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Abstract 

 

This dissertation quantitatively examines the effect of new Light Rail Transit 

(LRT) services on transit ridership and traffic congestion over time at two different 

geographical levels: at the corridor level, this study conducts case studies of two LRT 

lines in the Portland, Oregon region; at the regional level, this study uses a synthetic 

control method to construct a “synthetic” control Urbanized Areas (UA) that closely 

approximates the counterfactual transit ridership and traffic congestion scenario in the 

absence of light rail project in three UAs across America. The results of the corridor-level 

study suggest that both LRT lines increased transit ridership in the short- and long-term 

and relieved traffic congestion in the short-term, while having no statistically significant 

effect on traffic congestion in the long-term, likely due to induced traffic demand. Results 

of the regional-level study suggest that, while new LRT services contributed to transit 

ridership in most UAs, they did relieve traffic congestion in a limited number of UAs, 

and that the effect changed over time and varied across UAs. The comprehensively 

temporal and geographical analysis will provide a better understanding of the impacts of 

new LRT services on transit ridership and traffic congestion, and hence provides policy 

makers insightful suggestions for building LRT projects to be more sustainable and to 

more effectively attract riders from former auto drivers.   
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1. Introduction  

Over the past decades, there have been a continuing increase in private vehicle 

usage and an overall decline in the use of public transit in the United States. The 

interesting thing is that, despite the fact that private vehicles are increasingly widely used 

with the decline of gasoline price and vehicle production costs, more cities are investing 

in costly new public transit systems. In 2015, for example, the total operating expense for 

transit was $45.3 billion with over 58.6 billion passenger miles traveled in the U.S. 

(APTA, 2017).  The main end of public transit is to induce more people transfer their 

travel mode from driving to riding transit, and to provide the urban poor easy access to 

quality life and job opportunities. Some researchers also suggest mass transit (hereafter 

referred to simply as transit) as an effective means to reduce auto dependence and relieve 

traffic congestion. Bhattacharjee et al. (2012) found that in Denver, the light rail transit 

generally lowered the increase of traffic in the influenced highway zone. Anderson 

(2013) found that Los Angeles transit provided more congestion relief benefits than what 

previously believed.  

Although there are continuous large investments in transit, there is a continuing 

debate over its effectiveness in relieving traffic congestion. Proponents of building more 

transit argue that transit is more efficient than private vehicles and can reduce auto 

dependency and relieve congestion. Opponents of building more transit, however, claim 

that transit cannot fulfill these benefits, because it cannot attract enough riders in 

automobile-oriented areas and transit accounts for a small share of commuting trips in 

most American cities. In addition, transit may potentially increase congestion because 
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bus vehicles take up roadway space and interfere with the traffic due to their frequent 

stops. Correspondingly, the findings from a large and growing body of studies examining 

the effect of transit on transit ridership and traffic congestion have been inconsistent. 

The aim of this study is to provide additional in-depth understanding of the short-

term and long-term effect of new light rail transit (LRT) service on transit ridership and 

traffic congestion and explain the conflicting empirical results of existing research. LRT is 

a kind of transit mode that lies between subway and bus/streetcar.  LRT serves fewer people 

than the subway does per ride, but it is less expensive and easier to access than the subway. 

Compared with buses, LRT is comfortable and speedy, containing more passengers per 

ride. Its unique attributes make LRT a mode of choice for many cities. This study will 

estimate the effect of new LRT service on transit ridership and traffic congestion at the 

corridor and regional levels, and keep track of the changes of these effects over time. This 

study focuses on LRT. A primary reason is that transit with a separate right-of-way is likely 

to relieve traffic congestion. Downs (2005) contends that transit can reduce traffic 

congestion only when the vast majority of peak-hour commuters take transit with separate 

right-of-way. Litman (2014) noted less congestion delay in American cities with a high 

share of grade-separated transit as compared to cities without a high share of grade-

separated transit. Another reason is that many cities in the U.S. and elsewhere have tilted 

their investment in LRT despite its substantially higher cost compared with other 

transportation infrastructure. From 1999 to 2017, nationwide vehicle revenue hours of LRT 

service have increased from 3.1 million to 7.5 million (NTD, 2000, 2018), which makes 

LRT deserved to be separately explored and evaluated quantitatively.   
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The paper is geographically focused on two different perspectives. At the corridor 

level, the MAX Green Line and Orange Line in Portland, OR region are selected as case 

studies. For each line, using a quasi-experiment design and transportation data before and 

after the operation of new LRT service, this study examines the changes in transit 

ridership and speed in a view of relatively long time horizon, which may provide 

marginal meaningful enlightenment for existing documents. Specifically, I take the 

following steps. First, before/after comparisons are conducted. Then, difference-in-

difference (DID) regression models are estimated for each line to evaluate the effect of 

new LRT service on ridership and traffic congestion. Thirdly, the difference in the effects 

between these two lines is discussed. 

At the regional level, this study investigates the effect of New Starts LRT projects 

on transit ridership and traffic congestion in large and very large Urbanized Areas (UAs) 

in the U.S. From 1998 to 2015, 60 New Starts LRT projects began operation across 27 

UAs, but little is known about the effect of these projects on transit ridership and traffic 

congestion. This study conducts empirical analyses of the effect of these projects on 

transit ridership and traffic congestion. To build up the comparable “counterfactual” 

scenario,  I use Synthetic Control Method (SCM), initially introduced by Abadie and 

Gardeazabal (2003),  to examine what the transit ridership and traffic congestion would 

have been in the absence of light rail projects.  
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Research questions 

This study attempts to quantify the effects of new LRT service on transit ridership 

and traffic congestion at the corridor and regional levels, and the changes of such effects 

over time. Specifically, this study aims to tackle the following questions:  

 

1. What is the effect of new light rail transit service on transit ridership and traffic 

congestion at the corridor level?  

2. What is the effect of new light rail transit service on transit ridership and traffic 

congestion at the regional level?  

3. How does the effect of new light rail transit service on transit ridership and traffic 

congestion change over time at the corridor and regional levels? 

 

The first research question investigates the effects of new LRT service on 

ridership and congestion at the corridor level. The operation of new LRT service is 

expected to improve the level of transit service and accessibility, therefore it is likely to 

increase transit ridership, and eventually relieve traffic congestion by attracting former 

drivers to transit. But such effects are likely subject to the condition of local 

transportation and land use systems, and the attributes of the LRT project. The effects of 

new LRT service highly depend on people’s choice faced with the new launch of transit 

option: for one thing, the transit may attract some portion of people living near the 

corridor to change travel mode from driving personally to public transit, which may 

contribute to the increase of ridership and decline of traffic congestion;  for the other, 
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people living outside of the corridor zone may choose to change their routes(in the short-

term) or to move to reside near the corridor(in the long-term), and in these cases, 

congestion may not be relieved even though the ridership is boosted. 

The second question investigates the effects at the regional level. A significant 

effect at the corridor level does not guarantee a significant effect at the regional level.  On 

the one hand, the effect of a single LRT line at the regional level is likely to be small, 

because the new LRT service only constitutes a marginal change of overall transportation 

supply at the regional level. On the other, a new LRT line may catalyst changes to a 

region’s transportation investment priority toward LRT in particular and transit in 

general, which may improve the region’s overall transport efficiency. The literature in the 

regional perspective is rare. If a region is undergoing an economic boom, resulting in an 

influx of both capital and population, its traffic conditions in the short and middle term 

are probably unsatisfactory. The launch of new transit may be able to solve part of the 

problem, but the average mitigation effect may not be as significant as that in corridor. In 

a city where traffic congestion is getting worse, a new transit option may improve 

corridor traffic condition. 

The third question explores the changes of these effects over time at the corridor 

and regional levels. At the corridor level, induced travel demand may play a role in the 

changes of the effects of LRT on ridership and traffic congestion. At the regional level, 

induced travel demand may be less detectable, because the effect of the New Starts LRT 

project is more likely to take place within localized area. The trends at both corridor and 

regional levels are deserved to be discussed, because the comparison of corridor and 
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regional results of certain districts will make the picture clearer. For the region of 

metropolitan, it is believed that in the long term, only building up extensive and high-

quality of LRT network through continuous investments in LRT may fundamentally 

change travel behavior, lowering auto ownership, making transit become the dominant 

travel mode, reducing traffic delay.   

 

Conceptual framework 

This study follows the conceptual framework shown in Figure 1.1. The short-term 

and long-term effects of LRT service on transit ridership and traffic congestion can be 

different due to induced travel demand. Pickerell (2001) defines “short-term” as “the 

period during which a household's residential locations as well as the spatial distribution 

of economic activity and thus of employment remain fixed”. In other words, I take the 

location adjustment of household, employment and activity as long-term induced travel 

demand that is different from short-term induced travel demand (e.g. people’s travel route 

adjustment without destination change). In the framework as pictured, the residential 

location and economic activities spatial distribution are vital to explain the long-term 

trends of transit ridership and traffic congestion, so the long-term picture may be 

significantly different from the short-term.   
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Figure 1. 1 Conceptual framework of LRT effects on ridership and congestion 

 

In the short-term, new LRT service may increase transit ridership and relieve 

traffic congestion at the corridor level. New LRT service typically replaces existing bus 

service and tends to improve accessibility and the level of transit service along the 

corridor, and the extent of such improvement is subject to existing transportation and land 

use systems. The improved accessibility and level of transit service attract transit 

ridership from three sources: existing unmet transit demand, former transit passengers, 

and former drivers. The ridership from former transit passengers has no net effect on 

transit ridership and traffic congestion. Ridership from existing unmet transit demand 

leads to increased transit ridership but does not affect traffic congestion. Ridership from 

former drivers increases transit ridership and relieves traffic congestion. However, 

improved traffic conditions are likely to evoke induced travel demand and reduce the 

initial benefit to traffic. As illustrated by Pickerell (2001), “short-term induced traffic” 
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includes diverted traffic that changes its route onto the improved facility, rescheduled 

traffic that previously used the facility at a different time, shifts from other modes and so 

on. 

Figure 1.2 shows the possible changes of the effects of LRT service over time. 

Because it takes time for travelers to switch to the new LRT service, the ridership from 

former drivers remains small immediately after the opening of the new LRT service. 

After a period of time, ridership from former drivers increases, which reduces traffic 

congestion. With the increase of ridership from former drivers, the traffic congestion will 

be relieved correspondingly. Then, the improved traffic condition may evoke the short-

term induced travel demand: trips from other routes, modes and other time are diverted to 

the roadway with improved traffic conditions; people living along the roadway are likely 

to take new or longer trips because of the improved traffic condition. Such induced travel 

demand will increase traffic on the roadway, which gradually offsets the congestion 

reduction benefits until traffic condition reaches a new equilibrium. Theoretically, short-

term induced travel demand does not lead to worse traffic congestion than it was before 

the operation of new LRT service, because trips will not be diverted to the roadway, and 

people will not take new or longer trips once the traffic congestion relief benefit 

disappears. 
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Figure 1. 2 The evolution of effect of new LRT service on traffic congestion 

  

In the long-term, new LRT service may increase ridership but worsen traffic 

congestion. As mentioned earlier, the operation of new LRT service improves 

accessibility along the LRT corridor. The improved accessibility will attract households, 

employments, and activities to locate near the LRT stations, leading to increased overall 

travel demand. Based on the definition by Pickerell (2001), the induced travel demand 

resulting from location adjustment is the long-term induced travel demand. The increased 

overall travel demand resulting from long-term induced travel demand may further boost 

transit ridership and offset congestion relief benefits or even make traffic conditions 

worse than the initial condition.  

The effects of new LRT service on transit ridership and congestion are expected 

to vary by geographical levels. In the short-term, new LRT service usually constitutes a 

marginal change of overall transportation supply at the regional level. Thus, it is expected 
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to exert little influence on transit ridership and traffic congestion at the regional level. In 

the long-term, a LRT project may catalyst improvement to the transit system and attract 

residents and employments to locate near LRT stations, and eventually leads to detectable 

changes in transit ridership and traffic at the regional level. At the regional level, with the 

continuing construction of LRT projects, an extensive and high-quality LRT network 

may lead to fundamental changes in travel behavior, reducing car ownership and making 

transit become the dominant commuting mode, which increases transit ridership, reduces 

auto dependence and relieves the traffic congestion at the regional level.  

 

Hypotheses:  

1. The effects of new LRT service on transit ridership and traffic congestion at the 

corridor level vary by local context.  

o The effects of new LRT service on transit ridership and traffic congestion 

rely on   improving the level of transit service and accessibility along the 

transit corridor. The extent of such improvement is subject to existing 

transportation and land use system, and existing transportation and land 

use system determines transit demand and the extent of current 

congestion. 

o If the new LRT service primarily attracts ridership from existing transit 

riders, it does not affect transit ridership and traffic congestion. If the new 

LRT service attracts transit demand that is not met before the operation of 

new LRT service, it increases transit ridership and has no effect on traffic 
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congestion. If the new LRT service attracts substantial ridership from 

former drivers, which depends on the attractiveness of new LRT service 

over driving, it will increase ridership and relieve traffic congestion.  

 

2. The effects of new LRT service on transit ridership and traffic congestion at the 

corridor level change over time.  

o In the short-term, it takes time for travelers to switch from driving to 

riding transit, which may improve traffic condition; then the improved 

traffic condition may evoke induced travel demand: trips are diverted 

from other routes, modes and times; people living along the corridor take 

new or longer trips.  

o In the long-term, both people and employment may be attracted to locate 

near new LRT stations and land use changes may occur along the LRT 

corridor due to improved level of transit service and accessibility, which 

further increases transit ridership and worsens traffic congestion  

 

3. The effects of new LRT service on transit ridership and traffic congestion at the 

regional level may vary by region.  

o Regional socioeconomic factors, state of the economy, and existing 

transportation and land use system are all likely to influence the effects at 

the regional level.  
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o The effects of new LRT service depend on its scale relative to the 

existing system. Single LRT generally has little effect on transit ridership 

and traffic congestion at the regional level, because the new LRT service 

only constitutes a marginal change of overall transportation supply at the 

regional level. An extensive and high-quality LRT network may lead to 

fundamental changes in travel behavior, reducing car ownership and 

making transit become the dominant commuting mode, and thus can 

increase transit ridership and relieve traffic congestion at the regional 

level.  

 

4. The effect of new LRT service on transit ridership and traffic congestion at the 

regional level changes over time.  

o In the short-term, a single LRT project only has little detectable effects 

on transit supply, so it has little effect on transit ridership and traffic 

congestion at the regional level.  

o In the long-term, a LRT project may catalyst improvement to the transit 

system and attract residents and employments to locate near transit 

station, and eventually leads to detectable changes in transit ridership and 

traffic at the regional level. In addition, the construction of extensive and 

high-quality LRT network may increase transit mode share and reduce 

auto dependence and, therefore, reduce traffic congestion. However, for 

the region, decent infrastructure may be accompanied by economic 
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flourish, which probably gives rise to huge marginal traffic demand and 

worsens local traffic condition.   
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2. Literature review 

The effects of transit include direct effect—transit ridership, and indirect effect, 

including traffic congestion, land use, property value, etc. Transit ridership is "a 

necessary, but not sufficient condition for any of the indirect benefits ascribed to LRT 

investments” (Giuliano et al. 2015). Among the reasons the transit is built to attract 

ridership from auto drivers and reduce traffic congestion by virtue of having their rights-

of-way. 

 

2.1 Effect of light rail transit service on transit ridership  

As LRT plays an increasingly important role in daily travel, a considerable 

amount of studies has examined the effects of new LRT service on transit ridership. In 

this review, these studies are grouped by geographical levels: corridor and regional. Table 

2.1 summarizes the literature, especially the findings and limitations.   

 

2.1.1 Corridor level 

At the corridor level, a stream of studies uses residents as the unit of analysis. 

Most of these studies use cross-sectional data, so they only investigate transit ridership at 

a single time point. Cervero (1994) examined the transit use of residents living in transit-

oriented development (TOD) areas in California. Results suggested that residents living 

close to rail stations were more likely to use transit for both commuting and non-

commuting trips than the average residents in the region. Lund et al. (2006) re-evaluated 

the travel pattern of residents living in TOD areas in California and reached similar 
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conclusions. They found that residents living in TOD areas were more likely to ride 

transit, especially for commuting, than those who did not live in TOD areas. These two 

studies provide evidence about transit usage for daily travel, but they did not use a quasi-

experimental design or take into account residential self-selection (RSS), which might 

undermine the validity of their results.  

Cao et al. (2014) used a quasi-experimental design and cross-sectional data to 

investigate the impact of LRT on transit use. Their analysis examined two urban corridors 

and two suburban corridors and used propensity score matching (PSM) to eliminate the 

residential self-selection effect on transit use. Results indicated that non-movers, namely 

residents living within the LRT corridor before the operation of the LRT, used transit 

more frequently than residents in urban control corridors, while movers used transit as 

frequently as residents in the urban control corridors.  
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Table 2. 1 Empirical studies on the effect of LRT on transit ridership 

Author/s 

(years) 

Location Unit of 

analysis  

Data  Temporal 

Dimension 

Key findings Limitations 

Cervero 

(1994) 

California, 

USA 

Resident Travel 

diary 

surveys of 

targeted 

population  

Single time 

point,  10 

years after 

transit 

service 

Stations-

residents 

ride rail 

transit more 

than the 

average 

residents in 

the region   

No evidence of 

the evolution of 

transit ridership; 

no quasi-

experimental 

design; no RSS 

adjustment 

Lund et 

al. (2006) 

California, 

USA 

Resident Travel 

diary 

surveys of 

targeted 

population 

Single time 

point,  21 

years after 

transit 

service  

TOD 

residents are 

more likely 

to use rail 

transit than 

non-TOD 

residents.  

No evidence of 

the evolution of 

transit ridership; 

no quasi-

experimental 

design; No RSS 

adjustment 

Cao et al. 

(2014) 

Minneapolis, 

Minnesota,  

USA 

Resident Travel 

diary 

surveys of  

targeted 

population 

Single time 

point,  7 

years after 

transit 

operation 

Non-movers 

used transit 

more 

frequently 

than 

residents in 

the control 

corridors, 

while 

movers used 

transit as 

frequently as 

residents in 

the control 

corridors 

No evidence of 

the evolution of 

transit ridership  

Giuliano 

(2015) 

Los Angeles, 

California, 

USA  

Corridor Transit 

ridership 

from 

transit 

agency 

3-month 

periods 

before and 

after transit 

service 

The Expo 

Line has a 

net increase 

in transit 

ridership 

Single light rail 

line 

Baum-

Snow & 

Kahn 

(2005)  

Sixteen 

American 

cities  

City Panel data 

set of 16 

cities  

Time 

series, 

1970-2000 

Rail service 

does not 

increase 

transit modal 

share at the 

regional 

level 

An average 

effect  

 

Another line of studies uses the transit corridor as the unit of analysis. Giuliano et 

al. (2015) investigated the effect of Metro Exposition Line (Expo Line) on transit 
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ridership in Los Angeles, California. Using a quasi-experimental design and a unique 

historical archive of high-resolution multimodal transportation data, they examined 

transit ridership within the experimental and control corridors before and after the 

operation of the Expo Line. Results indicated that the Expo Line increased weekday 

boarding of all bus and rail stops within the experimental corridor by approximately 

7,000. This study examined only the immediate effects of a single light rail line.  

 

2.1.2 Regional level  

Studies examining transit ridership at the regional level are rare. Baum-Snow and 

Kahn (2005) examined the effects of rail transit capital investment on public transit 

ridership. They used a panel data set of sixteen cities with rail transit improvement 

between 1970 and 2000. They found that new rail transit service primarily attracted riders 

from bus passengers—not drivers and therefore did not increase transit mode share at the 

regional level. Although this study examined the effect of rail transit on ridership over 

time with panel data, the estimation is an average effect over time. It did not keep track of 

the change of the effect over time.  

 

2.2 Effect of new transit service on traffic congestion   

A growing body of studies has examined the effect of transit on traffic congestion, 

but the results of these studies are mixed.  These studies are also reviewed by 

geographical levels: corridor and regional.  
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2.2.1 Corridor level  

There has been a considerable amount of literature on the effects of transit 

improvement on traffic congestion at the corridor level. The results of these studies are 

mixed partly because they are different in terms of measurement, method and time frame, 

shown in Table 2.2. 

Bhattacharjee et al. (2012) investigated the effect of Denver light rail lines on 

traffic congestion from 1992 to 2008. They used Vehicle Miles Traveled (VMT), 

converted from Annual Average Daily Traffic (AADT), as traffic performance metric. 

Results suggested that light rail lines lowered the growth rate of VMT: the average VMT 

within the influence zone increased by 31% compared to 41% outside the influence zone. 

Ewing et al. (2014) examined the short-, medium- and long-term effects of the University 

of Utah's TRAX LRT line on traffic congestion. They used AADT as the measurement of 

traffic congestion and found that LRT reduced AADT in all three time frames. Both 

studies suggest that LRT has a congestion relief effect and that effect changes over time, 

but they have to approximate their congestion measure from AADT and do not capture 

daily or monthly variations in traffic.  

In addition to examining transit ridership mentioned above, Giuliano et al. (2015) 

investigated the effect of the Los Angeles Metro Exposition Line (Expo Line) on traffic 

performance with high-resolution historical archival data. Their results indicated that, 

even though it increased transit ridership, it had no significant influence on traffic 

congestion. They attributed the insignificant effect on traffic congestion to the large 

induced travel demand within the congested corridor. Although this study had a rigorous 
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research design and a sound dataset, a major limitation was that it only examined 

transportation performance shortly after the opening of the Expo Line. The Expo Line 

began operation in June 2012. They used data during November 2011-January 2012 

(before) and November 2012-January 2013 (after) to control the seasonality in their data 

and did not examine the medium-and long-term effect.  

 

Table 2. 2 Corridor studies of transit effect on traffic congestion  

Author/s 

(years) 

Location Measurement  Temporal 

Dimension 

Key findings Limitations 

Bhattacharjee 

et al. (2012) 

Denver, 

Colorado, 

USA 

VMT 

converted 

from AADT 

1992 – 2008  LRT lines 

decrease the 

growth rate 

of VMT 

within the 

influence 

zone 

No quasi-

experiment; 

approximate 

measuremen

t of 

congestion; 

annual 

measuremen

t 

Giuliano et al. 

(2015) 

Los 

Angeles, 

California, 

USA 

Travel time 

and travel time 

reliability 

3-month periods 

before and after 

transit service 

A net 

increase in 

transit 

ridership; no 

significant 

influence on 

traffic 

congestion 

No 

examination 

of 

transportatio

n 

performance 

immediately 

before and 

after the 

opening of 

the Expo 

Line. 

Ewing et al. 

(2014) 

Salt Lake 

City, Utah, 

USA 

AADT Short-run: 1 

year before and 

after the 

operation of 

LRT in 12/2001; 

Medium-run: 

2001 VS the 

average of  

2006-2012; 

Long-run: long-

run: 1999 VS 

2009  

LRT reduces 

AADT in all 

three time 

frames.   

Congestion 

measure is 

roughly 

approximate

d from 

AADT 
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2.2.2 Regional level 

Regional studies on the effect of transit on traffic congestion either simulate the 

effect with regional travel models, or conduct empirical analysis of transit strike data or 

panel data, summarized in Table 2.3. Simulation studies largely build on the assumption 

that a subset of transit passengers will switch to driving when transit service is reduced or 

halts operation. Therefore, the results of these studies are sensitive to the assumed 

proportion of transit passengers switching to driving and all suggest that all types of 

transit services can relieve congestion. Nelson et al. (2007) used a regional strategic 

planning simulation model to estimate transit service benefits in the Washington, DC 

metropolitan area. They found that the transit system reduced a total of 184,000 person-

hours of driving per day, and that rail service generated a larger congestion relief benefit 

than bus service. Aftabuzzamand et al. (2010) utilized a regional travel demand model to 

estimate the effect of public transit on congestion in Melbourne, Australia. They 

converted 32.4% of the public transit trip matrix to the base car trip matrix to simulate a 

scenario in which the entire transit system was eliminated. The results indicated that 

congestion would increase by more than 150% when the entire transit system was not in 

operation.  

Simulation studies provide counterfactual insights into what would have 

happened if all transit lines halt service, but such studies have pitfalls. The results are 

sensitive to the assumed proportion of transit passenger diverting to driving when transit 

is not in operation.  
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Transit strike data provide another way to examine what happens when a transit 

system halts service Anderson (2013) used a regression discontinuity design to estimate 

travel delay with transit labor strike data in Los Angeles, California, and noted a 47% 

increase in highway delay during the strike. According to his model, the effect of transit 

on traffic volume was minor, but it nevertheless had a large effect on traffic congestion. 

Lo and Hall (2006) calculated the average traffic speed during 20 consecutive working 

days before and during a transit strike using similar data,. They noted that the length of 

the rush period increased by up to 200%. Although such studies provide sound evidence 

of the short-term effects of transit on traffic congestion, such studies may not provide 

good evidence of response to transit improvement, because travelers are likely to respond 

differently to transit improvement and transit cessation. More specifically, travelers must 

change travel behavior immediately if transit service is stopped, while travelers gradually 

change travel behavior if the level of transit service is improved.  
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Table 2. 3 Regional studies of transit effect on traffic congestion 

Author/s (years) Location Methods Time context Key findings Limitations 

Nelson et al. 

(2007) 

Washington, 

DC, USA 

Simulation 

with 

strategic 

planning 

simulation 

model 

Single time 

point 

(counterfactua

l analysis ) 

Rail service 

generates 

larger 

congestion 

relief benefit 

than bus 

services 

Implications of 

results are limited; 

depends on the 

proportion of 

transit passengers 

who convert to 

driving; response 

to transit cessation 

Aftabuzzamand 

et al. (2010) 

Melbourne, 

Australia 

Simulation 

with travel 

demand 

model 

Single time 

point 

(counterfactua

l analysis)  

Congestion 

increased by 

more than 

150% when 

the entire 

transit 

system was 

terminated   

Implications of 

their results are 

limited; depends 

on the proportion 

of transit 

passengers who 

convert to driving; 

response to transit 

cessation 

Anderson 

(2013) 

Los Angeles, 

California, 

USA 

Regression 

discontinui

ty 

200-day 

window 

containing the 

transit strike  

highway 

delay 

increased by 

47% 

Response to 

transit cessation 

Lo and Hall 

(2006) 

Los Angeles, 

California, 

USA 

Comparati

ve analysis 

20 consecutive 

working days 

before and 

after transit 

strike 

the length of 

the rush 

period 

increased up 

to 200% 

Response to 

transit cessation  

Winston and 

Langer (2006) 

72 UZAs in 

the U.S. 

Semi-

logarithmic 

regression 

model  

1982 to 1996 

(Annual 

longitudinal 

analysis) 

Rail transit 

system did 

not relieve 

congestion 

and bus 

transit 

system 

increased 

congestion 

Estimates are 

essentially an 

average effect 

over time 

Beaudoin et al. 

(2014) 

96 UZAs in 

the U.S. 

Two-step 

GMM  

1991- 2011 

(Annual 

longitudinal 

analysis) 

A 10% 

increase in 

overall 

transit 

capacity 

generated on 

average 

around 0.8% 

congestion 

reduction 

Estimations are 

essentially an 

average effect 

over time 
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Another line of studies utilizes panel datasets to examine the effect of transit on 

traffic congestion. Winston and Langer (2006) investigated the effect of highway 

spending and transit capacity on VMT with a panel dataset of 72 UZAs over the period 

1982 to 1996.  They found that rail transit service relieved congestion while bus transit 

service increased congestion. Beaudoin et al. (2014) used a two-step Generalized Method 

of Moments (GMM) method to examine the effects of transit capacity on traffic 

congestion in 96 UZAs across the U.S. from 1991 to 2011. Their results indicated that a 

10% increase in overall transit capacity led to on average around 0.8% congestion 

reduction. These empirical studies provide weak evidence of the evolution of the effect of 

transit on traffic congestion over time, because these estimates with panel datasets are 

essentially an average effect over time.  

 

2.3 Induced travel demand  

Commonly, induced travel demand refers to the travel demand caused by the 

expanded roadway capacity. Many opponents of building more transit for relieving 

congestion claim that the addition of transit service also evokes induced travel demand. 

Consider a congested roadway. The operation of new transit service reduces the 

generalized cost of riding transit by reducing travel time cost, and therefore it may 

prompt some drivers to switch to riding transit, which may relieve traffic congestion. The 

relieved traffic congestion is expected to evoke induced travel demand at different time 

scales.  
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In the short-term, people may take longer trips and/or travel more frequently 

taking advantage of the improved traffic, and travel from other routes, times, and modes 

may be diverted to the roadway with improved traffic conditions until reaching a new 

equilibrium. These induced travel will offset the congestion relief benefit of new transit 

service, while it possibly cannot lead to the same or worse traffic congestion than it was 

before the operation of new transit service, because travel will not be diverted to the 

roadway and people will not take new or longer trips as long as the traffic congestion 

relief effect disappear. These conclusions are based on the definition of “the short-term” 

as “the period during which household’s residential locations as well as the spatial 

distribution of economic activity and thus of employment remain fixed” (Pickerell, 

2001). 

In the long-term, induced travel demand can cause traffic condition to become 

worse than the initial condition. Households and employments are likely to relocate close 

to the transit corridor, which may add overall travel demand and make the traffic 

congestion worse than before the operation of transit service. An important factor that 

should be taken into consideration in the long-term is population growth. Giuliano (2004) 

claim that increased travel demand due to population growth is not induced demand.  

There has been a large body of empirical studies examining induced travel 

demand. Most of these studies focus on the induced travel demand resulting from 

roadway capacity expansion (Cervero, 2002; Noland & Lem, 2002). There are limited 

studies examining the induced travel demand due to new transit service. Small and 

Verhoef (2007, p. 174) noted that the induced auto demand offset the majority of traffic 
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congestion relief benefits of Bay Area Rapid Transit (BART). The operation of BART 

attracted 8,750 auto trips to switch to riding transit, but the relieved traffic congestion 

evoked 7,000 new auto trips. Beaudoin and Lin (2018) used a panel dataset of 96 

Urbanized Areas from 1991 to 2011 to examine the effect of transit supply on auto 

demand. Results indicated that the effect of public transit supply on driving demand 

change over time due to induced travel demand and substitution effect. A 10% percent 

increase in transit supply on average generated a 0.7% decrease in auto demand because 

of substitution effect in the short run. Due to induced auto demand offsetting the 

substitution effect, transit supply has no effect on auto demand in the medium run. A 

10% increase in transit supply on average evoked a 0.4% increase in auto demand in the 

long run. They also noted that new transit service could not relieve traffic congestion if 

congestion level did not reach a threshold level.  

These findings provide supportive evidence for Downs’ (2005) claim that the 

traffic congestion relief effect of new transit service is a short-term effect because of 

induced travel demand. Induced travel demand resulting from improved traffic 

congestion will gradually fill up the roadway space left by auto drivers switching to 

riding transit.   

 

2.4 Gaps in existing literatures 

A few gaps can be identified in existing studies:  

 First, the results of existing studies are inconsistent. Several issues seem to 

contribute to these inconsistencies: different geographical scales, and variations in terms 
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of data sources, approaches and time periods. The significant effect at the corridor level 

cannot guarantee significant effect at the regional level. As mentioned in the literature, 

studies using approximate congestion measurement find congestion relief effect while 

studies using direct congestion measurement fail to find evidence of congestion relief 

effect. Simulation studies indicate all types of transit can relieve traffic congestion, while 

empirical studies find conflicting results.  

Second, existing studies rarely examine the changes in these effects over time. 

Studies using cross-sectional data examine travel behavior at a single time point and 

therefore cannot keep track of the changes in these effects over time. Neither can 

traditional linear panel data analysis, which estimates elasticities or average change over 

time. One exception (as mentioned earlier) is the study by Ewing et al. (2014). They 

examined the short-, medium- and long-term effects of LRT on traffic congestion, but 

they estimated the effect at three discrete time points rather than tracing the evolution of 

the effects. They had to approximate traffic measures from AADT. 

Lastly, there are few comparative studies conducted at the regional level. Most 

comparative studies are conducted at the corridor level. Comparative analyses are scarce 

at the regional level studies probably because it is not easy to find similar control units 

for comparison.  
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3. Effect of new LRT service on transit ridership and traffic congestion at the 

corridor level 

Traffic congestion has become an urgent issue across urban areas in the U.S. due 

to its direct time and monetary costs and many indirect adverse effects. For instance, the 

cost of extra time and fuel due to congestion delay in 498 urban areas has increased from 

$24 billion in 1982 to $166 billion in 2017 (Schrank et al., 2019). Besides extra time and 

fuel costs, traffic congestion also worsens air quality that causes adverse health effects 

and emits additional carbon dioxide and other pollutants which contribute to climate 

change (Sun et al., 2019; Yu et al., 2020). To relieve traffic congestion and alleviate its 

adverse impacts, light rail transit (LRT), with its separate right-of-way, has been 

suggested as an effective means of attracting transit riders from auto drivers and 

achieving traffic congestion relief (Downs, 2005; Litman, 2014). So far it still is an 

ongoing debate regarding the effectiveness in fulfilling these potentials. Proponents have 

argued that it reduces auto dependency and relieving congestion, while opponents have 

claimed that LRT either cannot attract enough riders in many automobile-dependent U.S. 

cities to matter or, when it does, there is enough latent demand for driving to eliminate 

any intermediate effect on the traffic.  

Considerable research efforts have been dedicated to examining the actual or 

potential effects of LRT on transit ridership and traffic congestion (Bhattacharjee & 

Goetz, 2012; Cao & Schoner, 2014b; Ewing et al., 2014; Giuliano, 2004; Litman, 2014). 

However, these studies have failed to systematically evaluate both short- and long-term 

effects, due to a lack of consistent high-resolution historical data. Partially due to this 
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data limitation, most previous studies on this topic have employed methods strong on 

establishing associations; few of them have used methods supporting causal inference. 

The purpose of this study is to add to existing research a more in-depth understanding of 

the effects of new light rail transit (LRT) service in both short- and long-term timeframe 

with a rigorous method supporting causal inference. Through case studies of two LRT 

lines in Portland, Oregon, this study conducts two analyses: (1) before and after 

comparisons of the LRT opening and (2) the difference-in-difference regression models 

to quantify the effects of new LRT service on ridership and traffic congestion. Route-

level transit boarding data and high-resolution historical traffic information from archival 

databases and iPeMS enable us to do the analyses. This study expects that this research 

fills the research gaps and helps transportation planners, policymakers, and community 

members to better understand the effects of LRT on transit ridership and traffic 

congestion. 

 

Research Design 

Study Area 

As the case studies, this study selects the Green Line and Orange Line in the 

Portland metropolitan area, where the 59.7-mile MAX light rail system has been built 

over three decades partly as a solution to alleviate the worsening traffic congestion. 

Figure 3. 1 shows the routes and stations of the MAX light rail system. The two cases are 

selected due to the trend in transit ridership and traffic congestion, and the availability of 

current and historical ridership and travel speed data for analysis. The Green Line is a 15-
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mile LRT line opened on September 12, 2009. It extends transit service to the eastside 

Portland metropolitan area by connecting Clackamas, Happy Valley, and downtown 

Portland. The Orange Line is a 7.3-mile light rail line opened in September 2015, the 

latest addition to the MAX light rail system. It extends light rail service to Southeast 

Portland, connecting downtown Portland, Portland State University, and Park Avenue in 

South East Portland. 

 

 

Figure 3. 1 Routes and stations of the MAX Light Rail system in Portland, Oregon 

(Source: TriMet Website) 

 

Methodology 

This study aims to quantify the effects of new LRT lines on transit ridership and 

traffic congestion at the corridor level and analyze the changes of these effects over time. 

This study uses a quasi-experimental design, and a difference-in-difference (DID) 

method with high temporal and spatial resolution data. The DID method is used to 

estimate group-level fixed effects of treatment (Figure 3. 2) with an ability to correct 
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group-level omitted variable bias. The following equation shows the classic DID 

regression model: 

 

𝑦𝑖𝑡𝑔 = 𝛽0 + 𝛽1𝑇 + 𝛽2𝐺 + 𝛽3𝑇𝐺 + 𝜀 

where:  

𝑦𝑖𝑡𝑔 = outcome of interest (transit ridership and travel speed) on roadway segment i of 

group g  

 (experimental/control) during time period t (before/after) 

T = dummy variable indicating time period (“1” for after the opening) 

G = dummy variable indicating treated and control group (“1” for experimental group) 

𝛽3 = the DID estimate  

 

Figure 3. 2 Causal effects in the Difference in Difference model 
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Control and Experimental Groups 

This study chooses the corridors along a segment of the Green and Orange lines 

as experimental groups.  This study then selects a control corridor for each line. Figure 3. 

3 and Figure 3. 4 show the experimental and control corridors for the Green and Orange 

lines. 

 

 

                     Figure 3. 3 Experimental and control corridor for the Green Line 

 

 

Figure 3. 4 Experimental and control corridor for the Orange Line 
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The Green Line provides an additional travel mode between Clackamas and 

downtown Portland. This study focuses on the segment of the Green Line that stretches 

from Clackamas Town Center Station to SE Main St. Station. This segment of the Green 

Line is 7 miles long and runs close and parallel to I-205. After reviewing roadways 

profiles and traffic characteristics, I select the I-5 segment south of Downtown Portland 

as the control roadway, beginning at the interaction of I-5 with Ross Island Bridge to its 

intersection with Oregon Route 99. The Orange Line provides an alternative mode 

between downtown Portland and SE Portland.  

The chosen I-5 segment and I-205 segment are comparable. I-5 is an interstate 

highway. I-205 is an auxiliary interstate highway, serving as a bypass route of I-5. The 

traffic volume of the two segments is similar, and they both serve the north-south traffic. 

From Clackamas Town Center to the North of Halsey Street, the selected I-205 segment 

travels through the eastern residential area of Portland, mainly including neighborhoods: 

Lents, Southgate, and West Mt. Scott. From its intersection with Oregon Route 99 to the 

north of Downtown Portland, the selected I-5 segment travels the southern residential 

area of Portland, mainly including neighborhoods: FAR Southwest, Crestwood, West 

Portland Park, Multnomah, Markham, South Burlingame, Hillsdale, and South Portland. 

Figure 3. 5 and Figure 3. 6 show that population density and employment density are 

similar along I-5 and I-205. Though the selected I-5 segment is a comparable control 

roadway, there are still some differences between I-5 and I-205. I-5 directly connects 

with Downtown Portland, while I-205 locates far away from the downtown area. The 
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downtown area acts as an important employment center Portland Metropolitan Area. 

Thus, there are probably differences in traffic patterns between I-5 and I-205.  

 

 

Figure 3. 5 Population density along I-205 and I-5 

 

 

Figure 3. 6 Employment density along I-205 and I-5 
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However, the selected I-5 highway segment is a better option as a control 

roadway after reviewing the other roadways in the area. An alternative of control 

roadway is Oregon Route 99W. It runs parallel to the I-5 highway. Since it is a state-

numbered route, different from the experimental roadway, it is not selected. Another 

choice of control roadway is the I-5 segment from outside of downtown Portland 

northbound to Vancouver. However, from its intersection with N Columbia Blvd to 

Vancouver, the I-5 segment serves Delta Park, a recreational area. Thus, the I-5 segment 

from outside of downtown Portland northbound to Vancouver is not selected as a control 

roadway. 

For the Orange Line, the experimental corridor is the area along the SE 

McLoughlin Blvd. From downtown Portland to Park Ave in SE Portland, most of SE 

McLoughlin Blvd is parallel and close to the Orange Line. The roadway segments within 

the experimental corridor include SE McLoughlin Blvd from its intersection with SE 

Franklin St to its intersection with SE Park Ave. After examining roadway profile and 

traffic characteristics, the control corridor is selected to be the SE Powell Blvd segment 

bounded by SE 122th Ave to the east and SE McLoughlin Blvd to the west. The control 

corridor is generally perpendicular to the Orange Line, and therefore should not be 

affected by the Orange Line. 

The selected SE McLoughlin Blvd segment and SE Powell Blvd are comparable. 

The SE McLoughlin Blvd is an urban expressway, and it serves the southeastern 

residential area, mainly including neighborhoods: Hosford-Abernethy, Brooklyn and 

Sellwood-Moreland. SE Powell Blvd is an urban expressway, and it mainly serves the 
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eastern residential area, including neighborhoods: Sullivan’s Gulch, Kerns, North Tabor, 

Montavilla, and Centennial. The population density and employment density are similar 

along the selected SE McLoughlin Blvd segment and SE Powell Blvd, shown in Figure 3. 

7 and Figure 3. 8. The selected SE McLoughlin Blvd segment and SE Powell Blvd are 

comparable in an overall sense. An alternative of the control roadway is Oregon Route 

99E from North of NE Multnomah Street northbound to Vancouver. The Oregon Route 

99E segment serves Delta Park, a recreation area, it is not finally selected.  

 

 

Figure 3. 7 2010 population density 2010 along treatment (SE McLoughlin Blvd) 

and control (Powell Blvd) 
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Figure 3. 8 2010 employment density along treatment (SE McLoughlin Blvd) and 

control (Powell Blvd) 

 

Existing research has found the association between transit use and land use 

(Cervero, 1994; Ding et al., 2014; Ewing & Cervero, 2010). The transit model would be 

improved after including land use variables. This study still does not include land use 

variables because of data availability at the corresponding temporal and spatial 

resolution. In the transit model, the ridership data are quarterly, while land use variables 

are annual. The temporal resolutions are different.  

Population density is another variable that should be included in the transit model. 

This study does not include this variable due to two issues. The first issue is the temporal 

resolution of the population density variable. Population from U.S. Census Bureau is 

annual 5-year rolling data, while the transit ridership data are quarterly. The temporal 

resolutions are different. Second, in order to include population density in the transit 
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model, it must be assumed that the population is equally distributed. This assumption 

does not reflect reality. 

Because of lacking land use and population density variables, my estimation of 

the effect of the new LRT project on ridership is likely to be biased by overestimating the 

effect. Land use and population change are likely to contribute to ridership increase. In 

the regression model without land use and population variables, the impact of land use on 

ridership would be attributed to the new LRT project. Thus, the impact of the new LRT 

project on transit ridership would be overestimated because the coefficients include the 

effects resulting from land use and population changes.  

Since population and land use changes are similar in the control and experimental 

corridors, the DID method used here may make up the impact of not including population 

and land use variables in the transit models because the selected control and experimental 

corridors are still comparable. 

Other changes, such as ramp meters, that affect travel speed on the highway 

should also be considered when evaluating the impact of the new LRT project on 

congestion if they were implemented on the control or treatment corridor (but not both). 

The purpose of ramp meters is to reduce bottlenecks and improve the overall speed of 

traffic flow. By regulating vehicles entering a highway, ramp meters can avoid situations 

where a large number of vehicles move onto the highway at one time and lead to traffic 

congestion. Ramp meters also can improve travel speed by reducing crashes. If ramp 

meters are implemented before the operation of the new LRT project, it would not affect 

the impact of the new LRT project on traffic congestion. If ramp meters are implemented 
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after the operation of the new LRT project, they will affect the impact of the new LRT 

project on traffic congestion. However, no information can be found on the 

implementation of such changes to the control or treatment corridor. 

 

Data 

This research focuses on the effects of LRT on both transit ridership and traffic 

congestion in that the transit ridership effect is a necessary, but not sufficient condition to 

explain indirect benefits ascribed to LRT (Giuliano et al., 2015). This study examines 

both effects by using transit boarding data and high-resolution historical traffic 

information from archival databases and iPeMS to comprehensively investigate the short- 

and long-term effects of LRT at the corridor level with case studies of two LRT lines in 

Portland, Oregon.  

For traffic congestion data, this study uses route-level travel speed as a measure of 

traffic congestion. For the Green line case, this study employs the Transportation Data 

Archive for Portland-Vancouver (PORTAL) for travel speed data. PORTAL is a 

historical multi-modal transportation data archive, including historical weather data, 

incident data, transit data, and 20-second granularity loop detector data for the Portland-

Vancouver metropolitan region since July 2004 (Hansen et al., 2005). There are 13 and 

11 loop detector stations in the experimental and control corridors, respectively. Each 

loop detector installed along the roadways generates a record including volume, speed, 

and occupancy for its corresponding lane every 20 seconds. Theoretically, each detector 

generates 4,320 records in a single day, but the actual number may be smaller due to non-
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reporting, which are excluded from this research. The 20-second granularity is sensitive 

to random noise, so this study aggregates the data into 5-minute granularity. This study 

then converts station-level data to route-level data. The final number of records for travel 

speed is 11,482. Because the PORTAL data do not cover arterials, for the Orange line 

case, this study uses the iPeMS database for travel speed data, which is an online 

database tool provided by Iteris, Inc. The iPeMS database collects probe data from a 

sample of data collected from vehicle navigation systems, cell phone apps, and fleet 

vehicles. In iPeMS, users have access to statewide travel data from highways, principal 

arterials, minor arterials, and major collectors. Users can extract route-level travel data by 

assigning origination and destination only as far back as 2011, so it cannot be used for the 

Green Line case.  

This study utilizes travel speed data collected before and after the operation of the 

LRT lines. The Orange Line began operation on September 12, 2015. The travel speed 

data were collected for the three year periods before (from September 12, 2012, to 

September 11, 2015) and after (from September 12, 2015, to September 11, 2018) the 

opening of the Orange Line. The Green Line began operation on September 12, 2009. 

The travel speed data were collected for the five-year periods before (from September 12, 

2004, to September 11, 2009) and after (from September 12, 2009, to September 11, 

2014) the Green Line opening. 

This study obtains the data set from TriMet, the transit authority for the Portland, 

Oregon region, regarding transit ridership. The data includes boarding and alighting 

information by transit line, stop, time of day, and day of the week. The data has been 
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collected by TriMet every three months. The time periods of transit ridership data used in 

this study are the same as travel speed data. 

 

Results 

Effects on Transit Ridership 

Average weekday ridership 

First, this study analyzes average weekday boardings at all bus and rail stops 

located within the experimental and control corridors before and after the operation of the 

two light rail transit lines. As shown in Figure 3. 9, the vertical dashed line indicates the 

date when the new light rail transit lines began operation. After the openings, boardings 

within each of the experimental corridors noticeably increased, while boardings within the 

control corridor decreased slightly for the Orange Line and remained nearly stable for the 

Green Line. 

 

Figure 3. 9 The change in the average weekday boardings at all bus and rail stops 

located within the experimental and control corridors over time 
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The difference-in-difference regression models 

This study then uses the DID regression models to examine the impacts on 

ridership. The DID estimators of base models were both statistically significant and 

positive, demonstrating that the average treatment effect of new LRT lines is 6,404 and 

7,225 for the Orange Line and Green Line, respectively (Table 3. 1). That is, the Orange 

Line and Green Line contribute to an increase of 6,404 and 7,225 riders on average, 

respectively (Figure 3. 10). Analyzing the ridership by each year after the operation of the 

Green Line, results indicate that there was an increase in ridership compared to the 

ridership in the control corridor (Table 3. 2). Table 3. 2 shows that ridership increased in 

the first year and then remained nearly stable after the first year for the Orange Line. For 

the Green Line, the ridership increased to about 9,000 from about 3,000 in the first year, 

and to about 9,500 in the second year, then kept relatively stable from the third year 

onward, and reached the maximum in the 7th year.  

In sum, the DID estimators of both base models confirm the increase in transit 

ridership. More importantly, the two LRT lines lead to a large increase in transit 

ridership, particularly for the first few years of the operation of new LRT lines. This 

study also compares boardings and alightings at bus stops within a quarter-mile network 

distance of Orange Line stops before and after the Orange Line operation. The results 

also reveal that bus boardings and alightings both increased after the operation of both 

LRT lines (Figure 3. 11). 
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                                Table 3. 1 Transit ridership DID regression models 

Variable Orange Line Base 

model  

Green Line Base 

model  

Time period (after=1) -554.00*** 

(179.00) 

-102.00*** 

(196.00) 

Group (experimental group=1) -7,662.00*** 

(189.00) 

-821.00*** 

(260.00) 

Time period*Group 6,404.00*** 

(254.00) 

7,225.00***
 

(277.00) 

Constant 13,599.00*** 

(134.00) 

3,716.00*** 

(184.00) 

Observations  54 86 

R2 0.98 0.985 

Adjusted R2 0.98 0.984 

Residual Std. Error  463.00 

(df=50) 

411.00 

(df=82) 

F Statistic  712.00*** 

(df = 3; 50) 

1,753.00*** 

(df = 3: 82) 

Note: *p<0.1; **p<0.05; ***p<0.01 

                               

 

 

                    Figure 3. 10 The Difference-in-Differences effects of boardings 
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Table 3. 2 Crosstab of boardings within the experimental and control corridors 

 Orange Line Green Line 

Time period Control corridor Experimental 

corridor 

Control corridor Experimental 

corridor 

Before 13599 5938 3716 2895 

1st year 13289 11799 3671 8960 

2nd year 12902 11634 3417 9694 

3rd year 13028 11800 3606 10080 

4th year 12936 11961 3327 9926 

5th year   3556 10030 

6th year   3782 10204 

7th year   3724 10478 

8th year   3683 10144 

9th  year   3689 10144 

10th year   3721 10334 

 

 

 

Figure 3. 11 The trends of the boardings and alightings at bus stops located within a 

quarter-mile radius of the Green and Orange line stations over time 
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Effects on Traffic Congestion 

This study focuses our study on the effects of LRT on traffic congestion on 

weekday peak periods when traffic volumes are considerably heavy and congestion more 

common: the AM peak between 7-10 AM, and the PM peak between 4-7 PM. 

 

Average speed 

This study, firstly, analyzes the average speed on experimental and control 

roadways by peak periods and directions (inbound to/outbound from downtown) for the 

Orange and Green lines (Figure 3. 12 and Figure 3. 13). For the Orange line case, as 

shown in Figure 3. 12, while the trend of average peak period travel speed on the 

experimental and control roadway segments was similar before the operation, average 

peak periods travel speed for both directions of the experimental corridor increased after 

the operation. The increase of speed for AM peak outbound from downtown was the 

largest, followed by PM peak inbound to downtown, that is, the directions with less 

congestion and higher speed to begin with. For the Green line case, shown in Figure 3. 

13, the average peak period travel speed on the experimental and control roadways was 

overall similar before the opening of the Green line. After its operation, the average speed 

on the experimental roadway saw little change. Also, note that there was a large variation 

in travel speed on the control roadway (I-5). 
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Figure 3. 12 The weekday peak periods speed comparison between experimental 

corridor (McLoughlin Blvd) and control corridor (Powell Blvd) for the Orange line 

 

 

Figure 3. 13 The weekday peak periods speed comparison between experimental 

corridor (I-205) and control corridor (I-5) for the Green line 
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Difference-in-Difference base regression models 

For the Orange line case, the results in Table 3. 3 show that each of the four 

models one for each period and direction combination, indicated a significant increase in 

the speed, ranging from 1.35 mph to 2.35 mph on average, of the experimental roadway 

in all cases. That is, our results suggest that the Orange Line has an effect on increasing 

travel speed on the experimental segment. The size of the impacts differed across the 

periods and directions. 

 

Table 3. 3 The difference-in-difference base regression models on the speed effect of 

the Orange Line 

 AM Outbound AM Inbound PM Outbound PM inbound 

Time Period 

(after = 1) 

-0.257*** 

(0.077) 

-0.748*** 

(0.180) 

-2.130*** 

(0.100) 

-1.490*** 

(0.083) 

Group 

(experimental 

group =1) 

10.300*** 

(0.077) 

6.690*** 

(0.180) 

9.090*** 

(0.108) 

12.000*** 

(0.083) 

Time period * 

Group 

2.350*** 

(0.109) 

1.500*** 

(0.255) 

1.350*** 

(0.152) 

2.070*** 

(0.117) 

Constant 23.200*** 

(0.055) 

19.500*** 

(0.127) 

19.700*** 

(0.076) 

21.800*** 

(0.058) 

Observations 3,129 3,130 3,128 3,128 

R2 0.935 0.524 0.844 0.941 

Adjusted R2 0.935 0.523 0.843 0.941 

Residual Std. 

Error 

1.530 (df = 

3,125) 

3.570 (df = 

3,126) 

2.130 (df = 

3124) 

1.630 (df = 

3124) 

F Statistic 14,943.000*** 

(df = 3; 3125) 

1,146.000*** 

(df = 3; 3126) 

5,616.000*** 

(df = 3; 3124) 

16,664.000*** 

(df = 3; 3124) 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

 

For the Green line case, as shown in Table 3. 4, each of the four models indicated 

a significant increase in travel speed of the experimental roadway in both directions during 
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AM peak and PM Outbound, with the increase ranging from 1.12 mph to 5.12 mph. There 

is no significant effect for the outbound direction during PM peak, as the coefficient from 

the DID estimator was negative, but not statistically significant. 

 

Table 3. 4 The difference-in-difference base regression models on the speed effect of 

the Green Line 

 AM 

Outbound 

AM Inbound PM Outbound PM inbound 

Time Period (after 

= 1) 

-4.580*** 

(0.475) 

-3.380*** 

(0.643) 

0.912*** 

(0.163) 

-0.657 

(0.468) 

Group 

(experimental 

group =1) 

10.500*** 

(0.611） 

7.270*** 

(0.818) 

4.350*** 

(0.210) 

5.400*** 

(0.594) 

Time period * 

Group  

5.120*** 

(0.674) 

2.25*** 

(0.901) 

1.120*** 

(0.229) 

-0.117 

(0.651) 

Constant 44.900*** 

(0.434) 

46.000*** 

(0.589) 

55.500*** 

(0.150) 

47.700*** 

(0.430) 

Observations  2,773 2,833 2,884 2,922 

R2 0.549 0.208 0.586 0.143 

Adjusted R2 0.549 0.208 0.586 0.142 

Residual Std. Error 6.760  

(df = 2769) 

9.140  

(df = 2829) 

2.270  

(df = 2880) 

6.560  

(df = 2918) 

F Statistic 1,124.000***  

(df = 3; 2769) 

248.000***  

(df = 3; 2829) 

1,361.000***  

(df = 3; 2880) 

162.000***  

(df = 3; 2918) 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

 

Based on the results of the speed DID base models, Figure 3. 14 and Figure 3. 15 

show the changes in average travel speed before and after the operation of the new LRT 

lines for both the experimental and control roadway segments, by directions and periods 

for the Orange Line and Green Line, respectively. The "counterfactual" line shows what 

would have happened in the absence of the operation of the Orange Line, assuming the 
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change in travel speed on the experimental roadway segment would mirror the change in 

travel speed on the control roadway segment. For the Orange Line, the travel speed on 

the experimental roadway segment for after period is higher than that in the 

counterfactual scenario (Figure 3. 14). For the Green Line, the travel speed on the 

experimental roadway segment for the after-period was higher than that in the 

counterfactual scenario for the after-period, except in the case of the PM outbound 

(Figure 3. 15). I, thus, conclude that both LRT Lines have had a relief effect on travel 

speed on the experimental roadway segment. 

 

 

Figure 3. 14 The estimated speed based on the DID base models for the Orange line 

during weekday peak periods 
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Figure 3. 15 The estimated speed based on the DID base models for the Green line 

during weekday peak periods 

 

Difference-in-Difference regression models with multiple time periods 

This study further investigates how the increase in travel speed changes over time 

by applying the DID regression models with multiple time periods. As predicted by the 

induced demand hypothesis, the increase in travel speed, if any, would diminish over time.  

Table 3. 5 shows the results of the DID regression models with multiple time 

periods for the Orange Line case. The results of the DID estimators indicated that the 

increases in travel speed of the experimental roadway persist and improve over time, as 

most coefficients for Year * Group is significant with magnitude increasing from the 1st 

to 2nd and then 3rd year. Two exceptions are the effect on the outbound direction for the 

PM period in the first year, which is negative but statistically insignificant, and on the 

inbound direction for the AM period for the 3rd year, which is almost the same as that for 

the 2nd year. 
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Figure 3. 16 provides a more visual representation of this result. The horizontal 

dashed lines indicate the average treated effects for the corresponding period and direction. 

The line plot shows the evolution of the effects of new LRT lines on travel speed over the 

years, with the confidence intervals for each year also represented in the figure. It is clear 

in Figure 3. 16 that the size of the effect on travel speed varies by periods and directions, 

and for a given period and direction, the size of the effect generally increases over time. 

Table 3. 5 Travel Speed Difference-in-Difference Regression Models with  

Multiple Time periods on the speed effect of the Orange Line 

 AM Outbound AM Inbound PM Outbound PM inbound 

Group 

(experimental 

group=1) 

10.300*** 

(0.075) 

6.690*** 

(0.179) 

9.090*** 

(0.105) 

12.000*** 

(0.081) 

1st year  -0.315*** 

(0.106) 

-0.558*** 

(0.254) 

-1.580*** 

(0.149) 

-1.490*** 

(0.114) 

2nd year -0.380*** 

(0.105) 

-1.380*** 

(0.254) 

-2.830*** 

(0.148) 

-1.710*** 

(0.114) 

3rd year  -0.076 

(0.105) 

-0.307 

(0.254) 

-1.990*** 

(0.148) 

-1.260*** 

(0.114) 

1st year *Group 1.320*** 

(0.149) 

0.622* 

(0.359) 

-0.059 

(0.210) 

1.200*** 

(0.162) 

2nd year*Group 2.710*** 

(0.149) 

1.970*** 

(0.359) 

1.760*** 

(0.210) 

2.460*** 

(0.162) 

3rd year*Group 3.000*** 

(0.149) 

1.900*** 

(0.359) 

2.340*** 

(0.210) 

2.550*** 

(0.162) 

Constant 23.2000*** 

(0.053) 

19.500*** 

(0.127) 

19.700*** 

(0.074) 

21.800*** 

(0.057) 

Observations  3,129 3,130 3,128 3,128 

R2 0.939 0.529 0.852 0.944 

Adjusted R2 0. 939 0.528 0.852 0.944 

Residual Std. 

Error 

1.470 (df = 

3121) 

3.550 (df = 

3122) 

2.080 (df = 

3120) 

1.600 (df = 

3120) 

F Statistic 6,916.000*** 

(df = 7; 3121) 

502.000*** (df 

= 7; 3122) 

2,564.000*** 

(df = 7; 3120) 

7,479.000*** 

(df = 7; 3120) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Figure 3. 16 Predicted speed based on the DID models with multiple time periods 

for the Orange line during weekday peak periods 

 

For the Green line case, Table 3. 6 shows that most of the coefficients for Year * 

Group of the DID estimators were positive and statistically significant, indicating that there 

were increases in travel speed on the experimental roadway. The size of Year * Group 

coefficients from the DID estimators were highest in the third year for all four models, but 

there is no clear pattern of how the effect changes over time. Figure 3. 17 provides a visual 

representation of the result. As shown in Figure 3. 17, for a given period and direction, 

even though the point estimates of the effect differ from one year to the next, their 

confidence intervals largely overlap, indicating the differences in the effect size over the 

years are not statistically significant. 
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Table 3. 6 Results of Travel Speed Difference-in-Difference Regression  

Models with multiple time periods of the Green Line Case 

 AM Outbound AM Inbound PM Outbound PM inbound 

Group 

(experimental 

group=1) 

10.500*** 

(0.595) 

7.270*** 

(0.798) 

4.350*** 

(0.186） 

5.400*** 

(0.581) 

1st year  -1.130*** 

(0.589) 

-0.480*** 

(0.799) 

1.400*** 

(0.183) 

-0.093*** 

(0.580) 

2nd year -5.050*** 

(0.588) 

-0.777*** 

(0.802) 

1.190*** 

(0.182) 

2.350*** 

(0.589) 

3rd year  -5.740*** 

(0.588) 

-4.600*** 

(0.797) 

0.794*** 

(0.183) 

-1.110*** 

(0.577) 

4th year -4.830*** 

(0.592) 

-3.630*** 

(0.811) 

0.887*** 

(0.184) 

-1.680*** 

(0.583) 

5th year -6.550*** 

(0.625) 

-7.940*** 

(0.827) 

0.208 

(0.188) 

-2.760*** 

(0.592) 

1st year *Group 3.200*** 

(0.832) 

0.112 

(1.120) 

-1.390*** 

(0.258) 

-0.293 

(0.811) 

2nd year*Group 5.910*** 

(0.831) 

1.450 

(1.120) 

-0.720*** 

(0.257) 

-3.790*** 

(0.817) 

3rd year*Group 7.060*** 

(0.834) 

4.150*** 

(1.120) 

3.250*** 

(0.260) 

2.620*** 

(0.816) 

4th year*Group 3.680*** 

(0.852) 

0.329 

(1.140) 

2.300*** 

(0.262) 

0.866 

(0.827) 

5th year*Group 3.200*** 

(1.060) 

3.650*** 

(1.360) 

2.660*** 

(0.267) 

-0.204 

(0.840) 

Constant 44.900*** 

(0.432) 

46.000*** 

(0.574) 

55.500*** 

(0.133) 

47.700*** 

(0.420) 

Observations  2,773 2.833 2,884 2,922 

R2 0.574 0.249 0.677 0.184 

Adjusted R2 0.572 0.246 0.675 0.181 

Residual Std. 

Error 

6.580 (df = 

2761) 

8.910 (df = 

2821) 

2.010 (df = 

2872) 

6.410 (df = 

2910) 

F Statistic 338.000*** (df 

= 11; 2761) 

85.000*** (df 

= 11; 2821) 

547.000*** (df 

= 11; 2872) 

59.600*** (df 

= 11; 2910) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Figure 3. 17 Predicted Average Travel Speed Based on the DID models with 

multiple time periods for the Green Line Case 

 

Conclusion 

Although considerable research efforts have been dedicated to examining the 

actual or potential effects of LRT on transit ridership and traffic congestion, few studies 

have examined both short- and long-term effects. This study examines both the short and 

long-term effects of the MAX Orange and Green lines at the corridor level in Portland, 

Oregon by employing transit boarding data and historical high-resolution traffic 

information from archival databases and iPeMS. This study conducts two main analyses: 

(1) before and after comparisons of the LRT opening and (2) the difference-in-difference 

regression models to quantify the effects of new LRT service on ridership and traffic 

congestion and estimate the difference in effects between the two lines. 
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A notable finding from the research is that the development of two LRT lines in 

Portland, 

Oregon has led to a large increase in transit ridership and a positive impact on relieving 

traffic congestion. This study also finds that the effects on traffic congestion largely 

persist over the years –keeping improving in the case of the Orange line and lacking a 

clear pattern in the case of the Green line.  

Specifically, the analysis on transit ridership indicates that after the opening of the 

new light rail transit lines, boardings within the experimental corridor increased sharply 

while those within the control corridor remained unchanged. The results of the ridership 

DID base models demonstrate that the Orange and Green Lines contributed to an increase 

of 6,404 and 7,225 riders on average, respectively. The crosstab of Green Line ridership 

suggests that ridership increase mainly occurred in the first three years after its operation. 

The travel speed models reveal that the new LRT lines have had a positive impact on 

traffic speed, with the magnitude of the effects varying by peak periods and direction. For 

the Orange Line, travel speed increased by between 1.35 and 2.35 mph, while for the 

Green Line, travel speed increased by between 1.12 and 5.12 mph. The DID models with 

multiple periods demonstrate that most yearly effects are positive and statistically 

significant and that the size of the yearly effects changes over time. For the Orange Line, 

the effect size on travel speed increases over time. For the Green Line, there is no clear 

pattern in differences in the effect size over time.  

The research demonstrates how high-resolution historical data makes it possible 

to evaluate the impacts of transportation projects and policies. The spatial and temporal 
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high-resolution data make is possible to detect impact, which cannot be captured without 

such dataset, on transportation system. The availability of detailed transportation data is 

crucial to evaluate the effects and evolution of transportation policies and projects like 

LRT. Such dataset makes it possible to conduct comprehensively temporal and spatial 

evaluation of the effect. Thus, it would help fill a research gap and explain the conflicting 

empirical results in previous studies because of different time frames and intervals or 

geographical scales.  
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4. Effect of new LRT service on transit ridership and traffic congestion at the 

regional level 

Many cities in the U.S. have tilted transit investments toward LRT despite the 

substantially higher cost, because transit with a separate right-of-way is commonly 

viewed to be more likely to help relieve traffic congestion (Downs, 2005; Litman, 2014). 

Though a considerable body of research has investigated transit ridership and congestion 

effect of LRT, little research has examined the long-term effect of large transit projects 

on transit ridership and traffic congestion at the regional level, and the causal relationship 

between transit and traffic congestion and transit ridership is rarely analyzed in the 

literature.  

The New Starts program is a transit capital investment program administrated by 

Federal Transit Administration (FTA). It primarily funds fixed guideway systems, 

including light rail, commuter rail, and fixed guideway Bus Rapid Transit (BRT). To 

apply for funding from New Starts, the cost of the transit project should be more than 

$300 million, or the total New Starts funding sought should be no less than $100 million 

(Federal Transit Administration, 2015). From 1998 to 2017, 55 New Starts transit 

projects began operation across 27 UZAs and the total funding reached approximately 

$20 billion. All projects competing for funding are selected based on their potential 

effects on accessibility, mobility, congestion relief, land use changes, and cost-

effectiveness. Although the New Starts program has funded various projects across 

UZAs, to my knowledge, no study has comprehensively examined the effect of these 

projects on transit ridership and traffic congestion.  
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This study attempts to quantify the effect of new LRT service on transit ridership 

and traffic congestion at the regional level. This study conducts an empirical analysis of 

the impacts of new LRT lines on ridership and traffic congestion in three UAs that 

constructed New Starts LRT projects from 1982 to 2017.  To capture the effect of new 

LRT lines on traffic, we use a synthetic control method to construct a “synthetic” control 

UA that closely approximates the counterfactual ridership and traffic congestion scenario 

in the absence of light rail projects. Results of this study provide empirical evidence for 

the effect of large transit investment on traffic congestion and contribute to the ongoing 

debates concerning the effectiveness of LRT service to increase transit ridership and 

relieve traffic congestion across Urban Areas in the U.S. 

 

Methodology 

The Synthetic control method (SCM) was original proposed by Abadie and 

Gardeazabal (2003). The SCM circumvents two shortcomings of traditional comparative 

case studies (Abadie et al., 2012). First, in traditional comparative case studies, 

comparison cases selection largely relies on the subjective measures of affinity between 

treated cases and control cases in most applications, and such ambiguity of comparison 

cases selection is hard to eliminate. The synthetic control method constructs a “synthetic” 

control case to compare with the treated case with a data-driven approach. The data-

driven procedures reduce the discretion of control UAs selection.  Second, characteristics 

of the “synthetic” control case are much more similar to the characteristics of the treated 

UA than any single actual control case. The synthetic control method constructs a 



58 

 

“synthetic” control case with weighted average of actual control cases. The synthetic 

counterpart reproduces what the trajectory of counterfactual outcomes of treated cases 

would have shown without intervention.  

Let scalar wj (j=2, … , J+1, J is the number of control UAs) be the nonnegative 

weight of UA in the synthetic treated UA. All wj construct the weight vector W (J × 1), 

and sum of wj is equal to one. The value of W represents relative contribution of control 

UAs, and the weighted average of control UAs, namely “synthetic” control UA, is 

supposed to be the most closely to the relevant transportation characteristics of the actual 

treated unit before the service of light rail project.  

We define X0 as a (K × J) matrix which contains pre-service values of K 

transportation characteristics predictors for J control UAs, and X1 be a (K × 1) vector of 

values of the same predictor for the treated UA, and V (K × K) as a symmetric matrix of 

nonnegative components. The values of the diagonal elements of V assign weights to the 

predictor in X0 and X1. To construct a synthetic control UA that best approximates the 

actual treated UA, the optimal choice of W should minimize 

 

||𝑋1 − 𝑋0𝑊|| =  √(𝑋1 −  𝑋0𝑊) ′𝑉(𝑋1 −  𝑋0𝑊) 

 

where the optimal selection of V should minimize the mean square error of the 

synthetic control estimator. In our study, V is chosen to reproduce the outcome variable 

of treated UA before service year. We define Y1 as (T × 1) vector of values of out for 

treated UA from 1982 to 2011, and Y0 (T × J) as a matrix whose elements are values of 
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outcome variable for treated UA. The counterfactual outcome of the treated UA in the 

absence of new LRT projects is the outcome of the synthetic control UA. Since synthetic 

counterpart is a weighted average of control units and the weight is restricted to be 

between zero and one and to be summed to one, avoiding extrapolation. The synthetic 

control method makes the contribution of each actual control unit explicit. The weights 

represent the relative contribution of each control unit to the counterfactual traffic 

congestion scenario in a treated UA.  Since the values of weights are restricted to be 

between zero and one, the synthetic control method avoids extrapolation biases in the 

regression-based analysis (King & Zeng, 2006). 

 

𝑌1
∗ =  𝑌0𝑊∗ 

 

Abadie and Gardeazabal (2003) assessed the impact that terrorism has had on 

economic growth for the Basque County with SCM, using other Spanish regions to 

construct a “synthetic” Basque country without Terrorism. They estimated the effect of 

terrorism on the GDP and found that terrorist activity explains the GDP gap almost 

perfectly. In this study, the synthetic control method is applied to estimate the effects of 

new LRT lines on traffic congestion and transit ridership. Since the synthetic control 

method using a weighted average of control units to reproduce counterfactual of the 

treated unit in the absence of intervention, the outcomes of interest of treated units are 

required to lie between the range of outcomes of interest of control cases, otherwise, the 

synthetic control method is not applicable.  
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Data and sample  

This study uses annual Urban Area (UA) level panel data from 1982 to 2017. A 

primary data source is the Urban Mobility Report (UMR) from Texas A&M 

Transportation Institute. The primary outcomes of interest are traffic congestion and 

transit ridership, measured as Travel Time Index (TTI) and Public Transit Annual 

Passenger Miles (PTAPM) respectively. TTI is the ratio of the peak-period travel time 

compared to the free-flow travel time. A TTI of 1.20 indicates a 10‐minute free‐flow trip 

takes 12 minutes in the peak period. In the dataset, TTI is available from 1982 to 2017; 

PTAPM is available from 1982 to 2011 (Schrank et al., 2012, 2019). The UMR panel 

dataset also includes other characteristics for each UA: population, auto travel cost, 

average state gasoline cost, average state diesel cost, freeway lane-miles, arterial street 

lane-miles, peak period travelers, commuters. Besides, this study collects employment 

and income data from the Bureau of Economic Analysis.  

Since traffic congestion is more severe in large UAs, this study focuses on large 

UAs. In the UMR dataset, there are 47 UAs in the very large and large category, 

including 15 UAs with population over 3 million and 32 UAs with population between 1 

million and 3 million.  

This study attempts to estimate the effect of New Starts LRT projects on transit 

ridership and traffic congestion. Of these 47 UAs, 20 UAs that do not receive New Starts 

support are potential control UAs. After reviewing transportation systems in these 20 

UAs, I find that there are 8 UAs with rail-like transit service, including light rail, heavy 

rail, commuter rail, monorail and automated guideway. Thus, these 8 UAs cannot be used 



61 

 

as control units. Finally, 12 UAs without any types of rail-based transit service are 

identified as control units, listed in Table 4. 1. These 12 UAs make up the donor pool for 

the SCM analysis. For each treated UA, these 12 control UAs are used to construct its 

synthetic counterpart to examine what the transit ridership and traffic congestion would 

have been in the absence of light rail projects. 

 

Table 4. 1 Control urban areas 

Urban Area  TTI in 2017 PTAPM (million) in 

2011  

Cincinnati OH-KY-IN 1.17 112.00 

Columbus OH 1.19 72.30 

Detroit MI 1.24 309.00 

Indianapolis IN 1.18 39.90 

Kansas City MO-KS 1.15 69.50 

Louisville KY-IN 1.18 65.90 

Milwaukee WI 1.17 154.50 

Nashville-Davidson TN 1.22 69.90 

Providence RI-MA 1.17 96.20 

Raleigh-Durham NC 1.17 100.40 

San Antonio TX 1.23 207.00 

Tampa-St. Petersburg FL 1.22 146.50 

 

The synthetic control method requires a certain period of pre-treatment data to 

construct the synthetic control counterpart. The existing studies generally use at least 10 

years of pre-treatment data (Abadie et al., 2011). The data used in this study began in 

1982. To ensure enough years in the pre-treatment period, this study selects UAs that 

began LRT service in and after 1992 as treated UAs. Besides, the SCM approach restricts 

the weights of the actual control units to be between zero and one to avoid extrapolation 

when constructing the “synthetic” control unit. Thus, UAs with values of outcomes of 
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interest outside the range of values of outcome of interests of the control units are 

excluded in this analysis. Taking the Seattle UA as an example, its TTI is much higher 

than those of the control UAs, shown in Figure 4. 1.  

 

 

Figure 4. 1 TTI in Seattle WA and control UAs 

 

After excluding UAs with outcomes of interest outside the range of control UAs, 

there are three UAs remaining, including Charlotte NC-SC and St. Louis MO-IL, and 

Virginia Beach VA. For each treated UA, the SCM approach is employed to examine the 

effect of LRT on transit ridership and traffic congestion. Because the operation year of 

LRT in Virginia Beach VA is 2011 and PTAPM is only available from 1982-2011, this 

study does not investigate the effect of LRT on transit ridership in Virginia Beach VA.  
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Table 4. 2 Selected Treated UAs 

UA Name LRT service   Length 

(mile) 

New Starts 

LRT project 

service year  

PTAPM 

in 2011 

TTI in 

2017 

Charlotte 

NC-SC 

Lynx Blue Line 9.6 2007 139.00 1.22 

St. Louis 

MO-IL 

MetroLink  46.0 1993 300.20 1.17 

Virginia 

Beach VA 

Tide light rail 7.4 2011 122.00 1.17 

 

Results 

Charlotte NC-SC  

Transit ridership  

Figure 4.2 shows the PTAPM trajectory for Charlotte NC-SC and its synthetic 

counterpart from 1982 to 2011. During the pre-service period, the synthetic Charlotte 

NC-SC closely reproduces the PTAPM trajectory for the actual Charlotte NC-SC. After 

the operation of the New Starts LRT, two lines gradually diverge. The PTAPM in the 

actual Charlotte NC-SC is higher than that in the synthetic Charlotte NC-SC. The effect 

of LRT project on transit ridership is measured by the difference of PTAPM between the 

synthetic Charlotte NC-SC and the actual Charlotte NC-SC.  After the operation of the 

LRT project, the difference increases. The results suggest that the New Starts LRT 

project has an effect on transit ridership in Charlotte NC-SC.  
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(a) Trends in PTAPM

 

(b) Gap between Treatment and Synthetic Control 

            Figure 4. 2 PTAPM in Charlotte NC-SC 
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Traffic congestion  

Figure 4. 3 visualizes the TTI trajectory for Charlotte NC-SC and its synthetic 

counterpart for the 1982-2017 period. During the pre-service period, the synthetic 

Charlotte NC-SC almost precisely reproduces the TTI for the Charlotte NC-SC. After the 

operation of the LRT service, TTI in the actual Charlotte NC-SC increased in the first 

year and then decreased, while TTI of the synthetic Charlotte NC-SC decreased first and 

then increased. Two lines intersect around 2016.  
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(a) Trends in TTI 

 

(b) Gap between Treatment and Synthetic Control 

Figure 4. 3 TTI in Charlotte NC-SC 
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Our estimate of the effect of new LRT service on traffic congestion is measured 

by the difference of TTI between the synthetic Charlotte NC-SC and the actual Charlotte 

NC-SC, shown in Figure 4. 3. After the operation of the LRT service, the difference first 

widens and then gradually narrows and becomes negative around 2016. Our results 

suggest that the new LRT service has had a negative effect on traffic congestion, that is, it 

worsens the congestion measured by TTI.  

 

St. Louis MO-IL 

Transit ridership 

Figure 4. 4 shows the PTAPM trajectory for St. Louis MO-IL and its synthetic 

counterpart from 1982 to 2011, and the difference in PTAPM between the actual St. 

Louis MO-IL and the synthetic St. Louis MO-IL. The synthetic St. Louis MO-IL closely 

reproduces the PTAPM for St. Louis MO-IL during the pre-treatment period. After the 

operation of the LRT service, the two lines substantially diverge. After the operation of 

the new LRT project, the difference increases over time.  The results suggest that the new 

LRT project has a pronounced positive effect on transit ridership in St. Louis MO-IL.  
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(a) Trends in PTAPM 

 

(b) Gap between Treatment and Synthetic Control 

Figure 4. 4 PTAPM in St. Louis Mo-IL 
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Traffic congestion  

Figure 4. 5 shows the TTI trajectory of St. Louis MO-IL and its synthetic 

counterpart for the 1982-2017 period. During pre-treatment period, the synthetic St. 

Louis MO-IL closely reproduces the TTI for St. Louis MO-IL. In the first five years 

immediately following the operation of new LRT service, TTI in the actual St. Louis 

MO-IL and its synthetic counterpart is close. From 1998 onward, the gap between the 

two lines varies over time, but constantly stays negative, indicating an effect of the New 

Starts LRT projects on reducing congestion (lowering TTI) for the St. Louis MO-IL UA.   
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(a) Trends in TTI 

 

(b) Gap between Treatment and Synthetic Control 

Figure 4. 5 TTI in St. Louis Mo-IL 
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Virginia Beach VA 

Traffic congestion  

Figure 4. 6 shows the TTI for Virginia Beach VA and its synthetic counterpart 

from 1982 to 2017. The synthetic Virginia Beach VA exactly reproduces the TTI for the 

actual Virginia Beach VA during the pre-treatment period. After the operation of LRT 

service, the two lines are still close. The effect of new LRT service on traffic congestion 

is measured by the difference between the actual Virginia Beach VA and its synthetic 

Virginia Beach VA. The difference is small after the operation of the new LRT service. 

The results suggest no effect of New Start LRT service on traffic congestion in Virginia 

Beach VA.  
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(a) Trends in TTI 

 

(b) Gap between Treatment and Synthetic Control 

Figure 4. 6 TTI in Virginia Beach VA 
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Table 4. 3 GSCM Results across UAs shows the analysis results of three UAs. 

The average treated effects and p-values are calculated with the generalized synthetic 

control method (Xu, 2017). The results suggest that the effect of the new LRT projects on 

transit ridership and traffic congestion varies across UAs. For transit ridership, the New 

Starts LRT service increases transit ridership in two UAs: the effect is significant in St. 

Louis MO-IL and the effect is not significant in Charlotte NC-SC. This probably because 

the New Starts LRT project that began service in 2007 is small in Charlotte NC-SC. 

Though this New Starts LRT service is the first trail line in Charlotte NC-SC, it is only a 

9.6-mile route line, accounting for a small proportion of transportation supply.  

For traffic congestion, the effects of the new LRT service on traffic congestion are 

not significant, though the figures for traffic congestion show that there is a relief effect 

on traffic congestion. One reason may be that driving mode is the dominant mode in 

these UAs and transits only accounts for a limited share in daily travel.  

 

Table 4. 3 GSCM Results across UAs  

 

UA Name  

Average Treated Effect 

PTAPM (p value) TTI (p value) 

Charlotte NC-SC 18.38 million (0.416) 0.013 (0.053) 

St. Louis MO-IL 93.31 million (0.0330) -0.014 (0.556) 

Virginia Beach   -0.003(0.931) 

 

Conclusions  

This chapter of the dissertation focuses on the effects of New Starts LRT Projects 

on transit ridership and traffic congestion at the regional level. This study applies the 
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SCM to quantify and compare transit ridership and traffic conditions before and after the 

launch of new LRT projects in three UAs.  

In this study, the effects of new LRT project on transit ridership and traffic 

congestion are different across UAs. These are consistent with expectations (Beaudoin et 

al., 2015). There is regional spatial heterogeneity across UAs. The effects on transit 

ridership are significant, while the effects on traffic congestion are not significant. LRT 

only accounts for a limited share in commuting travel. Thus, the construction of new LRT 

service is hard to exact a pronounced relief effect at the regional level. The results also 

indicate that the effect of new LRT service on transit ridership and traffic congestion 

changes over time at the regional level. 

This study illustrates the advantages of using the SCM approach. The data-driven 

procedures for constructing synthetic unit reduce the subjective selection of comparison 

units. Most synthetic control UAs reproduce the counterfactual of the treated UA in the 

absence of new LRT projects. This study also demonstrates the applicability of synthetic 

control method on studying the effects of transportation policies and investments at the 

UA-level and how it complements and facilitate comparative case studies in the 

transportation field. The SCM provides a counterfactual analysis and the results are much 

more intuitive to interpret than previous research results using a model-based approach or 

regression-based empirical analysis.  

The approach, however, has some limitations. First, though the synthetic control 

method provides a convenient way to create a comparable control unit, the outcome of 

interest should be within the range of outcomes of actual control units due to positive 
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weight restriction. Second, in this study, most large UAs have LRT and therefore there 

are a limited number of large UAs in the donor pool, which makes large UAs unable to 

be analyzed with the synthetic control method. Third, whether the SCM approach can 

construct a comparable synthetic largely depends on the donor pool. If a synthetic 

counterpart could not be constructed with the donor pool, a solid conclusion could not be 

drawn. And there are few ways to say definitively whether a counterfactual estimate is 

acceptable or not.  
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5. Discussions and takeaways 

This research provides a closer look at the impact of new LRT service on transit 

ridership and traffic congestion at different geographical levels by utilizing newer data 

sources. At the corridor level, using transit boarding data and high-resolution historical 

traffic information from archival databases and iPeMS, this study comprehensively 

investigates the short- and long-term effects of LRT through case studies of two LRT 

lines in Portland, Oregon region. Using a quasi-experimental design, this study estimated 

the effects of LRT on transit ridership as well as traffic congestion. In contrast to existing 

research, this study used high-resolution transit and travel speed data from a longer time 

period. Such dataset allows for comprehensively temporal and spatial evaluation. For 

each LRT line, transit ridership and traffic conditions before and after opening were 

compared and difference-in-difference (DID) regression models were estimated in order 

to quantify the effects. The results demonstrated that both LRT lines increased transit 

ridership in the short- and long-term. The Orange Line contributed to an increase of 6,404 

riders on average and the Green Line 7,225, and the effect is significant especially in the 

first three years. Also, it is estimated that travel speed increased by 1.35~2.35 mph for the 

Orange Line and 1.12~5.12 mph for the Green Line. Although LRT relieved traffic 

congestion in the short-term, it may have no significant effect on traffic congestion in the 

long-term, probably due to induced traffic demand. The effects of LRT varied by LRT 

lines because of various local land use and transportation systems.  

Generally, at the corridor level, my work may contribute in terms of literature and 

data handling. In addition to contributing to the literature on the effects of transit in terms 
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of travel ridership, speed and congestion, the results of this study demonstrate how high-

resolution archival transportation data enable analyses that had been previously 

impossible. The growing availability of transportation data of high temporal and spatial 

resolution over a long time period provides a unique opportunity to evaluate the effects 

and evolution of transportation policies and projects like LRT, which helps to explain the 

seemingly conflicting empirical results of existing studies. 

However, several important points are worth exploring further. But limited to the 

focus and scope of this dissertation, I do not give them in-depth discussion. As mentioned 

earlier, “induced traffic demand” is one of the keys for traffic effect evaluation, 

especially for the causal inference between the launch of transit and potential traffic 

congestion alleviation in the long term. I find evidence that in the long term, the effect of 

LRT on traffic congestion will be weaker than that of the first three years, and this is 

probably because people adjust their behaviors (change traffic routes, move home or 

work location, etc.) and for high demand areas and inbound/outbound option (AM 

inbound or PM outbound), long term effect (three years or more) tends to be 

insignificant. Based on the analysis at the corridor level, I anticipate that the future 

research will provide more evidence and insights on the cutting point of long term from 

short term and LRT long term corridor traffic effect mechanism (e.g., interaction between 

induced traffic demand, local land use & transportation systems, and people adjustment 

of mismatching). 

Study conducts an empirical analysis of the impacts of new light rail transit (LRT) 

lines on traffic congestion in three UAs at the regional level. To capture the transit 
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ridership and traffic congestion effect of new LRT lines, we use a synthetic control 

method to construct a “synthetic” control UA that closely approximates the 

counterfactual transit ridership and traffic congestion scenario in the absence of light rail 

projects. Results indicated that New Starts LRT projects contributed to transit ridership in 

most UAs but they did relieve traffic congestion in limited UAs, and that the effect 

changed over time and varied across UAs. The analysis of LRT miles indicates that UAs 

with New Starts LRT projects are more likely to build more LRT.  

To quantify the regional level effect of LRT on traffic ridership and congestion, 

instead of applying traditional case studies, I select to use SCM method to do the 

comparison. Different from sampling-based inference (e.g. DID), SCM is specifically 

designed to facilitate the evaluation of policy intervention or events taking place at an 

aggregate level (e.g. school districts, cities, countries). Although SCM is an appropriate 

method for the regional level analysis, it has been technically difficult to draw 

fundamentally solid and detailed causal inference comparable to what can be done at the 

corridor level. In Chapter 4, SCM was used to visualize the long-term trend of LRT on 

traffic ridership and congestion, which provided evidence that LRT region may subject to 

more severe traffic congestion in the long run. Moreover, given that the 3 UAs are 

subject to different land use and transportation systems, further studies may be conducted 

to explore why LRT in different regions contributes to different traffic effects. Last but 

not least, although the results show some evidence that the traffic congestion has become 

worse after the operation of the new LRT service, LRT undoubtedly has provided local 
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people with more economic opportunities and social benefits (e.g. easy accessibility and 

mobility).    

This study provides some takeaways for the practitioners in transportation policy 

and planning. Not only quantifying the benefits (e.g. increase ridership and speed, relieve 

congestion in the short term), this research also provides evidence of the evolution of the 

effect of new LRT service on transit ridership and traffic congestion. These findings may 

help practitioners to make potential transit investment decision. The findings of this study 

indicate the short and long-term potential effects, including transport ridership, travel 

speed and traffic congestion, of new LRT service, and hence will be useful for 

practitioners to optimize transit system to maximize benefits. 

This study also makes contributions to the transport modeling and traveler 

behavior research, and may help to fill the gap of existing inconsistent documents. First, 

this study illustrates how high-resolution archival transportation data facilitate impact 

analysis of transportation policies and projects previously difficult. Due to the lack of 

detailed travel time data, most existing studies have to use approximate measurements of 

traffic congestion, such as AADT and VMT. The high-resolution data make it possible to 

use direct measurements of congestion and trace the changes of the effect on traffic 

congestion. Second, this study illustrates an application of novel methods like SCM to 

study the effects of semi-unique policies and projects, like New Starts projects. Despite 

the widespread availability of data at the regional level, comparative studies with 

rigorous methodology at the regional level are rare. A primary reason is that it is hard to 

find a comparable control region. By constructing a “synthetic” control unit that closely 
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approximates the counterfactual scenario in the absence of treatment with the data-driven 

procedure, the SCM addresses the difficulty in control unit selection in comparative 

studies. Another advantage of the SCM over cross-sectional and panel data analysis is 

that it can trace the changes of the outcomes of interest. Lastly, this study helps explain 

the inconsistent results of existing research and provide additional in-depth understanding 

of the effects of LRT. Results of the evolution of the effects over time explain the 

inconsistent evidence due to different time dimensions. In addition, this dissertation 

analyzes the effects at different levels, which could explain the inconsistency resulted 

from differential spatial scales.  
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