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Abstract

Consumption of cannabis concentrates using the relatively novel non-combustion

methods dabbing and vaping has steadily grown in popularity as cannabis legalization

in North America has allowed increased access to sophisticated cannabis products and

technology. In order to assess the safety of these products, it is necessary to gain a

chemical understanding of the decomposition reactions that occur when the active

ingredients are heated in the conditions seen when dabbing or vaping. This disser-

tation contains a manuscript that details efforts to structurally characterize a toxic

cannabis concentrate adulterant, and three manuscripts that studied the chemical

decomposition of the two primary cannabis concentrate ingredients, the psychoactive

∆9-tetrahydrocannabinol (THC) and aromatic terpenoids. The known airway toxi-

cant pine rosin or colophony was identified as a major component of a cannabis extract

adulterant using liquid chromatography-mass spectrometry and nuclear magnetic res-

onance spectroscopy (NMR). Though this agent has previously been identified as a

hashish adulterant in Europe, this was the first report of its use in North America.

THC and cannabis terpenoids were shown to decompose to generate potentially harm-

ful levels of known toxicants such as methyl vinyl ketone, 1,3-butadiene, methacrolein,

benzene, toluene, and a slew of other volatile organic compounds (VOCs) with un-

known health impacts. Characterization and quantification methods for such VOCs
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using NMR and automated thermal desorption-gas chromatography-mass spectrom-

etry are presented. Given the lack of previous understanding related to THC and

cannabis terpenoid (e.g. β-myrcene) decomposition when heated to the tempera-

tures seen during dabbing and vaping (250-400 °C), special attention is paid to the

chemical mechanisms that occur. β-Myrcene decomposition was studied by charac-

terizing the VOCs released when dabbing a site-specifically deuterated isotopologue

of this molecule. THC decomposition was studied by characterizing its dabbing and

vaping-released VOCs, and comparing these to a structurally similar cannabinoid,

cannabinol. Chemical mechanisms that account for large shares of the VOCs re-

leased by these molecules are described. Curiously, THC and β-myrcene share a

common reactive intermediate that is the source of isoprene, 2-methyl-2-butene, 3-

methylcrotonaldehyde, and 3-methyl-1-butene, and it was shown that the relative

proportions of these four VOCs is temperature dependent. It was shown that the

ratio of the two primary cannabis concentrate ingredients, THC and terpenoids, im-

pacts the release of VOCs and transfer of active ingredients. Specifically, increasing

the mass percent of β-myrcene in THC for a synthetic cannabis oil from 7% to 14%

led to significant decreases in the the release of degradants and carcinogens such as

benzene, 1,3-butadiene, and isoprene, and more efficient transfer of THC when vap-

ing. However, the opposite effect was observed for dabbing: increased mass percent

of this terpene led to an increased release of degradation products. In addition to

these insights, a novel quantitative risk assessment model for cannabis inhalation was

described that allowed for preliminary determination of the relative cancer and non-

cancer chronic health risks associated with dabbing, vaping, and smoking cannabis.

Further chemical and toxicological characterization of other aerosol components will
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allow the expansion of this model to provide an accurate description of the chronic

health impacts associated with these cannabis consumption modalities.
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1 Introduction

1.1 The basics of cannabis and its derivatives

1.1.1 Botanical and taxonomic considerations

Cannabis sativa L. is an annual, flowering dioecious plant that originated in Central

Asia.1 Pistillate cannabis plants exhibit gynoecium, flowers, covered in microscopic

structures called trichomes2 that produce a unique class of molecules: cannabinoids.3

The pharmacological activity of these compounds4 has made this species unique

among human domesticates as a plant that serves both as a prime material and

a drug.1 Cannabis is among the top three most consumed psychoactive substances

globally after alcohol and tobacco.5 As one of mankind’s oldest crops, it has seen

continuous cultivation for over 12,000 years6 with diverse uses in textiles, sustenance,

and as a medicine, an entheogen, and a recreational drug.1 Its fecundity and hardiness

as a crop allowed it to follow the spread of human civilization around the globe, and

feral strains of this plant can be found on every inhabited continent.7

The formal taxonomic classification devised by Small and Cronquist in 1976

for C. sativa divides it into two subspecies: sativa and indica.8 C. sativa subsp.

sativa (i.e. hemp) produces <0.3% m/m the plant’s psychoactive constituent ∆9-

tetrahydrocannabinol (THC), and is subdivided into two varieties: sativa and spon-
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tanea that have domestication and wild-type traits, respectively.8 C. sativa subsp.

indica is characterized by having >0.3% m/m THC and is also subdivided into two

varieties: indica, domesticated, and kafiristanica, wild-type.8 Commonly referred to

as marijuana, ganja, pot, weed, or simply cannabis in English, C. sativa subsp. in-

dica var. indica encompasses the group of cultivars or strains associated with drug

cannabis. These cultivars have been subjected to extensive selective breeding over

millennia to produce high levels of THC for its intoxicating effect, and terpenoids for

their characteristic aroma.9

1.1.2 Cannabinoids and terpenoids

Cannabinoids, often referred to as phytocannabinoids to differentiate them from

synthetic10 or anthropogenic11 cannabinoids, are isoprenylated resorcinyl polyketide

molecules present in all C. sativa. Cannabinoids are biosynthesized as cannabinoid

acids,12−14 with an aryl carboxy group at the 2-position of the resorcinol ring.15∆9-

Tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) are the two

most abundant cannabinoids produced by all C. sativa,16 with only rare exceptions.17

Cannabinoids primarily act on the G-protein coupled receptors cannabinoid receptor

1 (CB1R) and cannabinoid receptor 2 (CB2R)18 that form part of the endocannabi-

noid system, an endogenous lipid-mediated system of the body which primarily con-

sists of cannabinoid receptors, endocannabinoids, and their degradative enzymes.11

CB1Rs are abundantly expressed in the central nervous system and their activation

by THC, a CB1R and CB2R partial agonist, is responsible for the psychoactive effect

of cannabis.19

2



Figure 1.1: Major chemical transformations of ∆9-tetrahydrocannabinolic acid
(THCA) that include decarboxylation to THC, double bond isomerization to the
∆8 isomer, and cyclization to the p-menthyl ring.

The diversity among minor cannabinoids is great, with over 150 recorded to date.20

This diversity owes itself to the many modulations possible in the convergent meval-

onate and polyketide biosynthetic pathways, in addition to thermal- and radiation-

induced chemical transformations that occur in situ during growth and storage.21

Figure 1.1 displays the major degradation and reaction pathways that occur after
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THCA biosynthesis, which include decarboxylation to the psychoactive THC, dou-

ble bond isomerization to the ∆8 isomer, and full cyclization of the p-menthyl ring

to cannabinol (CBN). A 2019 analysis of cannabis potency in the United States of

America using Drug Enforcement Agency narcotics seizures indicates that, in 2017,

the average THC level in domestic drug cannabis is 17%,22 but levels as high as 30%

have been reported.23

Aroma has long had been a defining characteristic of C. sativa, and this organolep-

tic property has been shown to have a significant impact on consumer perceptions

of the quality of a cannabis product.24 Responsible for this aroma are terpenoids, of

which more than 60 have been identified to exist in its essential oil.25 Proponents of

medical cannabis have asserted that terpenoids contribute to cannabis’ medicinal ef-

fect by way of the so-called “entourage effect,”26−27 a theory that has been called into

question by several researchers.28−29 Figure 1.2 displays four terpenoids that represent

four of the common structures types present in the volatile oil: the acyclic monoter-

pene β-myrcene, the cyclic monoterpene d -limonene, the terpene alcohol linalool, and

the sesquiterpene β-caryophyllene.25

Figure 1.2: Four terpenoids that represent four common structure types present in
cannabis volatile oil: the acyclic monoterpene β-myrcene, the monoterpene alcohol
linalool, the cyclic monoterpene d-limonene, and the sesquiterpene β-caryophyllene.
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1.1.3 Cannabis concentrates: an explosively diverse selection

A cannabis concentrate is any solid or liquid substance in which the pharmacologically

active and economically desirable agents in cannabis have been extracted, and are

often an order of magnitude higher in concentration than in cannabis plant material.

The term concentrate is a relatively novel term used in the cannabis industry coined

to encompass the many types cannabis extracts and derivatives thereof that exist

in today’s market.30 Hashish, the oldest type of cannabis concentrate (vide infra),

is manufactured by any process that mechanically removes cannabis trichomes from

the plant material (i.e. sifting) followed by mechanical compression and/or heating

to form a solid.1 Hashish is a major commodity in the global drug trade with over

1,300 metric tons seized in 2018.31 Hashish may be consumed alone with a pipe but

is typically mixed with tobacco and hand-rolled into cigarettes.1

Some of the earliest reports of solvent-extracted cannabis concentrates (hashish,

hash, or honey oil) in the United States date back to the mid 1970s32 to early 1980s.33

Potency of confiscated hash oil samples randomly fluctuated from the 1980s34 through

the 2000s34−36 and didn’t exhibit meaningful increases in THC content until the turn

of the 2010s decade.22 This time period is also coincident with increases in search

engine queries related to hash oil and dabbing (a hash oil consumption technique, vide

infra)37 and case reports of hospitalizations due to burn injuries related to butane

explosions during hash oil production.38 Butane is indeed one of the most common

solvents used for the production of hash oil, most often referred to as butane hash oil

(BHO).39−40

As the state-level legal cannabis market in the United States has proliferated in

the latter half of the 2010s decade, two other advanced cannabis extraction methods
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are increasingly common: supercritical fluid extraction (SFE)41 and vacuum distil-

lation (VD).42 While SFE is an extraction technique for isolating cannabinoids and

terpenoids from cannabis plant material, VD is an extract refinement technique for

BHO or SFE that separates cannabinoids and terpenoids from other potentially un-

desirable components present in crude extract.42 Cannabis extracts made with SFE

and VD may be consumed alone by dabbing, but are often introduced into cannabis

e-cigarettes.39

In 2017, researchers at the University of Toronto that sourced cannabis from a

Canadian licensed cannabis producer used liquid chromatography-mass spectrometry

(LC−MS) to analyze an extract made using SFE without any further refinement.43

The authors qualitatively identified 62 distinct compounds, up to 23 of which were

cannabinoids.43 Other identified compounds included terpenes, fatty acids, flavanols,

steroids, and chlorophyll.43 A 2016 report that analyzed the content of a black market

cannabis oil made for vaping, sourced from the US Department of Justice, using gas

chromatography-mass spectrometry (GC−MS) and LC−MS identified the presence

of cannabinoids, terpenoids, and propylene glycol without any further compounds

present.44 These two studies highlight the differences that may exist between mod-

ern cannabis concentrates depending on their intended mode of consumption. While

unrefined concentrates that have not undergone decarboxylation are suitable for dab-

bing (vide infra), concentrates made for vaping (vide infra) undergo refinement and

purification in order to be amenable for use in e-cigarettes, and may or may not in-

clude a solvent such as propylene glycol or medium chain triglyceride oil to reduce

viscosity.45
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1.1.4 Cannabis concentrate adulterants

An omnipresent concern for cannabis concentrate consumers is adulteration. Many

sporadic cases of hashish adulteration in Europe with substances such as glass beads,

soil, paraffin wax, glue, pine rosin etc. indicate non-cannabis substances may be added

to increase profitability for manufacturers, and in some cases, additional psychoactive

drugs are added presumably to mask the fact the hashish has been cut by synthetically

increasing its narcotic effect.46−47 Though the transatlantic hashish trade has not

meaningfully supplied North American consumers for decades,46 the increasing market

share of domestic hash oil compared to cannabis35 has created similar adulteration

concerns in the United States.

The e-cigarette and vaping product use-associated lung injury (EVALI) outbreak

which resulted in 68 deaths and 2,807 hospitalizations in 2019 and 202048 empha-

sizes the gravity of this issue. EVALI was associated with cannabis e-cigarettes,

and vitamin E acetate (VEA) was suggested as a causative agent by the Centers for

Disease Control,49 prompted by its identification in bronchoalveolar lavage fluids of

EVALI patients.50 A hydrogen bonded complex between VEA and THC, linking the

carbonyl group of the former and the hydroxyl group of the latter, was described

using Fourier transform infrared (IR) spectroscopy, nuclear magnetic resonance spec-

troscopy (NMR) and direct analysis in real time mass spectrometry (DART−MS) and

it was hypothesized this complex may play a role in the pathogenesis of EVALI.50 In

another study, ketene, a highly toxic gas, was identified as a degradation product of

VEA, and authors suggested exposure to this chemical may be a mechanism for lung

injuries in EVALI patients.51

Though VEA was identified as a potential causative agent in the EVALI outbreak,
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this compound was not the only adulterant identified in cannabis e-cigarettes. Duffy et

al. analyzed confiscated EVALI vaporizer cartridges using GC−MS and LC−MS, and

detected a slew of other diluents/adulterants including medium chain triglyceride oil,

squalane, triethyl citrate, etc.52 In another study published just prior to the EVALI

outbreak, Poklis et al. detected 5-fluoro-MDMB-PINACA, a synthetic cannabinoid,53

and dextromethorphan, a psychoactive antitussive found in cough syrup,54 in com-

mercial CBD e-cigarette liquids using DART−MS.55

Identifying vaporizer adulterants in e-cigarette liquid and in biological matrices

is a continuing analytical challenge that requires advanced instrumentation and per-

severance. Despite the legal and regulatory considerations that make it difficult to

obtain grey or black market samples, the EVALI outbreak highlights the importance

of this work for public health.

1.2 The historical context of cannabis intoxication by inhala-

tion

1.2.1 Historical and archaeological evidence from millennia

past

The first historical account of cannabis use for a psychoactive effect was by the Greek

historian Herodotus (“Father of History”56) as early as the 5th Century BCE by the

Scythians,57 an ancient group of Eurasian nomads.58 Herodotus detailed how Scythi-

ans would “bathe” in hemp vapors, letting its seeds smolder on red hot stones in

sunken tents, causing a “howling joy.”57 In 2019, wooden braziers (small wooden con-

tainers used in ritualistic burning) recovered from the Jirzankal Cemetery, ca. 500
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BCE, in the Pamir Plateau in China were analyzed for the presence of cannabinoids.59

Wood from the inside of the brazier, burnt stones, and an ancient cannabis reference

sample recovered from the site were extracted analyzed by GC−MS, which revealed

detectable quantities of CBN.59

The first evidence of a pipe used for cannabis was discovered in Ethiopia in 1971

and radiocarbon dated to 1320 ± 80 CE.60 After collection by archaeologists, samples

were sent to New York and analyzed by thin layer chromatography (TLC), a standard

method for cannabis analysis in forensic chemistry at the time.60 Residues from the

pipe were collected, extracted, spotted on TLC plates, eluted in benzene, and devel-

oped with Fast Blue B salt.60 Archaeological samples showed spots with Rf values

higher than those seen in street marijuana samples, which were known to contain

THC, CBD, and CBN. However, samples extracted from modern cannabis pipes dis-

played faint spots with the same Rf values as those in the ancient pipes, which lead the

authors to conclude these were unidentified cannabinoid decomposition products.60

1.2.2 The emergence of hashish

The first cannabis preparation made to concentrate its psychoactive material was

hashish, said to have originated in India or Nepal.61−62 Though archaeological evi-

dence is lacking, legends of cannabis resin sticking to the hands of cultivators that

formed it into balls by hand has gone undoubted by historians as a simple discovery

by accident.61−62 The first historical account of hashish consumption was by Marco

Polo, and is associated with the legend of the Old Man of the Mountain, the 11th Cen-

tury Arab ruler Hasan-i Sabah.6 Marco Polo’s story, never verified and likely false,

asserted that Sabah enticed would-be assassins with a hashish-infused drink.6 Indeed,
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the extensive history linking hashish to early Islam and Arab culture involve oral

consumption, not smoking.61,63

Ancient ritualistic hemp vapor bathing appears to have faded out in Europe with

the rise of Christianity,6,63 and added to the fact that most feral cannabis of the

continent produces only low levels of THC,8 cannabis intoxication was not common

in Europe until the return of Napoleon Bonaparte’s troops from Egypt.6,63

1.2.3 Cannabis’ dance with tobacco and the emergence of the

joint

Nicotine has been positively identified by LC−MS in residues extracted from tobacco

pipes from the Colombia Plateau, suggesting that tobacco smoking by Indigenous

North Americans went as far back as 2500 BCE.64 Tobacco stuffed into phragmites

reeds, both identified by morphological and anatomical examination, uncovered in

the Red Bow Cliff Dwelling in Arizona (1325-1400 CE) is some of the first evidence

of human use of cigarettes for smoking.65 Spanish colonial contact with the Americas

sparked an almost immediate interest in tobacco, and its use quickly spread through

Europe.66 As European and Middle Eastern hashish consumption in social circles

with existing habitual tobacco use surged, hashish smoking saw its biggest push,

supplanting oral consumption.61,63 To this day, cannabis and tobacco are two of the

most frequently co-consumed drugs of abuse.67

Pipe smoking and snuff were the most popular routes of administration for to-

bacco in Central Europe, but maize-wrapped papelate cigarettes spread from Spanish

soldiers into France as early as the 17th Century.66 Pierre Lacroix invented the modern

rolling paper in 1660, and rising demand for his high quality rolling papers led to the
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creation of the Lacroix Rolling Paper Company, now known as Rizla.68 Paired with

the rise of machine-manufactured tobacco cigarettes in the 20th Century,66 the rolling

paper facilitated not only handmade cigarettes, but the emergence of the marijuana

cigarette or joint.61,63

1.3 Contemporary cannabis inhalation methods: smoking, va-

ping and dabbing

1.3.1 Cannabis smoking

Smoking, by pipe or cigarette, to this day remains the most popular consumption

method for cannabis.69−71 THCA present in the plant material decarboxylates dur-

ing combustion,72 and transfer of THC, which has a boiling point of approximately

416°C,73 to the resultant aerosol occurs with an efficiency of 50% on a mole-to-mole

basis with respect to the THCA starting material.74 Different machine puffing pro-

tocols, preparation methods, and the inclusion of tobacco in the cannabis smoking

vehicle influence the yield of THC significantly.74−75

In a sui generis systematic literature review conducted in Meehan-Atrash et al.

(2019a),39 92 distinct cannabis smoke components were identified and quantitated

as combustion/pyrolysis byproducts from seven different studies in the scientific

literature.76−82 Polynuclear aromatic hydrocarbons (PAHs), consistent with high-

temperature conditions83 also encountered in tobacco smoke,84 are present, includ-

ing carcinogens such as benzo[b]fluoranthene and benzo[a]pyrene. Familiar volatile

organic compounds (VOCs) such as acrolein, benzene, butyaldehyde, butadiene, iso-

prene, styrene, and toluene are also present, as are a range of phenols, quinones,
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aldehydes, and carbon monoxide.76−82 As detailed in Bloor et al.,76 cannabis smoke

may contain high levels of ammonia and hydrogen cyanide, and other studies have

identified other nitrogenous compounds such as acrylonitrile, 2-aminonaphthalene,

4-aminobiphenyl, methylethylnitrosamine, and NOx.76−82

The only systematic review of the medical literature to ever assess the association

with cannabis-only consumption with function of the respiratory tract was conducted

by Meehan Atrash et al. (2019b).85 This review identified that chronic cannabis-

only smoking was associated with increased airway resistance, respiratory symptoms

and distress, and decrease in lung density.85 In vitro studies reviewed also associated

cannabis smoke condensate and/or cannabinoids with airway hyperreactivity, geno-

toxicity, cytotoxicity, and negative impacts on lung surfactant.85 Cannabis smoke

components identified as having the respiratory system as a target organ for the their

non-cancer chronic toxicity39 may contribute to these observations.

1.3.2 Cannabis flower vaping

The first electronic cigarette, or e-cigarette, was conceived by Chinese pharmacist

and inventor Hon Lik and first filed for patent in 2003.86 Electronic cigarettes for

the consumption of nicotine slowly gained in popularity over the course of a decade,

began to make their first appearances in the scientific literature before the start of

the 2010s decade,87 and are now hugely popular. The application of this technology

to cannabis consumption is paired with the proliferation of cannabis extracts which,

coincidentally, saw their largest increase in global seizures in 2004, having doubled

from 2003.88

Though “cannabis vaping” is often grouped as one practice in epidemiological
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work,39 vaping cannabis can take many forms. The use of vaporization to consume

cannabis flower, not cannabis concentrates, was reported in the literature as early as

2001,89 predating the invention of the nicotine e-cigarette. Cannabis flower vaping

generally consists of a handheld or tabletop device which generates hot air that is

blown over milled cannabis flower to create an aerosol that is inhaled by the user.78,90

The work by Gieringer et al. was the first to characterize the aerosol components

emitted by a cannabis flower vaporizer.78 In this paper, aerosol generated from a Vol-

cano® tabletop vaporizer was transferred directly to a 250 mL volatile gas trap, from

which a headspace syringe was used to inject 2 mL of gas directly into the GC−MS in-

jection port for analysis without preconcentration.78 The inside surface of the volatile

gas trap was rinsed with methanol for collection of the aerosol particulate matter and

also analyzed.78 The authors reported that both particulate and gas samples only

contained cannabinoids and terpenes, which led them to conclude vaporizing with a

Volcano® suppressed the formation of harmful degradation products.78 Interest in

cannabis flower vaporization as a route of pulmonary medical cannabis administra-

tion led to a brief flurry of papers characterizing aerosolization parameters of the

Volcano®,91 in vitro studies,92 and even some small pre-clinical trials with human

volunteers,93−95 but no further attention to the potential presence of VOCs or other

degradants in the aerosol was given after Gieringer et al.78

1.3.3 Cannabis extract vaping using cannabis e-cigarettes

A second class of cannabis vaping may be defined as the use of any type of electrical

device, any “cannabis e-cigarette,” to vaporize a cannabis concentrate.39 In general,

two types of cannabis e-cigarettes exist, top loading vaporizers (TLVs) and cartridge
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vaporizers (CV).39 TLVs consist of an exposed atomizer containing a resistively-heated

coil upon which a user manually places any cannabis extract, and an attached mouth-

piece allowing direct inhalation of the aerosol.39 CVs also use a resistively-heated

element to vaporize cannabis concentrate, but the atomizer is embedded within a

cartridge that contains the concentrate.39

Though the earliest report mentioning the use of an e-cigarette to consume cannabis

was in 2011,96 the two first studies to focus on this topic appeared in 201497 and 2015,98

an internet survey and literature review, respectively. These reports indicated that

TLV and CV usage was in an early stage with a considerable “do it yourself” aspect,

with mentions of mixing cannabis extracts with glycerol and/or propylene glycol (two

solvents used in nicotine e-cigarettes99) and even self-manufacture of the cannabis

extract.97−98

The first investigation into the release of harmful degradation products from

cannabis extract vaping was published in Varlet et al.100 In this study, the authors

made BHO, mixed it with propylene glycol, and vaped it in a standard nicotine e-

cigarette.100 The authors measured VOCs released from the aerosol by passing the

aerosol through an activated charcoal filter, which was later eluted with carbon disul-

fide for analysis by GC-MS.100 They also measured carbonyls by passing the aerosol

through cartridges coated in 2,4-dinitrophenylhydrazine (2,4-DNPH) (an aldehyde

derivatizing agent used for quantifying carbonyls in tobacco cigarette and e-cigarette

aerosols101) eluting any formed aldehyde-2,4-DNPH hydrazones with acetonitrile for

analysis by high performance liquid chromatography with ultraviolet-visible spec-

troscopy (HPLC−UV).100 The authors were not able to detect any VOCs and only

two carbonyls, formaldehyde and acetaldehyde.100 They also reported difficulties when
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dissolving BHO in propylene glycol and were only able to make stable solutions of

BHO in propylene glycol of levels of up to 10%, and questioned the usefulness of

vaping cannabis with an e-cigarette as it was not likely to deliver an active dose of

THC.100

Currently, vaporizing cannabis is one of the most common non-smoking cannabis

inhalation methods, with one study reporting that 21.8% of past-30-day cannabis-

consuming Colorado high school students reported past-30-day cannabis vaporizing

as a use mode in 2015,102 and another reported that 19.5% of surveyed cannabis users

from 12 US states from 2016 reported past-month vaping.71 These studies differenti-

ated vaping from dabbing but did not differentiate cannabis flower and concentrate

vaping.

1.3.4 Dabbing

Dabbing could be considered another form of cannabis vaping, as the Merriam-

Webster definition of vape: “to inhale vapor through the mouth from a usually

battery-operated electronic device (such as an electronic cigarette) that heats up

and vaporizes a liquid or solid”103 technically allows inclusion of this method under

the vaping umbrella. However, differences between the e-cigarette and dabbing appa-

ratus warrant separation of this method into a class of its own. In its simplest form,

dabbing, or the act of taking or doing a dab, is flash vaporization of a small amount

of cannabis oil, a dab, when contacted with a heated surface.39−40 The heated surface

may be a small piece of titanium, ceramic, quartz, or glass often called a nail that

is attached to a water pipe, pipe, or straw through which the user inhales.39−40 Most

commercially-available nails are made to be heated with a crème brûlée torch,104 but
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electrically-heated nails, e-nails, are also commonplace.39

Exactly when dabbing emerged as a usage mode for cannabis is unknown, but

its first mention in the literature was in a 2014 internet survey that assessed user

perceptions of the method, and concluded that dabbing appeared to lead to increase

drug tolerance to THC, and that the method is more dangerous than other usage

modes.105

Despite the lack of research on dabbing, two studies have investigated cannabi-

noid transfer and THCA decarboxylation efficiency during dabbing. A 2015 study

performed partly by members of a cannabis industry-associated testing laboratory

assessed the transfer efficiency of cannabinoids during dabbing.104 In Raber et al., a

“mechanical lung system” was used to pull aerosol generated from 40 mg dabs applied

to a nail heated to an estimated 300 °C through two chilled methanol traps which

were subsequently analyzed by HPLC−UV for cannabinoid detection.104 The authors

did not discuss further details on the quantification methodology, and it is not clear

how impinger solvent losses were accounted for.104 The authors reported that 50% of

the available THC was transferred depending on the type of cannabis extract used,

and that the decarboxylation of THCA present in the starting material was >90%.104

A 2019 study by Swiss and German forensic chemists performed similar dabbing

experiments that consisted of placing 160 -230 mg portions of cannabis extract onto a

nail heated to an unknown temperature, and the resulting aerosol was passed through

two in-series liquid N2-cooled aerosol traps filled with glass boiling chip granules.106

After this, the aerosol traps were rinsed with methanol, the solvent evaporated in

vacuo, the residue reconstituted in a known volume of methanol, and the solution

analyzed by HPLC-UV.106 Though liquid impingers, such as those reported in Raber
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et al.,104 for the analysis of cannabis and tobacco smoke aerosols have been reported

many times in the literature,106 the use of chilled glass boiling chip granules for aerosol

capture represents a novel method. Hädener et al. reported a decarboxylation effi-

ciency of >99%, and a THC transfer of 75.5%,106 slightly higher than that reported by

Raber et al. Both studies conclude that unrecovered THC is likely lost to sidestream

smoke, adsorption on the experimental setup, or to thermal degradation.

Though the first user survey indicated user hesitation about dabbing,105 dabbing

has emerged as an incredibly popular cannabis concentrate consumption technique. In

2015, 4.3% of past-30-day cannabis-consuming Colorado high school students reported

past-30-day dabbing,102 and in 2016, 14.6% of surveyed cannabis users in 12 US states

reported past-month dabbing.71

1.4 Thermal degradation reactions of cannabinoids: prior work

Studies directed at characterizing degradation and oxidation reactions that occur dur-

ing cannabis or cannabis concentrate processing and storage appear in the literature

with some degree of regularity,107−112 but publications describing high temperature

thermal degradation reactions of cannabinoids are scarce, with the entirety of this

work dating back to the 70s and 80s.113

One of the first instances of chemists studying cannabinoid reactions that occur

during smoking was in 1971 by Mikeš and Waser.114 This work was motivated by a

consistent pharmacological observation that hashish was more potent when smoked

then when ingested orally.114 Though it is now known that orally ingested and smoked

cannabis produce similar subjective effects despite a starkly different pharmacoki-

netic profile,115 Mikeš and Waser hypothesized that CBD, a ubiquitous component
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of hashish often present in a one-to-one ratio with THC, isomerized to THC during

smoking.114 For their experiments, Mikeš and Waser added THC, CBD, or hashish

to a tobacco cigarette, smoked the cigarettes with a machine smoking device, col-

lected the aerosol particulate matter on filters, extracted the filters with ether, then

injected the extract onto a GC−MS system for analysis.114 In 1941, Adams et al.116

first described the acid-catalyzed cyclization of CBD to tetrahydrocannabinols, as it

was known (the exact structure of THC was not described until 1963 by Mechoulam

and Shvo and in 1964 by Šantavý et al., independently of each other117), and Mikeš

and Waser postulated this same reaction (Figure 1.3) could take place during smok-

ing, catalyzed by some smoke-borne acid.114 Soon thereafter, Quarles et al. in 1973

pointed out this reaction would only take place if CBD was combusted in the presence

of tobacco, with a measured pH of 5.72, and would not take place when combusting

CBD-only cannabis of pH 8.14.118

Figure 1.3: Arrow-pushing mechanism for the conversion of CBD to THC, a reaction
first described by Adams et al.116 to occur by hydrochloric acid catalysis in ethanol,
confirmed to occur during smoking by Mikeš and Waser.114 and Quarles et al.,118 and
during pyrolysis by Kuppers et al.119

After the apparent resolution of the CBD-to-THC conversion issue, cannabinoid

pyrolysis was studied by two groups of organic and analytical chemistry researchers

at the University of Utrecht between 1973120 and 1978.121 With the overarching goal

of identifying molecules of toxicological concern, the group initially studied cannabis
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smoke, but decided to simplify the system and conduct pyrolysis/combustion studies

with a single cannabinoid: CBD.113 This molecule was chosen in part due to it being

a crystalline solid (mp = 67.5 ± 0.3 °C122) that is easier to handle than THC, which

is an extremely sticky, sappy oil at room temperature (mp = rt123), and in part

because it was, perhaps at the time, the most abundant cannabinoid in most cannabis

preparations.113

The Utrecht researchers performed aerobic and anaerobic pyrolysis experiments

by passing air or N2 through a heated quartz tube containing CBD to 700 °C, and

collected pyrolysates in a -80 °C cold trap119−120,124−127 Degradation products were iso-

lated by preparative GC and TLC, and structural assignments were performed using

mass spectrometry, 1H NMR, and optical rotation measurements.119−120,124−127 They

identified many CBD degradation products and divided them into two groups based

on their relative elution order with respect to CBD in the GC−MS chromtograms

of pyrolysate samples: early-eluting products (referred to as cracking products), and

later-eluting products.113

A selection of the cracking products identified in Kuppers et al. (1975 b)124 are

displayed in Figure 1.4. Readily apparent is the intact 5-pentylresorcinol moiety

in all these products, which suggests thermal degradation of CBD is initiated on

the terpenoid moiety. Products more volatile than these (VOCs such as isoprene,

butadiene, benzene, etc.) may have evaporated before sample collection, or may have

been overwhelmed by the solvent peak (pentane120) in the GC−MS chromtogram. In

one chromatogram, the first peak coming off the tail of the solvent front is highlighted

as a potential degradation product, but the authors did not investigate its structure.124
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Figure 1.4: Cracking products described in Kuppers et al. (1975 b).124

Later-eluting products identified by the Utrecht group are displayed in Figure

1.5. In their fist paper, cannabielsoin was identified as the major product on aer-

obic pyrolysis of CBD,119 and several years later, a product dubbed 314/271 (the

m/z of its two most abundant fragment ions) was identified as the main anaero-

bic pyrolysis product.126 The researchers noted that other products were visible in

GC−MS chromatograms of aerobic pyrolysis experiments, but all were more easily

identifiable in O2-free experiments.113 Given the discrepancy between these two exper-

imental conditions, the group monitored the mainstream smoke of a cigarette using

a polarographic O2 sensor and determined that anaerobic conditions were a better

recreation of reality.121 In all cases, the 5-pentylresorcinol moiety remains intact, a

further indication that reactions involving the terpenoid moiety occur with relative

ease.
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Figure 1.5: Later-eluting products identified by the Utrecht group.

1.5 Prior work characterizing thermal degradation of

β-myrcene, a fundamental cannabis terpene

Myrcene is a C10 monoterpene terpene first isolated in 1895 from Myrcia acris (bay

oil).128 Myrcene exists as two isomers governed by the position of the double bond

on the isopropylidene/isopropenyl moiety: β-myrcene and α-myrcene (Figure 1.6a).

The position of the double bond in the naturally-occurring isomer, β-myrcene, was

first reported in 1924 by Ruicka and Stoll, who rationalized this after only detecting

succinic acid after oxidizing myrcene ozonolysis products with chromic acid,129 a result

that was later confirmed by IR and NMR spectroscopy.128

Though comprehensive metabolic profiling of cannabis products is difficult mainly

due to cannabis’ legal status, many existing reports that detail the composition of

cannabis essential oil note β-myrcene as one of the most abundant terpenes present in

both drug131−135 and hemp136−137 cannabis. One study reported β-myrcene was the

most abundant terpene of the sample of drug cannabis studied, representing 33% m/m
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of distilled essential oil, nearly double the next most abundant terpene, d -limonene.25

The earliest work to partially characterize the thermal degradation of β-myrcene

is in doctoral thesis of Ioan Prodrom published in 1913 at the Swiss Federal Institute

of Technology.138 In this body of work, reactions of terpenes and other hydrocarbons

were explored, and it was observed that β-myrcene produced good yields of isoprene

(39%) when pyrolyzed by passing current through a platinum wire submerged in

the terpene.138 However, the isoprene was of lower quality than that derived from

limonene, and it was suggested this may have been due to impurities in the starting

material.138 In 1946, Davis et al. performed similar pyrolysis experiments geared

toward determining which of seven terpenes would be an ideal source of isoprene for

the manufacture of synthetic rubber.139 Davis et al. also pyrolyzed the terpenes using

a resistively-heated wire (nickel-chromium in this case).139 β-Myrcene had the third

highest yield of isoprene (21%), after β-pinene (23%), and d -limonene (54%).139 The

resemblance of these early 20th Century pyrolytic reactors with that of a modern

e-cigarette is uncanny.

Figure 1.6: a) The structures of β-myrcene and α-myrcene; b) β-myrcene decompo-
sition mechanism proposed by Kolichescki et al.;141 c) the decomposition mechanism
proposed by Stolle and Ondruschka142 in response to Kolichescki et al.141
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Though initially isolated from natural products such as bay oil, this is not econom-

ical, and currently the most common source of β-myrcene production is by pyrolysis

of β-pinene.128 This method has been refined since it was first patented in 1947,130

and the highest reported yield thus far is 85%.141 In 2007, Kolicheski et al. developed

a theoretical equilibrium model for the reaction and determined it should, in theory,

have a yield of 93.5%.141 The authors analyzed degradation products of the reaction

by GC−MS and theorized that degradation of β-myrcene via alkyl radicals accounted

for the decreased yields.141 They proposed a degradation mechanism for β-myrcene

(Figure 1.6b) that would primarily yield butadiene and 4-methyl-1,3-pentadiene, and

though they did not detect these products, Kolicheski et al. detected several prod-

ucts they reported as known degradation products of butadiene (benzene, xylenes,

ethylbenzene, etc.) and two 4-methyl-1,3-pentadiene constitutional isomers.141 Ap-

proximately six months after this publication was made available, the same journal

published a critical commentary to this paper that pointed out that the bond ho-

molysis in Figure 1.6b proposed by Kolicheski et al. is unlikely given the relative

instability of primary and vinyl radicals this forms.142 Stolle and Ondruschka instead

proposed the mechanism shown in Figure 6c which yields two relatively more stable

allylic radicals, and suggested these radicals are precursors for isopentene, pentene,

and aromatic hydrocarbons.142

Since then, a further theoretical and experimental study on the synthesis of β-

myrcene from β-pinene was published by Zheng et al. in 2017.143 Perhaps on the sug-

gestion of Stolle and Ondruschka,142 these authors characterized pyrolysis products

for not only β-pinene, but also d -limonene and β-myrcene.143 Zheng et al. charac-

terized and quantitated degradants by GC−MS, proposed reaction mechanisms, and
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developed a kinetic model that showed good agreement with experimental data.143

Products of β-myrcene pyrolysis they reported include products that maintain the

same number of carbon atoms as β-myrcene formed by intramolecular ene reactions

as well as a number of C4, C5, and C6 degradation products.143

1.6 Summary

Detailed knowledge that is not only grounded in science but in touch with historic

and current user habits is essential for performing research that seeks to advance

our knowledge of the chemical processes that underlie cannabis consumption by any

route. Though cannabis flowers are readily consumable by smoking in cigarettes or

pipes, since ancient times cannabis concentrates have been an important vehicle for

the plant’s intoxicating principle.61−62 Adulteration of hashish is a chronic issue ex-

tensively reported on in Europe,46−47 and though hashish from Morocco does not

currently make its way across the Atlantic Ocean in a meaningful way,46 adulter-

ation concerns of cannabis concentrates manufactured in North America have quickly

arisen.52,55,144 Indeed, the deadly outbreak of cannabis-e-cigarette-originated lung in-

jury known as EVALI is suggested to have have been caused by an adulterant.49

Part of the body of work presented herein is a manuscript published in Forensic

Science International titled “Pine rosin identified as a toxic cannabis extract adulter-

ant” that details efforts to identify a cannabis concentrate adulterant for which there

is evidence that the main substance it contains, pine rosin or colophony, was or may

continue to be in use in the black market.144 The hope is that this work provides

awareness to medical professionals, forensic scientists, and law enforcement agencies

about the potential presence of this substance, which is not safe to inhale, in cannabis
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concentrates.

Despite the popularity of cannabis concentrate consumption by vaping and dab-

bing, prior efforts to examine the chemical processes that occur during consumption by

these methods is scarce. Prior to the publication of the manuscripts herein, little work

existed on the characterization of any harmful or potentially harmful components of

cannabis concentrate vaping aerosols, and the chemical understanding of THC and

terpene degradation in the context of these consumption methods was loose or non-

existent. The other published manuscripts presented herein (“Toxicant Formation in

Dabbing the Terpene Story,”40 “Aerosol Gas-Phase Components from Cannabis E-

Cigarettes and Dabbing: Mechanistic Insight and Quantitative Risk Analysis,”39 and

“The influence of terpenes on the release of volatile organic compounds and active

ingredients to cannabis vaping aerosols”45) represent a progression in understanding

of cannabis concentrate inhalation methods, chemical composition of the extracts,

degradation mechanisms, and analysis methods. This work is only a first pass at

assessing the safety of these novel cannabis consumption methods, a task that must

be continued by chemists, aerosol scientists, toxicologists, and clinicians alike.
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2.1 Abstract

Pine rosin (colophony) has been identified as a potentially new adulterant in cannabis

oil. Its inhalation toxicity poses a significant health concern to users. For example,

pine rosin fumes are released during soldering, and have been cited as a causative agent

of occupational asthma. Symptoms also include desquamation of bronchial epithe-

lium, which has also been observed in e-cigarette or vaping product used-associated

lung injury (EVALI) patients. The sample analyzed herein was acquired from a

cannabis industry source, also contains medium chain triglycerides and oleamide, the

latter of which is a hypnotic that is commonly found in the synthetic marijuana prod-

uct Spice, or K2. A combination of proton nuclear magnetic resonance (1H NMR)

and high pressure liquid chromatography-electrospray ionization mass spectrometry

(HPLC-ESIMS) was used to unambiguously identify major pine rosin ingredients such

as abietic and other resin acids. Comparison to commercial samples of pure pine rosin

confirmed the assignment.

Keywords: Cannabis e-cigarette, BHO, Marijuana, EVALI, Rosin, Pine rosin, Adul-

terant, Cutting agent
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2.2 Introduction

Since the legalization of medical marijuana in California in 1996, and the legalization

of recreational marijuana in Colorado in 2012, 33 states and the District of Colombia

have medical cannabis programs, and 10 states and the District of Colombia have

fully legalized recreational use as of 2020 [1]. Canada first enacted medical marijuana

laws in 2001, and now has recreational cannabis as of 2018 [2]. With the passage

of more lax laws, cannabis extracts (CEs) have surged in popularity as alternative

products to cannabis flower, with expenditures on CEs in the legal Washington state

cannabis market increasing 145% between 2014 and 2016 [3]. CEs are consumed by

inhalation using modified e- cigarettes or via dabbing [4], and increased usage of these

among teens and young adults [5] has led to concerns of safety, as up to 11% of high

schooler students [6] report lifetime use of a cannabis vaporizer.

CEs may be consumed via inhalation by three main methods/ devices: cartridge

vaporizers (CVs), top-loading vaporizers (TLVs), and dabbing [4]. In dabbing, a small

amount of CE is placed on a hot surface (i.e. a “nail,” which may be heated with

a blow torch or electrically) that is connected to a water pipe [4,7]. A TLV is an

electronic vaporizer device that consists of a battery-powered resistive heating coil in

an atomizer, upon which a user manually places small amounts of CE [4]. Disposable

CV devices closely mimic nicotine e-cigarettes, and have surged in popularity given

their ease of use and discretion, with sales of these increasing more than 10-fold to

$224 million in Colorado as of 2018 [8].

The cannabis concentrate hashish, commonly consumed in Europe from illicit

manufacturers in North Africa, has an extensive history of containing adulterants [9].
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A recent analysis of hashish in Madrid found that 18% suffers from contamination

with glucose, sucrose, and/or abietic acid (a principal component of pine rosin) [10].

Pine rosin has also been identified as a hashish adulterant in Italy [11], Israel, and

the Czeck Republic [12].

CEs available in North America are generally manufactured via solvent extraction

(most commonly with butane, though propane or supercritical CO2 have widespread

usage) followed by several refinement steps. Butane hash oil (BHO), propane hash

oil (PHO) and CO2 oil may all adopt one of several names depending on consistency:

shatter, wax, crumble, budder, or pull-n-snap [7]. Recently, applied heat and pressure

has been used to press cannabis oils from flower to make a product known as rosin [13].

Despite the similarity in naming, cannabis rosin and pine rosin share few chemical

similarities [13].

Cases of adulteration in North American cannabis products have only recently

come into view. The synthetic cannabinoid 5-MDMB-PINACA and the antitussive

dextromethorphan have been identified in certain commercially available cannabidiol

e-liquids for CV devices [14]. Online reports on Reddit.com and cannabis websites

have become grounds where users have aired complaints of BHO adulterated with

pine rosin, and have cited specific brands and products as bad actors [15–17]. The

timing of these forum posts about pine rosin being used as an adulterant for CEs, or

as counterfeit BHO, coincide with the EVALI outbreak. Additionally, several recent

patents mention methyl ester of rosin, a pine rosin derivative, as a potential additive

to cannabis vaporizers [18–20].

CEs added to CV devices often require fluidizing agents to ensure better wick-

ing efficiency in the atomizer of a vape pen, given the high viscosity of cannabis
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extracts [4]. Substances such as terpenes, medium chain triglyceride (MCT) oil, and

phytol, among others are commonly used [21]. One CE additive to CV devices, vi-

tamin E acetate (VEA), has been linked with the recent outbreak of e-cigarette, or

vaping, product use associated lung injury (EVALI) [22]. It’s use as a thickening

agent has been suggested, however, the markedly lower viscosity of VEA relative

to ∆9-tetrahydrocannabinol (THC), indicates that the former is used to dilute CEs,

and that a different additive is the thickening agent, which is introduced to give the

appearance of unadulterated CE. Herein is the first report of an adulterant contain-

ing pine rosin (a.k.a. rosin colophony or pine resin) for cannabis CV devices. The

adulterant was acquired from a formulations consultant that works in the cannabis

vaporizer formulations space, which itself acquired the adulterant from cannabis CV

device manufacturer.

2.3 Materials and methods

Two adulterants were donated by Vialpando LLC. Initial analysis by nuclear mag-

netic resonance spectroscopy (NMR) identified one of them to be pure VEA, while the

other (Fig. 2.1, dubbed cannabis extra adulterant [CEA]) required further analysis

for identification. The CEA was initially assayed by GC–MS, which first suggested

the presence of substituted abietanes and pimaranes. Analysis of the NMR spectrum

showed peaks in the alkenyl region that are known to be characteristic of the resin

acids in question [23], and the characteristic glycolic methylene peaks from a triglyc-

eride (Fig. 7.1). 2D NMR techniques COSY and NOESY aided the confirmation of

the identity of different isomeric resin acids, as well as the identification of communic

acid, which was aided by semi-preparative HPLC. An HPLC−ESIMS chromatogram
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of CEA provided confirmation of the abietane and pimarane molecules and oleamide

(Fig. 7.2). Oleamide is not directly visible in the NMR spectrum of CEA, but the

amide N-H protons are visible in the semi-preparative HPLC fraction that contains

it when this is dissolved in DMSO-d6 (Cambridge Isotope Laboratories), which was

spiked with a pure standard of oleamide (TCI America) to confirmed its presence

(Fig. 7.3). Commercially available medium chain triglyceride (MCT) oil (Nature’s

Way) was spiked in a CEA NMR sample (Fig. 7.4). An approximate %mass of each

identified component was determined by quantitative NMR (Q-NMR) [24]. See the

supplementary appendix for further experimental details.

Figure 2.1: Cannabis extract thickener provided in a glass syringe.

2.4 Results and discussion

The analytical methods used discovered that the unknown CEA contains resin acids

consistent with pine rosin (68%), MCT oil (15%), and small amounts of oleamide

(Table 2.1). An overlay of a commercially available sample of gum rosin (Sigma

Aldrich) and CEA demonstrates the similarity of these two substances (Fig. 2.2), with

the major visible difference being the presence of the triglyceride peaks from MCT

oil in the CEA. Rosin, a solid at room temperature, appears to have been amended

with MCT oil to thin its consistency to allow extrusion from a syringe, making its
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final appearance very similar to pure THC or clarified cannabis extract. For the

purposes of this study, only approximate quantification was necessary to determine

the composition of the sample. Given that this adulterant is destined for use in

cannabis e-cigarettes, it is unknown how the final matrix will affect identification

and quantification of resin acids in a black market sample. The analytical methods

presented herein may serve as a guide for identifying resin acids in a cannabis sample,

but a more comprehensive quantitative method will need to be developed for cannabis

extracts adulterated with pine rosin and/or oleamide.
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Common name CAS Number RT in LC/MS
(min)

NMR
Shift
(ppm)

Mass
Accuracy
(ppm)

% in Sample

Dehydroabietic acid 1740-19-8 16.5 6.88 0.03 3
Communic acid 2761-77-5 21.8 6.32 0.03 4
Pimarol 1686-59-5 23.9 NA 0.52 NA
Pimaric acid 127-27-5 23.9 5.71 1.25 3.2
Sandaracopimaric acid 471-74-9 23.9 5.22 1.25 1.5
Palustric acid 1945-53-5 23.9 5.39 1.25 14
Abietic acid 514-10-3 25.1 5.77 1.25 17
Oleamide 301-02-0 25.1 6.65-7.19 0.64 NA
Neoabietic acid 471-77-2 25.1 6.2 1.25 12
Isopimaric acid 5835-26-7 25.1 5.81 1.25 13
Sandaracopimarinal 3855-14-9 30.3 5.22 0 NA
MCT oil 438544-49-1 NA 4.3 NA 15

Table 2.1: Components identified in CEA by nuclear magnetic resonance (NMR)
spectroscopy and HPLC-ESIMS, and approximate %masses in the sample were de-
termined by Q-NMR.

Figure 2.2: Overlaid 1H NMR spectra of CEA (top, maroon) and commercially-
available gum rosin (bottom, green) from Sigma Aldrich (CAS no. 8050-09-7).

Rosin is a known respiratory tract irritant and a significant contributor to oc-

cupational asthma due to its use in soldering [25]. Occupational exposure to pine

rosin vapor from solder flux at levels of 50 µg/m3, the 8-h Time Weighted Average

(TWA) exposure limit, has not been known to produce sever acute lung injuries [25].

However, CEA added to CE at a level of just 1% will produce nearly 0.6 g/m3 of

pine rosin in the aerosol from a cannabis vaporizer pen with each puff, or 3500 times

the 15-min TWA exposure limit [25]. In vivo exposure of abietic acid to rat lungs
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produced desquamation of bronchial epithelium [26], which has also been reported in

EVALI cases [27]. We are unaware of efforts to date to test for pine rosin compounds

in samples from patients with vaping-induced lung injuries. Oleamide appears to have

been added to increase the psychoactivity of resulting adulterated CE, as this com-

pound is a cannabinoid receptor agonist and sleep-inducing agent [28]. Interestingly,

oleamide is a common additive to synthetic cannabinoid “Spice” mixtures [29]. It is

unknown what, if any, are the health effects of inhaling oleamide. Oleamide is also

mentioned as a potential additive to vaping formulations in a patent registered to a

cannabis vaporizer formulations company [30].

2.5 Conclusion

The use of pine rosin as an adulterant in cannabis oil has not been previously reported

in the scientific literature. It is available through online vendors, typically used as

an ingredient in industrial products such as varnishes, adhesives, soldering fluxes and

sealing wax. It has significant inhalation toxicity. To date, there are no reports of

testing for this substance in cannabis oil samples from patients with lung injury. Due

to the significant toxicity and prevalence based on social media posts, regulators and

laboratory personnel should be aware of its use in adulterated cannabis oil.
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3.1 Abstract

Inhalable, noncombustible cannabis products are playing a central role in the ex-

pansion of the medical and recreational use of cannabis. In particular, the practice

of “dabbing” with butane hash oil has emerged with great popularity in states that

have legalized cannabis. Despite their growing popularity, the degradation product

profiles of these new products have not been extensively investigated. The study

herein focuses on the chemistry of myrcene and other common terpenes found in

cannabis extracts. Methacrolein, benzene, and several other products of concern to

human health were formed under the conditions that simulated real-world dabbing.

The terpene degradation products observed are consistent with those reported in the

atmospheric chemistry literature.
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3.2 Introduction

Terpenes and terpenoids are present in such a wide diversity of environments (na-

ture, food, cosmetics, pharmaceuticals, and drugs) that their consequences for inhala-

tion toxicology cannot be ignored. Additionally, their inclusion in flavored electronic

cigarettes1 and ubiquitous presence in inhalable cannabis products are of particular

concern. The medicinal and psychoactive effects of cannabis have been proposed to

be enhanced by terpenes, a phenomenon known as the “entourage effect”,2 and these

relatively unsubstantiated assertions of benefits have led the cannabis industry to

place a heavy emphasis on these aroma compounds.

Terpenoid degradation in the context of cannabis has not been extensively studied;3,4

however, it has attracted attention in the context of atmospheric chemistry.5,6 For in-

stance, the reactions of terpenoids with O3 and NOx are well-known, but they are

not directly applicable to e-cigarettes or inhalable cannabis products. However, these

and other studies of pyrolysis and combustion of terpenoids should serve as a starting

point toward understanding the reaction pathways in consumer vaporization devices.

Despite the growing popularity of flavored e-cigarettes and terpene-enriched cannabis

extracts, the chemical profiles of their terpene degradation products have not been

evaluated in detail.

Of very recent concern is the practice of dabbing, which has emerged as a dan-

gerous and rapidly growing trend in cannabis consumption. It consists of inhaling

the vapors produced by placing a small amount of cannabis extract (a “dab”) on a

small heated surface (the “nail”), which is connected to a water pipe.7 Its delivery of

harmfully large amounts cannabinoids8,9 represents a potential danger to consumers,
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but little is known about the toxicants the process may produce.

The principal extract used in dabbing is butane hash oil (BHO). BHO is a resinous,

nonpolar extract of the cannabis made using butane as a solvent.10 BHO has active

ingredient (tetrahydrocannabinol (THC) or cannabidiol) contents ranging between 50

and 9%,8,11 with terpene content ranging from 0.1 to 34% (unpublished). Myrcene is

unequivocally the most abundant terpene in cannabis, followed by limonene, linalool,

pinene, caryophyllene, and humulene; however, the plant can contain up to 68 ad-

ditional terpenic compounds in trace amounts.12 Additionally, some consumers in-

crease the terpenoid content by dipping BHO in a vial of terpenes prior to use (“terp

dipping”).13

BHO is made by passing butane over cannabis buds and leaves, and subsequently

“purging” the butane from the product under vacuum at room temperature or in an

oven. Different nuances in its processing can lead to slightly different consistencies,

which take on terms such as shatter, budder, crumble, pull-and-snap, wax, and so on.

In all of its forms, the extract is a sticky, resinous substance similar to the oleo-resins

of other plants.14 Because the process does not involve heating the extract to the point

that delta-9-tetrahydrocannabinolic acid (THCA, the native form of this substance

found in the plant) decarboxylates (unpublished) into the active THC, BHO is not

orally active and must be vaporized for the users to achieve its effects.15

BHO production started out as a dangerous “backyard-chemist” style operation

that is famous for causing numerous explosions and house fires. Through the course

of legalization, the production has steadily gained sophistication. The most modern,

legal extraction laboratories live up to the OSHA standards with full ventilation and

butane recovery. Modern techniques also include steps to “de-wax” the product by
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dissolving the crude BHO in isopropyl alcohol and chilling in a freezer, and, finally,

filtering off the precipitated waxes in a process known as winterization. Many sub-

tleties in its production exist, but many remain secretive due to the highly competitive

nature of the cannabis marketplace and the general inability of extract producers to

file patents due to the drug’s legal status at the federal level.

In addition to butane extraction, supercritical CO2 extraction has gained traction

due to the fact that is does not leave any trace of hydrocarbon solvents in the end

product.16 The cannabis extract made by this method, colloquially known as CO2

oil, has a lesser viscosity than BHO, a property that allows it to be used in vaporizer

pens on its own with no cutting agents. The lesser viscosity is due to the fact that

the supercritical extraction process requires the product to be first decarboxylated

(heating in an oven at 100+ °C),17 leaving an extract consisting of all THC (an oil

at room temperature) and no THCA (a solid at room temperature). CO2 oil is

generally more expensive than BHO and mostly present on the market in prefilled

vaporizer cartridges and not commonly as a standalone extract for dabbing. Because

this extraction method does not leave residual hydrocarbons, it has been named,

along with alcohol extracts, as the only allowable medical extracts to be sold under

the medical cannabis regulations in New York,18 Minnesota, Ohio, and Pennsylvania.

According to a recent survey,11 the main reasons for using dabs are that less

material is needed to get the desired effect and a “cleaner high.” Consumers consider

dabbing to be a form of vaporization, and, therefore, view it as easier on the lungs

than smoking.19 However, little information exists on the prevalence of dabbing. From

213 BHO extraction laboratories in the 17 states raided in 2014, 2015 saw a steep

increase in the number of laboratories raided to 337 in 26 states.20 An analysis of the
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Twitter content related to dabs found a greater popularity in the states that have

legalized recreational and/or medical cannabis.21

Different types of nails, the surface on which vaporization occurs, exist on the

market. Use of an electrically controlled nail (“e-nail”) allows temperature control;

but, more commonly, users heat the nail (made of titanium, ceramic, or quartz) with

a crème brulee torch22 and have no temperature control. A minority of dabbers use

lower temperatures to preserve flavor, whereas a majority use higher temperatures

to assure complete vaporization with no wasted material. E-nail users posting online

cite a preferred temperature around 710 °F (378 °C), but cite a range from 340−482

°C.23−25 Raber et al. reported a dabbing temperature of 300 °C, but this was only

an (low) estimate. The boiling point of THC has recently been predicted to be ca.

417 °C,26 but vaporization can occur at temperatures lower than this by the use of a

“carb cap” that reduces pressure on its surface during inhalation.27

This study is an initial effort toward assessing the safety of dabbing cannabis ex-

tracts. Due to the fact that these consist of a complex mixture, we have begun our

focus on terpenoids, the component we predict to be the most thermally labile. To

study dabbing, we carefully recreated the inhalation topography and temperatures

employed by users. The study described herein is the first to investigate the degra-

dation products from dabbing and is focused on the terpene fraction of the extracts

used by consumers.

61



3.3 Results and discussion

3.3.1 Sample generation and product identification

We investigated the dabbing temperature ranges (TRs, Figure 3.1) inclusive of and

beyond the ranges of those reported by the users. The vapor collection and analysis

methods were based on those by Jensen et al.28 using an impinger filled with NMR

solvent for vapor collection. In the dabbing simulation experiments herein, the vapor

generated from the heated ceramic nail connected to a water pipe passed through a

cold trap followed by the impinger. The impinger was, in turn, connected to a smoking

machine that generated the airflow. Degradation products from myrcene, limonene,

linalool, and Fire OG cannabis terpenes, a commercially available mix specifically

fabricated for terp dipping, were monitored.11 The presence of methacrolein (MC)

and benzene in vapor NMR samples was confirmed by spiking with authentic samples

(Supporting Information). Their levels were quantified by NMR using an internal

standard.
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Figure 3.1: MC (ng) generated in a 40 mg dab using myrcene as a model terpene
assuming a 5.9% concentration of terpenes in BHO. Temperature values represent
the Tm for each TR. Error bars are determined at the 95% confidence level using the
standard deviation of the three replicates taken at each TR. At the lowest TR, MC
was not detected by NMR.

In addition to the NMR method, the dabbing vapor was collected using an adsorp-

tion/thermal desorption (ATD) cartridge and analyzed using an automated adsorp-

tion/thermal desorption−gas chromatography−mass spectrometry (ATD− GC−MS)

method similar to that in Pankow et al.29 Additional product structures (Scheme

3.1) were assigned by the GC−MS analysis. Other minor products that have been

previously described in the literature30 were also tentatively identified in the chro-

matographs (Supporting Information). Air blanks were collected and analyzed using

each of the NMR and the ATD−GC−MS methods.

Temperatures in dabbing experiments were carefully monitored for consistency

using a thermographic camera. As the first drop in terpene touched the nail, an

initial temperature (T i) was recorded. Once a 10 s draw concluded, a final temper-
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ature (T f) was recorded (the nail cooled between 50 and 30 °C during the draw due

to convection). A median temperature (Tm) was calculated and averaged for each

replicate to afford a representative Tm for each TR.

Scheme 3.1: Terpene degradation products identified via GC−MS analysis; 1,
methacrolein; 2, methyl vinyl ketone; 3, hydroxyacetone; 4, 3-methylfuran; 5, 2-
methylnapthalene; 6, 1,3-butadiene; 7, 1-methylcyclohexa-1,4-diene; 8, benzene.
These and other related products were produced from pure samples of each of
limonene, linalool and myrcene.

MC (ng/mg terpene) Benzene (ng/mg terpene)
"Fire OG" 127 10
Limonene 261 63
Linalool 103 ND
Myrcene 81 60

Table 3.1: Methacrolein (MC) and benzene levels produced per mg terpene starting
material when vaporized at the highest temperature range investigated, ca. 550 °C
(T i) −500 °C (T f) using single replicate experiments

The 1H NMR spectra from the dabbing samples displayed peaks characteristic

of a range of organic acid, aldehyde, and aromatic products. The two products
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appearing in high abundance in the spectra were the toxins benzene and MC (Scheme

3.1, Table 3.1). MC is a well-known degradation product of isoprene,5,31,32 which is

itself a known degradation product of myrcene33 and other terpenes.34 Benzene, alkyl

benzenes, and polycyclic aromatic hydrocarbons are known to form during terpene

thermolysis. For example, benzene has been observed as a degradation product in

the synthesis of myrcene by the pyrolysis of β-pinene,35 and it is also a product of

solanesol pyrolysis.34 Benzene has also been detected in cannabis smoke.36

3.3.2 Product quantification

Given the wide diversity of the terpenes present in BHO, the relatively high abundance

of myrcene and the similarity of the products from each of the terpenes studied (Table

3.1 and Scheme 3.1), we focused on myrcene as a model terpene in evaluating the

effect of temperature on the yields of MC and benzene. Assuming 40 mg as an

average size dab,22 each dab contains 2.36 mg of terpenes, which is based on an

average concentration of terpenes of 5.9% in BHO (unpublished data). The amount

of MC obtained per dab based on these calculations is displayed in Figure 3.1.

Because dabbing topography has not been previously investigated, we chose an

inhalation volume of 338 mL and a 10 s duration to assure a more complete collection

of vapor. The concentrations of MC in ppb per dab in this regime are 185 ± 11 ppb

at Tm = 526 °C, 157 ± 2 ppb at Tm = 455 °C, 131 ± 9 ppb at Tm = 403 °C, and

undetectable at Tm = 322 °C.

Benzene was not detected below the highest TR. Using the same rationale as

above for MC emission, one dab of BHO delivers 17 ng of benzene. Represented as a

concentration in the draw volume, this value is 15 ± 1.8 ppb.
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3.3.3 Degradant toxicology

MC’s property as a noxious irritant is unsurprising due to its structural similarity

to acrolein, a powerful pulmonary irritant37 and an air pollutant of great concern.

Ambient concentrations of MC outside of Stockholm were determined to be 0.06

ppb, whereas those at different urban locations in Stockholm were 0.11, 0.13, 0.19,

and 0.71 ppb.38 MC’s effect on the respiratory tract in mice has shown it to be

a potent irritant, indicating its threshold limit value should not exceed 0.3 ppm.39

Nøjgaard et al. reported changes in the blink frequency during eye exposure to MC

at a concentration of 100 ppb and proposed a LOEL of 286 ppb.40 These conflicting

reports indicate that the safe levels of MC are yet to be determined.

Unlike MC, the toxicology of benzene has been thoroughly evaluated. Although

benzene is a ubiquitous pollutant, the concentrations of benzene found in the dabbing

terpenes at the highest TR are far greater than those found in ambient air. The

average concentration of benzene, a potent carcinogen, in U.S. air, measured over 137

different sites is 0.313 ppb (313 ppt),3,41 and is correspondingly the “largest single

known cancer-risk air toxic (sic).”42

3.3.4 Degradant formation mechanism

We propose that the formation of MC and benzene occurs via isoprene as an inter-

mediate (Scheme 3.1). The GC−MS spectra of limonene, linalool, and myrcene all

displayed significant peaks tentatively assigned to isoprene, which suggests that these

terpenes, the major terpenes in BHO, break down to their isoprene monomers before

further degradation.
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Studies of the atmospheric chemistry of isoprene have shown that it reacts with

hydroxyl radicals and O2 to form not only MC and HCHO but also methyl vinyl ketone

and 3-methylfuran. The GC−MS analysis of each pure terpene studied afforded a

tentative identification with a high match quality of MC, methyl vinyl ketone, and 3-

methylfuran, as well as 1,3-butadiene and several cyclic and acyclic dienes, polyenes,

and aromatics (Scheme 3.1 and Supporting Information).

3.3.5 Limitations

The main limitation of this study is the fact that the concentrations of MC and

benzene determined are likely underestimated. One reason may be the relatively large

draw volume used. In addition, the temperature-dependent concentration values were

extrapolated from myrcene, which afforded the lowest yield of degradation products

of all of the terpenes investigated. Another factor potentially contributing to the

underestimation of yields is transfer inefficiency resulting in the potential losses of

terpenes and their products. For example, the average myrcene recovery (8.7 ± 0.7

mg) was low compared to the amount delivered onto the nail (59.6 mg). Although

this low yield of terpenes in the NMR sample was initially attributed to their limited

solubility in DMSO-d6, dabbing experiments using CDCl3 also had low yield by NMR.

This may not be due entirely to degradation. Transfer inefficiency in dabbing has been

previously described.22

3.4 Conclusions

Given the widespread legalization of cannabis in the United States, it is imperative

to study the full toxicology of its consumption to guide future policy. The results
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of these studies clearly indicate that dabbing, although considered a form of vapor-

ization, may in fact deliver significant amounts of toxic degradation products. The

difficulty users find in controlling the nail temperature put users at risk of exposing

themselves to not only methacrolein but also benzene. Additionally, the heavy focus

on terpenes as additives seen as of late in the cannabis industry is of great concern

due to the oxidative lability of these compounds when heated. This research also has

significant implications for flavored e-cigarette products due to the extensive use of

terpenes as flavorings. Future research will also be directed toward assessing the con-

tribution of terpenoids to the existing toxicant formation in e-cigarettes. Additionally,

the methods discussed herein will also be used to further study the degradation of

cannabis extracts used in dabbing and cannabis e-cigarettes.

3.5 Methods

3.5.1 Materials

Terpenes included myrcene ≥95%, stabilized, FCC, FG (Sigma-Aldrich); (R)-(+)-

limonene analytical standard (Sigma-Aldrich); linalool ≥97%, FCC, FG; and Fire

OG terpene mix (Blue River Extracts).

3.5.2 NMR experiments

Air is drawn at a constant rate using and the Single Cigarette Smoking Machine

(SCSM-STEP, CH Technologies) calibrated to pull 338 mL air during a 10 s dab.

A HIVE Domeless Element 10 mm ceramic nail (HIVE Ceramics) was attached to a

small dab water pipe (Zion Cannabis in Portland, OR). For each separate experiment,
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the water pipe was filled with 20 mL of fresh 200 ppm solution of NaCl Biological,

Certified Crystalline (Fisher Scientific) in HPLC grade water (Honeywell).

Terpene (15 µL) was delivered per dab using a Hamilton 50 µL analytical syringe.

Five dabs were done per experiment. The vapor was collected through a cold trap

chilled with isopropyl alcohol/dry ice at −77 °C, proceeded by an impinger containing

750 µL of DMSO-d6 + 0.05% v/v tetramethylsilane (99.9%, Cambridge Isotope).

After the experiment was concluded, the cold trap was washed with the NMR solvent

in the impinger and collected quantitatively using an Eppendorf P1000 pipette in an

NMR tube. The water pipe and the cold trap were connected by 5 cm of 1/2 in. outer

diameter ACF0027-F Tygon S3 E-3603. The end connected to the water pipe was

wrapped in Teflon tape to make it fit snugly. The cold trap and the impinger were

connected by 3.5 cm of 1/2 in. outer diameter ACF0027-F Tygon S3 E-3603. The

impinger and the SCSM were connected by 5 cm of 3/8 in. outer diameter ACF0017-

F Tygon S3 E-3603. The tubing was discarded after every experiment, so sorptive

losses were consistent with every experiment.

All of the NMR samples were spiked with 10 µL of a 17.33 mM solution of

2,3,5,6-tetrachloronitrobenzene (TCI Chemicals) in DMSO-d6 using an Eppendorf

P10 pipette. This standard solution was made by adding 11.23 mg of 2,3,5,6-tetrachlo-

ronitrobenzene to 3 mL of DMSO-d6.

Myrcene dab NMR experiments at each TR (Figure 3.1) were performed in tripli-

cate. Terpene experiments shown in Table 3.1 were performed once each. The exact

conditions used in recording the NMR spectra are presented in the SI.
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3.5.3 ATD–GC–MS Experiments

The same water pipe (containing 20 mL 200 ppm solution of NaCl) and the same

ceramic nail were connected to an ATD cartridge with 5 cm of 1/2 in. outer diameter

ACF0027-F Tygon S3 E-3603 wrapped in the Teflon tape to make a seal and then

attached to 5 cm of 3.5 cm of 3/8 in. outer diameter ACF0027-F Tygon S3 E-3603,

also wrapped with Teflon tape on the end to assure an air-tight seal. The other end of

the ATD cartridge was connected to the SCSM- STEP using 5 cm of 3.5 cm of 3/8 in.

outer diameter ACF0027-F Tygon S3 E-3603. The ATD cartridges used contained 100

mg of 35/60 mesh Tenax TA and 200 mg of 60/80 mesh Carbograph 1 TD (Camsco

Inc., Houston, TX). The same dabbing topography used in the NMR experiments

were used in the ATD cartridge sample collections. This high flow rate exceeds that

normally used for these cartridges, but this was allowed due to the fact that these

experiments were only used for product identification and not quantification. The

conditions used in the ATD cartridge analysis are explained in the SI.
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4.1 Abstract

Consumption of cannabis by nontraditional methods has surged since the advent of

legalization in North America and worldwide. Inhaling cannabis extracts using va-

porizers and via dabbing has risen in popularity, while concerns over product safety

have not hindered their proliferation. The work herein is the first step toward as-

sessing the safety of vaporizing and dabbing concentrated cannabis extracts as a

function of gas-phase reaction products. The gas-phase thermal degradants of ∆9-

tetrahydrocannabinol (THC) have not been previously investigated. It was found

that users may be exposed to concerning degradants such as methacrolein, benzene,

and methyl vinyl ketone when using cartridge vaporizers and dabbing. It was shown

that THC alone and mixed with terpenes generated similar degradation products and,

most notably, elevated levels of isoprene. Importantly, it was shown that added ter-

penes led to higher levels of gas-phase products compared to THC alone. To estimate

cancer and noncancer risks associated with exposure to these and other degradants,

quantitative risk assessment was applied to experimentally determined values for dab-

bing and vaping and literature-sourced levels of hazardous components in cannabis

smoke. Overall, gas-phase aerosol products had significantly lower values in dabbing

and vaporizing compared to cannabis smoking, although these results should be in-

terpreted in light of potential variations in degradant levels due to disparate usage

patterns and the dangers of the higher aerosol concentration of THC.
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4.2 Introduction

Legalization and increasing social acceptance of cannabis in the United States and

worldwide has led to a proliferation of novel cannabis administration methods. Ad-

vancement of cannabis extract (CE) production and processing has placed these at

the forefront of novel cannabis inhalation methods, and sales of CEs now make up

more than 20% of the retail market share in the Washington state.1 Despite their

popularity, little work has been done to assess the safety of these novel consumption

methods.

Figure 4.1: Relevant cannabinoids

Cannabinoids, the constituents responsible for cannabis’ psychoactive and medic-

inal effects, are biosynthesized in trichomes of female cannabis inflorescences.2−4 Fig-

ure 4.1 displays the pharmacologically active cannabinoids THC (mp: <25 °C5) and

cannabidiol (CBD, mp: 62−63 °C6), which are biosynthesized as the acid cannabi-

noids ∆9-tetrahydrocannabinolic acid (THCA, mp: 75 ± 3 °C7) and cannabidiolic

acid (CBDA, mp: 68 ± 3 °C8) that readily decarboxylate upon heating.9 Nonpolar

solvents (e.g., butane10−12 and supercritical CO2
13,14) are used to extract acid cannabi-
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noids in an oleoresin that includes terpenes, waxes, fatty acids, steroids, lignins,

etc.15 While butane hash oil (BHO, an amber or gold solid10,16) contains primarily

acid cannabinoids,10,11 superfluid cannabis extract (SFE) may contain acid or neutral

cannabinoids depending on processing methods. Vacuum distillation affords purified

neutral cannabinoids allowing manufacturers to tailor cannabinoid and terpene con-

tent in the final product commonly referred to as a distillate.17 Distillates are often

amended with terpenes at 5−15% (m/m).18

Three consumption methods/devices for CEs have predominated: dabbing, car-

tridge vaporizers (CVs), and top-loading vaporizers (TLVs). Dabbing involves flash

vaporizing a small amount of CE, a dab, on a hot surface, a nail, which is con-

nected to a pipe or water pipe, an oil rig or rig.19 A user quickly and immediately

inhales aerosol generated when the dab is placed onto the nail, which may require

up to an entire vital capacity for complete capture.11 BHO, distillate, and SFE are

amenable to dabbing, though BHO is most common.11,20 CVs are small electronic

cigarette-like devices that use battery-powered resistive heating to aerosolize CEs. A

button-activated battery powers an atomizer located in a cartridge preloaded with CE

to generate aerosol a user inhales through a mouthpiece; reliance on wicking neces-

sitates extracts containing neutral THC with added terpenes to decrease viscosity.21

TLVs also use a battery to power a resistively heated coil but differ in that users man-

ually place the CE directly onto exposed heating coils in the atomizer ad libitum.22

Any extract may be used in TLV.22 Both TLV and CV are colloquially referred to

as vape pens, and no surveys to date distinguish between the two, categorizing them

together as cannabis e-cigarettes or cannabis electronic vapor products (CEVPs). In

all these CE consumption methods, carrier liquids such as glycerol, propylene glycol,
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and medium-chain triglycerides are not typically included as they are considered to

be undesirable.23

Vaporizing (or vaping) cannabis by any method has gained popularity among

recreational and medical users, particularly young adults and teens,24 as a less de-

tectable method of using marijuana compared to smoking that is also perceived to

be healthier.25−27 Vaporizers for cannabis inflorescences28,29 have existed long before

popularization of CEs,30 and terminology used to refer to these (e.g., vaporizers and

vapes) has been applied for TLV and CV, which has led to some confusion in the

literature. Several studies have investigated prevalence of CEVPs specifically, though

many others exist for inflorescence vaporizers. The 2016 National Youth Tobacco

Survey31 reported that nearly 1 in 11 respondents reported lifetime use of a CEVP,

and other state-level surveys report 3.4% usage among middle-schoolers,32 5.4−11.4%

for high-schoolers,32,33 and 10.7% for college students.34 Sparse data exists on preva-

lence of dabbing, though it appears to be common among regular cannabis users.

Twenty percent of daily/nearly daily cannabis users in the Washington state reported

dabbing in the past week,35 and 36.5% of respondents from a Reddit survey of a sim-

ilar cohort endorsed regular use of dabbing as well.36 An internet survey of Twitter

posts found that dabbing- related posts are more prevalent in states with medical

marijuana laws,37 suggesting that dabbing may grow in popularity as legalization of

cannabis expands access to alternative cannabis products.
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Figure 4.2: Cannabidiol degradation products

The thermal behavior of cannabinoids has been studied in the context of the

conversion of CBD to THC or other potentially psychoactive compounds in smoked

marijuana, smoked tobacco with CBD,38−41 and pyrolysis of CBD alone.42,43 While

searching for potentially psychoactive CBD pyrolysis products, many olivetol deriva-

tives with intact pentyl chains (Figure 4.2, compds 1−5)44,45 and other products were

found to stem from rearrangement of CBD’s terpene moiety (Figure 4.2, compds 6

and 7),46 indicating that this may be particularly labile. Exhaustive in its efforts

to identify potential pharmacologically active products, work at the University of

Utrecht did not prioritize identifying volatile organic compounds (VOCs). Harmful

and potentially harmful constituents (HPHCs) of cannabis smoke have been previ-

ously studied,47,48 but no information is available concerning pyrolysis or oxidation

products of cannabinoids relevant to dabbing or vaping conditions. Moreover, it is

not clear if the HPHCs arise from the cannabinoids, terpenes, or any other plant

constituents. A recent study described BHO diluted in glycerol and propylene glycol

added to a CV-type device, which does not embody the manner in which cannabis

concentrates are vaporized.49 Evidence-based data is needed to better understand
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toxicology and routes of administration of these emerging products. We currently do

not know, for instance, the aerosol doses of cannabinoids, terpenes, and potentially

toxic degradation products being delivered to vulnerable cohorts such as teens and

pre-teens or to medical marijuana patients with compromised immune systems.

Quantitative risk assessment (QRA) is an analytically driven risk calculation that

pools biological and chemical data to approximate the probability of the incidence of

a defined outcome or symptom upon exposure to a given HPHC. QRA has been pre-

viously performed for tobacco products,50,52 for example, for comparison of “reduced

exposure” cigarettes to regular cigarettes.51 Cancer risk may be approximated using

the excess lifetime cancer risk (ELCR) and noncancer risks using the hazard index

(HI). ELCR, the incremental probability of contracting cancer upon specified condi-

tions of exposure to a carcinogen,52 is derived from the inhalation unit risk (IUR),

an estimate of the increased risk (i.e., above baseline) of developing cancer due to

exposure to a 1 µg/m3 concentration of a given chemical.53 The reference exposure

level (REL) is an estimate of an air concentration that is not likely to create an ap-

preciable risk in humans after continuous inhalation and is calculated in reference to

a given symptom that occurs after chronic exposure.53 Both the IUR and REL may

have uncertainties spanning an order of magnitude. A given exposure concentration

divided by the REL yields a hazard quotient (HQ) wherein HQ > 1 indicates that the

threshold of toxic effects on the target system is surpassed. ELCR and HQ values for

individual chemicals are summed to yield total ELCR (ELCRT) and HI, respectively,

which may be used to guide policy decisions regarding environmental cleanup projects

and consumer products.52

Previously, our lab had investigated thermal degradation products of terpenes
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that are present in CEs when exposed to dabbing conditions.19 We hypothesize that

cannabinoids will generate similar degradation products given their terpene backbone.

Given the restricted availability of marijuana derivatives for research, it was possible

only to synthetically recreate the CE product distillate by mixing analytical-grade

THC with a terpene aromatherapy mix of cannabis cultivar Fire OG in a ratio of 9:1

THC:terpenes. Herein, we report an investigation of the chemical makeup of aerosol

gas phases (GPs) obtained by dabbing pure THC and this synthetic distillate (SND) in

addition to vaping SND in a CV device at three power levels commonly used. Adsorp-

tion/thermal desorption gas chromatography−mass spectrometry (ATD−GCMS) is

used to quantify target VOC analytes, and other aerosol GP components are esti-

mated using a nontarget analysis approach. Identified components provide mechanis-

tic insight into the thermal degradation of cannabinoids. Quantitative risk assessment

(QRA) calculations are applied to estimate cancer and noncancer risks from dabbing

and CV usage, and the results of which are compared to risks from smoking cannabis

using quantitated cannabis smoke components from the literature.55−58 To the best

of our knowledge, this is the first time the safety of CEVP and dabbing has been

studied, and the first time quantitative risk assessment has been used to evaluate the

safety of cannabis smoking.

4.3 Results

GP aerosol components generated from dabbing THC and SND were quantified using

internal standard (IS)-normalized multipoint calibration of methacrolein, benzene,

xylenes, toluene, styrene, and ethylbenzene in duplicate samples, and response fac-

tors (RFs) calculated from ISs were used to estimate levels of these components seen
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from vaping SND in a CV at three voltages (Table 4.1). Isoprene levels were esti-

mated using internal standard-calculated response factors (IS-RFs) in all cases. A

large diversity of other hydrocarbon (HC) components with a majority of alkenes

was observed in all GCMS chromatograms acquired, though the spread differed be-

tween SND dabbing (Table 9.1) and THC dabbing samples (Table 9.2). Levels of

the major-occurring VOCs, identified by comparison of mass spectra against those

in the National Institute for Standards and Technology (NIST) mass spectrometry

database (match qualities of >70%), were estimated by a previously published non-

target analysis method (see Methods and Materials),58,59 and the results of which are

displayed in Tables 9.1 and 9.2. GP components from dabs of 11 ± 2.5 mg of either

THC or SND were measured and scaled up to 40 mg (reported average dab60), as-

suming equivalent sidestream losses of the GP components across different dab sizes.

For CV vaping, GP components are presented from single-puff measurements using

standard puff topography for e-cigarettes. Many oxygenated compounds identified

in the THC dabbing chromatograms (2,5-dimethylfuran, 2,3-dimethylacrolein, etc.)

were not identifiable in SND dabbing and CV vaping chromatograms. Analysis of

selected ion chromatograms of ions relevant to these oxygenated products in SND

samples indicates the presence of these THC-specific degradation products, though

they were not quantifiable by nontarget analysis due to overlap from vastly more

abundant alkenic terpene degradation products. Sample chromatograms from dab-

bing THC and SND are presented in the Supporting Information (Figures 9.1 and

9.2). A sample chromatogram of CV vaping was not displayed given its similarity to

that of SND dabbing.

To make the comparison between the risks associated with CV vaping, dabbing,
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Component, unit THC dab SND dab Vape 3.2 V Vape 4.0 V Vape 4.8 V
Methacrolein, µg 2.7 ± 0.8 12 ± 0.82 5.6 E-3 3.2 E-2 1.9 E-1
Benzene, ng 33 ± 14 360 ± 120 9.9 E-1 2.7 E+0 3.6 E+1
Xylenes, µg 0.33 ± 0.20 0.85 ± 0.30 1.0 E-3 1.5 E-2 1.8 E-1
Toluene, µg 0.44 ± 0.22 1.4 ± 0.42 7.0 E-4 1.0 E-2 1.6 E-1
Styrene, ng 0.88 ± 0.72 27 ± 14 9.3 E-2 2.7 E-1 ND*
Ethylbenzene, ng 1.5 ± 0.99 55 ± 30 3.7 E-2 2.5 E-1 2.7 E+0
Isoprene, µg 9.6 ± 1.7 44 ± 3.5 3.0 E-2 8.3 E-1 6.0 E+0
Other HCs,† µg 5.3 ± 0.7 21 ± 11 4.2 E-2 7.2 E-1 7.9 E+0
Total VOCs,‡ µg 2.0 E+01 7.7 E+01 9.4 E-2 1.5 E+0 1.2 E+1

Table 4.1: Selected GP components identified in dabbing and CV vaping using
ATD−GCMS

and smoking, the level of chronic consumption of each was matched so each would

deliver an equivalent daily dose of THC. This was necessary given the lack of infor-

mation about specific consumption habits for CV vaping and dabbing but is justified

based on literature precedence. Van Dam et al.61 reported a significant decrease in

daily grams of cannabis consumed in users that switched from smoking to vaporizing

flower cannabis, which has a THC delivery efficiency higher than that of smoking,62

that users adjust the quantity consumed to obtain the same THC delivery based on

personal preference. Analogous to the pack-year for cigarette smoking, the joint-year

has been used as a measure of cannabis consumption widely used in epidemiological

studies of cannabis use63−65 and is defined as smoking 1 joint/day over the course of

a year. The joint-year was chosen as the reference point to which approximate THC

deliveries for dabbing and CV vaping would be matched by the consumption rate

(CR; see Methods and Materials). Assuming a THC content of 17.1%66 in cannabis

and a THC transfer efficiency of 43%62,67 during smoking, a standard 0.75 g joint68,69

would yield 55 mg of THC, two 40 mg dabs would yield 55 mg of THC assuming

a THC content of 90% and a transfer efficiency of 76%,70 and 20 puffs from a vape

pen (at 4.8 V) would yield 54 mg of THC assuming an 85% yield on 4 mg puffs of
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cannabis distillate containing 90% THC (m/m).

Consumption type HI ELCR
Smoking (inflorescence) 2 E+2 4 E-4
Dabbing (distillate) 2 E-1 2 E-7
Vaping (distillate), 4.8 V 4 E-2 2 E-7
Vaping (distillate), 4.0 V 6 E-3 2 E-8
Vaping (distillate), 3.2 V 8 E-4 2 E-9

Table 4.2: Hazard index and excess lifetime cancer risk for smoking, dabbing, and
vaping at 3 voltages.

4.4 Discussion

The identification of several carbonyls, aromatics, and isoprene was in line with a

previous report from our lab.19 Given that all the terpenes tested in Meehan-Atrash

et al.19 resulted in a comparable array of volatile products, it was hypothesized that

isoprene is an intermediate in the degradation of these compounds. Cannabinoids

such as THC contain a terpene backbone, and it is not surprising that similar volatile

products are generated from dabbing THC, SND, and terpenes alone.19 A diversity of

degradation mechanisms may occur upon thermal treatment of THC, but the signifi-

cant levels of isoprene seen when dabbing THC alone indicate that the isoprene formed

undergoes oxidation to release methacrolein and methyl vinyl ketone, a mechanism

for which has been described in the context of atmospheric oxidation.71,72 Isoprene

has been previously described as a neutral product formed during fragmentation of

THC in electron impact mass spectrometry.73−75 The nearly fivefold increase in iso-

prene released from THC amended with ∼10% terpenes compared to THC alone

(Table 4.1) suggests that terpenes release isoprene more readily than THC. Indeed,

all identified VOCs form in higher amounts per milligram of product consumed when
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dabbing SND than from THC alone. Other minor components in CEs (hydrocarbons,

fatty acids, flavonoids, phenols, etc.15) may add to or alter GP degradants of other

extract formulations.

The work presented herein represents a preliminary investigation into the GP

aerosol components a cannabis consumer may be exposed to when vaping distillate

in a CV or via dabbing. Several identified components are International Agency for

Research on Cancer-classified carcinogens, and exposure to these may place a burden

on the health of people that use dabbing or vaping to consume cannabis. In an

attempt to interpret results in the most relevant way possible to health professionals

and consumers alike, components for which toxicological metrics had been previously

calculated were applied to a QRA calculation. Despite the rise in alternative cannabis

administration methods, cannabis smoking remains to be the more prevalent mode

of cannabis consumption to date,30,76,77 warranting a systematic comparison between

methods of inhalation. Previously quantified components of cannabis smoke were

aggregated from the literature54−57 and correspondingly applied to the same QRA

analysis in a first attempt to compare the relative safety of smoking cannabis to two

existing methods of vaporizing distillate.

Results indicate that vaping or dabbing distillates has lower HI and ELCR than

those of cannabis smoking by several orders of magnitude (Table 4.2). These findings

are not definitive and must be interpreted with caution as they are only a first step

toward determining the overall safety of these cannabis inhalation methods. Only

GP components were measured in this work and were applied to QRA calculations,

which may underestimate risks due to exclusion of potentially toxic particulate phase

components. Previous literature indicates that aldehydes/small organics contribute
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the largest percentage of the total cancer risk among constituents of cigarette smoke,50

which appears to hold true for cannabis smoke as well (Table 9.4). Furthermore, HI

and ELCR are only measures of chronic effects and do not indicate relative safety in

the context of acute effects, particularly in light of the recent rash of vaping related

illnesses, the cause of which has not been fully identified.

Though widely used by regulatory bodies to make evidence-based decisions on

environmental risks to human health, quantitative risk assessment has several un-

avoidable sources of uncertainty, which is currently magnified due to the lack of

standardization in the study of cannabis consumption as compared to tobacco. Ma-

chine smoking attempts to imitate realistic use but is only an approximation.52 In this

study, a puff profile set by the Cooperation Center for Scientific Research Relative

to Tobacco (CORESTA) for e-cigarettes was chosen given the functional similarity of

these devices to e-cigarettes; however, puffing topography for CEVPs has not been

studied, which represents another source of systematic error of unknown magnitude

in the work herein. When calculating ELCR and HI, it is assumed that 100% of

each component is absorbed and that the total risk is the sum of the risk from each

individual component, which may over- or underestimate the total risk. For cigarette

smoking, it has been noted that ELCR values underestimate risks when these are

compared to epidemiological data.50 However, the cancer risk for cannabis smoking

calculated herein, which is comparable to that calculated for cigarette smoking,50 is in

stark contrast to the negligible association between cannabis smoking and cancer.78

In regard to noncancer effects, the major contributor to the elevated HI for

cannabis smoking, acrolein, could potentially be responsible for the association be-

tween cannabis smoking and respiratory symptoms.79,80 Given the uncertainty as-
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sociated with QRA, dabbing HI may exceed unity under altered conditions such

as increased nail temperature, which has been shown to linearly increase degradant

formation,19 or increased terpene content. Ninety-one percent of the HI from dabbing

stems from methacrolein; the REL of which stems from chronic respiratory tract ef-

fects (Table 9.3) and has been specifically implicated as the cause of lung injury due to

dabbing BHO in a medical case report.81 The elevated levels of conjugated dienes (Ta-

ble 9.1 and 9.2) warrant mention as these have been implicated as prohaptens.82 The

complete absence of detectable acrolein in dabbing and vaping GP warrants mention

as it may imply that this cannabis smoke component stems from plant components

other than cannabinoids and terpenes.

Despite the reduction in the toxicant yield for CE vaporizers compared to smoking

and the corresponding low HI and ELCR values, the elevated concentration of THC

in the total particulate matter (TPM) may have untold physicochemical83 and phar-

macological effects84 on the respiratory system. For example, cannabis smoke with

∼1% THC content was shown to compromise the surface properties of a lung surfac-

tant replacement product83 due to intercalation of the hydrophobic THC molecule.

The effect of higher concentrations of THC and high-molecular weight terpenes in the

aerosol particulate phase and any partitioning85 of GP dienes and other VOCs into

the lung surfactant layer warrants further investigation.

4.5 Conclusions

ATD−GCMS identified and quantified gaseous degradants using calibrated standards

for target analytes, and a nontarget analysis approach was used for other components

identified in the chromatograms. Given the similarity of compounds identified in
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these experiments to those found when dabbing terpenes alone,19 GP degradants seen

when dabbing THC alone were also assessed. The similarity in degradation products

seen, particularly the elevated levels of isoprene seen across the board, suggests an

analogous degradation mechanism for cannabinoids and terpenes. Higher levels of

terpenes appear to promote increased production of VOCs.

Toxicants measured were applied to a QRA calculation to estimate cancer and

noncancer risks for dabbing and vaping with a CV. In order to compare these re-

sults with cannabis smoking, cannabis smoke component levels were taken from the

literature and applied to a QRA calculation. This represents the first time any degra-

dation products have been identified from vaporizing CE components and is a first

step toward understanding the degradation mechanism of THC via this route of ad-

ministration. Additionally, the work herein is the first application of QRA to cannabis

smoking to the best of our knowledge.

The development of novel cannabis inhalation products has outpaced both basic

and applied biomedical research. This has hindered the ability of regulatory agencies

from properly informing the public about the safety of these products and their routes

of administration. Future work in our labs will focus on identifying other volatile

organics that have not yet been detected in the GP, such as formaldehyde and carbon

monoxide, and components of the particulate phase that are potentially toxicologically

relevant. Further work must assess the biological impact these aerosols have on the

respiratory system.
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4.6 Methods and materials

4.6.1 Materials

Analytical-grade THC was obtained from Cayman Chemical (Ann Arbor, MI). A

terpene aromatherapy mix recreating the scent of cannabis cultivar Fire OG was

obtained from Blue River (Oakland, CA) and is referred to hereafter as simply “ter-

penes.” To make SND, terpenes were introduced into THC at ∼10%. Verispec 200

ppm Aromatic Hydrocarbons Mixture 16 Components in Methanol EPA 503.1 was

obtained from Ricca Chemical Company (Arlington, TX). An isoprene SPEXOrgan-

ics Certified Reference Material analytical standard (1000 µg/mL) was obtained from

SPEX CertiPrep (Metuchen, NJ).

Figure 4.3: Experimental setups used for dabbing (top) and CV (bottom) vapor
collection by ATD−GCMS. Components depicted are: a, e-nail; b, CFP holder; c,
3-way stopcock; d, ATD cartridge; e, mass flow meter; f, flow control valve; g, vacuum
source; h, by-pass line; i, CV; j, CSM.
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4.6.2 Sample collection for dabbing

An air flow was generated with aWelch 8907 rotary-vane vacuum pump (Mt. Prospect,

IL), regulated with a Cole-Parmer PTFE multiturn needle valve (Vernon Hills, IL),

and measured with an Aalborg GFM17 mass flow meter (Orangeburg, NY). A flow

rate of 400−450 mL/min was chosen to minimize breakthrough of volatile compo-

nents from the adsorption/ thermal desorption (ATD) cartridge while maximizing

vapor collection from the e-nail. The ATD cartridge was situated between two Pyrex

T-Bore, three-way, glass key stopcocks (Corning, NY). Vapor was generated on a

Jibtronix Corp. Errlectric Concentration Station (Gurnee, IL) e-nail heated to ∼370

°C. The temperature used was chosen based on realistic use and was assessed thermo-

graphically using a FLIR System T450sc (Wilsonville, OR) as in Meehan-Atrash et

al.19 A by-pass line circumventing the ATD cartridge facilitated sample collection by

maintaining a constant backpressure between experiments. All connections were made

using 3/8 in. outer diameter ACF0017-F Tygon S3 E-3603 (Saint-Gobain, Malvern,

PA). All experiments were performed by collecting GPs generated from a single dab

of 11 ± 2.5 mg of either THC or SND. Figure 4.3 (top) depicts the experimental

setup used for collection of the aerosol GP generated from dabbing.

4.6.3 Sample collection for CV vaping

A CH Technologies cigarette smoking machine (CSM, Westwood, NJ) ran a puff pro-

gram modified from CORESTA with 55 mL puff volume over a 3 s puff duration with

an additional 1 s after the conclusion of each puff to clear the lines of aerosol (vaporizer

button was only depressed during the 3 s puffs). Aerosol was generated using a CCell
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TH2 oil cartridge (Sneaky Pete vaporizers) loaded with SND and connected to an

Innokin iTaste VV V3.0 variable voltage battery. The atomizer was rated at 1.4−1.5

Ω according to the digital display provided by the battery. All connections were made

using 3/8 in. outer diameter ACF0017-F Tygon S3 E-3603. Vaping experiments were

conducted using single puffs at three voltages chosen based on realistic use: 3.2, 4.0,

and 4.8 V, which consumed 1−4 mg of SND per puff. Figure 4.3 (bottom) depicts

the experimental setup used for collection of the aerosol GP generated from vaping.

4.6.4 Adsorption/thermal desorption gas chromatography–

mass spectrometry

GP samples were collected through a 47 mm Cambridge filter pad (CFP, GE Health-

care) onto an ATD cartridge, which contains 100 mg of 35/60 mesh Tenax TA and

200 mg of 60/80 mesh Carbograph 1 TD (Camsco Inc., Houston, TX). ATD sample

cartridges were thermally desorbed with a TurboMatrix 650 ATD unit (PerkinElmer,

Waltham, MA). Twenty nanograms of fluorobenzene, 18.6 ng of toluene-d8, 21.7 ng

of 4-bromofluorobenzene, and 20.3 ng of 1,2-dichlorobenzene-d4 were added automat-

ically to all cartridges as ISs prior to desorption. The ATD unit thermally desorbed

the ATD cartridges for 10 min at 285 °C with a He desorption flow of 40 mL/min,

a split flow of 10 mL/min, and the desorption stream was trapped at −10 °C on an

intermediate “Tenax trap.” Thermal desorption of this intermediate trap occurred at

295 °C and 35 psi constant pressure of He on a split flow of 12 mL/min for 4 min.

Through a 1 m long and 0.25 mm i.d. deactivated fused silica transfer line (235 °C),

the unsplit portion of the stream was passed on to a 60 m length, 0.25 mm i.d.,

and 1.4 µm film thickness Agilent (Santa Clara, CA) DB-VRX capillary GC column
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mounted in an Agilent 7890A GC. The GC was interfaced to an Agilent 5975C MS

in impact ionization at 70 eV in the positive ion mode. GC oven temperature was

held at 45 °C for 10 min, programming to 190 °C at 12 °C/min, held at 190 °C for 2

min, then programming to 240 °C at 6 °C/ min, held at 240 °C for 5 min, and then

programmed down to 210 °C at 10 °C/min. The MS scan range was 34 to 400 amu,

and the electron multiplier voltage was 1725 V.

4.6.5 Quantification of components from CV vaping and dab-

bing

An ATD-GCMS IS-normalized multipoint calibration was generated for quantifying

select analytes for dabbing experiments. A standardized solution of methacrolein and

the components in the Verispec 200 ppm aromatic hydrocarbons mixture were made

at concentrations of 6.25−200 ng/µL in serial dilution. An additional solution of 250

ng/µL isoprene was made using the SPEXOrganics Certified Reference Material. Two

microliters of each chosen standard solution was spiked through a 0.25” Swagelok tee

onto the inlet end of each ATD cartridge with a flow of 50 mL/min of N2 gas. After

spiking, the N2 flow was left on for ∼7 min to purge the methanol solvent. Six ATD

cartridges were amended with 0, 3.125, 12.5, 25, 50, and 100 ng of each component

from standard solutions containing methacrolein and the Verispec 200 ppm aromatic

hydrocarbons mixture components. An additional cartridge was amended with 500

ng of isoprene only.

IS-RF factors for the 17 analytes used in the multipoint calibration and isoprene

were calculated and used to estimate the concentration of these in the ATD−GCMS

samples from three cannabis vaping experiments. Analytes in addition to those used
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in the multipoint calibration were tentatively identified by comparison of their mass

spectra against those in the NIST mass spectrometry database. Quantification of

some major-occurring alkenes, carbonyls, and aromatics was performed using a non-

target analysis approach based on one described in Fitch et al.58 and Allgood et al.59

Nontarget analytes were chosen based on abundance, integrated in the total ion chro-

matogram (TIC), and their molecular formula from the tentative match (all match

qualities of >70%) was used to calculate their total ionization cross section (Q) using

the regression equation from Fitch et al.58 The Q of an IS was used to determine the

levels of the nontarget analyte using eq. 4.1 from Allgood et al.:59

Aa/Na

AIS/NIS

=
Qa

QIS

(4.1)

where A is the integrated TIC area and N is the number of moles of the analyte (a)

and IS.

4.6.6 Cannabis smoke component literature review

Literature reports containing pertinent data were searched in multiple scientific data-

bases including but not limited to SciFinder and Web of Science. Values for cannabis

smoke HPHCs from all reports containing quantitative data were used. Smoke com-

ponent identities and their measured values were pulled from the four references

deemed suitable for this analysis.54−57 Other relevant information such as puff topog-

raphy, cannabis consumed per experiment, and joint sizes were also noted. HPHC

levels were presented as mass HPHC per joint,56 parts per million concentrations,54

mass HPHC per gram cannabis consumed,55 and mass HPHC per milligram TPM
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collected.57 All component levels identified were converted to microgram HPHC per

gram of cannabis using the reported joint size. This was subsequently converted to

microgram HPHC per 0.75 g joint, which was chosen as the standard joint mass.

HPHCs were assigned CAS numbers, and levels of identical HPHCs were binned and

averaged together.

4.6.7 Quantitative risk assessment

Toxicological metrics for cancer and chronic noncancer effects for HPCs identified in

the GP of the aerosol from vaping, dabbing, and smoking were searched in relevant

databases. The IUR was used for cancer risk assessment, and RELs were used for

noncancer effects. IUR values were accessed from the Integrated Risk Information Sys-

tem (IRIS) online database provided by the United State Environmental Protection

Agency86 and supplemented with values from the California Office of Environmental

Health and Hazard Assessment (OEHHA) online chemical database.87 REL values

were taken as an inhalation reference concentration (RfC) from IRIS86 or as a refer-

ence value (ReV) from the Texas Commission on Environmental Quality (TCEQ).88

Given the high levels of isoprene observed from vaping and dabbing, the IUR value

for isoprene was found in the literature89 given its absence in IRIS, OEHHA, and

TCEQ databases.

4.6.8 Quantitative risk assessment for cancer effects

ELCR as defined in Marano et al.52 for each HPHC i for which an IUR value exists

was calculated using eq. 4.2, adapted from Marano et al.:52
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ELCRi =

CYi(
µg

CU
)× CR(

CU

day
)× ED(years)× IURi(

µg

m3
)−1 × EF (

days

year
)

IR(
m3

day
)× ATC(days)

(4.2)

where CYi is the yield for a given gaseous HPHC, CU is the consumption unit, CR

is the consumption rate, ED is the exposure duration, EF is the exposure frequency,

IR is the inhalation rate, and ATC is the averaging time for cancer effects. CU is a

consumption method-dependent unit (vaping: CU = puffs, dabbing: CU = dabs, and

smoking: CU = joints). CYi is the experimentally determined yield of a given HPHC

given in micrograms per CU. As per United States Food and Drug Administration

recommendations,52 ED is taken as the difference of the default lifetime expectancy

of 70 years52 and the age of initiation, which for cannabis consumption is taken

as 16 years based on literature precedence.90−96 EF assumes daily consumption at

365.25 days/year. IR is taken as the human reference value of 20 m3/day.52 ATC

prorates the cumulative intake of the component over a lifetime of 70 years expressed

in days (25567.5 days).52 Taking the assumption of dose additivity, the ELCRi for

each component may be summed to obtain ELCRT:50−52

ELCRT =
∑
i

ELCRT (4.3)
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4.6.9 Quantitative risk assessment for noncancer effects

HQ, as previously defined,52 for a given component i (HQi) for which an REL exists

was calculated using eq. 4.4, adapted from Marano et al.:52

HQi =

CYi(
µg

CU
)× CR(

CU

day
)× ED(years)× EF (

days

year
)

IR(
m3

day
)× ATNC(days)×RELi(

µg

m3
)

(4.4)

where ATNC is the averaging time for noncancer effects, which averages component

intake over the ED, for a value of 19723.5 days assuming an ED of 54 years. HI, as

previously defined, is the sum of HQ for all components for which an REL exists:

HI =
∑
i

HQ (4.5)
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4.9 Abbreviations

ATC, averaging time for cancer effects; ATD−GCMS, adsorption/thermal desorp-

tion gas chromatography−mass spectrometry; ATNC, averaging time for noncancer

effects; BHO, butane hash oil; CBD, cannabidiol; CBDA, cannabidiolic acid; CE,

cannabis extract; CEVP, cannabis electronic vapor product; CFP, Cambridge filter

pad; CORESTA, Cooperation Center for Scientific Research Relative to Tobacco; CR,

consumption rate; CU, consumption unit; CV, cartridge vaporizer; CYi, component

yield; ED, exposure duration; EF, exposure frequency; ELCR, excess lifetime cancer

risk; GP, gas phase; HC, hydrocarbon; HI, hazard index; HPHC, harmful or poten-

tially harmful constituent; HQ, hazard quotient; IR, inhalation rate; IRIS, Integrated

Risk Information System; IS-RF, internal standard-calculated response factor; IS,

internal standard; IUR, inhalation unit risk; NIST, National Institute of Standards

and Technology; OEHHA, California Office of Environmental Health and Hazard

Assessment; Q, total ionization cross section; QRA, quantitative risk assessment;

REL, reference exposure level; ReV, inhalation reference value; RF, response fac-

tor; RfC, inhalation reference concentration; SFE, superfluid cannabis extract; SND,

synthetic distillate; TCEQ, Texas Commission on Environmental Quality; THC, ∆9-

tetrahydrocannabinol; THCA, ∆9-tetrahydrocannabinolic acid; TIC, total ion chro-

matogram; TLV, top-loading vaporizer; TPM, total particulate matter; VOC, volatile

organic compound
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5.1 Abstract

Dabbing and vaping cannabis extracts have gained large popularity in the United

States as alternatives to cannabis smoking, but diversity in both available products

and consumption habits make it difficult to assess consumer exposure to psychoactive

ingredients and potentially harmful components. This work studies the how relative

ratios of the two primary components of cannabis extracts, ∆9-tetrahydrocannabinol

(THC) and terpenes, affect dosage of these and exposure to harmful or potentially

harmful components (HPHCs). THC contains a monoterpene moiety and has been

previously shown to emit similar volatile degradation products to terpenes when va-

porized. Herein, the major thermal degradation mechanisms for THC and β-myrcene

are elucidated via analysis of their aerosol gas phase products using automated ther-

mal desorption-gas chromatography-mass spectrometry with the aid of isotopic la-

belling and chemical mechanism modelling. Four abundant products – isoprene,

2-methyl-2-butene, 3-methylcrotonaldehyde, and 3-methyl-1-butene – are shown to

derive from a common radical intermediate for both THC and β-myrcene and these

products comprise 18–30% of the aerosol gas phase. The relative levels of these four

products are highly correlated with applied power to the e- cigarette, which indicates

formation of these products is temperature dependent. Vaping THC–β-myrcene mix-

tures with increasing % mass of β-myrcene is correlated with less degradation of the

starting material and a product distribution suggestive of a lower aerosolization tem-

perature. By contrast, dabbing THC–β-myrcene mixtures with increasing % mass of

β-myrcene is associated with higher levels of HPHCs, and isotopic labelling showed

this is due to increased reactivity of β-myrcene relative to THC.

115



5.2 Introduction

Humans have consumed cannabis for its psychoactive effect for as long as 2500 years1

and is the most consumed illicit substance worldwide.2 Smoking dried inflorescences

in a pipe or cannabis cigarette remains the most popular mode of consumption,3 but

novel inhalation methods have been recently developed4 with the purpose of avoiding

toxic combustion byproducts, and for more intense delivery of active ingredients and

flavorings.5 Vaporizing or vaping cannabis has surged in popularity in the United

States in all age groups,6 particularly among adolescents.7

The two primary methods for inhaling cannabis extracts are dabbing and vaping

with cannabis e-cigarettes (CECs).5,8 Dabbing is performed by placing a small amount

of cannabis extract onto a heated surface while the user takes a large inhalation of up

to an entire inspiratory capacity (<3 L).5,8 CECs, commonly known as vape pens or

oil pens, are compact e-cigarettes comprised of a single-use or refillable atomizer car-

tridge attached to variable or fixed-voltage batteries. The cartridge contains 0.3–1.0

g cannabis oil, a viscous substance that may contain up to 90% of the psychoactive

∆9-tetrahydrocannabinol (THC, mp = rt,9 bp = 416 °C (ref. 10)).5 Dabbing and

CEC use have quickly surged in popularity, and one recent study showed 19.5% of

past-month cannabis users reported CEC vaping, and 14.6% reported dabbing.11

Cannabinoids are expressed in Cannabis sativa as cannabinoid acids,12 with an

aryl carboxy group at the 2-position of the phenol ring (Fig. 5.1).13 ∆9-Tetrahydrocan-

nabinolic acid (THCA, mp = 70 °C (ref. 14)) decarboxylates readily to THC at

temperatures seen in smoking15,16 and vaping.17,18 Butane extracts (butane hash oil,

BHO) do not experience high temperatures during production,19 primarily contain
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cannabinoid acids20 and are solid. BHO is typically consumed by dabbing.19 Pu-

rification and decarboxylation using advanced techniques isolates neutral cannabi-

noids and cannabis terpenes which may be reconstituted and used in a CEC.21

In addition to adding flavor, terpene blends of cannabis-derived and synthetic or

botanical terpenes21 also reduce the viscosity of THC which facilitates handling and

administration.22 Other ingredients added as cutting agents22−24 are extremely con-

troversial given the recent outbreak of e-cigarette or vaping product use-associated

lung injury (EVALI), in which the viscosity modifier vitamin E acetate was implicated

as a potential causative agent.23,25,26

Figure 5.1: Chemical structures of ∆9-tetrahydrocannabinol (THC), cannabinol
(CBN), and β-myrcene shown with carbons numbered.

Volatile Organic Compounds (VOCs) in cigarette smoke27 contribute 62% of

the excess lifetime cancer risk associated with cigarette smoking.28 VOCs present
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in cannabis vaporizer aerosols are significantly different from those in tobacco and

cannabis smoke. They consist largely of terpenes and terpene pyrolysis and oxida-

tion products such as isoprene, methacrolein (MACR), methyl vinyl ketone (MVK),

and 3-methyl-furan, among others.5,8 Exposure to terpene oxidation products causes

sensory irritation and airflow limitation in exposed mice,29 and gaseous products are

indicated to be responsible for the majority of these symptoms.30 In humans, expo-

sure to terpenes and terpene/isoprene oxidation products at concentrations typical of

indoor air do not significantly cause airway inflammation or sensory irritation,31 but

the impact of inhaling these products at concentrations orders of magnitude greater

than in indoor air has not been thoroughly investigated.

Automated thermal desorption-gas chromatography-mass spectrometry (ATD−GC-

MS) is a powerful analytical technique that allows the identification and quantification

of gases at trace levels for applications such as the atmospheric analysis of anthro-

pogenic VOCs,32,33 metabolomics,34˘36 and materials analysis.37,38 In the e-cigarette

aerosol analysis field, ATD−GC−MS has allowed the determination of gas/particle

partitioning constants of e-cigarette ingredients39 including nicotine in heat-not-burn

tobacco vaporizers,40 as well as the identification of myriad degradation products

emitted by both nicotine and cannabis vaporizers.5,8,41

It was previously shown that the addition of 10% cannabis terpenes to THC

was associated with an increase in the levels of all VOCs as compared to pure THC

when these were subjected to dabbing.5 Herein, the degradation of a model cannabis

terpene, β-myrcene, and THC are studied mechanistically, and a site-specifically

isotopically-labelled β-myrcene is used to track this terpene’s degradation during

dabbing THC–β-myrcene mixtures. Given the popularity of CEC vaping, VOCs re-
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leased by a popular CEC containing THC with variable terpene content are studied to

investigate how added terpenes and applied power impact the nature and quantity of

gas phase VOCs. Additionally, the impact of applied power on the release of HPHCs,

terpenes, and THC per puff is investigated, providing insight into aerosolization effi-

ciency and dosing of a popular type of cannabis vaporizer.

5.3 Materials and methods

5.3.1 Synthetic cannabis oil (SCO)

THC (Cayman Chemical, Ann Arbor, MI) was acquired as a 50 mg mL−1 solution

in acetonitrile, which was concentrated in vacuo. Pure THC was assessed for purity

by high performance liquid chromatography with UV-vis detection (HPLC-UV) and

nuclear magnetic resonance spectroscopy (NMR). THC was used alone in vaping or

dabbing experiments, or mixed with β-myrcene (Sigma Aldrich) or β-myrcene-d6 for

studies using SCO. THC and β-myrcene mixtures were homogenized in scintillation

vials using a rotary evaporator slowly spinning at atmospheric pressure with the

vial partially submerged in a 50 °C water bath for 1–2 hours. THC content was

assessed by HPLC-UV. See SI for β-myrcene-d6 synthetic methodology and spectral

characterization.

5.3.2 Dabbing and vaping

SCO containing β-myrcene-d6 and THC, pure β-myrcene-d6, and pure THC were

subjected to dabbing as per a previously established dabbing protocol.5 A novel CEC

vaping protocol is described herein for chemical analysis of the aerosol gas phase
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(GP) and quantification of THC in the particle phase. Aerosols were generated using

a TH2 CCELL connected to an iStick PICO battery. Cambridge filter pads (CFPs)

were used to collect and remove particulate matter (PM), and GP products were

collected on sorbent tubes containing a mixture of Tenax TA and Carbograph 1

sorbent materials. Airflow was generated using a Cigarette Smoking Machine used

to generate puffs replicating the e-cigarette puff profile defined by the Cooperation

Center for Scientific Research Relative to Tobacco (CORESTA) (50 mL puff volume,

3 s puff duration).42 A mass flowmeter was used to monitor puff volume, and an

average of 44 ± 3 mL volume and 0.87 ± 0.05 L min−1 flowrate were observed. The

battery was manually activated which caused small variations in puff duration, but

puff durations were not recorded. Variation in flowrate through the sorbent material

caused differences in puff volume between samples, but no significant differences (p

< 0.05) in flowrate or puff volume exist between any two sample sets. A single puff

was collected per replicate to limit over- loading the GC-MS. The vaporizer atomizer

was weighed before and after each puff to obtain the mass consumed per puff (mC).

See Supporting Information (SI) for further details.

5.3.3 Aerosols gas phase analysis

Sorbent tubes were stored at -20 °C for not more than seven days before analysis.

Sample tubes were desorbed using a TurboMatrix 650 automated thermal desorp-

tion unit, and were amended with internal standards prior to desorption. Following

desorption, samples were trapped, desorbed and transferred to an Agilent 7890A gas

chromatograph for separation, interfaced with an Agilent 5975C mass spectrometer

(MS) for detection. See SI for further ATD−GC−MS details.
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5.3.4 THC transfer analysis

THC transfer per puff (THCT) was determined for CEC vaping experiments only.

Aerosol PM analysis is sufficient for assessing THCT, as its low vapor pressure (2.6

× 10−5 Pa)10 affords it a high theoretically-calculated gas/particle partitioning con-

stant (K p = 0.31, calculated using Pankow [2001]43), with 100.00% partitioned to the

aerosol PM. CFPs were extracted in 1:1 methanol:acetonitrile, added with an inter-

nal standard (olivetol), and analyzed for THC content by HPLC-UV on a six-point

internal standard calibration curve. See SI for further details.

5.3.5 Data analysis and statistics

Semi-quantitative cannabinoid and terpene dabbing experiments were performed in

duplicate, and quantitative CEC vaping experiments were carried out using 3–6 repli-

cates. For semi-quantitative ATD−GC−MS studies, single air blanks were collected

and compounds present in the air were manually removed from sample data sets. For

CEC vaping experiments, air blanks were collected in triplicate, and VOCs present in

the air were quantified per volume unit of air, and the air-contribution of VOCs was

accounted for. Quantification of GP analytes by ATD−GC−MS was performed by

comparing their total ion chromatogram integrations to that of an internal standard

(fluorobenzene or 1,2-dichlorobenzene-d4), assuming a 1:1 response factor. To pro-

vide higher accuracy for HPHCs with toxicological significance, their response factors

relative to internal standard were determined by estimating their ionization cross sec-

tion. Outliers were removed when appropriate using a Grubb’s test performed at the

95% confidence level. All values are presented as x̄ ± 95% confidence interval, unless
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otherwise noted, and all significance tests were performed considering p < 0.05. See

SI for further details.

5.4 Results and discussion

5.4.1 The thermal degradation of β-myrcene

Humans The thermal degradation of β-myrcene, a ubiquitous and often dominant

terpene present in many inhalable cannabis products, was characterized extensively

herein to help reveal the influence of terpenes on dabbing and vaping using a CEC.

A site-specifically isotopically-labelled β-myrcene, β-myrcene-d6 (Fig. 5.2) was sub-

jected to dabbing, and isotopologues of known degradants were identified by examina-

tion of their mass spectra. A sample chromatogram is displayed in the SI (Fig. 10.10).

The diversity of degradation products seen for β-myrcene dabbing suggest that many

degradation pathways exist, but a mechanism can be ascribed to account for 30% of

the formed VOCs, including the most abundant product, isoprene (Fig. 5.2). After

homolytic cleavage between carbons 4 and 5,44 radicals 1 and 2 are formed. Resonance

structure 1a undergoes oxidation to form 3-methylcrotonaldehyde-d6 (3MCA-d6), or

is reduced by an alkyl R–H to form 2-methyl-2-butene-d6 (2M2B-d6). The tertiary

radical 1b oxidizes to the isoprene deuterium isotopologue isoprene-d5, or undergoes

reduction to 3-methyl-1-butene-d6 (3M1B-d6). Radical 2 undergoes reduction to iso-

prene, but no oxidation products of this radical are observed.

MACR and MVK, two abundant and toxicologically-concerning VOCs observed

in all terpene and cannabinoid vaping experiments, are known isoprene oxidation

products.45,46 During atmospheric oxidation of isoprene, the formation of MVK is
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Figure 5.2: Proposed mechanism for the thermal degradation of β-myrcene-d6. The
natural isotopologues of these reactions products compose 30% of the VOCNT ob-
served for β-myrcene.

more favorable than MACR due to its more stable reactive intermediates.45,46 For

terpene and cannabinoid vaping experiments, a MACR:MVK ratio of 10 is typi-

cally observed,5,8 contrary to what would be expected.45,46 Two gas phase chemical

mechanism generators and box models, SAPRC and GECKO-A, were used to de-

rive chemical mechanisms for β-myrcene oxidation under vaping conditions; SAPRC

was also used to predict levels of product formation in the vapor stream immedi-

ately following the heat source (simulation conditions: 300 ppm gaseous β-myrcene,

643 K). The chemical mechanism derived using GECKO-A was consistent with the

experimentally derived mechanism supported by the deuterium incorporation in the

isotopologues of MACR and MVK that were observed (MACR-d3 and MVK-d3, Fig.

10.8 and 10.9). Importantly, SAPRC predicted an elevated MACR:MVK ratio that

generally increased as a function of temperature and was 10 at 643 K. See SI for

details regarding chemical mechanism modelling.
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5.4.2 Thermal degradation of ∆9-tetrahydrocannabinol

The thermal degradation of cannabinoids has been previously investigated from a

chemical perspective with the focus on identifying novel, high molecular weight prod-

ucts that may have mutagenic or carcinogenic potential.47 Many of the chemical trans-

formations observed involve the p-menthyl ring on THC and cannabidiol (CBD), and

CBD pyrolysis products such as 2-methyl-5-pentylresorcinol and 5-pentylresorcinol

indicate this terpenoid moiety may be lost entirely.47−50 GP degradants emitted by

pure THC subjected to dabbing were previously reported by us, and as with the

case for CBD, the p-menthyl moiety was hypothesized to be particularly labile given

the high levels of isoprene, MACR, and other known terpene- and isoprene-derived

degradants.5

Given the known topography associated with CEC vaping, THC degradation was

investigated using this type of device to provide a per-puff-based quantitation of

the VOCs released to the aerosol GP. Pure THC was introduced in a CCELL TH2

atomizer and the aerosol GPs from single puffs at 10 W using the CORESTA puffing

topography for e-cigarettes were collected (in triplicate) and characterized by ATD-

GC-MS. The resultant chromatograms display particularly elevated levels of isoprene,

substituted C6–C10 dienes, and aromatics such as toluene and xylenes, with a total

of 6.3 ± 0.4 µg of total VOCs (VOCT) in the aerosol GP quantified by non-target

analysis. THC was also subjected to dabbing for qualitative analysis of its product

distribution. See SI for a sample chromatogram, a full list of products tentatively

identified.

In order to determine the origin of these degradation products, cannabinol (CBN,

Fig. 5.1), was subjected to identical vaping conditions as THC. CBN is a THC
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oxidation product that forms during storage and processing.51 CBN shares identical

structural features with THC except for the aromatic thymyl ring, and CBN has

only limited psychoactivity when compared with THC.52 CBN vaporized in a CEC

shows a starkly different aerosol GP that consists almost entirely of 1-butene, 1-

propene, 1-pentene, butanal, propanal, and pentanal. C–C bond scission on the alkyl

chain releases 1° alkyl radicals that form peroxy radicals after O2 addition, which

subsequently undergo intra-molecular rearrangement to hydroperoxy radicals that

decompose to an alkene, or may undergo direct beta scission to an aldehyde. The

quantity of VOCs released by CBN (0.6 ± 0.3 µg) is 10-fold lower than those released

by THC vaporized under identical conditions.

Figure 5.3: The proposed reaction scheme for a major thermal degradation pathway
of THC which accounts for 22 ± 6% of VOCT when THC is vaporized alone in a CEC
at 10 W, and 18 ± 4% of VOCT when THC is vaporized alone by dabbing at 370 °C.

The lack of isoprene and terpene-related degradation products in CBN’s VOC

profile is strong evidence that THC’s p-menthyl ring accounts for the majority of
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THC’s thermal degradation products. Moreover, the starkly increased quantity of

VOCs (significant at p < 0.05) suggest this is a particularly labile structure. Fig.

5.3 is proposed pathway of THC decomposition accounting for 23 ± 6% of its VOCT

for vaping THC in a CEC. The initial bond scission between carbon 6 and O is

likely the most thermodynamically favorable to occur in THC given the stability of

the two resultant radicals (3° and phenoxyl). Subsequent beta scission opens the

p-menthyl ring resulting in a cannabigerol-like diradical with a linear terpene moiety

that readily decomposes to release the same radical formed during β-myrcene thermal

degradation (1), and consequently, four of the same products are released: 3MCA,

2M2B, isoprene, and 3M1B. THC subjected to dabbing releases elevated levels of

oxidation products, with 30 ± 10% (n = 2) carbonyls relative to all other GP products

tentatively identified, which is significantly higher than THC vaporized in a CEC with

2.1 ± 0.9% (n = 4) carbonyls.

5.4.3 Increased terpene content leads to elevated release of

degradation products for dabbing

Many different types of dabbing apparatuses exist, but even for two consumers using

the same device, the process by which they heat the nail, administer the dab, and

take the inhalation may vary greatly. The two primary generalities that can be

extrapolated are: the use of a nail, and a high inhalation volume. The experiments

herein use an electrically heated titanium nail that is directly connected to CFP

holder via a small glass adapter. Air flow generated by a laboratory vacuum pump

is adjusted with a needle valve and monitored with a mass flow meter to generate

enough flow (1–2 L min−1) so that the aerosol stream is pulled through the nail.
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We previously reported levels of HPHCs and all VOCs for dabbing a synthetic

cannabis extract containing 10% of a cannabis terpenes mixture in THC, and showed

that this mixture releases higher levels of all VOCs as compared to pure THC, and

higher levels of selected toxicants compared to vaping a THC–terpene mix.5 It was

hypothesized that terpenes may be more thermally labile than THC, and thus re-

sponsible for the increased quantity of degradation products. In order to test this,

THC–β-myrcene mixtures were subjected to dabbing at 370 °C (a typical dabbing

temperature5) using a previously reported dabbing method,5 and the levels of known

degradants and their D-isotopologues were compared. Fig. 5.4 displays the levels of

select degradants and their D-isotopologues as µg mg−1 of PM collected on CFPs for

pure THC, THC with 5% β-myrcene-d6, and THC with 9% β-myrcene-d6.

Aerosol levels of major HPHCs known to exist when vaping cannabis oil

components5,8 (isoprene, MACR, and MVK) increased with increasing % mass of

β-myrcene-d6, and the elevated levels of their isotopologues that are known to de-

rive from β-myrcene-d6 suggest this terpene was responsible for disproportionately

more HPHCs compared to THC. Accounting for the isoprene–isoprene-d5 ratio of

0.45 ± 0.02 observed when pure β-myrcene-d6 is subjected to dabbing, in the THC–β-

myrcene mixture containing 5% β-myrcene-d6, the terpene affords a 0.75% yield of

isoprene, while THC produces only 0.15%. For the THC–β-myrcene mix containing

9% β-myrcene-d6, the terpene results in a 1.9% yield of isoprene, and THC a yield of

0.3%.

The higher yield of isoprene from β-myrcene may be explained via a combination

of several factors. Isoprene has a more direct route to formation from β-myrcene

than from THC, requiring less energy to generate this product. Additionally, β-
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Figure 5.4: Comparative levels of major degradation products and their deuterated
isotopologues encountered in the aerosol GP from dabbing pure THC (0% β-myrcene-
d6), THC with 5% β-myrcene-d6, and THC with 9% β-myrcene-d6. Error bars are
SEM.

myrcene partitions mostly to the aerosol GP, facilitating these reactions that are

known to occur in this state.45,46,53,54 THC only has an appreciable distribution to

GP at elevated temperatures directly surrounding the nail, but quickly condenses to

PM, allowing less time for GP reactions to occur. β-Myrcene’s smaller size and many

fewer degrees of freedom than THC affords it a smaller molar heat capacity than

THC, increasing the likelihood of bond homolysis with applied heat.
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5.4.4 Increased terpene content in cannabis oil decreases degra-

dation and increases transfer of starting materials for

cannabis e-cigarette vaping

VOCs released from vaping SCO in a CEC using THC and a commercially-available

terpene mixture have been previously reported by us.5 Unlike the case with dabbing,

this method’s similarity to traditional nicotine e-cigarettes permits the usage of a stan-

dardized vaping topography (CORESTA42) in the experiments, and it is possible to

extract quantitative data related to starting material transfer (THC and β-myrcene),

the quantity of SCO consumed, and VOC emissions on a per-puff basis. As with the

case with the above dabbing experiments, these experiments used β-myrcene as a

model terpene to test how this cannabis oil component impacts aerosolization during

vaping.

Pure THC, THC with 7.2% β-myrcene, and 14% β-myrcene were added to CCELL

TH2 atomizers and vaporized at 10 W. Mass of SCO consumed (mC , Table 5.1) did

not significantly change as β-myrcene % mass increased from 0% (pure THC) to

7.2%, and decreased non-significantly as % mass increased to 14%. THCT increased

significantly in a linear fashion (R2 = 0.99) with increasing β-myrcene % mass. THC

yield (THCY) increased significantly in a linear fashion (R2 = 0.98) upon increasing

the β-myrcene % mass. β-Myrcene transfer (β-myrceneT) expectedly doubled as

the % mass β-myrcene doubled from 7.2% to 14%, but the yield of β-myrcene (β-

myrceneY) did not significantly change.

Some HPHCs previously identified in the cannabis vaporizer aerosol GP that have

a calculated inhalation unit risk or reference exposure level values with regard to
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% β-myrcene in THC Power
0% 7% 14% 8W 10W 12W

n 4 6 5 3 5 3
mC (mg) 5±3 5±4 7±3 4±1 7±3 7±2
THCT (mg) 1.6±0.6 3±2 4±1 2.9±0.2 5±1 5±1
THCT (%) 4×101±2×101 5×101±2×101 8×101±1×101 9×101±3×101 8×101±1×101 8×101±1×101

β-MyrceneT (µg) 0±0 8±5 17±6 18±4 17±8 12±3
β-MyrceneY (%) NA 2.2±0.6 1.8±0.9 3.3±0.4 1.8±0.9 1.4±0.4
psi-LimoneneT (µg) 0±0 3±3 9±3 9±2 9±4 6±2
VOCNT (µg) 6.3±0.4 9±4 5±1 3±1 5±1 9±2
Isoprene (µg) 1.35±0.04 1.5±0.5 0.5±0.2 0.07±0.02 0.5±0.2 1.5±0.1
Isoprene epoxide (ng) 7±4 5±3 3±1 0.59±0.01 3±1 4±3
1,3-BD (ng) 12±8 13±9 3±1 3±1 3±2 6±8
MACR (ng) 41±3 4×101±2×101 16±5 5±2 16±8 31±9
MVK (ng) 39±3 5×101±2×101 22±4 5±7 22±6 4×101±2×101

Butanal (ng) 11±3 7±2 5.8±0.8 0.8±0.2 6±1 4±2
Benzene (ng) 10±4 3×101±4×101 2±2 0±0 2±3 4±3
Toluene (ng) 1×102±2×101 2×102±2×102 2×101±1×101 10±7 3×101±1×101 8×101±5×101

Xylenes (ng) 2.4×102±3×101 4×102±4×102 2×101±2×101 2×101±2×101 2×101±3×101 1×102±1×102

Table 5.1: CEC vaping experiments in which both terpene content and power level
were studied to probe their effect on yields of active ingredients and degradation
products. For the experiments wherein % mass β-myrcene was the variable, power
level was kept at a constant 10 W. For the experiments wherein power level was
varied, % mass β-myrcene in CVL was 14%

their cancer or non-cancer chronic exposure risk were measured and are displayed in

Table 5.1.5 Isoprene epoxide was identified in all ATD−GC−MS chromatograms, and

quantitative data for this compound was also included in Table 5.1 as this molecule is

known to mediate the mutagenic effect of isoprene.55 Overall, the highest β-myrcene

% mass tested, 14%, resulted in the lowest overall delivery of HPHCs. Pure THC

and the SCO with 7.2% β-myrcene release similar levels of all HPHCs.

These results suggest THC and terpene transfer occur with less degradation as ter-

pene % mass increases, and that the vaporizer operates with higher overall efficiency

at the highest terpene % mass tested, 14%. The lower boiling point of β-myrcene

(167 °C (ref. 56)) compared to THC (417 °C (ref. 10)) may translate to a reduced

boiling point of the mixture, depressing the aerosolization temperature. β-Myrcene’s

enthalpy of vaporization may further depress reaction temperature. In addition to

these effects, the observably lower viscosity of 14% β-myrcene likely facilitates wicking

and improves atomizer efficiency.
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5.4.5 Applied electrical power increases degradation products

and decreases transfer of starting materials for cannabis

e-cigarette vaping

Herein we report the influence of power level applied to the CEC atomizer on the

release of active ingredients and VOCs from an idealized cannabis e-cigarette that

contains THC with 14 % mass β-myrcene, a composition seen in many available

products.21 Two power levels above and below an acceptable and recommended power

level for CCELL atomizers (10 W (ref. 57 and 58)) were used in this investigation:

8, 10, and 12 W. The relationship between power level at the atomizer and active

ingredient transfer for vaporized THC with 14 % mass β-myrcene in a CEC displayed

both linear and non-linear correlations (Table 5.1). THCT and mC both increased

significantly from 8– 10 W, but did not significantly change from 10–12 W. Cor-

respondingly, THCY decreased significantly from 8–10 W, but did not significantly

change from 10–12 W.

The observation of pseudolimonene (psi-limonene, Fig. 10.12) in the ATD-GC-MS

chromatogram of the aerosol was unexpected, but this product has been reported as a

byproduct of β-myrcene synthesis via pyrolysis of β-pinene.59 psi-Limonene occurred

at a near-uniform 1:2 ratio (β-myrcene:psi-limonene = 2.04 ± 0.04) when vaping the

14% β-myrcene in THC. Levels of β-myrceneT and psi-limoneneT did not significantly

change from 8–10 W but decreased significantly as power increased from 10–12 W.

Correspondingly, β-myrceneY significantly decreased from 8–10 W and 10–12 W in a

linear fashion (R2 = 0.92). VOCNT increased significantly from 8–10 W and 10–12

W in a linear fashion (R2 = 0.95).
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With regards to the release of HPHCs to the aerosol GP from vaping synthetic

SCO, power level increased the amount of HPHC delivered per puff (Table 5.1). Linear

correlations (all R2 > 0.9) are observed for isoprene, MACR, MVK, benzene, toluene,

and isoprene epoxide. Butanal, xylenes, and butadiene displayed non-linearities that

likely stemmed from integration error, which may be remedied by external calibration

for more accurate data if necessary. Together these results indicate that this type of

vaporizer should ideally be operated at the lowest power setting possible to avoid

degradation of the starting material and production of HPHCs.

5.4.6 Terpene and power levels influence the major degrada-

tion pathway of THC and β-myrcene during cannabis

e-cigarette vaping

Reaction products that derive from the major degradation pathways of β-myrcene and

THC show a dependence on both % mass β-myrcene and applied power suggesting

that the 1a←−→ 1b equilibrium may be impacted by these factors. To assess relative

levels of the oxidation and reduction products of this radical, integrations of the

molecular ion for each species on the ATD−GC−MS chromatogram were obtained,

and the relative levels of 1a to 1b products were calculated by summing the molecular

ion or base peak integrations of 3MCA (m/z = 84 amu) and 2M2B (m/z = 70 amu)

for 1a, and those of isoprene (m/z = 67 amu) and 3M1B (m/z = 70 amu) for 1b.
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Figure 5.5: The relationship between applied power to 1a:1b (a) and % mass β-
myrcene to 1a:1b (b). 1a:1b is calculated as the quotient of the selected ion chro-
matogram integrations of the moleculear ions for 1a products, 3MCA (m/z = 84
amu) and 2M2B (m/z = 70 amu), with 1b products, isoprene (m/z = 67 amu) and
3M1B (m/z = 70 amu).

Though it is not possible to measure the exact temperature experienced at the

atomizer, it may be assumed that power level is directly related to aerosolization

temperature. With increasing power, 1a-derived products decrease relative to 1b-

derived products, a correlation that is largely governed by an increase of isoprene

relative to 3MCA (see SI). The formation of 3MCA begins with O2 addition to C• on

1a to form a COO• species, which decomposes via C–H beta scission to yield 3MCA
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and a hydroxyl radical.60 Isoprene similarly begins with O2 addition at C• on 1b to

form an RO2 radical which can directly release a hydroperoxyl radical and isoprene.61

At lower temperatures, the reversible addition of O2 onto C• faces a high barrier in

the back reaction for 1a as this releases a primary radical, leading to an abundance of

3MCA as an end product. It is known that at higher temperatures, the barrier for O2

addition on any C• becomes nearly nonexistent.61 This favors oxidation via the more

stable resonance contributor, 1b, at higher temperatures. 3MCA may be considered a

kinetic product favored at low temperatures, and isoprene a thermodynamic product

favored at higher temperatures. Significant decreases of the ratio of 1a:1b products

with increasing power support this hypothesis (Fig. 5.5a). Significant increases in

1a:1b products with increasing % mass β-myrcene (Fig. 5.5b) suggest that vaping

conditions with higher % mass β-myrcene occur at lower temperatures, which is

supported by the observation of lower levels of degradation products and higher yield

of starting materials under these conditions.

5.4.7 Conclusions

Terpenes are shown to have a significant impact on aerosolization in both dabbing

and CEC vaping. Curiously, opposite effects are observed for these two cannabis

inhalation methods: higher levels of β-myrcene produces elevated levels of HPHCs

during dabbing, but higher β-myrcene levels in SCO leads to lesser degradation and

lower HPHC release for CEC vaping. For dabbing, this result is described using

isotopic labelling, and it is shown that β-myrcene is more thermally labile than THC.

The surface upon which aerosolization occurs is pre-heated to a desired temperature

prior to administration of the material, and therefore all its components are subjected
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to the same temperature. Isotope labelling experiments indicate that β-myrcene

has a 5–6 fold higher % yield of isoprene than THC. More facile routes to gaseous

degradants, higher partitioning to the GP, and lower molar heat capacity are all

factors that may explain the more extensive β-myrcene degradation compared to

THC. Analogous findings consistent with this trend are likely for other terpenes with

similar vapor pressures and molecular masses. Cannabis extracts used for dabbing

typically contain cannabinoid acids, but these were not studied in this work given their

lack of commercial availability for federally-funded academic research institutions in

the United States of America as of this writing.

Conversely, higher β-myrcene % mass is associated with a decrease in the levels

of all HPHCs and lesser overall degradation for CEC vaping. Less degradation and

higher overall operating efficiency was observed when vaping SCO with higher % mass

β-myrcene, likely a consequence of decreases in boiling point and viscosity. Depression

of the boiling point would correspondingly depress aerosolization temperature in the

atomizer and lead to lesser chemical degradation. Using the β-myrcene % mass that

displays optimum performance, 14%, the influence of power level on VOC profile and

THC content in the PM was examined. The increase in THCT and decrease in THCY

from 8–10 W, which plateaus from 10–12 W suggests that even at 10 W degradation

of the starting material becomes significant.

In the United States state-level legal recreational cannabis market, reconstituted

cannabis oils containing cannabinoids and terpenes are the norm for CECs,21 but

vaporizers of black market origin are known to contain non-cannabis additives such

as medium chain triglyceride oil, triethyl citrate, or phytol.23 The findings herein

may not translate to cannabis vaporizer liquids containing these and other additives,
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though future work may investigate the impact of these on the release of VOCs and

the delivery of THC and other aerosol components.
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6 Overall conclusions

The historical context of cannabis’ use as a psychoactive drug or entheogen and the

evolution of its associated consumption modalities, particularly for inhalation, have

been described. The known chemistry of novel cannabis inhalation methods has been

presented, and it is clear that significant work is required to understand these meth-

ods and how they impact consumer health. While these novel vaporizing or vaping

methods do not involve heating cannabis concentrates to the point of combustion, the

propensity of the major active ingredients to decompose below their point of combus-

tion, or even below their boiling point, must be addressed. A chemical understanding

of the reactions that occur in this context is an essential first step in assessing the

safety of any inhalable cannabis product.

Thermal decomposition reactions of the primary cannabis concentrate ingredients,

THC and terpenoids including β-myrcene, were not thoroughly studied before publi-

cation of the manuscripts presented in this document. Studies of β-myrcene pyrolysis

date back to 1913,1 but it was not until 2008 that a first step in the mechanism for

pyrolytic β-myrcene decomposition was proposed.2 Herein, qualitative and quantita-

tive product analysis aided by isotopic labelling provided enough evidence to propose

a reaction mechanism that accounts for 30% of the total volatile products emitted

when this terpene is subjected to heating in the context of cannabis vaporization.3
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Volatile reaction products of THC thermal decomposition had not been studied

at all prior to the writing of the manuscripts presented herein. It is shown that

the p-menthyl terpenoid backbone is especially labile when heated, a result that is

suggested by comparing its volatile emissions to those of CBN, which presents an aro-

matized thymyl moiety that does not so easily degrade.3 Qualitative and quantitative

product analysis allowed the proposal of a reaction mechanism that, curiously, shares

a reactive intermediate with β-myrcene,3 and consequently displays a similar volatile

degradation profile to this and other terpenoids.

In addition to the fundamental chemistry of these molecules, the work presented

herein has important implications for the understanding of the health effects of va-

porizing cannabis concentrates. A novel quantitative risk analysis method for inhal-

able cannabis products was reported, and the data presented provides insight into

the risk inherent to inhaling substances found in cannabis smoke and vapor product

aerosols that have known chronic exposure data.4 Structural characterization of the

hundreds of other gaseous degradants of THC3−4 and cannabis terpenes3−5 for which

toxicological data has not been ascertained due to the prior inexistence of other ex-

posure avenues may help guide future work to assess the impacts of these substances.

Methodology used in the execution of these experiments also represents important

progress to the scarce existing literature, especially with regard to the collection of

aerosols released by dabbing, which presents unique experimental challenges given

the variables inherent to this cannabis consumption technique.4−5

This document also details efforts to identify a known airway toxic that was used

as a cannabis extract adulterant during the EVALI crisis.6 This substance, pine rosin

or colophony, has been previously reported as a hashish adulterant in Europe, and
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there is evidence to suggest it may have been used to adulterate cannabis concentrates

in the United States and Canada.6
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7 Appendix A: Supporting Information to Pine rosin identified

as a toxic cannabis extract adulterant

7.1 Quantitative NMR

The cannabis extract adulterant (CEA) sample was dissolved in CDCL3 (Cambridge

Isotope Laboratories) and acquired at 512 scans, a 6.7 second repetition rate, with

a 30° flip angle, and with 64 k data points on a Bruker Avance III 600 MHz NMR

spectrometer. Spectra were processed with 0.3 Hz of line broadening with a final data

size of 64 k real data points. Quantification was performed using Global Spectral

Deconvolution from MestreLab software by comparing analyte peaks to that of a

pure standard of caffeine (Sigma Aldrich) as a CDCl3-soluble internal standard. The

masses of internal standard and CEA sample added to the NMR tube were then used

to calculate an approximate %mass of identified components in the sample.[1]

7.2 Semi-preparative HPLC

Fractions from the HPLC chromatogram were collected manually using the method

in Nilsson et al.[2] using an 25 cm x 10 mm, 5 µm Discovery C18 semi-preparative

column on a Waters 1525 Binary HPLC Pump and a Waters 2996 Photodiode Array

Detector. Product peaks were eluted using an isocratic method consisting of 80 %
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95:5 MeOH:H2O and 20 % 5:95 MeOH:H2O with 0.05 % formic acid in each with a

total flow of 3.5 mL/min. Methanol was removed via rotary evaporation, and product

was extracted in dichloromethane.

7.3 HPLC−ESIMS

The chromatogram was collected on a Vanquish UHPLC system. 20 µL of CEA in

methanol at 930 ng/µL were injected over an Acclaim RSLC Polar Advantage II 3 µm,

120 Å, 3.0 x 75 mm column using the following elution program: hold 30 % A for 5

min., ramp to 27 % A until 18 min., hold until 40 min. with a total flow of 0.5 mL/min.

Solvent A: 0.05 % formic acid in H2O, solvent B: 0.05 % formic acid in methanol. MS

data was acquired using a high-resolution (35,000) Thermo Scientific Q Exactive Mass

Spectrometer with an electrospray ionization source operating in the positive mode.

The Orbitrap was externally calibrated prior to data acquisition allowing accurate

mass measurements for [M+H]+ to be obtained within 4 ppm. The ionization interface

was operated using the following settings: source voltage, 4 kV; sheath and auxiliary

gas at 75 and 20 units respectively; capillary temperature, 400 °C. Ionization in the

positive mode allowed identification of the fatty acid amide oleamide, but the negative

mode would provide higher ionization efficiency for identifying pine rosin components

(which are organic acids) at small concentrations.

146



Figure 7.1: 1H NMR spectrum of CEA showing relevant peaks for (1) dehydroabietic
acid, (2) communic acid, (3) neoabietic acid, (4) isopimaric acid, (5) abietic acid, (6)
pimaric acid, (7) palustric acid, (9) sandaracopimaric acid, (9) MCT oil.

Figure 7.2: HPLC−ESIMS total ion chromatogram with several peaks of interest
highlighted: (1) 15-hydroxyperoxyabietic acid, (2) 12-oxopimaric acid, (3) dehydroa-
bietic acid, (4) communic acid, (5) pimarol, (6) pimaric acid, (7) sandaracopimaric
acid, (8) palustric acid, (9) abietic acid, (10) oleamide, (11) neoabietic acid, (12)
isopimaric acid, (13) sandaracopimarol.
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Figure 7.3: Overlaid 1H NMR spectra of the semi-preparative HPLC band containing
oleamide in DMSO-d6 (maroon), and the same sample spiked with 100 µg oleamide
(green). An increase in the amide N-H proton peaks in the sample without the
introduction of new peaks confirms the presence of this compound in CEA.

Figure 7.4: Overlaid 1H NMR spectra of the semi-preparative HPLC band containing
oleamide in DMSO-d6 (maroon), and the same sample spiked with 100 µg oleamide
(green). An increase in the amide N-H proton peaks in the sample without the
introduction of new peaks confirms the presence of this compound in CEA.
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8 Appendix B: Supporting Information to Toxicant formation

in dabbing: The terpene story

8.1 Experimental setups

Figure 8.1: The experimental setup used in all NMR experiments. Conditions were
exactly replicated in all experiments, using the same height in the lab jack, camera
and SCSM. Tubing between the water pipe, cold trap, impinger and SCSM was the
same length every experiment. Photograph courtesy of J.M.A. Copyright 2017.
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Figure 8.2: Experimental setup used in ATD cartridge sample collection. Photograph
courtesy of J.M.A. Copyright 2017.

8.2 ATD–GC–MS Conditions

A sample of one 338 mL in 10s draw was collected onto an adsorption/thermal des-

orption (ATD) cartridge as showing in Figure 8.2. The ATD cartridge contains 100

mg of 35/60 mesh Tenax TA and 200 mg of 60/80 mesh Carbograph 1 TD (Cam-

sco Inc., Houston, TX). Each ATD sample cartridge was thermally desorbed using

a TurboMatrix 650 ATD unit (PerkinElmer, Waltham, MA). Each cartridge was

automatically added with 20 ng of fluorobenzene, 18.6 ng of toluene-d8, 21.7 ng of 4-

bromofluorobenzene, and 20.3 ng of 1,2-dichlorobenzene-d4 as the internal standards.

The ATD unit thermally desorbed each ATD cartridge for 10 min at 285 °C with a

He desorption flow of 40 mL/min and split flow of 10 mL/min, the desorption stream

was trapped at –10 °C on an intermediate “Tenax® trap”. Thermal desorption of the

intermediate trap occurred at 295 °C and 25 psi constant pressure He, on a split flow

of 12 mL/min for 4 min. Through a 1 m long and 0.25 mm i.d. deactivated fused
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silica transfer line (235 °C), the un-split portion of the stream was passed on to a 30

m length, 0.25 mm i.d., and 1.4 µm film thickness Rxi-624Sil MS (Restek Inc., Belle-

fonte, PA) capillary GC column mounted in an Agilent (Santa Clara, CA) 7890A GC.

This was interfaced to an Agilent 5975C MS operated in electron impact ionization

mode. The GC oven temperature was hold at 40 °C for 2 min, programming to 100

°C at 10 °C /min, then programming to 280 °C at 12 °C/min , and then at 15 °C/min

to 220 °C. The MS scan range was 34 to 300 amu. The electron multiplier voltage

was 1525 V.

8.3 Temperature measurements

Limonene, linalool and Fire OG terpenes were only tested once each at the highest TR

chosen for the NMR experiments. Temperatures used in each of these experiments

are shown in Table 8.1.

Myrcene experiments for each TR were done in triplicate. The five T i and T f for

each dab taken in each experiment were averaged. Data for all temperatures used

are shown in Tables 8.2 though 8.6. The average of the standard deviations of each

T i and T f for all 12 experiments is 2.4 °C, indicating the experiments were done

consistently. The average of the T i and T f of the four TR replicates was taken and

a median temperature (Tm) was calculated. Table 8.2 shows the total average T i

and T f for each TR. M1-M12 are the abbreviations used for each individual myrcene

experiment (four TRs × three replicates).
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Limonene Linalool Fire OG
T i T f T i T f T i T f

Hit 1 549 498 558 503 565 510
Hit 2 550 503 557 500 556 500
Hit 3 550 500 552 502 552 501
Hit 4 547 502 556 501 559 500
Hit 5 549 500 556 506 555 502
Average 549 501 556 502 557 503
St. Dev. 1.22 1.95 2.28 2.30 4.93 4.21

Table 8.1: Temperatures in °C used for each individual hit, shown with their averages
and standard deviations.

Tm T i T f

526 551±0.8 500±2.4
455 477±0.1 434±0.8
403 421±0.2 386±0.8
322 336±1.4 309±2.7

Table 8.2: Tm, T i, and T f values for each TR in °C

8.4 NMR conditions

All myrcene samples were run at 1024 scans, 6.7 second repetition rate, 30-degree

flip angle with 64 k data point acquisition on a Bruker Avance III 600 MHz NMR

spectrometer. Spectra were processed with 0.3 Hz of line broadening with a final

data size of 64 k real data points. Fire OG terpenes, limonene and linalool were run

under the same conditions but with 256 scans. Analyte assignments of benzene and

methacrolein were performed by spiking of authentic standards. Integral measure-

ments for quantitative-NMR were done using Global Spectral Deconvolution (GSD)

from MestreLab software.
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Tm = 526 °C
M1 M2 M3
T i T f T i T f T i T f

Hit 1 552 500 550 501 555 496
Hit 2 549 500 555 502 550 498
Hit 3 550 507 550 495 554 500
Hit 4 551 504 552 499 552 501
Hit 5 552 503 550 494 551 499
Average 551 503 551 498 552 499
St. Dev. 1.30 2.95 2.19 3.85 2.07 1.92

Table 8.3: Temperatures in °C used for each individual hit, shown with their averages
and standard deviations.

Tm = 455 °C
M4 M5 M6
T i T f T i T f T i T f

Hit 1 477 436 477 434 476 430
Hit 2 476 432 476 432 476 432
Hit 3 475 433 477 436 478 434
Hit 4 478 437 476 434 475 434
Hit 5 477 434 478 439 478 437
Average 477 434 477 435 477 433
St. Dev. 1.14 2.07 0.84 2.65 1.34 2.61

Table 8.4: Temperatures values used for each myrcene hit at Tm=455 °C. The average
T i and T f values for M4, M5, and M6 were themselves average to get the total average
T i and T f for the Tm=455 °C TR, shown in Table 8.2

8.5 Toxicant levels generated in myrcene NMR experiments

Table 8.7 shows the initial data used for calculations. Averages of each triplicate

value were taken, standard deviation calculated, and confidence interval found at 95

% confidence level. The amount of toxicant generated per mg of myrcene administered

in the dab (75 µL) was calculated from the values in Table S8, using the density of

myrcene. The amount of toxicant generated per mg of limonene, linalool and Fire

154



Tm = 405 °C
M7 M8 M9
T i T f T i T f T i T f

Hit 1 420 385 421 384 420 383
Hit 2 421 388 420 387 422 386
Hit 3 422 388 420 385 420 383
Hit 4 419 386 420 384 421 387
Hit 5 423 386 422 387 421 386
Average 421 387 421 385 421 385
St. Dev. 1.85 1.34 0.89 1.52 0.84 1.87

Table 8.5: Temperatures values used for each myrcene hit at Tm=405 °C. The average
T i and T f values for M7, M8, and M9 were themselves average to get the total average
T i and T f for the Tm=405 °C TR, shown in Table 8.2

OG were calculated analogously using their density, results of which are shown in

Table 1 in the main body of the report. Knowing that an average mass of a dab is

40 mg, and assuming that all terpenes will degrade to form similar levels of toxicants

as myrcene, the amount of toxicant per mg of myrcene formed is multiplied by the

mass of terpenes in a 40 mg dab of BHO, 2.36 mg. This mass of toxicant formed per

dab is then divided by the volume of the draw (338 mL) to give a concentration of

toxicant in the air that would be inhaled.
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Tm = 322 °C
M10 M11 M12
T i T f T i T f T i T f

Hit 1 337 311 335 307 335 308
Hit 2 336 309 336 309 224 306
Hit 3 326 291 344 319 337 311
Hit 4 337 310 336 311 377 308
Hit 5 377 309 336 311 338 309
Average 335 306 337 311 336 308
St. Dev. 4.83 8.43 3.71 4.56 1.64 1.82

Table 8.6: Temperatures values used for each myrcene hit at Tm=322 °C. The average
T i and T f values for M10, M11, and M12 were themselves average to get the total
average T i and T f for the Tm=322 °C TR, shown in Table 8.2

Levels by Experiment

Tm(°C) Experiment Benzene (ng) Methacrolein (ng)

526

M1 432 4569

M2 362 4279

M3 457 4804

455

M4 ND 2470

M5 ND 2392

M6 ND 2397

403

M7 ND 1405

M8 ND 1405

M9 ND 1340

302

M10 ND ND

M11 ND ND

M12 ND ND

Table 8.7: Benzene and methacrolein levels determined in the NMR tube for each
experiment
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Retention time (min) Product Match Quality CAS Number

1.242 2-methylpropene 90 115-11-7

1.297 1,3-butadiene 91 106-99-0

1.348 acetaldehyde 72 75-07-0

1.929 isoprene 95 78-79-5

2.1 acetone 80 67-64-1

2.3 cyclopentadiene 97 542-92-7

2.868 2-methyl propanal 83 78-84-2

3.019 methacrolein 94 78-85-3

3.148 2,3-dimethyl-2-butene 90 563-79-1

3.287 1,3-hexadiene 93 592-48-3

3.439 methyl vinyl ketone 80 78-94-4

3.51 3-methyl furan 91 930-27-8

3.881 2-methyl-1,3-pentadiene 94 1118-58-7

3.993 2-methyl-1,3-cyclopentadiene 92 3727-31-9

4.481 1,3-cyclohexadiene 93 592-57-4

4.893 2-ethylacrolein 94 922-63-4

6.406 1-methyl-1,4-cyclohexadiene 94 4313-57-9

6.732 1,3,5-cycloheptatriene 95 544-25-2

14.797 naphthalene 95 91-20-3

15.691 4-isopropyl benzaldehyde 93 122-03-2

15.884 3,7-dimethyl-2,6-octadienal 97 5392-40-5

16.123 4-isopropenyl-1-cyclohexene-1-carbaldehyde 98 2111-75-3

16.307 1-methyl naphthalene 95 90-12-0

16.549 2-methyl naphthalene 96 91-57-6

22.281 (E,E)-7,11,15-trimethyl-3-methylene-hexadeca-

1,6,10,14-tetraene

70 70901-63-2

22.511 (E,E,E)-3,7,11,15-tetramethylhexadeca-1,3,6,10,14-

pentaene

83 77898-97-6

Table 8.8: Products identified in a myrcene dab sample taken at the second highest
TR of Tm = ca. 450 °C (T i = 470 °C and T f = 430 °C) using ATD−GC−MS.
Products highlighted in red were also identified in the air blank.

8.6 Product identification by spiking

A sample from the highest TR, M1, was spiked with low concentration methacrolein

and benzene standards to verify the presence of these in the spectra. All methacrolein

peaks were identified (Figures 8.3-8.6), as well as the singular benzene peak (Figure

8.7). The methacrolein standard was spiked twice to fully verify its existence amongst

overlapping peaks.
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Figure 8.3: Overlay in the aldehyde proton region of methacrolein (9.54 ppm) display-
ing a pure myrcene sample, a vapor sample, the same vapor sample spiked with pure
methacrolein, and a second spike with pure methacrolein showing a rise in intensity
of this aldehyde signal.
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Figure 8.4: Overlay in the alkene proton region of methacrolein (6.43 ppm) displaying
a pure myrcene sample, a vapor sample, the same vapor sample spiked with pure
methacrolein, and a second spike with pure methacrolein showing a rise in intensity
of this alkene signal.
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Figure 8.5: Overlay in the alkene proton region of methacrolein (6.16 ppm) displaying
a pure myrcene sample, a vapor sample, the same vapor sample spiked with pure
methacrolein, and a second spike with pure methacrolein showing a rise in intensity
of this alkene signal.
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Figure 8.6: Overlay in the methyl proton region of methacrolein (1.74 ppm) displaying
a pure myrcene sample, a vapor sample, the same vapor sample spiked with pure
methacrolein, and a second spike with pure methacrolein showing a rise in intensity
of this methyl signal.
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Figure 8.7: Overlay in the benzene proton region (7.37 ppm) displaying a pure
myrcene sample, a vapor sample, the same vapor sample spiked with pure benzene
showing a rise in intensity of the benzene proton signal.

8.7 Sample chromatograms and mass spectra of select

degradants
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Figure 8.8: A sample chromatogram from a high-temperature myrcene dabbing
sample collected using ATD−GC−MS. Highlighted peaks include: 1,3-butadiene,
isoprene, methacrolein, methyl vinyl ketone (MVK), 3-methylfuran (3-MF), ben-
zene, hydroxyacetone (HA), 1-methyl-1,4-cyclohexadiene (MCHD), myrcene, and 2-
methylnaphthalene.
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Figure 8.9: Mass spectrum of 1,3-butadiene (top, grey) compared to NIST library
mass spectrum (bottom, red).

Figure 8.10: Mass spectrum of isoprene (top, grey) compared to NIST library mass
spectrum (bottom, red).
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Figure 8.11: Mass spectrum of methacrolein (top, grey) compared to NIST library
mass spectrum (bottom, red).

Figure 8.12: Mass spectrum of methyl vinyl ketone (top, grey) compared to NIST
library mass spectrum (bottom, red).
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Figure 8.13: Mass spectrum of 3-methyl furan (top, grey) compared to NIST library
mass spectrum (bottom, red).

Figure 8.14: Mass spectrum of benzene (top, grey) compared to NIST library mass
spectrum (bottom, red).
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Figure 8.15: Mass spectrum of hydroxyacetone (top, grey) compared to NIST library
mass spectrum (bottom, red).

Figure 8.16: Mass spectrum of 1-methyl-1,4-cyclohexadiene (top, grey) compared to
NIST library mass spectrum (bottom, red).
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Figure 8.17: Mass spectrum of 2-methylnaphthalene (top, grey) compared to NIST
library mass spectrum (bottom, red).
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9 Appendix C: Supporting Information to Aerosol gas-phase

components from cannabis e-cigarettes and dabbing: mecha-

nistic insight and quantitative risk analysis

Figure 9.1: Sample chromatogram of collected for ATD-GCMS experiment of THC
dabbing. Some compounds have been highlighted: 1, acetone; 2, isoprene; 3,
methacrolein; 4, methyl vinyl ketone; 5, butyraldehyde; 6, 2-methyltetrahydrofuran;
7, toluene; o- and p-xylenes. Three regions have been highlighted based on carbon
number of the hydrocarbons eluting in each.
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Figure 9.2: Sample chromatogram of collected for ATD-GCMS experiment of
THC+terpenes dabbing. Some compounds have been highlighted: 1, isoprene; 2,
methacrolein; 3, methyl vinyl ketone; 4, toluene; 5, o- and p-xylenes. Three regions
have been highlighted based on carbon number of the hydrocarbons eluting in each.
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RT
(min)

CAS
Number

Name 3.2 V 4.0 V 4.8 V THC+terp
dabbing

3.29 115-11-7 Isobutylene 4.8E-01 3.6E+01 9.5E+01 1.9E+02
3.98 563-46-2 2-Methylbutene 1.3E+00 1.8E+01 1.7E+02 5.8E+02
4.65 67-64-1 Acetone 1.9E+01 1.1E+02 3.1E+02 2.1E+03
4.95 78-79-5 Isoprene* 3.0E+01 8.3E+02 6.0E+03 4.4E+04
5.19 2511-95-7 1,2-Dimethylcylopropane 1.2E+01 1.3E+02 7.5E+02 3.9E+03
5.75 591-93-5 1,4-Pentadiene 8.2E-02 2.5E+00 2.3E+02 8.7E+01
6.44 78-84-2 Isobutyraldehyde 3.9E-01 1.4E+00 2.9E+00 1.6E+02
6.61 563-78-0 2,3-Dimethylbutene, ND 1.6E+00 1.3E+02 4.0E+01
6.84 78-85-3 Methacrolein* 5.6E+00 3.2E+01 1.9E+02 1.2E+04
7.54 625-27-4 2-Methyl-2-pentene ND ND 1.3E+02 8.8E+01
7.69 78-94-4 Methyl vinyl ketone 4.8E+00 2.8E+01 4.6E+01 9.7E+02
7.79 123-72-8 Butyraldehyde 9.0E-01 4.6E+00 ND 4.8E+02
8.45 674-76-0 4-Methyl-2-pentene 2.0E+00 3.7E+01 7.1E+02 5.8E+02
8.71 7319-00-8 1,4-Hexadiene ND 4.1E+00 2.0E+02 3.7E+02
8.98 1118-58-7 2-Methyl-1,3-pentadiene 3.0E-01 5.4E-05 1.7E+02 6.6E+02
9.21 922-62-3 3-Methyl-2-pentene ND 1.0E+00 8.8E+01 2.5E+01
10.53 926-56-7 4-Methyl-1,3-pentadiene ND 4.0E+00 1.1E+02 2.5E+02
10.72 542-92-7 1,3-Cyclopentadiene 5.7E-01 1.6E+01 2.9E+02 5.4E+02
10.86 592-48-3 1,3-Hexadiene 4.4E+00 7.6E+01 5.1E+02 1.1E+03
11.00 592-57-4 1,3-Cyclohexadiene ND 6.8E-05 3.0E+02 1.4E+03
12.07 71-43-2 Benzene* 9.9E-01 2.7E+00 3.6E+01 3.6E+02
12.26 96-39-9 Methyl-1,3-cyclopentadiene 1.7E-01 5.7E+00 7.3E+01 1.1E+03
12.93 1838-94-4 Isoprene epoxide ND 1.1E+00 3.2E+00 2.7E+02
13.47 110-62-3 Valeraldehyde ND ND ND 1.8E+02
13.64 2738-19-4 2-Methyl-2-hexene 1.3E-01 9.1E+00 2.8E+02 7.2E+01
14.83 4125-18-2 5,5-Dimethylcyclopentadiene 8.3E-02 2.5E+00 9.7E+01 3.1E+02
15.39 4313-57-9 1-Methyl-1,4-cyclohexadiene 1.1E-01 2.3E+00 1.2E+02 1.2E+02
15.45 497-03-0 2,3-Dimethylacrolein ND ND ND 7.5E+01
15.68 4784-86-5 1,2-Dimethylcyclopentadiene ND 2.7E+00 7.5E+01 1.9E+02
15.93 3404-78-2 2,5-Dimethyl-2-hexene ND 5.3E+00 1.5E+02 1.5E+02
16.03 41233-72-1 2-Methyl-1,3,5-hexatriene ND 2.4E+00 9.2E+01 5.5E+02
16.21 1489-57-2 2-Methyl-1,3-cyclohexadiene ND 2.9E+01 1.5E+02 9.7E+02
16.44 108-88-3 Toluene* 7.0E-01 1.0E+01 1.6E+02 1.3E+03
16.81 13643-0606 2-Methyl-1,6-heptadiene ND 4.4E+00 6.6E+01 1.8E+02
18.32 NA 1,2,5,5-Tetramethyl-1,3-

cyclopentadiene
ND 3.1E+00 1.6E+02 2.3E+02

18.46 NA 5-tert-Butyl-1,3-
cyclopentadiene

ND 1.8E+00 1.1E+02 1.3E+02

19.11 100-41-4 Ethylbenzene* 3.7E-02 2.5E-01 2.7E+00 5.5E+01
19.32 6709-39-3 2,6-Dimethyl-1,5-heptadiene 2.1E+00 2.6E+01 2.0E+02 2.0E+02
19.43 106-42-3 &

95-47-6
p- and o-Xylenes* 1.0E+00 1.4E+01 178E+02 8.3E+02

19.91 100-42-5 Styrene* 9.3E-02 2.7E-01 NQ 2.7E+01
20.017 108-38-3 m-Xylene* 3.2E-02 3.4E-01 48E+00 2.3E+01
20.56 98-82-8 Isopropylbenzene* ND ND ND 3.3E+01
23.96 1195-32-0 alpha-p-Dimethylstyrene 6.6E+00 2.2E+01 1.9E+01 1.2E+02

Total VOCs 9.4E-02 1.5E+00 1.2E+01 7.7E+01

Table 9.1: Gas phase components tentatively identified and quantified by non-target
analysis for vaping and dabbing THC+terpenes. Results for THC + terpenes dab-
bing are averaged between the duplicate measurements and are based on a 40 mg
dab; values for vaping are based on single measurements. All measurements are in
ng, except for Total VOCs, in µg. *: These components were quantified using IS
calibration for dabbing, for using RF analysis for dabbing; all other components were
quantified by non-target analysis.
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RT
(min)

CAS
Number

Name THC
dabbing

3.293 115-11-7 Isobutylene 4.5E+02
3.997 563-46-2 2-Methylbutene 6.1E+01
4.521 646-04-8 2-Pentene 3.1E+02
4.65 67-64-1 Acetone 1.6E+03
4.954 78-79-5 Isoprene* 9.6E+03
5.199 2511-95-7 1,1-Dimethylcyclopropane 3.9E+02
5.452 2004-70-8 1,3-Pentadiene 7.1E+01
5.766 591-93-5 1,4-Pentadiene 3.8E+01
6.264 763-29-1 2-Methylpentene 1.3E+01
6.44 78-84-2 Isobutyraldehyde 1.8E+01
6.71 625-27-4 2-Methyl-2-pentene 3.4E+01
6.835 78-85-3 Methacrolein* 2.7E+03
7.689 78-94-4 Methyl vinyl ketone 4.3E+02
7.792 123-72-8 Butyraldehyde 8.4E+02
8.758 1759-81-5 4-Methylcyclopentene 3.4E+01
9.007 764-35-2 2-Hexyne 2.0E+02
9.38 592-46-1 2,4-Hexadiene 1.8E+01
9.857 123-72-8 Tetrahydrofuran 3.8E+01
10.737 96-39-9 Methyl-1,3-cyclopentadiene 4.0E+02
10.861 926-56-7 4-Methyl-1,3-pentadiene 5.9E+02
11.011 592-57-4 1,3-Cyclohexadiene 3.4E+02
12.067 71-43-2 Benzene* 3.3E+01
12.265 96-47-9 2-Methyltetrahydrofuran 2.0E+02
12.548 814-78-8 Isopropenyl methyl ketone 2.0E+01
12.934 1838-94-4 Isoprene epoxide 4.4E+01
13.471 110-62-3 Valeraldehyde 1.0E+02
13.591 630-19-3 Trimethylacetaldehyde 1.7E+01
14.025 630-19-3 2,5-Dimethylfuran 8.3E+00
14.372 591-47-9 4-Methylcyclohexene 3.5E+01
14.836 4125-18-2 5,5-dimethylcyclopentadiene 8.1E+01
15.454 497-03-0 2,3-Dimethylacrolein 2.3E+01
15.965 3404-78-2 2,5-dimethyl-2-hexene 9.6E+00
16.042 41233-72-1 2-methyl-1,3,5-hexatriene 1.3E+02
16.218 1489-57-2 2-methyl-1,3-cyclohexadiene 2.5E+02
16.437 108-88-3 Toluene* 4.4E+02
18.33 NA 1,2,5,5-Tetramethyl-1,3-cyclopentadiene 1.8E+02
18.468 NA 5-tert-Butyl-1,3-cyclopentadiene 8.8E+01
19.107 100-41-4 Ethylbenzene* 1.4E+00
19.318 6709-39-3 2,6-Dimethyl-1,5-heptadiene 1.2E+01
19.425 106-42-3 &

95-47-6
p- and o- Xylenes* 3.3E+02

19.618 20185-16-4 3,3-Dimethyl-6-methylenecyclohexene 3.8E+01
19.910 100-42-5 Styrene* 8.8E-01
20.017 108-38-3 m-Xylene* 4.2E+00
20.563 98-82-8 Isopropylbenzene* 2.1E+00
21.846 NA 1,6-Dimethylhepta-1,3,5-triene 2.6E+01
22.249 NA 2,5,5-Trimethyl-1-hexen-3-yne 1.6E+01
22.614 99-87-6 p-Cymene 6.5E+01
23.966 1195-32-0 alpha-p-Dimethylstyrene 2.3E+01

Total VOCs 2.0E+01

Table 9.2: Gas phase components identified and quantified (ng) for dabbing THC.
Results are averaged between the duplicate measurements and are based on a 40 mg
dab. All measurements are in ng, except for Total VOCs, in µg. *: These components
were quantified using IS calibration for dabbing; all other components were quantified
by non-target analysis.
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Compound CAS
RN

IUR
(µg/m3)−1

REL
(µg/m3)

Target sys-
tem for
REL

ELCRi
Dabbing
(%ELCRT)

ELCRi
Vaping
at 4.0V
(%ELCRT)

HQ
Dabbing
(%HI)

HQ
Vaping
at 4.0V
(%HI)

Methacrolein 78-85-3 NA 8.1E+00,
TCEQ

Respiratory NA NA 1E-1
(91%)

4E-3
(62%)

Benzene 71-43-2 2.2E-06,
IRIS*

3.0E+01,
IRIS

Immune 6E-8
(42%)

5E-9
(24%)

1E-3 9E-5
(1.4%)

Xylenes 1330-20-
7

NA 1.0E+02,
IRIS

Neurological NA NA 9E-4 2E-4
(2.2%)

Toluene 108-88-3 NA 5.0E+03,
IRIS

Neurological NA NA 3E-5 2E-6

Styrene 100-42-5 NA 1.0E+03,
IRIS

Neurological NA NA 3E-6 3E-7

Ethylbenzene 100-41-4 2.5E-06,
OEHHA

1.0E+03,
IRIS

Developmental 1E-8
(7.3%)

5E-10
(2.5%)

6E-6 3E-7

Isoprene 78-79-5 2.2E-08,
Haney et
al

3.9E+02,
TCEQ

NA 8E-8
(51%)

1E-8
(74%)

1E-2
(7.2%)

2E-3
(32.7%)

Acetone 67-64-1 NA 1.6E+04,
TCEQ

Neurological NA NA 1.3E-05 7E-6

Butyraldehyde 123-72-8 NA 1.0E+02,
TCEQ

Respiratory NA NA 4.8E-04 5E-5

Table 9.3: Dabbing and CV gas phase components used for QRA. REL and IUR
values with sources used, their non-cancer target systems according to IRIS, and the
ELCRi and HQ for each component are listed. Percentage contributions to ELCRT

and HI are shown for components that contribute greater than 1 % to the total of
each, which collectively make up >98 % ELCRT and HI. *The lower bound of the
range reported for benzene is used.
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Compound CAS
RN

CY
(µg/grams
cannabis)

IUR
(µg/m3),−1

source

REL
(µg/m3),
source

Target sys-
tem for REL

ELCRi
(%ELCRT)

HQ
(%HI)

4-Aminobiphenyl 92-67-1 1.6E-02 6.0E-03,
OEHHA

NA NA 3E-6 NA

Acetaldehyde 75-07-0 6.2E+02 2.2E-06,
IRIS

9.0E+00,
IRIS

Respiratory 4E-5 (10%) 3E+0
(1.1%)

Acetone 67-64-1 2.1E+02 NA 1.6E+04,
TCEQ

Neurological NA 5E-4

Acrolein 107-02-8 9.0E+01 NA 2.0E-02,
IRIS

Respiratory NA 2E+2
(75%)

Acrylonitrile 107-13-1 8.2E+01 6.8E-05,
IRIS

2.0E+00,
IRIS

Respiratory 2E-4 (40%) 2E+0

Ammonia 7664-41-
7

8.0E+02 NA 5.0E+02,
IRIS

Respiratory NA 6E-2

Benzene 71-43-2 1.0E+02 2.2E-06,
IRIS*

3.0E+01,
IRIS

Immune 7E-6
(1.6%)

1E-1

Benzo[b]fluoranthene 205-99-2 2.1E-02 1.1E-4,
OEHHA

NA NA 7E-8 NA

Benzo[a]pyrene 50-32-8 1.9E-02 6.0E-04,
IRIS

2.0E-03,
IRIS

Developmental 3E-7 4E-1

Benzo[j]fluoranthene 205-82-3 1.5E-02 1.1E-4,
OEHHA

NA NA 5E-8 NA

Benzo[k]fluoranthene 207-08-9 5.6E-03 1.1E-4,
OEHHA

NA NA 2E-8 NA

Butadiene 106-99-0 1.7E+02 3.0E-05,
IRIS

2.0E+00,
IRIS

Reproductive 2E-4 (37%) 3E+0
(1.4%)

Cadmium 7440-43-
9

1.8E-02 1.8E-03,
IRIS

NA Renal 9E-7 NA

Chrysene 218-01-9 6.9E-02 1.1E-5,
OEHHA

NA NA 2E-8 NA

Cresol 1319-77-
3

1.2E+01 NA 6.0E+02,
OEHHA

NA NA 8 E-3

Formaldehyde 50-00-0 8.1E+01 1.3E-05,
IRIS

NA Respiratory/
ophthalmologi-
cal

3E-5
(7.7%)

3E-1

HCN 74-90-8 1.0E+03 NA 8.0E-01,
IRIS

Endocrine NA 5E+1
(21%)

Indeno[1,2,3-
cd]pyrene

193-39-5 1.1E-02 1.1E-4,
OEHHA

NA NA 3E-8 NA

Isoprene 78-79-5 1.1E+02 2.2E-08,
Haney et al

1.0E+03,
TCEQ

NA 7E-8 1E-2

Mercury 7439-97-
6

4.3E-03 NA 3.0E-01,
TCEQ

Neurological NA 5E-4

Methyl ethyl ke-
tone

78-93-3 1.7E+02 NA 5.0E+03,
IRIS

Developmental NA 1E-3

Naphthalene 91-20-3 1.0E+01 3.4E-05,
OEHHA

3.0E+00,
IRIS

Respiratory 1E-5
(2.5%)

1E-1

Phenol 108-95-2 3.2E+02 NA 2.0E+02,
OEHHA

NA NA 6E-2

Propionaldehyde 123-38-6 9.0E+01 NA 8.0E+00,
IRIS

Respiratory NA 4E-1

Styrene 100-42-5 5.5E+01 NA 1.0E+03,
IRIS

Neurological NA 2 E-3

Toluene 108-88-3 2.4E+02 NA 5.0E+03,
IRIS

Neurological NA 2E-3

Table 9.4: Smoke components from the literature used for cannabis smoking QRA.
CY in µg/joint (for a 0.75 g joint), as well as their associated REL and IUR with
sources used, their non-cancer target systems according to IRIS, and the ELCRi and
HQ for each component. Percentage contributions to ELCRT and HI are shown for
components that contribute greater than 1 % to the total of each, which collectively
make up 99 % ELCRT and HI. *The lower bound of the range reported for benzene
is used.
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10 Appendix D: Supporting Information to The influence of

terpenes on the release of volatile organic compounds and

active ingredients to cannabis vaping aerosols

10.1 Scheduled substance usage

Research activities involved THC were performed in accordance with 21 C.F.R.

§1301.18 and safely stored in accordance with §1301.75. THC was purchased from

Cayman Chemical (Ann Arbor, MI) as a solution in acetonitrile at 50 mg/mL. The

solvent was removed in vacuo before use in experiments. Cannabinol was graciously

donated by Floraworks Holdings Inc.

Figure 10.1: EIMS spectra of β-myrcene β-myrcene-d6
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10.2 Synthesis of β-myrcene-d6

To a solution of hexadeutero isopropyl triphenylphoshine iodide salt (420 mg, 1.0

mmol, 1.1 eq) in THF (9 mL, 0.1 M) at 0 °C was added n-butyllithium (1.6 M, 620

µL, 1.0 mmol, 1.1 eq). This solution was allowed to stir at 0 °C for 30 min before

a solution of 4-methylenehex-5-enal (100 mg, 0.90 mmol, 1.0 eq) in THF (0.50 mL)

was added dropwise. The ice bath was removed and the reaction was permitted to

stir at room temperature for 2 hours before being quenched with saturated aqueous

ammonium chloride and extracted with pentane. The combined organic fractions were

dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and

purified via flash chromatography (100% pentane) to provide the title compound in

54% yield in a 6:1 ratio with pentane. As expected, NMR analysis shows a spectrum

identical to that of myrcene except for the absence of six proton signals associated

with the geminal dimethyl olefin, and confirming the presence of 7-(methyl-d3)-3-

methyleneocta-1,6-diene-8,8,8-d3 (β-myrcene-d6). 1H NMR (500 MHz, CDCl3): δ

6.38 (dd, J = 17.6, 10.8 Hz, 1H), 5.25 (d, J = 17.6 Hz, 1H), 5.16 (t, J = 6.7 Hz, 1H),

5.03 (m, 3H), 2.20 (m, 4H).1−4

10.3 Synthetic cannabis oil

THC (Cayman Chemical, Ann Arbor, MI) was acquired as a 10 mg/mL solution in

acetonitrile, which was concentrated in vacuo. Pure THC was assessed for purity

by HPLC-UV and NMR. THC was used alone in vaping or dabbing experiments, or

mixed with β-myrcene (Sigma Aldrich) or β-myrcene-d6 for studies using synthetic

cannabis oil. THC and β-myrcene mixtures were homogenized in scintillation vials
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using a rotary evaporator slowly spinning at atmospheric pressure with the vial par-

tially submerged in a 50 °C water bath for 1 -2 hours. THC content was assessed by

HPLC-UV on 5-point standard addition calibration curves by first creating analyte

stock solutions. of the mixes at 1 -1.3 mg/mL in 1:1 CH3CN:H2O. 400 µL of 1.0

mg/mL (-)-∆9-THC in methanol certified reference material standard soln. (Cer-

illiant Corporation, Round Rock, TX) were added to a 2 mL vol. flask, and the

methanol was evaporated under a gentle stream of Ar, then brought up to volume in

1:1 CH3CN:H2O for a final conc. of 200 µg/mL (THC spike soln.). 50 µL of analyte

stock soln. and 100, 150, 200, 300, or 400 µL of THC spike soln. were added and

to 2 mL. vol. flasks and brought up to volume in 1:1 CH3CN:H2O, and immediately

analyzed by HPLC-UV monitoring at 254 nm.

10.4 Cartridge vaping experiments

Pure THC, THC with 7.2% myrcene, THC with 14% myrcene, and pure CBN were

added to CCELL TH2 oil vape atomizer (CCELL) and warmed in a 40 °C oven

for 3-4 hours oven to allow the oil to saturate the internal wick, and then used the

following day in vaping experiments. The atomizers were connected to an iStick

PICO (eLeaf) battery that was set to the wattage required for each experiment. The

aerosol collection apparatus (Figure 10.2) consisted of: the CEC atomizer/battery for

aerosol generation, a 47 mm glass fiber filter pad (i.e. Cambridge filter pad [CFP],

Healthcare) for aerosol particulate matter collection, a ¼” x 3.5” ATD sorbent tube

containing 100 mg 35/60 mesh Tenax TA and 200 mg 60/80 mesh Carbograph 1

TD (Camsco Inc., Houston, TX), a 0 -10 L/min GFM Mass Flowmeter (Aalborg,

Orangeburg, NY), and a Cigarette Smoking Machine CSM-STEP (CH Technologies).
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Figure 10.2: Aerosol collection apparatus for CEC vaping. a: CEC/battery; b: CFP
holder; c: sorbent tube; d : mass flowmeter; e: CSM.

Given the variability of sorbent material packing in each ATD sorbent tube, each

tube was calibrated on a 5-point calibration curve (CSM puff depth [V] vs. flowmeter

flowrate [L/min]) in order to determine the puff depth setting on the CSM to match,

as closely as possible, the CORESTA recommended setting for e-cigarette puffing: 50

mL puff volume in 3 s.5 Knowledge of the exact puff volume facilitated air blank VOC

correction. After calibration, VOC emissions from a single puff from the vaporizer

were collected on the ATD sorbent tube, and the atomizer was massed before and

after each puff. Air blanks were collected in triplicate in the exact same manner on

the days experiments were performed and used to account for background levels of

target VOCs in the samples. Benzene and toluene were the only target VOCs (Table

5.1) detectable. Air levels of benzene (4.3 ± 0.2 ng/L) and toluene (2.0 ± 0.4 ng/L)

were taken as the mass of analyte collected on the sorbent tube vs. the total sampled

air volume, including the calibration draws. Background contributions of benzene and

toluene were subtracted from measured benzene and toluene levels in ATD sorbent

tubes for vaping samples by accounting for the total sampled air volume for each

(including calibration draws).
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10.5 THC delivery analysis

Cambridge filter pads from CEC vaping experiments were extracted in 20 mL 1:1

CH3CN:H2O added with 1 mL of an internal standard solution (5.574 mg/mL olivetol

in 1:1 CH3CN:H2O). Olivetol was chosen as an internal standard due to its similar

solubility to THC, and its favorable retention time on the chromatogram relative to

THC. Extraction solutions were stored at -20 °C for <2 days prior to analysis by

HPLC-UV. THC concentration loss under these storage conditions was monitored,

and concentration loss as monitored by HPLC-UV was only detectable after 5 days.

THCT was quantified using a freshly-prepared six-point internal standard calibration

curve with 0.0, 4.5, 9.1, 18.2, 36.4, and 59.1 µg/mL THC with 50.7 µg/mL olivetol

in each.

10.6 HPLC-UV methodology

The following method was adapted from Protti et al. (2019).6 A Waters 1525 Bi-

nary HPLC Pump with a Waters 2996 Photodiode Array Detector were used for the

analysis. A 5 µL loop was loaded with 5x sample volume and copious wash solvent

between injections to avoid contamination. Sample injection were separated over an

Acclaim™ RSLC Polar Advantage II 3µm 20 Å3.0×75 mm stationary phase. Mobile

phase consisted of: solvent A, 0.1 % formic acid (Fisher Scientific) in HPLC-grade

water (Honeywell, Morris Plains, NJ); solvent B 0.1 % formic acid (Fisher Scientific)

in HPLC-grade acetonitrile (Honeywell, Morris Plains, NJ). The gradient separation

was as follows: initially 50 % A, ramping down to 5 % A after 7 min., maintaining

for 1 min., then ramping back to 50 % A for 1 min., with a re-equilibration time of
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4 min. at 50 % A, for a total run time of 13 min. with combined flowrate of 0.3

mL/min. 3 -4 injections of a check standard (200 µg/mL THC) were performed prior

to analysis to ensure retention time stability.

10.7 ATD−GC−MS methodology

Sorbent tubes were stored at -20 °C for not more than seven days before analysis.

ATD sorbent tubes were thermally desorbed with a TurboMatrix 650 automated

thermal desorber (ATD) unit. 20 ng fluorobenzene, 18.6 ng toluene-d8, 21.7 ng 4-

bromofluorobenzene, and 20.3 ng 1,2-dichlorobenzene-d4 were added automatically

to all ATD sorbent tubes prior to desorption as internal standards. The ATD unit

thermally desorbed tubes for 8 min. at 285 °C with a He desorption flow of 40

mL/min and a split flow of 100 mL/min, and the desorption stream was trapped at

-5 °C on an intermediate “Tenax trap.” This intermediate trap was desorbed at 295

°C at a constant pressure of 35 psi on a split flow of 20 mL/min for 6 min. Through

a 1m long and 0.25 mm i.d. deactivated, fused silica transfer line maintained at 235

°C, the sample stream was passed along to a 60 m, 0.25 mm i.d., and 1.4 µm film

thickness Agilent (Santa Clara, CA) DB-VRX capillary GC column mounted in an

Agilent 7890 A GC. The GC was interfaced with an Agilent 5975C MS in electron

impact ionization at 70 eV in the positive ion mode, with an MS scan range of 34 -600

amu, and an electron multiplier voltage of 1725 V. GC oven temperature was held

at 45 °C for 10 min, raised to 190 °C at 12 °C/min and held for 2 min, then raised

to 240 °C at 6 °C/min and held for 5 min, then programmed down to 210 °C at 10

°C/min.
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10.8 VOC quantification by ATD−GC−MS

For all samples excluding those generated from the THC−β-myrcene-d6 mixes, VOCs

in the aerosol GP were quantified using the non-target analysis method from Meehan-

Atrash et al. (2019).7 Where selected HPHCs were quantified, an ionizaton cross

section is calculated to provide a more accurate result. When total the yield of total

VOCs (VOCT) were calculated, the ionization cross section of all components of the

chromatogram was assumed to be equal to that of a chosen internal standard, fluo-

robenzene. In GP samples generated from THC−β-myrcene-d6 mixes, the coeluting

deuterated and non-deuterated compounds prevented these from being estimated us-

ing the above non-target analysis method, which requires integration on the total ion

chromatogram. To overcome this, response factors for HPHCs of interest were deter-

mined from previously collected quantitative ATD−GC−MS chromatograms. The

mass of each HPHC in the sample (mHPHC , sample, ng) per mg particulate matter

collected (mPM) was determined using equation 10.1:

mHPHC,sample

mPM

=

AHPLC

AFB

×
RFFB

RFHPHC

×mFB −mHPHC,blank

mPM

(10.1)

where AHPHC is the area of HPHC’s ion of interest in the selected ion chro-

matogram (SIC), AFB is the m/z = 96 SIC area of the fluorobenzene internal stan-

dard, RFFB fluorobenzene’s response factor for m/z = 96 calculated from a blank

run (Am/z=96/mFB), RFHPHC is the response factor of the HPHC’s ion of interest

calculated from an injection of pure standards, mFB is the mass of fluorobenzene

added (20 ng) to each sample, and mHPHC,blank is the mass of HPHC present in the
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laboratory air blank. The response factor for a specific ion of interest of an HPHC

was used for the equivalent ion in a deuterium isotopologue. For example, the RF for

isoprene’s m/z=67 amu ion was assumed to be equal to isoprene-d5’s m/z=71 amu

ion, because these both occur after loss of a methyl hydrogen.

10.9 Chemical mechanism modelling

A gas-phase oxidation mechanism for β-myrcene was derived using the SAPRC8−9

mechanism generation system, MechGen10, and product formation was predicted us-

ing a SAPRC box model. MechGen uses experimentally derived rate constants and

branching ratios if data are available and otherwise uses estimated rate constants and

branching ratios based on group additivity and other estimation methods. MechGen

has been used previously in the development of the SAPRC-18 mechanism11 and in

development of a detailed SAPRC furans mechanism for atmospheric modeling.12 In

this work, MechGen was used to derive a β-myrcene oxidation mechanism under va-

ping conditions (significantly higher VOC levels and temperature than atmospheric

conditions); the MechGen-derived mechanism was then implemented into a SAPRC

box model to simulate vaping of a β-myrcene (300 ppm) and THC (700 ppm) mixture

at 643 K and 1 atm with 5 ppb of NO. The SAPRC simulation duration was 10 min-

utes with a time step of 0.1 min, and the OH level was controlled between 2×10−8

and 5×10−7 ppm throughout the simulations. The SAPRC modeling was used to

investigate observed ratios of product formation as a function of temperature and

NO level. To further investigate product formation mechanisms, a second gas-phase

chemical mechanism generator, GECKO-A, was used to derive a β-myrcene oxidation

mechanism under vaping conditions. GECKO-A is a nearly explicit chemical mecha-
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nism generator that relies on experimental data, structure-activity relationships, and

a predefined protocol to generate detailed oxidation reaction schemes for organic com-

pounds under atmospheric conditions (Aumont et al., 2005). Detailed descriptions of

mechanism generation in GECKO-A can be found in Aumont et al. (2005) and Cam-

redon et al. (2007). In this work, the GECKO-A-generated reaction mechanism for

β-myrcene at 643 K demonstrated that MVK (a 1st generation product) and MACR

(a 2nd generation product) formed via OH and NO3 pathways.

10.10 Mass spectra

Figure 10.3: EIMS spectra for 3-methylacrolein (3MCA) and its deuterium iso-
topologue 4,4,4-trideutero-3-(1,1,1-trideuteromethyl)-prop-2-enal (3MCA-d6) that are
formed when β-myrcene-d6 is subjected to dabbing. 3MCA-d6 elutes immediately be-
fore 3MCA on the GC-MS chromatogram, and the structure was proposed primarily
on the observation of a +6 amu mass shift on the molecular ion and a +6 amu mass
shift on the isobutenyl cation.
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Figure 10.4: The EIMS spectra for 2-methyl-2-butene (2M2B) and its deuterium iso-
topologue 1,1,1-trideutero-2-(1,1,1-trideuteromethyl)-but-2-ene (2M2B-d6) that are
formed when β-myrcene-d6 is subjected to dabbing. 2M2B-d6 elutes immediately
before 2M2B on the GC-MS chromatogram, and the structure was proposed primar-
ily on the observation of a +6 amu mass shift on the molecular ion and a +3 amu
mass shift on its base peak.

Figure 10.5: The EIMS spectra for isoprene and 1,1-dideutero-2-(1,1,1-
trideuteromethyl)-1,3-butadiene (isoprene-d5) that are formed when β-myrcene-d6 is
subjected to dabbing. Isoprene-d5 elutes immediately before isoprene on the GC-MS
chromatogram, and the structure was proposed primarily on the observation of a +6
amu mass shift on the molecular ion and a +2 amu mass shift on the butadienyl
cation. The presence of other ions such as m/z = 72, 56, and 57 suggest that an-
other isoprene-d5 isotopomer may be present, but the relatively higher abundance of
m/z = 73, 71, 55, and 42 suggest that the proposed structure is the most abundant
isotopomer.
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Figure 10.6: The EIMS spectra for isopentene and its deuterium isotopologue 4,4,4-
trideutero-3-(1,1,1-trideuteromethyl)-but-1-ene (isopentene-d6) that are formed when
β-myrcene-d6 is subjected to dabbing. Isopentene-d6 elutes immediately before
isopentene on the GC-MS chromatogram, and the structure was proposed primar-
ily on the observation of a +6 amu mass shift on the molecular ion and a +3 amu
mass shift on its base peak.

Figure 10.7: The EIMS spectra for acetone and its deuterium isotopologue 1,1,1,3,3,3-
hexadeutero-2-propanone (acetone-d6) that are formed when β-myrcene-d6 is sub-
jected to dabbing. Acetone-d6 elutes immediately before acetone on the GC-MS
chromatogram, and the structure was proposed primarily on the observation of a +6
amu mass shift on the molecular ion and a +3 amu mass shift on its base peak.
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Figure 10.8: The EIMS spectra for methacrolein (MACR) and its deuterium iso-
topologue 3,3-dideutero-2-(1,1,1-trideuteromethyl)-prop-2-enal (MACR-d5) that are
formed when β-myrcene-d6 is subjected to dabbing. MACR-d5 elutes immediately
before MACR on the GC-MS chromatogram, and the structure was proposed primar-
ily on the observation of a +5 amu mass shift on the molecular ion and a +5 amu
mass shift on its base peak.

Figure 10.9: The EIMS spectra for methyl vinyl ketone (MVK) and its deuterium iso-
topologue 1,1,1-trideuterobut-3-en-2-one (MVK-d3) that are formed when β-myrcene-
d6 is subjected to dabbing. MVK-d3 elutes immediately before MVK on the GC-MS
chromatogram, and the structure was proposed primarily on the observation of a +3
amu mass shift on the molecular ion, an identical base peak which results from loss
of the methyl group, and a +3 amu mass shift on the acetyl radical.
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10.11 Chromatograms

Figure 10.10: ATD-GC-MS chromatogram obtained from dabbing β-myrcene-d6. The
inlay highlights the presence of D-isotopologues identifiable in the chromatogram by
examination of their mass spectra.

Figure 10.11: ATD-GC-MS chromatogram obtained from vaping pure THC.
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10.12 Identified compounds

Retention time

(min)

Name CAS # Match quality (%) ng analyte

3.021 methylethene 000115-07-1 90 2

3.586 isobutene 000115-11-7 90 54

4.171 ethanol 000064-17-5 72 3

4.351 1,2-dimethylcyclopropane 002402-06-4 91 37

4.743 (3Z)-1,3-pentadiene 001574-41-0 96 2

5.084 acetone 000627-20-3 55 128

5.444 isoprene 000078-79-5 96 1296

5.546 4-methyl-2-pentene 000691-38-3 87 82

5.713 2-methyl-2-butene 000513-35-9 91 198

6.343 1,4-pentadiene 000591-93-5 97 64

7.32 2,3-dimethyl-2-butene 000563-79-1 81 62

7.538 methacrolein 000078-85-3 91 34

8.348 2-methyl-1-pentene 000763-29-1 90 8

8.425 methyl vinyl ketone 000078-94-4 90 31

8.541 butanal 000123-72-8 94 10

9.081 3-vinyl-1-cyclobutene 006555-52-8 95 3

9.351 4-methyl-2-pentene 000674-76-0 91 357

9.646 (E)-3-methyl-2-pentene 000616-12-6 93 55

9.961 4-methyl-1,3-pentadiene 000926-56-7 95 94

10.231 (2Z)-3-methyl-2-pentene 000922-62-3 95 38

10.366 (1-methylethylidene) cyclopropane 004741-86-0 91 5

10.951 3,3-dimethyl-1-pentene 003404-73-7 91 17

11.574 1-methyl-1,3-cyclopentadiene 000096-39-9 76 216

11.67 4-methyl-1,3-pentadiene 000926-56-7 95 346

12.037 1-methyl-1-cyclopentene 000693-89-0 76 18

12.229 4-methylpenta-1,3-diene 000926-56-7 93 10

12.319 (3E)-3-methyl-3-hexene 003404-65-7 93 3

12.39 2,3-dimethyl-1-pentene 003404-72-6 95 12

Table 10.1: All GP products from vaping THC with a CEC tentatively identified by
GC−MS presenting a match quality of >70 % with the NIST/Wiley mass spectral
library.
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Retention time

(min)

Name CAS # Match quality (%) ng analyte

12.486 hexahydrobenzene 000110-82-7 95 53

12.808 benzene 000071-43-2 95 12

13.007 1,3-cyclohexadiene 000592-57-4 87 55

13.617 isoprene epoxide 000000-00-0 78 6

13.701 (2E)-5-methyl-2-hexene 003404-62-4 74 2

14.029 (Z)-3-methyl-3-hexene 004914-89-0 95 6

14.119 pentanal 000110-62-3 72 6

14.305 2-methyl-2-hexene 002738-19-4 91 96

14.639 (E)-4-methyl-2-hexene 003683-22-5 83 14

14.819 1,5-dimethylcyclopentene 016491-15-9 70 4

15.012 3-methylcyclohexene 000591-48-0 81 19

15.821 3-methylcyclohexene 000591-48-0 91 12

16.008 2,5-dihydrotoluene 004313-57-9 94 51

16.297 2,5-dihydrotoluene 004313-57-9 94 39

16.438 2-methyl-1,3,5-hexatriene 019264-50-7 95 12

16.663 2,5-dihydrotoluene 004313-57-9 94 36

16.74 1,5-dimethyl-1,4-cyclohexadiene 004190-06-1 74 7

16.83 1-methyl-1,4-cyclohexadiene 004313-57-9 94 81

17.036 toluene 000108-88-3 95 141

17.12 2-methyl-1,3-cyclohexadiene 001489-57-2 97 9

17.209 tetramethylmethylene-

cyclopropane

054376-39-5 83 4

17.287 (3E,5E)-1,3,5-heptatriene 017679-93-5 90 22

17.389 6-methyl-1,5-heptadiene 007270-50-0 76 58

17.479 2-hexanone 000591-78-6 91 18

17.711 2-methyl-2-heptene 000627-97-4 95 24

17.916 (3E)-3-methyl-1,3,5-hexatriene 024587-26-6 94 15

18.09 dimethylsiloxane cyclic trimer 000541-05-9 97 30

18.315 (E,E,E)-2,4,6-octatriene 015192-80-0 94 31

18.912 5-tert-butyl-1,3-cyclopentadiene 035059-40-6 94 92

19.054 5-tert-butyl-1,3-cyclopentadiene 035059-40-6 91 53

19.15 1,2-dimethyl-1,4-cyclohexadiene 017351-28-9 87 10

19.279 1,4-dimethylenecyclohexane 004982-20-1 91 6

19.426 2,3-dimethyl-1,3-cyclohexadiene 004430-91-5 91 22

Table 10.2: Table 10.1 Continued
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Retention time

(min)

Name CAS # Match quality (%) ng analyte

19.574 octa-2,4,6-triene 999178-75-1 95 7

19.876 2,6-dimethyl-1,5-heptadiene 006709-39-3 91 92

19.979 xylene 000106-42-3 97 333

20.198 1-methylene-3-(1-

methylethylidene)cyclopentane

073913-74-3 93 31

20.243 1,2-dimethylenecyclohexane 002819-48-9 90 18

20.442 3,3,6-trimethyl-1,5-heptadiene 035387-63-4 80 173

20.59 o-xylene 000095-47-6 87 19

20.699 3-methylene-1-vinyl-1-cyclopentene 061142-07-2 76 8

21.187 2,3,6-trimethyl-1,5-heptadiene 033501-88-1 74 67

21.399 2,4-dimethyl-2,3-heptadien-5-yne 041898-89-9 81 4

21.457 4-methyl-1-heptene 013151-05-8 78 22

21.56 1-ethylnyl-2,2,3,3-

tetramethylcyclopropane

103304-20-7 72 21

21.926 2,4-dimethyl-2,3-heptadien-5-yne 041898-89-9 91 9

22.023 1,4-methylethylbenzene 000622-96-8 91 8

22.151 2,7-dimethyl-1,6-octadiene 040195-09-3 91 264

22.196 beta-myrcene 000123-35-3 93 24

22.325 2,3,6-trimethyl-1,5-heptadiene 033501-88-1 90 65

22.402 1,2,5,5-tetramethyl-1,3-

cyclopentadiene

004249-12-1 90 84

22.762 2,4-dimethyl-2,3-heptadien-5-yne 041898-89-9 70 27

22.845 allylbenzene 999243-49-8 86 16

22.89 1,2,4-trimethylenecyclohexane 014296-81-2 93 7

23.019 alpha-terpinolen 000586-62-9 76 6

23.102 p-cymene 000099-87-6 97 24

23.231 m-cymene 000535-77-3 93 55

23.327 ocimene 000502-99-8 96 12

23.391 eucalyptol 000470-82-6 93 6

23.584 m-ethyltoluene 000620-14-4 83 11

23.648 (3E,5E)-2,6-dimethyl-1,3,5,7-

octatetraene

000460-01-5 95 5

24.426 4-methylbenzaldehyde 000104-87-0 94 12

v 24.644 alpha-4-dimethylstyrene 001195-32-0 98 13

25.043 1,3,8-para-menthatriene 018368-95-1 94 8

Table 10.3: Table 10.1 Continued
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Retention

time

(min)

Name CAS # Match

quality

(%)

ng ana-

lyte

2.872 propene 000115-07-1 86 3

3.297 isobutylene 000115-11-7 90 184

3.821 ethanol 000064-17-5 83 5

4.001 isopentene 001630-94-0 90 34

4.525 isopentene 000627-20-3 87 175

4.654 acetone 000067-64-1 72 661

4.963 isoprene 000591-95-7 95 857

5.457 (3Z)-1,3-pentadiene 001574-41-0 97 44

5.766 1,4-pentadiene 000591-93-5 97 27

6.092 1-propanol 000071-23-8 64 8

6.44 2-methylpropanal 000078-84-2 87 13

6.629 2,3-dimethylbut-1-ene 000563-78-0 91 7

6.71 2-methyl-2-pentene 000625-27-4 91 20

6.878 methacrolein 000078-85-3 94 238

7.689 methyl vinyl ketone 000078-94-4 83 224

7.792 butanal 000123-72-8 70 541

8.457 2,3-dimethylbut-2-ene 000563-79-1 76 75

8.762 4-methyl-1-cyclopentene 001759-81-5 91 26

9.007 2-methylfuran 000513-81-5 80 127

9.38 2,4-hexadiene 000592-46-1 94 14

9.565 2,3-dihydro-4-methylfuran 034314-83-5 87 4

9.861 tetrahydro-furan 000109-99-9 91 39

10.552 2,4-hexadiene 005194-51-4 94 43

10.737 methylcyclopenta-1,3-diene 026519-91-5 93 262

10.865 4-methyl-1,3-pentadiene 000926-56-7 95 339

11.011 1,3-cyclohexadiene 026519-91-5 93 229

11.226 1-methylcyclopentene 000693-89-0 93 28

11.372 2-butenal 004170-30-3 95 12

11.458 (E)-3-methyl-1,3-pentadiene 002787-43-1 90 16

11.509 2-butenal 004170-30-3 93 11

11.625 2,5-dihydrofuran 001708-29-8 80 6

12.072 benzene 000071-43-2 95 12

12.269 2-methyltetrahydrofuran 000096-47-9 60 165

12.398 5-methyl-1,4-hexadiene 000763-88-2 92 3

12.552 methyl vinyl ketone 000814-78-8 90 12

12.939 isoprene epoxide 000000-00-0 91 37

13.132 1-heptene 000592-76-7 70 31

13.471 pentanal 000110-62-3 91 82

13.595 2-(butoxymethyl)oxirane 002426-08-6 43 36

13.716 2,4-dimethyl-1,3-pentadiene 001000-86-8 95 8

13.793 (2e)-2-heptene 000592-77-8 97 6

13.874 oxane 000142-68-7 81 1

13.943 cyclopropanecarboxylic acid 001759-53-1 72 3

14.025 2,5-dimethylfuran 000625-86-5 93 9

Table 10.4: All GP products from dabbing THC tentatively identified by GC−MS
presenting a match quality of >70 % with the NIST/Wiley mass spectral library.
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Retention

time

(min)

Name CAS # Match

quality

(%)

ng ana-

lyte

14.154 1,5-dimethylcyclopentene 016491-15-9 70 8

14.377 1-methylcyclohexene 000591-49-1 87 35

14.527 methyl butanoate 000623-42-7 81 3

14.591 (Z)-cycloheptene 000628-92-2 89 4

14.836 1-methylcyclohexa-2,4-diene 999131-00-1 93 66

14.913 2,3-dimethyl-1,3-pentadiene 001113-56-0 94 5

15.184 1-methylcyclohexene 000591-49-1 78 13

15.394 1,2-dimethyl-1,3-cyclopentadiene 004784-86-5 94 15

15.454 (2E)-2-methyl-2-butenal 001115-11-3 91 23

15.527 (2E)-2-methyl-2-butenal 000497-03-0 93 29

15.682 (3E)-2-methyl-1,3,5-hexatriene 019264-50-7 90 26

15.849 (3E)-3-methyl-1,3,5-hexatriene 024587-26-6 94 5

15.969 2,5-dihydrotoluene 004313-57-9 83 16

16.047 2-methyl-1,3-cyclohexadiene 001489-57-2 94 106

16.12 5,6-dimethyl-1,3-cyclohexadiene 002417-81-4 91 7

16.218 2-methyl-1,3,5-hexatriene 019264-50-7 94 243

16.441 toluene 000108-88-3 95 226

16.708 2-methyl-1-heptene 015870-10-7 93 22

16.776 3-methyleneheptane 001632-16-2 94 17

16.854 Methylcholanthrene 000107-86-8 94 12

17.133 2-methyl-2-heptene 000627-97-4 91 35

17.24 (E)-4-octene 014850-23-8 70 3

17.317 2,5-dihydrotoluene 004313-57-9 93 18

17.643 2,5-dimethyl-1,3-hexadiene 000927-98-0 93 3

17.725 1,5,5-trimethyl-1,3-cyclopentadiene 999178-77-9 91 22

17.815 biisobutenyl 000764-13-6 92 5

17.905 1-methylene-2-methylcyclohexane 002808-75-5 91 13

18.013 3,5-dimethylcyclohexene 000823-17-6 96 11

18.159 (3E)-3-ethylidene-1-methyl-1-cyclopentene 062338-00-5 93 5

18.33 1,2,5,5-tetramethyl-1,3-cyclopentadiene 004249-12-1 91 257

18.472 5-tert-butyl-1,3-cyclopentadiene 035059-40-6 91 110

18.584 2,5-dimethylhex-5-en-3-yn-2-ol 999226-91-1 90 31

18.841 1,5,5-trimethyl-1,3-cyclopentadiene 999178-77-9 95 25

18.987 (E,E,E)-2,4,6-octatriene 015192-80-0 94 4

19.197 5,5-dimethyl-2-ethyl-1,3-cyclopentadiene 999221-33-9 64 6

19.322 2,6-dimethyl-1,5-heptadiene 006709-39-3 91 18

19.416 p-xylene 000106-42-3 97 247

19.622 3,3-dimethyl-6-methylenecyclohexene 020185-16-4 94 52

19.82 1,2-dimethyl-1,4-cyclohexadiene 017351-28-9 86 14

Table 10.5: Table 10.4 continued
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Retention

time

(min)

Name CAS # Match

quality

(%)

ng ana-

lyte

19.966 1,6-dimethylhepta-1,3,5-triene 999221-34-1 95 7

20.017 m-xylene 000108-38-3 60 11

20.21 1,5-dimethyl-1,4-cyclohexadiene 004190-06-1 90 4

20.309 1-methylene-3-vinylcyclohexane 999131-40-0 58 3

20.412 alpha-pyrone 000514-94-3 94 6

20.893 hexanoic acid 000142-62-1 72 6

21.017 1-phenylethanol 000098-85-1 76 6

21.399 1(7),5,8-o-menthatriene 000000-00-0 91 35

21.46 1,2,3-trimethylbenzene 000526-73-8 70 11

21.545 2,4-dimethyl-2,3-heptadien-5-yne 041898-89-9 83 6

21.606 2,6-dimethyl-2,7-octadiene 016736-42-8 81 24

21.713 3-isopropenyl-6-methyl-1-cyclohexene 005113-87-1 96 10

21.79 3-isopropenyl-6-methyl-1-cyclohexene 005113-87-1 98 12

21.85 1,6-dimethylhepta-1,3,5-triene 999221-34-1 94 37

21.953 octanal 000124-13-0 93 4

22.408 alpha-terpinene 000099-86-5 98 10

22.498 o-cymene 000527-84-4 97 17

22.619 o-cymene 000527-84-4 97 99

22.76 (+)-sabinene 003387-41-5 96 3

22.82 1,2,3-trimethylbenzene 000526-73-8 90 4

22.962 2,4-dimethyl-2,3-heptadien-5-yne 041898-89-9 90 7

23.657 3-methyl-5-methylene-norbornylene 000000-00-0 81 5

23.846 terpinolene 000586-62-9 96 3

23.971 1-methyl-2-isopropenylbenzene 001587-04-8 97 36

24.048 3-methylbenzaldehyde 000620-23-5 80 1

24.147 2-methoxy-4-methylphenol 000093-51-6 86 3

24.353 1,3,8-p-menthatriene 021195-59-5 93 12

24.447 1-methylcyclooctene 000933-11-9 94 1

25.057 methyl-6-methyl-8,9,10-trinorborn-5-en-2-

endo-yl ketone

092356-41-7 91 17

25.181 methyl-6-methyl-8,9,10-trinorborn-5-en-2-

endo-yl ketone

092356-41-7 91 9

26.276 (4-methylphenyl)ethanone 000122-00-9 94 5

26.645 naphthalene 000091-20-3 97 5

26.735 alpha-phellandren-8-ol 001686-20-0 70 2

28.942 2-methyl-2-norbornene 000694-92-8 83 1

29.324 2-methyl-2-propenoic acid 007779-31-9 72 3

30.564 3,4-dimethyl-7-exo-methylene-

bicyclo[4.3.0]non-3-ene

999134-71-8 90 11

31.054 2-methylenenorbornane 000694-92-8 86 4

Table 10.6: Table 10.4 continued
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Figure 10.12: Proposed mechanism for the conversion of β-myrcene to psi-limonene.
psi-Limonene formation may occur as an intramolecular ene reaction of β-myrcene or
via a radical mechanism.

10.13 1a and 1b product distribution as a function of applied

power

In order to determine the influence of applied electrical power on the product distri-

bution of the four products deriving from radical 1 (3MCA and 2M2B from resonance

structure 1a, and isoprene and 3M1B from resonance structure 1b), relative ratios of

integrations of the molecular ion of each were graphed as a function of power. The

increase in isoprene:3M1B ratio (1b oxidation and reduction products) with respect

to power and the decrease in 3MCA:2M2B ratio (1a oxidation and reduction prod-

ucts) is mirrored by a decreasing 3MCA:isoprene ratio with respect to power. The

static 2M2B:3M1B ratio signals that the decreasing 1a:1b ratio with power is largely

governed by a decreasing 3MCA:isoprene ratio.
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Figure 10.13: Relative levels of the isoprene base peak (m/z = 67 amu) to the 3M1B
molecular ion (m/z = 70 amu) as a function of applied power. Note the linear increase
in the isoprene:3M1B ratio with increasing power.

Figure 10.14: Relative levels of the 3MCA molecular ion (m/z = 84 amu) to the
2M2B molecular ion (m/z = 70 amu) as a function of applied power. Note the small
linear decrease in the 3MCA:2M2B ratio with increasing power.
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Figure 10.15: Relative levels of the 2M2B molecular ion (m/z = 70 amu) to the 3M1B
molecular ion (m/z = 70 amu) as a function of applied power. Note this ratio does
not change in a statistically significant manner with increasing power.

Figure 10.16: Relative levels of the 3MCA molecular ion (m/z = 84 amu) to the iso-
prene base peak (m/z = 67 amu) as a function of applied power. Note the significant
decrease in the 3MCA:isoprene ratio with increasing power.
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