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ABSTRACT

Chemo-hydrodynamics generated from reaction-diffusion-convection processes

of autocatalytic chemical systems are extensively studied for their applications in

modeling complex systems. Compared to the more extensively studied autocatalytic

systems, chlorite-tetrathionate and chlorite-trithionate, the chlorite-thiourea systems

is relatively unexplored. Compared to the two previous systems, chlorite-thiourea has

more straightforward chemical kinetics. To narrow the gap between chlorite-thiourea

and the other systems a combination of experimental study and numerical simulation

were employed to quantify this system.

Compared to established literature, experiments were performed at five or-

ders of magnitude lower concentration of indicator, minimizing confounding effects

of indicator on hydrodynamic motion. To accurately image the system, self-written

MATLAB code was employed to enhance the color spectrum of experimental videos

and images. A combination of two pH indicators was used to effectively isolate the

wave front of the reaction system allowing for velocity measurements.

Utilizing experimental data, a simplified kinetics model was generated and

a theoretical reaction rate constant was determined for the simplified model using

a one-dimensional reaction diffusion solver written in MATLAB. The resulting rate

constant of 3.6 x 105 M−2.5s−1 was then used to construct a two-dimensional numerical

simulation in COMSOL 5.3a. This model was used to test validity of using the

Boussinesq Approximation to treat these autocatalytic systems as incompressible

rather than as compressible fluids.

Numerical simulations generated in COMSOL were able to accurately recre-

ate chemo-hydrodynamic behaviors and wave velocities as measured experimentally.

No detectable difference in results were determined between solving the system as in-
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compressible with the Boussinesq Approximation compared to solving the full Navier-

Stokes equations. However, there was a 20% time savings in solving the full Navier-

Stokes equation compared to the simplified version. This result showed that when

modeling these systems, computational efficiency was not saved by using the Boussi-

nesq approximation. While these results were not different, larger or more complex

systems may benefit from a full treatment of the Navier-Stokes equations rather than

an approximation.
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CHAPTER 1

BACKGROUND

1.1 Motivation:

Reaction-Diffusion-Convection (RDC) systems can be used to drive hydrodynamic

motion through diffusion, buoyancy, or thermocapillary effects. The study of these

systems using autocatalytic reactions as a driving force, has been relatively limited

and clustered around a few specific reactions of chlorite with sulfur compounds. In

comparison to the widely studied chlorite-tetrathionate and chlorite-trithionate sys-

tems there has been relatively fewer investigations on hydrodynamics driven by the

reactions of chlorite with thiourea.1–6 This provides an ideal experimental platform

to challenge assumptions and approximations historically used in modeling and ana-

lyzing these systems.

A key element of these reactions is that they are driven by an acid wave

front; thus making it convenient to visualize the waves using pH indicators. Histori-

cally, indicators have been used at relatively high concentrations and shown to effect

both hydrodynamic motion, by changing surface tension of the solution, and reaction

kinetics by acting as a buffer.1,7 Inestigating effects of using significantly lower con-

centrations of pH indicators on hydrodynamics is a key aim of this study as described

in Section 1.3 and Chapter 2.

Unlike the chlorite-tetrathionate and chlorite-trithionate systems, there has

not been numerical simulations of hydrodynamic behaviors generated by the chlorite-

thiourea system. To address this shortcoming, a numerical simulation was created

and demonstrated in Chapter 2. Simulations for tetrathionate and trithionate sys-
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tems provided a basic outline for modeling. Initially a simplified chemical model was

generated and tested as a one-dimensional reaction-diffusion simulation to determine

the reaction rate constant for the simplified model. This was done using MATLAB

as described in Section 2.3.2. For two-dimensional models, examples in the litera-

ture utilize several simplifying approximations and assumptions; some that may not

be valid for physical systems. Specifically, the Boussinesq Approximation assumes a

fluid is incompressible and density changes only effect buoyant forces.8 However, evi-

dence exists that under conditions similar to those displayed in autocatalytic reaction

systems, the Boussinesq Approximation was invalid.9,10 Contrasting with established

literature precedent a numerical simulation was proposed in Section 1.2.8 that does

not invoke simplifications regarding the Boussinesq Approximation. Results of hy-

drodynamic simulations of the chlorite-thiourea system utilizing the new approach

and Boussinesq Approximation are presented in Section 2.3.3

Results of this thesis work provide a new basis for utilization of pH indicators

for studying hydrodynamics driven by autocatalytic reaction systems. Applying self-

written MATLAB code for image enhancement allowed for the use of significantly

less indicator in order to visualize hydrodynamic behaviors of these systems. Also,

advances in computing power enabled solving numerical simulations of complex fluid

dynamics without requiring the use of simplifying approximations.

1.2 Fluid Dynamics

At its most basic level, fluid dynamics is the study of how the variety of complex

flow patterns of liquids and gases manifest in physical ways. Fluid dynamics is a

long studied multidisciplinary field of science that includes physics, engineering, and

mathematics. Fluid phenomena can involve studies on the molecular to macroscopic

levels. However, most flows can be understood and detailed purely from a macroscopic

2



perspective without connecting to the microscopic structure of the fluid.11

1.2.1 History

History of the study of fluid dynamics dates back to at least 250 B.C. when Archi-

medes wrote On Floating Bodies. That book introduced basic concepts of fluid pres-

sure and hydrostatics. It also took an additional 18 centuries before his work was

continued by the likes of Galileo.12 A side effect of Archimedes’ work is that it led

to an early form of differential calculus. It was also during this time that Hero of

Alexandria worked extensively on hydrostatics developing Hero’s fountain and the

earliest example of force pumps.13 The work by these two men serve as some of the

earliest examples of applied fluid dynamics.

There was a great lag in theoretical work after the time of Archimedes and

Hero until the 17th to 19th centuries. In the preceding time, most of the advance-

ments came from engineering feats and improved designs, such as canals, ships, and

aqueducts, rather than from detailed analysis. The 17th to 19th centuries were a time

rife with great experimentalists like Leonardo Da Vinci, who captured accurate de-

scriptions of many fluid phenomena in his notes. However, there was a disconnect

with theoreticians at the time; Isaac Newton and Daniel Bernoulli, among others,

developed many equations of motions to explain a variety of frictionless flows. Their

elegant equations were ignored due to having limited real world applications, i.e., en-

gineering systems. It was not until the end of the 19th century that experimentalists

were able to verify earlier theories regarding fluid motion.

This era produced some of the best known names in fluid dynamics including;

Lord Rayleigh, Claude-Louis Navier, George Stokes, Osbourne Reynolds, and Ludwig

Prandtl. Lord Rayleigh proposed dimensional analysis to study fluid flows.15 While

Osbourne Reynolds conducted pipe flow experiments; the Dimensionless Reynolds

3



Figure 1.1: Ludwig Prandtl and his flow visualization set-up, 1904.14

Number is named after him. Navier and Stokes were able to include viscous terms into

Newtonian equations of motion ultimately leading to the Navier-Stokes equations.16

At the time these equations were too difficult to solve analytically for all but the

simplest laminar flows.

In 1904 Ludwig Prandtl published one of the most important papers of modern

fluid dynamics. In this work Prandtl showed both experimentally and theoretically

existence of a boundary layer in a fluid flow where both the Euler and Bernoulli

equations apply.17 This boundary layer theory served as a key foundation of modern

fluid dynamics.18,19 Ludwig Prandtl is shown with his experimental apparatus in

Figure 1.1.
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1.2.2 Theoretical Background

In developing a model for a fluid dynamics system it is important to understand the

differences between the system and the control volume. The system comprises the

entire mass of fluid being studied. It is, however, impractical to follow and model the

physical and chemical processes within the system as a whole. Instead, a Eulerian

control volume is used. This is a volume in a fixed region of space.20

Momentum, mass, energy, chemical species may be transported both in and

out of a control volume. In practice, control volumes are defined by parameters and

refinement of the mesh used in creating the model.21 In a triangular mesh utilized

in Section 2.3.3, each triangular portion is a unique control volume. A reasonable

fluid dynamical model should attempt to establish a relationship between extensive

properties defined by their time rates of change, and subsequent behavior of intensive

properties within a control volume. These intensive properties provide a snapshot in

time.

1.2.3 Conservation Laws and the Continuity Equation

Conservation laws require that extensive properties of a fluid dynamical system obey

the first law of thermodynamics (conservation of energy) and conservation of mass.

In reactive flows, chemical reactions can cause mass changes as reactive species are

converted to products and with energy released or absorbed depending on the reac-

tion.

Mass flux in closed systems is zero, i.e. mass is conserved.20 In practice, the

continuity equation describes conservation of mass in a fluid system.

The control volume (V), is an arbitrary fixed volume, as represented in Figure

1.2. Fluid can move in or out at any point on the surface of the control volume.

Presumably, no part of the control volume resides along a boundary.
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Figure 1.2: Derivation of the continuity equation.

In Figure 1.2, dS is an arbitrarily determined area on the surface of the fluid

volume and u is the density flux of that area. If u is positioned so as to transfer fluid

out of V, mass flux results. The mass flux depends on the fluid density where,

Mass in V =

∫
V

ρdV (1.1)

and the

Mass Flux =

∫
S

ρu • dS (1.2)

Then the total mass of the control volume is given by,11

Total Mass in V =

∫
V

∂ρ

∂t
dV +

∫
S

ρu • dS (1.3)
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These equations apply to a fluid particle of definite volume. It is often more

useful to know the mass balance at a single point. To achieve this, Equation 1.3 is

integrated for an infinitesimally small volume, viz

∂ρ

∂t
= − lim

V→0

[∫
ρu • dS

V

]
(1.4)

Equation 1.4 refers to a point within the arbitrary fluid volume. Thus, both

u and ρ are functions of position in the volume. The gradient operator (∇) is the

extent to which a point in the vector field acts as a source or sink.22 By utilizing the

gradient operator, Equation 1.4 becomes11,23

∂ρ

∂t
= −∇ • ρu (1.5)

Which is the continuity equation for mass conservation, i.e.

∂ρ

∂t
+∇ • (ρu) = 0 (1.6)

In a fluid where density is constant over time, ∂ρ
∂t

= 0 and Equations 1.5 and

1.6 reduce to the much simpler form,

∇ • u = 0 (1.7)

Beginning with the continuity equation, four major components contribute to

development of a complete model; chemical, thermal, physical, and boundary.
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1.2.4 Chemical Processes

In general a chemical reaction can be represented as,

aA + bB −−→ cC (R 1.1)

a moles of A react with b moles of B to produce c moles of C. Rate equations can be

written for consumption of A and B, and production of C. For example,

−dA
dt

= k[A]a[B]b (1.8)

A system of reactions can be treated as the sum of individual reactions as,

K∑
j=1

ν
′

j,iXj ⇀↽

K∑
j=1

ν”j,iXj i = (1, 2, 3, ....I) (1.9)

where Xj is the chemical species, K is the total number of species, and j is

the counting variable for the individual species. ν
′

and ν” represent the forward and

reverse stoichiometric coefficients respectively of species j. To index the reactions

the variable i is used with I being the total number of reactions in the proposed

mechanism.

As a corollary to Equation 1.9 using the same nomenclature it is possible to

derive an equation for the rates of individual reactions in the system, i.e. extent of

reaction is

qi = kf,i

K∏
j=1

[Xj]
v
′
j,i − kr,i

K∏
j=1

[Xj]
v”j,i (1.10)

kf,i and kr,i in Equation 1.10 are the forward and reverse reaction rates, re-

spectively. This generalized form gives the time dependence of the concentration for

8



each species, where

∂Xj

∂t
=

I∑
i

νi,jqi (1.11)

Equation 1.11, when properly parameterized with results from experiments

provides a scaffold for describing interactions of chemical reactions in fluid dynamic

models.

The chlorite system of oscillators was one of the first systematically designed

chemical oscillators birthed from research into the Belousov–Zhabotinsky reaction.

Discovery of the first chlorite based oscillator led to development of whole families of

these oscillators using a variety of substrates.24 The chlorite-thiourea reaction was one

such system. The kinetics for this reaction have been determined both experimentally

and mechanistically.25–27

Experiments described in Chapter 2 reveal that a full accounting of individual

reactions was not required to explain observed hydrodynamic behavior. Reactions of

chlorite and sulfur compounds are controlled by the chlorite side of the reaction and

the ratio between chlorite and thiourea. A simplified chemical model was used to

account for overall stoichiometry and focus on the ClO –
2 , SC(NH2)2, and H+ species.

This approach was validated in specific simulations for the chlorite-tetrathionate sys-

tems.3,4,6,28–30

The critical reactions begin with the initial oxidation of thiourea by chlorite

to form aminomethanesulfonic acid, HO3SC(NH)NH2 (AMSA), hypochlorous acid,

HOCl, acid, H+, and free chloride, Cl– 25, i.e.

3 ClO −
2 + 2 SC(NH2)2

kf−−→ 2 HO3SC(NH)NH2 + 2 Cl− (R 1.2)

This initial reaction, R 1.2, proceeds slowly with a Kf = 10. Excess chlorite
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further oxidizes AMSA to form inorganic products of sulfate, chloride, and acid25, Kf

= 5x103 s−1, i.e.

ClO −
2 + 2 HO3SC(NH)NH2 + 2 H2O

kf−−→

2 SO 2−
4 + 2 OC(NH2)2 + Cl− + 4 H+ (R 1.3)

The combination of reactions R 1.2 and R 1.3 above provides the ideal stoi-

chiometry based on favorable thermodynamics.26 For the chlorite-thiourea,26

2 ClO −
2 + SC(NH2)2 + H2O

kf−−→ SO 2−
4 + OC(NH2)2 + Cl− + 2 H+ (R 1.4)

Experiments could not confirm the proposed stoichiometry in R 1.4.26 But

it should be noted that the conjectured traveling wave front is second order with

acid.25,31 From the balanced chemical reaction in R 1.4, the effective rate law for

the alledged traveling acid wave front can be written down from the balanced chem-

ical equation. This rate law is of the same form as that for chlorite-tetrathionate

system.2–4,6

ω̇j = kf [ClO −
2 ][SC(NH2)2]

1/2[H+]2 (1.12)

ω̇j in Equation 1.12, represents the net rate of production of species j. The

reaction rate constant, kf , of the simplified chlorite-thiourea model is required to

accurately simulate this system. The rest of the physical processes that govern the

system are controlled by the kinetics. This is especially true if heat is also generated

from the reaction.
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Thermal Energy

The chlorite-thiourea system is highly exothermic with a reaction enthalpy (∆Hrxn

= -1,170 kJ/mol determined by the sum of the individual reaction steps summarized

in R 1.2-R 1.4 (Hess’s Law).32,33 In effect, heat generation accompanies acid produc-

tion.1,3,4,28–30

The stoichiometry and net rate of production of the autocatalytic species (H+)

are coupled to the reaction enthalpy to give temperature changes as a function of time.

That is,

∂T

∂t
= |∆Hrxn|

∑
j

ω̇jνj (1.13)

Equation 1.13 is the net rate of temperature change determined by the reaction

rate, ω̇j, stoichiometric coefficients, νj, and reaction enthalpy, ∆Hrxn. Note, this is

the theoretical temperature change. The actual temperature change depends on the

heat capacity of the specific reaction medium. In this case

∂T

∂t
=
|Hrxn|
ρCp

ω̇jνj (1.14)

where the density, ρ, and heat capacity at constant pressure, Cp, of the reaction

medium reports on temperature production as a function of time in a particular

reaction medium.

1.2.5 Transport Processes

Transport of the fluid system is driven by the chemical processes described above.

Three transport processes are considered: diffusion, convection, and momentum.
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Diffusion

Diffusion is described in the context of Einstein’s classical theory of Brownian motion;

concerned with the random diffusion of solute particles in a solvent.34 At the molecular

level, each solute molecule engages in a ”random walk”, where particles move in an

essentially random manner.35 However, in the presence of a gradient (concentration,

temperature, or energy) particle motion is driven directionally by diffusion.

Batchelor and Schurr expanded Einstein’s work and defined the mathemati-

cal basis for Fick’s Laws that are fundamental equations describing mass transport

through diffusion.36–38 Fick’s First Law is,

J = −D∂c

∂x
(1.15)

where J is the flux, D is the diffusion coefficient, and ∂c
∂x

is the concentration

gradient. Diffusion considerations only apply to dilute systems. Diffusion driven

reactions are governed by chemical kinetics through Fick’s second law,1,4

∂c

∂t
+ u • ∇c = D∇2c+ f(c) (1.16)

where the D∇2c term represents diffusion of a chemical species in three di-

mensions. The ∇2 is the Laplacian. ∂c
∂t

is the rate of change of the concentration with

time and u • ∇c is the projection of the velocity, u, on the concentration gradient.

f(c) represents the kinetics of the driving chemical reaction.
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Thermal Diffusion

Convection is the production and transport of thermal energy. Transport of thermal

energy is governed by the convection-diffusion equation,4,39

ρ0Cp

[
∂T

∂t
+ u • ∇T

]
= κT∇2T + |∆Hrxn|f(c)− α(T − T0) (1.17)

where production of thermal energy, ∂T
∂t

arises from the temperature gradient

induced by the chemical reaction. The rate of thermal energy production and the

temperature gradient formed depends on the specific heat of the system, Cp. The

κT∇2T term, on the right side of 1.17, is the 3-D diffusion of heat with κT the thermal

conductivity coefficient. The rate of heat generation is determined by the chemical

kinetics and the enthalpy of reaction, i.e. |∆Hrxn|f(c). α is the thermal diffusivity

coefficient. α(T − T0), accounts for thermal diffusion between warmer product and

cooler reactant solutions.

1.2.6 Navier-Stokes Equations

Claude-Louis Navier first applied Newton’s second law of motion to analyze fluid

dynamics.40 However, his results were only applied to inviscid flows, with little appli-

cability to real physical systems. Navier’s original equation,

ρ
Du

Dt
= −∇ • p+ µ∇2u + F (1.18)

where ∇ • p is the pressure gradient, µ the viscosity, and F the contribution

of external forces, such as gravity. George Stokes included viscosity terms in Navier’s

equations providing the classical Navier-Stokes equation,11,16 Equation 1.18 can be
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rewritten in terms of density to produce11,41

∂u

∂t
+ u • ∇u = −1

ρ
∇p+ ν∇2u +

1

ρ
F (1.19)

ν in Equation 1.19 is the kinematic viscosity of the solution defined as µ/ρ.

The Navier-Stokes equation (1.19) is the starting point for mathematical descriptions

of fluid transport phenomena. The external forces are included as (F) making it

possible to account for factors effecting the flow, such as temperature and chemical

reactions.11,16,20,23,42,43

1.2.7 Boundary Conditions

No Slip & No Flux

The simplest boundaries are no-slip and no-flux. For no-slip boundary conditions

there is no fluid movement along the boundary. This is expressed mathematically as:

∂u

∂x
= 0 at x = 0, x = Lx (1.20)

∂u

∂z
= 0 at z = 0 (1.21)

For a two-dimensional model there are four boundaries, the three walls and

the free surface. Equations 1.20 & 1.21 represent no movement along the walls of the

Hele-Shaw cell. The no-flux boundary condition states there is no diffusion of species

through the boundary. That is,

∂c

∂x
= 0 at x = 0, x = Lx (1.22)
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and

∂c

∂z
= 0 at z = 0, x = Lz (1.23)

The Marangoni Boundary

For a free surface, forces acting on the fluid are governed predominately by surface

tension. Surface tension depends on the concentration and temperature, i.e. σ(c,T).

dσ(c, T ) =
∂σ

∂T
dT +

∂σ

∂c
dc (1.24)

Based on effects of viscosity and surface tension, both temperature and con-

centration induce gradients in the horizontal velocity at the free surface . That is,

µ
∂u

∂z

∣∣∣∣
z→Lz

=
∂σ

∂x
=
∂σ

∂T

∂T

∂x
+
∂σ

∂c

∂c

∂x
(1.25)

Flow velocity induced by surface tension changes, only holds true at the free

surface, z = Lz, with diminishing effects further from the free surface.

1.2.8 New Approach versus Standard Methodology

Standard Methodology

A system of four primary equations forms the core for modeling using the standard

approach. First, density changes are not considered in the continuity equation and

the system is assumed to be incompressible, i.e.1,4,30

∇ • u = 0 (1.26)

Generally in a dilute system, density changes over time are small enough to
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be neglected. This assumption enables use of the Boussinesq approximation. The

Boussinesq approximation ignores density changes except when effected by gravity.

This is the case for buoyancy driven flows. The Boussinessq approximation in a

reactive flow simplifies to:

ρ = ρ0(1− α(T − T0) +
∑

βi(c− c0)) (1.27)

with:

α = −
(

1

ρ

)
∂ρ

∂T
β =

(
1

ρ

)
∂ρ

∂ci
(1.28)

The subscript ’0’ denotes initial conditions. α is the thermal expansion coeffi-

cient and β is the isothermal expansion coefficient. Thus density changes are a linear

function of both concentration and temperature.4 The Boussinesq approximation,

Equation 1.27, is then inserted into Darcy’s Law.

Darcy’s law describes the flow of a fluid through a porous layer as a function

of density and viscosity most often used in Brinkman form to describe flows through

boundaries, viz7,44,45

∇ρ = −µ
κ
u+ ρ(c, T )g (1.29)

ρ(c, T )g in Equation 1.29 is the density as a function of concentration (c) and

temperature (T) multiplied by gravity. This is a limiting case of the Boussinesq

approximation. µ and κ are viscosity of the fluid and permeability of the medium,

respectively.

For an incompressible fluid a set of partial differential equations are gener-

ated, which allows for modeling of the spatio-temporal dynamics. The Boussinesq

approximation allows for solution of convective flow without having to utilize the com-

pressible Navier-Stokes equations.46 The Boussinesq approximation has been used for
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many years because of computational limitations present in creation of early models.

However, the Boussinesq approximation is only accurate when temperature changes

of water are below 2 degrees (with a variance of less than 1%).9,42 Errors grow rapidly

with larger temperature differences. In the chlorite-thiourea system the temperature

changes averages 3 degrees.

Our Approach

Our aim was to develop a general model without assuming incompressibility. In this

case, the full continuity equation was used.

Dρ

Dt
+∇ • (ρu) = 0 (1.30)

Assuming (using the Boussinesq approximation) that density changes are the

only source of buoyant forces, density gradients have no impact on the other fluid flow

parameters (i.e. momentum, convection, etc). Alternatively, use of the full continuity

equation considers density changes for each control volume comprising the entire

density gradient. This provides a more complete view of the fluid dynamic system

with all density changes accounted for and accurately applied to the momentum terms

of the Navier-Stokes equations.

Computational capabilities have grown at an exponential rate, predicted by

Moore’s law.47 The speed of the processors are scaled in terms of floating opera-

tions per second (FLOPS). With the rate of growth of computational power, desktop

workstations now have capabilities that were only available at national research labo-

ratories with supercomputers 20 years ago; thus enabling simulations without the use

of a super-computing cluster. Benchmarks had the most powerful supercomputer,

the ASCI Red, rated at 2 teraflops by the end of its operational lifespan in 2005.48

Current Knights Landing processors from Intel are rated at six teraflops of single
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precision accuracy per chip.49 This provides 3x the processing power of a ∼20 year

old supercomputer in a desktop workstation. Numerical simulation software is now

able to be run on a desktop that would previously require a supercomputer.

With increased computational power it is not necessary to invoke the Boussi-

nesq approximation. Better computers also makes it possible now to test the accuracy

and efficiency of the Boussinesq approximation.

1.2.9 Hydrodynamic Motion

Exothermic autocatalytic reactions have been found to supply and maintain a tem-

perature difference, ∆T, at the wavefront of hydrodynamic instabilities.50 This allows

for a chemical reaction to drive hydrodynamic motion. These convective flows can

be due to thermocapillary (Marangoni-type) convection coupled to Rayleigh-Taylor,

Rayleigh-Bénard, or double diffusive types of hydrodynamic flows. Each can be trig-

gered by spatial temperature and concentration gradients.51,52

With an exothermic chemical reaction in an aqueous environment, free convec-

tion can deform the interface between reactants and products by producing density

inhomogeneities in the reaction medium. This effect is exaggerated in the chlorite-

thiourea reaction because the products, sulfate and chloride are dense and ionic.

Meanwhile, the reactants contain a light organic molecule. Convection allows this

relationship to invert, allowing products to temporarily become less dense than reac-

tants until thermal equilibrium is attained.53

When a dense solution overlies a less dense one, due to convection, the resulting

front is unstable. In this case any deformity in the density front will grow. Deformities

in these types of fronts are known as Rayleigh-Taylor instabilities, where a more dense

solution sinks into a rising less dense solution. This behavior can be visualized as

density fingering or thermal plumes.
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Marangoni, Double Diffusive Convection, and Rayleigh Taylor Instabilities

Changes in temperature, density, viscosity, surface tension, and/or chemical compo-

sition are capable of triggering convective motions.30 Convection, is used to describe

interpenetration and spatial motion of fluid particles and how compressive forces can

change the density. Within the chlorite-thiourea system, Marangoni and double dif-

fusive convection have the largest impact and lead to the hydrodynamic behaviors

shown in Figure 1.3, over five minutes.

Marangoni convection is driven by changes in temperature or chemical com-

position that cause changes in surface tension; Marangoni convection is also referred

to as thermocapillary convection. A classic example of this process is the ”Tears of

wine”, where streaks of wine will climb the side of a wine glass. This is caused by a

local change in composition causing changes in surface tension gradients.54

Figure 1.3: Experimental results showing the time evolution of a buoyancy driven
instability. (a) t = 0min, (b) t = 2 min, (c) t = 3 min, (d) t = 5 min.

In the presence of gravity, density changes can cause buoyancy-driven insta-

bilities, called double diffusive convection.7 Consequently in an exothermic reaction
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where chemical composition and temperature changes are present and there is a dif-

ference in diffusion coefficients, a buoyancy driven instability forms.

Figure 1.4: Rayleigh-Taylor Instability generated from the chlorite-thiourea reaction
system. Overlay, a theoretical approximation of the Rayleigh-Taylor instability.

Buoyancy driven instabilities formed from double diffusive convection allow

for Rayleigh-Taylor Instabilities to form at the interface between fluids of different

densities. The extent to which fluids are mixed together by the instability is governed

by properties of the individual fluids and usually characterized by the depth to which

the lighter fluid penetrates into the heavier layer.55 An example of a Rayleigh-Taylor

Instability generated from the chlorite-thiourea system is depicted in Figure 1.4 with

a simulated instability overlaid on experimental results.56

1.3 Flow Visualization

Flow visualization is an integral component of experimental fluid dynamics. The key

aspect is that, compared to other tools, it allows for many properties of the flow

field to be visualized.57 Observing flow of fluids is not a new endeavor and can be
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traced back to Reynolds and Prandtl’s pioneering fluid dynamics work in the late 19th

century.

From the earliest work to the present day, flow visualization methods generally

fall into one of three categories: 1) Adding foreign materials into a flow; 2) Optical

flow visualization; 3) Flow field visualization by heat or energy input. The first

category is the most applicable in our approach.

Adding foreign material into a flow can be as simple as adding dyes or ad-

ditional particles into solution. In the case of a reacting flow, such as the chlorite-

thiourea system outlined above, it is also possible to use pH indicators. Additionally,

in his pioneering work, Prandtl used aluminum powder and ferrous mica to observe

fluid flows around a stationary object using cinematography equipment.18,19

The traveling wave and reaction front in the chlorite-thiourea reaction is char-

acterized by a sharp production of H+. Thus, pH indicators can be used to fol-

low the wave front. This procedure has been used extensively and is a well doc-

umented method to quantify and track traveling waves generated by autocatalytic

reactions.1,7,27,58,59

Conventionally, a single indicator is used. Indicators include Congo red, methyl

red, or bromophenol blue, at a concentration of one percent, roughly one to three

millimolar.1,7,32,50 At these concentrations indicators can act as buffers and, in the

case of Congo red can inhibit isothermal surface tension changes.1,7,60 To address

these issues, a unique combination of two indicators was used; they were present at

much lower concentrations than previously reported experiments and were coupled

with MATLAB code to extract more detailed information from the reaction fronts.

For experiments conducted for this thesis indicator concentrations were

2.38x10−8M for bromophenol blue and 1.22x10−9M for methyl orange. Over this

concentration range, indicators were present at five orders of magnitude lower con-
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centration than published work on the chlorite-thiourea and chlorite-tetrathionate

systems.1,4,7,58,61,62 As previously reported, reducing the concentration of indicators

minimized any effects on surface tension or activity as reaction buffers.1,7

Previous work on the chlorite-thiourea system displayed hydrodynamic behav-

ior dominated by Marangoni convection.27,50 This was evident by rapid propagation

of chemical waves along the surface of the reaction vessel without associated thermal

plumes and reaction-diffusion-convection behavior. Results in Chapter 2 show that

reducing indicator concentration makes it possible to visualize the interplay between

Marangoni convection, reaction diffusion, and thermally induced density changes.

This combination of effects were not discernible in previous studies.27,50

The combination of indicators created a brown reactant solution. From bleach-

ing effects, and the fact that both bromophenol blue and methyl orange turn light

yellow in acidic conditions, the product solution was clear. The two to three mil-

limeter thick reaction front, however, displayed a red orange color. Because of the

low concentrations of indicators used, this color was very faint. These complications

needed to be overcome to effectively observe the system behaviors.

1.3.1 MATLAB Image Enhancement

In order to make use of images recorded at low indicator concentrations, it was nec-

essary to enhance their colors. This was done using MATLAB code, that separated

each of the color channels from the RGB (Red, Green, Blue) image. Figure 1.5 shows

a raw image, left, taken of the reaction system. Any detail in the raw image appeared

to be washed out and provided insufficient information to analyze. The right image

of Figure 1.5 shows the same image after undergoing enhancement. In this image

the reaction front is clearly seen as a red-orange color. The unreacted bulk solution

is blue corresponding to the bromophenol blue indicator and the reacted solution is
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clear due to bleaching. A 2 mm grid was then overlaid on the image to visually aid

in tracking wavefront movement.

Figure 1.5: Demonstration of the two indicator system. Left: Reaction front in a
raw image, nothing visible. Right: Same image after enhancement, with grid added.

In the raw image, the colors in each channel Red, Green, Blue (RGB) were

bunched over a small pixel intensity range. This leads to a homogenous and indistinct

image. The MATLAB code spread the pixel count, for each color channel, across the

full spectrum of pixel intensities. Histograms showing this change are shown in Figure

1.6. The result of this change is that each color is visually distinct, while preserving

the inherent background image.

The enhanced RGB images could be converted into a hue/saturation/value

(HSV) image. HSV is used extensively in computer vision and vision analysis for

feature detection.63 With the converted HSV image it was possible to visualize the

reaction front by the orange-red color. The orange-red color of the reaction front is

isolated to produce a true black color on a grayscale spectrum. A demonstration of

HSV conversion is shown in Figure 1.7 where the enhanced image from Figure 1.5 is

on the left and the HSV converted image is on the right.

After converting an image to HSV the acid wave front can be quantified. There
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Figure 1.6: Histogram of the RGB color channels for the images in Figure 1.5. Sub-
plots A, B, and C represent the RGB channels before enhancement. Subplots D, E,
and F represent the RGB channels after enhancement.

is a one minute time difference between Figure 1.7a and 1.7b. In Figure 1.7a the

thickest part of the wave is seen at the surface at 4.30 mm. This build up of products

and heat causes Marangoni convection to drive the wave to the right. As the wave

progressed, the wavefront becomes thinner and in Figure 1.7b the wavefront measures

only 1.04 mm. In contrast, the wave at the bottom of the vessel in 1.7a averages only

1.74 mm but the lower wave velocity causes products to accumulate. In 1.7b the

lower wave measured 2.57 mm.

The MATLAB code provided a platform for tracking and quantifying these

traveling waves. The images themselves included a scale of known length that allows

for the conversion of pixels to millimeters (mm). This provided a consistent scale

regardless of whether it was formed from a 4000 x 3000 pixel image or a 1080p frame
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Figure 1.7: Demonstration of the two indicator system highlighting the reaction
front. Left: Two images after MATLAB color enhancement. Right: Same images
after color extraction to highlight the reaction front. (a) t = 0 min, (b) t = 1 min.

of a video. From direct measurement of the image it was possible to quantify thickness

of the reaction front, direction and speed of growth, and direction and speed of wave

propagation.

For accurate time measurements, video frames were recorded at a rate of 50

frames per second (fps) with a time accuracy of a hundredth of a second. Knowing

the length, in pixels, and the time elapsed it was possible to track the velocity of

wave propagation. For measurement of horizontal wave propagation, MATLAB code

was used to extract the time stamp and frame data, and track the image, for a set

amount of time or until no more motion was detected.

MATLAB code takes advantage of parallel computing, to enhance images and

track reaction fronts. Parallel processing allowed each image or frame of video to be

processed by a different core or thread of the central processing unit (CPU), greatly

reducing time to compute and process results. The program is scalable on computers
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ranging from two cores and two threads to eight cores and sixteen threads.
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CHAPTER 2

VISUALIZATION AND TRACKING OF TRAVELING ACID WAVES

GENERATED FROM THE CLORITE-THIOUREA REACTION

2.1 Introduction

In fluid dynamics, a wave can be considered any front of discontinuity that moves

through a system.23 Wave phenomena has been observed for many natural reaction-

diffusion-convection processes.64

Traveling chemical waves appear to be due to the interplay between autocat-

alytic chemical reactions and diffusion.65 In a reactive flow, waves transmit energy

and mass over a distance. In the chlorite-thiourea reaction system three principle

waves are present. These are chemical, thermal, and gravity waves.

The velocities of propagation and shapes of chemical waves are directly cor-

related to kinetics of reactions and diffusion rates.66 Chemical waves contribute to

both thermal and density waves. They cause thermal waves by acting as a source

or sink of energy depending on whether the reaction is exothermic or endothermic,

respectively. Depending on the densities of products produced, a reaction can also

generate density waves.

For density wave propagation an acceleration field is required. Both chemi-

cal and thermal waves can provide an acceleration field suitable for creating density

waves. Using the chlorite-thiourea system as an example, changes in chemical com-

position can lead to increased solution density, where products are more dense than

reactants. However, increasing temperature leads to a decrease in solution density.

A consequence of heat generated from the autocatalytic reaction causes an inversion
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where higher density chemical products overlay on less dense reactants. This situa-

tion can lead to a vortex where misaligned density gradients grow exponentially in a

nonlinear manner; which can lead to Rayleigh-Taylor Instabilities.

In the chlorite-thiourea reaction, the primary thermal wave is in the form of a

convective wave. This thermal wave generated from the autocatalytic and exothermic

reaction uses the temperature gradient created at the localized reaction front to drive

density changes.3,4 The density changes brought from exothermic fronts are usually

negative, lowering the density at increased temperatures. The interplay between

chemical, thermal, and gravity waves leads to several distinct behaviors. The time

evolution of the flow is summarized in Figure 2.1. Note, thermocapillary flows require

material balance and back flow of solution in the vessel.

Figure 2.1: Schematic sketch of the time evolution of the flows observed in the chlorite-
thiourea reaction system.

Autocatalytic reaction systems can generate localized pH gradients. These

result in the appearance of a traveling acid wave into the unreacted bulk solution
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that is spatially constrained by diffusion of the autocatalyst. While the work in this

thesis used a chemical reaction to generate an acid front, the chemical reaction is

ancillary to the result. In fact, the acid wave front could be generated by any number

of methodologies, such as electrochemistry induced isoelectric, external effects, or

solute gradients.37,67,68

A complication of autocatalytic chlorite-based reactions is that initiation of

the reaction is stochastic.69 In order to generate a traveling wave, reactions must

be initiated by an external source.1,3,4,61 In the absence of initiation, the stochastic

nature of the reaction can cause initiation at multiple points in a reaction vessel. This

is due to minor interfacial differences, such as the light source being too close to the

reaction vessel causing localized heating that can trigger the reaction. An example

of conflicting waves generated by stochastic initiation is shown in Figure 2.2.

Figure 2.2: An example of competing waves generated by stochastic initiation. Chlo-
rite concentration was 4.00 x 10−3 M while thiourea was much lower than standard
conditions at 1.68 x 10−4 M.

The main product of the chemical reaction is a large change in pH resulting
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in generation of an acid wave front. Observation and quantification of waves is pri-

marily accomplished with the use of pH indicators. Section 1.3 describes how pH

indicators can impact hydrodynamic behavior. To minimize effects of pH indicators

on hydrodynamic motion, a novel approach was utilized to reduce the concentration

of indicator by roughly five orders of magnitude compared to what has been reported

in the literature, as described in Section 1.3. However, for comparison hydrodynamic

results from previous chlorite-thiourea work was recreated using full indicator concen-

trations with results reproduced to match the original publication.32 This experiment

served as the baseline for the effect of pH indicators on hydrodynamic motion for the

chlorite-thiourea system.

2.2 Experimental

2.2.1 Materials

The following analytical grade reagents were used without further purification thiourea

(Aldrich); bromophenol blue and methyl orange (Fisher). Sodium chlorite is sold in

in a technical grade (∼ 80 %) and a single recrystallization (acetonitrile-methanol-

water mixture) was used to purify to >98%. The analysis of sodium chlorite was per-

formed iodometrically by adding excess acidified iodide and titrating against standard

thiosulfate with freshly prepared starch as an indicator.70 Stock solutions of sodium

chlorite were prepared fresh for each set of experiments. All solutions were prepared

in nanopure water. Sodium chlorite solutions were also stored in amber Winchester

vessels wrapped in aluminum foil to reduce decomposition by light. The observation

vessel used was a modified Hele-Shaw cell machined out of Plexiglas with dimensions

measuring 260 mm long and a thickness of 10 mm . Total depth of the vessel was 30

mm, but reaction solutions were filled to not more than 20 mm in depth, leaving a

10 mm head. All recordings were made using a Nikon D3300 24.2 megapixel DSLR
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camera.

Figure 2.3: Modified Hele-Shaw cell. Exterior dimensions are shown. Reaction cavity
dimensions (Length x Height x Depth) 250mm x 25mm x 5mm. Solution depth was
20 mm for all experiments. Waves were initiated electrochemically on the left side of
the vessel.

2.2.2 Methods:

Chlorite, thiourea, and indicators were thoroughly mixed before being poured into the

reaction vessel. After solutions were thoroughly mixed, they were allowed to settle

until all physical ripples disappeared. They were triggered electrochemically with a a

voltage of 3.0 V passed through a platinum electrode placed on one end of the vessel.

Reported experiments were run in excess of chlorite to ensure complete con-

sumption of thiourea. Experiments performed at equal or excess amounts of thiourea

were unreliable and exhibited random behavior.71 Initial thiourea concentrations,

[CS(NH2)2] were fixed at 5.00 x 10−4 M and chlorite [ClO –
2 ] was varied from 2.00 x

10−3 to 1.00 x 10−2 M. Most experiments described in this chapter were performed
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at 4.00 x 10−3 M chlorite, unless noted otherwise. For all experiments performed,

pH indicator concentrations were fixed at 2.38x10−8 M for bromophenol blue and

1.22x10−9M for methyl orange.

Chlorite concentrations were the sole factor, at fixed thiourea concentration,

for determining reaction rates, temperature generation, and pH change. Solution pH

was determined before and after the reaction using a Fisherbrand Accumet pH meter.

Temperature changes were measured using a rapid response temperature probe.

2.3 Results & Discussion

The geometry of the vessel was essential in determination of the type of waves that

were produced. To distinguish between Marangoni, buoyancy, and density effects, a

two-dimensional system was chosen. For the modified Hele-Shaw cell used for in this

work, the narrow width allowed for pseudo two-dimensional behavior. The narrow

gap width suppresses Rayleigh-Bérnard convection that would be expected in a wider

vessel.4,72,73 It was reported that Hele-Shaw cell gap widths under 10mm are sufficient

to promote 2-D and suppress three dimensional behavior.1,4,51,74

Hydrodynamic behaviors associated with the chlorite-thiourea reaction exhibit

the to ideal behavior in Figure 2.1. The time evolution of hydrodynamic behaviors are

shown in Figure 2.4. Figure 2.4a shows idealized behavior corresponding to Figure 2.1.

In 2.4b Marangoni convection along the surface of the vessel is arrested, presumably

by interfacial defects causing density fingers to form.

Velocity of the descending finger in 2.4b was 7.92 mm min−1. This velocity

slowed as it neared the bottom of the vessel in 2.4c and back flow from Marangoni

convection caused the wave to be pushed back towards the product solution. At the

bottom of the vessel reaction-diffusion-convection (RDC) proceeded to push the wave

forward at 2.38 mm min−1 for ∼5 mm before immediately transitioning into a thermal
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plume between 2.4c and 2.4d. Because the plume opposed gravity, wave velocity was

noticeably slower than the density finger at 2.24 mm min−1. 2.4e shows the rapid

transition from plume to the Marangoni convection back to density finger (snalogous

to Figure 2.4b). Figures 2.4f & g show another iteration of density finger back to

plume. These transitions continued, with comparable wave velocities and distances,

along the entire (250mm) length of the Hele-Shaw cell in a periodic manner until the

Figure 2.4: a – g: Time evolution of oscillatory finger and plume behavior. The
reaction front is highlighted in red.
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wave reached the closed boundary. This periodic behavior has not been previously

reported with the chlorite-thiourea system.32,50

Performing the experiment, again using the same initial conditions, essentially

the same behavior was observed but with different time dependence and flow dis-

tances. The differences, even under the same reaction conditions, shown in Figure

2.5 compared to Figure 2.4, revealed the stochastic nature of the reaction. The source

of these differences was assumed to be due to mixing interactions between product

and reactant solutions (the emergence of Rayleigh-Taylor instabilities). In another

experimental run, Figure 2.5b shows that the RDC wave proceeded for roughly double

the distance, ∼12 mm, compared to Figure 2.4.

Although RDC wave velocity, vRDC was comparable at 2.52 mm min−1. Inter-

facial effects are highlighted in 2.5b where the thermal plume bifurcated into three

individual fingers. This minor perturbation was short lived as the rising wave ex-

panded and consumed the individual fingers in 2.5c. Velocity of the ascending wave

(vasc in 2.5b and c was determined to be 2.06 mm min−1.

Because of the extended distance the initial RDC wave covered, Marangoni

effects are much more apparent. When the ascending wave reached the surface,

Marangoni convection drove the wave back towards the product region of the solu-

tion and forward into the reactant region of the solution. Wave velocities, in both

directions, were found to be comparable at 7.72 mm min−1 and -7.12 mm min−1.

Marangoni convection drove the wave in 2.5e ∼12 mm compared to 6 mm in Figure

2.4. Similar to the thermal plume, generation of a minor defect between the acid

wave front and bulk solution causes the more dense products to overcome Marangoni

convection and plummet into the less dense reactant solution zone. The density finger

in 2.5e and f had a slightly slower descending velocity, vdsc, of 6.85 mm min−1. Once

the wave reached the bottom of the vessel, in 2.4g, it bifurcated into separate RDC
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waves and continued the observed periodic behavior until reaching the far boundary

of the vessel.

Results of experiments showed that even under identical reaction conditions,

individual wave velocities of hydrodynamic behaviors were not identical. However,

by tracking wave velocities across multiple experiments, at the same initial reactant

Figure 2.5: a – g: Example of stochastic thermal plume development and periodic
behavior beginning from an reaction-diffusion-convection (RDC) wave. The reaction
front is highlighted in red. Note (circled) in a, the interfacial defects bifurcating the
plume.
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concentrations, it was possible to determine the extent that velocities varied.

2.3.1 Wave Tracking

An example of wave quantification using pH indicators and MATLAB image en-

hancement is shown in Figure 2.6. Beginning with images that had already been

color enhanced according to the procedure described in Section 1.3.1, it was possible

to extract further details from the images. By conversion of enhanced images to HSV

it was possible visualize details that are not naturally visible with the naked eye. In

order to isolate the acid wavefront (red-orange color) in the color enhanced version

the saturation channel of the HSV image was extracted and filtered. Isolation of the

acid wave front is displayed as a greyscale image in Figure 2.6.

Figure 2.6: Color enhanced images converted to a HSV image for feature tracking.
(a) t = 0 min, (b) t = 1 min.

In Figure 2.6a, the wavefront is thickest at the top of the wave at 4.30mm (1),

thinnestat 0.90mm (2), with average thickness = 1.74mm. Between Figure 2.6a and
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2.6b, wave (1) moves laterally at an average rate of 7.32mm min−1 and (2) moves

at 2.71mm min−1. During the transition from Figure 2.6a to 2.6b. the thickest part

of the wavefront transitions from the surface to the bottom of the vessel, which can

be attributed to lower forward velocity. It measures 2.57mm. The central portion

of the wavefront shows no forward momentum and becomes the thinnest portion at

1.04mm as thermocapillary convection draws more of the reacting front to the top of

the wave, seen in arrow (3), and reaction-diffusion-convection causes an accumulation

along the bottom(4).

Further results of wave tracking are displayed in Figure 2.7. This data repre-

sents 50 experiments with between 8-10 periods of the fluid flow for each experiment

at the standard reactant concentrations of 4.00 x 10−3 M chlorite and 5.00 x 10−4

M thiourea. vMarangoni represents the velocity along the surface of the reaction vessel

with the z axis running vertically. vRDC is the velocity at the bottom of the vessel.

Similarly, vascending and vdescending represent the thermal plumes and density fingers,

respectively.

Above results were for reactions run at a 20:1 ratio of chlorite to thiourea.

At this ratio, average pH = 5.5 for reactant solutions. For product solutions pH fell

between 2.7 and 3.2. Similarly, reactant solutions were kept and run at room temper-

ature (298 K). The temperature increase associated with the reaction was found to

be ∼2.8 degrees. Across the range of concentrations studied final pH varied between

1.5 and 3.5. Temperature changes were between 2.2 and 4.5 degrees. Note that pH

and temperature values were determined by initial chlorite concentrations. Higher

concentrations of chlorite corresponded to lower pH values and higher temperatures.

Previous work has shown that velocity determination for traveling acid waves

in the absence of hydrodynamic motion can be approximated through utilization of

a U-shaped glass tube 1cm in diameter.2,66,75 The flat bottom of the ”U” allows the
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Figure 2.7: Measured wave speeds for Marangoni waves (vMarangoni), RDC waves
(vRDC), thermal plumes (vascending), and density fingering (vdescending).

wave to travel horizontally with no surface or buoyancy effects acting as a pseudo

one-dimensional system. For the primary reactant ratio of 20:1, the rate of wave

propagation was found to be 1.4mm min−1. Interestingly, across the concentration

range examined there was an approximately linear response between initial chlorite

concentration and wave velocity. Increasing chlorite concentration increased wave

velocity

2.3.2 Chemical Model for Wave Front Propagation

Before creating a fluid dynamic model, it was essential to solve for the velocity flows

of the simplified chemical model proposed in 1.2.4. Specifically, the reaction rate
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constant for Reaction 1.12,

ω̇j = kf [ClO −
2 ][SC(NH2)2]

1/2[H+]2 (2.1)

kf was determined from 1-D modeling of chemical wave front propogation.4,6,32,61 The

1-D model has the following form of the diffusion equation,

∂[Ci](x,t)
∂t

= Di∇x +
n∑
j=1

νi,jω̇j (2.2)

Concentrations of species i at a specific time and location were determined by

the diffusion equation according to Fick’s Laws. Chemical kinetics were coupled to

Fick’s Laws with the rates, ω̇j, and stoichiometries, νi,j for each chemical species. A

three reaction model was assumed, and ionization of H+ by OH– was not factored into

the model. Historically, calculations with this omission were shown to still generate

accurate results.2,59 The important chemical equations are:

ω̇j = k1[ClO −
2 ][SC(NH2)2]

1/2[H+]2 (R 2.1)

H+ + ClO −
2

keq−−⇀↽−− HClO2 (R 2.2)

H+ + SO 2−
4

keq−−⇀↽−− HSO −
4 (R 2.3)

Forward and reverse rate constants in Reactions R 2.2 and R 2.3 were from the

literature values as summarized in Table 2.1.6,27,50,59,61,76

Likewise, diffusion constants for the chemical species were from the literature

and summarized in Table 2.2.77

Integration of the 1-D model, Equation 2.2, was performed using MATLAB
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Table 2.1: Literature rate constants for the one-dimensional model

Reaction Forward Rate (M−1s−1) Reverse Rate (s−1)
R 2.2 1x1010 1.38x108

R 2.3 1x1010 5.75x108

Table 2.2: Diffusion constants for chemical species

Chemical Species Diffusion Constant (m2s−1)
H+ 1.4x10−8

SC(NH2)2 7x10−10

ClO –
2 1.3x10−9

SO 2–
4 1.1x10−9

HClO2 1.3x10−9

HSO –
4 1.1x10−9

2018a with the built-in partial differential equation solver. The model was arranged

in a 1-D mesh 2 cm long with no-flux boundary conditions. The mesh was separated

into 200 or 400 equally sized cells (there was no difference in results between sizes).

This arrangement was consistent with similar models created for other autocatalytic

systems.5 Integration time steps were set to 0.1 s.

Initial concentrations for species in the bulk solution were set to those of the

unreacted solution. To simulate electrochemical initiation of the reaction, for the

first 10-20 cells of the mesh concentrations of chemical species were set to those of

the product solutions at a pH = 3. The rate constant, kf , for R 2.1 was initially set

to 1x105 M−2.5s−1 as determined for the chlorite–trithionite reaction system.1 Rate

constant values were varied over the range of 1x105 to 5x106 M−2.5s−1 by increasing

the rate constant by 1x105 per run. The distance the H+ traveled at two minutes of

reaction time was used to calculate the wave velocity.
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Figure 2.8: H+ Wave front location at t = 2 min at a rate constant of 3x105 M−2.5s−1.
Inset: initial chlorite concentrations. Increasing chlorite concentrations resulted in an
linear increase in wave front velocity.

The rate constant, kf in Equation 2.1, was determined to be 3 x105 M−2.5s−1.

kf was evaluated by matching the modeled wave front velocity of H+ with that mea-

sured for the 1-D system (1.4 mm min−1). It turns out that, reaction rates were

less critical than reactant concentrations. Formation of traveling acid wave fronts are

a predominantly diffusion driven process. Reaction rates contribute little to overall

wave velocity.4,6 The minor waves of lower intensity, also shown in Figure 2.8, corre-

spond to smaller proton wavefronts produced by minor equilibrium reactions to form

hydrogen sulfate and chlorous acid (R 2.2 and R 2.3).

For all calculations, thiourea remained fixed while the concentration of sodium

chlorite was varied to adjust the velocity of the H+ wave. The H+ wave speed as a

function of [ClO –
2 ] is displayed in Figure 2.8. Calculated H+ waves were found to
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be ∼2 mm wide, consistent with the measured wave thickness. The rate constant for

Reaction 2.1 was required for construction of the 2-D numerical simulation.

2.3.3 2-D Numerical Simulation for Wave Front Propagation

The 1-D model only accounts for chemical reactions and diffusive effects. Unlike the

1-D model, the 3-D model also accounts for advective and convective forces. Thermal

and mass transfer are tied directly to the chemical reaction.

To simplify the simulation, a snapshot of the reaction vessel was used. Dimen-

sions for the reference frame for simulation were 3 cm long by 2 cm tall. This reference

frame provided a view consistent with experimental results. An adaptive, triangular

mesh consisting of 77,448 elements was used to populate the reaction system. A fea-

ture of these adaptive meshes is that their individual sizes may vary and can thus

provide more detail near boundaries. An example of the simulation geometry and

mesh is shown in Figure 2.9.

All simulations were carried out in COMSOL Multiphysics 5.3a with the mod-

ules for Transport of Diluted Species in Porous Media, Laminar Flow, and Heat

Transport in Fluids. Integration was performed by the standard back differentiation

algorithm and direct PARDISO solver.23,42,78,79 Absolute tolerance for simulations

was left at the default value of 1x10−6. Simulations, were carried out under two con-

ditions. First, the system was assumed incompressible with the applied Boussinesq

approximation. This treatment is standard for modeling these type of autocatalytic

systems.1,3,4,6,7,28,30,53,62 Second, the system was treated as weakly compressible in

which density changes induced by chemical reactivity were accounted for as part of

the fluid flow.

Boundary conditions were the no slip, no flux, and Marangoni boundary. The

left, right, and bottom of the reference frame in Figure 2.9 are an impermeable barrier,
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therefore no slip and no flux. The top of the system uses the Marangoni boundary

condition to represent a surface exposed to the atmosphere. Recall, the experimental

reaction vessel was 25mm tall with the reaction solution only reaching to 20mm and

exposed to the atmosphere. Similar to experimental conditions, all boundaries and

the reaction solution itself were set to ambient temperature of 298 K.

Chemical species, initial concentrations, and reactions were maintained iden-

tical to those used experimentally in the 1-D system (section 2.3.2). Physical pa-

rameters for the chlorite-thiourea system were taken from the literature. Marangoni

condition, MaT , σ = −8.6x10−5 N m−1 K−1; thermal expansion coefficient, β = -0.4

kg m−3 K−1; isothermal density change, ∆ρ = 2.8 kg m−3.33 As a dilute solution, the

bulk properties were set to those of water at 298 K; fluid density, ρ = 1000 kg m−3;

thermal conductivity, λ = 0.6 J s−1 m−1 K−1; and heat capacity, CP = 4180 J kg−1

K−1 at 298 K.80

Equations for this system were input directly into COMSOL for simulated

solutions. COMSOL enabled a simple switch for applying the Boussinesq approxima-

tion of an incompressible fluid, or a weakly compressible fluid according to the full

continuity equation of mass conservation in Equation 1.6.

Similar to the 1-D experiment, the reaction was initiated by setting initial

concentrations of chemical species to those of the product solution, for the first 1 mm

of the reaction vessel, to mimic electrochemical initiation. Experimentally following

reaction initiation, the system would require 20-50 mm, of the 250 mm vessel before

displaying periodic thermal pluming and density fingering. Unfortunately with the

snapshot simulation that was used, the initial simulation proved to have insufficient

length for these behaviors to manifest.

To rectify this issue, new initial conditions were introduced where instead of

initiating along the entire boundary a lower portion measuring 6mm by 2mm was used
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Figure 2.9: Simulation dimensions with a 77,448 triangular mesh. Adapted initiating
conditions are highlighted in yellow. Inset: zoomed in view of triangular mesh. Each
triangle represents an individual control volume.

to initiate the system, shown as yellow in the lower left corner of Figure2.9. Note that

the initialization region was set to an initial temperature of 301 K, consistent with

measured temperature change = 2.8 degrees. With this modified initial condition it

was possible to simulate both the thermal plume and density fingering within the

confines of the limited simulated system.

Figure 2.10 shows a comparison of experimental results (a-c) with simulated

results (d-f). Simulations showed the exact same velocity and concentration profiles

for incompressible and compressible fluids. In simulated examples, blue is the bulk

unreacted solution while red corresponds to [H+] at pH 3.0. In Figure2.10a & d

initiation of the reaction begins with formation of a thermal plume. The transition

in Figure2.10b & e shows the Marangoni Effect pushing the wave front horizontally
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Figure 2.10: Comparison of experimental results to simulation.

before the increased density of the product solution causes density based fingering to

occur. Figure2.10c & f display the backwards flow at lower z values due to Marangoni

convection causing a circular current to form. As the fluid at the surface flows to the

right there must necessarily be flow backwards to maintain material balance.

By tracking the velocity of the [H+] wave in simulations, it was possible to

directly make comparisons with the experimentally measured fluid dynamics. A com-

parison of measured and simulated velocities for the [H+] wave are shown in Table

2.3.

Results in Table 2.3 show good agreement between experimental and simu-

lated wave velocities. The stochastic nature of wave behaviors in experiments ne-

cessitated averaging across a large number of experiments (n = 50). The largest

deviations of simulated to experimental results was observed for the descending and
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Table 2.3: Experimental versus Simulated [H+] wave velocity

[H+] wave Experimental wave Simulated wave
location velocity (mm min−1) velocity (mm min−1)
vascending 2.09± 1.20 1.83
vdescending 7.39± 3.09 6.07
vMarangoni 7.37± 1.14 8.39

vRDC 2.51± 1.35 2.35

Marangoni waves. For the descending wave, the limited geometry of the simulation

may have caused the density finger to experience interference from back-flow caused

by Marangoni convection. The Marangoni convection velocity may be impacted by

literature values of the Marangoni condition measured for the chlorite-thiourea sys-

tem. However, in all cases, simulated results fell within the standard error of the

experimental results.

2.3.4 Summary

Previous experiments conducted on the chlorite-thiourea system, at conventional pH

indicator concentrations only displayed Marangoni convection with density finger-

ing.27,32,33,50,76 Results in this chapter demonstrate that with substantially lower con-

centrations of indicator, and corresponding reduction in the surface tension gradient,

alternating density fingering and thermal plume formation could be seen.

Simulated [H+] wave velocities were comparable to the average values from

experiments and were within the margin of error for measured results. Simulated

wave velocities and dynamical behaviors provided support for our model and validity

of governing equations and parameters that were employed.

With a linear response between chlorite concentration and velocity rate depen-

dence of the reaction on chlorite is approximately first order; thus greatly simplifying
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the problem. Since observed hydrodynamics are governed by chlorite, a full account-

ing of the complicated chemical kinetics of the chlorite-thiourea reaction was not

necessary to investigate hydrodynamic behavior generated from the chlorite-thiourea

system.

The stochastic nature (Figures 2.4 & 2.5) highlights the difficulty of using

autocatalytic reaction systems to generate hydrodynamic motions. Both the chlorite-

thiourea and chlorite-tetrathionate reactions are extremely complicated with 13 indi-

vidual reactions, autocatalysis, supercatalysis, and autoinhibition.2,6,25,26 Even so, ex-

perimental hydrodynamic results (for both systems) clearly show that detailed knowl-

edge of the underlying chemical kinetics is mostly irrelevant, with little measurable

effect on hydrodynamic behavior.

Over the time scale of the simulation, results of the compressible and incom-

pressible models were indistinguishable, with identical [H+] wave and flow velocities.

This begs the question on the importance of treating the system as compressible.

One result, that has nothing to do with the physical system, is computational time.

When running the system as incompressible, the average computational time for con-

vergence of the model was 229 seconds; when running as compressible the simulation

was completed in 184 seconds. The net result, a 20% time savings.

For the snapshot simulation used, there was no difference in results and time

savings were modest. It might be that the system was too limited for these differences

to manifest. However, if simulations were expanded to the full 250mm reaction vessel

(or larger systems) and a third dimension was introduced, measurable differences

between treating the fluid as compressible versus incompressible might be observed.

Likewise, for larger systems and longer simulations, time savings could be amplified

by treating the system as compressible. In the future, time savings from treating the

system as compressible can be quantified by doubling the dimensions of the model
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geometry to verify the time savings remain at 20% or scale based on the size of the

model. At a minimum, these results show that there is no computational savings for

treating the system as incompressible.

A question arises as to why the ”simpler” model required more processing

time. The Boussinesq Approximation is only valid when nonlinearities in the system

are small. Since more time was required to solve for the incompressible system, it

suggests that the approximation may be sub-optimal or invalid.10 While the validity

of Boussinesq Approximation has been proven for these types of chemical systems,

time savings most likely reside with the nature of numerical solvers used in modeling

software.

Solving the full Navier-Stokes equations allowed the solver to avoid errors that

result from rounding during the approximation.10 Also, any time savings resulting

from approximations likely cancelled by having to recompute those values for the

other time dependant parameters of the system, such as momentum. Our results show

that a full application of Navier-Stokes equations should be standard for simulating

reactive flows whether generated from autocatalytic reactions or any other method.
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CHAPTER 3

CONCLUSION

3.1 Overview

The field of studying the fluid dynamic behavior of autocatalytic reaction systems is

relatively small and somewhat fractured according to the specific reaction of interest of

their parent laboratory, whether chlorite-tetrathionate or chlorite-trithionate. Those

systems display extremely complex chemical kinetics with supercatalytic activity.6,77

The relatively simpler with regards to chemical kinetics, chlorite-thiourea system,

has been neglected for a number of years prior to undertaking this project. Along

with the lack of established models this made the chlorite-thiourea system perfect to

challenge assumptions and approximations used in the more complex systems.

In these systems, the propagating [H+] wave front is necessarily visualized with

pH indicators to show the change in pH as the reaction progresses. However, the na-

ture of chlorite is that it acts as a bleaching agent that has the effect of washing out

the color of the indicator over time.81 This has caused researchers to use high concen-

trations of pH indicators to enable visualization of the autocatalytic wave fronts. A

negative consequence of this heavy use of indicators is that the indicators themselves

act as a buffer, absorbing H+ thereby changing the reaction dynamics and acting

to change surface tension of the bulk solution.7 As detailed in Chapter 1, indicators

used in these experiments were five orders of magnitude lower in concentration than

comparable experiments.1,4,7,58,61,62

Low concentrations of indicator allowed for detection of behaviors in the chlorite-

thiourea system (Chapter 2) that have never been detected in previous studies of the
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chlorite-thiourea system.27,32,33,50,76 In Chapter 2 it was shown that the system dis-

played an oscillating pattern of thermal plumes and density based fingering, among

other more complex motions. However, minimal concentration of indicator made

the wave fronts increasingly difficult to distinguish and analyze. This problem was

overcome in a two ways. First, MATLAB code was written to enhance the color

spectrum of the videos and images allowing for more effective visualization by eye,

detailed in Section 1.3. Second, a combination of two indicators was used, bromophe-

nol blue and methyl orange. This combination, while still bleached and essentially

clear in the product solution, was able to highlight the reaction front as an orange

color allowing for detailed analysis of the H+ wave front itself; in addition to the bulk

chemo-hydrodynamics.

Novel results generated from these experiments confirm that pH indicators play

a prominent role in manipulating hydrodynamic motion of these systems. By greatly

reducing the concentration of indicator, it is possible to visualize a more accurate

representation of the chemo-hydrodynamic system. Also, we are unaware, of any

published experimental results showing direct visualization of the H+ wave front,

other than theoretically. It is encouraging that the visualized wave front measured

∼2mm on average and was consistent with theoretical determinations of ∼1.6mm for

the chlorite-tetrathionate system.5

Without the benefit of previous chemo-hydrodynamic models to build off of, a

first principles approach was taken based on work done on the chlorite-tetrathionate

system. This approach required a simplified chemical model tailored for the chlorite-

thiourea system. Rate constants were calculated using self-written code in MATLAB

for a one-dimensional system to determine reaction wave velocity as a function of rate

constant. This rate constant was a major requirement for subsequent generation of

2-D numerical simulations.
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The relatively simpler chemical kinetics of the chlorite-thiourea system in com-

bination with experimental results that minimized collateral effects of indicators pro-

vided a strong basis for generating a numerical simulation. There is an extensive

body of work done on simulating the chlorite-tetrathionate and chlorite-trithionate

systems; and they all universally rely on the Boussinesq Approximation, that treats

these systems as incompressible.1,4,6,30,39 However, a key factor of these reactions is

the conversion of lighter reactants into heavier products. In a fixed volume cell con-

ventionally modeled with adaptive mesh grids, results implied that in a finite volume

the fluid is compressible. In an effort validate the accuracy of treating the fluid sys-

tem as incompressible, in Section 1.2.8 a model was developed that instead treated

the system as compressible. Results were then compared, under the same conditions,

using the simplifying Boussinesq Approximation.

A snapshot numerical simulation of chlorite-thiourea system was created to test

the applicability of the Boussinesq Approximation and effects of inherent assumptions.

Details of the model were presented in Section 2.3.3. Simulated chemo-hydrodynamic

behavior of the model was in good agreement with experimental measurements. It

was determined, that use of simplifying assumptions compared to solving the full

Navier-Stokes equations proved indistinguishable and agreed with experimental re-

sults. However, computation time increased 20% compared to solving the full set of

equations.

Differences between solving methods may eventually become more pronoun-

ced in a larger and/or more complex model where the small differences in compress-

ibility can manifest over time. At a minimum, results demonstrated that a com-

pressible model is not any more resource intensive to solve compared to use of a

non-compressibility approximation. Therefore future numerical simulations of auto-

catalytic chemical systems should apply a full compressible model. In the future,
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compressible models may prove more broadly applicable to systems that do not rely

on autocatalytic behavior, as demonstrated in cases for CO2 dissolution.29,60,82

3.2 Future Directions

A field that presents an exciting opportunity for applying these chemo-hydrodynamic

models is in the field of macromolecular chemotaxis. Macromolecular chemotaxis

concerns how a macromolecule; large molecules such as proteins, nanoparticles, or

polymers; reacts to a gradient or driving force.67 Driving forces may consist of solute,

electrochemical, or energy gradients. This contrasts with conventional chemotaxis

which concerns itself motion of an organism driven by chemical stimulus.83

In an effort to link chemo-hydrodynamics to protein biophysics, a simple model

was constructed for an electrochemical device to separate four major plasma proteins

in a microfluidic device based on their isoelectric points and an induced gradient,

utilizing the same equations as used in Section 2.3.3. It was possible to determine

partitioning of proteins into each outflow channel as shown in Figure 3.1, which could

lead to a microscale method for protein separation by electrochemical means.

Figure 3.1: Electrochemical gradients to separate proteins in blood plasma.
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40C. Navier, “Mémoire sur les lois du mouvement des fluides”, Mémoires de l’Acad-
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69A. K. Horváth, I. Nagypál, G. Peintler, and I. R. Epstein, “Autocatalysis and self–
inhibition: coupled kinetic phenomena in the chlorite–tetrathionate reaction”, Jour-
nal of the American Chemical Society 126, PMID: 15149218, 6246–6247 (2004).

70A. Indelli, “Kinetic study on the reaction of sodium chlorite with potassium iodide”,
The Journal of Physical Chemistry 68, 3027–3031 (1964).

71C. R. Chinake and R. H. Simoyi, “Complex reaction dynamics derived from an
autocatalytic exothermic chemical reaction.”, South African Journal of Chemistry
50, 220 (1997).

72J. Sakakibara and R. J. Adrian, “Measurement of temperature field of a rayleigh-
bénard convection using two-color laser-induced fluorescence”, Experiments in Flu-
ids 37, 331–340 (2004).

73M. Ciofalo, M. Signorino, and M. Simiano, “Tomographic particle-image velocime-
try and thermography in rayleigh-bénard convection using suspended thermochro-
mic liquid crystals and digital image processing”, Experiments in Fluids 34, 156–
172 (2003).

58

https://doi.org/10.1103/PhysRevE.88.033009
https://doi.org/10.1109/ICCSA.2008.55
https://doi.org/10.1109/ICCSA.2008.55
https://doi.org/10.1021/j100201a011
https://doi.org/10.1021/ja048982l
https://doi.org/10.1021/ja048982l
https://doi.org/10.1021/j100792a050
https://doi.org/10.1007/s00348-004-0821-3
https://doi.org/10.1007/s00348-004-0821-3
https://doi.org/10.1007/s00348-002-0534-4
https://doi.org/10.1007/s00348-002-0534-4


74K. Eckert, L. Rongy, and A. D. Wit, “A + B → C reaction fronts in Hele-Shaw
cells under modulated gravitational acceleration”, Phys. Chem. Chem. Phys. 14,
7337–7345 (2012).

75I. Lengyel, L. Gyorgyi, and I. R. Epstein, “Analysis of a model of chlorite-based
chaotic chemical oscillators”, The Journal of Physical Chemistry 99, 12804–12808
(1995).

76B. S. Martincigh and R. H. Simoyi, “Convective instabilities induced by an exother-
mic autocatalytic chemical reaction”, Phys. Rev. E 52, 1606–1613 (1995).
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