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Abstract

Aerial target detection is often used to search for relatively small things over large

areas of land. Depending on the size and signature of the target, detection can be

a very easy or very difficult task. By capturing images with several hundred color

channels, hyperspectral sensors provide a new way of looking at this task, both literally

and figuratively. Hyperspectral sensors can be used in many aerial target detection

tasks such as identifying unhealthy trees in a forest, searching for minerals at a mining

site, or finding the sources of chemical leaks at a factory. The high spectral resolution

of hyperspectral imagery makes it well suited for these tasks, but the inherent high

dimensionality of these images poses a unique set of challenges.

The motivation of this work is to investigate the use of data clustering to improve

our ability to detect targets within hyperspectral images. Target detection algorithms

operate by identifying locations that are likely to contain a target when compared

with the background. We propose a new clustering-based target detection method that

allows multiple background models to be used. This new method pairs a clustering

algorithm with an array of spectral matched filters. We then analyze the performance

of various clustering algorithms when used with this method to detect targets in aerial

hyperspectral images.

We evaluate the performance of our clustered target detector on several aerial

hyperspectral images when using clusters generated by several popular algorithms,

specifically k-means, spectral clustering, Gaussian mixture models, and two variants

of subspace clustering. We show empirically that clusters generated by Gaussian

mixture models provide the best performance, obtaining a pAUC score of 0.192 in

the true positive detection rate on the RIT Radiance image for false positive rates of

1% or less, providing over a 12-fold increase when compared to the pAUC score of

0.0148 obtained for target detection without clustering. We then tune a Laplacian-

regularized Gaussian mixture model (LapGMM) algorithm specifically for the task of
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aerial hyperspectral target detection. We show empirically that our tuned algorithm

outperforms all others when used for this task, outpacing the traditional Gaussian

mixture model with a pAUC score of 0.219 for the same case above, thereby offering

over a 14-fold improvement in performance. We offer several hypotheses to explain

these results. We then discuss some of the features, most notably the versatility

provided by the regularizer, that make make the tuned LapGMM algorithm well suited

for this application.

Considering future work, we propose a number of potential applications for our

tuned LapGMM algorithm, as well as several potential improvements or modifica-

tions to the clustered target detector that may be worth further investigation. The

contributions of this thesis are a detailed investigation and analysis of the use of

clustering algorithms when used for target detection, and an analysis of the perfor-

mance of several clustering algorithms when used in an aerial hyperspectral image

application. Additionally, we contribute an algorithm tuned specifically for clustering

aerial hyperspectral images, which to the best of our knowledge is state of the art.
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Chapter 1

Introduction

1.1 Motivation

Aerial target detection is often used to search for relatively small things over large

areas of land. This task can be quite the difficult if the target is small and its color is

similar to its surroundings. Hyperspectral sensors offer an alternative way of looking

for targets, both literally and figuratively.

New innovations are often discovered when techniques and methods from one field

of study are applied to problems in another. A desire to find such innovations was

the primary motivation of this research. In this thesis we investigate data clustering

techniques from the field of machine learning and see how they can be applied to the

signal processing task of target detection.

Hyperspectral sensors can be used in aerial applications to gather a great deal of

information about an area, but the inherent high-dimensionality of this information

often makes it difficult to effectively utilize. Additionally, hyperspectral sensors

do not see things in the same way we do, making their output unintuitive and

challenging to interpret. The goal of our work is to investigate the application of data

clustering techniques to hyperspectral target detection problems and find out how

these techniques can be used to better interpret the information and improve target

detection performance.
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1.2 Overview of this Document

This thesis focuses on the task of target detection within hyperspectral images.

Specifically, it focus on the effect data clustering algorithms can have on point target

detection in aerial hyperspectral images.

This chapter provides some background on hyperspectral imaging and lists the

contributions of this document. The next chapter covers several target and anomaly

detection algorithms, common enhancements to these algorithms, and introduces

methods for analyzing and quantifying the performance of a target detector. Chapter

3 covers several popular clustering algorithms and introduces the clustered target

detector, a target detection algorithm that utilizes clustering to improve performance.

In Chapter 4 we show the performance of our clustered target detector when using

different clustering algorithms, and tune a clustering algorithm specifically for our

hyperspectral use case. In Chapter 5 we discuss the implications of our findings, and

highlight some potential avenues for future work.

1.2.1 Hyperspectral Imaging Background

Hyperspectral Imaging is an exciting technology that allows us to capture images

with details beyond what our eyes can see. Before we discuss hyperspectral imaging

in detail, it is important to understand some concepts behind light, photography and

digital imaging.

Light is the range of electromagnetic radiation that is visible to humans. Any

photon with a wavelength between 400 and 700 nanometers (nm) is light. At its core,

photography is just the practice of capturing and recording light. A camera is simply

a sensor that measures the amount of photons received. What sets different cameras

apart is how they subdivide and categorize the photons.

Most cameras subdivide the photons in two ways: propagation direction and
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wavelength. Digital cameras capture images by measuring the number of photons

from each direction and storing these values in units known as pixels. Pixels can be

plotted on a two dimensional graph to create a projection of whatever the camera

was pointed at (the subject). In that sense a photograph can be considered a two

dimensional graph of photon intensity (i.e., a photon graph). The quality of an image

is often measured by the number of pixels it contains, as images with greater pixel

count can capture more visual details of the original subject.

Pixels are further subdivided into color channels, with each channel corresponding

to the number of photons received that fall within a particular range (or ‘band’) of

wavelengths. Pixels in greyscale images contain a single color channel that measures

all the photons received within the band of visible light, whereas pixels in color images

contain three channels (red, green, and blue), corresponding to the three bands of

light that are differentiable by humans [7].

Three channels are used in color images because the intended viewer (trichromat

humans) can only see three color bands. If the intended viewer of the image is human,

then there is no benefit to capturing additional channels of light. That said, if the

image is to be viewed by a non-human (such as a target detection algorithm), then

additional channels can be used to capture additional information about the subject.

There are three categories of sensors that capture more than the three traditional

color channels, specifically:

1. Multispectral sensors — These sensors capture application-specific bands in

addition to the three human-differentiable bands of light. One example would

be the sensors on LANDSAT satellites [8], which (depending on the specific

satellite) capture between 1 and 8 channels in addition to red, green and blue.

Of the three categories of spectral sensors, Multispectral sensors tend to have

the highest pixel resolution.
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Figure 1.1: Using hyperspectral imaging to identify the materials and ground covering present in a
pixel. Each type of ground cover can be identified by its unique spectral signature. Taken from [1].

2. Hyperspectral sensors —These sensors capture a large number (100+) of channels

with narrow (≈ 1 to 20 nm) contiguous bands. Hyperspectral sensors usually

cover the full range of visible light, but do not capture the 3 human-visible

bands of light as independent channels. In contrast to multispectral sensors,

hyperspectral sensor bands are not chosen for a particular application. Instead,

the bands are chosen so that the channels of each pixel can be combined to

form a spectrograph. An example of a hyperspectral sensor would be the OCI-F

Hyperspectral Imager [9], which captures 240 evenly-spaced contiguous bands

between 400 and 1000 nm.

3. Ultraspectral sensors — Ultraspectral sensors have a very fine spectral resolution

( < 0.1 nm) but very low pixel resolution (often only one pixel). An example

would be an interferometer such as the The MK II Fraunhofer Line Discriminator

(FLD-II) [10].

The major trade-off between these three types of sensors is spatial vs. spectral res-
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olution. Multispectral sensors offer the greatest pixel resolution whereas ultraspectral

sensors offer the greatest spectral resolution. The factor that limits both of these types

of resolution is the number of photons received by the sensor. In order for a sensor to

operate correctly, each color channel within each pixel must receive enough photons

to make an accurate measurement. Smaller pixels receive less photons, so they must

sense over a wider spectral band of light to make an accurate measurement. Similarly,

narrower spectral bands of light contain less photons, so a larger pixel is needed to

make an accurate measurement. As an example of this trade off is the Panchromatic

senor on LANDSAT 8. Being monochromatic, it has a very wide spectral band,

covering most of the visible spectrum, but also offers 4× as much spatial resolution

when compared to the other sensors on the satellite. In contrast, hyperspectral sensors

offer have over one hundred narrow-banded channels throughout the visible spectrum,

offering high spectral resolution but with lower spatial resolution. In aerial hyperspec-

tral images a single pixel is typically over one square meter. While this low spatial

resolution makes hyperspectral imaging unsuitable for some applications, the high

spectral resolution makes it especially suited for a variety of applications. Figure 1.1

shows an example use case for hyperspectral imaging, identifying ground covering

from aerial images.

In the next chapter, we introduce several target detection algorithms that can be

used to find things in hyperspectral images. In Chapter 3 we show how data clustering

can be used to classify ground coverings in aerial hyperspectral images and improve

the performance of a target detection algorithm.

1.3 Contributions

Most of the target detection problems that were overcome in this thesis were done

so by implementing advanced clustering methods. Many of these problems have

admittedly already been solved through other techniques. That said, when you have
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a lot of experience with a hammer, every problem looks like a nail, and when you are

developing a clustering algorithm, every problem looks like a potential application

for clustering to overcome. As such, most of the contributions of this thesis are

application-specific clustering considerations.

1.3.1 Clustering Considerations for Hyperspectral Images

In this thesis we provide empirical results showing the performance of various clustering

algorithms when used in a hyperspectral target detection application. Our results

show that many algorithms work well for clustering aerial hyperspectral images, and

many do not. In addition to showing the empirical results, we provide hypotheses to

potentially explain why some algorithms performed the way they did, and in Section

5.2 list some potential ways poorly performing algorithms could be better utilized.

To the best of our knowledge, this is the first paper to investigate Gaussian mixture

model clustering in any Hyperspectral application, and (as covered in Chapter 3) was

listed as future work by several sources.

1.3.2 Clustering Considerations for Spectral Matched Filters

In Chapter 3 we discuss some of the properties of GMM and LapGMM that make

them especially well suited for clustering data for spectral matched filters (SMFs). In

Section 5.2 we discuss additional filters we believe these algorithms would pair well

with, extending the use of these algorithms to tasks such as anomaly detection.

1.3.3 A Clustering Algorithm Tuned Specifically for Aerial Hyperspectral
Images

In Section 4.5 we use spectral initialization and a Laplacian regularizer to tune the

LapGMM algorithm specifically for the task of aerial hyperspectral target detection. To

the best of our knowledge, this algorithm is the state of the art method for clustering

6



aerial hyperspectral images. In Section 5.2 we discuss additional applications we

believe this algorithm would be well suited for.
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Chapter 2

Target Detection Algorithms

2.1 Overview

Target detection is the ability to find a specified target within an image. Some example

applications are given in Section 1.3.

The goal of all target detection algorithms is to distinguish between two hypotheses

H0 : Target Absent

H1 : Target Present.
(2.1)

This thesis focuses on algorithms for signature-based point target detection in hy-

perspectral image analysis. For a more comprehensive overview of other hyperspectral

target detection algorithms, such as subspace- and support-vector-based approaches,

see [11, 2].

Point target detection is the ability to find a target signature within a single pixel.

For point target detection, the hypotheses in (2.1) can be formulated as:

H0 : x = w Target Absent

H1 : x = αs + (1− α)w Target Present,
(2.2)

where x ∈ Rd is the pixel vector, s ∈ Rd is the target signature vector, α is the target

strength and w ∈ Rd is the background noise.

The difficulty of finding a target in a given image depends largely on the other
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things in the image. For example, it would be much easier to find Waldo if nobody else

was in the image (and much more difficult if everyone was dressed like him [12]). In

order to accurately determine when a target is present in an image we must accurately

model the other things in the image, commonly known as the background. All of the

algorithms discussed in this chapter model the background as a multivariate Gaussian

distribution, i.e., w ∼ N (µB,CB), where µB is the mean of the background and CB

is the associated d× d covariance matrix. In Chapter 3 we use clustering to enhance

our background model to come from of multiple multivariate Gaussian distributions.

Multivariate Gaussian distributions have several properties that make them effective

for modeling the values of pixels within an image. They allow us to characterize the

values of each color channel in statistical terms like the mean and variance, and allow

us to model and quantify any correlations between color channels. From the Gaussian

model we can identify pixels that likely contain a target, as well as anomalous pixels

that differ from the background in statistically significant ways [13].

Modeling the background as a Gaussian distribution also allows us to take advantage

of the extensive set of mathematical tools developed for Gaussian distributions, such as

data whitening [14] and the Mahalanobis distance [15]. Data whitening is the process

of linearly transforming a dataset such that every dimension becomes uncorrelated

and has unit variance, i.e., Xwhitened = WX, where W is a d×d transformation matrix

resulting in Cwhitened = I. As shown in [14], C
−1

2
B can be used as a whitening filter,

where C
−1

2
B (C−

1
2

B )T = C−1
B , and C−1

B is any matrix that satisfies C−1
B CB = CBC−1

B = I.

As described in [15], the Mahalanobis distance is a measurement between two

points of a given Gaussian distribution. It measures the difference between two points

while accounting for the difference in variance between dimensions of the distribution.

It is defined as

distM(x, s) =
√

(x− s)TC−1
B (x− s). (2.3)
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The Mahalanobis distance between a point and the mean of a given distribution

measures the number of standard deviations that point is away from the mean.

In hyperspectral images the background variance varies widely by dimension. For

example, in aerial hyperspectral images some wavelengths are attenuated heavily by

the atmosphere, while others are not. The dimensions corresponding to the attenuated

wavelengths have very low variance per channel, while the unattenuated wavelengths

can vary widely. We want our target detectors to be more sensitive in low variance

dimensions and less sensitive in high variance dimensions, and using the Mahalanobis

gives us this scaled sensitivity. Equation (2.3) can be rearranged to show that the

Mahalanobis distance is simply a ‘whitened’ Euclidean distance

distM(x, s) =

√√√√(C
−1

2
B (x− s)

)T (
C
−1

2
B (x− s)

)

=
√

(W (x− s))T (W (x− s))

= ‖Wx−W s‖2 .

(2.4)

2.2 Spectral Matched Filter

The Spectral Matched Filter (SMF) [16] is a simple but powerful target detection

algorithm, and is the optimal linear filter in terms of the signal to noise ratio (SNR)

for distinguishing between hypotheses in (2.2) [17]. These properties make it the

SMF the de facto target detection algorithm for hyperspectral images, and therefore

is the detector this thesis primarily focuses on. The SMF is a constant false-alarm

rate (CFAR) detector that is derived from a generalized-likelihood ratio test (GLRT)

[13]. The SMF operates by constructing a simple model of the background, then

seeing if the pixel in question x stands out from the background B in the same way

as the target s would. To construct a matched filter, all that is required is the target

signature s, as well as the first- and second- order statistics of the background. This
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yields the decision rule

DMF(x) = (x− µB)TC−1
B (s− µB)√

(s− µB)TC−1
B (s− µB)

H1
≷
H0

ηMF, (2.5)

where µB is the mean of the background, C−1
B is the inverse of the background

covariance matrix, and ηMF is the chosen detection threshold. We discuss choosing a

detection threshold in Section 2.8.

In practice we do not know the true mean or covariance of the background, so we

estimate them using the following formulas [18]:

µ̂B = 1
N

1TNX = ∑N
i=1 xi, (2.6)

ĈB = 1
N − 1XTX− µ̂Bµ̂B

T , (2.7)

where N is the number of pixels, 1N is a vector of all 1s, and X is an N × d matrix

where each row is a single pixel, and d is the number of channels per pixel (also known

as the dimensionality).

Since we are using estimates for our background statistics, (2.5) implicitly imposes

the requirement that the number of pixels N is greater than or equal to the dimen-

sionality d, (i.e., N ≥ d). In order to invert the covariance matrix CB it must be full

rank, (i.e., rank d), and in order for a covariance matrix to be rank d, X must have a

rank equal-to or greater-than d, which is only possible if N ≥ d.

In the cases where N < d, the covariance matrix is not natively invertible and thus

must be regularized before it can be inverted. Tikov regularization can be applied to

the matrix to make it invertible, yielding the estimate

ĈB
−1 = (CB + λId)−1, (2.8)

where λ is the regularization scaling factor and Id is a d × d identity matrix. If
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a covariance matrix is an identity matrix, then there is no correlation between the

dimensions. By adding a portion of an identity matrix into the covariance matrix, we

make it full rank (and therefore invertible), but also reduce the amount of correlation

between dimensions, reducing the performance of our detector in cases where there is

correlation between dimensions.

The SMF calculates the inner product between the demeaned and whitened pixel

signature and a normalized, demeaned and whitened target signature. This inner

product is used to measure the similarity between the pixel and the target. Equation

(2.5) can be rearranged to show this relationship

DMF(x) =
〈

C
−1

2
B (x− µB), C

−1
2

B (s− µB)∥∥∥∥∥C−
1
2

B (s− µB)
∥∥∥∥∥
〉
H1
≷
H0

ηMF. (2.9)

We use the fact that the SMF is an inner product in Section 2.6 to build a kernelized

SMF.

2.3 Adaptive Cosine Estimator

The Adaptive Cosine Estimator (ACE) is a target detection algorithm that can be

viewed as a non-linear scale-invariant extension of the SMF. the ACE detector has

been shown to have impressive performance for hyperspectral target detection, as

noted in ‘The Remarkable Success of Adaptive Cosine Estimator in Hyperspectral

Target Detection’ [19], as well as in the less bombastically-named ‘Evaluating Subpixel

Target Detection Algorithms in Hyperspectral Imagery’ [20].

The ACE detector is defined as follows

DACE(x) = (x− µB)TC−1
B (s− µB)√

(s− µB)TC−1
B (s− µB)

√
(x− µB)TC−1

B (x− µB)

H1
≷
H0

ηACE. (2.10)

Equation (2.10) can be rewritten to highlight the relationship between the ACE

12



and the SMF detectors

DACE(x) = DMF(x)√
(x− µB)TC−1

B (x− µB)

H1
≷
H0

ηACE. (2.11)

The only difference between the two is that the output of the ACE detector is

scaled by the demeaned and whitened magnitude of x. This regularizer makes the

ACE detector insensitive to the magnitude of the target, making the output of the

ACE detector completely dependent on the angle between the target signature and the

pixel. This property allows the ACE algorithm to detect weak target signatures that

the SMF may miss, and also avoid false positives from pixels that are only somewhat

resemble the target signature s, but have large enough magnitude to reach the SMF

detection threshold [21].

This thesis does not investigate the performance of the ACE detector, but we do

incorporate scale insensitivity into our detector through clustering. See Section 3.5.1

for implementation details. In Chapter 4 we show that incorporating scale-insensitivity

into our clusters yields improved target detection performance.

2.4 RX Anomaly Detector

So far we have only considered the case where we are searching for a known target, but

in some cases we want to find anomalies, pixels that do not look like the background.

Target detectors search for pixels that deviate from the background in a particular

direction, whereas anomaly detectors search for pixels that deviate from the background

in any direction. Example hyperspectral applications for anomaly detectors include

searching for artificial materials in a natural background (such as structures in a

forest), or finding defects and imperfections on a product in an assembly line.

The most frequently used anomaly detector for hyperspectral imaging is the Reed-

Xiaoli (RX) detector [22]. Like the SMF, the RX detector is also a CFAR detector
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that is derived from a GLRT [13]. For each pixel the RX detector is specified by

DRX(x) = (x− µB)TC−1
B (x− µB)

H1
≷
H0

ηRX. (2.12)

The output of the RX detector is simply a whitened distance measurement between

a given pixel and the mean of the background. Thus, the further a pixel is away from

the mean, the greater value the RX detector will output. One may note that (2.12) is

simply the squared Mahalanobis distance (2.3) between µB and x.

2.5 Windowing

Windowing is a method that allows us to incorporate the location of the pixel within

the image when constructing our detector. Windowing involves constructing an outer

sliding window region that contains the pixels used to calculate the sample mean and

covariance when constructing the detector. In contrast with detectors that use global

statistics, windowed detectors take the pixel location into account by only considering

nearby pixels as part of the background. In Sections 3.6 and 3.5 we discuss alternative

methods for incorporating pixel location into target detection via clustering.

While this thesis only considers point-target detection, when attempting to detect

targets larger than a single pixel an additional inner window and guard band are

used. Pixels within the inner window or guard band are excluded when calculating

the statistics for the detector. The inner window and guard band are used to prevent

nearby pixels, which may also contain the target, from being used to compute the

background mean and covariance. To avoid needing to regularize the covariance matrix

(as discussed in 2.2) a large enough window must be used. Figure 2.1 shows some

example sliding windows designed for detecting a 7× 7 target.

When using windowing a unique matched filter is constructed for each pixel based

on the window surrounding that particular pixel. This generally makes windowing
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Figure 2.1: An example sliding window for non-point targets. The inner window prevents any
nearby target-containing pixels from biasing the background mean and covariance calculations. Taken
from [2].

more computationally intensive than when using the same statistics for the entire

image. That said, the computation time needed to detect targets within and image

when using windowing scales linearly with the number of pixels in the image. For

algorithms that do not scale well to large images (such as the detectors introduced

in the next section, which scale polynomially), windowing can offer a computational

savings.

2.6 The Kernel Method

As shown in (2.9), the SMF detectors can be viewed as an inner product, and thus

can utilize the kernel method, more commonly known as ‘the kernel trick’ [23].

The kernel method is a technique that allows one to convert a linear algorithm into

a nonlinear algorithm by projecting the data into a high-(possibly infinite-)dimensional
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feature space. This conversion allows us to solve more complicated and nuanced

problems in a tractable way. Through use of clever mathematics we can perform

operations in a high-dimensional feature space without having to actually project the

data into the high-dimensional space.

Suppose there exists a projection function φ (x) that maps x from a native d-

dimensional input space into another, possibly higher-dimensional feature space of

dimension p (i.e., φ ( ) : Rd → Rp for some p ∈ N). Further, suppose that there exists

an easily-computable function k(x1,x2) that outputs the inner product of the of the

projected inputs x1 and x2, i.e.

k(x1,x2) = 〈φ (x1) , φ (x2)〉 . (2.13)

A given algorithm a(x1,x2) can be kernelized by substituting the projected values

into the equation, a(φ (x1) , φ (x2)). If all the projected values can be expressed as

kernels (i.e. a(φ (x1) , φ (x2)) can be expressed in terms of k(x1,x2) with no remaining

φ (x) terms), then the given algorithm can be kernelized.

Let us investigate the homogeneous quadratic kernel as a simple example. The

homogeneous quadratic kernel is defined as

k(x, s) = (xT s)2 =
(

d∑
i=1

xisi
)2

=
d∑
i=1

d∑
j=1

(xixj)(sisj)

=
d∑
i=1

x2
ix2

j +
d∑
i=2

i−1∑
j=1

(√
2xixj

) (√
2sisj

)
= φ (x)T φ (s) .

(2.14)

Through inspection we can see that this kernel maps each input vector into a feature

vector containing each original input value squared, as well as every possible 2-term
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product of the individual values. Thus, the feature map generated by this kernel is

φ (x) =
{
x2

1, . . . ,x2
d,
√

2x2x1,
√

2x3x1,
√

2x3x2,
√

2x4x1, . . . ,
√

2xdxd−1
}
. (2.15)

Using this kernel in an algorithm allows us to run calculations on vectors of size d,

but get results as if those vectors were projected into a feature vector of size 1
2d(d− 1).

This example illustrates the power of the kernel method — it allows us to use simple

algebraic manipulations (in the homogeneous quadratic case: replacing the value of

each inner product in an algorithm with that of its square) to greatly increase the

dimensionality of the solution space.

Another popular kernel to use in machine learning is the Radial Basis Function

(RBF) kernel. It maps the input space into an infinite dimensional feature space. The

RBF Kernel is defined as

kRBF (x, s) = exp
(
−γ ‖x− s‖2

2

)
, (2.16)

where γ is a tunable parameter that determines the ‘spread’ of the kernel.

As shown in [24, 25], the feature map generated by this kernel is

φ (x) =
(

exp
(
−γ ‖x‖2

2

) xn1
1 . . . xnd

d√
n1! . . . nd!

)
, ∀j ∈ {0, 1, . . . ,∞} ,

d∑
i=1

ni = j. (2.17)

One interesting application of the RBF kernel is the use of the function as a

similarity measurement. The function itself has several properties that make it well

fitted for use measuring similarity in machine learning algorithms. In Section 3.5.1 we

discuss some of these properties and use the function to create spectral clusters.

Choosing an appropriate projection and associated kernel function for a given

problem is an important decision. While there are many kernels that perform well
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over a wide range of algorithms, often kernels are designed and tuned for a specific

application to further improve performance. For example, [26] developed a kernel

specifically for hyperspectral target detection and showed that it can provide a 5%

improvement in target detection over more general kernels, such as the RBF and

quadratic kernel described above.

2.7 Kernelized Detectors

Kernelized versions of both the SMF and the RX detectors have been developed.

The inverse covariance matrix in these detectors complicate the use of the kernel

method, but it still can be applied using kernelized principal component analysis

[27]. Kernelized principal component analysis (also known as kernelized PCA) is a

mathematical tool set that allows the use of size N × N gram matrices in place of

p× p matrices in the projected dimension. The details of kernelized PCA are beyond

the scope of this thesis, but the resulting kernelized detectors are described below.

The Kernel RX Algorithm, developed in [28], follows the decision rule

DKRX(x) =
(
KT

x −KT
µB

)T
K−2

B

(
KT

x −KT
µB

)T H1
≷
H0

ηKRX, (2.18)

where

Kx = [f(x1,x), . . . , f(xN ,x)]T , f(xi,x) = k(xi,x)− 1
N

N∑
j=1

k(xj,x), (2.19)

KµB = [g(x1), . . . , g(xN)]T , g(xi) = 1
N

N∑
j=1

k(xi,xj)−
1
N2

N∑
j=1

N∑
k=1

k(xj,xk), (2.20)

and KB is a centered N ×N -dimensional gram matrix.

18



The Kernel SMF [11] follows the decision rule:

DKSMF(x) = K(X,x)TK−2
B K(X, s)

K(X, s)TK−2
B K(X, s)

H1
≷
H0

ηKSMF, (2.21)

where

K(X, s)T = [k(x1, s), . . . , k(xN , s)]T . (2.22)

A major disadvantage to the kernelized detectors is their computational inefficiency.

The kernelized detectors require constructing, inverting, and squaring an N ×N gram

matrix. In contrast, the non-kernelized equivalents only require a constructing and

inverting a d×d covariance matrix. One way to alleviate this computational expense is

to lower the value of N , i.e., limit the number of pixels that compose the background,

either through windowing (see Section 2.5) or through clustering (see Chapter 3).

2.8 Detector Performance Analysis

As discussed in Section 2.1, a detector is just an algorithm that decides between two

potential hypothesis for each pixel. The performance of an algorithm for a given

detection problem can be summarized with 4 statistics:

1. True Positives (TP ) – the number of target pixels that were correctly identified

as target pixels

2. True Negatives (TN) – the number of background pixels that were correctly

identified as background pixels

3. False Positives (FP ) – the number of background pixels that were incorrectly

identified as target pixels

4. False Negatives (FN) – the number of target pixels that were incorrectly identi-

fied as background pixels.
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Calculating these statistics requires a priori knowledge of which pixels actually

contain a target and which do not. An ideal target detector would correctly identify

all of the pixels, and thus have FP = FN = 0.

Two secondary statistics are commonly used to evaluate a detectors performance,

the True Positive Rate (TPR) and the False Positive Rate (FPR), which are defined

as

TPR = TP

TP + FN
, (2.23)

and

FPR = FP

TN + FP
. (2.24)

An ideal target detector would have a TPR of 1 and a FPR of 0. In practice,

however, the TPR and FPR are both highly dependent on the sensitivity of the

detector. The sensitivity of a detector can be adjusted by changing the detection

threshold η. A low detection threshold will identify more targets, whereas a high

detection threshold will identify fewer. When the detection threshold is set low enough,

all pixels in the image will be identified as targets, meaning the detector will have a

TPR and FPR of one. Similarly, when the detection threshold is set high enough,

none of the pixels in the image will be identified as targets, meaning the detector will

have a TPR and FPR of zero.

The threshold η is generally chosen based on what the target detector is being

used for. Depending on the application it may be desirable to have a more or less

sensitive detector. As such, when evaluating and comparing the performance of target

detection algorithms it is important to look at a wide range of detection thresholds.

2.8.1 Detection Histograms

All the target detectors we have discussed output a value corresponding to the likelihood

that a given pixel contains a target. Under normal use this value is compared with
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the threshold to decide between the two hypothesis, but for performance evaluation it

is often beneficial to ignore the threshold and work with the output of the detector

directly.

One common method to evaluate, visualize, and tune the performance of a detector

is to generate two histograms from the detector output values: one for the values from

the pixels that contain a target and one for the values from the pixels with no target

[29]. Figure 2.2 contains three such histograms. In such histograms the horizontal can

be viewed as a range of possible detection thresholds. If a vertical line were placed on

the graph at a given detection threshold, the values to the left of the line correspond

to the pixels classified as H0 (no target present) by the detector, whereas the values

to the right correspond to the pixels classified as H1 (containing a target). Figure 2.3

shows how the four detection statistics can be derived from the histogram. In order

for a detector to have perfect performance it must be able to correctly classify every

pixel without error. To do so, there must exist a threshold value that perfectly divides

the two distributions. Overlap between the two histograms indicates that there are

pixels that the detector will be unable to classify, regardless of the threshold chosen.

2.8.2 Receiver Operating Characteristic (ROC) Curves

Receiver Operating Characteristic (ROC) curves are another way to visualize the

performance of detectors. They are generated by sweeping over the full range of

threshold values and plotting the TPR versus the FPR at each step. Figure 2.3 shows

how an ROC curve can be generated from target detection histograms.

All ROC curves go between (0, 0) and (1, 1), regardless of the algorithm, target

signature, or image used. The ROC curve of an ideal detector is a step function,

indicating that all the true targets will be detected before any false targets. The worst

ROC curve is a line of slope one, indicating that the detector is just as likely to detect

false targets as it is to detect true targets. The worst ROC is generated if the two
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histograms are completely overlapping, indicating that the detector cannot distinguish

between the two hypothesis.

Note that while all ROC curves go between the same values, the curve can vary

based on algorithm, target signature, and image. In order to compare the performance

of multiple algorithms, the target signature and image must be identical.

2.8.3 Area Under Curve (AUC) Metrics

While ROC curves are an excellent tool for comparing target detection performance,

sometimes it is useful to summarize the performance with a single number. A simple

but effective metric is the Area Under Curve (AUC) value, which simply measures

the area underneath the ROC curve. While it does not provide as much nuance as an

ROC curve, it does give us a general idea how well an algorithm is performing. AUC

can be calculated with a single integral

AUC =
∫ 1

0
TPR(FPR)∂FPR, (2.25)

where FPR is the False Positive Rate and TPR(FPR) is the True Positive Rate

for a given False Positive Rate. AUC values range from 0.5 to 1, with 0.5 being the

performance of the worst possible detector (corresponding to the area under a line

with slope 1 in the range (0, 1)) and 1 being the performance of an ideal detector

(corresponding to the area under a step function over the same range).

In many target detection problems it is desirable to have a low false positive rate.

For example, if we are attempting to find a potential target to destroy, we want to

have a high confidence that the target is genuine and not a false positive. One property

of the AUC metric is that it incorporates the performance over the entire range of

possible FPR values, while this is good in the general case, it makes it a poor rubric

for identifying algorithms that perform well at low FPR values. In such cases it makes
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sense to use a partial AUC that only sweeps over the range of low FPR values, i.e.

pAUC(θ) = 1
θ

∫ θ

0
TPR(FPR)∂FPR, (2.26)

where pAUC(θ) is the partial AUC and θ is the largest FPR you wish to consider.

AUC metrics, being derived from ROC curves, are specific to a given algorithm

on a specific target within a specific image. When comparing the AUC of multiple

algorithms, the target signature and image must be identical.

2.9 Target Detection Summary

In this section we investigated several target detection algorithms and looked at a

few methods to analyze and compare their performance. The remainder of this thesis

almost exclusively focuses on the target detection performance of the SMF target

detector (discussed in Section 2.2) on clustered hyperspectral images. In chapter 3 we

investigate a variety of clustering algorithms, and in chapter 4 we compare the target

detection performance of the SMF on the clusters generated by those algorithms using

the metrics we discussed in Section 2.8. The focus of our work is on how to improve

the performance of the SMF using clustering, and while we do not investigate the

target detection performance of the other algorithms discussed in this chapter, we do

discuss how to use clustering to gain some of same the benefits and features as the

more complicated target detection algorithms.
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Figure 2.2: Histograms of target detection with and without target embedding with no Clustering,
K-Means Clustering, and Gaussian Mixture Model (GMM) Clustering. Clustering can be used to
further separate pixels in the two histograms, providing improved target detection performance.
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Figure 2.3: Constructing a ROC curve from Target Detection Histograms, from [3]. An ROC curve
shows the performance of the detector at all possible threshold values.
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Chapter 3

Data Clustering Algorithms

3.1 Clustering for Target Detection

Data clustering is the process of grouping together similar data points into disjoint

collections known as clusters. Clustering can be used to group together similar data

points to help make generalizations about portions of the data. Clustering can also be

used to break apart a complicated problem into a collection of simpler problems. In

our case of clustering hyperspectral data, the data points are the d-dimensional pixel

vectors, and the task we are simplifying is target detection.

Figure 3.1 shows how a SMF is used to detect targets in a hyperspectral image.

The SMF uses the hyperspectral image and the target signature to determine the

likelihood that each pixel contains a target. The likelihood of every pixel is placed

into a target strength map and passed through a thresholding function that decides

between the two possible hypothesis for each pixel. The output of the thresholding

function is a map indicating the pixels that contain the target (H1) and those that do

not (H0).

Figure 3.2 shows how clustering can be used with multiple SMFs to solve the target

detection problem. Instead of using a single SMF as a target detector for all the

pixels in the image, we now subdivide the image into clusters and use a different SMF

to perform target detection on each cluster with the hope of improving the overall

detection performance. The output of each SMF is aggregated together to create

a target strength map. From there the process is identical to the process shown in
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Figure 3.1: Data Flow for Hyperspectral Target Detection without Clustering. The SMF is used to
construct a target map.

Figure 3.1. The target strength map is passed through a thresholding function that

decides between the two possible hypothesis, and outputs a map indicating which

pixels contain the target and which do not. While the inner workings of the clustered

target detection algorithm are significantly more complex, it is important to note that

the inputs and outputs of this process are the same as the detector in Figure 3.1. In

fact, the detector in Figure 3.1 can be seen as a special case of the detector in Figure

3.2 where the number of clusters is one.

Target detection algorithms work by finding pixels that stand out from the back-

ground of the image in the same way that a target would. As discussed in Section

2.1, in order to find the pixels that stand out, a target detection algorithm must first

accurately model the background. Clustering allows us to more accurately model

the background, giving us better performance. When a single SMF is used to detect
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targets on an entire hyperspectral image it does not perform well. This is because

the SMF models the entire background as a single Gaussian distribution, which is

not accurate. In contrast, the use multiple SMFs when using clustering makes the

background model of our detector effectively a mixture of Gaussians, with each SMF

modeling a single Gaussian. This improves the accuracy of the background model,

thereby improving detection performance.

As shown in Figure 3.3, different clustering algorithms find different relationships

in the data and can lead to different clusterings. In Chapter 4 we will see that the

algorithms that perform well for target detection tend to be the ones that divide the

pixels based on the type of ground cover within each pixel, i.e., grass, water, pavement,

forests, roofing, etc. When an image is clustered in this way, each individual SMF

only has to detect targets in pixels containing a specific type of ground cover.

Our investigation shows that clustering hyperspectral data leads to a significant

improvement in detection performance. Previous investigations into clustering came to

a variety of conclusions. Funk et al. [17] only investigated clustering via k-means but

found that it offered improved detection performance when applied to highly correlated

data. For future work, Funk et al. suggested using clusterings that incorporate second-

order statistical information to further improve performance, which we investigate

in Section 3.3. Pieper et al. [30] concluded that the added complexity of clustering

did not outweigh the gains in detection performance. This is in stark contrast to the

conclusions we draw in Chapter 5. The differences are likely due to their use of a

windowed target detector, which we discuss in Section 2.5.

In this thesis, we consider four popular clustering algorithms:

1. k-Means

2. Subspace Clustering

3. Spectral Clustering
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4. Gaussian Mixture Model (GMM),

as well as a variation on GMM known as Laplacian-Regularized GMM (LapGMM).

All of these algorithms are described later in this chapter. In Chapter 4 we will

investigate the performance of the clustering algorithms when used in the clustered

target detector and fine tune the LapGMM algorithm specifically for hyperspectral

target detection.

3.2 k-means Clustering

The k-means algorithm is a straightforward algorithm for data clustering. The k-

means algorithm treats clustering as an optimization problem and attempts to find

a clustering within the data that minimizes a given objective function [4]. k-means

operates by attempting to minimize the k-means objective function, defined as

Gk-means(X ,dist, (C1, . . . , Ck)) = min
µ1,...,µk∈Rd

k∑
i=1

∑
x∈Ci

dist(x, µi)2, (3.1)

where X is the data set, Ci are the clusters, dist() is a distance function (typically

Euclidian), and µi are the centers of the clusters Ci, also known as ‘centroids’.

In other words, k-means seeks to find a set of k clusters that minimize the total

squared distance between the points in the data set and the centroids of the clusters

they are placed in.

Unfortunately, task of finding the clustering that globally minimizes (3.1) is an

NP-hard problem, making it unfeasible to calculate in most cases. That said, an

approximate solution to (3.1) can be computed fairly efficiently. The algorithm used to

heuristically optimize the k-means objective function, known as the k-means algorithm,

is an iterative algorithm with two steps described in Algorithm 1.

The first step in the algorithm is to construct clusters based on the distance between

the data and the current centroids. The second step is to recalculate the centroids
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Algorithm 1: k-means [4]
Input :X ⊂ Rd, number of clusters k
Initalize :Randomly choose initial centroids µ1, . . . ,µk

Until convergence:
∀i ∈ [k] set Ci =

{
x ∈ X : i = arg minj

∥∥∥x− µj

∥∥∥
2

}
(break ties in some arbitrary manner)
∀i ∈ [k] update µi = 1

|Ci|
∑

x∈Ci
x

Repeat
Output :Clusters C1, . . . , Ck

based data contained within the current clusters. These steps are repeated until the

algorithm has converged, i.e., subsequent iterations do not change the elements within

each cluster.

In [4] it is proven that the clusters found by Algorithm 1 are monotonically-non-

increasing with respect to the loss function (3.1), meaning that the objective will

never get worse with subsequent iterations. That said, there is no guarantee that this

algorithm finds the clustering corresponding to the global minimum of (3.1), and may

converge to a local minimum instead. The minimum that the algorithm converges to

is largely dependent on the initial placement of the centroids, and while the original

k-means algorithm used a random centroid initialization, other centroid initialization

methods, such as kmeans++ described in [31], have been shown to provide better

theoretical convergence guarantees. We took advantage of the theoretical advantages

of kmeans++ initialization, and all of the k-means results shown in Chapter 4 were

initialized with kmeans++.

k-means effectively divides the solution space into a set of Voronoi partitions.

While this partitioning is capable of clustering many data sets successfully, it has

its limitations. Figure 3.3 shows that while k-means is very capable of clustering

simple sets of data, it struggles to cluster data sets that have different distributions for

each cluster or for each dimension. For example, the second row of the Figure shows

that k-means struggles with data sets where the variance of the clusters differs by
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dimension. k-means also has difficulty clustering the data set in the third row, where

there is a different amount of variance in each underlying cluster. In the next section

we will introduce Gaussian mixture model (GMM) clustering, a method that has no

difficulty clustering the data in the cases described above. GMM is very similar to

k-means but utilizes a more sophisticated model that offers more flexibility in terms

of the shapes of clusters. k-means can be viewed as a limited, or ‘hard’ thresholded

Gaussian mixture model. We will explain this relationship in Section 3.3.

3.3 Gaussian Mixture Models (GMM)

Gaussian Mixture Model (GMM) clustering is a clustering algorithm similar to k-

means. k-means searches for a collection of k centroids, whereas GMM searches for a

mixture of k Gaussian distributions. The use of distributions instead of centroids offers

much more flexibility in terms of the shapes of data GMM is capable of clustering.

First a mixture of k Gaussian distributions is found that matches the data, then the

data points are divided into clusters based on the Gaussian distribution they most

likely came from.

GMM clusterings aim to maximize the log-likelihood function

L(Θ) =
n∑
i=1

log
 K∑
j=1

αjpj(xi | Θj)
 , (3.2)

where Θj contains the mean µj and covariance Σj of the jth Gaussian distribution

in the mixture. The heuristic algorithm used to find the GMM clustering is quite

similar to the Algorithm 1 used to optimize k-means. The model it searches for is

more complicated, and thus the computation is more complicated, but the process is

effectively the same. It is an Expectation-Maximization (EM) algorithm that seeks to

maximize the log-likelihood equation above.

Expectation-Maximization algorithms operate by alternating between two steps.
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Algorithm 2: Gaussian Mixture Model (GMM) [5]
Input :X ⊂ Rd, number of clusters K, termination condition value δ
Initalize :Θ0 by using k-means, t = 1
Until convergence (|L(Θt)− L(Θt−1)| ≤ δ):

t = t + 1
E-step:
Compute posterior probabilities:

P(k | xi,Θt−1) = αt−1
k pk(xi | Θt−1

k )∑K
j=1 α

t−1
j pj(xi | Θt−1

j )
, k = 1, . . . , n

M-step:
Compute the GMM estimates αti, µt

i, and Σt
i:

αti = 1
n

∑n
j=1 P(i | xj),

µt
i =

∑n
j=1 xj P(i | xj)∑n
j=1 P(i | xj)

,

Σt
i =

∑n
j=1 P(i | xj)(xj − µi)(xj − µi)T∑n

j=1 P(i | xj)
.

Evaluate the regularized log likelihood:
L(Θt) = ∑n

i=1 log
(∑K

j=1 αjpj(xi | Θj)
)
.

Repeat
Output :Θt

In the expectation step (or E-step), the probability (or ‘expectation’) of each data

point belonging to each Gaussian distribution is calculated. In the maximization step

(or M-step), the Gaussian distributions are then updated based on the data points

they are expected to contain. The GMM algorithm is guaranteed to be monotonically

non-decreasing in the objective function, which means subsequent iterations will never

produce clusters with lower log-likelihood values. Unfortunately, the GMM algorithm

suffers the same local optimality problem as the k-means algorithm, and while it can

easily find a local optimum, there is no guarantee that the optimum is global.

Although implemented differently, conceptually k-means can be viewed as a ‘hard’

thresholded Gaussian mixture model. If the covariance matrices of each cluster are

forced to 0, then the k-means objective function (3.1) and the GMM objective function

(3.2) are equivalent.

Out of all the purely model-based clusterings we tried using in our clustered target
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detector, GMM performed the best. GMM is also the basis for the algorithm that

yielded the best performance in our clustered target detector, discussed in Section

3.6. We believe that this is partially due to its ability to accurately model the image,

but primarily because it pairs well with our chosen target detection algorithm. The

SMF is the optimal target detection algorithm for Gaussian-distributed data in terms

of SNR, and the GMM algorithm finds Gaussian distributed clusters. Intuitively it

makes sense then that our clustered target detector would perform well when given

Gaussian clusters.

In the next section we discuss another model-based clustering algorithm. While

the next algorithm was not able to provide the same level of performance with our

clustered target detector as GMM, we believe that it is worth further investigation,

and discuss possible future work in Section 5.2.

3.4 Subspace Clustering

Subspace clustering is another model-based clustering method. Instead of modeling

the data as a collection of centroids or a mixture of Gaussian distributions, it models

the data as a collection of low-dimensional subspaces within a high-dimensional input

space. When compared to other algorithms, subspace clustering has been shown to

perform well on high-dimensional data [32].

Figure 3.3 shows subspace clustering algorithm being used to cluster a variety of

two dimensional synthetic data sets. The algorithm does not cluster any of these

sets well. This is because subspace clustering was designed specifically to work with

high-dimensional data, and as such, struggles to cluster low dimensional data. k-means

models each cluster as a two dimensional point and GMM models each cluster as a

two dimensional Gaussian distribution. In contrast, on two dimensional data subspace

clustering is limited to modeling each cluster as a line through the origin. Higher

dimensions inherently contain more subspaces, giving more flexibility to the clustering
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algorithm, but in low dimensions the utility of subspace clustering is admittedly

limited.

Subspace clustering is an active research topic, and many recent algorithms have

been published for finding subspace clusterings. We chose to test two algorithms, the

Sparse Subspace Clustering by Orthogonal Matching Pursuit (SSC-OMP) algorithm

[33] and the Elastic Net Subspace Clustering (EnSC) algorithm [34]. Since hyper-

spectral images are naturally high-dimensional, we believed that subspace clustering

would would give us good performance when used in our clustered target detector.

The clusters generated by EnSC provided target detection performance comparable

to the k-means, while the clusters generated by SSC-OMP provided the worst target

detection performance of all the clustering algorithms we tested. See Chapter 4 for

details. Although the performance from using either of these algorithms was much

less than when using GMM, we still believe that the use of subspace clustering in

hyperspectral target detection is worth further investigation, as we discuss in Section

5.2.

3.5 Spectral Clustering

All of the algorithms we have discussed thus far cluster the data by constructing a

simplified model based on the values of the data points. k-means constructs a model

of centroids, GMM constructs is a model of Gaussian distributions, and subspace

clustering constructs a model of subspaces. In stark contrast, spectral clustering does

not consider the location of the data, and constructs no equivalent model. Instead,

spectral clustering finds clusters based on similarities between the data points. One

inherent advantage to spectral clustering is that it makes no assumptions about

the shape of the cluster, which allows it to find useful clusters in cases where other

algorithms may have difficulty. Figure 3.3 shows that spectral clustering is capable of

correctly clustering concentric circles and half moon-shaped datasets, a task where all
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the other algorithms have difficulty.

Spectral clustering attempts to minimize the following equation [4]

GSpectral(C1, . . . , Ck) =
k∑
i−1

1
|Ci|

∑
r∈Ci,s/∈Ci

Wr,s, (3.3)

where W ∈ RN×N is an affinity matrix. An affinity matrix, also known as a similarity

matrix, is a matrix that contains similarity measurements between all the points

within the set, e.g. Wi,j contains the similarity measurement between the ith and jth

data points. The spectral objective function is simply a scaled sum of the similarity

measurements between every data point and data points in other clusters. Minimizing

(3.3) maximizes the similarity between points belonging to the same cluster. The 1
|Ci|

term in the equation can be seen as a cluster size regularizer, preventing the number of

points any cluster from becoming to small. Without this term (3.3) can be minimized

simply by placing a majority of the data points into a single cluster.

Algorithm 3 attempts to minimize (3.3). It operates by constructing and eigende-

composing a Laplacian matrix L, constructing a set of vectors V from the eigendecom-

position, then using the k-means algorithm (described in 3.2) to cluster the vectors.

The resulting vectors clusters from k-means correspond to the spectral clusters of

the input data. Unfortunately, because this algorithm is dependent on the k-means

algorithm no guarantees about global optimality can be made. A proof, available in

[4], shows that if we could find an optimal k-means clustering of the eigen-derived

vectors, then this algorithm is optimal. Additionally, it has been proven that under

certain conditions the Spectral Clustering algorithm can be used to find an optimal

Gaussian Mixture Model [35].

Algorithm 3 requires the computation of a graph Laplacian. Graph Laplacians, like

affinity matrices, are simply matrix representations of similarities between points in a

data set. A graph Laplacian can be generated from an affinity matrix by subtracting
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Algorithm 3: Spectral Clustering [4]
Input :W ∈ Rn×n, number of clusters k
Initalize :Compute the graph Laplacian L from W
Let U ∈ Rn,k be the matrix whose columns are the eigenvectors of L
corresponding to the k smallest eigenvalues
Let v1, . . . ,vn be the rows of U
Cluster the points v1, . . . ,vn using k-means
Output :Clusters C1, . . . , Ck from the k-means algorithm

the affinity matrix from a diagonal matrix consisting of the sum of each row (or

column) of itself, or more compactly

L = diag(W1N)−W, (3.4)

where 1N is a vector of all 1s and diag(x) is a function that returns a matrix with

diagonal elements equal to x. Like affinity matrices, the nth row (or column) of the

Laplacian contains information about the nth element in the data set. While graph

Laplacians contains the same information as affinity matrices, the information is stored

in a different way that allows the spectral relationships of the data to be discoverable

through eigendecomposition. Note that if the data set contains perfectly separateable

clusters, then the eigenvectors will be piecewise consistent vectors indicating the

members of that cluster and the objective function shown in Equation (3.3) will equal

zero.

3.5.1 Similarity Measurements

In order to implement spectral clustering, we must compute the graph Laplacian

L. In order to compute L, we must construct an affinity matrix W to measure the

‘similarity’ between points. In order to construct W , we must define a measurement

of ‘similarity’. Defining a ‘similarity’ measurement for hyperspectral pixels is not a

straightforward task. For example, all of the target detectors in Chapter 2 attempt
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to find pixels that are ‘similar’ to the target, but do so using completely different

notions of similarity. In the following subsections we cover several common metrics of

similarity and discuss how they can be used to improve hyperspectral target detection.

In Chapter 4 we compare the performance of various similarity measurements when

used for hyperspectral target detection.

Euclidian-based Similarities

Euclidian distance is a common way to measure the distance between two data points,

and it also can be used to measure similarity between two points. Euclidian distance

is defined as

distEUC(x, s) = ‖x, s‖2 =

√√√√ d∑
i=1

(xi − si)2, (3.5)

where x, s ∈ Rd.

Distance measurements grow larger as the inputs become less similar. In contrast,

similarity measurements should grow larger as the inputs become more similar. A

simple way to convert a distance measurement into a similarity measurement is to

subtract the distance from a constant value, i.e.,

wEUC(x1,x2) = max
xi,xj∈X

distEUC(xi,xj)− distEUC(x1,x2), (3.6)

but other methods of conversion exist, such as the RBF kernel.

The RBF kernel, described in Section 2.6, calculates the Euclidean distance between

the points, and uses it to generate a value that grows larger as the inputs vectors

become more similar. Unlike the similarity measurement in (3.6), the RBF kernel has

a term γ that can be used to tune the sensitivity of the algorithm.

We investigated the use of both (2.16) and (3.6) as a similarity measurement in

our tuned clustered target detector, but neither resulted in significant performance

improvements. This leads us to believe that Euclidean similarity measurements are
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not particularly useful for clustering hyperspectral images. As discussed in 2.1, the

variance of hyperspectral images can be quite different from channel to channel. This

causes some channels to have a larger influence on Euclidean distance than others.

With Euclidean distance, strong similarities in a channel with low variance could

be masked by other channels with larger variance. While the Euclidean distance

measurement suffers from this weakness, the Mahalanobis distance, defined in (2.3),

accounts for the variance, giving each channel equal influence on the measurement,

regardless of scale. While our tuned clustering algorithm did not incorporate Euclidean

distances, it did indirectly use the Mahalanobis distance through use of the GMM

algorithm. See Chapter 4 for details.

Cosine Similarity

Cosine similarity is a scale-insensitive similarity metric that compares the spectral

angle between two data points in the set. Scale insensitivity can help improve

the identification of certain types of ground cover in aerial hyperspectral images.

Specifically, it makes our clusters less sensitive to shade and shadows. Most of the light

captured by aerial images is reflected sunlight, so pixels capturing shaded regions will

have a much lower magnitude than those that capture regions in direct sunlight. Pixels

that contain ground coverings with a lot of natural shade (such as forests) tend to vary

widely in magnitude. This is because some pixels will capture the shaded regions while

others will capture the regions in direct sunlight (providing aforementioned shade).

While the amount of light reflected in these regions varies widely from pixel to pixel,

the specific wavelengths and proportions of light that are reflected tends to stay the

same. The cosine similarity measurement, being scale-insensitive, completely ignores

large differences in magnitude such as this and identifies the shaded and unshaded

pixels as similar.
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Cosine similarity is defined as

wCOS(x1,x2) = cos (〈x1,x2〉) = xT1 x2

‖x1‖2 ‖x2‖2
, (3.7)

where 〈x1,x2〉 is the spectral angle between the two pixels.

In Section 2.3 we looked at the ACE target detector and its scale insensitive

properties. We can use the cosine similarity measurement to add a similar amount of

scale insensitivity through clustering. The SMFs used in our clustered target detector

are inherently a scale-sensitive but also adapt to the scale of the data they are given.

If the SMFs construct their background model based on pixels that vary widely in

magnitude, then the resulting detector is less likely to misidentify similarly-angled

pixels as targets because of magnitude.

In [36] a scale-insensitive filter is used to improve multispectral image clustering.

In Chapter 4 we incorporate cosine similarity into the LapGMM algorithm to improve

the performance of our clustered target detector.

Location Similarity

Until now we have only considered the value contained within the pixel when clustering.

We have not considered the location of the pixel within the image. Location similarity

is a measurement of how close together two pixels are within the image. Clusters

generated by location similarity only consider the location of the pixel, completely

ignoring the data within the pixel, and divide the image into Voronoi cells. We define

location similarity as the Euclidean similarity of the pixel locations, or more formally

as

wloc(x1,x2) = max
xi,xj∈X

‖L (xi)− L (xj)‖2 − ‖L (x1)− L (x2)‖2 , (3.8)

where L (x) is a function that returns the horizontal and vertical coordinates of pixel

x within the hyperspectral image.
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Spectral Clusters generated from location similarity alone are have very little

utility by themselves, as far simpler techniques can be used to find groups of similarly

located pixels, such as windowing (which is discussed in Section 2.5). That said,

the location similarity measurement was an important part of our tuned clustering

algorithm. While the location similarity measurement is of little use by itself, it can be

very useful when combined with other similarity measurements. In the next section we

will discuss how to generate spectral clusters using multiple similarity measurements,

allowing the pixel location to influence (but not dominate) the resulting clusters.

3.5.2 Blending Similarity Measurements

Each of the similarity measurements discussed in the previous sections have their

own unique properties, and when used to construct an affinity matrix for spectral

clustering, will yield entirely different clusters. Using Euclidean similarity will produce

clusters of pixels that have similar values. Using cosine similarity will produce clusters

of pixels with similar spectral angle. Using location similarity will produce clusters of

pixels that are located close to one another.

While each of these clusterings can be useful by themselves, oftentimes we desire

a clustering that has many of these properties instead of just one. For example, in

our application we desire a clustering that can improve the performance of our target

detector. We believe that such a clustering would cluster the image based on ground

cover. As such, it would be nice if this clustering had some scale insensitivity, so it

doesn’t mistake shadows for different kinds of ground cover. It would also be nice if

the clustering considered the location of the pixel, as ground cover generally covers a

contiguous region of pixels. Cosine similarity gives us scale insensitivity, but doesn’t

consider the location. Location similarity only considers the location of the pixel, but

ignores the pixel contents. Neither of these similarity measurements will generate the

clustering we desire, but if there were a way to combine them together, a clustering
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that has both of these properties could be produced.

Fortunately there is a very straightforward method for constructing such a similarity

measurement. Equation (3.9) shows how two similarity measurements can be combined

to construct a new blended similarity measurement. A blended similarity measurement

can be formed using a convex combination of two similarities

wC(x1,x2) = αwA(x1,x2) + (1− α)wB(x1,x2), (3.9)

where α ∈ [0, 1] determines how much each similarity measurement influences the

combined value. Performing spectral clustering with an affinity matrix that was

constructed using the similarity measurement in (3.9) will produce clusters of data

that were similar according to either wA or wB (or according to both). Equivalently,

the same combined affinity matrix can be constructed by combining two affinity

matrices, i.e.,

WC = αWA + (1− α)WB, (3.10)

where WA and WB are the affinity matrices constructed with wA and wB, respectively.

It is fairly straightforward to see how this method could be repeated to combine any

number of similarity measurements.

The α term highlights the major trade-off faced when using this blending method.

While it give us the ability to generate clusters that incorporate multiple desirable

properties, the resulting clusters are not the ‘best of both worlds,’ but rather a

compromise between the two. Combining multiple similarity measurements effectively

tasks the spectral clustering algorithm with multiple objectives to optimize for, and

the resulting clusters are effectively ‘jacks-of-all-trades,’ partially optimizing each

objective, but effectively optimizing few. This is not a limitation of the method, but

rather a fundamental property of clustering itself — a cluster that is optimized for

one objective is unlikely to be optimal for another.
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That said, we were able to achieve better target detection performance using this

method than we could without it. The best target detection performance we were able

to achieve required use of this this blending method to construct an affinity matrix,

but the performance gain from using a blended affinity over an unblended one was

minimal.

In the next section we introduce a clustering algorithm that can generate clusterings

that are a blend of spectral clustering and a Gaussian mixture. It is the algorithm

that we found to have the best performance when used in the clustered target detector.

The resulting clusters are partially Gaussian, but also retain some of the desirable

spectral properties.

3.6 Laplacian-Regularized GMM (LapGMM)

In Section 3.3 we discussed GMM clustering and its ability to find Gaussian-shaped

clusters. In Section 3.5 we discussed spectral clustering and its ability to find clusters

based on similarities. In this section, we introduce an algorithm that finds Gaussian-

shaped clusters out of spectrally-similar data.

The Laplacian-Regularized GMM (LapGMM) algorithm can be used to incorporate

additional relational information into a GMM model. The LapGMM algorithm, shown

in Algorithm 4, is based off of the Expectation Maximization GMM Algorithm

(2), but introduces Laplacian regularization terms into the M-step to make the

clusters maximize for spectral similarity in addition to log-likelihood. When clustering

hyperspectral pixels, LapGMM lets us generate clusters that are primarily Gaussian,

but also somewhat similar when measured by location or cosine similarity. LapGMM

allows us to generate clusters that incorporate all the desirable properties of GMM

and the desirable properties from spectral clustering, allowing us to produce Gaussian

clusters out of locally-similar pixels. Combining LapGMM with the spectral blending

technique discussed in Section 3.5.2 allows us to generate Gaussian-shaped clusters
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that incorporate any number of relationships.

Zeng et al. [5] showed that a combination of Gaussian Mixture Models and Spectral

Clustering can be used to construct accurate image models. He et al. [6] introduced

an Expectation Maximization (EM) algorithm for finding LapGMM clusterings and

showed the improved performance it can offer over GMM on synthetic datasets, as

well as on classification of the USPS handwritten digits data set [37]. Gan et al. [38]

applied this algorithm to additional datasets, and also developed a way to incorporate

labeled data into the clustering results.

LapGMM seeks to maximize the Laplacian-regularized log likelihood objective

function, and is given as

L(Θt) =
n∑
i=1

log
 K∑
j=1

αjpj(xi | Θj)
− λ K∑

k=1

n∑
i=1

n∑
j=1

(p(k | xi,Θ)− p(k | xj,Θ))Si,j,

(3.11)

where Θk are the properties of the kth Gaussian distribution, S is the affinity matrix,

and αi is a per-cluster regularization term defined in Algorithm 4.

The two regularization terms in the M-step work together to preserve spectral

similarities within the clusters. The regularizer in the log-likelihood computation

modifies the objective function to penalize clusters that are not considered spectrally

similar. The λ term in Equation 3.11 controls the amount of penalty that is applied

to the objective function, and can be used to control the amount of spectral similarity

that is present in the final cluster. The log-likelihood regularizer does not change

how the clusters are computed, but simply ensures our objective function considers

spectral similarity. The regularizer used to smooth the posterior probabilities ensures

that the spectral similarity is considered when determining the probability that each

pixel belongs to each cluster. This regularizer changes the EM computation to ensure

that spectral similarity between data points is preserved.

Unfortunately, the smoothing regularizer can also prevent the EM algorithm from
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converging to a locally-optimal clustering. When the γ smoothing term in Algorithm

4 is set too high, the smoothing regularizer can preserve too much spectral similarity,

preventing the algorithm from finding Gaussian distributions in the data. To ensure

that the smoothing regularizer does not prevent the discovery of Gaussian-shaped

clusters, the γ term is incrementally reduced. We know that the EM algorithm used

to compute GMM generates clusters with monotonically non-decreasing log-likelihood

values. In other words, the traditional GMM algorithm will only find better clusters

over time. Therefore, if our algorithm produces a clustering with an incrementally

worse log-likelihood value, then it must be due to the regularizers, not the Gaussian-

derived terms. We reduce the γ term whenever an iteration of the EM algorithm makes

our regularized log-likelihood worse. This reduces the amount of spectral similarity

that is considered in the EM calculation, allowing the EM algorithm to focus on

finding a suitable Gaussian model. It is important to note that reducing γ does not

reduce the effect of the log-likelihood regularizer, and therefore does not reduce the

total importance placed on the final cluster’s spectral affinity.

The log-likelihood regularizer highlights the major trade-off associated with the

clusters from LapGMM. While the regularizer ensures spectral similarity is preserved

in the clusters, it also can prevent the Gaussian model from finding distributions that

fit the data. Clusters from LapGMM suffer from the same fundamental problem as

the blended spectral clusters discussed in Section 3.5.2, that ultimately a clustering

that is optimized for two things is truly optimized for neither.

That said, using the LapGMM algorithm in the clustered target detector yielded

the best performance we were able to obtain, outperforming all the other algorithms

we discussed in this chapter. This leads us to believe that the clusterings generated

by the LapGMM algorithm most accurately modeled the hyperspectral images. The

Laplacian regularizer in the LapGMM algorithm gives us a very powerful tool for

tuning. It allows us to express spectral similarities to our algorithm allows us to
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incorporate application-specific knowledge into our otherwise completely Gaussian

clustering. This regularizer gives us a way to to numerically express concepts concepts

like shade and location (through similarity measurements), and incorporate those

concepts into our algorithm to improve clustering performance.

3.7 Algorithm Complexity

It is important to consider the computational requirements imposed by each of

these clustering algorithms. In general, the algorithms that utilize a simpler model

generally have lower computational requirements, whereas the algorithms that utilize

more nuanced models are considerably more expensive. The k-means algorithm

utilizes the simplest model and scales the best out of all of the algorithms we have

discussed, with a per-iteration complexity of O(NKd). The GMM algorithm has a

per-iteration complexity of O(NKd3), scaling worse than k-means on high-dimensional

data, but still scaling relatively well to large data sets. Spectral clustering utilizes

the k-means algorithm, and when used in this way the k-means algorithm has a

low per-iteration complexity of O(NK2). Spectral clustering is not generally limited

by this constraint, and is instead typically limited by the computational expense of

the Eigendecomposition during initialization, having a complexity of O(N3). The

LapGMM algorithm has a per-iteration complexity of O (max(NKd3, N2K)), making

its complexity greater than GMM but generally less than spectral clustering.

Spectral clustering and LapGMM have the highest computational requirements

because of the use of affinity matrices. In the next chapter we will show that these

algorithms offer improved performance over the simpler algorithms, making the added

complexity potentially worthwhile. Additionally, in Section 4.2.1 we discuss how to

use sparse matrices to reduce the computational requirements of these algorithms.
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3.8 Initialization Considerations

All of the clustering algorithms we have discussed begin with a non-optimal clustering

and then iteratively step towards a optimal solution. A problem with all of these

clustering algorithms is that they converge to a local optimum, but there is no

guarantee that the optimum found is the global optimum (i.e., the best possible

clustering). 1 This makes the initialization of these algorithms very important, as the

starting clustering will determine which optimal clustering the algorithm arrives at.

LapGMM, being based on GMM, is quite effective at using EM to iteratively to

improve the Gaussian portion of its clusters, but the algorithm struggles at improving

the spectral portion of the clusterings. This makes initialization especially important,

as it is unlikely that the spectral portion of our clusters will iteratively improve.

Previous work with the LapGMM algorithm initialized the clusters using either the

k-means algorithm [6] or a priori knowledge [38]. We have found that initializing

LapGMM with clusters generated via spectral clustering leads to better clusters

in terms of both target detection performance and lower Laplacian-regularization

penalties. As such, all of the LapGMM results in Chapter 4 are from LapGMM

clusters initialized using spectral clustering. Using spectral initialization ensures that

the initial clusters have a strong spectral affinity, and allows the LapGMM algorithm

to converge to a local-optimum with the desired spectral affinity.

Using spectral initialization relaxes the role of the LapGMM algorithm and allows

the algorithm to do what it excels at. With k-means initialization, the LapGMM

algorithm starts with a clusters that are somewhat Gaussian and is expected to

iteratively discover a clustering that is both more Gaussian and has a stronger

spectral affinity. This requires LapGMM to both improve the log-likelihood of the

Gaussian distribution and minimize the Laplacian-regularization penalties. With
1This makes the results in [35] especially exciting, as they have found a globally optimal clustering

solution, albeit for a specific case.
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spectral initialization, the LapGMM algorithm starts with spectral clusters and is

tasked with finding a Gaussian clustering while maintaining the already low Laplacian-

regularization penalty. As before, LapGMM is expected to improve the log-likelihood of

the Gaussian distribution, but unlike before, it does not need to improve the Laplacian-

regularization penalty, as the initialization ensures that it is already minimized. Instead

of tasking the algorithm with improving both terms, we are tasking it with improving

one term while preserving the other.

Figure 3.4 shows the influence spectral initialization can have on the resulting

clustering. The Left column shows the clusters generated using spectral clustering

when using a similarity that is a blend between the distance and cosine similarity

measurements. The middle column shows the clusters generated by LapGMM when

initialized with the spectral clusters. The right column shows the clusters generated

by GMM when initialized by the spectral clusters. What is interesting to note is

that the clusters from the GMM algorithm are noticeably different when initialized

with different clusters, despite the fact that the algorithm seeks to minimize the same

objective function in all cases. This shows the importance of properly initializing both

GMM and LapGMM algorithms.

Spectral clustering is admittedly much more computationally expensive than k-

means, requiring the construction and subsequent eigendecomposition of the Laplacian

matrix. That said, the Laplacian is required by the LapGMM algorithm anyway, so

its construction can be seen as a sunk cost, making the only additional computation

required over k-means a single Eigendecomposition. Assuming d > k, then the use of

k-means when spectral clustering is of lower dimensionality than when using k-means

directly on the data, offering additional computational savings. In summary, the added

computational cost of using spectral clustering to initialize LapGMM is the expense

of calculating the Eigendecomposition of the graph Laplacian minus the savings from

running k-means at a lower dimension.
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3.9 Data Clustering Summary

In this section we investigated several clustering algorithms and discussed the trade-offs

associated with each. We discussed several model-based algorithms, specifically the

k-means, GMM, and subspace clustering algorithms, as well as the similarity-based

spectral clustering. We also looked at a few techniques that can be used to combine

and blend these algorithms together, such as spectral blending in Section 3.5.2 and

LapGMM algorithm in Section 3.6. In the next chapter, we will test the performance

of these algorithms when used on hyperspectral images with our clustered target

detector.
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Figure 3.2: Data Flow for Hyperspectral Target Detection with Clustering. Despite the increased
complexity, the inputs and resulting outputs of this method are identical to the method shown in
Figure 3.1.
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Algorithm 4: LapGMM [6]
Input :X ⊂ Rd, Number of clusters K, regularization parameter λ,

termination condition value δ, graph Laplacian L
Initalize : γ = 0.9, Θ0 by using k-means, t = 1
Construct an affinity matrix S from graph Laplacian L.
Until convergence (L(Θt)− L(Θt−1) ≤ δ):

E-step:
Compute posterior probabilities:

P(k | xi) = αt−1
k pk(xi | Θt−1

k )∑K
j=1 α

t−1
j pj(xi | Θt−1

j )
M-step:
Do

Smooth the posterior probabilities until convergence:
P(k | xi) = (1− γ)P(k | xi) + γ

∑n

j=1 Sij P(k | xj)∑n

j=1 Sij
, (i = 1, . . . , n;

k = 1, . . . , K).
Compute the LapGMM estimates αti, µt

i, and Σt
i:

αti = 1
n

∑n
j=1 P(i | xj),

µt
i =

∑n
j=1 xj P(i | xj)∑n
j=1 P(i | xj)

,

Σt
i =

∑n
j=1 P(i | xj)(xj − µi)(xj − µi)T∑n

j=1 P(i | xj)
.

Evaluate the regularized log likelihood:
L(Θt) = ∑n

i=1 log
(∑K

j=1 αjpj(xi | Θj)
)
− λ∑K

j=1Rj,
where Rk = ∑n

i=1
∑n
j=1 (p(k | xi,Θ)− p(k | xj,Θ))Si,j

if L(Θt) < L(Θt−1) then
γ = 0.9γ

end
t = t + 1

While L(Θt) < L(Θt−1);
Repeat
Output :Θt
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Chapter 4

Results

4.1 Experiment Setup

We ran three sets of experiments to evaluate the performance of our clustered target

detector and find a suitable clustering algorithm. First we wanted to evaluate a wide

variety of different clustering algorithms to discover which methods seemed most

promising in terms of performance. Once we had learned which algorithms offered

the best performance, we went to work looking for a way to tune and further improve

them for the task of hyperspectral target detection, investigating the use of different

similarity measurements with both spectral clustering and LapGMM.

We chose to test the clustered target detector using several hyperspectral images

from two data sets. The images in [39] were collected as part of a field experiment

in July 2006. The images were captured using a HyMap sensor and include two

126-channel aerial images of Cooke City, Montana and the surrounding area. The

images in [40] were collected as part of a field experiment conducted over two days

in May 2013. The images were captured using a SIM.GA sensor and include three

511-channel aerial images of a suburban area in Viareggio, Italy. The results in this

chapter show the detection performance in terms of pAUC scores when tested on

one image from [39] and two from [40]. These images were chosen because they offer

different levels of target detection difficulty, allowing us to show the performance of

these algorithms under a wide variety of conditions.

We chose to run all the tests of our detector with clustering algorithms that find five
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clusters within each image (i.e., k = 5). The choice to use five clusters per image was

made as a trade-off between computational expense and target detection performance.

Five is a large enough number of clusters to show the benefits of the clustered target

detector, and a small enough number for the clustering algorithms to converge quickly.

In Section 5.2 we discuss varying the number of clusters as possible future work.

We wanted our results to be representative of our clustered target detectors

performance when attempting to detect a variety of targets. To accomplish this we

use the aggregated results from 9 different targets embedded into each hyperspectral

image in every result shown.

Every image captured in both data sets includes several actual test targets (vehicles

and colored tarps) that were placed in the captured area. While the actual targets can

be useful for some applications, their use for evaluating target detection performance

is admittedly limited. When testing the target detection performance of an algorithm,

it is a good idea to consider as many cases as possible, but when working with

real hyperspectral data, the limited number of test cases in each image makes that

difficult. Ideally we would like to know the performance of the target detector if any

target were placed in any location on the image. In the next section, we discuss the

computationally-efficient technique to simulate cases where targets are in different

locations.

4.2 Simulated Target Embedding

In order to test our clusterings on a wide variety of cases, a simulated target embedding

method described in [20] was used. This method allowed us to simulate targets and

place them anywhere on the image, and can be used to evaluate the performance of

any CFAR detector on a given target. Using this method greatly increased the number

of target detection cases we considered when evaluating each clusterings performance.

The first step in this embedding process is to generate two hyperspectral images,
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One where the target is present in all pixels (Xwt) , and one where the target is present

in none (Xnt).

To ‘embed’ the target signature into a pixel, we use the following equation

xwt = αs + (1− α)x, (4.1)

which is derived from the hypothesis given in (2.2), where xwt is the pixel with the

target signature embedded and α is a chosen target strength. In all the results shown

in this chapter we used a target strength of 5%, i.e., α = 0.05.

Once the two images are constructed, the image with no targets Xnt is clustered

and used with the target signature to configure the SMFs in our clustered target

detector. The clustered target detector is then used to detect targets in Xnt and

construct a pixel target strength map. These steps match the process shown in Figure

3.2 for performing clustered target detection. Because Xnt contained no targets, the

results from this target strength map will be used to calculate the true negatives and

false positives from our detector. The next step is to have the clustered target detector

attempt to detect targets in Xwt using the same SMFs and the same clusterings

as before and construct a pixel target strength map. Because Xwt only contained

target-embedded pixels, the results from this target strength map will be used to

calculate the true positive and false negatives from our detector.

The strength map constructed from Xnt shows how the target detector responds

to each pixel when there is no target, whereas the strength map constructed from

Xwt shows how the target detector responds to each pixel when it contains a target.

We can determine the performance of the detector by comparing these two results.

Specifically, we can construct two histograms from the strength maps generated by

our detector on Xnt and Xwt, and use those histograms with all of the techniques

described in Section 2.8 to characterize a detector’s performance. All of the results in
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this Thesis were calculated using this method.

By comparing the value of every pixel with an embedded target to the value of

every pixel without an embedded target, we can construct a histogram, generate an

ROC curve, and compute pAUC values that evaluate the performance of the detector

for targets located anywhere in the image.

To use simulated target embedding, we must make several assumptions about

the data. First, we must make the assumption that the presence of a point target

within a pixel will not alter its signature enough to change the cluster it belongs to.

Secondly, we must assume that the addition of the point target to a single pixel would

not significantly alter the estimates of the mean and covariance used to construct the

matched filter. Because we are specifically considering the point target detection case,

where the signature of a single pixel is simulated to change by only 5%, we believe

that these are safe assumptions to make. We feel that the impact of this small change

to a single data point on both the clustering and the resulting SMF detectors is most

likely insignificant.

4.2.1 Sparse Matrices

The LapGMM and Spectral Clustering algorithms highlight both the power and the

flexibility of similarity-based clustering. As discussed in Sections 3.5 and 3.6, these

algorithms allow their users to numerically define ‘similarity’, and thus can generate

clusters based on any quantifiable measurement of similarity. Unfortunately, this

versatility comes at a significant computational cost. While the affinity matrices and

graph laplacians that are used by these clustering algorithms are very useful tools, their

inherently large size introduces computational challenges. These challenges are similar

to the challenges faced by kernelized detectors (discussed in Section 2.7) because they

use gram matrices. Like gram matrices, both affinity matrices and graph laplacians

are N ×N matrices, and their relatively large size makes them both time-intensive to
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calculate and resource-intensive to store and manipulate.

To overcome this steep computational expense we approximate all of our affinity

matrices and graph laplacians as sparse matrices. Sparse matrices are matrices where

only a small number of elements are non-zero. The exact percentage of zero elements

needed to consider a matrix truly ‘sparse’ is debatable, but for our purposes we will

consider any matrix where more than half of the elements are zero as ‘sparse’. Storing

N ×N matrices usually requires enough memory to store N2 elements, but if a matrix

contains mostly zero elements, then we can store the matrix as a table containing the

locations and values of all non-zero elements, and can assume the elements not listed

in the table are zero-valued. Storing matrices in this way greatly reduces the memory

footprint needed to store a sparse matrix, but requires additional overhead as the

locations of the non-zero elements must now be stored. That said, when the matrix

contains mostly zero elements, using this method can greatly reduce the memory

needed to store it. Affinity matrices and graph laplacians are generally not sparse,

but can often be closely approximated with a sparse matrix.

We construct our sparse affinity matrix approximations by keeping the M largest

values in each row of the matrix and setting the rest to zero, where M is a natural

number and M < N . For our calculations we chose M = int(
√
N) to ensure the

matrices had substantial sparsity. Using the sparse approximations is computationally

equivalent to only considering the M most similar points to a given data point when

clustering, ignoring all the weaker relationships. Matrix approximations generated

using this method are significantly smaller and contain significantly less information

than the full matrices, but still work well for clustering in practice because the most

important information (i.e., the strongest similarities between points) is still present

in the matrices.
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4.3 Comparison of Baseline Clustering Algorithms

The results of our clustered target detector when used with several clustering algorithms

are shown in Table 4.1. The ROC curves of the clustered target detector on the RIT

Radiance image are shown in Figure 4.1, with the spectral results from Table 4.1

shown in Figure 4.2.

GMM clusters provided the best target detection performance on the RIT Radiance

image. Based on the poor target detection results from all the target detectors, we

believe this image poses a relatively difficult target detection problem. Other algorithms

that performed well on this image were the cosine spectral clustering, with a total

AUC value slightly below GMM, and distance spectral clustering, which performs

well at low max FPR (θ) values. The SSC-OMP clusters performed the worst on

this image out of all the clustering algorithms, providing performance that was only

slightly better than the non-clustered SMF target detector.

Surprisingly, the k-means provided the best target detection performance on the

Viareggio Day 1 image. That said, virtually every detector performed well on this

image, including the non-clustered SMF target detector, leading us to believe that

this image poses the least challenging target detection problem. SSC-OMP again has

the worst performance, but still outperforms the unclustered SMF target detector.

The Viareggio Day 2 image appears to pose a target detection challenge that is

somewhere between the Day 1 image and the RIT Radiance image, with pAUC values

landing between these two extremes. With this image the target detector performed

the best when using the cosine spectral clustering. This was the only image where we

saw a comparable target detection performance from the SMF target detector and a

clustered target detector, specifically when when the SSC-OMP algorithm was used

for clustering cluster.

Multiple conclusions can be drawn from these results. While the results show that
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Image RIT Radiance Viareggio Day 1 Viareggio Day 2
Max FPR (θ) 0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0
No Clustering 0.0148 0.156 0.698 0.317 0.776 0.971 0.0663 0.331 0.826
k-means 0.0437 0.28 0.783 0.58 0.9 0.989 0.15 0.507 0.895
Subspace (EnSC) 0.0762 0.301 0.772 0.567 0.885 0.986 0.169 0.533 0.897
Subspace (SSC-OMP) 0.0279 0.186 0.719 0.495 0.866 0.984 0.0663 0.331 0.826
Spectral (Cosine) 0.0879 0.339 0.805 0.562 0.895 0.988 0.275 0.584 0.909
Spectral (Location) 0.1 0.302 0.773 0.559 0.88 0.985 0.177 0.483 0.879
GMM 0.192 0.415 0.831 0.568 0.891 0.987 0.153 0.509 0.895

Table 4.1: The pAUC values of several common clustering algorithms when used with the clustered
target detector.
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Figure 4.1: A comparison of the performance of the clustered target detector when using several
popular clustering algorithms on the RIT Radiance image. GMM outperforms all other algorithms
in all cases, and all algorithms outperform the non-clustered results.

different clustering algorithms offer different levels of detection performance, they also

show that our target detector can outperform (or at least perform just as well as) a

non-clustered SMF target detector when used with virtually any clustering algorithm.

It also shows that even when used to perform the same task, the best performing

clustering algorithm can vary depending on the image.

4.4 Comparison of Spectral Clustering Results

Based on the results from our first set of experiments described in Section 4.3, we felt

that both GMM and spectral clustering were methods worth further investigation.

In this section we show the performance of our target detector when using spectral
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clustering with a variety of similarity measurements. In the next section we show the

performance of the LapGMM algorithm using these clusterings for initialization, and

regularizing with the same graph Laplacian.

Table 4.2 and Figure 4.2 show the performance of the clustered target detector

when using the spectral clustering algorithm with a variety of similarity measurements.

The results make it difficult to say what measurement works best with our detector —

when comparing the performance from the spectral clusterings generated from the

cosine, location, and Euclidian-based RBF similarity measurements, no clustering

yields better performance than the others in all cases. Each notion of similarity

outperforms the others on one of the images, with cosine performing best on the

Viareggio Day 2 image, location performing best on the RIT Radiance image, and RBF

performing the best on the Viareggio Day 1 image. That said, all of the algorithms

perform fairly well on the Viareggio Day 1 image, leading us to believe that that the

benefits of RBF similarity on truly challenging problems are likely limited.

The last row of Table 4.2 shows the detection performance when using a similarity

measurement that was a blend of 40% cosine similarity (Equation (3.7)) and 60%

location similarity (Equation (3.8)). We blended the similarities using the process

described in Section 3.5.2. As we discuss in the next section, this is the blend of

similarities that we have found to offer the best performance when used to regularize

and spectrally initialize the LapGMM algorithm. We show these results in the next

section. These results help explain why the use of this blended similarity measurement

with LapGMM offers improved performance. The results in Table 4.2 and Figure

4.2 clearly show that the spectral clusters generated from this blend lead to better

results at low pAUC values. When attempting to use an EM clustering algorithm

to improve performance, A good place to start the search is with a clustering that

already performs quite well, which spectral initialization allows us to do.
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Image RIT Radiance Viareggio Day 1 Viareggio Day 2
Max FPR (θ) 0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0
No Clustering 0.0148 0.156 0.698 0.317 0.776 0.971 0.0663 0.331 0.826
Spectral (RBF) 0.0543 0.241 0.75 0.631 0.922 0.991 0.17 0.53 0.902
Spectral (Cosine) 0.0879 0.339 0.805 0.562 0.895 0.988 0.275 0.584 0.909
Spectral (Location) 0.1 0.302 0.773 0.559 0.88 0.985 0.177 0.483 0.879
Spectral (40 Cos 60 Loc) 0.119 0.339 0.795 0.552 0.889 0.987 0.282 0.524 0.888

Table 4.2: The pAUC values of spectral clustering when using various similarity metrics with the
clustered target detector.

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
01

0

False Postive Rate (FPR)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

tiv
e 
Ra

te
 (T

PR
) Clustering Algorithm

Spectral (Cosine)
Spectral (Location)
Spectral (RBF)
Spectral (40% Cos, 60% Loc)
No Clustering
Baseline

0.
00

0
0.

01
0

0.
02

0
0.

03
0

0.
04

0
0.

05
0

0.
06

0
0.

07
0

0.
08

0
0.

09
0

0.
10

0

False Postive Rate (FPR)

0.
00

0
0.

10
0

0.
20

0
0.

30
0

0.
40

0
0.

50
0

0.
60

0
0.

70
0

0.
80

0
0.

90
0

1.
00

0

False Postive Rate (FPR)

Figure 4.2: A comparison of the performance of the clustered target detector when using spectral
clusters on the RIT Radiance image. The clusters constructed using the cosine and distance
similarity measurements performed well, and the cluster constructed using a blend of these similarities
outperformed all others when the FPR is low.

4.5 Comparison of LapGMM Results

This section shows the performance of our clustered target detector when using clusters

generated by the LapGMM algorithm. Clusters generated by the LapGMM algorithm

provided the best results that we were able to achieve with our clustered target

detector. Table 4.3 compares the results of one of the best performing algorithms in

Section 4.3, GMM, with the results we were able to achieve with LapGMM.

As discussed in Section 3.8, we construct a graph Laplacian and use it in the

LapGMM algorithm for both spectral initialization and Laplacian Regularization.

When comparing the performance effects of using the RBF, cosine, and location

similarity measurements the results align with the results in Section 4.4, with cosine
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Image RIT Radiance Viareggio Day 1 Viareggio Day 2
Max FPR (θ) 0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0
GMM 0.192 0.415 0.831 0.568 0.891 0.987 0.153 0.509 0.895
LapGMM (RBF) 0.167 0.389 0.804 0.637 0.923 0.991 0.178 0.535 0.902
LapGMM (Cosine) 0.199 0.418 0.834 0.572 0.898 0.988 0.291 0.605 0.914
LapGMM (Location) 0.214 0.435 0.835 0.607 0.899 0.988 0.209 0.545 0.901
LapGMM (40 Cos 60 Loc) 0.219 0.435 0.837 0.609 0.9 0.988 0.305 0.565 0.9

Table 4.3: The pAUC values of the clustered target detector when using LapGMM that is regularized
and spectrally initialized with various similarity metrics.

performing best on the Viareggio Day 2 image, location performing best on the RIT

Radiance image, and RBF performing the best on the Viareggio Day 1 image.

Armed with the knowledge that different notions of similarity offer better perfor-

mance in different situations, we set out to find a blended notion of similarities that

offered improved performance in all situations. We investigated several blends of two

to three similarity measurements, and through trial and error we discovered a blend

that performed well on all of the images, in many cases outperforming all unblended

similarities. The blend we found to be most effective over all cases consisted of 40%

cosine similarity and 60% location similarity. While the RBF similarity was able to

improve target detection performance more than any other similarity on the Viareggio

images, The use of it on the RIT Radiance image resulted in decreased performance.

For this reason we left it out of our final blend. In contrast, the cosine and location

similarities improved performance over GMM in all cases, leading us to believe that

their inclusion is likely beneficial in most cases.
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Figure 4.3: Clustered target detector performance when using LapGMM on the RIT Radiance
image. LapGMM outperforms GMM in most cases, with the RBF case being the notable exception.
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Chapter 5

Conclusion & Future Work

5.1 Conclusions

Our results conclude that clustering can indeed be used to improve target detection

performance. In Chapter 4 we showed empirically that our SMF-based clustered

target detector outperformed the non-clustered SMF target detector in every case we

investigated. That said, the performance of the clustered target detector varied widely

depending on the algorithm used to cluster the pixels, making the choice of clustering

algorithm important.

Additionally, we conclude that initialization is very important for most clustering

algorithms, and that the de facto or default initialization method of an algorithm

may not yield the most performant clustering. As discussed in Section 3.8, we have

found spectral initialization to be especially valuable (and fairly computationally

inexpensive) when used with the LapGMM algorithm.

Another conclusion we came to is that in order for a clustering algorithm to perform

well with our clustered detector, it must recognize multiple types of similarities in the

data. Table 5.1 compares the results from several of the tests conducted in Chapter 4.

Specifically it shows that the detection performance of a clustering algorithm can be

improved by incorporating additional relationships. Our clustered detector outperforms

the unclustered detector by a significant margin when using the GMM algorithm. The

GMM algorithm finds Gaussian mixtures and effectively incorporates the Mahalanobis

distance into our clustering. Table 4.3 showed that when the LapGMM algorithm is
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used with certain similarity measurements, it can outperform the unregularized GMM

algorithm in all cases. Table 5.1 shows one such example, where LapGMM utilizes

location similarity to improve target detection across the board. The final row of

Table 5.1 shows that a blended similarity measurement can be used to further improve

the performance of our clustered detector with the LapGMM algorithm. Overall

this table shows that incorporating additional measurements of similarity can lead to

incremental improvements in target detection performance.

Table 5.1 also highlights the diminishing returns when attempting to optimize for

multiple objectives, as discussed in Section 3.5.2. The performance gained by using

GMM clustering over no clustering at all is quite large. In contrast, the performance

gained from incorporating location similarity into GMM is fairly small, and the gain

from incorporating both location and cosine similarity is even smaller.

One of the most important conclusions we came to was that there is no one-size-

fits-all clustering algorithm, and the ‘best’ clustering algorithm depends on both

the dataset as well as the application. As shown in Chapter 4, different clustering

algorithms perform differently on different data sets, even when used for the same

application. That said, some algorithms (specifically GMM and LapGMM) appeared

to perform well in all cases, and in Section 3.3 we proposed some possible hypotheses

as to why. In the next section we discuss additional applications where GMM and

LapGMM may offer performance similar to the impressive performance shown in our

results, and discuss some possible applications and explanations for algorithms that

did not perform well in our clustered detector.

Image RIT Radiance Viareggio Day 1 Viareggio Day 2
Max FPR (θ) 0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0
No Clustering 0.0148 0.156 0.698 0.317 0.776 0.971 0.0663 0.331 0.826
GMM 0.192 0.415 0.831 0.568 0.891 0.987 0.153 0.509 0.895
LapGMM (Location) 0.214 0.435 0.835 0.607 0.899 0.988 0.209 0.545 0.901
LapGMM (40 Cos 60 Loc) 0.219 0.435 0.837 0.609 0.9 0.988 0.305 0.565 0.9

Table 5.1: The pAUC values of several algorithms we have discussed sorted by complexity. Additional
complexity offers additional performance, but with diminishing returns.
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5.2 Future Work

As shown in Chapter 4, the use of subspace algorithms in our SMF-based clustered

target detector did not produce noteworthy results. We believe that this was due at

least in part to a mismatch between the clustering algorithm and the SMF filter. We

assume that our SMF-based target detector would perform best when given Gaussian-

shaped clusters, since that is how the SMFs model the image background. This would

explain why the algorithms that yield the best performance with the SMF-based

clustered target detector are the ones that find clusters based on Gaussian models. In

contrast, subspace algorithms find clusters based on subspace models, and as such

we believe that these clusters may offer good performance if paired with a target

detection algorithm that models the background as a subspace, such as the ‘Matched

Subspace Detector’ or the ‘Adaptive Subspace Detector’ (both described in [2]).

The RX anomaly detection algorithm is closely related to the SMF and models the

background in the exact same way. As such, we suspect that the clustering algorithms

that yield good results when paired with our SMF-based clustered target detector

would also yield good results when paired with an equivalent RX-based clustered

anomaly detector.

We speculate that the tuned LapGMM algorithm we developed performs well

because of its ability to accurately model the background. If true, then this clustering

algorithm could be applied to other hyperspectral tasks, such as classification. It

would be interesting to compare the classification performance of our tuned LapGMM

algorithm and the k-means-based trilateral filtering method described in [36].

This investigation did not look into the effect varying the number of clusters has on

the performance of our detector. As such, the best number of clusters used to divide

the image is still an open question. We suspect that the ideal number of clusters to

use for a given problem is directly related to how well that number allows the model
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to fit the data. For GMM and LapGMM, this would involve finding the number of

Gaussian distributions needed to accurately represent the contents of the image. In

[5], an algorithm is developed for finding this value in a 3-channel image that could

potentially be applied to hyperspectral images as well.
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