
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

3-5-2021 

Memristor Crossbar Array Testing Using Sneak Memristor Crossbar Array Testing Using Sneak 

Paths Paths 

Rasika Dhananjay Joshi 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Joshi, Rasika Dhananjay, "Memristor Crossbar Array Testing Using Sneak Paths" (2021). Dissertations and 
Theses. Paper 5647. 
https://doi.org/10.15760/etd.7519 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5647&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5647
https://doi.org/10.15760/etd.7519
mailto:pdxscholar@pdx.edu


 

 

 

Memristor Crossbar Array Testing Using Sneak Paths 

 

 

 

 

 

 

by 

 

Rasika Dhananjay Joshi 

 

 

 

 

 

 

 

 

A dissertation submitted in partial fulfillment of the  

requirements for the degree of 

 

 

 

 

 

 

Doctor of Philosophy 

in 

Electrical and Computer Engineering 

 

 

 

 

 

Dissertation Committee: 

John M Acken, Chair 

Marek Perkowski 

Dan Hammerstrom 

Steven Bleiler 

 

 

 

 

 

Portland State University 

2021



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Rasika Dhananjay Joshi



 

i 

Abstract 

 

Moore’s law decline has paved the way to shift to new technologies at architectural 

and device levels. CMOS based technologies are facing many challenges with the growing 

demand for miniaturization. The growing heat dissipation is the major limitation for 

performance, energy efficiency and reliability with the increasing transistor count in 

integrated circuits. Manufacturing costs and process/memory performance gap have also 

grown steadily over the last several decades with the scaling down of the CMOS feature 

size. Memristor, a nanoscale device, has the potential to address the CMOS limitations 

because of its non-volatility, high density, low power operation, low cost per bit and CMOS 

compatibility.  

The high density memristor crossbar structures are widely considered for 

performing memory operations, logic, stochastic and neuromorphic computations. 

However, these memristor based devices are prone to defects because of the non-

deterministic nature of nano-scale fabrication. The motivation of my research is to develop 

an application independent methodology for testing memristor circuits for fault detection 

and fault diagnosis using a unique property of memristor crossbar circuits – sneak paths. 

Sneak paths are paths for current parallel to the intended path occurring in memristor 

crossbar architectures. This research characterizes sneak paths and sneak path currents as 

a function of size of the array, resistance values, input voltage and I/O switch vector. The 

equations I derived enable us to predict the sneak paths and sneak path currents for various 

array sizes to determine the constraints to resistive memristor circuits. The sneak path 

characterization work provides boundary conditions for applications that use memristor 



 

ii 

crossbar arrays and provides insights into memristor crossbar testing. Using this 

characterization, a fault detection method is presented in the dissertation for fault detection 

of stuck-at low resistance and stuck-at high resistance faults using long sneak paths to result 

in shorter test vector sets. Long length sneak paths that enable fault detection with shorter 

test vector sets leads to improved test time. As the crossbar array size increases, the length 

of the longest possible sneak paths would also increase leading to improved test time 

compared to March testing. My fault diagnosis method using fault dictionary approach 

with improved test time is another highlight of this research. The results were demonstrated 

using LTspice simulations on resistive memristor crossbar circuits by varying resistance 

programming, IO switch-vectors, input voltage and size of the array.  

The fault detection approach used for stuck-at LRS and stuck-at HRS fault 

detection is extended to test intermediate faults in memristor crossbar circuits. The method 

of selecting the detection limit for testing intermediate faults in crossbar circuits is 

presented in the dissertation using crossbar array simulations. 

  



 

iii 

Dedication 

 

 

 

To Aai, Baba, Shubhu, for their unconditional love and guidance throughout 

To Sarvesh, for his constant support and encouragement 

To the Almighty Lord Ganesh and Swami Samartha for giving me this opportunity 



 

iv 

Acknowledgements 

 

First and foremost, I would like to thank my advisor Dr. John M Acken for teaching 

me to be a researcher. His constant support and guidance throughout the study made it 

possible for me to reach this step in my academic career. His immense knowledge and 

patience have always inspired me and brought out the best in me. His continuous 

motivation and enthusiasm made this experience enjoyable and memorable for me. Thank 

you, Dr. Acken, for always believing in me. 

I would like to thank my other committee members Dr. Perkowski, Dr. 

Hammerstrom and Dr. Bleiler for their valuable guidance and encouragement.  

I would like to thank my husband Sarvesh without whom I would not have reached 

this step. His continuous support, encouragement and insightful discussions throughout the 

study were priceless. Thank you Sarvesh for being there for me always. 

I would like to thank my parents for providing me all the educational opportunities, 

for always motivating me and for supporting me whenever I needed it. Thank you Aai, 

Baba and my brother Shubhu for your endless sacrifices and unconditional love for me. I 

would like to specially thank my mother for motivating me to pursue a Doctorate and 

without her I would not have reached this step. I would like to thank my in-laws as well for 

their continuous support and encouragement. 

Last but not the least, I would like to thank Intel Corporation for supporting my 

study and for providing me with the opportunity to gain deeper understanding in my field 

of research. I am thankful to my managers and colleagues for their support and enthusiasm 

for my study. 



 

v 

 

Table of Contents 

Abstract ................................................................................................................................ i 

Dedication .......................................................................................................................... iii 

Acknowledgements ............................................................................................................ iv 

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

Chapter 1 Background and Motivation ............................................................................... 1 

1.1 Introduction ............................................................................................................... 1 

1.2 Motivation for research ............................................................................................. 2 

1.3 Research Goals .......................................................................................................... 2 

1.4 Dissertation Structure ................................................................................................ 3 

 

Chapter 2 Introduction to Memristors and Memristor Crossbar Arrays ............................. 5 

2.1 Memristor Introduction ............................................................................................. 5 

2.2 Memristor Write and Read Operations ..................................................................... 8 

2.3 Crossbar Arrays ....................................................................................................... 10 

2.3.1 Types of Memristor Crossbars ......................................................................... 11 

2.3.2 Crossbar Applications....................................................................................... 12 

2.4 Memristor Models ................................................................................................... 19 

2.5 Summary of Chapter 2 ............................................................................................ 22 

 

Chapter 3 Sneak Path Characterization in Memristors ..................................................... 24 

3.1 Introduction to Sneak Paths .................................................................................... 24 

3.2 Definition of IO switch-vector ................................................................................ 25 

3.3 Sneak Path Formula for number of sneak paths in crossbar arrays ........................ 26 

3.4 Analysis on Length of Sneak paths in crossbar arrays ............................................ 27 

3.5 Analysis of Sneak Path Currents in Crossbar Arrays .............................................. 34 

3.6 Sneak Path Current Analysis w.r.t size of array and resistance programming ....... 37 



 

vi 

3.6.1 Resistance Programming .................................................................................. 37 

3.6.2 Sneak Path Current for IO switch-vector mclosed = nclosed =1 ............................ 39 

3.6.3 Sneak Path Current for IO switch-vector mclosed =m-1, nclosed =n-1 .................. 41 

3.6.4 Sneak Path Current for IO switch-vector mclosed =1, nclosed =n-1 ...................... 43 

3.6.5 Sneak Path current ranges ................................................................................. 45 

3.6.6 Sneak Path current analysis as a function of Resistance .................................. 46 

3.6.7 Sneak path current analysis in comparison with the Primary current path ...... 48 

3.6.8 Line Resistance impact on sneak path current.................................................. 50 

3.7 Summary of Chapter 3 ............................................................................................ 50 

 

Chapter 4 Review of Testing Resistive Memristor Crossbar Arrays ................................ 52 

4.1 Faults in memristor circuits ..................................................................................... 52 

4.2 Currently Published testing methodologies for Fault Detection ............................. 55 

4.3 Fault Diagnosis ........................................................................................................ 67 

4.3.1 Fault Diagnosis methodologies ........................................................................ 68 

4.4 Drawbacks of existing testing methodologies ......................................................... 73 

4.5 Research Goals for testing memristor circuits ........................................................ 74 

4.5.1 Research Goal 1: Fault Coverage ..................................................................... 74 

4.5.2 Research Goal 2: Fault Detection ..................................................................... 77 

4.5.3 Fault Detection Using Sneak Paths .................................................................. 78 

4.5.4 Research Goal 3: Fault Diagnosis using Sneak Paths ...................................... 79 

4.5.5 Research Goal 4: Test Pattern Generation ........................................................ 79 

4.6 Summary of Chapter 4 ............................................................................................ 79 

 

Chapter 5 Sneak Path based testing in Memristor circuits ............................................... 80 

5.1 Stuck-at LRS and Stuck-at HRS faults ................................................................... 80 

5.2 Fault Detection Approach ....................................................................................... 81 

5.2.1 Fault Detection Example Using Sneak Paths ................................................... 82 

5.3 Fault Diagnosis Methodology Using Sneak Paths .................................................. 84 

5.4 Fault Coverage using sneak path testing ................................................................. 90 

5.5 Summary of Chapter 5 ............................................................................................ 94 

 



 

vii 

Chapter 6 Detection Limit for Intermediate Faults ........................................................... 96 

6.1 Intermediate faults ................................................................................................... 96 

6.2 Fault Detection Method for Intermediate Faults ..................................................... 98 

6.2.1 Fault detection example for Intermediate faults ............................................... 99 

6.2.2 Current resolution for Fault detection measurement ...................................... 103 

6.3 Summary of Chapter 6 .......................................................................................... 105 

 

Chapter 7 Summary, Conclusions, Achievements and Future Work ............................. 106 

7.1 Summary and Conclusion ..................................................................................... 106 

7.2 Achievements and Publications ............................................................................ 108 

7.3 Future Work .......................................................................................................... 109 

 

References ....................................................................................................................... 110 

Appendix: Source code Listing ....................................................................................... 116 

 



 

viii 

List of Tables 
 

Table 1 Count of Possible Different Length Sneak Paths in Crossbar Circuits ............... 32 

Table 2 Low and High Resistance Values for Memristors ............................................... 38 

Table 3 Primary Current and Sneak Path Current Comparison ........................................ 49 

Table 4 Memristor Faults .................................................................................................. 53 

Table 5 Defect Classification in Hybrid memory [55] ..................................................... 65 

Table 6 Test sequence and faults detected by each sequence for fault diagnosis [57] ..... 70 

Table 7 Fault dictionary of March-MD [53] ..................................................................... 73 

Table 8 Diagnosis example when first test vector fails for 3x3 memristor array ............. 88 

Table 9 Diagnosis example when first vector passes for 3x3 memristor array ................ 90 

Table 10 Five memristor long sneak paths in 3x3 memristor array ................................. 93 

Table 11 Memristor Faults ................................................................................................ 97 

Table 12 Sneak Path current analysis for Intermediate faults in a 3x3 crossbar array ... 100 

  



 

ix 

List of Figures 

Fig. 1 Fourth missing element [2] ....................................................................................... 5 

Fig. 2 a) TiO2 thin film memristor structure b) equivalent circuit [4] ................................ 6 

Fig. 3 Hysteresis Loop [5] .................................................................................................. 8 

Fig. 4 (a) Memristor output levels, and (b) memristor 3D nano-structure [6] .................... 9 

Fig. 5 a) Memristor model, (b) Memristance range for different logic levels, and (c) 

Variation of memristance due to voltage over time [7] .................................................... 10 

Fig. 6 Crossbar array with m WLs (horizontal line) and n BLs (vertical lines). Rj is 

selected cell. Rn, Rm are half-selected devices and Rmn is unselected device sharing no 

line with Rj [8]. ................................................................................................................. 11 

Fig. 7 Proposed 2M1M crossbar memory architecture [10] ............................................. 14 

Fig. 8 Application of memristor crossbars for vector–matrix multiplication [14] ........... 15 

Fig. 9 Schematic of write-time memristive PUF circuit [25] ........................................... 17 

Fig. 10 ReVAMP Architecture [26].................................................................................. 18 

Fig. 11 Physical memristor structure based on the Simmon tunnel barrier model. W and 

Rs represent the tunneling barrier width and electroformed channel resistance 

respectively. S, A, and V represents the voltage source, ammeter, and voltmeter 

respectively [31]................................................................................................................ 21 

Fig. 12  Ideal case of current flow through a memristor cell and sneak path flow of 

current in a crossbar array. ................................................................................................ 25 

Fig. 13 3x3 Crossbar array with I/O switch-vector = 100100. ......................................... 28 

Fig. 14 Circuit diagram for 3x3 memristor array with I/O switch-vector = 100100. ....... 29 



 

x 

Fig. 15 Sneak paths of length 3 in a 3x3 crossbar array with I/O switch vector = 100100

........................................................................................................................................... 30 

Fig. 16 Sneak path M1b-M3b-M3c-M2c-M2a of length 5 in a 3x3 crossbar array with 

M1c=M2b=M3a=HRS and remaining memristors in LRS for I/O switch vector =100100.

........................................................................................................................................... 31 

Fig. 17 Sneak Path current analysis for one input ON and one output ON [mclosed = nclosed 

=1] for LRS programming of 10KΩ where m=n. ............................................................. 40 

Fig. 18 Sneak Path current analysis for one input ON and one output ON for [mclosed = 

nclosed =1] HRS programming of 500KΩ where m=n. ...................................................... 40 

Fig. 19 Sneak Path current analysis for m–1 inputs ON and n–1 outputs ON [mclosed = m-

1] for LRS programming of 10KΩ where m=n. ............................................................... 42 

Fig. 20 Sneak Path current analysis for m–1 inputs ON and n–1 outputs ON [mclosed = m–

1] for HRS programming of 500KΩ where m=n.............................................................. 42 

Fig. 21 Sneak Path current analysis for single input ON and all outputs ON except one 

[mclosed = 1 and nclosed = n–1] for HRS and LRS programming of 50KΩ and 10KΩ 

respectively. ...................................................................................................................... 44 

Fig. 22 Sneak Path current analysis with variation in I/O switch-vector (mclosed =1 and 

nclosed =1,2,3,4,5) for 6x6 crossbar array for 10K resistance programming. ..................... 45 

Fig. 23 Sneak Path current analysis for one input ON and one output ON [nclosed = mclosed 

=1] for LRS and HRS programming of resistances in Table 2 where n=m. ..................... 46 

Fig. 24  RoD current variation for stuck-at Fault detection [5] Redrawn ......................... 57 

Fig. 25 Controlling sneak paths using voltage bias technique: (a) Example of sneak path 

through M2, M5 and M6 highlighted in red (b) sneak-path elimination with an uniform 



 

xi 

level of voltage bias Vx applied to wordline/bitlines; (c)Two sneak paths in red with 

intended memristor as M3 (d) Sneak path highlighted in red with intended memristor 

changed to M5 [9]. [Redrawn] .......................................................................................... 59 

Fig. 26 Programmable DFT scheme [52] ......................................................................... 61 

Fig. 27 (a) Possible open, transistor stuck-on, transistor stuck-open defects in a 1T1R 

cell. (b) A 2×2 1T1R cell array [50]. ................................................................................ 63 

Fig. 28 Electrical equivalent circuit [55] .......................................................................... 64 

Fig. 29 Divide and Conquer approach [56] ...................................................................... 67 

Fig. 30 Diagnosis process: (a) Example current in the RoD; (b) Diagnosis process for 

single fault in RoD [9] ...................................................................................................... 68 

Fig. 31 Rnv8T SRAM cell structure [53] ......................................................................... 72 

Fig. 32 Sneak paths of length 5 in a 3x3 crossbar array with M1c=M2b=M3a = HRS and 

all of the rest of the memristors in LRS and for IO switch-vector = 100100 ................... 75 

Fig. 33 Sneak paths of length 5 in a 3x3 crossbar array with M1c=M2b=M3a = HRS and 

all of the rest of the memristors in the LRS and for I/O switch-vector = 100100 ............ 76 

Fig. 34 Stuck-at LRS fault example for single step of march testing in a 3X3 crossbar 

array .................................................................................................................................. 77 

Fig. 35 Fault Detection Using Sneak Paths in a 3x3 crossbar array ................................. 78 

Fig. 36 Fault Detection for HRS Fault .............................................................................. 82 

Fig. 37 Fault detection for LRS fault ................................................................................ 83 

Fig. 38 Sneak paths of length 3 in a 3x3 crossbar array with I/O switch vector = 100100

........................................................................................................................................... 84 

Fig. 39 Fault Diagnosis Methodology for LRS/HRS faults .............................................. 86 

https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175013
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175013
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175017
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175018
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175020


 

xii 

Fig. 40  Sneak path M1b-M3b-M3c-M2c-M2a of length five in a 3x3 crossbar array with 

M1c=M2b=M3a=HRS and remaining memristors in LRS for I/O switch vector =100100.

........................................................................................................................................... 92 

Fig. 41 Sneak path M1c-M2c-M2b-M3b-M3a of length five in a 3x3 crossbar array with 

M1b=M2a=M3c=HRS and remaining memristors in LRS for I/O switch vector =100100.

......................................................................................................................................... 100 

Fig. 42 Sneak Path current for fault free and intermediate faults in a 3x3 crossbar array

......................................................................................................................................... 102 

Fig. 43 Three memristor long sneak paths in 3x3 crossbar array with IO switch vector 

=100100 with all memristors in HRS. ............................................................................ 103 

 

https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175021
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175021
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175021
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175022
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175022
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175022
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175024
https://intel-my.sharepoint.com/personal/rasika_joshi_intel_com/Documents/Documents/PhDDissertation_RasikaJoshi_final.docx#_Toc65175024


 

1 

Chapter 1  

Background and Motivation 

1.1 Introduction  

CMOS technology is fast approaching its fundamental limitations with the growing 

demand for miniaturization. Excessive heat dissipation and increasing fabrication cost are 

primary concerns as the transistor density on the chip increases. The memory wall problem 

where the memory latency and bandwidth become insufficient for instruction and data 

transfers to the processor is also more prominent with the ever-increasing amount of data 

computations using conventional microelectronics technology. Conventional memory 

technologies such as Flash, DRAM, and SRAM are not able to keep up with the demand 

for scaling and low power. Memristor, an emerging nanoscale device, has the potential to 

address these issues in the near future. 

 In 1971, Leon Chua predicted the existence of a fourth fundamental element (the 

other three electrical elements are resistor, capacitor, and inductor) known as the memristor 

(short for memory resistor) [1]. Although he showed that such an element has interesting 

and useful circuit properties, no one presented a physical model or example of the 

memristor until 2008. R.S. William’s team in Hewlett Packard Labs [2-3] then came up 

with a simple analytical example of memristance in thin film nanoscale devices. 

Memristors are one of the promising alternatives for next-generation memory technology 

due to their non-volatility, high density, low power operation, low cost per bit and CMOS 

compatibility. Memristor technology has become an attractive option for use in memory 

architectures, in-memory computing, logic, and neuromorphic applications. Memristor 



 

2 

devices find a broad range of applications in both analog and digital domains. Several 

research efforts have focused on expanding the memristor technology in the areas of 

design, test, memories, and memristor architectures for various applications. Crossbar 

structures are used for many of these applications for performing logic, memory, security, 

and stochastic computations. 

 

1.2 Motivation for research 

Nanoscale memristor devices are prone to defects due to the non-deterministic nature of 

nanoscale fabrication. It is necessary to test memristor devices for detecting memristor 

faults and to diagnose the location of such faults. Providing high quality and efficient test 

solutions is of great importance to enable the commercialization of memristor devices. 

The motivation behind my research is to generate a good quality testing methodology for 

memristor crossbar arrays that is application-independent. For example, the methodology 

will work for testing RRAM applications, for logic computations, neuromorphic 

applications and for user authentication systems etc.    

 

1.3 Research Goals 

My research focuses on analyzing the unique properties of memristor crossbar arrays 

specifically, sneak paths and sneak path currents for testing memristor circuits. Sneak 

paths are defined as current paths parallel to the target memristor path. My research work 

characterizes sneak path length and sneak path current as a function of the size of the array, 

memristor resistance values, input voltage and IO switch-vector. The sneak path 

characterization work provides boundary conditions for applications that use memristor 



 

3 

crossbar arrays and provides insights into memristor crossbar testing. A testing technique 

for memristor fault detection and fault diagnosis using sneak paths is proposed using the 

sneak path characterization work. The advantage of using a sneak path testing scheme is 

that multiple memristors can be tested at the same time by exploiting sneak path currents 

in crossbar arrays. Sneak path testing helps to reduce test time compared to the 

conventional March memory tests that target only one memristor device at a time, which 

consumes a lot of test time. My proposed testing technique addresses single stuck-at low 

resistance faults, single stuck-at high resistance faults and intermediate faults in memristor 

circuits. A new fault terminology, “intermediate faults” has been introduced that covers 

memristor resistances falling between low resistance and high resistance limits. The 

contributed test methodology aims to improve test time by proposing shorter tests by 

optimizing the set of IO test vectors and memristor resistance programming for a given 

size of the array. My research contribution includes the analysis of setting the right 

detection limit for detecting intermediate faults along with stuck-at low resistance and 

stuck-at high resistance faults.  

 

1.4 Dissertation Structure 

The dissertation is organized as follows. This chapter describes the introduction to 

memristor technology, the motivation behind the research and the research goals. Chapter 

2 reviews memristor theory, crossbar arrays and their applications and memristor models. 

Chapter 3 describes sneak paths and sneak path currents in memristor circuits. This chapter 

also discusses my published sneak path characterization work in memristor crossbar 

circuits. Chapter 4 reviews test methodologies referenced in literature for testing 



 

4 

memristor circuits. The conclusions from these reviewed test methodologies are presented 

and my research objectives are discussed. Chapter 5 presents my published work for 

testing memristor faults in crossbar circuits using sneak paths for stuck-at low resistance 

and stuck-at high resistance faults. Chapter 6 extends the fault detection methodology used 

for stuck-at LRS and stuck-at HRS faults for testing intermediate faults in memristor 

circuits. It discusses my published work for analysis of setting the detection limit for 

intermediate fault detection in memristor crossbar circuits. Chapter 7 summarizes the 

contributions and conclusions of the dissertation. In addition, publications and future work 

are also discussed in this chapter. 

  



 

5 

Chapter 2  

Introduction to Memristors and Memristor Crossbar Arrays 

2.1 Memristor Introduction 

The existence of the memristor was first theorized by Leon Chua in 1971 [1]. It was called 

the fourth missing element among the other three fundamental elements, namely resistor, 

capacitor, and inductor. These three two-terminal circuit elements already have established 

relationships between pairs of the four fundamental circuit variables, namely the current i, 

voltage v and charge q, and the flux-linkage φ. Chua noted that the number of equations 

connected to these pairs of circuit variables are six. Two of these relationships are defined 

by dq = i and dφ = v. Three other relationships are defined by namely, resistor (the 

relationship between v and i), the inductor (the relationship between φ and i), and the 

capacitor (the relationship between q and v). Chua invented the missing relationship 

between flux and charge as dφ=Mdq where M is the memristance of the device as shown 

in Fig.1.  

 

Fig. 1 Fourth missing element [2] 

 



 

6 

A memristor is a two-terminal passive resistive device whose resistances vary based on the 

history of voltages applied to it. In simple words, if a positive voltage is applied to the 

undoped end of this two-terminal passive device, the resistance decreases and if a negative 

voltage is applied, the resistance increases. The memristance (M, measured in Ohms) of 

the device is determined by the voltage V applied between the terminals as a function of 

time. The M of the device is expressed as shown in (1). 

 

                                                  M = v(t)/I(t)                                                                    (1) 

 

HP labs [2] developed memristors which consisted of 50-nm wide Titanium Oxide (TiO2) 

thin film sandwiched between two platinum wires as seen in Fig. 2. This film consisted of 

two zones: First, un-doped low conductivity zone with an exact 2:1 ratio of oxygen to 

titanium. Second, doped high conductivity zone with oxygen deficient TiO2−𝑥. The 

memristor is modeled as two variable resistors connected in series. An internal state 

variable of the memristor denoted by “α” is equivalent to the ratio of the length of the doped 

region to the total width of the thin film. 

 

Fig. 2 a) TiO2 thin film memristor structure b) equivalent circuit [4] 



 

7 

Applying a positive voltage (v(t) > 0) at the undoped end of the memristor lowers the 

resistance of the memristor due to the drifting operation of the oxygen vacancies into the 

un-doped region. Similarly, applying a negative voltage (v(t) < 0) increases the overall 

resistance of the memristor since now the oxygen vacancies drift in the opposite direction. 

Low resistance state (LRS) Ron occurs when α=0 and high resistance state (HRS) Roff when 

α=1. Thus, the total memristance M of the memristor is expressed in (2) 

 

                          M (α) = αRon + (1 − α) Roff                                                                                                      (2) 

 

The different memristance values exhibited by the memristor are used to represent different 

logic values. The memristor shows a non-linear behavior between the input voltage V and 

output current I. The hysteresis loop is shown in Fig. 3. The loops show the switching 

behavior of the device: it begins with a high resistance, and as the voltage increases, the 

current slowly increases. As charge flows through the device, the resistance drops, and the 

current increases more rapidly with increasing voltage until the maximum is reached. The 

result is an on-switching loop. When the voltage turns negative, the resistance of the device 

increases, resulting in an off-switching loop. Thus, the application of a positive bias voltage 

to the device leads to the switching of the resistance states from the High to the Low state, 

this switching is labeled as SET. A RESET switching corresponds to the exchange from 

the LRS to HRS state. 

 



 

8 

 
 

Fig. 3 Hysteresis Loop [5] 

 

2.2 Memristor Write and Read Operations 

The internal state variable of the memristor denoted by “w(t)/D” is equivalent to the ratio 

of the length of the doped region “w” to the total length of the TiO2 film “D”.  The 

memristor can be defined at logic 0 when 0<w(t)/D<0.5 and logic 1 when 0.5<w(t)/D<1.0. 

The corresponding ideal output low and high levels are w(t)/D=0 and w(t)/D=1, 

respectively. In reality, to account for possible noise injections, a safety margin is left for 

each logic output:  0≤w/D≤OL, (OL=WL/D<0.5) for logic 0, and OH≤w/D≤ 1.0 

(OH=WH/D>0.5) for logic 1. The region in between OL≤w/D≤OH is an intermediate region 

that should be avoided for strict logic value read-write data integrity. Fig. 4 shows the 

situation where OL=0.4 and OL=0.6. 



 

9 

 

Fig. 4 (a) Memristor output levels, and (b) memristor 3D nano-structure [6] 

1) Memory write operation:  

A positive voltage is applied across the memristor for a fixed duration to write a logic 1. 

The duration of the pulse should be long enough to decrease the memristance from the 

logic 0 region to the logic 1 region. Similarly, to write a logic 0, a negative voltage is 

applied across the device long enough for the memristance to increase from the logic 1 

region to the logic 0 region. 

2) Memristor Read Operation:  

Applying a voltage across the memristor causes the dopants to drift and change its 

memristance. To ensure that the resistance of the memristor is not changed during the read 

operation, a two-stage read operation is used [6]: Convert stage and sense amplifier stage. 

The convert stage is implemented by adding a series resistor to the memristor to convert 

the memristor state into a voltage signal since the current through the memristor carries the 

memristor state information.  The second stage is to have a read pulse width limit so that 



 

10 

the memristance does not move beyond the safety margin.  Fig. 5(c) shows the ideal read 

pattern is a negative pulse followed immediately by a positive pulse with the same 

magnitude and duration, creating a zero net change in memristance. 

 

 

 

Fig. 5 a) Memristor model, (b) Memristance range for different logic levels, and (c) 

Variation of memristance due to voltage over time [7] 

 

2.3 Crossbar Arrays  

A crossbar array is a typical structure for many memristor implementations including 

memristor-based memories. Fig. 6 shows the schematic representation of a crossbar array 

with m wordlines (WLs) and n bitlines (BLs).  It employs a memristor device at each 

intersection of horizontal and vertical metal wires without any selectors. A set of input 

voltages is applied on the word-lines (WLs) of the array and the output current is measured 

through each bit-line (BL). The device at the upper left corner (Rj) is the selected cell at 

(c) 



 

11 

the intersection of the selected wordline and bitline. Unselected devices can be divided into 

three groups depending on whether they share an access line with Rj. Devices sharing a 

line with Rj are also called “half-selected” devices. Rn shares WL with Rj and Rm shares a 

BL with Rj. These are half-selected cells. Rmn shares no line with Rj; hence it is called as 

the unselected cell. 

 

 

Fig. 6 Crossbar array with m WLs (horizontal line) and n BLs (vertical lines). Rj is 

selected cell. Rn, Rm are half-selected devices and Rmn is unselected device sharing no 

line with Rj [8]. 

 

2.3.1 Types of Memristor Crossbars  

The generic structure of the memristor crossbar array is a 1M crossbar structure where the 

memristor devices are located at the intersection of each wordline and bitline of the array. 

The 1R-RRAM [9] resistive crossbar is an example of this structure that offers very high 

data density for data storage applications. The other crossbar structure commonly used is 

the 1T1R where a selector device, for example an access transistor is associated with the 



 

12 

memristive device. 1T1R [7] designs help eliminate sneak paths in the crossbar arrays but 

do not offer the same density as the 1R structure. Recently, a 2M-1M crossbar architecture 

has been proposed where each memristor cell has two access memristors and one target 

memristor [10]. 1D1R [11][12] structure is also used to suppress crosstalk by using external 

diodes. Rectifying memristors [13] have replaced the 1D1R structure due to its intrinsic 

diode-like behavior to suppress sneak paths. My research concentrates on resistive single 

memristive cell crossbar arrays (1M crossbar structure) to take advantage of sneak paths 

for testing memristor circuits. 

 

2.3.2 Crossbar Applications 

Researchers have made numerous efforts and initiatives to propose new crossbar 

architectures that offer high density, low energy consumption, low sneak path current effect 

and low wiring to outperform conventional memories. For example, the memristor-based 

memory cell can be utilized for high density memory and logic applications [10]. Another 

example is the multi-crossbar memristor architecture as an accelerator for matrix 

multiplications and handwriting recognition. This architecture achieves high speed and 

energy savings for 64x64 matrix multiplications [14]. Memristor crossbars have also been 

applied in user authentication systems [15], Resistive Random-Access Memories [RRAM] 

arrays [16], parallel computations [17], logic operations [18], neuromorphic systems [19] 

and Physically Unclonable Functions (PUFs) [20-21]. In summary, crossbar structures are 

used for many applications including logic, memory, stochastic computation, security 

PUFs, and neuromorphic applications.  

  



 

13 

Some of the crossbar array applications are discussed in this section. 

1) 2M1M Crossbar Architecture: Memory [10] 

This research in [7] presents a 2M1M crossbar architecture capable of memory and logic 

applications that provides a high area density in comparison with the state-of-the-art 

memristive memory architectures. It is a pure memristor-based memory cell and does not 

need CMOS transistors within the crossbar structure as seen from Fig. 7. The main 

advantages of this type of architecture are as follows: 

• The read and write operations are done by the same memristor circuits without the 

need for additional circuitry within the memory fabric. Thus, the number of 

required elements is significantly reduced, simplifying the crossbar structure. 

• The reading method does not need isolated access to the memristor node which 

reduces circuit wiring and leads to a very simple structure with less complexity. 

• The proposed structure provides an effective gating mechanism by which memory 

elements can be partially isolated from the access line during the reading cycle, 

which considerably reduces the sneak path currents compared to its memory peers. 

• The proposed memory structure provides acceptable speed and energy 

consumption in comparison with state of the art. Also, it has a higher density and 

less alternate current path effect comparing with its peer. 



 

14 

 

Fig. 7 Proposed 2M1M crossbar memory architecture [10] 

2) Code Acceleration Using Memristor-Based Approximate Matrix Multiplier [14] 

In this paper, the research focuses on building a memristor-based approximate accelerator 

to be used with general-purpose X86 processors for different applications such as matrix 

multiplication and handwriting recognition.  Fig. 8 gives an overview of the memristor 

crossbar application for vector-matrix multiplication. V1 is the input vector voltage to the 

columns of the crossbar, G is the matrix, Vo is the output voltage sensed by the trans-

impedance amplifier with feedback resistor Rf. The high-level architecture of the proposed 

accelerator consists of multiple processing units that be used for performing independent 

computations through the extended instruction set architecture (ISA). These processing 

units consist of a memristor based crossbar, input-output buffers, and a logic circuit. To set 

up the accelerator, the program must initialize a processing unit which includes 

determining the size of the crossbar, configuring memristors’ conductance, and 

determining the type of input numbers. The accelerator is compatible with signed complex 

number computations and with floating-point arithmetic. To validate the accelerator, it is 



 

15 

first utilized to multiply different matrices that vary in size and distribution. It is then used 

as an accelerator for accelerating the tiny-dnn, an open-source C++ implementation of deep 

learning neural networks. It provides more than 100× speedup and energy saving for 64 × 

64 matrix multiplications. 

 

Fig. 8 Application of memristor crossbars for vector–matrix multiplication [14] 

3) Automated synthesis of compact crossbars for sneak-path based in-memory 

computing [22] 

The rise of data-intensive computational loads has exposed the processor-memory 

bottleneck in Von Neumann architectures. It has reinforced the need for in-memory 

computing using devices such as memristors. Boolean formula computing using sneak-

paths in nanoscale memristor crossbars [23][24] suffers from the requirement to arrange 

memristors in dense nanoscale crossbars for ease of fabrication and the inability to produce 

compact crossbars for simple Boolean operations. The paper [22] is trying to answer two 

open questions using sneak paths in memristor crossbars for performing logical 



 

16 

computations: 1) The size estimation of the memristor crossbar that can compute a given 

Boolean formula using sneak paths 2) Synthesize compact crossbars for computing large 

Boolean formula using sneak paths. The authors demonstrate that the number of rows and 

columns required to calculate a Boolean formula is at most linear in the size of the Reduced 

Ordered Binary Decision Diagram (ROBDD) representing the Boolean function. The 

authors are the first to suggest the use of ROBDD for synthesizing compact memristor 

crossbars. They design sneak-path based memristor crossbars for circuits as large as 128-

bit adders.  For their experiments, they relied on HSPICE simulations.  

 

4) Performance analysis of a memristive crossbar PUF design [25] 

Physical unclonable functions (PUF) provide a unique hardware identifier where the 

intrinsic properties of the device are used to create a signature for security concerns 

including integrated circuit (IC) piracy, counterfeiting and secret key storage. A memristor 

crossbar based PUF circuit is described in this paper that utilizes variations in the write-

time of the memristors as the primary entropy source. The main motivation to use 

memristor instead of CMOS for PUF designs is a lesser physical area and power 

dissipation. The proposed XBARPUF crossbar design schematic is shown in Fig. 9. 

 



 

17 

 
 

Fig. 9 Schematic of write-time memristive PUF circuit [25] 

 

The amount of time taken for the memristor to SET during the write operation is the entropy 

source of the memristive PUF. The PUF circuit relies on the relative write-times of pairs 

of memristive circuits to generate the response. The write operation is governed by the 

challenge such that only one memristor in the pair is written at a time. This results in several 

unique combinations of altered memristors to select from while generating the signature. 

The sneak path currents in the crossbar design are also used for the response bit analysis. 

Results demonstrate strong statistical performance in terms of entropy, uniqueness, and 

uniformity [25]. 

 

5) ReVAMP: ReRAM based VLIW architecture for in-memory computing [26] 

A general purpose computing platform has been proposed in this paper [26] that is based 

on Resistive RAM (ReRAM) crossbar array. This architecture supports VLIW (Very Long 

Instruction word) instructions to exploit parallelism in the memory array operations. The 



 

18 

ReRAM crossbar memory consists of 1S1R ReRAM devices arranged in a crossbar array 

fashion. Fig 10 shows the ReVAMP (ReRAM based VLIW architecture for in-Memory 

computing). It has two crossbar memories which are the instruction memory (IM) and Data 

storage and Computation Memory (DCM). It has a three-stage pipeline with instruction 

fetch (IF), instruction decode (ID) and execute (EX) stages. The instruction is fetched from 

the IM in the IF stage at the address held by the program counter. It is then loaded into the 

instruction register (IR) before the PC is updated. In the ID stage, the instruction is read to 

provide the inputs to the crossbar interconnect and write circuit. 

 

Fig. 10 ReVAMP Architecture [26] 

The DMR (Data Memory Register) stores the data from the DCM. The primary input 

register (PIR) acts as a primary input data buffer. The crossbar interconnect consists of a 

set of multiplexers to select the number of wordline and bitline inputs as per the stored 

control signals. The write circuits in Fig.10 read the output of the crossbar-interconnect to 

determine the inputs to be applied to the row and column decoder of the DCM. The 

performance of the architecture is demonstrated in terms of delay, number of words and 

word utilization on the benchmark set. 



 

19 

2.4 Memristor Models  

Several mathematical models of the memristors have been proposed to describe the 

behavior of memristors. This section will provide a brief description of different memristor 

models such as the linear ion drift model, the nonlinear ion drift model, and the ThrEshold 

Adaptive Memristor (TEAM) model. 

 

1) Linear Ion Drift Model 

The linear dopant drift model is widely utilized for memristor circuits and it provides a 

simple and useful approximation for memristor behavior [2]. Considering the TiO2 

memristor device as an example, the physical width D contains two regions, as shown in 

Fig 1(a). One of these regions has highly doped titanium dioxide with oxygen vacancies 

(TiO2-x) and the other has undoped titanium dioxide (TiO2). The device is modeled as two 

resistors connected in series and the region with the dopants has a higher conductance than 

the oxide region. The electric field generated through the applied bias is capable of drifting 

dopants based on the voltage polarity, therefore changing the resistance of the device. 

Assuming ohmic conductance, linear ion drift in a uniform field and ions having average 

ion mobility 𝜇𝑣, equations (3) and (4) express the state variable and equivalent resistance 

           
𝑑𝑤

𝑑𝑡
= 𝜇𝑣 

𝑅𝑂𝑁

𝐷
 𝑖(𝑡)                                                                                             (3) 

     𝑣(𝑡) = (𝑅𝑂𝑁 
𝑤(𝑡)

𝐷
+ 𝑅𝑂𝐹𝐹 (1 −

𝑤(𝑡)

𝐷
)) ∙ 𝑖(𝑡)                                                              (4) 

 



 

20 

where 𝑅𝑂𝑁  is the resistance when 𝑤(𝑡) = 𝐷  and 𝑅𝑂𝐹𝐹  is the resistance when 𝑤(𝑡) = 0.  

On removing the bias, the dopants retain their place and the resistance of the device is 

preserved. 

 

2) Non-linear ion drift Model  

The behavior of the fabricated memristor device deviates significantly from the linear ion 

drift model and is very non-linear. Several non-linear ion drift models have been proposed, 

especially for logic computations [27-28]. Lehtonen [29] proposed a model based on the 

experimental results described in [30]. Equation (5) describes the relationship between 

current and voltage for this model. 

 

𝑖(𝑡) = 𝑤(𝑡)𝑛 𝛽 sinh(𝛼𝑣(𝑡)) + 𝜒[exp(ϒ𝑣(𝑡)) − 1]                                                    (5) 

 

where  𝛼, 𝛽, 𝛶 and 𝜒 are the experimental fitting parameters and n determines the influence 

of the state variable on the current. This model assumes asymmetric switching behavior 

and nonlinear dependence on voltage in the state variable differential equation as shown in 

(6), 

𝑑𝑤

𝑑𝑡
= 𝛼 ∙ 𝑓(𝑤) ∙ 𝑣(𝑡)𝑚                                                                                               (6) 

where 𝛼 and m are constants, m is an odd constant and 𝑓(𝑤) is a window function. When 

the device is in ON state, the state variable 𝑤 is close to 1 and 𝑤 = 𝑤(𝑡)𝑛 𝛽 sinh(𝛼𝑣(𝑡)), 

describing a tunneling phenomenon. When device is in the off-state, the state variable 𝑤 is 

close to 0 and 𝑤 = [exp(ϒ𝑣(𝑡)) − 1]. 



 

21 

3)Simmons tunnel barrier model 

In [31], Pickett at el. presents a nonlinear memristive model of bipolar switching known 

as the Simmons tunnel barrier model. The model is derived from the experimental results 

of a dynamic testing protocol applied to a Pt-TiO2-Pt memristor device. In this model, 

instead of two resistors in series like the HP model, a resistor is in series with the electron 

tunnel barrier as shown in Fig 11. 

 

Fig. 11 Physical memristor structure based on the Simmon tunnel barrier model. W and 

Rs represent the tunneling barrier width and electroformed channel resistance 

respectively. S, A, and V represents the voltage source, ammeter, and voltmeter 

respectively [31]. 

 

The model exhibits nonlinear and asymmetric switching behavior due to the exponential 

dependence of the drift velocity of the ionized dopants on the applied current. In this model, 

the velocity of the oxygen vacancy drift can be explained by equation (7) for off-switching 

and (8) for on-switching. 

                     
𝑑𝑤

𝑑𝑡
= 𝑓𝑜𝑓𝑓 sinh (

𝑖

𝑖𝑜𝑓𝑓
) exp [−𝑒𝑥𝑝 (

𝑤−𝑎𝑜𝑓𝑓

𝑤𝑐
−
|𝑖|

𝑏
) −

𝑤

𝑤𝑐
]                                (7) 

                     
𝑑𝑤

𝑑𝑡
= 𝑓𝑜𝑛 sinh (

𝑖

𝑖𝑜𝑛
) exp [−𝑒𝑥𝑝 (

𝑤−𝑎𝑜𝑛

𝑤𝑐
−
|𝑖|

𝑏
) −

𝑤

𝑤𝑐
]                                     (8) 



 

22 

where 𝑓𝑜𝑓𝑓, 𝑓𝑜𝑛, 𝑖𝑜𝑓𝑓, 𝑖𝑜𝑛, 𝑎𝑜𝑛, 𝑎𝑜𝑓𝑓, 𝑏 and 𝑤𝑐 are fitting parameters. 𝑓𝑜𝑛 is an order of 

magnitude larger than 𝑓𝑜𝑓𝑓, and they both have effect on the magnitude of the change of 

𝑑𝑤

𝑑𝑡
. 𝑖𝑜𝑛 and 𝑖𝑜𝑓𝑓 confine the current threshold effectively. 𝑎𝑜𝑓𝑓 forces the upper bound and 

𝑎𝑜𝑛 forces the lower bound for  
𝑑𝑤

𝑑𝑡
. 

 

4)TEAM model 

The TEAM model ThrEshold Adaptive Memristive Model [32] is a flexible and convenient 

model used for characterizing different memristive devices. In this model, a current 

threshold and tunable nonlinear dependence between current and derivative of the state 

variable has been suggested. The current-voltage relationship can be both polynomials as 

well as exponential.  The derivative of the state variable for this model is expressed in (9). 

 

                       
𝑑𝑥(𝑡)

𝑑𝑡
= 

{
 
 

 
 𝑘𝑜𝑓𝑓 ∙ (

𝑖(𝑡)

𝑖𝑜𝑓𝑓 
− 1) ∙ 𝑓𝑜𝑓𝑓(𝑥), 0 < 𝑖𝑜𝑓𝑓 < 𝑖

0,                                              𝑖𝑜𝑛 < 𝑖 < 𝑖𝑜𝑓𝑓 

𝑘𝑜𝑛 ∙ (
𝑖(𝑡)

𝑖𝑜𝑛 
− 1) ∙ 𝑓𝑜𝑓𝑓(𝑥), 𝑖 < 𝑖𝑜𝑛 < 0,

                               (9) 

 

2.5 Summary of Chapter 2  

In this chapter, memristor devices and memristor crossbar arrays were introduced.  Some 

of the applications of crossbar arrays were also described. An application independent 

testing methodology is of great importance for testing memristor circuits used in these 

different crossbar applications. Finally, some of the memristor mathematical models were 

described in brief. These complex mathematical models are a function of voltage, time, 



 

23 

and frequency but all of them rely on the concept of Ron and Roff. For my research, a simple 

resistive model is sufficient for testing purposes to represent whether a memristor is in a 

low resistance state or in a high resistance state. 

  



 

24 

Chapter 3 

Sneak Path Characterization in Memristors 

Note: Some of the contents of this chapter have been published below: 

Rasika Joshi, John M Acken, “Sneak Path Characterization in Memristor Circuits”, in 

Journal of Electronics, 2020. DOI: 10.1080/00207217.2020.1843716 

Sneak path currents impact the performance of resistive crossbar array-based 

systems. It could have undesired effects on the reading and writing operations of the array 

based on the size of the array, memristor programming, input voltage and I/O switch 

vectors. Therefore, it is essential to characterize sneak paths and sneak path currents for 

understanding the constraints to the memristor crossbar operations. It will help to 

understand the design limitations when setting the size of a memristor array. A calculation 

model has been proposed for finding the length of different sneak paths for a given array 

size. These sneak paths have been analyzed based on the size of the array and the LRS/HRS 

memristor programming. 

 

3.1 Introduction to Sneak Paths 

Sneak paths are paths for current parallel to the primary current path occurring in memristor 

crossbar circuits. The bidirectional nature of memristors allows sneak paths in crossbar 

arrays. Sneak paths may corrupt the output current causing incorrect read and write 

operations in memory arrays.  Fig. 12 shows a sneak path current example in a 3x3 crossbar 

circuit. The current flow highlighted in the bold blue line in Fig. 12 is the desired path of 

current flow through the selected cell at the intersection between the column and the row 

https://doi.org/10.1080/00207217.2020.1843716


 

25 

of interest called as the primary current. Unfortunately, this ideal case is not the only path, 

and the current flows through an example sneak path highlighted in the dotted line in red, 

as shown in Fig 12. The sneak paths depend on the content of the memory and paths with 

lesser resistance and more memory content will sneak more current [33]. 

 

 

 

 

 

 

 

 

Fig. 12  Ideal case of current flow through a memristor cell and sneak path flow of 

current in a crossbar array. 

 

3.2 Definition of IO switch-vector 

The IO test vector set for a memristor crossbar array consists of the IO switch-vector 

settings for the rows (input) and columns (output). In a crossbar array of size mxn, the 

wordlines are the horizontal connections and the bitlines are the vertical connections. m is 

defined as the number of rows or wordlines, mopen is defined as the number of wordlines 

open, and mclosed as the number of wordlines closed.  A wordline closed means that the 

input voltage source is connected to that wordline and a wordline open is not connected to 

a voltage source.  When a wordline is closed, it is called a selected wordline. Xi is the switch 

state for the ith row, where “1” is closed and “0” is open.  n is defined as the number of 

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 

    

V3 

M3b 
M3a 

    

M3c 

Ic 

M1c 

M2c 

Wordline 

Sneak Path 

Bitline 



 

26 

columns or bitlines, nopen as the number of bitlines open, and nclosed as the number of bitlines 

closed. A bitline closed means that the grounded current sensor on that column output is 

connected to that bitline and a bitline open is not connected to a grounded output current 

sensor. A bitline closed is called a selected bitline. Yj is the switch state for the jth column, 

where “1” is closed and “0” is open.  In summary, the input state of X1X2…Xi…Xm is 

combined with the output state of Y1Y2…Yj…Yn to define the I/O switch-vector of 

X1X2…XmY1Y2…Yn. 

 

3.3 Sneak Path Formula for number of sneak paths in crossbar arrays 

The total number of sneak paths in a crossbar circuit is a function of the input conditions, 

array size and memristor programmed values. When all the memristors in the crossbar 

array are of equal resistance, all the sneak paths are three memristor long. The number of 

three memristor long sneak paths is expressed as n3mem in (10):  

 

        𝑛3𝑚𝑒𝑚 = 𝑚𝑜𝑝𝑒𝑛 ∗  𝑚𝑐𝑙𝑜𝑠𝑒𝑑 ∗ 𝑛𝑜𝑝𝑒𝑛 ∗ 𝑛𝑐𝑙𝑜𝑠𝑒𝑑                                                         (10) 

 

When all the memristors in the crossbar array have equal resistance, the total number of 

three memristor long sneak paths in mxn circuit is the product of the bitline and wordline 

switches that are being switched on or off as shown in (10). Xi, Xi+1, Xi+2…Xm are defined as 

the switches representing the wordlines to be switched on or off and Yj, Yj+1, Yj+2….Yn are 

defined as the switches representing the bitlines of the crossbar array. For example, 3x3 

circuit as shown in Fig. 12, the I/O switch vector is 100100. For a 2x2 circuit, considering 

the I/O switch-vector is X1X2Y1Y2 = 1010, mopen =1, mclosed = 1, nopen= 1 and nclosed =1. The 



 

27 

total number of three memristor long sneak paths in this 2x2 array example is 1. For bigger 

memristor arrays, for example in an 8x8 circuit, the I/O switch-vector is X1X2X3X4X5X6X7X8 

Y1Y2Y3Y4Y5Y6Y7Y8 = 1000000010000000, mopen = 7, mclosed = 1, nopen = 7 and nclosed = 1. The 

total number of possible three memristor long sneak paths for this 8x8 array example is 49. 

Some input/output combinations do not have sneak paths. When all the row switches or 

column switches are on, there would be no sneak paths.  For there to be sneak paths, there 

should be m> mopen ≥ 1 and n>nopen ≥ 1 on the input and output respectively. 

 

3.4 Analysis on Length of Sneak paths in crossbar arrays 

The length of a sneak path is a function of input conditions, array size and memristor 

programmed values. HRS refers to the high resistance state and LRS refers to the Low 

resistance state of the memristor. A 3x3 crossbar array example with memristors labelled 

from M1a, M1b, M1c through M3c with all memristors having equal resistance values is 

considered. V1, V2, V3 are the input voltages to the crossbar array and Ia, Ib, Ic are the 

output currents. In Fig. 13, the I/O switch-vector is X1X2X3 = 100 and Y1Y2Y3 = 100 for 

input voltages and output currents respectively. The primary current is the current through 

the selected cell or cells in the crossbar array. The selected cells are memristors at the 

intersection of the selected bitlines and the selected wordlines. Iprimaryj is the output current 

for selected cells on column j. Sneak path current is the current through the non-selected 

cells in the crossbar array (Isneakj). 

𝐼𝑜𝑢𝑡𝑝𝑢𝑡𝑗 = 𝐼𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑗 + 𝐼𝑠𝑛𝑒𝑎𝑘𝑗                                                                                      (11) 



 

28 

The output current is the sum of the primary current and the sneak path current as shown 

in (11). One metric for characterizing sneak path current is the relative magnitude of the 

primary current to the sneak path current and its effect on the output current.  

 

 

 

 

 

 

        

Fig. 13 3x3 Crossbar array with I/O switch-vector = 100100. 

 

The circuit representation for this crossbar example is shown in Fig. 14. Notice that this 

circuit is not a mesh. The primary path is through selected cell M1a. The half-selected cells 

in this circuit are the ones sharing the line with M1a, namely M1b, M1c, M2a and M3a. 

The sneak paths through the electrical network are three memristor long as shown in Fig. 

14, namely M1b-M2b-M2a, M1b-M3b-M3a, M1c-M2c-M2a, and M1c-M3c-M3a. The total 

number of possible I/O switch-vectors for an mxn crossbar circuit is expressed by (12), and 

the total number of I/O switch vectors that create sneak paths is shown in (13). 

            𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚 𝐼 𝑂⁄ switch-vectors = (2𝑚 − 1) ∗ (2𝑛 − 1).                                   (12) 

           𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚 𝑠𝑛𝑒𝑎𝑘 𝑝𝑎𝑡ℎ 𝐼 𝑂⁄ switch-vector = (2𝑚 − 2) ∗ (2𝑛 − 2).                 (13) 

  

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 

    

V3 

M3b M3a 

    

M3c 

Ic 

M1c 

M2c 



 

29 

 

 

 

 

 

 

Fig. 14 Circuit diagram for 3x3 memristor array with I/O switch-vector = 100100. 

 

The I/O switch-vectors where all wordlines and/or all bitlines set to floating condition are 

not being considered. For example, in a 4x4 crossbar circuit, the total number of possible 

functional I/O switch-vector cases are 225. Out of the 256 possible I/O switch vector 

combinations 31 are not functional because either all the inputs or all the outputs are 

disconnected. When all the inputs are 0 or all the outputs are 0, the crossbar array is 

disconnected and not functioning. There are 16 input switch vectors with all the outputs 0 

plus 16 output switch vectors where all the inputs are 0, minus 1 for the repeated case of 

all zeroes on both input and output for a total of 31 non-functional I/O switch vectors. For 

the 4 x 4 crossbar circuit example, the total number of possible sneak path I/O switch vector 

cases is 196. As noted previously, if all the memristors have the same resistance values, 

then all the sneak paths are of length three. For example, consider the crossbar array shown 

in Fig. 15. 

 

V1 

Ia 

M1b 

M2b 

M2a 

    

M3b 

M3a    

M3c 

M1c 

M2c 

M1a 

V2  V3 

Vb 
Vc  



 

30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Sneak paths of length 3 in a 3x3 crossbar array with I/O switch vector = 100100 

 

The three memristor long sneak paths are: M1b-M2b-M2a, M1b-M3b-M3a, M1c-M2c-

M2a, and M1c-M3c-M3a as mentioned above.  However, when the memristors are at 

different resistance values, some patterns can create longer sneak paths. The four possible 

five memristor long memristor sneak paths are: M1c-M2c-M2b-M3b-M3a, M1c-M3c-M3b-

M2b-M2a, M1b-M2b-M2c-M3c-M3a, and M1b-M3b-M3c-M2c-M2a. One way to get the 

five-long path M1c-M2c-M2b-M3b-M3a is to have M1b and M2a in the HRS and the rest 

 M1b-M2b-M2a 

 M1b-M3b-M3a 

 M1c-M2c-M2a 

 M1c-M3c-M3a 

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 

    

V3 

M3b 
M3a 

    

M3c 

Ic 

M1c 

M2c 

(a) Three memristor long paths 

in crossbar array      

  (b) Circuit equivalent showing three 

memristor long paths 

V1 

Ia 

M1b 

M2b 

M2a 

    

M3b 

M3a    

M3c 

M1c 

M2c 

M1a 

V2  
V3 

Vb 
Vc  



 

31 

in the LRS.  Another programming to get the same long sneak path is M1b, M2a, and M3b 

in the HRS with the rest in LRS. To get the second example of the five memristor long 

sneak path, M1c-M3c-M3b-M2b-M2a, the memristors M1b and M2c are programmed to 

the HRS and the rest are LRS.  To get the fourth example of path M1b-M3b-M3c-M2c-

M2a, the memristors M1c, M2b, and M3a are in the HRS.  This case is shown in Fig. 16 

highlighted in red. There are many other patterns to get these and the other five memristor 

long sneak paths for a specific HRS/LRS programming pattern. Even with the five 

memristor long sneak paths there are still a total of four sneak paths.  Specifically, three of 

the paths are three memristor long (M1b-M2b-M2a, M1b-M3b-M3a, M1c-M2c-M2a) and 

one of the paths is five memristor long (as shown in Fig. 16).  

 

 

 

 

 

 

 

 

 

Fig. 16 Sneak path M1b-M3b-M3c-M2c-M2a of length 5 in a 3x3 crossbar array with 

M1c=M2b=M3a=HRS and remaining memristors in LRS for I/O switch vector =100100. 

 

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 

    

V3 

M3b 
M3a 

    

M3c 

Ic 

M1c 

M2c 

V1 

Ia 

M1b 

M2b 

M2a 

    

M3b 

M3a    

M3c 

M1c 

M2c 

M1a 

V2  V3 

Vb 
Vc  

(a) Five memristor long sneak 

path in crossbar array      
  (b) Circuit equivalent showing  

            five memristor long sneak path 



 

32 

As shown in Table 1 and (14), for this 3x3 array the total number of longest possible sneak 

paths is 4.  The length of sneak paths is a function of the array size, the I/O switch-vector, 

and the programming of the individual memristors. The formulas for the different lengths 

of sneak paths for square array sizes (i.e. m=n) have been derived.  

Table 1 Count of Possible Different Length Sneak Paths in Crossbar Circuits 

Array 

size 
I/O switch-vector 3 long paths 

5 long 

paths 

7 long 

paths 
9 long paths 

3x3 001 001 4 4 - - 

4x4 0001 0001 9 36 36 - 

5x5 00001 00001 16 144 576 576 

6x6 000001 000001 25 400 3600 14400 

7x7 0000001 0000001 36 900 14400 129600 

8x8 00000001 00000001 49 1764 44100 705600 

9x9 000000001    000000001 64 3136 112896 2822400 

100 x100 

 

000……1 

000……1 
9801 94128804 8.86 x1011 8.16x1015 

 

From Table 1, the long length sneak paths for any array size are calculated using 

the formulas below. For three memristor long, five memristor long, seven memristor long 

and nine memristor long sneak paths, the possible number of sneak paths can be calculated 

as below: 

𝑛3𝑚𝑒𝑚 = (𝑛 − 1)2                                                                   (14) 

𝑛5𝑚𝑒𝑚 = (𝑛 − 1)2 ∗ (𝑛 − 2)2                                                 (15) 

𝑛7𝑚𝑒𝑚 = (𝑛 − 1)2 ∗ (𝑛 − 2)2 ∗ (𝑛 − 3)2                               (16)  

𝑛9𝑚𝑒𝑚 = (𝑛 − 1)2 ∗ (𝑛 − 2)2 ∗ (𝑛 − 3)2 ∗ (𝑛 − 4)2             (17) 



 

33 

When all the memristors are programmed to the same resistance value of LRS or HRS, all 

the sneak paths are three memristor long. Therefore, every three memristor path parallel to 

the target memristor is a sneak path. For a nxn array, that is (n−1)2 paths. This is derived 

because there are (n−1) parallel memristors on the selected bitline and (n−1) parallel 

memristors on the selected wordline to the target memristor. There is a different unselected 

memristor connecting each selected bitline memristor to each selected wordline memristor. 

There are (n−1) unselected bitlines and (n−1) unselected wordlines hence (n−1)2 different 

memristors each resulting in a unique sneak path. To achieve a five memristor long sneak 

path, two or three of the memristors need to be programmed as HRS and the remaining are 

programmed to LRS. The other two equations follow similar path with more memristors 

in HRS. 

 Considering a memristor crossbar circuit consisting of all low resistance 

programming or all high resistance programming, the following observations for the 

number and length of sneak paths have been made 

(1) If   nclosed = n OR mclosed = m for inputs and outputs switches then there will be no 

sneak paths. 

(2) If there is at least one nopen in the input AND at least one mopen in the output, the 

length of the sneak path is always of three memristors. This only applies when all 

the memristors are of equal value. 

(3) When the memristors are not of equal value, the length of the longest possible 

sneak path (Lmax) is expressed by (18): 

𝐿𝑚𝑎𝑥 = 2 ∗ 𝑛 − 1  for n ≤ m  (18) 



 

34 

(4) The minimum number of nopen or mopen on inputs or outputs sets the path length. If 

nopen = 2 in the input AND mopen = 2 in the output, the longest possible sneak path 

will be of five memristor length. Similarly if nopen= mopen = 3 then a maximum 

possible length of seven memristors and so on. This applies when certain patterns 

of memristors are being programmed to high/low resistance value as discussed in  

Fig. 16. 

(5) The lowest number of rows or columns sets the maximum length of the sneak 

paths. For example in 2x3, 2x2, and 3x2 arrays, the longest length sneak path is 

three memristors.  

 

3.5 Analysis of Sneak Path Currents in Crossbar Arrays 

The sneak path current significantly impacts the design space for a memristor array. 

The research addresses two questions about sneak path impact: 1) The effect of different 

parameters and conditions on the behaviour of sneak paths that in turn affect the memristor 

crossbar array performance; 2) the impact of sneak path current with respect to size of 

memristor array, memristor resistances, I/O switch-vector, high/low programming of the 

memristors. These effects set the boundaries and limits for the design space. A similar 

sneak path current analysis has been described in [34]. Tang Zhensen et al. [34] analyses 

the worst-case scenario for read operations that include the worst-case selected location 

and worst-case data pattern based on the effect of sneak paths and interconnection 

resistances. However, my research’s characterization is for various cases (not just the worst 

case) and resistance values. In [8], the parameters for limiting the array size were first 

chosen such as the line resistance and non-linear device characteristics and then the sneak 



 

35 

path current was analysed. In contrast, the proposed sneak path current analysis helps to 

determine the boundary conditions for crossbar arrays. Also, the formula for sneak path 

calculation derived in [8] is based on equal values of memristors. In contrast, my proposed 

characterization includes various programming of memristor values and varying I/O 

switch-vectors. Cassuto paper [35][36] gives mathematical proofs for a sneak-path free 

readout and coding schemes to eliminate sneak paths. Their schemes are concentrating on 

eliminating sneak paths for read error-free column readouts in their application.  Whereas, 

my research analyses the impact of different memristor parameters and operating 

conditions (such as I/O switch-vector and programming patterns for memristors in high 

resistance state (HRS) and low resistance state (LRS) on the behaviour of the sneak path 

currents, and in turn, the memristor output current for any given crossbar array application. 

For example, the size of the memristor array can be determined for a memristance range 

before the sneak path current interferes with the crossbar operation. For my research, 

memristor arrays with bidirectional memristors are being considered, and not rectifying 

memristors. The conditions/parameters looked at are the high/low programming of 

memristors, I/O switch-vectors (row and column selectors) – non-selected, selected and 

half-selected cells in the memristor crossbar circuit, square-non/square arrays, and ranges 

of memristor resistance.  

Based on the results, curve fitting models for calculating the sneak path currents as 

a function of array size, memristor resistances, memristor programming, I/O switch-

vectors and input voltage are determined. The characteristics of the complete relationship 

between memristor parameters (such as array size, high-low memristance ratios) and the 

sneak path current will provide a basis for design implementation trade-offs. 



 

36 

3.5.1 Sneak Path Current Calculation tool 

The sneak paths were found using a python based sneak path calculator. The sneak path 

calculator gives the sneak paths for varying array sizes based on the sneak path algorithm 

discussed in theory. The calculator also generates a text file output directly fed into the 

LTspice simulator tool to simulate the output currents based on the resistance and input 

voltage values. Sneak path current analysis is based on these simulated currents. Here are 

the following steps to generate the LTSpice circuit using the python calculator: 

(1) The number of wordlines and number of bitlines is taken from the user to create 

the I/O switch vector combination. 

(2)  The input voltage and the LRS/HRS value of the memristors are also taken as 

user inputs. 

(3) The number of sneak paths is determined using the equation (14) through (17). 

(4) The target memristor is identified from the I/O switch vector combination. All the 

memristors excluding the target memristor are used to create the sneak path 

circuit. 

(5) Sneak paths are generated based on the model discussed for equation (14). 

(6) The circuit node connections are assigned based on the sneak path information. 

(7) The python generator outputs a file that is fed to the LTspice tool.  

(8) The sneak path current is simulated in LTspice based on the user input voltage 

and resistance values. 



 

37 

3.6 Sneak Path Current Analysis w.r.t size of array and resistance programming 

Crossbar array applications require quantitative analysis of array characteristics especially 

sneak path currents to provide boundary conditions for designing crossbar arrays. In the 

following sections, sneak path currents have been analysed with respect to different 

parameters such as the size of the array, resistance programming, input voltage and 

input/output conditions. My research presents equations based on simulation results for 

determining the sneak path current as a function of the memristor array parameters. The 

derived equations will help with the sneak path current prediction of any array size for 

understanding the constraints to the memristor crossbar operation. 

 

3.6.1 Resistance Programming 

Various technologies and models use different values of memristor resistance. Table 2 

shows different published ranges of resistances for the low and high resistance states. For 

our initial data analysis, the low resistance value of 10KΩ and high resistance values of 

1MΩ, 50KΩ and 500KΩ have been used. The design decisions based upon sneak path 

current are a function of the range of resistances, the ratio of the high-low resistances, and 

the ratio of memristor resistance to the line resistance. The sneak path current 

characterization includes the effects of different memristor resistance values. 

  



 

38 

Table 2 Low and High Resistance Values for Memristors 

Paper 
HRS High 

Resistance 

LRS Low 

Resistance 

Fault Modeling and Parallel Testing for 

1T1M Memory Array [37] 
1MΩ 10KΩ 

A bridge technique for memristor state 

programming [38] 
100KΩ 100Ω 

A Test Method for Finding Boundary 

Currents of 1T1R Memristor Memories 

[39] 

500KΩ 
10K-

160KΩ 

Modeling Detection, and Diagnosis of 

Faults in Multilevel Memristor Memories 

[40] 

200KΩ 100Ω 

Sneak-Path Testing of Crossbar-Based 

Nonvolatile Random-Access Memories 

[41] 

121KΩ 121Ω 

Sneak Path Based Test for 3D-Stacked 

One Transistor N-RRAM array [42] 
500KΩ 10KΩ 

Design and Optimization of a Strong 

PUF Exploiting Sneak Paths in Resistive 

Cross-point Array [43] 

10MΩ 100KΩ 

Sneak-Path Based Test and Diagnosis for 

1R RRAM Crossbar Using Voltage Bias 

Technique [9] 

200KΩ 100Ω 

 

Sneak path current is specifically affected by RHRS/RLRS ratio. As quoted in 

[10][44][45], the typical ratio of RHRS to RLRS is 102 - 103
. Analysing Table 2 confirms their 

ratio. My research contribution uses RHRS/RLRS ratios from 2 to 100. The paper [46] 

evaluated RHRS/RLRS ratios from array sizes from 10 to 50. They found out by spice 

simulation that the sneak path current needs to be limited as a function of RHRS/RLRS ratio. 

https://ieeexplore.ieee.org/document/8293850/
https://ieeexplore.ieee.org/document/8293850/
https://ieeexplore.ieee.org/document/7796127/
https://ieeexplore.ieee.org/document/7796127/
https://ieeexplore.ieee.org/document/7796127/
https://ieeexplore.ieee.org/document/6657045/


 

39 

Another reference [32] recommends a high ratio between RHRS/RLRS to store distinct 

Boolean data in a memristive device.  

The simulated sneak path currents for the different IO switch-vector combinations 

discussed in the sections below are of two types. The first type is called the total sneak 

path current, defined as the sneak path current measured for all the sneak paths in a 

crossbar array with single bitline output. The second type of sneak path current is called as 

sneak path current per array bitline output where the sneak path current is measured from 

a single output in an IO switch-vector having multiple bitline outputs. 

 

3.6.2 Sneak Path Current for IO switch-vector mclosed = nclosed =1 

Considering the I/O switch-vectors set to one switched on input and one switched on output 

(i.e. mclosed = 1 and nclosed = 1), the following trend in the sneak path current values is 

observed in Fig. 11.  The sneak path current measured for this IO switch-vector is the total 

sneak path current. The sneak path currents (Isneak) is plotted on the Y axis and the size of 

side of the crossbar array (n) on the X axis. From the graph, the equation that is observed 

is Isneak = 49.8 * n−73.9 µA [Isneak = A*n + B] where A = ~50µA and the offset B = ~ −74 

µA. Here A is the function of the resistance in the crossbar circuit and the input voltage 

applied to the wordlines and is equal to (0.5/R) *V. The sneak path current relationship for 

Fig. 17 is shown in (19). The offset is derived from curve fitting. 

                               𝐼𝑠𝑛𝑒𝑎𝑘 = 
0.5

𝑅
∗ 𝑉 ∗ 𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡                                                                    (19) 



 

40 

 

Fig. 17 Sneak Path current analysis for one input ON and one output ON [mclosed = nclosed 

=1] for LRS programming of 10KΩ where m=n. 

 

Fig. 18 Sneak Path current analysis for one input ON and one output ON for [mclosed = 

nclosed =1] HRS programming of 500KΩ where m=n. 

 

This equation is followed for other memristance values of R. Fig. 18 shows the sneak path 

current values with HRS programming of 500KΩ. Here, the equation of the graph seen is 

Isneak = 0.99 * n −1.37 µA where the slope A = 0.5/500KΩ = 1µA and offset B = −1.37 

µA. A linear curve has been observed for these two graphs with 10KΩ and 500KΩ 

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10 12

S
n

ea
k
 P

at
h

 c
u

rr
en

t 
 I

sn
ea

k
(µ

A
)

Number of wordlines (n)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

S
n
ea

k
 P

at
h
 c

u
rr

en
t 

 I
sn

ea
k
 (

µ
A

)

Number of wordlines (n)



 

41 

resistance values with a slope of 0.5/R. Predictions can be made on sneak path current for 

larger array sizes and a variety of high/low resistance values using equation (19). 

 

3.6.3 Sneak Path Current for IO switch-vector mclosed =m-1, nclosed =n-1  

Considering another case of  I/O switch-vector such as  011 011 for a 3x3 memristor array 

where mclosed = m–1=2 and nclosed = n–1=2, the sneak path current results for each array 

output can be observed for low resistance of 10KΩ and high resistance of 500KΩ in Fig. 

19 and Fig. 20 respectively. For this IO switch-vector combination, the sneak path current 

measured is the sneak path current per array bitline output .The equation of the sneak path 

current for this IO switch-vector can be expressed as shown in (20).  

                                    𝐼𝑠𝑛𝑒𝑎𝑘 = 𝐶 ∗ 𝑛
−0.85                                                                      (20) 

The scaling factor C = 64.5µA for LRS programming of 10KΩ and C = 1.29µA for HRS 

programming of 500KΩ. The impact of the offset value decreases with the increase in the 

size of the array. A power curve is observed for these two graphs with an exponential 

constant of  −0.85 for these low and high resistance programming values. 



 

42 

 

Fig. 19 Sneak Path current analysis for m–1 inputs ON and n–1 outputs ON [mclosed = m-

1] for LRS programming of 10KΩ where m=n. 

 

 
 

Fig. 20 Sneak Path current analysis for m–1 inputs ON and n–1 outputs ON [mclosed = m–

1] for HRS programming of 500KΩ where m=n. 

 

As shown in Fig. 19 and Fig. 20, the sneak path current may seem decreasing with the 

increase in the size of the array. However, one note is that this sneak path current is 

analysed per array output. For a 3x3 array, the sneak path current for 011 011 I/O switch-

vector combination is 25μA per each array output with input voltage = 1V and all LRS = 

0

5

10

15

20

25

30

0 2 4 6 8 10 12S
n

ea
k
 P

at
h

 c
u

rr
en

t 
 I

sn
ea

k
 (

µ
A

)

Number of wordlines (n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

S
n
ea

k
 P

at
h
 c

u
rr

en
t 

 I
sn

ea
k
  

 

(µ
A

)

Number of wordlines (n)



 

43 

10KΩ. There is a total of four sneak paths that are three memristor long for 011 011 

crossbar circuit, namely M2a-M1a-M1b, M2a-M1a-M1c, M3a-M1a-M1b, and M3a-M1a-

M1c. The current measurement through M1a is 50μA corresponding to a voltage of 0.5V 

which get divided with memristors M1b and M1c connected in series, each of them yielding 

a sneak path current output of 25μA. If the size of the array is increased from 3x3 to 4x4 

(IO switch-vector combination is 0111 0111), now the voltage drop through M1a is 0.6V 

which gets divided through three memristors namely M1b, M1c and M1d connected in 

series. The sneak path current through each of the three bitline output is 20μA. As the size 

of the array increases, this voltage drop through M1a reduces the sneak path current output 

through each bitline output. The total sneak path current for the 3x3 crossbar circuit (011 

011) with the two bitline outputs is 50μA and for 4x4 crossbar circuit (0111 0111), with 

the three bitline outputs it is 60µA. Using these 3x3 and 4x4 crossbar examples, it can be 

observed that as the total sneak path current increases, the sneak path current per bitline 

output decreases. The total sneak path current helps to drive designs decisions for 

estimating the size of the array and the individual sneak path current through each bitline 

output helps with setting the detection limit for testing memristor faults.  

 

3.6.4 Sneak Path Current for IO switch-vector mclosed =1, nclosed =n-1  

Simulations have been performed with varied array sizes by keeping the input test vector 

with one switched on input (mclosed =1) and the output test vector with all outputs switched 

on but one (nclosed = n–1). In this analysis, the input and output vectors have different 

switches as opposed to the previous examples. For example, the I/O switch-vector for 3x3 

crossbar array for this analysis can be represented as X1X2X3 = 001 and Y1Y2Y3 = 011.  A 



 

44 

logarithmic increase in the sneak path currents is observed as the size of the array increases 

as shown in Fig. 21. 

 
 

Fig. 21 Sneak Path current analysis for single input ON and all outputs ON except one 

[mclosed = 1 and nclosed = n–1] for HRS and LRS programming of 50KΩ and 10KΩ 

respectively. 

 

Sneak paths currents for a given crossbar size have been analysed by increasing the number 

of switched on outputs (mclosed = 1, 2, 3…m–1) and keeping a single switched on input 

vector (nclosed = 1). Fig. 22 shows a 6x6 crossbar array example for sneak path current 

analysis based on the input pattern on the X axis. From the plot, a peak in the sneak path 

currents is observed at X1X2X3X4X5X6 = 000001 and Y1Y2Y3Y4Y5Y6 = 000011. 

0

20

40

60

80

100

0 2 4 6 8 10 12

S
n

ea
k
 P

at
h

 c
u

rr
en

t 
 I

sn
ea

k
  

(µ
A

)

Number of wordlines (n)

10K 50K



 

45 

 

Fig. 22 Sneak Path current analysis with variation in I/O switch-vector (mclosed =1 and 

nclosed =1,2,3,4,5) for 6x6 crossbar array for 10K resistance programming. 

 

3.6.5 Sneak Path current ranges 

Fig. 23 shows the plot of the values for sneak path current based on the resistances in Table 

2. For the sneak path current data analysis, low resistance value of 10KΩ and high 

resistance values of 1MΩ, 50KΩ, and 500KΩ is used. As quoted in [46], the reverse 

leakage current or the sneak path current ranges from 0µA to 20µA for ReRAM array sizes 

from 10x10 to 20x20. The authors in [46] indicate that the reverse current varies with the 

change in design parameters. The authors in [47] had a range of sneak path current ranging 

from 2.5µA to 20µA, with the number of array bits increasing from 10k to 10M. Our 

research contribution reports the sneak path current varying with the size of the array, 

memristor resistance, and IO-switch vector, as discussed in equations (12) and (13). In 

paper [44], the authors have given equivalent leakage circuit models for different 3D 

resistive RAM layers with complementary resistive cells. They have compared their 

reading margins and leakage resistance to that of one-layer crossbar memory.  

0

50

100

150

200

250

300

000001

000001

000001

000011

000001

000111

000001

001111

000001

011111

S
n

ea
k
 P

at
h

 c
u

rr
en

t 
I s

n
ea

k
 i
n

 

µ
A

I/O Switch-vector



 

46 

 
(a) 

 
(b) 

Fig. 23 Sneak Path current analysis for one input ON and one output ON [nclosed = mclosed 

=1] for LRS and HRS programming of resistances in Table 2 where n=m. 

 

3.6.6 Sneak Path current analysis as a function of Resistance 

Sneak path currents of the crossbar circuits can be characterized by varying single 

memristance to a high resistance value while keeping other memristances to a low value 

and vice versa. Using the same crossbar circuit as in Fig. 15 with IO switch-vector=100100, 

LTspice simulation is performed with equal memristance values of 10KΩ for all the 

memristors and input voltage of 1V. The total simulated sneak path current value is 80µA.  

Consider memristors M2a and M3b carrying 40µA and 20µA current respectively are 

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11

S
n

ea
k
 P

at
h

 c
u

rr
en

t 
I s

n
ea

k
 i
n

 

µ
A

Number of wordlines (n)

100K 121K 160K 200K 500K 1M 10M

0

10000

20000

30000

40000

50000

0 2 4 6 8 10 12S
n
ea

k
 P

at
h
 c

u
rr

en
t 

I s
n

ea
k
 i
n
 

µ
A

Number of wordlines (n)

100 121



 

47 

switched to an HRS value of 1MΩ. On varying M2a to HRS the total sneak path current 

decreases to 50.5µA and on varying M3b to HRS the total sneak path current drops to 

71.6µA from the original LRS sneak path current of 80µA. A similar experiment was done 

keeping all the memristor values as high resistances and switching one of the memristors 

in the unique sneak path to a low resistance value. The observed difference in the sneak 

path current was much higher in this case. The sneak path increased from 0.8µA to 1.14µA 

on switching one of the resistances to LRS. Similar experiments were also performed on 

larger array sizes of 4x4 and 5x5 memristor circuits. Switching a memristor to a low 

resistance value while others are programmed at higher values largely impacted the total 

output currents values compared to the impact of switching a memristor to a high resistance 

while others are programmed at low resistance. Sneak path currents vary based on the 

memristor programming and the location of the memristor in the crossbar array.  

The following rules are used to select a single memristor to be set to a high resistance 

while all the remaining memristors are in a low resistance.  The rules are also applicable to 

a single memristor set to a low resistance with the remaining memristors in high resistance. 

• When mclosed =m–1 AND nclosed =n–1 vary the resistance of the middle memristor 

in the three memristor long sneak path for maximum impact to the sneak path 

current. 

• When mclosed =1 AND nclosed =1, vary the resistance of the first or the last 

memristor in the three memristor long sneak path for maximum impact to the 

sneak path current. 



 

48 

• When mclosed = m–1 OR nclosed =n–1, vary the resistance of the last memristor in 

the three memristor long sneak path for maximum impact to the sneak path 

current. 

 

3.6.7 Sneak path current analysis in comparison with the Primary current path 

In Table 3, the sneak path current and the primary current for I/O switch-vectors of a 3x3 

crossbar circuit are presented.  For X1X2X3Y1Y2Y3 = 001001, the output current is the sum 

of the primary current of 100µA and sneak path current of 80µA when all memristors are 

programmed to a low resistance value of 10KΩ. As seen in Fig. 17, the sneak path current 

increases linearly with the size of the array for a given resistance programming and a given 

input voltage. However, the primary current stays constant even with the increase in the 

size of the array for a given resistance programming and input voltage. For example, for a 

10x10 crossbar array, the sneak path current is 426µA with the primary current of 100µA. 

Similarly, for X1X2X3Y1Y2Y3 = 011011, the primary current will now be through two 

memristors each at every output, doubling the current from the previous case.  In this case, 

the sneak path current will decrease exponentially with the array size as presented in Fig. 

19. The sneak path current for a 10x10 array will be 9.09µA for this I/O switch-vector from 

Fig. 19 as opposed to the 3x3 crossbar value of 25µA in Table 3 for each bitline output. 

Based on the derived equations for a given I/O switch-vector, it can be seen how the sneak 

path current is a dominating factor of the output current. Predictions can be made for the 

sneak path current of various array sizes for a given I/O switch-vector, resistance 

programming and input voltage. Resistance programming plays a major role in affecting 

the sneak path currents. This sneak path analysis will help to drive design decisions such 



 

49 

as deciding the size of the array or the resistance programming to be used for a crossbar 

application.  

For large array sizes such as 64x64, we can calculate the possible sneak path current 

values based on the input voltage and resistance programming, using the formula in (19). 

For this example, the sneak path current would be ~32µA for this array size, if all the 

memristors are programmed to 1MΩ with a primary current of ~1µA for the IO switch-

vector mclosed =1 and nclosed =1. To avoid a huge impact of the sneak path on the total output 

current, design decisions could involve increasing the number of IO-switch vectors to 

reduce parallel paths and modifying the resistance programming of the sneak path circuit. 

The sneak path current can be reduced to ~1.2µA by considering the extreme case of 

increasing the number of IO switch-vectors with mclosed = m-1 and nclosed =n-1 for the same 

64x64 array example. 

For modifying the memristor programming to impact the sneak path current, one 

memristor is programmed to high resistance when all other memristors are at low resistance 

and vice-versa as seen in Table 3. This methodology was explained in Section 3.6.6.  For 

X1X2X3Y1Y2Y3 = 011011, by switching one of the memristors to 1MΩ when all the other 

memristors in the crossbar array are programmed to 10KΩ, the sneak path current is 

reduced from an all LRS current of 28.6µA to 0.99µA.  

Table 3 Primary Current and Sneak Path Current Comparison 

 



 

50 

 

3.6.8 Line Resistance impact on sneak path current  

The line resistance is relatively small compared to the memristor resistance.  For example, 

in my 3x3 array simulation with line resistances of 2.5 and memristor resistance of 10K, 

the sneak path current decreases by ~0.005µA from ~80µA sneak path current value 

without line resistance. Specifically, for the 3x3 array, the sneak path current without line 

resistance is 79.999µA and with line resistance is 79.995µA. For the 5x5 array, the sneak 

path current is 177.77µA without line resistance and 169.45µA with line resistance. If the 

size of the array is increased from 3x3 to 256x256, an increase in the sneak path current is 

observed based on the calculations. Although the line resistance impact increases with the 

size of the array, it does not significantly alter the analysis when compared without line 

resistance. Therefore, line resistances are not considered for this research. 

 

3.7 Summary of Chapter 3 

Sneak path currents are a limiting factor to resistive crossbar array operations. It is essential 

when designing a system using a crossbar array to consider sneak path current when 

deciding how large the array can be. A calculation model for finding the total number of 

sneak paths for crossbar arrays has been described. The model for finding the longest 

possible sneak path for any given memristor crossbar array has been demonstrated. In 

addition to that, curve fitting models for calculating the sneak path currents as a function 

of array size, memristor resistances, memristor programming, I/O switch-vectors and input 

voltage are presented. Linear, exponential, and logarithmic relationships between the sneak 

path current and the crossbar array size for different I/O switch-vectors are observed while 



 

51 

characterizing sneak path current. These models will help with the sneak path and sneak 

path current prediction of any array size for understanding the constraints to the memristor 

crossbar operation. Simulation results and sneak path analysis highlight the importance of 

selecting an I/O switch-vector and resistance programming for analysing sneak paths. The 

boundary conditions for these parameters are the deciding factors for various memristor 

crossbar applications and for memristor testing purposes. 



 

52 

Chapter 4  

Review of Testing Resistive Memristor Crossbar Arrays 

The memristor array is defect prone due to immature manufacturing defects. It is important 

to test these memristor device for faults and device characterization. In this chapter, the 

defect mechanisms in memristors are examined and the memristor fault models are 

discussed. This is followed by discussion on the test methodologies explored for testing 

memristor crossbar arrays in literature. The conclusions from the discussed methodologies 

are presented. Finally, the research questions and need for an efficient test methodology is 

described. 

 

4.1 Faults in memristor circuits 

There have been several published fault models for memristor circuits as shown in Table 

4. Different types of physical defects such as variation in length, area, and doping give rise 

to memristor faults. Table 4 summarizes the defects in a memristor caused by parametric 

variations and the associated fault model for fault detection. 

1) Stuck-at-LRS faults  

Considering a TiO2 memristor, excessive doping of the TiO2 with oxygen vacancies causes 

the memristor to be fully doped. As a result, it remains stuck at 1 irrespective of the voltage 

applied across it. A SA1 (stuck-at-1) or stuck-at LRS faults can also occur when the 

addressed column is shorted to the input voltage. The fault is represented as (0/1) where 

logic 0 is the expected output of a fault-free memristor, while logic 1 is the output when 

a SA1 fault is present.  



 

53 

Table 4 Memristor Faults 

Fault Cause of Defect References 

SA0 or SA 

open 

Under-doped/open defect [7][9][40][48][4

1] 

 SAL – stuck at 

logic level 

Open defect [7][48] 

SA1 or SA 

short 

Fully doped /short to VDD [7][9][41] 

SW1 Under doped/Open defect [7][40][48][41] 

SW0 Excessively doped/open defect [7][40][48][41] 

Deep 0 Increase in Length or Decrease 

in Area 

[7][40][48][41] 

Deep 1  Decrease in Length or Increase 

in Area 

[7][41] 

Deep 1/0 Under-doped/change in L or A [7][40][48][41] 

UR Excessively doped [7][41] 

Coupling Short between rows/columns [40][41] 

Undefined 

state faults 

Undefined logical state due to 

defect 

[49] 

Read 

destructive 

faults 

Open defects [49] 

Unknown read 

fault 

Open defects [50] 

Transition 

Faults 

Open defects [50][49] 

 

2) Stuck-at-HRS or Stuck-open Faults 

A defective memristor deprived of oxygen vacancies will manifest in a faulty memristor 

that is always at HRS irrespective of the applied voltage. A SA0 (stuck-at-0) or stuck-at 

HRS fault may occur in a memristor when there is an “open” circuit in the row, column or 

at the cross point. This fault is represented by (1/0); logic 1 is the expected output of a 

fault-free memristor, while logic 0 is the output in the presence of a SA0 fault. 



 

54 

3) Slow-write-1 (SW1) 

A memristor can be defective with a Slow-write-1 fault due to a small decrease in dopant 

density. The write pulse might not have enough flux to change the value in the memristor 

memory from a HRS to an LRS. A wider than normal or higher than normal amplitude 

write pulse is needed to switch logic states. Slow-write 1 fault represents a slow transition 

from HRS to LRS. The fault is represented by ⟨0w1/X0⟩, where X0 is an undefined output 

when the memristor resistance could be in the undefined state or can be at HRS. The fault 

is activated by writing a logic 1 when the memristor is at logic 0 (represented by 0w1). 

4) Slow-write-0 (SW0) 

Like SW1, a transition from LRS to HRS will be slow when there is a small increase in the 

oxygen vacancies. The fault is denoted by ⟨1w0/X1⟩, where X1 is an undefined output when 

the memristor resistance could be in the undefined state or can be LRS. The fault is 

activated by writing a 0 when the memristor is at logic 1 (represented by 1w0). A slow 

write fault also occurs when there is an unintended series resistance within a crosspoint. 

5) Deep-0 

Deep-0 state occurs due to an increase in the length (L) or a decrease in the cross sectional 

area (A) of the memristor. This causes the upper and lower resistance limits of the 

memristor to shift. The upper and lower bounds of memristor resistance change to Roff 

+Δ and Ron +Δ. The memristor is in a ‘deep 0’ state when its memristance > Roff. For a 

deep-0 faulty device, the duration of the write pulse is not long enough to switch the 

memristor device from deep 0 to logic 1. A Deep-0 can be sensitized using a sequence of 

write operations represented as ⟨{0𝑤0, 𝑤1}/𝑋0⟩.  



 

55 

6) Deep-1 

Deep-1 state occurs when there is a decrease in the length (L) or an increase in the cross-

sectional area (A) of the memristor. This causes the upper and lower bounds of the 

memristance to decrease to Ron−Δ and Roff -Δ. For a deep-1 faulty device, the duration of 

the write pulse is not long enough to switch the memristor device from deep 1 to logic 0. 

A Deep-1 fault can be sensitized by a sequence of write operations denoted by {1w1, w0}. 

The Deep-1 fault is represented by ⟨ {1w1, w0}/𝑋1⟩.  

7) Deep-1/0 

This type of fault demonstrates the characteristics of both Deep-1 and Deep-0 faults. The 

fault can be sensitized by testing for both Deep-1 and Deep-0 fault types. The cause of the 

defect can be dopant deficiency combined with either a decrease in length or an increase 

in cross-sectional area. 

8) Unknown read (UR) 

Unknown read faults occur due to open defects within the memristor device. They can 

occur due to a combination of parametric defects, such as an increased length, combined 

with excessive doping. The memristor output exhibits a range of memristance represented 

by ρ (Roff − Ron) <M(α)< (1−ρ) (Roff − Ron), resulting in an undefined output, irrespective of 

the voltage applied across it. The fault is represented as ⟨−/X⟩. 

 

4.2 Currently Published testing methodologies for Fault Detection 
 

Most of the published memory testing techniques are based on the march algorithms [36, 

49, 50]. March tests are exhaustive tests with long test times since they test one memory 

cell at a time. Some papers have integrated sneak-path based testing into the march testing 



 

56 

for improving test time [7, 42, 52]. The focus of the papers in [7, 42] has been to reduce 

the read test time using sneak paths over traditional march tests. However, write operations 

take longer test time than reads. The authors in [52] have proposed a DFT circuit for 

reducing write test time; however, it adds additional hardware overhead. [53] discusses the 

fault dictionary approach based on March test algorithms for RAM testing. Some of these 

fault detection test methodologies have been described in the following section. 

 

1) Sneak Path Testing in Memristors [7] 

This paper discusses the defect mechanisms and fault models for memristors faults such as 

stuck-at-0, stuck-at-1, slow-write-0, slow-write-1, deep-0, and deep-1 faults. The author 

proposes an efficient testing scheme that uses sneak paths for testing these types of faults 

in 1T-1M RRAM crossbars. The advantage of sneak-path based testing is multiple 

memristors can be tested in a single measurement unlike the march testing that tests one 

memristor at a time. With this improved testing methodology, a test time improvement of 

~32% is observed compared with the march test.  

Testing Methodology: 

The paper uses 1T-1M crossbar architecture where transistors are used to eliminate sneak 

paths by controlling the flow of current through crossbar during normal mode. During test 

mode, sneak paths are used for testing memristor faults. A group of memristors that can be 

tested simultaneously is referred to as Region of Detection (RoD) and when faulty, can 

cause measurable change in the output current of column being accessed. The difference 

between the defect-free crossbar current and faulty current greater than the detection limit 

detects the fault. RoD for each fault type is determined to minimize test time and to 



 

57 

maximize the test area. Fig. 24 shows the example of a RoD for stuck-at fault detection. 

The memory element at the center of the RoD is under test and the other green cells 

represent other detectable faults in the RoD. To sensitize a stuck-at 0 fault in the RoD, all 

the memory locations are written logic 1 value.  

      IidealON       

      IidealON       

    IidealON IidealON IidealON     

IidealON IidealON IidealON 

SA0 

Fault IidealON IidealON IidealON 

    IidealON IidealON IidealON     

      IidealON       

      IidealON       

(a) SA0- fault using RoD method of fault detection where IidealON is the fault free current in green for 

logic 1. The cell highlighted in red is the SA0 fault in the RoD. 

      IidealOFF       

      IidealOFF       

    IidealOFF IidealOFF IidealOFF     

IidealOFF IidealOFF IidealOFF 

SA1 

Fault IidealOFF IidealOFF IidealOFF 

    IidealOFF IidealOFF IidealOFF     

      IidealOFF       

      IidealOFF       

(b) SA1 fault using RoD method of fault detection where IidealOFF is the fault free current in green for 

logic 0. The cell highlighted in red is the SA1 fault in the RoD. 

Fig. 24  RoD current variation for stuck-at Fault detection [5] Redrawn 

 

If the output current is less than the defect-free current IidealON, then the fault is detected in 

the RoD. Similarly, a stuck-at 1 fault can be sensitized by writing a zero to the memory 

cells in the RoD. If a SA1 fault exists in the RoD, the output current is greater than the 



 

58 

defect-free current IidealOFF. Multiple memristors are tested in a single RoD using this 

method and number of memristor accesses are also reduced, thus providing advantage 

over simple march tests. 

 

2) Sneak-Path based Test and Diagnosis using Voltage Bias [9] 

The paper proposes to use voltage bias to manipulate sneak paths for fault detection and 

fault diagnosis in a 4x4 region of memristors at a time. The authors choose 1R RRAM 

crossbars for the study because of its high density and performance unlike the 1T1R 

RRAMs which require selector devices. The voltage bias programming method is used to 

control sneak paths in the 1R RRAM structure. The proposed test mechanism is motivated 

by two observations  - i)voltage bias can be applied to wordlines and bitlines to mitigate 

the impact of sneak path ii) sneak paths can be used to give resistance information of 

multiple memristors that can detect faults by comparing faulty current with output currents. 

By applying distinct levels of voltage bias on each wordline and bitline, undesired sneak 

paths can be eliminated, and the useful ones can be used for fault detection by multiple 

memristor testing.   

Test methodology 

A 3x3 crossbar array example is shown in Fig. 25 to illustrate the proposed test mechanism. 

Fig. 25(a) shows the intended current path through M3 in blue and the parallel sneak path 

current through M2, M5 and M6 in red. Fig. 25(b) shows the elimination of the sneak path 

by applying a voltage bias Vx to the wordline and bitline of the array. By changing patterns 

on the voltage bias, the sneak paths through different memristors can be controlled. Fig. 

25(c) shows two sneak paths through memristors M2, M5, M6, M8 and M9 highlighted in 



 

59 

red which helps to test multiple memristors in a single read operation with M3 as the 

intended memristor. 

 

 

 

 

                  (a)                                                                                  (b)                                                                             

 

 

 

                   

(c)                                                                                     (d) 

Fig. 25 Controlling sneak paths using voltage bias technique: (a) Example of sneak path through M2, 

M5 and M6 highlighted in red (b) sneak-path elimination with an uniform level of voltage bias Vx 

applied to wordline/bitlines; (c)Two sneak paths in red with intended memristor as M3 (d) Sneak path 

highlighted in red with intended memristor changed to M5 [9]. [Redrawn] 

 

If the intended current path is changed to access memristor M5, other set of memristors 

can be tested using sneak path through M4, M7 and M8 as shown in Fig. 25(d).  

 

 

V
x = Vdd/2 

  
 

Ia 

V1 

V2 

Ib 

M1 M2 

M5 M4 

    

V3 

M8 
M7 

    

M9 

Ic 

M3 

M6 

V
x
 

V
x
 

V
x
 

V
x
 

M1 M2 

M5 M4 

    

V
x
 

M8 
M7 

    

M9 

Ic 

M3 

M6 

Va 

V
dd

 

Vb 

Vc 

M1 M2 

M5 M4 

    

Vb 

M8 
M7 

    

M9 

Ic 

M3 

M6 

Vb 

Vdd 

Ib 

M1 M2 

M5 M4 

    

Vb 

M8 
M7 

    

M9 

Vc 

M3 

M6 

Va 



 

60 

3) More efficient testing of metal-oxide memristor-based memories [52] 

The paper proposes March tests for testing metal-oxide memristor based memories using 

fast write operations. The authors focus on reducing the test application time and the test 

energy by proposing fast write operations.  Fast march test algorithm is proposed for 

different fault models such as stuck-at faults, transition faults and shortened rows/column 

faults. The fast write method was modified to remove sneak paths from the test by 

grounding rows for reliable march testing. This paper uses a hybrid crossbar architecture 

consisting of combination of memristor and isolating transistor. The proposed Fast March 

Test (FMT) and the existing march test times have been compared for various fault 

detections. The proposed March test used a new fast write operation and reduced the test 

application time by 70% and the test energy by 40%. 

Test methodology 

To implement the fast write approach, DFT scheme is proposed to control the access times 

on the rows and columns during the write operation.  The DFT circuit contains one timer 

to control the access time duration of the write operation called the W-Timer. W-Timer 

sets two different access times for write operation during normal mode and test mode. Fast 

write mode is selected during test mode.  



 

61 

 

Fig. 26 Programmable DFT scheme [52] 

The timer is shown on the left part of Fig. 26, and the associated selection hardware is 

shown above them. 

 

4) DFT Schemes for Resistive Open defects in RRAMs [54] 

Open defects may cause RRAM devices to enter an undefined state between logic 0 and 

logic 1 which can lead to test escapes and reliability issues. The regular march tests cannot 

guarantee high fault coverage for such type of defects. The paper motivates the need of 

special DFT to detect these unique faults in RRAMs. The paper proposes the use of two 

DFT schemes i) Short Write Time and ii) Low Write Voltage for fault detection. Simulation 

results show that defects causing the memristor device to enter undefined state can be 

detected with the DFT approach. 

Test methodology 



 

62 

RRAM operations rely on the duration of access time and the supply voltage on the 

wordline and bitlines. The DFT schemes exploit these two properties for fault detection. 

The first DFT scheme referred to as Short Write Time (SWT) supplies the write voltage 

for a shorter period than the nominal write time. The second DFT scheme, referred to as 

Low Write Voltage (LWV), supplies a lower voltage than the nominal write voltage for 

the nominal time.  The detection of these faults requires stressing the memristor device in 

such a way that:  If the device has a defect and the output is in an undefined state, then the 

stressing has to shift the state of the device from the undefined state to a defined wrong 

state. The fault is then detected by performing a read operation after stressing the cell. If 

the device is fault-free, then it must remain in its correct defined state. Otherwise, the stress 

may cause overkill and yield loss. Simulations have been performed by injecting two open 

resistance faults using the write access time and the reduced supply voltage obtained values 

for the two DFT schemes. The simulation results show that the defects causing the RRAM 

cell to enter an undefined state are easily detected. However, both the DFT schemes could 

understress or overstress the RRAM under test leading to overkilling due to process 

variations.  

 

5) Fault Modeling and Testing of 1T1R memories [50] 

The paper proposes a testing methodology using march testing for 1T-1R 2x2 memristor 

memory structure as shown in Fig. 27. The paper proposes fault models based on electrical 

defects such as transistor suck-on, stuck-open faults and bridging faults. The paper also 

introduces to two new types of faults namely the write disturbance fault (WDF) and 

dynamic write disturbance fault (dWDF). The transistor stuck-on and bridge defects may 



 

63 

cause two-cell coupling faults where one cell is the aggressor and other is the victim. The 

resistance value of the bridge defect could disturb the write operation of the aggressor cell 

ultimately impacting the state of the victim cell. These two cells are said to have a WDF. 

 

 

                                             (a)                                             (b)  

Fig. 27 (a) Possible open, transistor stuck-on, transistor stuck-open defects in a 1T1R 

cell. (b) A 2×2 1T1R cell array [50]. 

 

The number of write operations on the aggressor cell a has an impact on the state of the 

victim cell. If the WDF is activated by more than two consecutive write operations in the 

aggressor, the new fault is called as dynamic disturbance fault (dWDF). A March test 

named as March-1T1R is proposed to cover the above defined faults in the 1T1R memristor 

array. The proposed March test requires (1+2a+2b)N write operations and 5N read 

operations for an N-bit memristor memory, where a and b are the number of consecutive 

Write-1 and Write-0 operations for activating a dWDF.  

  



 

64 

6) On Defect Oriented Testing for Hybrid CMOS/Memristor Memory [55] 

Hybrid CMOS/ memristor memory structures have the potential to replace the conventional 

non-volatile flash memory. Hybrid memories use the memristor as the storage element 

stacked on the top of the CMOS peripheral circuits creating three dimensional ICs. This 

paper discusses the defects in the hybrid memory system and a simulation model for defect 

injection and fault behavior is presented. The simulation results show that in addition to 

conventional semiconductor faults, there exist new unique faults due to open defects that 

require new test approaches (example, DFT techniques) to detect them. Fig. 28 shows the 

electrical circuit of a hybrid memory. The single memristor cell is divided into row group 

 

Fig. 28 Electrical equivalent circuit [55] 

 

And column group, the row group consists of the CMOS wordline (CWLR), CMOS bitline 

(CWBR), access transistor (ATR), short CNV (SV) and nano wordline (NWL). The column 

group consists of CMOS wordline (CWLc), CMOS bitline (CBLc), access transistor (ATc). 

tall CNV (TV) and nanowire (NBL) as shown in Fig. 28. The Table 5 below gives the 

classification of defects in the three parts of hybrid memory which is the cell array, CMOS-

to-nano vias and the peripheral circuits. 



 

65 

Table 5 Defect Classification in Hybrid memory [55] 

 

 

Opens, bridges and shorts are the most commonly occurring faults in the memory cells 

and the CNVs. The defect injection and simulation are performed using the electrical 

SPICE memory model. The memory operation sequences for detecting faults are 

considered as: 

• 0w1 – write 1 to a cell initialized to 0 

• 1w0 – write 0 to a cell initialized to 1 

• 1r1– read an expected value 1 from a cell 

• 0r0 – read an expected value 0 from a cell 

Using these sequences, the traditional memory fault models such as transition faults, 

stuck-at faults and incorrect read faults can be detected. However, special design for 

testability scheme is needed for unique faults such as: 



 

66 

• UWF0 – cell set to an undefined state by write 0 operation 

• UWF1 – cell set to an undefined state by write 1 operation 

 

7) A Novel “Divide and Conquer” Testing Technique for Memristor based Lookup 

Table [56]  

The authors of this paper [56] propose an efficient approach for testing Memristor based 

Look up Table [MLUTs] formed by memristor array of LUTs. The main advantages of 

using this method are: 1) The ability to select any region of rows or columns in the 

memristor array using the memristor-based demultiplexer, 2) divide and conquer approach 

to effectively locate defective memristors in the MLUT can be applicable to other crossbar 

designs, 3)deterministic nature of the testing technique and 4) good scaling behavior. The 

TiO2 based memristor device is used for the MLUT. The testing technique can be applied 

for fault detection of stuck-at 1, stuck-at 0 and -programmable defects [NPD]. A NPD1 

defect is formed when the proportion of the doped region is slightly greater than the 

undoped region, similarly a NPD0 defect is formed when the undoped proportion is slightly 

greater than the undoped. In large-scale MLUT designs, it is very time consuming and 

tedious to test every crosspoint on each crossbar MULT exhaustively. A” Divide and 

Conquer” approach has been suggested by the authors to test multiple memristors in a 

single measurement using the demultiplexer. The defects can be detected by comparing the 

fault-free current and the crossbar output current in the first iteration. In the next iterations, 

the given region is split into halves and each of them are tested recursively for faults. An 

example of stuck-at fault detection using the divide and conquer approach is shown in Fig. 

29 for an 8x4 MLUT. 



 

67 

 

Fig. 29 Divide and Conquer approach [56] 

 

Iactual or the crossbar output current is calculated by selecting all the rows and columns of 

the memristor. In the example in Fig. 29, based on the difference between fault-free current 

and Iactual current, a single defect can be identified. Following the iterative measurements, 

group 2 can be discarded from the search space since its defect free. From group 3, the 

defective memristor (black dot) can be detected in 4 measurements, discarding half of the 

search space in each iteration. 

 

4.3 Fault Diagnosis 

Faults can be either nonrecoverable or recoverable. For example, stuck-at faults and 

coupling faults are non-recoverable faults that can only be repaired by using redundant 

rows and columns. Slow-to-write faults, fast-write and deep faults can be recoverable 

faults. The faulty behavior can be recovered by controlling the duration of the write pulse 

or the voltage level of the write pulse to achieve the desired resistance to avoid the fault. 



 

68 

Some of the fault diagnosis methodologies referenced in literature are discussed in the 

below. To repair a fault, it is important to perform fault diagnosis to determine the fault 

location and the fault type.  

 

4.3.1 Fault Diagnosis methodologies 

Some of the test methodologies in literature for diagnosing faults in memristor circuits 

will be discussed in this section. 

 

1) Sneak-Path based Test and Diagnosis using Voltage Bias [9] 

The authors choose 1R RRAM crossbars for the study because of its high density and 

performance unlike the 1T1R RRAMs which require selector devices. The focus of the 

paper was fault diagnosis for single faults and multiple faults in a square RoD. By 

reconfiguring the voltage bias, sneak paths are controlled in the RoD. The output current 

of the RoD is compared with the fault free reference current to detect a fault. 

 

Fig. 30 Diagnosis process: (a) Example current in the RoD; (b) Diagnosis process for 

single fault in RoD [9] 

 



 

69 

In this method, a square RoD is partitioned into sub regions (A, B, C, D) with a set of 

reference currents associated with each subregion as shown in Fig. 30. The output current 

of each subregion is compared with the reference current to detect the faults in the RoD. 

The diagnosis algorithm for single fault is based on divide and conquer recursive process 

of the subregions. Multiple faults, though each one has small contribution to the output 

current, will cumulate their resistance variances to the output current through sneak-paths. 

The diagnosis process will have more measurements to diagnose multiple faults with the 

reference current being compared to the output current at every step. 

 

2) Detection, Diagnosis and Repair of Faults in Memristor-based Memories [57] 

This paper proposes an efficient testing technique for fault detection and fault diagnosis in 

memristor circuits using sneak paths. A hybrid diagnosis scheme that comprises of 

diagnosis by March test and sneak path testing is proposed to reduce test time. 1T-1M 

crossbar architecture is used to suppress the sneak paths in the normal mode using 

transistors and leverage sneak paths for testing in the test mode.  

1. Diagnosis using March Sequence 

A march test is defined by a sequence of operations applied to each memory cell before 

proceeding to the next cell. The order of proceeding to the next cell can be either in 

increasing address order (⇑) or decreasing address order (⇓). For an arbitrary addressing 

order, the symbol ⇕ is used. The memory operations are defined as ‘w0’ (write logic 0 to 

the memory cell), ‘r0’ (read logic 0 value from the memory cell.). Similarly, ‘w1’ (write 

logic 1) and ‘r1’ (read logic 1) are defined. The complete test is enclosed within curly 

brackets ‘{}’. 



 

70 

The March sequence to detect different type of faults such as stuck-at faults, slow-to-write, 

deep and coupling faults is described below. 

{M1: ⇕(w0, w0, r0); M2: ⇑(r0, w1, r1); M3: ⇑(w1, r1); M4: ⇓(r1, w0, r0)} 

SA1: sensitized and detected by M1.  

SA0: sensitized by {w1} of M2 and M3. Detected by M3.  

Deep-0/SW1: sensitized by {w0, w0} of M1 and {w1} of M2 and detected by M2.  

Deep-1/SW0: sensitized by {w1} of M2, {w1} of M3, and {w0} of M4. Detected by M4.  

Coupling: sensitized by {w0} of M1 and {w1} of M2 and detected by M2. Also sensitized 

by {w1} of M3 and {w0} of M4 and detected by M4. 

Based on the detection sequences, the diagnostic sequence is shown in Table 6 to diagnose 

the fault type and fault location. Diagnostics is performed using various combinations of 

test sequence to determine type of fault. 

Table 6 Test sequence and faults detected by each sequence for fault diagnosis [57] 

 

  



 

71 

2. Diagnosis using Sneak Paths 

To minimize diagnostic time, sneak paths were used with the following sequence:  

M1: ⇕(w0, w0); M2: ↑SA(r0); M3: ↑c(r0); M4: ⇕(w1); M5: ↑deep(r1); M6: ⇑(w1); M7: 

↓SA(r1); M8: ↓c(r1); M9: ⇓(w0); M10: ↓deep(r0)}  

SA1: sensitized by M1 and detected by M2. SA0: sensitized by M4, M6 and detected by 

M7.  

Deep-0/SW1: sensitized by M1, M4 and detected by M5.  

Deep-1/SW0: sensitized by M4, M6, M9; detected by M10.  

Coupling: sensitized by M1, M3, M4 and detected by M5. Also sensitized by M6, M8, M9 

and detected by M10.                                                                                                                    (21) 

 The equation (21) can diagnose the type of fault, but the only information about the fault 

location is that it is somewhere within the RoD. For diagnosing a single fault within the 

RoD, the iterative process of dividing the RoDs is utilized to pinpoint the location of the 

fault. In case of multiple defects in the RoD, the hybrid technique described below is used 

for fault diagnosis. 

3. Diagnostics using Hybrid Technique 

This technique combines the march and sneak-path diagnosis methods to reduce test time. 

The fault detection inside the RoD is performed using sneak paths. For single fault 

diagnosis in the RoD, the sneak path diagnosis technique is used. For multiple fault 

diagnosis in the RoD, march testing is performed on each memory cell to diagnose the fault 

  



 

72 

3)Diagnosis of Resistive Nonvolatile-8T SRAMs [53] 

  This paper proposes a two-phase diagnosis methodology for distinguishing between RAM 

faults and memristor faults of Resistive non-volatile-8T (Rnv8T) SRAMs. A Rnv8T 

SRAM cell consists of a 6T SRAM cell, two memristors (RL and RR) and two access 

memristors (M2 and M3) as shown in Fig. 31. This memory cell performs four functional 

operations such as read, write, store, and restore by activating wordlines and bitlines 

connected to the transistors and memristors in Fig. 31. 

 

Fig. 31 Rnv8T SRAM cell structure [53] 

 

In the first phase, the March 17-N algorithm is used to distinguish RAM faults such as 

stuck-at faults, state coupling faults and inversion coupling faults [58]. Once the RAM 

faults are identified, the proposed diagnosis algorithm March-MD is used for diagnosing 

memristor-related faults in the second phase of testing. Memristor-related faults include 

memristor stuck-at faults (MASF), slow store fault (SSF), store destructive fault (SDF) and 

memristor disturb read fault (MDRF). The MASF causes the SRAM cell to stuck-at a logic 

value of 0 or 1 after the restore operation. SSF refers to memristor not programmed to the 



 

73 

expected resistance value within the store operation time. Lastly, in presence of a MDRF 

fault, the SRAM cell returns unexpected or undefined state during read operation. The fault 

dictionary of March -MD is captured below for the memristor-related faults where Ei = 0 

denotes the ith read operation that cannot detect the corresponding fault, If Ei = even or 

odd, then the corresponding fault can be detected at the even or odd addresses respectively. 

Table 7 Fault dictionary of March-MD [53] 

 

 

4.4 Drawbacks of existing testing methodologies 

In the paper [7] “Sneak Path Testing in Memristors” The test methodology cannot apply to 

1R RRAM crossbar because the access transistors are important to control the sneak paths 

for fault diagnosis. It only considers single faults occurring in a ROD and fails to test and 

diagnose multiple faults. It incurs significant routing cost to switch each access transistor 

independently. In the paper “DFT Schemes for Resistive Open Defects in RRAMs” DFT 

schemes might overstress or understress the RRAM under test leading to overkilling. 

Redesign is an expensive solution to this problem. In “Fault Modeling and Testing of 1T1R 



 

74 

memories”, the transistor selector devices degrade the performance and reduce the density 

of the RRAM crossbar. The memristor and the selectors are fabricated in heterogeneous 

technologies, resulting in high integration cost. In “Sneak-Path based test and diagnosis 

using voltage bias [9]”, the focus of the paper is on fault diagnosis using the ROD concept. 

It is based on the divide and conquer recursive approach which is iterative and depends on 

the size of the array. In “More efficient testing of metal-oxide memristor-based memory” 

[52] Fast write march test has been proposed to reduce test application time during write 

operation. However, it has a DFT overhead for hardware changes. 

 

4.5 Research Goals for testing memristor circuits 

For all the discussed methodologies, there has been limited focus on the fault coverage 

during fault detection. Since most of the methods are dependent on March testing that have 

100 % fault coverage, there has been limited focus on improving fault coverage with 

shorter tests.  All the methods are based on March exhaustive testing where the results have 

been analyzed for comparing test times and number of test operations. This leads to 

research goal of measuring fault coverage in memristor circuits. 

 

4.5.1 Research Goal 1: Fault Coverage 

My research goal is to develop a fault coverage for fault detection using sneak paths. Fault 

coverage calculation is required to evaluate different tests and to come up with a good 

quality test. It is possible to get better fault coverage using long length sneak paths for 

shorter tests. To develop an efficient test there is always a tradeoff between fault coverage 

and test time. 



 

75 

Example of Long Length Sneak Path: 

 

 

 

 

 

 

 

 

 

 

Through our sneak path characterization work, the longest number of possible sneak paths 

in an array can be calculated. For example, in the 3x3 array below with IO switch-vector = 

100100, the longest possible length of sneak path = 5. In this combination, it is possible to 

have four of three memristor long paths as shown below in Fig 32. The primary path is 

through selected cell M1a. The half-selected cells in this circuit are the ones sharing the 

line with M1a namely M1b, M1c, M2a and M3a. The sneak paths through electrical 

network is three memristor long as shown above namely M1b-M2b-M2a, M1b-M3b-M3a, 

M1c-M2c-M3a, and M1c-M3c-M3a 

As noted previously, if all the memristors have the same resistance value then all 

the sneak paths are of length three.  However, when the memristors are at different 

resistance values, some patterns can create longer sneak paths. The four possible five 

memristor long memristor sneak paths are: M1c-M2c-M2b-M3b-M3a, M1c-M3c-M3b-

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 

V3 
M3b 

M3a  
M3c 

Ic 

M1c 

M2c 

V1 

Ia 

M1b 

M2b 

M2a 
    

M3b 

M3a    

M3c 

M1c 

M2c 

M1a 

V2  V3 

Vb 
Vc  

(a) Three memristor long 

paths in crossbar array      
  (b) Circuit equivalent showing  

            three long memristor paths 

Fig. 32 Sneak paths of length 5 in a 3x3 crossbar array with M1c=M2b=M3a = 

HRS and all of the rest of the memristors in LRS and for IO switch-vector = 

100100 



 

76 

M2b-M2a, M1b-M2b-M2c-M3c-M3a, and M1b-M3b-M3c-M2c-M2a. One way to get the 

five memristor long path M1c-M2c-M2b-M3b-M3a is to have M1b and M2a in the HRS 

and the rest in the LRS.  Another programming to get the same long sneak path is M1b, 

M2a, and M3b in the HRS with the rest in LRS. To get the second example of the five 

memristor long sneak path, M1c-M3c-M3b-M2b-M2a, the memristors M1b and M2c are 

programmed to the HRS and the rest are LRS.  To get the fourth example of path M1b-

M3b-M3c-M2c-M2a, the memristors M1c, M2b, and M3a are in the HRS.  This case is 

shown in Fig. 33. 

 

 

 

 

 

   

                   

 

Fig. 33 Sneak paths of length 5 in a 3x3 crossbar array with M1c=M2b=M3a = HRS and 

all of the rest of the memristors in the LRS and for I/O switch-vector = 100100 

 

There are many other patterns to get these and the other five memristor long sneak paths. 

Even with the five memristor long sneak paths, there are still total of four sneak paths.  

Specifically, three of the paths are three memristor long (M1b-M2b-M2a, M1b-M3b-M3a, 

M1c-M2c-M2a) and one of the paths is five memristor long (as shown in Fig. 33). As shown 

in Table 1 and (4), for this 3x3 array the longest possible sneak path is 5.  The length of 

sneak paths is a function of the array size, the I/O switch-vector, and the programming of 

the individual memristors. It is possible to get more than three memristor long paths using 

different resistance programming seen from the example. This will lead to enhanced fault 

Ia 

M1b 

M2b 

M2a 
    

M3b 

M3a    

M3c 

M1c 

M2c 

M1a 

V2  V3 

Vb 
Vc  

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 
    

V3 
M3b M3a 

    

M3c 

Ic 

M1c 

M2c 



 

77 

detection with multiple faults. Sneak paths longer than 3 paths will lead to better fault 

coverage. My test methodology proposes to use these long length sneak paths for testing 

memristor faults since using long length sneak paths can detect more faults per test vector 

and therefore, it results in a shorter test vector set. 

 

4.5.2 Research Goal 2: Fault Detection 

My research will mainly target Stuck-at-Low Resistance State faults (SLRS) and Stuck-at-

High Resistance State Faults (SHRS). A 3x3 crossbar array example described below 

shows fault detection using march testing. 

 

Fig. 34 Stuck-at LRS fault example for single step of march testing in a 3X3 crossbar 

array 

 

In this example, M1a in the 3x3 memristor crossbar circuit is a stuck-at LRS fault with 

LRS = 10KΩ and HRS = 1MΩ .The condition to detect a Fault at M1a is Ioutput  A  > I stuck-

at LRS. From Table 3,  Ioutput A[Reference]  =  1µA + 0.8µA which is the sum of the primary 

current and the sneak path current when all the memristors in the array are of 1MΩ each. 

However, since M1a is stuck-at LRS, the primary current will now be 100µA considering 

10KΩ as the LRS. Since the IStuck-at LRS  is greater than the Ioutput A[Reference] the fault will be 



 

78 

detected. This type of testing tests a single memristor at a time in the crossbar array. It 

marches through the array from one memristor to another, focusing on single memristor 

faults and is also referred to as March testing. 

 

4.5.3 Fault Detection Using Sneak Paths 

                       

Fig. 35 Fault Detection Using Sneak Paths in a 3x3 crossbar array 

 

For the 3x3 crossbar array example in Fig. 35, M1b is a stuck-at LRS fault in a All-HRS 

programmed array. The resistance values considered for this example are LRS = 10KΩ 

and HRS = 1MΩ. The condition to detect a fault in the circuit  is Ioutput  A  > I Stuck-at LRS. 

From Table 3,  Ioutput A[Reference]  =  1µA + 0.8µA which is the sum of the primary current 

and the sneak path current for a fault-free circuit. However, since now M1b and M2b is 

stuck-at-LRS, the sneak path current will be 1.14µA as shown in Table 3 when  one of the 

memristors is at LRS out of all the remaining HRS. Since now the IStuck-at LRS  is greater than 

the Ioutput A[Refernce] the fault will be detected. This type of testing can test multiple 

memristors at a time since it utilizes sneak path current going through multiple memristors 

for fault detection. 

 



 

79 

4.5.4 Research Goal 3: Fault Diagnosis using Sneak Paths 

In Section 4.3.1, two ROD methods were suggested by [7] and [9] for fault diagnosis in 

memristor circuits. It is an iterative process that involves many measurements to pinpoint 

the fault location. ROD is further divided with the output current being compared to the 

reference current. ROD changes with each fault type and it is possible to detect more than 

one fault type in a single ROD. My research goal was to study the scope of methods other 

than ROD for fault diagnosis. I found the fault dictionary could be a useful and promising 

fault diagnosis technique that can be used in memristor circuits. The fault detection 

technique using sneak paths is expanded to consider fault diagnosis for stuck-at LRS and 

stuck-at HRS faults. 

 

4.5.5 Research Goal 4: Test Pattern Generation 

My research goal is to generate a good quality test vector set or test patterns by 

characterizing sneak paths in memristor circuits as a function of input voltage, IO switch-

vector, resistance programming and size of array. 

 

4.6 Summary of Chapter 4 

Memristor technology specific faults are discussed in this chapter. The behaviour of the 

fault and defect models are described in the literature review of memristor testing. Some 

of the fault detection and fault diagnosis methodologies for march and sneak-path based 

memristor testing are described followed by the observations of their limitations and the 

need for a better good quality test. Finally, my research goals using sneak path testing are 

discussed for testing memristor circuits. 



 

80 

Chapter 5 

Sneak Path based testing in Memristor Circuits 

Note: Some contents of this chapter have been approved for publication: 

Rasika Joshi, John M Acken “Utilizing Sneak paths for Memristor Test time 

Improvement”, in IETE Journal of Research, 2020. 

My memristor test methodology contribution optimizes the IO-switch vectors and 

the memristor HRS/LRS programming for fault detection and fault diagnosis using sneak 

paths. The research focuses on the stuck-at low resistance and stuck-at high resistance 

faults, with a later extension to intermediate faults for fault detection and fault diagnosis 

analysis. Using the sneak path characterization work in Chapter 3, the research goal was to 

develop a method to evaluate a test for fault coverage of fault detection using sneak paths. 

This test methodology targets test time reduction using shorter test vector sets and tests 

multiple memristors at a time. Long length sneak paths are used for reducing write test 

time since write operations take longer test time than read. The following sections describe 

the fault detection and fault dictionary based diagnosis approach using a 3x3 crossbar array 

example. Fault coverage calculation is explained with the crossbar array example with long 

length sneak paths. The simulation results of this test methodology show an improved test 

time for fault detection and fault diagnosis with shorter test vector sets. 

 

5.1 Stuck-at LRS and Stuck-at HRS faults 

One cause of stuck-at LRS defect is excessive doping material due to which the memristor 

remains stuck at LRS irrespective of the voltage applied across it. If a memristor has a 



 

81 

stuck-at LRS fault, then it remains stuck at logic 1 when a negative voltage is applied to 

the memristor to turn it off. LRS is the faulty output in the presence of stuck-at LRS fault 

and HRS is the expected or the fault-free output. The cause of Stuck-at HRS defect is lack 

of doping material due to which the memristor remains stuck at HRS. If a memristor has a 

stuck-at HRS fault, then it remains stuck at logic 0 when a positive voltage is applied to 

the memristor to turn it on. HRS is the faulty output in the presence of stuck-at HRS fault 

and LRS is the expected or the fault-free output. 

 

5.2 Fault Detection Approach 

The fault detection methodology targets single stuck-at-LRS and single stuck-at-HRS 

faults in memristor crossbar arrays. The condition to detect a fault is based on the 

comparison between the device current (ICUT) and the reference current (IReference). The 

sneak path current through the memristors falling on the selected wordline and bitline 

contribute to the total output current or ICUT. IReference is the output current of a defect-free 

crossbar. The difference between IReference and ICUT detects the fault if it is greater than the 

detection limit. For a stuck-at LRS fault, if the ICUT – IReference > Detection limit, the stuck-

at LRS fault is detected for a given IO switch-vector. Similarly, for a stuck-at HRS fault, 

if the IReference – ICUT > Detection limit, the stuck-at HRS fault is detected for a given IO 

switch-vector. The flow chart in Fig. 36 and Fig 37 describes the methodology for fault 

detection for stuck-at HRS faults and stuck-at LRS faults, respectively. The advantage of 

using this method is the contribution of the sneak path current to the ICUT for testing 

multiple memristors at a time over the test-time consuming march test. All the memristors 

in the selected wordline and bitline for a given IO switch-vector will be tested for fault 



 

82 

detection at the same time. This methodology is demonstrated using a 3x3 crossbar array 

example below. 

 

5.2.1 Fault Detection Example Using Sneak Paths 
 

This example is shown in Fig. 36. The condition to detect a stuck-at LRS fault in the circuit 

is ICUT – IReference > Detection limit. A fault will be detected if the bitline and wordline 

containing the fault are switched ON using the IO switch- vector of the memristor array.                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IReference –  

ICUT 

>  Detection 

limit 

i>m 

and 

j>n 

 

HRS Fault detected 

No HRS fault 

YES 

Measure ICUT 

for i, j 

Increment i 

and j of m x n 

array  

Initialize m x n array to LRS 

YES 

NO 

Set i=1, j=1  
 

NO 

Measure IFaultfree. IReference = IFaultfree 

 

Fig. 36 Fault Detection for HRS Fault 



 

83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, if IO switch-vector  = 100100, all the memristors located on the wordline 

(M1a, M1b, M1c) and all the memristors on the bitline (M1a, M2a, M3a) would be tested 

and any single fault in these memristors would affect the output current and ultimately the 

ICUT – IReference. The sneak path current through M1b, M1c, M2a and M3a would contribute 

to the output current. Three memristor long sneak paths through these memristors namely 

M1b-M2b-M2a, M1b-M3b-3a, M1c-M2c-M2a, M1c-M3c-M3a affect the output current 

ICUT –  

IReference  

>  Detection 

limit 

i>m 

and 

j>n 

 

LRS Fault detected 

No LRS fault 

YES 

Measure ICUT 

for i, j 

Increment i 

and j of m x n 

array  

Initialize m x n array to HRS 

YES 

NO 

Set i=1, j=1  
 

NO 

Measure IFaultfree. IReference = IFaultfree 

 

Fig. 37 Fault detection for LRS fault 



 

84 

values. Single stuck-at LRS fault in M1b, M1c, M2a or M3a for the HRS programmed 

memristor array would be detected using this IO switch-vector. A similar example can be 

applied for a stuck-at HRS fault. In this case, the crossbar array is programmed to LRS and 

the sneak path current for the IO switch-vector under test would help to detect a fault based 

on the location of the fault and when IReference – ICUT   > Detection limit.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 38 Sneak paths of length 3 in a 3x3 crossbar array with I/O switch vector = 100100 

 

5.3 Fault Diagnosis Methodology Using Sneak Paths 

A fault dictionary technique for diagnosing stuck-at LRS and stuck-at HRS faults in 

crossbar circuits is presented. Using our python-based sneak path calculator tool, we can 

find the three memristor long sneak paths for different array sizes. This sneak path 

 M1b-M2b-M2a 

 M1b-M3b-M3a 

 M1c-M2c-M2a 

   M1c-M3c-M3a 

V1 

Ia 

M1b 

M2b 

M2a 

    

M3b 

M3a    

M3c 

M1c 

M2c 

M1a 

V2  
V3 

Vb 
Vc  

(a) Three memristor long paths in crossbar array        (b) Circuit equivalent showing three memristor long paths 

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 

    

V3 

M3b 
M3a 

    

M3c 

Ic 

M1c 

M2c 



 

85 

information is used in forming the fault dictionary. The fault dictionary is created based on 

the fault detection methodology discussed in section 5.2. The memristors that can be 

detected for a fault by applying the given IO switch-vector are marked with “Y” and the 

memristors that cannot be detected for a fault for that IO-switch-vector are marked with a 

“N”. The fault diagnosed memristors are represented as bolded “Y” or “N”. The 

methodology is based on the pass/fail analysis of each IO switch-vector applied to the 

circuit. Results show that a best-case scenario of fault diagnosis can be achieved in three 

IO switch-vectors for any crossbar array size if the pass/fail analysis works as below: 

1) Apply the first IO switch-vector for i=1 and j=1 in the IO switch-vector for mxn 

array where “i” is the iterator for the “m” number of wordlines and “j” is the iterator 

for “n” number of bitlines. 

2) If the first IO switch-vector fails, select the next vector that has “m” number of 

intersections with the first IO switch-vector. This step will eliminate m–1 or m of 

the possible 2m–1 error locations. 

3) Select the next vector with one number of intersections of Ys with the remaining of 

the first vector. This step will eliminate one remaining error locations. 

4) Repeat the process until the fault location is diagnosed. 

This methodology is presented in the flow chart in Fig. 39. Fault diagnosis can be achieved 

in a minimum of 3 vectors or a maximum of m+1 IO switch-vectors in this process.  

  



 

86 

  

Fig. 39 Fault Diagnosis Methodology for LRS/HRS faults  

Repeat until fault is 

diagnosed 

Generate Fault dictionary for all 

single I/O test vector 

combinations for mxn array 

Select next vector with 1 

intersecting Ys with first 

vector.  

Apply first IO test-

vector for i=1 and 

j=1 

m-1 or m of the 

possible 2m-1 errors 

eliminated 

Select 2nd test-vector 

with “m” intersections 

with 1st test-vector  

First IO 

Pass/fail 

Select next test-vector 

with “x” intersections 

of Ys with Ns in first 

vector  

1 error eliminated 

 

x/2 of possible x error 

locations if x is even. 

If x is odd, this will 

eliminate (x+1)/2 of 

possible x error 

locations 

Repeat until fault is 

diagnosed 



 

87 

This methodology is demonstrated using a 3x3 crossbar example in Table 3. 

(1) When the first vector 100001 is applied, five faulty memristors are detected 

represented by Ys and four memristors are not detected for any fault represented by 

Ns. The result is a “fail” denoted by “F” for this IO switch-vector. The five 

memristors in the potential fault list are M1a, M1b, M1c, M2c, and M3c.  

(2) The second vector 010001 was picked because it had three overlapping Ys with the 

first vector, and three was chosen because it is the width of the array. This IO switch- 

vector result is a “pass” denoted by “P” and the memristors M1c, M2c and M3c are 

removed from the potential fault list. 

(3)  The next vector 010010 is chosen with one overlapping Y with the remaining Ys in 

the first vector. This IO switch-vector fails with only one overlapping Y with the first 

vector on M1b. Hence, the fault is diagnosed at M1b as shown in Table 8. 

The three test vectors and the pass/fail results for each of them are shown in Table 8. 

  



 

88 

Table 8 Diagnosis example when first test vector fails for 3x3 memristor array 

 

 

 

 

 

 

 

 

 

 

Note: On the first vector 100001, the three light square Ys match with three Y’s with the 

second vector 010001. These three light squares correspond to M1c, M2c, and M3c. 

Because the second vector 010001 passes, these three faults are eliminated as candidates. 

When the third vector 010010 is applied, it fails, the overlap is at M1b, and it is diagnosed. 

The fault diagnosed memristor M1b is represented as bold “Y” in Table 8. 

  

    M1a M1b M1c M2a M2b M2c M3a M3b M3c  

 

1st 

vector 

 

 

 

 

 

2nd 

vector 

 

3rd 

vector 

F 
100     

Y Y Y N N Y N N Y 
001 

 
100     

Y Y Y N Y N N Y N 
010 

 
100     

Y Y Y Y N N Y N N 
100     

P 
010 

N N Y Y Y Y N N Y 
001 

F 
010 

N Y N Y Y Y N Y N 
010 

 
010 

Y N N Y Y Y Y N N 
100     

 
001 

N N Y N N Y Y Y Y 
001 

 
001 

N Y N N Y N Y Y Y 
010 

 
001 

Y N N Y N N Y Y Y 
100     



 

89 

The diagnosis algorithm will change if the first IO switch-vector when applied passes. The 

steps of the algorithm are captured below: 

(1) Apply the first IO switch-vector for i=1 and j=1 in the IO switch-vector for mxn array 

where i is the iterator for the “m” number of wordlines and j is the iterator for “n” 

number of bitlines. 

(2) Select an IO switch-vector which has x (number of possible memristors which might 

have errors) number of intersections of Ys with Ns in the first vector 

this will eliminate x/2 of possible x error locations if x is even. If x is odd, this will 

eliminate (x+1)/2 of possible x error locations. 

(3) Repeat the process until the fault is diagnosed. 

This methodology is presented in the flowchart in Fig. 39. The methodology is 

demonstrated using the example as captured for a 3x3 array. 

(1) The first vector 100001 passes in the fault dictionary in Table 9. This result means 

memristors M1a, M1b, M1c, M2c and M3c do not have a fault. Now, the remaining 

memristors M2a, M2b, M3a and M3b are in the fault list as per the fault dictionary. 

(2) On applying the second vector 100100, it passes for the two out of the four overlapping 

N and Ys with the first vector. This step removes M2a and M3a from the fault list since 

they are passing as per the fault dictionary. 

(3) The third vector 010001 passes for the M2b overlap with the first vector. Hence, M2b 

is removed from the list and the fault is diagnosed at M3b 

  



 

90 

Table 9 Diagnosis example when first vector passes for 3x3 memristor array 

 

 

Note: In Table 8, the first applied test vector 100001 passes, leaving M2a, M2b, M3a, and 

M3b in the fault list. The second IO switch-vector 100100 passes for two Ys overlapping 

with the two Ns in the first vector. These two faults M2a and M3a, are eliminated as 

candidates. The third vector 010001 passes for Y overlap with N on M2b with fault 

remaining on M3b. The fault is diagnosed on M3b. The fault diagnosed memristor M3b is 

represented as bold “N” in Table 9. 

 

5.4 Fault Coverage using sneak path testing 

Fault coverage is a ratio of the total number of faults detected to the total faults possible in 

the memristor circuit, for a given test vector set. The number of test vectors (IO switch-

vectors) in a test vector set can be reduced by utilizing long sneak paths. The sneak paths 

    M1a M1b M1c M2a M2b M2c M3a M3b M3c  

 

1st 

Vector 

 

 

2nd 

vector 

 

3rd 

vector 

P 
100     

Y Y Y N N Y N N Y 
001 

 100     
Y Y Y N Y N N Y N 

010 

P 
100     

Y Y Y Y N N Y N N 
100     

P 
010 

N N Y Y Y Y N N Y 
001 

 
010 

N Y N Y Y Y N Y N 
010 

 
010 

Y N N Y Y Y Y N N 
100     

 
001 

N N Y N N Y Y Y Y 
001 

 
001 

N Y N N Y N Y Y Y 
010 

 
001 

Y N N Y N N Y Y Y 
100     



 

91 

longer than three memristors are referred to as long sneak paths. The following example 

for fault coverage uses five memristor long sneak paths. Using these long length sneak 

paths, any faulty memristor along the long sneak path is detected. 

An IO switch-vector with one selected wordline and one selected bitline is 

considered as the first test vector. For example, consider the 3x3 memristor array with IO 

switch-vector =100100 in Fig. 37. Long length sneak paths are formed in crossbar arrays 

when memristors are at different resistance values. Four different five memristor long 

sneak paths are possible in this 3x3 crossbar circuit, namely M1c-M2c-M2b-M3b-M3a, 

M1c-M3c-M3b-M2b-M2a, M1b-M2b-M2c-M3c-M3a, and M1b-M3b-M3c-M2c-M2a. For 

the fault coverage analysis, two out of these four sneak paths are considered, which are 

M1b-M3b-M3c-M2c-M2a and M1c-M2c-M2b-M3b-M3a. One way to get the M1b-M3b-

M3c-M2c-M2a path is to have M1c, M2b and M3a programmed to HRS and the rest to be 

in LRS as shown in Fig. 40. 

  



 

92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                    

 

 

 

Here, the input voltage is 1V with LRS =10KΩ and HRS= 1MΩ. The fault-free sneak path 

current in this scenario with the five memristor long sneak path is 21.1µA. Only single 

faults are considered during fault detection analysis. If either M1b or M2a has a stuck-at 

HRS fault, the sneak path current reduces from the original sneak path value of 21.1µA to 

1.91µA. Similarly, if there is a fault on either M2c or M3b, the sneak path current reduces 

from the fault-free sneak path current value to 2.83µA. If there is a stuck-at HRS fault on 

M3c, the sneak path current reduces to 3.75µA. The difference between the fault-free 

current and the faulty current helps to detect the stuck-at HRS fault. For the second five 

memristor long sneak path, the M1c-M2c-M2b-M3b-M3a, the memristors M1b, M2a and 

M3c are programmed to HRS. Again, the fault-free sneak path current for the five 

memristor long sneak path is 21.1µA. If either M1c or M3a have a stuck-at HRS fault, the 

sneak path current reduces from the original fault free current to 1.91µA. Similarly, if there 

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 

    

V3 

M3b 
M3a 

    

M3c 

Ic 

M1c 

M2c 

V1 

Ia 

M1b 

M2b 

M2a 

    

M3b 

M3a    

M3c 

M1c 

M2c 

M1a 

V2  V3 

Vb 
Vc  

Fig. 40  Sneak path M1b-M3b-M3c-M2c-M2a of length five in a 3x3 crossbar array 

with M1c=M2b=M3a=HRS and remaining memristors in LRS for I/O switch vector 

=100100. 

(a) Five memristor long sneak path 

 

(b) Circuit equivalent showing five memristor 

long sneak path 
 



 

93 

is a fault on either M2c or M3b, the sneak path current reduces to 2.83µA. If there is a fault 

on M2b, the sneak path current reduces to 3.75µA. Thus, with these two five memristor 

long sneak paths, a 100% stuck-at HRS fault coverage is achieved for the 3x3 array as 

shown in Table 10.  

Table 10 Five memristor long sneak paths in 3x3 memristor array 

Sneak Path  Fault Detection on 

memristors 

HRS programming 

M1b-M3b-

M3c-M2c-M2a 

M1b, M2a, M2c, 

M3b, M3c 

M1c, M2b, M3a 

M1c-M2c-

M2b-M3b-

M3a 

M1c, M2b, M2c, 

M3a, M3b 

M1b, M2a, M3c 

 

To get the two five memristor long sneak paths, resistance programming needs to have a 

specific pattern among memristors. For the above example, it is observed that with one test 

vector (IO switch-vector) and different resistance programming, a complete fault coverage 

set can be achieved with shortened test time. 

For a single stuck-at LRS fault, three memristor long sneak paths are used to detect 

the fault. For the same example of 3x3 memristor array with IO switch-vector =100100 in 

Fig. 35, there are four possible sneak paths, namely M1b-M2b-M2a, M1b-M3b-M3a, M1c-

M2c-M2a, and M1c-M3c-M3a. The total simulated sneak path current value is 0.8µA when 

the array is programmed in HRS =1MΩ.  If either M1b, M1c, M2a, and M3a have a stuck-

at LRS fault, the original sneak path current of 0.8µA increases to 1.14µA. The difference 

between the fault free sneak path current and the faulty current helps detect the LRS fault. 

Similarly, if memristors M2b, M2c, M3b and M3c have a stuck-at LRS fault, the original 



 

94 

sneak path current of 0.8µA increases to 0.87µA. However, these faults may not be 

detected if the detection limit is set to 0.2µA. The difference between faulty and fault free 

current in this case is less than 0.2µA. Another set of IO switch-vector can be used in this 

case such as 010100 and 001100 to detect LRS faults in M2b, M2c and M3b, M3c 

respectively for complete fault coverage.  

Using long length sneak paths, we can test more faults per test vector leading to 

shorter test vector sets. Considering the 3x3 crossbar example that we looked at in Fig. 40, 

using the five long sneak path, we can test for 5 memristors at a time compared to March 

test that tests only one memristor element at a time. 5X improvement in test time can be 

achieved in this case. As size of the array increases, the length of the longest possible sneak 

path in the array will also increase based on our formula for Lmax (longest possible sneak 

path) in (18). For example, for a 100x100 array, the test time improvement can be ~199X 

times better than march testing since Lmax can be 199 memristors long. 

 

5.5 Summary of Chapter 5  

Sneak paths in memristor crossbar arrays can be utilized to reduce test time. A test 

methodology that uses sneak path current for both detection and diagnosis of single stuck-

at LRS and stuck-at HRS faults in memristors has been described. The test methodology 

contribution optimizes the IO-switch vectors and the memristor HRS/LRS programming 

for testing memristors. The diagnosis methodology included a fault dictionary. These 

methodologies were demonstrated by applying them to a 3x3 memristor crossbar array. 

Results show that fault diagnosis can be achieved in three test vectors for the best case and 

in m+1 test vectors for m >n for worst case in an mxn crossbar array. Finally, the fault 



 

95 

coverage calculation is also discussed using five memristor long sneak path and three 

memristor long sneak path crossbar examples for stuck-at HRS faults and stuck-at LRS 

faults respectively. 

  



 

96 

Chapter 6 

Detection Limit for Intermediate Faults 

Note: Some of the contents of this chapter have been accepted for publication below: 

Rasika Joshi, John M Acken “Detection limit for Intermediate faults in Memristor circuits”, 

International Symposium on Quality Electronic Design (ISQED’ 21) April 7-8, 2021, 

California, USA. 

This chapter introduces a new testing approach for the type of faults in memristor 

circuits called intermediate faults. My previously discussed test methodology in Chapter 5 

using sneak paths can be extended to detect intermediate faults in crossbar circuits. The 

importance of setting the detection limit for intermediate fault detection is discussed using 

crossbar array examples. Simulation results present the detection limit for intermediate 

faults using five memristor long and three memristor long sneak paths in a crossbar array. 

A testing solution is described with a method to set the detection limits for intermediate 

fault detection in memristor crossbars. 

 

6.1 Intermediate faults  

There have been several published fault models for memristor circuits as shown in Table 

1. Different types of physical defects such as variation in length, area, and doping give rise 

to memristor faults. The fault detection method discussed in Chapter 5 was used for 

detecting stuck-at LRS faults and stuck-at HRS faults in memristor circuits. Stuck-at LRS 

faults are caused due to excessive doping. Hence, it will be stuck-at logic 1 irrespective of 

the voltage applied to it. The faulty output state is at LRS and the fault-free output is at 



 

97 

HRS for a stuck-at LRS fault. Similarly, lack of doping could cause a memristor to be in a 

stuck-at HRS state. In this case, LRS is the expected output of a fault-free memristor, while 

HRS is the output in the presence of a stuck-at HRS fault. Table 11 lists the different 

memristor fault types and has a column named “memristor state” that describes the 

resistance value of the memristor due to the defect. The question marks in that column 

represent intermediate faults in memristor circuits. 

Table 11 Memristor Faults 

Fault Cause of Defect References Memrist

or 

state 

 

SA0 or SA 

open 

Under-doped/open 

defect 

[7][9][40][48][

41] 

HRS 

SAL – 

stuck at 

logic level 

Open defect [7][48] HRS 

SA1 or SA 

short 

Fully doped /short to 

VDD 

[7][9][41] LRS 

SW0 Under doped/Open 

defect 

[7][40][48][41] ? 

SW1 Excessively 

doped/open defect 

[7][40][48][41] ? 

Deep 0 Increase in Length or 

Decrease in Area 

[7][40][48][41] ? 

Deep 1  Decrease in Length 

or Increase in Area 

[7][41] ? 

Deep 1/0 Under-doped/change 

in L or A 

[7][40][48][41] ? 

UR Excessively doped [7][41] ? 

Undefined 

state faults 

Undefined logical 

state due to defect 

[49] ? 

Unknown 

read fault 

Open defects [50] ? 

 



 

98 

Intermediate faults are those types of faults where the memristor resistance state lies 

between LRS and HRS. SW (slow-to-write) and Deep faults are discussed in [7,40,41,48]. 

An intermediate fault could be SW1/SW0 (Slow-to write 1) fault where the memristor state 

might be either in undefined state or could be logic 0/logic 1 respectively as discussed in 

[7,40,41,48]. It could also be a deep fault where the memristor state could have elevated 

Moff and Mon resistance values for a Deep-1 fault and lower Mon and Moff resistance values 

for a Deep-0 fault. It could be an undefined state fault where the logical state of the device 

is unknown and can lie between logic 0 and logic 1. It becomes important to have a proper 

detection limit to detect such faults since the resistance state of these faults could be either 

at logic 0 or logic 1.  

 

6.2 Fault Detection Method for Intermediate Faults 

My previously discussed fault detection methodology targets single stuck-at-LRS and 

single stuck-at-HRS faults in memristor crossbar arrays. The condition to detect a fault is 

based on the comparison between the device current (ICUT) (circuit under test) and the 

reference current (IReference). For a stuck-at LRS fault, if the ICUT – IReference > Detection limit, 

the stuck-at LRS fault is detected for a given IO switch-vector. Similarly, for a stuck-at 

HRS fault, if the IReference – ICUT > Detection limit, the stuck-at HRS fault is detected for a 

given IO switch-vector. The previous chapter (5) showed how to set the detection limit for 

detecting stuck-at LRS and stuck-at HRS faults using a 3x3 crossbar array as an example. 

The fault detection method in Fig. 36 and Fig. 37 can be extended to intermediate fault 

detection as well. However, the detection limit needs to be properly defined to detect such 

faults based on the memristor state. In the next section, the simulation results and the 



 

99 

proposed detection limits are presented to detect intermediate faults in a 3x3 crossbar array 

example. 

 

6.2.1 Fault detection example for Intermediate faults 

The sneak paths longer than three memristors are referred to as long sneak paths. The 

following example for fault detection uses five memristor long sneak paths Using these 

long length sneak paths, any faulty memristor along the long sneak path is detected. A 3x3 

memristor array with IO switch-vector =100 100 shown in Fig. 41 is considered as an 

example for the intermediate fault detection. It’s possible to create a long length sneak path 

when the memristors are at different resistance value. In this example, four of five 

memristor long sneak paths are possible namely: M1c-M2c-M2b-M3b-M3a, M1c-M3c-

M3b-M2b-M2a, M1b-M2b-M2c-M3c-M3a, and M1b-M3b-M3c-M2c-M2a. The five 

memristor long sneak path M1b-M3b-M3c-M2c-M2a can be achieved by keeping 

memristors M1c, M2b and M3a programmed to HRS while other memristors at LRS. 

Similarly, five memristor long sneak path M1c-M2c-M2b-M3b-M3a is possible when 

memristors M1b, M2a and M3c are programmed to HRS and rest are in LRS. This path 

M1c-M2c-M2b-M3b-M3a is shown in Fig. 41. For this circuit, input voltage = 1V, LRS 

=10KΩ and HRS = 1MΩ are the voltage and resistance value assignments. The fault free 

sneak path current for the five memristor long sneak path is 21.1µA for this circuit. This 

research analysis only considers single faults for fault detection. For the path M1c-M2c-

M2b-M3b-M3a, if there is a stuck-at HRS fault on either M1c or M3a, the new sneak path 

current would be 1.91µA. Similarly, if there is a stuck-at HRS fault on either M2c or M3b, 

the faulty sneak path current would be 2.833µA. The sneak path reduces to 3.75µA if there 



 

100 

is a fault on M2b. The sneak path current is analyzed in the presence of different 

intermediate faults. Table 12 captures the different output sneak path currents in presence 

of intermediate resistance faults between 10KΩ and 1MΩ which are the LRS and HRS 

values of the memristor respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

The sneak path currents are simulated for Rintermediate = 500KΩ, 200KΩ, 100KΩ, 50KΩ and 

20KΩ resistance values in Table 12. 

Table 12 Sneak Path current analysis for Intermediate faults in a 3x3 crossbar array 

 

 

 

 

 

 

 

 

Rintermediate IFaultycurrent 

M1c   

IFaultycurrent  

M2b 

IFaultycurrent  

M2c 

IFaultycurrent 

M3a   

IFaultycurrent 

M3b  

20kΩ 17.6µA 17.98µA 17.79µA 17.6µA 17.79µA 

50kΩ 11.9µA 12.8µA 12.5µA 11.9µA 12.5µA 

100kΩ 7.96µA 9.29µA 8.63µA 7.96µA 8.63µA 

200kΩ 5.03µA 6.62µA 5.82µA 5.03µA 5.82µA 

500kΩ 2.77µA 4.55µA 3.66µA 2.77µA 3.66µA 

 

(b) Circuit equivalent showing five memristor 

long sneak path 
 

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 

    

V3 

M3b 
M3a 

    

M3c 

Ic 

M1c 

M2c 

V1 

Ia 

M1b 

M2b 

M2a 

    

M3b 

M3a    

M3c 

M1c 

M2c 

M1a 

V2  V3 

Vb 
Vc  

Fig. 41 Sneak path M1c-M2c-M2b-M3b-M3a of length five in a 3x3 crossbar array 

with M1b=M2a=M3c=HRS and remaining memristors in LRS for I/O switch vector 

=100100. 

 

(a) Five memristor long sneak path 



 

101 

IReference = 21.1µA and ICUT = IFaultycurrent for each of the memristors along the five memristor 

long sneak path as shown in Table 11. Noise margins are technology dependent. Any 

fabrication process is going to have different amounts of variations or noise margin. For 

this example, a noise margin at ±10% is considered. The difference between IReference and 

ICUT needs to be greater than the detection limit to detect the HRS fault.   Fig. 39 shows the 

difference between the fault free current with noise variation added and the 50KΩ faulty 

sneak path current with noise variation added is ~8µA. We choose half of this value which 

is ~4µA as the detection limit to help detect memristor faults with resistance values closer 

to HRS. The Detection limit is represented in Fig. 42 by a black box. From Table 11, the 

detection limit of 4µA can help to detect all the Rintermediate faults > 20KΩ. However, the 

20KΩ intermediate fault cannot be detected since the difference between IReference and the 

ICUT is ~3µA. With RLRS =10KΩ, the 20KΩ intermediate resistance is closer to the LRS 

value and can be detected as a stuck-at LRS fault. Such faults cannot be detected using this 

method and another approach is needed to detect stuck-at LRS faults. The method to detect 

stuck-at LRS faults at intermediate resistance values is described below. 



 

102 

 

Fig. 42 Sneak Path current for fault free and intermediate faults in a 3x3 crossbar array 

 

For a single stuck-at LRS fault, three memristor long sneak paths are used to detect the 

fault. For the same example of 3x3 memristor array with IO switch-vector =100100 in Fig. 

43, there are four possible sneak paths namely M1b-M2b-M2a, M1b-M3b-M3a, M1c-M2c-

M2a, and M1c-M3c-M3a. The total simulated fault-free sneak path current value is 0.8µA 

when the array is programmed in HRS =1MΩ.  If either M1b, M1c, M2a, and M3a have a 

stuck-at LRS fault, the sneak path current of 0.8µA increases to 1.14µA. The difference 

between the fault free sneak path current and the faulty current helps to detect the LRS 

fault. For this example, when Rintermediate = 20KΩ, the faulty sneak path increases to 1.13µA. 

The detection limit is chosen as 0.16µA since it is half of the worst-case difference between 

the fault free sneak current and the faulty sneak path current. As mentioned before, if the 

ICUT – IReference > Detection limit, the stuck-at LRS fault is detected for a given IO switch-



 

103 

vector. For Rintermediate = 20KΩ, the difference between the reference current and the faulty 

sneak path current is ~0.32µA and the stuck-at LRS fault can be detected. Similarly, if the 

remaining memristors M2b, M2c, M3b and M3c have a stuck-at LRS fault, the original 

sneak path current of 0.8µA increases to 0.87µA. These faults may not be detected since 

the difference between the faulty and fault free sneak path currents is less than 0.16µA. 

Different IO switch-vectors need to be used such as 010100 and 001100 to detect LRS 

faults in M2b, M2c and M3b, M3c respectively for complete fault coverage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2 Current resolution for Fault detection measurement 
 

Resistance programming (RLRS/RHRS) and the tolerance variation plays an important role 

in the current resolution for fault detection measurement, especially for bigger crossbar 

arrays (greater than 10x10). For the same 3x3 crossbar array example with the five long 

sneak path as discussed in section 6.2.1, if LRS = 1KΩ (instead of 10KΩ) and HRS = 1MΩ, 

the fault free current would be ~200µA. The stuck-at HRS fault of 1MΩ on the five 

memristor long sneak path would not be detected in this case since the faulty output current 

 M1b-M2b-M2a 

 M1b-M3b-M3a 

 M1c-M2c-M2a 

   M1c-M3c-M3a 

V1 

V2 

Ia Ib 

M1a M1b 

M2b M2a 
    

V3 

M3b 
M3a 

    

M3c 

Ic 

M1c 

M2c 

Fig. 43 Three memristor long sneak paths in 3x3 crossbar array with IO switch vector 

=100100 with all memristors in HRS. 



 

104 

would be ~5µA which would not satisfy the detection limit criteria, considering the 

tolerance margin of ±10%. The RLRS/RHRS ratio helps to set the detection limit for fault 

detection. For the reference current or the fault-free current measurement, LRS/HRS 

resistance programming need to be set in a way such that the difference between the faulty 

current and fault-free current falls outside the tolerance margin. For large arrays, such as 

14x14, the long length sneak path of 27 memristors would have a fault-free sneak path 

current of ~10µA if the LRS memristors are set to 10KΩ and HRS memristors are set to 

1MΩ. A stuck-at HRS fault along the long length sneak path would not contribute to the 

variation in the sneak path current in this case. The difference in fault-free current and 

faulty current for this case is extremely small and cannot be detected.  However, if we set 

LRS = 100Ω and HRS = 1MΩ, the stuck-at HRS fault along the long sneak path can be 

detected with the fault-free current at ~13µA and the faulty current at ~6µA respectively. 

This shows importance of resistance programming in achieving desired current resolution 

for fault detection for bigger crossbar arrays. 

 As discussed in Chapter 3 section 3.6.7, choosing the right IO switch-vector also 

has an impact on the sneak path current.  As the crossbar array size increases, a combination 

of following three approaches can be utilized to achieve fault detection in various array 

sizes: 

1) RLRS/RHRS programming 

2) IO switch-vector combinations 

3) Optimizing sneak path lengths 



 

105 

6.3 Summary of Chapter 6 

Just as memristors have variations in resistance values, so do faulty memristors have 

variations in values. The term for the faulty values between stuck-at HRS and stuck-at LRS 

values is intermediate faults. A testing solution has been described to detect intermediate 

faults in memristor circuits based on a published fault detection method using sneak paths. 

A different method needs to be used for intermediate memristors closer to HRS and another 

approach is used for detecting intermediate faults closer to LRS. A method to set detection 

limits for intermediate fault detection is demonstrated using 3x3 crossbar array simulations. 

The fault detection scheme can be used for detecting intermediate faults along with stuck-

at low resistance and stuck-at high resistance faults.  

  



 

106 

Chapter 7  

Summary, Conclusions, Achievements and Future Work 

7.1 Summary and Conclusion 

The focus of my dissertation was to develop a test methodology to test memristor crossbar 

circuits independent of application. The methodology was driven by my characterization 

of sneak paths length and sneak path currents in the crossbar circuits. Sneak paths are 

characterized as a function of the size of array, resistance values, input voltage and IO 

switch-vector. Formulas have been derived to calculate the number of sneak paths in 

various array sizes. The conditions which determine the length of the sneak paths are 

described. The equations I derived for different input/output conditions help predict sneak 

paths and sneak path currents for various array sizes. This work characterizing sneak paths 

provide boundary conditions for designing crossbar arrays for various applications and 

provides insights into memristor crossbar testing.  

An efficient testing methodology is required since memristor devices are prone to 

defects due to the immature manufacturing process and fabrication techniques. Using the 

sneak path characterization, I have developed a method to evaluate a test for fault coverage 

using a shorter test vector set. The advantage of using sneak path based testing is that 

multiple memristors can be tested in a single measurement unlike the March testing that 

tests one memristor in a single measurement. My research focuses on fault detection and 

fault diagnosis test methodology for stuck-at low resistance and stuck-at high resistance 

faults in memristor crossbar circuits. The objective of the fault detection method is to 

improve test time by using long length sneak paths with shorter test vector set. For larger 



 

107 

crossbar arrays such as the 100x100 array, the length of the longest possible sneak path can 

be 199 memristors long, leading to 199X test time improvement compared to March test. 

This testing approach is extended to intermediate fault testing. The procedure for setting 

the detection limit for intermediate faults has been analyzed using crossbar array 

simulations. The importance of setting the detection limit for intermediate fault detection 

is discussed using crossbar array examples. Simulation results were used to establish the 

detection limit for intermediate faults using five memristor long and three memristor long 

sneak paths in a crossbar array. A testing solution is described with a method to set the 

detection limits for intermediate fault detection in memristor crossbars.  

For all the test methodologies referenced in literature, there has been limited focus 

on the fault coverage during fault detection since most of the testing methods are based on 

March testing that has 100% fault coverage. My first research goal achieved was a test 

method for fault detection in memristor crossbar circuits for stuck-at low resistance and 

stuck-at high resistance faults by using shorter test vector sets and LRS/HRS resistance 

programming. Secondly, a fault diagnosis technique using sneak paths was developed. 

Fault dictionary testing proved to be a productive technique with improved test time for 

finding the location of the faulty memristor by looking at the intersection of applied test 

vectors on the crossbar array. The results were demonstrated using LTSpice simulations 

on crossbar array examples. I have achieved the end goal of developing a test pattern for 

fault detection and fault diagnosis by optimizing the resistance programming, IO switch-

vectors, input voltage and the size of the array for stuck-at fault and intermediate fault 

detection. 



 

108 

Crossbar arrays are used for various applications such as memory operations, 

neuromorphic, security and stochastic. The major research contribution is to have an 

application independent testing methodology for testing resistive memristor crossbars. This 

would mean that the testing approach works for RRAM application as well as security, 

neuromorphic, logic and stochastic applications since the test methodology utilizes sneak 

paths in these resistive circuits. By optimizing the memristor crossbar array parameters, 

the sneak paths and sneak path currents are efficiently used for memristor crossbar array 

testing. 

 

7.2 Achievements and Publications 

1) Characterized sneak path length and sneak path currents in memristor crossbar arrays 

for design decisions. 

Journal Publication published: Joshi, R., & Acken, J. M. (2020). Sneak Path 

Characterization in Memristor Crossbar Circuits. International Journal of Electronics, 1–

18. https://doi.org/10.1080/00207217.2020.1843716 

2) Developed fault testing and fault diagnosis methodology utilizing sneak paths in 

memristor crossbar arrays with improved test time 

Journal Publication approved for publication: Rasika Joshi, John M Acken “Utilizing 

Sneak paths for Memristor Test time Improvement”, in IETE Journal of Research, 2020 

doi 10.1080/03772063.2021.1883483 

3) Detection limit for intermediate fault detection by extending stuck-at LRS/stuck-at 

HRS fault detection methodology in memristor crossbar arrays. 



 

109 

Conference publication accepted: Rasika Joshi, John M Acken “Detection limit for 

Intermediate faults in Memristor circuits”, International Symposium on Quality Electronic 

Design (ISQED’ 21) April 7-8, 2021, California, USA.   

 

7.3 Future Work 
 

The future work could further improve the test generation technique for fault detection and 

fault diagnosis for test time by optimizing the test vector set applied to memristor crossbar 

arrays. The sneak path characterization work and the fault testing methodology for fault 

detection and diagnosis can be used to develop EDA (Electronic Design Automation) tools 

for designing and testing memristor circuits. 

  



 

110 

References 

[1] L. Chua, "Memristor-The missing circuit element," in IEEE Transactions on Circuit 

Theory, vol. 18, no. 5, pp. 507-519, September 1971. 

 

[2] Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing 

memristor found. Nature, 453(7191), 80. 

 

[3] Williams, R. (2008). How We Found The Missing Memristor. IEEE Spectrum, 45(12), 

28–35. https://doi.org/10.1109/mspec.2008.4687366 

 

[4] Z. Li et al., "An overview on memristor crossbar based neuromorphic circuit and          

architecture," 2015 IFIP/IEEE International Conference on Very Large Scale 

Integration (VLSI-SoC), Daejeon, 2015, pp. 52-56. 

 

[5] K. Mbarek, F. O. Rziga, S. Ghedira and K. Besbes, "Characterization, and modeling 

of       memristor devices," 2017 International Conference on Engineering & MIS 

(ICEMIS), Monastir, 2017, pp. 1-5. 

 

[6] Y. Ho, G. M. Huang, and P. Li, "Nonvolatile memristor memory: device 

characteristics and design implications," International Conference on Computer-

Aided Design, pp. 485 - 490, November 2009. 

[7] S. Kannan, J. Rajendran, R. Karri and O. Sinanoglu, "Sneak-path Testing of 

Memristor-based Memories," 2013 26th International Conference on VLSI Design 

and 2013 12th International Conference on Embedded Systems, Pune, 2013, pp. 386-

391. 

[8] A. Chen, "A Comprehensive Crossbar Array Model With Solutions for Line Resistance 

and Nonlinear Device Characteristics," in IEEE Transactions on Electron Devices, vol. 

60, no. 4, pp. 1318-1326, April 2013.  

 

[9] Li, T., Bi, X., Jing, N., Liang, X., &amp; Jiang, L. (2017). Sneak-Path Based Test and 

Diagnosis for 1R RRAM Crossbar Using Voltage Bias Technique. Proceedings of the 

54th Annual Design Automation Conference 2017. 

https://doi.org/10.1145/3061639.3062318 

 

[10] M. Teimoori, A. Amirsoleimani, A. Ahmadi and M. Ahmadi, "A 2M1M Crossbar 

Architecture: Memory," in IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol. 26, no. 12, pp. 2608-2618, Dec. 2018. 

 

[11] Kim, K. M., Zhang, J., Graves, C., Yang, J. J., Choi, B. J., Hwang, C. S., & Williams, 

R. S. (2016). Low-Power, Rectifying, and Forming-Free Memristor with an 



 

111 

Asymmetric Programing Voltage for a High-Density Crossbar Application. Nano 

letters, 16(11), 6724-6732. 

 

[12] Golubović, D. S., Miranda, A. H., Akil, N., Van Schaijk, R. T. F., & Van Duuren, M. 

J. (2007). Vertical poly-Si select pn-diodes for emerging resistive non-volatile 

memories. Microelectronic engineering, 84(12), 2921-2926. 

 

[13] Kim, K. H., Hyun Jo, S., Gaba, S., & Lu, W. (2010). Nanoscale resistive memory with 

intrinsic diode characteristics and long endurance. Applied Physics Letters, 96(5), 

053106. 

 

[14] M. Nourazar, V. Rashtchi, A. Azarpeyvand and F. Merrikh-Bayat, "Code 

Acceleration Using Memristor-Based Approximate Matrix Multiplier: Application to 

Convolutional Neural Networks," in IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol. 26, no. 12, pp. 2684-2695, Dec. 2018. 

 

[15] M. T. Arafin and G. Qu, "Memristors for Secret Sharing-Based Lightweight 

Authentication," in IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol. 26, no. 12, pp. 2671-2683, Dec. 2018. 

 

[16] A. Grossi et al., "Experimental Investigation of 4-kb RRAM Arrays Programming 

Conditions Suitable for TCAM," in IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol. 26, no. 12, pp. 2599-2607, Dec. 2018. 

 

[17] K. C. Rahman, D. Hammerstrom, Y. Li, H. Castagnaro and M. A. Perkowski, 

"Methodology and Design of a Massively Parallel Memristive Stateful IMPLY 

Logic-Based Reconfigurable Architecture," in IEEE Transactions on 

Nanotechnology, vol. 15, no. 4, pp. 675-686, July 2016, doi: 

10.1109/TNANO.2016.257272 

 

[18] M. J. Aljafar, M. A. Perkowski, J. M. Acken and R. Tan, "A Time-Efficient CMOS-

Memristive Programmable Circuit Realizing Logic Functions in Generalized AND–

XOR Structures," in IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol. 26, no. 1, pp. 23-36, Jan. 2018, doi: 10.1109/TVLSI.2017.2750074. 

 

[19] S. N. Truong, "Single Crossbar Array of Memristors With Bipolar Inputs for 

Neuromorphic Image Recognition," in IEEE Access, vol. 8, pp. 69327-69332, 2020 

 

[20]  G. S. Rose, N. McDonald, L. Yan, B. Wysocki and K. Xu, "Foundations of memristor 

based PUF architectures," 2013 IEEE/ACM International Symposium on Nanoscale 

Architectures (NANOARCH), Brooklyn, NY, 2013, pp. 52-57. 

 

[21] A. Mazady, M. T. Rahman, D. Forte and M. Anwar, "Memristor PUF—A Security 

Primitive: Theory and Experiment," in IEEE Journal on Emerging and Selected Topics 

in Circuits and Systems, vol. 5, no. 2, pp. 222-229, June 2015. 



 

112 

 

[22] D. Chakraborty and S. K. Jha, "Automated synthesis of compact crossbars for sneak-

path based in-memory computing," Design, Automation & Test in Europe Conference 

& Exhibition (DATE), 2017, Lausanne, 2017, pp. 770-77. 

[23] A. Velasquez and S. K. Jha, "Parallel computing using memristive crossbar 

networks: Nullifying the processor-memory bottleneck", 9th International Design & 

Test Symposium (IDT) 2014, pp. 147-152, 2014. 

[24] A. Velasquez, "Automated synthesis of crossbars for nanoscale computing using 

formal methods", Nanoscale Architectures (NANOARCH) 2015 IEEE/ACM 

International Symposium on, pp. 130-136, 2015. 

[25] G. S. Rose and C. A. Meade, "Performance analysis of a memristive crossbar PUF 

design," 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San 

Francisco, CA, 2015, pp. 1-6, doi: 10.1145/2744769.2744892. 

[26] D. Bhattacharjee, R. Devadoss and A. Chattopadhyay, "ReVAMP: ReRAM based 

VLIW architecture for in-memory computing," Design, Automation & Test in Europe 

Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp. 782-787, doi: 

10.23919/DATE.2017.7927095. 

[27] Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE Model of Memristor with 

Nonlinear Dopant Drift. Radioengineering, 18(2). 

 

[28] Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile 

memristor model with nonlinear dopant kinetics. IEEE transactions on electron 

devices, 58(9), 3099-3105. 

 

[29] Lehtonen, E., & Laiho, M. (2010, February). CNN using memristors for neighborhood 

connections. In Cellular Nanoscale Networks and Their Applications (CNNA), 2010 

12th International Workshop on (pp. 1-4). IEEE. 

 

[30] Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Stewart, D. R., & Williams, R. S. 

(2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature 

nanotechnology, 3(7), 429-433. 

 

 

[31] Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. 

R., & Williams, R. S. (2009). Switching dynamics in titanium dioxide memristive 

devices. Journal of Applied Physics, 106(7), 074508. 

 



 

113 

[32] Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013). TEAM: 

Threshold adaptive memristor model. IEEE Transactions on Circuits and Systems I: 

Regular Papers, 60(1), 211-221. 

 

 

[33] Zidan, M. A., Fahmy, H. A. H., Hussain, M. M., & Salama, K. N. (2013). Memristor-

based memory: The sneak paths problem and solutions. Microelectronics Journal, 

44(2), 176–183. https://doi.org/10.1016/j.mejo.2012.10.001 

 

[34] Tang, Z., Wang, Y., Chi, Y., & Fang, L. (2018). Comprehensive Sensing Current 

Analysis and Its Guideline for the Worst-Case Scenario of RRAM Read Operation. 

Electronics, 7(10), 224. https://doi.org/10.3390/electronics7100224 

 

[35] Cassuto, Y., Kvatinsky, S., & Yaakobi, E. (2013). Sneak-path constraints in memristor 

crossbar arrays. 2013 IEEE International Symposium on Information Theory. 

https://doi.org/10.1109/isit.2013.6620207 

 

[36] Cassuto, Y., Kvatinsky, S., & Yaakobi, E. (2016). Information-Theoretic Sneak-Path 

Mitigation in Memristor Crossbar Arrays. IEEE Transactions on Information Theory, 

62(9), 4801–4813. https://doi.org/10.1109/tit.2016.2594798 

 

[37] Sun, L., Zheng, N., Zhang, T., & Mazumder, P. (2018). Fault Modeling and Parallel 

Testing for 1T1M Memory Array. IEEE Transactions on Nanotechnology, 17(3), 437–

451. https://doi.org/10.1109/tnano.2018.2806938 

 

[38] Tarkhan, M., Maymandi-Nejad, M., Klidbary, S. H., & Shouraki, S. B. (2019). A 

bridge technique for memristor state programming. International Journal of 

Electronics, 107(6), 1015–1030. https://doi.org/10.1080/00207217.2019.1692371 

 

[39] Lin, T.-Y., Chen, Y.-X., Li, J.-F., Lo, C.-Y., Kwai, D.-M., & Chou, Y.-F. (2016). A 

Test Method for Finding Boundary Currents of 1T1R Memristor Memories. 2016 IEEE 

25th Asian Test Symposium (ATS). https://doi.org/10.1109/ats.2016.44 

 

[40] Kannan, S., Karimi, N., Karri, R., &amp; Sinanoglu, O. (2015). Modeling, Detection, 

and Diagnosis of Faults in Multilevel Memristor Memories. IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems, 34(5), 822–834. 

https://doi.org/10.1109/tcad.2015.2394434  

 

[41] Kannan, S., Rajendran, J., Karri, R., &amp; Sinanoglu, O. (2013). Sneak-Path Testing 

of Crossbar-Based Nonvolatile Random Access Memories. IEEE Transactions on 

Nanotechnology, 12(3), 413–426. https://doi.org/10.1109/tnano.2013.2253329  

 

 



 

114 

[42] Zhang, Q., Cui, X., Xu, X., Wang, X., Ma, Z., &amp; Zhou, S. (2016). Sneak-path 

based test for 3D stacked one-transistor-N-RRAM array. 2016 IEEE International 

Conference on Electron Devices and Solid-State Circuits (EDSSC). 

https://doi.org/10.1109/edssc.2016.7785249  

 

[43] Liu, R., Chen, P.-Y., &amp; Yu, S. (2017). Design and optimization of a strong PUF 

exploiting sneak paths in resistive cross-point array. 2017 IEEE International 

Symposium on Circuits and Systems (ISCAS). 

https://doi.org/10.1109/iscas.2017.8050792  

 

[44] Karakulak, E., Mutlu, R., Ucar, E. (2015) "Sneak path current equivalent circuits and 

reading margin analysis of complementary resistive switches based 3D stacking 

crossbar memories." Informacije MIDEM 44.3 2015: 235-241 

 

[45] J. Zhou, K. Kim and W. Lu, "Crossbar RRAM Arrays: Selector Device Requirements 

During Read Operation," in IEEE Transactions on Electron Devices, vol. 61, no. 5, pp. 

1369-1376, May 2014 

 

[46] Youn, Y., Sim, J.-Y., Park, H.-J., & Kim, B. (2015). An approximate condition to 

avoid reverse leakage current in ReRAM crossbar design. 2015 International SoC 

Design Conference (ISOCC). https://doi.org/10.1109/isocc.2015.7401656 

 

[47] Sun, W., & Shin, H. (2018). Analysis of read margin of crossbar array according to 

selector and resistor variation. 2018 International Conference on Electronics, 

Information, and Communication (ICEIC). 

https://doi.org/10.23919/elinfocom.2018.8330651 

 

[48] S. Kannan, R. Karri and O. Sinanoglu, "Sneak path testing and fault modeling for 

multilevel memristor-based memories," 2013 IEEE 31st International Conference on 

Computer Design (ICCD), Asheville, NC, 2013, pp. 215-220. 

 

[49] S. Hamdioui, H. Aziza and G. C. Sirakoulis, "Memristor based memories: 

Technology, design and test," 2014 9th IEEE International Conference on Design & 

Technology of Integrated Systems in Nanoscale Era (DTIS), Santorini, 2014, pp. 1-7. 

 

[50] Y. Chen and J. Li, "Fault modeling and testing of 1T1R memristor memories," 2015 

IEEE 33rd VLSI Test Symposium (VTS), Napa, CA, 2015, pp. 1-6. 

 

[51] Y. Luo, X. Cui, M. Luo and Q. Lin, "A high fault coverage march test for 1T1R 

memristor array," 2017 International Conference on Electron Devices and Solid-State 

Circuits (EDSSC), Hsinchu, 2017, pp. 1-2. 

[52] S. N. Mozaffari, S. Tragoudas and T. Haniotakis, "More Efficient Testing of Metal-

Oxide Memristor–Based Memory," in IEEE Transactions on Computer-Aided Design 

of Integrated Circuits and Systems, vol. 36, no. 6, pp. 1018-1029, June 2017. 



 

115 

 

[53] Y. Li, J. Li, C. Hsu and C. Sun, "Diagnosis of Resistive Nonvolatile-8T 

SRAMs," 2018 International SoC Design Conference (ISOCC), Daegu, Korea (South), 

2018, pp. 23-24. 

 

[54] N. Z. Haron and S. Hamdioui, "DfT schemes for resistive open defects in RRAMs," 

2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), 

Dresden, 2012, pp. 799-804. 

[55] N. Z. Haron and S. Hamdioui, "On Defect Oriented Testing for Hybrid 

CMOS/Memristor Memory," 2011 Asian Test Symposium, New Delhi, 2011, pp. 353-

358, doi: 10.1109/ATS.2011.66. 

 

[56] V. A. Hongal, R. Kotikalapudi, Y. Kim and M. Choi, "A novel “ divide and conquer 

” testing technique for memristor based lookup table," 2011 IEEE 54th International 

Midwest Symposium on Circuits and Systems (MWSCAS), Seoul, 2011, pp. 1-4, doi: 

10.1109/MWSCAS.2011.6026406. 

 

[57] S. Kannan, N. Karimi, R. Karri and O. Sinanoglu, "Detection, diagnosis, and repair of 

faults in memristor-based memories," 2014 IEEE 32nd VLSI Test Symposium (VTS), 

Napa, CA, 2014, pp. 1-6, doi: 10.1109/VTS.2014.6818762. 

 

[58] J.-F. Li, K.-L. Cheng, C.-T. Huang and C.-W. Wu, "March-based RAM diagnosis 

algorithms for stuck-at and coupling faults", Proc. Int’l Test Conf. (ITC), pp. 758-767, 

Oct. 2001. 

  



 

116 

Appendix: Source code Listing 
 

"""Python tool to calculate the sneak path length, number of sneak paths 

and sneak path information for a given IO switch-vector. Builds a LTspice 

compatible circuit for simulation.""" 

#author: Rasika Joshi 

 

from typing import List 

 

f = open('output.txt','a') 

"""output file to print the target memristor, number of sneak paths,  

length of sneak paths and the sneak path for the given IO switch-vector""" 

 

# add code to check for string inputs as well 

while True: # The loop keeps running until user enters positive integer value 

    v = input("Number of inputs to memristor crossbar grid\n") #number of rows or input voltages 

 

    if v == "": #check for blanks 

        print('please enter positive integer value\n') 

        continue 

    elif v.isalpha(): #check for alpha 

        print('please enter positive integer value\n') 

        continue 

    elif int(float(v))== 0: 

        print('please enter positive integer value\n') 

        continue 

    else: 

        if float(v) != abs(int(float(v))):  #check for floating point 

            print('please enter positive integer value\n') 

            continue 

        else: 

            break 

 

while True: 

    i = input("Number of outputs to memristor crossbar grid\n") # number of columns or output 

current 

 

    if i == "": 

        print('please enter positive integer value\n') 

        continue 

    elif i.isalpha(): 

        print('please enter positive integer value\n') 

        continue 

    elif int(float(i)) == 0: 

        print('please enter positive integer value\n') 

        continue 

    else: 

        if float(i) != abs(int(float(i))): 

            print('please enter positive integer value\n') 

            continue 



 

117 

        else: 

            break 

 

f.write('\n') 

f.write('The memristor crossbar dimensions are ' + v + 'x' + i + '\n' ) 

 

v = int(v) # v is converted from string to integer 

i = int(i) # i is converted from string to integer 

 

# calculating number of cases 

mc = ((2 ** v) - 1) * ((2 ** i) - 1) ## zero case removed from input and output 

 

f.write('The number of IO switch-vectors are ' + str(mc) + '\n') 

 

# calculating total primary path plus sneak path cases. 

 

ms = ((2 ** v) - 2) * ((2 ** i) - 2) 

 

f.write('The number of sneak path IO switch-vectors are ' + str(ms) + '\n' + '\n') 

 

#list of notations for bitline outputs 

listi = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 

         'W', 'X', 'Y', 'Z']; 

#list of notations for wordline inputs 

listv = []; 

counter = 1 

while (counter <= v):             # if v =3, listv = [1,2,3] 

    listv.append(counter);        # loop to add the elements to list v correspond to size of v 

    counter = counter + 1 

 

#defining all combinations of IO switch-vector for given size of array 

import itertools 

inp = list(map(list, itertools.product([0,1], repeat = v))) 

#inp = [[1,0,0]] #if manual input is needed, please comment above line and uncomment this line 

to add manually 

out = list(map(list, itertools.product([0,1], repeat = i))) 

#out = [[1,0,0]] #if manual input is needed, please comment above line and uncomment this line 

to add manually 

 

#Removing all zeros or all ones combinations from IO switch-vector 

for x in inp: 

    co = 0 #dummy variable 

    dum = 0 #dummy variable 

    for y in x: 

        # This condition checks for all zeroes in Inp combinations 

        if y == 0: 

            co = co + 1 

            if co == v: 

                inp.remove(x) 

        # This condition checks for all ones in Inp combinations 



 

118 

        if y == 1: 

            dum = dum + 1 

            if dum == v: 

                inp.remove(x) 

 

for x in out: 

    co1 = 0 #dummy variable 

    dum1 = 0 #dummy variable 

    for y in x: 

        # This condition checks for all zeroes in Out combinations 

        if y == 0: 

            co1 = co1 + 1 

            if co1 == i: 

                out.remove(x) 

        # This condition checks for all ones in Out combinations 

        if y == 1: 

            dum1 = dum1 + 1 

            if dum1 == i: 

                out.remove(x) 

 

loop = 1 #initiate dummy variable. To be used later to create LTspice.cir files for all IO 

combinations 

n = [0 for x in range(0,mc)] 

#blank list of all zeroes. initiated with max capacity of mc elements to input LTspice file 

combinations later 

 

for xi in inp: 

    for xo in out: 

 

        inpstr = ''.join(str(e) for e in xi) 

        outstr = ''.join(str(e) for e in xo) 

        f.write("\nThe input combination is ") 

        f.write(inpstr) 

        f.write("\nThe output combination is ") 

        f.write(outstr) 

 

        #Opening LTspice file for each combination of IO switch-vector and making the file 

writable 

        n[loop] = 'LTspice' + inpstr + outstr + '.cir' 

        j = open(n[loop],'w') 

 

        ilet = [] 

        vlet = [] 

        #ilet is for memristor bitlines (output will be ilet = ['A', 'B', 'C',....] 

        for c1 in range(0, i): 

            ilet.append(listi[c1]) 

        #vlet is for memristor wordlines (output will be vlet = [1, 2, 3,....] 

        for c2 in range(0, v): 

            vlet.append(c2 + 1) 

 



 

119 

        # Procedure to find the primary memristor by intersection of 1s in the IO switch-vectors 

        primary_memristors = [] 

        count = 0 

        count1 = 0 

        for nu in xi: 

            count1 = 0 

            if nu == 1: 

                for nu1 in xo: 

                    if nu1 == 1: 

                        primary_memristors.append('M' + str(listv[count]) + str(listi[count1])) 

                        # Append to the list of primary memristors if more than 1 

                        count1 = count1 + 1 

                    else: 

                        count1 = count1 +1 

                count = count + 1 

            else: 

                count = count + 1 

        f.write('\n\nPrimary memristors in the crossbar array are\n\n') 

        for x in primary_memristors: 

            f.write(x + ' ') 

 

        crossbar = [] 

        for x in range(0, v): 

            for y in range(0, i): 

                crossbar.append('M' + str(vlet[x]) + str(ilet[y])) 

 

        #f.write('/n/n' + str(crossbar)) 

        # Uncomment this line to print the crossbar array elements 

 

        # Dictrmap is a dictionary to map every element in the crossbar to R1, R2, R3.. to follow 

LTSPICE conventions 

        dictrmap = {} 

        u = 0 

        for e in crossbar: 

            dictrmap[e] = 'R' + str(u + 1) 

            u = u + 1 

        # primi and primv are two arrays to store the split characters of the primary memristor. For 

example memristor 

        #M1A is split into 1 and "A" in primv and primi respectively 

        primi = [] 

        primv = [] 

        for x in primary_memristors: 

            prim = str(x) 

            if len(x) == 3: 

                primv.append(prim[1]) 

                primi.append(prim[2]) 

            else: 

                primv.append(prim[1:3]) 

                primi.append(prim[3]) 



 

120 

        # Remove primary memristor characters from ilet and vlet. For example, if primary 

memristor is M1A, 1 and "A" 

        # will be removed from vlet and ilet respectively. 

        for x in primv: 

            for y in vlet: 

                if int(x) == int(y): 

                    vlet.remove(int(y)) 

        for x in primi: 

            for y in ilet: 

                if str(x) == str(y): 

                    ilet.remove(str(y)) 

 

        # primiu and primvu are used to create sets from primi and primv respectively 

        primiu = set(primi) 

        primvu = set(primv) 

        #List of all the possible First memristors of the sneak path 

        shortpathstart = [] 

        for x in ilet: 

            for y in primvu: 

                p = 'M' + str(y) + str(x) 

                shortpathstart.append(p) 

        #List of all the possible last memristors of the sneak path 

        shortpathend = [] 

        for x in primiu: 

            for y in vlet: 

                p = 'M' + str(y) + str(x) 

                shortpathend.append(p) 

        #List of all the possible middle memristors of the sneak path 

        shortpathm = list(set(crossbar).difference(primary_memristors)) 

        shortpathm1 = list(set(shortpathm).difference(shortpathstart)) 

        shortpathmid = list(set(shortpathm1).difference(shortpathend)) 

 

        minofinpout = min(i,v) 

        highestsneakpathlength = ((2*minofinpout)-1) 

        f.write('\n\nThe longest possible sneak path is ' + str(highestsneakpathlength) + " memristors 

long") 

        ## Code to obtain the sneak paths for 3 memristor long sneak paths 

        path = [] 

        number = 3 

        if number <= highestsneakpathlength: 

            f.write("\n\nThe sneak paths are as follows: \n") 

            for x in shortpathstart: 

                if len(x) == 3: #number of chracters in the first memristor of the sneak path is 3 

                    for y in shortpathend: 

                        if len(y)==3: # number of characters in the last memristor of the sneak path is 3 

                            for z in shortpathmid: 

                                if len(z) == 3: # number of characters in the middle memristor of the sneak 

path are 3 

                                    if z[1] == y[1] and z[2] == x[2]: 

                                        path.append(str(x) + ', ' + str(z) + ', ' + str(y)) 



 

121 

                                        # generate sneak path using the above condition where the middle 

memristor in 

                                        #the sneak path will have the same bitline as the first memristor and 

same 

                                        #wordline as the last memristor 

                                else: # number of characters in the middle memristor of the sneak path are 4 

                                    if z[1:3] == y[1] and z[3] == x[2]: 

                                        path.append(str(x) + ', ' + str(z) + ', ' + str(y)) 

 

                        else: # number of characters in the last memristor of the sneak path are 4 

                            for z in shortpathmid: 

                                if len(z) == 3: 

                                    if z[1] == y[1:3] and z[2] == x[2]: 

                                        path.append(str(x) + ', ' + str(z) + ', ' + str(y)) 

                                else: 

                                    if z[1:3] == y[1:3] and z[3] == x[2]: 

                                        path.append(str(x) + ', ' + str(z) + ', ' + str(y)) 

                else: # number of characters in the first memristor of the sneak path are 4 

                    for y in shortpathend: 

                        if len(y)==3: 

                            for z in shortpathmid: 

                                if len(z) == 3: 

                                    if z[1] == y[1] and z[2] == x[3]: 

                                        path.append(str(x) + ', ' + str(z) + ', ' + str(y)) 

                                else: 

                                    if z[1:3] == y[1] and z[3] == x[3]: 

                                        path.append(str(x) + ', ' + str(z) + ', ' + str(y)) 

                        else: 

                            for z in shortpathmid: 

                                if len(z) == 3: 

                                    if z[1] == y[1:3] and z[2] == x[3]: 

                                        path.append(str(x) + ', ' + str(z) + ', ' + str(y)) 

                                else: 

                                    if z[1:3] == y[1:3] and z[3] == x[3]: 

                                        path.append(str(x) + ', ' + str(z) + ', ' + str(y)) 

            # Write to output file 

            for x12 in path: 

                f.write("\n" + x12) 

            noofsneakpath3 = len(path) 

            f.write("\n\nTotal number of sneak paths with 3 memristor length are " + 

str(noofsneakpath3)) 

            f.write(' \n') 

            f.write(' \n') 

 

        ## Code to obtain the sneak paths for 5 memristor long sneak paths 

        number = 5 

        if number <= highestsneakpathlength: 

            path5 = [str(x) + ', ' + str(z1) + ', ' + str(z2) + ', ' + str(z3) + ', ' + str(y) for x in 

shortpathstart 

                     for y in 



 

122 

                     shortpathend for z1 in shortpathmid if z1[2] == x[2] for z2 in shortpathmid if z2 != 

z1 and 

                     (z1[1]) == (z2[1]) and z2[2] != z1[2] for z3 in shortpathmid if 

                     z3 != z2 and z3 != z1 and z2[2] == z3[2] 

                     and z3[1] == y[1] and z3[1] != z2[1] and z3[1] != z1[1]] 

 

            for x12 in path5: 

                f.write("\n" + x12) 

 

            noofsneakpath5 = len(path5) 

            f.write("\n\nTotal number of sneak paths with 5 menristor length are " + 

str(noofsneakpath5) + "\n") 

            f.write(' \n') 

            f.write(' \n') 

        number = 7 

        if number <= highestsneakpathlength: 

            path7 = [str(x) + ', ' + str(z1) + ', ' + str(z2) + ', ' + str(z3) + ', ' + str(z4) + ', ' + str( 

                z5) + ', ' + str(y) 

                     for x in shortpathstart for y in shortpathend for z1 in shortpathmid if z1[2] == x[2] 

                     for z2 in shortpathmid if z2 != z1 and z1[1] == z2[1] and z2[2] != z1[2] for z3 in 

shortpathmid 

                     if z3 != z2 and z3 != z1 and z2[2] == z3[2] and z3[1] != z2[1] and z3[1] != z1[1] for 

z4 in 

                     shortpathmid 

                     if z4 != z3 and z4 != z2 and z4 != z1 and z3[1] == z4[1] and z4[2] != z3[2] and z4[2] 

!= z2[2] 

                     and z4[2] != z1[2] for z5 in shortpathmid if z5 != z4 and z5 != z3 and z5 != z2 and 

z5 != z1 

                     and z4[2] == z5[2] and z5[1] == y[1] and z5[1] != z4[1] and z5[1] != z3[1] and 

z5[1] != z2[1] 

                     and z5[1] != z1[1]] 

 

            for x12 in path7: 

                f.write("\n" + x12) 

 

            noofsneakpath7 = len(path7) 

            f.write("\n\nTotal number of sneak paths with 7 menristor length are " + 

str(noofsneakpath7) + "\n") 

            f.write(' \n') 

            f.write(' \n') 

 

        number = 9 

        if number <= highestsneakpathlength: 

            path9 = [ 

                str(x) + ', ' + str(z1) + ', ' + str(z2) + ', ' + str(z3) + ', ' + str(z4) + ', ' + str(z5) + ', ' + 

                str(z6) + ', ' + str(z7) + ', ' + str(y) for x in shortpathstart for y in shortpathend for z1 in 

                shortpathmid if z1[2] == x[2] for z2 in shortpathmid if z2 != z1 and z1[1] == z2[1] and 

z2[2] != z1[2] 

                for z3 in shortpathmid if z3 != z2 and z3 != z1 and z2[2] == z3[2] and z3[1] != z2[1] 

and z3[1] != z1[1] 



 

123 

                for z4 in shortpathmid if z4 != z3 and z4 != z2 and z4 != z1 and z3[1] == z4[1] and 

z4[2] != z3[2] 

                and z4[2] != z2[2] and z4[2] != z1[2] for z5 in shortpathmid if z5 != z4 and z5 != z3 

and z5 != z2 

                and z5 != z1 and z4[2] == z5[2] and z5[1] != z4[1] and z5[1] != z3[1] and z5[1] != 

z2[1] and z5[1] != 

                z1[1] 

                for z6 in shortpathmid if 

                z6 != z5 and z6 != z4 and z6 != z3 and z6 != z2 and z6 != z1 and z5[1] == z6[1] 

                and z6[2] != z5[2] and z6[2] != z4[2] and z6[2] != z3[2] and z6[2] != z2[2] and z6[2] != 

z1[2] 

                for z7 in shortpathmid if z7 != z6 and z7 != z5 and z7 != z4 and z7 != z3 and z7 != z2 

and z7 != z1 

                and z6[2] == z7[2] and z7[1] == y[1] and z7[1] != z6[1] and z7[1] != z5[1] and z7[1] != 

z4[1] and 

                z7[1] != z3[1] and z7[1] != z2[1] and z7[1] != z1[1]] 

 

            for x12 in path9: 

                f.write("\n" + x12) 

 

            noofsneakpath9 = len(path9) 

            f.write("\n\nTotal number of sneak paths with 9 menristor length are " + 

str(noofsneakpath9) + "\n") 

            f.write(' \n') 

            f.write(' \n') 

 

        number = 11 

        if number <= highestsneakpathlength: 

            path11 = [ 

                str(x) + ', ' + str(z1) + ', ' + str(z2) + ', ' + str(z3) + ', ' + str(z4) + ', ' + str(z5) + ', ' + 

                str(z6) + ', ' + str(z7) + ', ' + str(z8) + ', ' + str(z9) + ', ' + str(y) for x in shortpathstart 

                for y in shortpathend for z1 in shortpathmid if z1[2] == x[2] for z2 in shortpathmid if z2 

!= z1 

                and z1[1] == z2[1] and z2[2] != z1[2] for z3 in shortpathmid if z3 != z2 and z3 != z1 

and z2[2] == z3[2] 

                and z3[1] != z2[1] and z3[1] != z1[1] for z4 in shortpathmid if z4 != z3 and z4 != z2 

and z4 != z1 

                and z3[1] == z4[1] and z4[2] != z3[2] and z4[2] != z2[2] and z4[2] != z1[2] for z5 in 

shortpathmid 

                if 

                z5 != z4 and z5 != z3 and z5 != z2 and z5 != z1 and z4[2] == z5[2] and z5[1] != z4[1] 

and z5[1] != z3[1] 

                and z5[1] != z2[1] and z5[1] != z1[1] for z6 in shortpathmid if z6 != z5 and z6 != z4 

and z6 != z3 

                and z6 != z2 and z6 != z1 and z5[1] == z6[1] and z6[2] != z5[2] and z6[2] != z4[2] and 

z6[2] != z3[2] 

                and z6[2] != z2[2] and z6[2] != z1[2] for z7 in shortpathmid if z7 != z6 and z7 != z5 

and z7 != z4 

                and z7 != z3 and z7 != z2 and z7 != z1 and z6[2] == z7[2] and z7[1] != z6[1] 



 

124 

                and z7[1] != z5[1] and z7[1] != z4[1] and z7[1] != z3[1] and z7[1] != z2[1] and z7[1] != 

z1[1] 

                for z8 in shortpathmid if z8 != z7 and z8 != z6 and z8 != z5 and z8 != z4 and z8 != z3 

and z8 != z2 

                and z8 != z1 and z8[1] == z7[1] and z8[2] != z7[2] and z8[2] != z6[2] and z8[2] != 

z5[2] 

                and z8[2] != z4[2] and z8[2] != z3[2] and z8[2] != z2[2] and z8[2] != z1[2] 

                for z9 in shortpathmid if 

                z9 != z8 and z9 != z7 and z9 != z6 and z9 != z5 and z9 != z4 and z9 != z3 and z9 != z2 

                and z9 != z1 and z9[2] == z8[2] and z9[1] == y[1] and z9[1] != z8[1] and z9[1] != z7[1] 

and z9[1] != z6[ 

                    1] 

                and z9[1] != z5[1] and z9[1] != z4[1] and z9[1] != z3[1] and z9[1] != z2[1] and z9[1] != 

z1[1]] 

 

            for x12 in path11: 

                f.write("\n" + x12) 

 

            noofsneakpath11 = len(path11) 

            f.write("\n\nTotal number of sneak paths with 11 menristor length are " + 

str(noofsneakpath11) + "\n") 

            f.write(' \n') 

            f.write(' \n') 

 

        

##############################################################################

####################################### 

# LT spice circuit file generation 

 

        dictstart = {} 

        dictstop = {} 

        dictstart1 = {} 

        dictstop1 = {} 

        count = 1 

        node = 1 

 

 

        path1 = [] 

        tsp = ((2**i)-2)*((2**v)-2) 

        strdum = (i*v) + 1 

        # dictstart1 is dictionary for number of Rx which can be utilized as ground resistance 

        # this will have a huge node value assigned to not have them coincide with any existing 

values in dictrmap 

        for b in range(1,(tsp+1)): 

            dictstart1[('R' + str(strdum))] = 1000000000000 + b 

            #dictstop1[('R' + str(strdum))] = 0 

            strdum = strdum + 1 

        # Utilizes same code as for sneak path generation. Path1 has all elements stored individually 

instead of 3 long paths 

        for x in shortpathstart: 



 

125 

            if len(x) == 3: 

                for y in shortpathend: 

                    if len(y) == 3: 

                        for z in shortpathmid: 

                            if len(z) == 3: 

                                if z[1] == y[1] and z[2] == x[2]: 

                                    path1.append(str(x)) 

                                    path1.append(str(z)) 

                                    path1.append(str(y)) 

                            else: 

                                if z[1:3] == y[1] and z[3] == x[2]: 

                                    path1.append(str(x)) 

                                    path1.append(str(z)) 

                                    path1.append(str(y)) 

                    else: 

                        for z in shortpathmid: 

                            if len(z) == 3: 

                                if z[1] == y[1:3] and z[2] == x[2]: 

                                    path1.append(str(x)) 

                                    path1.append(str(z)) 

                                    path1.append(str(y)) 

                            else: 

                                if z[1:3] == y[1:3] and z[3] == x[2]: 

                                    path1.append(str(x)) 

                                    path1.append(str(z)) 

                                    path1.append(str(y)) 

            else: 

                for y in shortpathend: 

                    if len(y) == 3: 

                        for z in shortpathmid: 

                            if len(z) == 3: 

                                if z[1] == y[1] and z[2] == x[3]: 

                                    path1.append(str(x)) 

                                    path1.append(str(z)) 

                                    path1.append(str(y)) 

                            else: 

                                if z[1:3] == y[1] and z[3] == x[3]: 

                                    path1.append(str(x)) 

                                    path1.append(str(z)) 

                                    path1.append(str(y)) 

                    else: 

                        for z in shortpathmid: 

                            if len(z) == 3: 

                                if z[1] == y[1:3] and z[2] == x[3]: 

                                    path1.append(str(x)) 

                                    path1.append(str(z)) 

                                    path1.append(str(y)) 

                            else: 

                                if z[1:3] == y[1:3] and z[3] == x[3]: 

                                    path1.append(str(x)) 



 

126 

                                    path1.append(str(z)) 

                                    path1.append(str(y)) 

 

        dictr = {} 

        pathi = [] 

        for x12 in path1: 

            if len(x12) == 3: 

                y = x12[0:3] 

            else: 

                y = x12[0:4] 

            pathi.append(y) 

 

        pathi1 = list(set(pathi)) 

        # dictr is dictionary for all memristors used in sneak path in terms of LTspice Rx variables 

        for u in pathi1: 

            dictr[u] = dictrmap[u] 

 

        count = 1 

        node = 1 

        v = len(xi) #inp voltage 

        vol = [] 

        # vol is list of number of voltages in terms of V1, V2, V3.... 

        for u in range(1, (v + 1)): 

            vol.append('V' + str(u)) 

 

        for x123 in xi: 

            if x123 == 1: 

                nodestart = node 

                nodestop = 0 

                dictstart[vol[(count - 1)]] = nodestart # maps voltage to start nodes 

                dictstop[vol[(count - 1)]] = nodestop # maps voltage to end nodes 

 

                cou = (i*v) + 1 

                for x12 in path: 

 

                    if x12[1:3].isalnum(): #checks to see if memristor is 3 character long 

                        if int(x12[1]) == count: 

                            if len(x12) == 13: 

                                # below code determines start and stop nodes for first memristor in path 

                                if dictr[x12[0:3]] not in dictstart: # condition to ensure elements already in 

dictstart are not repeated 

                                    if vol[(count - 1)] in dictstart: 

                                        # Below assigns start node of voltage to nodestart. 

                                        # This will eventually be assigned to first memristor corresponding to 

Voltage 

                                        nodestart = dictstart[vol[(count - 1)]] 

                                        nodestop = node + 1 

                                        x121 = dictr[x12[0:3]] #Rx equivalent of first memristor in sneak path 

                                        dictstart[x121] = nodestart 

                                        dictstop[x121] = nodestop 



 

127 

                                        #if second memristor in path already has nodes assigned, below 

condition checks 

                                        #those nodes and assigns start node of second memristor in path to stop 

node of 

                                        #first memristor in path 

                                        if dictr[x12[5:8]] in dictstop: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = dictstart[dictr[(x12[5:8])]] 

                                            x121 = dictr[x12[0:3]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                # below code determines start and stop nodes for second memristor in path 

                                if dictr[x12[5:8]] not in dictstart: # condition to ensure elements already in 

dictstart are not repeated 

                                    if dictr[x12[0:3]] in dictstart: 

                                        x122 = dictr[x12[5:8]] #Rx equivalent of first memristor in sneak path 

                                        nodestart = dictstop[dictr[(x12[0:3])]] 

                                        nodestop = node + 2 

                                        dictstart[x122] = nodestart 

                                        dictstop[x122] = nodestop 

                                        # if third memristor in path already has nodes assigned, below condition 

checks 

                                        # those nodes and assigns start node of third memristor in path to stop 

node of 

                                        # second memristor in path 

                                        if dictr[x12[10:13]] in dictstop: 

                                            nodestart = dictstop[(dictr[x12[0:3]])] 

                                            nodestop = dictstart[(dictr[x12[10:13]])] 

                                            x122 = dictr[x12[5:8]] 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                # below code determines start and stop nodes for second memristor in path 

                                if dictr[x12[10:13]] not in dictstart: 

                                    if dictr[x12[5:8]] in dictstart: 

                                        x123 = dictr[x12[10:13]] 

                                        nodestart = dictstop[dictr[(x12[5:8])]] 

                                        nodestop = dictstart1[('R'+ str(cou))] #circuit ends with a ground node 

                                        dictstart[x123] = nodestart 

                                        dictstop[x123] = nodestop 

                                        dictstart[('R'+ str(cou))] = dictstart1[('R'+ str(cou))] 

                                        dictstop[('R'+ str(cou))] = 0 #ground node 

 

 

                            elif len(x12)== 14: 

                                if x12[1:3].isnumeric(): 

                                    if dictr[x12[0:4]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:4]] 



 

128 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[6:9]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[6:9])]] 

                                                x121 = dictr[x12[0:4]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[6:9]] not in dictstart: 

                                        if dictr[x12[0:4]] in dictstart: 

                                            x122 = dictr[x12[6:9]] 

                                            nodestart = dictstop[dictr[(x12[0:4])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[11:14]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:4]])] 

                                                nodestop = dictstart[(dictr[x12[11:14]])] 

                                                x122 = dictr[x12[6:9]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[11:14]] not in dictstart: 

                                        if dictr[x12[6:9]] in dictstart: 

                                            x123 = dictr[x12[11:14]] 

                                            nodestart = dictstop[dictr[(x12[6:9])]] 

                                            nodestop = dictstart1[('R'+ str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

 

                                elif x12[6:8].isnumeric(): 

                                    if dictr[x12[0:3]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:3]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[5:9]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[5:9])]] 

                                                x121 = dictr[x12[0:3]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[5:9]] not in dictstart: 

                                        if dictr[x12[0:3]] in dictstart: 

                                            x122 = dictr[x12[5:9]] 



 

129 

                                            nodestart = dictstop[dictr[(x12[0:3])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[11:14]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:3]])] 

                                                nodestop = dictstart[(dictr[x12[11:14]])] 

                                                x122 = dictr[x12[5:9]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[11:14]] not in dictstart: 

                                        if dictr[x12[5:9]] in dictstart: 

                                            x123 = dictr[x12[11:14]] 

                                            nodestart = dictstop[dictr[(x12[5:9])]] 

                                            nodestop = dictstart1[('R'+ str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

                                elif x12[11:13].isnumeric(): 

                                    if dictr[x12[0:3]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:3]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[5:8]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[5:8])]] 

                                                x121 = dictr[x12[0:3]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[5:8]] not in dictstart: 

                                        if dictr[x12[0:3]] in dictstart: 

                                            x122 = dictr[x12[5:8]] 

                                            nodestart = dictstop[dictr[(x12[0:3])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[10:14]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:3]])] 

                                                nodestop = dictstart[(dictr[x12[10:14]])] 

                                                x122 = dictr[x12[5:8]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[10:14]] not in dictstart: 



 

130 

                                        if dictr[x12[5:8]] in dictstart: 

                                            x123 = dictr[x12[10:14]] 

                                            nodestart = dictstop[dictr[(x12[5:8])]] 

                                            nodestop = dictstart1[('R'+ str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

                            elif len(x12) == 15: 

                                if x12[1:3].isnumeric() and x12[7:9].isnumeric(): 

                                    if dictr[x12[0:4]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:4]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[6:10]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[6:10])]] 

                                                x121 = dictr[x12[0:4]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[6:10]] not in dictstart: 

                                        if dictr[x12[0:4]] in dictstart: 

                                            x122 = dictr[x12[6:10]] 

                                            nodestart = dictstop[dictr[(x12[0:4])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[12:15]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:4]])] 

                                                nodestop = dictstart[(dictr[x12[12:15]])] 

                                                x122 = dictr[x12[6:10]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[12:15]] not in dictstart: 

                                        if dictr[x12[6:10]] in dictstart: 

                                            x123 = dictr[x12[12:15]] 

                                            nodestart = dictstop[dictr[(x12[6:10])]] 

                                            nodestop = dictstart1[('R'+ str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

 

                                elif x12[1:3].isnumeric() and x12[12:14].isnumeric(): 



 

131 

                                    if dictr[x12[0:4]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:4]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[6:9]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[6:9])]] 

                                                x121 = dictr[x12[0:4]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[6:9]] not in dictstart: 

                                        if dictr[x12[0:4]] in dictstart: 

                                            x122 = dictr[x12[6:9]] 

                                            nodestart = dictstop[dictr[(x12[0:4])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[11:15]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:4]])] 

                                                nodestop = dictstart[(dictr[x12[11:15]])] 

                                                x122 = dictr[x12[6:9]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[11:15]] not in dictstart: 

                                        if dictr[x12[6:9]] in dictstart: 

                                            x123 = dictr[x12[11:15]] 

                                            nodestart = dictstop[dictr[(x12[6:9])]] 

                                            nodestop = dictstart1[('R'+ str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

                                elif x12[6:8].isnumeric() and x12[12:14].isnumeric(): 

                                    if dictr[x12[0:3]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:3]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[5:9]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[5:9])]] 

                                                x121 = dictr[x12[0:3]] 

                                                dictstart[x121] = nodestart 



 

132 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[5:9]] not in dictstart: 

                                        if dictr[x12[0:3]] in dictstart: 

                                            x122 = dictr[x12[5:9]] 

                                            nodestart = dictstop[dictr[(x12[0:3])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[11:15]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:3]])] 

                                                nodestop = dictstart[(dictr[x12[11:15]])] 

                                                x122 = dictr[x12[5:9]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[11:15]] not in dictstart: 

                                        if dictr[x12[5:9]] in dictstart: 

                                            x123 = dictr[x12[11:15]] 

                                            nodestart = dictstop[dictr[(x12[5:9])]] 

                                            nodestop = dictstart1[('R'+ str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

 

                            elif len(x12) == 16: 

                                if dictr[x12[0:4]] not in dictstart: 

                                    if vol[(count - 1)] in dictstart: 

                                        nodestart = dictstart[vol[(count - 1)]] 

                                        nodestop = node + 1 

                                        x121 = dictr[x12[0:4]] 

                                        dictstart[x121] = nodestart 

                                        dictstop[x121] = nodestop 

                                        if dictr[x12[6:10]] in dictstop: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = dictstart[dictr[(x12[6:10])]] 

                                            x121 = dictr[x12[0:4]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                if dictr[x12[6:10]] not in dictstart: 

                                    if dictr[x12[0:4]] in dictstart: 

                                        x122 = dictr[x12[6:10]] 

                                        nodestart = dictstop[dictr[(x12[0:4])]] 

                                        nodestop = node + 2 

                                        dictstart[x122] = nodestart 

                                        dictstop[x122] = nodestop 

                                        if dictr[x12[12:16]] in dictstop: 

                                            nodestart = dictstop[(dictr[x12[0:4]])] 

                                            nodestop = dictstart[(dictr[x12[12:16]])] 



 

133 

                                            x122 = dictr[x12[6:10]] 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

 

                                if dictr[x12[12:16]] not in dictstart: 

                                    if dictr[x12[6:10]] in dictstart: 

                                        x123 = dictr[x12[12:16]] 

                                        nodestart = dictstop[dictr[(x12[6:10])]] 

                                        nodestop = dictstart1[('R'+ str(cou))] 

                                        dictstart[x123] = nodestart 

                                        dictstop[x123] = nodestop 

                                        dictstop[('R' + str(cou))] = 0 

                                        dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

                    if x12[1:3].isnumeric(): 

                        if int(x12[1:3]) == count: 

                            if len(x12) == 13: 

                                if dictr[x12[0:3]] not in dictstart: 

                                    if vol[(count - 1)] in dictstart: 

                                        nodestart = dictstart[vol[(count - 1)]] 

                                        nodestop = node + 1 

                                        x121 = dictr[x12[0:3]] 

                                        dictstart[x121] = nodestart 

                                        dictstop[x121] = nodestop 

                                        if dictr[x12[5:8]] in dictstop: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = dictstart[dictr[(x12[5:8])]] 

                                            x121 = dictr[x12[0:3]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                if dictr[x12[5:8]] not in dictstart: 

                                    if dictr[x12[0:3]] in dictstart: 

                                        x122 = dictr[x12[5:8]] 

                                        nodestart = dictstop[dictr[(x12[0:3])]] 

                                        nodestop = node + 2 

                                        dictstart[x122] = nodestart 

                                        dictstop[x122] = nodestop 

                                        if dictr[x12[10:13]] in dictstop: 

                                            nodestart = dictstop[(dictr[x12[0:3]])] 

                                            nodestop = dictstart[(dictr[x12[10:13]])] 

                                            x122 = dictr[x12[5:8]] 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

 

                                if dictr[x12[10:13]] not in dictstart: 

                                    if dictr[x12[5:8]] in dictstart: 

                                        x123 = dictr[x12[10:13]] 

                                        nodestart = dictstop[dictr[(x12[5:8])]] 

                                        nodestop = dictstart1[('R' + str(cou))] 

                                        dictstart[x123] = nodestart 



 

134 

                                        dictstop[x123] = nodestop 

                                        dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

                                        dictstop[('R' + str(cou))] = 0 

 

 

                            elif len(x12) == 14: 

                                if x12[1:3].isnumeric(): 

                                    if dictr[x12[0:4]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:4]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[6:9]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[6:9])]] 

                                                x121 = dictr[x12[0:4]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[6:9]] not in dictstart: 

                                        if dictr[x12[0:4]] in dictstart: 

                                            x122 = dictr[x12[6:9]] 

                                            nodestart = dictstop[dictr[(x12[0:4])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[11:14]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:4]])] 

                                                nodestop = dictstart[(dictr[x12[11:14]])] 

                                                x122 = dictr[x12[6:9]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[11:14]] not in dictstart: 

                                        if dictr[x12[6:9]] in dictstart: 

                                            x123 = dictr[x12[11:14]] 

                                            nodestart = dictstop[dictr[(x12[6:9])]] 

                                            nodestop = dictstart1[('R' + str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

 

                                elif x12[6:8].isnumeric(): 

                                    if dictr[x12[0:3]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 



 

135 

                                            x121 = dictr[x12[0:3]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[5:9]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[5:9])]] 

                                                x121 = dictr[x12[0:3]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[5:9]] not in dictstart: 

                                        if dictr[x12[0:3]] in dictstart: 

                                            x122 = dictr[x12[5:9]] 

                                            nodestart = dictstop[dictr[(x12[0:3])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[11:14]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:3]])] 

                                                nodestop = dictstart[(dictr[x12[11:14]])] 

                                                x122 = dictr[x12[5:9]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[11:14]] not in dictstart: 

                                        if dictr[x12[5:9]] in dictstart: 

                                            x123 = dictr[x12[11:14]] 

                                            nodestart = dictstop[dictr[(x12[5:9])]] 

                                            nodestop = dictstart1[('R' + str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

                                elif x12[11:13].isnumeric(): 

                                    if dictr[x12[0:3]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:3]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[5:8]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[5:8])]] 

                                                x121 = dictr[x12[0:3]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[5:8]] not in dictstart: 

                                        if dictr[x12[0:3]] in dictstart: 

                                            x122 = dictr[x12[5:8]] 



 

136 

                                            nodestart = dictstop[dictr[(x12[0:3])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[10:14]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:3]])] 

                                                nodestop = dictstart[(dictr[x12[10:14]])] 

                                                x122 = dictr[x12[5:8]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[10:14]] not in dictstart: 

                                        if dictr[x12[5:8]] in dictstart: 

                                            x123 = dictr[x12[10:14]] 

                                            nodestart = dictstop[dictr[(x12[5:8])]] 

                                            nodestop = dictstart1[('R' + str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

                            elif len(x12) == 15: 

                                if x12[1:3].isnumeric() and x12[7:9].isnumeric(): 

                                    if dictr[x12[0:4]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:4]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[6:10]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[6:10])]] 

                                                x121 = dictr[x12[0:4]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[6:10]] not in dictstart: 

                                        if dictr[x12[0:4]] in dictstart: 

                                            x122 = dictr[x12[6:10]] 

                                            nodestart = dictstop[dictr[(x12[0:4])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[12:15]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:4]])] 

                                                nodestop = dictstart[(dictr[x12[12:15]])] 

                                                x122 = dictr[x12[6:10]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 



 

137 

                                    if dictr[x12[12:15]] not in dictstart: 

                                        if dictr[x12[6:10]] in dictstart: 

                                            x123 = dictr[x12[12:15]] 

                                            nodestart = dictstop[dictr[(x12[6:10])]] 

                                            nodestop = dictstart1[('R' + str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

 

                                elif x12[1:3].isnumeric() and x12[12:14].isnumeric(): 

                                    if dictr[x12[0:4]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:4]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[6:9]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[6:9])]] 

                                                x121 = dictr[x12[0:4]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[6:9]] not in dictstart: 

                                        if dictr[x12[0:4]] in dictstart: 

                                            x122 = dictr[x12[6:9]] 

                                            nodestart = dictstop[dictr[(x12[0:4])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[11:15]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:4]])] 

                                                nodestop = dictstart[(dictr[x12[11:15]])] 

                                                x122 = dictr[x12[6:9]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[11:15]] not in dictstart: 

                                        if dictr[x12[6:9]] in dictstart: 

                                            x123 = dictr[x12[11:15]] 

                                            nodestart = dictstop[dictr[(x12[6:9])]] 

                                            nodestop = dictstart1[('R' + str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

                                elif x12[6:8].isnumeric() and x12[12:14].isnumeric(): 



 

138 

                                    if dictr[x12[0:3]] not in dictstart: 

                                        if vol[(count - 1)] in dictstart: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = node + 1 

                                            x121 = dictr[x12[0:3]] 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                            if dictr[x12[5:9]] in dictstop: 

                                                nodestart = dictstart[vol[(count - 1)]] 

                                                nodestop = dictstart[dictr[(x12[5:9])]] 

                                                x121 = dictr[x12[0:3]] 

                                                dictstart[x121] = nodestart 

                                                dictstop[x121] = nodestop 

                                    if dictr[x12[5:9]] not in dictstart: 

                                        if dictr[x12[0:3]] in dictstart: 

                                            x122 = dictr[x12[5:9]] 

                                            nodestart = dictstop[dictr[(x12[0:3])]] 

                                            nodestop = node + 2 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

                                            if dictr[x12[11:15]] in dictstop: 

                                                nodestart = dictstop[(dictr[x12[0:3]])] 

                                                nodestop = dictstart[(dictr[x12[11:15]])] 

                                                x122 = dictr[x12[5:9]] 

                                                dictstart[x122] = nodestart 

                                                dictstop[x122] = nodestop 

 

                                    if dictr[x12[11:15]] not in dictstart: 

                                        if dictr[x12[5:9]] in dictstart: 

                                            x123 = dictr[x12[11:15]] 

                                            nodestart = dictstop[dictr[(x12[5:9])]] 

                                            nodestop = dictstart1[('R' + str(cou))] 

                                            dictstart[x123] = nodestart 

                                            dictstop[x123] = nodestop 

                                            dictstop[('R' + str(cou))] = 0 

                                            dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

 

                            elif len(x12) == 16: 

                                if dictr[x12[0:4]] not in dictstart: 

                                    if vol[(count - 1)] in dictstart: 

                                        nodestart = dictstart[vol[(count - 1)]] 

                                        nodestop = node + 1 

                                        x121 = dictr[x12[0:4]] 

                                        dictstart[x121] = nodestart 

                                        dictstop[x121] = nodestop 

                                        if dictr[x12[6:10]] in dictstop: 

                                            nodestart = dictstart[vol[(count - 1)]] 

                                            nodestop = dictstart[dictr[(x12[6:10])]] 

                                            x121 = dictr[x12[0:4]] 



 

139 

                                            dictstart[x121] = nodestart 

                                            dictstop[x121] = nodestop 

                                if dictr[x12[6:10]] not in dictstart: 

                                    if dictr[x12[0:4]] in dictstart: 

                                        x122 = dictr[x12[6:10]] 

                                        nodestart = dictstop[dictr[(x12[0:4])]] 

                                        nodestop = node + 2 

                                        dictstart[x122] = nodestart 

                                        dictstop[x122] = nodestop 

                                        if dictr[x12[12:16]] in dictstop: 

                                            nodestart = dictstop[(dictr[x12[0:4]])] 

                                            nodestop = dictstart[(dictr[x12[12:16]])] 

                                            x122 = dictr[x12[6:10]] 

                                            dictstart[x122] = nodestart 

                                            dictstop[x122] = nodestop 

 

                                if dictr[x12[12:16]] not in dictstart: 

                                    if dictr[x12[6:10]] in dictstart: 

                                        x123 = dictr[x12[12:16]] 

                                        nodestart = dictstop[dictr[(x12[6:10])]] 

                                        nodestop = dictstart1[('R' + str(cou))] 

                                        dictstart[x123] = nodestart 

                                        dictstop[x123] = nodestop 

                                        dictstop[('R' + str(cou))] = 0 

                                        dictstart[('R' + str(cou))] = dictstart1[('R' + str(cou))] 

 

                    node = node + 10 # node increments for every new sneak path 

                    cou = cou + 1 #variable to increment ground node for every sneak path 

            count = count + 1 #node to increment voltage numbers 

 

        # Final output to LTspice file 

        iv = i*v 

        for k1 in dictstart: 

            for k2 in dictstop: 

                if k1 == k2: 

                    # Condition to put voltage nodes at start in LTspice file 

                    if str(k1)[0] == 'V': 

                        final = str(k1) + ' ' + str(dictstart[k1]) + ' ' + str(dictstop[k2]) + ' ' + str(1) + ';' 

                    # Condition to add ground nodes with resistance 1 

                    elif int(k1[1:3]) > iv: 

                        final = str(k1) + ' ' + str(dictstart[k1]) + ' ' + str(dictstop[k2]) + ' ' + str(1) + ';' 

                    elif int(k1[1:4]) > iv: 

                        final = str(k1) + ' ' + str(dictstart[k1]) + ' ' + str(dictstop[k2]) + ' ' + str(1) + ';' 

                    # Condition to add memristor resistance and correct nodes for circuit connections 

                    else: 

                        final = str(k1) + ' ' + str(dictstart[k1]) + ' ' + str(dictstop[k2]) + ' ' + str(10000) + ';' 

 

                    #print above values to LTspice circuit file 

                    print(final) 

                    j.write("\n") 



 

140 

                    j.write(final) 

 

        j.write('\n\n.op') 

        j.close() 

        loop = loop + 1 

 

 

 

##############################################################################

###################################### 

 

f.close() 

j.close() 

 

 

 

 

 


	Memristor Crossbar Array Testing Using Sneak Paths
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1617640562.pdf.IJgl9

