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Abstract

Obtaining an edge in financial markets has been the objective of many hedge funds,

investors, and market participants. Even with today's abundance of data and com-

puting power, few individuals achieve a consistent edge over an extended time. To

obtain this edge, investors usually use options strategies. The Broken Wing Butter-

fly (BWB) is an options strategy that has increased in popularity among traders.

Profit is generated primarily by exploiting option value time decay. In this thesis,

the selection of entry and exit BWB parameters, such as profit and loss targets, are

optimized for an in-sample period. Afterward, they are used to assess profitability

during an out-of-sample period. The optimization takes place for over a decade of

historical options data of the S&P exchange-traded fund (symbol: SPY). The im-

portance of selecting an optimal strike mapping method is emphasized. Of the three

mapping methods considered, the normalized strike mapping method was found to

be superior. The optimization of the parameters was performed with a differential

evolution (DE) evolutionary algorithm. The objective function to optimize took into

consideration the strategy's cumulative profits and maximum equity drawdown. The

out-of-sample trades' performance shows that information from past trades can be

used to trade in the future successfully.
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Chapter 1

Background

1.1 Introduction

From the moment that mathematician and hedge fund manager, Edward Thorp,

pioneered mathematical models to beat the stock market, investors have increasingly

relied on mathematical and quantitative models to obtain an edge in the market.

These types of traders are known as “quants” (quantitative traders). They took

advantage of faster computers and an abundance of data to create new trading models.

Traders can choose over many financial instruments and derivatives to bet on

the market. An instrument that has increased in popularity are option contracts.

They enable a trader to profit by predicting if stock prices are going up or down, but

also by predicting if prices will not move, or if there are changes in volatility, time,

and more. Typically, a trader purchases multiple options simultaneously, and these

combinations are known as options strategies. When using a strategy, a trader has

many parameters to consider, such as expiration dates, strike prices, when to enter,

when to exit, and more.

The Broken Wing Butterfly (BWB) is an options strategy that has increased in

popularity among options traders. This strategy can be used as an income generator,

and some prominent traders ([1], [2], and [3]) have demonstrated that the BWB

generates consistent profits while keeping active management to a minimum. The

BWB may be entered into, and later exited, when favorable or unfavorable conditions

appear, resulting in either a profit or a loss for the trade. In this thesis we aim to find
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an optimal set of parameters for the BWB strategy over a defined period, and evaluate

if these optimal parameters are generalizable for future trades. Essentially, it aims to

evaluate if past information from the stock market contains valuable information to

trade in the future.

Due to the exponential search space of the strategy's parameters, a complete

search of all possible values is not feasible. Traditional optimization methods that rely

on gradients, such as stochastic gradient descent or newton's method, are impractical

for this problem due to it being non-differentiable. Therefore, in this thesis we used

differential evolution. It has been shown to have more outstanding performance

than other non-differentiable optimization methods when the values to optimize are

continuous [4].

The function to optimize (called the fitness function) was crafted to maximize

risk-adjusted returns. It achieves this by maximizing profits while keeping equity

drawdown to a minimum. The BWB strategy was optimized over a set period (the

in-sample period), and the resulting optimal parameters were used for trading in the

future (the out-of-sample period).

1.2 Financial Options Fundamentals

Options are financial instruments that enable market participants to speculate or

hedge positions. The largest public options exchange is the Chicago Board of Options

Exchange (CBOE). There exists two types of options, calls and puts, and two types

of option styles, American and European. American call options give the buyer the

right (but not the obligation) to buy the underlying asset for a specific price (known

as the strike price) by a specific expiration date. In contrast, the call option seller has

the obligation to sell the main asset for the same conditions if forced by the buyer.

American put options give the buyer the right to sell the underlying asset for a specific

2



price by a specific date and give the seller the obligation to buy the main asset for

the same conditions if forced by the buyer. Each option contract corresponds to 100

units of the underlying asset, for example, 100 shares of stock. [5]

The price of an option can be found by using the Black-Scholes-Merton option

pricing model [6], [7]. This model takes into account multiple factors to determine an

option's price. The variable factors for this model are:

� Strike price

� Current underlying asset price

� Risk-free interest rate

� Days to expiration (DTE)

� Volatility of the price of the underlying asset

� Dividend yield of the underlying asset

An option trader can typically benefit the most by correctly predicting the under-

lying asset's price movement or volatility.

The Black-Scholes-Merton model defines the rates of change of the option price

with respect to each variable. These are known as the option greeks. The main greeks

are defined as:

� Delta - Represents the rate of change of the option price with respect to the
underlying asset price.

� Theta - Represents the rate of change of the option price with respect to the
passage of time.

� Gamma - Represents the rate of change of the option's delta with respect to
the underlying asset price.

� Vega - Represents the rate of change of the option price with respect to the
underlying asset's price volatility.

Note that vega isn’t an actual greek letter. It is represented by the greek letter (ν),

which resembles the letter “v”. The option greek delta is generally used to indicate

3



the moneyness of an option, as defined below. An option can either be bought or sold

(known as opening a trade). Therefore, there are four cases when opening a trade:

1. Buying a call, known as being “long on a call.” A premium is debited to enter
the trade.

(a) Profit is achieved when the underlying asset price rises farther than the
strike price, plus the premium paid. Maximum profit is theoretically un-
limited.

(b) Otherwise, a loss occurs. The maximum loss is the premium paid.

2. Selling a call, known as being “short on a call.” A premium is credited to enter
the trade.

(a) Profit is achieved when the underlying asset price fails to rise farther than
strike price, plus the premium received. The maximum profit is the pre-
mium received.

(b) Otherwise, a loss occurs. Maximum loss is theoretically unlimited.

3. Buying a put, known as being “long on a put.” A premium is debited to enter
the trade.

(a) Profit is achieved when the stock price falls below the strike price, minus
the premium paid. The maximum profit occurs when the underlying asset
price is $0.

(b) Otherwise, a loss occurs. The maximum loss is the premium paid.

4. Selling a put, known as being “short on a put.” A premium is credited to enter
the trade.

(a) A profit is achieved when the stock price fails to fall below the strike
price, minus the premium received. The maximum profit is the premium
received.

(b) Otherwise, a loss occurs. The maximum loss occurs when the underlying
asset price is $0.

Each of the possible option positions above has a different payoff, or Profit-Loss

(P/L) graph (as shown in Figure 1.1). The P/L graphs for long and short stock

positions are shown to contrast long and short strategies. The figures on the left

column are long strategies, and the right column figures are short strategies.
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Figure 1.1(a) shows the P/L of buying (going long) stock. In contrast, Figure

1.1(b) shows the P/L of selling (going short) stock. We assume a stock price of $300.

Figures 1.1(c)-(f) correspond to the four option positions described above. We assume

a strike price of $300.

Figure 1.1: Example P/L payoff diagrams. Left column shows bullish (long) strategies,
right column shows bearish (short) strategies.

As seen in Figure 1.1(a), for a long stock purchased for $300 per share, any

future stock price higher than $300 results in a profit, and any price lower than $300

represents a loss. The reverse situation happens in Figure 1.1(b), representing a short

stock sold at a $300 per share price. For this short stock position, a future price lower

(higher) than $300 represents a profit (loss). The option P/L graphs in Figures 1.1(c)-

(f) have a strike price of $300, representing the point of inflection of the change in
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the graph's slope. Figure 1.1(c) represents a long call position. It results in a profit

when the stock price is further than the strike price, plus the premium paid. It results

in a limited loss (the premium paid) when the stock price is below it. Figure 1.1(e)

represents a short put position. It results in a limited profit (the premium received)

when the stock price is further than the strike price minus the premium received, and

a loss when the stock price is below it. These two positions profit when the stock

price rises, also known as a bullish position.

Figure 1.1(d) represents a long put position. It results in a profit when the stock

price is below the strike price, plus the premium paid. It results in a limited loss (the

premium paid) when the stock price is above it. Figure 1.1(f) represents a short call

position. It results in a limited profit (the premium received) when the stock price is

below the strike price minus the premium received, and a loss when the stock price

is above it. These two positions profit when the stock price falls, also known as a

bearish position.

When the underlying asset price is at the option's strike price, it is considered

at-the-money (ATM). When the price is on the graph's non-zero slope, it is consid-

ered in-the-money (ITM). Otherwise, it is considered out-of-the-money (OTM). This

nomenclature is commonly referred to as the moneyness of the option.

An alternative way to represent moneyness is by using the options greek delta.

Delta represents the rate of change of the option price with respect to changes in the

underlying asset price. Absolute delta values range from [0, 1] for both call and put

options. An absolute delta value of 0.5 represents an ATM option, an absolute delta

value > 0.5 represents an ITM option, and an absolute delta value < 0.5 represents

an OTM option. Long calls and short puts have positive delta values, in contrast

with long puts and short calls that have negative delta values.

Another way to represent moneyness is by using a normalized strike value (NV).

6



This value is obtained by dividing the strike price by the underlying asset price. For

a call option, an NV value of 1 is considered ATM, an NV value > 1 is considered

OTM, and an NV value < 1 is considered ITM. For a put option, an NV value of 1

is considered ATM, an NV value < 1 is considered OTM, and an NV value > 1 is

considered ITM. [8].

1.3 Broken Wing Butterfly Strategy

In general, any number of options positions can be entered in the market at the same

time. The combination of positions is called an option strategy. These strategies

can consist of a combination of calls and puts. They can achieve profit not only by

changes in the underlying asset price, but for example, changes in volatility, minimal

changes in the underlying asset price, or even by the passage of time. The broken

wing butterfly (BWB) is a multi-option strategy that consists of 3 options of the same

type (call or put).

The put BWB is a bullish strategy that has increased in popularity due to its

minimal upside risk, flexibility, potential profits, and high-profit rate. The put BWB

we analyzed in this thesis consists of:

� One long put close to ATM, or slightly ITM or OTM

� Two short puts at the same strike, typically further OTM

� One long put, far OTM

The difference between each strike is referred to as the wing widths of the BWB.

Unlike an ordinary butterfly strategy [5], the wing width of a BWB is not equidistant.

This combination enables the buildup of profit with the passage of time, even

when the long strikes are not ITM, as shown in Figure 1.2. For this figure, the trade

was entered when the options had 41 days to expiration (DTE), and the underlying

asset price was at $304.21. The long put strikes are at $318 and $275, and the short
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strike is at $304. The T+0 line shows the P/L graph when the strategy was entered.

The T+26 P/L graph shows the potential profit after 26 days, and the T+37 P/L

graph shows the potential profit after 37 days. If the closing price of the underlying

asset is below the lower long put strike of $275, this strategy experiences its maximum

loss. If the underlying asset's closing price is precisely at the short strike of $304, this

strategy experiences its maximum profit.

Figure 1.2: Broken wing butterfly structure. Expiration and theoretical P/L graphs for a
strategy with 41 days to expiration. The T+0, T+26, and T+37 lines represent the current
value of the trade, and the 26 and 37-day projections of the value of the trade, respectively.

There are several considerations to take into account when designing a BWB

strategy. The following parameters can specify them:

� Days to Expiration (DTE)

� Maximum loss to exit a trade

� Minimum profit to exit a trade

� Exit days before expiration. This limits the number of days in a trade if other
exit criteria have not been met

8



� Maximum debit or minimum credit to enter a trade. There is a maximum debit
one is willing to pay or a minimum credit one is willing to receive to enter a
trade

� Which strikes to choose for the four options

The values these parameters can take have wide ranges, making the search space

to find an optimal set of parameters exponential. To solve this problem, in this thesis

we used a differential evolution optimization method.

1.4 Differential Evolution

Differential evolution is an evolutionary algorithm that aims to optimize a problem

using successive iterations to maximize desired properties, while minimizing undesired

properties. It is commonly used for non-linear and non-differentiable continuous-space

functions [9].

Differential evolution has been found to have better performance over other op-

timization techniques, including genetic algorithms, simple evolutionary algorithms,

particle swarm optimization, for various functions that include real value parameters

to optimize [4].

A differential evolution algorithm starts by randomly generating an initial popula-

tion of solutions to a problem Pg. The population has a size NP , and each individual

in the population is symbolized by the vector x, of dimension D. Thus, a population

at a given generation is defined as:

Pg = (xi), i = 1, 2, 3, ...,NP , g = 1, 2, 3, ..., gmax (1.1)

xi = (xj,i), j = 1, 2, 3, ..., D (1.2)

Where i is the ith vector member of the population Pg, j is the jth dimension of

the vector x, and g is the gth generation of the evolutionary algorithm, and x ∈ RD.

9



This population evolves through mutation, crossover, and selection to find bet-

ter “fit” individuals in the solution space. These operations are known as the DE

operators, and they are discussed below.

1.4.1 Initialization

To initialize a population, upper and lower bounds are required. Generally, they are

dependent on prior knowledge of the problem. Ideally, these boundaries would en-

compass only valid solutions to the problem in order to avoid the generation of invalid

solutions and to constraint the search to a smaller search space. A uniform random

number generator is typically used to generate each component of a population's

vector. If we define the upper bound as Bu and the lower bound as Bl, then:

xj,i = randj(0, 1)× (Bj,u −Bj,l) +Bj,l (1.3)

Where randj(0, 1) represents a uniformly distributed number between [0, 1]. Each

component of the vector x can be bounded by different values.

1.4.2 Differential Mutation

In order to explore the fitness space for enhanced solutions, differential evolution

uses the mutation step to mutate and recombine population members to create a

population of mutant vectors of size NP using:

vi,g = xr0,g + F × (xr1,g − xr2,g) (1.4)

Where F is a positive real number that controls the rate of mutation, usually it is

set within the range (0, 2) [4]. xr0, xr1, and xr2 are randomly chosen vectors out of

the current generation's population where r0, r1, r2 ∈ {1, 2, ...,NP} and are mutually

10



different.

Due to this operation, some of the child vector's components might be outside

the defined bounds. For that reason, an extra step is necessary to ensure that each

component is bounded. In this thesis, instead of forcing out of bound values to their

closest boundary, we used the original vector to get a new component value by using:

vj,i,g =


Bj,u + randj(0, 1)× (xj,i,g −Bj,u), if vj,i,g > Bj,u

Bj,l + randj(0, 1)× (xj,i,g −Bj,l), if vj,i,g < Bj,l

(1.5)

1.4.3 Crossover

Differential evolution generally implements a uniform crossover technique to create

new population members, known as children. The children are symbolized by the

trial vector u where:

ui,g = uj,i,g =


vj,i,g if randj(0, 1) ≤ Cr or j = jrand

xj,i,g otherwise

(1.6)

Where Cr ∈ [0, 1] is the crossover probability. The second condition j = jrand,

jrand ∈ 1, 2, ..., D ensures that at least one component in the trial vector u is different

than the target vector.

1.4.4 Selection

The next generation's members are selected using a greedy strategy. If the trial vector

ui,g has an equal or greater fitness value than the target vector, it takes the place of

the target vector for the next generation. The next generation's population is given

11



by:

xi,g+1 =


ui,g, if f(ui,g) ≥ f(xi,g)

xi,g, otherwise

(1.7)

Where f denotes the fitness function.

1.4.5 Convergence & Results

As generations increase, the population keeps improving and converging to the max-

imum point in the fitness space it can find. The algorithm stops either by a pre-

specified number of generations or after a certain number of generations where the

maximum fitness does not improve.

This type of differential evolution is referred to as “DE/rand/1/bin” since it ran-

domly selects the base vector for mutation. It only uses one vector difference for the

mutation and uses a binomial distribution for selecting the new population.
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Algorithm 1: A differential evolution algorithm

1 g → 1 . initialize the generation counter

2 Generate a random initial population Pg of size NP

3 Compute the fitness, f(xi), of every xi ∈ Pg

4 while g ≤ gmax do

5 for each individual i in Pg do

6 Get random individuals xr0, xr1, xr2 without replacement from Pg

7 Perform differential mutation on these vectors to create a mutant

vector vi

8 Perform crossover to create a trial vector ui

9 Compute the fitness, f(ui)

10 Select the member of the next generation's population Pg+1 based on

fitness

11 end

12 g → g + 1

13 end

1.5 Related Work

The use of evolutionary algorithms in the stock market has been primarily used to

forecast stock prices or index levels with the help of neural networks [10], [11], [12] or

to more accurately price options [13], [14].

Previous work done by Tymerski and Greenwood in [8] and [15] focused on using

memetic algorithms to find unconventional optimal option strategies over a defined

period. Their work found strategies that optimized for final profits while reducing

drawdown. They used fixed entry parameters and always exited on the expiration of

the options.
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Optimizing the BWB was undertaken in [16]. They selected a limited range for

each parameter and analyzed every permutation from 2014 to 2015 using the S&P 500

index options. However, they did not explore continuous ranges for these parameters.

Further work by Munoz Constantine, Tymerski, and Greenwood in [17] optimized

the BWB options strategy with different mapping strategies for the whole period from

2005 to 2016. They found that the normalized strike mapping was superior to the

other mapping methods and achieved better returns than merely holding the SPY

stock.

This thesis most closely resembles the work of Munoz Constantine, Tymerski,

and Greenwood's [17], but instead of optimizing the entire period, in this thesis we

utilize in and out-of-sample periods to assess the suitability of differential evolution

for predicting future optimal strategy parameters.
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Chapter 2

Methods

2.1 Option Data

The underlying asset used for this thesis is the S&P 500 exchange-traded fund (ETF)

that has the symbol SPY. The options data used for backtesting and optimization

was the end of day (EOD) data obtained from IVolatility.com. This data spans from

January 10, 2005, to July 15, 2016.

A sample of this data is shown in Table 2.1. It includes each option contract's bid

price, ask price, the greek delta, expiration date, and the underlying's closing price.

This data has been augmented to include the normalization value described in the

subsequent sections of this thesis.

Date
Expiration

Date
Call
Bid

Call
Ask

Call
Delta

Put
Bid

Put
Ask

Put
Delta

Close
Price

Strike
Price

Norm
Value

8/5/2010 9/18/2010 $7.14 $7.19 0.7644 $1.47 $1.49 -0.2491 $112.85 $107 0.9482

8/5/2010 9/18/2010 $6.34 $6.39 0.7314 $1.66 $1.70 -0.2804 $112.85 $108 0.9570

8/5/2010 9/18/2010 $5.56 $5.62 0.6948 $1.91 $1.96 -0.3163 $112.85 $109 0.9658

8/5/2010 9/18/2010 $4.82 $4.88 0.6541 $2.22 $2.25 -0.3558 $112.85 $110 0.9747

8/5/2010 9/18/2010 $4.12 $4.17 0.6093 $2.52 $2.58 -0.3978 $112.85 $111 0.9836

8/5/2010 9/18/2010 $3.48 $3.52 0.5600 $2.91 $2.94 -0.4431 $112.85 $112 0.9924

8/5/2010 9/18/2010 $2.85 $2.91 0.5071 $3.32 $3.36 -0.4910 $112.85 $113 1.0013

8/5/2010 9/18/2010 $2.31 $2.37 0.4511 $3.80 $3.85 -0.5406 $112.85 $114 1.0102

8/5/2010 9/18/2010 $1.85 $1.89 0.3937 $4.34 $4.40 -0.5905 $112.85 $115 1.0190

8/5/2010 9/18/2010 $1.43 $1.47 0.3355 $4.95 $5.02 -0.6390 $112.85 $116 1.0279

8/5/2010 9/18/2010 $1.07 $1.11 0.2781 $5.62 $5.70 -0.6848 $112.85 $117 1.0367

8/5/2010 9/18/2010 $0.79 $0.82 0.2249 $6.34 $6.47 -0.7258 $112.85 $118 1.0456

8/5/2010 9/18/2010 $0.56 $0.60 0.1769 $7.13 $7.27 -0.7619 $112.85 $119 1.0545

Table 2.1: SPY's end of day option chain on 08/05/2010. The last column represents
the corresponding strike normalized value (NV).
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2.2 Assumptions

2.2.1 Transaction Costs

Due to recent innovations in the stock market, transaction costs for options trading

has decreased dramatically. It ranges from $0 to $0.65 per contract for some brokers.

In this thesis we ignored transaction costs for simplicity and the relatively low trans-

action costs per trade.

To avoid unrealistic transaction prices, in this thesis we used the following formula

when entering and exiting a trade based on its bid/ask spread:

transaction price =


1
3
· bid + 2

3
· ask if buying

2
3
· bid + 1

3
· ask if selling

(2.1)

To avoid trading contracts with low volume, if the bid price of a contract is less

than $0.08, it is not traded. In addition, we assume that the option contracts are not

exercised for the duration of the trade.

2.2.2 Sizing

Every trade is entered with the minimum number of contracts possible (for the BWB,

it is four contracts. two for the long puts, and two for the short puts).

2.3 Implementation

In this thesis we used the “DE/rand/1/bin” strategy to find each of the BWB optimal

parameters. The parameters are optimized for a fixed period (the in-sample months)

and then used for a single trade in the future (the out-of-sample months). Once the

out-of-sample trade is completed, the next in-sample period will include the oldest
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out-of-sample month, and drop the oldest in-sample month. This process sweeps all

the data in a sliding window approach. This process guarantees only the most recent

data is taken into account for future predictions. Figure 2.1 highlights this process.

Figure 2.1: Sliding window of in and out-of-sample months at consecutive time steps.

The BWB parameters define how and when to enter and exit a trade. For in-

sample months, trades are entered every day that the conditions are met. This

condition ensures that as much data as possible is used to optimize the parameters.

For out-of-sample months, only one trade is entered for the whole period. If the

entry conditions are not met, it skips to the next day until it finds a day satisfying all

entry conditions. If no suitable trade is found, no trade is recorded for that period.

The trade parameters used, accompanied by sample values (using a points-based

option's strike mapping to be discussed further below), are shown below.

1. Upper long strike, ULS, e.g. ULS = S+6, that is, 6 points above the underlying
price, S.

2. Short strike, SS, e.g. SS = S-5, that is, 5 points below the underlying price, S.

3. Lower long strike, LLS, e.g. LLS = S-15, that is, 15 points below the underlying
price, S.

4. Entry days to expiration, entry DTE = 45, e.g. 45 days to expiration at entry.
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5. Exit days to expiration, exit DTE = 14, e.g. 14 days to expiration to exit.

6. Maximum cost to enter a trade, e.g. 10% of the required margin.

7. Minimum profit to exit a trade, e.g. 50% of the maximum possible profit.

8. Maximum loss to exit a trade, e.g. 40% of the required margin.

The sample values given above translate to a strategy that seeks to (by item 1)

buy a long put 6 points above the underlying price, (by item 2) sell two short puts 5

points below the underlying price, and (from item 3) buy a long put 15 points below

the underlying price. All put options are from an option chain with (by item 4) its

days to expiration closest to 45 days. The total BWB strategy cost is limited to a

maximum debit of (by item 6) 10% of the required margin.

This strategy will monitor the profit or loss of each day post-trade entry, and exit

the trade when any one of the following three conditions occurs:

i. A profit target of 50% of the maximum possible profit is reached (by item 7).

ii. A maximum loss of 40% of the required margin is reached (by item 8).

iii. There are 14 days left until the expiration of the options (by item 5).

The fitness function to maximize was formulated to maximize risk-adjusted re-

turns. It achieves this by optimizing the final profit and minimizing the maximum

drawdown. It is a weighted sum of these terms given by:

fitness(x) = final cumulative return(x)− maximum drawdown(x)

3
(2.2)

Where x represents the vector of trade parameters. The first term adds the final

cumulative returns of the strategy to ensure the total profits are maximized. The last

term penalizes the fitness by an adjusted level of the maximum equity drawdown.

Besides maximizing the fitness value, the following conditions were required for a

strategy to be valid.
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a. Its fitness must be positive.

b. Its number of winning trades must be at least 70% of the total trades entered.

c. Its number of trades entered is at least 40% of the maximum possible trading
days.

These requirements prevent (by item a.) the optimization of a losing strategy

(by item b.) a few lucky trades to dominate the returns, and (by item c.) to have

a strategy that trades infrequently. These conditions are required for the in-sample

period only.

The initial parent population of the DE algorithm was generated by the following

intelligent initialization method. Individuals in the population are randomly gen-

erated from a uniform distribution, their fitness is evaluated, and only individuals

satisfying all three pre-conditions were added to the initial population. This process

continues until all members of the population were generated.

After generating the initial population, the mutation and crossover operations were

used to generate the children and explore the fitness landscape. These operations were

repeated until the overall best individual did not change for several generations. The

fittest individual out of all generations was kept. Subsequently, the whole process

was repeated for 20 runs to explore the fitness landscape fully.

Once the best parameters were found for the in-sample period, those parameters

were used for trading in the out-of-sample period. The next in and out-of-sample

months were selected using the sliding window method described in Figure 2.1 until

all the available data was explored.
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Algorithm 2: My differential evolution implementation

1 r → 1 . initialize the run counter

2 for r to 20 do

3 g → 1 . initialize the generation counter

4 Generate an initial population Pg of size NP using intelligent

initialization

5 Compute the fitness, f(xi), of every xi ∈ Pg

6 while best fitness has not changed for 75 generations do

7 for each individual i in Pg do

8 Get random individuals xr0, xr1, xr2 without replacement from Pg

9 Perform differential mutation on these vectors to create a mutant

vector vi

10 Perform crossover to create a trial vector ui

11 Compute the fitness, f(ui)

12 Select the member of the next generation's population Pg+1 based

on fitness

13 end

14 g → g + 1

15 end

16 Save best overall individual

17 end

18 Compute the out-of-sample fitness and trade metrics using the best in-sample

individual
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2.4 Implementation Details

2.4.1 Margin Requirement

Option margin refers to the capital required from an investor as collateral before they

can initiate a trade. The CBOE provides a “margin manual”[18] that describes how

to calculate the margin required for a regular trading margin account for well-known

option strategies. This manual defines the formulas recommended for calculating the

margin required for a traditional butterfly structure. However, it does not guide as

to how to calculate the margin for a broken wing butterfly.

For non-conventional strategies that are risk-defined, most brokers require a mar-

gin equal to the maximum theoretical loss the strategy can experience. For undefined

risk strategies, the margin calculation varies. See Appendix B for a complete explana-

tion. Since the BWB is a risk defined strategy, the margin required can be calculated

by examining its maximum theoretical loss.

The margin required for each BWB was calculated by inspecting their P/L graph

at expiration. The maximum loss the BWB can experience at its expiration is its

margin required. This is the lower level of the expiration line in the BWB P/L plot

(left side of the plot in Figure 1.2).

2.4.2 Strike Mapping

Three parameters of the BWB specify the strikes of the long and short puts. From

Table 2.1 we can observe that strikes are specified in a dollar amount. The strikes

available are dependent on the closing price of the underlying. In Table 2.1, the

closing price of the underlying is $112.85 and it has strike prices from $107 to $119.

If the underlying closing price was different, for example $1000, then the strikes $107

to $119 might not be available for trading. Therefore, if we use a fixed dollar amount
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to specify a strategy, it will not be stay consistent over time. Since the underlying

price varies every day, a method that indirectly assigns strike prices was used. Three

such methods are considered and evaluated for their efficacy. The three methods are:

1. Points Based Mapping.

2. Delta Based Mapping.

3. Normalized Strike Mapping.

Each of these mappings will be examined by referencing Table 2.1. This table

shows a partial option chain for the SPY on the date 08/05/2010. The expiration

date for these options is 09/18/2010, representing days to expiration (DTE) of 44

days. The underlying's (SPY) end of day closing price was $112.85. Different strikes

are shown with the corresponding bid and ask prices as well as their respective delta

values. Note that the last column contains the values of each strike's normalized

values (NV). For example, the strike price of $113 is represented by an NV of approx-

imately 1 (since $113/$112.85 ≈ 1). Let us consider, as an example, how the three

mapping methods would represent the three strikes of $118, $113, and $107.

Points based mapping : This mapping method assigns the strikes by using a relative

point distance from the underlying's EOD closing price. If we denote the EOD closing

price of $112.85 as S, then each strike can be represented by as S+5.15, S+0.15, and

S-5.85. (The nearest strike is chosen when evaluations do not result in exact strike

prices). Option traders widely use this method.

Delta based mapping : This mapping method specifies strikes by using the absolute

value of their corresponding delta values. Therefore, the above strikes can be specified

as the 0.7, 0.5, and 0.25 delta strikes (Again, choosing the strike nearest to the delta

value.)

Normalized Strike Mapping : This mapping method requires that the EOD closing
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price normalize each strike in the option chain. Therefore, the strikes above can be

referred via their normalized values of 1.045, 1.0, and 0.948 (the closest values are

sufficient). This method was introduced in [8], and further explored in [17] where it

was found to be highly effective in optimizing profits.
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Chapter 3

Results

Results were generated by using a population size NP = 25, a mutation rate

F = 0.3, and a crossover rate Cr = 0.5. The in-sample period spanned 12 months

and the out-of-sample period one month. The fitness landscape exploration was

stopped once the best in-sample fitness did not improve for 75 generations. This

process was repeated for 20 runs. After the 20 runs, the next 12-month in-sample

period is optimized in a sliding window fashion, as shown in Figure 2.1.

The value bounds used for each parameter are shown in Table 3.1 for all three

strike mapping methods.

Points Map Delta Map Normalized Map
Upper Long Strike, ULS S-3 to S+40 (points) strikes with 0.45 to 0.775 (delta) strikes with NV 0.95 to NV 1.25

Short Strike, SS S-35 to S+38 (points) strikes with 0.05 to 0.75 (delta) strikes with NV 0.73 to NV 1.24
Lower Long Strike, LLS S-45 to S+29 (points) strikes with 0 to 0.72 (delta) strikes with NV 0.38 to NV 1.23

Entry DTE (days) 35 to 100 35 to 100 35 to 100
Exit DTE (days) 1 to 30 1 to 30 1 to 30
Max Cost (%) -65 to 35 -65 to 35 -65 to 35
Min Profit (%) 0 to 100 0 to 100 0 to 100
Max Loss (%) 0 to 100 0 to 100 0 to 100

Table 3.1: Ranges are used for each parameter for each mapping type. The symbol S
denotes the current underlying price. It is used in determining the strike locations for
the points mapping method. The absolute delta values are shown, but in actuality,
a long position will have a negative value, and a short position will have a positive
delta value. NV represents normalized values.

In order to guarantee that the algorithm produces a BWB structure, the following

requirement was added.

lower long strike, LLS < short strike, SS < upper long strike, ULS
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The performance of the BWB strategy for all mapping methods is shown in Table

3.2. Out of the three mapping methods, the normalized strike mapping achieved

the highest median out-of-sample fitness, with a value of 0.024. It achieved the best

cumulative returns (of 151.71%), the highest Sharpe ratio (of 0.48), and the lowest

drawdown (of 39.3%). The results of the other mapping methods are shown, as well

as merely holding the SPY stock.

Points
Mapping

Delta
Mapping

Normalized
Mapping

SPY

Median
In-Sample

Fitness
5.22 4.75 4.88 1.04

Median
Out-of-Sample

Fitness
0.02 0.015 0.024 NA

Total
Trades

95 101 97 1

Cumulative
Returns

133.83% 98.53% 151.71% 122.70%

Annualized
Returns

7.70% 6.10% 8.40% 7.20%

Annualized
Volatility

21.70% 24.10% 22.0% 19.80%

Sharpe
Ratio

0.45 0.37 0.48 0.45

Max
Drawdown

41.0% 50.60% 39.30% 55.20%

Percent
Profitable

61.05% 62.40% 63.0% 100%

Min
Margin

$737 $657 $417 $54.77

Max
Margin

$4,268 $4,054 $4,813 $198.40

Table 3.2: Performance comparison from 2005 to 2016. Margin results for the BWB
are per tranche (1/2/1 contracts) and per share for SPY stock. The initial portfolio
amount was $10,000.

Figure 3.1 shows the correlation between the in-sample and out-of-sample fitnesses.
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The linear regression shows a weak correlation for in-sample and out of sample fit-

nesses for all mapping methods. This suggests that the in-sample fitness does not

predict whether an out-of-sample trade will be profitable.

Figure 3.1: In-sample and out-of-sample fitness correlation. The linear regression of the
variables shows a weak correlation.

Since the normalized mapping method achieved the best results, its optimal pa-

rameters are analyzed further in this section. See Appendix A for a complete com-

parison of the points and delta mapping methods.

Figure 3.2 shows the value ranges of the three strikes of the BWB over all in-

sample periods. The upper long put strike always prefers to be ITM. The short puts

spend most of the time ITM, except between 2008 to 2009, mid-2015 to 2016, and

briefly in 2012. Interestingly, these periods coincide with periods of high volatility in

the stock market, notably the great financial crash of 2008. The lower long put is

consistently far OTM.
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Figure 3.2: Optimal strike parameters for the normalized method. Upper long puts are, on
average, ITM. Short puts are, on average, ATM. Lower long puts are, on average, far OTM.
The dashed lines represent mean values.

From Figure 3.3, we can observe the optimum entry days to expiration is, on

average, 90 days, and the exit days to expiration, on average, nine days. When the

BWB strategy is near to expiration, the build-up of profit is more pronounced and

more comfortable to achieve. It also increases the gamma risk of the strategy. Gamma

is one of the option Greeks previously discussed. It refers to the higher sensitivity of

option prices due to underlying price variations. The short exit days to expiration

parameter helps to explain its high cumulative returns and elevated volatility.
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Figure 3.3: Optimal DTE parameters for the normalized method. Entry DTE on average,
is 90 days, and exit DTE is nine days. The dashed lines represent mean values.

From Figure 3.4, we observe significant variability in the profit and loss taking

parameters. On average, the strategy takes a more significant percentage of profit

than of loss. This result, combined with the low exit days to expiration parameter,

suggests that the optimization method is trying to predict where the price is going

close at expiration to take the maximum profit possible. It also suggests it is willing

to take more significant losses in the search for maximum profit. The maximum

loss parameter is significantly reduced during the significant financial crisis period.

This suggests that the optimization method learned to avoid significant losses during

volatile periods.
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Figure 3.4: Optimal profit and loss parameters for the normalized method. It has higher
average profit-taking than loss taking point. Dashed lines represent mean values.

Figure 3.5 shows great variation on the cost to enter a trade. On average, we are

willing to pay to enter a trade.

Figure 3.5: Optimal cost parameter for the normalized method. Mean value represented by
dashed line.

Table 3.3 shows the percentage of times a specific exit condition was triggered
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out of all trades. For all mapping methods, we observe that the exit parameter that

influences the strategy's exits the most is the Exit DTE parameter. This demon-

strates that the BWB strategy spends most of the time avoiding a maximum loss and

obtaining a moderate profit or loss.

Both the points and delta mapping methods have higher maximum losses than the

normalized method. Even though the points mapping method has a more significant

percentage of maximum profit-taking, it is not enough to overcome its losses. This

explains why the normalized and points mapping methods have higher cumulative

returns than the delta mapping method.

As seen from Figure 3.3, the average days between entry and exit is close to 83

days. Therefore, as we get near the end of the period analyzed, there is not enough

days to complete the trade. This is why we observe that 2% of the trades resulted in

a forced exit.

This is the result of entering trades by the end of the period analyzed. The lack

of data results in an inconclusive exit.

Exit Case Points Map Delta Map Normalized Map
Max Loss (%) 10 9 6
Min Profit (%) 8 5 5
Exit DTE (%) 80 84 87
Forced Exit (%) 2 2 2

Table 3.3: Percentage of trades where each trade exit condition was triggered.

Figure 3.6 shows the equity curves for all mapping methods, along with the returns

of the SPY stock. It shows that the normalized mapping method achieves the highest

cumulative return and lowest drawdown. The points method achieves greater returns

than the SPY, and the delta method has similar returns to the SPY. Figure 3.7

shows the beta factor each mapping method strategy has with its underlying. The

beta factor is a measure of how much the underlying's returns explain the strategy's
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returns. In general, a beta factor close to 0 is ideal since it means the strategy's

returns are independent of the underlying movements. All mapping methods have a

low mean beta exposure to the SPY.

Figure 3.8 show the returns of each strategy. It shows the greater volatility of the

normalized mapping method and the delta mapping method's reduced volatility.

Figure 3.9 shows the annual returns for each method. All methods have a negative

return on the same years, implying that during those years, there are events that are

difficult to generalize.

Figure 3.10 shows the underwater plot of each mapping method. The underwater

plot lets us visualize the drawdown's magnitude and duration. It shows that the

normalized method's lower and shorter drawdown periods.

Figure 3.6: Cumulative returns comparison for all mapping methods and SPY.
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Figure 3.7: Beta factor to SPY comparison for all mapping methods.

Figure 3.8: Returns comparison for all mapping methods.

Figure 3.9: Annual returns comparison for all mapping methods.
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Figure 3.10: Underwater comparison for all mapping methods.

To verify that differential evolution is the best method to optimize the BWB

parameters, in this thesis we evaluated different optimization methods to find the

optimal parameters. These methods are included in Matlab's Global Optimization

Toolbox. They include global search, particle swarm optimization, and simulated

annealing. Out of all methods, only simulated annealing was able to find at least one

valid solution for all mapping methods. Therefore, Table 3.4 contrasts the results

against simulated annealing only. This table shows that the differential evolution

method achieving better results for all mapping methods.
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Points
Map
DE

Points
Map Sim.
Annealing

Delta
Map
DE

Delta
Map Sim.
Annealing

Normalized
Map
DE

Normalized
Map Sim.
Annealing

Median
In-Sample

Fitness
5.22 1.95 4.75 0 4.88 0

Median
Out-of-Sample

Fitness
0.02 0.01 0.015 0 0.024 0

Total
Trades

95 58 101 43 97 5

Cumulative
Returns

133.83% 68.60% 98.53% -6.7% 151.71% 4.70%

Annualized
Returns

7.70% 4.60% 6.10% -0.6% 8.40% 0.4%

Annualized
Volatility

21.70% 21.0% 24.10% 5.0% 22.0% 1.7%

Sharpe
Ratio

0.45 0.32 0.37 -0.09 0.48 0.24

Max
Drawdown

41.0% 50.20% 50.60% 29.80% 39.30% 4.0%

Percent
Profitable

61.05% 63.0 % 62.40% 65.0% 63.0% 40.0%

Min
Margin

$737 $683 $657 $76.70 $417 $76.70

Max
Margin

$4,268 $4,636 $4,054 $4,720 $4,813 $4,720

Table 3.4: Performance comparison from 2006 to 2016 using DE and simulated an-
nealing optimization methods. Margin results for the BWB are per tranche (1/2/1
contracts) and per share of SPY stock. The initial amount was $10,000.
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Chapter 4

Conclusions & Future Work

4.1 Conclusions

In this thesis, we examined the optimal parameters for the BWB option strategy.

In particular, the predictive power of past optimal parameters for future trades was

assessed. The optimal entry parameters consist of the three strike locations, days

to expiration to entry, and adequate debit or credit limits. Optimal exit parameters

involve minimum profit taking level, maximum loss level, and days to expiration to

exit.

The use of a differential evolution algorithm was useful in finding the optimal

parameters over other optimization methods. The use of the found optimal param-

eters for future trades generated profit metrics superior to its underlying. The issue

of strike mapping, in which an indirect method is used to select option strikes, was

addressed. The normalized strike mapping method was found to be the most effec-

tive of the three methods considered. As shown in the cumulative returns plot in

Figure 3.6, all methods exhibit the same characteristics at each period. However, the

normalized mapping method achieves better results, confirming its superiority as an

indirect mapping method. This method represents strikes as normalized values with

respect to their current underlying price. The normalized mapping method achieves

the best cumulative return, lowest drawdown, and highest Sharpe ratio out of all

mapping methods.
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Figures 3.3-3.5, A.2-A.4, and A.6-A.8 show that the mean parameters for all

mapping methods are similar.

Figures 3.2, A.1, and A.5 show great variability on the strike locations over time.

Noting how the methods do not agree when to have the short strike ITM or OTM,

but on average, they have the upper long put strike ITM, the short put strike closer

to ATM, and the lower long put strike far OTM. This helps explain why the methods

differ in their performance even though the other optimal parameters are similar.

Figures 3.3, A.2, and A.6 show that all methods have an optimal average entry

DTE between 88 and 91, and an average exit DTE between 8 to 9.

Figures 3.4, A.3, and A.7 show that all methods have an optimal profit taking

level between 82% and 90%, and an optimal loss taking level of 67% and 71%. This

implies that taking profits and losses early helps limiting the drawdown and volatility

while still achieving high returns (see Tables 3.2 and 3.3).

Figures 3.5, A.4, and A.8 show that on average we can tolerate a debit between

26% and 29% of the total required margin to enter a trade.

The optimal parameters’ similarity further confirms that all the mapping methods

are learning similar features from the underlying's movements. The selection of the

option strikes makes a significant difference in the final profits and performance of a

strategy.

All mapping methods achieve an average low beta exposure to the SPY, making

it ideal for achieving returns in different market conditions.

The final performance of the normalized mapping method outperformed the other

methods and of its underlying. It has a greater cumulative return, lower drawdown,

comparable volatility, and higher Sharpe ratio while keeping its beta exposure to a

minimum. Using differential evolution to optimize entry and exit parameters for the

BWB option strategy proved useful in forecasting favorable entry and exit parameters
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for trades.

4.2 Future Work

The normalized strike selection effectively transformed the BWB structure to a loss

limited put ratio spread. Typically, the BWB has a 60%/40% wingspan ratio. How-

ever, over the decade of option data that the strategy was optimized, on average, the

ratio spread type structure was optimal, except on periods of high volatility. Future

work will focus on limiting the useful delta of the structure. Since delta changes

through time, an adjustment frequency trade should be explored to keep the required

delta within the limited range. This will have the effect of stabilizing the BWB

wingspan and reducing its overall risk. However, this can have the effect of reducing

overall profit. Therefore a new fitness function will have to be crafted to take into

account this risk.
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Appendix A

Optimal Parameters of Remaining Mapping Methods

A.1 Points Mapping

Figure A.1 shows the value ranges of the three strikes of the BWB over all in-sample

periods. As with the normalized method, the upper long put strike always prefers to

be ITM. The short puts spend most of the time ITM, except between 2008 to 2009,

mid-2015 to 2016, and briefly in 2012. This confirms that these two methods are

learning similar strategies.

Figure A.1: Optimal strike parameters for the points method. Upper long puts are, on
average, ITM. Short puts are, on average, ATM. Lower long puts are, on average, far OTM.
The dashed lines represent mean values.

From Figure A.2, we can observe the optimum entry days to expiration is, on
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average, 91 days, and the exit days to expiration, on average, eight days. Coinciding

with the normalized method optimum values. The gamma risk on this strategy is

increased due to the low exit DTE.

Figure A.2: Optimal DTE parameters for the points method. Entry DTE on average, is 91
days, and exit DTE is eight days. The dashed lines represent mean values.

From Figure A.3, we observe significant variability in the profit and loss taking

parameters. On average, the strategy takes a more significant percentage of profit

than of loss.
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Figure A.3: Optimal profit and loss parameters for the points method. It has higher average
profit-taking than loss taking point. Dashed lines represent mean values.

Figure A.4 shows great variation on the cost to enter a trade. On average, we are

willing to pay to enter a trade. All of these parameters are similar to the found in

the normalized method.

Figure A.4: Optimal cost parameter for the points method. Mean value represented by
dashed line.
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A.2 Delta Mapping

Figure A.5 shows the value ranges of the three strikes of the BWB over all in-sample

periods. As with the normalized and points methods, the upper long put strike always

prefers to be ITM. The short puts spend most of the time ITM, except between 2008

to 2009, mid-2015 to 2016, and briefly in 2012. This confirms that all methods are

learning similar strategies.

Figure A.5: Optimal strike parameters for the delta method. Upper long puts are, on
average, ITM. Short puts are, on average, ATM. Lower long puts are, on average, far OTM.
The dashed lines represent mean values.

From Figure A.6, we can observe the optimum entry days to expiration is, on

average, 88 days, and the exit days to expiration, on average, eight days. Coinciding

with the normalized and points methods optimum values. This suggests an optimal

entry point overall.
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Figure A.6: Optimal DTE parameters for the delta method. Entry DTE on average, is 91
days, and exit DTE is eight days. The dashed lines represent mean values.

From Figure A.7, we observe as well significant variability in the profit and loss

taking parameters. On average, the strategy takes a more significant percentage of

profit than of loss.

Figure A.7: Optimal profit and loss parameters for the delta method. It has higher average
profit-taking than loss taking point. Dashed lines represent mean values..
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Figure A.8 shows great variation on the cost to enter a trade. On average, we are

willing to pay to enter a trade. All of these parameters are similar to the found in

the normalized and points methods.

Figure A.8: Optimal cost parameter for the delta method. Mean value represented by
dashed line.
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Appendix B

Margin Calculation for Any Options Strategy

As previously discussed, for any defined loss options strategy, the margin required

by most brokers in a regular account is the maximum loss the strategy can incur.

However, when the strategy is undefined, there is no clear guidance on calculating

the required margin, and brokers sometimes disagree on the final margin cost. As an

example, let us take the SPY options chain on 6/18/2020, as seen in Table B.1

Date
Expiration

Date
Call
Bid

Call
Ask

Call
Delta

Put
Bid

Put
Ask

Put
Delta

Close
Price

Strike
Price

6/18/2020 7/17/2020 $13.52 $13.61 0.66 $7.63 $7.68 -0.36 $311.78 $304

6/18/2020 7/17/2020 $8.43 $8.48 0.53 $10.49 $10.58 -0.47 $311.78 $312

6/18/2020 7/17/2020 $5.33 $5.39 0.42 $13.37 $13.50 -0.57 $311.78 $318

6/18/2020 7/17/2020 $4.48 $4.53 0.38 $14.46 $14.65 -0.60 $311.78 $320

Table B.1: SPY EOD option chain data for the date 6/18/2020.

If we sell one $304 strike put, two $318 strike calls, one $320 strike call, and buy

one $312 strike call, we have an undefined strategy that resembles the most to a

traditional strangle strategy. The P/L graph of this strategy is shown in Figure B.1.
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Figure B.1: Expiration P/L of the example's non-conventional strategy. Last underlying
price was $311.78.

Two popular brokers, Tastyworks [19] and TD Ameritrade [20], show different

margin requirements for the same strategy in their respective trading platforms. Fig-

ure B.2 shows that Tastyworks requires a margin of $11,163.98 (after fees), and Figure

B.3 shows that TD Ameritrade requires a margin of $11,401.13 (after fees). These

discrepancies are not vast, but enough to suggest that each broker uses different

methods to calculate the margin required for the same strategy.

Figure B.2: Margin required by Tastyworks for our non-conventional strategy. Represented
by the “Est. BP Effect” field.
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Figure B.3: Margin required by TD Ameritrade for our non-conventional strategy. Repre-
sented by the “Buying Power Effect” field.

In this thesis we propose a simple approach to calculate the margin for any un-

conventional and undefined loss strategy. We start by decomposing the strategy into

its most basic components. The CBOE defines the following strategies for options

with the same expiration date:

� Iron Condor (4 contracts).

� Butterfly (3 contracts).

� Spreads (2 contracts).

� Straddle/Strangle (2 contracts).

� Single options (1 contract).

Any strategy can be decomposed into these more straightforward strategies. The

benefits of using these strategies are that they are more margin efficient, and the

CBOE provides exact formulas to calculate their margins.

To calculate the margin of any strategy, we start by trying to find these embedded

strategies, starting with the strategies with the most number of contracts first. For

our example strategy above, we first try to check if we have the correct contracts

to create an iron condor strategy. Since we do not, we check if we have the correct

contracts to create a butterfly, and so on. In the end, we will have a collection of

them. For our example strategy, we find that:
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� One Long spread. Formed by using the $312 strike long call and $318 strike
short call. It requires $311 in margin.

� One Strangle. Formed by using the $304 strike short put and $318 strike short
call. It requires $5,768.60 in margin.

� One Short option. Formed by using the $320 strike short call. It requires
$5,413.60 in margin.

This approach results in a total margin of $11,182.20 (found by adding the mar-

gin required for all embedded strategies). This margin value most closely matches

Tastyworks' required margin.

This approach works best when the option strategy has an undefined loss. If a

strategy has a defined loss (as is the BWB), its margin is found by examining the

maximum loss at the strategy’s expiration.
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Appendix C

Source Code
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1 main.m

1   clear
2   clc
3   close all
4   format bank
5   %initialize variables
6   global tradingDaysCell;
7   global expirationDaysCell;
8   global expirationDays;
9   global ivRank;
10   global tradingDays;
11   global vix;
12   %load data
13   load('opts_breakdown_vix.mat');
14   vix = vix(find(vix(:,1) == tradingDays(1)):end,5);
15   
16   global NORM_MAPPING;
17   global DELTA_MAPPING;
18   global POINTS_MAPPING;
19   
20   NORM_MAPPING = 1;
21   DELTA_MAPPING = 2;
22   POINTS_MAPPING = 3;
23   %select the type of mapping for the BWB strikes
24   mappingType = POINTS_MAPPING;
25   
26   %type of mapping, can be delta, norm, or points
27   if mappingType == POINTS_MAPPING
28   %ulsRange is how many points above or below ATM
29   %Upper long strike, how many points above or below current SPY price
30   ulsRange = [-3 42];
31   %ssRange is how many points below uls
32   %Short strike, how many points below uls
33   ssRange = [1 32];
34   %llsRange is how many points below Short Strike
35   %Lower long strike, how many points below short strike
36   llsRange = [10 60];
37   %mpaRange is how many points above upper long strike to trigger below condition
38   %Time exit: DTE unless mpaRange points above upper long strike
39   mpaRange = [1 35];
40   %minimum deviation to tolerate when it cannot find an exact option in 

find_chains_params.m
41   Options.minThresh = 2;
42   OptionsOS.minThresh = 2;
43   elseif mappingType == NORM_MAPPING
44   %ulsRange is how many percentage points above ATM. If uls = 0.02 then it is 

equivalent to 1.02 (ITM)
45   %Upper long strike, how many percentage points above current SPY price
46   ulsRange = [-0.05 0.25];
47   %ssRange is how many percentage points below ATM. If ss = 0.02 then it is equivalent 

to 0.98 (OTM)
48   %Short strike, how many percentage points below current SPY price
49   ssRange = [0.01 0.22];
50   %llsRange is how many percentage points below short strike. If lls = 0.03 then it is 

equivalent to (0.98-0.03)=0.95 (OTM)
51   %Lower long strike, how many percentage points below short strike
52   llsRange = [0.01 0.55];
53   %mpaRange is how many percentage points above upper long strike to trigger below 

condition. if mpa = 0.05 then it is equivalen to (1.02+0.05)=1.07 (ITM)
54   %Time exit: DTE unless mpaRange percentage points above upper long strike
55   mpaRange = [0.01 0.35];
56   %minimum deviation to tolerate when it cannot find an exact option in 

find_chains_params.m
57   Options.minThresh = 0.005;
58   OptionsOS.minThresh = 0.005;
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2 main.m

59   elseif mappingType == DELTA_MAPPING
60   %ulsRange is how many delta points above ATM. If uls = 0.02 then it is equivalent to 

-0.52 (ITM)
61   %Upper long strike, how many delta points above current SPY price
62   ulsRange = [-0.05 0.275];
63   %ssRange is how many delta points below ATM. If ss = 0.02 then it is equivalent to 

-0.48 (OTM)
64   %Short strike, how many delta points below current SPY price
65   ssRange = [0.023 0.45];
66   %llsRange is how many delta points below short strike. If lls = 0.03 then it is 

equivalent to (-0.48+0.03)=-0.45 (OTM)
67   %Lower long strike, how many delta points below short strike
68   llsRange = [0.03 0.5];
69   %mpaRange is how many delta points above upper long strike to trigger below 

condition. if mpa = 0.05 then it is equivalen to (-0.52-0.05)=-0.57 (ITM)
70   %Time exit: DTE unless mpaRange delta points above upper long strike
71   mpaRange = [0 1];
72   %minimum deviation to tolerate when it cannot find an exact option in 

find_chains_params.m
73   Options.minThresh = 0.035;
74   OptionsOS.minThresh = 0.035;
75   end
76   %percentage points relative to margin required. If margin in a specific trade is
77   %1000 and maxCost = 0.05 then the trade requires a minimum of
78   %0.05*1000/100=0.5 dollar credit to enter the trade. If maxCost=-0.05 then
79   %it requires a maximum of 0.5 dollar debit to enter the trade. 
80   maxCostRange = [-0.65 0.35];
81   %percentage points relative to margin required to exit a trade in profit 
82   maxProfitRange = [0.0 1];
83   %percentage points relative to margin required to exit a trade in loss 
84   maxLossRange = [0.0 1];
85   %how many days until expiration to exit a trade
86   exitDTERange = [1 30];
87   %how many days until expiration to enter a trade
88   dteRange = [35 100];
89   
90   % dimension of problem
91   D = 8;
92   % size of population
93   NP = 25;
94   % differentiation constant
95   F = 0.3;
96   % crossover constant
97   CR = 0.5;
98   % number of generations to stop at
99   lagGen = 75;
100   %number of random restarts
101   runs = 10;
102   
103   Boundary.mappingType = mappingType;
104   Options.mappingType = mappingType;
105   OptionsOS.mappingType = mappingType;
106   
107   %function to get the month number from a date string.
108   get_month = @(dt) floor(mod((dt/100), 100));
109   start_range = 1;
110   lastMonth = get_month(tradingDays(1));
111   currentMonth = get_month(tradingDays(1));
112   count = 1;
113   NUM_MONTHS = 138;
114   monthsDayRange = zeros(NUM_MONTHS,2);
115   n = 1;
116   %find the integer ranges from each moth based on the trading days.
117   while n < length(tradingDays)
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3 main.m

118   while currentMonth == lastMonth
119   n = n + 1;
120   currentMonth = get_month(tradingDays(n));
121   end
122   ender = n - 1;
123   monthsDayRange(count, :) = [start_range ender];
124   count = count + 1;
125   lastMonth = currentMonth;
126   start_range = n;
127   end
128   
129   %Initialize DE generation parameters
130   fitnessProgress = {};
131   Pop = zeros(D,NP); % population
132   Fit = zeros(2,NP); % fitness of the population
133   isAllFitness = {};
134   osAllFitness = {};
135   osPopulation = [];
136   osDates = [];
137   osPfts = [];
138   osROC = [];
139   osReasons = [];
140   bestIndAll = [];
141   Boundary.llsRange = llsRange;
142   Boundary.ulsRange = ulsRange;
143   Boundary.ssRange = ssRange;
144   Boundary.maxCostRange = maxCostRange;
145   Boundary.maxProfitRange = maxProfitRange;
146   Boundary.maxLossRange = maxLossRange;
147   Boundary.exitDTERange = exitDTERange;
148   Boundary.dteRange = dteRange;
149   Boundary.inputRange = [0 1];
150   
151   % index of the best solution in the population
152   iBest = 1;
153   % Set the number of in and out-of-sample trading months
154   isMaxMonths = 12;
155   osMaxMonths = 1;
156   
157   Options.isOOS = false;
158   Options.monthsDayRange = monthsDayRange;
159   OptionsOS.isOOS = true;
160   OptionsOS.monthsDayRange = monthsDayRange;
161   
162   %for all months optimize the BWB.
163   for n=1:NUM_MONTHS-isMaxMonths-osMaxMonths%
164   bestInd = [];
165   bestFit = -Inf;
166   for iRun=1:runs
167   fitnessProgress = [];
168   %find where should the out of sample month should start
169   osMonths = (n+isMaxMonths-1)+osMaxMonths;
170   nPop = 0;
171   %for some configurations it takes too long to find total population, in
172   %that case I just want to exit and skip that month
173   tries = 0;
174   %start intelligent initialization
175   while 1
176   %generate random individual vector and decode it.
177   Y = rand(D,1);
178   [Trade, ~] = decode_individual(Y, Boundary);
179   %trading day of end of range - maximum possible holding day
180   Trade.tradingMonths = find_months_range(n, isMaxMonths, Trade.dte, Trade.exitDte,

monthsDayRange);
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4 main.m

181   %if individual passes all constraints, add it to the initial
182   %population.
183   [fitness, ok, ~, ~, ~] = get_fitness(Trade, Options);
184   if ok > 0
185   nPop = nPop + 1;
186   Fit(1, nPop) = fitness;
187   Trade.tradingMonths = osMonths;
188   [fitness, ~, ~, ~, ~] = get_fitness(Trade, OptionsOS);
189   Fit(2, nPop) = fitness;
190   Pop(:, nPop) = Y;
191   % exit when we have enough individuals
192   if nPop == NP
193   break
194   end
195   end
196   tries = tries + 1;
197   % number of tries is proportional to the population
198   if tries > min([100000 7500*(nPop+1)])
199   break
200   end
201   end
202   if tries > min([100000 7500*(nPop+1)])
203   fprintf("Exceeded intelligent initalization tries\n")
204   continue
205   end
206   [~, iBest] = max(Fit(1,:));
207   lastFit = 1;
208   g = 1;
209   %stop searching the fitness space once the best individual does not
210   %improve
211   while lastFit > 0.001
212   % get random population members
213   rot = randperm(5);
214   r1 = randperm(NP);
215   r2 = circshift(r1, rot(1));
216   r3 = circshift(r2, rot(2));
217   pop1 = Pop(:, r1);
218   pop2 = Pop(:, r2);
219   pop3 = Pop(:, r3);
220   
221   %perform mutation and crossover
222   crossLocations = rand(NP,D) < CR;
223   mutantPop = pop3 + F * (pop1 - pop2);
224   newPop = Pop.*(~crossLocations(1,:))' + mutantPop.*crossLocations(1, :)';
225   % for each individual check their fitness and if they belong in the
226   % new population
227   for iInd = 1:NP
228   originalX = Pop(:, iInd);
229   X = newPop(:, iInd);
230   X = enforce_boundaries(X, originalX);
231   [Trade, ~] = decode_individual(X, Boundary);
232   Trade.tradingMonths = find_months_range(n, isMaxMonths, Trade.dte, Trade.exitDte

, monthsDayRange);
233   [f, ok, ~, ~, ~] = get_fitness(Trade, Options);
234   
235   % if trial is better or equal then current
236   if (1/f) <= (1/Fit(1,iInd)) && ok > 0
237   Trade.tradingMonths = osMonths;
238   [f_oos, ~, ~, ~] = get_fitness(Trade, OptionsOS);
239   % replace current by trial
240   Pop(:,iInd) = X;
241   Fit(1,iInd) = f ;
242   Fit(2,iInd) = f_oos ;
243   % if trial is better then the best, update the best's index
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5 main.m

244   if (1/f) < (1/Fit(1,iBest))
245   iBest = iInd ;
246   end
247   end
248   end
249   if mod(g, 39) == 0
250   fprintf("Run %d OS Month %d Generation %d best is fitness %f os fitness %f\n",

iRun, osMonths, g, Fit(1,iBest), Fit(2,iBest));
251   end
252   fitnessProgress(g, 1) = Fit(1, iBest);
253   fitnessProgress(g, 2) = Fit(2, iBest);
254   %save the fitness to check if it changed later
255   if g > lagGen+1
256   lastFit = fitnessProgress(g, 1) - fitnessProgress(g-lagGen-1, 1);
257   end
258   g = g + 1;
259   end
260   %save the fitness for this in and out-of-sample period.
261   isAllFitness{osMonths}{iRun} = fitnessProgress(:, 1)';
262   osAllFitness{osMonths}{iRun} = fitnessProgress(:, 2)';
263   if Fit(1,iBest) > bestFit
264   bestInd = Pop(:,iBest);
265   bestFit = Fit(1,iBest);
266   end
267   end
268   if length(bestInd) == 0 && tries > min([100000 7500*(nPop+1)])
269   bestInd = zeros(D,1);
270   end
271   
272   bestIndAll(:,osMonths) = bestInd;
273   end
274   save('results.mat', 'isAllFitness', 'osAllFitness', 'bestIndAll')
275   
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1 bwb_manage_params.m

1   function [profit_out, reason, daily_returns, dates, Greeks] = bwb_manage_params(Trade,
Options)

2   %{
3     This function manages a trade by entering and exiting at some given
4     specific conditions.
5   
6     Given a BWB trade parameters and its trade Options, manage the strategy.
7     Returns the total profit, the reason it exited in coded format, the daily
8     P/L and dates of the trade, and the daily delta and gamma greeks. 
9     %}
10   global expirationDaysCell;
11   global expirationDays;
12   global tradingDays;
13   global NORM_MAPPING;
14   global DELTA_MAPPING;
15   global POINTS_MAPPING;
16   
17   profit_out = eps;
18   reason = -1;
19   
20   REASON_MAX_LOSS = 0;
21   REASON_MAX_PROFIT = 1;
22   REASON_EXIT_DTE = 2;
23   REASON_EXPIRATION = 3;
24   
25   Greeks.delta = [];
26   Greeks.gamma = [];
27   
28   chains = Trade.chains;
29   %get all chains with the required expiration date
30   exp_dates = expirationDaysCell{expirationDays == chains(1, 2)};
31   
32   %get each strike's daily data
33   strks = exp_dates(:, 8);
34   llp = exp_dates(strks == chains(1, 8),:);
35   sp = exp_dates(strks == chains(2, 8),:);
36   ulp = exp_dates(strks == chains(3, 8),:);
37   
38   %if any of the legs does not have data or if any of them has less data
39   %than the others, we will not trade (or trade on incomplete data).
40   if isempty(ulp) || isempty(sp) || isempty(llp) || ...
41   size(llp, 1) ~= size(sp, 1) || size(llp, 1) ~= size(ulp, 1)
42   daily_returns = [];
43   dates = [];
44   return;
45   end
46   
47   %get the premium of the entry date. 9 is bid, 10 is ask, 15 is number
48   %of contracts.
49   premium_in = -((chains(1, 9) * 1/3) + chains(1, 10) * 2/3) * chains(1, 15) + ...
50   ((chains(2, 9) * 2/3) + chains(2, 10) * 1/3) * chains(2, 15) + ...
51   -((chains(3, 9) * 1/3) + chains(3, 10) * 2/3) * chains(3, 15);
52   
53   %Get the row number locations in the global chain.
54   exp_locs = find(llp(:, 1) == chains(1, 1));
55   % Get the number of days for trading.
56   days = size(llp, 1);
57   
58   %Initialize variables
59   daily_returns = zeros(days + 1, 1);
60   dates = zeros(days + 1, 1);
61   Greeks.delta = zeros(days + 1, 1);
62   Greeks.gamma = zeros(days + 1, 1);
63   daily_returns(1) = 0;
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2 bwb_manage_params.m

64   dates(1) = chains(1, 1);
65   Greeks.delta(1) = chains(1, 11) - chains(2, 11) * 2 + chains(3, 11);
66   
67   %Calculating gamma value is cpu intensive. Comment this code to improve 
68   %performance.
69   [~, llgamma, ~] = getGreeks(chains(1, :));
70   [~, sgamma, ~] = getGreeks(chains(2, :));
71   [~, ulgamma, ~] = getGreeks(chains(3, :));
72   Greeks.gamma(1) = llgamma - sgamma * 2 + ulgamma;
73   
74   %start on the first trading day.
75   iDay = exp_locs(end)+1;
76   %While there are trading days available and we have not forcibly exited,
77   %continue trading
78   while iDay <= days && reason < 0
79   %Get the current premium to exit the trade.
80   premium_out = ((llp(iDay, 9) * 2/3) + llp(iDay, 10) * 1/3) * chains(1, 15) + ...
81   -((sp(iDay, 9) * 1/3) + sp(iDay, 10) * 2/3) * chains(2, 15) + ...
82   ((ulp(iDay, 9) * 2/3) + ulp(iDay, 10) * 1/3) * chains(3, 15);
83   %Calculate the current return and store it.
84   day_return = premium_out + premium_in ;
85   daily_returns(iDay + 1 - exp_locs(end)) = day_return;
86   dates(iDay + 1 - exp_locs(end)) = llp(iDay, 1);
87   
88   %Delta is calculated from the option chain.
89   Greeks.delta(iDay + 1 - exp_locs(end)) = llp(iDay, 11) + sp(iDay, 11) * -2 + ulp(

iDay, 11);
90   [~, llgamma, ~] = getGreeks(llp(iDay, :));
91   [~, sgamma, ~] = getGreeks(sp(iDay, :));
92   [~, ulgamma, ~] = getGreeks(ulp(iDay, :));
93   Greeks.gamma(iDay + 1 - exp_locs(end)) = llgamma - sgamma * 2 + ulgamma;
94   
95   %check the exit conditions.
96   if day_return < -Trade.maxLoss * (Trade.margin/100)
97   reason = REASON_MAX_LOSS;
98   elseif day_return > Trade.maxProfit * (Trade.maxWin/100)
99   reason = REASON_MAX_PROFIT;
100   elseif llp(iDay,3) <= Trade.exitDte
101   reason = REASON_EXIT_DTE;
102   elseif llp(iDay,1) >= tradingDays(end)
103   reason = REASON_EXPIRATION;
104   end
105   
106   iDay = iDay + 1;
107   end
108   
109   %Only keep the days that actually were traded.
110   profit_out = day_return;
111   daily_returns = daily_returns(1:iDay - exp_locs(end));
112   dates = dates(1:iDay - exp_locs(end));
113   Greeks.delta = Greeks.delta(1:iDay - exp_locs(end));
114   Greeks.gamma = Greeks.gamma(1:iDay - exp_locs(end));
115   end
116   
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1 check_max_loss.m

1   function [maxLoss, isUndefined, maxWin] = check_max_loss(strks)
2   %{
3     This function returns the maximum loss and maximum profit a BWB can obtain. 
4     It also checks if the BWB is risk defined.
5     %}
6   maxPrice = 300;
7   minPrice = 70;
8   isUndefined = false;
9   maxLoss = -1;
10   %create large enough range of prices to check to get complete picture of
11   %P/L graph and know if there is undefined loss
12   rangeOfPrices = [minPrice; strks(:,1); maxPrice];
13   pl = zeros(length(rangeOfPrices),1);
14   %for each price, get the expiration return at that point
15   K = strks(:,1);
16   value = strks(:,2);
17   nContracts = strks(:,4);
18   for n=1:length(rangeOfPrices)
19   s = rangeOfPrices(n);
20   otmLocs = s >= K;
21   itmLocs = ~otmLocs;
22   otm = -value .* nContracts;
23   itm = (-sign(value).*(s - K) - value) .* nContracts;
24   pl(n)= sum(round(otm .* otmLocs,3) + round(itm .* itmLocs,3));
25   end
26   %get p/l 
27   maxLoss = abs(min(pl)*100);
28   maxWin = max(pl)*100;
29   isLeftUndefined = false;
30   isRightUndefined = false;
31   %if the leftmost or rightmost price is decreasing it means it is undefined
32   %single is needed to truncate the precision.
33   if single(pl(2)) > single(pl(1))
34   isLeftUndefined = true;
35   end
36   if single(pl(length(rangeOfPrices)-1)) > single(pl(end))
37   isRightUndefined = true;
38   end
39   isUndefined = isLeftUndefined || isRightUndefined;
40   if ~isUndefined
41   %if the rightmost price is less or equal than the leftmost price, we
42   %do not have a true BWB
43   if single(pl(1)) >= single(pl(end))
44   isUndefined = true ;
45   end
46   end
47   end
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1 decode.m

1   function x1 = decode(x, output_range)
2   %{
3     This function maps a [0, 1] variable to the range given.
4     %}
5   x1 = output_range(1) + (output_range(2) - output_range(1)) * x;
6   end
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1 decode_individual.m

1   function [Trade, X] = decode_individual(Y, Boundary)
2   %{
3     Transforms a population vector in the range [0, 1] to a Trade structure
4     and a trade vector.
5     %}
6   Trade.ulStrike = decode(Y(2), Boundary.ulsRange);
7   Trade.sStrike = decode(Y(3), Boundary.ssRange);
8   Trade.llStrike = decode(Y(1), Boundary.llsRange);
9   Trade.maxCost = decode(Y(4), Boundary.maxCostRange);
10   Trade.maxProfit = decode(Y(5), Boundary.maxProfitRange);
11   Trade.maxLoss = decode(Y(6), Boundary.maxLossRange);
12   Trade.exitDte = decode(Y(7), Boundary.exitDTERange);
13   Trade.dte = decode(Y(8), Boundary.dteRange);
14   Trade.lots = 1;
15   
16   X(1) = Trade.llStrike;
17   X(2) = Trade.ulStrike;
18   X(3) = Trade.sStrike;
19   X(4) = Trade.maxCost;
20   X(5) = Trade.maxProfit;
21   X(6) = Trade.maxLoss;
22   X(7) = Trade.exitDte;
23   X(8) = Trade.dte;
24   end
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1 enforce_boundaries.m

1   function X = enforce_boundaries(X, X0)
2   %{
3     Enforces the boundaries of an individual vector.
4     If a dimension is out of bounds, use the original dimension to calculate
5     a new value.
6     %}
7   function y = bound(y, y0, rg)
8   if y > rg(2)
9   y = rg(2) + rand*(y0 - rg(2));
10   elseif y < rg(1)
11   y = rg(1) + rand*(y0 - rg(1));
12   end
13   end
14   
15   X(1) = bound(X(1), X0(1), [0 1]);
16   X(2) = bound(X(2), X0(2), [0 1]);
17   X(3) = bound(X(3), X0(3), [0 1]);
18   X(4) = bound(X(4), X0(4), [0 1]);
19   X(5) = bound(X(5), X0(5), [0 1]);
20   X(6) = bound(X(6), X0(6), [0 1]);
21   X(7) = bound(X(7), X0(7), [0 1]);
22   X(8) = bound(X(8), X0(8), [0 1]);
23   end
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1 find_chains_params.m

1   function [ulc, sc, llc, total, marginUsed, isUndefined, maxWin] = find_chains_params(
Trade, Options)

2   %{
3     Given the entry parameters, find the option chains that satisfy them.
4     %}
5   global NORM_MAPPING;
6   global DELTA_MAPPING;
7   global POINTS_MAPPING;
8   
9   chain = Trade.chain;
10   %variable to take into account that put deltas are negative.
11   delta_const = 1;
12   
13   %get the closest strike based on the mapping
14   if Options.mappingType == POINTS_MAPPING
15   %close price is ATM
16   [~, I] = min(abs((chain(:, 8) - (Trade.close + Trade.ulStrike))));
17   upperLongStrike = chain(I, 8);
18   map_loc = 8;
19   %forcing short strike to be OTM
20   shortStrike = (Trade.close + Trade.ulStrike) - Trade.sStrike;
21   elseif Options.mappingType == NORM_MAPPING
22   %1.0 is ATM
23   [~, I] = min(abs((chain(:, 14) - (1.0 + Trade.ulStrike))));
24   upperLongStrike = chain(I, 14);
25   map_loc = 14;
26   %forcing short strike to be OTM
27   shortStrike = (1.0 + Trade.ulStrike) - Trade.sStrike;
28   elseif Options.mappingType == DELTA_MAPPING
29   %-0.5 delta is ATM, -1.0 < x < -0.5 is ITM, -0.5 < x < 0.0 is OTM
30   %since delta is negative, and ulStrike is positive (to simulate how much above)
31   %have to subsctract ulStrike from ATM to go ITM
32   [~, I] = min(abs((chain(:, 11) - (-0.5 - Trade.ulStrike))));
33   upperLongStrike = chain(I, 11);
34   map_loc = 11;
35   delta_const = -1;
36   %forcing short strike to be OTM
37   shortStrike = (-0.5 - Trade.ulStrike) + Trade.sStrike;
38   end
39   
40   lowerLongStrike = shortStrike - Trade.llStrike * delta_const;
41   
42   %find the option chains closes to the strikes selected
43   [i, I] = min(abs((chain(:, map_loc) - upperLongStrike)));
44   [j, J] = min(abs((chain(:, map_loc) - shortStrike)));
45   [k, K] = min(abs((chain(:, map_loc) - lowerLongStrike)));
46   ulc = chain(I, :);
47   sc = chain(J, :);
48   llc = chain(K, :);
49   
50   %calculate how much will cost to get into trade for 1 lots. 
51   %9 is bid, 10 is ask,
52   credits = ((sc(9) * 2/3) + sc(10) * 1/3) * 2;
53   debit_upper = ((ulc(10) * 2/3) + ulc(9) * 1/3);
54   debit_lower = ((llc(10) * 2/3) + llc(9) * 1/3);
55   debits = debit_upper + debit_lower;
56   total = credits - debits;
57   
58   %set strks structure
59   strks = [llc(8) ((llc(9) * 1/3) + llc(10) * 2/3) 0 1*Trade.lots;
60   sc(8) -((sc(9) * 2/3) + sc(10) * 1/3) 0 2*Trade.lots;
61   ulc(8) ((ulc(9) * 1/3) + ulc(10) * 2/3) 0 1*Trade.lots;];
62   %check if resulting bwb is risk defined as well.
63   [marginUsed, isUndefined, maxWin] = check_max_loss(strks);
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2 find_chains_params.m

64   
65   %if costs more to get in than allowed, if any cost is 0 (means there must
66   %be no volume), the difference in strikes is too big (most likely went to
67   %the edges of the chain), or the bid of the lower leg is less than 0.1
68   %(most likely there is no volume and therefore would not be able to get
69   %in into the trade) then fail to get into the trade
70   if total < (marginUsed*Trade.maxCost)/100 || credits == 0 || debit_upper == 0 ||

debit_lower == 0 || ...
71   abs(i) > Options.minThresh || abs(j) > Options.minThresh || ...
72   abs(k) > Options.minThresh || llc(9) <= 0.08 || isUndefined || ...
73   ulc(8) == sc(8) || llc(11) < -0.5 || ulc(11) < -0.75
74   ulc = [];
75   sc = [];
76   llc = [];
77   end
78   end
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1 find_months_range.m

1   function rg = find_months_range(startMonth, numberOfMonths, dte, exitDTE, monthRanges)
2   %{
3     finds the maximum number of months that on a worse case
4     scenario, would stay within the DTE range. 
5     EX: if I want only 24 months of range, but my worst case scenario for
6     staying in a position is 40 days (dte - exitDTE) then this tool finds
7     the day number and matches to the monthsRange
8     number of months is how many total months needed from startMonth
9     %}
10   endDay = floor(monthRanges(startMonth + numberOfMonths - 1, 2) - (dte - exitDTE));
11   monthLoc = (monthRanges(:, 1) <= endDay) & (endDay <= monthRanges(:, 2));
12   rg = (startMonth:1:find(monthLoc));
13   end
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1 get_fitness.m

1   function [fitness, ok, Returns, prob_profit, Stats] = get_fitness(Trade, Options)
2   %{
3     Calculates the fitness of the Trade given its returns.
4     %}
5   ok = 0;
6   %get historical profits
7   [Returns, Stats] = get_hist_bwb_profits(Trade, Options);
8   %if there are not trades or it traded for less than 2 days total, it is
9   %not valid.
10   if isempty(Returns.pfts) || length(Returns.dailyPortfolio) <= 2
11   ok = -3;
12   prob_profit =0;
13   fitness = eps;
14   return
15   end
16   %get the returns statistics.
17   [cum_returns, ~, max_drawdown, ~] = ...
18   get_returns_stats_single(Returns.dailyPortfolio, Options);
19   %calculate the fitness and probability of profit
20   fitness = cum_returns(end) - max_drawdown/3;
21   prob_profit = sum(Returns.pfts>0) / length(Returns.pfts);
22   %if the trade satisfies the requirements or it is an out-of-sample trade,
23   %it is correct.
24   if Options.isOOS || fitness >= 0 && prob_profit>=0.7
25   ok = 1;
26   end
27   end
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1 get_hist_bwb_profits.m

1   function [Returns, Stats] = get_hist_bwb_profits(Trade, Options)
2   %{
3     finds the daily returns of a BWB trade given its entry and exit options.
4   
5     %}
6   global tradingDays;
7   global tradingDaysCell;
8   
9   Returns.pfts = [];
10   Returns.pftsDay = [];
11   Stats.cP = [];
12   Returns.dailyPortfolio = zeros(size(tradingDays));
13   Returns.dates = zeros(size(tradingDays));
14   Stats.margins = [];
15   Stats.reasons = [];
16   Stats.llcs = {};
17   Stats.scs = {};
18   Stats.ulcs = {};
19   Stats.totals = [];
20   Returns.roc = [];
21   totalTrades = 0;
22   
23   %for all months I want to trade
24   for iMonth = 1:length(Trade.tradingMonths)
25   %get the start and end day of that month (its range)
26   rg = Options.monthsDayRange(Trade.tradingMonths(iMonth), :);
27   jDay = rg(1);
28   first_day = jDay;
29   %trade for all days withing the range
30   while jDay < rg(2)
31   %if it is an out-of-sample trade, make sure we exit if no trades are
32   %found half of the trading month
33   if Options.isOOS
34   if jDay >= first_day + 9
35   break
36   end
37   end
38   
39   %get the current's day option chains and get the one with the closest
40   %required DTE
41   todays_chain = tradingDaysCell{jDay};
42   [~, k] = min(abs(todays_chain(:,3) - Trade.dte)); %find closest DTE
43   todays_chain = todays_chain(todays_chain(:,2)==todays_chain(k,2),:);
44   closePrice = todays_chain(1,13);
45   Trade.close = closePrice;
46   Trade.chain = todays_chain;
47   
48   %find the strike chains of the BWB in that DTE chain
49   Options.jDay = jDay;
50   [ulc, sc, llc, total, marginUsed, ~, maxWin] = find_chains_params(Trade, Options);
51   
52   %if it didnt find a suitable trade, go to the next day
53   if isempty(ulc)
54   jDay = jDay + 1;
55   continue;
56   end
57   
58   Trade.chains = [llc Trade.lots;
59   sc 2 * Trade.lots;
60   ulc Trade.lots];
61   Trade.margin = marginUsed;
62   Trade.maxWin = maxWin;
63   %get the returns of trading today until the exit conditions are met
64   [profit_out, reason, dailyReturns, dates, Greeks] = bwb_manage_params(Trade,
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Options);
65   
66   %if for any reason the trading fails, go to next day
67   if reason < 0
68   jDay = jDay + 1;
69   continue;
70   end
71   
72   %store the returns and trade information for later use.
73   totalTrades = totalTrades + 1;
74   Returns.pfts(totalTrades) = profit_out;
75   Returns.entryDates(totalTrades) = todays_chain(1,1);
76   Returns.roc(totalTrades) = profit_out/(marginUsed/100);
77   Returns.Greeks = Greeks;
78   dailyReturns = diff(dailyReturns);
79   for d = 1:length(dailyReturns)
80   Returns.dailyPortfolio(jDay+d) = Returns.dailyPortfolio(jDay+d) + dailyReturns(d

)*100 + eps;
81   Returns.dates(jDay+d) = dates(d);
82   end
83   Stats.cP(totalTrades) = closePrice;
84   Stats.margins(totalTrades) = marginUsed;
85   Stats.reasons(totalTrades) = reason;
86   Stats.totals(totalTrades) = total;
87   Stats.llcs{totalTrades} = llc;
88   Stats.scs{totalTrades} = sc;
89   Stats.ulcs{totalTrades} = ulc;
90   
91   %if it is an out-of-sample trade, we only trade once.
92   if Options.isOOS
93   break;
94   else
95   jDay = jDay + 1;
96   end
97   end
98   end
99   %only get the days traded.
100   temp_portoflio = Returns.dailyPortfolio;
101   trade_start = find(temp_portoflio, 1, 'first');
102   temp_portoflio = flip(temp_portoflio);
103   trade_end = length(temp_portoflio) - find(temp_portoflio, 1, 'first') + 1;
104   Returns.dailyPortfolio = Returns.dailyPortfolio(trade_start:trade_end);
105   Returns.dates = Returns.dates(trade_start:trade_end);
106   end
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1 get_historic_metrics.m

1   function [sharpe, sortino, movReturns, movVolatility] = get_historic_metrics(
nonCumReturns, days)

2   %{
3     calculates the daily returns' metrics.
4     %}
5   movVolatility = movstd(nonCumReturns, days, 'Endpoints','discard');
6   movReturns = movmean(nonCumReturns, days, 'Endpoints','discard');
7   sharpe = movReturns./movVolatility;
8   
9   cum_returns = nonCumReturns;
10   cum_returns(cum_returns>=0)=0;
11   DD = cum_returns.^2;
12   movDD = sqrt(movmean(DD, days, 'Endpoints', 'discard'));
13   sortino = movReturns./movDD * sqrt(252);
14   
15   end
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1 get_returns_stats_single.m

1   function [cum_returns, annual_vol, max_drawdown, annual_returns] =
get_returns_stats_single(returns, Options)

2   %{
3     calculates the statistics of the equity curve.
4     %}
5   
6   %returns are raw dollar values, non commulative
7   initialPortfolio = 10000;
8   %daily annual volatility
9   ann_factor = 252;
10   rets = initialPortfolio + cumsum(returns);
11   rets_pct = 1 + (diff(rets)./rets(1:end - 1, :));
12   
13   cum_returns = cumprod(rets_pct) - 1;
14   
15   retsStd = std(rets_pct);
16   annual_vol = retsStd .* sqrt(ann_factor);
17   
18   % max drawdown
19   dd = zeros(length(rets) - 1, 3);
20   for k = 1:length(rets)-1
21   [pmax, i] = max(rets(1: k + 1));
22   [pmin, j] = min(rets(i: k + 1));
23   
24   dd(k,:) = [(pmax - pmin), i, i + j - 1];
25   end
26   [maxdd, k] = max(dd(:, 1));
27   mx = rets(dd(k, 2)); % dd(k,2) is the index where the max occurs
28   mn = rets(dd(k, 3)); % dd(k,3) is the index where the min occurs
29   max_drawdown = maxdd/mx;
30   
31   annual_returns = (1 + cum_returns(end)) ^ (1 / 1/12) - 1;
32   end
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1 getGreeks.m

1   function [delta, gamma, price] = getGreeks(chain)
2   %{
3     This function calculates the theoretical greeks and price of an option
4     chain that has American style expiration.
5     This function wraps around Matlab's optstocksensbybjs function.
6     %}
7   asset_price = chain(13);
8   settlement_date = datestr(datenum(num2str(chain(1)), 'yyyymmdd'),'mmm-dd-yyyy');
9   maturity_date = datestr(datenum(num2str(chain(2)), 'yyyymmdd'),'mmm-dd-yyyy');
10   strike = chain(8);
11   risk_free_rate = 0.02;
12   volatility = chain(12);
13   dividend_amount = 0.01;
14   if volatility < 0
15   delta = eps;
16   gamma = eps;
17   price = eps;
18   else
19   
20   spec = stockspec(volatility, asset_price, {'continuous'}, dividend_amount);
21   risk_free_rate_spec = intenvset('ValuationDate', settlement_date, 'StartDates',

settlement_date,...
22   'EndDates', maturity_date, 'Rates', ...
23   risk_free_rate, 'Compounding', -1, 'Basis', 1);
24   
25   OptSpec = {'put'};
26   OutSpec = {'Delta', 'Gamma', 'Price'};
27   
28   [delta, gamma, price] = optstocksensbybjs(risk_free_rate_spec, spec, ...
29   settlement_date, maturity_date,...
30   OptSpec, strike, 'OutSpec', OutSpec);
31   end
32   end
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1 pad.m

1   function x = pad(d)
2   %{
3     pads a 0 if necessary to an integer. Used for date parsing.
4     %}
5   if d < 10
6   x = strcat('0',num2str(d));
7   else
8   x = num2str(d);
9   end
10   end
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