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Abstract 

 

 The discovery of visible photoluminescence (PL) from nanocrystalline 

porous silicon in 1990 led to extensive research into the mechanisms of the 

emergent properties, and optimization of these properties, for use in applications.  

The widespread use of silicon nanoparticles (Si NPs) in commercial applications 

is currently limited by three main factors:  1) poor radiative recombination efficiency 

of the interband transition, 2) instability of the interband photoluminescence, and 

3) a lack of scalable methods for producing Si NPs that are both highly crystalline 

and size monodisperse. 

 To address these limitations, this dissertation correlates changes in the 

photoluminescence properties of hydrogen passivated silicon nanoparticles (H-Si 

NPs) with changes in the surface structure (Chapters 2 and 3), as well as develops 

new synthesis methodology to produce larger, more crystalline Si NPs (Chapter 

4).   

In Chapters 2 and 3, red photoluminescent H-Si NPs were prepared by high 

temperature reductive annealing of a [HSiO1.5]n polymer derived from HSiCl3, 

followed by an aqueous HF etching procedure to isolate them in colloidal form.  

The H-Si NPs were then subjected to different chemical and physical environments 

and the changes to the photoluminescence spectra were then related to the 

changes seen in other spectroscopic measurements. 
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 First (Chapter 2), the stability of the interband transition of H-Si NPs was 

probed using the free radical (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) 

under different lighting conditions (dark, ambient, and UV) and the 

photoluminescence spectra of these samples were monitored over time.  The 

TEMPO radical was observed to increase the interband emission intensity, but with 

a large hypochromic shift that is correlated to the significant oxidation of the Si NP 

surface.  We propose that this shift is due to core shrinkage of the Si NP upon 

oxidation, and not an emergent electronically active defect state from the resultant 

surface oxidation. 

 Second (Chapter 3), a surface treatment for Si NPs was developed to 

stabilize the interband transition using purposeful oxidation.  A survey of chemical 

environments that have been shown in the literature to promote oxidation of Si 

(ethanol, acetone, DMSO, and benzoyl peroxide (BPO)) was conducted, and 

based on spectroscopic results, BPO was identified as a reagent that can be used 

to oxidize the surface of the H-Si NPs without causing a significant hypochromic 

shift in the interband transition.  It was observed that the surface reaction in the 

presence of BPO was accelerated by continuous 365 nm irradiation, resulting in 

an increase in interband transition intensity with no shift in the emission energy. 

 Finally (Chapter 4), the application of metallothermic reduction of silicon 

oxides was probed as a potential alternative to the high temperature reductive 

annealing synthesis method, with the aim of achieving higher crystallinity Si NPs 

with similar or better size polydispersity.  Initially, a [HSiO1.5]n polymer was reduced 



 iii 

by Mg powder to produce highly crystalline, diamond lattice Si0 with nano-sized 

crystalline domains that either fused into larger structures or maintained original 

particle morphology depending on processing conditions.  Attempting to control 

the processing conditions to leverage the latter result, nanoscale SiO2 template 

particles of known size and morphology were next metallothermically reduced to 

try to produce replica Si NPs of equal size and shape. Although some conditions 

were modestly successful in terms of producing crystalline Si NPs with morphology 

retention of the template, most synthetic trials only produced fused micron-sized 

structures of crystalline Si.  It is possible that with better spatial control over local 

heats of reaction, that individual SiO2 nanoparticles can be reduced to individual 

Si NPs without the fusion of neighboring domains. 
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Chapter 1: Introduction 

 

1.1 General introduction 

 Since the first report of visible photoluminescence from nanocrystalline 

silicon (nc-Si) by Canham in 1990,1 silicon nanoparticles (Si NPs) have been a 

popular area of research for their potential use in optoelectronic applications.  With 

the lower expected toxicity of silicon nanoparticles, as compared to popular heavy 

metal-based quantum dot (QD) light emitters, such as CdSe QDs, Si NPs 

represent a welcome alternative photoactive material. However, there are 

numerous challenges that have prevented Si NPs from widespread use.  

Photoluminescent Si NPs have been synthesized, and are being explored as 

functional materials in numerous optical applications, including chemical 

sensing,2–5 biological imaging,6–8 and optical-electronic devices.9–11 All of these 

applications require control over particle size and crystallinity, as well as surface 

structure, to realize the desired set of photophysical properties in each case. 

 As one example, photoluminescent Si NPs have been shown to be effective 

at sensing a variety of chemicals, such as nitro-functionalized compounds and 

formaldehyde, via photo-induced electron transfer that causes Si NP intensity 

quenching;2–5 such sensor-analyte interactions are dependent on size-related 

electronic transitions in the Si NPs. As another example, in biological imaging 

applications, red to near-IR emission is desired due to the low absorption of these 

wavelengths by body tissues, which allows visualization of the imaging agent.  
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There are numerous protocols reported for producing Si NPs with red 

photoluminescence,12–14 but the stability of the emission intensity and wavelength 

over time in oxidative environments is still poor; further, the low crystallinity of these 

particles may limit the attainable photoluminescence quantum yield.15–17   

Finally, optical-electronic applications currently use direct band gap II-VI 

and III-V nanoparticle semiconductors as the optical components because of their 

size dependent optical output (i.e., wavelength), high absorptivity, and high 

photoluminescence quantum yields. However, due to the integration required with 

the silicon based electronics in modern devices, a silicon-based optical component 

would be more desirable.18  Currently, commercial integration of Si NPs in opto-

electronic devices is limited by the low efficiency of radiative recombination, as well 

as instability of the photoluminescence intensity and emission wavelength over 

time.15,16,19,20  In all of these applications, synthetic control over the size, 

crystallinity, and surface chemical termination of the Si NPs must be realized in 

order to optimize the intrinsic absorption and emission properties of the material. 

This dissertation will address two of the main limitations that are preventing 

widespread use of Si NPs for their optical properties in devices.  First, by studying 

the effects of the chemical and physical environment on the optical properties we 

will demonstrate stabilization of the optical properties of Si NP suspensions.  

Second, we will also explore a new synthetic route to increase control over particle 

size and crystallinity that is currently limited. 
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1.2 Electronic structure of Si NPs 

Semiconductors can be separated into two categories: direct band gap 

semiconductors such as CdSe and indirect band gap semiconductors such as Si.  

Direct band gap semiconductors have the maxima of the valence band aligned in 

momentum space with the minima of the conduction band while indirect band gap 

semiconductors do not have the maxima and minima aligned in momentum space.  

Due to momentum conservation (k=0) rules for allowed electronic transitions, 

direct band gap semiconductors (k=0) will allow radiative recombination across 

the band gap while indirect band gap semiconductors (k0) will not allow 

recombination without the assistance of a phonon (lattice vibration). 

As crystalline semiconductors are reduced in size, such that they approach 

the Bohr exciton radius, the electronic properties of the material are expected to 

change.21,22  Once the Bohr exciton radius is reached the band gap of the material 

is expected to increase in energy with further reductions in the diameter of the 

particle.  This size dependent band gap energy is due to the removal of states at 

or near the band edges from the removal of atoms, and thus atomic orbitals, from 

the nanocrystal surface.   

The band gap for Si is 1.1 eV as a bulk crystal, however once the 

nanocrystal size has been reduced to below 5 nm in diameter, visible 

photoluminescence has been observed.  The size dependence of the 
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photoluminescence has previously been proposed by Trwoga23 and 

experimentally demonstrated by Korgel12 and follows the effective mass 

approximation (eq 1.1 below). 

𝐸(𝑑) = 𝐸𝑔 +
ℎ2𝜋2

2𝑑2
(
1

𝑚𝑒
∗ +

1

𝑚ℎ
∗) −

1.786𝑒2

𝜀𝑟𝑑
   (1.1) 

In equation 1.1, d is the nanoparticle diameter, E(d) is the quantum confined band 

gap energy of the Si NP, Eg is the bulk band gap energy of Si (1.1 eV), e is the 

electron charge, me (0.19m0) and mh (0.286m0) are the effective electron and hole 

masses, and r is the relative permittivity of silicon (11.86). 

The indirect nature of the band gap in bulk Si results in phonon assisted 

recombination across the band gap.  As the nanocrystal decreases in size the 

wave functions of the hole and excited electron spread in momentum space, thus 

resulting in some overlap in their respective wavefunctions.24  This overlap allows 

for an increased probability of radiative recombination and the overlap continues 

to increase as the nanocrystal size is further reduced and the oscillator strength 

increases.23–25 

 

1.3 Effects of defects and surface states on the photoluminescence of Si NPs 

 Due to the large number of Si atoms at the surface in a typical Si NP, there 

are numerous Si atoms that lack complete coordination (4 bonds) with other Si 

atoms.  As a result, high energy surface defects like free radicals (dangling bonds) 

and Si=Si dimers will fill the remaining coordination sites.26,27  These defect states 
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are unstable and will react readily to passivating agents such as molecular or 

atomic hydrogen. 

 Hydrogen passivation has been used in computational studies of Si NPs 

due to the minimal effect it has on the electronic structure of the Si NP.20,28,29  

Hydride passivation has also been previously demonstrated experimentally to 

result in photoluminescence that is entirely due to the interband transition (the 

quantum confined core).12,30,31  Although the Si-H surface passivation is 

considered ideal for studies of the interband transitions of Si NPs, the Si-H bond 

is relatively unstable when compared to more polar Si-X bonds where X is a more 

electronegative atom (O, N, C, Cl, etc.) and would be expected to readily form 

defects in environmental and experimental conditions. 

Surface states of QDs have also been shown to affect the maximum 

photoluminescence (PL) wavelength as well as PL intensity, depending on the type 

of surface defects.27-30  It is well known that dangling bonds (radicals) at the 

nanoparticle surface can provide exciton trap states that result in non-radiative 

recombination,28 lowering the quantum yield of the Si NPs.  Other chemical surface 

states can result in radiative recombination centers that have energies sitting in 

the middle in the band gap can dominate the emission of the NPs due to the long 

excited state lifetime for interband recombination in Si NPs.32  Due to the reactive 

nature of the Si-H surface further passivation is generally performed as a 

protectant for use in applications.  
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Alkyl-passivation is generally regarded as the most effective way to 

preserve interband recombination without introducing electronically active states 

mid band gap.12,33  Numerous methods have been developed for creating Si-C 

bonds at the surface which are much more stable than the Si-H bonds they replace.  

The majority of these methods focus on a hydrosilylation reaction where Si-H 

addition across an unsaturated hydrocarbon, typically a terminal olefin.  The initial 

activation of the Si-H bond can be achieved either under UV light,34,35 at high 

temperatures,36–39 using a Lewis acid,33 or radical initiators.40  Of these methods 

the thermal hydrosilylation provides the most surface coverage of up to 70%.37 

The ideal surface passivation may in fact be an amorphous SiO2 layer.  Due 

to the large band mismatch between the semiconducting Si NP and the insulating 

SiO2 coating there are theoretically no electronically active mid-band states. 

However, modeling studies of Si NPs embedded in SiO2 have shown that at the 

interface there are distorted Si-Si bonds, bridging Si-O-Si bonds, and dangling 

bonds that all can provide trap states within the band gap.41–43  

There are numerous literature reports on the effects of oxidation on the PL 

of Si NPs that are not embedded in an SiO2 matrix, however it is difficult to relate 

findings from one report to the next due to many seemingly contradictory reports.  

Some studies provide support for blue luminescence being the result of nitrogen 

related defects44 while others provide support for oxygen related defects being 

responsible.15  Other reports provide support for orange luminescence being the 
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result of Si-SiO2 interfacial energy after oxide layer formation or from Si=O 

bonding.19,20   

 

1.4 Our synthetic method and the development of crystalline defects 

 The major routes to producing Si NPs are gas phase reduction of SiH4,19,45 

solution phase oxidation reactions of silicon polyanions (e.g., Si44-) with 

conventional chemical oxidizing agents,46–49 laser ablation of bulk Si0 in 

solution,50,51 high temperature reductive annealing of silicon suboxide 

polymers14,52,53 followed by subsequent chemical etching, and solution phase 

reductions of silanes (e.g., HSiCl3 and others) with conventional chemical reducing 

agents.54,55  The method by which the Si NPs are synthesized has a very large 

impact on its optical properties due to the degree of crystallinity and degree of 

defects within the nanoparticle structure.  Both laser ablation and gas phase 

pyrolysis of SiH4 produce particles that are very highly crystalline with size 

dependent optical properties.  These methods are best used on a laboratory scale 

for observations of physical properties on ideal crystals, 19,45,50,51 however the 

methods themselves are not viewed as scalable and thus do not hold much 

commercial promise.  Solution phase methods are ideal for commercial scale up, 

however the Si NPs produced from these methods have a low crystallinity and do 

not show size dependent optical properties.46–49,54,55 

 Our group has developed a synthesis that has been shown previously to 

produce Si NPs via the high temperature reductive annealing of a silicon suboxide 
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precursor.14  HSiCl3 first undergoes a hydrolysis and polycondensation reaction 

with H2O to produce a [HSiO1.5]n polymer.  The silicon suboxide polymer then 

thermally processed under reducing atmosphere at 1100˚C for 10 hours to yield 

nc-Si .  This process has been proposed to occur through three intermediate 

reactions as follows:52 

 

4 HSiO1.5 (s)    3 SiO2 (s)  +  SiH4 (g) 250˚C to 350˚C  (1.2) 

SiH4 (g)    a-Si (s)  +  2 H2 (g)  350˚C to 450˚C  (1.3) 

a-Si (s)    c-Si (s)    900˚C to 1400˚C  (1.4)  

 

With a temperature increase of 20˚C per minute there is minimal loss of SiH4 but 

lower furnace ramp rates have shown significant loss of gaseous products.52  The 

composite powder that results can be removed from the furnace and ground to a 

fine powder in a mortar and pestle.  The composite is light brown in color and highly 

photoluminescent under 365 nm irradiation (Figure 1.1 a and b on next page). At 

higher processing temperatures, approaching the melting point of Si (1410˚C), 

there is an increase in particle size from 3.1 nm at 1100˚C up to 12.8 nm at 1350˚C 

with a dwell time of 1 hour.12  Due to the temperature limit of 1100˚C for our 

furnace, we are limited to Si NPs of approx. 3 nm to 4 nm with an increased dwell 

time of 10 hours.14   

 While high temperature reductive annealing can produce nc-Si with size 

dependent optical properties, the Si NPs embedded in the oxide matrix is not 



 9 

completely crystalline.  Scanning tunneling microscopy (STS) and Raman 

microscopy was previously used on our H-Si NPs to verify the existence of 

amorphous Si at or near the surface of the particles that resulted in localized intra-

band states.56  The presence of amorphous Si in similarly produced Si NPs was 

confirmed with 29Si NMR in another study.17  It was also shown that the Si NP size 

determined by TEM was considerably larger than the size determined by XRD line 

broadening, which has also been observed in our lab, similarly demonstrating that 

the Si NPs are crystalline with large amounts of structural defects. 17,56 

For the purposes of use in applications discussed in section 1.1, the Si NPs 

would ideally be stabilized in a colloidal solution before use.  Thus, the Si NPs must 

be liberated from the SiO2 matrix via an aqueous HF etch.  This is done by taking 

300 mg of composite and stirring it in a solution of 5 mL H2O, 5 mL ethanol, and 5 

 

Figure 1.1:  Si NPs at different stages of processing.  (a) The composite material 
after reductive thermal processing, (b) composite material ground to a fine 
powder under 365 nm irradiation, and (c) H-Si NPs in toluene under 365 nm 
irradiation after aqueous HF etching procedure. 
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mL 48wt% HF in water for 1 hour according to equation 4 to remove the SiO2 and 

leave the surface of the Si NPs with hydrogen termination (H-Si NPs). 

 

SiO2 + 6 HF  H2SiF6 + 2 H2O      (1.5)  

 

The etching process is terminated by phase transferring the non-polar H-Si NPs 

from the aqueous etching solution to a non-polar organic solvent (toluene, hexane, 

pentane, etc.).  The particles can then be separated from the solvent via 

centrifugation, solvent discarded, and then re-suspended in a dry non-polar solvent 

of choice.  The particles after this process tend to aggregate in solution and also 

show considerably less photoluminescence than the un-etched composite material 

(Figure 1.1 c). 

 

1.5 Motivation for the research presented herein 

While HF etching is commonly used to almost completely passivate 

dangling bonds (radicals) on Si surfaces,57,58 there is still a possibility of surface 

radicals being present after the HF etch.  This has seen by others59 and has been 

demonstrated previously in our lab.60  Due to the reactive H-Si surface bonds 

further passivation is usually conducted to stabilize the particles in solution, 

however this results in surface coverage that is incomplete, leaving reactive Si-H 

bonds that could then go on to react with species that could alter the optical 

properties of the material.   
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Because surface functionality can have such a large impact on the optical 

properties of the material, understanding of the processes by which optically active 

defects are produced on Si NP surfaces is imperative to better optimization of the 

desired optical property.  It is, therefore, important to first observe changes to an 

ideal system like H-Si NPs before generalizing to other more complex systems. 

The optical properties of semiconducting nanoparticles are first and 

foremost determined by two physical properties of the nanoparticle: particle size 

and crystallinity.  While the literature has provided numerous methods for the 

development of particles with emergent properties, the ability to access highly 

crystalline particles from a scalable production method is still elusive. 

This dissertation will first relate changes to the photoluminescence of H-Si 

NPs and changes in surface composition to the exposure of these particles to 

different chemical environment.  The results will then be used to demonstrate a 

novel surface passivation method that can be used to enhance the 

photoluminescence of Si NPs after HF etching.  Finally, a new highly scalable 

method to produce Si NPs that are highly crystalline will be explored. 
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Chapter 2: Effects of (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) and 

lighting conditions on the surface composition of hydride terminated silicon 

nanoparticles 

 

2.1 Introduction 

Silicon nanoparticles produced from the high temperature solid state 

reductive annealing method have relatively poor photoluminescence intensity 

upon liberation from the oxide matrix and subsequent hydride passivation.14  It has 

also been shown that alkylation of H-Si NP surfaces by hydrosilylation with terminal 

alkenes and alkynes increases both PL brightness and colloidal stability in apolar 

solvents.15,39,40,53,61  We have hypothesized that one possible source of the poor 

luminescence intensity of H-Si NPs is the presence of un-terminated Si surface 

sites with single unpaired electrons.15,60  For other types of semiconductor NPs, it 

is known that unsaturated surface sites (dangling bonds) result in non-radiative 

recombination of the photogenerated electron or hole that reduce the intrinsic, 

radiative electron/hole recombination at the band gap energy.  The intrinsic 

radiative recombination of H-Si NPs (termed here as the “core” emission) is 

expected when the Si crystalline grain size is below the Bohr exciton radius 

(approx. 5 nm).  For the approx. 5 nm H-Si NPs produced via the synthesis 

described above, we have previously attributed the broad photoluminescent 

emission maximum in the range of 600 to 700 nm as due to core emission based 

on the consistency with the effective mass approximation.15  
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To test this hypothesis the stable radical TEMPO was added to a solution 

of H-Si NPs with the expectation that the TEMPO radical will form a bond to any 

radicals present on the Si NP surface and then prevent further oxidation by 

sterically blocking the surface and further stabilizing the particles in solution.  An 

observed increase in PL intensity for the core emission would indicate that these 

surface radicals are responsible for the observed weak emission from the quantum 

confined core. 

It was further hypothesized that the lighting conditions for the passivation 

could help to prevent over-oxidation of the surface.  While the TEMPO radical is 

stable in solution, the N-O bond is relatively weak and could be broken from the 

absorption of light with a wavelength below 600 nm.  If the N-O bond is cleaved 

after passivating the surface radical it leaves the surface sterically accessible to 

further oxidation.  To test the effects of lighting on surface passivation from 

TEMPO, samples were held in the dark, held under ambient lighting, and held 

under constant 365 nm UV irradiation for the duration of the passivation 

experiments.   

 

2.2 Experimental 

2.2.1 Materials 

 Trichlorosilane (Alfa Aesar), absolute ethanol (TCI), 49wt% hydrofluoric 

acid in water (Sigma-Aldrich), toluene (acs reagent, Fisher), and (2,2,6,6-

tetramethyl-piperidin-1-yl)oxyl (TEMPO, C9H18NO, 98%, Acros Organics) were 
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purchased and used as received unless otherwise specified.  Solvents that are 

referred to as “dry” were stored over 4Å molecular sieves for at least 24 hr.  

Solvents that are referred to as “degassed” were first purged with Ar for 20 minutes, 

followed by 3 freeze/pump/thaw cycles, and stored under argon atmosphere until 

use. 

 

2.2.2 Synthesis of H-Si NPs 

Hydride terminated Si NPs were synthesized using an established synthetic 

procedure.14,62  In a typical synthesis, a hydrolysis and polycondensation reaction 

of 5 mL HSiCl3 upon the addition of 6 mL Millipore water forms a [HSiO1.5]n 

polymer.  Hydrolyzed polymer is then packed into an alumina crucible, transferred 

to a tube furnace (Lindberg Blue) equipped with a quartz tube, centered in the tube 

furnace, and placed under ultra-high purity N2 at a flow rate of approximately 50 

mL/min.  The [HSiO1.5]n polymer was then heated at a rate of 20˚C/min to 150˚C 

where it was held for 2 hours to ensure dryness.  The temperature was then 

increased at 20˚C/min to a maximum temperature of 1100˚C and was then held 

for ten hours, followed by cooling to room temperature at 10˚C/min.  This results 

in a solid, composite material composed of crystalline Si0 domains within an SiO2 

matrix.  The solid, composite was then ball milled in a high energy mill mixer (SPEX 

8000) for 1 minute to homogenize the composite material and increase its surface 

area; milled composite material was then stored under Ar for future use.  The Si0 

crystallites were liberated from the SiO2 matrix by first dispersing 300 mg of the 
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milled composite into a solution containing 5 mL of absolute ethanol and 5 mL of 

Millipore water.  This mixture was sonicated for 1 minute to disperse the solid, and 

then 5 mL of 48wt% HF aqueous solution was added.  The resulting suspension 

was stirred in the dark for 1 hour.  Following the HF etching to remove the oxide 

matrix, the Si0 particles are hydrophobic due to hydride surface passivation; 

hereafter, we call these hydride-terminated Si NPs (H-Si NPs).  The hydrophobic 

H-Si NPs were then phase transferred from the aqueous HF suspension into 

toluene by thoroughly mixing the two liquids and subsequently allowing for phase 

separation, followed by removal of the organic layer via pipet.  The extracted 

organic layer was then centrifuged at 2500 rpm in glass centrifuge tubes, the 

supernatant removed, and the pellet containing the hydrophobic particles re-

dispersed in dry toluene.  The centrifugation step was repeated two more times to 

remove ethanol, water, and any residual HF.  The purified H-Si NPs were then re-

dispersed into dry and degassed toluene at an approximate concentration of 0.1 

mg/mL and transferred to a N2 filled glovebox until further use. 

 

2.2.3 TEMPO surface treatment 

 For this set of experiments, the photophysical properties of the H-Si NPs in 

colloidal solution were measured under a total of nine different environmental 

conditions. To prepare the H-Si NP samples for analysis, (2,2,6,6-

Tetramethylpiperidin-1-yl)oxyl (TEMPO) solutions at concentrations of 2 mM and 

10 mM in toluene were first prepared in a nitrogen filled glove box.  Then, 5 mL of 
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the TEMPO solutions were added to three individual 20 mL air free scintillation 

vials (three each at two concentrations).  A set of control samples was also 

prepared by adding 5 mL of toluene to three individual 20 mL air free scintillation 

vials.   To each of the nine vials, a 5 mL aliquot of the H-Si NPs in toluene was 

added to result in suspensions with equal concentrations of H-Si NPs (approx. 0.05 

mg/mL) and varying concentrations of TEMPO.  One set of H-Si NP samples with 

variable TEMPO concentration (control, 1 and 5 mM) was then held in the dark, a 

second set under ambient lighting (overhead fluorescent and natural light), and a 

third set under constant 365 nm irradiation (14.4 W).  Aliquots were taken from 

each sample at time points ranging from 0 up to 44 hours to measure the steady 

state photoluminescence spectra. 

 

2.2.4 Photoluminescence measurements and analysis 

 Steady state photoluminescence (PL) measurements were conducted on 

a Shimadzu 5301-RFPM spectrophotometer equipped with a Xe laser source.  All 

measurements were conducted using 365 nm excitation. At each timepoint, 

approx. 1 mL aliquots were taken and added to fused quartz cuvettes via syringe 

injection through the septum cap.  Due to the tendency of the H-Si NPs to 

aggregate, considerable turbidity of the samples was observed, which registered 

in the PL spectra as high intensity scattered light at short wavelength that 

exponentially decreases with increasing wavelength.  Also, due to the diffraction 

grating used for excitation wavelength selection from the source, the second order 
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diffraction for the 365 nm excitation is observed at 730 nm, again due to scattering 

from the sample.  In order to better monitor the long wavelength 

photoluminescence of the H-Si NPs a filter set was used on the source and 

detector side of the sample.  A 365 nm band pass filter was used on the source 

side to prevent the passage of the 730 nm light from the diffraction grating.  A 450 

nm long pass filter was used on the detector side to prevent shorter wavelength 

light from saturating the detector.  The raw PL spectral curves were then simulated 

using peak fitting software (MagicPlot 2.7.2) to model the spectra. The fitting 

procedure is thoroughly discussed for representative spectra in the Results 

section. 

 

2.2.5 FTIR spectroscopy 

 FTIR measurements were conducted on a ThermoFisher Nicolet iS10 FT-

IR spectrometer with using a diamond-window single bounce ATR attachment.  A 

background spectrum was taken prior to each sample spectrum and subtracted 

using the instrument software package.  FTIR spectra were measured initially and 

after the conclusion of PL spectroscopy experiments (>44 hours), with no data 

acquisition at intermediate timepoints due to sample preparation time limitations.  

The initial FTIR spectrum was taken of the stock H-Si NP colloid after purification; 

the sample for this measurement was prepared by repeatedly drop casting the H-

Si NP stock onto the ATR crystal surface and allowing the solvent to evaporate.  

This process was sped up by using an air gun blowing a slow stream of room 
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temperature air. For FTIR measurements following PL spectroscopy, the H-Si NP 

samples containing TEMPO were first purified to separate any (unbound) TEMPO 

from the Si NPs.  To accomplish this, the Si NPs were centrifuged out of their 

respective TEMPO solutions, the supernatant was discarded, and the Si NPs were 

re-dispersed in dry toluene.  This procedure was repeated three times to remove 

as much (excess) TEMPO as possible in order to simplify FTIR spectral analysis.  

After purification, these Si NP samples were then drop cast onto the ATR crystal 

and FTIR measurements were taken as described for the stock H-Si NP sample 

above.  All presented spectra were normalized to the most intense peak in the set 

of spectra. 

 

2.2.6 X-ray photoelectron spectroscopy (XPS) measurements 

 Samples were prepared by drop casting the same Si NP samples used for 

FTIR measurements onto aluminum foil.  The XPS sample of the H-Si NP stock 

(initial condition) was prepared over 44 hours before the experimental Si NP XPS 

samples and was meanwhile held under vacuum until measurement.  XPS 

measurements were conducted on a Versaprobe II (Physical Electronics Inc., PHI, 

Chanhassen, MN) operating at 15 kV and 25 W, with a monochromatic Al Kα X-

ray beam (100 µm spot size).  Detailed scans of the Si(2p) peak were conducted 

with a pass energy of 20 eV, speed of 40 ms/step, and with a step size of 0.1 eV.  

3 scans total were conducted and averaged for each sample.  The XPS spectra 

were analyzed using Multipak software suite.  First the spectra were calibrated by 
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shifting to align the C(1s) peak at 284.9 eV. The Si(2p) peak was then modeled 

using a literature procedure where four Gaussian curves were used.63,64  An 

example of the modeling can be seen in Figure 2.1. 

The XPS spectrum of the H-Si NPs prior to treatment (Figure 2.1) has a 

large doublet centered at a binding energy of 99.5 eV; this doublet is assigned as 

the overlapping spin-orbit components Si(2p3/2) and (2p1/2) of silicon in the 

elemental state (i.e., Si0). 63,64  In this spectrum, there is also a broad peak at higher 

binding energy that can be broken down into two Gaussian peaks at approx. 102 

 

Figure 2.1:  Binding energy in the Si(2p) region for H-Si NPs before treatment 
(dark blue trace).  The Gaussian curves added represent the Si oxidation states 
of 0 (green and dark red), 1+ to 3+ (light blue), and 4+ (yellow). 
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eV representing partially oxidized Si (oxidation state between 1+ and 3+) and at 

approx. 103.5 eV that represents fully oxidized Si4+ (as in SiO2).   

 

2.2.7 Raman spectroscopy 

 Raman spectroscopy was conducted on a Horiba HR800 UV equipped with 

a 100 mW 532 nm diode-pumped solid-state laser.  The samples used for Raman 

spectroscopy were identical to those used for XPS measurements, namely the Si 

NPs of interest drop cast onto aluminum foil.  The Si NP samples were held under 

vacuum between XPS and Raman measurements to prevent any oxidation of the 

Si NPs from the atmosphere.  Each sample was measured in five spots, following 

a procedure used previously for the Raman analysis of H-Si NPs produced by our 

lab.56  Each spot first had the linear sloping background subtracted, then was 

normalized to the crystalline Si peak at approx. 520 cm-1, then all normalized spot 

measurements for the sample were averaged.  MagicPlot software (version 2.7.2) 

was used to model the averaged spectra in the 400 to 600 cm-1 range, where peaks 

due to crystalline and amorphous silicon would be expected. Three Gaussian 

curves were used to represent the LO and TO modes from crystalline silicon (c-Si) 

and the TO mode from amorphous silicon (a-Si).65  Percent crystallinity was 

calculated using the integrated intensity of the c-Si TO peak divided by the sum of 

the integrated intensities of the c-Si and a-Si TO peaks.   
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2.3 Results 

2.3.1 H-Si NP PL spectra as a function of TEMPO concentration and lighting 

environment  

With three lighting conditions and three TEMPO concentrations, a total of 

nine samples were prepared to observe nine total TEMPO/lighting conditions; 

three of these were control samples with no TEMPO. Steady state PL 

spectroscopy was used to correlate the effects of the H-Si NP solution environment 

with the temporal evolution of the H-Si NP PL spectra. 

 A PL spectrum for each of the nine samples was measured at time points 

of 0.5, 1, 2, 4, 21, 28, and 44 hours, producing a time series of spectra to be 

analyzed.  An initial spectrum for each sample was also taken at t = 0 hr; in each 

case, the sample was prepared from the stock H-Si NP solution, which was diluted 

to the same concentration as the rest of the samples in the respective sets.  These 

spectra were acquired prior to TEMPO addition to any of the samples and are 

provided in the following data sets to permit analysis of change over time as a 

function of sample conditions.  The samples were kept under constant stirring 

between data collection time points.  Under constant stirring the H-Si NP solution 

concentration can be assumed to be the same for all aliquots taken, and thus 

comparisons of absolute PL intensity can be assumed to be valid across 

conditions.  However, H-Si NPs have a strong tendency to aggregate in most 

solvents, which would be expected to result in increased scattering intensity and 

decreased photoluminescence emission intensity.  This tendency, for the purposes 
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of this study, will be assumed to be minimal due to constant agitation of the 

samples and is modeled in our analysis. We also used filters to minimize the 

contributions of scattering to the photoluminescence spectra measured and 

presented herein. 

The PL spectra collected over time from the control H-Si NP solution (with 

no TEMPO) held in the dark condition (control/dark) are shown in Figure 2.2a and 

are presented to demonstrate the analysis of one of the nine conditions 

independently.  At t = 0 hr, the spectrum of the H-Si NP solution excited at 365 nm 

shows the long pass filter cut on at 450 nm followed by a gradual decrease in 

 

Figure 2.2:  PL spectra for the control sample and fit plot analysis of one time 
point. (a) PL spectra collected over 44 hours for the control sample (no TEMPO) 
held in the dark, showing the changes to the PL spectra over the time points 
indicated. (b) The Fit plot analysis of the PL spectrum for the 1 hour time point, 
modeled by three Gaussian curves representing the “core” emission (red line), 
the “oxide” emission (blue line), and the “background” scattering or blue 
emission (green line). 
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intensity, then a shoulder at 577 nm and then a broad peak at 662 nm.  After the 

first 30 minutes there is a decrease in intensity for the 662 nm peak, no change in 

the 577 nm peak intensity, and an increase in the background intensity.   

For the spectra taken after 1,  2 and 4 hours, the peak wavelength appears 

to be maintained at 662 nm peak, but the emission intensity decreases to an almost 

fully quenched state by 4 hours.  In general, larger spectral changes were 

observed at longer time points, after the samples were allowed to stir overnight.  

For example, at 21 hours the control/dark sample shows small increases in 

intensity at both 662 nm and 577 nm, and the background intensity has also further 

increased.  Further monitoring at 28 hours and 44 hours showed further increases 

in intensity of all spectral bands and a possible blue shift in the core emissive 

wavelength from 662 nm to approx. 650 nm after 44 hours. 

The integrated intensity and wavelength of maximum emission intensity 

(max) for each emissive component can be calculated using curve fitting software 

as described in the methods section.  The intensity is measured in counts per 

second (cps), thus the integrated intensity technically has units of cps x nm.  The 

physical meaning of these units can be described as related to the total counts 

measured over a spread of wavelengths that are attributed to the emissive state 

of interest.  For the purposes of these experiments, we will denote these units as 

arbitrary units (a.u.) since they are meant to only give a relative value to each 

sample measurement that can then be used for comparison to other samples. The 

raw data represented by the black line in Figure 2.2b is from the 1 hour time point 
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measurement shown in Figure 2.2a for the control/dark sample.  The raw data is 

simulated using three Gaussian curves and the sum of these curves is shown as 

the orange dashed line, in good agreement with the raw data.  Based on prior 

literature and our set of observations across the samples, we tentatively assigned 

the 662 nm peak as due to the quantum confined core (component labeled “core”), 

the 577 nm peak as originating from an oxide related surface state (component 

labeled “oxide”), and the short wavelength features (labeled “background”) as due 

to aggregation-induced scattering.  The latter component is likely mostly due to 

scattering but could also include any possible shorter wavelength emission from 

the sample, of any origin.   

For the purposes of this experiment, we were mostly concerned with the 

emission from the quantum confined core and the effect that lighting and TEMPO 

concentrations have on its intensity. Thus, the temporal PL spectral analyses in 

this chapter focus on the position and intensity of the core emissive component, 

and we will ignore contributions from the oxide and background to the overall 

spectra in initial analyses.  The following figures show the changes to the max 
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position and the integrated intensity for the “core” emission from the curve fitting 

analysis for each TEMPO concentration. 

 The core PL max for the control H-Si NP samples containing no TEMPO 

(Figure 2.3a) initially increased over the first 4 hours from 662 nm to 668 nm for 

the sample under UV light, 674 nm for the sample under ambient light, and 678 

nm for the sample held in the dark.  This initial period was then followed by a steady 

decrease in max for all samples, to final wavelengths of 605 nm, 645 nm, and 634 

nm for the UV, ambient, and dark lighting conditions, respectively, at 44 hours.   

The integrated PL intensity for the samples containing no TEMPO (Figure 

2.3b) all decreased in intensity from 4600 a.u. at t = 0 hr to 1800, 1000, and 800 

a.u. at 4 hours for the UV, ambient, and dark lighting conditions, respectively.  At 

 

Figure 2.3:  PL intensity and lambda max for the control samples. (a) Core 
lambda max and (b) integrated PL intensity as a function of time for each of the 
indicated lighting conditions for the control samples with no TEMPO. 
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much longer time points, a dramatic increase in intensity is observed only for the 

sample held under UV light.  For the control/UV sample, a maximum intensity of 

80100 a.u. is reached after 28 hours (17 times the initial intensity), followed by a 

decrease to a final intensity of 51800 a.u. at 44 hours, 11 times higher than the 

initial value.  Conversely, the core PL integrated intensity of the sample held in 

ambient light gradually increased after 4 hours, from 1000 a.u. at 4 hours to 9100 

at 44 hours.  Similar to the control/ambient sample, the sample held in the dark 

showed a gradual increase in core PL integrated intensity, from 800 a.u. at 4 hours 

to 6300 a.u. at 44 hours.   

Overall, there was little spectral difference between H-Si NP samples held 

under ambient and dark lighting conditions in the absence of TEMPO, with respect 

to the changes in emission wavelength and intensity over time.  There was, 

however, a large change in emission intensity that occurred between 4 and 21 

hours in the UV irradiated control sample and that increase in intensity was 

coupled to a large decrease in emission wavelength.  This indicates not only that 

continuous UV irradiation can produce pronounced changes to the emission of H-

Si NPs, but also that there is a saturation point, after which UV-induced bleaching 

occurs.   
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 The H-Si NPs in 1 mM TEMPO also showed overall decreases in core max 

(Figure 2.4a) and increases in core PL intensity (Figure 2.4b) for all lighting 

conditions.  The core max for the sample treated with 1 mM TEMPO and held 

under UV light decreased from 662 nm to 571 nm over the first 2 hours and 

afterwards remained relatively constant; at 44 hours, the max was 575 nm.  A more 

gradual initial decrease in max was observed for the 1mM/ambient, and 1mM/dark 

samples.  For the 1mM/ambient sample, the max initially decreased from 662 nm 

to 649 nm over the first 4 hours, followed by a large decrease to 530 nm at 21 

hours; at 44 hours, the max was 519 nm.  For the 1mM/dark sample, the max (662 

nm) remained relatively constant over the first 4 hours, followed by a large 

decrease to 563 nm at 21 hours.  At 44 hours, the max was 565 nm for the 

 

Figure 2.4:  PL intensity and lambda max for the 1 mM TEMPO samples. (a) 
core lambda max and (b) integrated PL intensity as a function of time for each 
lighting condition of the 1 mM TEMPO treated samples. 
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1mM/dark sample, as compared to 519 nm for the 1mM/ambient sample and 575 

nm for the 1mM/UV sample.   

The integrated PL intensity (Figure 2.4b) of the 1mM/UV sample decreased 

initially from 4600 a.u to 3900 a.u within the first 30 minutes, followed by an 

increase to a maximum at 33600 a.u after 21 hours, and finally, a decrease to 

18000 a.u at 44 hours.  Similarly, the integrated PL intensity of the 1mM/ambient 

sample decreased from 4600 a.u to 4000 a.u initially, followed by an increase to a 

maximum of 30300 a.u at 28 hours, and finally, a decrease to 21300 a.u at 44 

hours.  Conversely, the temporal change in the integrated PL intensity of the 1mM/ 

dark sample was different, and overall less pronounced in comparison to the light-

exposed samples.  The integrated PL intensity of the 1mM/dark sample decreased 

in intensity from 4600 a.u to 3000 a.u over the first 2 hours, followed by a gradual 

increase over the remainder of the experiment to a final intensity of 7900 a.u at 44 

hours. 

 Overall, for the H-Si NP samples in 1 mM TEMPO solution, a decrease in 

the core emission max and an increase in the core emission intensity was 

observed, regardless of the lighting conditions.  However, the rate at which the 

initial max decrease occurred was observed to be correlated with the lighting 

conditions; the rate of change of the core PL max was slowest for the sample held 

in the dark and fastest for the sample held under UV light.  Additionally, the core 

PL integrated intensity increase was observed to be most rapid and pronounced 

for the sample held under UV light.  Both the rate and magnitude of change were 
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observed to be smaller for the sample held under ambient conditions, and yet 

smaller for the sample held in the dark. 

 The H-Si NPs in 5 mM TEMPO also showed overall decreases in core max 

(Figure 2.5a) and overall increases in core PL intensity (Figure 2.5b) with time for 

all lighting conditions. In all three lighting conditions in 5 mM TEMPO, dramatic, 

initial decreases in the core PL max of the H-Si NP samples were observed.  In the 

first four hours of the experiment, the H-Si NP sample held under UV light exhibited 

the most rapid initial decrease in max, and the sample held in the dark showed the 

least rapid initial change in max.  Over the full time interval measured, the max for 

the 5mM/UV sample initially decreased from 662 nm to 585 nm in the first 4 hours, 

and afterwards remained fairly constant, decreasing slightly to 572 nm at 44 hours.  

 

Figure 2.5:  PL intensity and lambda max for the 5 mM TEMPO samples. (a) 
core lambda max and (b) integrated PL intensity as a function of time for each 
lighting condition of the 5 mM TEMPO treated samples. 
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In comparison, for both the 5mM/ambient and 5mM/dark samples with slower initial 

rates of blue shifting, plateaus of the PL max were reached at 21 hours and 

afterwards maintained for the remainder of the experiment at 534 and 520 nm, 

respectively.  

The integrated PL intensity of the core emission was also plotted as a 

function of time (Figure 2.5b).  The intensity for all three samples remained 

relatively constant for the first 2 hours of the experiment.  For the 5mM/UV sample, 

a very large increase in the PL intensity was observed at the 4 hour timepoint, 

while the PL intensity of the 5mM/ambient and 5mM/dark samples remained 

constant.  However, at 21 hours all three samples showed similarly large increases 

in the core PL integrated intensity, to 45500 a.u., 39300 a.u., and 35200 a.u. for 

the 5mM/UV, 5mM/ambient, and 5mM/dark samples, respectively.  After 21 hours, 

only the 5mM/UV sample was observed to undergo a decrease in intensity, to a 

final value of 26800 a.u. at 44 hours, which is 6 times higher as compared to the 

sample at t = 0 hr.  Conversely, the 5mM/ambient and 5mM/dark samples 

continued to increase in core PL integrated intensity for the remainder of the 

observed time with the 5mM/ambient reaching a maximum of 46900 a.u. or 10 

times greater than the starting emission intensity. 

 Although the PL for all samples treated with TEMPO did increase in 

intensity, a blue shift of the core emission lambda max to below 600 nm was also 

observed.  Similarly, the constant 365 nm UV irradiation increased the PL intensity 

for all samples including the control with no TEMPO.  In all cases, an overall 
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increase in PL intensity was observed in conjunction with a blue shift of the 

emission wavelength.  These observations are consistent with oxidation-induced 

shrinkage of the elemental crystalline silicon cores when they are in TEMPO 

solution or stored under light.  Thus, we proceeded to characterize these samples 

using FTIR, XPS, and Raman spectroscopies to observe compositional changes, 

such as oxidation, that may occur with time and vary with the sample conditions.   

 

2.3.2 FTIR measurements before and after TEMPO treatment 

The infrared absorption spectrum was measured for each sample condition 

before and after the steady state PL spectroscopy study in order to assess whether 

the temporal PL changes were associated with changes in (surface) composition.  

In all of the following figures, the FTIR spectrum of the samples before treatment 

is presented as a reference, however it is the same spectrum in all cases.  The 

FTIR spectra for the control samples without TEMPO held in different lighting 

conditions are presented in Figure 2.6 (following page).  Before treatment there 

are two main vibrational modes observed at 2100 cm-1 and 910 cm-1 that are 

assigned to Si-H stretching and scissoring modes respectively (Si-H wag at 

approx. 600 cm-1 not shown due to scan window), and a small broad feature 

centered at 1080 cm-1 assigned to Si-O-Si stretching.   

The Si-H surface bonding features are retained for the control/dark sample 

up to 44 hours; however the Si-O-Si stretching at 1080 cm-1, Si-O-Si bending at 

880 cm-1, and Si-OH stretching at 800 cm-1 are all clearly stronger than before 
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treatment.  Further, for this sample, there is also a sharp peak at 1260 cm-1 that 

can be assigned to Si-C stretching.15,39,66  It should be noted for the control/dark 

FTIR spectrum that there is an over-subtraction of the background that can be 

seen in the 3000 to 2800 cm-1 region and is also observed centered at 1060 cm-1.  

Similarly, the control/ambient FTIR spectrum also retained Si-H stretching and 

scissoring modes throughout the 44 hour experiment, accompanied by an increase 

in the Si-O-Si stretching at 1080 cm-1.  However, for this sample there is an 

additional shoulder at 1150 cm-1 that can be assigned to more complex Si-O-Si 

 

Figure 2.6:  FTIR spectra for set of control samples (no TEMPO).  Traces (from 
bottom to top) are H-Si NPs prior to treatment, held in the dark, ambient lighting, 
and 365 nm irradiation. 
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cage like structures62,67 and the Si-O-Si bending (880 cm-1) and Si-OH (800 cm-1) 

stretching modes are also clearly visible.  Finally, for the control/ambient FTIR 

spectrum after 44 hours, a peak at 1260 cm-1 indicative of Si-C bonding is also 

present. By comparison, the FTIR spectrum of the control/UV sample after 44 

hours of constant exposure to 365 nm irradiation showed a complete elimination 

of the Si-H related vibrations, with only Si-O-Si and Si-OH being clearly present.  

The weak feature observed at approx. 2250 cm-1 is due to atmospheric CO2.   

 Overall, the control/dark and control/ambient samples showed similar 

relative intensities for the Si-H and the Si-O-Si stretching modes, as well as Si-C 

stretching at 1260 cm-1; the latter feature has been observed by previous members 

of our lab and identified as a possible interaction with the solvent.60  The retained 

presence of the Si-H stretching modes indicates that the entire surface of the 

particles has not been oxidized under these conditions.  However, the increase in 

Si-O-Si stretching indicates that some oxidation that has occurred over time, even 

in the presumed absence of H2O and O2.  A comparatively greater extent of surface 

oxidation occurs for the control/UV sample, for which Si-H stretching is not 

observed; again, these oxidation features arise in the presumed absence of 

atmospheric/environmental oxygen sources. 

The FTIR spectra of the H-Si NP samples following 44 hours in 1 mM 

TEMPO solution and held in different lighting conditions are presented in Figure 

2.7 (following page).   Regardless of lighting condition, all of the Si-H related 

vibrational modes that were initially present have disappeared, accompanied by 
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large increases in the Si-O-Si stretching (1080 cm-1), Si-O-Si bending (880 cm-1), 

and Si-OH (stretching 800 cm-1) modes.  Additionally, there are two vibrational 

modes at 1210 cm-1 and 1150 cm-1 that are of unknown origin.  The complete 

absence of Si-H stretching after treatment with 1 mM TEMPO indicates that the 

entire surface has been oxidized.   

 Samples treated with 5 mM TEMPO showed nearly identical FTIR spectra 

as the 1 mM TEMPO treatment.  Figure 2.8 (following page) shows the FTIR 

spectra for samples treated with 5 mM TEMPO.  For all three lighting conditions, 

 

Figure 2.7:  FTIR spectra for set of 1 mM TEMPO treated samples.  Traces 
(from bottom to top) are H-Si NPs prior to treatment, held in the dark, ambient 
lighting, and 365 nm irradiation. 
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the 1 mM and 5 mM TEMPO treatment eliminated the Si-H vibrations and 

increased Si-O related vibrations and additional strong vibrations are observed at 

1210 cm-1 and 1150 cm-1 that are from an unknown origin. 

 The ratio of the sharp 1210 cm-1 and 1150 cm-1 peaks to the broad 1080 

cm-1 Si-O-Si seems to be dependent on lighting conditions for both 1 mM and 5 

mM TEMPO treatments (Figures 2.7 and 2.8).  In both 1 mM and 5 mM treatments 

the ratio of the sharp 1210 cm-1  and 1150 cm-1 features to the broad 1080 cm-1 

peak decreases in the order of dark, ambient lighting, and then the UV treatment.  

 

Figure 2.8:  FTIR spectra for set of 5 mM TEMPO treated samples.  Traces 
(from bottom to top) are H-Si NPs prior to treatment, held in the dark, ambient 
lighting, and 365 nm irradiation. 
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It is possible that the lower input of energy has allowed for a more 

thermodynamically stable surface than a kinetically favored, higher energy UV 

treatment, where a more rapid oxidation of the surface occurs.  The Si-O-Si 

stretching region of 1200 cm-1 to 1000 cm-1 is usually observed as a strong broad 

peak at 1080 cm-1 or so with one or two shoulders at increasing energy.  The 

broadness of these peaks are mostly due to the disordered nature of the Si-O-Si 

network and it is possible that the sharper peaks indicate a much more ordered 

structure.62,67–69 

2.3.3 XPS measurements before and after treatment 

 XPS measurements were taken before and after the temporal PL study for 

all samples, in order to further examine compositional changes observed by FTIR 

 

Figure 2.9:  XPS binding energies in the Si(2p) region before and after 
treatments for the control sample (a) and for the 5mM TEMPO treatment (b).  
The blue trace on each is the initial H-Si NPs prior to treatment and is the same 
spectrum.  
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as a function of the TEMPO/light treatments.  In the XPS data analysis, the Si(2p) 

region can be fit with components to analyze the extent of surface oxidation and is 

described in detail in the experimental section using Figure 2.1 as an example of 

the fitting analysis.  The XPS spectrum of the H-Si NPs prior to treatment (dark 

blue line of Figures 2.9a and 2.9b) has two main peaks, one centered at 99.5 eV 

and one centered at 102.2 eV.   The lower binding energy at 99.5 eV indicates a 

large amount of Si0 present at or near the surface of the particles, while the peak 

102.2 eV is due to some oxidation of the surface Si atoms to a state of 1+ to 3+.  

There is a small contribution to the higher energy peak from a Si4+ but is mostly 

negligible (Figure 2.1).  The control samples for all lighting conditions resulted in 

an almost complete reduction in the Si0 signal, however there is little shifting of the 

oxidation peak at 102 eV to higher energy (Figure 2.9a).  The 5mM TEMPO 

treatment, on the other hand, both showed both a decrease in Si0 signal as well as 

a shift in energy to 103.5 eV for the oxidation peak (Figure 2.9b).  The 1mM 

TEMPO treatment was identical to the 5mM TEMPO treatment and is not shown 

here. 

Raman measurements were also taken to determine the overall crystallinity 

of the Si NPs and if the crystallinity changes over time, however the method of 

collection was insufficient for the samples and measurements were inconclusive 

due to the background being too strong and overwhelming the signal from the 

crystalline and amorphous silicon. 
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2.4 Discussion 

 The initial goal of the experiment was to passivate surface radicals of the 

H-Si NPs with the stable radical TEMPO, thus eliminating non-radiative 

recombination from the surface radical trap sites and improving the 

photoluminescence intensity from the quantum confined core.  The results from 

the PL experiments in Figures 2.4 and 2.5 for the 1 mM and 5 mM TEMPO 

treatments show increased intensity from the core emission under all lighting 

conditions.  However, that increase in intensity comes at the cost of significantly 

blue shifting the emission maximum wavelength by over 100 nm, mostly due to 

surface oxidation.   

The initial hypothesis of the experiment was that a radical coupling reaction 

would occur at the surface of the Si NP between the dangling bond and the TEMPO 

radical, but the experimental analysis shows a different story.  FTIR analysis of the 

TEMPO treated samples (Figures 2.7 and 2.8) show that the TEMPO treatment 

under all lighting conditions have completely removed all Si-H and only Si-O type 

bonding is seen post treatment.  Complete oxidation of the surface from the 

TEMPO treatments are also supported by the XPS data (Figure 2.9b).  The shift 

from predominately Si0 and Si1+ to 3+ in the initial condition to predominately Si4+ on 

the surface further supports a deeper penetration of the oxide layer by the TEMPO 

treatment.  Although the control samples did show a reduction in the Si0 oxidation 

state, they had a mostly Si1+ to 3+ oxidation state, indicating that the surface is only 

partially oxidized. 
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As mentioned in the chapter 1, the effective mass approximation (equation 

1.1) relates particle size to emission wavelength23 and has been demonstrated to 

be a good predictor for the emission from Si-NP with a diameter of 2.7 nm to 11.8 

nm.53  Using the effective mass approximation, the emission wavelength of the 

quantum confined core before treatment (662 nm) would be attributed to a 

crystalline core diameter of 2.06 nm.  The largest energy shift (final lambda max 

of 520 nm) was observed for the sample treated with 5 mM TEMPO held in the 

dark.  Again, using the effective mass approx. the new core size would be 1.60 

nm, a change of only 0.46 nm.  Since the nearest neighbor distance for silicon is 

0.235 nm, a completely oxidized surface could result in the large blue shift in 

emission that has been observed. 

 The reason for the complete oxidation of the surface is most likely due to 

the weak N-O bond on the TEMPO radical.  The N-O bond energy is 2.01 eV, 

correlating to a photon wavelength of 617 nm, and could be easily cleaved by both 

the ambient and UV lighting sources.  For both TEMPO concentrations the 

increase in emission intensity occurs more rapidly under the UV treatment than 

ambient lighting alone, and even more slowly without any light source, supporting 

the breaking of this N-O bond as a possible mechanism for the oxidation of the 

surface. 

 Complete oxidation of the surface from the TEMPO treatments are also 

supported by the XPS data (Figure 2.9b).  The shift from predominately Si0 and 

Si1+ to 3+ in the initial condition to predominately Si4+ on the surface further supports 
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the deeper penetration of the oxide layer by the TEMPO treatment.  Although the 

control samples did show a reduction in the Si0 oxidation state, they had a mostly 

Si1+ to 3+ oxidation state, indicating that the surface is only partially oxidizing. 

 Although all samples were assumed to be kept in air and water free 

environments, FTIR indicates there was still some oxidation of the surface with no 

TEMPO present (figure 2.5) in the dark and ambient lighting conditions.  This is 

most likely due to introduction of some oxygen when each aliquot was taken.  The 

UV lighting condition, however, had complete oxidation of the surface with no 

remaining Si-H bonding present.  It has previously been shown that continuous UV 

excitation of hydrogenated Si surfaces can result in an energy transfer to adsorbed 

O2, generating singlet O2 which can then react with the hydrogenated surface70,71 

and this could be the reason for the accelerated oxidation of the surface under the 

UV lighting condition. 

 

2.5 Conclusions 

The TEMPO treatment observed in this experiment did increase 

luminescence intensity of the suspended Si NPs but did so with a large amount of 

oxidation to the surface.  The extent of the oxidation was so great that the intrinsic 

core emission wavelength blue shifted by over 100 nm.  The oxidation of the Si 

NPs in the control samples indicate that the system is not in fact oxygen free.  It is 

possible that trace oxygen in the solvents was the cause of this oxidation, but it is 

also possible that there is interstitial oxygen in either the amorphous or crystalline 
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portions of the Si NPs and that over time these defects could be annealed out of 

the particles.  The control experiments, on the other hand, did show that some 

oxidation could be used to increase the emission intensity of the suspended Si 

NPs and that having control over this process could result in a more gradual shift 

in emission wavelength.
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Chapter 3: Benzoyl peroxide as a surface passivating agent to improve 

photoluminescence intensity and colloidal stability of silicon nanoparticles 

 

3.1 Introduction 

 The results of the TEMPO surface treatment in Chapter 2 told us that 

TEMPO is oxidizing the surface of the particles and while this oxidation does 

increase the PL intensity of the emission from the quantum confined core, it also 

significantly reduces the core size by oxidizing further into the core (not just surface 

passivating) that results in a blue shift of the max to below 600 nm.  It was also 

evident that the control samples, while not exposed to TEMPO, did have some 

oxidation and the PL intensity increased with less blue shift in max than for the 

samples exposed to TEMPO.  It was concluded that the surface oxidation of the 

H-Si NPs contributed to the increased emission intensity and that the only shifting 

in emission maximum wavelength was due to core shrinkage. 

From these results, we hypothesized that the use of a mild oxidizing agent 

could control the extent of surface oxidation, thus increasing the PL intensity 

without significant blue shifting of the max emission by core shrinkage.  To test this 

we will subject the H-Si NPs to numerous oxidizing agents to identify the best 

combination of PL intensity increase and max stability.  The best treatment 

procedure will then be identified by subjecting the H-Si NPs to different 

concentrations of the best performing oxidant and different lighting conditions that 
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were also shown to have an impact on the oxidation process from the TEMPO 

results. 

 

3.2 Experimental 

3.2.1 Materials 

Ethanol (200 proof, TCI), Acetone (ACS reagent grade), DMSO (ACS 

reagent grade), toluene (ACS reagent grade), and benzoyl peroxide (75wt% with 

the remainder H2O) were purchased from Sigma Aldrich.  Molecular sieves were 

used to dry all materials and were then sparged with Ar for 90 minutes to remove 

as much O2 as possible.  All solutions were then transferred to a N2 filled glovebox 

(<0.1 ppm H2O and <0.1 ppm O2) for further use. 

 

3.2.2 Synthesis of H-Si NPs 

 H-Si NP suspensions were made by a literature procedure.14,62  Briefly, 

HSiCl3 was hydrolyzed and condensed upon the addition of H2O to make an 

[HSiO1.5]n polymer. The polymer was then annealed at 1100˚C for 10 hr under 

flowing N2 to produce Si NPs in an SiO2 matrix.  The Si NPs were both liberated 

from the SiO2 matrix and hydride passivated using an aqueous HF etch.  The H-Si 

NPs were then phase transferred into toluene.  The H-Si NP suspension was 

centrifuged at 2000 rpm for 10 minutes in glass centrifuge tubes.  The supernatant 

was then discarded, and the solid pellet was then re-suspended in dry toluene.  

This was repeated three times to ensure removal of all HF, ethanol, and H2O that 
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could still be present from the etching procedure.  The final H-Si NPs were 

suspended in dry, degassed toluene at a concentration of approx. 0.1 mg/mL. 

 

3.2.3 Oxidant Survey  

The oxidants chosen for the survey study were ethanol, acetone, DMSO, 

and benzoyl peroxide (BPO).  Solutions of ethanol, acetone, DMSO, and BPO 

were made at a concentration of 10 mM in toluene.  Solutions were also made at 

a 1:1 volume ratio of ethanol, acetone, or DMSO with toluene.  To observe changes 

to the PL caused by exposure to the atmosphere, dry and O2 free toluene was 

intentionally contaminated with either H2O or O2 prior to mixing with H-Si NPs 

suspensions.  This was done by thoroughly mixing water with toluene and then 

allowing the organic and aqueous phases to separate.  The organic phase was 

then extracted and air was removed via three freeze/pump/thaw cycles on the 

Schlenk line.  O2 was added to dry toluene by first vigorously shaking the solution 

while open to the atmosphere, then allowed to sit over 4Å molecular sieves for two 

days to remove any residual water that was present in the air. 

5 mL of each solution was added to an air free scintillation vial, to which 5 

mL of a stock H-Si NP suspension was added.  All samples were then held in the 

dark under constant stirring, periodically checking for luminescence changes with 

a handheld UV light (365 nm) until significant changes to either brightness or color 

were qualitatively observed.  After 4 days (the time it took for significant change to 
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occur for more than one sample) PL spectra for all conditions were measured and 

analyzed by using the fitting procedure described in Chapter 2. 

 

3.2.4 Benzoyl peroxide surface treatment study 

Benzoyl peroxide (BPO) was added to dry and degassed toluene to make 

5 mL solutions that were 20 mM, 10 mM, and 2 mM in BPO; a control sample 

(initially only dry, degassed toluene) with no BPO was also prepared and handled 

identically.  To each of these samples, 5 mL of H-Si NPs (0.1 mg/mL) in toluene 

was added, resulting in solutions having final BPO concentrations of 10 mM, 5 mM, 

1 mM, and 0 mM (control) and equal concentrations of H-Si NPs.  These samples 

containing H-Si NPs and variable concentrations of BPO were then left under 

constant 365 nm radiation (14.4 W) or kept in the dark for 24 hr to observe changes 

to the PL. 

 

3.2.5 Photoluminescence measurements 

Steady state photoluminescence (PL) measurements were conducted on 

a Shimadzu 5301-RFPM spectrophotometer equipped with a Xe laser source.  All 

measurements were conducted using 365 nm excitation.  A 365 nm band pass 

filter was used on the source side to prevent the passage of the 730 nm light from 

the diffraction grating.  A 450 nm long pass filter was used on the detector side to 

prevent shorter wavelength light from saturating the detector.  The raw PL spectral 

curves were then simulated using peak fitting software (MagicPlot 2.7.2) to model 
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the spectra. The fitting procedure is thoroughly discussed for representative 

spectra in the results section of Chapter 2 (page 22). 

 

3.2.6 FTIR and XPS analysis 

 Sample preparation, instruments and instrument parameters used, and 

analysis methodology are all identical to the FTIR and XPS procedures detailed in 

Chapter 2 (pages 16-18). 

 

3.3 Results 

3.3.1 Oxidant Survey 

An initial survey of chemical oxidants that have been shown to oxidize Si 

was conducted.  The chemical oxidants included ethanol,15 DMSO,72 acetone, 

air,73–77 water, and benzoyl peroxide (BPO).  Of the oxidants surveyed, only BPO 

 

Figure 3.1:  H-Si NPs in toluene after 4 days of exposure to the chemical 
oxidants under 365 nm irradiation.  The oxidants being shown from left to right 
are the control sample, air, water, BPO, and the 1:1 DMSO concentration. 
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and DMSO were observed to have any effect on increasing the photoluminescence 

intensity of the Si NPs core emissive state and are qualitatively shown in Figure 

3.1.  All other treatments completely quenched the core emission from the H-Si 

NPs. The 1:1 DMSO to toluene treatment resulted in a slight increase in core 

emission intensity, however it also blue shifted the emission maximum wavelength 

from 687 nm to 602 nm (PL measurements not shown).  The 10 mM BPO treatment 

had a much larger increase in PL intensity from the core emission, with less 

significant blue shifting of the max emission from 687 nm to 633 nm (PL 

measurements not shown).   

 

3.3.2 PL measurements from benzoyl peroxide treatment 

Using the results from the oxidant survey, we further investigated the effect 

of BPO addition on the PL peak position(s) and relative intensity of as a function 

of the BPO concentration.  In the oxidant survey the samples were all held in the 

dark, however we expanded the study of BPO treatments to include the effect of 

lighting conditions on the extent of surface passivation.  Since the peroxide bond 

in BPO could be homolytically cleaved from absorption of UV light, we 

hypothesized that treatment under UV lighting (365 nm) may either increase the 

extent of passivation or increase the reaction rate.  We further examined possible 

composition (and/or size) differences underlying these changes using FTIR, XPS, 

and Raman spectroscopies. 
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 For the samples that were continuously irradiated using 365 nm light for 24 

hours, PL measurements were taken and are shown in Figure 3.2.  Prior to 

irradiation, the control sample is not highly luminescent; its emission spectrum 

shows a small peak at 575 nm and no distinguishable peak in the desired red 

region (600 nm to 700 nm).  After 24 hours of UV irradiation, the emission spectrum 

of the control sample with no BPO looks largely identical to the start.  Conversely, 

the emission spectra of the H-Si NP samples treated with BPO displayed increased 

intensity, with discernable peaks at 575 nm, and 650 nm.  Although the peak 

 

Figure 3.2:  PL spectra (excited at 365 nm) of H-Si NPs in toluene with variable 
concentration of BPO, taken after 24 hours of continuous irradiation of the 
samples with 365 nm light. 
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positions did not differ across the three samples with BPO concentrations in the 1-

10 mM range, the intensities of the 570 nm and 650 nm emissions increased with 

increasing BPO concentration.  The most likely explanation for the increased 

intensity is due to better surface passivation of the Si NPs.  The lack of blue shifting 

also indicates that the BPO does interact with the surface but does not oxidize the 

particles deeper into the core. 

 The BPO treated samples that were held in the dark did not show any 

change in intensity over the first 24 hours of treatment, thus the samples were kept 

in the dark in an air free environment under stirring for 24 days, after which the PL 

 

Figure 3.3:  PL spectra (excited at 365 nm) of H-Si NPs in toluene with variable 
concentration of BPO, taken after 24 days of treatment in the dark. 
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was measured again using a 450 nm long-pass filter and a 365 nm bandpass filter 

(Figure 3.3).  The control H-Si NPs held in the dark with no BPO did not have any 

appreciable change in emission from the pre-treatment measurement over the 24 

day period.  There is gradual decrease in emission intensity from the 475 nm cut 

on and a small peak at 575 nm with no apparent peak in the 600 to 700 nm range.  

The 1 mM treated sample showed a 4 fold increase from the pre-treated sample 

in the intensity of the cut on at 475 nm due to a blue emissive component, followed 

by a peak at 570 nm and a peak at 650 nm.  The 5 mM and 10 mM samples have 

much larger blue emissive components followed by peaks at 570 nm and 650 nm.  

The integrated intensity of the 570 nm and 650 nm components increases with 

increasing BPO concentration. 

 The blue component for all three BPO treated samples was much larger 

than the red, presumably due to the blue emission of free BPO in toluene.  To 

 

Figure 3.4:  PL measurements before and after washing dark BPO treatment to 
remove blue emissive component.  PL measurements without filters of (a) the 
BPO treatment in dark for 24 days and (b) the same particles after washing and 
re-dispersing them into toluene. 
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demonstrate that the blue component was not due to the treated Si NPs, the 

suspensions were centrifuged, supernatant discarded, and the particles re-

dispersed in dry toluene.  This was done three times to remove any residual free 

BPO from the suspension.  PL measurements were taken before and after the 

washing procedure without filters in place to show the full spectra and are 

presented in Figure 3.4.  The before spectra (Figure 3.4a) is the extended spectra 

without filters from Figure 3.3.  It should be noted that the final solution 

concentration of Si NPs post-washing is not identical for all samples measured due 

to losses during the washing procedure, thus the emission intensities for all of the 

washed samples (Figure 3.3b) cannot be directly compared to each other.   

The pre-treatment sample and the control sample shows only a decrease 

in the emission with increasing wavelength and a small peak at 570 nm, with no 

discernable emission in the 600 nm to 700 nm range (Figure 3.3a).  All BPO treated 

samples have a peak at 475 nm that no longer looks like the scattering from the 

control and pre-treatment spectra in this region.  The  5 mM and 10 mM samples 

also had 570 nm and 650 nm peaks that can be seen.  The PL spectra after 

washing the treated Si NPs and re-suspending in toluene (Figure 3.3b), there is no 

longer any identifiable blue emissive component left in any of the suspensions.   

The only observed intensity in the blue spectral region appears to be more 

consistent with scattering from aggregated particles.  Although intensities cannot 

be directly compared from sample to sample after washing, the ratio of scattering 

intensity to red emission can be compared for each sample individually.  The ratio 
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of red emission to scattering intensity increases with increasing BPO treatment 

concentration, indicating better passivation of the particles.  The suspensions post 

treatment and wash were visually less cloudy, and the decreased scattering in the 

PL spectra is an indication that Si NPs are less aggregated in suspension. 

3.3.3 FTIR measurements before and after BPO treatment 

 The infrared absorption spectrum was measured for each sample condition 

before and after treatment to correlate changes to the PL over time with changes 

in surface structure.  Figure 3.5 shows the IR absorption spectra for the H-Si NPs 

 

Figure 3.5:  FTIR of BPO and UV treated samples.  Traces are H-Si NPs prior 
to treatment and after exposure to 0, 1 mM, 5 mM, and 10 mM BPO and 365 
nm light for 24 hours. 
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pre-treatment and the 0 mM, 1 mM, 5 mM and 10 mM treatments under 365 nm 

irradiation for 24 hours.  The pre-treatment sample has peaks at 2100 cm-1 and 

910 cm-1 that are assigned to Si-H stretching and scissoring respectively, and a 

broad feature centered at 1080 cm-1 assigned to Si-O-Si stretching.  Peaks seen 

in the 2800 to 3000 cm-1 range, 1450 cm-1 and 1360 cm-1 can be assigned to 

possible C-H and C-C stretching from residual toluene that did not completely 

evaporate from the deposited Si NP film.  The sample treated with only 365 nm 

light (no BPO) did not show significant change from the pre-treatment sample, with 

peaks at 2100 cm-1 and 910 cm-1 indicating Si-H surface bonds without increase 

to the Si-O-Si stretching at 1080 cm-1.  The 1 mM, 5 mM, and 10 mM all show an 

elimination of the Si-H stretching and increase in the Si-O-Si stretching at 1080 

cm-1.  The doublet at 2250 cm-1 can be attributed to CO2 that adsorbed while the 

film was being deposited on the ATR crystal.   

While the UV lighting condition did result in oxidation of the surface as 

evidenced by the Si-O-Si stretching increase and elimination of the Si-H stretching, 

there is no evidence of BPO bonding to the surface of the Si NPs.  If BPO was 

chemically bound to the surface of the particles, there should be observed 

stretching modes at 1700 cm-1 (carbonyl), and 1600 cm-1 (aromatic).  While there 

appears to be some features in the 2800 to 3000 cm-1 and 1300 cm-1 range that 

could indicate the presence of BPO on the surface, there is no identifiable carbonyl 

stretch in any of the spectra.  The IR absorption spectra for the BPO treated 

samples that were held in the dark for 24 days (Figure 3.6) showed similar trends 
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to that of the UV treated samples.  The H-Si NPs held in the dark with no BPO had 

no significant change from the pre-treatment sample.  The apparent increase in Si-

H intensity at 2100 cm-1 and 910 cm-1 is coupled with an increase in Si-O-Si 

stretching intensity at 1000-1200 cm-1 but the ratio of the intensities of Si-H to Si-

O-Si is similar to the starting material and the increase in intensity is due to a 

thicker film being measured.  The 1 mM sample maintains some Si-H stretching at 

2100 cm-1 and an increase in the Si-O-Si stretching at 1000-1200 cm-1.  The 5 mM 

treated sample has a small Si-H stretching peak at 2100 cm-1 and increased Si-O-

 

Figure 3.6:  FTIR of BPO treated samples in the dark.  Traces are H-Si NPs 
prior to treatment and after exposure to 0, 1 mM, 5 mM, and 10 mM BPO and 
held in the dark for 24 days. 
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Si stretching at 1000-1200 cm-1, but also has C-H stretching features at 2800 to 

3000 cm-1 and carbonyl stretching at 1740 cm-1 that could be due to residual BPO 

still in solution after the washing procedure.  The 10 mM treated sample did not 

show the carbonyl stretching at 1740 cm-1 and only Si-O-Si stretching at 1000-

1200 cm-1 is observed.  

Similar to the UV treated sample, the intensity of the Si-O-Si stretching band 

increased with increasing concentration of BPO, coinciding with a decrease in 

intensity of the Si-H stretching with increasing BPO concentration.  This suggests 

the particle surface is being oxidized by the BPO, however the BPO is not 

remaining on the surface of the particles. 
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3.3.4 XPS measurements before and after treatment 

 To observed changes to the oxidation state of the surface of the Si NPs pre 

and post treatment, XPS measurements were conducted and the Si 2p region was 

observed.  It should be noted that the measured intensity from the sample is 

proportional to the amount of sample present, however the ratio of peaks within an 

individual spectrum is independent of sample mass.  Figure 3.7 shows the Si 2p 

peak for the samples treated with BPO and held under 365 nm irradiation for 24 

 

Figure 3.7:  XPS spectra of the BPO and UV treated Si NPs.The Si 2p region is 
shown before treatment and following BPO surface treatment under UV 
irradiation for 24 hours.  The concentrations of the BPO in solution are indicated 
in the legend. 
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hours.  The pre-treatment sample has a strong asymmetric peak at 99.5 eV that is 

the doublet generated from Si 2p3/2 and Si 2p1/2 splitting from the Si0 oxidation 

state.  There is also a smaller broad peak centered at 102.1 eV that is due to Si 

that has been oxidized (oxidation state of +1 to +4).  The sample treated with only 

365 nm light and no BPO showed a decrease in intensity for the peak at 99.5 eV 

and slight shift to 102.3 eV of the oxidized Si peak, indicating increased oxidation 

state.  The 1 mM BPO treated sample showed an increase in the ratio of oxidized 

to unoxidized silicon and a further shift to 102.5 eV of the oxidized peak.  The 5 

mM and 10 mM BPO treated samples both had further increases to the ratio of 

oxidized to unoxidized Si with both having the oxidized Si peak centered at 102.8 

eV. 

 XPS measurements of the BPO treatment conducted in the dark over 24 

days are presented in Figure 3.8.  The H-Si NPs held in the dark for 24 days with 

no BPO showed no change to the unoxidized Si peak at 99.5 eV and a decrease 

in the oxidized Si peak and shift to 101.8 eV, a shift to lower energy relative to the 

pre-treatment sample indicating less oxidation.  The BPO treated samples showed 

an increase in the oxidized peak to unoxidized peak ratio that was proportional to 

the BPO concentration.  The oxidized Si peak for the 1 mM, 5 mM, and 10 mM 

samples also shifted to 102.3 eV, 102.6 eV, and 102.8 eV respectively. 



 58 

The broad oxidation peak represents multiple oxidation states and some reports 

have attempted to model each oxidation state with its own Gaussian curve.40  To 

model the oxidation on the surface of the H-Si NPs we chose to follow a procedure 

that uses 2 curves to represent oxidized silicon.63,64 One of these curves 

represents silicon in the +4 state (as in SiO2) that should be centered between 103 

and 103.5 eV while the other represents Si in the 1+ to 3+ oxidation state centered 

between 101 to 102.5 eV. The modeling of these peaks is demonstrated in Figure 

 

Figure 3.8:  XPS spectra of the BPO treated Si NPs held in the dark.The Si 2p 
region is shown before treatment and following BPO surface treatment in the 
dark for 24 days.  The concentrations of the BPO in solution are indicated in the 
legend. 
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3.9 where the Si0 doublet is shown and two peaks representing Si4+ and Si1+ to 3+ 

are centered at 103 eV and 102 eV respectively.  From the fitting results the 

integrated intensities of all components can be calculated and the percent 

contribution to the overall intensity of the Si 2p spectrum can be determined.  The 

simulated data in Figure 2.16 for the pre-treatment sample resulted in 61% with an 

oxidation state of zero, 25% with an oxidation state between 1+ and 3+, and 14% 

with an oxidation state of 4+. 

 

Figure 3.9:  XPS of starting material showing the modeling procedure used. 
Four curves represent the two Si0 oxidation states (dark blue and red), an Si1+ 

to 3+ oxidation state (light blue), and a Si4+ oxidation state. 
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  All raw XPS data was similarly simulated and the percent contribution from 

each oxidation state was plotted against BPO concentration (Figure 3.10).  For the 

samples held under 365 nm irradiation (Figure 3.10a), the Si0 peak percentage 

decreased from its initial value of 61% (not shown) to 51% for the 0 mM treatment, 

40% for the 1 mM treatment, 33% for the 5 mM treatment, and 30% for the 10 mM 

treatment.  The partially oxidized peak increase from an initial value of 25% (not 

shown) to 31% for the 0 mM treatment, 40% for the 1 mM treatment, 42% for the 

5 mM treatment, and 46% for the 10 mM treatment.  The Si4+ peak increased from 

its initial value of 14% (not shown) to 19%, 20%, 25%, and 24% for the 0 mM, 1 

mM, 5 mM, and 10 mM treatments respectively.  Overall, for the UV irradiated 

samples, the amount of elemental Si decreased while oxidized Si increased, 

consistent with the FT-IR results. 

 

Figure 3.10:  Percentage of intensity vs BPO concentration for each oxidation 
state from the simulated XPS data for the BPO treated samples held under 365 
nm irradiation (a) and in the dark (b). 
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 The samples treated with BPO but held in the dark for 24 days (Figure 

3.10b) showed an increase in the Si0 peak percentage from 61% for the pre-

treatment sample (not shown) to 71% for the sample with no BPO, followed by a 

decrease to 56% for the 1 mM BPO treatment, 37% for the 5 mM treatment, and 

40% for the 10 mM treatment.  The partially oxidized Si peak percentage 

decreased from 25% initially (not shown) to 20% for the 0 mM treatment, followed 

by an increase to 24%, 41%, and 39% for the 1 mM, 5 mM, and 10 mM treatments 

respectively.  The Si4+ peak decreased from the initial 14% (not shown) to 8% for 

the 0 mM treatment, then increased to 20%, 23%, and 31% for the 1 mM, 5 mM, 

and 10 mM treatments respectively.   

 Overall, BPO treatment resulted in a decrease in Si0 present in the samples 

and an increase in the oxidized Si in the samples and the extent of this effect is 

directly proportional to the concentration of BPO in the suspension. 

 

3.4 Discussion 

 The overall goal of this project was to identify a novel surface treatment for 

the produce Si NPs with improved luminescence intensity without substantial 

change to emission wavelength.  The PL measurements for both lighting 

conditions show that an increase in the BPO concentration increases the PL 

intensity attributed to the crystalline core.  The maximum emission wavelength was 

also shown to stop at 650 nm for all conditions observed.  Due to the very poor 

emission in the red region of the initial H-Si NPs prior to treatment, there was no 
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determination of the starting emission wavelength.  All previous experiments that 

were conducted using the same or similar parameters have yielded H-Si NPs that 

have a maximum emissive wavelength between approx. 660 nm to 690 nm.  The 

most likely cause of the dark state for our H-Si NPs before treatment is due to 

significant aggregation.77–79  The emergence of the red emissive state must then 

be assigned to the better passivation of the particles, thus increasing emission 

intensity by allowing better dispersion in solution.  While electronic effects of an 

oxygenated surface passivation cannot be ignored,55,80,81 it is more likely that the 

modest increase in intensity is due to less aggregation. 

 Although the red emissive state is quenched by aggregation at the 

beginning of the experiment, the electronic transition responsible for the emission 

can still be assumed to have an energy gap of approx. 1.80 eV to 1.88 eV (660 nm 

to 690 nm) based on previous experiments.  The final emissive wavelength for all 

H-Si NPs treated with BPO was 650 nm, indicating a blue shift between 10 nm and 

40 nm.  This very small blue shift indicates that the core must not be significantly 

reduced in size.  Using the effective mass approximation discussed in chapter 2, 

a blue shift of 10 to 40 nm would only require a reduction in core size from 2.06 

nm to 1.90 nm.  Since the nearest neighbor distance of crystalline Si is 0.235 nm, 

this very small blue shift indicates that the BPO has only interacted with the surface 

of the crystalline core. 

 The FTIR analysis shows that for all treated BPO samples there is an 

increase in Si-O-Si stretching that occurs in conjunction with the reduction of the 
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Si-H stretching, however there is no evidence of BPO remaining on the surface 

after the treatment.  The XPS analysis also indicates that the particles are being 

oxidized throughout the treatment, with the extent of oxidation increasing with 

increasing BPO concentration.  This trend of increasing oxidation of the Si NPs 

with increasing BPO concentration does not, however, result in an expected blue 

shifting of the red emissive peak due to reduction of core size.  This supports the 

argument that the BPO treatment only interacts with the Si-H surface, resulting in 

more colloidally stable particles. 

 Previous Raman studies have shown that the H-Si NPs produced via our 

high temperature disproportionation method results in Si0 particles that have both 

crystalline Si0 and amorphous Si0 present.56  The crystalline Si0 domains of these 

particles were determined to be 2.55 nm from the Raman analysis but the percent 

crystallinity was determined to be only 55%.  Particle size determination via TEM 

of the H-Si NPs has been attempted but cannot be done due to the significant 

aggregation of the particles. However, in previous work similarly produced H-Si 

NPs underwent a surface treatment via hydrosilylation reaction with 1-decene to 

produce decane terminated Si NPs has resulted in well dispersed particles that are 

5 nm in size via TEM with no oxidation present in the FTIR spectrum.14  The total 

physical size of these particles is much larger than the size of the crystalline core 

determined spectroscopically via PL and Raman, suggesting crystalline sizes of 

2.06 nm (Chapter 2) and 2.55 nm56 respectively.  This discrepancy can be 

explained by the incorporation of amorphous Si0 that is being included in the TEM 
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size determination.  If the particles are partially amorphous, especially at the 

surface, the oxidation of that surface would not impact the size of the crystalline 

core or impart significant electronic effects on the core.  This would, however, 

increase the stability of the particles in solution and the particles would be less 

aggregated.  As suggested by others77–79 the significant decrease in particle 

aggregation alone could be the reason for the increased PL emission from the 

BPO treated particles. 

 

3.5 Conclusions 

 H-Si NPs form an unstable suspension that is prone to aggregation and 

significantly reduces the emission intensity of the particles, thus surface treatments 

that provide better colloidal stability without imparting significant electronic effects 

on the particles is desired.  The treatment of the particles with benzoyl peroxide in 

under UV irradiation increase the rate of surface passivation without significantly 

increasing oxidation of the core.  The 10 mM treatment under UV irradiation for 24 

hours resulted the most colloidally stable suspension that showed the greatest 

increase in 650 nm emission intensity without substantial blue shifting of the 

emissive wavelength from the starting H-Si NPs.  While the particles did show 

surface oxidation via FTIR and XPS analysis, the emission wavelength was 

unaffected by this oxidation and the decreased aggregation from the BPO treated 

particles greatly increased the emission intensity.
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Chapter 4: Investigation into magnesiothermic reduction of silicon oxides as a 

synthetic route to free-standing nanocrystalline silicon 

 

4.1 Introduction 

Si NPs have been synthesized in many different ways. The major routes to 

producing Si NPs are gas phase reduction of SiH4,19,45 solution phase oxidation 

reactions of silicon polyanions (e.g., Si44-) with conventional chemical oxidizing 

agents,46–49 laser ablation of bulk Si0 in solution,50,51 high temperature annealing 

of silicon suboxide polymers14,52,53 followed by subsequent chemical etching, and 

solution phase reductions of silanes (e.g., HSiCl3 and others) with conventional 

chemical reducing agents.54,55 Physical methods of production have been shown 

to produce either predictably-sized particles with narrow size distributions in low 

synthetic yields (e.g., by laser ablation), or very wide size distributions of particles 

in high yields (e.g., by ball milling silicon wafers)82,83 but none has been able to 

combine the two.  Gas phase reduction of SiH4 can produce very narrow size 

distributions, but only in small yields.  Electrochemical etching, high temperature 

annealing, and solution oxidation/reduction methods generally result in larger 

yields that could be scalable.  However these methods are in general limited in the 

range of achievable sizes. 

 We have shown in the previous chapters that the high temperature 

reductive annealing of silicon suboxides (e.g., HSiO1.5) can be used to produce 

nanocrystalline Si0 domains in a SiO2 matrix.14,52,53,62 The oxidized matrix can then 
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be etched away using hydrofluoric acid to liberate the particles into the aqueous 

etching solution and subsequent phase transfer into a non-polar solvent is then 

done to isolate hydrogen terminated Si NPs (H-Si NPs).  This method has many 

benefits, like low-cost starting materials for the production of the suboxide polymer, 

however there is very little control over particle sizes using this method.  The typical 

synthesis produces particles in the range of 4 to 5 nm in diameter when annealing 

at a temperature between 900˚C and 1100˚C for 1 hour or longer, but the size and 

crystallinity of the Si NPs cannot be greatly increased at this temperature by the 

time of annealing. 

If we would like to increase the absorption wavelength onset of the Si NPs 

for applications involving light absorption (e.g., photovoltaics or 

photosensitization), being able to synthesize larger core sizes via another method 

is needed.  Growth of the silicon domains via high temperature reductive annealing 

is limited in our lab by the 1100˚C maximum temperature of our furnace using the 

standard reductive annealing method.  Reaction temperatures greater than 

1100˚C can produce larger silicon particles up to 12 nm at 1350˚C, but above this 

temperature there has been shown to be a significant increase in the size 

polydispersity to the extent that a particle size determination cannot be made with 

TEM.53  To overcome some of the limitations on particle size from this method, we 

hypothesized that addition of a reducing metal to the [HSiO1.5]n precursor polymer 

could lower the maximum temperature required to produce Si NPs and 
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simultaneously increase the maximum particle size to a target range of 10 to 50 

nm. 

 

4.2 Experimental 

4.2.1 Materials 

Trichlorosilane (Alfa Aesar), absolute ethanol (TCI), and 49wt% hydrofluoric 

acid in water (Sigma-Aldrich), 325 mesh Magnesium powder (Alfa Aesar) and NaCl 

(J.T. Baker) were purchased and used as received unless otherwise specified.  

LUDOX HS-40 and TM-40 were purchased from Sigma-Aldrich and used as 

received unless specified.  NanoXact 80 nm SiO2 NPs were purchased from 

nanoComposix as a dry powder and used as received.  All solvents were 

purchased from Fisher Scientific and also used without further purification (as 

received) unless specified.   

 

4.2.2 Nanocrystalline Silicon from magnesiothermic reduction 

Nanocrystalline silicon (nc-Si) was produced from high temperature 

reductive annealing of [HSiO1.5]n with addition of magnesium under flowing N2 gas 

in an alumina crucible.  The [HSiO1.5]n polymer was synthesized using a previously 

reported method14,62 and is detailed in chapter 1.  Briefly, trichlorosilane was added 

to an Ar filled flask in an ice bath and water (18 M•cm) was subsequently added 

to initiate a hydrolysis and subsequent polycondensation reaction to produce the 

desired [HSiO1.5]n polymer with HCl gas as a byproduct.  The product was dried 
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and then stored under Ar for further use.  For the magnesiothermic reduction, the 

starting mass of the dried [HSiO1.5]n was held constant at 0.5 grams and the Mg 

added was varied such that the molar ratio of Mg to O was 1:5 to 2:1, assuming 

the Si monomer stoichiometry as [HSiO1.5]n.  The temperature for all experiments 

was increased at a rate of 20 ˚C per min until the desired maximum temperature 

was reached, then the temperature was held constant for the desired amount of 

time.  The temperature was then steadily decreased over a period of 1 hr to 

ambient laboratory temperature (at approximately 20˚C/min).  The annealed 

powder was ground again to a fine powder in a mortar and pestle and stored in a 

scintillation vial under Ar for further analysis and workup. 

For experiments adding a heat sink, the reaction mixture of 1:1 Mg to O was 

mixed thoroughly mixed with an equal mass of NaCl.  In a typical experiment 0.50 

g of [HSiO1.5]n, 0.35 g of Mg powder, and 0.85 g of NaCl would be ground to a 

homogenous powder in a mortar and pestle prior to annealing.  The mixture was 

then heated to 650˚C at 20˚C/minute and held at that temperature for 1 hour, 

followed by cooling at a rate of 20˚C/minute back to the ambient temperature.  The 

reaction mixture was then ground again in a mortar and pestle to a fine powder 

and stored under Ar for further use. 

For magnesiothermic reduction of SiO2 spheres, three sources were used: 

commercially available LUDOX TM-40 (40wt% SiO2 in H2O stabilized by NaOH), 

NanoXact SiO2 spheres as a dry powder, and SiO2 spheres from a modified 

literature method based on the Stober synthesis.  Briefly, 1.0 mL Millipore H2O, 1 
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mL 30wt% NH3OH, 47 mL absolute EtOH were stirred vigorously in a 100 mL 

round bottom flask for 5 minutes.  1.0 mL of TEOS was then added and the mixture 

was then stirred vigorously overnight (18 hours total).  The cloudy suspension was 

then titrated with 1.0 M HCl to a pH of 7 and then centrifuged at 18k rpm for 20 

minutes.  The supernatant was discarded and the solids re-dispersed in a 7:3 

EtOH:H2O solution and the centrifugation process was repeated.  After 3 washing 

cycles the solid pellet was dried in a 60˚C drying oven for 2 days and was ready 

for further use. 

The reduction of the SiO2 spheres followed the same procedures as with 

the heat sink with the exception of the total masses of reactants.  For these 

experiments, 0.30 g of both Stober SiO2 particles, 0.30 g of LUDOX TM40, and 

0.10 g of NanoXact were used with all other ratios remaining the same.  The 

reaction was conducted at 650˚C for 1 hour with heating and cooling rates of 

20˚C/min. 

 

4.2.3 Washing and Etching procedure 

 For the nanocrystalline silicon prepared from magnesiothermic reduction, 

the MgO and Mg2Si products, as well as any unreacted Mg, were removed by 

soaking the annealed powders in 1.0 M HCl for 2 hr under vigorous stirring.  It 

should be noted that even if the Mg is kept as a limiting reagent during the 

metallothermic reduction reaction, there is usually some Mg2Si byproduct that 

develops. 
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CAUTION: Mg2Si reacts with aqueous HCl to produce silane gas. Silane is 

a colorless, flammable and poisonous gas, with a strong repulsive odor. It is easily 

ignited in air, reacts with oxidizing agents, is very toxic by inhalation, and is a strong 

irritant to skin, eyes and mucous membranes.  The typical total reactant masses 

in these experiments were less than 1 g and produced only small amounts (less 

than 0.2 g) of Mg2Si.  Under these conditions, it was appropriate to do the product 

etching in a fume hood with no other flammables present.  At higher Mg:O ratios 

in the reactant mixture there will be an increase in the Mg2Si, and thus more 

precaution should be used.  If attempting to scale this process up, please be 

advised that an explosion barrier should be set up between you and the etching 

solution. 

At the end of the 2 hr aqueous HCl etch, the suspended product was then 

centrifuged at 4400 rpm for 20 min in a polypropylene centrifuge tube and the 

resulting pellet was dried in air.  The washed powder was then etched in a 1:1:1 

mixture of EtOH:H2O:HF using 5 mL of each; the washed powder was stirred in 

the HF etching solution was stirred for 1 hr.  Afterwards, the hydrogen terminated 

nanocrystalline silicon was extracted into 40 mL of non-polar solvent (either 

hexanes or toluene) by phase transfer.  Since the resulting suspension is wet and 

contains some ethanol, the suspension containing the H-Si NPs was then 

centrifuged in a glass centrifuge tube, supernatant discarded, then re-dispersed 

into dry toluene then purged with Ar for 30 minutes and stored under Ar for future 

use. 
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4.2.4 Characterization of nc-Si 

 XRD spectroscopy was conducted on a Rikagu Ultima IV X-ray 

diffractometer using an x-ray wavelength of 1.54 Å in Bragg-Brentano geometry 

(powder diffraction, focused beam).  The PDXL2 software package (version 2.7) 

was used for peak identification using the Crystallography Open Database (COD).  

The raw data was modeled using PDXL2 software to give calculated values for 

each peak (2 peak position, integrated intensity, peak width, etc.).  Crystallite 

sizes () were calculated using the Scherrer equation (equation 4.1), 

𝜏 =
𝐾𝜆

𝛽cos 
   (4.1) 

where K is a shape factor (0.90 is commonly used for mostly spherical particles), 

 is the x-ray wavelength in nm (0.1541 nm for Cu K radiation used),  is the peak 

width at half maximum height for each reflection (units of B?), and  is the Bragg 

angle of the peak (2/2  - in radians? degrees?).  Instrumental line broadening was 

accounted for by measuring the FWHM for the (111), (220), and (311) reflections 

of a large grained polycrystalline silicon standard under identical instrumental 

conditions. 

 

4.2.5 TEM 

 A Tecnai-F20 transmission electron microscope (FEI, Hillsboro, OR) 

operating at 200 kV was used to image the nanocrystalline silicon reaction 

products.  TEM samples were prepared by drop-casting a suspension of NPs onto 
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a carbon coated Cu grid and then allowed to dry in a vacuum chamber to ensure 

removal of solvent.  Particle sizes reported were determined from a minimum of 

200 particles from multiple micrographs using ImageJ software. 

 

4.2.6 SEM 

 A Zeiss Sigma VP FEG SEM was used under accelerating voltages of 2.55 

kV, 5 kV, and 10 kV.  A 3 m aperture was used without high current.  Frame 

averaging was varied from N=4 to N=64.  The detector used was a secondary 

electron detector (Everhartt-Thornley).  Particle sizes reported were determined 

from a minimum of 200 particles from multiple micrographs using ImageJ software. 

 

4.3 Results and Discussion 

4.3.1 Preliminary reduction of [HSiO1.5]n with magnesium metal 

The initial goal of this project was to increase the average particle size of 

the Si NPs obtained in a typical solid state reductive annealing synthesis from 5 

nm, up to 10 to 50 nm in size.  We hypothesized that the addition of Mg metal to 

the [HSiO1.5]n precursor would increase the particle size by increasing the amount 

of Si atoms that are reduced compared to the high temperature reductive 

annealing of the precursor alone.  To do this we adapted a previous literature 

method that was used to reduce diatoms (macroscopically organized SiO2-based 

organisms) to porous silicon replica structures.84  
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In the first magnesiothermic reduction reaction that we attempted, 

nanocrystalline silicon was produced from the reaction of the [HSiO1.5]n precursor 

and Mg powder at a Mg:HSiO1.5 ratio of 1.5:1 at 650˚C (the melting point of Mg) 

for 2.5 hours.  The powder XRD pattern for the resulting powder, prior to etching, 

has a mixture of products, as can be seen in Figure 4.1a.  The XRD pattern clearly 

shows reflections at 28.5, 47.5, and 56 2˚ associated with the (111), (220), and 

(311) lattice planes of crystalline Si.  The pattern also shows reflections at 36 and 

42 2˚ that are associated with the (111) and (220) lattice planes of MgO.  There 

are no observed reflections for Mg, indicating the complete oxidation of the Mg 

starting material.  The partially oxidized [HSiO1.5]n starting material is not 

 

Figure 4.1:  XRD patterns and TEM images from Mg reduction of [HSiO1.5]n.  (a) 
XRD patterns for the annealed product directly after the reaction (upper trace) 
and post etching procedures (bottom trace) for the initial synthesis of H-Si NPs 
from Mg reduction of [HSiO1.5]n precursor. (b) Representative TEM image of 33 
nm H-Si NPs observed after the post etching procedures. 
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crystalline, which would result in a broad peak centered between 20 and 25 2˚ if 

it were present (due to the short range order of the amorphous material).  There is 

no evidence in the annealed powder XRD pattern that there is any amorphous 

material, which indicates that all of the hydridosilicate-polymer starting material 

has been converted to products.  The minor peaks denoted with * in the XRD 

pattern following annealing are reflections indicating the presence of Mg2SiO4, an 

unexpected byproduct of the reaction.  A 2 hour etch with 1 M HCl was afterwards 

done to remove the MgO, and was followed by etching with an aqueous HF 

solution to remove the Mg2SiO4, leaving only crystalline silicon.  The XRD pattern 

following etching in Figure 4.1a shows only the remaining Si reflections; however 

there is a broad peak centered around 23 2˚ that indicates a small amount of 

amorphous material has developed, possibly due to a small oxide layer on the Si 

surface after exposure to air.  Figure 4.1b shows a representative TEM image of 

the Si particles that were isolated after the etching procedure.  These particles are 

crystalline, spherical, and have a very large range of sizes from approx. 10 nm to 

60 nm in diameter.  The measured (200 particles) average particle diameter was 

determined to be 33 nm  13 nm from TEM images.  Scherrer analysis of the line 

broadening in the XRD pattern (described above in methods) determined that the 

average Si crystallite size for the etched product was 34 nm, in good agreement 

with the size from TEM analysis.  To date, almost all reports of silicon products 

from magnesiothermic reduction of SiO2 have produced large porous silicon 

structures,84–91 however this promising initial result shows that smaller, 
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freestanding Si NPs can be achieved via this process. The observed Si NPs do 

not appear to be porous in the TEM images from this sample, consistent with the 

measured XRD grain size. 

 

4.3.2 Effects of time, temperature, and reactant concentrations on product 

morphology 

The initial reaction utilized reaction conditions at the melting temperature of 

Mg (650˚C), stoichiometric equivalent amounts of Mg to O (in the [HSiO1.5]n 

precursor), and a reaction time of 6 hours.  The resulting Si NPs were within the 

target size range; however it was hypothesized that both the size and size 

polydispersity could be controlled via manipulation of reaction conditions to 

produce particles of a desired size with more narrow size distributions.  The three 

reaction conditions that were varied were time, temperature, and the molar ratio of 

reactants.  It was expected that increasing any of the three variables (time, 

temperature, or molar ratio) should all show a trend of increasing the particle size 

based on previous studies.92 

The time of reaction was first varied from 0 minutes to 6 hours while holding 

temperature and molar ratio constant.  The 0 minute reaction time was observed 

by increasing the furnace temperature at a rate of 20˚C/min to the 650˚C reaction 

temperature, and then immediately reducing the temperature at 20˚C/min to 

ambient temperature.   For other reaction durations tested (up to 6 hours), varying 

the time of reaction did not result in any observable changes in crystallite size by 
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powder XRD line broadening.  All were observed to be approx. 30 nm to 35 nm, 

including the 0 minute reaction time.  This indicated that the reaction produced 

elemental silicon domains very rapidly upon reaching the melting point of Mg, and 

that afterwards no further particle growth was observed.   

 

Figure 4.2:  XRD patterns of the annealed product mixture with varying reactant 
ratios.  The reactant ratios of Mg to O increase from bottom to top as follows: 
(a) 1:5, (b) 2:5, (c) 3:5, (d) 4:5, (e) 1:1, and (f) 2:1.  The observed peaks are 
denoted with symbols corresponding to crystalline material indicated at the top. 
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Next, reactant concentrations were varied to try and control particle size, 

while holding the time constant at 0 hours, and the temperature at 650˚C.  The 

molar ratio of Mg:O was varied from 1:5 (Si in excess) to 2:1 (Mg in excess) and 

the XRD patterns from the resulting powders can be seen in Figure 4.2 above.  For 

molar ratios of Mg:O of 1:5 and 2:5 (Figure 4.2a and 4.2b respectively) the XRD 

patterns show the expected products MgO and Si, but also have a significant 

portion of amorphous material that is presumably from the [HSiO1.5]n polymer that 

is unreacted.  The Si crystallite size from XRD line broadening for the 1:5 molar 

ratio was 8 nm and for the 2:5 molar ratio was 13 nm.  When the ratio of Mg was 

increased to 3:5 (Figure 4.2c) the pattern shows peaks from MgO, Si, and 

Mg2SiO4; further, little to no amorphous material was detected.  The line 

broadening gives a Si crystallite size of 26 nm for the 3:5 molar ratio.  As the ratio 

of Mg was increased further to 4:5 and 1:1 (Figure 4.2 d and e), the XRD patterns 

remained qualitatively the same as for the 3:5 ratio.  The only products detected 

were the MgO, Si, and Mg2SiO4 with no amorphous phase, and the Si crystallite 

sizes were determined from XRD line broadening to be 34 nm and 32 nm for the 

4:5 and 1:1 ratios respectively.  When the molar ratio of Mg:O was still further 

increased to 2:1 (Figure 4.2f) there are products of MgO, Si and Mg2Si with no 

apparent Mg2SiO4 or unreacted Mg observed in the pattern; the Si crystallite size 

by line broadening for Si was 31 nm.   

Overall, these experiments showed that there is an observed increase in 

domain size with increasing Mg:O ratio when the hydridosilicate starting material 
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is in excess.  Further, when Mg is significantly limiting, a large amount of 

amorphous material remains in the reaction products, presumably from unreacted 

[HSiO1.5]n starting material.  However, when Mg is excess, particle size no longer 

changes with increased Mg content, only the presence of Mg-oxide byproducts is 

increased – this indicates that the reaction stoichiometrically converts the partially 

oxidized Si atoms in the starting material to fully reduced Si atoms in the reaction 

products. 

Finally, the temperature of the reaction was also varied and XRD line 

broadening was analyzed. The heating and cooling rate was held constant at 

20˚C/min and maximum temperatures of 500˚C, 550˚C, 600˚C, and 650˚C were 

held for 1 hour before cooling.  The molar ratio of Mg:O was also held constant at 

1:1.  XRD patterns were observed for each reaction mixture post annealing without 

further washing procedures and can be seen in Figure 4.3.  When the maximum 

reaction temperature was 500˚C the XRD pattern (Figure 4.3a) shows reflections 

for unreacted Mg at 32.2, 34.4, 36.6, 47.8, and 57.4 2˚ representing the (100), 

(002), (101), (102), and (110) lattice planes respectively.  There is also a broad 

feature centered at approx. 23 2˚ indicating there is amorphous material 

presumably from the [HSiO1.5]n starting material. Reflections at 24.2 and 40.1 2˚ 

associated with the (111) and (220) planes for Mg2Si and a broad peak at 42.8 2˚ 
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associated with the (200) lattice plane of MgO was observed.  No crystalline Si 

peaks were observed from the 500˚C reaction temperature.  At maximum reaction 

temperatures of 550˚C, 600˚C, and 650˚C (Figures 4.3b, 4.3c, and 4.3d) the XRD 

patterns are very similar.  There are the observed reflections for Si, MgO and 

 

Figure 4.3:  XRD patterns of the annealed product mixture with varying reaction 
temperature.  The reaction temperatures are (a) 500˚C, (b) 550˚C, (d) 600˚C, 
and (d) 650˚C.  The reflections indicated by * are associated with Mg2SiO4. 
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Mg2SiO4 products as indicated in Figure 4.3.  The line broadening analysis using 

the Scherer equation gave Si crystallite sizes of 32 nm, 31 nm and 34 nm for the 

reactions at 550˚C, 600˚C, and 650˚C respectively. 

 The results from these experiments, where only the temperature varied, 

indicate that there is a minimum threshold temperature that must be reached in 

order to accomplish conversion of the hydridosilicate precursor to elemental 

silicon; this temperature is between 500˚C and 550˚C.  Above 550˚C, however, 

there is no observed trend in the resultant particle sizes, contrary to our hypothesis.  

It should also be noted that additional experiments conducted at 550˚C with 

reaction times of times of 0 and 6 hours showed no discernible difference in the 

size or composition of the annealed products in comparison to 1 hr annealing; this 

(again) indicates that this reaction is occurring rapidly, even when the reaction 

temperature is well below the melting point of Mg (650˚C). 

 Overall, the magnesiothermic reduction reactions conducted at or above 

550˚C all produced nano-crystalline Si between 10 and 34 nm, according to the 

domain sizes extracted from XRD line broadening. However, after etching the 

reaction products to isolate the crystalline domains, the TEM images of the isolated 

nano-crystalline Si (Figure 4.4a) did not show the same morphology as was 

observed in our initial synthesis (Figure 4.1b).  There were few if any freestanding 

spherical particles and the majority of the mass was composed of large, irregularly 

shaped material.  It was surmised that this could be due to particle aggregation 

and then fusing that occurred during the reduction process.  An alternate possibility 
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would be aggregation after etching out of the solid, as observed for the smaller H-

Si NPs in the earlier chapters, however we tried post-passivation by hydrosilylation 

to see if improved ability to isolate free-standing un-aggregated H-Si NPs but the 

same structures were observed.  

 

4.3.3 Addition of heat sink to reduce crystallite fusion 

Domain aggregation of nano-silicon within the initial (or as-synthesized) 

solid has been observed in numerous studies using larger SiO2 structures as 

templates for magnesiothermic reduction to Si.84–91  The reduction reaction itself is 

exothermic (equation 4.2) and will release a large amount of heat once the reaction 

is initiated.  This is most likely the reason that the 0 minute time point still resulted 

in a complete conversion to crystalline products even at temperatures well below 

the melting point of Mg.  Previous reports have shown that Mg vapor is the reactive 

species in this reaction84,86,92–94 and at 550˚C there must be enough vapor 

pressure to initiate the reaction.  The extra heat generated from the reduction 

reaction could then create a micro-environment that has a local temperature much 

higher than that of the overall reaction vessel.  This could increase the vapor 

pressure of Mg in the local reaction environment while also providing enough 

excess energy for individual Si crystallites to fuse together after formation and 

become multi-grained large structures. 
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We hypothesized that we could avoid fusion of the Si nanocrystals by better 

distributing the heat generated in the exothermic reaction with addition of NaCl (50 

wt%) to act as a non-reactive heat sink in the reaction mixture.  A representative 

TEM image of the nanocrystalline silicon obtained after post-synthetic workup can 

be seen in Figure 4.4b.  The darker portion of this image appears to be a large 

mass as observed before, however there are many smaller masses that appear to 

have deposited on the surface of the large mass, most likely during drying of the 

sample on the TEM grid.  No fields of freestanding particles could be found so we 

did not calculate a size distribution from TEM; however, line broadening analysis 

 

Figure 4.4:  TEM images of H-terminated nc-Si annealed with and without NaCl.  
(a) A representative TEM image from the temperature change and molar ratio 
change reductions without NaCl as a heat sink (XRD pattern shown above in 
Figure 4.3b).  (b) Representative TEM image from reduction reactions 
conducted with the addition of NaCl as a heat sink. 
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of the XRD pattern (not shown) gave a Si crystallite size of 8 nm.  As an additional 

observation, the irregularity of the smaller masses in Figure 4.3b suggests that the 

initial particle size of the [HSiO1.5]n material may be preserved after the reduction 

process. 

 

4.3.4 Magnesiothermic reduction of SiO2 spheres 

 From the experiment with added of NaCl as a heat sink, we hypothesized 

that the morphology of the nano-crystalline silicon product may be similar to that 

of the starting [HSiO1.5]n material.  This led us to try a new strategy that would take 

advantage of highly monodisperse, highly oxidized silica NPs (SiO2 NPs) as 

templates; SiO2 NPs of a variety of sizes are commercially available, or can readily 

be synthesized in the lab using the Stober method described above.  We expected 

that under appropriate synthetic conditions, magnesiothermic reaction could 

generate slightly smaller reduced Si NPs with retention of the spherical 
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morphology. We further hypothesized that high local heats of reaction would result 

in crystalline over porous Si nanostructures. To test this we started with spherical 

SiO2 particles of approx. 72 nm +/- 15 nm, purchased in aqueous colloidal form 

from a commercial source; a TEM image of this starting material is  seen in Figure 

4.5a.  The SiO2 particles were then reacted with Mg at a ratio of 1:1 Mg:O at 650˚C 

for 1 hour.  A representative TEM image of the resulting Si particles after washing 

and etching procedures is seen in Figure 4.5b.  Notably, the spherical morphology 

is well maintained following reduction; the average diameter for the Si particles is 

68 nm +/- 10 nm, which is slightly smaller with a smaller variance as compared to 

the initial SiO2 particle size distribution.  The XRD pattern verified the product after 

reduction and workup as nanocrystalline Si, and XRD line broadening gave an 

 

Figure 4.5:  TEM images of SiO2 and Si NPs before and after reduction.  (a) 
SiO2 NPs with average size of 72 +/- 15 nm before reduction and (b) Si NPs 
with average diameter of 68 +/- 10 nm after reduction.  Scale bars in both 
images are 200 nm. 
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average crystallite size of 63 nm.  The agreement from XRD line broadening and 

TEM suggests that the Si NPs after reduction are single grained particles of about 

68 nm.  Since the XRD line broadening shows the average coherently scattering 

domain size below 100 nm,95 the results from this experiment would suggest that 

the particles are not porous and mostly free from structural defects.  While there is 

another literature reports of the magnesiothermic reduction of SiO2 NPs producing 

solid Si replica particles,96 obtaining solid crystalline Si structures contradicts the 

majority of literature that suggests this is process results in porous silicon 

structures.84–91 

 To address the inconsistency with the literature, we conducted further 

experiments to try and determine the porosity of the Si NPs.  It was hypothesized 

that as the size of the initial SiO2 particle increases, there would be more porosity 

observed.  We chose to use SEM to try and visualize the surface of the particles 

and to see if we could identify the presence of pores on the surface.  We started 

with three different sizes of SiO2:  commercially available LUDOX TM-40 particles 

that are 22 nm in size, commercially available NanoXact that are 80 nm in size, 

and SiO2 NPs that were made in our lab. 

 The SEM images from before and after reduction are presented in Figure 

4.6 (following page).  The LUDOX particles (Figure 4.6a) before reduction show 

uniformly sized particles of 22 nm +/- 2 nm as the bottle suggests.  The NanoXact 

particles are 75 nm +/- 6 nm particles shown in Figure 4.6b.  The SiO2 particles 

produced by our lab (Figure 4.6c) had an average size of 240 nm +/- 26 nm.  The 
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images taken after reduction and post synthetic workup (Figure 4.6 d, e, and f) are 

very different structures than the starting material and much more similar to 

previous results from magnesiothermic reduction of the HSiO1.5 precursor detailed 

above.  The resulting material does not contain free standing particles as was seen 

in Figure 4.5 for our initial synthesis using LUDOX particles, but instead is an 

agglomerated mass of Si domains.  The XRD patterns for the reduced Si material 

after HF etching (corresponding to images shown in figure 4.6 d, e, and f) show 

the three characteristic peaks for diamond lattice Si at 28.5, 47.5, and 56 2˚ for 

all three samples. The line broadening indicates crystalline domain sizes of 16.3 

 

Figure 4.6:  SEM images of SiO2 before and nc-Si after reduction.  Initial SiO2 
NP from LUDOX TM-40 (a), NanoXact (b), and our own lab made particles (c).  
After reduction the SEM images show reduced material from LUDOX (d), 
NanoXact (e), and our own lab made SiO2 particles (f).  Scale bars in all images 
are 100 nm. 
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nm, 21.4 nm, and 22.5 nm for the LUDOX, NanoXact, and Stober reduced samples 

respectively from XRD line broadening calculations.   

The small domain sizes of from XRD and the large masses from the SEM 

images suggest the domains are fusing together upon reduction which form large 

 

Figure 4.7:  XRD patterns after the reduction of three SiO2 precursors.  (a) 
Stober SiO2 particles, (b) NanoXact, and (c) LUDOX TM40 with magnesium and 
post-synthetic work up to remove byproducts. 
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crystalline Si masses.  The large difference between the crystalline domain size of 

the Si product and the precursor SiO2 size is more consistent with previous 

literature reports84–91 than the initial observations we saw in Figure 4.5 or was 

observed by Dasog and coworkers.96   

 

4.4 Conclusions 

 The initial goals of the project were to increase the size and crystallinity of 

Si NPs from the previous 5 nm size limitation from the standard high temperature 

reductive annealing method we have employed in our lab previously.  To do this 

we attempted to develop a method based on metallothermic reduction of silicon 

oxides that have lower threshold temperatures than the reductive annealing 

method.  We were successful in demonstrating that the [HSiO1.5]n precursor 

material can be reduced by Mg metal to highly crystalline Si0 at temperatures as 

low as 550˚C.  Although the Si produced in this process is more crystalline than 

the Si0 produced from the high temperature reductive annealing method, it is 

difficult to predictably control the resultant morphology to the degree necessary for 

industrial applications.  We were able to show that the size and morphology of the 

[HSiO1.5]n material could be preserved with the addition of a heat sink to absorb 

excess heat produced from the reaction.  Unfortunately the reduction of spherical 

SiO2 NPs had irreproducible results.  In some cases the particles were 

freestanding H-Si NPs with similar size and shape to the precursor SiO2 particles, 
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but in most cases the Si0 crystallites formed large multi-domain crystalline silicon 

structures.  
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