
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1-28-2021

Automated Test Generation for Validating SystemC Automated Test Generation for Validating SystemC

Designs Designs

Bin Lin
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lin, Bin, "Automated Test Generation for Validating SystemC Designs" (2021). Dissertations and Theses.
Paper 5659.
https://doi.org/10.15760/etd.7531

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5659&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5659
https://doi.org/10.15760/etd.7531
mailto:pdxscholar@pdx.edu

Automated Test Generation for Validating SystemC Designs

by

Bin Lin

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Fei Xie, Chair

Jingke Li

Suresh Singh

Xiaoyu Song

Portland State University

2021

c© 2020 Bin Lin

i

ABSTRACT

Modern system design involves integration of all components of a system on a

single chip, namely System-on-a-Chip (SoC). The ever-increasing complexity of

SoCs and rapidly decreasing time-to-market have pushed the design abstraction to

the electronic system level (ESL), in order to increase design productivity. SystemC

is a widely used ESL modeling language that plays a central role in modern SoCs

design process. ESL SystemC designs usually serve as executable specifications

for the subsequent SoCs design flow. Therefore, undetected bugs in ESL SystemC

designs may propagate to low-level implementations or even final silicon products.

In addition, modern SoCs design often involves intellectual properties supplied by

outsourced design services and untrusted third-party vendors, as well as intensive

usage of electronic design automation tools provided by different vendors. Given

this situation, modern SoCs are vulnerable to malicious implants such as hardware

Trojans. Bugs and Trojans in silicon products can be extremely expensive and

dangerous, especially in safety critical systems. Therefore, it is critical to detect

bugs and Trojans as early as possible during SoCs design process. However, it is

a challenging task for SystemC designs due to their object-oriented features and

inherent concurrency, as well as the stealthy nature of hardware Trojans.

We propose a framework to validate SystemC designs with automated test

generation. We first develop an approach for generating high-quality test cases

ii

for SystemC designs using symbolic execution. To improve the scalability, we

further propose an approach to test generation for SystemC designs with binary-

level concolic testing techniques. To evaluate the quality of the generated test

cases, we adopt code coverage and assertion-based verification techniques. We

further extend our test generation framework for hardware Trojan detection in

behavioral SystemC designs.

In addition, we also develop a comprehensive suite of benchmark designs for

SystemC verification and validation. SystemC verification has been studied for

around two decades. However, so far, different verification approaches are eval-

uated on different sets of SystemC designs, among which some designs are not

updated according to the latest SystemC Standard. Lacking common benchmarks

makes it difficult to compare the performances of various approaches. Our bench-

mark covers many application domains and SystemC core features, as well as

conforming to the latest SystemC Standard.

To evaluate the efficiency, effectiveness and scalability of our test generation

framework, we have applied it to the benchmark that we developed. Our exper-

imental results demonstrate that the test cases generated by our approaches are

able to achieve high code coverage and detect design errors effectively. In our

experiments, our framework detects two severe errors, one functional error and

one out-of-bound access. We have also applied our hardware Trojan detection

approach to an open source SystemC benchmark with various hardware Trojans.

Our approach is able to detect those hardware Trojans effectively and efficiently.

The extensive experiments with our framework show that it scales to designs with

practical sizes.

iii

DEDICATION

In loving memory of my grandfather, Shaorong

To my parents, Qianlu and Aizhi

To my older sister, Lihong

To my wife, Ru

To my son, Luke

iv

ACKNOWLEDGMENTS

Without the generous help and support from many professors, staffs, and colleagues

in the department of computer science, as well as many friends and my family, this

dissertation could not have been accomplished. I would like to express my sincere

appreciation to all of them.

First and foremost, I would like to express my gratitude to Prof. Xie. I have

been very fortunate to have Prof. Xie as my advisor. I am deeply grateful for

his strong support and enlightening guidance through my Ph.D. study. He taught

me how to conduct research and become an independent researcher. Without

his continuous support and insightful advice, this dissertation would not have

been accomplished. His solid knowledge and professional expertise with positive

attitude have influence on my Ph.D. study and future career deeply.

I would like to thank Prof. Jingke Li, Prof. Suresh Singh, and Prof. Xiaoyu

Song for serving on my doctoral committee. Thanks for their inspirational feedback

for my research and valuable comments on my dissertation. I am grateful for their

sacrifice of valuable time.

Thanks to Dr. Kai Cong and Dr. Zhenkun Yang, many research ideas of

this dissertation come from productive discussions with them. I sincerely thank

them for being excellent collaborators. I am also grateful that I have this great

opportunity to work with a talented group: Christopher Havlicek, Jinchao Chen,

v

Dejun Qian, Li Lei, Jialu Wang, Qin Wang, Haifeng Gu, Zhe Li, and Lai Xu.

I would also like to thank my parents, older sister and brother-in-law for their

continuous support and endless love. I could never have accomplished this without

their unconditional support. I would express my special thanks to my wife Ru Jia

for her sound and complete love. In the past six years, she shared every moment

with me and encouraged me when I felt frustrated. Last but not least, I would

like to recognize the influence of my little son, Luke, who was born during this

dissertation writing. He has been bringing me so much joy and hope.

vi

TABLE OF CONTENTS

Abstract . i

Dedication . iii

Acknowledgments . iv

List of Tables. ix

List of Figures . x

List of Abbreviations . xii

Chapter 1 Introduction . 1

1.1. Motivation and Problem Statement. 1

1.1.1 Motivation . 1

1.1.2 Problem statement . 3

1.2. Proposed Solution . 4

1.3. Dissertation Outline . 6

Chapter 2 Background . 8

2.1. SystemC . 8

2.1.1 SystemC Language . 8

2.1.2 Design Methodology with SystemC 11

2.1.3 SystemC Verification . 14

2.2. Symbolic Execution . 17

2.3. Concolic Testing . 18

2.4. Hardware Trojan . 19

2.5. Preliminary Definitions . 20

vii

Chapter 3 Symbolic Execution of SystemC Designs 22

3.1. Overview . 22

3.2. Test-Harness Generation 23

3.3. Scheduler . 24

3.4. Symbolic Execution of SystemC Designs 28

3.5. Test-Case Generation. 30

3.6. Experimental Results. 31

3.6.1 Coverage Methodology . 32

3.6.2 Comparison with Random Testing 34

3.7. Summary . 36

Chapter 4 Concolic Testing of SystemC Designs 37

4.1. Overview . 37

4.2. Testbench Generation . 40

4.3. Concolic Test Generation 42

4.4. Test-Case Selection . 44

4.5. Testing with Generated Test Cases 44

4.6. Experimental Results. 45

4.6.1 Code Coverage Improvement 47

4.6.2 Comparison with Random Testing 49

4.6.3 Bug Detection . 51

4.7. Summary . 52

Chapter 5 Hardware Trojan Detection in SystemC Designs . . . 54

5.1. Motivation . 54

5.2. Overview . 55

5.2.1 Threat Model . 55

5.2.2 Workflow . 56

5.3. Hardware Trojan Detection 59

5.3.1 Selective Concolic Test Generation 59

5.3.2 Coverage-guided State Search Strategy 62

5.3.3 Hardware Trojan Detection 62

5.4. Experimental Results. 64

5.4.1 Effectiveness and Efficiency 65

5.4.2 Evaluation of Two Optimization Strategies 65

5.4.3 Comparison with State-of-the-Art Approaches 69

5.5. Summary . 69

viii

Chapter 6 SCBench Benchmark 71

6.1. Motivation . 71

6.2. Overview . 72

6.3. Design Descriptions . 76

6.4. Design Analysis . 81

6.5. Design Validation . 91

6.6. Summary . 91

Chapter 7 Related Work . 93

7.1. SystemC Verification . 93

7.1.1 Formal Verification of SystemC Designs 93

7.1.2 Simulation-based Verification of SystemC Designs 96

7.1.3 Hybrid Approaches to SystemC Verification 98

7.1.4 Emerging Techniques for SystemC Verification 98

7.2. Hardware Trojan Detection 100

Chapter 8 Conclusions and Future Research 101

8.1. Conclusions . 101

8.2. Future Research . 102

References . 105

ix

LIST OF TABLES

3.1 Summary of 11 SystemC designs . 31

3.2 Time and memory usage, and coverage results 33

4.1 Summary of designs, time and memory usage 46

4.2 Coverage improvement over seeds 49

4.3 Assertion coverage . 52

5.1 Experimental results of SCT-HTD and comparison with the state-

of-the-art approaches . 66

6.1 Summary of SCBench benchmark suite 73

6.2 Numbers of operations for each design 81

6.3 Numbers of statements for each design 84

6.4 Representative data types and features of SystemC 88

6.5 Coverage of SystemC core features 90

7.1 Summary of formal approaches for SystemC verification 94

7.2 Summary of simulation-based approaches for SystemC verification . 97

7.3 Summary of hybrid approaches for SystemC verification 99

x

LIST OF FIGURES

2.1 Semantics of the SystemC scheduler 10

2.2 An example of a SystemC design 12

2.3 SystemC design methodology . 13

2.4 Verification flow with model checking 15

2.5 Verification flow with simulation-based approaches 16

2.6 A symbolic execution example . 18

2.7 Concolic Test Generation . 19

2.8 Generic structure of a hardware Trojan in a design 20

3.1 Workflow of SESC . 23

3.2 Skeleton of the test harness for the design shown in Figure 2.2 . . . 25

3.3 Skeleton of flattened result for the design shown in Figure 2.2 . . . 29

3.4 Architecture of RISC CPU . 32

3.5 Line coverage of SESC testing vs. Random10 and Random100 for

11 SystemC designs. SESC beats both by as much as 66%. 35

3.6 Branch coverage of SESC testing vs. Random10 and Random100

for 11 SystemC designs. SESC beats both by as much as 71%. . . . 35

4.1 Workflow of concolic testing of SystemC designs 38

4.2 An example of stimuli generation module for the design shown in

Figure 2.2 . 41

4.3 Line coverage improvement on 19 total designs 48

4.4 Branch coverage improvement on 19 total designs 48

4.5 The cumulative progression of line coverage 50

4.6 The cumulative progression of branch coverage 50

5.1 Adversarial threat model targeted by SCT-HTD 56

5.2 Selective concolic testing for hardware Trojan detection 57

5.3 Selective concolic test generation 60

5.4 Number of generated test cases . 67

xi

5.5 Time usage . 68

5.6 Maximum memory usage . 68

6.1 Occurrence rates of operations per design 87

6.2 Occurrence rates of statements per design 87

6.3 Testbench for a SystemC design . 91

6.4 Code coverage results of the benchmark suite 92

8.1 Adversarial threat model . 103

8.2 Workflow of hardware Trojan detection in Verilog RTL 104

xii

LIST OF ABBREVIATIONS

SoC System on a Chip

TLM Transaction-Level Modeling

ESL Electronic System Level

RTL Register Transfer Level

IP Intellectual Property

EDA Electronic Design Automation

DUV Design Under Validation

ABV Assertion-Based Verification

FIFO First In, First Out

HLS High-Level Synthesis

IR Intermediate Representation

LoC Line of Code

SAT Boolean Satisfiability Problem

SMT Satisfiability Modulo Theories

SMV Symbolic Model Verifier

SMC Symbolic Model Checking

BMC Bounded Model Checking

POR Partial Order Reduction

1

Chapter 1

INTRODUCTION

1.1 MOTIVATION AND PROBLEM STATEMENT

1.1.1 Motivation

Modern system design involves integration of all components of a system on a single

chip, namely System-on-a-Chip (SoC). The ever-increasing complexity of SoCs and

rapidly decreasing time-to-market have pushed the design abstraction to the elec-

tronic system level (ESL), in order to increase design productivity. SystemC [49] is

a widely adopted ESL modeling language that plays a central role in modern SoCs

design process. To enable early exploration of design spaces and verification at a

higher level of abstraction, SystemC has been widely used for system-level mod-

eling, architectural exploration, functional verification, and high-level synthesis.

These SystemC designs serve as executable specifications for the subsequent SoCs

design flow. Therefore, quality assurance of SoCs in ESL is extremely important,

since undetected bugs in these designs may propagate to low-level implementations

or even final silicon products. Cost of detecting and fixing bugs in low-level imple-

mentations is much higher than in ESL. Moreover, bugs that remain undiscovered

in final silicon products can be extremely expensive. If buggy products are released

to the market, they may cause catastrophic consequences and even endanger lives,

2

especially in safety-critical systems. On the other hand, quality assurance of SoCs

developed with the SystemC language is very challenging. First, the SystemC

language heavily uses objected-oriented features, hardware-oriented data types,

and inherent concurrency. Second, modern SoCs design often involves intellectual

properties (IPs) supplied by outsourced design services and untrusted third-party

vendors, as well as intensive usage of electronic design automation (EDA) tools

provided by various vendors. Given this situation, modern SoCs are vulnerable to

malicious implants such as hardware Trojans that intend to add, delete, or modify

functionalities of SoCs. Hardware Trojans are stealthy in nature because they are

only triggered under very rare conditions. Therefore, innovative approaches are

highly demanded to find bugs and Trojans in ESL SystemC designs.

Existing formal approaches to SystemC verification is not scalable yet, because

formal methods require formal semantics that describe the transition relation of

a design. This is nontrivial for SystemC designs due to their heavy usage of

object-oriented features, event-driven simulation semantics, and inherent concur-

rency. Dynamic validation, also known as the simulation-based approach, is the

workhorse of SystemC validation [96]. SystemC simulation requires a set of con-

crete test cases. However, test cases for SystemC simulation are manually written

or randomly generated so far. Manual test writing requires indepth knowledge of

a design under validation (DUV), which is time-consuming, labor-intensive, and

error-prone. Random testing, in contrast, is fast. However, many redundant test

cases may be generated, which results in long simulation time. Furthermore, ran-

dom testing usually leaves hard-to-reach segments and corner cases unexplored

where bugs are likely to appear and hardware Trojans are often hidden.

Recently, symbolic execution [54], which can generate effective test cases and

3

achieve high code coverage, has been widely used for test generation [8,13,26,67].

To mitigate the path explosion problem of pure symbolic execution, concolic (a

portmanteau of concrete and symbolic) testing [90] that combines concrete exe-

cution and symbolic execution has achieved considerable success in both software

and hardware domains [25,34,37,91]. Symbolic execution and concolic testing are

good at reaching corner cases and find deep bugs. Thus, they have great potential

to play an important role in generating high-quality test cases that are able to

detect design errors and hardware Trojans in SystemC designs.

1.1.2 Problem statement

This dissertation research is concerned with automated test generation and bug

detection, as well as hardware Trojan detection in SystemC designs during pre-

silicon stage. We observe the following three key challenges to achieve our goals.

• High complexity of SystemC designs. The SystemC language heavily utilizes

object-oriented features and hardware-oriented data structures, as well as

event-driven simulation semantics and inherent concurrency. These charac-

teristics make it very challenging to generate high-quality test cases that are

able to achieve high code coverage, and detect design errors and hardware

Trojans in SystemC designs.

• High stealthiness of hardware Trojans. Hardware Trojans are embedded into

a design with malicious intent such as functionality modification, sensitive

information leakage, and denial of services. In order to not be discovered

during design validation phase, hardware Trojans are usually only triggered

under rare conditions. This stealthy nature makes them very hard to be

detected during functional validation process.

4

• Lacking of common and updated benchmarks. In the literature, different

SystemC verification approaches are evaluated on different sets of SystemC

designs, among which some designs are not updated according to the latest

SystemC Standard. Lacking of common and updated benchmarks makes it

difficult to evaluate the performances among various verification approaches.

1.2 PROPOSED SOLUTION

We have proposed a scalable framework that generates test cases automatically

for SystemC designs in the early SoCs design stage. Test cases generated by our

framework are able to achieve high code coverage, and detect design errors and

hardware Trojans effectively. In particular, this dissertation includes the following

three key components.

• Test generation and bug detection. High-quality test cases that are able to

achieve high code coverage and detect bugs are critical to simulation-based

validation of SystemC designs. However, test cases are manually written or

randomly generated so far, which is not effective. We have proposed and

developed high-quality test case generation approaches for SystemC designs.

• Hardware Trojan detection. New design methodologies such as outsourced

design services and widely used third-party IPs result in the partial relin-

quishment of the control over SoCs design process. Therefore, hardware

vulnerabilities such as hardware Trojans have raised serious concerns. On

the other hand, it is very challenging to detect hardware Trojans because

they are only triggered in very rare conditions. We have developed an ap-

proach that is able to detect hardware Trojans in behavioral SystemC designs

effectively and efficiently.

5

• A suite of benchmark designs. Common SystemC benchmarks, which are not

available currently, are required to evaluate the performances of SystemC ver-

ification and validation approaches. We aimed to fill this gap by developing

a benchmark that is freely available online. Therefore, we have developed

SCBench, a comprehensive suite of benchmark designs for SystemC verifica-

tion and validation. The benchmark covers a variety of application domains

and most core features of the SystemC language.

More details of these components are summarized in the following.

Symbolic Execution of SystemC Designs. We first developed an approach

to test generation for SystemC designs using symbolic execution. It includes three

key steps: test-harness generation, symbolic execution, and test-case generation. A

SystemC DUV and its test harness are compiled together to LLVM bitcode. Then,

the symbolic execution engine takes the LLVM bitcode as input and executes it

symbolically. For each explored path, the path constraints that are represented by

symbolic expressions are sent to a constraint solver, which returns a test case if

the constraints are satisfiable.

Concolic Testing of SystemC Designs. Although symbolic execution of Sys-

temC designs is able to generate high code coverage test cases, it requires much

manual effort to model hardware-oriented data types. Therefore, we developed

an approach to generating test cases for SystemC designs in binary-level using

concolic testing techniques. First, a given SystemC DUV is compiled into an exe-

cutable binary by linking the SystemC library. Then, the binary is executed in a

virtual machine concretely, during which the concrete execution trace is dumped.

Afterwards, the dumped trace is explored by a symbolic execution engine to gener-

ate test cases. In addition, we have integrated assertion-based verification (ABV)

6

techniques to detect design errors.

Hardware Trojan Detection in SystemC Designs. Symbolic execution and

concolic testing are good at generating test cases that are able to reach corner cases

where hardware Trojans are usually hidden. Thus, we developed an approach to de-

tecting hardware Trojans in behavioral SystemC designs with concolic testing. We

proposed two optimizations, namely selective concolic testing and coverage-guided

state search strategy, to improve the efficiency of traditional concolic testing.

SCBench Benchmark. The benchmark consists of 38 well-written representa-

tive SystemC designs that cover a variety of application domains such as CPU

architecture, security, digital signal processing (DSP), networking, and artificial

intelligence (AI). The designs range from small single process designs to large

multi-process designs. All designs are selected carefully to cover as many SystemC

core features as possible. Each design has been provided a set of stimuli and a test-

bench that includes stimuli applications and output monitors. Most importantly,

SCBench is freely available online to all researchers [85].

1.3 DISSERTATION OUTLINE

This dissertation is organized as follows. Chapter 2 introduces the necessary back-

ground to understand this dissertation better including the SystemC language,

symbolic execution, concolic testing, hardware Trojans, and the definition of a test

case. Chapter 3 presents high coverage test-case generation for SystemC designs

using symbolic execution. Chapter 4 describes our improved approach for validat-

ing SystemC designs through concolic testing techniques with integration of ABV

techniques. Chapter 5 presents hardware Trojan detection in behavioral SystemC

7

designs with selective concolic testing. Chapter 6 provides SCBench, a comprehen-

sive suite of benchmark designs for SystemC verification and validation. Chapter

7 talks about related work. Chapter 8 concludes this dissertation and discusses

future research directions based on this dissertation.

8

Chapter 2

BACKGROUND

This chapter first introduces the background on SystemC including its language,

design methodology with SystemC, and verification of SystemC designs. Then, we

present the techniques, specifically symbolic execution and concolic testing, which

are used in this dissertation research. We also introduce necessary background on

hardware Trojans to enable better understanding this dissertation. In the end, we

provide the definition of a test case for a SystemC design.

2.1 SYSTEMC

2.1.1 SystemC Language

SystemC [49] is a hardware description language based on C++. It heavily uses

object-oriented features, such as templates, virtual functions, and inheritance. Sys-

temC adopts a layered approach for the flexibility of introducing new constructs.

The bottommost layer is the standard C++, on top of which, it is the core language

that consists of an event-driven simulation kernel and backbone elements, such as

modules, processes, ports, channels, events, and interfaces. Modules are the ba-

sic building blocks in SystemC. A module is a container that consists of at least

one process to describe certain functionalities of a system. There are three types

of processes: method process SC METHOD, thread process SC THREAD, and clocked

thread process SC CTHREAD. A module can also contain other modules to represent

9

the hierarchy of a system. Modules communicate through ports that are connected

by channels.

A system modeled in SystemC can be implemented in software, hardware,

or a combination of the two. To model hardware designs, the standard built-in

C++ data types are lacking. To this end, SystemC provides a rich collection of

hardware-oriented data types, such as bit vectors, fixed-point types, fixed-precision

and arbitrary-precision integral types.

Processes of a SystemC design run concurrently. SystemC has event-driven

simulation semantics and cooperative multitasking scheduling mechanisms. Each

process is executed without interruption up to completion or to a predefined yield

point such as function wait(). The detailed scheduling algorithm includes five

phases as demonstrated in Figure 2.1. Each phase is described in the following.

(1) Initialization phase. Add every method and thread process to the runnable

set, but exclude those processes that have called dont initialize() and

clocked thread processes.

(2) Evaluation phase. Select a process, remove it from the runnable set, and

then trigger or resume its execution. Repeat this step until the runnable set

is empty; then go to step (3).

(3) Update phase. Execute all pending calls to update() from calls to

request update() made in step (2).

(4) Delta notification phase. If there are pending delta notifications, determine

which processes are sensitive to them and add those processes to the runnable

set. Go to step (2) if the runnable set is non-empty. Otherwise, go to step (5).

10

Initialization phase

Evaluation phase

Update phase

Timed notification phase

Delta notification phase

No runnable process

Runnable
process

Runnable
process

Yes

No

No

Yes

No pending calls to
update()

Figure 2.1: Semantics of the SystemC scheduler

11

(5) Timed notification phase. If there are pending timed notifications, advance

simulation time to the earliest pending timed notification, determine which

processes are sensitive to the events notified at the current time, and add those

processes to the runnable set. Go to step (2) if the runnable set is non-empty.

Otherwise, the simulation is finished.

SystemC is also widely used for transaction-level modeling (TLM), which is a

high-level approach to ESL designs with focus on communication between processes

rather than algorithms actually performed by processes. Thus, on top of the

SystemC class library, there is a TLM-2.0 class library, which is particularly focused

on memory-mapped bus modeling. The TLM-2.0 classes include core interfaces,

sockets, generic payload, base protocol, as well as multiple utilities.

Figure 2.2 shows an example of a simple SystemC design. It has two processes

P1 and P2. The inputs of the design are en, clk, din. The output is dout. The

signal data connects P1 and P2. The variable c is local to process P2. Both

processes are registered as clocked thread process SC CTHREAD and sensitive to

the positive edge of the clock. Each process will be executed at the positive edge

of each clock cycle. The processes are suspended when they encounter function

wait() that waits for the positive edge of next clock.

2.1.2 Design Methodology with SystemC

Figure 2.3 shows the SystemC based design methodology. SystemC can be used

for hardware and software codesign and co-verification. It usually starts with

a functional model on the system or architectural level. After the system level

validation, the system is partitioned into a hardware part and a software part. The

hardware part starts at the SystemC TLM, which serves as an executable platform

12

1 SC MODULE(example) { 20 void P2() {

2 // input ports 21 wait();

3 sc in<bool> en; 22 while (true) {

4 sc in<bool> clk; 23 int c = data.read();

5 sc in<int> din; 24 if (c < 0) {

6 25 dout.write(-1 * c);

7 // output ports 26 } else if (c % 2) {

8 sc out<int> dout; 27 dout.write(1);

9 28 } else {

10 sc signal<int> data; 29 dout.write(0);

11 30 }

12 void P1() { 31

13 wait(); 32 wait();

14 33 }

15 while (true) { 34 }

16 if (en.read()) { 35

17 data = din.read(); 36 SC CTOR(example) {

18 } 37 SC_CTHREAD(P1, clk.pos());

19 wait(); 38 SC_CTHREAD(P2, clk.pos());

20 } 39 }

21 } 40 };

Figure 2.2: An example of a SystemC design

13

System Level Model
(SystemC)

Hardware TLM
(SystemC)

RTL (Verilog/
SystemC/VHDL)

Netlist

System
Validation
(SystemC)

Adapter
(SystemC)

Software
(C/C++)

High-level Synthesis
/ Manual Design

Logic
Synthesis

Hardware

Figure 2.3: SystemC design methodology

and a golden reference model after validation. The SystemC TLM executable

platform is accurate enough to execute software on, which enables earlier software

and system validation. Then, the SystemC TLM is translated into RTL by high-

level synthesis tools automatically or hardware engineers manually. The resultant

RTL design can also be in the SystemC language. With this design flow, the same

SystemC language can be used in multiple abstraction levels, such as system level

functional model, hardware TLM, and RTL model. Thus, the high level validation

effort such as testbench and test cases can be used directly or adapted slightly to

validate the later low level models.

There are three primary advantages with this SystemC design methodology.

First, it substantially increases simulation performance at the SystemC TLM level

14

over simulation platforms modeled at the RTL with Verilog or VHDL. Second,

SystemC allows multiple abstraction levels, from system-level functional model

down to cycle-accurate RTL implementation. This bridges the disconnect between

system level model and RTL implementation within the traditional design method-

ology. This also enables verification reuse in that testbench and test cases devel-

oped for high-level designs may be reused for the later low-level implementations

directly or by slightly adaptation, as shown in Figure 2.3. Third, the SystemC

TLM executable platform is not only used for hardware verification, but also used

for software development and system validation. This enables earlier verification

during an SoC design process, consequently shortening the overall development

time and decreasing the time-to-market.

2.1.3 SystemC Verification

The goal of verification is to discover errors or bugs in design models as early

as possible, since the cost to fix a bug increases dramatically along the design

stages. An industry study [33] has shown that verification accounts for 55% total

project time on average from 2012 to 2016. In addition, the mean peak number of

verification engineers is greater than the mean peak number of design engineers,

and the number of verification engineers increases faster than the number of design

engineers. This indicates that verification accounts for more than half of total

project budget including both time cost and human effort. Furthermore, only 30%

of design projects achieve first spin success. Re-spins not only postpone time-to-

market of products, but also increase total costs including both money and human

effort.

SystemC is widely used in the semiconductor industry to model a system at

15

Design
Under

Verification

Formal
Model

Properties

Model

 Checking

Satisfiable
or

Counterexample

Model
Extraction

Property
Formulation

Figure 2.4: Verification flow with model checking

multiple abstraction levels, which enables stepwise refinement of a system-level

design down to a low-level implementation. However, design errors in the system-

level designs may propagate to low-level implementations. Detecting and fixing

errors in these SystemC designs, namely SystemC verification, is very important

and necessary. SystemC verification is meant to assure that SystemC designs

implement the specifications correctly, which demands innovative approaches.

The existing approaches to SystemC verification can be largely divided into

two paradigms: formal verification and simulation-based verification, also known as

dynamic validation. Formal verification uses mathematical techniques to prove the

correctness of a design. Three widely used formal methods are model checking [23],

equivalence checking [57], and theorem proving [73]. However, model checking has

been particularly used for SystemC verification in the literature. Model checking

first abstracts a formal model from a DUV and formulates properties to be checked

in the form of temporal logic. The idea is to determine whether a property holds

by exploring the reachable states of a DUV exhaustively. The workflow of model

checking is shown in Figure 2.4. If a property does not hold, the model checker

will generate a counterexample that demonstrates the violation of the property.

Explicit and symbolic representations of states are two primary methods for

model checking. Explicit-state model checking indexes states directly and explores

16

Measurement
Metrics

Report
(Bugs/Coverage)

Simulation

Test
Generation

Result
Analysis Sufficient

Test Cases Outputs

Yes

No

Design
Under

Verification

Figure 2.5: Verification flow with simulation-based approaches

state space of a design using graph algorithms starting from an initial state. Sym-

bolic model checking (SMC) represents states with boolean encoding by which

it can handle many more states than explicit methods. To overcome the state-

space explosion problem, partial order reduction (POR) [35] and bounded model

checking (BMC) [22] are two widely used techniques to alleviate the problem.

Simulation-based verification simulates a SystemC design with a set of concrete

test cases and compare the simulation results with their expected outputs to dis-

cover design errors. The typical flow of simulation-based validation approaches

is shown in Figure 2.5. The validation flow consists of three key steps: test

generation, simulation, and result analysis. Generating high-quality test cases

is a key challenge for simulation-based approaches. Traditionally, directed test-

ing and random testing using constrained and unconstrained random approaches

are both widely used in industrial practice. Directed testing typically requires

indepth knowledge of a DUV and involves much human effort. Therefore, it is

time-consuming, labor-intensive, and error-prone. Random testing, in contrast, is

fast. However, many redundant test cases may be generated, which results in low

performance and long simulation time. Moreover, random testing usually leaves

hard-to-reach segments and corner cases unexplored, where bugs are likely to ap-

pear. Thus, additional innovative approaches are desired to generate effective test

17

cases automatically. In this work, we propose a framework to generate test cases

automatically for SystemC designs using symbolic execution and concolic testing

techniques.

2.2 SYMBOLIC EXECUTION

Symbolic execution [54] explores a program by taking symbolic values as inputs,

which are symbols representing arbitrary values allowed by the types of corre-

sponding variables. Consequently, the outputs of the program are represented as

a function of its symbolic inputs. A symbolic execution state includes values of

program variables, a path condition, and a program counter. The values of pro-

gram variables can be concrete values or symbolic expressions over the symbolic

inputs. The path condition collects constraints that must be satisfied to reach

current execution state from the initial state. The constraints are represented as

symbolic expressions over the symbolic inputs. The program counter denotes the

next statement to execute.

We use the main body (while loop) of process P2 in Figure 2.2 to demonstrate

how symbolic execution is performed, as shown in Figure 2.6. Suppose the value

got from data is symbolic, then variable c becomes a symbolic variable that an

arbitrary value of integer type at the point. When symbolic execution is performed,

the path constraints are collected and updated at each branch point. There are

two possible execution paths for each branch point whose condition depends on

symbolic variables. For example at line 2, two symbolic execution states will

be generated, one with constraint c < 0 and the other with constraint c >=

0. Similarly, two symbolic execution states will be generated at line 4, one with

constraints (c >= 0) ∧ (c % 2 == 1) and the other with constraints (c >= 0)

18

1 int c = data.read();

2 if (c < 0) {

3 dout.write(−1 ∗ c);

4 } else if (c % 2) {

5 dout.write(1) ;

6 } else {

7 dout.write(0) ;

8 }

9 wait() ;

c = *

dout.write(-1 * c);

c < 0

c % 2

dout.write(1); dout.write(0);

wait();

TRUE FALSE

TRUE FALSE

c >= 0c < 0

(c % 2) == 1 (c % 2) == 0

Figure 2.6: A symbolic execution example

∧ (c % 2 == 0). One path is executed at a time and all possible paths will be

explored eventually. For this example, three paths in total will be explored based

on symbolic execution.

2.3 CONCOLIC TESTING

Concolic testing [90] is a hybrid verification technique that uses concolic execution,

which partly addresses the limitations of random testing and symbolic execution.

Concolic execution combines concrete execution and symbolic execution by mak-

ing input values symbolic in addition to concrete. The concrete execution part

performs normal execution of a program, while the symbolic execution part col-

lects path constraints over the symbolic inputs at each branch point along the

concrete execution path. The collected constraints are negated one condition at a

time and sent to a constraint solver. If the solver can solve the negated constraints

successfully, new test cases will be generated.

Figure 2.7 shows the process of concolic test generation. Solid red arrows denote

19

bnb’n-2

bn-1

bn-2

b’n-1

b’3

b’2

b’1
b3

b2

b1

Figure 2.7: Concolic Test Generation

a concrete execution path, while dashed black arrows represent possible alternative

paths where new test cases may be generated. During a concrete execution, sym-

bolic constraints along the concrete execution path are collected. At each branch

point, the constraints are negated and then solved if possible to generate a new

test case which would lead the program along an alternative path.

2.4 HARDWARE TROJAN

Until recently, most of computer security research was devoted to software security.

The underlying hardware was expected to be secure. However, this is no longer

the case with the continuous globalization of the design and fabrication of modern

SoCs, as well as the emergence of new design paradigms such as outsourced design

services. Hardware Trojan has gained attention recently due to the emergence

of its attacks. Hardware Trojan can be defined as any addition or modification

to an electronic circuit or design with malicious intention including functionality

20

Trojan Embedded Design

Trigger Payload
Trigger
inputs

Payload
outputs

Design
inputs

Design
outputs

Figure 2.8: Generic structure of a hardware Trojan in a design

modification, sensitive information leakage, or denial of services. Hardware Trojan

may be classified into several categories based on various characteristics, such as

abstraction level, activation mechanism, and action type. A detailed taxonomy

of hardware Trojans can be found in the survey paper [4]. In general, a hard-

ware Trojan includes two parts, trigger (the activation mechanism) and payload

(the action or the damage that a hardware Trojan will do once it is activated), as

demonstrated by Figure 2.8. Hardware Trojans are usually stealthy and are trig-

gered under rare conditions so that they are hard to be detected during functional

validation.

2.5 PRELIMINARY DEFINITIONS

In order to help better understand this dissertation, we introduce the definition of

a test case for a SystemC design.

Definition 2.1 (Input Port). An input port p is a port which takes the input from

a testbench. The read() function of p is called to get the input value.

As the design shown in Figure 2.2, variable din represents a SystemC input port

while din.read() is called to get the input value. For each clock cycle, din.read()

can get different inputs from the testbench.

21

Definition 2.2 (Input Port Set). An input port set P is a set of input ports of a

SystemC design.

As the design shown in Figure 2.2, the design input port set P includes three

input ports en, clk, and din.

Definition 2.3 (Cycle Input). A cycle input I , {〈p, v〉 | p ∈ P , v is the concrete

value of p} of a design is the set of inputs with their concrete values for a clock

cycle.

Definition 2.4 (Test Case). A test case T , I1, I2, . . . , In of a SystemC design is

a sequence of cycle inputs, such that cycle input Ii (1 ≤ i ≤ n) will be applied to

the design at clock cycle i as inputs.

22

Chapter 3

SYMBOLIC EXECUTION OF SYSTEMC DESIGNS

Simulation-based approach is the ”workhorse” for SystemC verification [96], which

requires a set of concrete test cases. Traditionally, test cases are manually written

or randomly generated. Manual test writing requires indepth knowledge of a DUV,

which is time-consuming, labor-intensive, and error-prone. Random test genera-

tion, in contrast, is fast. However, random testing may generate many redundant

test cases that result in long simulation time. Moreover, random testing usually

leaves hard-to-reach segments and corner cases unexplored where bugs are likely

to appear and hardware Trojans are often hidden. This chapter presents our novel

approach to test generation of SystemC designs using symbolic execution, namely

SESC [71].

3.1 OVERVIEW

Figure 3.1 shows the workflow of SESC. It has three key steps: (1) test-harness

generation, (2) symbolic execution, and (3) test-case generation. For a given Sys-

temC design, its test harness is generated and compiled with the design together

to LLVM bitcode [61]. The symbolic execution engine takes the LLVM bitcode as

input and executes it symbolically to explore as many execution paths as possible.

When an execution path terminates or encounters an error, SESC sends the path

constraints that are represented by symbolic expressions to a constraint solver,

23

Test-Harness
Generation

Symbolic
Execution

Test-Case
Generation

Simulation

Test
Harness

SystemC
Design

LLVM
Bitcode

Symbolic
Expressions

Test
Cases

Unusual Behavior &
Code Coverage

Figure 3.1: Workflow of SESC

which returns concrete values that satisfy the expressions if possible. Then SESC

generates a concrete test case for the path. The generated test cases are then sim-

ulated on the SystemC design to detect unusual behaviors and compute coverage

statistics.

SESC executes SystemC designs symbolically using KLEE [8] symbolic execu-

tion engine. KLEE targets sequential C programs and is not designed to execute

SystemC designs where SystemC designs have specific characteristics. Therefore,

we need to adapt KLEE to execute SystemC designs efficiently and provide more

hardware specific semantics.

3.2 TEST-HARNESS GENERATION

SystemC designs usually include hierarchical structures, object-oriented features,

and hardware-oriented data types. Generally, a SystemC design also contains

multiple processes that run concurrently, which requires a scheduler to simulate

the design. These features are implemented in the SystemC library. Thus, a

24

SystemC design by itself is not a stand-alone program. It invokes the SystemC

library and communicates with its environment during simulation. Therefore, a

test harness that models the environment must be provided to enable symbolic

execution of SystemC designs. Although the SystemC library can serve as the

test harness for all designs, it is impractical because the SystemC library is too

complex for symbolic execution directly. A key challenge here is how to generate

a test harness that should be simple enough so that SESC can efficiently execute

a SystemC design symbolically.

Currently, we generate a test harness manually for a SystemC design. A test

harness includes global variables definitions, synchronization mechanisms, sym-

bolic variables constructions, and process registrations. Figure 3.2 shows the

skeleton of the test harness for the design shown in Figure 2.2. Shared signals

are defined as global structure globalVars. It only has one member data in this

case. The harness defines two variables of type globalVars. The variable currState

contains the synchronized value, while LStates is an array that each element is

modified by one process. The function SESC make symbolic(· · ·) constructs sym-

bolic variables and SESC thread(· · ·) registers a SystemC process with SESC so

that SESC can schedule it when required. The function SESC start(numCycles)

starts symbolic execution, where numCycles specifies how many clock cycles to

simulate.

3.3 SCHEDULER

SystemC is widely used to model concurrent systems consisting of multiple pro-

cesses. To deal with the SystemC concurrency, we have implemented a scheduler in

25

1 typedef struct Globals{

2 int data;

3 } globalVars;

4

5 globalVars currState, LStates[2];

6

7 void PreProcess(currState) { }

8 void Sync(LStates) { }

9

10 int main(int argc, char **argv) {

11

12 SESC_make_symbolic(&en, sizeof(en), "en");

13 SESC_make_symbolic(&din, sizeof(din), "din");

14

15 SESC_thread("P1", &en, &clk, &din, &LStates[1].data, &dout);

16 SESC_thread("P2", &en, &clk, &din, &LStates[2].data, &dout);

17

18 SESC_start(numCycles);

19

20 return 0;

21 }

Figure 3.2: Skeleton of the test harness for the design shown in Figure 2.2

26

Algorithm 1: Sym-Exe-Scheduler(P, numCycles)

Data: currState and LStates are global variables.

Result: scheduling the symbolic execution of processes P for numCycles

cycles.

1 cycles← 0

2 runnable← ∅

3 foreach p ∈ P do

4 Enqueue(runnable, p) . puts each process into the runnable queue

5 while cycles ≤ numCycles do

6 next runnable← ∅

7 LStates← PreProcess(currState)

8 while runnable 6= ∅ do

9 q ← Dequeue(runnable) . q is a runnable process

10 Sym-Exe-Process(q) . process q is invoked to run

11 Enqueue(next runable, q)

12 runnable← next runnable

13 currState← Sync(LStates) . synchronize shared variables

14 cycles← cycles+ 1

SESC to manage multiple processes, as shown in Algorithm 1. Our symbolic exe-

cution engine supports two types of processes, SC THREAD and SC CTHREAD,

in the high-level synthesizable subset of SystemC.

According to the SystemC specification [49], access to shared storage should be

27

synchronized explicitly to avoid non-deterministic behavior, although the sched-

uler is non-deterministic. Thus, different scheduling sequences should not affect

the simulation result for a well-formed design, which means that it is sufficient for

the design to be simulated by only one scheduling sequence for each clock cycle.

Therefore, we simulate designs deterministically using symbolic execution and syn-

chronize shared storage explicitly. If a design is not well-formed, such as variables

other than signals are used as inter-process communication, there are potential

races. In this work, we assume that there are no races for a DUV.

As shown in Algorithm 1, before execution starts, the scheduler initializes sim-

ulation cycle as zero and puts all runnable processes into the runnable queue

runnable. When execution starts, the scheduler first empties the queue next runnable

at the beginning of each clock cycle. Then, PreProcess is called to make N repli-

cas of currState and store them in the array LStates, where N is the number of

processes. After that, the scheduler removes each process from runnable, and calls

Sym-Exe-Process to execute the selected process symbolically. Note that each

process modifies its local state. When the process encounters wait, the scheduler

puts the process into next runnable. When runnable is empty, the execution is

finished for this clock cycle. So the scheduler puts every process into runnable

for the next clock cycle and synchronizes all local states resulting in a new global

state currState, followed by advancing the simulation cycles. If the number of

simulation cycles reaches numCycles, the simulation is finished, and the execution

engine terminates.

28

3.4 SYMBOLIC EXECUTION OF SYSTEMC DESIGNS

To symbolically execute SystemC designs, besides the concurrency addressed in the

previous section, SESC needs to address the following three technical challenges.

First, the path explosion problem is a major issue of symbolic execution to

explore a complex program thoroughly. The number of paths is approximately

exponential to the number of branches in a program. Not surprisingly, this problem

also exists with symbolic execution of SystemC designs.

We apply two bounds to curb this problem. One is the time bound that is the

maximum time for symbolic execution engine to run. The time bound ensures that

SESC will terminate in a given amount of time. If SESC does not finish within the

given time, there may be unfinished paths. For such paths, SESC still generates

test cases with the path constraints collected before termination. The other bound

is the clock cycle bound that specifies how many clock cycles to simulate.

Second, a SystemC design has a hierarchical modular structure usually and

includes the object-oriented features, such as inheritance and polymorphism. Our

approach flattens these features first by preprocessing SystemC designs. Then,

they are compiled to LLVM bitcode using the clang compiler [21]. Each process

is flattened as a function whose name is the same as the process name. All the

input and output ports of the module, as well as shared signals among processes,

become pointer parameters of the function.

Figure 3.3 illustrates the skeleton of the flattened result for the design shown

in Figure 2.2. Processes P1 and P2 are interpreted as function P1 and P2. The

input ports en, clk, and din, output port dout, and shared signal data become the

pointer parameters of the functions.

Third, a SystemC design may contain hardware-oriented data structures such

29

1 void P1(*en, *clk, *din, *data, *dout) {

2

3 }

4

5 void P2(*en, *clk, *din, *data, *dout) {

6

7 }

Figure 3.3: Skeleton of flattened result for the design shown in Figure 2.2

as port, signal, FIFO, arbitrary-width data, and bit-precise operation. We address

these structures by either implementing their stubs or adapting the symbolic ex-

ecution engine. Ports are interpreted as function parameters as described above.

Predefined channels such as sc signal and sc fifo are replaced by our implementa-

tions. Arbitrary-width data types and bit-precise operations, such as bit selection

and bit set, are ubiquitous in hardware designs. KLEE does not support such data

types and bit operations. We have implemented the functionalities in our sym-

bolic execution engine, which supports arbitrary-width data types and bit-precise

operations.

With the aforementioned challenges addressed, a SystemC design can be ex-

ecuted symbolically now. SESC collects path constraints along the execution of

each path. For the example shown in Figure 2.2, suppose we set the clock cycle

bound as three and the corresponding symbolic inputs for three clock cycles are

{en1, din1}, {en2, din2}, and {en3, din3}. After symbolic execution of the design,

SESC can collect constraints for all explored paths. Three sample constraints are

30

as follows.

Constraint 1 : en1 = 0 ∧ en2 6= 0 ∧ din2 < 0 ∧ en3 6= 0 ∧ din3 < 0

Constraint 2 : en1 = 0 ∧ en2 6= 0 ∧ din2 > 0 ∧ (din2%2 6= 0) ∧ en3 6= 0 ∧ din3 < 0

Constraint 3 : en1 = 0 ∧ en2 6= 0 ∧ din2 > 0 ∧ (din2%2 = 0) ∧ en3 = 0

3.5 TEST-CASE GENERATION

The path constraints collected by SESC are denoted as symbolic expressions. How-

ever, symbolic expressions are hard to understand for general designers. So when

an execution path terminates, the symbolic expressions are sent to a constraint

solver, which returns concrete values that satisfy the expressions if possible. As

the constraints shown at the end of previous section, the corresponding sample

test cases generated by SESC are as follows.

T1 , I1, I2, I3 where I1 , {〈en1, 0〉, 〈din1, 0〉}, I2 , {〈en2, 1〉, 〈din2,−1〉},

I3 , {〈en3, 1〉, 〈din3,−1〉}.

T2 , I1, I2, I3 where I1 , {〈en1, 0〉, 〈din1, 0〉}, I2 , {〈en2, 1〉, 〈din2, 1〉},

I3 , {〈en3, 1〉, 〈din3,−1〉}.

T3 , I1, I2, I3 where I1 , {〈en1, 0〉, 〈din1, 0〉}, I2 , {〈en2, 1〉, 〈din2, 2〉},

I3 , {〈en3, 0〉, 〈din3, 0〉}.

31

3.6 EXPERIMENTAL RESULTS

This section describes our experiments on 11 high-level synthesizable SystemC

designs, as listed in Table 3.1. The first column gives the names of the designs.

The second column shows the number of processes of each design. Lines of code

(LoC) for each design are listed in the third column. LoC is calculated using

cloc [24]. All experiments were performed on a desktop with 4-core Intel(R)

Xeon(R) CPU, 8 GB of RAM, and running the Debian Linux operating system

with 64-bit kernel version 3.16.

Table 3.1: Summary of 11 SystemC designs

Designs # of Process LoC

RISC CPU exec 1 126

RISC CPU control 1 826

RISC CPU bdp 3 148

UsbArbStateUpdate 2 85

ADPCM 1 134

IDCT 1 244

Sync mux81 1 52

MIPS 1 255

RISC CPU mmxu 1 187

RISC CPU crf 5 927

RISC CPU 13 2056

Note that the design RISC CPU consists of 10 modules, 13 processes, and 2056

LoC in total. Figure 3.4 shows the architecture of the CPU design. The CPU

reads program instructions and executes them and then writes the results back to

registers or data memory. The instruction set is defined based on commercial RISC

32

Fetch Control
Unit

Register
File ALU

FPU

MMXU

BIOS

Paging
Block

ICache DCache

Figure 3.4: Architecture of RISC CPU

processor together with MMX-like instructions. BIOS stores system bios data.

ICache caches program instructions, while DCache caches data. Fetch fetches

instructions from Paging Block. Control Unit decodes instructions. Register

File models registers. ALU is an integer execution unit, while FPU is a floating

point execution unit. MMXU is an MMX-like execution unit.

3.6.1 Coverage Methodology

Appropriate coverage metrics are required to evaluate the effectiveness and con-

fidence in the verification results. Functional coverage needs to be redeveloped

for each design and built by engineers with indepth knowledge of both the design

specification and implementation. Thus, it is not automatic. SystemC is widely

used for modeling functionalities of systems at ESL. Therefore, we adopt the typ-

ical code coverage, line coverage and branch coverage, which are widely used and

understood. We choose line and branch coverage reported by LCOV [62]. SystemC

designs heavily use the predefined structures and facilities provided by the SystemC

library. LCOV reflects the library code in the design code by default. For example,

LCOV reports two branches for the library call wait(), while there is no branch from

a design point of view. To this end, we utilize three exclusion markers provided

33

Table 3.2: Time and memory usage, and coverage results

Designs Time(s) MEM(MB) # of TCs LCov(%) BCov(%)

RISC CPU exec 3.23 46.9 35 100 100

RISC CPU control 0.57 17.8 76 100 100

RISC CPU bdp 0.15 17.5 36 100 100

UsbArbStateUpdate 0.05 13.7 10 100 100

ADPCM 1.88 16.2 25 100 100

IDCT 180 134.0 135 100 100

Sync mux81 0.04 13.5 10 100 100

MIPS 178.23 27.6 39 100 97.9

RISC CPU mmxu 11.38 15.6 95 99.4 97.9

RISC CPU crf 300 61.1 1759 98.2 95.7

RISC CPU 169 264 2099 96.3 93.2

by LCOV to exclude specific lines from branch coverage, since we only calculate

the actual branches in a design itself. The marker LCOV EXCL BR LINE excludes a

single line from branch coverage, while the pair of markers, LCOV EXCL BR START

and LCOV EXCL BR STOP, exclude multiple consecutive lines from branch coverage.

We also exclude test harness code when calculating code coverage. The rules are

applied to all code coverage computed in this dissertation research.

The experimental results are demonstrated in Table 3.2. Column 2 and column

3 show the time and memory usage, which is modest. The fourth column gives the

number of generated test cases. The code coverage achieved by SESC is presented

in the last two columns. As we can see from the table, our approach can achieve

100% line and branch coverage for most designs. There are two possible reasons

that SESC does not achieve 100% code coverage for some designs. First, compiler

34

may perform optimization when compiling from SystemC code to LLVM bitcode.

Second, there may be some unreachable statements and branches so that 100%

code coverage can never be achieved.

3.6.2 Comparison with Random Testing

We would like to compare the results of SESC with the state-of-the-art approaches.

However, to the best of our knowledge, no other existing SystemC verification

approaches provides such code coverage. Therefore, we compare the code coverage

results of SESC with two groups of random testing. They are denoted as Random10

and Random100 that represent the number of random tests with 10 times and 100

times of the number of test cases generated by SESC. For each group, we conducted

experiments 10 times and calculated the average. The comparisons of line coverage

and branch coverage are shown in Figure 3.5 and Figure 3.6, respectively. As we can

see from the figures, SESC gains the best coverage results. Especially, our approach

beats both by a significant margin for designs MIPS, IDCT and Sync mux81.

Based on the comparisons, the SystemC designs can be divided into three

groups. In the first group, designs can be easily achieved high code coverage using

random testing, such as ADPCM. Designs in this group contain only a few branches.

The second group contains designs that can be achieved relatively high code cov-

erage by random testing with much more test cases, such as RISC CPU control.

Designs in this group consist of relatively more branches than the first group. How-

ever, there are barely any nested branches. In the third group, it is hard to achieve

high code coverage using random testing even with much more test cases, such as

MIPS. This is mainly because designs in this group include nested branches and

compound conditions of branches. As we can see, SESC is able to achieve very

35

0

20

40

60

80

100

U
sb

A
rb

St
at

eU
pd

at
e

M
IP

S

A
D

PC
M

ID
C

T

Sy
nc

_m
ux

81

R
IS

C
_C

PU
_e

xe
c

R
IS

C
_C

PU
_m

m
xu

R
IS

C
_C

PU
_c

on
tr

ol

R
IS

C
_C

PU
_b

dp

R
IS

C
_C

PU
_c

rf

R
IS

C
 C

PU

SESC
Random10
Random100

Figure 3.5: Line coverage of SESC testing vs. Random10 and Random100 for 11
SystemC designs. SESC beats both by as much as 66%.

0

20

40

60

80

100

U
sb

A
rb

St
at

eU
pd

at
e

M
IP

S

A
D

PC
M

ID
C

T

Sy
nc

_m
ux

81

R
IS

C
_C

PU
_e

xe
c

R
IS

C
_C

PU
_m

m
xu

R
IS

C
_C

PU
_c

on
tr

ol

R
IS

C
_C

PU
_b

dp

R
IS

C
_C

PU
_c

rf

R
IS

C
 C

PU

SESC
Random10
Random100

Figure 3.6: Branch coverage of SESC testing vs. Random10 and Random100 for
11 SystemC designs. SESC beats both by as much as 71%.

36

high code coverage for relatively complex designs, while random testing cannot.

3.7 SUMMARY

It is very challenging to generate high coverage test cases automatically for Sys-

temC designs due to the complexity of SystemC designs. In this chapter, we have

presented an approach to generating high coverage test cases automatically using

symbolic execution. We have implemented the proposed approach as a prototype,

namely SESC. We have also applied SESC to a set of SystemC designs to evaluate

its performance. The results of our experiments demonstrate that SESC is able to

generate test cases that achieve high code coverage with modest time and memory

usage, as well as scaling to designs with practical sizes.

37

Chapter 4

CONCOLIC TESTING OF SYSTEMC DESIGNS

The previous chapter presents an automated test generation approach for SystemC

designs using symbolic execution. It has two main limitations. First, it is focused

on high-level synthesizable SystemC designs, which is a subset of SystemC designs.

Second, it is time-consuming to model hardware-oriented data structures in the

SystemC library case by case. In this chapter, we describe our improved approach,

namely concolic testing of SystemC designs (CTSC) [70], which has better scalabil-

ity and requires much less human effort. Moreover, we adopt the ABV techniques

to determine whether a test case passes or fails according to whether or not it

triggers an assertion.

4.1 OVERVIEW

Figure 4.1 shows the workflow of our concolic testing of SystemC designs in the

binary level. It has four key steps: (1) testbench generation, (2) concolic test

generation, (3) test-case selection, and (4) testing with generated test cases. For a

given SystemC design, its testbench is generated first and compiled with the design

into a binary by linking the SystemC library. Then, the binary and an initial test

case, called the seed, are fed to a binary concolic execution engine that includes two

parts, concrete execution and symbolic execution. Concrete execution simulates a

design concretely during which an execution trace is obtained. Symbolic execution

38

Test-Case
Replay
& Coverage
Evaluation

Concolic Test Generation

Test-Case
Selection

SystemC
Design

Seed

Report

Exit

Test Case

Exit

Yes
No

Testbench

Testbench
Generation

DUV
Binary

CompilerSystemC
Library

Test Cases

Test-Case
Pool

Figure 4.1: Workflow of concolic testing of SystemC designs

explores the trace symbolically to generate new test cases. Subsequently, the newly

generated test cases are simulated on the SystemC design to detect design errors,

as well as generating coverage information. Afterwards, a test case is selected from

the newly generated test cases for a new iteration of concolic test generation. This

process repeats until a termination condition is achieved.

Algorithm 2 illustrates the validation process using concolic testing. For most

complex system designs, due to path explosion, the common usage model for au-

tomated test generation by symbolic or concolic execution is to run for a fixed

amount of time or run until a target coverage goal is reached. We also follow

such a model. SC-Con-Testing takes four parameters, a SystemC design duv,

an initial test case seed, a target coverage tgt, and a time bound β, as inputs.

The outputs are the generated test cases and the validation results that includes

achieved coverage and bug information if any.

Here, TC saves all generated test cases and TCP is a test-case pool accessed

dynamically during the validation process. At the beginning, the concolic execution

39

Algorithm 2: SC-Con-Testing(duv, seed, tgt, β)

1 TC ← {seed}, TCP ← {seed}

2 cov ← 0, report

3 while (TCP 6= ∅) ∧ (cov < tgt) ∧ (time < β) do

4 τ ← Test-Case-Selection(TCP)

5 TCP ← TCP \ {τ}

6 NTC ← Concolic-Test-Gen(duv, τ)

7 foreach t ∈ NTC do

8 report← Test-Case-Replay(duv, t)

9 TCP ← TCP ∪ {t}

10 TC ← TC ∪NTC

11 cov ← Coverage-Evaluation()

12 return TC, cov, report

engine executes the design with the seed (line 6). When the engine terminates, it

generates new test cases that are saved in a temporary set, NTC. For each newly

generated test case, our framework reruns it on the SystemC design (line 8) to

look for unusual behavior, such as assertion violations, and generate information

for computing coverage. Each test case that is replayed is added to TCP (line

9) for the next iteration. Subsequently, the newly generated test cases are added

to TC (line 10), and Coverage-Evaluation is called to compute coverage (line

11). If the coverage satisfies the coverage target tgt, the concolic testing terminates.

Otherwise, the test-case selector selects a new test case (line 4) and removes it from

TCP (line 5). Then, the binary concolic execution engine runs again. This process

repeats until the target or other termination conditions are achieved. The time

40

bound β guarantees the termination of the validation process in case the target

coverage cannot be achieved within the given time. The variable time denotes the

total time elapsed since the start of the validation process. In the following, we

will discuss the details of each key step.

4.2 TESTBENCH GENERATION

A testbench in this approach is different from a test harness in Chapter 3. A

testbench is to generate stimuli and apply them to a design, as well as recording and

monitoring the output of a design. In addition to these, a test harness in SESC also

includes synchronization mechanisms, process registrations and other environment

modeling. Thus, a testbench is simpler than a test harness. To apply CTSC to

an existing SystemC project, the existing testbench of the SystemC project can

be reused with slight modification. Instead of generating concrete stimuli, the

function CTSC make concolic is used to construct stimuli as symbolic in addition

to keeping their concrete values, so-called concolic stimuli. Additionally, we have

developed a GUI to generate a testbench for a DUV automatically. Users simply

specify names and types for both stimuli and outputs of DUVs. Users can also

set the properties of a clock signal, such as period and duty cycle. A complex

testbench may demand slight modification manually.

Figure 4.2 illustrates the stimuli generation module in a testbench for the de-

sign shown in Figure 2.2. The module has one clock input clk, and two out-

puts, en and data that are connected to the inputs of the design. The function

CTSC make concolic constructs concolic stimuli for the design. The recording and

monitoring of the output and the definition of the clock signal are straightforward.

Thus, they are not presented.

41

1 SC MODULE(driver) {

2 sc in<bool> clk;

3 sc out<bool> en;

4 sc out<int> data;

5

6 void run() {

7 int data tmp;

8 bool en tmp;

9

10 wait() ;

11 while (true) {

12 CTSC make concolic(&data tmp, sizeof(data tmp), ”data tmp”);

13 CTSC make concolic(&en tmp, sizeof(en tmp), ”en tmp”);

14

15 data.write(data tmp);

16 en.write(en tmp);

17

18 wait() ;

19 }

20 }

21

22 SC CTOR(driver) {

23 SC CTHREAD(run, clk.pos());

24 }

25 };

Figure 4.2: An example of stimuli generation module for the design shown in
Figure 2.2

42

4.3 CONCOLIC TEST GENERATION

Algorithm 3 illustrates the steps to generate test cases. First, a SystemC DUV is

simulated with a concrete test case by invoking Concrete-Execution(duv, τ).

Concrete execution follows the scheduling mechanism provided by the SystemC

library. During concrete execution, the current execution path is recorded as a

trace tr. This way, a concurrent SystemC design is unwound as a sequential

self-contained execution trace. Since the inputs of a DUV are made symbolic in

addition to concrete values, the symbolic property of an input is also captured in

the trace, which enables test generation afterwards. The recorded trace includes all

information such as executed instructions that is required by symbolic execution

subsequently.

After the trace is generated, it is explored symbolically to generate new test

cases. Line 2 initializes the execution state s with the generated trace tr. An exe-

cution state includes a stack, a heap, concrete values of the inputs, path conditions

(represented as symbolic expressions), a register file, and a program counter. TCS

stores the generated test cases and is initialized to empty (line 3). Line 4 – 16

demonstrate the symbolic execution for test generation. If there is an instruction

for execution (line 4), the instruction I is fetched (line 5) and executed (line 6).

If it is a branch instruction (line 7), the symbolic predicate bp of I is computed

(line 8). Then, the results of the symbolic predicate is computed with concrete

values from τ (line 9). If the value of tb is true for the branch, the true path of

this branch is taken in the concrete execution. Therefore, a test case is generated

for the false path (line 11). Otherwise, a test case is generated for the true path

(line 13). If the newly generated test case tc is not redundant, it is saved in TCS

(line 14 – 15). Subsequently, line 16 sets the next instruction to be executed. If

43

Algorithm 3: Concolic-Test-Gen(duv, τ)

1 tr ← Concrete-Execution(duv, τ)

2 s← State-Init(tr)

3 TCS ← ∅

4 while Has-Next-Instruction(s) do

5 I ← Get-Next-Instruction(s)

6 Execute-Instruction(I)

7 if I is branch then

8 bp← Get-Symbolic-Branch-Predicate(I)

9 tb← Compute-Taken-Branch(bp, τ)

10 if tb == true then

11 tc← Generate-Test-Case(bp, false)

12 else

13 tc← Generate-Test-Case(bp, true)

14 if tc 6∈ TCS then

15 TCS ← TCS ∪ tc

16 Set-Next-Instruction(s)

17 return TCS;

44

every instruction of s has been executed, current iteration is complete. Finally, all

generated test cases are returned (line 17).

Note that a SystemC program is a hardware design that can be simulated

for an arbitrary number of clock cycles. Therefore, a concrete execution trace

of a SystemC DUV can be intimidatingly long. In our approach, we simulate a

SystemC DUV for a fixed number of clock cycles.

4.4 TEST-CASE SELECTION

Concolic test generation requires a concrete test case for each iteration. At the

beginning, there is only one test case, the seed, which is simply selected by Test-

Case-Selection. After the first iteration, multiple test cases may be generated.

Thus, different test-case selection strategies can be adopted. Currently, we have

developed three test-case selection strategies in terms of the time stamp of test

cases: (1) first-come-first-serve (FCFS) that the earliest generated test case is

selected first; (2) last-come-first-serve (LCFS) that the last generated test case

is selected first, and (3) random selection that a test case is selected among all

generated test cases randomly. In the future, we will use SystemC features to

guide test-case selection. In addition, machine learning may play an important

role in test-case selection.

4.5 TESTING WITH GENERATED TEST CASES

It is only half of the story to generate test cases that explore as many paths as

possible. A generated test case follows the exact same code path that the concolic

execution engine explored. Thus, if an error is encountered by the concolic execu-

tion engine, the generated test case can reproduce the error afterwards. Therefore,

45

our framework validates SystemC designs by replaying the generated test cases

(line 8 in Algorithm 2). This replay is checked for unusual behavior or errors. If

Test-Case-Replay detects an error when replaying a test case, it saves the test

case and generates a report that records the detailed information of the error, such

as error type and error location. This helps users better analyze the design and

fix the error.

To check whether a test case passes or fails, we have also integrated the ABV

techniques in which designers use assertions to capture specific design intents.

Assertions are used to improve the ability to observe bad behavior once they are

triggered by specific test cases. By getting an assertion triggered, users can easily

identify if there are bugs or invalid inputs. This helps users fix the bug or further

constrain the input ranges.

Currently, our framework is focused on generating test cases, not focused on

generating assertions for designs. Instead, we utilize the existing assertions in the

SystemC designs to evaluate the effectiveness of the CTSC-generated test cases.

4.6 EXPERIMENTAL RESULTS

We have implemented our approach in a prototype where our binary concolic exe-

cution engine is based on CRETE [10], a recently open-sourced concolic execution

engine that targets software programs. This section presents our experimental re-

sults of CTSC on 19 total SystemC designs. The summary of 19 designs is shown

in the first three columns of Table 4.1. It lists the names of the designs, the number

of processes, and LoC, respectively. All experiments were performed on a desktop

with a 4-core Intel(R) Core(TM) i7-4790 CPU, 16 GB of RAM, and running the

Ubuntu Linux OS with 64-bit kernel version 3.19.

46

Table 4.1: Summary of designs, time and memory usage

Designs # of Proc. LoC ET (s) MEM (MB) # of TCs

DES 14 2401 186 3928 35

RISC CPU bdp 3 148 3077 505 149

RISC CPU mmxu 1 187 1291 240 258

RISC CPU exec 1 126 251 230 44

RISC CPU floating 1 127 576 243 122

Qsort 1 86 88 175 41

UsbTxArbiter 5 144 234 265 298

Sync mux81 1 52 73 180 28

MIPS 1 255 207 124 474

IDCT 1 244 335 574 494

MD5C 1 271 21 465 37

RSA 1 324 1944 8103 131

RISC CPU crf 5 927 10863 331 1220

RISC CPU control 1 826 12005 347 1246

ADPCM 1 134 25 220 40

Y86 11 301 493 480 67

Pkt switch 17 376 3189 333 385

RISC CPU 13 2056 17520 1303 386

Master/Slave Bus 5 974 24 205 88

47

4.6.1 Code Coverage Improvement

In our experiments, we developed the seed for each design. We set a 24-hour time

bound and 100% branch coverage target for all designs. The actual execution time

(ET) of each design in seconds is listed in the fourth column of Table 4.1, after

which the branch coverage could not be improved within the 24-hour time bound.

The corresponding maximum memory usage and the number of generated test

cases are presented in Columns five and six. As shown, the time and the memory

usage was modest. Since RSA and DES are cipher algorithms that do computation

on large numbers, they used more memory.

Figure 4.3 and Figure 4.4 show the code coverage improvement on 19 total

designs over the seeds with the time usage listed in Table 4.1. In our current

experiments, we adopted FCFS test-case selection strategy. In the future, we will

evaluate the effects of different test-case selection strategies. As illustrated, the

CTSC-generated test cases are able to improve code coverage substantially. For

most designs, high code coverage is achieved in a short time. CTSC achieves

100% line coverage on ten designs and 100% branch coverage on eight designs.

Table 4.2 shows the overall code coverage improvement of CTSC over the seeds. On

average, CTSC achieves 97.3% line coverage and 91.8% branch coverage (Column

2 of Table 4.2). The maximum improvement of line and branch coverage are 84%

and 91.5% (Column 3 of Table 4.2), respectively. On average, line and branch

coverage are improved by 32.3% and 50.2% (Column 4 of Table 4.2), respectively.

Besides the final coverage our approach achieved, we also graphically demon-

strate the cumulative progression as test cases were generated. Here, we selected

three designs, RISC CPU, RISC CPU control, and RISC CPU crf, which use rela-

tively longer time. Figure 4.5 and Figure 4.6 illustrate the cumulative progression

48

D
ES

RI
SC

_C
PU

_b
dp

RI
SC

_C
PU

_m
m

xu

RI
SC

_C
PU

_e
xe

c

RI
SC

_C
PU

_f
lo

at
in

g

Q
so

rt

U
sb

Tx
Ar

bi
te

r

Sy
nc

_m
ux

81

M
IP

S

ID
CT

M
D

5C

RS
A

RI
SC

_C
PU

_c
rf

RI
SC

_C
PU

_c
on

tr
ol

AD
PC

M

Y8
6

Pk
t_

sw
it

ch

RI
SC

 C
PU

M
as

te
r/

Sl
av

e
Bu

s0

20

40

60

80

100

Li
ne

 C
ov

er
ag

e
Im

pr
ov

em
en

t
(%

)

Seed
Improvement

Figure 4.3: Line coverage improvement on 19 total designs

D
ES

RI
SC

_C
PU

_b
dp

RI
SC

_C
PU

_m
m

xu

RI
SC

_C
PU

_e
xe

c

RI
SC

_C
PU

_f
lo

at
in

g

Q
so

rt

U
sb

Tx
Ar

bi
te

r

Sy
nc

_m
ux

81

M
IP

S

ID
CT

M
D

5C

RS
A

RI
SC

_C
PU

_c
rf

RI
SC

_C
PU

_c
on

tr
ol

AD
PC

M

Y8
6

Pk
t_

sw
it

ch

RI
SC

 C
PU

M
as

te
r/

Sl
av

e
Bu

s0

20

40

60

80

100

Br
an

ch
 C

ov
er

ag
e

Im
pr

ov
em

en
t

(%
)

Seed
Improvement

Figure 4.4: Branch coverage improvement on 19 total designs

49

Table 4.2: Coverage improvement over seeds

Coverage Ave. (%) Max ∆ (%) Ave. ∆ (%)

Line 97.3 84 32.3

Branch 91.8 91.5 50.2

of line coverage and branch coverage, respectively. The figures demonstrate the

10-hour time line visually. As shown, the line coverage and the branch coverage

are improved substantially within the first hour based on the seed, after which

improvement tapers off in a few hours.

There are two possible reasons that our approach is unable to achieve 100% code

coverage for some designs. First, the constraint solver may fail to solve complex

symbolic expressions. Since there are symbolic inputs at each simulation cycle, the

collected path constraints can be very complicated. Second, there are unreachable

statements and branches in certain designs.

4.6.2 Comparison with Random Testing

We also compare the code coverage results of CTSC with random testing that

randomly generates test cases automatically at each simulation cycle. We set the

branch coverage of each design achieved by CTSC as the target for random testing.

In case random testing could not achieve the target, we set a 24-hour time bound.

We conducted the experiments of random testing 10 times for each design and

computed the average. Note that the inputs of Master/Slave Bus has rigorous

restrictions. It is hard to generate valid inputs randomly. Thus, we excluded this

design.

The target is achieved on eight designs, but with many more test cases. Random

50

0 2 4 6 8 10
Time (hours)

10

20

30

40

50

60

70

80

90

100

Li
ne

 c
ov

er
ag

e
(%

)

RISC CPU
RISC_CPU_control
RISC_CPU_crf

Figure 4.5: The cumulative progression of line coverage

0 2 4 6 8 10
Time (hours)

0

20

40

60

80

100

Br
an

ch
 c

ov
er

ag
e

(%
)

RISC CPU
RISC_CPU_control
RISC_CPU_crf

Figure 4.6: The cumulative progression of branch coverage

51

testing does not achieve the target for other ten designs after running 24 hours,

although numerous random test cases were generated and simulated. Note that

if regression testing is performed, it is time-consuming to simulate hundreds of

thousands of test cases or more each time. Compared with random testing, CTSC

has the advantage of generating much fewer test cases to achieve high code coverage

and to cover corner cases efficiently where bugs are likely to appear, as illustrated

in the following section.

4.6.3 Bug Detection

In addition to computing code coverage, we also show the capability of our ap-

proach to trigger assertions and detect bugs. When the validation process ter-

minates, a validation report is generated automatically. The report is in a plain

text format that mainly indicates the statuses of test cases (failure or pass) and

assertion violations. Upon triggering an assertion, CTSC generates a test case

automatically leading to the assertion, which helps designers find the root cause

easier when debugging the design.

Among the 19 total designs, five designs contain assertions, as shown in the

first column of Table 4.3. The second column shows the total number of assertions.

The last three columns present the number of assertions triggered by the seed, by

the CTSC-generated test cases, and by random testing, respectively. Although

random testing can trigger some assertions, it generates many more test cases than

CTSC. Note that some assertions always hold. For instance, although there are

15 total assertions in the design RSA, we have verified manually that 11 assertions

can never be triggered. For example, the violation of assertion assert(a == d)

directly following the assignment a = d cannot be triggered.

52

Table 4.3: Assertion coverage

Designs
of Assertions

total by seed by CTSC by random

RISC CPU exec 2 0 2 0

MD5C 1 0 1 0

RSA 15 0 3 3

Master/Slave Bus 11 0 6 N/A

RISC CPU 2 0 2 2

During our experiments, we found an interesting bug in the design RSA, an

asymmetric cryptographic algorithm. The first step of RSA is to find two different

large prime numbers, p and q. Note that the algorithm relies on the fact that

p and q are different. If they are equal, the algorithm does not work correctly.

However, this implementation does not check whether or not p and q are equal. In

addition, we also found an out-of-bound access to an array in the design Y86. The

bugs found by CTSC underlines the importance of performing automated concolic

testing and the effectiveness of CTSC.

4.7 SUMMARY

As discussed in Chapter 3, SystemC designs are not stand-alone programs. Sys-

temC simulation invokes libraries and communicates with its environment. To

analyze the behavior of a SystemC design accurately, it often requires taking the

dependent libraries into account. Due to the complexity of the SystemC library,

most existing SystemC verification approaches either translate SystemC designs

into other IRs, which can represent only a subset of SystemC usually, or handle

the SystemC library by writing a simplified one. Thus, those approaches cover

53

only a subset of SystemC features. Although SystemC comes with a well-written

user’s manual and a reference implementation, it lacks formal specification and

leaves out some implementation choices deliberately. Hence, even carefully writ-

ing a simplified library can easily result in a dialect. Moreover, such modeling is

time-consuming, error-prone, and labor-intensive.

In contrast, our approach described in this chapter requires no translation of

SystemC designs, no modeling of dependent libraries, and therefore supports all

kinds of SystemC designs without restrictions. We have presented an automated,

easy-to-deploy, and scalable concolic testing approach for SystemC designs, namely

CTSC. The experimental results illustrate that CTSC is able to achieve high code

coverage and detect bugs effectively, as well as scaling to designs with practical

sizes. There are four major advantages of this approach. First, CTSC requires no

translation of SystemC designs and no modeling of dependent libraries, while most

existing work does. Second, CTSC supports all features of the SystemC language,

while most existing approaches support only a subset of SystemC features. Third,

CTSC provides an easy deployment model. It requires minimum engineering ef-

fort to apply CTSC to existing SystemC projects. Fourth, once a testbench is

configured, the whole validation process is fully automated.

54

Chapter 5

HARDWARE TROJAN DETECTION IN SYSTEMC DESIGNS

5.1 MOTIVATION

Due to the growing complexities of SoCs and increasingly shortened time-to-market

requirements, abstraction level of modern SoCs design has been raised from RTL

to ESL, e.g., in C/C++ or SystemC. Modern SoCs design in ESL often include a

large variety of behavioral IPs, such as microcontrollers, network processors, and

digital signal processors. Developing and verifying all these IPs in-house is in-

timidating, if not impossible, due to time-to-market and budget constraints. New

design paradigms such as outsourced design services and widely adoption of EDA

tools have emerged. Although this new design trend tremendously improves mod-

ern SoCs design productivity, it results in partial relinquishment of the control

over SoCs design process, which raises new hardware security issues such as hard-

ware Trojan attacks in early design steps [83]. This becomes an emerging threat

of computer security.

SystemC is a widely adopted ESL modeling language in the semiconductor

industry. ESL SystemC designs usually serve as executable specifications for the

subsequent SoCs design flow. Thus, it is critical to assure the trustworthiness of

those ESL SystemC designs. If hardware vulnerabilities such as hardware Trojans

are not discovered in ESL SystemC designs, they may be translated together with

normal functionalities down to RTL and lower level implementations, which makes

55

them much more costly to fix. Existing hardware Trojan detection approaches,

most of which are focused on RTL and lower levels, may be able to detect those

hardware Trojans. However, detecting and fixing Trojans in RTL or lower levels

is much more expensive than fixing them in ESL. Unfortunately, those low-level

hardware Trojan detection approaches are not applicable to ESL SystemC designs

since they have different characteristics from RTL and lower level implementations.

Until recently, there has only been a limited amount of research on hardware

Trojan detection for ESL SystemC designs. The pioneering work [97] discusses

hardware Trojan problem in behavioral designs and proposes a method to detect

those Trojans using property checking. The subsequent work [63] uses coverage-

guided fuzz testing to detect hardware Trojans in behavioral SystemC designs.

Both approaches are focused on behavioral synthesizable SystemC designs, which

are a subset of ESL SystemC designs. Our approach presented in the following

does not have such a restriction so that it is applicable to any ESL SystemC design.

5.2 OVERVIEW

5.2.1 Threat Model

With the globalization of the semiconductor industry, modern SoC designers have

been driven to outsource their IPs to reduce cost. In addition, the growing com-

plexities of modern SoCs has raised the design abstraction level from RTL to ESL.

As a result, modern SoCs design methodologies at ESL often involve integration

of behavioral IPs supplied by third-party vendors, as well as intensive usage of

EDA tools, to improve the design productivity. However, as shown in Figure 5.1,

the trustworthiness of SoCs in ESL may be comprised. First, third-party IPs may

56

ESL
(SystemC)

RTL
(Verilog/VHDL)

Gate
Level

Malicious IPs

Untrusted EDA tools

In-house rogue designers

Figure 5.1: Adversarial threat model targeted by SCT-HTD

contain malicious implants. Although a testbench with test cases is likely pro-

vided with the IPs by third-party vendors, these test cases are not able to trigger

the embedded Trojans. Second, untrusted EDA tools may also insert hardware

Trojans into these behavioral designs. The research [81] has demonstrated that

HLS tools can be leveraged to inject Trojans into resultant RTL implementations.

Last but not least, in-house designers may leave back-doors when integrating SoCs,

which makes the situation worse. Our approach mainly intends to detect hardware

Trojans injected into ESL SystemC designs [66].

5.2.2 Workflow

In this work, we assume that there is a golden model for a behavioral SystemC

DUV. A golden model is an executable behavioral model that is functionally cor-

rect and Trojan-free. Although it is very expensive, if not impossible, to develop

an entire SoC in-house by designers, we argue that it should not be very time-

consuming to develop a functionally correct golden model, which is not necessarily

cycle accurate. As shown in Figure 5.2, our approach consists of two key com-

ponents, selective concolic executor (SCE) and hardware Trojan detector (HTD).

SCE generates test cases by selective concolic execution with coverage-guided state

57

Selective
Conconlic
Executor

ReportTrojan Detector

Test CasesSeed

DUV +
Testbench

DUV

golden

Figure 5.2: Selective concolic testing for hardware Trojan detection

search strategy, while HTD detects hardware Trojans by simulating the generated

test cases on both the DUV and its golden model.

Algorithm 4 illustrates high-level steps of our proposed hardware Trojan de-

tection approach. The algorithm Hardware-Trojan-Detector takes five pa-

rameters as inputs: a design under validation duv, an initial test case π (called

seed), a testbench tb, a golden model golden, and a configuration file config. The

set TC, which contains the seed initially (line 1), saves all generated test cases.

The state s0 is the initial execution state of the DUV with the seed, and assigned

to sn which is the next state to be explored by concolic execution (line 2). An exe-

cution state includes a stack, a heap, concrete values of the inputs, path conditions

(represented as symbolic expressions), a register file, and a program counter. The

queues FPS and SPS save execution states during the process (line 3). FPS,

which includes the initial state at the beginning, saves first priority states that

explore new code of interest, while SPS saves second priority states that do not

explore new code of interest. The variable INTS stores code ranges that users

are interested in for hardware Trojan detection (line 4). Those code ranges are

specified in the configuration file. A time bound β is also given in the configura-

tion file (line 5), which guarantees the termination of the Trojan detection process

in case no Trojans are detected. At the beginning, since sn is not NULL and

time bound has not been reached, Sel-Con-Test-Gen is executed to explore

58

Algorithm 4: Hardware-Trojan-Detector(duv, π, tb, golden, config)

1 TC ← {π}

2 s0 ← Initialize(duv, π, tb), sn ← s0

3 FPS ← {s0}, SPS ← ∅ . FPS and SPS are queues

4 INTS ← Get-Interested-Code-Range(config)

5 β ← Get-Time-Bound(config)

6 while (sn 6= NULL) ∧ (time < β) do

7 {S ′, τ} ← Sel-Con-Test-Gen(sn, INTS)

8 if τ == NULL then

9 sn ← State-Selector(duv, tb, FPS, SPS, S ′)

10 continue

11 ret← HT-Detector(duv, golden, tb, τ)

12 if (ret) then

13 return TC, τ

14 TC ← TC ∪ {τ}

15 sn ← State-Selector(duv, tb, FPS, SPS, S ′)

16 return TC

the initial state (line 7). Upon completion, it returns a set of new states S ′ and

a test case τ for sn. If τ is NULL, no test case is generated for the explored

state (line 8). Thus, another state is selected and explored (line 9–10). If τ is not

NULL, HT-Detector is invoked to detect hardware Trojans with the newly

generated test case τ (line 11). If Trojans are detected, the algorithm returns all

59

generated test cases and the test case that triggers the Trojans (line 12–13). Then,

Hardware-Trojan-Detector terminates. Otherwise, the new test case τ is

added to TC, followed by invoking State-Selector, which selects another state

sn for concolic execution (line 14–15). The variable time (line 6) denotes the total

time elapsed since Hardware-Trojan-Detector starts. If there are no more

states left or the time bound has been reached, Hardware-Trojan-Detector

returns all generated test cases and terminates (line 16). We will discuss the details

of each component in the following section.

5.3 HARDWARE TROJAN DETECTION

This section presents selective concolic testing for hardware Trojan detection in be-

havioral SystemC designs in details. We will first describe the core of our proposed

approach, SCE, which includes our two primary optimizations, selective concolic

test generation and coverage-guided state search strategy. Then, we will present

HTD that detects hardware Trojans with the generated test cases by SCE.

5.3.1 Selective Concolic Test Generation

Traditional concolic test generation approaches generate test cases along an en-

tire concrete execution path, as shown in Figure 2.7. However, often only a small

portion of the path is from the DUV code. Most code composed of the path is

from libraries, which is of no interest to users generally. It may not be beneficial

to generate test cases in these libraries code for verifying the DUV. Figure 5.3

demonstrates the case. The circles denote branch points, while the arrows indi-

cate the execution sequence. As the figure shown, although there are three paths

indicated with red, blue, and magenta in the libraries, it is only one path from the

60

DUV

DUV

libsystemc,
libc++, etc.

Figure 5.3: Selective concolic test generation

DUV perspective. To improve the verification efficiency, concolic test generation

approaches should be restricted to generate test cases for the DUV only, by which

the number of generated test cases can be reduced and hence test generation time

is reduced. Furthermore, the subsequent simulation time can also be reduced with

fewer test cases. Unfortunately, traditional concolic test generation approaches

are not able to distinguish DUV code from libraries code. Therefore, they usually

generate many redundant test cases in terms of the DUV, since these test cases

follow the same path from the DUV point of view.

Our proposed selective concolic test generation approach is able to generate test

cases for a specific part of code. In this case, it is the DUV. However, our approach

can also be used to generate test cases for a specific library, or a combination

of multiple code segments, depending on users’ interests. Algorithm 5 describes

our selective concolic test generation process. The procedure Sel-Con-Test-

Gen takes two parameters, sn and INTS, as inputs. The input sn is the current

execution state with the concrete values for the symbolic variables that are obtained

in Algorithm 6. The input INTS includes all code ranges of interest to users. The

61

Algorithm 5: Sel-Con-Test-Gen(sn, INTS)

1 S ← ∅, τ ← NULL

2 while Has-Next-Instruction(sn) do

3 I ← Get-Next-Instruction(sn)

4 Execute-Instruction(I)

5 if I is branch then

6 bp← Get-Symbolic-Branch-Predicate(I)

7 if Find(I, INTS) then

8 s′n ← Fork(sn,¬bp)

9 S ← S ∪ s′n

10 Add-Constaints(sn, bp)

11 Set-Next-Instruction(sn)

12 τ ← Constraint-Solver(Get-Constraints(sn))

13 return S, τ

set S saves newly forked states from sn and the test case τ will be the generated test

case for sn (line 1). If there is an instruction for execution (line 2), the instruction

I is fetched (line 3) and executed (line 4). If it is a branch instruction (line 5), the

symbolic predicate bp of I is computed (line 6). If I is in the ranges INTS, then

a new state is forked with negation of bp and the state is added to the set S (line

7–9). Otherwise, no new state is forked. Afterwards, bp is added to the constraints

of sn (line 10). Then, line 11 sets the next instruction to be executed. If every

instruction of sn has been executed, a test case is generated if possible and saved

to τ (line 12). Finally, the newly forked states S and the test case τ are returned.

62

5.3.2 Coverage-guided State Search Strategy

Algorithm 6 presents our coverage-guided state search strategy. If HT-Detector

does not detect hardware Trojan, then, State-Selector is invoked to select

another state for concolic test generation. The state s will be the returned state,

which is NULL initially (line 1). For each state st from S ′ that is forked from

previous concolic execution, its path constraints are sent to a solver (line 3). If it

returns NULL, the current state may not be reachable so that we do not save it

(line 4–5). This prevents the state from being explored later, which reduces the

overall execution time. If the solver succeeds, the concrete values cv are saved to

the state for later execution (line 6). Then, coverage is analyzed with cv (line 7). If

new code is covered, then st is added to the first priority state queue FPS (line 9).

Otherwise, it is added to the second priority state queue SPS (line 11). After each

state is evaluated, the first state in FPS is assigned to s (line 13) and is removed

(line 14) if FPS is not empty. Otherwise, the first state in SPS is retrieved and

removed (line 16–17). If both FPS and SPS are empty, then s remains NULL,

which means no more state to be explored. Finally, the selected state s is returned.

5.3.3 Hardware Trojan Detection

Algorithm 7 demonstrates our hardware Trojan detection procedure. After a state

is explored and the test case is generated, HT-Detector is called with four

arguments, a duv and its golden model golden, a testbench tb, as well as the newly

generated test case τ . The test case τ is simulated on both duv and golden (line

1 and line 2 respectively). If the results are not the same from both simulations,

then this indicates that a Trojan is detected (line 4); otherwise, HT-Detector

returns false to indicate that no Trojan is discovered.

63

Algorithm 6: State-Selector(duv, tb, FPS, SPS, S ′)

1 s← NULL

2 foreach st ∈ S ′ do

3 cv ← Constraint-Solver(Get-Constraints(st))

4 if cv == NULL then

5 continue

6 Set-Value (st, cv)

7 newly covered← Coverage-analyzer(duv, tb, cv)

8 if (newly covered) then

9 FPS ← FPS ∪ {st}

10 else

11 SPS ← SPS ∪ {st}

12 if FPS 6= ∅ then

13 s← FPS.front() . get the first state from FPS

14 FPS.pop() . remove the first state from FPS

15 else if SPS 6= ∅ then

16 s← SPS.front() . get the first state from SPS

17 SPS.pop() . remove the first state from SPS

18 return s

64

Algorithm 7: HT-Detector(duv, golden, tb, τ)

1 res1← Simulator(duv, tb, τ)

2 res2← Simulator(golden, tb, τ)

3 if res1 6= res2 then

4 return true . indicates that Trojan is detected

5 else

6 return false

5.4 EXPERIMENTAL RESULTS

We have implemented the proposed approach as an automated prototype, namely

SCT-HTD, based on our conclic testing of SystemC designs approach presented

in Chapter 4. We have applied this approach to the open-source benchmark suite,

S3CBench [98]. Although S3CBench only consists of behavioral synthesizable Sys-

temC designs, our approach also works for non-synthesizable SystemC designs.

S3CBench contains 10 SystemC designs that include multiple types of hardware

Trojans based on trigger mechanism, either sequential or combinational. Half of

the designs are computationally intensive designs such as image processing algo-

rithms. Each design has fixed computation procedures for any inputs. As we all

know, concolic test generation is based on branch conditions, which makes it very

powerful to explore deep paths with complex conditions and corner cases. How-

ever, it is not good at generating test cases for a design that has fixed execution

steps, since an execution path of such a design does not depend on input values.

This is a known limitation of concolic testing. Thus, we conducted experiments

on non-computationally intensive designs. The experiments were conducted on a

65

laptop with a 4-core Intel(R) Core(TM) i7-4700MQ CPU, 16 GB of RAM, and run-

ning the Ubuntu Linux OS with 64-bit kernel version 4.15. Table 5.1 presents our

experimental results, as well as comparison with the state-of-the-art approaches.

We will discuss the table in the following.

5.4.1 Effectiveness and Efficiency

We developed a golden model for each design on which we experimented. The

first column of Table 5.1 gives the name (before the hyphen part) of each design.

The part after the hyphen denotes the type of inserted Trojan. Details about the

benchmark and the Trojans can be found in S3CBench [98]. We have evaluated

the performance of SCT-HTD from three perspectives, namely the number of gen-

erated test cases to trigger the Trojan (column 2), time usage (column 6) and

maximum memory usage (column 10). To pursue a fair comparison, we also set

a two-hour time bound during experiments as AFL-SHT [63] did. T.O. indicates

that the two-hour time bound is reached and thus the hardware Trojans are not

detected. The designs that we evaluated on includes the three typical hardware

Trojan types in terms of payload, namely functionality modification (adpcm, fir,

and bSort), denial of service (uart), and sensitive information leakage (aes). As

demonstrated, our approach is able to detect all three types of hardware Tro-

jans with a few test cases, short time usage and reasonable memory usage, which

demonstrates the effectiveness and efficiency of our approach.

5.4.2 Evaluation of Two Optimization Strategies

To illustrate the advantages of our selective concolic testing and coverage-guided

state search strategy, we have conducted experiments with traditional concolic

66

T
ab

le
5.

1:
E

x
p

er
im

en
ta

l
re

su
lt

s
of

S
C

T
-H

T
D

an
d

co
m

p
ar

is
on

w
it

h
th

e
st

at
e-

of
-t

h
e-

ar
t

ap
p
ro

ac
h
es

D
e
si

g
n

s
#

T
e
st

c
a
se

T
im

e
(s

)
M

e
m

o
ry

(M
B

)

S
C

T
-H

T
D

*
C

T
ζ

A
F

L
η

A
F

L
-S

H
T

δ
S

C
T

-H
T

D
C

T
A

F
L

A
F

L
-S

H
T

S
C

T
-H

T
D

C
T

A
F

L
A

F
L

-S
H

T

a
d
p
c
m
-
s
w
m

27
52

5
45

15
63

4
2
3

1
5
7

T
.O

.
T

.O
.

1
.7

1
3
5
4
6

1
4
3
3
7

N
/
A

N
/
A

a
d
p
c
m
-
s
w
o
m

7
50

3
45

08
39

4
1
4

3
1

T
.O

.
T

.O
.

1
.6

7
1
3
4
1

1
4
4
4
2

N
/
A

N
/
A

f
i
r
-
c
w
o
m

26
76

20
7

4
1

1
3

2
6

8
.5

1
0
.0

7
1
6
2
1

2
3
0
5

N
/
A

N
/
A

b
S
o
r
t
-
c
w
o
m

2
2

11
8

3
9

8
1
0

4
.8

2
0
.0

5
1
0
7
4

2
6
6
8

N
/
A

N
/
A

b
S
o
r
t
-
s
w
m

4
97

5
19

82
6

1
0
8

1
0

T
.O

.
3
3
7
.3

6
0
.1

1
1
1
0
6

1
0
7
6
8

N
/
A

N
/
A

u
a
r
t
-
s
w
m
1

3
10

23
N

/A
N

/
A

9
T

.O
.

N
/
A

N
/
A

1
0
7
1

1
3
0
1
1

N
/
A

N
/
A

u
a
r
t
-
s
w
m
2

3
10

16
17

2
5
1

9
T

.O
.

8
.8

2
0
.1

8
1
0
7
0

1
2
9
7
2

N
/
A

N
/
A

a
e
s
-
c
w
o
m

11
11

50
54

4
2
2

2
3

3
2

8
8
8
.2

9
0
.0

4
1
3
8
6

1
3
9
6

N
/
A

N
/
A

*
O

u
r

ap
p

ro
ac

h
ζ

C
on

co
li

c
te

st
in

g
(C

T
)

w
it

h
o
u

t
o
u

r
o
p

ti
m

iz
a
ti

o
n

s
η

F
u

zz
in

g
w

it
h

so
ft

w
a
re

-o
ri

en
te

d
m

u
ta

ti
o
n

δ
C

ov
er

ag
e-

gu
id

ed
fu

zz
in

g

67

0

200

400

600

800

1000

1200
SCT-HTD
CT

Figure 5.4: Number of generated test cases

testing approach (without the two optimization), denoted as CT. Column 3, col-

umn 7 and column 11 show the number of generated test cases, time usage and

maximum memory usage with CT, respectively. Five out of eight Trojans are not

detected within the two-hour time bound, although many test cases are generated.

Figure 5.4, Figure 5.5, and Figure 5.6 demonstrate the advantage of SCT-HTD in

the three aspects graphically, compared with traditional concolic testing approach.

As shown in figures, our optimization strategies reduce the number of generated

test cases, time usage, and memory usage tremendously for more than half of the

designs. For other designs, our approach is also able to detect hardware Trojans

with fewer or equal number of generated test cases, less time and memory usage.

68

0

1000

2000

3000

4000

5000

6000

7000

8000 SCT-HTD
CT

Figure 5.5: Time usage

0

2000

4000

6000

8000

10000

12000

14000

16000 SCT-HTD
CT

Figure 5.6: Maximum memory usage

69

5.4.3 Comparison with State-of-the-Art Approaches

Two existing approaches target hardware Trojan detection for behavioral SystemC

designs. One [97] uses property checking and the other, AFL-SHT [63], adopts

coverage-guided fuzzing. Although we do not have access to the commercial formal

tools to conduct experiments, formal approaches on Trojan detection for behavioral

SystemC designs are not as promising as AFL-SHT. Since the source code of AFL-

SHT is not available, we take the results obtained by both AFL-SHT and AFL [101]

from the paper for comparison. Some data are not presented in the paper, such as

memory usage, which are denoted as N/A. As illustrated, our approach is able to

detect the Trojans with far fewer test cases than AFL and AFL-SHT. Time usage

of SCT-HTD is much less than AFL for half of the designs. For other designs, SCT-

HTD uses a little longer time than AFL and AFL-SHT. There are two possible

reasons. First, power of machines running experiments are different. We conducted

experiments on a laptop which might be less powerful. Second, concolic testing

involves constraint solvers to generate test cases, which is a known time-consuming

operation compared with fuzzing techniques. However, the increase of time usage

is moderate.

5.5 SUMMARY

In this chapter, we have presented a novel approach for detecting hardware Tro-

jans in behavioral SystemC designs with selective concolic testing. We have also

proposed an algorithm to improve the efficiency of our approach with coverage-

guided state search strategy. We have implemented the proposed approach as a

prototype, namely SCT-HTD. To show the effectiveness and efficiency of the pro-

posed approach, we have conducted experiments on an open source benchmark

70

that includes multiple types of hardware Trojans based on trigger mechanisms.

The results demonstrate that our approach is very promising on hardware Trojan

detection for behavioral SystemC designs.

71

Chapter 6

SCBENCH BENCHMARK

6.1 MOTIVATION

SystemC verification has been studied for around two decades. It is both neces-

sary and important for verification researchers to evaluate their new approaches

and algorithms using common and updated benchmark suites, no matter which

paradigm they adopt. However, so far, different verification approaches are eval-

uated on different sets of SystemC designs, among which some designs are not

updated according to the latest SystemC Standard [49]. Lacking common bench-

marks makes it difficult to compare the performances of various approaches. With

common benchmark suites, researchers are able to compare the effectiveness and

efficiency of their approaches with the state-of-the-art techniques. The common

benchmarks should cover as many application domains and SystemC core features

as possible. It also should conform to the latest SystemC Standard.

Previously, several sets of SystemC designs have been developed and used by

various researchers. KRATOS [17] provides a set of SystemC designs for its safety

property checking, which are not updated according to the latest SystemC Stan-

dard. SCIVER [36] provides a few SystemC transaction level modelling designs

for its high-level property checking approach. S2CBench [86] consists of a set of

high-level synthesizable SystemC designs, which is a subset of SystemC. S2CBench

is mainly targeted for evaluating high-level synthesis tools. SEQ [92] provides a

72

set of SystemC designs in both low level and high level. They are mainly intended

for equivalence verification and cover only a few application domains. Designs in

Aegis [1] model some classical concurrency scenarios, which are mainly used to

evaluate approaches for analyzing concurrency related errors. All the aforemen-

tioned benchmarks either cover a small subset of SystemC core features, or target

a specific purpose.

In this chapter, we present SCBench, a comprehensive suite of benchmark de-

signs for SystemC verification and validation. SCBench can be used for various

purposes, such as formal verification, dynamic validation, and data race detec-

tion [68]. Key features of SCBench are summarized as follows.

• SCBench consists of 38 well-written representative SystemC designs that

cover a variety of application domains, such as CPU architecture, security,

digital signal processing (DSP), networking, and artificial intelligence (AI).

• The designs range from small single process designs to large multi-process

designs. All designs are selected carefully to cover as many SystemC core

features as possible. Five out of 38 designs are modelled specifically following

TLM-2.0 [49].

• Each design has been provided a set of stimuli and a testbench including

stimuli applications and output monitors.

• SCBench is freely available online to all researchers [85].

6.2 OVERVIEW

The goal of the SCbench benchmark suite is to promote research on SystemC ver-

ification by providing a set of representative designs that are reasonably large and

73

well-written. We do not intend to evaluate the performances of existing SystemC

verification approaches. Therefore, all designs follow the latest SystemC Standard,

but not specific restrictions of certain verification approaches.

The SCBench benchmark suite comprises 38 designs that have been selected

from various application domains, such as CPU architectures, security, DSP, image

processing, networking, and AI. Each domain offers different design characteristics.

All designs are selected carefully to cover a wide variety of SystemC core features,

such as hierarchical structures, hardware-oriented data types, and bit-precise op-

erations.

Table 6.1 shows the summary of the SCBench benchmark suite. The first three

columns present the names of the designs, the number of processes, and LoC,

respectively. LoC is calculated using cloc. Note that only the code in a design itself

is taken into account, excluding the testbench code. Thus, the actual sizes of the

source files are larger. The last column indicates the sources [1,5,27,41,60,86,92,95]

of every design.

Table 6.1: Summary of SCBench benchmark suite

Designs # of Proc. LoC Type Source

RISC CPU 13 2056 CI/CD SEQ [92]

RISC CPU control 1 826 CD SEQ

RISC CPU mmxu 1 193 CI SEQ

RISC CPU exec 1 128 CI SEQ

RISC CPU floating 1 127 CI SEQ

IA-32 1 336 CI/CD SEQ

74

Table 6.1: Summary of SCBench benchmark suite (continued)

Designs # of Proc. LoC Type Source

MIPS 1 257 CI/CD SCBench

Y86 11 301 CI/CD SEQ

AES 31 1624 CI Scoot [5]

DES 14 2401 CI Scoot

RSA 1 324 CI SystemC library [95]

KASUMI 2 415 CI S2CBench [86]

SNOW3G 1 522 CI S2CBench

MD5C 1 271 CI S2CBench

IDCT 1 450 CI S2CBench

Interpolation 1 231 CI S2CBench

ADPCM 1 270 CD S2CBench

FFT 1 334 CI S2CBench

ASR/ABS 1 249 CI/CD STATE [41]

UsbTxArbiter 5 144 CD SEQ

UART 1 127 CI S2CBench

Qsort 1 204 CI S2CBench

Disparity 4 634 CI S2CBench

75

Table 6.1: Summary of SCBench benchmark suite (continued)

Designs # of Proc. LoC Type Source

Sobel 1 269 CI S2CBench

VGA 2 218 CD S2CBench

NoC 656 2130 CI/CD opencores.org [60]

Master/Slave Bus 5 974 CD SystemC library

Pkt switch 17 376 CD SystemC library

ANN 2 315 CI S2CBench

Crossroad 4 74 CD Aegis [1]

Philosophers 10 116 CD Aegis

Producer/Consumer 2 44 CD Aegis

SimpleRing 6 211 CD Aegis

TLM b transport 2 102 CD www.doulos.com [27]

TLM DMI DBG 2 202 CD www.doulos.com

TLM routing 6 277 CD www.doulos.com

TLM nb transport 2 390 CD www.doulos.com

AMBA AHB 7 1542 CI/CD STATE

76

6.3 DESIGN DESCRIPTIONS

The systems or algorithms implemented by these designs are widely used in the

real world. Their functional descriptions are described as follows, categorized by

application domains (AD). Note that some designs are relevant to multiple cate-

gories. However, each of them is put into one category for organization purposes.

In addition, the designs are also classified control-dominant (CD) or computation-

intensive (CI), as shown in the fourth column of Table 6.1.

AD1: CPU Architectures. This category consists of designs that model multi-

ple CPU architectures including RISC CPU, Intel’s IA-32, and MIPS architectures.

These designs can be used as instruction set simulators that software developers

can use to test their software in the early stage of development.

RISC CPU models a CPU architecture that fetches instructions, decodes and

executes them, and then writes the results back to registers or memory. It provides

more than 39 instructions including arithmetic, logical, branch, floating point, and

SIMD (MMX-like). Four components of the CPU architecture, RISC CPU control,

RISC CPU mmxu, RISC CPU exec, and RISC CPU floating, are listed as separate

designs. They describe instruction decode unit, MMX-like execution unit, integer

execution unit, and floating point execution unit, respectively.

IA-32 is an instruction length decoder for Intel’s IA-32 instruction set archi-

tecture.

MIPS is a simplified MIPS processor that has 30 instructions. We developed

this design based on its C version [40].

Y86 is a simple CISC CPU implementing a subset of the instructions of the

IA-32 architecture. The design has nine total instructions and nine registers with

32-bit data width each.

77

AD2: Security. The importance of data security has increased drastically in the

past decade. Therefore, we selected several algorithms for data encryption and

decryption in this category.

AES is an encryption algorithm implementing the advanced encryption stan-

dard. It is a symmetric key algorithm in that the same key is used for both

encryption and decryption.

DES is also a symmetric key algorithm used for encryption. It highly influenced

the advancement of modern cryptography.

RSA implements the RSA public-key cipher that is an asymmetric cryptographic

algorithm. This implementation illustrates the usage of arbitrary precision types

of SystemC.

KASUMI is a block cipher algorithm that is used in mobile communication sys-

tems. The algorithm works with 128-bit key and 64-bit input and output.

SNOW3G implements the SNOW 3G algorithm, a stream cipher. It consists

of two interactive components, a linear feedback shift register and a finite state

machine.

MD5C is a widely used algorithm to generate hash values. It can also be used

as a checksum to verify data integrity.

AD3: Digital Signal Processing. With the explosive growth of smart and

portable devices, some DSP functionalities have been integrated into these devices.

This category includes four DSP algorithms that are widely used in the field.

IDCT is the inverse discrete cosine transform that expresses a finite sequence

of data points in terms of a sum of cosine functions of different frequencies. It is

important to many applications in science and engineering.

Interpolation is an algorithm used to construct new data points within the

78

range of a discrete set of known data points. The design implements a 4-stage

interpolation filter.

ADPCM describes adaptive differential pulse-code modulation, which is a vari-

ant of differential pulse-code modulation. The design accepts 16-bit pulse-code

modulation samples as inputs and converts them into 4-bit samples.

FFT implements the fast Fourier transform algorithm that computes the discrete

Fourier transform of a sequence. FFT is widely used in engineering, science, and

mathematics.

AD4: Automotive and Industrial. Designs in this category are usually used

in embedded systems for basic math manipulation and control systems. Typical

applications include communications, performance monitors, and sensor systems.

ASR/ABS is an anti-slip regulation and anti-lock braking system that monitors

the speed of each wheel and regulates the brake pressure to prevent loss of traction

or wheel lockup. It comprises wheel speed sensors, a hydraulic modulator, an

electronic control unit, and a control area network bus.

UsbTxArbiter describes an algorithm for processing data using an arbiter in a

USBHostSlave core.

UART models a universal asynchronous receiver/transmitter. It translates data

between characters in a computer and an asynchronous serial communication for-

mat.

Qsort implements the well-known quick sort algorithm that sorts data in as-

cending order. Sorting of information is critical in various disciplines so that pri-

orities can be made.

AD5: Image Processing. With the great success of augmented reality and

virtual reality, image and video processing have become more and more important.

79

Therefore, image processing is given as a separate category.

Disparity computes the disparity in a 3D-image. Disparity refers to the dif-

ference in image location of an object seen by the left and right eyes.

Sobel is an edge detection algorithm used in image processing and computer

vision. The algorithm takes an image as input and returns a new image composed

of the edges of the original image.

VGA implements the VGA controller and image generator. The controller han-

dles the low-level details of communication with a monitor over a VGA connector.

AD6: Networking. The networking category represents designs of network de-

vices. These designs include a network-on-chip simulator, a simple bus architec-

ture, and a packet switch.

NoC is a network-on-chip simulator that supports a maximum of 4 by 4 tiles.

Each tile includes an IP core, a router, and six FIFOs. The design uses the

synchronizing FIFO and wormhole routing.

Master/Slave Bus describes a bus structure that includes a set of masters,

a set of slaves, a shared bus, and an arbiter. There are three types of master

interfaces: (1) blocking interface, where calls return after transmission is finished;

(2) non-blocking interface, where calls return immediately; and (3) direct interface,

where direct access to slaves are enabled.

Pkt switch, a packet switch design, implements a 4x4 multicast helix packet

switch. The switch uses a self-routing ring of shift registers to transfer cells from

one port to another in a pipelined style. Input and output ports have FIFO buffers

of depth four each.

AD7: Artificial Intelligence. The category includes a widely used algorithm,

80

artificial neural network (ANN), in machine learning and cognitive science. The net-

work is a computational model based on a large collection of neural units modelling

the way the brain solves problems. It consists of multiple layers.

Besides the specific seven categories of designs described previously, the bench-

mark also includes four designs from Aegis project [1] that model classical con-

currency scenarios, such as dining philosophers and producer/consumer prob-

lems. These designs are mainly intended to evaluate approaches for analyzing

concurrency related errors, such as race conditions. Particularly, Crossroad and

Philosophers intentionally include race conditions.

In addition, the benchmark contains five designs that are modelled explicitly

following TLM-2.0 Standard. TLM b transport is a simple loosely-timed model

with blocking transport interface in TLM-2.0 style. The design consists of two

modules, one initiator and one target. The target module represents simple mem-

ory. The initiator module generates transactions which read from or write to the

memory.

TLM DMI DBG explores the response status of the generic payload, as well as

the direct memory and the debug transport interfaces. The purpose of the direct

memory interface is to speed up simulation by giving initiators a direct pointer

to an area of memory in a target, by which there is no need to go through the

transport interface for every read and write transaction. The debug transport

interface is intended to give an initiator the ability to read or write memory in a

target without causing side effects and without advancing simulation time.

TLM routing models a router as a TLM-2.0 interconnect component, through

which transactions propagate from one initiator to one of four targets. The router

has a forward path that forwards transactions to the target and a return path that

81

returns transactions to the initiator.

TLM nb transport is an approximately-timed model with non-blocking trans-

port interface in TLM-2.0 style. It also includes the following features of TLM-2.0:

generic payload, payload event queues, memory management, the BEGIN REQ

and BEGIN RESP exclusion rules.

AMBA AHB is a real world design that implements the advanced high performance

bus (AHB) of the advanced microcontroller bus architecture (AMBA). The AMBA

AHB, which is currently used in many high performance SoCs, splits transactions

into AMBA conforming transfers. The AMBA AHB is a synchronous clocked bus.

6.4 DESIGN ANALYSIS

This section provides detailed characteristics of the SCBench benchmark suite.

Table 6.2 shows the numbers of different operations including arithmetic, compar-

ison or relational, bitwise, and logical. Table 6.3 illustrates the numbers of various

statements, such as if, switch, while, for, and assignment statements including

compound assignments.

Table 6.2: Numbers of operations for each design

Designs Add/Sub Mul Div/Mod Comp Bitwise Logic

RISC CPU 41 6 3 92 95 5

RISC CPU control 9 0 0 33 0 0

RISC CPU mmxu 18 4 0 19 64 0

RISC CPU exec 6 1 2 3 9 0

RISC CPU floating 4 1 1 2 22 0

82

Table 6.2: Numbers of operations for each design (continued)

Designs Add/Sub Mul Div/Mod Comp Bitwise Logic

IA-32 45 4 0 45 0 7

MIPS 15 2 0 10 41 0

Y86 12 0 0 15 1 14

AES 7 0 0 15 235 30

DES 1 0 0 0 7 5

RSA 17 8 14 36 1 7

KASUMI 44 0 0 22 60 0

SNOW3G 11 0 0 10 114 0

MD5C 284 4 0 16 16 274

IDCT 123 33 0 36 31 12

Interpolation 14 10 0 8 0 2

ADPCM 15 2 0 16 6 0

FFT 17 5 2 10 0 0

ASR/ABS 9 6 2 22 0 0

UsbTxArbiter 0 0 0 5 0 0

UART 3 0 0 11 0 13

Qsort 8 0 0 0 0 2

83

Table 6.2: Numbers of operations for each design (continued)

Designs Add/Sub Mul Div/Mod Comp Bitwise Logic

Disparity 33 2 13 42 0 13

Sobel 26 2 0 17 0 0

VGA 10 0 0 13 0 6

NoC 66 0 4 10 110 20

Master/Slave Bus 27 2 13 46 0 13

Pkt switch 13 1 1 14 12 39

ANN 7 1 0 2 5 1

Crossroad 5 0 4 3 0 1

Philosophers 5 0 5 0 0 0

Producer/Consumer 1 0 0 1 0 0

SimpleRing 19 0 9 6 0 0

TLM b transport 0 0 2 8 2 3

TLM DMI DBG 2 3 4 11 2 1

TLM routing 8 1 7 13 8 3

TLM nb transport 6 1 6 22 0 6

AMBA AHB 25 4 10 132 5 20

Note: Add — Addition, Sub — Subtraction, Mul — Multiplication, Div — Division,

Mod — Modulo, Comp — Comparison.

84

Table 6.3: Numbers of statements for each design

Designs if switch while for assignment

RISC CPU 51 6 52 1 293

RISC CPU control 6 3 30 0 102

RISC CPU mmxu 19 1 1 0 85

RISC CPU exec 3 1 1 0 19

RISC CPU floating 1 1 2 0 30

IA-32 39 1 2 9 33

MIPS 4 3 1 3 57

Y86 20 0 6 6 33

AES 26 8 1 0 246

DES 6 11 1 0 426

RSA 16 0 2 5 44

KASUMI 2 0 2 12 62

SNOW3G 1 0 2 4 109

MD5C 3 0 2 8 62

IDCT 2 0 1 3 109

Interpolation 0 0 1 5 15

ADPCM 12 0 1 1 33

FFT 2 0 10 0 60

ASR/ABS 21 1 6 3 64

85

Table 6.3: Numbers of statements for each design (continued)

Designs if switch while for assignment

UsbTxArbiter 7 1 0 0 5

UART 11 0 2 0 37

Qsort 1 0 1 5 17

Disparity 16 0 9 11 96

Sobel 8 0 1 8 22

VGA 9 0 2 0 4

NoC 130 1 13 7 272

Master/Slave Bus 59 1 6 13 77

Pkt switch 32 0 2 0 76

ANN 5 0 0 14 31

Crossroad 0 1 3 0 5

Philosophers 0 0 3 1 5

Producer/Consumer 1 0 2 0 4

SimpleRing 8 0 7 5 20

TLM b transport 5 0 0 2 5

TLM DMI DBG 14 0 0 4 8

TLM routing 14 0 0 7 12

TLM nb transport 28 1 0 1 40

AMBA AHB 75 13 1 9 168

86

Figure 6.1 and Figure 6.2, which depict the occurrence rates of operations and

statements in the designs respectively, desmonstrate the more detailed character-

istics of the designs visually1. Figure 6.1 shows that each application domain of

SCBench has different characteristics in terms of operations. For example, the

designs in the CPU architecture and the security domains have a higher propor-

tion of bitwise operations compared with other designs. Figure 6.2 shows that

each application domain also has different characteristics in terms of statements.

Except assignments, which is dominant in every design, the designs in the DSP

domain have a high proportion of loops, since they usually process a set of data

repeatedly. In contrast, the designs in the network domain have a high proportion

of if statements. This is because decision-making dominates the network devices.

Thus, researchers may select specific categories for their verification purposes.

Table 6.4 presents representative data types and features of SystemC that are

covered by each design, as shown in the second column. We do not list those

features contained by most designs, such as signals and input/output ports. As

illustrated, the designs cover a wide variety of SystemC hardware-oriented data

types and core features, such as fixed and arbitrary precision integral types, fixed

point types, FIFOs and signals. We summarize the core features of SystemC

language including the TLM-2.0 Standard in three categories, as shown in the first

two columns of Table 6.5. The last column indicates whether or not each feature

is covered by our benchmark suite, denoted as C (Covered) or N (Not covered),

respectively. As can be seen, 22 out of 29 core features of SystemC language are

covered by our benchmark suite.

1The occurrence rate of each operation is the proportion of the number of the operation to
the total number of operations counted. So is the occurrence rate of each statement.

87

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
IS

C
 C

P
U

R
IS

C
_C

P
U

_
co

n
tr

ol

R
IS

C
_C

P
U

_
m

m
xu

R
IS

C
_C

P
U

_
ex

ec

R
IS

C
_C

P
U

_
flo

at
in

g

IA
-3

2

M
IP

S

Y8
6

A
ES

D
ES

R
SA

K
A

SU
M

I

SN
O

W
3

G

M
D

5C

ID
C

T

In
te

rp
o

la
ti

o
n

A
D

P
CM FF

T

A
SR

/A
B

S

U
sb

Tx
A

rb
it

er

U
A

R
T

Q
so

rt

D
is

pa
ri

ty

So
b

e
l

V
G

A

N
o

C

M
as

te
r/

Sl
av

e
B

u
s

P
kt

_s
w

it
ch

A
N

N

C
ro

ss
ro

ad

P
hi

lo
so

p
h

er
s

P
ro

cu
d

er
/C

o
n

su
m

e
r

Si
m

p
le

R
in

g

TL
M

_
b_

tr
an

sp
o

rt

TL
M

_
D

M
I_

D
B

G

TL
M

_
ro

u
ti

n
g

TL
M

_
nb

_
tr

an
sp

o
rt

A
M

B
A

_A
H

B

Logic

Bitwise

Comp

Div/Mod

Mul

Add/Sub

Figure 6.1: Occurrence rates of operations per design

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
IS

C
 C

P
U

R
IS

C
_C

P
U

_
co

n
tr

ol
R

IS
C

_C
P

U
_

m
m

xu
R

IS
C

_C
P

U
_

ex
ec

R
IS

C
_C

P
U

_
flo

at
in

g
IA

-3
2

M
IP

S
Y8

6
A

ES
D

ES
R

SA
K

A
SU

M
I

SN
O

W
3

G
M

D
5C

ID
C

T
In

te
rp

o
la

ti
o

n
A

D
P

CM FF
T

A
SR

/A
B

S
U

sb
Tx

A
rb

it
er

U
A

R
T

Q
so

rt
D

is
pa

ri
ty

So
b

e
l

V
G

A
N

o
C

M
as

te
r/

Sl
av

e
B

u
s

P
kt

_s
w

it
ch

A
N

N
C

ro
ss

ro
ad

P
hi

lo
so

p
h

er
s

P
ro

cu
d

er
/C

o
n

su
m

e
r

Si
m

p
le

R
in

g
TL

M
_

b_
tr

an
sp

o
rt

TL
M

_
D

M
I_

D
B

G
TL

M
_

ro
u

ti
n

g
TL

M
_

nb
_

tr
an

sp
o

rt
A

M
B

A
_A

H
B

assign

for

while

switch

if

Figure 6.2: Occurrence rates of statements per design

88

Table 6.4: Representative data types and features of SystemC

Designs Representative data types and features

RISC CPU
Fixed precision integer, bit manipulation, float-

ing point, multi-process, hierarchical design

RISC CPU control Fixed precision integer, clocked thread process

RISC CPU mmxu Bit manipulation, clocked thread process

RISC CPU exec Clocked thread process

RISC CPU floating Floating point, bit manipulation

IA-32 Three-valued logic

MIPS Bit manipulation

Y86 Fixed precision integer, multi-process

AES
Arbitrary precision integer, bit manipulation,

multi-process

DES Fixed precision integer, multi-process

RSA Arbitrary precision integer

KASUMI Two-dimension array of port, large fixed arrary

SNOW3G Array of port, large fixed array, bit manipulation

MD5C Arrays of different bit widths, bit manipulation

IDCT Fixed precision integer, bit manipulation

Interpolation Fixed point data, polynomial decomposition

ADPCM Fixed precision integer

FFT Fixed point data

ASR/ABS FIFO

UsbTxArbiter Multi-process

89

Table 6.4: Representative data types and features of SystemC (continued)

Designs Representative data types and features

UART Clocked thread process

Qsort Pointer

Disparity Fixed precision integer, hierarchical design

Sobel
FIFO, arbitrary precision integer, interface, bit

manipulation, hierarchical design

VGA Clocked thread process

NoC
FIFO, fixed precision integer, interface, hierar-

chical design

Master/Slave Bus Interface, multi-process, hierarchical design

Pkt switch Fixed precision integer, multi-process

ANN Array of port

Crossroad Multi-process, synchronization

Philosophers Multi-process, synchronization

Producer/Consumer Multi-process, synchronization

SimpleRing Multi-process, synchronization

TLM b transport Blocking transport interface, LT coding style

TLM DMI DBG
Direct memory interface, debug transport inter-

face

TLM routing Interconnect component

TLM nb transport
Non-blocking transport interface, AT coding

style, payload event queues

AMBA AHB Non-blocking transport, generic payload, arbiter

90

Table 6.5: Coverage of SystemC core features

SystemC Specifics Covered/Not covered

Core language

Modules C

Hierarchical modules C

SC METHOD C

SC THREAD C

SC CTHREAD C

Ports C

Events C

Interfaces C

Timers C

Signals C

FIFOs C

Mutexes N

Semaphores N

Data types

Bit vectors C

Fixed-point numbers C

Fixed-precision integral types C

Arbitrary-precision integral types C

Four-valued logic types N

Logic vectors N

Resolved types N

TLM-2.0

LT coding style C

AT coding style C

Blocking transport interface C

Non-blocking transport interface C

Direct memory interface C

Debug transport interface C

Generic payload C

Global quantum N

Combined interfaces N

Note: C — Covered, N — Not covered.

91

6.5 DESIGN VALIDATION

We provide a testbench for each design to verify its functionality. Figure 6.3 shows

the architecture of a testbench of a SystemC design. The testbench consists of a

Driver part and a Monitor part. The Driver part sends the stimuli to a DUV,

while the Monitor part collects the output responses and compares them with the

golden outputs. In addition, the testbench includes an option to dump a VCD file

to view the waveforms of signals.

Driver

Comparison

Monitor

Design Under Validation (DUV)

Golden
Output

OutputStimuli

Testbench

Figure 6.3: Testbench for a SystemC design

For each design, we also provide a set of stimuli, which can be modified by

users. The benchmark is validated with the given stimuli on a desktop with a

4-core Intel(R) Core(TM) i7-4790 CPU, 16 GB of RAM, and running the Ubuntu

Linux OS with 64-bit kernel version 3.19. It can be migrated to other OS easily.

We computed the code coverage reported by LCOV, as shown in Figure 6.4. The

code coverage can serve as a baseline for future verification projects.

6.6 SUMMARY

SystemC verification and validation requires high quality benchmarks to evaluate

new approaches and compare them with the state-of-the-art approaches. We have

presented such a benchmark in this chapter, namely SCBench, which complies with

92

0

10

20

30

40

50

60

70

80

90

100

R
IS

C
 C

P
U

R
IS

C
_C

P
U

_
co

n
tr

ol

R
IS

C
_C

P
U

_
m

m
xu

R
IS

C
_C

P
U

_
ex

ec

R
IS

C
_C

P
U

_
flo

at
in

g

IA
-3

2

M
IP

S

Y8
6

A
ES

D
ES

R
SA

K
A

SU
M

I

SN
O

W
3

G

M
D

5C

ID
C

T

In
te

rp
o

la
ti

o
n

A
D

P
CM FF

T

A
SR

/A
B

S

U
sb

Tx
A

rb
it

er

U
A

R
T

Q
so

rt

D
is

pa
ri

ty

So
b

e
l

V
G

A

N
o

C

M
as

te
r/

Sl
av

e
B

u
s

P
kt

_s
w

it
ch

A
N

N

C
ro

ss
ro

ad

P
hi

lo
so

p
h

er
s

P
ro

cu
d

er
/C

o
n

su
m

e
r

Si
m

p
le

R
in

g

TL
M

_
b_

tr
an

sp
o

rt

TL
M

_
D

M
I_

D
B

G

TL
M

_
ro

u
ti

n
g

TL
M

_
nb

_
tr

an
sp

o
rt

A
M

B
A

_A
H

B

Line coverage (%) Branch coverage (%)

Figure 6.4: Code coverage results of the benchmark suite

the latest SystemC Standard. The SCBench benchmark suite contains 38 repre-

sentative SystemC designs chosen carefully to cover as many application domains

and SystemC core features as possible. SCBench can be used for various purposes,

such as formal verification, dynamic validation, data race detection, and others.

For example, the 13 designs from S2CBench except FFT are high-level synthesiz-

able so that they can be used to evaluate the performance of high-level synthesis

tools in addition to verification and validation.

We have also provided a testbench and a set of stimuli for each design. More-

over, SCBench is freely available to all researchers [85]. They can apply their

approaches to these SystemC designs directly, or adapt the designs to their spe-

cific purposes.

93

Chapter 7

RELATED WORK

7.1 SYSTEMC VERIFICATION

SystemC verification has been studied for around two decades. The existing ap-

proaches to SystemC verification can be largely divided into two paradigms: for-

mal verification and simulation-based verification, also known as dynamic valida-

tion. There are also a handful of hybrid approaches that combine formal and

simulation-based techniques, as well as other emerging techniques for SystemC

verification [69].

7.1.1 Formal Verification of SystemC Designs

There have been many attempts to formally verify SystemC designs by property

checking. Table 7.1 presents the summary, including adopted techniques and pri-

mary limitations of formal approaches to SystemC verification in the literature. In

general, formal verification of SystemC designs currently has the following lim-

itations. First, model checkers accept models that are represented in specific

verification languages, not the SystemC language directly. Therefore, all those

formal approaches translate SystemC designs, as well as defined properties, into

specific representations accepted by certain model checkers, most of which are

manually translated. In addition, the simulation scheduler of SystemC also has to

be modeled in the specific representation. The translation itself is error-prone and

94

time-consuming. Second, property formulation is challenging. For each SystemC

design, a set of properties has to be defined first. The verification quality of a

design highly depends on the quality of the properties. Last but not least, all

existing formal approaches to SystemC verification are not scalable based on their

experiments. No formal approach yet shows its applicability to real industrial scale

SystemC designs.

Table 7.1: Summary of formal approaches for SystemC verification

References Techniques Primary limitations

Kroening and

Sharygina [56]
Model checking

Not scalable (case study on a very simple

design and only checks one property).

Karlsson et al. [53] Model checking

Two-step translation; explicitly model the

simulation kernel in PRES+; limited sup-

port for SystemC features.

Herber et al. [41] Model checking

Not scalable (case study on two small de-

signs); focused on translation from Sys-

temC to Uppaal timed automata but no

tailored approach to model checking of

SystemC designs.

Chou et al. [14]

Invariant checking,

BMC, Simbolic

simulation

Customized simulation kernel; proves

deadlock properties up to a certain

bound; limited support for SystemC fea-

tures.

SCIVER [36] BMC, induction

Proves properties up to a certain bound;

only applicable to untimed SystemC de-

signs; no advanced techniques to reduce

redundant scheduling sequences.

95

Table 7.1: Summary of formal approaches for SystemC verification (continued)

References Techniques Primary limitations

Kratos [17–20] BMC, POR

Slow abstraction refinement by the formal

engine; very limited support of underlying

translator from SystemC to C. For exam-

ple, pointers and arrays are not supported

yet.

Pockrandt et

al. [82]
Model checking Inaccurate modeling of TLM interfaces.

SDSS [15,16]
BMC, POR,

induction

Cannot handle cyclic states; proves safety

properties up to a certain bound.

SISSI [64]
Symbolic

simulation, POR

Only applicable to designs that either ter-

minate or contain bugs; cannot detect

loops; no advanced techniques for allevi-

ating path explosion.

VERDS [102] SymMC, POR

Manual formal modeling; limited support

for SystemC by guarded assignment sys-

tems; not scalable.

Herber and

Hünnemeyer [44]
Model checking

Many assumptions such as no integer

overflow, proper memory access of point-

ers; No hardware data types and inheri-

tance support, which is one of the cores

of SystemC.

ESS [46]
Symbolic

simulation

Not scalable due to the limited support

for SystemC features by IVL; no advanced

techniques for alleviating path explosion.

96

Table 7.1: Summary of formal approaches for SystemC verification (continued)

References Techniques Primary limitations

CSS [47]
Symbolic

simulation

Not scalable due to the limited support

for SystemC features by XIVL.

Hajisheykhi et

al. [39]

Model slicing,

model checking

Combined multiple existing tools; con-

ducted experiments on very simple de-

signs.

Liebrenz et al. [65] Model checking Limited support for SystemC features.

Veeranna and

Schafer [97]
Model checking

Highly dependent on stimuli provided by

IP vendors; detects specific types of Tro-

jans.

7.1.2 Simulation-based Verification of SystemC Designs

There are quite a few of simulation-based approaches to SystemC verification in

the literature as well. Table 7.2 presents the summary of existing simulation-

based approaches to SystemC verification, including adopted techniques and pri-

mary limitations. Generally, simulation-based approaches can be classified into two

categories, test generation and runtime monitoring. Runtime monitoring mainly

adopts assertion-based verification, while test generation uses various techniques.

The primary limitation of most existing simulation-based approaches is the copious

amount of manual intervention that is necessary. Examples of such intervention

include manual instrumentation and mutants and assertions development. Addi-

tionally, performance overheads for runtime monitoring approaches are noticeable.

97

Table 7.2: Summary of simulation-based approaches for SystemC verification

References Techniques Primary limitations

SCV library [95] random testing Not effective.

Ferrandi et al. [32] Constraint solving

Manually generation of finite state ma-

chines; the semantics of the SystemC sim-

ulator is not considered.

Bruschi et al. [7] Constraint solving Works only for synchronous designs.

Junior et al. [51]
Code-coverage

analysis
Manual instrumentation.

Ecker et al. [30]
Assertion-based

verification
Proof-of-concept; runtime increases.

Pierre and

Ferro [80]

Assertion-based

verification
Modification of SystemC designs.

Kallel et al. [52]
Aspect-oriented

programming

Runtime increases; customized aspect and

monitor for each design; verification re-

sults highly depend on simulation inputs.

Sen [88] [87] Mutation testing
Mutant development is labor intensive;

exercising mutants is time consuming.

Kuznik and

Müller [59]

Functional

coverage library

No performance evaluation; no usage ex-

ample.

ARTEST [11] [12] SMV
SystemC design translation; test case re-

finement.

CHIMP [28] [29]
Assertion-based

verification

Time-consuming and laber-intensive to

develop temporal assertions manually;

Customized SystemC library.

HRD [89]
lockset,

happens-before
High simulation overhead; false alarms.

98

7.1.3 Hybrid Approaches to SystemC Verification

Formal approaches intend to verify the correctness of a DUV, usually by prop-

erty checking with mathematical guarantees. However, property formulation is

very challenging for a DUV, especially for SystemC designs. This is due to the

complexity of the SystemC language. In addition, state-space explosions limit the

scalability of formal techniques. Simulation-based approaches usually is unable

to simulate all possible input combinations for a DUV. Each technique has its

own advantages and disadvantages. Thus, researchers have combined these two

techniques together to overcome the shortcomings of each other.

Table 7.3 presents the summary, including adopted techniques and primary

limitations of the aforementioned hybrid approaches to SystemC verification. The

hybrid approaches generally combine simulation, formal techniques, or other static

analysis techniques. Most current hybrid approaches simulate SystemC designs

first and then model checking is employed based on the simulation. Thus, veri-

fication results by model checking highly depend on simulation that requires test

inputs. However, most approaches utilize random test generation, which may com-

promise the verification results.

7.1.4 Emerging Techniques for SystemC Verification

Machine learning is a powerful technique, which has been successfully used in

many areas in recent years. It has also been explored in the EDA field [94, 99,

100]. Recently, machine learning has also been studied for SystemC verification.

Efendioglu et al. [31] proposed a machine learning based bug prediction approach

for verification of SystemC designs. The proposed approach first collects data

from repositories of SystemC projects, including product, process, and developer

99

Table 7.3: Summary of hybrid approaches for SystemC verification

References Techniques Primary limitations

Habibi and Tahar [38]
Model checking;

simulation
Two-step translation and not automatic.

Satya [58]
Static analysis;

dynamic POR

Strong restriction on SystemC designs;

customized SystemC kernel.

Scoot [6]
Static analysis;

model checking
Customized SystemC kernel.

VeriSTA [42,43,45]
Model checking;

simulation

Large manual effort; limited support to

SystemC features.

Aegis [1] static analysis False negative.

Ngo et al. [75–77]
Statistical

model checking

Customized SystemC kernel; highly de-

pends on the quality of generated stimuli.

metrics. With these collected data, a predictor model is trained. Finally, the

trained model is used to predict whether or not a SystemC design is buggy. The

authors conducted experiments on two open source SystemC projects, which show

the high accuracy of the approach. However, this approach only predicts whether

or not a design has bugs. It does not provide detailed information if a design is

predicted as buggy, such as type and location of a bug. This compromises the

usage and usefulness of the approach. Furthermore, the accuracy of the approach

highly depends on the historic information of a project. If a project does not have

detailed bug-fix information from revision logs, then the approach may not be able

to identify whether or not there are bugs.

100

7.2 HARDWARE TROJAN DETECTION

Historically, most of computer security research was focused on software security.

The underlying hardware was expected to be secure. However, hardware-related

attacks have drawn attentions recently. Furthermore, many software security so-

lutions rely on hardware-based root-of-trust that provides essential security func-

tions. Thus, the assumption that the underlying hardware is secure is no longer the

case. With the globalization of modern SoC design and manufacturing processes,

and the emergence of new design paradigms such as outsourced design services and

intensive usage of EDA tools, hardware vulnerabilities such as hardware Trojan

attacks have raised serious concerns. As a result, a variety of hardware Trojan

detection approaches have been developed recently.

So far, most hardware Trojan detection approaches are focused on RTL or lower

level designs. There are a handful of Trojan detection approaches in RTL [2,3,93].

There are also various Trojan detection approaches that are focused on the gate

level [9,50,55,79,84,103]. Post-silicon Trojan detection has also been studied [48,

72, 74, 78]. There has only been limited research on hardware Trojan detection

for ESL designs. The pioneering work [97] detects hardware Trojans in behavioral

SystemC designs using C++ control flow constructs and the property checker

provided by a commercial high-level synthesis tool. The subsequent work [63] uses

coverage-guided fuzz testing to detect hardware Trojans in behavioral SystemC

designs. Both approaches are focused on high-level synthesizable SystemC designs

which is a subset of ESL SystemC designs, while our approach presented in this

dissertation is not restricted to the high-level synthesizable SystemC designs.

101

Chapter 8

CONCLUSIONS AND FUTURE RESEARCH

The growing complexity of modern SoCs and increasingly shortened time-to-market

have pushed the design abstraction to the ESL to increase design productivity. Sys-

temC is a widely used ESL modeling language in the semiconductor industry. ESL

SystemC designs serve as executable specifications for the subsequent SoCs design

flow. Therefore, undetected bugs in these designs may propagate to low-level im-

plementations or even final silicon products. In this dissertation research, we have

presented a framework to validate SystemC designs with automated test genera-

tion. This chapter concludes this dissertation and discusses some future research

directions.

8.1 CONCLUSIONS

High-quality test cases are critical to simulation-based validation for SystemC de-

signs. In this dissertation, we have presented a framework that includes multiple

techniques for pre-silicon validation with SystemC designs. We have designed and

developed multiple prototype tools with these techniques. We have also applied the

framework to a couple of benchmarks to evaluate its effectiveness and efficiency.

Specifically, the contributions of this dissertation are summarized as follows.

• Developed an approach to generating high-quality test cases for SystemC

designs with symbolic execution techniques.

102

• Improved the scalability of test generation approach with binary-level con-

colic testing techniques and integrated ABV techniques to detect design er-

rors.

• Developed an approach to detecting hardware Trojans in behavioral SystemC

designs with selective concolic testing.

• Developed SCBench, a comprehensive suite of benchmark designs for Sys-

temC verification and validation, which is freely available online.

Based on the experiments, our test generation approaches is able to generate

high-quality test cases that achieve high code coverage and detect design errors

effectively. During the experiments, our approaches detect two severe errors, one

functional error and one out-of-bound access. We have applied our hardware Tro-

jan detection approach to an open source SystemC benchmark with a variety of

hardware Trojans. The experimental results demonstrate that the test cases gen-

erated by our approach are able to detect those hardware Trojans effectively and

efficiently. Our extensive experiments show that our framework scales to designs

with practical sizes as well.

8.2 FUTURE RESEARCH

This dissertation has presented a framework including multiple validation tech-

niques such as symbolic execution and concolic testing for pre-silicon validation

with SystemC designs. There are a few directions that may be explored based on

this framework in the future.

First, our hardware Trojan detection approach may be used to detect hardware

Trojans in Verilog RTL designs. The approach presented in this research is focused

103

Validated ESL
SystemC Design

Verilog RTL
Implementation

Rogue designers

Malicious HLS tools

Figure 8.1: Adversarial threat model

on detecting hardware Trojans in ESL SystemC designs. After ESL SystemC

designs are validated, they are translated into RTL implementations in Verilog or

VHDL by design engineers manually or HLS tools automatically. Rogue designers

or malicious HLS tools may insert hardware Trojans into RTL implementations, as

shown in Figure 8.1. Therefore, Trojan free ESL SystemC designs become Trojan

embedded RTL implementations. The inserted Trojans maybe propagate to lower

level or even silicon products if they are not detected in the RTL implementations.

Our current approach works on compiled SystemC binary executables. To leverage

our approach, Verilog RTL implementations can be translated to cycle accurate

SystemC designs first 1. Then, our approach can be applied. With this use case,

the validated and Trojan free ESL SystemC designs can be used as golden models

for the Verilog RTL implementations. The workflow is demonstrated in Figure 8.2.

Second, fuzzing technique may be combined with our framework to improve

the efficiency. Concolic testing requires constraint solving for each explored path,

which is a time-consuming process. Fuzzing technique is very fast on the other

hand. The high precision of concolic testing and high speed of fuzzing technique

may be combined to improve efficiency of test generation for SystemC designs.

Moreover, concolic testing is not suitable for computationally intensive SystemC

designs, where fuzzing technique can play an important role.

1The open source tool Verilator can achieve this translation automatically. In addition, we
target Verilog RTL implementations in this use case.

104

Validated ESL
SystemC Design

Verilog
Implementation

High-level Synthesis
/ Manual Design

SystemC
DesignVerilator SCT-HTD

Golden Model

Figure 8.2: Workflow of hardware Trojan detection in Verilog RTL

Third, machine learning techniques may be integrated into the framework. On

one hand, a new test case is selected at the beginning of each iteration of concolic

test generation. Machine learning may be used to select the best test case in terms

of certain criteria. On the other hand, many test cases may be generated for a

SystemC design at the end of concolic testing process. It is time-consuming to use

all the test cases for regression testing. Some test cases may be redundant in that

they explore the same source code. Machine learning can be used to select a set

of representative test cases for regression testing without losing effectiveness but

increasing efficiency.

105

REFERENCES

[1] Aegis. https://github.com/mglukhikh/aegis-systemc-benchmark.

[2] A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra. Scalable Hardware

Trojan Activation by Interleaving Concrete Simulation and Symbolic Exe-

cution. In Proceedings of International Test Conference (ITC), pages 1–10,

Phoenix, AZ, USA, 2018.

[3] M. Banga and M. S. Hsiao. Trusted RTL: Trojan Detection Methodol-

ogy in Pre-Silicon Designs. In Proceedings of International Symposium on

Hardware-Oriented Security and Trust (HOST), pages 56–59, Anaheim, CA,

USA, 2010.

[4] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan. Hardware Trojan

Attacks: Threat Analysis and Countermeasures. Proceedings of the IEEE,

102(8):1229–1247, 2014.

[5] B. Blanc, D. Kroening, and N. Sharygina. Scoot: A Tool for the Analysis of

SystemC Models. In Proceedings of International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), pages

467–470, Budapest, Hungary, 2008.

[6] N. Blanc and D. Kroening. Race Analysis for SystemC Using Model

Checking. ACM Transactions on Design Automation of Electronic Systems,

15(3):21:1–21:32, 2010.

https://github.com/mglukhikh/aegis-systemc-benchmark

106

[7] F. Bruschi, F. Ferrandi, and D. Sciuto. A Framework for Functional Verifi-

cation of SystemC Models. International Journal of Parallel Programming,

33(6):667–695, 2005.

[8] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic

Generation of High-coverage Tests for Complex Systems Programs. In Pro-

ceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI), pages 209–224, San Diego, CA, USA, 2008.

[9] B. Çakir and S. Malik. Hardware Trojan Detection for Gate-level ICs Using

Signal Correlation Based Clustering. In Proceedings of Design, Automa-

tion and Test in Europe Conference and Exhibition (DATE), pages 471–476,

Grenoble, France, 2015.

[10] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie. CRETE:

A Versatile Binary-Level Concolic Testing Framework. In Proceedings of In-

ternational Conference on Fundamental Approaches to Software Engineering

(FASE), Thessaloniki, Greece, 2018.

[11] M. Chen, P. Mishra, and D. Kalita. Towards RTL Test Generation from

SystemC TLM Specifications. In Proceedings of International High Level

Design Validation and Test Workshop, pages 91–96, Irvine, CA, USA, 2007.

[12] M. Chen, P. Mishra, and D. Kalita. Automatic RTL Test Generation from

SystemC TLM Specifications. ACM Transaction on Embedded Computing

System, 11(2):38:1–38:25, 2012.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A Platform for In-vivo

Multi-path Analysis of Software Systems. In Proceedings of International

107

Conference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS), pages 265–278, Newport Beach, CA, USA, 2011.

[14] C. Chou, C. Hsu, Y. Chao, and C. Huang. Formal Deadlock Checking on

High-level SystemC Designs. In Proceedings of International Conference on

Computer-Aided Design (ICCAD), pages 794–799, San Jose, CA, USA, 2010.

[15] C.-N. Chou, C.-K. Chu, and C.-Y. Huang. Conquering the Scheduling Alter-

native Explosion Problem of SystemC Symbolic Simulation. In Proceedings of

International Conference on Computer-Aided Design (ICCAD), pages 685–

690, San Jose, CA, USA, 2013.

[16] C.-N. Chou, Y.-S. Ho, C. Hsieh, and C.-Y. Huang. Symbolic Model Check-

ing on SystemC Designs. In Proceedings of Design Automation Conference

(DAC), pages 327–333, San Francisco, CA, 2012.

[17] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri. KRATOS:

A Software Model Checker for SystemC. In Proceedings of International Con-

ference on Computer Aided Verification (CAV), pages 310–316, Snowbird,

UT, 2011.

[18] A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri. Verifying SystemC:

A Software Model Checking Approach. In Proceedings of Formal Methods

in Computer Aided Design (FMCAD), pages 51–59, Lugano, Switzerland,

2010.

[19] A. Cimatti, I. Narasamdya, and M. Roveri. Boosting Lazy Abstraction for

108

SystemC with Partial Order Reduction. In Proceedings of International Con-

ference on Tools and Algorithms for the Construction and Analysis of Sys-

tems (TACAS), pages 341–356, Saarbrücken, Germany, 2011.

[20] A. Cimatti, I. Narasamdya, and M. Roveri. Software Model Checking Sys-

temC. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 32(5):774–787, 2013.

[21] Clang. http://clang.llvm.org/docs/UsersManual.html.

[22] E. Clarke, A. Biere, R. Raimiand, and Y. Zhu. Bounded Model Checking

Using Satisfiability Solving. Formal Methods in System Design, 19(1):7–34,

2001.

[23] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Check-

ing. MIT Press, Cambridge, MA, 1999.

[24] CLOC. https://github.com/AlDanial/cloc.

[25] K. Cong, F. Xie, and L. Lei. Automatic Concolic Test Generation with Vir-

tual Prototypes for Post-silicon Validation. In Proceedings of International

Conference on Computer-Aided Design (ICCAD), pages 303–310, San Jose,

CA, USA, 2013.

[26] K. Cong, F. Xie, and L. Lei. Symbolic Execution of Virtual Devices. In

Proceedings of International Conference on Quality Software (QSIC), pages

1–10, Nanjing, China, 2013.

[27] DOULOS. www.doulos.com.

http://clang.llvm.org/docs/UsersManual.html
https://github.com/AlDanial/cloc
www.doulos.com

109

[28] S. Dutta, D. Tabakov, and M. Y. Vardi. CHIMP: a Tool for Assertion-

Based Dynamic Verification of SystemC Models. In Proceedings of Interna-

tional Workshop on Design and Implementation of Formal Tools and Systems

(DIFTS), pages 38–45, Portland, OR, USA, 2013.

[29] S. Dutta and M. Y. Vardi. Assertion-Based Flow Monitoring of SystemC

Models. In Proceedings of International Conference on Formal Methods and

Models for Codesign (MEMOCODE), pages 145–154, Lausanne, Switzerland,

2014.

[30] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull. Implementation

of a Transaction Level Assertion Framework in SystemC. In Proceedings of

Design, Automation and Test in Europe Conference and Exhibition (DATE),

pages 894–899, Nice, France, 2007.

[31] M. Efendioglu, A. Sen, and Y. Koroglu. Bug Prediction of SystemC Models

Using Machine Learning. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 38(3):419–429, 2019.

[32] F. Ferrandi, M. Rendine, and D. Sciuto. Functional Verification for SystemC

Descriptions Using Constraint Solving. In Proceedings of Design, Automa-

tion and Test in Europe Conference and Exhibition (DATE), pages 744–751,

Paris, France, 2002.

[33] H. D. Foster. Whitepaper: Trends in Functional Verification: A 2016 Indus-

try Study. Mentor Graphics.

[34] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random

Testing. SIGPLAN Not., 40(6):213–223, June 2005.

110

[35] P. Godefroid and D. Pirottin. Refining Dependencies Improves Partial-Order

Verification Methods. In Proceedings of International Conference on Com-

puter Aided Verification (CAV), pages 438–449, Elounda, Greece, 1993.

[36] D. Große, H. M. Le, and R. Drechsler. Proving Transaction and System-level

Properties of Untimed SystemC TLM Designs. In Proceedings of Interna-

tional Conference Formal Methods and Models for Codesign (MEMOCODE),

pages 113–122, Grenoble, France, 2010.

[37] G. D. Guglielmo, M. Fujita, F. Fummi, G. Pravadelli, and S. Soffia. EFSM-

based Model-driven Approach to Concolic Testing of System-level Design. In

Proceedings of International Conference on Formal Methods and Models for

Codesign (MEMOCODE), pages 201–209, Cambridge, UK, 2011.

[38] A. Habibi and S. Tahar. Design and Verification of SystemC Transaction-

Level Models. IEEE Transactions on Very Large Scale Integration Systems,

14(1):57–68, 2006.

[39] R. Hajisheykhi, M. Roohitavaf, A. Ebnenasir, and S. Kulkarni. A Framework

for Verification of SystemC TLM Programs with Model Slicing: A Case

Study. In Proceedings of Design Automation Conference (DAC), pages 1–6,

Austin, TX, USA, 2016.

[40] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii. CHStone: A

benchmark program suite for practical C-based high-level synthesis. In Pro-

ceedings of IEEE International Symposium on Circuits and Systems (IS-

CAS), pages 1192–1195, Seattle, WA, USA, 2008.

[41] P. Herber, J. Fellmuth, and S. Glesner. Model Checking SystemC Designs

111

Using Timed Automata. In Proceedings of International Conference on Hard-

ware/Software Codesign and System Synthesis, pages 131–136, Atlanta, GA,

2008.

[42] P. Herber, F. Friedemann, and S. Glesner. Combining Model Checking and

Testing in a Continuous HW/SW Co-verification Process. In Proceedings

of International Conference on Tests and Proofs, pages 121–136, Zurich,

Switzerland, 2009.

[43] P. Herber and S. Glesner. A HW/SW Co-verification Framework for Sys-

temC. ACM Transactions on Embedded Computing Systems, 12(1):61:1–

61:23, 2013.

[44] P. Herber and B. Hünnemeyer. Formal Verification of SystemC Designs

using the BLAST Software Model Checker. In Proceedings of Workshop

on Model-Based Architecting and Construction of Embedded Systems, pages

44–53, Valencia, Spain, 2014.

[45] P. Herber, M. Pockrandt, and S. Glesner. Automated Conformance Evalua-

tion of SystemC Designs using Timed Automata. In Proceedings of European

Test Symposium (ETS), pages 188–193, Praha, Czech Republic, 2010.

[46] V. Herdt, H. M. Le, and R. Drechsler. Verifying SystemC using Stateful Sym-

bolic Simulation. In Proceedings of Design Automation Conference (DAC),

pages 1–6, San Francisco, CA, USA, 2015.

[47] V. Herdt, H. M. Le, D. Große, and R. Drechsler. Compiled Symbolic Simula-

tion for SystemC. In Proceedings of International Conference on Computer-

Aided Design (ICCAD), pages 1–8, Austin, TX, USA, 2016.

112

[48] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar. High-sensitivity Hard-

ware Trojan Detection Using Multimodal Characterization. In Proceedings of

Design, Automation and Test in Europe Conference and Exhibition (DATE),

pages 1271–1276, Grenoble, France, 2013.

[49] IEEE Standards Association. Standard SystemC Language Reference Man-

ual. IEEE Std. 1666-2011, 2011.

[50] D. Ismari, J. Plusquellic, C. Lamech, S. Bhunia, and F. Saqib. On Detect-

ing Delay Anomalies Introduced by Hardware Trojans. In Proceedings of

International Conference on Computer-Aided Design (ICCAD), pages 1–7,

Austin, TX, USA, 2016.

[51] A. D. Junior and D. J. Cecilio da Silva. Code-coverage Based Test Vector

Generation for SystemC Designs. In Proceedings of the IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), pages 198–206, Porto Alegre,

Brazil, 2007.

[52] M. Kallel, Y. Lahbib, R. Tourki, and A. Baganne. Verification of SystemC

Transaction Level Models Using an Aspect-Oriented and Generic Approach.

In Proceedings of International Conference on Design Technology of Inte-

grated Systems in Nanoscale Era, pages 1–6, Hammamet, Tunisia, 2010.

[53] D. Karlsson, P. Eles, and Z. Peng. Formal Verification of SystemC De-

signs Using a Petri-Net Based Representation. In Proceedings of Design,

Automation and Test in Europe Conference and Exhibition (DATE), pages

1–6, Munich, Germany, 2006.

113

[54] James C King. Symbolic Execution and Program Testing. Communications

of the ACM, 19(7):385–394, 1976.

[55] F. Koushanfar and A. Mirhoseini. A Unified Framework for Multimodal

Submodular Integrated Circuits Trojan Detection. IEEE Transaction on

Information Forensics Security, 6(1):162–174, 2011.

[56] D. Kroening and N. Sharygina. Formal Verification of SystemC by Automatic

Hardware/Software Partitioning. In Proceedings of International Conference

on Formal Methods and Models for Codesign (MEMOCODE), pages 101–

110, Verona, Italy, 2005.

[57] A. Kuehlmann and C. Eijk. Combinational and Sequential Equivalence

Checking. In Logic Synthesis and Verification, pages 343–372. Springer,

Boston, MA, 2002.

[58] S. Kundu, M. Ganai, and R. Gupta. Partial Order Reduction for Scalable

Testing of SystemC TLM Designs. In Proceedings of Design Automation

Conference (DAC), pages 936–941, Anaheim, CA, USA, 2008.

[59] C. Kuznik and W Müller. Functional Coverage-driven Verification with Sys-

temC on Multiple Level of Abstraction. In Proceedings of Design and Veri-

fication Conference, 2011.

[60] S.-T. Kwon. NoC(Network-on-Chip) Simulator. http://opencores.org.

[61] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed and

Runtime Optimization (CGO), pages 75–86, Washington, DC, USA, 2004.

http://opencores.org

114

[62] LCOV. http://ltp.sourceforge.net/coverage/lcov/readme.php.

[63] H. M. Le, D. Große, N. Bruns, and R. Drechsler. Detection of Hardware

Trojans in SystemC HLS Designs via Coverage-guided Fuzzing. In Proceed-

ings of Design, Automation and Test in Europe Conference and Exhibition

(DATE), pages 602–605, Florence, Italy, 2019.

[64] Hoang M Le, Daniel Große, Vladimir Herdt, and Rolf Drechsler. Verifying

SystemC Using an Intermediate Verification Language and Symbolic Simu-

lation. In Proceedings of Design Automation Conference (DAC), pages 1–6,

Austin, TX, 2013.

[65] T. Liebrenz, V. Klös, and P. Herber. Automatic Analysis and Abstraction for

Model Checking HW/SW Co-Designs Modeled in SystemC. ACM SIGAda

Letters, 36(2):9–17, 2016).

[66] B. Lin, J. Chen, and F. Xie. Selective Concolic Testing for Hardware Tro-

jan Detection in Behavioral SystemC Designs. In Proceedings of Design,

Automation and Test in Europe Conference and Exhibition (DATE), pages

19–24, Grenoble, France, 2020.

[67] B. Lin and D. Qian. Regression Testing of Virtual Prototypes Using Sym-

bolic Execution. International Journal of Computer Science and Software

Engineering, 4(12):329–334, December 2015.

[68] B. Lin and F. Xie. SCBench: A Benchmark Design Suite for SystemC Ver-

ification and Validation. In Prodeedings of Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 440–445, Jeju, South Korean,

2018.

http://ltp.sourceforge.net/coverage/lcov/readme.php

115

[69] B. Lin and F. Xie. A Systematic Investigation of State-of-the-Art SystemC

Verification. Journal of Circuits, Systems and Computers, 29(15):1–27, 2020.

[70] B. Lin, Z. Yang, K. Cong, Z. Liao, T. Zhan, C. Havlicek, and F. Xie. Concolic

Testing of SystemC Designs. In Proceedings of International Symposium on

Quality Electronic Design (ISQED), pages 1–7, Santa Clara, CA, USA, 2018.

[71] B. Lin, Z. Yang, K. Cong, and F. Xie. Generating High Coverage Tests

for SystemC Designs Using Symbolic Execution. In Proceedings of Asia and

South Pacific Design Automation Conference (ASP-DAC), pages 166–171,

Macau, China, 2016.

[72] E. Love, Y. Jin, and Y. Makris. Proof-Carrying Hardware Intellectual Prop-

erty: A Pathway to Trusted Module Acquisition. IEEE Transactions on

Information Forensics and Security, 7(1):25–40, Feb 2012.

[73] R. Milner. LCF: A Way of Doing Proofs with a Machine. In Proceedings

of International Symposium on Mathematical Foundations of Computer Sci-

ence, pages 146–159, Olomouc, Czechoslovakia, 1979.

[74] S. Narasimhan, D. Du, R. Chakraborty, S. Paul, F. Wolff, C. Papachristou,

K. Roy, and S. Bhunia. Hardware Trojan Detection by Multiple-Parameter

Side-Channel Analysis. IEEE Transactions on Computers, 62(11):2183–2195,

2013.

[75] V. C. Ngo and A. Legay. Formal Verification of Probabilistic SystemC Models

with Statistical Model Checking. Journal of Software: Evolution and Process,

30(3):1–22, 2017.

116

[76] V. C. Ngo, A. Legay, and J. Quilbeuf. PSCV: A Runtime Verification Tool for

Probabilistic SystemC Models. In Proceedings of International Conference on

Computer Aided Verification (CAV), pages 84–91, Toronto, Canada, 2016.

[77] V. C. Ngo, A. Legay, and J. Quilbeuf. Statistical Model Checking for Sys-

temC Models. In Proceedings of International Symposium on High Assurance

Systems Engineering (HASE), pages 197–204, Orlando, FL, USA, 2016.

[78] X. Ngo, I. Exurville, S. Bhasin, J. Danger, S. Guilley, Z. Najm, J. Rigaud,

and B. Robisson. Hardware Trojan Detection by Delay and Electromagnetic

Measurements. In Proceedings of Design, Automation and Test in Europe

Conference and Exhibition (DATE), pages 782–787, Grenoble, France, 2015.

[79] M. Oya, Y. Shi, M. Yanagisawa, and N. Togawa. A Score-based Classification

Method for Identifying Hardware-trojans at Gate-level Netlists. In Proceed-

ings of Design, Automation and Test in Europe Conference and Exhibition

(DATE), pages 465–470, Grenoble, France, 2015.

[80] L. Pierre and L. Ferro. A Tractable and Fast Method for Monitoring SystemC

TLM Specifications. IEEE Transactions on Computers, 57(10):1346–1356,

2008.

[81] C. Pilato, K. Basu, F. Regazzoni, and R. Karri. Black-Hat High-Level Syn-

thesis: Myth or Reality? IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 27(4):913–926, 2019.

[82] M. Pockrandt, P. Herber, and S. Glesner. Model Checking a SystemC/TLM

Design of the AMBA AHB Protocol. In Proceedings of Symposium on Embed-

ded Systems for Real-Time Multimedia, pages 66–75, Taipei, Taiwan, 2011.

117

[83] I. Polian, G. T. Becker, and F. Regazzoni. Trojans in Early Design Steps—

An Emerging Threat. In Proceedings of Conference on Trustworthy Man-

ufacturing and Utilization of Secure Devices (TRUDEVICE), pages 55–60,

Barcelona, Spain, 2016.

[84] J. Rajendran, V. Vedula, and R. Karri. Detecting Malicious Modifications

of Data in Third-party Intellectual Property Cores. In Proceedings of Design

Automation Conference (DAC), pages 1–6, San Francisco, CA, USA, 2015.

[85] SCBench. http://svl.cs.pdx.edu/scbench/scbench.html.

[86] B.C. Schafer and A. Mahapatra. S2CBench: Synthesizable SystemC Bench-

mark Suite for High-Level Synthesis. IEEE Embedded Systems Letters,

6(3):53–56, September 2014.

[87] A. Sen. Concurrency-Oriented Verification and Coverage of System-Level

Designs. ACM Transactions on Design Automation of Electronic Systems,

16(4):37:1–37:25, 2011.

[88] A. Sen and M. S. Abadir. Coverage Metrics for Verification of Concurrent

SystemC Designs Using Mutation Testing. In Proceedings of the High Level

Design Validation and Test Workshop (HLDVT), pages 75–81, Anaheim,

CA, 2010.

[89] A. Sen and O. Kalaci. Hybrid Dynamic Data Race Detection in SystemC.

In Proceedings of the Forum on Specification and Design Languages (FDL),

pages 1–6, Munich, Germany, 2014.

[90] K. Sen. Concolic Testing. In Proceedings of International Conference on

http://svl.cs.pdx.edu/scbench/scbench.html

118

Automated Software Engineering (ASE), pages 571–572, Atlanta, Georgia,

USA, 2007.

[91] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing Engine

for C. In Proceedings of European Software Engineering Conference Held

Jointly with International Symposium on Foundations of Software Engineer-

ing, pages 263–272, Lisbon, Portugal, 2005.

[92] SEQ. http://www.cprover.org/hardware/sequential-equivalence.

[93] L. Shen, D. Mu, G. Cao, M. Qin, J. Blackstone, and R. Kastner. Symbolic

Execution Based Test-patterns Generation Algorithm for Hardware Trojan

Detection. Computers & Security, 78:267–280, 2018.

[94] J. Stoppe, R. Wille, and R. Drechsler. Cone of Influence Analysis at the

Electronic System Level Using Machine Learning. In Proceedings of Euromi-

cro Conference on Digital System Design, pages 582–587, Los Alamitos, CA,

USA, 2013.

[95] SystemC Library. http://www.accellera.org/downloads/standards/

systemc.

[96] M. Y. Vardi. Formal Techniques for SystemC Verification. In Proceedings

of Design Automation Conference (DAC), pages 188–192, San Diego, CA,

USA, 2007.

[97] N. Veeranna and B. C. Schafer. Hardware Trojan Detection in Behavioral

Intellectual Properties (IP’s) Using Property Checking Techniques. IEEE

Transactions on Emerging Topics in Computing, 5(4):576–585, 2017.

http://www.cprover.org/hardware/sequential-equivalence
http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/systemc

119

[98] N. Veeranna and B. C. Schafer. S3CBench: Synthesizable Security SystemC

Benchmarks for High-Level Synthesis. Journal of Hardware and Systems

Security, 1:103–113, 2017.

[99] L. Wang and M. S. Abadir. Data Mining in EDA - Basic Principles, Promises,

and Constraints. In Proceedings of Design Automation Conference (DAC),

pages 1–6, San Francisco, CA, USA, 2014.

[100] L. Wang and M. Marek-Sadowska. Machine Learning in Simulation-Based

Analysis. In Proceedings of the Symposium on International Symposium on

Physical Design (ISPD), pages 57–64, Monterey, CA, USA, 2015.

[101] M. Zalewski. Technical Whitepaper. http://lcamtuf.coredump.cx/afl/

technical_details.txt.

[102] N. Zeng and W. Zhang. A Symbolic Partial Order Method for Verifying

SystemC. In Proceedings of Asia-Pacific Software Engineering Conference,

pages 271–278, Jeju, South Korea, 2014.

[103] J. Zhang, Feng Yuan, Lingxiao Wei, Zelong Sun, and Q. Xu. VeriTrust:

Verification for Hardware Trust. In Proceedings of Design Automation Con-

ference (DAC), pages 1–8, Austin, TX, USA, 2013.

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	Automated Test Generation for Validating SystemC Designs
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation and Problem Statement
	Motivation
	Problem statement

	Proposed Solution
	Dissertation Outline

	Background
	SystemC
	SystemC Language
	Design Methodology with SystemC
	SystemC Verification

	Symbolic Execution
	Concolic Testing
	Hardware Trojan
	Preliminary Definitions

	Symbolic Execution of SystemC Designs
	Overview
	Test-Harness Generation
	Scheduler
	Symbolic Execution of SystemC Designs
	Test-Case Generation
	Experimental Results
	Coverage Methodology
	Comparison with Random Testing

	Summary

	Concolic Testing of SystemC Designs
	Overview
	Testbench Generation
	Concolic Test Generation
	Test-Case Selection
	Testing with Generated Test Cases
	Experimental Results
	Code Coverage Improvement
	Comparison with Random Testing
	Bug Detection

	Summary

	Hardware Trojan Detection in SystemC Designs
	Motivation
	Overview
	Threat Model
	Workflow

	Hardware Trojan Detection
	Selective Concolic Test Generation
	Coverage-guided State Search Strategy
	Hardware Trojan Detection

	Experimental Results
	Effectiveness and Efficiency
	Evaluation of Two Optimization Strategies
	Comparison with State-of-the-Art Approaches

	Summary

	SCBench Benchmark
	Motivation
	Overview
	Design Descriptions
	Design Analysis
	Design Validation
	Summary

	Related Work
	SystemC Verification
	Formal Verification of SystemC Designs
	Simulation-based Verification of SystemC Designs
	Hybrid Approaches to SystemC Verification
	Emerging Techniques for SystemC Verification

	Hardware Trojan Detection

	Conclusions and Future Research
	Conclusions
	Future Research

	References

