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Abstract

Growing Electric Vehicle penetration presents unwanted problems to grid reliability. For

nearly every EV there is corresponding household charging. High penetration of Electric

Vehicle Service Equipment can lead to over loading of assets and under voltage conditions.

In order to understand the effects EV have on a distribution system, studies have to be

done for EVSE to understand how the distribution system is affected. Using advanced

Power Engineering Simulation Software is often the best way to model systems due to the

credibility of their software modules.

For this thesis, I developed a suite of distribution system analysis tools using CYME 7.1

and Python 2.7 for evaluating the impacts from EV penetration, particularly overloading

and under-voltage events. EV penetration is the percentage of electric vehicles among total

vehicles. Two of these tools apply new loads to and create intentional spotloads on the

provided system. Another two tools incorporate time series demands for EV loads and

provide load growth on the system. The final tool covers data collection for over loading

and under voltage events.

Through use of this work’s EV Evaluation Tools, users can study how a distribution

system may be impacted due to EV load growth and stochastic EV placement. These tools

allow for a representation of how the system changes with increased EV penetration, at the

years the penetration are projected to increase.
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1 Introduction

1.1 Problem Statement

In order to reduce and reverse climate change our emission sources need reduction. Climate

change is by part due to emissions from Internal Combustion Engine (ICE) vehicles. In

order to lessen the effects on the environment and create a healthier future, various states

and countries have created electrification goals. PGE is driving and preparing for transporta-

tion electrification. Their reasoning is publicly presented by PGE [1]. The main goal of

electrification plans are to reduce Greenhouse Gas (GHG) for the sake of improving the

environment, lessening the impact of climate change.

Light duty vehicles represented 16.5% of total US GHG emissions, and 59% of trans-

portation related GHG emissions in the USA in 2018 as seen in Figure 1.1 [2]. As consumer

vehicles represent a large chunk of GHG production, many plans attempt to electrify light

duty vehicles. Medium and heavy duty vehicles make up another 6.4% of total emissions as

seen on Figure 1.1 making them another important source of electrification.

These electrification goals come during a period of increasing renewable generation,

which further impact the electrical distribution systems. With the addition of stochastic

renewable generation, line loading become less predictable. This can mean a larger impact

on distribution lines if worst case scenarios with renewables are not considered and the
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Figure 1.1: 2018 US GHG emissions by sector [2].

line rating doesn’t reflect the real peak load. To maintain reliability, lines may need to

be upgraded earlier than otherwise projected, in order to have sufficient line capacity to

accommodate renewables and increased loading from Electric Vehicle Service Equipment

(EVSE). In order to incorporate EVSE without overloading lines, these trends must be

studied, especially in the case of high demand EVSE installations.

1.1.1 Details about Problem Statement

As the composition of passenger vehicles moves from gas to electric motors, new challenges

have been identified. Household energy use may increase by up to 50% when they switch

from an ICE to an electric vehicle [3]. These additions of EVSE to households bring not

only a sizable increase in load, but also they may increase harmonics due to an inverters

nature as a non-linear component. This work attempts to identify these problem areas and

notify distribution engineers of the devices most at risk. As electrification continues, the

2



need for a reliable network of fast charging stations increases drastically [4]. Therefore, it is

important to understand the impacts of these High Power (Hi-P) Direct Current Fast Charger

(DCFC) installation on the current and future projected grids.

Harmonics and their impacts due to EVSE are pertinent to study, but are outside of the

scope this thesis. Future work may be done to build on this work that incorporates harmonic

analysis for a more comprehensive understanding of impacts on distribution systems. The

literature review includes a section on harmonics for informative purposes, for readers and

in order to inform future work.

1.2 Objectives of Work

Understanding the impacts that Hi-P EVSE have on distribution systems is the principle

motivation that drove the development of these analysis tools. As vehicle ownership moves

towards electric, a distribution system can experience problems if not prepared. Commuter

vehicles may be one section of EVs, but have small batteries and charge relatively slowly, so

the power draw is relatively low. With the introduction of electric taxi companies and electric

semi-trailer trucks, time spent charging is loss of revenue [5]. For the sake of businesses,

vehicles must be charged as quickly as possible to minimize downtime, hence there is a

preference for Hi-P EVSE. These EVSE range from 50 kW up too 450 kW, a bound that

will increase with time. It is important to understand how these Hi-P EVSE will effect the

system prior to installing them to be better informed of what may happen. This ensures

transformers are properly sized, or identifies if asset upgrades would be needed to safely

3



and reliably deliver the needed power.

Increases in residential Electric Vehicle (EV) penetration can also cause a variety of

problems. As traditional loads grow year to year due increased electrification, it is fairly

routine to project system impacts. However, EV loads act as an accelerator to load growth. It

is important to keep EV penetration and load growth connected to provide the most accurate

representation of the system loading. This effects the system at large. Stochastic allotment

of EVSE and starting time creates a reasonable load shape for impact studies.

The tools developed for this thesis address two kinds of EVSE loads. One is the

Stochastic Residential EV Tool, which applies residential EVSE additions to represent

unplanned EVSE load growth. Second is the Intentional EVSE Tool, which creates EVSE

charging hubs, for analyzing the how Hi-P EVSE additions affect the system, and the

feasibility of intentional locations. These tools allow distribution planners to estimate how

large an installation could be before an upgrade would be necessary, and allows them to

plan for system expansion. These together allow a simulation of future grid impacts, to the

extent the analyst can supply the EV growth predictions and load profiles.

Of the remaining tools, the Time Series Tool allows for time-series loads, pulling the

projected EV profile from a supplied data file. This allows determination of length of

overloads and daily occurrence. The System Growth Tool is concerned with finding the

right percentage of vehicles to add onto a study, and non-EV load growth. This ensures

a reasonable amount of vehicles are added for each EV penetration, and the distribution

changes to reflect the new years forecast for EV Penetrations. Another tool, the Data
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Collection Tool processes the loading data. The tool gathers the number and duration

of overload events, then sorts assets by total number of overloaded events to provide a

consistent format for distribution planners for each EV penetration.

1.3 Simulation Software Requirements

These tools were built using CYMDist version 7.1 as the main driver of simulations. Python

2.7 was used to create the code for these tools, and is recommended for use. Future versions

of Python may require changing the scripts. In addition to CYMDist there is a module

requirement. For interfacing with Python, CYME Scripting Tool with Python is a integral

module. This module allows Python and CYMDist to interface, and these thesis tools

to work. The CYME Enhanced Substation Modeling module can assist in more realistic

simulations and is recommended.
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2 Literature Review

The tools created for this thesis are related to many topics including EVs, how they impact

equipment, and the software for simulation. EV standards used by PGE are referenced,

as they affect how loading is considered within their balancing area. Different levels of

EVSE, and their effect on the distribution systems reliability are recorded. The feasibility of

converting fleets of vehicles to electric and the resulting impacts discussed. Information on

different simulation programs is used to consider their positives and negatives. Harmonic

effects are discussed in this review due to the importance of considering their impact.

However, analysis tools that consider harmonics were not developed.

2.1 EVSE Codes & Standards

Various regulatory bodies have created standards that guide EVSE design and cope with its

impacts on the electrical grid. These include the Society of Automotive Engineers (SAE) and

the National Fire Protection Association (NFPA), which created the National Electrical Code

(NEC). Utilities also create their own internal standards, such as for defining equipment

overloads.
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2.1.1 EV Service Equipment Charging Stations

PGE standard LD19300, Charging Stations for Electric Vehicles, provides design guidelines

for EV charging stations [6]. A diversity factor as seen in Table 2.1 is applied while

determining transformer power rating and conductor sizing. These factors are applied

depending on the number of EVSE at each location.

Number of
EV Charging Dispensers

Diversity Factor
(%)

1 to 4 100
5 to 8 90

9 to 14 80
15 to 30 70
31 to 40 60

41 or more 50

Table 2.1: Diversity Factor Applied to EVSE Demand [6].

2.1.2 Transformers

LD17015, Transformers General Physical and Electrical Characteristics, is the PGE stan-

dard for transformer ratings [7]. It includes tables for each type of transformer, single

and three phase, overhead or pad mounted. This standard includes the transformer ratings

along with the size and space requirements for placing said transformer. This standard also

provides a list of current limits depending on primary and secondary voltage.

2.2 Forecasting EV Use

Electric vehicle load growth, similar to other emerging technologies, is a matter of informed

conjecture. The quality of prediction depends entirely on the validity of assumptions.
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Forecasting techniques may be classified into two methods, bottom-up and top-down. These

methods, while their results may be very similar, have very different approaches.

2.2.1 Top-Down Forecasting

Top-Down forecasting starts with a big picture, using information on similar devices to

model how a device of interest will work, and works down to the desired information. As

this method is based off large amounts of existing data making up the big picture, and EVs

are a relatively new addition, forecasting methods have become more complicated in order

to change recorded Internal Combustion Engine (ICE) data into a form that describes EVs.

Forecast models are applied to the data in order to estimate what the future will look like.

In many cases related to EVs, the data come from the National Household Travel Survey

[8], an extensive collection of vehicle travel in the United States. This is a collection of

information of when vehicles are moving, for how long, and over what distance. From these

data, one can derive how an EV may behave, like charging time and state of charge. It is

possible to relate these travel data into separate vehicle charging profiles, and stochastically

apply them as done by Chioke et al. [9]. This effectively builds a model based off the ICE

that incorporates EV characteristics.

2.2.2 Bottom-Up Forecasting

Bottom-up forecasting is an attempt to build a model based on the fundamental elements

of the device, attempting to project the near future from current information. An example

would be using the understanding of an air conditioning system to predict energy use due

8



to forecasted daily or hourly temperatures. Bottom-up forcasting has the disadvantage of

requiring forecast data to inform the model. This method involves taking near-term forecast

data such as daily temperature, creating individual loads, and then summing up the results.

Bottom-up forecasting creates a well fitted model for each household, but is less robust and

more variable then Top down forecasting [10]. Overall Bottom-up forecasting is limited due

to a relative lack of EV studies while Top-down forecasting benefits from widely available

traditional travel data.

2.2.3 Forecasting Usefulness

Forecasting models, regardless of method, provide important insight into how distribution

systems may transition over time. One of the most valuable takeaways would be EV load

shapes for different classifications of vehicle, load shape being the shape of the demand

profile of EVSE throughout the day. These could then be aggregated to provide an estimate

of the load throughout a distribution system during specific time periods. Figure 2.1 below

shows the forecasted load shapes for South Korea, showing a residential shape, and a

commercial shape for non-residential chargers [3]. One of the most important benefits of

forecasting methods is the estimation of load demand. This allows an estimation of system

load, which is useful for generation dispatch planning. Both Top-down and Bottom-up

methods can lead to similar results, depending on the size of the study the forecasts applied.

For small numbers of forecasted devices, Top Down often leads to better predictions due to

having less variance than the Bottom-up method [10]. For larger systems, the error due to

either method is fairly low, due to the law of large numbers evening out variance.
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Figure 2.1: Weekend EV load shape projections in South Korea (a) Residential (b) Commercial [3].

2.3 Power Engineering Simulation Software

PES (Power Engineering Simulation Software) allows for the simulation of a distribution

system. Some specific examples of commercial PES software companies include CYME

and ETAP. Non-commercial tools, such as GridLAB-D created by the Pacific Northwest Na-

tional Laboratory (PNNL), and OpenDSS, by the Electric Power Research Institute (EPRI).

Examples of PES functionality include analyzing transformer inrush, and compliance studies

for arc flash standards. Without an established PES, users would have to create their own

software for modeling every relevant component on the system, taking a long time with little

benefit. Various vendors of PES often offer the same base functionality, but offer different

modules depending on interests. In this section, I present CYMDist as well as another tool

that I considered, GridLAB-D.

2.3.1 CYMDist

CYME is the power engineering software company that created CYMDist, an advanced

analysis module for distribution power systems. Their products are currently used by utilities
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as well as power systems researchers [11] [12]. CYME offers code-compliant simulation

software that incorporate many methods of power system analysis. CYME provides means

for applying adopted techniques through modifications of CYME modules [13].

CYMDist was used as the framework of my analysis tools for a couple of reasons. First

of all it is popular, which lends towards its user accessibility, as well as its capabilities. Due

to its popularity, CYME provides a large user base for these tools. The major downside of

CYME is that it is an expensive software package, which prevents widespread use among

researchers and small utilities.

2.3.2 GridLAB-D

GridLAB-D is a power system simulation tool created by PNNL with funding from the

Department of Energy (DOE). This tool was released to the public in 2008 at a time when

smart grids were an emerging idea and had not become as developed as they are now.

GridLAB-D was developed to help break the barrier to adoption of smart grid techniques.

Since its creation, GridLAB-D has been updated regularly, including an overhaul in 2017

funded by the California Energy Commission (CEC). The overhaul focused on GridLAB-D

Open Workspace (GLOW), a user interface, High-Performance Agent-based Simulation

(HiPAS) to enhance GridLAB-D performance, and the Open Framework for Integrated Data

Operation (OpenFIDO) for supporting data exchange with other power analysis software.

There is current work on it, such as by Nasiakou et al., which proposes a GUI for GridLAB-

D, improving accessibility [14]. GridLAB-D is one of the most widely available PES and

improvements are still occurring, attempting to create a more accessible framework [15].
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GridLAB-D, while being free was not chosen for a number of reasons. GridLAB-D

has a less extensive reference library then CYME, and less information online in general

due to their scales. GridLAB-D lacks an established Python library, which would assist in

tool development, though GridLAB-D can interface with Python scripts using the HELICS

environment as an intermediary.

2.4 Electric Vehicle Service Equipment

EVSE is the term for the connection point between the vehicle and the power source. EVSE

are classified into three levels. These levels represent different power levels, classified as

Level 1, Level 2, and Level 3. Level 1 and 2 EVSE work in conjunction with an EVs internal

charging equipment, which performs AC to DC conversion inside the EV. Level 3 EVSE

however, convert AC to DC outside of the EV before supplying DC voltage and current to

the vehicle. The standards for AC EVSE can be seen in Table 2.2, DC EVSE standards can

be found in Table 2.3.

Charge Method Voltage (AC V) Phase Max. Current 
(A, continuous)

Branch Circuit 
Breaker Rating 

(A)

Max. Power (kW)

12 15 (min.) 1.44AC Level 1 120 1-phase 16 20 1.92
AC Level 2 208 to 240 1-phase <60 Per NEX 625 Up to 19.2

Table 2.2: SAE J1772 AC EVSE Standards [16].

Charge Method EVSE DC Output Voltage
(DC V) Max. Current (A) Max. Power (kW)

DC Level 1 50 to 1000 80 80
DC Level 2 50 to 1000 400 400

Table 2.3: SAE J1772 DC EVSE Standards [16].
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2.4.1 Level 1 and 2 Chargers

Level 1 chargers have the lowest power rating and therefore the lowest individual impact on

a distribution system. They accept 120 V and have a maximum current of 12-16 A, allowing

users to directly plug their EVSE into a standard receptacle. These Level 1 chargers, while

versatile, and are mostly used for overnight charging due to slow charging speed.

Level 2 chargers provide higher power then Level 1 chargers. They require 240 V or 208

V and have much higher current ratings than Level 1, 32-80 A depending on the standard

cited. Because of their higher power rating, these charge faster then a Level 1 charger.

2.4.2 DC Fast Chargers/Level 3

Level 3, also known as DCFC, operate on a different basis than Level 1 and 2, as it uses DC

current. The conversion from AC grid power to the DC battery charging occurs within the

service equipment. A simplified block diagram for DCFCs is shown in Figure 2.2, showing

the rectification from the grid AC. DCFCs can vary considerably, from a standard 50 kW

charger, to the 250 kW Tesla V3 supercharger, and upward to 1 MW for Tesla Semi-Truck

Chargers. Due to their power, DCFCs are best for charging quickly, as they are able to

provide a nearly full charge in a half hour, depending on the class of EV.

Figure 2.2: A simplified block diagram of a state-of-the-art dc fast charger power stage [17].

13



2.4.2.1 Demand Charges

Depending on the local utility, demand charges may be included in electrical bills [18]. A

demand charge is a payment based on the highest single point of consumption within a

billing cycle. As DCFCs typically consume 50 kW or more, this can raise a customers peak

demand dramatically. This is exacerbated as DCFCs are placed together. Multiple DCFCs

may be used concurrently, thereby resulting in a much larger single point of consumption.

In areas with demand charges, utility bills can increase by a factor of four [18]. This is an

important quality to note for consumers who are subject to demand charges, as it could be

a financial burden. Due to financial burden understanding of demand chargers may be a

barrier to transportation electrification.

2.4.3 EVSE Charging

Charging cycles are split into two periods, Constant Current-Variable Voltage (CC), and

Variable Current-Constant Voltage (CV) [19]. The CC phase injects current into the battery

in order to raise the battery voltage level. This period of charging occurs at maximum

current without risk of damaging the battery during the low SOC period of the charging

cycle. The CV phase starts once voltage increases to rated value. The current decreases in

order to allow safe charging of the battery at a higher State of Charge (SOC). The current

decrease allows charging without damaging the battery while at a high SOC. Due to damage

concerns, batteries may only be charged to 80-90% of their maximum charge. This increases

the lifespan on the battery. This also assists with charging rates, the last 20% taking around
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the same amount of time as the first 80% SOC [20].

2.4.3.1 Power Factor Correction

EVSE rectify power from the grid AC to vehicle DC. Rectifiers are considered non-linear

equipment, and as such cause distortion while converting AC to DC. Level 1 and Level 2

chargers often have simpler rectifiers that act as the PFC stage itself [21]. DCFCs as seen

in Figure 2.3 separate the rectification and the PFC circuit. As observed by Pawelek, et al.

the Power Factor (PF) of a DCFC is not consistent throughout the charge cycle, in their

case reducing from 0.99 to roughly 0.80 [20]. This drop in PF only occurs after the start of

the constant voltage section of battery charging, as imported power decreases along with

current.

Figure 2.3: Power factor and reactive power for DCFC charging cycle. [20].
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2.5 EVSE Impacts on Power System Reliability

Charging impacts, especially for residential EVSE, depend on if charging is coordinated or

uncoordinated. Uncoordinated charging, letting the households charge their EV at any time

is a simple method. Most customers are used to being able to do things when they wish, not

held back by the utility. This method requires the utilities to do little until more significant

distribution system impacts show themselves, and distribution upgrades are required. The

tools created for this thesis examine the impacts of large scale EVSE to asset loading and

voltage magnitudes with uncoordinated charging.

Coordinated charging allows operators to control EVSE use. Controlling charging would

allow grid operators to shift load shape in order to ensure reliability. Clement-Nyns, et al.

compare the impacts of uncoordinated and coordinated charging of hybrid vehicles along

with base case with no EVSE and find clear effects on the grid [22]. As seen in Table 2.4

and Table 2.5, nodal voltage and power losses are both improved with coordinated charging.

Coordinated charging offers grid impacts minimal compared to uncoordinated charging with

respect to the base case.

16



Ratio of Power Losses to Total Power [%]
Charging Period Penetration Level 0% 10% 20% 30%

Summer 1.1 1.4 1.9 2.2
21h00-06h000

Winter 1.4 1.6 2.1 2.4
Summer 1.5 2.4 3.8 5.0

18h00-21h00
Winter 2.5 3.4 4.8 6.0

Summer 1.3 1.8 2.6 3.2
10h00-16h00

Winter 1.7 2.2 3.0 3.6
Minimum Voltage Deviation [%]

Charging Period Penetration Level 0% 10% 20% 30%
Summer 3.1 3.5 4.4 5.0

21h00-06h000
Winter 4.2 4.4 4.9 5.5

Summer 3.0 4.4 6.5 8.1
18h00-21h00

Winter 4.8 6.3 8.5 10.3
Summer 3.0 4.1 5.6 6.9

10h00-16h00
Winter 3.7 4.9 6.4 7.7

Table 2.4: Ratio of power loss and maximum voltage deviation for uncoordinated charging [22].

2.5.1 DCFC Impacts

EVSE increase EV charge time, but have their own impacts. One problem associated with

EVSE is voltage deviation, wherein voltage decreases at near-by nodes. As shown by Lillebo

et al., EVSEs can reduce the per unit voltage by up to 2% due to line voltage drop, bringing

possible concerns with EVSE placement [23]. On a stiff feeder, this would not cause much

of a problem, but on a feeder already facing voltage tolerance problems, this could cause

under voltage breakers to trip. Another study by Clement-Nyns et al. looked at how EVSEs

impact weaker buses [24]. Bus strength was determined as per unit voltage drop due to

increased bus loading. A per unit tolerance value of ±5% may be used to classify under

and over voltage events. The weakest bus had a per unit voltage drop of 0.17, well below

acceptable levels. In the case of weaker busses, Level 2 chargers are recommended over

DCFCs to avoid such voltage drops.
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Ratio of Power Losses to Total Power [%]
Charging Period Penetration Level 0% 10% 20% 30%

Summer 1.1 1.3 1.7 1.9
21h00-06h000

Winter 1.4 1.5 1.8 2.1
Summer 1.5 2.3 3.7 4.7

18h00-21h00
Winter 2.4 3.3 4.7 5.8

Summer 1.3 1.7 2.3 2.8
10h00-16h00

Winter 1.7 2.1 2.7 3.2
Minimum Voltage Deviation [%]

Charging Period Penetration Level 0% 10% 20% 30%
Summer 3.1 3.1 3.3 3.7

21h00-06h000
Winter 4.2 4.2 4.2 4.3

Summer 3.0 4.1 5.8 7.2
18h00-21h00

Winter 4.8 6.0 7.8 9.1
Summer 3.0 3.3 4.1 4.7

10h00-16h00
Winter 3.7 4.0 4.9 5.5

Table 2.5: Ratio of power loss and maximum voltage deviation for coordinated charging [22].

2.6 Harmonic Effects

While this thesis does not specifically address harmonics, harmonic functionality may be

developed in the future. Electric vehicle charging involves non-linear power electronics.

These components present a non-linear relationship between current and voltage. Woodman

et al. describe the harmonic impacts of equipment specifically due to EV charging [25]. In

general, due to the increases in frequency at higher orders, and of current due to distortion,

harmonics can cause heating, improper relay and fuse activation, and loss of equipment life.

However, Woodman et al. found that EVSE impacts on distribution assets are generally

small enough to neglect, in most cases.

18



2.6.1 Harmonic Cancellation

In the case of multiple EVSE, each EVSE may create their own harmonics which interact;

what the grid experiences is not a sum of these harmonics. This is due to harmonic

cancellation, that certain harmonic order contributions from each charger can cancel each

other out due to phase differences. Studies of harmonic cancellation have found that

harmonics in magnitude and phase angle are effected by each new EVSE connected for

charging, and that the cancellation effect is time dependent. Malano et al. define primary

cancellation as the phase angle diversity, reducing harmonic magnitudes due to difference in

phase angle reducing magnitude [26]. Secondary cancellation is defined as the impact on

harmonic voltage drop caused be total harmonic current on the harmonic voltage background,

as the voltage drop can increase or decrease the respective voltage harmonic. Figure 2.4

presents the changes in current harmonics due to harmonic cancellation, Figure 2.5 shows

the changes in voltage harmonics. It is important to note the 7th harmonic for both voltage

and current, as they show trend reversals for harmonic changes as EVSE start charging.

These figures demonstrate that voltage and current harmonics change in magnitude and

phase angle due to multiple EVSE harmonic emissions.

2.6.2 Transformers

Transformers are susceptible to harmonic disturbances. High order harmonics can lead to

high I2R losses, which increase real power consumption and decrease power factor [27].

Harmonics can induce additional eddy current and hysteresis losses in the transformer
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Figure 2.4: Current harmonics during coordinated charging [26].

Figure 2.5: Voltage harmonics during coordinated charging [26].

core. Eddy current and hysteresis losses scale with f and f2 respectively. This results in

enhanced effects due to higher order harmonics, which are usually ignored due to their

low magnitudes, relative to the fundamental and lower order harmonics. These two losses

cause temperature increases inside the transformer, and accelerates insulation degradation,

which in turn reduces transformer life span [28]. Along with the losses in the core and

resistive losses, the magnetic components experience stray flux from harmonics, which

induce larger eddy current and hysteresis losses, contributing further to equipment heating

and loss of life. Gómez et al. examine the relationship between Total Harmonic Distortion

(THD) and transformer per unit life consumption [29]. Per unit life consumption effectively

represents excess transformer component damage. Figure 2.6 shows a plot of transformer
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life consumption in respect to THD ranging from 5 to 100%. This figure includes a quadratic

best fit line, showing the rapid increase of life consumption at high THD levels. The authors

recommend keeping THD limited to 25-30% for a given transformer, in order to maintain

an acceptable lifespan.

Figure 2.6: Transformer Life Consumption vs. THD [29].

2.6.3 Power Cables

Cables suffer two frequency related problems, namely the proximity effect, resulting in

current crowding, and the skin effect, which forces current to the outside layer of the current

carrying wire. These effectively raise the resistance of the conductor to match the reduced

volume of the current-carrying metal. As both the effects are related to frequency, their

impacts are increased for the higher order harmonics. In effect, the higher order the current

the larger the increase in resistance. This increase translates to more real power losses, and

increased line voltage drop.

21



2.6.4 Filters

As harmonic orders are organized by their frequency, filters can be a method of reducing

harmonic effects. Syed Nasir et al. describes the effects of filters in reducing total harmonic

distortion [30]. They examine optimally-placed passive filters. Analysis of the capabilities

of passive filters classes are expressed in by Karadeniz et al. [31]. Placing a filter to remove

identified problem harmonics can alleviate much of impact. Karadeniz et al. explores the

relationship between harmonics and the de-rating of transformer rated power [31]. Low-pass

filters are used generally to remove high order harmonics, with band-stop filters generally

being used to remove specified harmonics. The most powerful form of filters, Active Power

Filtration (APF) could be useful for larger EVSE installations, but is used less often than

passive filters due to their power requirements and cost.

2.6.5 Manufacturer Value

Harmonic profiles are offered by some manufacturers of EVSE. Thiringer et al. measured

harmonic values and compared them with the manufacturer supplied harmonics [32]. While

most of the harmonics they tested showed little difference to the supplied values, the 5th

harmonic was 71% larger than expected when measured. Manufacturer supplied values

should be considered, but not relied upon when considering harmonic impacts of distribution

systems.
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2.7 Fleet EVs

As electrification increases and electric vehicles take the place of traditional ice vehicles,

commuters are not the only ones making the switch. Company fleets will also make the

change from ICE to EV. This of course has many benefits for the fleet owner: less expense,

maintenance, lower pollution, on-site charging, and a greener business profile. Distribution

systems face a different impact due to fleet EVs, however, with increased load due to a large

number of new EVSE. In the case of using Hi-P EVSEs, large grid impact on distribution

equipment loading and voltage levels may occur. These impacts need to be studied prior to

a utility issuing an interconnection agreement.

2.7.1 Driving Services

Services like taxis could benefit from conversion to EV, with low average trip distance and

city range constraints allowing ample access to charging infrastructure [33]. EVSE allow

drivers to charge when they need to during the day, and while waiting for a customer. The

only real disadvantage is the speed of charging, as conventional vehicles fuel up in a matter

of minutes. A taxi company could use EVSEs to decrease charge time, if the have the capital

to set up chargers specifically for their taxis. One taxi company recorded their previous

travel data and found the average daily travel distance averaged less then 250 km, a fairly

standard EV range [33]. They found due to the large idling time of up to 20 hours per day,

there is value in including both fast and slow chargers at taxi hubs.

Similar to taxis, ride sharing apps observe many of the same benefits as company fleets
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[34]. Cost per mile is the largest benefit, EVSEs being cheaper to operate per mile then

ICE. This allows ride share users to make a better profit, pocketing the price savings or

reducing costs to maintain competitiveness. In the case of self driving vehicles, fast charging

through ride sharing programs will serve a similar purpose to the taxi charging hub. With

full autonomous driving, fleets can take even further steps to optimize fleet activity such as

in [35]. Another benefit comes from having quiet transportation, which is a positive quality

that could make electric vehicles a preference over ICE vehicles on ride sharing apps.
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3 Design Considerations

Design Considerations are guidelines that influence the design of tools. These arise from

consideration of the desired outputs and how to achieve them. These considerations influence

the design of each tool and how they work together. The following sections document the

design considerations that were taken into account while designing this suite of tools.

Five tools were developed for this project. They include a Stochastic Residential EV

Tool, which is needed to represent residential vehicles and their EVSE. The Intentional

EVSE Tool is used to represent non-Stochastic EV growth. In order to allow distribution

systems to simulate different years, the System Growth Tool was created. The Time Series

Tool allows time series analysis and the use of demand profiles. EVSE impacts are gathered

using the Data Collection Tool, which collects loading and voltage data.

3.1 Stochastic Residential EV Tool

The Stochastic Residential EV tool was created to gather the total number of vehicles on the

distribution system and apply EVSE loads to each household. When given a distribution

study, this tool produces demand increases via EVSE at each residential household stochas-

tically. Given an input of compositions relating household demand to vehicles at a house,

this tool outputs the number of vehicles for each household.
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Two considerations stand out: one, how to add the loads being applied, and two, how

many vehicles each household should have. These considerations suggest that this tool

should add residential EVSE stochastically within a distribution system model, and estimate

the number of vehicles that should be at each household. An estimation of the number of

possible EVs is important in determining EV penetration through applied vehicles.

3.1.1 Stochastic Placement of Residential EVSE

Placement of EVSE is an integral part of these tools. In order to achieve this, each vehicle

needs a given chance to increase the EVSE demand for the customer. Each customer must

have the capability of adding multiple EVSE, to represent different EVSE for the customer.

A customer with no initial demand should be created at each spotload to hold EVSE demand,

to separate household demand from EVSE demand. The level of charger being applied is

determined from the composition of Level 1 to Level 2 EVSE.

3.1.2 Household Vehicle Modeling

In order to simulate a distribution system, the number of vehicles on the system must be

estimated. There are two quantities within CYME that could be related to the number of

vehicles in a household: the number of customers, and the electrical demand in kW. As the

number of customers indicates the number of billed accounts, not number of people living

at that location, this value is not used. The electrical demand of each household can be

read from a CYME model, which provides the average hourly demand. Census and Energy
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Information Administration (EIA) data may give us an approximation of the number of

vehicles at a household.

3.1.2.1 Modeling Household Members By Load

In order to relate number of adults per household to household demand, EIA 2015 Residential

Energy Consumption Survey (RECs) micro-data were used. Total power consumption and

number of adults at each household can be compared using EIA data [36]. These data can

be used to achieve a rough composition of the different household member sizes by demand.

3.1.2.2 Modeling Household Vehicles By Members

Once the household sizes have been calculated, another relationship is required to connect

household size to number of vehicles. This relationship allows each household to have an

amount of vehicles that may become EVs. US Census data may be used for their estimation

of household vehicle composition. The total number of vehicles on the distribution system

can be used to reflect EV penetration.

3.2 Intentional EVSE Tool

The purpose of the Intentional EVSE Tool is to place specified EVSE on the distribution

system based on user input. Intentionally placing EVSE onto the system with this tool allow

non-stochastic EVSE placement. These intentional EVSE also need to have the ability to be

delayed, taking a user input of EVSE installation date, to add the EVSE into the distribution
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study during a specific year. Functionality for placing stochastic as well as non-stochastic

EVSE will provide a more comprehensive view of EVSE impacts on the distribution system.

Many design considerations were considered: where to place Hi-P EVSE, how to at-

tached the spotload to the distribution system,and how to represent future EVSE installations.

The first two considerations allow Hi-P loads to be placed on the distribution system at a

specific location, with a transformer designed for the load. The final consideration allows

EVSE installations to be applied to the study at a specified year. Overall, this allows repre-

sentation of EVSE installation on the distribution system while considering where and when

it will be connected to the distribution system.

3.2.1 Hi-P EVSE Loads

Hi-P EVSE need to be placed at a specific location designated by the modeler. In order

to achieve this, the name of an existing spotload is used. Spotloads are placed at specific

electrical connection points within a model. Hi-P EVSE charging stations often have their

own transformer for handling the large EVSE load. Each intentional EVSE installation

needs its own transformer, so the Intentional EVSE Tool must to be able to create the assets

connecting the spotload to the distribution system.

3.2.1.1 Diversity Factor

In order to incorporate PGE’s standard for transformers, a diversity factor must be applied

to the EVSE transformer installation. This factor depends on the number of similarly-sized

chargers at the location. Diversity factor accounts for the assumption that the full connected
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capacity will not be in use all at once. This factor will need to be applied to demand before

placing the transformer on the distribution system, to create properly-sized transformers for

the EVSE.

3.2.1.2 Planning

EVSE installations often take time to develop. Projects may be planned many years in

advance before installation. In order to incorporate this time lag, there must be an option to

set a delayed commission year while inputting load information. This enables adding the

installation to the study at an appropriate time as dictated by the operator.

3.3 System Growth Tool

The purposes of the System Growth Tool are, given an EV penetration, to calculate the

number of vehicles added to the system, and to represent with the the distribution system the

expected EV penetration in every year of the study. The projected year is used as an input to

increment non-EVSE loads across the system. This non-EVSE load growth is a result of

continued electrification due to increased household electrical demand each year. Reflecting

both EVSE and non-EVSE load growth on the distribution system creates a more accurate

estimation of a future system.

The design considerations for this System Growth Tool include applying rational EVSE

load growth estimates and applying non-EV load growth estimates to the distribution

system. The first consideration allows EVSE growth reflecting the EV penetration by EVSE

application. The second consideration enables applying non-EV load growth to successive
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years of projected EV penetration. These considerations allow the system to reflect the

changes across different years.

3.3.1 Residential EV Penetration Increases

To represent changes in EV penetration, this tool must be able to apply the correct number

of vehicles. This value is based on the number of remaining vehicles that may to be applied

to the study. As the number of vehicles in the study decreases, the percentage of vehicles

applied must increase in order to represent the same EV penetration increase.

In the case of a distribution system with the EV penetration already known, different

calculations are used for determining the percentage of vehicles applied to the system. There

is a need to adjust the EVSE additions, to account for EVSE on the original study. This

adjustment must used to prevent excess EVSE additions to a distribution study.

3.3.2 Non-EVSE Load Growth

In order to represent the distribution system load growth through time, non-EVSE demand

must increase. Due to general electrification, average household demand increases each year.

Where non-EVSE growth occurs each year, EVSE growth occurs whenever EV penetration

changes. This non-EVSE load growth along with EVSE load growth provides a more

representative prediction of impacts on the distribution system.
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3.3.2.1 EVSE

EVSE load growth is driven by increases in EV ownership, while household load growth

is driven by non-EVSE electrification trends. As EVSE and non-EVSE loads experience

growth through two different phenomena, there is a need to exempt EVSE from non-EVSE

load growth. Seperating EVSE load growth from non-EVSE load growth allows EVSE

demand increases to be attributed to households the include EVSE. This also allows for

different load growth rates.

3.4 Time Series Tool

To allow time series simulations and produce time-series records, the Time Series Tool was

created. Given an input of demand profiles, this tool must be able to access the demand

profiles across supplied time steps. These demand profiles are needed to find duration of

overloaded events. Considerations were taken to allow: 1) time-series demand profiles, 2)

time-series distribution system demand changes due to demand profiles, and 3) consistency

of vehicle records. These considerations allow time series demand profiles to be applied to

the distribution system, and their impact on assets to be recorded.

3.4.1 EVSE Charging Demand Profiles

In order to use demand profiles, the modeler must supply many different EV profiles. EV

demand profiles are used to represent a time series load. These profiles allow projected

EVSE charging demand profiles to be represented on the distribution system. The impacts
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from these profiles show how the system may react during specified time steps for loading

and voltage levels.

3.4.1.1 Intentional EVSE Charging Demand Profiles

As intentionally applied EVSE spotloads may have any composition of EVSE a generic

profile can not represent the wide variety of EVSE. Operators must be able to create their

own profiles specific to the EVSE. This allows a more accurate representation of how the

distribution system is affected by intentionally added EVSE.

3.4.2 Time Series Changes

Two functions were created to deal with time series changes. The first function handles

applying new EVSE demand changes. This function must be able to access EVSE demand

profiles to find the demand at a given time step. A second function gathers and records the

voltage and loading values per phase for each asset. These two functions allow demand

profiles to be used and their impacts to be recorded.

3.4.3 Information Storage

Using demand profiles requires that each vehicle keep a consistent demand profile index.

This is solved through keeping records for each household. If the records restrict which

values can be changed, demand profile will stay consistent. These records may be used to

store relevant information to vehicles, such as EVSE level and current type of vehicle ICE

or EV.
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3.5 Data Collection Tool

The purpose of the Data Collection Tool is to record asset values on the distribution system.

Gathering this asset information allows EV impacts to be accessed. Design considerations

for this are first, gathering the loading and voltage data for each asset, and second, making

sure these recorded data are stored in an accessible format. This Data Collection Tool allows

the loading and voltage values for each asset to be recorded, with records easy to access.

3.5.1 Asset Loading and Voltage Collection

This suite of tool looks for overloading and under-voltage events. In order to determine

when these events occur and for how long, asset loading and voltage levels are recorded for

each phase. Showing each of the phases gives a better picture for the operator into impacts

on the individual phases, and possible unbalanced phases in each asset.

3.5.2 Stored Loading and Voltage Format

Each loading and voltage quantity needs to be placed into different records to allow over-

loading and under-voltage events to be analyzed individually. These records should use the

same file format to allow non-asset specific functions. These loading and voltage records

should be stored in order of occurrence to make accessing different EV penetrations or time

steps simple. Each asset class may be stored in a separate record to allow ease of analysis.
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4 Tool Development

The following subsections document how each design consideration was realized. Each

section begins with an explanation of what the tool should be able to do. Subsections then

present the specific design considerations. Each of these subsection explains how the tool

achieved the consideration.

4.1 Stochastic Residential EV Tool

The Stochastic Residential EV Tool is used to apply EV loads and to set an estimate on the

number of possible vehicles in a household. The following sections describe how EVSE

loads are placed onto a distribution system, and how the number of possible vehicles for

each household is determined. These capabilities ensure stochastic EVSE application as

well as a reasonable number of vehicles for each household.

4.1.1 Stochastic Modeling of Residential EVSE

Stochastic EVSE modeling refers to placing EVSE randomly across the distribution system.

Every spotload on the distribution system is checked to find residential customers. If a spot

load represents a residential customer, a random number is compared to the percentage of

EV to be placed on the distribution system. Spotloads have a chance of adding EVSE for
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each ICE vehicle they are estimated to have. This is used to simulate converting from ICE

to EV.

When adding an EVSE, the previously stored household records are referenced to

determine the level of EVSE. Level 1 and Level 2 chargers use a rated power of 1.92 kW

and 6.6 kW, respectively. Demand profiles are provided Level 1 and Level 2 chargers, other

demand profiles can be input by the operator. When EV growth is applied, the first time step

of EVSE demand profiles are applied as the demand. Figure 4.1 shows the flowchart for the

decision paths made inside the EV application step.

4.1.2 Household Vehicle Modeling

In order for the tool to estimate the number of vehicles attached to each household, household

electrical demand is related using US Census and EIA data [36]. The EIA provides energy

consumption data over a year, so these are divided by 8760, the number of hours in a year,

to calculate an average hourly consumption rate. Histograms are created from same-sized

households, with bins for every 0.1 kW increment of demand, as shown in Figure 4.2. These

histograms show relative compositions for household demand values.

These histogram bins represent composition, so they were further divided by the total

number of same-sized household to give percentage of occurrence at each kW value for

a given number of household members. Figure 4.3 shows each different sized household

composition normalized to produce a total combined percentage of 100 for each bin value.

Relating the number of household members to number of vehicles is done using a U.S Census

data table, shown in Table 4.1. These relations between electrical demand and the number
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Figure 4.1: Flowchart of EV application loop.
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Figure 4.2: Composition of each household member size by demand.

of vehicles per household are provided along with the tool in a CSV format. Operators can

supply different compositions. In order to realize this, the function HouseholdVehicles is

used, which pulls each of the columns representing composition from a CSV file, and uses

random number generators from 0 to 100. These random numbers determine the number of

household members, then the number of vehicles available to the household from provided

compositions.

The demand is truncated to a single decimal point for compatibility with the EIA

compositions derived from histograms with bins of 0.1 kW. The number of ICE vehicles for

each household is decremented for each EV added.
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United States

Label Estimate Margin of Error 
(+/-)

Total: 120,062,818 161,148

No vehicle available 10,295,601 55,102

1 vehicle available 39,206,708 82,974

2 vehicles available 44,754,457 121,977

3 vehicles available 17,518,873 70,375

4 or more vehicle available 8,287,179 43,057

1-person household: 33,512,155 97,864

No vehicle available 6,172,106 43,200

1 vehicle available 21,976,907 84,710

2 vehicles available 4,262,642 37,136

3 vehicles available 798,440 14,332

4 or more vehicle available 303,060 9,821

2-person household: 40,993,693 118,919

No vehicle available 2,182,328 24,964

1 vehicle available 9,673,937 49,732

2 vehicles available 21,850,797 87,356

3 vehicles available 5,541,766 40,321

4 or more vehicle available 1,744,865 20,580

3-person household: 18,559,969 74,170

No vehicle available 906,637 15,831

1 vehicle available 3,748,951 31,957

2 vehicles available 7,329,742 46,886

3 vehicles available 4,946,000 39,038

4 or more vehicle available 1,628,639 17,585

4-or-more-person household: 26,996,001 75,633

No vehicle available 1,034,530 17,067

1 vehicle available 3,806,913 34,791

2 vehicles available 11,311,276 50,687

3 vehicles available 6,232,667 33,005

4 or more vehicle available 4,610,615 32,576

Table 4.1: Composition of Vehicles by Household Members [37].
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Figure 4.3: Composition of household members by demand.

4.2 Intentional EVSE Tool

Hi-P EVSE are applied to the distribution system through the Intentional EVSE Tool. This

tool allows application of specific EVSE loads while considering the diversity factor for a

site-specific EVSE transformer. It also provides the ability to delay the application of a Hi-P

EVSE load to the distribution system. Overall, this tool allows Hi-P EVSE installations at

any year, while creating a branch connecting the EVSE to the distribution system.

4.2.1 Hi-P EVSE Loads

Hi-P EVSE installations are handled in a separate function before stochastic EVSE ap-

plication. Installation decisions are handled by user prompts, placing large EV loads at

a spotload specified by the operator. As Hi-P EVSE projects have high power demand,
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these loads are usually connected through a site-specific transformer. The Intentional EVSE

Tool creates a similar asset branch to the specified spotload appropriate to the Hi-P EVSE

demand. This new branch recreates the assets and nodes connecting the specified spotload

to the distribution system with modified names. Adjusting existing asset names prevents

creating an asset with a pre-existing name, which can lead to errors. The diversity factor

is applied to the transformer rating before placement depending on the number of similar

EVSE. This factor is applied to the demand of each class of EVSE individually in order to

create an adequately-sized transformer. Figure 4.4 contains a flowchart view of the decisions

for adding intentional loads.

4.2.2 Planned Hi-P Loads

In order to allow for Hi-P load growth, the CYME load growth module provides an asset

year, which is compared to the list of planned Hi-P loads. When the year from load growth

matches or exceeds the Hi-P EVSE commission year, the EVSE is applied to the distribution

network. Planned Hi-P loads may be applied to any year between the first and last projected

year of the EV penetration forecast.

4.3 System Growth Tool

The System Growth Tool ensures that the distribution system includes EV load growth as

well as non-EV load growth appropriate to the system year. EV load growth is controlled

through the percentage of remaining vehicles that need to be applied to represent an EV

penetration change. Non-EV load growth is handled through the CYME load growth module,
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Figure 4.4: Flowchart of the User Decision Tree for Adding Intentional Loads.
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which allows assets to have a current year, and increment the non-EV demand to reflect

electrification. This tool allows non-EVSE load growth to be related to EVSE penetration

forecasts.

4.3.1 Residential EV Penetration Increases

As EV penetration increases, the number of available non-EV vehicles decreases. In order

to accurately represent EV penetration, the percentage of vehicles added is the step size of

EV penetration divided by 100% minus the previously reached EV penetration. The first

method, using Equation 1.1, is for increasing the penetration on a study that begins with

no knowledge of current EV penetration. In the case of a study that understands the EV

penetration, but has no way of separating the EV loads from the household loads, Equation

1.2 is used. This method allows the user to add EVs at a reduced rate to allow 100%

penetration by only adding the available EV loads, removing the initial EV penetration from

the denominator.

V ehiclePercentage =
(PenetrationStep)

(100− PreviousPenetration)
(1.1)

V ehiclePercentage =
(PenetrationStep)

(100− PreviousPenetration− StartingPenetration)
(1.2)

4.3.2 Non-EV Load Growth

Distribution system non-EV load growth is controlled via the current EV penetration. To

allow this, the operator is required to provide a CSV with the expected EV forecast at
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specific years. Each EV penetration is associated with a single year. In the case of EV

penetration being between two values supplied, linear interpolation is used to calculate

the estimated year. This year is then supplied to the CYME Load Growth module, which

increments non-EVSE loads by a specified percentage to represent a new year on the system.

If fewer values are provided, accuracy decreases due to the linear nature of the interpolation,

so it is recommended to use a differential of less then four percent between penetration

estimations.

4.3.2.1 EVSE

The CYME Load Growth module may exclude a customer type while applying load growth.

EVSE are stored as an independent customer at each spotload created from this tool. The

customer type, which may be specified by the operator, is used to denote each EVSE

customer. This ensures that all EVSE growth occurs from new EVSE being installed, as

opposed to non-EV load growth applied to EVSE.

4.4 Time Series Tool

Having time series functionality, the ability to examine assets at certain time steps, is

pertinent to identifying overloading events. The Time Series Tool allows each vehicle

applied to the study to use its own demand profile. Records were created to maintain

consistency of EV application for each household. This tool allows time-series demand

profiles to be applied and their impacts observed.
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4.4.1 EVSE Charge Profiles

EVSE demand profiles are stored in a way that makes indexing straightforward. For

residential EVSE indexes are attached to the records for each vehicle. One CSV for each

Level 1 and Level 2 EVSE demand profiles are supplied, which are accessed depending on

the vehicle EVSE level. Intentional EVSE demand profiles are designed for each planned

EVSE. These demand profiles are assigned to the EVSE in the order they are input during

IntentionalLoad. For each time step, the demand for each EV are accessed by profile index,

current time step, and designated EVSE level.

4.4.2 Time Series Changes

To find the loading and voltage impacts during a certain time period, two functions were

created. The first function, Reapply, applies the new demand profile time step for each

EVSE. This function allows this suite of tools to simulate the distribution study for each

EVSE demand profile time step. The second function, TimeFlow, collects data from each

asset related to loading and voltage level. Each loop appends the recorded quantities to a list

containing recorded data at each time step. These functions work together to simulate each

time step and record the EVSE impacts on assets.

4.4.3 Information Storage

After the number of vehicles available to a household is determined, records are created

for each vehicle. These records includes the index of EV demand profile, if the vehicle has

been applied, and what level EVSE to apply. Random number generation is used to find the
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demand profile for each vehicle. The level of EVSE for each vehicle is determined from the

composition of Level 1 and Level 2 EVSE. When a vehicle is linked to its household, the

number of available vehicles decrements by one, and the application records are changed

depending on which vehicle was added. These records ensure each vehicle cannot be added

twice, and their demand profiles are consistent between time steps.

4.5 Data Collection Tool

The Data Collection Tool is used for identifying loading and voltage data, as well as ensuring

the data are accessible. This tool identifies the different phase loading and voltage levels

for each asset. The EVSE impact data are stored using a method that allows simple loops

through each EV penetration and time step. These qualities ensure validity of phase loading

and voltage as well as ease of accessing the different time steps.

4.5.1 Asset Loading and Voltage Collection

Assets being examined by this tool include transformers, transformers-by-phase, and dis-

tribution lines. Transformers and distribution lines can have loading and voltage values

directly accessed from CYMDist. Individual phase information is gathered for a more

comprehensive representation of asset loading. Transformers-by-phase were disconnected

within the Ceder Hills CYME study used to test this suite of tool. Transformer-by-phase

voltage levels can be accessed directly, but loading information must be derived from the

power flowing through the asset and nominal power for each phase loading. These derived

loading values are within 0.5% of actual loading values, due to not considering losses inside
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the transformer. This allows information from the different phases of each asset to be

recorded even if the asset itself is not in a connected status in CYME. Loading and voltage

information are stored in two formats, every asset’s value, a certain number of the worst

loaded assets decided by the use.

4.5.2 Stored Loading and Voltage Format

Loading and voltage records are stored in tuples containing the asset name as well as the

three phase values. These records are maintained in separate variables. Each quality is

stored into lists covering entire time periods, which is further appended into a list of each EV

penetration. These variables can be looped through to access each penetration, and access

each time step in order of occurrence.
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5 Validation

The tools in this thesis invoke multiple functions that work together to provide tool func-

tionality. This section presents the validation of each of these tools. Each case presents an

input-output diagram for the function. Validation is important for demonstrating that the

tools perform as designed. These validation cases are presented per their related tool.

5.1 Stochastic Residential EV Tool

The Stochastic Residential EV Tool is used to find the number of vehicles at each house-

hold and apply EVSE load demand at the household when EVs increase. The functions

HouseholdVehicles and Add_EV are tested to ensure they produce the expected results.

HouseholdVehicles shows how which steps are taken for each decision of households mem-

bers and number of vehicles. The Add_EV function is tested by comparing CYME studies

from the first EVSE addition. These functions allow EV penetration to be represented on

the distribution system.

5.1.1 Household Vehicles

The HouseholdVehicles function uses data compositions from the EIA and US Census.

These data reflects the relationship between household demand to number of household

vehicles. The inputs and output of this function are shown in Figure 5.1. Validation of this
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tool is done by analyzing each step converting household demand to vehicles. Figure 5.2

shows this information, for five households. The red underlined value for each line represent

the household name and its demand binned to 0.1 kW. The blue underlined values include

three values. These include the random number used to convert between demand and

household member, the composition relating the two, and the result. This composition

represents the chance of have one, two, three, or four household members. For example the

first household’s composition is [33.5,59.3,82.5], there is a 33.5% chance of a one household

member, a 25.8% chance of two members, 23.3% chance of three members, and 17.5%

chance of four members. The composition used is related to the household demand, identical

blue underlined compositions can be observed between the first and second household and

third and fourth household, as they have identical household demand. The green underlined

values contain similar information to the blue values, but for converting from household

members to number of vehicles. This second sets composition includes an additional value

to the blue composition, for no vehicles. These green compositions are determined from the

number of household members, as you can notice for the first and third household. Each

composition and the values used to access have been determined as accurate, validating this

function.

The compositions of household demand to members are accessed depending on the level

of demand. Each household receives different member compositions depending on electrical

demand. Three instances of the two households with matching demand are included in

Figure 5.2. These show that compositions are not decided at random, as household with
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Figure 5.1: Inputs and outputs for the HouseholdVehicles function.

Figure 5.2: HouseholdVehicles use case showing household member and vehicle determinations.

the same demand receive the same compositions. As mentioned in the previous paragraph

household members compositions only have four possible compositions, one, two, three, or

four members. Compositions for vehicles include five possibilities, zero through four.

5.1.2 Add_EV

Add_EV is the function used for adding EVSE stochastically into the distribution study.

Inputs and outputs for this function are shown in Figure 5.3. This function is tested by using

it to place an EVSE then showing the results. A study is saved directly after the first EVSE

application. The spotload changes is used to locate the modified household along with the

EVSE demand.

Table 5.1 shows the base spotload and the spotload after Add_EV. A demand of 6.6
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Figure 5.3: Inputs and outputs for the Add_EV function.

Pre-Tool Spotload
Customer Number Customer Type Year Actual kW

7100619508 Residential 2020 1.93
Post-Tool Spotload - One EVSE Applied

Customer Number Customer Type Year Actual kW
7100619508 Residential 2026 2.11

OID_1147000 Fixed 2026 6.6

Table 5.1: Spotload Customer information before and after Add_EV.

kW was assigned to the EVSE for ease of identification. The additional ’customer’, named

OID_1147000 is the customer for EVSE storage which is created in every spotload with an

initial demand of 0 kW. As the demand of OID_1147000 is equal to the assigned demand of

6.6 kW, this EVSE was added correctly to the distribution study.
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5.2 Intentional EVSE Tool

The Intentional EVSE Tool is used to place non-stochastic EVSE onto the distribution

system. Specifically the IntLoadBranchCreation function is used when adding these EVSE

loads to the system. This function gathers the assets connecting the reference spotload to

the distribution network and creates appropriate assets mirroring the branch. This function

enables the Intentional EVSE Tool to place EVSE independent of the current distribution

study assets.

5.2.1 Intentional Branch Creation

This IntLoadBranchCreation function takes user inputs and produces changes in the study

model. Inputs for this function include the reference location and other user inputs used to

output a distribution study with intentional EVSE. These inputs and outputs are shown in

Figure 5.4. In order to demonstrate the functionality of this tool, schematics were copied of

the system before and after adding an EVSE. Figure 5.5 show an additional transformer and

spotload from a CYME study. Additionally, the EVSE spotload transformer rated phases

are shown in Figure 5.7, with the spotload demand itself shown in Figure 5.6.

5.3 System Growth Tool

Distribution system growth is handled through the System Growth Tool. This tool ensures

that demand increases due to EV penetration growth are matched with distribution system
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Figure 5.4: Inputs and outputs for the IntLoadBranchCreation function.

Figure 5.5: CYME distribution system before (a) and after (b) an IntLoadBranchCreation application.

electrification. In order to enable this, EV penetrations must be connected to a given year.

The function PenetrationVsYears is used to gather the year EV penetration occurred.
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Figure 5.6: Demand properties from spotload created using the IntLoadBranchCreation function.

Figure 5.7: Phase rating properties from transformer created using the IntLoadBranchCreation function.

5.3.1 Penetration Vs Years

This function PenetrationVsYears is used to make sure the current distribution system

matches the simulated year. Inputs and outputs for this function are shown in Figure 5.8.

The years gathered by the function are compared to the original EV forcast. Figure 5.9

showcases the difference between the forecasted year, and the year this tool applies. The

difference between forecasted year and applied year is reduced for a forecast with a larger

dataset.

5.4 Time Series Tool

The Time Series Tool was created to apply demand profiles and allow time series analysis.

This requires a function that can apply new profile demands without adding additional EVSE.

The function Reapply was created to meet this requirement. This function allows changes
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Figure 5.8: Inputs and outputs for the PenetrationVsYears function.

Figure 5.9: Equipment year, forecast EV years vs. applied load growth years.

to the distribution study through household records, only modifying study demand when

EVSE demand changes.
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5.4.1 Reapply

Reapply is the function that changes EVSE demand based on the current time step of a

demand profile. The inputs and output of this function are shown in Figure 5.10. This

function deals with changing EVSE that have already been applied to the study. This

function is tested by comparing a list of EVSE customers applied in Add_EV to a list of

EVSE customers changed during Reapply. It is found these lists are identical. Because of

the nature of the test there is no graphical representation.

Figure 5.10: Inputs and outputs for the Reapply function.

5.5 Data Collection Tool

This suite of tools collects a large amount of information. In order to process these data, the

Data Collection Tool was created. The most important functions for this tool are Processing

and CSVOutputs. Processing is used to created formatted storage for CSVOutputs. The
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function CSVOutputs outputs this formatted data into CSVs and generated plots. These two

functions work together to output the resulting documents.

5.5.1 Processing

The function Processing is used to store desired information in a format used by CSVOutputs.

This involves ordering by loading and voltage level data individually. Length of overloaded

assets are used to create binned histograms by half hour using the length of events. The

consistency of these are checked through comparing the order of the values to the list of

worst asset over loading or under voltage. In addition, the values of over loaded assets

used to create histograms are compared to the formatted histogram output to verify accurate

binning. Inputs and outputs for function Processing are shown in Figure 5.11.

Figure 5.11: Inputs and outputs for the Processing function.
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5.5.2 CSVOutputs

CSVOutputs creates the output documents for this suite of tools. The inputs and outputs for

this function are shown in Figure 5.12. The function uses the formatted information from

Processing to output asset data into CSVs, histograms, and trend graphs. This function is

tested by supplying the loading and voltage information and making sure the output files are

correct. Each asset is given the same set of loading and voltage information, which creates

the same output file, with different asset names as expected.

Figure 5.12: Inputs and outputs for the CSVOutputs function.
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6 Discussion

The following sections present an analysis of tool efficacy within the context of a case

study. Voltage and loading are examined. Analysis is performed to understand impacts and

trends of loading and voltage values due to increased EVSE penetration. After the test case

analysis, the capabilities of this suite of tools are evaluated. At the end a description of this

tools required files is provided along with where they can be found.

6.1 Suite of Tools Test Case

The suite of tools created for this thesis work together to simulate distribution systems

affected by EVs. A test case study of a distribution feeder was conducted to demonstrate tool

capabilities when working in tandem to provide data for analysis. The conditions include an

EV penetration ranging from 10% to 90% with a step size of 20%, and a time range of 3

AM to 9 PM for the demand profiles. Additionally, the study includes four intentional high

power EVSE, one added right away, the remaining three EVSE set to be install during the

years 2030, 2036, and 2042. This range of intentional EVSE installation dates allows insight

into when they are installed, and how uninstalled EVSE are represented during the study.

Case study results are analyzed for each of the different asset classes. CYME asset

class transformer represents substation transformers. Transformers-by-phase are the asset

class used for distribution transformers. These transformers-by-phase are examined for both
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loading and voltage events per time step across the asset class. Both transformers-by-phase

and distribution lines have a single asset examined for change in loading and voltage level

across each EV penetration. This single asset information shows the impact of increased

EVSE via loading changes, and shows the resulting affect on voltage level.

This test case was run an a power lab workstation (3.6 GHz i7-4790 CPU with 8 GB of

RAM). With the workstation used each time step took roughly 12 seconds, with each EV

penetration lasting up to 25 minutes. The total time this simulation including processing

and outputting of information was 135 minutes. The simulations time step was limited to

recording information every ten minutes. This is due to the EVSE demand profiles only

offering charging demand in ten minute intervals.

6.1.1 Transformer-By-Phase General Loading and Voltage

Transformers-by-phase are the largest number of transformers within the study. These

transformers include all but the distribution system substation transformers. Because of

their large number and importance as the majority of transformers, their trends are used to

make sure this suite of tools produces useful outputs. In Figure 6.1, the overloaded assets for

each time step and each phase are shown. These overloaded time periods clearly show an

increase in occurrence at higher EV penetrations. The EV penetration percentage is shown

in the figure legend. One can notice across all phases there are no time steps without at least

one overloaded asset. This is due to some assets being overloaded in the base study before

EV penetrations are applied.
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Figure 6.1: Transformer-by-phase overload occurrences as a function of time per EV penetration on phases A,
B and C. The number of overloaded events increases with EV penetration.
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Figure 6.2: Transformer-by-phase under voltage time periods per EV penetration phase A. Under-Voltage
events increase with EV penetration.

Under-voltage events are shown in Figure 6.2, which shows a single phase. This is

the only phase that experiences under-voltage events. Other phases often have per unit

voltages larger the 1.0. Voltage levels for this study of less then 0.95 per unit were rarely

found. The graph in Figure 6.2 was produced using a threshold of 0.98 per unit voltage in

order to validate the efficacy of the tool. Beyond 50% EV penetration, under-voltage events

occur frequently due to transformers already under load being affected by increased EVSE

demand.

6.1.1.1 Transformer-By-Phase Over-Loading Histogram

Transformer over-loading events vary in severity depending on the duration of the event.

Long duration events may result in damage to the transformer and distribution lines if not

cleared by relays. Histograms are presented in Figure 6.3, one plot for each electrical phase.

These histograms have hour bins, starting at events lasting at least an hour and increasing
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Figure 6.3: Transformer-by-phase loading duration histogram phase A. Over-Loading events increase with EV
penetration.
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by one hour for each bin. These histograms show that large EV penetrations such as 70%

and 90% have more events in the 4th bin, representing at least 4 hour events. The smallest

EV penetration, 10% has values in bin 4 due to a few constantly overloaded transformers

from the base study. Overall there is an obvious trend on higher EV penetrations resulting

in longer lasting over-loading events.

6.1.2 Location of Voltages Analyzed

For this test case analysis, two different voltages are considered. These two voltages are

the voltage drop from source to asset, and the assets input voltage. The locations used to

measure voltage are shown in Figure 6.4. Voltage levels used to calculate voltage drop

were recorded directly after the regulating transformer, and directly before the transformer

asset. The asset input voltage measurement is shown on the right of the figure. This shows

the per unit phase voltage with respect to ground. Voltage start with a value of 115 kV at

the substation transforming to 12.47 kV for the distribution network. This 12.47 kV rated

voltage for the distribution network is then transformed to 0.42 kV for feeders.

Figure 6.4: Distribution system voltage measuring Points for voltage drop and asset voltage.
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6.1.3 Single Asset Voltage and Loading Information

The transformer asset used to showcase loading and voltage information is named A:25

36781. This asset is one of the most affected by overloaded events. It serves five households

within the feeder. In Figure 6.5, one can notice changes in the profile of the transformer

loading characteristics. The general loading increase across EV penetrations is due to

electrification raising all non-EVSE demand for each incremental system year. Changes

Figure 6.5: Transformer-by-phase loading values for A:25 36781. Loading increases with EV penetration
increase in changes at high penetration due to multiple EVSE.

such as the spikes in loading percentage represent the EVSE demand increasing through

addition of electrical demand. Some time periods saw as much as a 23% increase in asset

loading from one EVSE penetration to the next, such as 10% to 30% EV penetration. This

change in penetration reflects six years of change for the distribution system. This would

suggest that these changes must be assessed with a smaller step between EV penetrations,

but as once every six years is already unreasonable, this is understandable.
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Changes in voltage levels, shown Figure 6.6, experience higher volatility with increases

of EV penetration. These can be associated with the different EVSE demand profiles

Figure 6.6: Transformer-by-phase voltage values for A:25 36781. Voltage at transformer decreases with higher
EV penetrations. Voltage drops below 0.95 p.u. for high EV penetrations.

offering demand at different times. The voltage variation is small but not insignificant,

with a respective maximum and minimum of 0.967 and 0.931 pu voltage. Voltage shows

a consistent decrease with increased EV penetration. For EV penetrations of 50% and

Figure 6.7: Transformer-by-phase voltage drop for A:25 36781 between EV penetration levels. Transformer
voltages drop with increases in EV penetration.
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above this asset experiences under voltage events with a per unit voltage less then 0.95. The

differences in voltage between each penetration level are shown in Figure 6.7. As the values

are mostly negative, this reflects the decreasing voltage in Figure 6.6.

6.1.3.1 Voltage Drop from Source to Asset

A distribution system experiencing demand and EV growth should show a decrease in

transformers input voltage level. Despite this, many transformers show a voltage increase

when looking solely at input voltage level. This happens due to regulating transformers

at the substation; the distribution side source voltage levels increase with loading in order

to keep voltages within ± 5% of nominal. This increase in voltage can make it difficult to

observe voltage drops due to high demand. The voltage drop between the source and the

asset A:25 36781 are shown in Figure 6.8. The voltage drop from source to asset increase

with EV penetration. This figure show a clearer difference between each EV penetration

Figure 6.8: Voltage drop from source to transformer-by-phase asset A:25 36781 across EV Penetrations.
Voltage drop increases as EV penetration increases.
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when compared with Figure 6.6.

The transformer-by-phase A:25 36781 is one of the assets furthest from the substation.

In contrast, transformer-by-phase asset B:25 27794 is close to the substation. Analysis

of this asset shows less impact on voltage as expected because of regulating transformers

raising the voltage level in the substation. This impact is shown in Figure 6.9. The input

voltage to this asset raises with EV penetration due to a regulation transformer increasing

the sources voltage to maintain stability. Input voltage levels seem to increase with EV

penetration, when looking at the asset voltage plot. This asset experiences over-voltage

events with 90% EV penetration. The voltage drop however shows an increase from source

Figure 6.9: Voltage of asset B:25 27794 and delta voltage in respect to the source across EV Penetrations.
Voltage drop increases as EV penetration increases.
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to asset across each EV penetration. The voltage drop shows the impact of EVSE and

electrification even when the input voltage seems incorrect.

6.1.3.2 Single Asset Histogram

As the transformer-by-phase asset A:25 36781 is not often overloaded, its loading histogram

is not a good example of tool functionality. The asset A:25 65996 is chosen instead to show

the progression of transformer loading events through each EV penetration. This transformer-

by-phases histogram is shown in Figure 6.10. Initially, for 10% EV penetration this figure

contains no overloaded time periods. Loading events for 30 and 50% EV penetrations last

no longer then 2 hours. 70 and 90% EV penetrations however contain loading events in

excess of 4 hours. This shows a clear increase in loading event duration and asset danger

between the 50 and 70% EV penetrations. Transformer-by-phase loading events increase in

duration and frequency as EV penetration increases.

Figure 6.10: Transformer-by-phase loading duration histogram for A:25 65996. Loading event severity
increases with EV penetration. Voltage exceeds 1.05 p.u. with 90% EV penetration.
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6.1.4 Distribution Asset Voltage and Loading Information

Distribution lines, represented by Overhead-By-Phase lines in CYME, are the second

major asset of interest. Distribution lines in the study do not experience a larger amount

of overloaded assets. A single asset PRIOH162622-3 was chosen because it feeds the

transformer-by-phase A:25 36781, and shows the consistency of voltage from distribution

line to transformer. Figure 6.11 shows the loading values for each time step of the simulation.

Electrification is the driver of consistent loading increases, causing higher loading values

across each time steps due to demand growth. Many noticeable spikes occur in the higher

penetration lines. These spikes are due to the addition of EVSE on the customer side of the

distribution line. The average loading value for time steps in the evenings are considerably

increased with the addition of EVSE loads. This shows distribution lines must be sized to

these periods with large EVSE demand, and increases to line loading analyzed for each new

Figure 6.11: Distribution Line loading values for PRIOH162622-3. Loading increases with EV penetration,
very low loading.
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EVSE planned for household installation. Note the small loading percentage, less then 1%.

This shows the line is very oversized, possibly due to incorrect asset properties in CYME.

Voltage levels for this asset are shown in in Figure 6.12. This figure shows decreases in

voltage level with increases in EV penetration. Voltage levels vary from 0.967 and 0.931 pu

voltage for this distribution line. For EV penetrations 50% and above this asset experiences

under-voltage events. At 90% EV penetration this asset experiences an input voltage drop

of 1.5% during a day. This figure is very similar to Figure 6.6, as this distribution line feeds

only a few different loads besides the transformer-by-phase A:25 36781. Household demand

increases due to EVSE results in households make up the large spikes in voltage. Increases

in demand cause the input voltage of distribution lines to decrease.

Figure 6.12: Distribution Line voltage values for PRIOH162622-3. Voltage decreases with increased EV
penetration. Voltage drops below 0.95 p.u. for high EV penetrations.
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6.2 Suite of Tools Capabilities

The case study showcases some of the output data for assets impacted by vehicle electrifica-

tion. These data can be used for many different purposes. Loading trend data can be used as

a rough guideline for how the distribution system transitions in time. This can show when

large increases to loading and voltage events may occur.

Each asset has its own CSV output for loading and voltage data. Figures 6.1 to 6.6 were

created using the CSV outputs. These CSV include a row for total number of overloaded

time steps, and another row for total number of under voltage time steps. These two rows

make it simple to sort by interested quality, and allow the impacted assets to be identified.

Identifying these problem assets allows designers to conduct studies on equipment to assess

if they may be at risk.

To better identify transformer over-loading events, histograms can be examined such as

in Figure 6.3. These bins allow the severity of transformer loading events to be understood.

This provides extra capability for designers to understand future transformer conditions.

These histograms highlight the duration of events, which allow designers to understand

which transformers could be at risk of a damaging long duration event.

6.3 Suite of Tools Files

The majority of the files needed to run this suite of tools can be where were they are archived

at [38]. This archive includes both the python script used and input CSV’s required to run the

script. These files are described in A.1. Input CSV’s include files like the EV forecast used
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Input CSV’s

CarsFromLoad.csv
Compositions relating household 

demand to number of vehicles

PenetrationVsYears.csv Forecast EV penetration by year

Demand profiles for Level 1 EVSE
PEV-Profiles-L1.csv

with a rating of 6.6 kW

Demand profiles for Level 2 EVSE
PEV-Profiles-L2.csv

with a rating of 6.6 kW

Python Code

File storing different computer address locations
definitions.py

used to interface with input CSV’s

function_study_analysis.py
File storing functions containing CYME commands 

in a non-CYME specific value f

File containing functions that record information,
LoadFlowOverload.py

process information, and produce CSV outputs

lookup.py File storing CYME internal asset indexes

main.py File containing main coding loop, and most functions calls

ModifySpotLoad.py File containing functions that modify the CYME study

UserInput.py File containing functions that take user inputs

Table 6.1: Archived tool files [22].

and EVSE demand profiles. Some of the python files contain important information but not

functions, such as definitions.py and lookup.py. Other python files, like ModifySpotLoad.py

and LoadFlowOverload.py contain functions that drive the capabilities of this suite of tools.

These files represent most of the required inputs needed to run this suite of tools. This table

and the DOI for the files this suite of tools requires can be found in appendix A.

The CYME study used for this test case, Ceder Hills was a large section of the distribution
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network. It included 1248 distribution transformers and over three thousand residential

households. As this CYME study, Ceder Hills, is property of PGE it can not be shared. This

CYME study is the only required part of this suite of tools that is not provided. While this

study is not provided, any valid CYME study can be used with this suite of tools.
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7 Conclusion

This work successfully demonstrated the capabilities of a custom suite of tools, along

with Python and CYME, to model distribution systems impacted by EVSE load growth.

These tools are used to analyze the impacts of EVSE penetration. These impacts may be

considered while planning to size EVSE transformers and associated conductors based on

current or future loading profiles. Understanding these impacts allows construction of a

robust distribution system with effective asset sizes to enable transportation electrification.

These tools enable grid operators to anticipate these impacts.

Level 2 EVSE and DCFCs can cause significant reliability issues related to asset over-

loading and under voltage events. Stochastic renewable generation, which continues to

grow, also induce reliability challenges. Demand due to stochastic renewable generation and

unexpected EVSE charging may result in distribution line overloads and over current relay

trips. This suite of tools may be used by a distribution planner to study the EVSE impact on

distribution lines. This, along with a study of nearby stochastic generation, enables planners

to properly size distribution lines to remain at or below rated conditions accounting for both

stochastic and EVSE line impacts.

Overall this work can apply both residential stochastic EV growth and intentional larger

EVSE charging hubs using the Stochastic Residential EV Tool and Intentional EVSE Tool.

In the case of intentional loads, transformers are sized based on EVSE demand. Demand
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profile projections are used to simulate EVSE demand through the Time Series Tool. The

distribution system grows in EVSE and electrification using the System Growth Tool. The

Data Collection Tool provides the output of collected asset information for analysis. These

help distribution system analysts to determine the asset conditions and impacts due to an

increased EV penetration.

This suite of tool leaves several opportunities for future improvements. One of these

opportunities is assessing harmonic impacts on distribution assets. Harmonic impacts may

cause a reduced effective rated power, increasing loading values by extension. Another

opportunity would be the ability to simulate demand profiles for Level 1 and Level 2 EVSE.

This would make it simple to apply different EVSE demand levels otherwise constrained by

forecast demand profiles.

A final improvement opportunity is converting the tool from 32 bit to 64 bit versions of

Python and CYME. The 32 bit version of Python cannot use more than four GB of RAM.

Long simulations both in duration of step sizes and range of EV penetration are impossible

to run due to this RAM limitation. Larger time step or EV penetration ranges allow more

comprehensive data and analysis, longer time steps for studies, or smaller EV penetration

changes providing more data point of EV penetration impacts.
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Appendix A: Supplementary Files

A.1 DOI

https://doi.org/10.15760/ece-data.02

A.2 Suite of Tools Information

Input CSV’s

Compositions relating household
CarsFromLoad.csv

demand to number of vehicles
3 kB

PenetrationVsYears.csv Forecast EV penetration by year 1 kB

Demand profiles for Level 1 EVSE
PEV-Profiles-L1.csv

with a rating of 6.6 kW
44.9 MB

Demand profiles for Level 2 EVSE
PEV-Profiles-L2.csv

with a rating of 19.2 kW
39.0 MB

Python Code

File storing different computer address locations
definitions.py

used to interface with input CSV’s
1 kB

File storing functions containing CYME commands
function_study_analysis.py

in a non-CYME specific value format
2 kB

File containing functions that record information,
LoadFlowOverload.py

process information, and produce CSV outputs
114 kB

lookup.py File storing CYME internal asset indexes 2 kB

main.py File containing main coding loop, and most functions calls 16 kB

ModifySpotLoad.py File containing functions that modify the CYME study 38 kB

UserInput.py File containing functions that take user inputs 8 kB

Table A.1: Archived tool files [22].
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A.3 Type of File

A.3.1 Input CSV’s

The supplemental files under the Input CSV’s catagory all require a file that can read comma

separated value files. Excel is a well known program that can read CSV’s. A Microsoft 365

subscription is required to download Excel, though a version of it is available on google

drive. A free program that one can use to read these files would be Notepad++, which can

be downloaded online.

A.3.2 Python Code

Many of the files used for this suite of tools are python coding files. Each of files require

a python interpreter to read and compile the script. This suite of tools used the interpreter

PyCharm, created by JetBrains, while in development. Another popular interpreter for

python and many other coding languages is Anaconda. In my opinion PyCharm is easier

to use, but offers less functionality then Anaconda. Both the available programs can be

downloaded online, by searching their names.
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Appendix B: Python Functions

B.1 HouseholdVehicles

def HouseholdVehicles (model_filename , L1_chance , L2_chance ) :
'''
HouseholdCars is designed to assign a certain value related to household load,

representing multiple cars for multi
-family households, currently an not arbitraty value
'''

path = "C:\\Users\\pwrlab07\\Downloads\\CarsFromLoad.csv"
df = pandas .read_csv (path )
OneLoadMember = df ['ONE 1' ]
TwoLoadMember = df ['TWO 1' ]
ThreeLoadMember = df ['THREE 1' ]
FourLoadMember = df ['FOUR 1' ]
OneMemberCar = df ['ONE 2' ]
TwoMemberCar = df ['TWO 2' ]
ThreeMemberCar = df ['THREE 2' ]
FourMemberCar = df ['FOUR 2' ]

start2=datetime .now ( )
cympy .study .Open (model_filename )

spotload_pre = function_study_analysis .list_devices ( 1 4 )

CustStorage = [ ]
CustValStorage = [ ]
OutputStorage= [ ]
NameStorage= [ ]

#Loops through spotload numbers, each loop name is equal to one of the spotload device
numbers

for name in spotload_pre ['device_number' ] :
CustLoad = cympy .study .GetLoad (name , 14 )
CustList = CustLoad .ListCustomers ( )
NewCustAdded=0

#Loops through each customer index on the specific spotload of name
for j in range ( 0 , len (CustList ) ) :

spot_load_device = cympy .study .GetDevice (name , cympy .enums .DeviceType .SpotLoad
)

customer_load_prop = "CustomerLoads.Get({value})." .format (value=CustList [j ] )
CustType = spot_load_device .GetValue (customer_load_prop + "CustomerType" )

#Looks to see if the customer being accessed is a residental type, which would
mean an applicable EV house
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#Adds a seperate load for storing EV's
if NewCustAdded ==0:

#AddCustomerLoad is a broken cympy function, the customer number should be
the string input, but is

#instead the spotload ID
CustLoad .AddCustomerLoad ("blah" )
NewCustAdded = 1

spotload_pre = function_study_analysis .list_devices ( 1 4 )

for name in spotload_pre ['device_number' ] :

CustLoad = cympy .study .GetLoad (name , 14 )
CustList = CustLoad .ListCustomers ( )

for j in range ( 0 , len (CustList ) ) :
spot_load_device = cympy .study .GetDevice (name , cympy .enums .DeviceType .SpotLoad

)
customer_load_prop = "CustomerLoads.Get({value})." .format (value=CustList [j ] )
CustType = spot_load_device .GetValue (customer_load_prop + "CustomerType" )

FirstPhrase = "CustomerLoads.Get({num}).CustomerLoadModels.Get(1)." .format (num
=CustList [j ] )

#Gathering the phrase for calling on customer loads
SecondPhrase , kWPhase = PhaseCheck (FirstPhrase , spot_load_device )

inter_step = [CustList [j ] ]

if CustType == "Residential" :
inter_step2 = [float (spot_load_device .GetValue (FirstPhrase + SecondPhrase

+ "LoadValue.KW" ) ) ]

else :
inter_step2= [ 0 . 0 ]

#Each loop appends the found values to the storage variables
CustStorage .append (inter_step )
CustValStorage .append (inter_step2 )
NameStorage .append (name )

OneLoadMember = df ['ONE 1' ]
TwoLoadMember = df ['TWO 1' ]
ThreeLoadMember = df ['THREE 1' ]
FourLoadMember = df ['FOUR 1' ]
OneMemberCar = df ['ONE 2' ]
TwoMemberCar = df ['TWO 2' ]
ThreeMemberCar = df ['THREE 2' ]
FourMemberCar = df ['FOUR 2' ]
CarAll=0
i=0
ChanceStorage= [ ]
for value in CustValStorage :

value = float (value [ 0 ] )
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if value >= 0 . 0 :

if value < 0 . 1 :
value = 0

else :
value = (UserInput .truncate (value , 1 ) *10) - 1

value=int (value )
Pen=random .uniform ( 0 , 100)

if value <= 7 4 :
if Pen > 0 and Pen <= OneLoadMember [value ] :

Members=1

elif Pen > OneLoadMember [value ] and Pen <= (OneLoadMember [value ]+
TwoLoadMember [value ] ) :
Members = 2

elif Pen > (OneLoadMember [value ] + TwoLoadMember [value ] ) and Pen <= (
OneLoadMember [value ] + TwoLoadMember [value ]+ ThreeLoadMember [value ] ) :
Members = 3

elif Pen > (OneLoadMember [value ] + TwoLoadMember [value ]+ ThreeLoadMember [
value ] ) :
Members = 4

Modify=0
if value > 7 4 :

Pen=random .uniform ( 0 , 100)
if Pen < 1 5 :

Members=3
else :

Members=4
value = 74
Modify=1

Pen2 = random .uniform ( 0 , 100)
Cars=0
if Members == 1 :

if Pen2 > 0 and Pen2 <= OneMemberCar [ 0 ] :
Cars=0

elif Pen2 > OneMemberCar [ 0 ] and Pen2 <= (OneMemberCar [ 0 ] +OneMemberCar [ 1 ] ) :
Cars=1

elif Pen2 > (OneMemberCar [ 0 ] + OneMemberCar [ 1 ] ) and Pen2 <= (OneMemberCar
[ 0 ] + OneMemberCar [ 1 ] + OneMemberCar [ 2 ] ) :
Cars=2

elif Pen2 > (OneMemberCar [ 0 ] + OneMemberCar [ 1 ] + OneMemberCar [ 2 ] ) and Pen2
<= (OneMemberCar [ 0 ] + OneMemberCar [ 1 ] + OneMemberCar [ 2 ] + OneMemberCar
[ 3 ] ) :
Cars = 3

elif Pen2 > (OneMemberCar [ 0 ] + OneMemberCar [ 1 ] + OneMemberCar [ 2 ] +
OneMemberCar [ 3 ] ) :
Cars = 4

if Members == 2 :
if Pen2 > 0 and Pen2 <= TwoMemberCar [ 0 ] :

Cars=0
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elif Pen2 > TwoMemberCar [ 0 ] and Pen2 <= (TwoMemberCar [ 0 ] +TwoMemberCar [ 1 ] ) :
Cars=1

elif Pen2 > (TwoMemberCar [ 0 ] + TwoMemberCar [ 1 ] ) and Pen2 <= (TwoMemberCar
[ 0 ] + TwoMemberCar [ 1 ] + TwoMemberCar [ 2 ] ) :
Cars=2

elif Pen2 > (TwoMemberCar [ 0 ] + TwoMemberCar [ 1 ] + TwoMemberCar [ 2 ] ) and Pen2
<= (TwoMemberCar [ 0 ] + TwoMemberCar [ 1 ] + TwoMemberCar [ 2 ] + TwoMemberCar
[ 3 ] ) :
Cars = 3

elif Pen2 > (TwoMemberCar [ 0 ] + TwoMemberCar [ 1 ] + TwoMemberCar [ 2 ] +
TwoMemberCar [ 3 ] ) :
Cars = 4

if Members == 3 :
if Pen2 > 0 and Pen2 <= ThreeMemberCar [ 0 ] :

Cars=0

elif Pen2 > ThreeMemberCar [ 0 ] and Pen2 <= (ThreeMemberCar [ 0 ] +
ThreeMemberCar [ 1 ] ) :
Cars=1

elif Pen2 > (ThreeMemberCar [ 0 ] + ThreeMemberCar [ 1 ] ) and Pen2 <= (
ThreeMemberCar [ 0 ] + ThreeMemberCar [ 1 ] + ThreeMemberCar [ 2 ] ) :
Cars=2

elif Pen2 > (ThreeMemberCar [ 0 ] + ThreeMemberCar [ 1 ] + ThreeMemberCar [ 2 ] ) and
Pen2 <= (ThreeMemberCar [ 0 ] + ThreeMemberCar [ 1 ] + ThreeMemberCar [ 2 ] +
ThreeMemberCar [ 3 ] ) :
Cars = 3

elif Pen2 > (ThreeMemberCar [ 0 ] + ThreeMemberCar [ 1 ] + ThreeMemberCar [ 2 ] +
ThreeMemberCar [ 3 ] ) :
Cars = 4

if Members == 4 :
if Pen2 > 0 and Pen2 <= FourMemberCar [ 0 ] :

Cars=0

elif Pen2 > FourMemberCar [ 0 ] and Pen2 <= (FourMemberCar [ 0 ] +FourMemberCar
[ 1 ] ) :
Cars=1

elif Pen2 > (FourMemberCar [ 0 ] + FourMemberCar [ 1 ] ) and Pen2 <= (
FourMemberCar [ 0 ] + FourMemberCar [ 1 ] + FourMemberCar [ 2 ] ) :
Cars=2

elif Pen2 > (FourMemberCar [ 0 ] + FourMemberCar [ 1 ] + FourMemberCar [ 2 ] ) and
Pen2 <= (FourMemberCar [ 0 ] + FourMemberCar [ 1 ] + FourMemberCar [ 2 ] +
FourMemberCar [ 3 ] ) :
Cars = 3

elif Pen2 > (FourMemberCar [ 0 ] + FourMemberCar [ 1 ] + FourMemberCar [ 2 ] +
FourMemberCar [ 3 ] ) :
Cars = 4

MemberVals=[OneLoadMember [value ] , OneLoadMember [value ] + TwoLoadMember [value ] ,
OneLoadMember [value ] + TwoLoadMember [value ] + ThreeLoadMember [value ] ]

if Members == 1 :
CarVals=[OneMemberCar [ 0 ] ,OneMemberCar [ 0 ] + OneMemberCar [ 1 ] ,OneMemberCar

[ 0 ] + OneMemberCar [ 1 ] + OneMemberCar [ 2 ] ,OneMemberCar [ 0 ] + OneMemberCar
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[ 1 ] + OneMemberCar [ 2 ] + OneMemberCar [ 3 ] ]
elif Members == 2 :

CarVals=[TwoMemberCar [ 0 ] ,TwoMemberCar [ 0 ] + TwoMemberCar [ 1 ] ,TwoMemberCar
[ 0 ] + TwoMemberCar [ 1 ] + TwoMemberCar [ 2 ] ,TwoMemberCar [ 0 ] + TwoMemberCar
[ 1 ] + TwoMemberCar [ 2 ] + TwoMemberCar [ 3 ] ]

elif Members == 3 :
CarVals=[ThreeMemberCar [ 0 ] ,ThreeMemberCar [ 0 ] + ThreeMemberCar [ 1 ] ,

ThreeMemberCar [ 0 ] + ThreeMemberCar [ 1 ] + ThreeMemberCar [ 2 ] ,
ThreeMemberCar [ 0 ] + ThreeMemberCar [ 1 ] + ThreeMemberCar [ 2 ] +
ThreeMemberCar [ 3 ] ]

elif Members == 4 :
CarVals=[FourMemberCar [ 0 ] ,FourMemberCar [ 0 ] + FourMemberCar [ 1 ] ,

FourMemberCar [ 0 ] + FourMemberCar [ 1 ] + FourMemberCar [ 2 ] ,FourMemberCar
[ 0 ] + FourMemberCar [ 1 ] + FourMemberCar [ 2 ] + FourMemberCar [ 3 ] ]

CarAll=CarAll+Cars
appendval=[CustStorage [i ] ,value ,Pen ,Modify ,MemberVals ,Members ,Pen2 ,CarVals ,

Cars ]
ChanceStorage .append (appendval )

CarDemandStep= range ( 0 ,Cars )
CarEVNum= [ ]
CarEVNumPlaced = [ ]
CarEVSELevel= [ ]
for j in CarDemandStep :

val = random .uniform ( 1 , 3 4 8 )
val=int (UserInput .truncate (val , 0 ) )
CarEVNum .append (val )
rand= random .uniform ( 0 , 1 0 0 )

if rand >= 0 and rand <= L1_chance :
Level=1

elif rand > L1_chance and rand <= (L1_chance + L2_chance ) :
Level=2

CarEVSELevel .append (Level )
for g in range (len (CarEVNum ) ) :

Num=0
CarEVNumPlaced .append (Num )

OutStore = [CustStorage [i ] , [Cars ,Cars ] , CarEVNum , CarEVNumPlaced , CarEVSELevel ,
NameStorage [i ] ]

OutputStorage .append (OutStore )

i = i + 1

#These two lines allow the study name to be changes, allows the base study to remain
undisturbed

filename_template = model_filename .split ('.' )
filename_changed = filename_template [ 0 ] + '_EV_Holding_Created.'+ filename_template [ 1 ]

cympy .study .Save (filename_changed )
end2 = datetime .now ( )
print ('HouseHold Cars Done in ' + str ( (end2 - start2 ) .total_seconds ( ) ) + ' seconds' )

return OutputStorage , filename_changed , spotload_pre , CarAll

B.2 Add_EV
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def Add_EV (model_filename ,L1 ,L2 ,Penetration ,through_filename , PEN , CustCarStorage ,spotload
, Type , LaterStorage , L1Store , L2Store , AppliedNames , UnAppliedNames ) :
'''
Currently this only adds a single EV load onto each household, more work could be put

into use catigorizing the
houses as different sizes by EV load, and adding the possibility of more EV's on a

single customer load
'''
open_study (model_filename )

#Calls PenetrationVsYears to apply load growth
LaterStorage , AppliedNames , UnAppliedNames=PenetrationVsYears (PEN , Type , LaterStorage ,

AppliedNames , UnAppliedNames )
place=0
order = - 1
CustOrder= - 1
again=1
Change=0

CarsApplied=0

#arbitrary sized storage variables, will work unless there are more then 3 times as
many residental customers then

#there are total spotloads
LoadValueMatrix = [ [ ] ] * len (spotload ) *3
u=0
NamesApplied= [ ]
#Sets LoadValueMa
for val in LoadValueMatrix :

LoadValueMatrix [u ] = 0 . 0
u=u+1

PhraseMaterix = [ [ ] ] * len (spotload ) *3
CurrentSpotNum = [ [ ] ] * len (spotload ) *3
Placeholder = [ [ ] ] * len (spotload ) * 3
CustNumholder = [ [ ] ] * len (spotload ) * 3

#While for looping through entire spotload list
while place < len (spotload ) :

spotnum=spotload ['device_number' ] [place ]
CustLoad = cympy .study .GetLoad (spotnum , 14 )
CustList = CustLoad .ListCustomers ( )
spot_load_device = cympy .study .GetDevice (spotnum , cympy .enums .DeviceType .SpotLoad )

if Change == 1 :
order=order+1
Change = 0

OriValue=0

#Loops through each of the customers inside the spotload
for j in range ( 0 , len (CustList ) ) :

CustOrder = CustOrder + 1
ApplyValue=0
#Check to make sure customer isn't an EV only placement customer
if CustList [j ] != spotnum :
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customer_load_prop = "CustomerLoads.Get({value})." .format (value=CustList [j
] )

CustType = spot_load_device .GetValue (customer_load_prop + "CustomerType" )

#again = number of EV cars possible
value=0
if CustType == "Residential" :

again = CustCarStorage [CustOrder ] [ 1 ] [ 0 ]
realplace=spotnum
PlaceInCust= - 1
for val in CustCarStorage [CustOrder ] [ 3 ] :

PlaceInCust=PlaceInCust+1

#Pen is a random value from 0 to 100, checking too see if EV's are
added or not

Pen=random .uniform ( 0 , 100)
if val != 0 and CustCarStorage [CustOrder ] [ 4 ] [ PlaceInCust ] == 1 :

OriValue = OriValue + L1Store [CustCarStorage [CustOrder ] [ 2 ] [
PlaceInCust ] ] [ 0 ]

if val != 0 and CustCarStorage [CustOrder ] [ 4 ] [ PlaceInCust ] == 2 :
OriValue = OriValue + L2Store [CustCarStorage [CustOrder ] [ 2 ] [

PlaceInCust ] ] [ 0 ]
#if the random Pen is larger then the % of added EV's this time,

then add the EV load
if float (Pen ) <= float (Penetration ) and val == 0 :

CarsApplied=CarsApplied+1
ApplyValue=ApplyValue+1

FirstPhrase = "CustomerLoads.Get({num}).CustomerLoadModels.Get
(1)." .format (num=realplace )

SecondPhrase , kWPhase = PhaseCheck (FirstPhrase ,
spot_load_device )

#Checks too see if val is between 0 and the % ratio of L1 to
L2

if CustCarStorage [CustOrder ] [ 4 ] [ PlaceInCust ] = = 1 :

OriValue =OriValue+L1Store [CustCarStorage [CustOrder ] [ 2 ] [
PlaceInCust ] ] [ 0 ] / 1 0 0 0

CustCarStorage [CustOrder ] [ 3 ] [ PlaceInCust ]=1

LoadValueMatrix [order ] = OriValue

CurrentSpotNum [order ] = spotnum
PhraseMaterix [order ] = FirstPhrase + SecondPhrase + "

LoadValue.KW"
Placeholder [order ]=place
CustNumholder [order ]=CustList [j ]
Change=1

#Each time an EV is added, remove it from CustCarStorage
CustCarStorage [CustOrder ] [ 1 ] [ 1 ] = CustCarStorage [CustOrder

] [ 1 ] [ 1 ] - 1
value=value+1
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#Checks too see if the random val is larger then L1's %, and
less then or equal to the

#combined L1 and L2 percentages
elif CustCarStorage [CustOrder ] [ 4 ] [ PlaceInCust ] = = 2 :

OriValue = OriValue + L2Store [CustCarStorage [CustOrder
] [ 2 ] [ PlaceInCust ] ] [ 0 ] / 1 0 0 0

CustCarStorage [CustOrder ] [ 3 ] [ PlaceInCust ] = 2

LoadValueMatrix [order ] = OriValue
CurrentSpotNum [order ] = spotnum
PhraseMaterix [order ] = FirstPhrase + SecondPhrase + "

LoadValue.KW"
Placeholder [order ] = place
CustNumholder [order ] = CustList [j ]
Change=1

CustCarStorage [CustOrder ] [ 1 ] [ 1 ] = CustCarStorage [CustOrder
] [ 1 ] [ 1 ] - 1

value=value+1
if ApplyValue != 0 :

NamesApplied .append (CustList [j ] )

place=place+1

#ChangeLoad takes the collected customer load manipulation phrases and applies them to
the EV load

model_filename_EV = ChangeLoad (LoadValueMatrix , PhraseMaterix , order , CurrentSpotNum ,
through_filename ,PEN , Type )

NamesApplied .sort (key=takeFirst , reverse=True )

return model_filename_EV , CustCarStorage , CurrentSpotNum , CarsApplied , NamesApplied ,
LaterStorage , AppliedNames , UnAppliedNames

B.3 IntentionalLoad

def IntentionalLoad (model_filename , IntProfile ) :
'''
This function asks the user if there are Hi-P EVSE they want to add into the study,

then calls a function for
creating the branch of equipment required for large EV loads
'''
NameStorage= [ ]

NamesAll = [ ]
UnAppliedNames= [ ]
AppliedNames= [ ]
IntValue =0

LaterStorage= [ ]
start=datetime .now ( )
open_study (model_filename )

#Python User Input
choice = raw_input ("Will you be adding large EVSE? (Yes/No):" )
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while choice == 'Yes' :
#(String) Case Sensitive Spotload index number
name = raw_input ("Enter Spotload Number/Name:" )

#(int) Size of EVSE
demand = raw_input ("Enter size of EVSE in kW:" )
demand=float (demand )

#(int) Number of same kW EVSE at node to add
amount = raw_input ("Enter number of identically sized EVSE at location:" )
amount=int (amount )
demandAdjust=demand*amount

#diversityfactor is from PGE transformer ratings
diversityfactor = DiversityAdjustment (amount )

#AdjustedDemand represents total realistic EVSE demand
AdjustedDemand=demandAdjust*diversityfactor

#(String) Phase of EVSE
phase = raw_input ("Enter Phase of EVSE (A,B,C,AB,BC,AC,ABC):" )

#(int) Phase of EVSE
volt = int (raw_input ("Please enter the secondary voltage of the transformer 208,

240, 480:" ) )

#(string) If more EVSE of a different size is going to be added
another=raw_input ('Will you be adding any aditional EVSE to this location? (Yes/No

):' )

while another == 'Yes' :
#Collects information on the addition EVSE
demand_add = raw_input ("Enter size of EVSE in kW:" )
demand_add = float (demand_add )

amount_add = raw_input ("Enter number of identically sized EVSE at location:" )
amount_add = int (amount_add )
demandAdjust_add = demand_add * amount_add

#Finding the diversityfactor for the current class of EVSE, then adds it to
the tot EVSE demand

diversityfactor = DiversityAdjustment (amount_add )
AdjustedDemand_add=demandAdjust_add *diversityfactor
AdjustedDemand=AdjustedDemand+AdjustedDemand_add

another = raw_input ('Will you be adding any aditional EVSE to this location? (
Yes/No):' )

if another == 'No' :
#Where intentional EVSE are applied to the distribution study or stored for

later application
now=raw_input ('Is this load going to be added right away, or wait until a

certain year?(N/W):' )

if now == 'N' :
# IntLoadBranchCreation takes the information given by the user and

creates a seperate
# branch of transformer and spotload to hold the intentional loads
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model_filename=IntLoadBranchCreation (name , AdjustedDemand , phase , volt ,
IntProfile [IntValue ] )

#Adds intentional EVSE name to a list of applied intentional EVSE
value=[name , IntProfile [IntValue ] ]
AppliedNames .append (value )

#List of all EVSE names applied or stored
NamesAll .append (value )

else :
#Asks for the year at which the EVSE will be applied
year=int (raw_input ('What year will this EVSE be added onto the system?:' ) )

#Stores the information needed to use IntLoadBranchCreation on a future
system

store= [year , name , AdjustedDemand , phase , volt , 0 , IntProfile [IntValue ] ]
LaterStorage .append (store )
value = [name , IntProfile [IntValue ] ]
#Adds intentional EVSE name to a list of unapplied intentional EVSE
UnAppliedNames .append (value )
NamesAll .append (value )

IntValue=IntValue+1
#If yes then asks user for more intentional load information
choice=raw_input ("Will you be adding additional loads at a different spotload? (

Yes/No):" )

#Creates a new filename, for checking CYME study
new_filename_template = model_filename .split ('.' )
model_filename_changed = new_filename_template [ 0 ] + '_Record.' + new_filename_template

[ 1 ]
save_study (model_filename_changed )
cympy .study .Close (False )
end=datetime .now ( )

print ('IntentionalLoad Done in ' + str ( (end - start ) .total_seconds ( ) ) + ' seconds' )
return model_filename_changed , LaterStorage , AppliedNames , UnAppliedNames , NamesAll

B.4 IntLoadBranchCreation

def IntLoadBranchCreation (Spotload_USER_INPUT , adjustedDemand , phase , volt ,DemandProfile ) :
'''
IntLoadBranchCreation takes the user input data and creates the distribution lines and

transformers connecting the new EVSE load to the distribution system
'''

if phase == 'A' or phase == 'B' or phase == 'C' :
TrueDemand = adjustedDemand

elif phase == 'AB' or phase == 'AC' or phase == 'BC' :
TrueDemand = adjustedDemand / 2

else :
TrueDemand=adjustedDemand / 3

spotload = cympy .study .ListDevices ( 1 4 )
XFMRByPhase = cympy .study .ListDevices ( 3 3 )
Cables = cympy .study .ListDevices ( 1 0 )

sizelist= [ 1 . 5 , 3 . 0 , 5 . 0 , 1 0 . 0 , 1 5 . 0 , 2 5 . 0 , 3 7 . 5 , 50 , 5 5 . 0 , 7 5 . 0 , 100 , 125 , 150 , 1 6 6 . 7 ,
2 5 0 . 0 , 3 3 3 . 3 , 5 0 0 . 0 ]

93



for val in sizelist :
if val > TrueDemand :

XfmrStartPhrase='{num}_KVA' .format (num=val )
break

if volt == 208 :
XfmrEndPhrase='_1P_120/208V'

elif volt == 240 :
XfmrEndPhrase = '_1P_120/240V'

elif volt == 480 :
XfmrEndPhrase = '_1P_277/480V'

else :
print 'Invalid secondary voltage on load'

XfmrIDString=XfmrStartPhrase+XfmrEndPhrase

for abc in range (len (spotload ) ) :
if spotload [abc ] . DeviceNumber == Spotload_USER_INPUT :

spotindex = abc

CheckingSec = spotload [spotindex ] . SectionID
NetworkStr = spotload [spotindex ] . NetworkID
load_flow = cympy .sim .LoadFlow ( )
load_flow .Run ( )

From1 = UserInput .NodeCheckSpot (spotload [spotindex ] . DeviceNumber )
#print 'From Spotload Section'
From2 , To2 = UserInput .NodeCheck (spotload , XFMRByPhase , Cables , From1 )

#print 'From Getting XFMR Section'
#print 'To Getting XFMR Section'
From3 = UserInput .NodeCheckXFMR (To2 )
#print'From gathering XFMR Device'
From4 , To4 = UserInput .NodeCheck (spotload , XFMRByPhase , Cables , From3 )
#print 'From Getting Cable Section'
#print 'To Getting Cable Section'
From5 = UserInput .NodeCheckSection (To4 )
#print'From cable, should be final node'

XFMRDevice = cympy .study .GetDevice (To2 , 33 )

XFMR_IDA = ''
XFMR_IDB = ''
XFMR_IDC = ''
XFMR_ConnectStatus = XFMRDevice .GetValue ('ConnectionStatus' )
CableSection = cympy .study .GetDevice (To4 , 10 )
Cable_ID = CableSection .GetValue ('CableID' )
Cable_length = CableSection .GetValue ('Length' )

# Cable Section CableID, Length
# XFMR section PhaseTransformerID1,2,3, ConnectionStatus

AnotherStep = cympy .study .GetNode (From5 )

to_node = cympy .study .Node ( )
to_node .ID = AnotherStep .ID + '-2'
to_node .X = AnotherStep .X + 10
to_node .Y = AnotherStep .Y + 10
checking = cympy .study .NetworkIterator (From3 )

94



checking .Next ( )
Checkingphase = checking .GetSourcePhase ( )

XFMR_IDA ,XFMR_IDB , XFMR_IDC = XfmrID (XFMR_IDA ,XFMR_IDB , XFMR_IDC , Checkingphase ,
XfmrIDString )

cympy .study .AddSection (CheckingSec + '-2' , NetworkStr , To4 + '-2' , cympy .enums .
DeviceType .Underground ,AnotherStep .ID , to_node )

NewCable = cympy .study .GetDevice (To4 + '-2' , 10 )

NewCable .SetValue (Cable_ID , 'CableID' )
NewCable .SetValue (Cable_length , 'Length' )

to_node2 = cympy .study .Node ( )
to_node2 .ID = to_node .ID + '-3'

to_node2 .X = to_node .X + 10
to_node2 .Y = to_node .Y + 10

cympy .study .AddSection (CheckingSec + '-3' , NetworkStr , From2 + '-3' , cympy .enums .
DeviceType .TransformerByPhase , to_node .ID ,

to_node2 )

NewXFMR = cympy .study .GetDevice (From2 + '-3' , 33 )
NewXFMR .SetValue (XFMR_ConnectStatus , 'ConnectionStatus' )

if XFMR_IDA != '' :
NewXFMR .SetValue (XFMR_IDA , 'PhaseTransformerID1' )

if XFMR_IDB != '' :
NewXFMR .SetValue (XFMR_IDB , 'PhaseTransformerID2' )

if XFMR_IDC != '' :
NewXFMR .SetValue (XFMR_IDC , 'PhaseTransformerID3' )

load_flow .Run ( )
to_node3 = cympy .study .Node ( )
to_node3 .ID = to_node2 .ID + '-3'
to_node3 .X = to_node2 .X + 10
to_node3 .Y = to_node2 .Y + 10

cympy .study .AddSection (CheckingSec + '-4' , NetworkStr , To4 + '-4' , cympy .enums .
DeviceType .Underground , to_node2 .ID ,to_node3 )

cympy .study .AddDevice (From2 + '-2' , 14 , CheckingSec + '-4' )

NewLoad= cympy .study .GetLoad (From2+'-2' , 14 )

NewLoad .AddCustomerLoad ('Anything' )
NewDevice = cympy .study .GetDevice (From2+'-2' , 14 )

NewDevice .SetValue ('Fixed' , 'CustomerLoads.Get({value}).CustomerType' .format (value=
From2+'-2' ) )

LoadA="CustomerLoads.Get({num}).CustomerLoadModels.Get(1).CustomerLoadValues.Get(A).
LoadValue.KW" .format (num=From2+'-2' )

LoadB="CustomerLoads.Get({num}).CustomerLoadModels.Get(1).CustomerLoadValues.Get(B).
LoadValue.KW" .format (num=From2 + '-2' )

LoadC="CustomerLoads.Get({num}).CustomerLoadModels.Get(1).CustomerLoadValues.Get(C).
LoadValue.KW" .format (num=From2 + '-2' )

NewDevice .SetValue (float (DemandProfile [ 0 ] [ 0 ] ) , LoadA )
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NewDevice .SetValue (float (DemandProfile [ 1 ] [ 1 ] ) , LoadB )
NewDevice .SetValue (float (DemandProfile [ 2 ] [ 2 ] ) , LoadC )

model_filename_Tests = 'C:\\Users\\pwrlab07\\PycharmProjects\\PGEPython\\INPUT\\
Ceder_Hills_CheckingAdd.sxst'

function_study_analysis .save_study (model_filename_Tests )

return model_filename_Tests

B.5 PenetrationVsYears

def PenetrationVsYears (Pen , Type , LaterStorage , AppliedNames , UnAppliedNames ) :
'''
PenetrationVsYears reads a csv the lists an estimated EV penetration value next too

the year when it's expected
to happen with two columns, one for the year, the other penetration

This is used for determining the years to apply Load Growth at each penetration
'''

UseType='Fixed'
if Type != '' :

UseType=Type
path = "C:\\Users\\pwrlab07\\Downloads\\PenetrationVsYear.csv"
df = pandas .read_csv (path )
Years_df = df ['Year' ]
Penetration_df = df ['Penetration' ]
Pen=int (Pen )

i=0
ActualYear=0
PreviousYear=0
set = 0
for val in Penetration_df :

val=int (val )
if set == 0 :

if val == Pen :
ActualYear = int (Years_df [i ] )
set=1

elif (val - Pen ) > 0 and i == 0 :
ActualYear = int (Years_df [ 0 ] )
set=1

if i < len (Penetration_df - 1 ) and set == 0 :
if Pen > Penetration_df [i ] and Pen < Penetration_df [i+ 1 ] :

year_dif=Years_df [i+1] -Years_df [i ]
pen_dif=Penetration_df [i+1] -Penetration_df [i ]
val=Pen -Penetration_df [i ]
ActualYear=val*year_dif /pen_dif + Years_df [i ]
set=1

i=i+1

if LaterStorage != [ ] :
for i in range (len (LaterStorage ) ) :
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if LaterStorage [i ] [ 0 ] <= ActualYear and LaterStorage [i ] [ 5 ] = = 0 :

IntLoadBranchCreation (LaterStorage [i ] [ 1 ] ,LaterStorage [i ] [ 2 ] ,LaterStorage [i
] [ 3 ] ,LaterStorage [i ] [ 4 ] ,LaterStorage [i ] [ 6 ] )

appendval=[LaterStorage [i ] [ 1 ] , LaterStorage [i ] [ 6 ] ]
AppliedNames .append (appendval )
integer= - 1
for name in UnAppliedNames :

integer = integer+1
if name [ 0 ] == LaterStorage [i ] [ 1 ] :

UnAppliedNames .pop (integer )

LaterStorage [i ] [ 5 ] = 1

CustTypes = cympy .study .ListCustomerTypes ( )

CustTypes .remove (UseType )
Networks = cympy .study .ListNetworks ( )
load_growth = cympy .study .LoadGrowth ( )
load_growth .GrowthPercent = 1 . 5
load_growth .SetIncludeCustormerType (UseType , False )

ActualYear=int (math .floor (ActualYear ) )
#Check to see if the current year of devices is the same as the year from the imported

file
#If it isn't the same year, apply load growth

if ActualYear != load_growth .GetActualGrowthYears (Networks , CustTypes ) [ 0 ] :

load_growth .Apply (Networks , ActualYear )

load_flow = cympy .sim .LoadFlow ( )
load_flow .Run ( )

return LaterStorage ,AppliedNames , UnAppliedNames

B.6 Reapply

def ReApply (model_filename , CustCarStorage , time , L1Store , L2Store , AppliedIntNames ,
time_int ) :
'''
This function exists solely to reapplying different loads at different time steps
'''
load_flow = cympy .sim .LoadFlow ( )
load_flow .Run ( )
NamesApplied= [ ]
place=0
TotalApplied=0
secondstep = 0
for cust in CustCarStorage :

OriValue=0
if secondstep==1:

if cust [ 5 ] == OldCust :
OriValue=LastAdd

valuePlace= - 1
CheckPlaced= - 1
for value in cust [ 3 ] :
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valuePlace=valuePlace+1
if value==1:

CheckPlaced=1
OriValue=OriValue+L1Store [cust [ 2 ] [valuePlace ] ] [ time ] / 1 0 0 0

if value==2:
CheckPlaced = 2
OriValue=OriValue+L2Store [cust [ 2 ] [valuePlace ] ] [ time ] / 1 0 0 0

LastAdd=OriValue
OldCust=cust [ 5 ]
secondstep=1

spot_load_device = cympy .study .GetDevice (cust [ 5 ] , cympy .enums .DeviceType .SpotLoad )
place=place+1
if CheckPlaced != - 1 :

NamesApplied .append (cust [ 0 ] [ 0 ] )
FirstPhrase = "CustomerLoads.Get({num}).CustomerLoadModels.Get(1)." .format (num=

cust [ 5 ] )
SecondPhrase , kWPhase = PhaseCheck (FirstPhrase , spot_load_device )
phrase=FirstPhrase + SecondPhrase + "LoadValue.KW"

spot_load_device .SetValue (float (OriValue ) , phrase )
TotalApplied=TotalApplied+int (OriValue )

time_int
for value in AppliedIntNames :

intspotload=value [ 0 ] +'-2'
spot_load_device = cympy .study .GetDevice (intspotload , cympy .enums .DeviceType .

SpotLoad )
FirstPhrase = "CustomerLoads.Get({num}).CustomerLoadModels.Get(1)." .format (num=

cust [ 5 ] )

LoadA = "CustomerLoads.Get({num}).CustomerLoadModels.Get(1).CustomerLoadValues.Get
(A).LoadValue.KW" .format (num=intspotload )

LoadB = "CustomerLoads.Get({num}).CustomerLoadModels.Get(1).CustomerLoadValues.Get
(B).LoadValue.KW" .format (num=intspotload )

LoadC = "CustomerLoads.Get({num}).CustomerLoadModels.Get(1).CustomerLoadValues.Get
(C).LoadValue.KW" .format (num=intspotload )

spot_load_device .SetValue (float (value [ 1 ] [ 0 ] [ time_int ] ) , LoadA )
spot_load_device .SetValue (float (value [ 1 ] [ 1 ] [ time_int ] ) , LoadB )
spot_load_device .SetValue (float (value [ 1 ] [ 2 ] [ time_int ] ) , LoadC )

NamesApplied .sort (key=takeFirst , reverse=True )
return NamesApplied
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B.7 Processing

def Processing (xfmrStorage , xfmr_byphaseStorage , cableStorage , TimeRange , XfmrVolt ,
ByPhaseVolt , CableVolt , IntByPhaseStorage ,IntByPhaseVolt , NamesAll , HowMany ,
ByPhaseVoltDrop , CableVoltDrop , XfmrVoltOut ) :

'''
Processing works takes the raw floating point number data and converts it into a form

that can be used to output CSV's
'''

XfmrStorageFull , XfmrLenOverFull , XfmrVoltStorageFull , XfmrVoltOutput ,XfmrVoltageTrend
, XfmrLoadingTrend , WorstValues=OverloadGathering (xfmrStorage , TimeRange , XfmrVolt
)

XfmrMostStore=HowManyStoring (WorstValues )

XfmrExcel ,ExcelNameHolder , XfmrExcelHM=ExcelFormatCreation (xfmrStorage ,XfmrMostStore ,
XfmrStorageFull ,XfmrVoltStorageFull , HowMany )

XfmrVoltExcel ,ExcelNameHolderVolt ,XfmrVoltExcelHM=ExcelFormatCreation (XfmrVolt ,
XfmrMostStore ,XfmrStorageFull ,XfmrVoltStorageFull , HowMany )

XfmrVoltOutExcel ,Nul1 ,Nul2=ExcelFormatCreation (XfmrVoltOut ,XfmrMostStore ,
XfmrStorageFull ,XfmrVoltStorageFull , HowMany )

XfmrHist ,XfmrGraph ,XfmrHistHM=HistogramFormat (XfmrLenOverFull , XfmrMostStore , HowMany )

ByPhaseStorageFull , ByPhaseLenOverFull ,ByPhaseVoltStorageFull , ByPhaseVoltOutput ,
ByPhaseVoltageTrend , ByPhaseLoadingTrend , WorstValues=OverloadGathering (
xfmr_byphaseStorage , TimeRange , ByPhaseVolt )

Dropvar1 , Null1 , Dropvar2 , Null2 ,Null3 , Null4 , Null5=OverloadGathering (
xfmr_byphaseStorage , TimeRange , ByPhaseVoltDrop )

ByPhaseMostStore=HowManyStoring (WorstValues )

ByPhaseExcel ,ExcelNameHolder , ByPhaseExcelHM = ExcelFormatCreation (xfmr_byphaseStorage
, ByPhaseMostStore , ByPhaseStorageFull ,ByPhaseVoltStorageFull , HowMany )

ByPhaseVoltExcel ,ExcelNameHolder , ByPhaseVoltExcelHM = ExcelFormatCreation (ByPhaseVolt
, ByPhaseMostStore , ByPhaseStorageFull ,ByPhaseVoltStorageFull , HowMany )

ByPhaseVoltDropExcel , Null1 , Null2 = ExcelFormatCreation (ByPhaseVoltDrop ,
ByPhaseMostStore , Dropvar1 , Dropvar2 , HowMany )

ByPhaseHist ,ByPhaseGraph ,ByPhaseHistHM = HistogramFormat (ByPhaseLenOverFull ,
ByPhaseMostStore , HowMany )

if NamesAll != [ ] :
IntByPhaseStorageFull , IntByPhaseLenOverFull ,IntByPhaseVoltStorageFull ,

IntByPhaseVoltOutput ,IntByPhaseVoltageTrend , IntByPhaseLoadingTrend ,
WorstValues=OverloadGathering (IntByPhaseStorage , TimeRange , IntByPhaseVolt )

IntByPhaseMostStore=HowManyStoring (WorstValues )

IntByPhaseExcel ,ExcelNameHolder ,IntByPhaseExcelHM= ExcelFormatCreation (
IntByPhaseStorage , IntByPhaseMostStore , IntByPhaseStorageFull ,
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IntByPhaseVoltStorageFull , HowMany )

IntByPhaseVoltExcel ,ExcelNameHolder ,IntByPhaseVoltExcelHM = ExcelFormatCreation (
IntByPhaseVolt , IntByPhaseMostStore , IntByPhaseStorageFull ,
IntByPhaseVoltStorageFull , HowMany )

IntByPhaseHist ,IntByPhaseGraph ,IntByPhaseHistHM = HistogramFormat (
IntByPhaseLenOverFull , IntByPhaseMostStore , HowMany )

else :
IntByPhaseExcel=0
IntByPhaseMostStore=0
IntByPhaseVoltExcel=0
IntByPhaseHist=0
IntByPhaseExcelHM=0
IntByPhaseVoltExcelHM=0
IntByPhaseHistHM=0

CableStorageFull , CableLenOverFull ,CableVoltStorageFull , CableVoltOutput ,
CableVoltageTrend , CableLoadingTrend , WorstValues=OverloadGathering (cableStorage ,
TimeRange , CableVolt )

CableMostStore=HowManyStoring (WorstValues )

CableExcel ,ExcelNameHolder ,CableExcelHM = ExcelFormatCreation (cableStorage ,
CableMostStore , CableStorageFull ,CableVoltStorageFull , HowMany )

CableVoltExcel ,ExcelNameHolder , CableVoltExcelHM= ExcelFormatCreation (CableVolt ,
CableMostStore , CableStorageFull , CableVoltStorageFull , HowMany )

CableVoltDropExcel= [ ]

CableHist , CableGraph ,CableHistHM = HistogramFormat (CableLenOverFull ,CableMostStore ,
HowMany )

FullVoltage= [ ]
FullVoltage .append (XfmrVoltOutput )
FullVoltage .append (ByPhaseVoltOutput )
FullVoltage .append (CableVoltOutput )
if NamesAll != [ ] :

FullVoltage .append (IntByPhaseVoltOutput )
GraphStorage= [ ]
GraphStorage .append (XfmrGraph )
GraphStorage .append (ByPhaseGraph )
GraphStorage .append (CableGraph )
if NamesAll != [ ] :

GraphStorage .append (IntByPhaseGraph )
VoltageTrendStore= [ ]
VoltageTrendStore .append (XfmrVoltageTrend )
VoltageTrendStore .append (ByPhaseVoltageTrend )
VoltageTrendStore .append (CableVoltageTrend )
if NamesAll != [ ] :

VoltageTrendStore .append (IntByPhaseVoltageTrend )
LoadingTrendStore= [ ]
LoadingTrendStore .append (XfmrLoadingTrend )
LoadingTrendStore .append (ByPhaseLoadingTrend )
LoadingTrendStore .append (CableLoadingTrend )
if NamesAll != [ ] :

LoadingTrendStore .append (IntByPhaseLoadingTrend )
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xfmrStorage=0
xfmr_byphaseStorage=0
cableStorage=0
XfmrVolt=0
ByPhaseVolt=0
CableVolt=0
IntByPhaseStorage=0
IntByPhaseVolt=0

XfmrVoltOutput = 0
ByPhaseVoltOutput = 0
CableVoltOutput = 0
IntByPhaseVoltOutput = 0

XfmrGraph = 0
ByPhaseGraph = 0
CableGraph = 0
IntByPhaseGraph = 0

XfmrVoltageTrend = 0
ByPhaseVoltageTrend = 0
CableVoltageTrend = 0
IntByPhaseVoltageTrend = 0

XfmrLoadingTrend = 0
ByPhaseLoadingTrend = 0
CableLoadingTrend = 0
IntByPhaseLoadingTrend = 0
XfmrStorageFull=0
XfmrLenOverFull=0
XfmrVoltStorageFull=0
ByPhaseStorageFull = 0
ByPhaseLenOverFull = 0
ByPhaseVoltStorageFull = 0
CableStorageFull = 0
CableLenOverFull = 0
CableVoltStorageFull = 0
IntByPhaseStorageFull = 0
IntByPhaseLenOverFull = 0
IntByPhaseVoltStorageFull = 0
ExcelNameHolder=0
CableVoltDrop=0
ByPhaseVoltDrop=0

return XfmrExcel , XfmrMostStore ,XfmrVoltExcel , ByPhaseExcel , ByPhaseMostStore ,
ByPhaseVoltExcel ,CableExcel , CableMostStore ,CableVoltExcel , XfmrHist ,ByPhaseHist ,
FullVoltage ,GraphStorage ,IntByPhaseExcel , IntByPhaseMostStore ,IntByPhaseVoltExcel ,
IntByPhaseHist , VoltageTrendStore , LoadingTrendStore ,XfmrExcelHM ,XfmrVoltExcelHM ,
XfmrHistHM ,ByPhaseExcelHM ,ByPhaseVoltExcelHM ,ByPhaseHistHM ,IntByPhaseExcelHM ,
IntByPhaseVoltExcelHM ,IntByPhaseHistHM ,CableExcelHM ,CableVoltExcelHM ,CableHistHM ,
ByPhaseVoltDropExcel , CableVoltDropExcel , XfmrVoltOutExcel

101



B.8 CSVOutputs

def CSVOutputs (Penetration , XfmrExcel ,XfmrWorst , ByPhaseExcel ,ByPhaseWorst , CableExcel ,
CableWorst , XfmrVoltExcel , ByPhaseVoltExcel , CableVoltExcel ,XfmrHist ,ByPhaseHist ,
FullVoltage ,GraphStorage ,IntByPhaseExcel ,IntByPhaseWorst , IntByPhaseVoltExcel ,
IntByPhaseHist , VoltageTrendStore , LoadingTrendStore , NamesAll , TimeRange ,XfmrExcelHM ,
XfmrVoltExcelHM ,XfmrHistHM ,ByPhaseExcelHM ,ByPhaseVoltExcelHM ,ByPhaseHistHM ,
IntByPhaseExcelHM ,IntByPhaseVoltExcelHM ,IntByPhaseHistHM ,CableExcelHM ,CableVoltExcelHM
,CableHistHM ,times , ByPhaseVoltDropExcel ,CableVoltDropExcel ,XfmrVoltOutExcel ) :

'''
CSVOutputs is the function used to output information found during the study into CSV'

s saved to the users drive
'''

timesExcel=times
timesExcel .insert ( 0 , '1/1/2010 0:00' )

timesExcel .insert ( 0 , '1/1/2010 0:00' )

name = ('Transformer_Loading.xlsx' )
ExportExcel (Penetration ,timesExcel , XfmrExcel ,XfmrWorst , name )
XfmrExcel=0

name = ('By_Phase_Transformer_Loading.xlsx' )
ExportExcel (Penetration ,timesExcel , ByPhaseExcel ,ByPhaseWorst , name )
ByPhaseExcel = 0

name = ('Transmission_Line_Loading.xlsx' )
ExportExcel (Penetration ,timesExcel , CableExcel ,CableWorst , name )
CableExcel = 0

name = ('Transformer_Voltage_Level.xlsx' )
ExportExcel (Penetration ,timesExcel , XfmrVoltExcel ,XfmrWorst , name )
XfmrVoltExcel=0
name = ('Transformer_Voltage_Level_Distribution_Side.xlsx' )
ExportExcel (Penetration ,timesExcel , XfmrVoltOutExcel ,XfmrWorst , name )
XfmrVoltExcel=0

name = ('By_Phase_Transformer_Voltage_Level.xlsx' )
ExportExcel (Penetration ,timesExcel , ByPhaseVoltExcel ,ByPhaseWorst , name )
ByPhaseVoltExcel=0

name = ('By_Phase_Transformer_Voltage_Drop.xlsx' )
ExportExcel (Penetration ,timesExcel , ByPhaseVoltDropExcel ,ByPhaseWorst , name )
ByPhaseVoltDropExcel=0

name = ('Transmission_Line_Voltage_Level.xlsx' )
ExportExcel (Penetration ,timesExcel , CableVoltExcel ,CableWorst , name )
CableVoltExcel=0

if NamesAll != [ ] :
name = ('Intentional_By_Phase_Transformer_Loading.xlsx' )
ExportExcel (Penetration ,timesExcel , IntByPhaseExcel ,IntByPhaseWorst , name )
IntByPhaseExcel=0
name = ('Intentional_By_Phase_Transformer_Loading_Worst_Assets.xlsx' )
ExportExcel (Penetration , timesExcel , IntByPhaseExcelHM , IntByPhaseWorst , name )
IntByPhaseExcelHM = 0
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name = ('Intentional_By_Phase_Transformer_Voltage_Level.xlsx' )
ExportExcel (Penetration ,timesExcel , IntByPhaseVoltExcel ,IntByPhaseWorst , name )
IntByPhaseVoltExcel=0
name = ('Intentional_By_Phase_Transformer_Voltage_Level_Worst_Assets.xlsx' )
ExportExcel (Penetration ,timesExcel , IntByPhaseVoltExcelHM ,IntByPhaseWorst , name )
IntByPhaseVoltExcelHM=0

val = - 1
for Pen in Penetration :

val = val + 1
excelTitle = 'Transformer_Loading_Histograms_{penetration}.xlsx' .format (

penetration=Pen )
ExportHistogram (XfmrHist ,excelTitle ,val )

XfmrHist=0
val = - 1
for Pen in Penetration :

val = val + 1
excelTitleByPhase = 'By_Phase_Transformer_Loading_Histograms_{penetration}.xlsx' .

format (penetration=Pen )
ExportHistogram (ByPhaseHist , excelTitleByPhase , val )

ByPhaseHist=0
val = - 1
for Pen in Penetration :

val = val + 1
excelTitle = 'Transformer_Loading_Histograms_{penetration}_Worst_Assets.xlsx' .

format (penetration=Pen )
ExportHistogram (XfmrHistHM ,excelTitle ,val )

XfmrHistHM=0
val = - 1
for Pen in Penetration :

val = val + 1
excelTitleByPhase = 'By_Phase_Transformer_Loading_Histograms_{penetration}

_Worst_Assets.xlsx' .format (penetration=Pen )
ExportHistogram (ByPhaseHistHM , excelTitleByPhase , val )

ByPhaseHistHM=0
if NamesAll != [ ] :

val = - 1
for Pen in Penetration :

val = val + 1
excelTitleByPhase = 'Intentional_By_Phase_Transformer_Loading_Histograms_{

penetration}.xlsx' .format (penetration=Pen )
ExportHistogram (IntByPhaseHist , excelTitleByPhase , val )

IntByPhaseHist=0
val = - 1
for Pen in Penetration :

val = val + 1
excelTitleByPhase = 'Intentional_By_Phase_Transformer_Loading_Histograms_{

penetration}_Worst_Assets.xlsx' .format (
penetration=Pen )

ExportHistogram (IntByPhaseHistHM , excelTitleByPhase , val )
IntByPhaseHistHM = 0

excelTitle = 'Asset_Under_Voltage_Trends_Use_Case.xlsx'
VoltageOutput (FullVoltage , Penetration ,excelTitle )
FullVoltage=0
excelTitle = 'Asset_Under_Voltage_Trends_Use_Case_Per_Pen.xlsx'
VoltageOutputPen (VoltageTrendStore , Penetration , excelTitle , times )
excelTitle = 'Asset_Over_Loading_Trends_Use_Case_Per_Pen.xlsx'
LoadingOutputPen (LoadingTrendStore , Penetration , excelTitle , times )
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VoltageTrendStore=0

LoadingGraphOutput (GraphStorage , Penetration )

return
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