.1
0
5
5

0
.0
6
4
3

0
.0
4
7
1

0
.0
3
7
2

0
.0
3
0
7

0
.0
8
4
7

0
.0
5
1
8

0
.0
3
8
2

0
.0
3
0
5

0
.0
2
5
5

λ
=

1
.5

0
.4
5
8
5

0
.4
0
2
6

0
.3
0
5
0

0
.2
2
7
1

0
.1
6
6
6

0
.1
0
4
1

0
.0
6
4
0

0
.0
4
6
9

0
.0
3
7
1

0
.0
3
0
7

0
.0
8
4
6

0
.0
5
1
8

0
.0
3
8
2

0
.0
3
0
6

0
.0
2
5
6

λ
=

2
.0

0
.4
6
4
4

0
.4
1
3
7

0
.3
2
1
6

0
.2
4
4
2

0
.1
8
1
6

0
.1
0
1
9

0
.0
6
3
4

0
.0
4
6
9

0
.0
3
7
3

0
.0
3
1
0

0
.0
8
4
0

0
.0
5
1
6

0
.0
3
8
3

0
.0
3
0
7

0
.0
2
5
8

λ
=

2
.5

0
.4
6
7
3

0
.4
1
8
6

0
.3
2
9
7

0
.2
5
3
8

0
.1
9
1
3

0
.1
0
0
5

0
.0
6
3
1

0
.0
4
6
9

0
.0
3
7
5

0
.0
3
1
1

0
.0
8
3
9

0
.0
5
1
7

0
.0
3
8
4

0
.0
3
0
9

0
.0
2
6
0

ConvSC

λ
=

0
.1

0
.4
4
3
9

0
.3
7
6
0

0
.2
6
4
4

0
.1
8
3
2

0
.1
2
5
8

0
.0
9
9
9

0
.0
6
0
6

0
.0
4
4
6

0
.0
3
5
5

0
.0
2
9
4

0
.0
8
2
1

0
.0
4
9
9

0
.0
3
6
8

0
.0
2
9
4

0
.0
2
4
6

λ
=

0
.2

0
.4
4
8
7

0
.3
8
5
6

0
.2
7
6
9

0
.1
9
3
8

0
.1
3
3
6

0
.1
0
2
5

0
.0
6
0
2

0
.0
4
3
0

0
.0
3
3
4

0
.0
2
7
2

0
.0
8
3
3

0
.0
4
9
8

0
.0
3
6
1

0
.0
2
8
5

0
.0
2
3
6

λ
=

0
.3

0
.4
5
3
4

0
.3
9
3
9

0
.2
8
8
0

0
.2
0
4
0

0
.1
4
1
4

0
.1
0
4
0

0
.0
6
1
6

0
.0
4
3
9

0
.0
3
3
9

0
.0
2
7
3

0
.0
8
3
9

0
.0
5
0
2

0
.0
3
6
4

0
.0
2
8
7

0
.0
2
3
7

λ
=

0
.4

0
.4
5
6
8

0
.3
9
9
9

0
.2
9
7
2

0
.2
1
3
0

0
.1
4
8
6

0
.1
0
6
2

0
.0
6
3
4

0
.0
4
5
2

0
.0
3
4
8

0
.0
2
7
8

0
.0
8
4
3

0
.0
5
0
7

0
.0
3
6
9

0
.0
2
9
1

0
.0
2
4
0

λ
=

0
.5

0
.4
5
7
2

0
.4
0
1
5

0
.3
0
1
8

0
.2
1
9
7

0
.1
5
5
5

0
.1
0
7
5

0
.0
6
5
1

0
.0
4
6
9

0
.0
3
6
3

0
.0
2
9
1

0
.0
8
4
3

0
.0
5
1
0

0
.0
3
7
2

0
.0
2
9
4

0
.0
2
4
3

T
ab

le
5:

T
ab

le
of

th
e

p
er

ce
n
t

of
n
on

-z
er

o
ac

ti
va

ti
on

s
fo

r
ea

ch
co

m
b
in

at
io

n
of

d
ic

ti
on

ar
y

le
ar

n
in

g
an

d
en

co
d
in

g.

84

edge detectors that span the size of the patch. Intuitively, this makes sense: en-

coding image patches in isolation requires nonzero weights that span the size of

the patch in order to reconstruct the patch, whereas a convolutional encoding is

able to rely on other positionally translated elements for reconstruction. In par-

ticular, this is why convolutional sparse coding allows for a more over-complete

dictionary than patch-based sparse coding when the number of elements is held

fixed. It follows that the elements in the patch-based sparse coding method can

likely be more localized given more elements.

I also find that the sparsity trade-off results in different dictionaries. In par-

ticular, for Patch SC dictionaries with a low value of λ (i.e., the encodings are

less sparse with less reconstruction error), the trained dictionary contains highly

localized elements. In contrast, when λ is high (i.e., the activations are constrained

to be more sparse at the expense of more reconstruction error), the elements span

the size of the patch. These results likely tie directly to the number of non-zero

activations. In a non-sparse model, an active element can afford smaller contribu-

tion to the reconstruction since there are more active elements overall. In a sparser

model, one active element must reconstruct more of the image, resulting in less

localized elements. While this effect is more pronounced for Patch SC, Conv SC

also exhibits this property to a lesser degree.

The weights learned from supervised training exhibit an interesting charac-

teristic, in that a single element contains a mixture of edge detectors and low

frequency image features. In contrast, the sparse coding models tend to separate

85

Figure 20: A subset of elements from dictionaries trained using Patch SC, Conv
SC, imprinted (extracted from input images), and random dictionaries for image
reconstruction. Supervised weights trained for image classification are also shown.

86

out high frequency edge detectors and low frequency color detectors into different

elements.

87

Appendix B

Effect of Sparsity on Classification

This section details additional classification results for Section 4. Table 6 shows

classification results on models with varying dictionary learning and encoding

methods.

Throughout the models that incorporate a sparse coding first layer as an en-

coder, I find that the classifier benefits from a lower value of λ, i.e., when the

model is less sparse (as shown in Figure 6). This effect has also been shown by

Rigamonti et al. [57]. Here, one can argue that lower sparsity values can help due

to lower reconstruction error, i.e., a more accurate representation of the input im-

age. However, I find that a Conv SC encoding model with λ = 0.1 gets the best

classification result with a dictionary trained with Conv SC with λ = 0.3, which

does not achieve the lowest reconstruction errors for that encoding model.

88

E
n
co
d
in
g
M
o
d
el

S
o
ft

T
h
re
sh
o
ld

P
a
tc
h
S
C

C
o
n
v
S
C

α
=

0
.5
α
=

1
.0
α
=

2
.0
α
=

3
.0
α
=

4
.0
λ
=

0
.5
λ
=

1
.0
λ
=

1
.5
λ
=

2
.0
λ
=

2
.5
λ
=

0
.1
λ
=

0
.2
λ
=

0
.3
λ
=

0
.4
λ
=

0
.5

DictionaryLearningModel

Im
p
ri
n
te
d

0
.5
3
8
6

0
.5
6
6
6

0
.5
6
1
8

0
.5
6
7
4

0
.5
3
8
2

0
.6
2
8
4

0
.6
0
2
4

0
.6
1
6
8

0
.6
1
8
6

0
.6
1
4
2

0
.6
8
6
4

0
.6
9
1
1

0
.6
8
1
9

0
.6
7
4
7

0
.6
6
9
7

R
a
n
d
o
m

0
.6
5
6
6

0
.6
6
1
4

0
.5
9
7
9

0
.4
9
2
9

0
.3
3
1
2

0
.5
8
5
2

0
.5
8
2
9

0
.5
7
1
8

0
.5
3
5
5

0
.4
6
6
4

0
.6
3
4
8

0
.6
3
8
3

0
.6
3
4
5

0
.6
3
0
9

0
.6
1
3
9

PatchSC

λ
=

0
.5

0
.6
1
7
7

0
.6
3
6
8

0
.6
3
9
1

0
.6
3
2
3

0
.6
2
7
5

0
.6
5
7
3

0
.6
5
3
7

0
.6
3
5
4

0
.6
2
2
9

0
.6
2
0
0

0
.7
1
8
4

0
.7
1
7
1

0
.7
1
0
6

0
.7
0
9
0

0
.7
0
3
2

λ
=

1
.0

0
.6
1
0
2

0
.5
9
8
7

0
.5
8
9
0

0
.6
2
1
0

0
.6
2
5
9

0
.6
6
3
9

0
.6
3
8
9

0
.6
3
5
6

0
.6
3
0
6

0
.6
1
6
9

0
.7
1
5
0

0
.7
1
1
9

0
.7
0
4
3

0
.7
0
2
9

0
.6
8
9
7

λ
=

1
.5

0
.5
9
8
2

0
.5
8
5
7

0
.6
1
2
8

0
.6
1
5
3

0
.6
0
7
3

0
.6
4
1
8

0
.6
4
7
1

0
.6
3
9
1

0
.6
3
5
2

0
.6
2
4
6

0
.7
1
1
2

0
.7
1
0
0

0
.7
0
7
3

0
.6
9
8
6

0
.6
9
7
7

λ
=

2
.0

0
.5
6
9
8

0
.5
9
9
5

0
.5
7
2
9

0
.5
9
8
3

0
.5
9
2
2

0
.6
4
4
3

0
.6
2
7
7

0
.6
1
8
9

0
.6
2
7
5

0
.6
1
8
8

0
.7
0
6
2

0
.7
0
3
7

0
.6
9
8
3

0
.6
9
0
6

0
.6
8
3
9

λ
=

2
.5

0
.5
6
2
4

0
.5
5
2
5

0
.5
9
7
3

0
.5
7
0
9

0
.6
0
6
3

0
.6
3
1
7

0
.6
2
8
1

0
.6
2
4
3

0
.6
3
0
0

0
.6
2
6
5

0
.6
9
8
1

0
.7
0
2
5

0
.6
9
6
8

0
.6
9
4
3

0
.6
8
5
3

ConvSC

λ
=

0
.1

0
.6
0
5
8

0
.6
1
9
6

0
.6
3
7
9

0
.6
3
3
2

0
.6
3
0
0

0
.6
3
5
9

0
.6
5
9
5

0
.6
3
6
9

0
.6
3
1
0

0
.6
2
5
6

0
.7
2
3
6

0
.7
2
4
3

0
.7
1
0
2

0
.7
0
3
2

0
.6
9
1
8

λ
=

0
.2

0
.6
3
4
5

0
.6
1
7
4

0
.6
4
4
1

0
.6
1
4
0

0
.6
3
3
1

0
.6
2
5
4

0
.6
4
5
2

0
.6
6
3
2

0
.6
4
8
9

0
.6
1
8
3

0
.7
2
8
0

0
.7
2
8
6

0
.7
1
9
0

0
.7
2
3
2

0
.7
0
4
3

λ
=

0
.3

0
.6
3
1
8

0
.6
0
9
9

0
.6
1
6
5

0
.6
1
9
0

0
.6
2
5
2

0
.6
6
2
2

0
.6
7
1
4

0
.6
4
8
7

0
.6
4
0
3

0
.6
3
5
5

0
.7
3
5
5

0
.7
3
2
1

0
.7
2
6
7

0
.7
1
6
8

0
.7
0
8
6

λ
=

0
.4

0
.6
0
2
1

0
.5
9
1
6

0
.5
9
9
0

0
.6
1
9
9

0
.6
1
4
5

0
.6
7
1
7

0
.6
5
9
4

0
.6
6
3
9

0
.6
4
7
8

0
.6
3
4
3

0
.7
2
9
1

0
.7
2
6
1

0
.7
2
4
9

0
.7
1
6
8

0
.7
0
7
2

λ
=

0
.5

0
.6
3
7
2

0
.6
1
5
5

0
.6
1
4
8

0
.6
2
6
0

0
.6
2
9
0

0
.6
6
5
6

0
.6
6
9
0

0
.6
4
9
4

0
.6
4
5
8

0
.6
5
7
6

0
.7
2
6
3

0
.7
2
9
7

0
.7
2
3
7

0
.7
1
7
9

0
.7
1
4
3

T
ab

le
6:

T
ab

le
of

ac
cu

ra
ci

es
fo

r
ea

ch
co

m
b
in

at
io

n
of

d
ic

ti
on

ar
y

le
ar

n
in

g
an

d
en

co
d
in

g
m

o
d
el

.
H

ig
h
es

t
ac

cu
ra

ci
es

in
ea

ch
d
ic

ti
on

ar
y

le
ar

n
in

g
an

d
en

co
d
in

g
b
lo

ck
is

b
ol

d
.

T
h
e

fu
ll
y

su
p

er
v
is

ed
m

o
d
el

ac
h
ie

ve
d

0.
72

98
.

89

Appendix C

Adversarial Attacks on Sparse Coding

This section shows additional tables for Section 5.3. Table 7 shows the mean

Adversarial Distance (mAD) between the original image and the adversarial image

attacking each model, for all models tested with varying dictionary learning and

encoding methods. Table 8 shows the success rate of the adversarial attack on

each model. Table 9 shows the Expected Calibration Error (ECE) values for each

model.

90

E
n
co
d
in
g
M
o
d
el

S
o
ft

T
h
re
sh

P
a
tc
h
S
C

C
o
n
v
S
C

α
=

0
.5
α
=

1
.0
α
=

2
.0
α
=

3
.0

α
=

4
.0

λ
=

0
.5
λ
=

1
.0
λ
=

1
.5
λ
=

2
.0
λ
=

2
.5
λ
=

0
.1
λ
=

0
.2
λ
=

0
.3
λ
=

0
.4
λ
=

0
.5

DictionaryLearningModel

Im
p
ri
n
te
d

7
.3
0
8
6

7
.0
3
7
5

7
.0
8
8
7

7
.0
7
0
5

7
.4
4
8
6

3
.7
3
2
3

4
.1
9
4
0

4
.3
1
0
4

4
.5
4
9
3

4
.7
4
8
8

4
.5
8
2
1

4
.9
8
8
2

5
.2
8
7
2

5
.5
5
9
4

5
.7
8
0
8

R
a
n
d
o
m

2
.9
2
2
3

2
.9
3
8
3

3
.4
7
0
7

5
.2
5
8
7

1
0
.2
1
6
3

2
.2
5
2
3

2
.4
0
9
5

2
.7
8
8
6

3
.5
3
3
8

5
.1
1
2
0
3
.6
7
3
3

3
.3
4
0
6

3
.3
0
6
8

3
.4
2
5
8

3
.6
2
0
6

PatchSC

λ
=

0
.5

5
.6
7
1
2

5
.7
6
9
6

6
.0
3
6
0

6
.3
9
7
4

6
.8
1
0
0

3
.5
6
9
1

4
.1
0
1
0

4
.5
6
8
5

4
.8
4
8
0

5
.0
8
4
5

4
.4
6
0
2

4
.9
0
6
6

5
.2
8
6
6

5
.6
0
7
9

5
.9
1
7
0

λ
=

1
.0

6
.1
5
4
7

6
.2
8
2
8

6
.5
4
8
8

6
.6
2
4
4

6
.8
8
4
1

3
.8
5
2
3

4
.3
1
0
8

4
.7
2
6
9

5
.0
3
4
6

5
.3
1
4
9

4
.6
6
7
9

5
.0
7
1
9

5
.4
5
9
2

5
.7
8
4
7

6
.0
6
2
7

λ
=

1
.5

6
.3
7
1
8

6
.6
0
0
3

6
.6
1
4
9

6
.8
6
4
6

7
.1
0
5
6

4
.0
1
5
4

4
.4
9
6
0

4
.8
0
2
4

5
.0
8
9
2

5
.3
8
4
3

4
.8
0
2
7

5
.2
5
5
0

5
.6
2
5
7

5
.8
9
6
7

6
.1
7
3
6

λ
=

2
.0

6
.9
8
6
8

6
.7
9
2
4

7
.0
2
5
5

7
.0
0
3
2

7
.2
3
0
5

4
.1
8
1
7

4
.6
2
0
9

4
.8
9
8
1

5
.2
5
2
1

5
.4
1
1
9

4
.9
5
0
2

5
.3
9
9
1

5
.7
2
1
2

6
.0
1
0
3

6
.2
7
1
3

λ
=

2
.5

7
.1
0
4
3

7
.3
3
1
6

7
.0
8
3
1

7
.2
5
7
6

7
.2
8
7
0

4
.3
2
1
4

4
.7
2
6
2

5
.0
0
7
7

5
.3
2
5
2

5
.5
3
2
5

5
.0
5
4
8

5
.5
0
4
7

5
.8
4
5
2

6
.1
3
9
6

6
.3
6
1
4

ConvolutionalSC

λ
=

0
.1

5
.1
7
0
1

5
.1
5
7
0

5
.4
1
1
9

5
.9
7
0
6

6
.4
3
4
8

3
.2
9
0
3

3
.9
4
3
1

4
.4
6
9
8

4
.9
5
7
7

5
.2
8
9
4

3
.9
5
2
3

4
.5
3
4
4

5
.0
6
6
6

5
.5
0
7
2

5
.8
6
3
0

λ
=

0
.2

5
.4
8
2
2

5
.4
9
1
2

5
.5
5
6
5

5
.9
9
6
2

6
.3
5
3
6

3
.3
4
1
9

3
.9
0
2
4

4
.3
5
0
9

4
.8
2
9
1

5
.2
2
1
8

4
.1
2
6
3

4
.5
5
8
6

5
.0
0
0
3

5
.3
9
9
1

5
.7
6
1
7

λ
=

0
.3

5
.7
9
6
6

5
.8
2
8
1

5
.8
6
8
3

6
.0
1
6
8

6
.3
7
6
4

3
.3
2
0
6

3
.8
2
1
2

4
.2
5
1
6

4
.7
1
9
6

5
.0
1
5
1

4
.2
9
7
8

4
.6
5
1
6

5
.0
1
0
1

5
.3
7
1
3

5
.7
2
2
2

λ
=

0
.4

5
.9
4
1
0

6
.1
4
0
2

6
.0
7
5
0

6
.1
3
7
4

6
.4
3
5
0

3
.3
8
9
6

3
.8
1
1
8

4
.1
9
7
1

4
.5
6
6
5

4
.9
2
2
0

4
.4
3
5
4

4
.7
4
8
5

5
.0
6
2
6

5
.3
8
4
1

5
.6
9
4
1

λ
=

0
.5

5
.8
9
0
6

6
.1
3
8
2

6
.1
5
5
8

6
.3
2
7
6

6
.4
8
9
8

3
.4
1
8
9

3
.8
2
9
1

4
.2
3
2
2

4
.5
3
6
8

4
.8
1
5
1

4
.5
7
0
6

4
.8
6
8
5

5
.1
3
9
2

5
.4
2
8
7

5
.7
0
7
0

T
ab

le
7:

m
A

D
b

et
w

ee
n

th
e

cl
ea

n
an

d
ad

ve
rs

ar
ia

l
im

ag
e

fo
r

al
l

m
o
d
el

s
te

st
ed

.
T

h
e

m
os

t
ro

b
u
st

m
o
d
el

(i
.e

.,
h
ig

h
es

t
m

A
D

)
w

it
h
in

ea
ch

b
lo

ck
is

in
b

ol
d
.

91

E
n
co
d
in
g
M
o
d
el

S
o
ft

T
h
re
sh

P
a
tc
h
S
C

C
o
n
v
o
lu
ti
o
n
a
l
S
C

α
=

0
.5
α
=

1
.0
α
=

2
.0
α
=

3
.0
α
=

4
.0
λ
=

0
.5
λ
=

1
.0
λ
=

1
.5
λ
=

2
.0
λ
=

2
.5
λ
=

0
.1
λ
=

0
.2
λ
=

0
.3
λ
=

0
.4
λ
=

0
.5

DictionaryLearningModel

Im
p
ri
n
te
d

0
.9
8
4
6

0
.9
8
9
1

0
.9
8
7
6

0
.9
9
2
3

0
.9
9
0
9

0
.9
8
4
8

0
.9
8
1
6

0
.9
8
4
5

0
.9
8
4
5

0
.9
8
5
5

0
.9
9
7
5

0
.9
9
9
1

0
.9
9
8
8

0
.9
9
8
5

0
.9
9
8
7

R
a
n
d
o
m

0
.9
9
7
3

0
.9
9
8
0

0
.9
9
8
0

0
.9
9
6
5

0
.8
5
1
3

0
.9
8
2
8

0
.9
8
9
1

0
.9
9
4
1

0
.9
9
6
6

0
.9
9
5
9

0
.9
9
8
7

0
.9
9
8
4

0
.9
9
8
6

0
.9
9
8
5

0
.9
9
8
7

PatchSC

λ
=

0
.5

0
.9
9
0
3

0
.9
9
1
0

0
.9
9
3
5

0
.9
9
4
4

0
.9
9
4
2

0
.9
8
4
0

0
.9
8
4
1

0
.9
8
1
5

0
.9
8
2
5

0
.9
8
4
9

0
.9
9
8
8

0
.9
9
8
3

0
.9
9
8
2

0
.9
9
8
5

0
.9
9
8
5

λ
=

1
.0

0
.9
8
8
5

0
.9
8
7
9

0
.9
9
0
3

0
.9
9
1
4

0
.9
9
3
0

0
.9
8
4
9

0
.9
8
3
5

0
.9
8
2
2

0
.9
8
3
1

0
.9
8
3
5

0
.9
9
8
8

0
.9
9
9
0

0
.9
9
8
1

0
.9
9
7
7

0
.9
9
7
8

λ
=

1
.5

0
.9
8
8
3

0
.9
8
7
7

0
.9
9
1
3

0
.9
9
1
3

0
.9
9
3
1

0
.9
8
4
0

0
.9
8
4
0

0
.9
8
2
4

0
.9
8
1
6

0
.9
8
5
4

0
.9
9
8
9

0
.9
9
8
6

0
.9
9
8
4

0
.9
9
8
2

0
.9
9
8
4

λ
=

2
.0

0
.9
8
5
6

0
.9
8
8
9

0
.9
8
9
2

0
.9
9
1
9

0
.9
9
0
9

0
.9
8
5
1

0
.9
8
0
7

0
.9
8
2
8

0
.9
8
1
1

0
.9
8
3
5

0
.9
9
8
8

0
.9
9
9
0

0
.9
9
8
7

0
.9
9
8
8

0
.9
9
8
1

λ
=

2
.5

0
.9
8
6
7

0
.9
8
4
9

0
.9
8
9
7

0
.9
8
8
9

0
.9
9
3
3

0
.9
8
2
5

0
.9
8
2
1

0
.9
8
1
5

0
.9
8
1
0

0
.9
8
2
9

0
.9
9
8
9

0
.9
9
8
6

0
.9
9
8
6

0
.9
9
8
3

0
.9
9
8
2

ConvolutionalSC

λ
=

0
.1

0
.9
8
9
8

0
.9
9
2
3

0
.9
9
3
1

0
.9
9
4
0

0
.9
9
6
5

0
.9
8
5
2

0
.9
8
9
2

0
.9
8
9
2

0
.9
8
9
2

0
.9
9
0
4

0
.9
9
9
1

0
.9
9
8
6

0
.9
9
8
2

0
.9
9
8
7

0
.9
9
8
2

λ
=

0
.2

0
.9
9
0
4

0
.9
9
0
5

0
.9
9
2
5

0
.9
9
3
3

0
.9
9
4
4

0
.9
8
1
3

0
.9
8
4
5

0
.9
8
7
0

0
.9
8
7
9

0
.9
8
8
5

0
.9
9
8
7

0
.9
9
8
9

0
.9
9
8
3

0
.9
9
8
1

0
.9
9
8
4

λ
=

0
.3

0
.9
8
9
5

0
.9
9
0
9

0
.9
9
2
4

0
.9
9
3
4

0
.9
9
4
8

0
.9
8
6
5

0
.9
8
7
2

0
.9
8
4
7

0
.9
8
6
9

0
.9
8
7
0

0
.9
9
9
0

0
.9
9
8
8

0
.9
9
8
6

0
.9
9
8
6

0
.9
9
8
9

λ
=

0
.4

0
.9
8
8
6

0
.9
8
9
2

0
.9
9
0
5

0
.9
9
2
0

0
.9
9
3
6

0
.9
8
5
2

0
.9
8
5
4

0
.9
8
6
9

0
.9
8
5
1

0
.9
8
6
9

0
.9
9
9
1

0
.9
9
9
0

0
.9
9
8
4

0
.9
9
8
7

0
.9
9
8
4

λ
=

0
.5

0
.9
9
1
7

0
.9
9
0
3

0
.9
9
2
4

0
.9
9
4
2

0
.9
9
4
6

0
.9
8
5
4

0
.9
8
6
7

0
.9
8
3
3

0
.9
8
4
8

0
.9
8
4
2

0
.9
9
9
1

0
.9
9
8
8

0
.9
9
8
5

0
.9
9
8
2

0
.9
9
7
2

T
ab

le
8:

S
u
cc

es
s

ra
te

of
th

e
u
n
b

ou
n
d
ed

ta
rg

et
ed

ad
ve

rs
ar

ia
l

at
ta

ck
.

92

E
n
co
d
in
g
M
o
d
el

S
o
ft

T
h
re
sh

P
a
tc
h
S
C

C
o
n
v
S
C

α
=

0
.5
α
=

1
.0
α
=

2
.0
α
=

3
.0
α
=

4
.0
λ
=

0
.5
λ
=

1
.0
λ
=

1
.5
λ
=

2
.0
λ
=

2
.5
λ
=

0
.1
λ
=

0
.2
λ
=

0
.3
λ
=

0
.4
λ
=

0
.5

DictionaryLearningModel

Im
p
ri
n
te
d

4
.7
5
4
7

4
.3
2
0
8

5
.2
1
3
1

6
.4
5
6
1

7
.1
8
9
3

1
.8
6
0
0

2
.2
7
9
5

2
.9
6
4
6

3
.0
2
3
7

2
.6
0
0
0

1
6
.0
2
5
3
1
4
.8
1
0
0
1
5
.4
6
8
7
1
4
.4
3
1
7
1
4
.3
1
2
6

R
a
n
d
o
m

1
2
.6
6
6
7
1
3
.1
0
8
1
1
9
.2
2
7
1
3
0
.5
1
2
2
4
6
.2
9
3
3

3
.3
3
3
3

5
.8
8
4
9

1
1
.2
6
2
8
2
0
.7
8
5
6
3
0
.5
7
6
1
1
4
.3
0
3
5
1
4
.4
8
9
4
1
4
.6
3
6
7
1
5
.8
4
3
8
1
8
.5
1
6
3

PatchSC

λ
=

0
.5

4
.5
2
2
0

3
.4
4
8
5

5
.4
1
2
5

6
.3
2
3
1

7
.3
7
6
5

1
.7
7
9
2

1
.7
8
2
3

1
.7
3
3
6

1
.7
9
7
2

2
.9
6
5
3

1
5
.2
6
1
0
1
4
.1
0
3
7
1
2
.9
1
6
4
1
3
.1
6
7
5
1
4
.0
8
8
1

λ
=

1
.0

3
.7
3
4
5

3
.5
8
2
2

4
.7
1
6
8

6
.2
6
7
4

6
.7
6
1
8

1
.4
7
2
1

1
.3
9
1
1

2
.1
6
5
5

2
.6
9
3
9

2
.7
6
7
8

1
4
.4
9
5
1
1
3
.5
3
0
6
1
3
.0
9
0
1
1
3
.0
4
4
7
1
2
.2
0
2
7

λ
=

1
.5

3
.9
0
9
0

3
.6
3
5
4

5
.4
9
6
0

5
.5
5
5
8

6
.4
0
2
9

1
.5
7
5
8

1
.7
0
6
5

1
.4
8
6
6

1
.8
8
3
0

2
.1
1
3
5

1
5
.9
2
9
3
1
2
.8
4
6
9
1
2
.3
4
8
9
1
3
.3
0
1
2
1
3
.0
9
8
1

λ
=

2
.0

3
.4
8
5
1

5
.1
6
1
8

4
.2
9
9
1

5
.1
0
6
7

5
.8
4
1
7

2
.0
6
1
3

1
.7
7
2
2

1
.5
8
7
8

1
.3
9
6
9

2
.1
2
5
5

1
5
.3
3
0
4
1
3
.2
4
8
0
1
2
.8
0
5
6
1
2
.5
2
7
7
1
3
.3
8
9
3

λ
=

2
.5

3
.5
9
1
8

4
.2
2
6
8

5
.1
5
4
8

5
.7
9
6
2

6
.5
1
5
6

2
.2
7
5
3

2
.0
2
5
7

1
.9
3
6
5

1
.6
0
4
9

2
.1
0
8
4

1
5
.5
1
4
8
1
4
.4
9
0
2
1
4
.1
1
6
2
1
3
.7
8
2
1
1
3
.7
1
4
8

ConvolutionalSC

λ
=

0
.1

4
.0
6
2
1

6
.1
2
7
5

5
.8
2
2
8

7
.1
7
8
9

9
.6
6
7
1

2
.1
6
8
8

3
.0
4
8
8

3
.4
8
0
8

3
.6
3
4
2

4
.8
9
1
9

1
3
.7
1
9
0
1
2
.9
9
2
3
1
2
.9
8
3
3
1
3
.1
6
8
3
1
3
.7
7
2
1

λ
=

0
.2

4
.0
2
2
9

4
.8
6
7
2

5
.8
2
5
1

5
.5
8
8
9

9
.0
7
1
8

1
.5
3
7
6

1
.9
2
6
6

3
.0
6
1
0

3
.3
4
6
8

4
.2
7
7
4

1
2
.6
5
3
2
1
2
.3
5
8
1
1
2
.4
0
4
5
1
2
.4
8
3
5
1
2
.7
0
9
7

λ
=

0
.3

4
.2
7
1
1

4
.3
4
4
2

4
.8
2
8
7

5
.4
6
7
8

7
.4
9
0
4

1
.8
3
2
1

2
.0
7
4
1

2
.4
5
5
4

2
.3
9
6
8

3
.2
2
2
2

1
3
.7
1
7
7
1
2
.7
1
4
3
1
1
.3
4
1
1
1
1
.2
9
0
7
1
1
.4
0
0
1

λ
=

0
.4

4
.5
6
7
4

4
.6
0
0
6

4
.4
7
4
6

6
.1
7
9
0

6
.6
3
7
6

1
.8
2
6
2

2
.2
3
6
3

2
.6
1
5
6

2
.2
6
0
0

2
.9
8
8
0

1
3
.8
6
6
2
1
2
.4
6
9
1
1
2
.1
1
4
8
1
3
.0
9
7
5
1
2
.2
6
8
1

λ
=

0
.5

3
.8
5
8
3

4
.0
5
3
6

5
.5
7
0
1

5
.8
4
0
1

7
.0
4
4
5

1
.5
0
9
3

1
.8
9
9
9

2
.0
2
4
9

2
.4
4
5
1

2
.1
3
1
9

1
3
.9
2
1
2
1
1
.6
4
0
5
1
2
.4
2
3
2
1
2
.2
1
3
6
1
2
.1
1
6
5

T
ab

le
9:

E
x
p

ec
te

d
C

al
ib

ra
ti

on
E

rr
or

(E
C

E
)

of
te

st
ed

m
o
d
el

s.

93

Appendix D

Classification on Corrupted Images

This section shows additional figures for Section 5.4. Figure 21 show examples

of each corruption type at each level of severity. Figure 22 shows the accuracy

of fully supervised versus convolutional sparse coding for each corruption type at

each severity level.

94

(a) Corruption severity 1

Figure 21: Examples of corrupted images from CIFAR-10-C [25].

95

(b) Corruption severity 2

Figure 21: Examples of corrupted images from CIFAR-10-C [25]. (cont.)

96

(c) Corruption severity 3

Figure 21: Examples of corrupted images from CIFAR-10-C [25]. (cont.)

97

(d) Corruption severity 4

Figure 21: Examples of corrupted images from CIFAR-10-C [25]. (cont.)

98

(e) Corruption severity 5

Figure 21: Examples of corrupted images from CIFAR-10-C [25]. (cont.)

99

(a) Gaussian noise

(b) Impulse noise

Figure 22: Accuracy versus corruption severity on various types of corruptions.

100

(c) Shot noise

(d) Spatter

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

101

(e) Speckle noise

(f) Defocus blur

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

102

(g) Gaussian blur

(h) Glass blur

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

103

(i) Motion blur

(j) Zoom blur

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

104

(k) Brightness

(l) Fog

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

105

(m) Frost

(n) Snow

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

106

(o) Contrast

(p) Elastic transform

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

107

(q) JPEG compression

(r) Pixelate

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

108

(s) Saturate

Figure 22: Accuracy versus corruption severity on various types of corruptions.
(cont.)

109

	Exploring the Potential of Sparse Coding for Machine Learning
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Background for Deep Neural Networks
	Supervised vs. Unsupervised Learning
	Deep Convolutional Neural Networks
	Fully Connected Layer
	Convolutional Layer
	Pooling Layer

	Gradient Descent
	Cross-Entropy Supervised Loss Function

	Background for Sparse Coding
	Encoding
	Dictionary Learning
	Convolutional Sparse Coding
	Implementation

	Exploring Convolutional Sparse Coding for Supervised Image Classification
	Related Work
	Experiments
	Dataset
	Dictionary Learning Methods
	Encoding Methods
	Classifier
	Fully Supervised Model

	Results
	Summary

	Sparse Coding for Model Robustness
	Background on Adversarial Examples
	Related Work
	Robustness of Sparse Coding on Adversarial Examples
	Effect of Sparsity on Adversarial Robustness
	Calibration of Classification Models

	Robustness of Sparse Coding on Corrupted Images
	Summary

	Sparse Coding with Limited Labels
	Related Work
	Sparse Coding of Stereo-Video for Vehicle Detection
	Experiments
	Results

	Final Conclusions
	References
	Sparse Coding Results
	Effect of Sparsity on Classification
	Adversarial Attacks on Sparse Coding
	Classification on Corrupted Images

