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ABSTRACT 

Embryonic development is complex, dynamic, and dependent on environmental 

factors. Mechanisms of sensing and integrating environmental stimuli are diverse, and 

understanding these mechanisms in extant species can elucidate how complex phenotypes 

emerge from genomic information expressed in an environmental context. In 

Austrofundulus limnaeus, an annual killifish with alternative developmental trajectories, 

light and temperature are vital factors that determine if an embryo will enter a state of 

diapause. We hypothesize that embryos of A. limnaeus use the vitamin D3 signaling 

pathway as a vehicle to incorporate these ecological signals into their developmental 

programing. Here we provide evidence of this pathway’s importance in regulating both 

entrance into and exit from diapause. We use a pharmacological approach to explore this 

pathway and closely related hormone receptors on the regulation of diapause. Exposure 

of A. limnaeus embryos to metabolites found in similar invertebrate signaling pathways, 

as well as parallel studies performed on Danio rerio zebrafish embryos support a role for 

vitamin D3 signaling in the control of developmental progression. Further, we highlight 

key potential targets for the vitamin D3 pathway that may elicit exit from diapause 

through regulation of DNA methylation.  
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CHAPTER 1: 

Developmental environment impacts phenotype 

Integration of environmental information into the developmental program 

An organism’s life history is profoundly affected by its developmental 

environment which can determine the outcome of embryogenesis and adult traits 

(Androwski et al., 2017; Badyaev, 2005; Cossins et al., 2006; Dufty et al., 2002; Furness 

et al., 2015a). During development, an organism establishes necessary mechanisms which 

buffer against stress and allow for adaptive responses – such as developmental trajectory 

determination, cellular and organismal stress responses, shifts in metabolism, and 

allocation of endogenous resources – in response to key environmental variables (Jonsson 

and Jonsson, 2019). It is essential that embryos utilize mechanisms to sense their 

environment early in development where these effects can be most impactful. The 

detection and integration of these signals can lead to transcription of target genes 

promoting survival under the present or future conditions. For example, in vertebrates, 

environmental temperature can differentially impact muscle fiber density in developing 

embryos of the Atlantic cod Gadus morhua, the Senegal sole Solea senegalensis and the 

zebrafish Danio rerio (Bizuayehu et al., 2015; Campos et al., 2013; Johnston et al., 

2009). 

Deciphering how epigenetic mechanisms can alter developmental outcomes is an 

essential part of understanding embryonic development in context of a dynamic 

environment where stress can have both detrimental and positive effects on individual 

organisms, populations, and perhaps entire species. Diapause in annual killifishes is not 
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an obligatory phase of development, but can be induced by environmental conditions 

experienced during early development (Furness et al., 2015b; Podrabsky et al., 2010; 

Romney et al., 2018). Studying environmentally provoked phenotypic plasticity in an 

organism that naturally experiences environmental extremes during development offers a 

unique situation to explore these important epigenetic facets of embryology. This thesis 

focuses on the embryos of the annual killifish, Austrofundulus limnaeus, and their means 

of sensing and reacting to environmental cues through the synthesis and action of vitamin 

D3 which regulates their plastic ability to enter a state of diapause to endure in a variable 

and often extreme environment (Podrabsky et al., 2017; Podrabsky et al., 2016a; 

Wourms, 1972c). 

Biochemistry and action of vitamin D3 signaling 

Vitamin D3 was discovered in the 1920s as a means of treating children with 

rickets, a disease causing severe bone malformations (Bikle, 2011). As a result of these 

studies, research expanded and found that vitamin D3 is necessary for numerous 

biological functions such as calcium homeostasis and metabolism (Bikle, 2014). 

Subsequently, it has been shown that vitamin D3 is involved in supporting the immune 

response, growth of various cancers, and development of type 1 diabetes mellitus, among 

others (Bikle, 2014). Thus far, research on vitamin D3 signaling has been largely human-

centric, with a slow growing body of knowledge on the effects in other non-mammalian 

vertebrates including the endocrine, paracrine, and molecular functions in fish, 

amphibians and chicks (Craig et al., 2008; Holick, 2003; Li et al., 1997; Lock et al., 

2010; Sunde et al., 1978). In addition, comparatively little work has explored the role of 
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vitamin D3 signaling during embryonic development (Craig et al., 2008; Han et al., 2019; 

Sunde et al., 1978). The pathway’s identification across a diversity of phyla has led to 

studies using a variety of model and non-model species, including various plant species, 

nematodes, crustaceans, mice, Xenopus laevis, teleost fishes, and birds (chickens) to 

further understand impacts of vitamin D3 on biological function (Boland et al., 2003; 

Connelly et al., 2015; Goltzman et al., 2018; Li et al., 1997; Lock et al., 2007; Mark et 

al., 2016; Messing et al., 2013; Sunde et al., 1978). 

Vitamin D refers to a group of secosteroid molecules found across eukaryotes. 

There are two separate molecules, D2 and D3 that are commonly referred to as vitamin D. 

Vitamin D2 (ergocalciferol) is made by fungi and yeast while D3 is produced in animals 

and plants (Bikle, 2014). Both molecules form through exposure of lipid membranes to 

UVB light. In humans and other vertebrate organisms, research shows that vitamin D2, 

which must be obtained through dietary intake, is not as effective as vitamin D3 at 

increasing the active form of vitamin D3 in the blood stream (Bikle, 2014). Therefore, the 

effects of vitamin D3 are of higher relevance to vertebrate physiology, especially under 

conditions where dietary intake is not possible, such as during embryonic development.  

Vitamin D3 synthesis requires multiple steps. First, the cholesterol ring structure 

of 7-dehydrocholesterol (7-DHC, provitamin D3) is broken and pre-vitamin D3 forms. In 

humans, this step is thought to be primarily induced by exposure to UV light in the skin. 

If temperatures are also elevated, this compound isomerizes into vitamin D3 

(cholecalciferol). Vitamin D3 is then acted upon by two different P450 hydroxylase 

enzymes that convert it into the most potent form of vitamin D3, 1a,25 dihydroxyvitamin 

D3 (1,25(OH)2VitD3, calcitriol) which can then bind to the vitamin D receptor (VDR), a 
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nuclear hormone receptor (NR) and transcription factor that can directly alter patterns of 

gene expression and thus elicit changes in biological function (Fig. 1.1).  

Figure 1.1. Vitamin D3 signaling pathway. 7-dehydrocholesterol (7-DHC) is converted 
through light (hv) and heat reactions to vitamin D3. A series of enzymatic hydroxylation 
steps then transform the molecular into calcitriol that binds to the vitamin D receptor 
(VDR), a nuclear hormone receptor and transcription factor that elicits biological 
function. 

Entrance into diapause in A. limnaeus embryos is controlled in part through 

epigenetic and environmental mechanisms such as maternal provisioning during 

oogenesis as well as the incubation temperature experienced by the developing embryo 

(Podrabsky et al., 2010; Romney and Podrabsky, 2017). While specific mechanisms that 

regulate maternal influences on development are not yet known in this system, incubation 

temperature has been shown to induce direct development through activation of vitamin 

D3 synthesis and signaling (Romney et al., 2018). The ability to alter developmental 

trajectory by manipulating incubation temperature provides a powerful model for 

studying integration of environmental signals into vertebrate development. 

Austrofundulus limnaeus as an experimental model 

Annual killifishes inhabit temporary pools in regions with pronounced dry and 

rainy seasons (Furness et al., 2015b). Survival through periods when the ponds are dry is 

due entirely to drought-tolerant embryos encased in the soil. There are three specific 
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developmental checkpoints at which diapause can occur in A. limnaeus. Diapause I is 

associated with early development before an embryonic axis forms (Wourms, 1972b). 

Diapause II occurs midway through development after somitogenesis but before 

organogenesis. This period of arrest exhibits the highest tolerance to environmental 

stress, especially against dehydration, and thus is thought to be of utmost importance to 

surviving the dry season (Podrabsky et al., 2016a; Podrabsky et al., 2007; Wourms, 

1972c). Diapause III occurs in the pre-hatching stage embryo and is described as a final 

checkpoint late in development to ensure hatching coincides with conditions consistent 

with larval survival (Wourms, 1972a). A single individual can enter at all three points of 

arrest, a subset, or none depending on a combination of environmental conditions and 

maternal influence (Furness, 2015; Furness et al., 2015a; Furness et al., 2015b).  

Developmental timing of these annual killifish embryos thus depends on which 

trajectory they follow (diapause vs escape) in addition to which subset of checkpoints the 

individual embryo experiences. It is important to note that the divergence in trajectories 

occurs after diapause I and before diapause II during the critical window (Fig. 1.3); 

therefore, an escape trajectory embryo may experience diapause I or III and still be 

considered an escape trajectory embryo. This partially explains the variation in 

developmental timing for embryos and highlights the importance as to why 

developmental stages defined by presence or absence of specific morphological features 

is a more accurate way to describe developmental time rather than simply stating dpf.  

Due to the intense and variable environmental conditions experienced by annual 

killifishes (Cyprinidontiformes, Aplocheiloidei), these species have evolved a complex 

life history that includes arrest of embryonic development in diapause on several 
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presumably independent occasions (Furness, 2015; Furness et al., 2015a). Austrofundulus 

limnaeus, a laboratory model for annual killifishes, inhabits ephemeral ponds of the 

Maracaibo Basin in Venezuela (Podrabsky et al., 1998). The adult fish persist and 

reproduce during the wet, rainy season; however, once the dry season begins, the ponds 

dry up and only the embryos deposited in the sediment remain to perpetuate the 

population (Fig. 1.2). The continuation of this species therefore relies on the embryos’ 

ability to enter a state of suspended development termed diapause (Podrabsky et al., 

2016b; Podrabsky et al., 2010). Through entrance into diapause, embryos can survive for 

extended periods of time encased in the surrounding substrate without oxygen, water, or 

nutrition except what was prepackaged by the mother during oogenesis (Podrabsky et al., 

2010). While the dry season is anticipated each year, the highly variable and 

unpredictable nature of their habitat has likely led to the ability to produce alternative 

developmental trajectories in this species which may maximize the probability of at least 

some fraction of the embryos surviving under a wide variety of conditions, including long 

or prevailing rainy conditions (i.e. diapause vs escape trajectories; Fig. 1.2).  
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Figure 1.2. Life cycle of Austrofundulus limnaeus. Image of the Maracaibo basin in 
Venezuela, the native habitat of A. limnaeus. Arrows surrounding the image indicate the 
changing environment experienced by embryos from the wet to dry season. Embryos are 
deposited into sediment where they will either follow the escape or diapause trajectories. 
Escape embryos forego diapause and continue developing to the pre-hatching stage, 
hatch, and survive as long as the environment is favorable. Otherwise, embryos enter 
diapause and wait out the dry season until environmental signals indicate the wet season 
is approaching and the embryo can then break diapause to continue developing. 

Importantly, incubation conditions experienced by the embryo impact 

developmental trajectory, with even short exposures to high temperatures (30 – 33°C) 

and full spectrum light causing embryos to develop directly, while incubation at lower 

temperatures (20 – 25°C) in the dark leads to entrance into diapause (Fig. 1.3 & 1.4; 

Podrabsky et al., 2016b). Metabolic and developmental dormancy has been studied in 

depth using invertebrate models such as C. elegans, various insects, and crustaceans 

(Bradford and Roff, 1993; Hand et al., 2016; Podrabsky and Hand, 2015; Qiu et al., 

2007). While these organisms provide valuable insight into diapause as a mechanism of 

surviving environmental stressors, A. limnaeus offers a rare opportunity to study diapause 
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in a free-living vertebrate system. The exploration of the molecular mechanisms that 

regulate diapause in A. limnaeus increases the potential to identify highly conserved 

pathways of metabolic dormancy across animals and theoretically all forms of eukaryotic 

life.  

To date no studies have examined the mechanisms that regulate entrance into and 

exit from diapause in wild annual killifishes. Elevated temperatures that are within 

normal field conditions are sufficient to promote an accelerated exit from diapause, and 

thus temperature is likely relevant in nature (Podrabsky et al., 1998). It is uncertain how 

pertinent UV light exposure is in promoting active development – through activating the 

vitamin D3 pathway or some other mechanism – since the embryos are encased in the 

dense sediment (Podrabsky et al., 1998). However, Furness et al. hypothesize that light 

and heat likely signify pond drying and thus are relevant cues for annual killifish embryos 

to infer changing environmental conditions (Furness et al., 2015a). Further information 

on the ecology typical in A. limnaeus’ environment is necessary to note whether light is 

able to penetrate the soil to reach the embryos resulting in an initiation of the vitamin D3 

pathway.  
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Figure 1.3. Entrance into diapause II in embryos of Austrofundulus limnaeus is 
temperature dependent. Embryos enter diapause II when exposed to 20 – 25°C whereas 
30°C incubation produces continually developing embryos that “escape” diapause. The 
period of time when temperature has irreversible effects on developmental trajectory, or 
the “critical window,” is when embryos possess 6 – 20 pairs of somites (Podrabsky et al., 
2010). 

Figure 1.4. Temperature and light influence the developmental trajectory of 
Austrofundulus limnaeus embryos. Control embryos that were incubated at 25°C with 
no light show a low baseline proportion of escape trajectory embryos. Meanwhile, 33°C 
incubation in darkness or with full-spectrum light for only 48 h, drastically increased this 
proportion of escape trajectory embryos during the temperature-sensitive window of 
development (Romney et al., 2018).  

Recently, vitamin D3 signaling has been found to regulate entrance into diapause 

under laboratory conditions in embryos of A. limnaeus (Romney et al., 2018). This study 

showed that exposure to picomolar levels of 1,25(OH)2VitD3 could drive embryos to 

develop along the escape trajectory even under conditions (20 – 25°C in the dark) that 

should support embryos entering diapause (Fig. 1.3). Thus, based on the similarity of 

phenotypes between escape trajectory embryos and those developing in the presence of 

1,25(OH)2VitD3, what is known about the effects of light and elevated temperatures on 

developmental trajectory, and the canonical pathway for synthesis of vitamin D3, I 
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hypothesize that vitamin D3 synthesis can act to integrate environmental cues into the 

developmental program of embryos and regulate developmental progression in annual 

killifishes.  

Evolution of diapause 

Embryonic diapause is a strategy used to survive variable environments by putting 

development on hold at specific checkpoints while maintaining low levels of metabolic 

activity (Chennault and Podrabsky, 2010; Hand and Podrabsky, 2000; Podrabsky et al., 

2016a; Podrabsky and Hand, 1999). However, many killifish species, specifically 

nonannual species, do not experience diapause since their environment does not 

necessitate such an alternative life history. This suggests that the direct development seen 

in these nonannual killifish and the escape trajectory embryos of annual killifish may be 

ancestral and that the evolution of diapause is potentially a derived trait (Furness, 2015). 

Many species of annual killifishes, such as A. limnaeus, produce embryos that can 

experience diapause for varying lengths of time based on conditions of their current 

developmental environment. This natural divergence between annual and nonannual 

killifish creates a unique opportunity to explore evolution of phenotypic plasticity in 

closely related species (Furness, 2015; Furness et al., 2015a; Furness et al., 2015b). 

Phenotypic plasticity is a common theme in developmental biology that can take 

different forms. Some species experience immediate adjustments in which an adaptive 

response occurs early in development that is vital in the moment but may result in less 

advantageous traits later on in life. Certain species of amphibians can sense a predator 

and forcibly hatch early to escape being eaten. While surviving the predator was vital in 
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that moment, a tradeoff results in being less developed and potentially less prepared for 

life in the pond (Kaplan, 1987; Warkentin, 1995). Alternatively, other species are able to 

forecast future environmental change through maternal influence, environmental cues, or 

likely a combination of both (Burgess and Marshall, 2011; Donaldson-Matasci et al., 

2013; Feil and Fraga, 2012; Furness et al., 2015b; Zhou et al., 2017). Entrance into 

diapause for A. limnaeus is a prime example of this type of plasticity (Podrabsky et al., 

2010; Romney and Podrabsky, 2017). Therefore, understanding the molecular 

mechanisms of how environmental signals are interpreted and then integrated into the 

developmental program may provide insights into how vertebrate embryos sense and 

respond to their environment.  

Ecology and examples of exiting diapause 

Developmental delays are a common strategy of various plants, insects, 

crustaceans, and vertebrates to wait out adverse environmental conditions (Denlinger, 

2013). In most species, specific environmental cues are required to “break” diapause and 

support the continuation of active development. For example, abiotic factors are able to 

induce exit from dormancy associated with diapause in Artemia such as an increase in 

photoperiod, temperature or oxygen (Martinez-Lamparero et al., 1996; Robbins et al., 

2010). There is also evidence of lengthening photoperiods and increased temperatures 

ending diapause in the moth Sesamia nonagrioides (Fantinou et al., 1998). Plant species 

likely also respond to abiotic factors to exit dormancy after a winter period or drought 

(Browse and Xin, 2001; Fujikawa et al., 1997). Interestingly, a 2010 study looking at 

RNA expression during growth cycles of Populus trees suggested that the exit of seasonal 
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dormancy may be connected to the circadian clock system (Ibáñez et al., 2010). 

Experiments on various insects, Riptortus pedestris (bean beetle) and Culex pipiens 

(mosquito), also suggest regulation of circadian rhythms as an important aspect of 

entrance into diapause and perhaps exit from diapause as well (Hand et al., 2016).  

Adequate nutrition is the most well-known environmental stimulus utilized by 

Caenorhabditis elegans (nematode) to exit from dauer dormancy (a diapause-like state). 

This recognition of ample resources can occur through either an increase in food source 

or a decreasing population density (Macrae, 2005). The mechanisms involved in sensing 

and responding to these environmental cues are not fully understood, but researchers 

suggest NAD+ as a nutrition constituent may promote the exit of dauer (Mylenko et al., 

2016). This study further postulates that an increase in redox cofactors and serotonin play 

an important role in reactivation of development. While commonality is shared amongst 

the environmental stimuli used by these different species to kickstart development again, 

the mechanisms by which they integrate these signals are not well described and are 

actively being explored.  

The cues that regulate entrance into and exit from dormancy are often distinct and 

it is not clear if similar molecular mechanisms are involved (Hand et al., 2016; Renfree 

and Fenelon, 2017). Exit from diapause II in A. limnaeus appears to be regulated by 

similar environmental variables that regulate the decision to enter diapause II or develop 

directly. In both cases, exposure to light and increased temperatures have been shown to 

promote active development (Meller et al., 2012; Romney et al., 2018). This major life 

history shift is likely to rely on integration of environmental changes typical during the 

transition from dry to wet seasons in which active development is supported. I 
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hypothesize that exit from diapause II can be promoted through synthesis of vitamin D3 

and activation of the vitamin D receptor (VDR) in a manner similar to that observed in 

early embryos that do not enter diapause II in response to increased temperatures (Ch. 3). 

Endocrine signaling and regulation of developmental dormancy 

Exploring the action of life history-specific metabolites will allow for a better 

understanding of life history evolution, and the mechanisms that integrate environmental 

information into developmental programs (Kollitz et al., 2014). Vitamin D3 signaling is 

highly conserved across all eukaryotes (Bikle, 2011) and is potentially an important 

unexplored mechanism for integration of environmental information into developmental 

programs across a diversity of species. The role of vitamin D3 signaling is hypothesized 

in this thesis to be a mechanism that regulates developmental progression and integrates 

environmental cues into major life history decisions. Congruently, sequence similarity 

and ligand cross-activation suggest that the VDR signaling in A. limnaeus may be 

developmentally homologous to DAF-12 signaling in C. elegans and ecdysone signaling 

in Drosophila, both of which regulate metabolic dormancy (Fig 1.5; Antebi et al., 2000; 

Monteiro et al., 2015; Romney et al., 2018).  

As mentioned previously, 7-DHC is a precursor molecule for vitamin D3 and is 

involved in the cholesterol biosynthetic pathway (Bikle, 2017; Jackson et al., 1997). 

Interestingly, 7-DHC is the precursor molecule for the synthesis of dafachronic acids and 

ecdysone compounds (Antebi et al., 2000; Jackson et al., 1997; Monteiro et al., 2015). 

These pathways are also integral in regulating development and reproduction in addition 

to impacting dormancy (Kumar et al., 2002; Mahanti et al., 2014; Monteiro et al., 2015; 
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Motola et al., 2006). It is therefore a reasonable hypothesis that vitamin D3 signaling may 

share these functional roles in A. limnaeus embryo development.  

Figure 1.5. Homology of signaling pathways. In a variety of organisms, 7-
dehydrocholesterol (7-DHC) is the precursor for downstream metabolites that bind to 
specific nuclear hormone receptors. Entrance into and exit from metabolic dormancy via 
these unique signaling pathways is known in three evolutionarily distinct lineages across 
a wide range of animal life. 

As stated previously, exposure to picomolar concentrations of vitamin D3 

metabolites impacts developmental trajectory for A. limnaeus embryos (Romney et al., 

2018). This signaling pathway utilizes the vitamin D receptor (VDR), a nuclear hormone 

receptor (NR) which regulates gene expression by acting as a transcription factor. Not 

only does the hormonally active form of vitamin D3, 1,25(OH)2VitD3, bind to the ligand 

binding domain of VDR, there is evidence that VDR has affinity for other ligands 

(Kollitz et al., 2014; Norman, 2006). Alternative mechanisms of pathway initiation have 

been hypothesized including VDR’s affinity for a variety of ligands in addition to 

1,25(OH)2VitD3, which could allow for cross-talk or transactivation of VDR by other 

molecular pathways due to similarity in structure, chemical affinity, or biological 
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function (Bikle, 2011; Kollitz et al., 2016; Krasowski et al., 2011a; Reschly et al., 2007; 

Romney and Podrabsky, 2017; Schuster, 2011; Slominski et al., 2017). 

The VDR is part of NR subfamily 1 and is thought to be closely related to other 

NRs such as the pregnane X receptor (PXR), liver X receptor (LXR), and the farnesoid X 

receptor (FXR; Thomson et al., 2009). These receptors overlap in processes like 

cholesterol homeostasis as well as metabolism and are thought to share ligands for 

pathway activation and subsequent transcriptional regulation (Krasowski et al., 2011b). 

The alternative methods of vitamin D3 pathway activation, in addition to closely related 

hormone receptors’ ability to impact trajectory determination must be explored to 

conclude if the vitamin D3 signaling pathway is unique in promoting the phenotypic 

plasticity associated with diapause in A. limnaeus. I hypothesize that the vitamin D3 

signaling pathway and closely related NRs share in the ability to elicit the adaptive 

response seen in A. limnaeus (Ch. 2).  

Thesis framework 

The naturally occurring alternative phenotypes of A. limnaeus offer a unique 

opportunity to explore how phenotypic plasticity is induced from the developmental 

environment. I used incubation temperature to control developmental phenotype and 

perturbed the expected outcome with various pharmacological agents. This was done 

early in embryo development to determine which molecular pathways were relevant for 

regulating entrance into diapause. Additional experiments were conducted to explore 

what pathways may play a role in causing an embryo to break diapause. Further, modern 
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epigenetic tools were employed to gain insight as to what other genes may be relevant in 

the breakage of diapause in this species.  

This thesis is broken into two data chapters, focusing on entrance and exit from 

diapause II as described above. In Chapter 2, early stage embryos were exposed to 

various agonists and antagonists of the vitamin D3 pathway and other closely related 

pathways to explore molecular control for the entrance into diapause. Similar tests were 

performed on Danio rerio zebrafish embryos to explore if the results found with A. 

limnaeus embryos extend to a teleost that does not naturally experience diapause. In 

Chapter 3, A. limnaeus embryos in diapause were exposed to a different suite of agonists 

and antagonists to test what conditions may promote the exit of an embryo from 

diapause. Additionally, reduced representation bisulfite sequencing was utilized to 

identify differentially methylated regions of the genome in response to exit from diapause 

induced by treatment with 1,25(OH)2VitD3. These datasets identify a series of genes that 

may have a critical role in the breaking of diapause in A. limnaeus which will require 

future attention. Chapter 4 explores the context of epigenetic control on phenotype and 

attempts to connect what was learned in this thesis to the broader literature on regulation 

of developmental dormancy. Together, this thesis expands knowledge of the molecular 

mechanisms that regulate diapause in an annual killifish and suggests a mechanism for 

the integration of environmental information into the developmental programs of teleost 

fish embryos.  
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CHAPTER 2: 

Vitamin D3 signaling regulates developmental progression in annual and non-

annual fishes 

Some data in this chapter has been previously published: 

Amie L. T. Romney, Erin M Davis, Meranda M Corona, Josiah T Wagner, and Jason E 

Podrabsky (2018). Temperature-dependent vitamin D signaling regulates developmental 

trajectory associated with diapause in an annual killifish. PNAS, 115 (50), 6. 

https://doi.org/10.1073/pnas.1804590115 

Abstract 

Nuclear hormone receptors (NRs) are highly conserved across animal species and are 

known to be powerful regulators of gene expression. The vitamin D receptor (VDR) is a 

NR best known for regulating blood calcium homeostasis in humans. In the annual 

killifish Austrofundulus limnaeus, the vitamin D3 signaling pathway has recently been 

shown to impact developmental phenotype early in development by promoting alternative 

developmental trajectories. Through pharmacological exposures, we additionally show a 

key role of vitamin D3 signaling in promoting developmental arrest in embryos of the 

zebrafish Danio rerio; a species that normally does not enter developmental dormancy. 

Here, we confirm that blocking synthesis of vitamin D3 results in a strikingly similar state 

of developmental arrest in both of these distantly related species. Further, when embryos 

of A. limnaeus are exposed to dafachronic acids they develop continuously despite being 

incubated in conditions that should induce diapause. Dafachronic acids are signaling 

molecules that target NRs used by C. elegans to promote active development and prevent 
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developmental arrest in the dauer larval stage. Together, these data suggest a similarity of 

signaling mechanisms that control developmental arrest in animals. 
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Introduction 

Nuclear hormone receptors (NR) are ligand-activated transcription factors that 

have the ability to regulate a large variety of genes and thus are often involved in 

determining complex cellular and organismal phenotypes. These proteins contain a 

ligand-binding-domain (LBD) which binds to hormones or other small molecules and a 

DNA-binding-domain (DBD) which binds to certain genomic sequences allowing for 

targeting of specific suites of genes (Aranda and Pascual, 2001). NRs and their function 

are strongly conserved across animals as has been shown through structural and genomic 

investigations (Escriva et al., 2004). Interestingly, the ligands for these receptors vary 

greatly in structure and include various hydrophobic molecules such as steroid hormones, 

fatty acids, retinoic acids, and thyroid hormones amongst others (Escriva et al., 2004). In 

this Chapter, the role of the vitamin D receptor (VDR) in the regulation of vertebrate 

development and metabolic dormancy is explored. 

The VDR belongs to a large subfamily of NRs (subfamily 1) that includes among 

others the liver x receptor (LXR), farnesoid x receptors (FXR), DAF-12, and the 

ecdysone receptor (EcR; (Thomson et al., 2009). While all of these receptors are involved 

in vastly different signaling pathways, their ligands are all cholesterol derivatives – 

1,25(OH)2VitD3 (VDR), oxysterols (LXR), bile acids (FXR), dafachronic acids (DAF-

12) and ecdysone (EcR; Thomson et al., 2009). These pathways have all shown

connection to metabolism, development, and reproduction suggesting a functional 

convergence of cholesterol derivative ligands (Antebi, 2015).  

Interestingly, VDR, DAF-12, and EcR all have ligands that, more specifically, are 

produced from 7-dehydrocholesterol (7-DHC) and are associated with regulation of 
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developmental arrest (Antebi et al., 2000; Arbeitman and Hogness, 2000; Romney et al., 

2018). In A. limnaeus, 7-DHC is converted to 1,25(OH)2VitD3 which binds to the VDR to 

promote active development and prevent entrance into diapause (Romney et al., 2018). In 

Drosophila, 7-DHC is converted into ecdysone which binds to the EcR and prevents 

entry into pupal diapause (Milner et al., 1986; Rinehart et al., 2001). Similarly, C. 

elegans converts 7-DHC into dafachronic acids which target DAF-12 amongst other 

proteins (Motola et al., 2006). DAF-12 is well known to regulate dauer dormancy, a 

diapause-like state (Antebi et al., 2000). 

Vitamin D3 signaling is conserved in vertebrates and plays many key roles in 

regulating gene expression across all life stages (Lock et al., 2010; Pludowski et al., 

2013; Pols et al., 1990; Yoshizawa et al., 1997). In A. limnaeus embryos, this pathway 

determines the developmental trajectory of embryos, a process that creates two distinct 

developmental phenotypes. In the presence of exogenous vitamin D3 metabolites at 

temperatures that should promote diapause (20 – 25°C), embryos bypass this metabolic 

dormancy and instead develop continuously (Romney et al., 2018). Absence of 

hydroxylated forms of vitamin D3 leads to entrance into diapause at these temperatures. It 

is critical to note that embryos on these two trajectories differ morphologically, 

physiologically, and biochemically (Fig 1.3; Chennault and Podrabsky, 2010; Duerr and 

Podrabsky, 2010; Podrabsky et al., 2010). Entrance into diapause is not simply an arrest 

of development wherein the embryo pauses for a time and then continues developing as 

an escape trajectory embryo. Rather, a diapausing embryo follows a different 

developmental trajectory identifiable using the facets listed above that have been 

previously published. Together these data illustrate a key role for vitamin D3 signaling in 
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normal development of annual killifishes, and suggest that the key to vertebrate 

embryonic dormancy lies in control of vitamin D3 signaling during early development. 

The use of a closely related family of NRs and ligands derived from 7-DHC to 

regulate dormancy across a wide variety of animals suggests a commonality of these 

pathways for regulating critical life history decisions in response to harsh or highly 

seasonal environments. In this Chapter, we explore the role of vitamin D3 signaling in 

embryos of the zebrafish Danio rerio, a teleost that does not experience developmental 

arrest as part of its normal developmental program. Zebrafish are a common choice for 

addressing questions of embryology, in addition to use in other fields of study, for their 

quick development and transparent body allowing for quick and easy experimentation. 

This species’ embryonic developmental stages have been thoroughly described allowing 

us to make highly specific morphological comparisons to A. limnaeus embryos using 

features of development common to both species (Kimmel et al., 1995; Podrabsky et al., 

2017). Further, we test the potential for cross-species activation of the vitamin D receptor 

in A. limnaeus with nematode-specific ligands, namely dafachronic acids. In total, this 

work suggests a possible mechanistic theme of regulating developmental progression in 

early development by closely related subfamily 1 nuclear receptors.  

Methods  

Animal care and embryo collection 

Adult annual killifish Austrofundulus limnaeus were housed in Portland State 

University’s Aquatic Vertebrate facility according to previously established protocols 

(Podrabsky, 1999) and under the approval of the Institutional Animal Care and Use 
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Committee (IACUC protocols #33 and #64). Fish were descendants of a wild-caught 

sampling collected near Quisiro, Venezuela in 1995 (Podrabsky et al., 1998). Fish were 

kept in 10-liter tanks with 21 tanks sharing a common sump and filtration system. Water 

was changed twice daily. 42 mating pairs were spawned twice weekly and embryos were 

collected immediately after spawning. Embryos were incubated in embryo medium that 

mimics the natural pond environment (Podrabsky, 1999; Podrabsky et al., 1998) with the 

addition of 0.0001% methylene blue at 25°C in darkness. At 4 days post-fertilization 

(dpf) embryos were bleached to prevent microbial infections and transferred to A. 

limnaeus embryo medium (590 mg l-1 NaCl, 11.0 mg l-1 KCl, 436.7 mg l-1 MgCl2 · 6H2O, 

0.313 mg l-1 MgSO4 · 7H2O, 116.0 mg l-1 CaCl2 · 2H2O, 10 mg l-1 gentamicin sulfate in 

ultrapure H2O) at 25°C in darkness until needed for experimentation (Podrabsky, 1999). 

This timing varied based on the specific experiment being performed and details on age 

of embryos at experimentation (dpf) is described in the Results section for each test. 

Embryo medium was changed daily. 

Embryos of the Tübingen (TU) strain of zebrafish, Danio rerio, were obtained 

from Dr. Kim Brown’s laboratory (IACUC protocol #58). Embryos were incubated in D. 

rerio embryo medium (15 mM CaCl2·2 H2O, 250 mM NaCl, 10mM KCl, and 15mM 

MgSO4 in ultrapure H2O) in the dark at 28.5°C (Westerfield, 1995).  

Characterization of A. limnaeus and D. rerio embryos 

Stages of A. limnaeus embryo development – termed Wourms’ Stages (WS) – 

have been previously defined (Podrabsky et al., 2017) and were utilized to describe 

developmental progression of embryos in pharmacological exposures (detailed in 
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subsequent section). In a laboratory setting, embryo trajectory can be manipulated using 

temperature as was mentioned in Chapter 1. Escape trajectory embryos (incubated at 

30°C) will be fully formed and hatch at approximately 32 dpf while diapause trajectory 

embryos (incubated at 20 – 25°C) are competent to hatch about 24 days post-diapause II 

(dpd) after taking roughly another 24 days to reach diapause II and an additional, variable 

amount of time in diapause II and III.  

Contrasting to A. limnaeus embryos, D. rerio embryos do not experience diapause 

and typically develop and hatch within 3 dpf. Their development can be broken down 

into several broad periods – namely the Zygote, Cleavage, Blastula, Gastrula, 

Segmentation, Pharyngula, and Hatching periods – with several specific stages falling 

into each. Each stages’ morphological features have been described in detail (Kimmel et 

al., 1995) and these details were used to characterize zebrafish embryo development 

during exposures.  

Due to the high level of specificity given for both A. limnaeus and D. rerio 

staging, comparisons of developmental timing are able to be made despite the vast 

differences in speed of development and consideration of diapause. Once in experimental 

conditions, care was taken to manipulate and view all embryos only under minimal 

yellow light (580 nm bandpass filter) using a Leica inverted microscope at 40X 

magnification (model DMIRB, Wetzlar, Germany). Representative images of embryos 

were taken using Leica DFC450C camera and Leica V4.3 software. 

Pharmacological exposures 
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A variety of pharmacological compounds that inhibit or activate nuclear hormone 

receptors (NR), the synthesis of ligands for NRs, or potential downstream targets of NR 

signaling pathways were used to explore the role of these molecular pathways in the 

entrance of embryos of A. limnaeus into diapause. Inhibition of vitamin D3 synthesis was 

achieved using dafadine A (Sigma Aldrich, St. Louis, Missouri; Luciani et al., 2011) and 

ketoconazole (Sigma-Aldrich; Sonino, 1987). Activation of the vitamin D receptor 

(VDR) was achieved using vitamin D3 (Sigma-Aldrich; Valdivielso, 2009) and 

1,25(OH)2VitD3 (Selleck Chemicals, Houston, TX, or Cayman Chemicals, Ann Arbor, 

MI; Norman, 2006). ∆4- and ∆7-dafachronic acids (Cayman Chemicals) were also tested 

for their ability to activate the VDR (Motola et al., 2006; Thomson et al., 2009). Based on 

results from exposures on A. limnaeus embryos, dafadine A and 1,25(OH)2VitD3 were 

also tested on embryos of D. rerio to test for similar developmental phenotypes in a fish 

that does not naturally enter embryonic diapause. 

To confirm the vitamin D3 pathway acted uniquely through the VDR, NRs closely 

related to VDR were also tested (Krasowski et al., 2011b; Thomson et al., 2009). In 

addition, inhibition of the mTOR pathway was explored using pharmacological 

inhibition. The compound GW3965 (Tocris, Bristol, UK; Krasowski et al., 2011b) was 

used to activate the liver X receptor, while GW4064 (Tocris; Krasowski et al., 2011b) 

was used to activate the farnesoid X receptor. Lithocholic acid, 5-pregnen-3ß-ol-20-one 

(Sigma-Aldrich; Krasowski et al., 2011b) and rifampicin (Tocris; Krasowski et al., 

2011b) were used to activate the pregnane-X receptor. The protein mTOR, known to 

impact cell growth and mammalian metabolism, was inhibited by rapamycin (Biotang, 



25 

Lexington, MA; Saxton and Sabatini, 2017) and Torin1 (Selleck Chemicals; Thoreen et 

al., 2020).  

Embryos of A. limnaeus were exposed to these compounds starting prior to 

completion of epiboly at 1 or 2 dpf as well as at the dispersed cell phase which occurs at 

the completion of epiboly at 4 dpf (Podrabsky et al., 2017). Embryos were separated into 

individual wells of a 96-well plate (n = 12 – 24 per treatment). A total volume of 120 µl 

of experimental media was added to each well. Embryos were monitored until 28 – 31 

dpf when final developmental trajectory determinations could be made (Podrabsky et al., 

2017). D. rerio embryos were exposed starting at the 1,000-cell stage, housed in 24-well 

plates with a total volume of 1.5 ml experimental media per well (n=10 – 15 per 

treatment). D. rerio development was tracked until 3 – 5 dpf (Kimmel et al., 1995). 

DMSO and 100% EtOH were used as solvents to deliver chemicals to embryos; 

percentages of which did not exceed 1% total volume of experimental media. Media was 

changed every 1-3 days.  

To begin exposures, media was removed completely from the 1, 2, or 4 dpf 

embryos, then rinsed once with fresh media, and then media containing the 

pharmacological compounds was introduced. Embryos were incubated at 25°C and 30°C. 

For A. limnaeus a temperature of 25°C typically induces diapause II while 30°C leads to 

direct development in embryos that “escape” diapause II (Podrabsky et al., 2010). 

Embryos of D. rerio were incubated at their optimal temperature for development of 

28.5°C (Westerfield, 1995). Embryos were monitored (every 1-3 d) until developmental 

phenotype determinations could be made – entering diapause II or escaping diapause II 
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for A. limnaeus (28 – 31 dpf) and general phenotypic characterizations for D. rerio (3 – 5 

dpf). 

Heart rate 

Since a greatly reduced or absent heart rate is a feature of A. limnaeus diapause 

embryos (Podrabsky et al., 2017), heart rates of individual D. rerio embryos were 

monitored and recorded. These data were used to indicate if experimental conditions 

caused a deviation from the active cellular metabolism of normal zebrafish embryonic 

development and used to compare observations of D. rerio experiments to facets of 

diapause in A. limnaeus. Heart rates were recorded during the 3 days of exposure to 

experimental media in addition to those in recovery experiments where experimental 

media was removed and normal D. rerio media was introduced to see if experimental 

conditions could be reversed. Temperature was controlled at 28.5°C (optimal 

developmental temperature(Kimmel et al., 1995) while heart rates were collected using a 

Heat Exchanger (HEC-400, 20/20 Technology, Inc., Wilmington, NC) and Bionomic 

Controller (BC-100, 20/20 Technology, Inc.) attachment inserted on the Leica inverted 

microscope. Embryos were put into position where heart beat was visible at 40X 

magnification. Contractions were then counted using a hand-held tally counter for 30 

seconds. This number was recorded and later multiplied by 2 to obtain beats per minute 

(beats min-1). 

Statistical analysis and graphical representation of data 
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Graphical representation of the data and statistical analyses were performed using 

GraphPad Prism 8 software (V8.4.2, San Diego, CA). Embryo heart rates when treated 

with dafadine A were compared to controls and analyses were performed using Tukey’s 

multiple comparisons test with alpha set to 0.05 also using GraphPad Prism 8 software.  

Results 

Dafadine A exposures: Austrofundulus limnaeus 

Embryos at 4 dpf were exposed to 20 µmol l-1  and 25 µmol l-1 concentrations of 

dafadine A in an attempt to block the escape trajectory and induce diapause II at 30°C. 

Dafadine A is an inhibitor of the cytochrome P450 enzyme CYP27A1 – the vertebrate 

enzyme that synthesizes 25-hydroxyvitamin D3, the precursor molecule for active 

1,25(OH)2VitD3 (Bikle, 2014; Luciani et al., 2011). Exposure to dafadine A inhibits 

development at diapause II even under conditions that should favor escape embryos 

(Fig.2.1A).  Control embryos and those treated with 100 pmol l-1 1,25(OH)2VitD3 

developed along the escape trajectory at 30°C (Fig. 2.1A; n = 20, 18). Exposure to 20 

µmol l-1 and 25 µmol l-1 dafadine A resulted in 29.41% and 25.00% escape trajectory 

embryos, respectively, while the rest entered diapause II (Fig. 2.1B; n = 17, 12). Addition 

of 100 pmol l-1 1,25(OH)2VitD3 to embryos already exposed to 20 µmol l-1 and 25 µmol 

l-1 dafadine A was sufficient to rescue the escape phenotype in embryos, effectively

reversing the inhibitor’s impact (Fig. 2.1A & B; n = 16, 5). Survival of embryos was 

generally high in all treatments except for those exposed to the highest levels of dafadine 

A and 1,25(OH)2VitD3 (Table 2.1). 
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Figure 2.1. The effect of dafadine A on the developmental trajectory of 
Austrofundulus limnaeus embryos at 30°C. (A) Control embryos develop as escape 
embryos, while 70.59% and 75% of embryos treated with 20 and 25µmol l-1 dafadine A 
arrest development in a state that appears very similar to diapause II, respectively. 
Inhibition of development at diapause II can be fully rescued by addition of 100 pmol l-1 
1,25(OH)2VitD3. Symbols are means ± SD (n=5-20 per treatment). (B) Percent of 
diapause and escape embryos for each treatment as of 28 dpf (n=5-20 per treatment; 
(Romney et al., 2018). 

Table 2.1. Percent survival of Austrofundulus limnaeus embryos treated with 
dafadine A. Each treatment began with 20 embryos, and number of alive embryos 
indicates those that survived until 28 dpf when final developmental trajectory 
determinations were made. Percent phenotype reported in Fig. 2.1B is based on these 
final n values. 

Treatment Alive Survival 
1% DMSO 20 100.00% 
100 pmol l-1 1,25(OH)2VitD3 18 90.00% 
20 µmol l-1 Dafadine A 17 85.00% 
25 µmol l-1 Dafadine A 12 60.00% 
20 µmol l-1 Dafadine A + 100 pmol l-1 1,25(OH)2VitD3 16 80.00% 
25 µmol l-1 Dafadine A + 100 pmol l-1 1,25(OH)2VitD3 5 25.00% 
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D. rerio embryos were exposed to dafadine A beginning at the 1,000-cell stage.

At 3dpf when embryos should be fully developed, controls and 5 µmol l-1 dafadine A 

treated embryos reached or were near the Pec-fin stage (Fig. 2.2A). Interestingly, the 20 

and 30 µmol l-1 dafadine A treated embryos stalled near the Prim-5/7 stage by 3dpf which 

is phenotypically similar to diapause II A. limnaeus embryos (Fig. 2.2A & B; Table 2.2). 

Upon removal of 20 µmol l-1 dafadine A at 48h of exposure, embryos were continually 

monitored for 72h of recovery, at which point 100% had fully developed (Fig. 2.2A & 

B). 30 µmol l-1 dafadine treated embryos (48h exposure) were also continually monitored 

for 72h and reached the Long Pec stage of development (Fig. 2.2A). All treatments were 

n=3 of 20 embryos each. Exposures combining dafadine A and 1,25(OH)2VitD3 were 

also performed but resulted in abnormal development and death (n=15 per treatment). 

Embryos stalled in development and died around the prim-5 to prim-7 stage for those 

treated with 20 µmol l-1 dafadine A and 100 or 500 pmol l-1 11,25(OH)2VitD3. Those 

exposed to 30 µmol l-1 dafadine A and 100 or 500 pmol l-1 1,25(OH)2VitD3  stalled 

development and died at approximately 20-somite to prim-5 stages. The prim-5 stage 

begins once somite development is completed and embryos form 30 – 34 pairs of 

somites; this may prove to be a critical stage in normal teleost development. 

Dafadine A had a pronounced negative effect on embryonic heart rate. Compared 

to controls at the prim-5/7 stage, 20 µmol l-1 dafadine A reduced heart rate to 21.5 ± 7.47 

beats min-1 (mean ± SD), while 30 µmol l-1 led to a complete cessation of cardiac activity 

(n=10, and 11, respectively; p<0.0001; Fig. 2.2C). Comparatively, control embryos at 

this stage had a heart rate of 98.8 ± 11.7 beats min-1. Once at the Long Pec stage of 



30 

development, the heart rate of control embryos was 159.9 ± 11.56 beats min-1 (n=12). 72h 

recovered 20 µmol l-1 dafadine A was 137.6 ± 15.9 beats min-1 (n=9), and 72h recovered 

30 µmol l-1 dafadine A was 129.5 ± 55.17 beats min-1 (n=6). Both treatments were 

statistically different than controls at this stage (p=0.0326 and 0.0084, respectively; Fig. 

2.2C).  

Figure 2.2. Effect of dafadine A on the development of Danio rerio embryos at 
28.5°C.  (A) Embryos given 20 or 30 µmol l-1 dafadine A developed to approximately the 
prim-5/7 stage by 3 dpf. Experimental media was then removed for a proportion of 
embryos at 48h which were allowed to recover in normal embryo media. Removal of 
inhibitor promoted further development until 5 dpf. Symbols are means ± SD (n = 3 
groups of 20 embryos for 48h exposures and 9-12 embryos for recovery groups). (B) 
Images of Control embryos and those treated with dafadine A. Development is arrested in 
the presence of dafadine A, but removal of the inhibitor allows for recovery after 72h (C) 
Individual embryo (symbols) and mean (± SD) heart rates for controls, 20 and 30 µmol l-1 
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dafadine A treatment groups at two different stages of development (n=6-12 per 
treatment). Removal of dafadine A increases heart rate to levels similar to controls (A,B 
p<0.0001; C p=0.0326; D p=0.0084; Romney et al., 2018). 

Table 2.2. Comparison of developmental features between Austrofundulus limnaeus 
embryos in diapause II and Danio rerio embryos treated with 5 – 35 µmol l-1 
dafadine A.  Phenotypes present in a diapause II A. limnaeus embryo are listed at the top, 
with presence (+) or absence (-) of each phenotype for each treatment group underneath. 
D. rerio embryos given 25 – 35 µmol l-1 dafadine A share each marker of a diapausing
embryo. Lower concentrations produce a mixed set of results as some embryos in a
treatment group developed features while others did not (n=15 per treatment; Romney et
al., 2018).

Dafachronic acid exposures 

Dafachronic acids (∆4- and ∆7- dafachronic acids) promote active development in 

the nematode Caenorhabditis elegans through activation of DAF-12, the ortholog of the 

vertebrate vitamin D receptor (Becker, 2014). Exposure of A. limnaeus embryos to ∆4-

dafachronic acid (25 – 75 µmol l-1) led to an increasing proportion of escape embryos as 

concentration increased even under conditions that should favor entry into diapause II 

(25°C; Fig. 2.3B). Rates of development for each treatment were similar once embryo 

groups were split into those that followed the diapause trajectory stalling around 

Wourms’ stage (WS) 32/33 and those that followed the escape trajectory surpassed 
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diapause II and reached mid-organogenesis by the time the experiment ended (Fig. 2.3A; 

Table 2.3). 

Figure 2.3. Effect of dafachronic acids on Austrofundulus limnaeus embryo 
development at 25°C. (A) Developmental progression of embryos treated with ∆4 and ∆7-
dafachronic acids. Treatments were split between embryos that either went into diapause 
or bypassed and followed the escape trajectory. This was interpreted as a result of the ∆4-
dafachronic acid exposure as embryos incubated at 25°C are anticipated to enter diapause 
as the control group did. Similar growth rates indicate that higher concentrations of ∆4-
dafachronic acid did not impact speed of development. Symbols are means ± SD (n=2-22 
per treatment when separated by trajectory). (B) Percent of embryos that either entered 
diapause or developed continuously as escape embryos for each treatment group at 31dpf. 
Controls and embryos treated with ∆7-dafachronic acid mostly entered diapause (86.67% 
and 90.91%, respectively). The rate of bypassing diapause increased as the concentration 
of ∆4-dafachronic acid increased from 25 to 75 µmol l-1. 

Table 2.3. Percent survival of Austrofundulus limnaeus embryos treated to ∆4 & ∆7-
dafachronic acids at 25°C. Exposures began with 24 embryos, and number alive 
reported for each treatment group shows percent survival at final day of characterizations, 
31dpf. Percent phenotype reported in Fig. 2.3B is based on these final n values. 
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Treatment Alive Survival 
1% EtOH 15 62.50% 
25 µmol l-1 ∆4-Dafachronic acid 18 75.00% 
50 µmol l-1 ∆4-Dafachronic acid 19 79.17% 
75 µmol l-1 ∆4-Dafachronic acid 22 91.67% 
2.5 µmol l-1 ∆7-Dafachronic acid 22 91.67% 

The potential role of other NR in the regulation of diapause 

The vitamin D receptor is a member of a closely related family of steroid nuclear 

receptors (Escriva et al., 2004; Evans and Mangelsdorf, 2014; Krasowski et al., 2011a; 

Reschly et al., 2007). To explore a possible role of these other receptors in trajectory 

determination we tested agonists and other drugs that are known to activate these nuclear 

receptors. Incubation in agonists for these other family members did not affect 

developmental trajectory in A. limnaeus (Table 2.4). 

Table 2.4. Nuclear hormone receptor agonists and antagonists exposed to 
Austrofundulus limnaeus embryos had no effect on development observed. Table 
shows experimental set up for each exposure (n=12 each) as well as target nuclear 
receptor and the trajectory outcome percentage (Romney et al., 2018). DPF = days post-
fertilization, %D/R = dispersion / reaggregation, %DII = diapause II trajectory, %ESC = 
escape trajectory. 

Nuclear 
Receptor Compound Concentration DPF °C %D/R %DII %ESC %Dead 

Pregnane X / 
Vitamin D 

Lithocholic acid 1 nmol l-1 4 25 18 64 18 

10 nmol l-1 4 25 75 17 8 

100 nmol l-1 4 25 82 9 9 

Pregnane X Rifampicin 1 pmol l-1 1 20 57 43 
100 pmol l-1 1 20 50 50 
1 pmol l-1 1 25 70 30 
100 pmol l-1 2 25 88 12 
1 nmol l-1 1 25 8 92 

Pregnane X 
5-pregnen-3ß-ol-
20-one 1 nmol l-1 1 25 9 18 73 

10 nmol l-1 1 25 33 67 
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100 nmol l-1 1 25 33 67 

Farnesoid X GW4064 1 nmol l-1 1 20 20 60 20 
100 nmol l-1 1 20 67 33 
1 nmol l-1 1 25 14 72 14 
100 nmol l-1 1 25 44 56 
10 µmol l-1 2 25 75 25 

Liver X GW3965 1 µmol l-1 2 25 8 17 75 
1 µmol l-1 1 25 30 70 

CYP450 Ketoconazole 75 µmol l-1 4 30 25 50 25 

100 µmol l-1 4 30 17 75 8 

125 µmol l-1 4 30 25 75 

The potential role of the mTOR pathway in regulating diapause 

The mTOR pathway has been shown to regulate developmental arrest in 

mammalian embryos resulting in delayed implantation (Bulut-Karslioglu et al., 2016). 

However, inhibition of mTOR had no effect on developmental trajectory in embryos of 

A. limnaeus (Table 2.5).

Table 2.5. mTOR inhibitors exposed to Austrofundulus limnaeus embryos had no 
apparent effect on development. Table shows experimental set up for each exposure 
(n=12 each) as well as target nuclear receptor and the trajectory outcome percentage 
(Romney et al., 2018). DPF = days post-fertilization, %D/R = dispersion / reaggregation, 
%DII = diapause II trajectory, %ESC = escape trajectory.  

Nuclear 
Receptor Compound Concentration DPF °C %D/R %DII %ESC %Dead 

mTOR  

Rapamycin 500 nmol l-1 4 30 100 
10 µmol l-1 4 30 100 
100 µmol l-1 4 30 100 

mTOR Torin1 1 µmol l-1 4 30 100 
5 µmol l-1 4 30 67 33 
10 µmol l-1 4 30 67 33 
5 µmol l-1 4 25 20 80 
8 µmol l-1 4 25 67 25 8 
10 µmol l-1 4 25 83 17 



35 

Discussion 

Blocking Vitamin D3 synthesis induces diapause II in A. limnaeus 

Gene expression and pharmacological studies suggest that the vitamin D3 

signaling pathway plays a critical role in regulating early development of A. limnaeus 

embryos (Romney et al., 2018). Here, I show that blocking of vitamin D3 synthesis using 

dafadine A, a potent inhibitor of CYP27A1 (vitamin D3 25-hydroxylase), induces 

diapause II under conditions that should favor active development (30°C). Interestingly, 

not all embryos responded in the same manner. When treated with 20 and 25 µmol l-1 of 

dafadine A, 70.59% and 75.00% of embryos entered diapause, respectively. The 

remaining embryos did not enter diapause II as is expected for embryos incubated at 

30°C. However, they were not able to develop beyond Wourms’ stage 35b, just prior to 

the onset of organogenesis (Podrabsky et al., 2017). These data suggest an incomplete 

blocking of vitamin D3 synthesis. However, increasing dafadine A exposures to 30 µmol 

l-1 caused death, and thus it was not possible to determine if these results are due to

incomplete blockage of vitamin D3 synthesis or some other functional aspect of the 

signaling pathway. Entrance into diapause II induced by exposure to dafadine A can be 

rescued by co-incubation with 100 pmol l-1 1,25(OH)2VitD3, suggesting that vitamin D3 

signaling is indeed regulating entrance into diapause. However, while 100% of the 

embryos did escape the diapause trajectory, survival was low, and surviving embryos 

stalled in development slightly after organogenesis around Wourms’ stage 37b 

(Podrabsky et al., 2017). These data suggest a role for vitamin D3 signaling in the 

entrance into diapause II and a more general role in the support of active post-DII 

development since blocking vitamin D3 synthesis prevented the development associated 
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with organogenesis. This pathway’s relevance to internal organ formation in A. limnaeus 

suggests a broader role for vitamin D3 signaling in vertebrate development beyond the 

regulation of diapause in annual killifishes.  

Blocking vitamin D3 synthesis induces a diapause-like arrest in zebrafish 

Blocking vitamin D3 synthesis in D. rerio embryos with dafadine A induces arrest 

of development at roughly the same developmental stage as diapause II in A. limnaeus. 

Since the two species use different staging systems, common developmental features 

were used to compare. When incubated with 25 – 35 µmol l-1 of dafadine A, zebrafish 

embryos closely matched the developmental features of a diapause II killifish embryo. 

Further,  In addition, higher concentrations of dafadine A appeared to result in a 

reduction in metabolic rate as evidenced by reduced heart rate which is known to 

correlate with metabolic rate in fish embryos. The death of embryos exposed to a 

combination of dafadine A and 1,25(OH)2VitD3 is an interesting result that defies 

explanation at this time. However, removal of the inhibitor at 2 dpf, when embryos were 

in the diapause-like state, led to an apparent recovery as defined by the ability to 

complete embryonic development. These data strongly suggest a conserved role of 

vitamin D3 signaling in teleost development. However, it is interesting why the zebrafish 

embryos were able to reach full development after inhibition and why the combination of 

dafadine A and 1,25(OH)2VitD3 caused death. One possible explanation is that zebrafish 

utilize the VDRa isoform during most of development (Lin et al., 2012), while A. 

limnaeus appears to express mostly the VDRb isoform. Evidence for teleost-specific 

whole genome duplications have been known for some time and there are suspected 
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divergent roles for the two VDR isoforms that are found in most teleost fish genomes 

(Glasauer and Neuhauss, 2014; Kollitz et al., 2014). It has been shown that the two share 

a similar ligand specificity and that the difference may lie in protein interaction with the 

specific NR and slew of coactivators (Kollitz et al., 2014). Thus, differences in isoform 

expression in the two species during embryonic development could explain some of the 

functional differences between the two species that are highlighted in this study through 

differences in their interaction with other protein partners. 

Dafachronic acids promote active development in A. limnaeus embryos 

Dafachronic acids are signaling molecules in C. elegans that bind to the DAF-12 

nuclear receptor, the homolog of the VDR in fishes (Escriva et al., 2004). Presence of 

dafachronic acids in the nematode prevents developmental arrest in the dauer larval stage 

(developmental arrest similar to diapause in A. limnaeus) and promotes active 

development and reproduction (Antebi et al., 2000). DAF-9 synthesizes ∆4- & ∆7-

dafachronic acids from 7-dehydrocholesterol (7-DHC), the same starting material for the 

vitamin D3 pathway (Bikle, 2011; Mahanti et al., 2014). Incredibly, A. limnaeus embryos 

exposed to ∆4-dafachronic acid were induced to actively develop along the escape 

pathway under conditions that should promote entrance into diapause (25°C). These 

molecules are not produced in vertebrates, and the fact that they can promote active 

development in A. limnaeus is astonishing. These data support a similarity of the 

molecular mechanisms that regulate metabolic dormancy in animals, and perhaps all 

metazoans. Both VDR and DAF-12 are thought to induce dormancy when unbound with 
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ligand and active development when activated by their ligands through orchestration of a 

complex gene expression response (Mahanti et al., 2014; Romney et al., 2018).  

VDR has a unique, specific effect on regulating dormancy in A. limnaeus 

Due to the relatedness of subfamily 1 nuclear hormone receptors (Escriva et al., 

2004; Schuster, 2011; Thomson et al., 2009), it was hypothesized that other NR in 

addition to the VDR may be able to impact developmental trajectory through possible 

overlap in ligand specificity. However, a survey of the effects of a large number of 

agonists and antagonists for closely related NRs (PXR, FXR, LXR) did not affect 

entrance into diapause II. PXR is activated by pregnane and other steroid hormone 

precursors and is very closely related to VDR so three different chemicals were utilized 

to evaluate this possible avenue for molecular cross-talk (Escriva et al., 2004; Krasowski 

et al., 2011a; Reschly et al., 2007). FXR, a nuclear receptor activated by bile acids 

(Walters, 2000), is commonly compared to DAF-12 in C. elegans, and bile acids have 

been shown to impact dauer formation in C. elegans through the DAF pathway (Antebi, 

2015; Gerisch et al., 2007). The LXR, activated by oxysterols (Archer et al., 2012; 

Escriva et al., 2004), is slightly more removed phylogenetically from VDR but is thought 

to be similar to FXR/DAF receptors active in dauer formation (Escriva et al., 2004; 

Mooijaart et al., 2005). The fact that none of the compounds tested caused a trajectory 

shift supports a unique role for vitamin D3 signaling the regulation of diapause in A. 

limnaeus. 

The mTOR pathway does not regulate entrance into diapause II in A. limaneus 
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Recently, the mTOR pathway has been shown to regulate developmental arrest 

associated with delayed implantation of mammalian embryos (Bulut-Karslioglu et al., 

2016). Further, mTOR is suggested to have impacts on metabolism, lipid homeostasis, 

and heat shock protein function (Chou et al., 2012; Lamming and Sabatini, 2013; Potter 

et al., 2019; Saxton and Sabatini, 2017), all of which are relevant to the biology of 

diapause in A. limnaeus. However, mTOR inhibition with two different compounds 

showed no impact on entrance into diapause II. It is interesting to note, however, that 

embryos treated with high levels of mTOR inhibitors were unable to develop beyond the 

dispersed cell stage and thus future experiments should explore a role for mTOR in 

regulation of entrance into diapause I in A. limnaeus.  

Conclusion 

This study reports for the first time, that the vitamin D3 signaling pathway acts as 

a unique molecular mechanism of trajectory determination in embryos of the annual 

killifish, A. limnaeus, and allows for exploration of this pathway’s involvement in 

trajectory determination in other species of annual killifishes. The specificity for VDR 

signaling in the regulation of diapause is supported by data showing that 

pharmacologically targeting other NRs did not impact early development or entrance into 

diapause. Further, this Chapter supports a role for the vitamin D3 signaling pathway’s 

importance in normal embryonic development in non-diapausing species, especially those 

events associated with organogenesis. This suggests a key role for VDR signaling in 

teleost embryology more generally, and opens the idea that vitamin D synthesis and 

signaling play a role in the normal morphological development of teleost fishes. Finally, 
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the ability of dafachronic acids to induce development in a vertebrate system suggests a 

common mechanism of regulating dormancy in animals.  
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CHAPTER 3: 

Reigniting the furnace: The role of vitamin D3 signaling, heat shock protein activity, 

and DNA methylation in the exit from diapause in an annual killifish 

Abstract 

Embryonic diapause allows annual killifishes to persist in seasonal aquatic 

environments that are characterized by environmental extremes. Recently it was 

discovered that vitamin D3 signaling regulates entry into diapause II in embryos of 

Austrofundulus limnaeus, but mechanisms that control exit from diapause have not been 

explored. To explore the role of vitamin D3 signaling in exit from diapause, diapause II 

embryos were exposed to a variety of vitamin D3 metabolites. Further, the potential role 

of HSP70 and HSP90 heat shock proteins in exit from diapause was evaluated using 

pharmacological inhibitors. Here we show that hydroxylated forms of vitamin D3 can 

induce exit from diapause II in a dose-dependent manner. Inhibition of heat shock protein 

activity in isolation did not affect exit from diapause. However, significant interactions 

were observed between vitamin D3 signaling and HSP function. Exposure of diapause II 

embryos to 1a,25-dihydroxyvitamin D3 led to changes in the methylation status of 

hundreds of genes, many of which have been associated with regulation of dormancy in 

other species. These data support a significant role for active vitamin D3 signaling in 

promoting exit from diapause and an inhibitory role for HSP70. Changes in DNA 

methylation as a result of treatment with 1a,25-dihydroxyvitamin D3 allowed for the 
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identification of a number of genes that likely play a role in regulation of metabolism and 

stress tolerance associated with diapause. 
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Introduction 

Many organisms undergo metabolic dormancy to survive unfavorable conditions. 

Entrance into dormancy has been compared to turning a furnace down to the “pilot light” 

– the minimal energy consumption needed to maintain function (Hochachka et al., 1997;

Lutz and Nilsson, 2004). The ability to pause development, or undergo diapause, allows 

for the possibility of synchronizing completion of development with environmental 

conditions conducive to growth and reproduction in highly seasonal habitats. Diapause is 

also a common strategy to increase resistance to environmental stress and can be 

responsible for persistence of individuals or even populations through seasonal conditions 

that would otherwise be lethal (Denlinger, 2013; Furness, 2015). Entrance into and exit 

from diapause are regulated by environmental cues, such as temperature and photoperiod, 

that are thought to have predictive value for optimizing organismal fitness (Taylor and 

Spalding, 1988). How these cues are sensed and how the information is integrated into 

organismal responses is not known. Further, it is not clear if the same molecular events 

that cause entrance into diapause and “dial down” metabolism are also involved in 

reigniting the furnace upon exit from diapause. In this study we explore the role of 

vitamin D3 signaling and heat shock protein function in the regulation of exit from 

diapause in embryos of the annual killifish, Austrofundulus limnaeus. 

Vitamin D3 synthesis and signaling have recently been shown to regulate entrance 

into diapause II in embryos of A. limnaeus (Romney et al., 2018). Even short periods of 

exposure to light and increased temperature (30 – 33°C) are sufficient to induce embryos 

to develop without entering diapause II (escape trajectory) whereas darkness and low 

temperatures (20 – 25°C) promote entrance into diapause II (Romney et al., 2018; 
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Romney and Podrabsky, 2018). Vitamin D3 acts through the vitamin D receptor (VDR); a 

nuclear hormone receptor (NR) that is known to regulate gene expression and alter a 

variety of complex cellular phenotypes through its ability to partner and interact with 

other proteins including: other nuclear receptors, heat shock proteins, and epigenetic 

modifying proteins (Ameri et al., 2013; Chen et al., 2016b; Fetahu et al., 2014; González-

Duarte et al., 2015; Larriba et al., 2014; Marcinkowska and Gocek, 2010; Mark et al., 

2016; Salehi-Tabar et al., 2012).  

The molecular mechanisms that promote exit from diapause have received 

relatively little attention, despite a breadth of research detailing the number of 

environmental cues that can be used to “break” diapause under natural and laboratory 

conditions (Booth, 2002; Hodek, 1996; King and MacRae, 2012; Loomis et al., 1996; 

Polejaeva et al., 1997; Robbins et al., 2010; Tissenbaum et al., 2000; Van Der Linden et 

al., 1988; Yaginuma and Yamashita, 1986). In Caenorhabditis elegans, it appears that 

changes in the insulin-like signaling pathway are critical for exit from the diapause-like 

dauer dormancy (Gelmedin et al., 2011). In other systems, changes in expression of heat 

shock proteins that are associated with dormancy seem to be involved in sustaining 

dormancy and preventing exit from diapause (King and MacRae, 2012; Liang and 

Macrae, 1999; Podrabsky and Somero, 2007; Rinehart and Denlinger, 2000; Rinehart et 

al., 2000; Yocum et al., 1998).  

The mechanisms that regulate exit from diapause in annual killifishes are 

currently unknown. In this paper we explore the potential role of vitamin D3 signaling in 

exit from diapause and resumption of active development in the annual killifish 

Austrofundulus limnaeus. We also explore the potential interaction between heat shock 
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protein activity and vitamin D3 signaling during exit from diapause. Further because the 

VDR has known interactions with DNA modifying enzymes, including but not limited to 

DNA methyltransferases (Fetahu et al., 2014; Saccone et al., 2015; Zhang and Ho, 2011), 

we also explored changes in DNA methylation following treatment with 1a,25-

dihydroxyvitamin D3 to identify potential targets of epigenetic regulation associated with 

the reactivation of development. We hypothesize that active vitamin D3 signaling will 

induce exit from diapause II in A. limnaeus embryos under laboratory conditions which 

perpetuate diapause.  

Methods 

Animal care and embryo collection 

Adult annual killifish Austrofundulus limnaeus were housed in Portland State 

University’s Aquatic Vertebrate facility according to previously established protocols 

(Podrabsky, 1999) and under the approval of the Institutional Animal Care and Use 

Committee (IACUC protocols # 33 and #64). Fish are descendants of a wild-caught 

sampling collected from near Quisiro, Venezuela in 1995 (Podrabsky et al., 1998). Fish 

were kept in 10 l tanks with 21 tanks sharing a common sump and filtration system. 

Water (10-20% of the system volume) was changed twice daily. Fish (42 mating pairs) 

were allowed to spawn twice weekly and embryos were collected immediately after 

spawning. Embryos were bathed in embryo medium that mimics the natural pond 

environment (10 mmol l-1 NaCl, 2.15 mmol l-1 MgCl2, 0.8 mmol l-1 CaCl2, 0.14 mmol l-1 

KCl, 1.3 mmol l-1 MgSO4) with the addition of 0.0001% methylene blue at 25°C in 

darkness (Podrabsky, 1999; Podrabsky et al., 1998). At 4 days post-fertilization (dpf) 
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embryos were treated with two washes of 5 min each in 0.03% sodium hypochlorite 

separated by a 5 min wash in embryo medium. This bleach treatment is highly effective 

for preventing microbial infections during prolonged incubations. Following bleaching 

the embryos were transferred to medium containing 10 mg l-1 gentamicin sulfate at 25°C 

in darkness until they had entered diapause II. Embryos typically enter diapause II when 

incubated at 25°C after 24 dpf. Embryo medium was changed daily. 

Pharmacological exposures 

To explore the potential role of vitamin D3 signaling in the exit of embryos from 

diapause II (DII), DII embryos were exposed to 100 nmol l-1 of vitamin D3 metabolites 

that represent multiple points in the biosynthetic pathway: 7-dehydrocholesterol (7-DHC; 

Sigma-Aldrich, St. Louis, Missouri), vitamin D3 (VitD3; Sigma-Aldrich), 25-

hydroxyvitamin D3 (25OHVitD3; Selleck Chemicals, Houston, TX), and 24,25-

dihydroxyvitamin D3 (24,25(OH)2VitD3; ChemCruz, Santa Cruz, CA). Embryos were 

exposed to 10 and 100 nmol l-1 1a,25-dihydroxyvitamin D3 (1,25(OH)2VitD3; Selleck 

Chemicals or Cayman Chemicals, Ann Arbor, MI). Vitamin D3 synthesis was inhibited 

using dafadine A (Sigma-Aldrich). Dafadine A is an inhibitor of CYP27A1, the enzyme 

that catalyzes the 25-hydroxylation of vitamin D3. To explore a potential role for heat 

shock proteins (HSPs) in the maintenance or diapause II, DII embryos were exposed to 

VER155008 (Selleck Chemicals) to inhibit HSP70 activity, and ganetespib (Selleck 

Chemicals) to inhibit HSP90 activity. Potential interactions between vitD3 signaling and 

HSP function were explored by simultaneous incubation in HSP inhibitors and 

1,25(OH)2VitD3. 
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Diapause II embryos (30-40 dpf) were individually placed into wells of a 96-well 

plate for developmental tracking of individuals (n=12 per group). Each well contained 

120 µL of experimental media, and media was replaced every 1-3 d. Stocks of 

pharmacological agents were prepared in 100% dimethyl sulfoxide (DMSO) or 100% 

ethanol (EtOH). For exposures to vitamin D3 metabolites, a final concentration of 1% 

DMSO or EtOH were used. For exposures with the HSP70 inhibitor VER155008, 2% 

final DMSO was required due to the lower solubility of this chemical in DMSO and 

water. Similarly, for the HSP90 inhibitor ganetespib, 5% DMSO was required to 

maintain solubility. Previous experiments indicate no observable effects of 5% DMSO on 

embryo development or entrance into diapause II (Pri-Tal et al., 2011). Embryos were 

observed and their stage recorded every 1-3 d until the completion post-DII development 

(10 – 33 d) according to previously described staging for this species (Podrabsky et al., 

2017). 

To begin exposures, media was removed completely. Then embryos were rinsed 

once with fresh media followed by introduction of media containing the pharmacological 

compounds. Embryos were incubated at 25°C or 30°C. The typical temperature in the 

laboratory for A. limnaeus is 25°C. At this temperature embryos spontaneously exit 

diapause II over the span of several months. A temperature of 30°C during early 

development prevents entrance into DII (Podrabsky et al., 2010), and exposure to 30°C 

and constant light for 48 h is sufficient to induce exit from DII in most embryos (Meller 

et al., 2012). Care was taken to manipulate and view embryos only under minimal yellow 

light exposure to minimize unwanted vitamin D3 synthesis using a Leica inverted 

microscope at 40X magnification (DMIRB, Leica Microsystems, Wetzlar, Germany).  
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Heart rate 

Increased heart rate is one of the first indicators that embryos have resumed active 

development, and thus heart rates of individual embryos were monitored during the 

experiment (Podrabsky et al., 2010). Embryos were monitored in a temperature-

controlled room set at 25°C. Embryo temperature was confirmed during data collection 

using a beaded wire thermocouple probe. Embryos were viewed at 40X magnification 

with minimal yellow light. Contractions were counted using a hand-held tally counter for 

30 s. This number was recorded and multiplied by 2 to obtain beats per minute. 

DNA Methylation in response to treatment with 1,25(OH)2VitD3 

Diapause II embryos (40 dpf) were exposed to 10 nmol l-1 1,25(OH)2VitD3 in 

embryo medium containing 1% DMSO for 2.5 days while controls were incubated in 

embryo medium containing 1% DMSO. Eight groups (n = 4 for control, and n = 4 for 

1,25(OH)2VitD3 treatment) of 10-15 embryos per well were incubated in a 24-well plate. 

Temperature was controlled at 25°C and embryos were kept in the dark except during 

observations which were done under dim yellow light in an otherwise dark room. After 

the 2.5 days of treatment with 10 nmol l-1 1,25(OH)2VitD3, 5 embryos with the 

morphology of DII embryos and elevated heart rates were chosen from each replicate for 

DNA extraction and bisulfite sequencing to represent the earliest stages of exit from 

diapause. 5 embryos from each control replicate that were morphologically in DII and 

had low heart rates were sampled to represent embryos in diapause II. 
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DNA Extraction 

Embryos were treated with a 0.015% treatment of sodium hypochlorite (Clorox 

bleach) for 5 min and washed twice with sterile-filtered (0.45 µm) embryo medium. DNA 

was extracted using a DNeasy DNA purification kit (Kit 69504, Qiagen, Germantown, 

MD, USA). Embryos were homogenized in 180 µl of buffer ALT using a PTFE pellet 

pestle in a 1.5 ml microcentrifuge tube. Proteinase K was added (20 µl of a 20.2 mg ml-1 

stock) and homogenates were digested at 56°C for 14 h. RNase A was added and samples 

were gently mixed by inversion and incubated for 10 min at room temperature. DNA was 

then isolated according to the manufacturer’s instructions by application to DNeasy silica 

spin columns. DNA was eluted in two 100 µl washes of buffer AL (from the kit) that was 

prewarmed to 56°C. Columns were incubated at 56°C for 4 min prior to collection of the 

eluate by centrifugation. DNA was precipitated by addition of 2.5 volumes of 95% 

ethanol and 0.1 volumes of 3 M sodium acetate (pH = 5.2) followed by 3 h of incubation 

at -20°C. The DNA pellet was washed twice with 75% ethanol, allowed to air dry and 

resuspended in 20 µl of buffer AE. DNA quantity was determined using a Quant-iT 

PicoGreen dsDNA assay kit (P7589, Invitrogen, ThermoFisher, Waltham, MA, USA). 

DNA was stored at 4°C. 

Reduced Representation Bisulfite Sequencing (RRBS) 

RRBS libraries for each of the experimental and control DNA samples were 

prepared using 150 ng of DNA by the Knight Cardiovascular Institute Epigenetics 

Consortium at Oregon Health & Science University. DNA samples were digested 

overnight with the MspI restriction enzyme and the digested DNA cleaned using AMPure 
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XP magnetic beads according to the manufacturer’s instructions. RRBS sequencing 

libraries were prepared using a NEXTflex Bisulfite-Seq kit (Perkin Elmer). Bisulfite 

conversion was performed using the EZ DNA Methylation-Gold Kit. PCR amplification 

with NEBNext Multiplex oligos was used to amplify and barcode each library. DNA was 

cleaned for sequencing using the AMPure system as described above. Libraries were 

sequenced at the University of Oregon Genomics and Cell Characterization Core Facility 

using a HiSeq 4000 with 100 bp single-end reads. 

Analysis of Differentially Methylated Regions (DMR) 

Sequence reads were trimmed using TrimGalore with a quality cutoff score of 20. 

Sequence quality before and after adapter trimming was evaluated using FastQC. 

Bismark was used to align reads to the Austrofundulus limnaeus reference genome 

version 1.0 and to identify sites of methylation. Differential methylation was determined 

using the methylKit R package. The genome was tiled into 1 kb nonoverlapping segments 

and CpG methylation rates were averaged over the 1 kb region. Only regions with at least 

10X coverage were used for DMR analysis. Regions of significant changes in 

methylation were identified using a logistic regression model compared to the average 

methylation value of the region. P-values were converted to false discovery rate-adjusted 

P-values (q-values) using the SLIM method. Significance was defined at a q-value < 0.10

and a percent difference in methylation of 10% or greater. DMRs were annotated based 

on overlap with genome annotation features – promoters, exons, introns, and intergenic 

regions. Promoters were defined as 3 kb upstream of the transcription start site. If the 

DMR did not overlap with an annotated structure it was designated as intergenic. 
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Gene ontology of analysis 

OrthoMCL (Li et al., 2003) was used to generate a list of orthologous proteins 

between the genome of A. limnaeus and the zebrafish, Danio rerio which was used as a 

teleost comparison tool since the D. rerio genome is heavily annotated (Sprague et al., 

2006). Gene ontology terms (GO) associated with the zebrafish genome were then 

retrieved using gene2go and these terms were applied to orthologous proteins in the 

annotated genome of A. limnaeus. TopGo was used to test for enrichment of GO terms in 

the statistically significant DMRs. The total set of GO terms associated with D. rerio 

genes with orthologs in A. limnaeus was used as a background for the GO enrichment 

analysis. Significance was determined using the TopGO Fisher’s exact test corrected for 

multiple comparisons (P < 0.05). 

Statistical analysis and graphical representation of data 

Statistics and graphics were generated using GraphPad Prism 8 software (V8.4.2). 

Survival analyses assessed the probability of embryos exiting diapause II in response to 

treatment with pharmacological agents. For exposure to vitamin D3 metabolites, the a 

priori assumption was that these chemicals would induce exit from diapause II, and thus 

a one-tailed P-value was used. For all other comparisons, a two-tailed P-value was used. 

Statistical significance was determined at P < 0.05 using Bonferroni’s adjustment for 

multiple comparisons. Venn diagrams were created in BioVenn to indicate overlap in 

differential methylation of genomic elements (Hulsen et al., 2008). 
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Results 

Hydroxylated Vitamin D3 metabolites induce exit from diapause II 

Exposure of DII embryos to hydroxylated forms of 100 nmol l-1 vitamin D3 

metabolites increases probability of exit from DII compared to controls (Fig 3.1A). 

Vitamin D3 analogues that are farther down the biosynthetic pathway towards 

1,25(OH)2VitD3 increase in their potency, with 1,25(OH)2VitD3 being the most potent 

and resulting in 100% of the embryos exiting DII after only 2 d of exposure. 

Interestingly, 24,25(OH)2VitD3 is also able to induce exit from diapause with a similar 

potency as 25OHVitD3. The probability of exit from diapause when exposed to vitamin 

D3 metabolites is significantly higher than controls for all hydroxylated analogues of 

vitamin D3 (Fig 3.1B; Survival analysis, P < 0.01 for significance based on multiple 

comparisons; 7-DHC P = 0.071, VitD3 P = 0.046, 25OHVitD3 P < 0.0001, 

24,25(OH)2VitD3 P < 0.0001, 1,25(OH)2VitD3 P < 0.0001). Exposure to 1,25(OH)2VitD3 

causes an increase in heart rate within 24 h compared to embryos that remain in DII, 

indicating a relatively quick mode of action for initiation of developmental processes 

involved in breaking of diapause (Fig 3.1C). 
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Figure 3.1. Effect of vitamin D3 metabolites on exit from diapause and active 
development in Austrofundulus limnaeus embryos at 25°C. (A) Line plots of the 
development of individual embryos (Wourms’ Stage) over time during continuous 
incubation in 100 nmol l-1 of each vitamin D3 metabolite as indicated above each graph 
(n=12 per group). Each embryo is represented by a different color. Developmental 
progression is expressed in Wourms’ Stages. The most potent analogue is 
1,25(OH)2VitD3. (B) The probability of exiting from diapause is significantly increased 
by exposure to the three hydroxylated forms of vitamin D3 – 25OHVitD3, 
24,25(OH)2VitD3 and 1,25(OH)2VitD3. Analogues marked with an asterisk exit diapause 
II significantly faster than controls (Survival analysis, P < 0.0001; n = 12 per treatment). 
See text for more details on statistical methods used. (C) Heart rate immediately 
increases upon exposure to 1,25(OH)2VitD3 compared to DII embryos in 1% DMSO. 
Symbols are means ± SD, (n = 12 for 1,25(OH)2VitD3, n = 6 for 1% DMSO). Heart rates 
for other treatments were not recorded. 
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continuously, or for 2, 4, 6, 8, 10, or 12 d followed by transfer back to embryo medium. 

Individual embryos were tracked over time to obtain rates of exit from diapause. All 

embryos treated with 100 nmol l-1 1,25(OH)2VitD3 for 2 d or more exited diapause and 

completed development at WS 43 (Fig 3.2A,B; n = 12). For the 10 nmol l-1 treatment, 

100% of the embryos had exited DII as evidenced by increased heart rate, resumption of 

red blood cell circulation, and development of post-DII anterior structures after 4 d of 

exposure (Fig 3.2A). However, these embryos were not able to develop beyond WS 36 

(Fig 3.2B).  

Figure 3.2. The effect of increasing durations of exposure to 10 nmol l-1 and 100 
nmol l-1 1,25(OH)2VitD3 on exit from diapause II and subsequent embryonic 
development at 25°C. (A) 10 and 100 nmol l-1 treatments lead to 100% of embryos 
exiting diapause after 4 and 2 d, respectively. (B) However, embryos exposed to 10 nmol 
l-1 were not able to develop past WS 36, while those exposed to 100 nmol l-1 were all able
to develop continuously to completion of development at WS 43.
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Next, we evaluated if blocking vitamin D3 synthesis by inhibiting CYP27A1, the 

main enzyme responsible for the production of 25-OHVitD3 (Luciani et al., 2011) could 

inhibit exit from diapause. Diapause II embryos exposed to 20 µmol l-1 dafadine A in the 

presence of 100 nmol l-1 7-DHC at 25°C (n=12, each) exited diapause at rates similar to 

that of controls and those treated with 7-DHC (Fig 3.3A,B). While the addition of 

dafadine A did not significantly alter the probability of embryos exiting DII, embryos 

were not able to develop beyond WS 36. Heart rates of individual embryos were recorded 

each day to characterize the relationship between heart rate and exit from diapause II. 

Most embryos exposed to 7-DHC exhibit an increase in heart rate several days before 

morphological development advances enough to recognize active development (Fig 3.3C, 

left 2 columns). Exposure to dafadine A tended to reduce heart rate and blunted the 

increase in heart rate that precedes exit from diapause II (Fig 3.3C, right 2 columns).  
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Figure 3.3. Effect of continuous incubation in 7-dehydrocholesterol and dafadine A 
on exit from diapause in Austrofundulus limnaeus embryos at 25°C. (A) Line plots of 
individual embryos exiting diapause II in the presence of 100 nmol l-1 7-DHC or 100 
nmol l-1 7-DHC + 20 µmol l-1 dafadine A (DafA) tracked over time (n=12 per group). 
Each embryo is represented by a different color. (B) The probability of exiting diapause 
II is not affected by exposure to 7-DHC or 7-DHC and DafA. However, those embryos 
that exit diapause do not progress past WS 36 (early organogenesis) in the presence of 
DafA. (C) An increase in heart rate precedes morphological developmental changes in 
embryos exiting DII at 25°C. This response is muted in embryos treated with dafadine A. 
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Each panel is an individual embryo. Dashed vertical lines indicate the first day that the 
embryo was staged as post-diapause II, and individual embryo graphs are organized in 
chronological order for when the embryo first exited diapause II. Panels without dashed 
lines are embryos that remained in diapause II during the entire period of observation. 
 

Inhibition of HSPs alters efficacy of 1,25(OH)2VitD3 in promoting exit from diapause II 

Prior work showing that increased temperature and exposure to light can speed 

exit from diapause II (Meller et al., 2012) led us to test if inhibition of heat shock protein 

activity would alter exit from diapause in response to elevated temperatures (30°C) or in 

the presence of 100 nmol l-1 1,25(OH)2VitD3 at 25°C. Inhibition of HSC/HSP70 with 150 

µmol l-1 VER155008 or inhibition of HSP90 with 200 µmol l-1 ganetespib had no effect 

on exit from diapause II induced by transfer of embryos to 30°C (Fig 3.4), and in fact 

embryos developed normally in the presence of both inhibitors at 30°C. At 25°C, 

inhibition of heat shock proteins did not affect exit from diapause II (Fig 3.4A; survival 

analysis, P > 0.99 for VER155008, P = 0.51 for ganetespib). However, inhibition of 

HSC/HSP70 in the presence of 100 nmol l-1 1,25(OH)2VitD3 caused immediate exit from 

diapause II and accelerated the rate of development (Fig 3.4A,B; survival analysis, P < 

0.001). However, these embryos developed abnormally. Conversely, inhibition of HSP90 

in the presence of 1,25(OH)2VitD3 significantly reduced the probability that embryos 

would exit diapause II (Fig 3.4A,B; survival analysis, P < 0.001). While many of these 

embryos did eventually exit from diapause during the trial, they either developed very 

slowly, or failed to develop past the initial post-diapause II stage (WS 34).  
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Figure 3.4. The effect of heat shock protein inhibition on exit from diapause II in 
embryos of Austrofundulus limnaeus. (A, Top) Inhibition of HSC/HSP70 activity with 
150 µmol l-1 VER155008 or HSP90 activity with 200 µmol l-1 ganetespib has no effect 
on the exit of embryos from diapause II induced by transfer from 25 to 30°C. (A, 
Bottom) At 25°C inhibition of HSC/HSP70 in the presence of 100 nmol l-1 
1,25(OH)2VitD3 increased the rate of exit from diapause II induced by 1,25(OH)2VitD3 
while inhibition of HSP90 blocks the ability of 1,25(OH)2VitD3 to induce exit from 
diapause II. Over time some embryos exposed to ganetespib do break diapause and 
resume development at a considerably slower rate than those exposed to 1,25(OH)2VitD3. 
Interestingly, embryos that break diapause II in the presence of HSP90 inhibitor either 
stop developing almost immediately (at WS 34, labeled slow) or slowly progress through 
development at variable rates (labeled fast). Exposure to either HSP inhibitor alone has 
no apparent effect on exit of embryos from diapause II at 25°C. Symbols are means ± 
SD; n = 12. (B) Survival analysis supports a significant effect of HSC/HSP70 inhibition 
and HSP90 inhibition on the ability of 1,25(OH)2VitD3 to induce exit from diapause II at 
25°C (Survival analysis, P < 0.001, treatments with an asterisk are different from 
controls, those with a hashtag are different from the 1,25(OH)2VitD3 treatment). 
 

DNA methylation is altered by treatment with 1,25(OH)2VitD3 

The vitamin D receptor is known to interact with a number of chromatin 

modifying enzymes including DNA methyltransferases (Fetahu et al., 2014). To gain 
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insight into possible changes in DNA methylation associated with exit from DII induced 

by 1,25(OH)2VitD3, embryos were exposed to 10 nmol l-1 1,25(OH)2VitD3 for 2.5 days. 

This short incubation of low concentration 1,25(OH)2VitD3 was used to highlight those 

early changes in DNA methylation likely specific to exit from diapause rather than those 

associated with resumption of active embryonic development. Analysis of the RRBS 

sequencing data resulted in the identification of 258 DMRs, of which 51 were 

hypomethylated and 207 were hypermethylated in DII embryos exposed to 10 nmol l-1 

1,25(OH)2VitD3 (Fig 3.5A). Introns are the genomic element with the highest 

representation in both hypo- and hypermethylated groups (Fig 3.5B). Many of the DMRs 

overlapped with more than one genomic element, and about 30% of the hypermethylated 

and 22% of the hypomethylated regions include a unique promotor annotation (Fig 

3.5B,C). 

The DMRs with the largest change in methylation after treatment with 

1,25(OH)2VitD3, reported as percent methylation difference, are presented in Figure 3.6. 

Hypomethylation refers to a decrease in methylation after treatment while 

hypermethylation refers to a responding increase in methylation. The largest increase in 

hypermethylation was observed to overlap with two genes involved in regulating 

endocytosis and endosome recycling, micall1a and rabep1, respectively. Also included 

amongst the highest levels of hypermethylation are a gene for a nuclear envelope protein 

(lamin B1), and a DMR that contains both a chaperone for mitochondrial heat shock 

protein 70 (dnlz1) and a nucleoside metabolism enzyme (uck1). Also of interest in the top 

20 hypermethylated regions are genes involved in regulation of translation and apoptosis 

(eif5A1-like) and regulation of zinc finger transcription factors (id2). The regions with 
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the largest decrease in methylation contain a gene for a zinc importer (scl39a1) and an 

mRNA binding protein (cpeb3). 

 
Figure 3.5. Summary of differentially methylated regions (DMRs) in diapause II 
embryos treated with 10 nmol l-1 1,25(OH)2VitD3. (A) A total of 258 unique 
differentially methylated regions were identified. Most DMRs were hypermethylated in 
response to 1,25(OH)2VitD3. (B) The overlap of DMRs with annotated genomic elements 
indicates that most overlap with introns. (C) A significant number of the DMRs 
overlapped with multiple genomic elements. 
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Figure 3.6. The top 51 hypo- and hypermethylated DMRs. Gene symbols or 
descriptions are provided for DMRs that overlapped with promoters, introns, or exons. 
DMRs that did not overlap with annotated regions of the genome are considered 
intergenic and are marked with a dash (-). For DMRs that overlap multiple genes, all 
genes are listed and separated by a forward slash (/). 
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Gene ontology analysis using all genic elements (Fig 3.7) that overlapped with 

regions of hypermethylation reveals enrichment in 79 biological process GO terms 

including many with developmental roles, especially those associated with the nervous 

system (e.g. axon extension, glial cell development). There are also several terms 

involving immune cell function (e.g. peripheral T cell tolerance induction, positive 

regulation of neutrophil chemotaxis). These processes are associated with several aspects 

of cytoskeletal features, nerve axons, mitochondria, and the nucleus. Calcium binding is 

the most enriched molecular function, followed by binding to several cytoskeletal 

elements. Interestingly, most of the enriched GO terms of the hypermethylated regions 

for all genic elements indicated in Fig 3.7 are associated with only a handful of genes 

including: members of the protocadherin family (3), kinesin family members (2), and the 

Ephrin B4 receptor. 

If the gene ontology analysis is limited to only those DMRs that overlap with 

promoters, a slightly different picture arises (Fig 3.8). The most significantly enriched 

GO terms are associated with regulation of insulin receptor signaling, endothelial cell 

proliferation, and glycogen metabolism. These processes are associated with several 

components of the nucleus, cytoskeleton, and mitochondrion. Their molecular functions 

are diverse. The enriched GO terms in hypermethylated promoters are associated mainly 

with the function of four genes: igf2, id2, pcna, and T-brachyury. 
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Figure 3.7. Gene ontology analysis of differentially methylated regions in response 
to 1,25(OH)2VitD3 that were associated with annotated genic elements in the genome 
of Austrofundulus limnaeus. GO term enrichment highlights a number of developmental 
and physiological processes that may be regulated by the vitamin D receptor upon exit 
from diapause II. Graphs of p-values for each GO term are separated by biological 
processes (blue), cellular components (purple) and molecular function (green). Numbers 
at the base of the bars indicate the number of genes represented in the DMR data that 
map to that specific GO term. 
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Figure 3.8. Enriched Gene Ontology terms for DMRs that overlapped with 
annotated promoter regions in the Austrofundulus limnaeus genome. 
Hypermethylated promoter region GO terms were dominated by igf2, id2, pcna, and t 
(brachyury) annotations. Hypomethylated promoter GO terms were almost exclusively 
associated with cpeb3, slc25a22, and bnipl. Graphs of p-values for each GO term are 
separated by biological processes (blue), cellular components (purple) and molecular 
function (green). Numbers at the base of the bars indicate the number of genes 
represented in the DMR data that map to that specific GO term. 
 

Gene ontology of hypomethylated regions 

There were 28 biological process GO terms associated with hypomethylation in 

response to 1,25(OH)2VitD3 (Fig 3.7). Of note among these are tRNA modification, 

response to ischemia, polyphosphate metabolism, amino acid transport, response to 

decreased oxygen and glucose starvation, endocytosis, negative regulation of translation, 

and organization of the extracellular matrix. These processes are associated with neuronal 

growth cones, mRNA ribonuclear complexes, and the perinuclear cytoplasm. Enriched 

molecular function GO terms include mRNA 3-UTR binding, extracellular matrix 

modifying activities, and tRNA modification. Most of these GO terms are associated with 

the function of four gene: cpeb3 (6), cacng4 (4), meis1 (4), and slc39a1(3). 

Hypomethylated promoter regions are associated with GO terms that are similar 

to those when all genic elements are included in the analysis (Fig 3.8). Importantly, 

almost all of these GO terms are associated with only 3 gene promoters: cpeb3, slc25a22, 

and a bnip1-like gene. 

 

Discussion 

Vitamin D3 metabolites initiate and regulate exit from diapause II 
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 Exposure of diapause II embryos to hydroxylated forms of vitamin D3 promotes 

exit from DII. The first overt sign of exit from DII is a pronounced increase in heart rate 

followed closely by resumption of morphological development. Interestingly, a 

concentration of 10 nmol l-1 took longer to reach full effect (4 vs 2 d for 100 nmol l-1) and 

these embryos were not able to develop past early organogenesis (Podrabsky et al., 2017). 

This result parallels the phenotype of some embryos exposed to dafadine A to block 

vitamin D3 synthesis found in Ch 2 (Fig 2.1; Romney et al., 2018). In combination, these 

data suggest that a lower threshold concentration of 1,25(OH)2VitD3 is required to initiate 

exit from diapause, while a higher concentration may be needed to sustain active growth 

and development. This idea of higher metabolite levels perpetuating growth is consistent 

with the results of a large-scale human study, where low levels of circulating 25(OH)D3 

during the second trimester were associated with lower rates of fetal growth in the third 

trimester (Miliku et al., 2016). Low levels of vitamin D3 are also thought to impact early 

organogenesis in humans (Gluckman et al., 2008) consistent with our observations in A. 

limnaeus.  

In contrast to the hydroxylated forms of vitamin D3, 7-DHC and vitamin D3 itself 

were not effective at speeding exit from diapause at the concentrations used in this study. 

We had hypothesized that these forms of vitamin D3 would also induce exit from 

diapause. There does appear to be a pattern of increasing effect as the products along the 

biosynthetic pathway approach the 1,25(OH)2VitD3. It is possible that the hydroxylase 

enzymes needed for production of 1,25(OH)2VitD3 are not highly expressed or active 

during diapause II, or that the levels of precursors used in these experiments were not 

high enough to produce effective concentrations of 1,25(OH)2VitD3. Further 
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experimentation with different levels of vitamin D3 precursors and characterization of 

hydroxylase enzyme expression and activity are needed to address this issue.  

 

Heat shock proteins impact exit of diapause 

 Heat shock proteins (HSP) 70 and 90 have active roles in embryogenesis and are 

normally expressed during vertebrate development (Ahn et al., 2005; Ali et al., 1996; 

King and MacRae, 2015; Krone et al., 1997; Podrabsky and Somero, 2007; Teixeira and 

Polavarapu, 2005). In isolation, inhibition of HSP function does not appear to alter the 

rate at which embryos exit from DII. However, there is a significant interaction between 

heat shock protein function and the effect of 1,25(OH)2VitD3 on exit from DII. Inhibition 

of HSP70 in combination with 1,25(OH)2VitD3 leads to rapid exit from diapause and 

accelerated development rate, while inhibition of HSP90 attenuates the action of 

1,25(OH)2VitD3. These opposing effects of HSP70 and HSP90 on exit from metabolic 

dormancy in embryos of A. limnaeus are consistent with the literature on HSPs and the 

VDR (Angelo et al., 2008; Craig et al., 1999; Marcinkowska and Gocek, 2010; Swamy et 

al., 1999). HSC/HSP70 has been shown to directly bind with the VDR (Craig et al., 1999; 

Swamy et al., 1999). HSP90 is thought however, not to interact with the VDR directly, 

but rather to regulate the DNA binding of VDR as well as the expression of vitamin D 

activated genes (Angelo et al., 2008; Craig et al., 1999; Marcinkowska and Gocek, 2010).  

Inhibition of HSP90 significantly delays the action of 1,25(OH)2VitD3 on exit of 

embryos from DII, which suggests a role for HSP90 in promoting exit from DII. In Caco-

2 cells treated with 1,25(OH)2VitD3, inhibition of HSP90 with geldanamycin led to a 

69% decrease in the transcript levels for CYP24, the enzyme that inactivates 
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1,25(OH)2VitD3 (Angelo et al., 2008). Further, inhibition of HSP90 lead to lower levels 

of VDR binding to vitamin D response elements (VDRE), specific DNA sequences in 

promoter regions of vitamin D targeted genes (Angelo et al., 2008). In addition, depletion 

of HSP90 reduced vitamin D related gene expression. Interestingly, nuclear VDR levels 

were not affected by inhibition or reduction of HSP90b activity, which suggests a role in 

VDR-DNA binding (Angelo et al., 2008). 

The most striking result from the experiments with inhibition of HSP70, was the 

almost immediate release from diapause and accelerated developmental rate observed in 

embryos treated with HSP70 inhibitor and 1,25(OH)2VitD3 compared to 1,25(OH)2VitD3 

alone. These data strongly suggest a role for HSP70 in promoting DII. Further, it is 

interesting that a normally inducible form of HSP70 is constitutively expressed in DII 

embryos of A. limnaeus (Podrabsky and Somero, 2007). DnaK, a member of the HSP 

family similar to HSP70 has been shown to bind to VDR in the hinge region of the 

protein between the DNA and ligand binding domains when expressed in E. coli (Swamy 

et al., 1999). These authors speculate this may also occur in eukaryotic cells under natural 

conditions and that HSP70 may play a role in directing the VDR to the nucleus (Swamy 

et al., 1999). It is possible that HSP70 may be opposing VDR entry into the nucleus, and 

thus be preventing exit from DII. This hypothesis, would be consistent with elevated 

temperatures accelerating exit from DII, because the increased heat stress might cause 

HSP70 molecules to release the VDR in preference for proteins being denatured in 

response to heat stress. Further exploration of this possibility is of great interest and 

would allow for another mechanism for temperature to be integrated into the 

developmental program of annual killifishes. 
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There are many parallels with respect to HSP expression and function between 

exit from diapause in A. limnaeus and the flesh fly Sarcophaga bullata pupae. In S. 

bullata, exit from diapause is thought to include the ecdysone signaling pathway, a NR in 

the same subfamily as the VDR (Rinehart and Denlinger, 2000; Thomson et al., 2009).  

Interestingly, hsp70 transcripts were down-regulated 7 h and hsp90 transcripts 

upregulated 12 h after exit from diapause induced by hexane in S. bullata (Rinehart and 

Denlinger, 2000; Rinehart et al., 2000; Yocum et al., 1998). Further, genes for the 

ecdysone receptor, EcR and USP, increased in expression 1 hour and 9 hours after 

exposure, respectively, potentially indicating that the EcR is activated very early in 

diapause breakage (Rinehart et al., 2001). These data suggest striking parallels between 

ecdysone signaling and vitamin D3 signaling with a similar role for HSPs in insects and 

killifish embryos during exit from metabolic dormancy.  

 

Epigenetic regulation of exit from diapause 

 The role of DNA methylation in the regulation of gene expression is complex. 

Initially, methylation was thought to be associated with gene silencing, but it is now well 

appreciated that it plays a multifaceted role in the regulation of gene expression 

(Bogdanovic and Gómez-Skarmeta, 2013; Keller et al., 2016; Muers, 2013; Varriale, 

2014). For example, methylation of the first exon or intron may be more predictive of 

gene silencing than the methylation status of the promoter (Anastasiadi et al., 2018; 

Angeloni and Bogdanovic, 2019; Keller et al., 2016; Schmitz et al., 2019; Zhang et al., 

2019). Further, increased methylation of exons may be associated with regulation of 

alternative splicing rather than gene silencing (Shayevitch et al., 2018). Also, what 
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applies to mammalian systems, does not always apply to other groups of organisms 

including teleosts (Fang et al., 2013; Potok et al., 2013; Schmitz et al., 2019). Thus, the 

following discussion of differential DNA methylation in A. limnaeus in response to low 

dose 1,25(OH)2VitD3 should be considered preliminary. 

The importance of the epigenome in regulating gene expression and the resulting 

cellular and organismal phenotypes is an area of immense growth and interest. The VDR 

is known to interact with a number of epigenetic regulators that can alter DNA structure 

and function (Fetahu et al., 2014). Indeed, treatment with a low dose of 1,25(OH)2VitD3 

led to significant changes in the methylation status of 258 DMRs in embryos induced to 

exit from diapause most of which were hypermethylated (Fig 3.5). These changes in 

methylation highlight some interesting molecular pathways which are described below 

and provide a first glimpse into the molecular processes that may play major roles in the 

reactivation of development following dormancy. 

The majority of the most hypermethylated regions of DNA in response to 

1,25(OH)2VitD3 exposure are 5’ regions of genes that include regions of the promoter 

and the first exon and intron. Therefore, these regions are likely to lead to reduction in the 

expression of these genes during exit from diapause II (Anastasiadi et al., 2018; Angeloni 

and Bogdanovic, 2019; Keller et al., 2016). The two most hypermethylated regions 

include genes involved in endocytosis and endosome recycling. This may suggest the 

need for membrane restructuring, or perhaps the recycling of membrane transporters and 

extracellular receptors that are critical for maintaining diapause or diapause-associated 

phenotypes. For example, the importance of IGF signaling in regulating A. limnaeus 

diapause has been reported (Woll and Podrabsky, 2017) and altered shuttling of IGF 
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receptors to the plasma membrane may be an area to explore further in light of these 

hypermethylation data.  

Lamin B1, a gene that encodes for a protein that contributes to the nuclear lamina, 

was also hypermethylated. Lamin B1 protein supports nuclear envelope structure, but is 

also involved in the formation and regulation of facultative heterochromatin regions 

regulated by histone methylation variants as well as regulating gene expression and gene 

splicing (Camps et al., 2015). Previous work in A. limnaeus has shown regions of 

chromatin that stain for histone H3 that has been dimethylated at lysine 27 (H3k27me2) 

are associated with the inner surface of the nuclear envelope (Toni and Padilla, 2016). 

Interestingly, this histone modification is associated with the polycomb gene regulatory 

complex that is known to be associated with maintenance of diapause in the African 

annual killifish Nothobranchius furzeri (Hu et al., 2020). This connection suggests a 

potential role for lamin b1 proteins (or protein variants) in the regulation of chromatin 

structure and gene expression in exit from diapause in A. limnaeus. 

Dnlz1, a gene which codes for a chaperone of a mitochondrial HSP70 protein 

(HSPA9), was hypermethylated in response to treatment with 1,25(OH)2VitD3. DNLZ 

interacts with HSPA9 and positively regulates its chaperone function, catalytic activity 

and solubility (Vu et al., 2012). Interestingly, DNLZ contains a zinc-binding subdomain 

(ZBS) which has proven vital for proper complex formation with the HSPA9 ATPase 

domain. Thus, the hypomethylation of a zinc importer in response to 1,25(OH)2VitD3 

(see below) may suggest regulation of DNLZ1 in association with exit from diapause II. 

Given the fact that HSP70 inhibition accelerates exit from diapause II, this connection 
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between zinc, HSP70 function and exit from diapause is intriguing and deserves future 

attention.  

Another hypermethylated gene, id2, codes for a zinc finger transcription factor 

regulator that binds to and suppresses the activity of a wide range of transcription factors 

(Chen et al., 2012) and supports cell proliferation through inactivation of the 

retinoblastoma protein (Lasorella et al., 2000). Regulation of the cell cycle and cell 

differentiation is very likely to be key to exit from diapause II, and thus exploring the 

function of ID2 protein in embryos of A. limnaeus could represent a “global” mechanism 

for preventing transcription factor binding and inhibiting development associated with 

diapause.  

 Gene ontology analyses of hypermethylated regions in response to 

1,25(OH)2VitD3 treated diapause embryos produced results logical for the breakage of 

diapause and onset of active development. These included biological processes associated 

with development of the nervous system, cell migration, and immune cell function. 

During the initial two stages post-diapause in A. limnaeus, Wourms’ stage (WS 34 and 

35a), the embryonic axis lengthens and the head enlarges as the brain folds increase 

(Podrabsky et al., 2017). These early phenotypic changes would most definitely require 

activation of brain development and cell migration. These GO terms are dominated by a 

small number of gene identities, including igf2, id2 and pcna. Of special interest in this 

group is the gene for insulin-like growth factor 2, as this signaling pathway is known to 

be critical for regulation of diapause in a variety of systems including A. limnaeus 

(Altintas et al., 2016; Sim and Denlinger, 2013; Snell-Rood and Moczek, 2012; Woll and 

Podrabsky, 2017). 
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 Far fewer areas of hypomethylation were identified in response to treatment with 

1,25(OH)2VitD3. The regions that experienced the largest decrease in DNA methylation 

include elements of genes for a zinc transporter (slc39a1) and an mRNA binding protein 

(cpeb3). Both of these genes have functions that are of great interest with respect to 

diapause, especially cpeb3. CPEB3 can bind to mRNAs and regulate their stability and 

translation (Ford et al., 2019; Pavlopoulos et al., 2011). Through activation by 

neuralized1, cpeb3 in mammals has been shown to impact synaptic plasticity and long-

term memory (Pavlopoulos et al., 2011). Thus, it is possible that cpeb3 is important in the 

regulation of synapse formation and development of the nervous system in post-DII 

embryos. 

The GO terms associated with hypomethylated regions are dominated by the 

function of cpeb3, the amino acid transporter slc25a22, and bnip1. These terms are 

associated with potential stress-resistance pathways such a: response to decreased oxygen 

and glucose starvation, negative regulation of translation, and response to ischemia. If 

hypomethylation leads to gene activation, then it is possible that these genes are critical 

in regulating the extreme stress tolerance associated with diapause and this possibility is 

worth pursuing. Amino acid transport, polyphosphate metabolism and tRNA 

modification are also functions associated with hypomethylation. There is some evidence 

for tRNA accumulation in the nucleus during diapause onset in Artemia which could be 

relevant in A. limnaeus diapause (Chen et al., 2016a). Of these genes, the best described 

is slc25a22, a gene that encodes for a mitochondrial glutamate carrier. Glutamate is the 

most abundant amino acid in A. limnaeus diapause II embryos and is consumed when 

embryos are exposed to anoxia (Podrabsky et al., 1998; Podrabsky et al., 2007). Further, 
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slc25a22 repression by miR-184 is a mechanism that regulates insulin secretion in human 

cells and may play a role in insulin signaling and distribution in A. limnaeus embryos 

during diapause (Morita et al., 2013; Woll and Podrabsky, 2017).  

The importance of zinc in the function of genes from several of the differentially 

methylated regions is interesting and deserves future attention. Zinc is known to be 

critical in the function of many cellular processes, especially in regulation of gene 

expression through chromatin modification and transcription control (Falchuk, 1998). 

However, the role of zinc in normal cellular physiology has received relatively little 

attention compared to other metals and divalent cations. It is possible that limiting zinc 

levels within cells is a global mechanism for inhibiting key regulatory functions 

associated with cell growth and proliferation (Vallee and Falchuk, 1981). This possibility, 

and the specific role of zinc in the regulation of diapause is a topic that should be 

explored in future studies. 

 

Conclusion 

 This study reports that the vitamin D3 signaling is important for promoting exit 

from diapause in A. limnaeus. Further, the heat shock proteins HSP70 and HSP90 appear 

to be involved in signaling the exit from diapause in a manner that is consistent with 

findings in insect diapause and that provide another mechanism for temperature to affect 

exit from diapause. Lastly, a number of candidate genes that appear to be differentially 

methylated in response to 1,25(OH)2VitD3 exposure have been identified that suggest 

epigenetic regulation of gene expression is key to the regulation of diapause in A. 

limnaeus.   
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CHAPTER 4: 

Hormone cell signaling to regulate embryonic life history 

 

In this study, we primarily used a pharmacological approach to explore the 

potential role(s) of various signaling pathways for the incorporation of environmental 

signals into the developmental program of Austrofundulus limnaeus. The data presented 

in this thesis support a key primary role of vitamin D3 signaling in regulating entrance 

into and exit from diapause. This finding is integral to understanding this species’ ability 

to alter life history programming through interpretation of environmental information. 

Further, the induced diapause-like state in Danio rerio embryos and ability of 

dafachronic acids alter development in A. limnaeus suggest that metazoans may employ 

similar mechanisms that rely on nuclear hormone receptors to regulate developmental 

dormancy.  

Arguably, the most exciting outcome of this thesis is the finding that the vitamin 

D3 pathway can regulate developmental progression based on temperature and light 

information from the environment. This molecular mechanism of regulating diapause 

entry and exit has been unknown to researchers and speculated for some time (Hand et 

al., 2016). Increasing light and temperature are cues that likely relate to the drying of an 

ephemeral pond and are the proposed signals that annual killifishes use to enact a 

phenotypic trajectory decision during embryonic development (Furness et al., 2015a; 

Hull, 1986; Markofsky and Matias, 1977). This idea is consistent with findings presented 

in this thesis that the vitamin D3 pathway acts as a mechanism of connecting light and 

temperature cues to developmental phenotype. 
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Nuclear hormone receptors and regulation of metazoan development. 

Results from this thesis suggest a vital importance for vitamin D3 signaling in 

normal teleost development. Inhibition of vitamin D3 synthesis induces a diapause-like 

state in D. rerio embryos – a species that does not typically experience diapause. This 

suggests a role for vitamin D3 signaling in the regulation of developmental 

rate/progression and the existence of key developmental checkpoints in a variety of fish 

species. Further exploration of the vitamin D3 signaling pathway may lead to a better 

understanding of developmental rate and checkpoints in vertebrates. Future studies 

should attempt to induce a diapause-like state via pharmacological exposures in non-

annual killifish as well as other vertebrate embryos that do not experience diapause. 

These studies will be crucial to test the extent of which vitamin D3 signaling is vital for 

normal vertebrate development. 

The work in this thesis points to a possible connection between 7-

dehydrocholesterol (7-DHC) derived signaling molecules and the regulation of complex 

life histories in animals. This study, and work by others in C. elegans and Drosophila 

reveal parallel mechanisms for the regulation of development via nuclear hormone 

receptors and their respective 7-DHC-derived ligands (Antebi et al., 2000; Arbeitman and 

Hogness, 2000). If additional studies confirm these similarities, then it may be possible to 

trace the evolution of metabolic dormancy through these closely-related nuclear hormone 

receptors and their respective ligands. This idea deserves further exploration. 

 

Epigenetics and vitamin D3 signaling 
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Data presented in this thesis suggests a link between vitamin D3 signaling and 

epigenetic regulation of gene expression associated with exit from diapause. This is 

consistent with the known interaction of the vitamin D receptor with a wide variety of 

proteins involved in epigenetic modification of histones and DNA (An et al., 2010; 

Fetahu et al., 2014; Marcinkowska and Gocek, 2010; Salehi-Tabar et al., 2012; Swamy et 

al., 1999). Thus, our study adds another dimension to the accumulating evidence that 

epigenetic processes regulate biological responses to environmental cues, such as 

parental-to-offspring communication about the developmental environment in which they 

are entering (Autran et al., 2011; Delaval and Feil, 2004; Flatscher et al., 2012; Flores et 

al., 2013; Perez and Lehner, 2019; Zhou et al., 2017).   

While pharmacological exposures targeting the vitamin D3 and related pathways 

provide a conceptual framework for metabolic dormancy in this species, exploring 

epigenetic pathways may help to highlight specific molecular events that are put into 

place in response to vitamin D3 signaling. To explore the interface of the vitamin D3 

pathway and epigenetic machinery in A. limnaeus diapause, we utilized reduced 

representation bisulfite sequencing (RRBS; Meissner et al., 2005). Using this approach, a 

number of genic regions were identified as differentially methylated in response to 

exogenous 1,25(OH)2VitD3 treatment. Included in this list are genes shown to have 

important roles in A. limnaeus diapause already, including insulin-like signaling, heat 

shock proteins, heterochromatin formation and maintenance, and glutamate metabolism 

(Podrabsky et al., 1998; Podrabsky et al., 2007; Podrabsky and Somero, 2007; Toni and 

Padilla, 2016; Woll and Podrabsky, 2017). One gene that appears to be highly 

differentially methylated in response to exposure to vitamin D3 is a major cytoplasmic 
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zinc transporter. Zinc deficiency is known to reduce growth in humans, and given the 

ability of zinc to regulate gene expression as a cofactor for a variety of proteins such as 

zinc finger transcription factors and nucleases, this connection between vitamin D3 

signaling and zinc transport deserves further attention (Chen et al., 2012; Falchuk, 1998; 

Prasad, 2013; Vallee and Falchuk, 1981).  

Additional experimentation is needed to fully understand the importance of 

epigenetic alterations in DNA in response to vitamin D3 signaling. Foremost, endogenous 

vitamin D3 metabolites during normal development and in response to relevant stimuli 

(light and heat) should be identified and quantified, possibly using liquid 

chromatography-mass spectroscopy and 2D nuclear magnetic resonance spectroscopy. 

Using sampling intervals that parallel RNA transcript data already available in A. 

limnaeus would allow for correlation between metabolite, RNA expression levels, and 

alterations to the epigenetic landscape. 

This thesis supports a major role for vitamin D3 synthesis and signaling for the 

control of developmental dormancy in A. limnaeus. The parallels identified in a variety of 

animals that use nuclear hormone receptors and 7-DHC-derived ligands to regulate 

developmental progression suggests that these studies may be broadly important for 

understanding how complex life histories are regulated in animals. While there are still 

many pieces to decipher regarding the specifics of how vitamin D3 signaling and 

supporting pathways impact embryonic development, the data in this thesis present 

compelling evidence that vitamin D3 signaling is key to regulating the complex life 

history of annual killifishes, and provides a mechanism for linking environment cues to 

developmental outcomes through epigenetic mechanisms.  
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