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Abstract 

 

Recent advances in remote sensing data and technology have allowed for 

computational models to be designed that successfully extract landforms from the 

landscape. The goal of this work is to create one such semi-automated model to extract 

deep-seated landslides located in complex geomorphic terrain. This is accomplished 

using geographic object-based image analysis (GEOBIA) techniques, considered by 

leaders in the field of image analysis to have an advantage over traditional automated 

classification methods. GEOBIA methods can mimic human visual interpretation by 

including more characteristic features used to assess the relationship between image data 

and the ground surface such as color reflectance (spectral), texture, shadow, location, 

pattern, height, tone, context, size, and shape.  

The standard method for identifying and mapping landslides in the Pacific 

Northwest is for professional geologists to manually delineate landform features using 

remote sensing data, referred to as remote mapping. The method is currently employed 

by United States Geological Survey (USGS), Washington State Department of Natural 

Resources (WA DNR), and Oregon Department of Geology and Mineral Industries 

(DOGAMI). The question remains if semi-automated models can perform as well as 

independent manual mappers when identifying landslides, while reducing bias due to 

interpretation discrepancies between mappers.  

To test this hypothesis, two modeled landslide datasets are created. The first, 

using a model design that was not influenced by manual mapping efforts, and the second 

created using manually mapped landslides for visual reference. These two modeled 
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datasets are then compared to a manually mapped landslide inventory, created with input 

from four professional geomorphologists. Differences in landslide numbers, densities, 

geometries, and extents, that were delineated by the geologists, reflected the range of 

professional backgrounds. The overlapping spatial area of landslides delineated by all 

geologists is used as reference to verify landslide areas from the first modeled dataset. 

Agreement statistics (i.e., accuracy) suggest 81% of the modeled landslide area are 

appropriately delineated by the model in this study. The second set of modeled landslides 

are verified by comparing the spatial dataset to all landslides inventoried by the 

geologists (i.e., any terrain delineated as a landslide). Use of all landslides in the 

inventory eliminated the need to filter the data, thus introducing bias into the reference 

inventory. Agreement statistics (i.e., accuracy) suggest 78% of the modeled landslide 

area are appropriately delineated. Perhaps more interesting, agreement statistics for 

recall, emphasizing correct identification for all reference landslides, suggest 69% of the 

area is correctly identified as a landslide. This is compared to landslide area recall 

between the four manual mappers which ranges from 35-99% within the study area.  

The data suggest the model is objectively using a set of morphometric 

characteristics to map the landslides, while the professional geomorphologists have 

developed interpretation style biases that lead to a large range in area mapped as a 

landslide. Incorrectly identifying terrain as stable could have negative impacts on public 

safety, suggesting more research is necessary to determine the true population of 

landslides that exist on the landscape. Automated models can be useful with that effort.
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1. Introduction

1.1 Motivation 

Landslide inventories are critical to understanding the spatial distribution and 

geometric properties of unstable hillslopes. The purpose of this paper is to introduce a 

new classification approach used for automating the process of creating deep-seated 

landslide inventories from high-resolution lidar data. A key component of this research is 

an in-depth exploration of inventories created by professional geologists, which are used 

to test model performance. This tool builds on automated landform mapping techniques 

presented by Shaw et al. (2017) where a suite of landforms, including deep-seated 

landslides, are successfully mapped using algorithms that define surface topography in 

terms of morphological attributes. Model advancements I make include introduction of 

indices created to classify landslides using a hierarchical data processing scheme. I use 

Trimble Geospatial’ s eCognition software to design the Geographic Object-based Image 

Analysis (GEOBIA) routine. The empirical, image analysis approach I use mimics 

human perception of characteristic topographic features allowing for deep-seated 

landslides to be identified and mapped systematically. I then compare the model output 

with a compilation of manually mapped landslides created by a group of four 

geomorphologists with close to 100 years of combined professional landslide-mapping 

experience. Study design allows for quantification of agreement between professional 

interpretations, setting up the comparison to the model-produced inventory. The result of 

agreement comparisons between observers, in addition to comparisons being made 
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between the observers and the model, highlights inconsistencies in active vs. inactive 

landslide interpretation. Topography where the inconsistencies are occurring can be 

described using morphometric signatures suggesting that semi-automated modeling 

approaches may have an advantage in objectively classifying landslides.  

1.2 Definition of Deep-Seated Landslide & Brief History of Inventory Methods 

Comprehensive and precise landslide inventories are essential tools for various 

agencies including academia, emergency response, public works, land use, planning, and 

development (Corominas et al., 2014; Joyce et al., 2014; Razak et al., 2013; Smith & 

Petley, 2009). The purposes requiring landslide inventory maps vary from studying the 

contribution of landslides in landform evolution processes, to predicting serious public 

safety hazards (Galli et al., 2008). For instance, landslide inventory maps are used to 

evaluate the spatial distribution of landslides, thereby allowing for density and abundance 

information to be reported according to the temporal scale of the study. Inventory maps 

also allow for statistics, such as slope failure frequency-area relationships, to be 

quantified as an aid in examination of erosion contributions for a given area (Galli et al., 

2008; Guzzetti et al., 2002). Applied geosciences capitalize on the inventory data when 

predicting local and regional landslide susceptibility, which in turn improves public 

safety and resource protections (Burns & Madin, 2009; Burns & Mickelson, 2016; 

Lacasse et al., 2010; Stumpf & Kerle, 2011).  

While studying the role of landslides on the landscape, scientists make a 

distinction between shallow and deep failures because deeper landslides tend to involve 

different mechanisms and rates of movement, have a unique set of morphological surface 
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expressions, may occur on different parts of the landscape, and can have different 

responses to human and climatic activities (Miller, 2017).  I distinguish between shallow 

and deep failures based on the relation of the failure plane to the rooting depth of trees, 

with shallow failures occurring within the upper soil layers occupied by tree roots (to an 

average depth of 3 m below the surface) and deep-seated occurring below that depth 

(WFPA, 2020). Potentially unstable hillslopes have the potential for causing large losses 

of life when they experience movement. For instance, 43 people devastatingly lost their 

lives due to a deep-seated landslide that recently occurred near Oso, Washington on 

March 22, 2014 (Aaron et al., 2017; Hibert et al., 2015; Iverson et al., 2015; Keaton et al., 

2014; Stark et al., 2017; Wartman et al., 2016). This research will focus on automating 

the identification of deep, gravity driven movements of materials along a surface of shear 

that occurs up to hundreds of meters below ground. This sudden movement is triggered 

when the driving shear stress due to weight of soil, rock, and surface materials such as 

trees exceeds the residual shear strength of the hillslope materials (Terzaghi & Peck, 

1948). Shear strength acting to hold the hillslope intact is reduced by positive pore water 

pressure caused by infiltrated precipitation (i.e., rainfall), which is considered to be the 

main trigger of historic landslides in the Pacific Northwest (LaHusen et al., 2020). Pore 

water pressure is also increased by longer term increases in water table elevations that 

can be due to anthropogenic or climatic changes (Iverson & Major, 1987).  

Traditional methods for mapping deep-seated landslides used for evaluating and 

reducing landslide hazards or risks are completed by interpreting historical data and 

examining landslide features in the field (Wieczorek, 1984). Geologists first conduct a 
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background review of the site including recorded geologic history, existing inventory or 

hazard data, and soil property data. A historical investigation typically includes an office 

screen for previous failures through examination of aerial photographs (often stereo-pair 

images) and topographic map data. The geologist generally completes a field verification 

exercise to identify features indicative of deep-seated instability such as earthen cracks, 

vegetation type and associated key structural changes associated with disturbance 

regimes, disrupted drainages, soil structure changes, undrained depressions, pressure 

ridges, hummocks, deposited sediments, headscarps, and lateral margins. With the data 

collected, landslide type can be established based on exposed material (rock, soil, or 

debris) in combination with noted movement, for instance planar/translational sliding, 

rotational sliding, intact block sliding, or flowing patterns (Hungr et al., 2014; Varnes, 

1978).  

Creating an exhaustive, ground-based, deep-seated landslide inventory is 

challenging and time consuming due to issues of scale and logistical roadblocks. Ground-

based inventories are created by geologists who rely on professional interpretations that 

are inherently biased (Ardizzone et al., 2002; Booth et al., 2009; Guzzetti et al., 2000; 

Galli et al., 2008; Hölbling et al., 2017). With the increasing availability of high-

resolution surface topography including lidar data, geology practitioners and regulatory 

agencies such as the Oregon Department of Geology and Mineral Industries (DOGAMI) 

and Washington States Geological Survey (WGS), who collect, develop, use, distribute, 

and preserve geologic information, have shifted towards inventory mapping based on 

remotely sensed data for increased accuracy and efficiency. These inventories created 
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based on remotely sensed data, hereafter referred to as remote-sensing derived 

inventories, have been described by Burns & Madin (2009) as advantageous compared to 

field mapping alone in that they allow mappers to use multiple spatial and temporal 

scales to clearly identify and isolate parts of landslide complexes that may have different 

activity levels (active vs. inactive) and allow for much larger geographic areas to be 

mapped. Additionally, some features (e.g., large-scale, low-relief deposits) can be 

identified and interpreted more readily from remotely sensed data (Burns & Madin, 

2009). However, landslide inventories produced manually using remotely sensed data 

rely on professional interpretation. This interpretation introduces bias. Mapping 

differences occur when inventories are created by multiple professionals having a large 

range of experience and skill sets (Hölbling et al., 2017). Inventory inconsistencies 

including landslide numbers and densities as well as differences in geometries and 

extents, continue to be problematic (Ardizzone et al., 2002).   

Root causes for inconsistencies in remote-sensing based identification of deep-

seated landslides using high resolution topographic data are both terrain- based, related to 

differences in geology and landslide morphology, and map-based due to variability in 

mapper experience, final map scale, and data quality and processing (Bunn et al., 2015; 

Galli et al., 2008; Hölbling et al., 2017; Kozeniowska, 2017). Terrain-based mapping 

difficulties include identifying landslide components consistently, distinguishing failures 

in complex terrain, and identifying historic or inactive landslides. Exacerbating the map 

product inconsistencies are changes in landslide characteristics that coincide with varying 

lithologies, topography, vegetation, and climates (Glenn et al., 2006). While efforts to 



6 

standardize data collection, processing, and inventory protocols will minimize 

inconsistencies in map-based product variability, terrain-based interpretation challenges 

remain (Burns & Mickelson, 2016; Razak et al., 2013; Sithole & Vosselman, 2013).  

The effects of landslide triggering mechanisms vary depending on elements such 

as slope steepness, terrain morphology, soil type, underlying geology, and anthropogenic 

hillslope alterations (Bobrowsky & Highland, 2013). Interpretation of landslides using 

remote-sensing data does not allow for consideration of soil type or underlying geology. 

Heterogeneous landslide features such as scarps and crowns, lateral margins, transverse 

ridges and cracks, and deposits, as illustrated in Figure 1, are interpreted based on what is 

visible in the remote datasets, for instance what an observer can “see” using a bare-earth 

hillshade map. A clear example of the visible surface expression characteristic of a deep-

seated landslide is the presence of crisp, discernible geomorphological features such as 

arcuate headscarps (equivalent to “main scarps”) with a clear vertical step exposing 

bedrock (Figure 1(A)). Active landslide benches are often riddled with deposits 

consisting of strikingly out-of-place hummocks or angular blocks of displaced materials 

that can include secondary scarps where block detachment has occurred. The active 

landslide body is outlined by a distinct lateral margin with vertical scarps where shear is 

occurring. Often, debris can be found on the depositional toe at the base of the active 

feature, forming a visible debris fan. 
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FIGURE 1. CLOCKWISE FROM TOP LEFT: TEMPORAL PROGRESSION OF LANDSLIDE

SURFACE EXPRESSIONS FROM (A) RECENTLY FAILED, ACTIVE LANDSLIDE TERRAIN TO

(D) OLD, INACTIVE FEATURE PERSISTING ON THE LANDSCAPE. THE TERM “HEADSCARP”

USED IN THIS THESIS COINCIDES WITH THE FEATURE LABELED “MAIN SCARP”

(MODIFIED FROM MCCALPIN, 1984).

1.3 Morphological Evolution of Deep-Seated Landslides 

Through morphological evolution, discrete features of deep-seated landslides become 

more subdued and therefore harder to delineate. The weathering process smooths crisp 

breaks in slope near scarps and lateral margins, and also removes depositional lobes from 

the base of the landslide. Interpretation becomes more difficult as less evidence of failure 

is visible. The purpose of this study is to automate the delineation of hillslope instabilities 

in any activity state, so it is key to define morphological expressions of active and 
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inactive landslides. The following feature evolution description will serve as a target for 

the modeling exercise.  

As a landslide ceases to move downslope as one coherent landmass, small 

subparallel tributary streams can occupy the margins, vegetation reappears, and internal 

cracks can be found in the settling deposits (Figure 1(B)). The unconsolidated toe 

deposits of the once active landslide are susceptible to erosion by streams in the 

floodplain. With additional time, the maturing inactive landslide headscarp may appear 

dissected as it erodes into a more gradual slope angle, losing its discernable shape (Figure 

1(C)). The topography begins to smooth as soil is eroded from hummocks and fills in 

depressions. The stream at the base of the landslide feature is no longer eroding into toe 

deposits although the floodplain downstream of the toe may still retain signs of excess 

debris in the form of terrace blanketing or floodplain widening. As the landslide 

transitions into an older state of inactivity, visible signs of lateral shear along the margins 

disappear, the hummocky topography fades to undulating, and the disrupted drainages 

running through the deposits more closely resemble a stream system near equilibrium 

(Figure 1(D)). Streams cut down through slide debris, truncating depositional toes and 

redistributing debris to form river terraces. These older, more weathered features, which 

lose contrast to neighboring unfailed terrain as they transition into traditional hillslope 

and valley segments are the main cause of disagreement amongst geomorphologists who 

are tasked with interpreting the history of the landscape, as described more fully in 

section 4.1.  
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1.4 Semi-Automated Landslide Models

Currently, visual interpretation of remotely sensed images is the most widely used 

landslide inventory method. However, advancements in inventory automation are being 

fueled by a desire to circumvent professional mapper disagreement regarding landslide 

numbers, densities, geometries, and extents (Galli et al., 2008; Hölbling et al., 2017). 

Many attempts have been made to automate landslide inventory production. The methods 

capitalize on a plethora of high-resolution datasets and increasingly sophisticated 

computer algorithms (Passalacqua et al., 2010). Image analysis approaches designed to 

analyze image pixels are referred to as pixel-based methods, with the minimum analysis 

scale being determined by the size of the image pixels. Pixel-based methods aimed at 

extracting active landslides predominantly use metrics that capture terrain roughness to 

characterize the difference between areas that are more heterogenous than their 

surroundings (e.g., root mean square of elevation and slope values, eigenvalue ratios of 

surface-normal vectors, semivariance, co-occurrence texture statistics, windowed discrete 

Fourier transform (DFT), continuous wavelet transform (CWT), and wavelet lifting 

schemes) (McKean & Roering, 2004; Berti et al., 2013; Whelley et al., 2014). Landslide 

extraction methods based on surface roughness produce landslide inventories with high, 

in some cases greater than 80%, agreement with existing manually created inventories 

(Booth et al., 2009; Kasai et al., 2009; Whelley et al., 2014). The methods perform well 

in isolated test areas but have yet to be applied at the landscape level. Also, while simple 

roughness thresholding has been proven to extract landslides in terrain with 

homogeneous landforms, thresholding alone may not be appropriate to detect landslides 

in complex terrain and in features where age is influencing the roughness (Hölbling et al., 
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2017; Korzeniowska, 2017). Further exploration into the relationship between roughness 

and landslide morphology, including exploitation of contextual information, may prove 

useful in expanding the geographic extent of automated inventories (Korzeniowska, 

2017). Context becomes useful for differentiating inactive landslides from neighboring 

terrain by first classifying features with distinct roughness patterns and then expanding 

the classification into neighboring areas such as weathered headscarps or lateral margins 

with more subdued roughness. 

More recently, the utilities of object-based image analysis (OBIA) or 

geographical object-based image analysis (GEOBIA) techniques are recognized as an 

enhancement to the pixel-based approaches for terrain analysis applications (Blaschke, 

2010; Dragut & Eisank, 2012; Gercek, 2010; Shaw et al., 2017). One limitation of pixel-

based landform classification is pixels that comprise raster-based images have geometric 

dimensions, unlike real landscape features, making them a poor representation of 

landforms observed in nature (Shaw et al., 2017). GEOBIA methods enable grouping of 

remote sensing data pixels into homogeneous clusters, or objects, based on similar 

morphometric attributes. Grouping of the image pixel values (i.e., segmentation) is the 

foundation of a successful computational routine. Segmentation creates objects familiar 

to human perception as they closely approximate real-world features (MacFaden et al., 

2012). Pixel-based digital terrain models also require establishment of grid window sizes 

and/or characteristic scales (Shaw et al., 2017; Booth et al. 2009). GEOBIA methods do 

not require selection of a single analysis scale. They instead provide multi-scale image 

analysis techniques for segmenting and classifying data. Finally, unlike pixel-based 
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methods that do not retain context (neighboring feature information), shape (feature 

outline), texture (variance across space), pattern (configuration), or size, use of objects 

provides access to characteristic features that can be used to define specific classes 

according to geomorphometric concepts.  

Image analysis by way of segmentation and classification may add an element of 

transparency, beneficial in a diverse landscape containing a high density of landforms 

with competing characteristic spatial scales (Booth et al., 2009; Perron et al., 2008; 

Stumph & Kerle, 2011). Object-based routines often employ repetitive trial-and-error 

methods to build contextual relationships describing classified and unclassified objects 

based on their spatial and hierarchical relationship to other objects that overlap spatially 

or share a common border (i.e., their neighbors) (MacFaden et al., 2012). Each step in the 

analysis process provides immediately viewable results, enabling instant translation of 

the mathematical methods used to delineated landslide footprints and classification of the 

components. 

The work presented in this paper will build on previous GEOBIA models that 

have successfully automated the extraction of landslides (Blaschke et al., 2014; Bunn et 

al., 2019; Korzeniowska, 2017; Lahousse et al., 2011; Li et al., 2015; Martha et al., 2010; 

Van Den Eeckhaut et al., 2012). Those authors have successfully mapped landslides in 

specific geomorphic terrain types. This study uses the GEOBIA method to produce a 

landslide map that expands into the diverse terrain of the Pacific Northwest. Unlike the 

previous studies, I am designing the model to map landslides in any activity state. Taking 

advantage of a GEOBIA technique to exclude data from the analysis by way of 

classification, I define classes for landforms that could interfere with deep-seated 
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landslide classifications, prior to running the routine. I then design a new multi-scale 

roughness criterion used to classify landslides based on the density of objects with large 

positive and negative windowed average slope differences to their neighbors. The 

technique, based on statistical methods described in section 2, permits capturing of 

morphological features commonly used by professionals to visually identify deep-seated 

landslides. The result is a model that detects deep-seated landslides, as an expert would, 

but with greater objectivity and reproducibility, as well as more consistent agreement 

with both manually produced landslide inventories and classifications from alternative 

GEOBIA model designs.  
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2. Methods

2.1 Study Area & Background 

The study area is situated in a geographic region known as the Willapa Hills, 

western Washington, United States. The area was selected because it contains an 

abundance of deep-seated landslides with diverse morphologies. It is located entirely on 

privately owned timberlands within the Coast Range of southwestern Washington (inset 

map in Figure 2). The temperate climate and deep, fertile soils are appropriate for 

growing the primary conifer tree species in the study area: 0 to 70+ year old western 

hemlock (Tsuga heterophylla) and Douglas-fir (Pseudotzuga menziesii) (Pringle, 1986; 

Turner et al., 2010). Up to 190 days of the year have measurable rainfall in the Coast 

Range mountains, with December and January being the wettest months (WRCC, 2020). 

The study area occupies the epicenter of an unusually large, but short duration, storm 

event which occurred in December of 2007. Within the 85 km2 study area, 22 deep and 

685 shallow landslides were triggered and digitally recorded (Turner et al., 2010). The 

greatest storm total rainfall amount, most of which fell in just over 48 hours, was 498.6 

mm, recorded at a privately operated, Rock Creek climate station, located within the 

study boundary. The nearby National Weather Service rain gage at Frances (northwest 

corner of map in Figure 2) recorded 358.1 mm of rain, most of which fell in just over 48 

hours. Maximum 24-h precipitation amounts were 70-90% of the storm total (Turner et 

al., 2010).  
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FIGURE 2. EXTENT OF LIDAR DATA FOOTPRINT USED IN STUDY. BLACK HATCHES

DELINEATE PRELIMINARY STUDY EXTENT.  RED HATCHES DELINEATE MODEL

VERIFICATION EXTENT. BLUE POLYGONS DELINEATE MANUAL MAPPING EXTENT.

BLACK BOX IN INSET MAP SHOWING LOCATION OF STUDY IN SOUTHWEST WASHINGTON

STATE.  

An additional consideration for study area selection was the availability of high 

resolution lidar data collected by Watershed Sciences, Inc in 2008, during spring, leaf-off 

tree conditions, through a contract with Weyerhaeuser Company. The point cloud data 

was processed into 2-m resolution grids by Weyerhaeuser GIS staff using a proprietary 

interpolation algorithm. From the gridded data, I selected all available 1x1 km lidar tiles 

that intersected the photo-inventoried, deep-seated-landslide initiation points, for a total 
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of 85 km2, thereby ensuring ample deep-seated landslides existed within the area selected 

for this study (ArcGIS v.9.3). This extent is shown with black hatches in Figure 2. From 

the initial study area, a subset consisting of two randomly selected test areas, shown in 

blue in Figure 2, with moderate landslide densities, as determined by observing modeled 

landslide density distributions, were chosen for model verification. The two test areas 

represent the portion of the study area to be mapped by the four professional geologists 

and will be used as reference for the modeled data, testing agreement between the 

modeled landslide footprint and the manually mapped landslides. Lidar tiles were merged 

to the original study area in the vicinity of the test areas to allow for geographic 

connectivity, aiding the manual interpretation, and is shown with red hatches in Figure 2. 

This expanded model verification extent totaled 49 km2. 

2.2 Geologic History 

The Willapa Hills comprises a structurally complex block of basement rock 

composed primarily of oceanic basalt and marine sedimentary rock that was accreted 

onto western North America through subduction in the mid-Early Triassic (Wells et al., 

2015). The basaltic seamounts and shallow marine sediments are known as the Crescent 

Formation (Tcb) geologic unit, existing roughly in the center of map in Figure 3. 

Overlying and interbedded with the basement rocks are late and middle Eocene age 

tuffaceous siltstone, silty sandstone, and arkosic sandstone of the McIntosh Formation 

(Tmu), deposited in a near-shore marine environment. The younger rocks of the 

McIntosh Formation are exposed to the north and south of Tcb, with progressively 
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younger rocks exposed towards the edges of the map extent, implying an anticlinal 

structure with Tcb at the core (Figure 3) (Ebinghaus et al., 2014; Wells & Sawlan, 2014). 

Numerous dikes and sill-like bodies of porphyritic basalt to gabbro (Tig) intrude both the 

pillow basalts of the Crescent Formation and micaceous arkosic sandstones of the 

McIntosh formation (Ebinghaus et al., 2014). Distribution of these three geologic units 

within the study area is roughly quantified as 40% Tig, 27% Tcb, and 21% Tmu (Figure 

3). It is qualitatively noted that deep-seated landslide densities are higher in the 

sedimentary units, where large earth flows are observed. It is speculated that lower 

densities of deep-seated landslide exist in the competent rocks of the Crescent Formation, 

and moderate densities occur in the Tig geologic unit. 



17 

FIGURE 3. GEOLOGIC MAP OF PROJECT STUDY AREA AND SURROUNDINGS (WELLS &

SAWLAN, 2014). BLACK OUTLINES INDICATE BOTH PRELIMINARY AND VERIFICATION

STUDY EXTENTS IN FIGURE 2. 

Elevations within the study area range from 95 m in the river valleys (Grays, 

Chehalis, and Willapa) to 859 m on the ridgetops. The steeper, ridge and swale 

topography found in the headwaters is formed by resistant volcanic rocks with the gentler 

slopes being comprised of sandstones and siltstones. For modeling purposes, specifically 

identification of headscarps, it is important to note that 32% of the topography in the 

study area has a topographic gradient over 60%. This steep topography will interfere with 

the identification of landslide components based on gradient alone. While only 3% of the 

landslides that initiated within this study area during the 2007 storm event were classified 
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as deep-seated landslide, older failures persist on the landscape that can decrease local 

slope stability (Turner et al., 2010). In order to determine landslide susceptibility of 

specific landforms, a spatially continuous map of landforms, including previously failed 

terrain (i.e., deep-seated landslides) as well as landforms that did not fail must be 

developed (Turner et al., 2010). While detailed landform mapping is beyond the scope of 

this study, I do intend to map deep-seated landslides across the landscape, in any activity 

state, so that they can be incorporated into a detailed landform map.  

Anthropogenic features such as roads can have a mechanical relationship to 

failures, possibly decreasing the stability of the hillslope. Extensive road networks, to 

facilitate forest management operations, were noted during visual inspection of the data. 

The active network includes larger arterial roads (i.e., mainlines) as well as secondary 

feeder and spur roads with older, potentially abandoned roads also visible throughout the 

landscape. In addition to having a relationship with slope stability, roads also pose a 

modeling challenge. Characteristic features of disrupted roads and older, potentially 

abandoned roads are similar to deep-seated landslide components such as bench deposits. 

Care will be taken to model roads to minimize interference with landslide classification. 

2.3 Overview of Object Creation for Image Analysis Routines 

Before describing the algorithms, parameters, and processes used in an object-

based landslide extraction model a theoretical understanding of image analysis goals 

including the basics of feature extraction is helpful. I’ve provided some insight into this 

process in the Appendix (Feature Extraction section). Additionally, an understanding of 
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how meaningful objects are created is necessary. I will discuss this concept first, 

followed by an overview of the specific segmentation algorithms used in this study. The 

goal of feature extraction routines for a computer are to use image information, often in 

the form of nondimensional intensity values, texture, size, location, context, patterns, or 

shapes, to enable automated identification of key features (Di Ruberto & Putzu, 2016). 

An image in this study refers to a pixel-based map derived from the lidar digital elevation 

model (DEM). The image pixel values alone often do not readily translate to 

geomorphometric features as a human perceives them (Van Den Eeckhaut, 2012). Unlike 

real landscape features, individual pixels have regular dimensions and, hence, are a poor 

representation of natural landforms (Shaw et al., 2017). Object-based modeling 

techniques enable the grouping of adjacent pixels with homogeneous values according to 

statistical characteristics. Such a group of pixels is defined as an object. The flowchart in 

Figure 4 describes the basic sequence for creating objects from an image to allow for 

classification of pixels or pixel groups.  
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FIGURE 4. GENERAL GEOBIA WORKFLOW WITH ARROWS TO SHOW ORDER IN WHICH

IMAGE PIXELS ARE SEGMENTED INTO OBJECTS AND THEN CLASSIFIED. 

Creation of objects at a scale that appropriately delineates the features of interest 

uses object statistics, geometry, and context to successfully classify geomorphometric 

features. There are many methods available to create objects from images, and often 

image analysis workflows are designed to incorporate a variety of these methods to 

enable successful feature extractions. Three segmentation algorithms are used in this 

study: chessboard, multi-resolution, and multi-threshold. Figure 5 provides a description 

of the three segmentation routines used along with embedded images showing example 

objects resulting from the use of these algorithms. The parameters associated with each 

described segmentation algorithm are noted with bold type (Figure 5). Image values used 

to create the sample objects in Figure 5 are a slope-based difference to neighbor metric 
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that is defined in Appendix Eq. A2. It is a grey-level image with bright values defining 

pixels with a high positive difference to neighbors and dark defining high negative 

differences.  
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FIGURE 5. EXAMPLE OF PARAMETER SELECTIONS AND OBJECT RESULTS FOR THREE

SEGMENTATION ALGORITHMS USED IN THIS STUDY. 
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The first and simplest segmentation, a chessboard segmentation shown in Figure 

5(A), splits the image into square objects with a specified size in pixels.  

The multi-resolution segmentation (MRS) algorithm shown in Figure 5(B) is a 

bottom-up region merging technique (as described later in this paragraph) that groups 

image pixels based on a manually entered homogeneity criterion and unitless scale values 

(Baatz & Schape, 2000). This algorithm has the capability of using multiple datasets as 

input. The MRS algorithm begins by considering each pixel, or combination of pixels 

from multiple datasets, as a separate object and subsequently merges pairs based on 

similarity between adjacent image objects. The homogeneity criterion that drives the 

merging routine is a combination of shape properties, which describe the likeness of an 

object to a circle or a square, and color, which for this study is simply the image pixel or 

intensity value (Darwish et al., 2003). The algorithm allows for flexibility in object 

creation by using weights that can be assigned to either color or shape. Shape can be 

further weighted for compactness or smoothness. The specific weight used to determine 

the homogeneity parameter can range from 0 to 1 with values close to 0 weighting object 

creation based on pixel or intensity values and values close to 1 weighting selection based 

on shape. For shape weights, 0 is compactness, and 1 is smoothness. For this study, the 

homogeneity value was set to 0.1 for all MRS algorithms, assigning 90% weight to color 

(i.e., lidar derivative image values). This is the default value for the algorithm, and while 

other values were tested, the value of 0.1 produced the most aesthetically pleasing object 

shapes that appeared to delineate landslides well. Equal weights were applied to shape 

parameters (0.5). The homogeneous merging routine described above terminates when a 

user-defined scale threshold (i.e., variance threshold) is reached. Scale describes a 
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“merging cost” that is assigned to each possible merge starting with neighboring pixels 

(Baatz & Schape, 2000). These costs represent the degree of fitting (h) in d-dimensional 

feature space, where d is the number of features (f): 

ℎ =  √∑ (𝑓1𝑑 − 𝑓2𝑑)2
𝑑 . Eq. 1 

The feature I used in segmentation is mean grey-level intensity values, but it can be 

defined as any characteristic feature (e.g., color, context, size, shape, shadow, texture, 

location, pattern, height). The pairwise merging of larger objects increases average 

intensity heterogeneity in the lidar derivatives, so an optimization procedure to minimize 

the incorporated heterogeneity at each merge is implemented in the algorithm. The 

degree of fitting for two adjacent image objects, denoted by the subscripts 1 and 2, is 

described by the change of heterogeneity (ℎ𝑑𝑖𝑓𝑓) such that: 

ℎ𝑑𝑖𝑓𝑓 =  ℎ𝑚 −  
ℎ1𝑛1+ ℎ2𝑛2

𝑛1+ 𝑛2
, Eq. 2 

where (n) is object size, and ℎ𝑚is the average heterogeneity of image objects. The 

algorithm is designed to take into account different sizes of objects and different 

behaviors on different stages of scale since objects of interest typically appear 

simultaneously on different scales in an image (Baatz & Schape, 2000). By increasing the 

scale threshold, larger objects will be created, although their exact size and dimensions 

are dependent on the underlying data.  

The final segmentation used in the study, multi-threshold segmentation, also splits the 

image into objects based on pixel values, but unlike MRS does not incorporate shape, and 

applies to a single image. This creates image objects and simultaneously classifies them 

based on user-created thresholds (Figure 5(C)). Objects can be assigned to a class or be 
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unclassified based on the defined threshold values. The segmentation also uses a scale 

parameter. At a scale equal to 1 all pixels in an image object meeting the threshold 

criteria are segmented and classified. As the scale increases, a larger number of pixels 

with a mean value meeting the threshold criteria are necessary for classification.  

2.4 Preliminary Feature Extraction 

To accommodate terrain variability and allow for model transferability to other 

geographic regions, a single, object-based workflow was designed to extract landslides 

across the diverse geologic setting. By employing a computational process that mimics 

the ability of humans to distinguish between landslide and non-landslide features, 

landforms interfering with landslide classification were extracted first. This excludes 

them from subsequent data analysis. In addition to interfering with landslide 

classification by adding roughness elements to the landscape, the classified features can 

also be used for context (i.e., proximity of objects to classified features). Use of context 

in this fashion provides a characteristic feature used by humans to interpret landforms, 

but also may be used in analysis, for example to determine proximity of a landslide 

feature to a road or stream. The features classified prior to landslides include roads, 

ridges, and streams. The Appendix describes the software packages and data used in this 

crucial first step of the model effort.  

In addition to the landscape-scale features described above, smaller, isolated, 

steep features that the algorithm would confuse with landslide headscarps were also 

excluded. The process used contextual relationships to classify these isolated steep 
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slopes, defined as pockets of topography that are steeper than the surrounding topography 

(Difference to Neighbor (DTN) < -10 (Appendix (Eq. A2))), which occur next to 

previously classified road and stream features (Figure 6). The extraction of isolated steep 

slopes benefits the landslide classification routine in that it eliminates engineered road cut 

slopes and stream banks from the dataset, thereby improving landslide segmentation and 

subsequent classification results. 

FIGURE 6. (A) LIDAR-DERIVED SLOPE IMAGE OF TOPOGRAPHY TYPICAL OF THE STUDY

AREA PROVIDED FOR VISUAL REFERENCE; (B) ILLUSTRATION OF FEATURES EXCLUDED

FROM LANDSLIDE ANALYSIS. 

2.5 Landslide Feature Extraction 

2.5.1 Data 

I’ll first describe the data used to extract deep-seated landslides before discussing 

the workflow: segmentation of landslide objects, classification of objects using a custom 

roughness criterion, and the cleaning process that takes advantage of the use of context in 

image analysis routines to refine the classification.  
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Three maps of curvature are used for segmentation. These metrics are derived 

from a lidar DEM: 1) Bolstad’s variant [BOLSTAD], 2) Horizontal [TAN], and 3) 

Vertical [PRO] curvature. Bolstad’s variant is defined as the ratio of the number of 

concave to convex pixels within a defined window and is computed in ArcGIS v.9.3 

using the Geomorphometry and Gradient Metrics Toolbox (Evans et al., 2014). 

Horizontal (i.e., tangential curvature) is the curvature of a normal section tangential to a 

contour line at a given point of the topographic surface, and vertical (i.e., profile 

curvature) is the curvature of a normal section having a common tangent line with a slope 

line at a given point on the topographic surface (Florinsky, 2016). Horizontal and vertical 

curvatures are computed using a custom executable written in C++ and created by 

Weyerhaeuser staff. The BOLSTAD data is computed using a rectangular 15 x 15 pixel 

moving window (30 x 30 m at 2-m resolution), while the tangential and vertical data use 

a window size of 21 x 21 pixels (42 x 42 m at 2-m resolution). The large window sizes 

were chosen by trial and error to capture small-scale (less detailed) topographic changes. 

The pixel values in the three curvature datasets are converted to a scale of 0 to 255 and 

used as non-dimensional intensity values for computational efficiency within eCognition 

image analysis software, which works well with multi-band 8-bit imagery (Appendix: Eq. 

A1).  

The second step in the landslide extraction process, classification, uses a 

topographic gradient [GRAD] image, calculated with the Spatial Analyst tool available in 

ArcGIS software packages. This tool uses a 3 x 3 cell moving window to quantify percent 

rise of the lidar DEM, which ranges from 0 to infinity (Burrough & McDonell, 1998). 
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Percent rise values are inverted prior to stretching to the 0-255 scale to arrive at the 

GRAD image (non-dimensional intensity values) used in eCognition. Inversion of the 

dataset is somewhat arbitrary, but it facilitates visualization of landform features within 

eCognition while the rule set is being designed. A rule set is a knowledge-based system 

that is created to translate understanding of an image into a process by which features can 

be extracted automatically. More importantly, the stretching routine does not change the 

distribution of the data; it simply enables all datasets used in the algorithms to have the 

same range. From the intensity values of the GRAD image a neighborhood similarity 

feature (Appendix: Eq. A2, Figure A23), mean difference to neighbor (DTN), is 

quantified. To computer the feature the GRAD image is segmented using the chessboard 

algorithm with scale value set at 1 (i.e., the native pixel resolution). The feature quantifies 

neighborhood similarity, or the intensity difference between an image object and its 

neighbors, by comparing the relationship of the center object to each neighboring object 

within a given window. The window size I use to calculate DTN is 15 x 15 objects (30 x 

30 m at 2-m resolution). This window size is chosen by trial and error and emphasizes the 

small-scale topographic changes. The feature is exported as a grey-level image with 

values ranging from -50 to 50. Bright portions of the DTN image highlight terrain 

features with a large, positive difference to neighbors while dark portions of the image 

display large, negative differences. In this case, high positive DTN values correspond to 

low gradient terrain, relative to neighboring terrain. 
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2.5.2 Image Analysis Techniques & the Interpretation Process 

In the following section I will describe the use of levels in image analysis, 

followed by a conceptual example that describes the correlation of human interpretation 

to computer interpretation of images.  

In object-based image analysis routines, levels store image objects that represent 

information found in the image layer data. Whereas image data exist when first imported 

into the eCognition software package, image object levels are created to store this data as 

image objects and can range in size from the dimensions of a pixel up to the size of the 

image bounding box (i.e., the scene extent). Each level in a project may have a super-

level above it, where multiple objects can be assigned to a single class, and a sub-level 

below it, where each object can be subdivided into multiple classes. Ouyang et al. (2011) 

provide a cartoon to illustrate the use of data connectivity in hierarchical processing 

(Figure 7(A)). In this example the project contains five levels with objects at the native 

image pixel size occurring on the bottom level while the top level contains one object to 

delineate the entire image boundary. A simple example of this processing structure 

occurs in vegetation mapping where a super-object on the highest processing level is 

classified as a forest with the sub-objects on a lower level classified as individual tree 

species. This hierarchical processing allows for statistics and contextual relationships 

describing all image object levels to be used (Figure 7(B). Context is image object 

networking that allows each object to know who its neighbors are, which levels and 

objects are above it (super-objects), and which are below it (sub-objects). In this study the 

technique is used to simulate perceived differences in the topography by allowing 
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classification of data at a sub-level for objects created at a smaller scale to be used in 

statistical class definitions on the super-level due to hierarchical connectivity. 

FIGURE 7. ILLUSTRATION OF USE OF IMAGE OBJECT HIERARCHIES IN OBJECT-BASED

WORKFLOWS (OUYANG ET AL., 2011). 
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To illustrate the target for delineated object boundaries I show a conceptual model 

of a deep-seated landslide from the study area along with the image data used in the 

modeling effort. Figure 8(A) provides an aerial photo view of a landslide from within the 

study boundaries with components labeled in black. Upon visual inspection of the aerial 

photography, geologists interpret the feature as a landslide based on presence of landslide 

crowns, flanks, toes, and cracks. The human brain can recognize a difference in terrain 

based on color, texture, and contextual relationships to interpret the boundary. The semi-

automated model is designed to use heterogeneity of image intensity values from the 

curvature data shown in Figure 9 to delineate features that a geologist “sees” in the 

image. A successful segmentation will draw boundaries around the landslide feature, 

creating objects that will later be used in classification. Figure 9(A-C) shows the 

curvature data used in this study at the same extent as the landslide in Figure 8. A 

gradient image is provided for visualization (Figure 9(D)). Curvature data that is 

sufficiently separated (i.e., intensity values abruptly transitioning from greys to blacks 

and whites) can be seen in the vicinity of the left flank of the landslide and continuing up 

around the crown. This area is defined by a transition from the smooth, planar topography 

(greys) into strikingly different curvature values (whites and blacks). A meaningful 

segmentation will draw a boundary on this left flank, continue up around the arcuate 

crown, back down the left flank and close by transecting the toe of the landslide.  
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FIGURE 8. (A) 3D VIEW OF AERIAL PHOTO IN LOCATION OF DEEP-SEATED LANDSLIDE 

USING LIDAR ELEVATIONS FOR GROUND HEIGHT REFERENCE; (B) ILLUSTRATION OF 

CONCEPTUAL DEEP-SEATED LANDSLIDE COMPONENTS (CRUDEN & VARNES, 1996) 

 



33 

FIGURE 9. LIDAR DERIVATIVES, CONVERTED TO INTENSITY VALUES ON THE SCALE OF 
0-255, SHOWN IN SAME EXTENT AS FIGURE 8. (A-C) CURVATURE IMAGES WITH BRIGHT

PIXELS REPRESENTING CONVEX FEATURES AND DARK FOR CONCAVE (TAN: CURVATURE IN
THE DIRECTION OF CONTOUR, PRO: CURVATURE IN DIRECTION OF SLOPE, BOLSTAD: RATIO

OF THE NUMBER OF CONCAVE TO CONVEX PIXELS WITHIN A DEFINED WINDOW );
(D) GRADIENT IMAGE WITH LABELS FOR KEY LANDSLIDE FEATURES (GRAD:
TOPOGRAPHICAL GRADIENT).
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2.5.3 Model Methods

Data is processed on two image object levels, the super-object level and the sub-

object level. On the super-object level, three MRS segmentations are executed in 

conjunction: two object-merging routines that group curvature datasets using iteratively 

increasing scale factors, followed by an object-merging routine based on the DTN image. 

The three-step segmentation process minimizes issues of over segmentation caused by 

decreasing heterogeneity along the lateral margins of landslides. The first two region 

merging segmentations consider 3-bands of curvature data to produce the object 

boundaries: BOLSTAD, PRO, and TAN. The data are used collectively as the input 

parameter dataset, similar to using the red, green, and blue bands of spectral imagery to 

segment a photograph. The scale parameter is set at 20 for the initial segmentation to 

create the first set of objects from the pixel-based data and then is increased to 40 using 

the same 3-bands of data to enlarge the resulting object size (Figure 10(A) & Figure 

10(B)). To define each unique landslide using a minimum number of objects, the third 

segmentation algorithm, a top-down region growing routine is employed to merge the 

objects at a scale of 30 using DTN data values based on the first derivative of the DEM 

(Figure 10(C)).  
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FIGURE 10. ILLUSTRATION OF ITERATIVE OBJECT CREATION WITHIN ECOGNITION

SOFTWARE. 

Next, the sub-object level is created to classify the objects defined by the third 

segmentation described above, which is based on the DTN image roughness criterion. 

Use of the sub-object level allows creation of new, smaller objects that do not alter the 

boundaries created on the super-object level. The DTN image is segmented and classified 

in a single step using the multi-threshold segmentation algorithm within eCognition. An 

algorithm scale is set at 20, and acts as a minimum mapping unit. Use of scale in the 

multi-threshold segmentation algorithm ensures no pixels will be classified unless 20 

pixels meeting the threshold criteria exist in a cluster. This is an advantage over pixel-

based thresholding in that it can help eliminate noise in the data created by isolated pixels 

or small clusters of pixels with large DTN values. The scale value was chosen using a 

trial an error approach so that classified objects replicate the approximate scale for human 

interpretations of roughness, or what is “seen” as rough surfaces or landslide hummocks. 

The classification on this sub-object level then includes two classes, any groups of DTN 
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image pixels with a mean intensity value under negative five, and a second class for 

groups of pixels with mean DTN values larger than five.  

With objects delineated on the sub- and super-object levels, the next step is 

classification of deep-seated landslides. Class definitions are built using features 

available within the eCognition software package or features that are manually defined. 

Specifically, I used three criteria: a novel roughness criterion, a geometry criterion, and a 

slope threshold. 

To assist with classification, I created a roughness criterion after noting that 

roughness can be “seen” in the DTN image. This image is chosen for use in the 

roughness criterion because its derivation (Appendix Eq. A2) renders it a detrended 

image, enabling transferability to deep-seated landslide terrain in all states of activity. 

Obviously, if no hummocks exist due to smoothing of the surface, alternative features of 

the deep-seated landslide would need to be defined and classified with additional 

routines, for instance, breaks in slope where weathered headscarps transition into 

benches. This criterion is defined using 1) a threshold for the ratio of the sum of the area 

of the classified sub-objects to the area of the super-object and 2) the variance of the 

DTN intensity values within each image object on the super-object level.  

Geometry is also used in this study to refine class definitions. The eCognition 

Density feature describes the distribution in space of the pixels of an image object. It is 

defined as the square root of the number of pixels forming an object divided by its radius 

- approximated with an ellipse that is based on eigenvalues of the covariance matrix (1

plus the square root of variance in X plus variance in Y, where (X,Y) are the coordinates 
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of the center of an ellipse) (Appendix: Eq. A4). As the long axis of the bounding ellipse 

gets larger while the number of pixels remains low, the density value decreases. Higher 

values represent objects with more dense shapes, closer to that of a square.  

The third feature used to refine the deep-seated landslide class is a mean slope 

threshold. A distinction is made between hillslopes over 60% slope and under 60% slope, 

as morphological properties related to landslide processes are thought to differ as the 

hillslope steepens. Note that this is not the gradient intensity image described earlier. The 

slope threshold was determined based on Rule Identified Landform (RIL) guidance in the 

Washington Forest Practices Act, which requires geotechnical evaluation of and specific 

management prescriptions for landforms that are potentially unstable (Shaw et al., 2017). 

Definitions for a suite of landforms present in forested terrain include slope thresholds, 

the lowest of which is 65% for active deep-seated landslide toes (WDNR, 2016). I chose 

to use a conservative value of 60%.  

The iterative process of refining the deep-seated landslide class begins by 

defining all super-objects with a mean slope under 60% as a landslide if they contain a 

sub-object DTN classification area ratio of greater than 20% and DTN intensity variance 

(standard deviation squared) larger than 20 (i.e., roughness criterion = DTNarea >20% 

and DTNvar >20), along with a dense geometry (Density >1.2). The use of geometry 

excludes long and narrow objects such as streams or knife-edge ridges. All values used in 

this classification process were chosen by trial and error based on my interpretation of 

where landslides existed on the landscape. This initial landslide class is grown into 

adjacent unclassified objects with a relative border >15%, mean slope under 60%, 
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roughness criterion = DTNarea >15% and DTNvar >15, and Density >1.2. A second 

growing routine classifies dense objects (Density >1.2) that share a relative border >20% 

and contain >400 pixels of previously classified sub-objects with DTN values >5. 

Finally, all objects previously classified as landslide are unclassified if the relative border 

to a stream or steep, stream adjacent class is >50%. 

Next, objects with a mean slope >60% are classified as landslides if roughness 

criterion = DTNarea >40% and DTNvar >40, and Density >1.2. These objects are grown 

into adjacent unclassified objects with a relative border of greater than 40%, and a 

roughness criterion = DTNarea >20% and DTNvar >20. A second growing routine 

classifies dense objects (Density >1.2) that share a relative border >20% AND contain 

>400 pixels of previously classified sub-objects with DTN values >5.

 Finally, all classified landslides are merged, and a cleaning procedure is 

completed to incorporate any unclassified objects that exist as an island within the spatial 

distribution of classified deep-seated landslides.  

2.6 Manual Inventory Methods 

The landslide inventory necessary for model comparison is compiled manually by 

four geologists by attempting to create a consensus landslide inventory map for two test 

sites labeled with blue polygons in Figure 2. The purpose of seeking consensus among 

multiple geologists is to reduce inherent professional bias existing in maps produced by 

independent observers. It is recognized that the number of observers selected for this 

study may not have been sufficient for a validation study, but it does provide data for a 
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statistical comparison of mapping differences produced by diverse backgrounds. Four 

professional slope stability geologists, with extensive backgrounds in field and remote 

sensing-based landslide mapping techniques, were enlisted to complete the deep-seated 

landslide mapping exercise. The mappers had a range of experience, some with decades 

of field-based mapping expertise, and some formally trained in the identification of 

hillslope morphologies. During round one, the geologists were given access to the same 

lidar DEM used in the semi-automated landslide model. Each geologist then created 

derivatives from the lidar DEM at their own discretion, which included slope maps, 

contours, and hillshades. It was the geologist’s choice to access additional information 

such as existing landslide inventories or imagery datasets including those provided by the 

National Agriculture Imagery Program (NAIP) or Google Earth Imagery. Each geologist 

then created an independent, digital inventory of deep-seated landslides, guided by the 

Varnes (1978) landslide classification system (Figure 11). For the purpose of this 

exercise the surface expression of the landslide needed to be visible beyond the 1:3000 

map scale with an aerial footprint larger than 500 m2. Thematic attributes collected were 

an identification number and landform. The identification number is simply a unique 
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number assigned to each deep-seated landslide, and the landforms collected were 

classified as landslide body, primary scarp, and secondary scarp.  

FIGURE 11. CLASSIFICATIONS FOR DEEP-SEATED LANDSLIDES (VARNES, 1978). (A-C)

RECORD SLIDE-TYPE MOVEMENT WHILE (D) RECORDS FLOW MOVEMENT. 

I then conducted an intermediate GIS exercise to “clean” and create a union of the 

independently created inventories. First, all landforms were merged, creating one 

polygon for each unique landslide, thereby eliminating the scarp distinctions. An original 

intent of the study was to evaluate landslide model performance against landslide scarps 

and bodies, but that was not achieved due to time restrictions. It was hypothesized that 

agreement between observers regarding the terrain features that constituted a landslide 
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scarp would be lower than what constituted landslide bodies. Next, a union of the four 

independently mapped inventories was performed, resulting in polygons where spatial 

intersections of inventoried landslide components were identified. The polygons retained 

thematic attributes including identification of the initial polygon observer (i.e., the dataset 

allowed for quantification of agreement between professional observers for each 

polygon). All polygons that were less than 0.001 km2 in size were dissolved into adjacent 

boundaries, under the assumption that these were likely minor border discrepancies.  

A qualitative review of the agreement between the independent mappers revealed 

that large differences existed in landslide numbers, densities, geometries, and extents. To 

enable simple quantification of the agreement between the modeled landslide inventory 

and a reference inventory, a “true” landslide population was desired. Ideally the reference 

inventory would consist of a map designating the entire verification extent as either 

landslide or not a landslide. This was attempted, during round two, by creating a 

composite inventory map recording the interpretation of each mapper for each landslide 

polygon to determine what population of landslides should exist. The goal was founded 

on a premise that an in-depth geomorphological discussion involving all four mappers, 

regarding the factors that led to the interpretations would resolve differences in 

interpretive styles and produce a consensus decision for each feature in the combined 

dataset.  

The composite inventory records the evolved interpretation or modified landslide 

designation of the four mappers for each polygon in the inventory. This designation is 

reached after a group-negotiated process that results in a modified landslide designation 



42 
 

(i.e., attribute). The attribute can be the same designation as the independent 

interpretation or could have changed after considering geomorphological evidence 

presented by the other mappers. In the absence of a complete consensus reached for all 

features in the inventory, the effort resulted in derivation of four qualifiers, one of which 

was assigned to each feature in the landslide inventory: Definite, Questionable, Split-

decision, and Non-consensus (Table 1). The two endmembers for mapper agreement are 

Definite, which describe spatial polygons where four observers agreed that a landslide 

existed, and Questionable, where all mappers requested the landslide polygon be 

removed from the inventory. The Split-decision category contains polygons where the 

evolved interpretation (i.e., interpretation of the observer after group discussions) of half 

of the observers recorded the feature as a landslide, while the other half did not. These 

features were often large, inactive-old landslides. The final category, Non-consensus, 

recorded polygons where either split or consensus decision was not reached for reasons 

that included differences of opinion regarding geomorphic processes, or map-based 

problems resolving features, including data processing techniques and/or data resolution. 

This Non-consensus category also included features where all four observers agreed that 

there was not enough information to make a confident decision regarding the initial 

mapping of the polygon as a landslide, and field verification would be necessary to make 

a proper determination.  
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LANDSLIDE 

QUALIFIER 

DESCRIPTION SPATIAL 

EXTENT 

DEFINITE All mappers’ original or evolved interpretation 

is deep-seated landslide  

1.1 km2;  

22% of survey 

area 

QUESTIONABLE All mappers’ original or evolved interpretation 

is not a deep-seated landslide 

0.1 km2; 

2% of 

survey area 

SPLIT DECISION 50-75% of the mappers’ original or evolved

interpretation is deep-seated landslide

0.9 km2;  

18% of survey 

area 

NON-CONSENSUS Either 25% of mappers’ interpretation is deep-

seated landslide or all mappers agreed that 

more information, such as a field visit, was 

necessary to make a distinction 

0.3 km2; 

5% of 

survey area 

TABLE 1. DESCRIPTION OF THE FOUR QUALIFIERS (I.E., THEMATIC ATTRIBUTES) FOR

THE MANUALLY MAPPED DEEP-SEATED LANDSLIDE INVENTORY. THE DATASET

INCLUDES 2.3 KM
2
 OF LANDSLIDES INVENTORIED IN TWO SURVEY AREAS (TEST SITE 1:

FIGURE 12 & TEST SITE 2: FIGURE 13). 

The automated inventory was qualitatively compared to each of the four attributed 

Landslide Qualifiers of the composite inventory listed in Table 1. Agreement between the 

modeled landslides (data to be verified) and the manually mapped landslides (reference 

data) was quantified and reported for two categories of landslides: those that were 

inventoried as Definite and any landslide inventoried by the manual mappers (i.e., 

Definite, Split-decision, or Non-consensus).  
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3. Results

3.1. Manual Inventory 

The spatial dataset housing the composite manual inventory results allowed 

analysis of agreement between mappers. This design was necessary due to the lack of 

complete agreement between the four geologists regarding which features on the 

landscape should be included in the final inventory. The final dataset is grouped into the 

four qualifiers listed in Table 1 recording evolved interpretation for each mapped 

polygon.  

Evaluation of the compiled inventory dataset reveals that a sub-population of 

landslides defined by distinct surface morphology related to recent activity (active or 

inactive-young, Figure 1) were consistently identified and thematically attributed by all 

mappers. This active landslide sub-population covered 22% of the survey area (Landslide 

Qualifier: Definite; Figure 12 & Figure 13). A sub-population of more subdued features 

that are thought to be inactive-old or inactive-mature (Figure 1) were also consistently 

identified and attributed by half of the mapping team (Landslide Qualifier: Split 

decision). These features that have undergone substantial weathering existed on 18% of 

the model verification study area, just 0.2 km2 less than the Definite sub-population 

footprint. A Questionable attribute was assigned to a limited number of mapped polygons 

(0.1 km2) comprising 2% of the study area. The designation was applied primarily to 

features occurring on the margins of mapped landslides, such as an extension upslope, 

laterally, or downslope of a mapped feature, and was applied infrequently to 

anthropogenic features. The final attribute (Landslide Qualifier: Non-consensus) is 
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applied where at least one geologist originally mapped a landslide and could not be 

convinced through further conversation and data exploration that the interpretation should 

change, such that the landslide was not removed from the final inventory. Non-consensus 

attributes were often assigned to features that could be interpreted as severely weathered 

or eroded, and they cover 5% of the survey area. It should be noted that one possible 

reason for not making a Definite or Questionable call could have been limitations in 

using remote sensing data (i.e., a field visit was deemed necessary to decide if the 

interpreted feature had previously failed). Ninety-six percent of the original mapped 

landslide areas were included in the final compilation inventory, suggesting discussions 

with fellow geomorphologists had limited effectiveness to persuade mappers to change 

an interpretation that the terrain had failed.  
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FIGURE 12. RESULTS FROM COMPOSITE, MANUALLY MAPPED, DEEP-SEATED LANDSLIDE

INVENTORY; TEST SITE 1. FOUR POINT BLACK LINE DELINEATING EXTENT OF MANUAL

MAPPING EFFORT. 
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FIGURE 13. RESULTS FROM COMPOSITE, MANUALLY MAPPED, DEEP-SEATED LANDSLIDE

INVENTORY; TEST SITE 2. FOUR POINT BLACK LINE DELINEATING EXTENT OF MANUAL

MAPPING EFFORT. LIDAR COVERAGE ENDS TO THE WEST OF THE SURVEY AREA,

CREATING IRREGULAR BOUNDARY. 

Standard accuracy metrics are calculated, following previous automated landslide 

mapping work, to examine variability, or level of agreement, in the composite map 

products (Congalton & Green, 2009; Korzeniowska, 2017). Accuracy, precision, and 
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recall metrics are commonly used for comparing classification results in large spatial 

datasets. To compute the metrics, confusion matrices are populated using true positive 

(TP), true negative (TN), false positive (FP), and false negative (FN) values. True means 

the model, or data to be verified, correctly classified a reference landslide area (TP) or 

non-landslide area (TN). False means the model incorrectly classified an area recorded in 

the reference dataset as a landslide (FN) or non-landslide area (FP). Accuracy provides a 

good starting point to quantify the area of correctly predicted landslides in relation to the 

total area. Accuracy is defined as the sum of TP and TN divided by the basin area, and as 

such depends on the distribution of landslides in a given area. Precision, defined as TP 

divided by the sum of TP and FP, and recall, defined as TP divided by the sum of TP and 

FN, need to be considered to better understand the performance of the model, specifically 

for use in landslide hazard and risk assessments where a FN can be more disastrous than 

a FP. Precision, defined as the portion of modeled landslide area that intersects the 

reference landslide area, includes both correctly and incorrectly modeled landslide terrain 

(TP and FP). Precision answers the question: “Of the landslide area delineated by the 

model, what area was correctly identified?”. Recall, the portion of reference landslide area 

that was identified by the model, takes into account only reference landslide terrain (TP 

and FN). In the case of landslide classification, it is particularly important to consider 

recall considering it is advantageous to classify an area as a landslide when it may not be, 

as opposed to the converse if public safety or resources are at stake. 

Formulas using the ratios of TP, TN, FP, and FN values are provided under each 

metric displayed in Figure 14 (Congalton & Green, 2009). Confusion matrices are shown 
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with columns representing the reference data, which is assumed to be the true population 

of landslides for each comparison, and rows representing data from the map being 

verified. Unlike the formulas for recall and precision, the formula for accuracy produces 

the same value if an observer’s data is considered as reference or if it is considered as 

data to be verified. The duplicate values are show with X’s in Figure 14. Computations 

use polygon area within landslide footprints due to availability of polygons in both 

verification and reference datasets. Alternatively, a per-pixel approach could have been 

employed. In the absence of a comprehensive landslide inventory mapped by an unbiased 

expert, we first evaluate how closely each mapper aligned with the other mappers in their 

interpretations (i.e., the agreement between mappers).  

FIGURE 14. COMPARISON OF AGREEMENT IN LANDSLIDE INVENTORY MAPS PRODUCED

BY THE FOUR INDIVIDUAL MAPPERS A-D. REFERENCE DATA IN COLUMNS AND VERIFIED

DATA IN ROWS. X’S EXIST IN CELLS WHERE DUPLICATE VALUES ARE COMPUTED, OR

WHERE A VALUE OF 1 IS COMPUTED WHEN THE REFERENCE DATA IS IDENTICAL TO THE

DATA BEING VERIFIED. 
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Accuracy ranged from 71-93%, documenting that each pair of mappers identified 

a large majority of the terrain in the same way. Recall values ranged from 35-97% with 

lower values for mappers who missed landslides delineated by the reference observer. 

Similarly, precision ranged from 35-99%, where low-end values were recorded for 

mappers who inventoried areas not mapped by the reference observer. A mapper with 

low precision compared to another mapper therefore tended to have high recall compared 

to that same mapper. The range in recall and accuracy metrics illustrates that a style 

difference, in landslide interpretation or mapping methods, exists within the mapping 

team. Two of the observers consistently delineated features interpreted to be older, more 

weathered landslides, which lose contrast to neighboring unfailed terrain. While the other 

2 observers consistently delineated features interpreted to be more recent failures, 

identifiable by crisp, discernible geomorphological features.   

The statistical metrics used to calculate agreement between the mappers 

delineated landslide area are sensitive to the set of mappers being compared. Accuracy 

values for landslide areas mapped by observers B and D are 93%. When considering 

landslide areas mapped by observers B and C accuracy drops over 20%. Accuracy 

statistics include the area of TN. In this example mapper C delineated a larger area of 

landslides, reducing the area of TNs in the statistical calculation, leading to reduced 

accuracy statistics compared to mappers recording relatively less landslide area for the 

same test site. Precision and recall statistics more dramatically record this sensitivity to 

the set of mappers being compared. Recall statistical values for mapper C was over 90% 

when compared to all other mappers as reference (i.e., the mapper was delineating a large 
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percentage of landslides recorded by the other observers). This mapper inventoried the 

largest amount of area in the study (2.7 km2). However, mapper C’s precision ranged 

from 35-77%. The lower precision values reflect relatively larger areas of FPs (i.e., non-

landslides) being recorded. The opposite is true for mapper B, who mapped the least 

amount of study area as landslides (0.79 km2). Mapper B’s recall ranged from 35-75%, 

while the precision was over 83%.  

The choice of which statistical metric (accuracy, precision, or recall) to base 

management decisions on may vary with the goal of the landslide inventory. For 

example, when the goal is to map all previously failed terrain (i.e., deep-seated 

landslides) on the landscape, high recall values are desirable, indicating that mappers are 

consistently classifying all deep-seated landslides that exist on the landscape. If the goal 

is to test the similarities in map products, precision should be considered. 

3.2. Modeled Inventory 

Prior to reviewing the quantitative results to verify the modeled landslide area, a 

qualitative assessment of the extracted geomorphometric features is summarized, 

providing an overview of how the model is segmenting and classifying deep-seated 

landslides. The model first segments the image based primarily on curvature values, and 

then classifies the curvature segments by assessing the amount and variability of a 

roughness criterion within each segment. This method allows for systematic delineation 

along breaks in topographic curvature. The breaks of interest, while trying to model deep-

seated landslides, are the boundaries that occur where the hillslope is transitioning from 
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concave to planar or convex surface curvature expression. Within these concave areas, 

surface roughness is evaluated to determine class membership. The spatial results, 

presented in Figure 15 & Figure 16, suggest the object boundaries generally do a good 

job of following curvature breaks, at a scale that is large enough to view rough surface 

features within each object.  

FIGURE 15. GEOBIA MODELED LANDSLIDES IN THE EXTENT OF MODEL VERIFICATION

TEST SITE NUMBER 1. 
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FIGURE 16. GEOBIA MODELED LANDSLIDES IN THE EXTENT OF MODEL VERIFICATION

TEST SITE NUMBER 2. 

3.2.1. Model Strengths 

The model detects changes in curvature and slope at a range of scales enabling 

large and small landslides to be classified with the same routine. To illustrate, I present 

an example of two deep-seated landslides with drastically different areas, 0.1 km2 vs. 560 
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m2. The largest of the two classified landslides is in the south to southeast corner of the 

map centered in the largest of two black rectangles (Figure 17). This landslide was 

delineated because the model identified distinct curvature expressions as compared to 

neighboring image pixels, and classified because the definition for roughness captured 

the obvious hummocks and breaks in slopes formed by internal scarps. A much smaller 

road-adjacent slump, visible in the southwest corner of the map (smaller of two black 

rectangles in Figure 17), is also segmented and classified. The model was able to detect 

the dramatic change in curvature between the steep scarp and the bench to delineate the 

object. Landslide classification definition also captured the irregular topography on the 

landslide bench. The same model data, algorithms, and parameters are used to classify 

both landslides, highlighting the ability of this object-based approach to successfully 

segment and classify features at different scales.  
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FIGURE 17. MULTI-SCALE FEATURE EXTRACTION EXAMPLE. SMALL LANDSLIDE

CENTERED IN SMALL BLACK RECTANGLE ON THE LEFT SIDE OF IMAGE. LARGE

LANDSLIDE ON RIGHT SIDE OF IMAGE CENTERED IN LARGER BLACK RECTANGLE.

MISCLASSIFIED LANDSLIDE IN CENTER OF BLACK CIRCLE. ALL OBJECTS CLASSIFIED

WITH SAME ROUTINE AND PARAMETERS.  

The model relies on accurate classification of anthropomorphic features, such as 

roads, which are well characterized in this example. A road exists at the base of both 

landslides classified in Figure 17 (black hatches within black rectangles). If left 

unclassified the road would produce a roughness signal as the hillslope transitions to 
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smooth, low gradient topography, similar to the signal produced in the slump feature as 

the steep scarp transitions to a bench. It is likely that this roughness signal would be 

captured by the landslide classification, causing a misclassification of the object. It 

appears this was the case for at least one other object that was delineated near the head of 

the stream occurring between the two landslides being discussed (black circle in Figure 

17). A segment of the road was not classified, leaving data values to be considered in the 

landslide analysis. In the absence of a road classification in the area highlighted within 

the black circle, the roughness definition for the landslide class was met, resulting in a 

portion of the hillslope being classified as a landslide that is most likely a road and road-

adjacent topography. Forest roads have a similar gradient to that of landslide bench 

elements, and much like low gradient, bench deposits, they are distinct from their 

neighbors (i.e., steep slopes). An attributed example of the similarities between roads and 

benches, can be viewed in the DTN image, shown in Figure A32 of the Appendix. Proper 

classification of the roads using the geometric property of density (as described in Eq. A4 

of the Appendix) is advantageous to using image values alone to minimize 

misclassification of landslides.   

In addition to using the same data, algorithms, and parameters to successfully 

segment and classify features at different scales, the model is used to segment and 

classify different types of landslides that occur in diverse geologic terrain. The 

morphometric surface expression of an earthflow complex existing in the soft sediments 

of the McIntosh Formation is shown in Figure 18. In this terrain type there is an absence 
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of distinct headscarps, which would otherwise be indicated by abrupt changes in slope 

where a vertical step in the hillslope occurs, immediately upslope of low gradient benches 

within landslide deposits. Instead, the most notable earthflow features are depositional 

lobes occurring in a range of sizes. There are also large swaths of irregular topography, 

with numerous mounds and benches. Unlike the landslides occurring in steep topography, 

which are distinctly different from the long, smooth, neighboring hillslopes (shown in 

Figure 17), the earthflow complex occurs in more gentle terrain with gradients that are 

not drastically different from the neighboring slopes. The semi-automated model is 

designed to extract features that do not have excessively steep slopes by calculating slope 

differences within a 15X15 pixel window, effectively detrending the slope data. This 

allows for extraction of features having a more subdue difference to their neighbors over 

a large area (Figure 18).  
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FIGURE 18. EXAMPLE OF FEATURE EXTRACTION IN COMPLEX TOPOGRAPHY. 

3.2.2. Model Weakness 

In this section I show an area where, in at least two instances, the use of 

contextual information (i.e., neighboring object relationships) led to misidentification of 

landslides. However, as a general observation, I have found that the use of contextual 
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information enhances model performance. Neighboring object classification is 

specifically useful in steep terrain with high contrast between hillslopes and valleys. In 

more subdue terrain the use of contextual information becomes more difficult as 

hillslopes transition gently into valley features. Irregular valley features often satisfy 

landslide classification definitions, designed to capture low gradient, rough surfaces.  

Figure 19 illustrates one instance where the location of the road extracted in the 

preliminary classifications hindered the ability to use relative border relationship to 

stream features as a way to eliminate fluvial landforms from the landslide classification 

routine. Figure 19 shows a landform, identified with the black arrow, that was included in 

the inventory, and would have otherwise been eliminated based on context (i.e., an object 

with mean gradient under 60% with a large relative border to steep, stream adjacent 

features).  



60 

FIGURE 19. MISCLASSIFIED LANDSLIDE AT LOCATION OF ARROW. 

In the second instance an object was eliminated from the landslide classification 

due to the use of context. This object (purple polygon) is shown at the location of the 

arrow in Figure 20. In this scenario the object was classified as a landslide based on the 

roughness criterion, but later unclassified because the large, relative object border to 

steep, stream adjacent features exceeded the threshold of 50%. Exacerbating the odds for 

misclassification is that the landslide object is bisected by a road, isolating the toe 

component, effectively lowering the mean object gradient, a criterion necessary to 

unclassify the object based on the relative border to the steep, stream adjacent feature.  
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FIGURE 20. DEEP-SEATED LANDSLIDE THAT WAS REMOVED FROM CLASSIFICATION DUE

TO LARGE RELATIVE OBJECT BOUNDARY (PURPLE POLYGON) TO STEEP, STREAM

ADJACENT FEATURES. 

3.2.3. Agreement Between Modeled & Mapped Landslide Inventories 

Quantitative comparison between the modeled landslides and the manually 

mapped, composite inventory was completed by computing accuracy, precision, and 

recall of mapper-delineated polygons (i.e., reference data) and modeled deep-seated 

landslide polygons (i.e., data to be verified) (Figure 21 & Figure 22). To reiterate a point 

made in the methods section, the composite inventory includes the evolved interpretation 
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of the mappers (i.e., landslide interpretation after group discussions occurred). The two 

datasets (reference, and model data) are polygon shapefiles with overlapping geographic 

extents. Each polygon in the datasets contain an attribute assigning a classification that is 

specific to that dataset. Examples of attributes assigned to the modeled landslide data 

include modeled landslide, modeled road, modeled stream, modeled steep-feature 

adjacent, modeled ridge, or unclassified. Examples of attributes assigned to the compiled 

inventory include Definite, Non-consensus, Split-decision, Questionable, or no landslide. 

A union of the two spatial datasets was performed, resulting in polygons formed for each 

unique combination of attributes from the two inventories. Polygon areas for the 

thematically attributed data (i.e., landslide classifications from each dataset) were 

tabulated in Microsoft Excel for comparison and summarized in the agreement statistics. 

The same statistical metrics that were computed to examine mapper variability were used 

for this quantitative comparison (see section 3.1). The reference dataset (i.e., composite 

inventory) is summarized in the statistical matrices using one tabular dataset that includes 

only landslides thematically attributed as Definite, and one tabular dataset that includes 

all (i.e., any) polygon area inventoried as a landslide. This second reference dataset for all 

polygon area includes inventoried landslides attributed as either Definite, Split-decision, 

or Non-consensus. The distinction in the reference dataset was selected to compare model 

agreement with landslide polygons delineated by all manual mappers and landslide 

polygons delineated by any manual mapper. Establishment of these two sets of data 

allows for examination of areas where all geomorphologists agreed a landslide existed, as 

well areas where confidence may have been lower, but at least one professional believed 

enough evidence existed to constitute a landslide designation. This design ensured that I 
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did not have to make a decision regarding which inventory was correct, and instead all 

data collected was used in the analysis. 

 
FIGURE 21. SPATIAL OVERLAP OF MANUALLY MAPPED LANDSLIDES (COMPOSITE 

INVENTORY) AND GEOBIA MODELED LANDSLIDES FROM THE FIRST MODEL RUN IN THE 

EXTENT OF COMPARATIVE SITE NUMBER 1.  
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FIGURE 22. SPATIAL OVERLAP OF MANUALLY MAPPED LANDSLIDES (COMPOSITE

INVENTORY) AND GEOBIA MODELED LANDSLIDES FROM THE FIRST MODEL RUN IN THE

EXTENT OF COMPARATIVE SITE NUMBER 2. 

A direct spatial comparison between modeled and inventoried (reference) 

landslides was not possible because of the ancillary feature mapping (roads, streams, 

ridges, and adjacent steep slopes) that occurred in the model prior to mapping landslides. 

Observers were not asked to interpret any non-landslide features, and results show that 

manually inventoried landslide polygons included features such as roads and streams 
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within the delineated landslide. For analysis purposes, any model-classified, non-

landslide features overlapping the same geographic area as a manually inventoried 

landslide are tabulated as true positives. Similarly, all unclassified polygons from the 

composite inventory are compared only to modeled deep-seated landslide polygons. It is 

noted that the quantification of agreement statistics without considering all features on 

the landscape may skew the data in the favor of the model, since any features modeled in 

the same geographic extent as manually mapped landslides are considered landslides for 

the analysis.  

Manually mapped inventory data from comparative sites 1 and 2, where identical 

mapping protocols were followed, is combined for use as reference data to report 

modeled landslide verification statistics. This study was originally designed to use one 

test site for model design and one test site for validation. Instead, model design remains 

in the verification stages, so data was used from both sites as reference. It is believed that 

the additional landslides inventoried in test site 2 provide valuable reference data for 

terrain with a higher density of landslides (earthflows in soft sediments), occurring in 

lower topographic gradients. This different terrain type will test the ability of the model 

to identify landslides in diverse settings. The model was developed to map landslides 

presented in results section 3.2.3, prior to completion of the manual inventory, ensuring 

the reference data was not used to train the model in any fashion.  

Modeled landslide agreement, in terms of accuracy, to the reference data was high 

(77% or 81% of the comparative area, compared to Definite or all landslides, 

respectively), documenting that the model identified a large majority of the terrain in the 
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same way as the group of geologists (Figure 23). Recall, the ability of the model to map 

landslide areas identified in the reference datasets was lower, 76% for Definite landslides 

and 58% for all landslides. The model did not map all landslides well (i.e., older, inactive 

landslides with more subtle surface expressions). Model precision of 61% for Definite 

landslides, and 69% for all landslides in the comparative area suggests the model mapped 

additional landscape features as landslides that were not mapped by the geologists. 

FIGURE 23. LANDSLIDE MODEL VERIFICATION USING MANUALLY MAPPED LANDSLIDES

AS THE REFERENCE DATASET. LANDSLIDE AREA FOR THE REFERENCE DATASET

INCLUDE TEST SITE 1 & 2. THE REFERENCE LANDSLIDE DATA WAS DIVIDED INTO TWO

COLUMNS (DEFINITE, AND ALL LANDSLIDES COMPRISED OF DEFINITE+SPLIT-

DECISION+NON-CONSENSUS).  

The model performed reasonably well, as recorded by the accuracy statistics, 

against both the Definite landslide dataset, and the dataset including all inventoried 

landslides reflecting different interpretive styles. Model accuracy was within the range of 
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individual mapper accuracies (71-93%). Recall statistics suggest the modeled landslide 

areas are correctly identifying landslides in the reference datasets more often than when 

comparing agreement (recall) between mappers with different interpretive styles. Recall 

is as low as 35% between manual mappers when the dataset being verified records a 

much smaller area of landslides (mapper B), compared to a reference dataset with a larger 

area of landslides (mapper C). Recall statistics also suggest the modeled landslide areas 

are correctly identifying landslides in the Definite reference dataset at a similar level of 

agreement (76% recall) as that recorded for mappers with similar interpretive styles. 

When comparing difference in statistical results for two mappers (A and C) who 

delineated the most amount of landslide area, including terrain with subtle surface 

expressions, use of landslide data delineated by mapper C for reference to verify 

landslide areas mapped by mapper A, recall is 77%. Similarly, for the two mappers who 

delineated the least amount of landslide area (B and D), use of landslide data delineated 

by mapper D for reference to verify landslide areas mapped by mapper B, recall is 75%. 

Precision statistics record lower values for mappers who delineate more landslide area 

incorrectly, compared to the reference dataset. Like recall, choice of reference dataset 

plays a large role in precision values. Precision statistics suggest the model is not 

identifying false positives (i.e., non-landslide features) as often as mappers with different 

interpretive styles. For example, when mapper D landslide data is used as reference to 

verify mapper C landslide area, precision is low (39%). This is compared to model 

precision using the Definite landslide dataset as reference, recording a precision of 69%.  
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4. Discussion

4.1 Landslide Activity Level, the Root Cause of Interpretation Disagreement 

Visible geomorphic features were used by geologists to develop their 

interpretations of landslide presence and/or absence and to delineate and classify deep-

seated landslides, that were then mapped and added to deep-seated landslide inventories. 

While landforms can suggest that mass movement has occurred sometime in the past, 

morphological evidence viewed in the remote sensing data is not always conclusive, for a 

variety of reasons that can include no discernable lateral margins or deposits, and 

severely weathered hummocks and headscarps. In the absence of fresh scars from active 

landslide activity, novel geomorphic features, not necessarily the ones encountered more 

frequently while mapping landforms associated with deep-seated landslides, are used by 

at least two of the mappers in this study. Recognition of inconsistent landslide feature 

expressions led Burns & Madin (2009) to recommend assigning a confidence level to 

each mapped landslide. In the case of limited morphological evidence, a mapper must 

decide, with some degree of confidence, if the combination of morphological features 

visible in the remote sensing data is enough to suggest mass movement has occurred. For 

example, in this study, while trying to gather evidence for interpretation one mapper 

raised the question of why two parallel drainages were initiating from the same spatial 

location but flowing in opposite directions. The symmetry of the drainage system was a 

key piece of logic used by the mapper to determine that mass movement had occurred, 

although the evidence was not overwhelming and, as such, the confidence in the 
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interpretation was not high. These logic-based interpretation approaches, made with 

relatively lower confidence than interpretation of landslides displaying a suite of classic 

features and/or evidence of active movement, are the source of low levels of agreement 

between human observers.  

Landslides in all states of activity are arguably important features to identify 

because previously failed terrain poses a potentially higher hazard than hillslopes that 

have not failed (Turner et al., 2010). Low agreement between observers in the study 

appears to have occurred when two mappers mapped substantially more inactive, old 

landslides than the other two mappers. An example of the spatial distribution of the 

geomorphometric features mapped by the observer recording the largest amount of 

landslide area (mapper C), compared to the observer recording the least amount of 

landslide area (mapper B) is shown in Figure 24. In this example, mapper C is used as 

reference to computer recall statistics. Red polygons, labeled as false negatives (FN), 

highlight landslide terrain mapped by mapper C that was not mapped by mapper B. The 

result of the area comparison for mapper C and B is the lowest recall between observers, 

at 35%. With increasingly scarce topographic signatures indicating failure has occurred, 

half of the mappers were less likely to conclude that features, such as those highlighted in 

red, were a landslide. This remained the case even after extensive group discussions 

occurred.  
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FIGURE 24. AREA OF TRUE POSITIVE (TP) AND FALSE NEGATIVE (FN) SHOWN USING

MAPPER C LANDSLIDE AREAS AS THE REFERENCE DATASET AND MAPPER B LANDSLIDE

AREAS FOR VERIFICATION DATASET. SPATIAL EXTENT OF DATA SHOWN IN TEST SITE 1. 

Parallels may exist between confidence levels in manually mapped landslides and 

those mapped with automated models. Inactive, old landslides with few remaining signs 

of instability are very difficult to target in empirical model designs. As the morphometric 

expressions become scarce, designing a model using context, or object associations can 

be beneficial. An example of interpretation based on association, or a lack of key 
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evidence, occurred in at least one instance in round two of the manual mapping exercise. 

The human observers noted a visible scarp feature and a bench. Group discussion led to 

the conclusion that the toe was assumed to be located downslope, and was mapped and 

attributed as such, even though clear evidence of a depositional lobe was not visible in 

the images. Object-based model design allows for similar logic, or context, to be applied 

by classifying objects based on association to other classified objects. This logical 

thought process can be implemented in the model by adding weight to classified landslide 

objects that are extracted using a roughness criterion defining very rough surfaces. 

Landslide components that are adjacent to, or presumed to be associated with, the 

classified landslide objects are included in the classification after meeting a defined set of 

rules, much like the missing deposits were included in the manual observations. These 

new rules do not require an increasingly larger roughness criterion for larger objects, to 

meet the class definition for landslide, as would have been the case if the object were not 

adjacent to a classified landslide. Instead, a lower roughness criterion can be used to 

include components of the landslide that are weathered and subdued. The confidence in 

modeling these features with missing pieces of evidence may be lower, much like manual 

mapping, but the technique retains the ability to mimic human perception.  

Like landslides, non-landslide modeled features also require interpretation. I used 

these non-landslide, modeled features to assist with landslide mapping. The features were 

also considered in the quantification of model and manual map agreement. A separate 

study to examine the agreement between the ancillary landform features mapped by the 
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model and manual mappers would be necessary prior to making changes to either the 

modeled or the manually mapped landslide datasets. A dataset that includes ancillary 

landform feature mapping would be beneficial for future analysis. This dataset could be 

used to determine if a sub-population of terrain features exits that are consistently 

misclassified as landslides by the model, or if the model is consistently misclassifying a 

specific terrain feature, disallowing it to be appropriately classified as a landslide.  

4.2 Evolution of Semi-Automated Model 

Evolution of the mapper’s thought, or interpretive process, while manually 

mapped landslide inventories were being developed occurred, not only during group 

discussions, but also during the mapping process (i.e., via separate conversations with 

mappers). After conversations with peers, mappers changed their interpretation strategies 

as they gained a better understanding of landscape characteristics. A similar change in the 

modeled landslide mapping strategy occurred for the author during the initial model 

verification component of the study (section 3.2.3). After participating in the geomorphic 

interpretation process, and after viewing the composite, manually mapped inventory 

results, a second model routine was designed to account for inactive geomorphic features 

that were not considered in the initial model design. Model validation is not the goal of 

this second exercise, instead model improvements is the goal. Improvements included 

using neighborhood relationships to grow the existing landslide classification into areas 

where the deep-seated landslide surface expression became more subtle. A similar 
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classification strategy as that described in the methods section (first run of model) was 

employed during development of the revised model. For the second model run, the initial 

landslide population was expanded by removing the slope threshold in the first step. All 

dense (Density >1.2) objects on the super-object level were classified as landslides if: 

Roughness criterion = DTNarea >40% and DTNvar >40, and contain >400 pixels of 

previously classified sub-objects with DTN values >5, OR Roughness criterion = 

DTNarea >30% and DTNvar >30. Two growing processes were run for adjacent 

unclassified objects with >30% boundary and a mean object slope under 60%: 1) 

Roughness criterion = DTNarea >25% and DTNvar >40, and 2) variance in profile 

curvature (standard deviation of profile curvature, squared) >30. Objects with mean slope 

>60% were added to the landslide classification if Roughness criterion = DTNarea >20%

and DTNvar >20. Finally, all classified objects were merged, and those with a mean 

slope >75% OR mean slope <60% and relative border to stream, or stream adjacent 

classes >40% were removed. Spatial results from the second model run are shown in 

Figure 24 and Figure 25.  
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FIGURE 25. GEOBIA MODELED LANDSLIDES FROM THE SECOND MODEL RUN IN THE

EXTENT OF COMPARATIVE TEST SITE 1. 
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FIGURE 26. GEOBIA MODELED LANDSLIDES FROM THE SECOND MODEL RUN IN THE 

EXTENT OF COMPARATIVE TEST SITE 2. 
 

A second comparative analysis is completed to test model improvements. Model 

design changes were made during the course of the study, after I gained a better 

understanding of landscape characteristics by participating in the composite mapping 

exercise with the professional geologists. This second analysis is not evaluating an 

independently developed model being tested with independent data (i.e., validation), nor 



76 

is it evaluating a model that has been trained with landslide inventory data. Instead, it is 

intended to verify if modification of criteria used in the first model run can result in a 

landslide classification that encompasses larger areas of the inactive landslide terrain 

mapped more consistently by two of the four observers.  

Results from the second model run are draped over the manually mapped 

inventory for a qualitative, spatial comparison (Figure 26 & Figure 27). The modified 

class definitions allow the model to extract more of the mapped landslide areas as 

compared to the first run. The model is also extracting more terrain that was not mapped 

as a landslide by the geologists such as ridges, terraces and swales. 
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FIGURE 27. SPATIAL OVERLAP OF MANUALLY MAPPED LANDSLIDES (COMPOSITE

INVENTORY) AND GEOBIA MODELED LANDSLIDES FROM THE SECOND MODEL RUN IN

THE EXTENT OF COMPARATIVE TEST SITE NUMBER 1. 
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FIGURE 28. SPATIAL OVERLAP OF MANUALLY MAPPED-LANDSLIDES (COMPOSITE 

INVENTORY) AND GEOBIA MODELED LANDSLIDES FROM THE SECOND MODEL RUN IN 

THE EXTENT OF COMPARATIVE TEST SITE NUMBER 2. 

 

The same statistics used to examine agreement between modeled landslide data 

and the manually mapped landslide data in section 3.2.3 show an interesting pattern 

between this second modeled dataset and the modeled dataset examined in the results 

section. I will focus this discussion on any landslide mapped (i.e., the ALL 

LANDSLIDES column in Figure 29) because one goal of the second model design is the 
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mapping of inactive landslides that were not consistently mapped by all observers. 

Overlapping identification of landslide areas occurred in 22% of the test area (inventoried 

landslide attributed as Definite). Model improvements in the second model were aimed at 

mapping the additional 23% of the test area where the mappers disagreed on the area 

delineated as landslide (inventoried landslide attributed as Split-decision and Non-

consensus). Model accuracy for the second model run is almost static, improving by only 

1%, while recall improved by 11%, and precision by 13%. 

FIGURE 29. STATISTICAL METRICS COMPARING SECOND MODEL RUN TO ALL

MANUALLY, MAPPED LANDSLIDES (REFERENCE DATA) ON LEFT SIDE OF FIGURE.

COMPARISON TO FIRST MODEL RUN STATISTICS COMPUTED FOR ALL MANUALLY,

MAPPED LANDSLIDES PROVIDED ON RIGHT SIDE OF FIGURE TO NOTE MODEL 

IMPROVEMENTS.  

This second attempt at modeling, designed to mimic professional interpretations, 

added almost 0.40 km2 more area classified as landslide. When compared to the 

agreement statistics reported for the first model run, this second modeled dataset did not 
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produce a difference in agreement statistics as large as those recorded between different 

manual observers with different interpretive styles. In the following sections I will 

frequently compare the statistical mapping agreement between mappers C and A, who 

systematically inventoried more landslide area described by subdued surface expressions 

than mappers B and D. Accuracy between mappers C and A is 87%. The accuracy of the 

second modeled landslide output area compared to any landslide mapped in the inventory 

is 11% lower than the accuracy recorded between mappers C and A.  

In the absence of a reference dataset consisting of the true population of 

landslides that is used to independently validate the model, the statistics should be viewed 

as a tool to examine the data. The difference in landslide interpretation has been 

described by comparing and contrasting selection of reference datasets. This difference 

remains for the two mappers who identified the largest area of subtle landslide features. If 

mapper C is used for the reference dataset, recall between mapper C and mapper A is 

77%. This is the same value for precision if considering mapper A as reference. If 

mapper A is selected for the reference dataset, recall increases to 92% (also the same 

value for precision if mapper C is selected for reference). This 15% increase in recall can 

be explained by mapper C delineating an additional 0.9 km2 as deep-seated landslide. 

Recall statistics for the second modeled landslide area, compared to any landslide 

mapped, is 69%, 8% lower than the recall between mapper C and A, using mapper C as 

reference (77%). The change in criteria, to mimic the manual mapping of inactive, old 

landslides, suggests more inactive landslides that are difficult for professionals to 

delineate confidently, are classified using this second model design.  
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Discrepancy in the area mapped as a landslide was as high as 1.95 km2 between 

professionals, with differences in recall as high as 64%. Modifying parameters in the 

object-based routine, designed using all landslides in the reference data as a visual aid, 

resulted in statistical comparisons of recall that increased by 11% and precision that 

increased by 13% for the mapped area. This positive association between modifying 

model parameters and producing higher agreement between all landslides in the dataset, 

was hypothesized to occur in the manually, mapped landslide inventory. It was thought 

that group discussions amongst the geologists inventorying landslides would lead to 

sharing of geomorphological evidence enabling improved landslide area agreement 

between mappers. When considering the agreement statistics for the manual-mapped 

landslide data, and the agreement statistics to highlight improvements made in the two 

model runs, it is suggested that automating the identification of landslides based on 

surface morphology is a more objective classification technique than enlisting 

professionals with varying backgrounds to manually map landslides.  

A fine line exists between creating a model that is too complex to enable 

transferability between terrains with diverse landform characteristics and too simple to 

achieve accurate results. This work has demonstrated that incorporation of contextual and 

geometric information, use of hierarchies within the GEOBIA platform, and working at 

multiple spatial scales simultaneously enables successful landslide extraction in diverse 

terrain, without compromising accuracy. This modeling style facilitates rapid learning for 

the model developer regarding the influence each metric has on extracting landslides, by 
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allowing for immediate visualization of the georeferenced object boundaries on the 

landscape and the spatial distribution of the classes produced with each new definition. 

While great progress has been made in this study towards automating the mapping 

of deep-seated landslides, establishment of the complete suite of metrics necessary to 

extract landslides in all states of activity across diverse terrain has not been 

accomplished, as shown by the recall statistics. It is the author’s opinion that two possible 

paths towards higher recall in automated mapping exist: 1) use the model features, that 

show good results in this study, along with all landslides mapped in the composite dataset 

in a machine learning routine (i.e., Convolutional Neural Network (CNN)), or 2) take a 

closer look into the terrain features that are not being mapped by the automated model 

and refine contextual relationships, object delineation, or seek an additional metric that 

can assist with class definitions in more subdued landslide terrain. The use of machine 

learning routines can reduce bias in model development (i.e., eliminate the use of pre-

defined thresholds for class definitions), while an in depth look at terrain features can 

help teach us more about the empirical relationships that describe features on the 

landscape that are indicative of old, inactive hillslope instabilities.   

Improvements were made in this study to automate the mapping of deep-seated 

landslides in the diverse topography of the PNW. The test sites chosen for this research 

were in areas with moderate landslide density, as determined by observing modeled 

landslide density distributions. To discuss model transparency and the ability to replicate 

this study in different geologic terrain types, a similar study would need to be conducted 

in areas with significantly higher densities of landslides or significantly lower. It is 
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thought that studies in terrain with higher or lower landslide densities would provide a 

better opportunity to verify or even validate model performance. Terrain with high 

landslide densities would test the model’s ability to detect hillslopes dominated by deep-

seated landslide processes, as recorded by recall statistics. Model precision in terrain with 

lower landslide density would verify to what degree the model is recording false positive 

landslides.  
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5. Conclusion

Variability in the surface expression of deep-seated landslides occurs throughout 

the study area, and the Pacific Northwest (Glenn et al., 2016). Highly variable terrain 

characteristics are causing differences in professional agreement regarding the presence 

and extent of deep-seated landslides (Hölbling et al., 2017). Rapid improvements in 

remote sensing data quantity and quality are fueling development of automated models to 

map landslides that could reduce variability in interpretive styles and inventory products, 

inherent in manual landslide mapping (Martha et al., 2011). This study shows that new 

methods, such as GEOBIA, have the ability to incorporate professional knowledge, while 

remaining empirically based, to improve objectivity during the landslide inventory 

process.  

The model presented in this paper was able to systematically identify deep-seated 

landslides in multiple watersheds within the Willapa Hills area using a straightforward 

GEOBIA routine with a procedure to identify surface roughness. Landslide detection 

performance from the semi-automated model, when referenced to landslide areas mapped 

by all of the four professional geologists, achieved 81% accuracy, which is on par with 

the average manually mapped inventory accuracy for each pair of mappers. Similar to the 

recall statistic, choice of reference dataset plays a large role in precision values. Precision 

statistics suggest the model is not identifying false positives (i.e., non-landslide features) 

as often as mappers with different interpretive styles, where precision was as low as 39%. 

Model precision for mapping landslide areas from the Definite landslide reference dataset 

is 69%.  
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A major component of this study was the exploration of deep-seated landslide 

map agreement between professional geologists. It is clear that the choice of mapper used 

as reference had a large impact on the statistical comparison of map products. While it is 

noted that mappers who were primarily recording active or inactive, young landslides 

produced high agreement, suggesting higher confidence in mapping these features, using 

only these features could bias a landslide inventory. An incomplete inventory becomes 

especially problematic if the stability of previously failed terrain is being studied for 

public safety concerns. With this in mind, any landslide mapped by a geologist was 

considered when examining improvements made in the model. Landslide detection 

performance from the semi-automated model, when referenced to landslide areas mapped 

by any of the geologists, achieved 69% recall (down 7% from recall of landslide area 

mapped by all geologists (i.e., Definite class)). The model was able to identify more 

reference landslide areas correctly when compared to all landslides in the reference 

dataset than when comparing two mappers with a different mapping style, where recall 

was as low as 35%. When comparing two landslide inventories produced by mappers 

with similar mapping styles, landslide area recall for the model is similar to landslide area 

recall between observers (75% and 77%). 

Automated models can be used to develop morphometric indices describing 

object statistics, geometry, and context allowing for mapping of deep-seated landslides 

that mimic human interpretation of landslides. Rule sets (i.e., model algorithms) can be 

designed to map landslides with fresh geomorphic evidence, indicating recent failure. 

They can also be modified to map landslides that have weathered substantially over long 
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periods of time. The tools, including hierarchical data processing, use of contextual 

object relationships, exploitation of geometric properties, and multi-scale processing 

offer an alternative to subjective, manual mapping that is hard to replicate between 

observers. The lack of clear geomorphic evidence for these inactive, old landslides are 

the primary cause of manual mapped landslide inventory inconsistencies. Use of 

automated models provides an opportunity to classify deep-seated landslides using 

empirical data to consistently identify terrain features that are indicative of failure. This is 

an improvement over manual mapping in that it can reduce inherent bias introduced by 

professional judgement.  
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Appendix: Object-based Extraction of Stream, Road, and Ridge Features 

For this study deep-seated landslide extraction is completed using an object-based image 

analysis (GEOBIA) classification approach that groups data pixels into objects according 

to their spatial arrangement. The technique relies on quantification of surface variability 

within each of these objects to distinguish landslides from terrain that has not failed. 

Many features exist on the landscape that can interfere with this variability signal, such as 

valley bottom streams and associated low-gradient terraces, tightly confined headwater 

streams, roads bisecting otherwise uniform slopes, and ridge features. Confounding 

features are classified to exclude them from the dataset prior to executing the landslide 

classification process. The purpose of this document is to describe the feature extraction 

process for non-landslides. The image data used for feature extraction is presented first, 

followed by a description of the object-based routine and feature utilization.   

Data Description 

Data for this study is created using four software packages, ESRI’s ArcGIS v.10.7.1 & 

ArcGIS Pro v.2.5.0, Trimble’s eCognition v.9.5, and R Foundation for Statistical 

Computing (R). The following packages in R are accessed: TIFF, RTIFF, RASTER, 

RGDAL, SP, and MASS. All metrics are calculated using 1X1 km lidar dem tiles 

obtained from Weyerhaeuser Company lidar analysts with interpolation completed using 

a proprietary procedure. The geographic coordinate system for all data is Universal 

Transvers Mercator (UTM) North American Datum of 1983(NAD83), zone 10 north. 

Native raster cell size is 2-m resolution. Lidar tile processing includes mosaicking dems 

that intersect photo-inventoried deep-seated landslides resulting from a recent storm 

event occuring in the Willapa Hills of western Washington (Turner et al, 2010). This data 

selection process ensures deep-seated landslides are present in the study area.  

The data extent consists of two overlapping areas: the preliminary study extent attributed 

with black hatches in Figure A30 consisting of approximately 85 km2, and a second, 

smaller extent of 50 km2 attributed with red hatches. This second extent is a subset of the 

original study used during model verification. The subset is clipped and then expanded to 

allow geographic connectivity. Subsetting the data reduced the lidar dem file size from 

480 MBs to 170 MBs, and as such improved processing speed. 

FIGURE A30. EXTENT OF LIDAR DATA FOOTPRINT USED IN STUDY. 
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GEOBIA is rooted in the utilization of spectral properties of pixels. Lidar derivatives are 

created in ArcGIS and tailored for spectral analysis by scaling 32-bit floating point data 

to a range of 0-255. This is accomplished using the Zonal Statistics tool to calculate 

dataset minimum and maximum values used in the following Raster Calculator function: 

 
{

((𝑉𝐴𝐿𝑈𝐸 − 𝑉𝐴𝐿𝑈𝐸 𝑀𝐼𝑁) ∗ 255)

(𝑉𝐴𝐿𝑈𝐸 𝑀𝐴𝑋 − 𝑉𝐴𝐿𝑈𝐸 𝑀𝐼𝑁
} 

Eq. A1 

Images scaled in this fashion include surface curvature and slope gradient, which are used 

similarly to a hillshade as outlined by Burns & Madin, 2009. Datasets with non-scalable 

values used in classification routines are left in native format – these include slope 

gradient, reported as percent change, and flow accumulation data. The remaining images 

used in the analysis are created within eCognition software: dem’s of difference, a mean 

difference to neighbor metric, and results from an unsupervised clustering routine, all 

described in detail below. Please note that dataset names referenced in the remainder of 

this document are bracketed.  

• Slope gradient [GRAD], in percent, is calculated by accessing a tool within the 

Spatial Analyst toolbox included in the ArcGIS Pro software package. This 

method uses a 3 x 3 moving window to quantify the rate of change in the x and y 

direction, or slope inclination, for each cell (Burrough and McDonell, 1998).  

• Flow accumulation [FAC] is derived within the ArcGIS Pro software package 

using the D-infinity method, calculating flow in the direction of the steepest slope 

on a triangular facet (Tarboton, 1997). The dataset value records the sum of 

contributing grid cells that naturally flow into each cell. 

• Landform/surface curvature [BOLSTAD] is quantified within the ArcGIS v.10.1 

software package by accessing a Geomorphometric & Gradient Metrics tool 

published by Jeff Evans, where curvature Bolstad’s variant, is defined as the ratio 

of concavity to convexity of a pixel within a defined window of analysis (Evans et 

al., 2014). For this study a window size of 15 x 15 was used to best represent 

headwater streams. 

• Dem residuals, or dems of difference [DOD] have been widely used for denoising 

dems (Hillier & Smith, 2009; Delai et al., 2013). The process decomposes the 

topographic surface based on predefined scales allowing for extraction of features 

at the scale of interest. To produce these datasets for a range of features, relief at 

five different scales is calculated within eCognition software by finding the 

median height of each cell using 5 x 5, 9 x 9, 15 x 15, 31 x 31, 55 x 55 sliding 

windows (kernel). The median filtered dem is then subtracted from the original 

dem. With scale dependent variations smoothed the resulting image separates the 

data, and makes extractable, remaining features as shown in Figure A31.  
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FIGURE A31. DEM OF DIFFERENCE DATA ILLUSTRATION – INCREASING KERNEL SIZE

CLOCKWISE, STARTING AT TOP LEFT. 

• The Iterative Self-Organizing Data Analysis Technique (ISODATA), or

unsupervised classification, used for multi-spectral pattern recognition is run

within the eCogntion software package. ISODATA is an iterative technique

developed to sort a set of multi-dimensional data into clusters not rigidly

constrained by a number of a priori assumptions. The process works to reduce

between-cluster variation, as recorded by average and standard deviation, and by

iteratively lumping or splitting the clusters (Ball & Hall, 1965). The 5 DOD layers

described above are used to create the ISODATA image. The algorithm was

allowed to iterate 20 times with the initial number of clusters set at 8, a maximum

number of clusters set at 10, and a minimum size of 50 pixels.
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• Neighborhood similarity is calculated using a feature available within the

eCognition software; ‘mean difference to neighbors’ [DTN]. This algorithm

quantifies DTN, ∆̅𝑘 (𝑣)  , as the intensity difference between an image object and

its neighbors, as illustrated in Figure A32, by comparing the relationship of the

center object to each neighboring objects in a given window size such that

(https://docs.ecognition.com/v9.5.0/#eCognition_documentation/Reference

Book/27 Object Features - Layer values/To Neighbors.htm?Highlight=mean

difference to) :

∆̅𝑘 (𝑣)  =  
1

𝜔 
∑ 𝑤𝑢(𝑐𝑘̅𝑢𝜖𝑁𝑣(𝑑) (𝑣) − 𝑐𝑘̅(𝑢)), Eq. A2 

Figure A32. Sample Image Object from Trimble Reference Guide. 

where, 

• 𝑢, 𝑣 are image objects

• 𝑏(𝑢, 𝑣) is the length of the common border between 𝑢 and 𝑣
• 𝑐𝑘̅ is the mean intensity of image layer 𝑘
• 𝑐𝑘

𝑚𝑖𝑛is the darkest intensity value of image layer 𝑘 

• 𝑐𝑘
𝑚𝑎𝑥is the brightest intensity value of image layer 𝑘 

• #𝑃𝑢is the total number of pixels contained in 𝑃𝑢

• 𝑑 is the distance between neighbors

• 𝑤 is the image weight with 𝑤 =  ∑ 𝑤𝑢𝑢𝜖𝑁𝑣(𝑑) , where

o 𝑤𝑢is the weight of image object 𝑢, with

▪ 𝑤𝑢 =  {
𝑏(𝑢, 𝑣), 𝑑 = 0

#𝑃𝑢, 𝑑 > 0
• 𝑁𝑣is the direct neighbor to image object 𝑣, with

o 𝑁𝑣 =  {𝑢 𝜖 𝑉𝑖 ∶  Ǝ (𝑥, 𝑦)  𝜖  𝑃𝑣  Ǝ (𝑥′, 𝑦′) 𝜖  𝑃𝑢 ∶  (𝑥′, 𝑦′) Ǝ𝑁4(𝑥, 𝑦)}
o 𝑁𝑣 (𝑑) is a neighbor to 𝑣 at distance 𝑑 with

▪ 𝑁𝑣(𝑑) =  {𝑢 𝜖 𝑉𝑖 ∶ 𝑑 (𝑣, 𝑢)}.

DTN is quantified for inverted gradient rasters that have been scaled from 0 to 

255 and median filtered using a kernel size of 3. The gradient raster is segmented 

using a regular grid pattern in the native pixel resolution resulting in 2m2 objects. 

The difference to surrounding pixels is calculated using a kernel size of 7, 15, and 

25. The resulting DTN feature is then converted to a data layer/image. Figure A33

displays a DTN image produced using a kernel size of 15. Bright portions of the
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image highlight terrain features with a large, positive difference to neighbors 

while dark portions of the image display large, negative differences. In this use 

case a high positive value will encompass low gradient terrain since the input 

gradient raster was inverted. As can be seen; ridges, roads, benches, and stream 

features can be resolved using the DTN technique with a kernel size of 15.  

 
FIGURE A33. IMAGE ILLUSTRATION USING DTN TECHNIQUE. ARROWS 

INDICATED LANDSCAPE FEATURES WITH HIGH DTN VALUES (WHITE AREAS). 

 

Feature Extraction 

GEOBIA has been used in numerous applications to classify features on the Earth’s 

surface including benthic habitat, vegetation, impervious surfaces, glaciers, landslides, 

and landforms (D’Oleire-Oltmanns et al., 2013; Fu et al., 2019; Korzeniowska, 2017; 

MacFaden et al., 2012; Parrish et al., 2015; Van Den Eeckhaut et al., 2012). The authors 

have also reported success with this technique while striving to delineate landforms with 

greater objectivity, reproducibility, accuracy, and precision as compared to manual 

classification methods (Shaw et al., 2017). A critical need exists to minimize interference 

from components of the landscape that are not part of a deep-seated landslide. Our 

spatially explicit workflow design permits? removing classes, and thus data, from the 

analysis in a seamless process that allows for higher order connections to be drawn, 

which lead to more robust classification results. While it is noted that the application of 

statistically derived thresholds to create morphological indicators has proven feasible, a 

novel approach centering on spatial connectivity is attempted (Sofia et al., 2014). 

Throughout this thesis a two-pronged approach is described for extracting data using a 

traditional threshold value classification approach in tandem with image analysis methods 

to add meaningful context to the extracted classes. The classification routine is built to 

work in feature succession, where the spatial relationship of previously classified data 
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can be used, making the order of these classifications important. For brevity sake, a 

comprehensive list of algorithms is not included in this appendix. All image-derived 

thresholds are included, but standard image analysis processing techniques are not fully 

documented, including geometric selections. Final classification results for streams, 

roads, and ridges can be viewed in Figure A34. In the interest of time, accuracy metrics 

were not able to be quantified. A detailed description of the feature extraction process, 

including process snapshots with classification results displayed using the inverted slope 

raster as a background, follows. 

FIGURE A34. CLASSIFICATION RESULTS FOR NON-LANDSLIDE FEATURES. TOP LEFT;

ALL FEATURES. TOP RIGHT; STREAMS. BOTTOM LEFT; ROADS. BOTTOM RIGHT; RIDGES. 

Stream 

This section is devoted to describing the evolution of our modeling approach for streams 

in a sequential fashion. The classification process for stream features involves four steps 

that capture the essence of the object-based workflow The approach is designed in 

recognition that streams exist on the landscape as relatively low gradient features within 

varying degrees of hillslope confinement where high accumulated flow is recorded. As 

such, grid-based, flow accumulation data is used as the foundation of our extraction 

strategy. Preliminary stream classifications are grown into meaningful objects by 

weaving in additional information from datasets including DOD, GRAD, and DTN while 

incorporating geometric properties such as object size. It is noted that FAC data is 
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sensitive to the footprint of the data and would benefit from inclusion of entire drainage 

basins as compared with the geometric-tile pattern to which our data are clipped.  

Stream classification begins by running two multi-threshold segmentation routines that 

identify areas with concentrated flow by splitting flow accumulation (FAC) raster data 

into objects and classifying those objects using arbitrary, large threshold values for both 

2-meter and 10-meter resolution lidar dems. As can be seen with the blue class in Figure 

A35, this technique serves as a good baseline for identifying pixels where flow is 

accumulating, but it neither encapsulates the visible bankfull channel feature, nor does it 

result in a continuous stream pathway -this becomes more evident when using higher 

resolution lidar data. Also by using only FAC thresholds the complete morphological 

profile of continuous stream features are not captured, and they appear to stop in arbitrary 

locations (Figure A35).  

 
FIGURE A35. CLASSIFICATION RESULTS FOR THE FIRST STEP IN STREAM EXTRACTION 

PROCESS. 
 

To create meaningful stream segments the initial/preliminary stream classification is used 

as a basis or seed. The seeds are then grown into adjacent, unclassified pixels using slope 

gradient (GRAD), neighborhood similarity (DTN), residual topography (DOD), and flow 

accumulation criteria. The growing process assigns the stream classification to all objects 

that share a border to the initial stream classification if they meet the criteria outlined in 

Figure A36. This growing procedure helps fill gaps in the classification where pixels 

sharing a similar spatial footprint and gradient signature to the previously classified high 

flow accumulation data are included. As a cleaning procedure, after all classified objects 

are merged, any small islands of unclassified data existing within the stream objects are 

included in the stream class. Finally, an object resizing process is employed to smooth 

pixelated classified objects, making the data more aesthetically pleasing. This process 

removes any single pixels that protrude from the class and does the inverse where 

addition of one pixel is necessary to create a smooth border.  
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FIGURE A36. CLASSIFICATION RESULTS FOR SECOND STEP IN STREAM EXTRACTION

PROCESS. 

With larger order flow paths classified, a second feature extraction routine is deigned for 

headwater systems. This routine is similar in nature and begins by recognizing criteria 

indicative of headwater systems e.g., steeper topography existing within tightly confined 

areas with less opportunity for flow to accumulate as it’s nearer the ridgetop. Seed pixels 

are initially classified using flow accumulation data with the added criteria of existing in 

a highly confined area as described by DOD data. Seed data are grown into neighboring 

pixels in the same fashion as the initial stream classification. The process iteratively 

grows the seed class into steeper and less confined areas, with attention given to spurious 

flow accumulation data (Figure A37). The classified data are then cleaned and smoothed 

in a similar fashion as described above by including small islands of data and adding or 

removing protruding classified border objects -again using confinement data to constrain 

the process. It is noted that headwater streams may exist in steeper portions of the 

landscape, for instance as bedrock cascades along with their??  tributary juctions, but for 

the purposes of identifying deep-seated landslides, extracting these features was deemed 

unnecessary.  
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FIGURE A37. CLASSIFICATION RESULTS FOR THIRD STEP IN STREAM CLASSIFICATION -

HEADWATER STREAM EXTRACTION (AQUA POLYGONS). BLACK ARROW ON TABLE

INDICATES AN ALGORITHM RAN IN CONJUNCTION. 

The final step in the stream extraction process establishes continuity of the streams and 

eliminates spurious segments that, as a classified object, do not meet the threshold 

requirements. Image analysis techniques such as geometry (object size) and 

neighborhood relationships are relied on to define continuous stream segments. Border 

effects are cleaned up by incorporating single pixels into the feature that share three sides 

with classified streams. Classified objects that are separated by one pixel are merged. 

Classified stream objects that do not overly exist (i.e., do not meet threshold requirements 

when considering the mean object values) in a tightly confined area are removed. The 

data is further cleaned by eliminating small, isolated objects that do not meet confinement 

criteria. Finally, the classified objects are segmented based on gradient values and then 

re-classified using a mean value of flow accumulation to distinguish larger drainages 

from the headwater systems. The stream classification shown in Figure A38 result from a 

conservative approach aimed at minimizing over-classification of features, such as gullies 

and discontinuous streams, that may exist on deep-seated landslides.  
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FIGURE A38. FINAL STEP IN CLASSIFICATION OF STREAM FEATURES - HEADWATER AND

MAINSTEM FEATURES. THE RESULTS ARE IDENTICAL TO THOSE SHOWN IN FIGURE A34

WITH A SLIGHTLY ADJUSTED VANTAGE POINT. 

Road 

Since hillslope texture is altered in the presence of features such as roads it interferes 

with the variability signature used to classify deep-seated landslides. A road extraction 

process is designed similar to stream extraction, in that it relies on neighborhood 

relationships and geometric properties of segmented objects. However, in the absence of 

network information, such as direction of steepest decent, neighborhood relationships and 

geometry are exploited to successfully classify the objects. Within the study area 

segments of main logging roads have a remarkably consistent geometry that contrast with 

the adjacent hillslopes. These narrow, long roads are often truncated by landings with the 

same uniformly low gradient surface but in a teardrop shaped pattern. In addition to main 

logging roads, anthropogenic features presumed to be old cat roads and/or abandoned 

roads are visible on the hillslopes. These often-steeper road segments can lack continuity 

where hillslope processes have started to recapture the surface. On lower gradient 

topography landscape features were observed that appear to have been traversed by 

machines traveling a short distance adjacent to the roads. These areas do not have crisp 

delineations bounding the road surface but do display a hummocky texture, presumed to 
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be anthropogenic in nature. The feature extraction process for roads is designed to find 

the equilibrium between road-related signatures and deep-seated landslide features. The 

multi-faceted approach is described as two steps. The first step in the process relies on 

data values to classify objects, while the second relies almost exclusively on geometry.  

To enhance the success of the geometric classification process a barrier class, consisting 

of steep slopes, is used because often these portions of the hillside help distinguish road 

features. This class will act as a boundary to assist with the effectiveness of the road 

extraction process, where cuts into the hillside that are necessary to construct the roads 

result in distinct, isolated steep terrain features adjacent to flat, narrow road segments. A 

seed class is created using large negative values from the DTN image in a multi-threshold 

segmentation algorithm, and expanded by including neighboring steep slopes over 70%. 

It is further cleaned by encompassing any small islands (less than 30 pixels) of 

unclassified data and then removing any classified objects that were less than 10 pixels in 

size.  

To extract main logging roads, a classification that can be thought of as the inverse to the 

steep slope classification is used, where large, positive DTN values are classified as 

seeds. These classified objects are then expanded into neighboring objects with slightly 

lower threshold values. The expansion is controlled by the neighboring candidates 

relative area to the seed class. Geometric properties of the objects are used to remove any 

classified objects that are not shaped like a road using a density feature described in Table 

A1 as pertaining to the structure of a box. Interfering knife edge ridge features are also 

eliminated from the road class by excluding any convex up objects using BOLSTAD 

curvature values. Finally, any object longer than 100 pixels is classified as a road while 

the seed class is left intact to allow for additional classification using alternative metrics 

(Figure A39). As a final step in the classification, any objects that were extracted as 

roads, but have high FAC values (>1500) and are concave as defined using BOLSTAD 

curvature values less than the 25th percentile, are transferred into the headwater class. 

This initial road classification required 14 algorithms to classify 2.2 km2 of roads within 

the 50 km2 study area. The remaining 1.4 km2 of roads classified required 56 algorithms. 

FIGURE A39. FIRST STEP IN ROAD EXTRACTION PROCESS BASED ON IMAGE VALUES. 
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Due to the number of algorithms involved in this process and the iterative nature of the 

routine a complete list of thresholds is not provided. Instead the techniques employed are 

described along with the features used. The process to extract the remaining road features 

uses the same seed class described above with the addition of a second seed class with a 

DTN (w7) threshold value of greater than 3. The same set of methods outlined in Figure 

A39 and described above are used again with final road classification being based on a 

suite of geometric properties listed in Figure A40. 

 

 
FIGURE A40. SECOND STEP IN ROAD CLASSIFICATION STRATEGY BASED ON GEOMETRIC 

PROPERTIES. 
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How well the image object fits into a bounding ellipse. The metric 

quantifies variance in the x- and y- directions of the object. High 

values indicate asymmetric, or non-uniform objects. 
 

√(
1
4

) (𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌))
2

+ (𝑉𝑎𝑟(𝑋)(𝑌)) − 𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)

𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌)
, 

 
where Var(X) is the variance of X and Var(Y) is the variance of Y. 

Eq. A3 
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D
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Describing the distribution in space of the pixels of an image object. 

It is calculated by the number of pixels divided by the approximated 

radius, based on the covariance matrix. The densest objects are 

squares with lower values representing filament shapes. 

√#𝑃𝑣 ,

1 +  √𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌)
, 

where √#𝑃𝑣 is the diameter of a square object with #𝑃𝑣 pixels 

and√𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) is the diameter of the ellipse enclosing the  

object . 

Eq. A4 
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Distribution of length and width as compared to area. 

𝐿𝑣𝑊𝑣

# 𝑃𝑣
, 

where Lvis the length of object v and Wvis the width of object v. 

Eq. A5 

LENGTH 

OF MAIN 

LINE 

Each object can be decomposed into a main line and branches. These 

segments are determined by nodes, or midpoints resulting from Delaunay 

triangulation. Length is the sum of distances between these nodes.    

LENGTH 

OF 

LONGEST 

EDGE 

Polygons result from the vectorization of pixels that form an image 

object cluseter. The vectors smooth raster-based corners. The length of 

longest edge feature returns the largest distance between vector nodes. 

NUMBER 

OF 

EDGES 

The number of lines created by nodes. 

TABLE A1. GEOMETRIC FEATURES AVAILABLE WITH ECOGNTION SOFWARE PACKAGE. 

Ridges 

Like streams, ridges can interfere with landslide classification due to an abrupt 

topographic change from convex to concave creating a spike in variability. Unlike 

concave stream valleys in this study area, convex ridges occur at a much larger range of 

curvature scales, from sharp to very broad. As such a method similar to the stream 

extraction process while using inverted DEM’s was not explored. Instead an ISODATA 

unsupervised classification algorithm to extract multiple scales of convex, ridge features. 

Within eCognition a hierarchical process is created that allows for classifications that 

overlap the spatial extent of the previous classifications (i.e., a level with no 

classifications). This allows us to segment and classify continuous ridge features without 

considering previously classified data. Results from the ISODATA clustering algorithm 



107 

assigned one of six possible values to all pixels in an image. The image was visually 

investigated and the value corresponding with ridges is used for classification. Object 

boundaries are then cleaned using a pixel-based object resizing algorithm to eliminate 

protruding pixels. A minimum mapping unit for ridge class is set to 500 pixels. This 

hierarchically aligned data is then reincorporated into only the remaining, or unclassified 

data, from the previous steps. Ridge classes are extracted at a large scale so it’s possible 

that data generated with bigger window sizes can record convex values where steep-

breaks in slope are occurring. Potential slope breaks by preserved by classifying them 

prior to importing the final ridge features (Figure A41). These data will be useful in the 

segmentation process for deep-seated landslides. Steep, breaks in slope are calculated by 

segmenting the DTN metric produced at a window size of 25 and classified using any 

value less than negative 7. The original classification is then grown into any pixels with a 

DTN25 value of less than negative 4 and cleaned by removing small islands and small 

classified objects.  

FIGURE A41. CLASSIFICATION RESULTS FOR RIDGE FEATURES. 
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