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Abstract 

This thesis presents a compilation of papers exploring passenger car and bicycle 

speeds through their interactions with each other and with urban roadway factors. 

First, following a concern raised in part of the traffic literature that a large mode 

shift toward bicycling may cause travel time delays and potentially exacerbate congestion 

instead of alleviate it unless bicycle lanes are installed, an empirical study detailing how 

the presence of bicycles on urban roads without bicycle lanes may affect passenger car 

speeds is presented. Pneumatic tube data from six predominantly low speed, low volume 

roads in Portland, Oregon were utilized to identify observations of passenger cars (class 

two vehicles) belonging to one of two vehicle following scenarios. In scenario (i), a 

passenger car was directly preceded by a bicycle (class one vehicle), and in scenario (ii), 

a passenger car was directly preceded by another passenger car. Speed distributions were 

examined, and the mean, the 50th, and the 85th percentile speeds of scenario (i) and 

scenario (ii) vehicles for both peak-hour and 24-hour traffic were compared using t-tests 

and confidence intervals. A few statistically significant differences between scenario (i) 

and scenario (ii) were found, but the actual differences in speed were generally on the 

order of one mile per hour or less. Thus, from a practical perspective, the presence of 

bicycles on these roads without bicycle lanes was deemed to have negligible effects on 

passenger car speeds. 

Following the results of the initial study, a second study was conducted to address 

limitations in the initial study regarding the homogeneity of site characteristics. This 

second study also expanded the research to explore how oncoming (opposing direction) 
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traffic and the availability of overtaking opportunities might affect passenger car speeds 

when a bicycle was present on an urban road without bicycle lanes. A large number of 

datasets (n = 75) from locations in Portland with a variety of geometric, roadway, and 

traffic characteristics were chosen for examination. As with the initial study, vehicle 

observations belonging to the previously defined scenarios (i) or (ii) were selected for 

analysis. Comparisons of the mean and 85th percentile speeds of scenarios (i) and (ii) 

were performed using t-tests. Relationships between scenario (i) speeds and gap times in 

oncoming traffic were also investigated. The results of this expanded study support the 

findings of the initial research in that bicycles did not reduce passenger car speeds by 

more than one mile per hour at most sites (92%), suggesting bicycles are not likely to 

cause practical speed reductions on lower speed and volume roads without bicycle lanes. 

The propensity for significant speed reductions was lower when adequate gaps in 

oncoming traffic existed for overtaking, and at sites with a lower functional class or 

where sharrows were present. 

After exploring how bicycles might affect passenger car speeds, the focus of the 

third paper was shifted to the site-level determinants of bicycle speed. Bicycle speed is 

typically assumed to be a constant value for planning and design purposes. However, the 

probability of the success of projects aimed at improving bicycle infrastructure and 

routing may be enhanced if more accurate estimates of bicycle speed can be applied. 

Prior studies have attempted to model bicycle speed from a mix of site factors and factors 

related to the individual cyclist, requiring more complex data collection methods, and 

generally resulted in low R2 values. In this paper, widely utilized pneumatic tubes were 
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once again leveraged to collect traffic data for bicycles and passenger vehicles. This 

traffic data was combined with additional site-level geometric and roadway data to 

predict mean bicycle speed using generalized linear regression. The adjusted R2 of the 

final model was 0.63, suggesting a reasonable fit. The regression analysis revealed that 

grade, negatively associated with the mean bicycle speed, is the most important 

determinant, accounting for 79% of the final model’s explanatory power. The average 

passenger car speed, the segment length, the percentage of bicycle traffic, and the 

presence of a shared bikeway facility had statistically significant (p < 0.05) positive 

effects on the mean bicycle speed. On shared roads, the interaction of the bicycle facility 

type and the percentage of bicycles was found to have a moderating effect on the mean 

bicycle speed. 
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1 Introduction 

Historically, the body of bicycle traffic literature has been largely overshadowed 

by the body of motorized traffic literature, owing to the longstanding dominance of the 

passenger car for personal transportation. In recent years, a push for reducing personal 

automobile usage in favor of alternative travel modes such as cycling has brought 

heightened attention to the gaps in the bicycle research. A thorough understanding of 

motorized and non-motorized vehicle behaviors and their interactions is necessary for the 

design of safer, more efficient, and more attractive transportation networks that 

incorporate a larger share of non-motorized users such as cyclists.  

Mitigating congestion and environmental concerns are commonly cited by cities 

as motivation for setting aggressive goals to increase the bicycle mode share. However, 

the consequences of these large mode shifts are not yet well understood, which serves as 

one example of the need for more bicycle research. A concern raised by some motorists, 

discussed in part of the traffic literature, is that an influx of bicycles in urban areas will 

create its own congestion issues unless bicycles are separated from motorized vehicle 

modes through the use of bicycle-specific lanes or other segregated facilities. Although 

such a separation of modes is generally preferred from both a safety and a comfort 

perspective, limited right-of-way and transportation budgets hinder the creation of 

segregated facilities on every route. Apart from physical or monetary constraints, 

bikeway guidance from world leaders in bikeway design, the Danish, advise that 

separation of motorized vehicle and bicycle modes is often unnecessary on low speed, 

low volume roads. In fact, many cities, including Portland, Oregon, have utilized streets 
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like these to expand and enhance the existing bicycle network. By exploring the 

relationships between motorized vehicle speed, bicycle presence and speed, and other 

traffic and site-level factors on shared roads or roads without bicycle lanes, cities can 

more accurately anticipate and plan for future needs. 

A thorough understanding of the factors affecting the speed behaviors of cyclists 

is a requisite component in achieving the ambitious mode share goals and highlights a 

further example, deeply integrated with the former, of the need for more bicycle research. 

In planning, design, and traffic simulation activities, bicycle speed is typically assumed to 

be a constant value. However, the ability to predict bicycle speed at a given site based on 

its geometric, traffic, and roadway attributes has implications for improving mode and 

route choice modeling, traffic signal progression and phase timing, and travel time 

estimations. In turn, creating routes and facilities that better serve cyclists may provide an 

incentive to bicycle for new cyclists or to increase the ridership of existing cyclists 

without impinging on the mobility of motorized vehicles. 

This thesis is comprised of five chapters. The first chapter describes the 

background and motivation behind this thesis. The second chapter presents a detailed 

comparative analysis of passenger car speeds on six, low speed, low volume urban roads 

without bicycle lanes when following a bicycle versus when following another passenger 

car. The third chapter presents a study which expands upon that of chapter two by 

incorporating 75 directional traffic speed datasets from urban roads without bicycle lanes, 

emphasizing a wider variety of geometric, traffic, and roadway characteristics. The 

expanded study of chapter three also discusses the implication on passenger car speed of 
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oncoming (opposing direction) traffic and opportunities for overtaking a bicycle. The 

fourth chapter explores the geometric, traffic, and roadway features that influence bicycle 

speed through correlation and regression analyses. The fifth chapter summarizes the 

studies of chapters two through four and provides concluding remarks. 
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2 Evidence from Urban Roads without Bicycle Lanes on the Impact of Bicycle 

Traffic on Passenger Car Travel Speeds 

Jaclyn S. Schaefer, Miguel A. Figliozzi, and Avinash Unnikrishnan 

This is a published paper and can be found using the following citation: 

Schaefer JS, Figliozzi MA, Unnikrishnan A. Evidence from Urban Roads 

without Bicycle Lanes on the Impact of Bicycle Traffic on Passenger Car Travel 

Speeds. Transportation Research Record. 2020 Jun 12. 



Abstract 

A concern raised by some motorists in relation to the presence of bicycles on 

urban roads without bicycle lanes, discussed in part of the traffic literature, is that cyclists 

will slow down motorized vehicles and therefore create congestion. This research 

answers this question: do bicycles reduce passenger car travel speeds on urban roads 

without bicycle lanes? To answer this question, a detailed comparative analysis of the 

travel speeds of passenger car (class two vehicles) on lower volume urban roads without 

bicycle lanes is presented. Speed distributions, the mean, and the 50th and 85th percentile 

speeds for two scenarios were examined: (i) a passenger car that was preceded by a 

bicycle and (ii) a passenger car that was preceded by another passenger car. Peak hour 

traffic and 24-h traffic speeds were analyzed using t-tests and confidence intervals. 

Although a few statistically significant differences between scenarios (i) and (ii) were 

found, the actual speed differences were generally on the order of one mile per hour or 

less. Therefore, differences in class two (motorized passenger) vehicle speeds with and 

without cyclists were found to be negligible from a practical perspective. 

5 
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2.1 Introduction 

Bicycling is a vastly underutilized mode throughout most of the U.S.A., 

comprising just half of one percent of commuters throughout the nation [1]. Given its 

potential for greater flexibility in route choice and lower costs for infrastructure and 

operation compared with transit, there is a substantial opportunity for cities to expand 

bicycling as a primary transportation mode. Congestion mitigation and environmental 

concerns from rising urban populations have been significant factors cited by 

communities as they push for greener transportation policies and travel modes. 

According to the Portland Bureau of Transportation, in 2017, 6.3% of commuters 

traveled by bicycle [2]. The Portland Bike Plan has established a goal to increase that 

mode share to 25% by the year 2030 [3]. With this mode shift toward bicycling, it is 

necessary to study the impacts these changes may have on the existing transportation 

network and motorized vehicles. In support of the Portland Bike Plan’s goal to reach a 

25% bicycle mode share, the city authorities expect to add nearly 100 mi (161 km) of 

bikeways to the existing 385 mi (620 km), approximately 36% of which are currently 

shared-use roadways [2]. 

Although it is generally favored to segregate bicyclists and motor vehicles, it is 

infeasible and often unnecessary to create such infrastructure on every road. For example, 

Danish bicycle design guidelines suggest that mixed traffic conditions are acceptable for 

roadways with speed limits less than approximately 35 km/h (22 mph) and average daily 

traffic (ADT) less than approximately 2,500 vehicles [4]. 
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Shared-use roads can be an economical solution to a growing demand for bicycle 

facilities. However, this sharing of space presents its own challenges in the contexts of 

safety and mobility. Several research studies have been conducted on vehicle–bicycle 

interactions, many of them focused on lateral positioning and passing behavior. Of 

particular interest, however, is the effect of bicycle traffic on motorized traffic speed, 

capacity, and flow. 

A general concern of motorists in relation to the presence of bicycles on roads 

without bicycle lanes is that they will impede motor vehicles because of their differing 

performance characteristics, which may serve to increase congestion and vehicle 

emissions—two consequences of urbanization that a larger bicycle mode share seeks to 

mitigate. Recent discussions based on a simulated traffic study have warned that traffic 

congestion and travel time delay will worsen as the bicycle mode share increases unless 

bicycle lanes are installed [5-6]. To the authors’ knowledge, there have not been any 

studies to date using empirical data of passenger cars on shared roads or roads without 

bicycle lanes that explore the validity of this claim. This paper seeks to expand the 

knowledge on vehicle–bicycle interactions by studying the impact of bicycles on the 

travel speed of passenger cars on roadways without bicycle lanes. 

2.2 Literature Review 

Shared roads or roads without explicit bicycle lanes can constitute a considerable 

portion of an urban bicycle network. Danish bikeway design guidelines suggest that 

mixed traffic conditions are acceptable for roadways with low speed limits (less than 
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35 km/h [22 mph]) and low traffic volumes (less than 2,500 ADT) [4]. The FHWA lays 

out similar guidelines, advising shared roadways are suitable in urban areas on streets 

with speeds of 25 mph (40 km/h) or less and a maximum of 3,000 ADT [7-8]. The 

National Association of City Transportation Officials also recommends a target speed of 

20–25 mph (32–40 km/h) and traffic volumes below 1,500 vehicles per day for shared 

streets to be appropriate for all ages and abilities [9]. 

In light of the growing trend of bicycling as a transportation mode, there is a 

considerable need for additional research into how bicycles affect traffic operations, 

particularly in these mixed traffic contexts. Relatively few studies have attempted to 

model vehicle–bicycle interactions as they relate to travel speed or delay. 

Bicycles may interact with motor vehicles in several ways, including their 

position relative to each other and their lateral movements. Conflicts can arise when 

bicycles and motor vehicles attempt to occupy the same space because of lane changes 

and merging, turning movements, or shared roadways. The differential in performance 

characteristics between bicycles and motor vehicles, particularly on roadways with 

significant positive grades, contributes to the potential for these conflicts as motor 

vehicles frequently operate at higher speeds and desire to overtake slower moving 

bicycles. 

Jia et al. [10] described two types of influence bicycles may impose on motor 

vehicles, namely friction interference and block interference. Even when a bicyclist is 

riding within a dedicated bicycle lane, a motor vehicle may slow down when passing on 

account of safety. This is referred to as friction interference. Block interference occurs 
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when a bicyclist occupies a portion of the motor lane, causing a trailing motor vehicle to 

reduce its speed. On shared roadways, it has been demonstrated that shared lane markings 

encourage bicyclists to ride farther from the curb in a more central position within the 

lane [11–13] which may increase instances of block interference on shared roads. 

In the absence of empirical data, simulations have been used to study vehicle–

bicycle interactions. Oketch [14] designed a model using a deterministic car-following 

rule to simulate heterogeneous traffic behavior in which multiple types of non-motorized 

vehicles were present along with conventional motor vehicles. Speed–flow relationships 

were developed, and trends in capacity and saturation flows were analyzed for a two-lane 

road with 3 m (10 ft) lane widths. The average desired speed was set to 80 km/h (50 mph) 

with a flow of 1,000 vehicles per hour to model a typical urban arterial road. Results of a 

simulation comprised of 25% bicycles and 75% private cars showed a 36% decrease in 

capacity versus a homogenous traffic stream of private cars. This decrease in capacity 

was attributed to a reduction in the mean free flow speed. However, it is important to note 

that the desired motor vehicle speed and traffic flow values utilized in these simulations 

far exceed the bicycle design recommendations for mixed traffic roadways. 

Bicycle lane provisions and bicycle volume have been found to affect the average 

velocities of cars in China. Researchers in Beijing collected and analyzed field data for 

three sections of road with designated bicycle lanes of varying width and 3.7 m (12 ft) 

motor vehicle lanes using photography to quantify the impact bicycles exert on vehicles 

in mixed urban traffic. The researchers observed that, as the number of bicycles increased 

or the width of the bicycle lane decreased, motor vehicles were increasingly affected by 
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block interference as opposed to friction interference because of the overflow of bicycles 

into the motor vehicle lane, which offered insufficient space to pass. The average 

velocities of cars on the three road sections when no interference occurred ranged from 

35.15 km/h to 41.56 km/h (21.84–25.82 mph). Compared with conditions where no 

interference occurred, a 17–21% decrease in average velocity was observed when friction 

interference was present. Under block interference conditions, a 29–37% decrease in 

average velocity was observed as compared with no interference [10]. 

Bicycle lane width, motor vehicle lane width, and traffic volume—both motor 

vehicle and bicycle—influence lateral movements and passing behavior, which may, in 

turn, affect speed and travel time. Using a simulation of a two-lane urban roadway and 

based on a motor vehicle speed of 37.4 mph (60 km/h), Gosse and Clarens [6] found that 

a 10% bicycle mode share incurred travel time delay costs when shared travel lanes were 

not sufficiently wide to allow heavy vehicles to pass safely. This effect was magnified on 

sections with a positive 4% grade. In their simulations, the researchers concluded that a 

curb-to-curb road width of 8.6 m (28.2 ft) or greater provided adequate space for larger 

vehicles to pass and resulted in reduced travel time delay costs with a 10% bicycle mode 

share. 

Unlike previous (cited) studies that utilized simulations to analyze motorized 

traffic delays because of the presence of cyclists, this research utilizes empirical traffic 

speed and vehicle classification data that was collected at six different locations with 

different roadway geometric design and topography in Portland, Oregon.  
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2.3 Data Collection 

The City of Portland, Oregon is well known throughout the U.S.A. for its 

bicycling culture. There are currently 385 mi (620 km) of bikeways in Portland with an 

additional 95 mi (153 km) being installed in the next 5 years. Over 100 mi (161 km) of 

the existing bikeways are shared roadways [2]. To investigate the effect bicycles may 

have on passenger car travel speeds on shared-use roadways or roads without bicycle 

lanes, traffic speed survey data was sourced from the Portland Bureau of Transportation 

(PBOT). PBOT uses pneumatic tubes configured to record vehicle speed and classify the 

vehicle according to the number of axles and the axle spacing detected. PBOT uses a 

modified FHWA Scheme F [15] to classify vehicles, with bicycles included as class one 

and passenger cars as class two. Pneumatic tubes are commonly used for short-term 

traffic counts. Although pneumatic tubes have a general tendency to undercount bicycles, 

Nordback et al. [16] found that the JAMAR tubes performed better than two other brands 

of classification counters tested and that manually computed bicycle speeds were in 

agreement with those reported by the JAMAR model. PBOT has been using JAMAR 

brand tube counters for many years and the crews are experienced in relation to 

appropriate placement of the tubes to gather counts and speeds for both motorized 

vehicles and bicycles. 

The data, collected at six different sites, was sourced from available PBOT speed 

data collection efforts, and selected based on the availability of data within the context of 

roadways without bicycle lanes. Bidirectional data was available for five of the six sites, 
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producing a total of eleven datasets. The posted speed limit at the time of collection for 

all sites was 25 mph (40 km/h). Grades ranged from flat to greater than 4%, all positive in 

the eastbound direction. Table 2.1 describes the basic geometric and traffic characteristics 

of each site including the percentage of class one vehicles and estimated ADT.  

Table 2.1 Characteristics of the Data Collection Sites 

Location 
Road 
Markings 

Grade 
% 

Road Width 
(ft.) 

ADT % Class 1 
EB WB EB WB 

SE Harrison 
W of 23rd 

Sharrow 4.1 35.5 663 1084 67 46 

SE Harrison 
W of 26th 

Sharrow* 4.0 35.5 553 923 22 34 

SE Harrison E 
of 27th 

Sharrow 4.3 35.5 1249 1462 17 24 

SE Harrison 
W of 30th 

Sharrow* 1.6 35.5 1594 1450 31 34 

SE Lincoln E 
of 48th 

Sharrow 1.4 34 642 719 6 13 

SE Hawthorne 
E of 44th 

Center left-
hand turn lane 

0 51 with 12 ft. 
center lane 

na 6568 na 2 

Note: EB = eastbound, WB = westbound, na = not applicable. 
*Double yellow lines at these sites are only placed within 40 ft. of a traffic control
device.

SE Harrison St and SE Lincoln St are classified by the City as local streets. 

Additionally, they are designated as neighborhood greenways – streets with low speed 

limits and low volumes where bicyclists are encouraged to travel. The speed limit and 

traffic volume on these streets can be considered within the design recommendations for 

mixed traffic roadways. These streets are two-way, two lanes, and parallel parking is 

permitted on both sides of the street, although it is minimally utilized along Harrison and 

moderately utilized along Lincoln. Formerly a double yellow center lane was present 

along SE Harrison St. However, it has been allowed to fade to a nearly imperceptible 
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state except within roughly 40 feet (12 m) of a traffic control device. Lane markings 

along SE Lincoln St are only present near traffic control devices. Sharrows (shared lane 

markings) are present along both SE Harrison St and SE Lincoln St. Bicycle lanes are 

absent at all locations presented in Table 2.1.  

SE Hawthorne Blvd is classified as a district collector. It is a two-way road with 

one lane in each direction and a center turn lane. Parallel parking is also permitted on 

both sides of the road and is frequently occupied. No sharrows are present at this 

location. 

A few of the data collection sites have additional, noteworthy characteristics. All-

way stop signs are present at the intersection of SE Harrison and 30th and the intersection 

of SE Harrison and 26th. The Lincoln site is situated midway between two speed humps, 

approximately 460 feet (140 m) apart. Figures 2.1 through 2.3 provide street level views 

of a representative site along SE Harrison, the SE Lincoln site, and the SE Hawthorne 

site, respectively [17-19]. 

Figure 2.1 SE Harrison west of 30th, looking east (left) and west (right) [17]. 
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Figure 2.2 SE Lincoln east of 48th, looking east (left) and west (right) [18]. 

Figure 2.3 SE Hawthorne east of 44th, looking east (left) and west (right) [19]. 

Speed distributions of class one vehicles were inspected as part of the data 

cleaning process. Vehicle speeds appeared to be normally distributed for all datasets. 

Figure 2.4 provides a representative example of class one speed distributions, showing 

those from the SE Harrison west of 30th location. Mean class one speeds at this location 

were 11.2 mph (18 km/h) and 11.9 mph (19 km/h) for the eastbound and westbound 

directions, respectively. 
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Figure 2.4 Class one speed distributions for the SE Harrison west of 30th location 
eastbound (right) and westbound (left). 

2.4 Analysis 

Motorized vehicles may be forced to reduce their speed before or during 

overtaking maneuvers when approaching a slower moving bicycle from behind. The 

following two scenarios: (i) observations of a class two vehicle (passenger car) that was 

preceded by a class one vehicle (bicycle) and (ii) observations of a class two vehicle 

(passenger car) preceded by another class two vehicle (passenger car) were selected for 

analysis from the datasets supplied. The data were selected as such to test the hypothesis 

that bicycles cause reduced passenger car travel speeds on roads without bicycle lanes, 

either by friction or block interference. 

The timestamp associated with each observation in the datasets allowed the gap 

time between the vehicle of interest and the preceding vehicle to be calculated. An 

analysis of gap time versus speed was performed to determine whether a correlation 

between them was present. A vehicle with a smaller gap time may be influenced by the 

preceding vehicle to a greater degree than one with a larger gap time. A series of plots 
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were constructed, and linear correlation coefficients were calculated to inspect for a 

relationship between gap time and speed. Should one such relationship exist, we might 

expect to see some degree of positive correlation, particularly for vehicles following a 

bicycle. In traffic engineering and speed studies a gap of 4–6 s is usually used as a 

threshold to determine if the leading vehicle is affecting the behavior of the follower. 

Comparisons of speed between the two vehicle configurations were made in 

several ways. First, mean speed was calculated for each configuration of class two 

vehicles in each dataset, and a two-sample t-test was performed. To further evaluate the 

practical implication of any difference in speed for the two configurations, 50th and 85th 

percentile speeds with 95% confidence intervals were calculated and compared. 

Each dataset was first analyzed for a whole day (24-hour period) and was then 

analyzed for peak hour traffic separately. A potential limitation of this study is the 

inability of the traffic monitoring equipment (pneumatic tubes) to differentiate between 

motorized and non-motorized class one vehicles. This limitation was regarded as 

irrelevant to this study because of the negligible percentage of traffic that motorcycles 

typically comprise [20], which is observed to be the case also on Portland urban area 

roads. 

2.5 Results 

2.5.1 24-Hour Period 

Figure 2.5 presents the speed-gap plots generated for the SE Harrison west of 23rd 

westbound dataset and their associated r-values noted as a typical example for all sites. 
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With r-values close to zero, it can clearly be seen that the disaggregated data are highly 

scattered, and no apparent relationship exists between gap time and vehicle speed for 

either vehicle configuration. This finding was consistent throughout all of the datasets 

analyzed where linear correlation coefficients were low and not significant. A subsequent 

analysis limited to observations with a gap time of 10 s or less presented comparable 

results. Figure 2.6 displays the speed-gap plots of the westbound SE Harrison west of 23rd 

dataset when limited to a 10 s gap time. 

Figure 2.5 Gap analysis plots for SE Harrison west of 23rd, westbound. Class two 
following class one configuration (left) and class two following class two configuration 
(right). 
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Figure 2.6 Gap analysis plots for SE Harrison west of 23rd, westbound limited to 
observations of a 10s gap time. Class two following class one configuration (left) and 
class two following class two configuration (right). Notice the similar data trend as when 
all observations are retained. 

The results of the t-tests can be seen in Table 2.2, along with the mean class one 

speeds for reference. The null hypothesis is defined as scenarios (i) and (ii) having equal 

mean speeds. The null is rejected when there is a statistically significant difference 

between the mean speeds. If the difference is not statistically significant, we fail to reject 

the null. Five of the eleven datasets show a statistically significant difference at the p = 

0.05 level, rejecting the null hypothesis.  
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Table 2.2 t-Test between Mean Speeds 

Location 

N Mean (mph) 
Following 

Class 1 
Following 

Class 2 
Class 

1 
Following 

Class 1 
Following 

Class 2 
t-

Statistic p-Value 
Harrison W 
of 23rd 

EB 146 149 9.91 21.77 21.95 -0.34 0.731 

WB 462 379 22.10 24.54 24.88 -1.16 0.246 

Harrison W 
of 26th 

EB 220 471 14.30 21.22 21.39 -0.46 0.648 

WB 350 767 20.30 21.95 21.86 0.32 0.753 

Harrison E 
of 27th 

EB 148 591 9.67 22.95 23.32 -0.95 0.341 

WB 181 629 16.30 22.66 23.93 -4.07 0.000* 

Harrison W 
of 30th 

EB 496 1108 11.20 22.45 23.06 -3.02 0.000* 

WB 479 980 11.90 22.58 22.99 -1.99 0.047* 

Lincoln E 
of 48th 

EB 323 2720 22.00 22.24 22.05 0.68 0.495 

WB 286 2895 18.70 21.93 22.5 -2.21 0.027* 

Hawthorne 
E of 44th 

WB 28 9041 10.70 24.21 27.48 -2.59 0.015* 

Note: N = number of observations. 
* >95% significance.

Figure 2.7 displays the empirical speed distributions and mean speeds for the 

westbound SE Harrison east of 27th dataset and the eastbound SE Harrison west of 23rd 

dataset. These empirical distributions also provide a visual of the level of compliance to 

the posted speed limit. At the westbound SE Harrison east of 27th location, the proportion 

of observations exceeding the posted speed limit was 24.9% and 31.48% for scenarios (i) 

and (ii), respectively. At the eastbound SE Harrison west of 23rd location, 24.0% and 

17.45% of observations exceeded the speed limit for scenarios (i) and (ii), respectively. 
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Figure 2.7 Empirical distributions with mean speeds for westbound SE Harrison east of 
27th (left) and eastbound SE Harrison west of 23rd (right). 

Table 2.3 presents the results of the calculated 95% confidence intervals for the 

50th percentile speeds. Only one dataset, the westbound direction at SE Harrison east of 

27th, shows non-overlapping confidence intervals for the 50th percentile speeds. Apart 

from this dataset, a high degree of overlap is observed. It can be observed that the 

intervals may differ by approximately one mile per hour (1.6 km/h) or less for all 

locations where sharrows are present. A broader confidence interval is given for scenario 

(i) at the SE Hawthorne location, yet the confidence interval for scenario (ii) remains

within these bounds. 
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Table 2.3 50th Percentile Speeds and 95% Confidence Intervals (in mph) 

Location 

Following Class 1 Following Class2 
50th 

Percentile CI 
50th 

Percentile CI 
SE Harrison W 
of 23rd 

EB 21.72 (20.79, 22.61) 21.53 (21.08, 22.49) 

WB 24.56 (23.91, 25.09) 24.93 (24.55, 25.57) 

SE Harrison W 
of 26th 

EB 21.79 (21.05, 22.46) 21.85 (21.26, 22.26) 

WB 22.68 (21.96, 23.08) 22.36 (22.10, 22.63) 

SE Harrison E 
of 27th 

EB 23.10 (22.10, 24.07) 23.50 (22.90, 23.78) 

WB 22.44 (22.17, 23.07)* 24.02 (23.80, 24.33)* 

SE Harrison W 
of 30th 

EB 22.90 (22.53, 23.38) 23.27 (23.08, 23.57) 

WB 22.76 (22.49, 23.21) 23.24 (22.99, 23.46) 

SE Lincoln E of 
48th 

EB 22.50 (21.93, 23.43) 22.30 (22.10, 22.50) 

WB 21.88 (21.21, 22.66) 22.71 (22.57, 22.90) 

SE Hawthorne E 
of 44th 

WB 24.84 (21.98, 28.45) 28.06 (27.93, 28.16) 

Note: CI = confidence interval. 
* Non-overlapping confidence intervals.

Table 2.4 gives the results for the 85th percentile speed confidence intervals. As 

with those of the 50th percentile speeds, the confidence intervals for the two vehicle 

configurations here correspond well with each other, reinforcing the previous findings of 

this analysis. The SE Hawthorne east of 44th dataset displays the greatest amount of 

discrepancy between the two vehicle configurations for the 85th percentile speed 

confidence intervals while those of the westbound SE Harrison west of 30th dataset are 

nearly identical. The empirical distributions and 85th percentile speeds for these datasets 

are plotted in Figure 2.8. Notice the high percentage of observations in excess of the 

posted speed limit for both scenarios (i) and (ii) at the SE Hawthorne location (50.0% and 

68.88%, respectively) compared to the westbound SE Harrison west of 30th location of 

19.0% for scenario (i) and 19.8% for scenario (ii). 
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Table 2.4 85th Percentile Speeds and 95% Confidence Intervals (in mph) 

Location 

Following Class 1 Following Class2 
85th 

Percentile CI 
85th 

Percentile CI 
SE Harrison W 
of 23rd 

EB 27.25 (26.05, 28.72) 25.96 (25.25, 27.94) 

WB 29.03 (28.48, 29.41) 29.07 (28.62, 29.82) 

SE Harrison W 
of 26th 

EB 25.98 (25.32, 26.68) 25.60 (25.07, 26.09) 

WB 26.39 (25.99, 27.10) 26.13 (25.54, 26.49) 

SE Harrison E 
of 27th 

EB 27.44 (26.60, 28.14) 27.43 (27.00, 28.07) 

WB 26.41 (25.95, 27.94) 27.27 (26.88, 27.74) 

SE Harrison W 
of 30th 

EB 26.00 (25.59, 26.50) 26.26 (26.03, 26.63) 

WB 26.07 (25.58, 26.43) 26.04 (25.78, 26.44) 

SE Lincoln E 
of 48th 

EB 26.93 (26.28, 27.57) 26.27 (26.11, 26.50) 

WB 26.24 (25.36, 27.15) 26.46 (26.29, 26.61) 

SE Hawthorne 
E of 44th 

WB 30.60 (29.34, 35.50) 32.69 (32.53, 32.82) 

SE Hawthorne E 
of 44th 

WB 24.84 (21.98, 28.45) 28.06 (27.93, 28.16) 

Note: CI = confidence interval. 

Figure 2.8 Empirical distributions with the 85th percentile speeds for westbound SE 
Hawthorne east of 44th (left) and westbound SE Harrison west of 30th (right). 

2.5.2 Peak-Hour Period 

To address concerns that changes in passenger car speeds due to bicycles may 

only occur during peak traffic hours when the volume is highest, a separate analysis was 
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performed. The traffic volume distribution by the time of day indicated the morning peak 

hours to be 7:30 am to 9:30 am and the evening peak hours to be 4:30 pm to 6:30 pm. 

Due to an insufficient number of data points, the SE Hawthorne east of 44th location was 

not evaluated for peak hours. 

The speed-gap time analysis was performed again for peak hours. The resulting 

range of linear correlation coefficients was similar to that of the 24-hour period traffic 

with low and insignificant coefficients of correlation. This outcome seems to verify the 

absence of a relationship between gap time and vehicle speed in the data presented here. 

The t-tests between mean speeds for peak hour traffic (Table 2.5) revealed only 

one dataset, westbound SE Harrison west of 30th, that rejected the null hypothesis with a 

statistically significant result (p = 0.034). The difference in mean speeds was calculated 

to be less than one mile per hour. Interestingly, this dataset was also one of the five in 

which the null hypothesis was rejected when the 24-hour period was analyzed. 

Table 2.5 t-Test between Mean Speeds for Peak Hours 

Location 

N Mean (mph) 
Following 

Class 1 
Following 

Class 2 
Following 

Class 1 
Following 

Class 2 
t-

Statistic 
p-

Value 
Harrison W 
of 23rd 

EB 48 28 20.69 21.36 -0.64 0.525 

WB 179 73 24.46 25.01 -1.01 0.316 

Harrison W 
of 26th 

EB 91 118 21.20 21.45 -0.41 0.686 

WB 131 195 22.06 22.17 -0.21 0.835 

Harrison E of 
27th 

EB 79 181 23.01 23.49 -0.89 0.377 

WB 92 199 23.16 23.56 -0.83 0.407 

Harrison W 
of 30th 

EB 203 262 22.15 22.88 -1.95 0.051 

WB 169 229 22.42 23.21 -2.13 0.034* 

Lincoln E of 
48th 

EB 102 897 21.90 22.10 -0.40 0.687 

WB 77 937 21.49 22.18 -1.40 0.164 
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The evaluation of the 95% confidence intervals for the 50th and 85th percentile 

speeds continued to be consistent with the previous analyses. No non-overlapping 

intervals were observed for either percentile. Table 2.6 and Table 2.7 display the 

confidence intervals of 50th and 85th percentile speeds, respectively. From these tables it 

can be seen that the confidence intervals for the westbound SE Harrison west of 30th 

dataset are quite similar when comparing the two vehicle configurations. The 50th 

percentile confidence intervals in mph were (22.09, 23.55) and (22.96, 23.93); the 85th 

percentile confidence intervals were (25.30, 26.70) and (25.51, 27.13). The largest 

discrepancy between confidence intervals for the 50th percentile speeds was found with 

the eastbound SE Harrison west of 23rd dataset. For the 85th percentile speeds, the 

westbound SE Lincoln east of 48th dataset produced the biggest difference. In both cases, 

the confidence intervals had a high degree of accordance and differences in bounds were 

less than two miles per hour (3.2 km/h).  

Table 2.6 50th Percentile Speeds and 95% Confidence Intervals for Peak Hours (in mph) 

Location 

Following Class 1 Following Class2 
50th 

Percentile CI 
50th 

Percentile CI 
SE Harrison W 
of 23rd 

EB 20.63 (19.93, 22.16) 20.59 (19.73, 24.10) 

WB 24.40 (23.56, 25.36) 25.00 (24.26, 26.25) 

SE Harrison W 
of 26th 

EB 22.05 (20.28, 22.77) 22.10 (20.98, 22.76) 

WB 22.96 (21.63, 23.92) 23.17 (22.16, 23.72) 

SE Harrison E 
of 27th 

EB 23.18 (22.12, 24.40) 23.40 (22.93, 24.23) 

WB 23.41 (22.05, 24.27) 23.84 (23.40, 24.21) 

SE Harrison W 
of 30th 

EB 22.78 (22.18, 23.46) 23.31 (22.67, 23.78) 

WB 22.62 (22.09, 23.55) 23.47 (22.96, 23.93) 

SE Lincoln E 
of 48th 

EB 22.47 (21.61, 23.67) 22.37 (22.10, 22.71) 

WB 21.11 (20.04, 22.63) 22.35 (22.01, 22.69) 
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Table 2.7 85th Percentile Speeds and 95% Confidence Intervals for Peak Hours (in mph) 

Location 

Following Class 1 Following Class2 
85th 

Percentile CI 
85th 

Percentile CI 
SE Harrison W 
of 23rd 

EB 25.58 (23.31, 27.89) 26.47 (24.29, 28.30) 

WB 29.21 (28.50, 30.00) 28.88 (28.18, 30.23) 

SE Harrison W 
of 26th 

EB 25.64 (24.45, 26.83) 25.68 (25.01, 26.92) 

WB 26.88 (25.97, 28.09) 26.87 (26.32, 27.26) 

SE Harrison E 
of 27th 

EB 26.82 (26.17, 28.98) 27.91 (26.74, 28.74) 

WB 27.31 (26.30, 28.32) 26.54 (26.07, 27.39) 

SE Harrison W 
of 30th 

EB 25.86 (25.19, 26.52) 26.30 (25.92, 27.09) 

WB 25.97 (25.30, 26.70) 26.25 (25.51, 27.13) 

SE Lincoln E 
of 48th 

EB 26.53 (25.61, 27.93) 26.32 (26.00, 26.89) 

WB 25.95 (24.45, 27.62) 26.32 (25.87, 26.67) 

2.6 Discussion 

When considered as a whole, the results of the t-tests and 95% confidence 

intervals indicate that bicycles are not likely to lead to reduced passenger car travel 

speed, despite their differences in performance capabilities and the absence of bicycle 

lanes. In most cases, the differences in speed were not significant from a practical 

standpoint. However, this study did find a few instances where differences were seen. 

For the analysis including all 24 hours, the most apparent exception occurred with 

the SE Harrison east of 27th westbound dataset where the mean speeds between the two 

class two vehicle configurations were highly statistically different, that is, the null 

hypothesis was rejected, with p = 0.000, and the 95% confidence intervals for the 50th 

percentile speeds were non-overlapping. At this location, traffic travels downhill at a 

grade greater than 4% in the westbound direction which might encourage bicycles to 
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travel at a higher speed, thereby lowering the desire of a motor vehicle to overtake 

immediately and instead be satisfied traveling temporarily at a slightly reduced speed. 

Additionally, it is possible that the presence of the all-way stop at 26th influences passing 

behavior, with motor vehicles preferring to delay overtaking a bicycle until after they 

clear the traffic control device. While the results of the analysis did find a statistically 

significant difference in speed at this location, the difference is relatively small—a 5.3% 

and 6.6% reduction, or 1.27 mph (2.04 km/h) and 1.58 mph (2.54 km/h)—for mean and 

50th percentile speeds, respectively. Moreover, the 95% confidence intervals for the 85th 

percentile speeds do not illustrate a distinguishable difference. The peak hour analysis 

provided additional evidence that bicycles do not cause lower passenger car speeds at this 

location, as confirmed by the t-test results, which failed to reject the null hypothesis 

(p = 0.407). 

The null hypothesis was rejected for both the eastbound and westbound directions 

at SE Harrison west of 30th and the westbound direction at SE Lincoln east of 48th, 

showing statistically significant differences when the t-test was applied in the 24-hour 

analysis (p = 0.0026, p = 0.047, and p = 0.027, respectively). Nevertheless, the 95% 

confidence intervals calculated for the 50th and 85th percentile speeds at these locations 

did not indicate a relevant difference in speed. The difference in mean speed at these sites 

was limited to roughly 0.5 mph (0.8 km/h). For peak hours, only the westbound SE 

Harrison west of 30th dataset produced a rejection of the null hypothesis, displaying a 

statistically significant difference in mean speeds equating to less than one mile per hour 

(1.6 km/h). The all-way stop at 30th and the double yellow line just west of it may 
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discourage the passing behavior of eastbound traffic on Harrison in a similar manner to 

that described above, leading to the nominal speed difference when all hours are 

considered. Westbound traffic at this location may also be influenced by the double 

yellow line, inhibiting passing behavior. The minor difference observed at the SE Lincoln 

location could be attributed to the higher occupancy rate of street parking, effectively 

decreasing the space available for motor vehicles to pass bicycles safely. It bears 

reiterating that, apart from one dataset, we fail to reject the null hypothesis as no 

significant differences in speeds were found for peak hour traffic. 

The t-test for the SE Hawthorne east of 44th dataset did reject the null hypothesis 

(p = 0.015), and a difference in mean speeds of approximately 3 mph (4.8 km/h) was 

observed between scenarios (i) and (ii). Similar differences were seen for the 50th and 85th 

percentile speeds at this location, although the confidence intervals were found to 

overlap. SE Hawthorne carries a district collector classification whereas all other 

locations are lower classed local streets. Traffic volume along SE Hawthorne is well in 

excess of even the most generous design guidelines for shared roads and motor vehicle 

operating speeds are above the recommended target of 20–25 mph (32–40 km/h). 

Combined with the high occupancy of street parking which removes effective width for 

passing, these characteristics likely contributed to the small differences observed between 

scenarios (i) and (ii). 

On Harrison and Lincoln, the road width, low to moderate parking occupancy, 

and lack of a center lane delineator likely all contribute to the ability of passenger cars to 

maintain their speed. The low traffic volume provides adequate opportunity for passing, 
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and the speed limit of 25 mph (40 km/h) helps to mitigate the amount a motor vehicle 

needs to slow down when approaching or overtaking a bicycle. Although minor 

differences in speeds were found at a few locations where sharrows were present, the 

magnitude of the difference was smaller than at the SE Hawthorne location where 

sharrows are absent. It is likely that the higher speed difference and higher levels of 

motorized traffic (see Table 2.1) make SE Hawthorne a more stressful roadway for 

cyclists [21] and this in turn contributes to explain the lower bicycle volumes on SE 

Hawthorne. 

Finally, although concerns have been voiced that increased bicycle volume on 

shared roads could lead to significantly reduced motor vehicle speeds, the results of this 

study failed to show a positive correlation between the magnitude of difference in mean 

speeds between the two scenarios and the percent of traffic comprised of class one 

vehicles. 

2.7 Conclusions 

Speed distributions, the mean, and the 50th and 85th percentile speeds for two 

scenarios were examined: (i) a passenger car that was preceded by a bicycle and (ii) a 

passenger car that was preceded by another passenger car. Peak hour traffic and 24-hour 

traffic speeds were analyzed. 

This paper has presented evidence from urban roads without bicycle lanes in 

Portland, indicating that bicycles do not reduce passenger car speeds by more than one 

mile per hour (1.6 km/h) at most locations. This finding was reinforced by the results of 
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the 95% confidence intervals for the 50th and 85th percentile speeds and the separate 

analysis performed for peak hours. While the results of the analysis did find five of the 

eleven datasets to have statistically significant differences in mean speed, rejecting the 

null hypothesis when all hours were analyzed, this result is in part because of many 

observations since the actual speed differences are trivial in a practical sense. Higher 

speed differences, on the order of 2–3 mph (3.2–4.8 km/h), were found only at locations 

that do not meet the guidelines for a shared road. 

Because of the limited variability in roadway characteristics of the sites analyzed, 

the conclusions drawn may not be directly transferable to all roadways without bicycle 

lanes. Nonetheless, the results presented here deliver encouragement for incorporating 

shared roads into urban bicycle networks to support an increasing bicycle mode share 

without negatively affecting travel speed or creating congestion, provided that cities 

ensure these shared roads follow recommended bikeway guidelines. 

Future work should include roadways with a wider variety of vehicle 

classifications and roadway characteristics such as ADT, grade, and pavement markings 

to evaluate the consistency of the findings presented here and to further investigate the 

effects the roadway environment and traffic composition may have on vehicle–bicycle 

interactions and resulting travel speed. 
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Abstract 

Increasing the bicycle mode share has been suggested as part of a solution to 

reduce the burden of additional traffic that continued urbanization and population growth 

are creating. As strategies to promote bicycling are implemented, concerns have been 

raised by researchers at the University of Virginia and some road users that an increase in 

the bicycle mode share will lead to travel time delays via reduced vehicle speeds and 

result in more traffic congestion unless bicycle lanes are provided. This research 

investigates the effects bicycles may have on motorized vehicle speeds on lower speed 

and volume urban roads without bicycle lanes. A detailed comparative analysis of 

passenger car speeds was performed using two vehicle scenarios: (i) a passenger car that 

was preceded by a bicycle, and (ii) a passenger car that was preceded by another 

passenger car. The mean and 85th percentile speeds of scenarios (i) and (ii) were analyzed 

using t-tests. Relationships between speed and gap times with oncoming (opposite 

direction) traffic were also investigated. The results indicate that at most sites (92%), 

bicycles do not reduce passenger car mean speeds by more than one mile per hour.  

Significantly reduced speeds were observed less frequently when adequate gaps in 

oncoming traffic for overtaking were present, and at sites with a lower functional 

classification or those where sharrows are present.  
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3.1 Introduction 

Over 76% of workers in the U.S. commute by single-occupancy vehicles [1]. 

Combined with rising populations and increasing urbanization, traffic congestion and 

travel time delay are perpetually growing problems in many cities. In response, solutions, 

such as encouraging cycling, are being sought to help reduce the use of single-occupancy 

vehicles. Cycling is typically regarded as a healthy and environmentally friendly form of 

transportation. Proponents tout its potential role in reducing greenhouse gas emissions, in 

addition to mitigating traffic congestion. As such, initiatives to promote cycling for 

transportation have been pushed by cities and cycling advocates in recent years to help 

achieve goals of increasing the bicycle mode share.  

Across the U.S., bicycling is a highly underutilized mode of transportation, with 

less than 1% of the commute mode share, on average [1]. Even in cities such as Portland, 

Oregon, where 6.3% of workers commuted by bicycle in 2017 [2], there is a huge 

opportunity to increase bicycle ridership. Portland is renowned throughout the U.S. for its 

cycling culture. The City continues to push forward projects to build a safe and well-

connected network of bicycle facilities in hopes of reaching a 25% bicycle mode share by 

the year 2030 [3]. As of 2019, there were 385 miles of bikeways in Portland. Shared 

roads are an integral component of this network, constituting 27% of the bikeway miles 

[2].  

While it is generally preferred to segregate motor vehicles and bicycles by 

providing designated lanes, creating a separate infrastructure on every road is infeasible 

and often unnecessary. For example, roadways with speed limits less than approximately 
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35 km/h (22 mph) and ADT less than approximately 2,500 vehicles are candidates for 

mixed-traffic conditions according to Danish bikeway design guidance [4].  

Implementing shared-use facilities can be an economical solution to a growing 

need for bikeways. The differing performance capabilities of motor vehicles and bicycles, 

and the vulnerable nature of cyclists, creates challenges regarding safety and mobility 

when roadway space is shared, however. There is a growing body of research related to 

vehicle-bicycle interactions. Many of these studies focus on lateral positioning and 

passing behavior, but there has been little empirical research concerning the effects 

bicycles might have on motor vehicle speed or travel time. As cities like Portland 

experience a mode shift toward bicycling, it is necessary to study the impacts these 

changes may have on the existing transportation network and motorized vehicles. 

One particular concern of motorists is that unless bicycle lanes are implemented, 

bicycles will slow down motor vehicles and potentially increase congestion and vehicle 

emissions – two consequences of urbanization that a larger bicycle mode share seeks to 

mitigate. Research involving a simulated traffic study has prompted discussions that warn 

of exacerbated traffic congestion and travel time delay as the bicycle mode share 

increases if bicycle lanes are not installed [5-6]. Empirical evidence of this claim is 

lacking, however. Previous work by Schaefer et al. [7] has suggested that the presence of 

bicycles on low volume, low speed urban roads without bicycle lanes does not 

meaningfully reduce passenger car speeds at most sites that meet bikeway design 

guidelines for mixed-traffic roadways. However, this study [7] was limited to six 25-mph 

(40 km/h), rather homogeneous sites. Statistically significant differences in mean speed 
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of more than one mile per hour (1.6 km/hr) were only found at one site where speeds and 

traffic volumes exceeded those in the bikeway guidance for shared roads, and at another 

site with a significant grade. These results provided the motivation for a more extensive 

study utilizing a more diverse set of data collection locations.   

This study significantly extends the previous study [7] by incorporating a large 

number of study sites (40 locations and 75 directional speed datasets) and presenting 

more diversity with respect to traffic volumes, posted speed limit (PSL), roadway 

markings, functional classification, and grade. In addition, this study considers the 

potential effects of oncoming (opposite direction) traffic on motorists’ opportunities to 

overtake a cyclist. The results of this research are more widely applicable and may help 

guide decisions regarding the implementation of shared bikeways. 

3.2 Literature Review 

Shared roads or roads without bicycle lanes may contribute to a substantial 

portion of an urban bikeway network in some cities. World leaders in bicycling culture, 

the Danish have developed guidelines for when shared or mixed-traffic roads may be 

appropriate. The Cycling Embassy of Denmark suggests motor vehicle speeds should be 

less than 35 km/h (22 mph), and traffic volumes should be low (less than approximately 

2,500 ADT) for mixed-traffic roadways [4]. Similar guidelines are set forth by the 

FHWA, indicating shared facilities may be acceptable for urban roads with speeds less 

than 25 mph (40 km/hr) and volumes less than 3,000 ADT [8]. The National Association 

of City Transportation Officials (NACTO) advises a somewhat lower maximum motor 
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vehicle volume of only 1,500 vehicles per day [9] but agrees with the Danish and FHWA 

range of maximum speeds for shared roads. 

As cities continue to encourage bicycling as a primary mode of transportation, the 

need for additional research regarding the impact of bicycles on traffic operations is 

highlighted, especially in mixed-traffic contexts. In particular, there appear to be 

relatively few studies in the traffic literature on the impact of vehicle-bicycle interactions 

on travel speed or delay. 

Most existent studies on vehicle-bicycle interactions have focused on rider 

position in the roadway, lateral clearance when overtaking, or how these factors may 

influence safety. For example, research has been conducted on the effects of a cyclist’s 

helmet usage, clothing, and apparent gender on overtaking proximity [10-11]. Other 

studies have concluded that the presence of shared lane markings (also known as 

sharrows) encourages cyclists to ride in a more central lane position, which may improve 

their visibility [12-13]. 

Lane position also affects the type of interference bicycles may impose on motor 

vehicles. A cyclist riding to the right of a wide lane may impose little friction interference 

to a passing motor vehicle, which may not need to reduce travel speed significantly if 

there is room to overtake safely. When a cyclist occupies a more substantial portion of 

the lane, at the center or left, block interference is more likely to occur, forcing the 

motorist to reduce their speed and wait for an opportunity to overtake [14]. 

When block interference occurs on a two-lane road, and a motorist desires to 

overtake, they must find an appropriate gap in oncoming (opposite direction) traffic. The 
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decision to initiate a passing maneuver is guided by the required passing sight distance 

(PSD), which is a function of the speeds and lengths of the bicycle and motor vehicle, the 

headways between the bicycle and the motor vehicle before and after overtaking, a 

minimum clearance interval with oncoming traffic, and the overtaking motorist’s 

perception-reaction time [15]. 

The effects of block interference were demonstrated in a study using empirical 

data from three urban road sections in Beijing, China [14]. Researchers found that as 

bicycle lane widths decreased or bicycle volumes increased, block interference was more 

likely to occur due to bicycles spilling into the motor vehicle lane, offering insufficient 

width for motor vehicles to pass. When no interference occurred, mean motor vehicle 

speeds ranged from 35.15 km/h to 41.56 km/h (21.84 mph to 25.82 mph). Mean speeds 

were reduced by 17-21% under friction interference conditions. Under block interference, 

mean speeds were reduced by 29-37%. The lane widths were stated to be 3.7 m (12 ft.) 

but the PSL or the roadway volume was not indicated.   

When empirical data is unavailable, simulations have been used to model vehicle-

bicycle interactions. Oketch [16] designed a model to simulate heterogeneous traffic 

behavior on a two-lane road with three-meter (10 ft.) lane widths. Model parameters 

included an average desired speed of 80 km/h (50 mph) and a flow of 1,000 vehicles per 

hour to simulate a typical urban arterial road. Compared to a homogeneous traffic stream 

of private cars, a simulation including 25% bicycles and 75% private cars showed a 36% 

decrease in capacity. A reduction in the mean free-flow speed was cited as the cause of 

the decreased capacity. Note, however, that the model parameter values set for speed and 
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traffic volume in this simulation are well outside of the mentioned bicycle design 

recommendations for mixed-traffic roadways. 

Gosse and Clarens [6] also used simulations to quantify the effects of bicycles on 

travel time for a two-lane urban road. The simulations were based on a motor vehicle 

speed of 37.4 mph (60 km/h) and used different combinations of values for motor vehicle 

lane widths, grades, and bicycle mode share percentages. The researchers concluded 

travel time delay costs were incurred when the bicycle mode share reached 10% as a 

result of a ‘stuck vehicle condition,’ whereby shared travel lanes did not offer sufficient 

width for heavy vehicles to pass safely. A positive 4% grade magnified the effect of the 

stuck vehicle condition. Alternatively, when adequate space was provided for larger 

vehicles to pass, travel time delay costs were reduced with a 10% bicycle mode share. 

These simulation studies can be useful, but the parameters used to model the roadway, or 

driver-cyclist interactions do not capture the full spectrum of real-world situations.  

3.3 Data Collection 

Traffic speed data collected from 2015 through 2019, obtained from the Portland 

Bureau of Transportation (PBOT), was used to study the effects bicycles on roads 

without bicycle lanes may have on passenger car speeds. PBOT regularly performs traffic 

data collection throughout the city using pneumatic tubes configured to measure speed 

and classify vehicles according to a modified FHWA Scheme F [17]. Under the modified 

classification scheme, bicycles are considered class one vehicles, and passenger cars are 

considered class two. Pneumatic tubes are commonly used to perform short-term traffic 
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counts. The accuracy of pneumatic tubes to count and record speeds of bicycles was 

investigated by Nordback et al. [18]. The researchers found that the JAMAR brand tubes 

performed better than two other brands of classification counters tested and that manually 

computed bicycle speeds were in agreeance with those reported by the JAMAR model. 

PBOT has been using these JAMAR brand tube counters for many years and crews are 

skilled in the set-up and placement of these tubes to collect data for both motorized 

vehicles and bicycles. The data collection equipment records individual vehicles with an 

associated timestamp, accurate to the second, and speed in one-mile-per-hour increments. 

Bidirectional speed data were collected at 40 locations for a minimum of one full day. In 

some cases, only one direction of traffic was analyzed due to the number of observations 

required. This resulted in 75 datasets available for analysis. 

All sites were located along two-way, two-lane urban roads without bicycle lanes 

in Portland. Sites were chosen to represent a variety of roadway characteristics. 

Considerations were made for roadway functional class, centerline marking, ADT, PSL, 

and grade. Local and urban collector roads were represented (with 39 and 36 datasets, 

respectively), and class two ADT ranged from fewer than 200 up to approximately 4,700 

vehicles per day. Parallel parking was permitted at all locations. Road widths ranged 

from 34 ft. to 40 ft. (10 m to 12 m).  

Dashed yellow center lines were present in 12 of the datasets, and double yellow 

center lines were present in two datasets. The remaining 61 datasets did not have a 

continuous center lane marking, but double yellow lines were present within 

approximately 40 ft. (12 m) of traffic control devices. Sharrows (shared lane markings) 
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were also present along these streets. These datasets were collected from roadways 

designated as neighborhood greenways – roads with relatively low motorized traffic 

volumes and speeds, typically meeting the recommendations for mixed-traffic roads. 

Traffic calming, such as speed humps and mini traffic circles, are usually present along 

neighborhood greenways to deter speeding and cut-through traffic. Bicycles often 

comprise a significantly greater portion of the total traffic than the citywide average on 

these roads. The mean class one percentage for the 61 neighborhood greenway datasets 

was 43%, compared to an average of 3% for the remaining datasets.  

Grades were estimated from a ten-foot interval contour map [19] and ranged 

between -5% and 5%. Two of the datasets had a speed limit of 30 mph (48 km/h), 39 

datasets had a 25-mph (40 km/h) speed limit, and 34 datasets had a 20-mph (32 km/h) 

speed limit. Figures 3.1 – 3.3 provide representative street views of a neighborhood 

greenway local road, an urban collector with a dotted yellow centerline, and an urban 

collector with a double yellow centerline, respectively.  

Figure 3.1 Neighborhood greenway local street without a centerline. SE Lincoln east of 
48th, eastbound (left) and westbound (right) [20]. 
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Figure 3.2 Urban collector with dotted yellow centerline. NE Fremont east of 46th, 
eastbound (left) and westbound (right) [21]. 

 

 

Figure 3.3 Urban collector with double yellow centerline. SE Division east of 33rd, 
eastbound (left) and westbound (right) [22]. 

 

Pneumatic tubes for data collection count axels and cannot directly differentiate 

between motorized class one vehicles such as motorcycles or e-bikes and pedal bicycles. 

Motorcycles make up a small percentage of traffic and account for less than 1% of 

vehicle miles traveled [23-24], and e-bikes still comprise a small fraction of bicycle sales 

in the U.S. [25-26]. Nonetheless, to prevent artificial inflation of class one speeds, 

histograms were utilized to filter out observations with speeds higher than would 

typically be expected of a pedal cyclist. Studies in the U.S. have reported average bicycle 

speeds ranging between 11 mph (18 km/h) and 15.5 mph (25 km/h). Faster speeds were 
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observed when traveling in bicycle lanes than on off-street paths [27-28]. It is also 

possible for more advanced cyclists and those riding on a downhill grade to reach speeds 

up to 30 mph (48 km/h) [29]. The class one speed histograms were examined in 

conjunction with the estimated road grade to ensure only observations with speeds 

reasonable of pedal cyclists were included. A typical example of a class one speed 

distribution presenting two modes, corresponding to lower speed bicycles and higher 

speed motorized class one vehicles is shown on the left of Figure 3.4. Note that the mode 

on the right side of this histogram coincides with this location’s PSL of 30 mph (48 

km/h). After the data cleaning, the mean class one speed was approximately equal to 15 

mph (24 km.h). The histogram on the right in Figure 3.4 is from a location with a 25-mph 

(40 km/h) PSL, at which class one traffic is dominated by bicycles. The mean class one 

speed for this dataset was approximately 16 mph (26 km/h) – slightly higher than the 

typical range due to a 1% downhill grade. 



48 

Figure 3.4 Bimodal class one speed distribution indicating the presence of bicycles and 
motorized class one vehicles (left), and class one speed histogram from a location where 
bicycles are the dominant class one vehicle type (right). 

3.4 Analysis 

Upon encountering a slower-moving bicycle from the rear, a motorist may be 

forced to reduce their speed until an opportunity to overtake presents itself. If roadway or 

traffic conditions do not provide sufficient opportunities for overtaking, delay may occur, 

and additional motor vehicles may begin to queue behind the cyclist. Based on this 

premise, observations of class two vehicles (passenger cars) belonging to one of two 

scenarios were selected from the data. The two scenarios are described as follows: in 

scenario (i), a passenger car was preceded by a bicycle (class one vehicle), and in 

scenario (ii), a passenger car was preceded by another passenger car. These data 

selections enable testing of the hypothesis that bicycles cause reduced passenger car 

speeds on roads without bicycle lanes due to friction or block interference.  

The availability of bidirectional data allowed for an investigation of correlations 

between scenario (i) speeds and the gap times with oncoming vehicles. Henceforward, an 
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“oncoming” vehicle travels in a direction that opposes the direction of travel of the 

bicycle. Under the assumption that a scenario (i) vehicle must occupy a portion of the 

oncoming lane to overtake a bicycle, opportunities for passing are dependent on the 

required passing sight distance (PSD), and subsequently, gaps in oncoming traffic. PSD 

can be calculated as the sum of four distances, described as follows: 

 the distance the passing vehicle travels during a one-second perception-

reaction time,

 the distance traveled by the passing vehicle while occupying the oncoming

(opposite direction of travel) lane,

 the clearance distance between the passing and oncoming vehicle that creates

a one-second gap, and,

 the distance traveled by the oncoming vehicle during two-thirds of the time

the passing vehicle occupies the oncoming lane [15].

The required PSD can be used to calculate the gap time between oncoming 

vehicles that is necessary to overtake safely – the safe passing gap. The safe passing gap 

was calculated assuming an overtaking vehicle length of 19 ft. (6 m), a bicycle length of 

6 ft. (2 m), a one second gap between the overtaking vehicle and the bicycle before and 

after the maneuver, and an oncoming vehicle speed equal to the PSL. If the existent gaps 

in oncoming traffic are less than the safe passing gap, it is expected that lower scenario 

(i) vehicle speeds would result. The timestamps of the observations were used to identify

the oncoming vehicles arriving at the pneumatic tubes preceding and succeeding a 

scenario (i) arrival. It must be noted that the terms “preceding” and “succeeding” refer to 
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the timing of the arrival of the oncoming vehicle at the tube in relation to vehicle (i). 

Class one vehicles were excluded from the oncoming data since they may not occupy the 

full width of the lane, thereby enabling an overtaking maneuver despite the presence of 

the oncoming vehicle.  

In addition to the safe passing gap, several other gap times between vehicles were 

measured and are referenced in this paper. The gaps between specific vehicle arrivals at 

the pneumatic tubes are denoted as follows: 

 PO-i – between the preceding oncoming vehicle and the scenario (i)

vehicle

 SO-i – between the succeeding oncoming vehicle and the scenario (i)

vehicle

 1-i – between the bicycle and the scenario (i) vehicle traveling in the same

direction

 2-ii – between the passenger car and the scenario (ii) vehicle traveling in

the same direction.

Figure 3.5 provides a diagram of these gaps, showing the preceding oncoming (opposite 

direction) vehicle arriving at the tubes prior to the scenario (i) vehicle (top), the 

succeeding oncoming vehicle arriving at the tubes after the scenario (i) vehicle (top 

middle), a same-direction bicycle and passenger car scenario (bottom middle), and a 

same-direction passenger car and passenger car scenario (bottom). 

Scenario (i) speeds were plotted against the PO-i and SO-i gaps to investigate if 

any relationships were present. The PO-i and SO-i gaps were also evaluated against the 
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safe passing gap. It should be noted that these plots and evaluations do not account for 

the 1-i gap. The potential for influence on a passenger car’s speed by a slower-moving 

bicycle decreases as the 1-i gap becomes larger.  

Figure 3.5 Diagram of the PO-i (top), SO-i (top middle), 1-i (bottom middle), and 2-ii 
(bottom) gaps. 

To better understand the possible effects of bicycle presence on passenger car 

speeds on roads without bicycle lanes, scenario (i) and scenario (ii) mean speeds were 

compared using two-sample t-tests. The null hypothesis states that the mean speed of 

scenario (i) is equal to the mean speed of scenario (ii), H0: µi = µii. The alternative 

hypothesis states that the mean speed of scenario (i) is less than the mean speed of 
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scenario (ii) by more than one mile per hour (1.6 km/h), HA: µii - µi > 1. For p < 0.05, the 

null hypothesis is rejected. If p ≥ 0.05, the sample data fail to reject the null hypothesis. 

Note that a difference of one mile per hour was chosen to match the sensitivity of the data 

collection equipment, which records speeds in integer values, and because a one-mile-

per-hour difference is unlikely to be noticed by drivers.  

The 85th percentile speed is frequently used as a performance metric and a 

baseline for determining appropriate speed limits [30]. For this reason, a modified t-test 

was performed with the 85th percentile speeds of scenario (i) and scenario (ii) vehicles. 

Details of the test can be found in Hou et al. [31]. Similar to the hypothesis test of mean 

speeds, this null hypothesis states that the 85th percentile speed of scenario (i) is equal to 

the 85th percentile speed of scenario (ii), H0: ζ85, i = ζ85, ii. The alternative hypothesis states 

that the 85th percentile speed of scenario (i) is less than the 85th percentile speed of 

scenario (ii) by more than one mile per hour (1.6 km/h), HA: ζ85, ii - ζ85, i > 1. Again, for p 

< 0.05, the null hypothesis is rejected. 

3.5 Results  

3.5.1 Oncoming Gap Time Analysis 

Evaluating scenario (i) speeds against the PO-i and SO-i gaps generally produced 

low to insignificant correlations within the datasets. Calculated correlation coefficients 

between scenario (i) speed and the PO-i or SO-i gaps ranged from -0.26 to 0.42. 

Although low, positive correlations were observed in a few datasets, overall, the mean 

correlation values between speed and the PO-i or SO-i gap were both equal to 0.05. 



53 

Figure 3.6 displays the scatterplots of an urban collector road with a dotted yellow 

centerline, showing scenario (i) vehicle speeds according to the PO-i gap (left) and the 

SO-i gap (right). At this site, the median safe passing gap was 8.6 s; the median safe 

passing gap is estimated using the PSD and the speed of the passing vehicle and the 

bicycle. Approximately 40.3% of the observations at this site displayed PO-i or SO-i gaps 

less than the median safe passing gap. The percentage of observations with either PO-i or 

SO-i gaps less than the safe passing gap ranged from 40.3% to 62.3% (median 48.1%) for 

non-neighborhood greenways, and 0% to 30.6% (median 14.0%) for neighborhood 

greenways. Again, it should be noted that the 1-i gap has not been accounted for in these 

calculations.  

To address concerns that reduced passenger car speeds due to bicycles may only 

occur during peak hours when traffic volumes are highest, a separate evaluation was 

performed. Class two observations were counted in 15-minute increments, and peak 

hours were calculated as the two consecutive hours in which cumulative traffic volumes 

were the highest. Figure 3.7 shows the same scatterplots as in Figure 3.6, when limited to 

peak hour observations. As with the 24-hour traffic, the evidence is weak that a 

relationship between the oncoming gaps and scenario (i) speeds exists. This result held 

for all datasets containing at least 20 peak hour observations. Correlation coefficients 

between speed and the PO-i or SO-i gaps ranged from -0.37 to 0.39. The mean 

correlation value for speed and the PO-i gap was 0.05, and for speed and the SO-i gap, 

0.01. 
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Figure 3.6 Scatterplots showing scenario (i) speeds according to the PO-i gaps (left) and 
the SO-i gaps (right) for an urban collector road with a dotted yellow centerline. 

 

 

Figure 3.7 Scatterplots showing scenario (i) speeds according to the PO-i gaps and SO-i 
gaps for peak hours only for an urban collector road with a dotted yellow centerline. 

 

3.5.2 Hypothesis Testing 

Of the 75 datasets analyzed using all observations, only six (8%) were found to 

reject the null hypothesis stating that the mean speeds of scenario (i) and (ii) were equal. 

Rejection of the null indicates that the mean speed of scenario (i) was more than one mile 

per hour (1.6 km/h) slower than the mean speed of scenario (ii) in these datasets. All six 
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datasets were collected from urban collector roads. Table 3.1 provides details of the 

hypothesis test results for the six datasets that presented significant differences in mean 

speeds of more than one mile per hour (1.6 km/h). The PSL, class one and class two 

ADT, class one mean speed, grade, and type of road marking at these sites are also given 

in Table 3.1. Scenario (ii) mean speeds ranged from 1.6 to 3.3 mph (2.6 to 5.3 km/h) 

higher than scenario (i) mean speeds. 

Table 3.1 Hypothesis test results for the six datasets using all observations that reject the 
null hypothesis of equal mean speeds 

Dataset PSL 
ADT Mean (mph) p-

value 
Grade 

% 
Road 

Marking Class 1 Class 2 Class 1 (i) (ii) 
Alberta E of 11th 
Sep 2016 WB 

25 132 2949 14.54 22.89 25.01 0.039 -0.4 Dotted 
Yellow 

Clinton W of 14th 
Sep 2019 WB 

20 933 428 14.52 20.04 21.62 0.027 -0.7 Sharrow

Division E of 23rd 
Jul 2015 WB 

25 124 4462 18.13 23.95 26.26 0.017 -4.1 Double 
Yellow 

Fremont W of 43rd 
Jul 2019 EB 

20 187 4689 9.42 17.65 20.97 0.000 0.0 Dotted 
Yellow 

Willamette E of 
Mohawk Jul 2019 
EB 

30 88 2958 14.93 27.50 30.12 0.030 0.8 Dotted 
Yellow 

Willamette E of 
Mohawk Jul 2019 
WB 

30 115 2937 16.26 27.22 29.77 0.005 -0.8 Dotted 
Yellow 

When including all observations, only one dataset, collected at eastbound Fremont 

west of 43rd in July 2019, was found to have a significant decrease in 85th percentile 

speeds of more than one mile per hour (1.6 km/h) for scenario (i) when compared to 

scenario (ii) (p = 0.01). Note that the 85th percentile speeds for scenario (i) and scenario 

(ii) were higher than the 20 mph (32 km/h) PSL, at 23 mph (37 km/h) and 26 mph (42



56 

km/h), respectively. This dataset also displayed mean speeds for scenario (i) that were 

approximately three miles per hour (4.8 km/h) slower than for scenario (ii) (p = 0.0).  

To further examine the possible influences of gaps with oncoming traffic (PO-i 

and SO-i), or gaps between same-direction bicycle and scenario (i) vehicles (1-i), the 

hypothesis tests were performed again with three subsets of the scenario (i) data. In the 

first subset, only observations displaying both PO-i and SO-i gaps greater than or equal to 

the safe passing gap were retained. In the second subset, observations with either a PO-i 

or SO-i gap less than the safe passing gap were retained. The first and second subsets of 

scenario (i) observations were evaluated against all scenario (ii) observations. The third 

subset limited the analysis to observations with 1-i gaps less than 10 s, which were 

evaluated against scenario (ii) observations also limited to 2-ii gaps less than 10 s.  

Table 3.2 summarizes the t-test results for all observations and each subset. The results 

are further categorized by the neighborhood greenway designation (NN or G) and the 

functional classification (UC or L). The percent of datasets producing significant results 

(p < 0.05) out of the datasets tested in each category is shown. For reference, the number 

of datasets tested in each category is also provided. Only datasets with a minimum of 20 

scenario (i) and scenario (ii) observations, each, were tested.  
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Table 3.2 Summary of hypothesis testing significant results for all data and all subsets 

Number of Datasets Tested 
All Observations PO-i and SO-i ≥ SPG PO-i or SO-i < SPG 1-i and 2-ii < 10s

NN 14 14 14 14 
G 61 61 46 49 
UC 36 36 35 35 
L 39 39 25 28 
Total 75 75 60 63 

H0: µi = µii; HA: µii - µi > 1 
All Observations PO-i and SO-i ≥ SPG PO-i or SO-i < SPG 1-i and 2-ii < 10s

NN 35.7% 28.6% 21.4% 42.9% 
G 1.6% 0.0% 6.5% 36.7% 
UC 16.7% 11.1% 17.1% 40.0% 
L 0.0% 0.0% 0.0% 35.7% 
Total 8.0% 5.3% 10.0% 38.1% 

H0: ζ85, i = ζ85, ii; HA: ζ85, ii - ζ85, i > 1 
All Observations PO-i and SO-i ≥ SPG PO-i or SO-i < SPG 1-i and 2-ii < 10s

NN 7.1% 7.1% 14.3% 21.4% 
G 0.0% 0.0% 8.7% 8.2% 
UC 2.8% 2.8% 17.1% 17.1% 
L 0.0% 0.0% 0.0% 3.6% 
Total 1.3% 1.3% 10.0% 11.1% 

NN = non-neighborhood greenway; G = neighborhood greenway; UC = urban collector; 
L = local; SPG = safe passing gap 

The results in Table 3.2 indicate that for most categories, mean and 85th percentile 

speeds are less likely to be reduced by one mile per hour (1.6 km/h) or more when both 

PO-i and SO-i gaps are greater than or equal to the safe passing gap compared to when 

either the PO-i or SO-i gaps are insufficient. The non-neighborhood category (where 

centerlines are present) displays an exception to this pattern when considering mean 

speeds. A higher percentage of datasets indicated significantly reduced mean speeds 

occurred when PO-i and SO-i gaps were greater than or equal to the safe passing gap 
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(28.6%) compared to when PO-i or SO-i gaps were less than the safe passing gap 

(21.4%). Smaller 1-i gap times also appear to increase the likelihood of significantly 

reduced mean or 85th percentile scenario (i) speeds, despite these datasets containing 

nearly the same percentages of observations with either PO-i or SO-i gaps less than the 

safe passing gap as the full datasets. Additionally, a higher percentage of non-

neighborhood or urban collector datasets displayed significantly different speeds, 

compared to neighborhood greenways or local roads for all subsets of data.  

3.6 Discussion 

Based on the results of the scenario (i) speed and oncoming vehicle gap time 

analysis, and the results of the t-tests comparing the speeds of passenger cars following 

bicycles (scenario (i)) and passenger cars following other passenger cars (scenario (ii)), 

there is little evidence to suggest that bicycles lead to a practical reduction in passenger 

car speeds on low volume, low speed urban roads without bicycle lanes under general 

operating conditions. 

In traffic literature, free-flow speeds are defined as those occurring when a 

vehicle is traveling uninhibited by the preceding vehicle. A gap time between vehicles 

greater than four to six seconds is typically used as a threshold to identify vehicles in 

free-flow conditions. When motorized vehicles are forced to follow a slower-moving 

bicycle under inhibited flow conditions, it is expected that mean and 85th percentile 

speeds will be reduced. This is demonstrated by the results of the t-tests on datasets 

limited to observations with 1-i and 2-ii gaps less than 10 s, showing a somewhat higher 
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percentage of significantly reduced mean or 85th percentile speeds than when all 

observations are tested. However, when overtaking opportunities are sufficiently 

abundant, a passenger car approaching a bicycle from behind may not need to 

significantly reduce their speed for a meaningful amount of time. Thus, the overall speed 

of traffic would be largely unaffected. This outcome is evidenced by the results of the t-

tests performed when scenario (i) data were subset according to the potential for an 

opportunity to overtake. When PO-i and SO-i gaps were both greater than or equal to the 

safe passing gap, fewer total datasets showed evidence that scenario (i) mean or 85th 

percentile speeds were reduced by one mile per hour (1.6 km/h) or more, compared to 

when either the PO-i or SO-i gap was less than the safe passing gap. The few low, 

positive correlations observed between scenario (i) speeds and the PO-i or SO-i gaps for 

the 24-hour period seem to support this conclusion. The peak hour speed-gap analysis did 

not show evidence of stronger correlations. Due to the directionality that is often present 

with peak-hour traffic, it is likely that the oncoming traffic peak hours do not coincide 

with same-direction peak hours, thereby allowing larger oncoming gaps and more 

opportunities for overtaking, resulting in little to no additional impact on speeds. 

Overall, the t-test results produced limited evidence that passenger car speeds are 

reduced on these lower volume, low speed, urban roads without bike lanes. Mean or 85th 

percentile speed reductions of one mile per hour (1.6 km/h) or more appear to occur less 

frequently on local functionally classed roads and neighborhood greenways, which 

prioritize active travelers and typically have high bicycle volumes. 
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When all observations were considered, only six of the 75 datasets analyzed (8%) 

indicated that scenario (i) mean speeds were significantly lower than scenario (ii) by 

more than one mile per hour (1.6 km/h). Differences in mean speeds for scenario (i) and 

scenario (ii) in these datasets ranged from 1.6 to 3.3 mph (2.6 to 5.3 km/h). Only one of 

these datasets demonstrated a significant difference in 85th percentile speeds when all 

observations were analyzed. A few common characteristics were present in these datasets 

that may have contributed to the difference in speeds. All six datasets were collected 

from urban collector roads, and the 85th percentile speeds for both vehicle scenarios were 

all in excess of the PSL. Additionally, a high percentage of class two vehicles exceeding 

the PSL was observed (38% to 58%). Grade did not appear to be a significant factor, 

however. At five of the sites, the presence of centerlines and class two ADT greater than 

is recommended by Danish bikeway design guidance for shared roads may have 

influenced motorists’ decision to overtake. Additionally, larger speed differentials were 

observed between bicycles and passenger cars in two datasets due to PSLs outside the 

recommended range for shared roads, likely causing motorists to decrease speed when 

overtaking on account of safety. One site, westbound Clinton west of 14th, differed 

somewhat from the other five sites. At this location, a centerline is absent, and priority is 

given to bicycles, which comprise nearly 63% of the total traffic. The class two ADT and 

PSL for this dataset were within the acceptable range for shared roads. Speed humps are 

present throughout this segment of the roadway at roughly 400-500 ft. (122-152 m) 

intervals to calm traffic. Motorists may choose to delay overtaking a bicycle due to the 

presence of a downstream speed hump and the nature of braking and accelerating 



61 

associated with it. A traffic signal is also present at a T-intersection approximately 425 ft. 

(130 m) downstream of the data collection location. This distance was insufficient for 

overtaking according to the calculated PSD for 67% of the observations, likely forcing 

motorists to delay overtaking until the intersection was cleared. 

3.7 Conclusions 

This research has provided a detailed comparative analysis of passenger car 

speeds using two vehicle scenarios: (i) a passenger car that was preceded by a bicycle, 

and (ii) a passenger car that was preceded by another passenger car. This research 

addressed limitations of a previous study [7] by incorporating a significant number of 

study sites displaying a wide variety of characteristics with respect to functional class, 

grade, traffic volume and composition, and PSL. As the bicycle mode share continues to 

grow, it will be increasingly important to design and maintain robust networks of bicycle 

facilities, and these results indicate that shared roads can contribute substantially to those 

networks while preserving the mobility of motorized travelers.  

Gaps in oncoming traffic were analyzed for the potential effect of overtaking 

opportunities on the speed of class two vehicles following bicycles. The mean and 85 th 

percentile speeds of the two vehicle following scenarios were compared using t-tests. The 

results of the analyses presented within this paper predominantly indicate that bicycles 

are unlikely to lead to reduced passenger car speeds on urban roads without bicycle lanes 

that meet the guidelines for shared roadways.  
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When all observations were considered, a small percentage of datasets did show 

evidence of significantly different mean speeds, but a significant difference in 85th 

percentile speeds was only observed in one of the 75 datasets. Overall, the results of the 

hypothesis testing suggest that scenario (i) speeds are less likely to be reduced by one 

mile per hour (1.6 km/h) or more on streets that are designated as neighborhood 

greenways or those that carry a local functional classification. 

Even if speed reductions are statistically significant, this does not necessarily 

imply that these reduced speeds have a meaningful impact in terms of travel time. The 

relationship between travel time and speed is relatively complex, and road users in urban 

areas generally overestimate the actual time savings associated with higher travel speeds 

[32-33]. Traffic signals and stop signs are more likely to increase motorists' travel time in 

streets that meet the guidelines for mixed-traffic roadways. Future studies, like [34], that 

account for each vehicle travel time between successive data collection locations, can 

provide additional information about the main sources of delay in low speed, low volume 

urban roads with a high percentage of active travelers.  
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Abstract 

Increasing levels of congestion on urban roadways is often cited by cities as 

motivation to promote alternative modes of travel, such as cycling. New policies and 

updates to the roadway infrastructure are being implemented to better serve existing 

cyclists and encourage new ones. The success of many of these projects depends on a 

thorough understanding of the dynamics of cycling, including travel speeds. The ability 

to predict bicycle speeds has implications for bikeway design, signal timing, and trip-

planning purposes. Previous research attempts to predict bicycle speeds most frequently 

include a mix of site-level characteristics and characteristics at the individual level, such 

as gender, age, type of bicycle, or cycling experience. Collecting data at the individual 

level is more complex than site-level data, generally requiring cyclists to opt into studies 

by using GPS tracking devices or smartphone apps, which may bias results. Automatic 

speed recorders such as pneumatic tubes are easier to administer and are widely used to 

collect traffic speeds, including those of bicycles. However, data about the individual is 

unavailable with this data collection method. Therefore, this paper focuses on traffic, 

geometric, and roadway factors to model bicycle speeds. The results of a regression 

analysis indicated that bicycle speed is predominantly influenced by grade. Additionally, 

the average passenger car speed, the segment length, the percentage of bicycles, and the 

type of bikeway facility were found to have statistically significant (p < 0.05) effects on 

bicycle speeds. On shared roads, the interaction of the bicycle facility type and the 

percentage of bicycles was found to have a moderating effect on speed. 



4.1 Introduction 

Traffic congestion is an ever-growing problem in many cities across the U.S., 

leading to longer commute times, increased fuel costs, and higher levels of greenhouse 

gas emissions. In an effort to combat the effects of traffic congestion, some cities are 

aggressively promoting alternative modes of travel, such as cycling. The City of Portland, 

Oregon is one such city. The Portland Bicycle Plan has established a goal to reach a 25% 

bicycle mode share by the year 2030, a significant increase from the 6.3% bicycle mode 

share recorded in 2017 [1-2]. Research has indicated that providing more direct routes 

and building additional separated bikeways or bike boulevards may be key incentives for 

cycling [3]. Consistent with these findings, the Portland Bicycle Plan recommends a 

significant expansion of bicycle facilities, as well as developing street design guidelines 

with provisions for bicycles to help achieve their ambitious mode share goal. 

The success of many new policies and updates to roadway infrastructure geared 

toward increasing bicycle volumes depends, in part, on a thorough understanding of 

cycling dynamics, especially travel speed. Speed is an important parameter for route 

choice and mode choice modeling, for example. Furthermore, speed is a key 

consideration in bikeway design, traffic signal coordination, traffic signal clearance 

intervals [4], and as an input to simulations modeling flow in mixed-traffic environments. 

Typically, bicycle speeds are assumed to be constant for planning and design 

purposes. However, speeds can vary widely between individuals and among locations. 

Thus, it is imperative to determine the factors that affect bicycle speeds so that projects to 

stimulate cycling produce the maximum intended results. 
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Many previous studies have been conducted to establish bicycle free-flow speeds 

and distributions [5]. Far fewer studies have focused on identifying the factors that 

influence bicycle speeds [6-13]. These factors can be divided into two main categories. 

The first category pertains to site-level factors, such as grade and bicycle facility type, as 

well as ADT or mean traffic speed. The second category pertains to factors at the 

individual level, including age, cycling experience, bicycle type, or trip purpose. Most of 

the previous studies have included a combination of site and individual factors. 

Relatively few studies have focused solely on site-level factors. Collecting individual-

level data is more complex than site-level data. The former is typically collected using 

GPS devices or smartphone apps, which require users to opt-in and may lead to a biased 

sample. For example, Garber et al. found that smartphone app users road more frequently 

and were more likely to consider themselves stronger or more fearless riders compared to 

the general cycling population [14]. Video cameras can also be used to collect certain 

data about individual cyclists, but this method tends to be labor intensive which may 

hinder sample size.  

Pneumatic tubes are a commonly used and cost-effective method for collecting 

traffic speeds, including those of bicycles. The Portland Bureau of Transportation 

(PBOT) frequently employs pneumatic tubes to perform traffic surveys. Unfortunately, 

data at the individual level is not attainable with this method alone. Considering the 

prevalence of pneumatic tube use in traffic surveys and acknowledging the challenges 

with obtaining data at the individual level, this paper focuses strictly on a wide variety of 

traffic, geometric, and roadway factors to model bicycle speeds on urban roads using 
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pneumatic tube data collected by PBOT. The results of this research will enable planners 

and bikeway designers to create better routes and facilities that increase the appeal or 

utility of cycling.  

4.2 Literature Review 

Factors affecting motorized vehicle operating speeds have been explored in many 

previous studies, but due to vast differences in size, performance, and operation, the 

majority of these factors are not applicable to bicycle speeds.  

With few exceptions (e.g., e-bikes), bi cycles are human-powered. Thus, speed is 

partially limited by physical and health characteristics of the cyclist. Most of the previous 

studies investigating factors that influence bicycle speed have included one or more 

variables related to the individual. Of these, a cyclist’s gender is frequently considered 

when modeling bicycle speed, as it is generally accepted that males can generate a higher 

power output than females, on average. Indeed, several studies have concluded that the 

average bicycle speed of males is higher than that of females [4, 8-11]. 

Other factors at the individual level that have previously been investigated include 

the cyclist’s age, type of bicycle, cycling experience, and trip purpose. For example, El-

Geneidy et al. explored the possible influences of age, comfort level in traffic, the 

cumulative distance a cyclist traveled to the beginning of a given segment, and the total 

trip distance on bicycle speed predictions. Data were collected by GPS units attached to 

eight participants’ handlebars. The results of the generalized speed model showed that 

age had a minor, although not statistically significant, positive effect on speed. The 
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cyclist’s comfort level in light traffic was not significant, but the comfort level in heavy 

traffic did have a positive effect on speed (p = 0.07). T he cyclist’s cumulative distance 

traveled to the beginning of a given segment showed a negative influence on speed but 

was not statistically significant. However, total trip distance was significant (p = 0.00) 

with a positive effect [8]. 

Strauss and Miranda-Moreno included the person-type variables of age category 

and trip purpose when analyzing characteristics that may affect bicycle speeds. Data were 

collected via a GPS smartphone app. The results of their linear regression analyses 

indicated that cyclists under the age of 25 have a positive effect on speed, and cyclists 

over the age of 44 have a negative effect on speed. The models also showed trips made 

for work or school were associated with higher speeds. All variables in the final models 

were significant at the p < 0.05 level [11]. 

Flügel et al. also utilized a GPS smartphone app for data collection to construct a 

log-linear regression model for regular and e-bike speeds. Trip purpose was included as a 

person-type independent variable. In the resulting model for regular bicycles, trips related 

to work were positively associated with speed, although the authors noted some initial 

uncertainty about the reliability of the app’s automatic trip purpose function [9]. 

Parkin and Rotheram examined several variables related to the individual cyclist 

such as the cycling experience or frequency, body mass index (BMI) , type of bicycle, and 

the carriage of luggage to determine speed and acceleration characteristics for various 

gradients. Handlebar mounted GPS units were used to collect data and linear regression 

models were created. However, due to a small sample size of cyclists (n = 16) who were 
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generally experienced and cycled regularly, none of the person-type variables were found 

to significantly influence speed [10]. 

Compared to the aforementioned studies that involved regression analyses, Xu et 

al. took a somewhat different approach to predicting bicycle speed by developing neural 

network models including different combinations of input variables. Data were collected 

by video along straight segments of separated bicycle paths. The variables were 

partitioned into four groups, representing cycleway width, bicycle flow, bicycle type 

(percentage of electric or scooter style bikes) , and cyclist characteristics (age category, 

carriage of cargo, and gender) . The authors concluded that a model combining all four 

groups of variables resulted the best performance with an R2 of 0.87 [13]. 

Tengattini and Bigazzi also provided an alternative method for estimating bicycle 

speed by presenting a mathematical framework based on the mechanics of the bicycle 

and power output of the cyclist. Several variables at the individual level are necessary to 

estimate speed using this approach, as bicycle speed is a function of the cyclist’s power 

output and the total resistive force. The total resistive force is dependent, in part, on the 

cyclist and bicycle weights, the frontal area of the cyclist-bicycle unit, and the bicycle tire 

width and pressure. Additionally, the resistive force due to grade can be a major factor 

for bicycle speed [12].  

Grade has frequently been included in the literature as a site-level variable when 

modeling bicycle speed, consistently presenting a significant association. While an uphill 

grade displayed a relatively linear effect on bicycle speed, the model developed by Flügel 

et al. [9] and research by Ryeng et al. [15] found downhill grade to have a non-linear 
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effect. Other studies [10-11] have also discovered non-linear associations between grade 

and bicycle speed, as evidenced by a larger magnitude for the uphill coefficients. This 

non-linear effect may be attributed to safety. As the downhill grade becomes large, speed 

increases to a limiting point beyond which safety becomes an issue. This threshold grade 

was estimated to be in the 5% to 6% range [9, 15]. 

Facility type is another site-level variable that has been examined in a few of the 

reviewed studies. Both the OLS and generalized speed models constructed in El-Geneidy 

et al. suggested that off-street facilities have a positive effect on bicycle speed compared 

to on-street facilities and regular streets without facilities [8]. Research by Flügel et al. 

seems to agree with this finding. Dummy variables signifying a cycling only path, a 

walking and cycling path, a cycling lane, or all other roads were included as independent 

variables. The resulting model indicated that the highest bicycle speeds would be 

observed on cycling only paths, followed by cycling lanes and combination 

walking/cycling paths, when all other variables were held constant [9]. Similarly, Strauss 

and Miranda-Moreno found the presence of bicycle infrastructure to have a positive and 

statistically significant effect on bicycle speed (p < 0.001) [11]. A n explanation for these 

results may be seen with research by Bernardi and Rupi, who studied the influence of 

non-stationary disturbances in off-street and mixed-traffic cycling environments on 

bicycle speed reductions. The authors concluded that on the separated paths shared with 

pedestrians, disturbances were more frequent but produced moderate reductions, whereas 

disturbances due to heavy vehicles in mixed-traffic environments were relatively few but 

produced the greatest speed reductions [7]. 
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Site-level variables such as geometric characteristics, traffic flow, roadway 

functional class, or the presence of traffic signals have been investigated in addition to 

grade or facility type in a few of the previous studies.  

Segment length, ADT, and traveling during the AM peak period were also 

included in the models by El-Geneidy et al. Segment length showed a positive influence 

on bicycle speed but ADT and traveling during the AM peak did not produce significant 

effects [8].  

Strauss and Miranda-Moreno also found segment length to significantly increase 

bicycle speed, as did the absence of traffic signals at the segment ends, traveling during 

the AM peak, and traveling on an arterial or collector road. The model also evaluated the 

effect of bicycle flow, which was not included in the final models [11].  

Along with facility type and grade, Flügel et al. examined the influence of 

horizontal curvature on bicycle speed and found that speeds were reduced when the 

curvature was greater [9]. 

Much of the reviewed research used linear regression methods to model bicycle 

speed. This approach assumes independence between subsequent observations. However, 

a cyclist’s speed on a given segment may also be dependent on the speed of the previous 

segment, particularly if the previous segment contained a steep grade. With this in mind, 

Arnesen et al. compared a generalized linear model with slope and horizontal curvature 

as the independent variables to a forward Markov model that also accounted for 

dependence between the current and previous segment’s speeds. This comparison 
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revealed that the forward Markov model outperformed the generalized linear model, 

displaying a lower standard error [6].  

Overall, the explanatory power of the regression models discussed within the 

literature was quite low. The R2 or adjusted R2 values reported ranged from 0.12 to 0.49, 

with a median around 0.25 [7-11]. This suggests that there are factors that affect bicycle 

speeds that were not accounted for. Additionally, small sample sizes or sampling bias due 

to the data collection methods may have been a factor. 

4.3 Data Collection 

Traffic data for both bicycle and motorized traffic were collected from 2015 

through 2019 by the Portland Bureau of Transportation (PBOT) us ing pneumatic tubes. 

The tubes were configured to record the speed and vehicle class of each observation. 

PBOT frequently conducts short-term traffic surveys (minimum of one full day) us ing 

pneumatic tubes, and the crews are skilled in the proper placement to collect accurate 

data. Sites were selected to represent a variety of geometric and roadway conditions. A 

total of 97 directional datasets were obtained.  

Vehicle class was determined by a modified FHWA Scheme F [16], with which 

passenger cars are considered class two and bicycles are considered class one, along with 

motorcycles. Although motorcycles account for only a minor percentage of the total 

traffic and VMT [17-18] and e-bikes are still relatively rare compared to standard pedal 

bicycles [19-20], an attempt was made to filter out class one vehicle observations that 

appeared to be generated by a motorized vehicle. This was performed by inspection of 
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the class one speed histograms in comparison to the class two (passenger car) speed 

histograms, and by referencing the estimated grade at the data collection location. Figure 

4.1 provides an example of a location with a bimodal class one speed distribution, 

showing the class one speed histogram overlaid by that of class two. Notice that the mode 

to the right corresponds well with the mode of the class two speed histogram, indicating 

the presence of motorized class one vehicles. Following the data cleaning process, the 

class one speed histograms for all datasets were inspected to ensure the data 

approximated a normal distribution. 

Figure 4.1 Class one speed bimodal distribution with class two speed distribution 
overlaid. 

Nearly 85% the datasets were collected from two-lane, two-way streets. Only 

10% of the datasets were from multilane streets and 6% were from one-way streets. Table 
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4.1 provides descriptive statistics of the traffic, roadway, and geometric variables 

collected. The traffic variables including traffic composition, speeds, and ADT were 

sourced from the pneumatic tube data. The speed limit, road width, functional class, and 

bicycle facility type were sourced from local GIS database [21]. Bus routes were sourced 

from the local transit provider [22]. Grades were estimated from a 10-foot contour map 

and are presented with a negative value for a downhill direction [23]. Distances, lengths, 

and access densities were determined by inspection of satellite or street view imagery. 

Previous research has modeled bicycle speed over an entire segment; thus, variable 

values were averaged over its length. In the current study, the data were collected at a 

point location. This method may offer a higher level of precision in the measurement of 

the site-level independent variables, especially when compared to variables measured 

across longer segment lengths. 
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Table 4.1 Descriptive statistics of the collected variables 

Name Description Min. Max Mean St. Dev. Type 
PSL Speed Limit (mph) 20 35 24.07 3.84 ratio 

C1_Pct 
Class 1 Percent of Total Traffic 
(%) 0.32 80.34 29.31 24.52 ratio 

C1_Mn Mean Class 1 Speed (mph) 8.88 22.07 13.91 2.42 ratio 
C2_Mn Mean Class 2 Speed (mph) 11.02 36.83 22.23 4.68 ratio 
ADT_C2 Class 2 ADT 79 10629 2029 2306.59 ratio 
Grade Grade (%) -5.00 5.00 0.01 1.72 interval 
Road_Width Road Width (ft.) 28.00 76.00 38.54 8.26 ratio 
Dist_To_TC Distance to Traffic Control (mi.) 0.00 1.53 0.22 0.23 ratio 

Dist_From_TC 
Distance from Traffic Control 
(mi.) 0.00 1.53 0.24 0.26 ratio 

Seg_Length Segment Length (mi.) 0.09 1.88 0.46 0.36 ratio 

Access_Dens 
Access Density (accesses per 
mi.) 0.00 127.80 66.20 34.13 ratio 

Bike_Shared Shared Bikeway Presence 0 1 0.64 - dummy
Bike_Lane Bike Lane Presence 0 1 0.22 - dummy
Bike_None No Bike Facility Presence 0 1 0.14 - dummy
Bus_Route Bus Route Presence 0 1 0.47 - dummy
FC_L Functional Class Local 0 1 0.41 - dummy

FC_UC 
Functional Class Urban 
Collector 0 1 0.54 - dummy

FC_A Functional Class Arterial 0 1 0.05 - dummy 

Concerning the bicycle facility types within this study, it is important to highlight 

the differences in the features and intended purpose of roads with shared bikeways 

compared to roads with bike lanes or without facilities. All shared bikeways in this study 

are designated as neighborhood greenways. These are roads that prioritize bicycles and 

active travel and have relatively low motorized traffic volumes and speeds. These roads 

lack continuous centerline markings but display sharrows (shared lane symbols). T raffic 

calming measures such as speed humps and traffic circles are frequently present on these 

roads to deter speeding and cut-through traffic. Bicycles typically comprise a 

significantly greater portion of the total traffic on neighborhood greenways than the 
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citywide average. Within the 97 datasets collected, bicycles constituted an average of 

43% of the total traffic on neighborhood greenways, compared to 6% on roads with 

bicycle lanes, and 3% on roads without bicycle facilities. The overall mean class one and 

class two speeds and standard deviations, the mean percentage of class one vehicles, and 

the mean ADT by facility type are given in Table 4.2. A cross-tabulation of mean class 

two speeds (rounded to the nearest integer) by bicycle facility type is also displayed. The 

mean class one and class two speeds are highest on roads with bicycle lanes. These roads 

also have the highest ADT on average. Mean class one speeds on shared bikeways are 

slightly less than roads with bicycle lanes, and mean class two speeds differ by nearly 

nine mph. Roads without bicycle facilities displayed the lowest class one mean speed, 

differing by almost 1.5 mph from roads with bicycle lanes. The mean class one standard 

deviations for the facility types range from 2.84 to 3.58 mph while the mean class two 

standard deviations are somewhat higher at 3.69 to 4.76 mph. Figure 4.2 provides 

example street views for a typical neighborhood greenway, a road without bicycle 

facilities, and a road with bicycle lanes. 

Table 4.2 Cross-tabulation of mean class two speeds by bicycle facility type and select 
speed and traffic statistics by facility type 

Bike 
Facility 

Mean Class 2 Speeds (mph) 
11 12 17 18 19 20 21 22 23 24 25 26 28 30 31 32 33 34 36 37 

Shared 1 1 2 6 8 18 15 6 3 1 1 0 0 0 0 0 0 0 0 0 
None 0 0 0 1 2 1 4 0 1 1 1 1 0 2 0 0 0 0 0 0 
Lane 0 0 0 0 0 0 1 1 2 1 2 1 3 2 1 2 2 1 1 1 

Mean Class 1 Mean Class 2 Class 1 SD Class 2 SD % Class 1 ADT 
Shared 14.00 19.98 2.84 3.69 43.16 1164 
None 12.87 22.62 3.58 4.56 2.89 4258 
Lane 14.33 28.63 3.12 4.76 6.02 7399 



Figure 4.2 Bicycle infrastructure examples, from top to bottom: shared bikeway, no 
bicycle facilities, and bicycle lanes with a marked buffer. 

Several of the site-level variables mentioned in the literature were included for 

analysis in this study, and several new variables were added. The distance from a traffic 

control device was included as an independent variable under the assumption that it takes 

a cyclist some distance to reach their preferred cruising speed after starting from a 

complete stop. The distance to a traffic control device was included based on empirical 
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evidence that cyclists prefer to adjust their speed when approaching a red signal to remain 

in continuous motion rather than stop and wait [24]. The presence of a bus route was 

added due to research suggesting heavy vehicles may impede bicycles and cause more 

pronounced reduced speeds that standard passenger vehicles [7]. The percent of total 

traffic comprised by bicycles was also considered under the hypothesis that larger 

percentages may indicate a wider variety of cyclist types and experience levels, which 

may affect the mean speed. Access density was included in the analysis as cyclists may 

be more cautious in areas with numerous opportunities for vehicles to enter or exit. For 

this study, the access density was calculated from the number of driveways on both sides 

of the road for one block in either direction of the data collection location. The posted 

speed limit and mean speed of class two vehicles were also included to explore the 

possibility that cyclists with more experience (and thereby faster) a re more likely to 

travel on higher speed roads than cyclists with lesser experience. 

4.4 Analysis 

The first step to determine which site-level factors may influence bicycle speed 

was to conduct a linear correlation analysis. Correlation coefficients between the mean 

class one (bicycle) speed and all variables were noted, as well as high correlation 

coefficients (r ≤ -0.50 or r ≥ 0.50) among variables. A correlogram can be seen in Figure 

4.3 where the radius of a circle indicates the strength of the relationship and the color 

indicates the strength and direction of correlation. 
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Figure 4.3 Correlogram of the mean class one speed and all collected variables. 

The results of the correlation analysis indicated grade to be the only variable with 

a high degree of correlation to the mean class one speed, with r = -0.73. The sign of the 

correlation coefficient signifies that slower speeds are associated with uphill grades and 

faster speeds are associated with downhill grades, as expected. Minor correlations were 

observed between the mean class one speed and the mean class two speed (r = 0.21), 

roads without bicycle facilities (r = -0.18), t he distance from a traffic control device (r = 

0.15), t he segment length (r = 0.12), a nd the access density (r = 0.10).  

The correlation analysis also revealed that several of the variables could be 

organized into various groups in which each variable of the group was highly correlated 

to the others. The mean class two speed, the class two ADT, the road width, and streets 
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with bicycle lanes were all highly positively correlated with each other, and to the speed 

limit or the presence of a bus route. Meanwhile, the class one percentage of traffic and 

shared bikeway variables were highly positively correlated, and were highly negatively 

correlated with bus routes, the presence of bicycle lanes, and the class two mean speed 

and ADT. Shared bikeways also presented a high positive correlation to local 

functionally classed roads. Other notable associations occurred between the segment 

length and the class two average speed (r = 0.50) or the distances to and from a traffic 

control device (r = 0.69 and r = 0.76, respectively), and between urban collector 

functionally classed roads and the presence of a bus route (r = 0.55). 

The next step in the analysis was to examine the significance and effect of the 

variables on the predicted bicycle speed. Regression models are commonly used to 

evaluate a response based on a function of covariates and were also applied to this 

analysis. The general form of the chosen regression model is shown in Equation 4.1, 

where Y represents the dependent (or response) variable,  Xi represents the set of 

independent variables, βi represents the coefficients of these independent variables, and ε 

represents an error term. By taking the natural log of both sides of Equation 4.1, the 

equation can be simplified such that the natural log of the dependent variable Y is a 

function of a linear combination of parameters, shown in Equation 4.2. 

𝑌 = 𝑒ఉబା∑ (ఉ)ା ఌ (4.1) 

𝑙𝑛(𝑌) = 𝛽 + (𝛽𝑋)


+ 𝜀 (4.2) 
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Using Equation 4.2, a base model was established with the natural log of the class 

one mean speed as the dependent variable and grade as the independent variable. Grade 

was chosen for the base model due to its significant association to the class one mean 

speed. One at a time, the remaining variables were added to the base model to create 

linear combinations of two independent variables. The change in the adjusted R2 and the 

statistical significance of the coefficient for the added variable were recorded. Table 4.3 

provides the adjusted R2 and the change in the adjusted R2 compared to the base model, 

as well as the estimated coefficient and its p-value for each variable. 

Table 4.3 Results from the two-variable combination regression analyses 

Variable Adj. R2 Adj. R2 Change Coeff. p-value
Grade (Base Model) 0.510 NA -0.0737 0.0000*
Bike_None 0.563 0.053 -0.1187 0.0000*
C2_Mn 0.537 0.027 0.0067 0.0122* 
Dist_From_TC 0.532 0.022 0.1098 0.0230* 
Seg_Length 0.524 0.014 0.0651 0.0588 
Bike_Lane 0.523 0.013 0.0567 0.0621 
PSL 0.514 0.004 0.0041 0.2075 
Access_Dens 0.513 0.003 0.0005 0.2138 
Bus_Route 0.512 0.002 -0.0281 0.2674
FC_UC 0.511 0.001 -0.0257 0.3085
FC_A 0.510 0.000 0.0534 0.3506 
Bike_Shared 0.509 -0.001 0.0217 0.4082 
C1_Pct 0.508 -0.002 0.0004 0.4895 
ADT_C2 0.507 -0.003 0.0000 0.5340 
FC_L 0.507 -0.003 0.0157 0.5407 
Dist_To_TC 0.507 -0.003 0.0268 0.6206 
Road_Width 0.506 -0.004 0.0004 0.8095 

*p < 0.05



The adjusted R2 of the base model suggests grade alone may explain more than 

50% of the variation in the natural log of the mean class one speed, shown in Table 4.3. 

When grade is held constant, the natural log of the mean class one speed is reduced on 

roads without bicycle facilities and increases with greater class two mean speed or 

distance from a traffic control device. Each of these variables were significant at p < 0.05. 

Positive effects on the predicted speed were estimated with the addition of the segment 

length, the presence of a bicycle lane, the speed limit, or the access density to the base 

model, while the presence of a bus route or an urban collector functional class showed 

negative effects on the predicted speed. Although these variables appeared to provide 

small increases to the adjusted R2, none of the estimated coefficients were statistically 

significant. The remaining variables did not produce clear effects on the predicted speed 

when added to the base model with grade alone. 

The development of the final model was the last step in the analysis and involved 

a dynamic selection process of variables, taking into consideration linear correlations 

between independent variables, the statistical significance of the estimated coefficients, 

the change in the adjusted R2 of the model, and the residual plots. During the model 

specification process, it was decided to include an interaction term between the 

percentage of class one vehicles and the shared bikeway indicator under the hypothesis 

that with the typically higher percentages of cyclists on this roadway type, a wider range 

of experience levels and abilities (and therefore, speeds) i s likely represented. 

The final variable selection with the estimated coefficients and p-values is 

provided in Table 4.4. All variables in the final model were significant at the p < 0.05 
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level. The adjusted R2 of the final model was 0.63, which indicates a reasonable fit and 

shows a marked improvement over the base model with grade only (Table 4.3). As 

expected, the coefficient for grade has a negative sign, indicating speeds decrease when 

traveling uphill, and increase in the downhill travel direction. The effect of segment 

length is also consistent with previous research, with longer segments contributing to 

higher speeds. Furthermore, the mean speed of class two vehicles, the percentage of the 

total traffic comprised by class one vehicles (bicycles), and the shared bikeway indicator 

all have a positive effect on the mean bicycle speed. However, for shared bikeways, the 

effect of the interaction term greatly reduces the positive effect of the class one 

percentage of traffic variable. 

Table 4.4 Coefficients of the regression analysis model 

Variable Estimate Std. Error t value p-value Rela. Imp.
Intercept 2.133 0.089 24.096 0.000 - 
C2_Mn 0.013 0.003 4.098 0.000 9.5 
Grade -0.075 0.006 -11.726 0.000 79.1 
Seg_Length 0.081 0.036 2.264 0.026 2.6 
C1_Pct 0.014 0.004 3.453 0.001 0.9 
Bike_Shared 0.172 0.045 3.798 0.000 2.6 
C1_Pct:Bike_Shared -0.013 0.004 -3.273 0.002 5.3 

The relative importance of each independent variable is also shown in Table 4.4. 

Intuitively, grade is the most important factor in predicting bicycle speed, accounting for 

more than 79% of the explanatory power of the final model. Conversely, the percentage 

of class one vehicles contributed the least to the overall explanatory power, accounting 

for about 1% of the variation. 
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Due to the high importance of grade in the final model and findings of previous 

studies [9-11, 15] indicating non-linear effects of grade on bicycle speed, the grade 

variable of the final model was replaced by two new variables for uphill (positive) grade 

and downhill (negative) grade. The resulting coefficients for these new variables did not 

differ from each other significantly in magnitude. This would suggest a linear effect on 

speed for the range of grades within this study.  

4.5 Discussion 

The results of the final regression model complement well the existing literature 

of bicycle speed prediction. In the final model, the significance and sign of the grade 

variable are intuitive. In contrast to previous studies, non-linear effects of grade on 

bicycle speed were not observed. However, the range of downhill grades in this study did 

not include the range of limiting grades (5% to 6%) discovered in previous studies [9, 

15]. 

The significance and sign of the segment length variable are supported by 

previous studies. Longer segment lengths may allow cyclists more distance to reach their 

preferred cruising speed. The final model also seems to validate the hypothesis that 

cyclists travel faster on roads with higher average passenger car (class two vehicle) 

speeds. Higher passenger car speeds were typically observed on higher volume roadways 

where bicycle lanes were present. Although the current research cannot ascertain whether 

the effect of passenger car speed is indeed due to the influence of cycling experience or 

comfort level riding in heavier traffic, it remains a possibility that could be further 
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explored in future studies. Additionally, the positive effect on bicycle speed of a shared 

bikeway also appears to corroborate with previous research findings that speeds are 

higher when bicycle infrastructure is present. Furthermore, the unique characteristics of 

the shared bikeways in this study (neighborhood greenways) m ay create a cycling 

environment that is more comparable to a separated path than a typical street with or 

without bicycle lanes.  

While previous research found that bicycle speed was higher on arterial or 

collector roads, the current study did not find any of the functional class indicator 

variables to be significant. It is possible that an insufficient number of arterials in the data 

did not facilitate a reliable conclusion about their influence. Another observation 

regarding the functional classes of the study sites was that they did not necessarily 

represent homogeneous characteristics of the roadways. For example, a number of the 

neighborhood greenway sites were classified as collectors, as were all of the roads 

without bicycle facilities and several of the roads with bicycle lanes. The speeds, traffic 

volumes, and general roadway characteristics differed greatly among these roads. 

Interestingly, the class one percentage variable shows a positive influence on 

bicycle speed, although the interaction term has a substantial moderating effect on roads 

with shared bikeways. A higher proportion of bicycles on roads with bicycle lanes or 

without bicycle facilities may indicate an increased popularity of the route with more 

experienced cyclists. Conversely, the moderating effect of the interaction term may mean 

there is a wider range of cyclist experiences and abilities on shared bikeways, with more 

cyclists at the lower ends. Additionally, higher volumes of leisure cyclists may travel on 
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these lower stress roadways, contributing to a reduction in the predicted mean speed. The 

final model implies that when the percentage of class one traffic is less than 

approximately 13%, the speeds on shared bikeways will be higher than on roads with 

bike lanes or without facilities when all other variables are held constant, due to the 

influence of the shared bikeway indicator. As the class one percentage increases above 

13%, the contribution of the class one percentage variable for roads with bicycle lanes or 

without facilities begins to offset the effect of the shared bikeway indicator when holding 

all other variables constant. However, recall that the mean class one percentages on roads 

with bicycle lanes or without facilities were only 6% and 3%, respectively. 

Across the bicycle facility types, the overall mean class one speed from the 

empirical data was highest on roads with bicycle lanes, followed closely by shared 

bikeways, and roads without bicycle facilities trailing by approximately 1.5 mph. Despite 

the substantial influence of the shared bikeway indicator, the predominantly higher mean 

class two speeds and moderate class one percentage on roads with bicycle lanes leads to 

similarly predicted mean class one speeds for both facility types. Without the positive 

effects from either the mean class two speed or the shared bikeway indicator, the 

predicted mean class one speed on roads without bicycle facilities is the lowest.  

4.6 Conclusions 

This research has identified geometric, traffic, and roadway factors that may help 

predict bicycle speeds using a generalized linear regression approach. In addition to the 

unrefuted negative association with grade, the results suggest that the mean bicycle speed 
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of a given site is increased when the mean speed of passenger cars is higher, the segment 

is longer, or the road features a shared bikeway. Traffic volumes composed of a larger 

proportion of bicycles also predict higher mean bicycle speeds, although this effect is 

significantly moderated on shared bikeways.  

The relatively high adjusted R2 of the final regression model (0.63) suggests that 

bicycle speeds can be reasonably predicted at a given location from site-level factors 

alone. The results of the regression analysis also indicate that data collection by 

pneumatic tubes is a viable option for the creation of bicycle speed models, which may 

reduce bias inherent in other data collection methods that require study participants to 

opt-in. However, this data collection method also introduces its own limitations as 

pneumatic tubes alone cannot decipher a traditional bicycle from an e-bike or motorcycle. 

Even though an attempt was made to filter out observations of class one vehicles that 

appeared to be traveling faster than reasonably achievable by a pedal cyclist, it is possible 

that some observations made by a slower e-bike or motorcycle were included, or that 

some higher speed observations made by a traditional bicycle were excluded from the 

analysis. Combining pneumatic tubes with an additional data collection method capable 

of distinguishing motorized and non-motorized class one vehicles (such as video 

cameras) c ould provide more accuracy of the traffic data, and also deliver insight into the 

measurement error associated with using pneumatic tubes alone. 

Creating accurate predictions of bicycle speed is a difficult task. There are many 

factors related to the human component that cannot be measured easily or reliably. 

Individual attitudes and preferences may vary greatly among cyclists with otherwise 
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similar physical characteristics and experience levels, and they may even vary within a 

single individual from day to day. However, the findings of this research may provide a 

significant improvement over the traditional assumption of a constant bicycle speed for 

transportation planning and design purposes. The ability to create bicycle facilities more 

closely attuned to the needs of cyclists could help cities like Portland spark growth in the 

bicycle mode share and bring it closer to their goal. 
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5 Summary and Concluding Remarks 

The research presented in this thesis has focused on examining the speed 

behaviors of passenger vehicles and bicycles through their interactions with each other 

and with geometric and roadway characteristics. Traffic data collected with widely 

utilized pneumatic tubes were evaluated to answer two key inquiries: Do bicycles cause 

reduced passenger car speeds on urban roads without bicycle lanes? and What are the 

significant geometric, traffic, and roadway characteristics that influence bicycle speed? 

The answers to these questions have potentially far-reaching benefits, from enhancing 

bikeway design and improving bicycle routing, to mitigating congestion and reducing the 

environmental burden of greenhouse gasses. 

Chapter two provided a detailed comparative analysis of passenger car (class two 

vehicle) speeds belonging to one of two vehicle following scenarios: (i) a passenger car 

following a bicycle (class one vehicle), a nd (ii) a passenger car following another 

passenger car. The 11 traffic datasets analyzed were collected from six relatively 

homogeneous low-speed, low-volume urban roadways without bicycle lanes. The mean, 

the 50th, and the 85th percentile speeds of scenario (i) a nd scenario (ii) observations for 

both peak- and 24-hour traffic were compared using t-tests and confidence intervals. A 

few statistically significant differences were observed; however, the magnitude of these 

differences was generally one mile per hour or less. Hence, these small differences were 

deemed negligible from a practical perspective, resulting in an initial conclusion that 

bicycles are not likely to slow down passenger vehicles on low volume, low speed urban 

roads without bicycle lanes. 
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Following the initial conclusion reached by the research presented in chapter two, 

a subsequent study, detailed in chapter three, was conducted to address limitations of the 

initial study. The subsequent study sought to explore whether the initial conclusion would 

be supported when traffic data from a large number of roads with a variety of functional 

classes, centerline markings, traffic compositions, ADT, and grades were evaluated. 

Similar to the initial study, scenario (i) and scenario (ii) m ean and 85th percentile speeds 

were compared using t-tests. Additionally, relationships between the speeds of passenger 

cars following bicycles (scenario (i) observations) a nd the availability of adequate gaps in 

oncoming (opposing direction) traffic for overtaking were examined. Overall, the 

findings of this second study seem to confirm those of the first study, concluding that 

bicycles on lower-volume, low-speed urban roads without bicycle lanes are unlikely to 

cause reduced passenger car speeds. When all observations were evaluated, only 8% of 

the datasets indicated statistically significant differences in mean speed of one mile per 

hour or more, and only one dataset showed evidence of a statistically significant 

difference in the 85th percentile speed of one mile per hour or more. Characteristics of 

these datasets that may have contributed to the speed differences included relatively high 

proportions of vehicles exceeding the speed limit, ADT or speed limits outside the range 

of recommended values for mixed-traffic roads, and the presence of centerline markings. 

Relative to the gaps in the oncoming (opposing direction) traffic, fewer significant 

differences in mean or 85th percentile speeds of one mile per hour or more were observed 

when scenario (i) v ehicles had sufficient time to overtake a bicycle versus when the gap 

times with oncoming traffic were insufficient. 
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Chapter four then presented an analysis of mean bicycle (class one vehicle) 

speeds in association with the geometric, traffic, or roadway attributes of the data 

collection site. The use of pneumatic tube data was unique to this study compared to 

those reviewed in the literature. This data collection method eliminates the selection bias 

that may occur when research subjects are required to opt in through the use of special 

GPS devices or registration on smartphone apps. Additionally, prediction of bicycle 

speed based only on the site-level characteristics may be more applicable for planning 

and design purposes. The final regression model developed (adjusted R2 = 0.63) i ndicated 

that grade is the most important predictor of mean bicycle speed, accounting for 79% of 

the model’s explanatory power. Intuitively, grade was negatively associated with speed. 

The final regression model also suggested that the mean bicycle speed increases with 

higher mean passenger car (class two vehicle) speeds, a higher proportion of bicycle 

(class one) t raffic, longer segment lengths, and the presence of a shared bikeway. 

However, an interaction term between the presence of a shared bikeway and the 

proportion of bicycle traffic showed a moderating effect on speed. 

The primary limitation of the research presented in this thesis is the inability of 

pneumatic tubes to distinguish motorized or motor-assisted class one vehicles from non-

motorized class one vehicles. To help overcome this limitation, class one and class two 

speed distributions were scrutinized in conjunction with the grade at the data collection 

location to determine a reasonable upper speed bound by which to filter the class one 

speed data. Future research comparing class one speed data collected by a method 

capable of differentiating pedal bicycles from e-bikes or motorcycles to data collected 

104 



105 

with pneumatic tubes alone could shed light on the impact of using pneumatic tube data 

only for the analyses performed throughout this thesis. 

Despite this limitation, this thesis provides a valuable contribution to the bicycle 

literature. Through a better understanding of the determinants of bicycle speed and how 

bicycles affect motorized vehicle speeds on roads without bicycle lanes, facilities and 

routes that make bicycling more attractive while maintaining an appropriate level of 

motorized vehicle mobility can be implemented.  
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