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Abstract

The problem of secure remote computation has become a serious concern of

hardware manufacturers and software developers alike. Trusted Execution Envi-

ronments (TEEs) are a solution to the problem of secure remote computation in

applications ranging from “chip and pin” financial transactions [40] to intellectual

property protection in modern gaming systems [17]. While extensive literature has

been published about many of these technologies, there exists no current model

for comparing TEEs. This thesis provides hardware architects and designers with

a set of tools for comparing TEEs. I do so by examining several properties of a

TEE and comparing their implementations in several technologies. I found that

several features can be detailed out into multiple sub-feature sets, which can be

used in comparisons. The intent is that choosing between different technologies

can be done in a rigorous way, taking into account the current features available

to TEEs.
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Glossary

attestation The process of assuring the validity and security of a system. The

system can only be valid and secure if the code and data stored on the system

have not been altered in any way that either causes the system to operate

outside specifications or compromises the trust model. 4, 11, 14, 17, 21–25,

34, 39, 55–60, 64

axiomatic A semantic of logic which formalizes the definition of a concept using

a set of criteria or axioms, all of which must be true for the given definition

to be met. 43

chain of trust A series of entities that engage in secure transactions in order to

provide a service. The first entity in the chain is referred to as the root of

trust, while the last entity in the chain is often the end user or application

requiring a secure transaction. 9, 32, 37, 38

cryptographic hash A cryptographic hash is the result of a mathematical func-

tion whose input is data of variable length and whose output is data of a

deterministic value and fixed length. If this hash represents a piece of soft-

ware, we can consider this hash the software’s “identity” [9] for purposes of

attestation. Many systems of attestation refer to this hash as a “measure-

ment”. 19, 22, 24, 34, 57

hart In a RISC-V system, a core contains an independent instruction fetch unit

and each core can have multiple hardware threads. These hardware threads

are referred to as harts. 42, 43
viii



operational semantic A semantic of logic which formalizes the definition of a

concept by generating a golden output model. Any system meeting the

definition must produce the same output as that defined in the model. 43

privilege ring Also known as a “protection ring” or “protection domain” [33],

these modes of operation allow a processor to restrict access to memory or

special instructions. Switching between rings is the function of low-level

software or firmware. Before the problem of secure remote computation

described in Chapter 1, these rings provided adequate protection for software

applications. 1, 5, 7, 8, 19, 21–23, 30

Root of Trust “A computing engine, code, and possibly data, all co-located on

the same platform which provides security services. No ancestor entity is

able to provide trustworthy attestation for the initial code and data state of

the Root of Trust” [25]. For system security purposes one might say, “the

buck stops here”. xi, 11, 17, 35, 53, 57

Trusted Compute Base When referenced generally, the code which must be

trusted in order for the system to be considered secure. The code can include

platform firmware, firmware from the manufacturer, or any code running

inside the TEE. When in reference to a specific application, the TCB may

only refer to the part of the application which runs inside the TCB. xii, 17,

57
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Chapter 1

Introduction

Historically, computer architecture security relied on processor modes or privilege

modes where code was allowed to execute. In these modes, separation of privileges

is achieved and often referred to as “rings” with “ring 0” being the most privileged

machine mode where OS kernel code runs and privilege ring 3 being the least

privileged user mode where application code runs. Figure 1.1 shows this concept

and we will briefly discuss how it is applied to different architectures in the coming

chapters.

As applications became more complex, specifically with the advent of large-

scale virtualization and the internet, this simple security model broke down as

executed code could no longer be trusted, nor its origin verified. The problem

of “secure remote computation” arises where the data owner must trust not only

the software provider, but also the remote computer and infrastructure on which

that software is executed. Homomorphic encryption solves the problem of secure

remote computation to some extent, however the performance overhead of this

transaction limits its application [22].

In an attempt to address the problem of secure remote computation, micropro-

cessor designers have implemented different types of Trusted Execution Environ-

ments (TEEs), first defined by the Open Mobile Terminal Platform and ratified

in 2009 [45]. These TEEs are intended to allow for code and data to reside in a

specially provisioned area of memory where the processor can reserve access rights

using a given set of rules. The processor will then guarantee the confidentiality

1



Ring 3

Ring 2

Ring 1

Ring 0

Kernel

Device Drivers

Device Drivers

Applications

Least Privileged

Most Privileged

Figure 1.1: Hierarchical protection domains or protection rings. Processors
will define the method for switching between modes in such a way that code running
in “ring 3” should not have access to code or data running in the rings below it.
Attempts to access memory or to run special privileged instructions should throw
an exception. Device drivers may run at a higher privilege level to gain access to
special instructions. Figure recreated from Hertzsprung at English Wikipedia, CC
BY-SA 3.0, via Wikimedia Commons.

and integrity of that region of memory based on the configuration of the system.

In choosing a TEE, hardware architects have many complex features to consider

before picking a platform. Currently, many resources exist that cover the features

and design details of specific TEEs, however there are few resources that combine

this information into one source for comparison. In this thesis, we will examine

Intel Software Guard Extensions (SGX), Arm TrustZone, and RISC-V Physical

Memory Protection (PMP) in order to provide a methodology for comparing and

evaluating TEEs by considering these technologies’ respective strengths and weak-

nesses. The goal of this thesis is not to characterize one technology as overall

superior to another, nor is the goal to expose fatal flaws that make one technology

2
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inherently insecure. Rather, we will describe the properties of a hardware TEE

and illustrate how each technology implements those properties. A comparison

of these different implementation details yields a method of evaluating TEEs for

those looking to choose the TEE that best fits their needs.

These three technologies were chosen for specific reasons. Intel SGX is available

on most consumer desktop/laptop products, and the technology is now becoming

popular on their Xeon line of server/workstation processors. Arm is the de facto

architecture used in cell phones and embedded devices. The popularity of these two

architectures makes them a natural choice for comparison. The third technology,

RISC-V PMP, is a newcomer to the stage of TEE options. We will examine how the

more mature technologies have informed choices made by the architects of RISC-

V, as they are clearly addressing specific limitations with current technologies.

While the method used to examine these technologies will be restricted to those

aforementioned three TEEs, this method can be applied to any TEE.

The goal of this thesis is to provide hardware implementers with a method for

comparative analysis and not to act as a definitive guide to any one of these three

technologies. Any hardware implementation details are given only as examples and

are not intended to be used in production systems. Furthermore, this thesis is an

examination of the hardware and not the many possible software implementations

available. As such, while we may discuss firmware and software throughout the

thesis, it is not meant to be a guide to properly implementing a complete solution.

This thesis will begin by giving a brief history of TEEs as well as some of the

cryptographic underpinnings of the technology (chapter 2). In considering these

topics, we will provide definitions for many of the technologies used in a TEE

in order to constrain ourselves to hardware implementations only. We will then

3



give a detailed analysis of Intel SGX (chapter 3), Arm TrustZone (chapter 4),

and RISC-V PMP (chapter 5). We will examine how these technologies provide

the fundamental properties of a hardware TEE: code integrity, data integrity, and

data confidentiality. Furthermore, we will describe how some of these solutions can

provide more advanced features like code confidentiality, authenticated launch, pro-

grammability, attestation, and recoverability. Lastly we will provide a comparison

of the three technologies and their methods for providing the fundamental and

advanced properties of a hardware TEE (chapter 6).

4



Chapter 2

Background

2.1 Overview

In order to understand Trusted Execution Environments (TEEs) we must first look

at how computer architecture security worked before the problem of secure remote

computation. The processor modes discussed in the introduction contained four

privilege rings with the most privileged level, privilege ring 0, executing operating

system kernel code. However, in most modern x86 client systems there are 3 levels

of even greater privilege than privilege ring 0. We will examine each of these briefly

and describe why they do not provide the same type of protections that a TEE

provides.

2.2 The Predecessors of the TEE

In 1990, Intel integrated a new privilege mode into their i386SL processor called

System Management Mode (SMM) [67], now commonly referred to as “privilege

ring -2” (privilege ring negative two). OS code does not have access to this privilege

level and only specific firmware, usually provided by the platform manufacturer, is

allowed to execute code in SMM. This processor mode is entered by using a special

System Management Interrupt (SMI). This interrupt has the highest priority of

any interrupt as of the writing of this thesis, and is even higher priority than a

non-maskable interrupt (NMI). Common tasks one might perform in SMM include

thermal management, power management, or even something as simple as alter-

ing the volume output in response to buttons on a laptop keyboard [66]. SMM

5



would remain the most privileged level of code execution until the release of Intel

Management Engine (Intel ME) in 2008 [19].

The memory used in SMM, called System Management RAM (SMRAM), is

secured from any accesses or modifications originating anywhere outside SMM.

Secured accesses include any accesses or modifications originating from the CPU,

from I/O devices, and from Direct Memory Accesses (DMAs). When an SMI is

generated, all the CPU threads enter SMM and each of their register states are

saved in a memory table inside SMRAM. Work can now be done by the SMI

handler. Once this work is finished, each of the CPUs previous states are restored

and execution is handed back to where the SMI was originally generated. Since

there can be multiple SMI handlers there is firmware code that runs in a single

thread and acts as an SMI dispatcher. All other CPU threads wait inside SMM

until the handler thread has returned [18]. This firmware code is an implementation

of the Unified Extensible Firmware Interface (UEFI) specification, which is the

successor to the Extensible Firmware Interface (EFI) specification [68].

There are several reasons why SMM is not a suitable replacement for a TEE.

Firstly, using SMM for any tasks which consume a significant amount of time

would cause the system to hang while SMIs are handled. As such, SMM tasks are

confined to small workloads which can return quickly and do not need to happen in

rapid succession. However, tasks which take significant amounts of time and may

occur in rapid succession are exactly the types of tasks we wish to run in a TEE.

Tasks like processing a credit card payment, or verifying the identity of the user

with biometrics would all take significant time to run and would need to happen

in quick succession.

Secondly, SMM is very restrictive in terms of how code is developed for the

6



platform. All code executed in SMM must be located inside the system firmware,

loaded into SMRAM, and locked before the OS is loaded into memory. As such,

firmware code does not have easy access to communicating with the host OS but

must use special EFI SMM variables [60].

Lastly, while updating firmware in the field is possible [69], it almost always

requires a reboot of the system. Updating the code in a TEE is a critical function

that will be required much more often than a firmware update and should not

require system reboot each time. These are just a few reasons why SMM is not

a suitable solution to the problem of secure remote computation. Perhaps the

overarching reason is that SMM was not designed to solve the problem of secure

remote computation. Regardless, we have shown why it should not be used where

a TEE would be better suited.

In 2005 [61], Intel released their first processor to allow the next most privileged

mode of their x86 processors, Intel Virtualization Technology (VT-x)1. Commonly

referred to as “privilege ring -1” (ring negative one), VT-x added new instructions

called Virtual Machine Extensions (VMSs). These instructions are used to create a

layer of hardware isolation between the host OS from the guest OS. It is tempting

to see a TEE as a type of virtualization. Indeed, one early form of a trusted

computing environment used a “dedicated closed virtual machine” [21] to achieve

many of the goals of a modern TEE. However, as others have shown [54], this type

of virtualization fails to cover several key properties of a TEE. For our purposes,

we will consider these properties attestability and code confidentiality, and will

discuss these in depth in coming chapters.

1We use the acronym VT-x here to refer to all of Intel Virtualization Technologies, though in
this case the “x” refers to Xeon processors with this feature. Non-Xeon processors would use the
designation VT. There is also Intel Virtualization Technology for Directed I/O (VT-d). In this
thesis we will use VT-x so as to avoid any confusion with the common acronym VT.
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In 2008 [19], Intel developed what is today the most privileged processor level

on x86 hardware, the Intel Management Engine (Intel ME). This technology, com-

monly referred to as “privilege ring -3” (privilege ring negative three) is not actually

a processor mode at all. It is instead a feature of some Intel chipsets. Most of the

properties of Intel ME are obscured by the proprietary firmware that it runs. The

majority of information available regarding Intel ME is found either in Intel’s pub-

lications or from the plethora of reverse engineering done by security researchers.

As such, we will not consider Intel ME a suitable replacement for a TEE for two

key reasons: most of the information about this technology is gained by indirect

means like reverse engineering and the firmware is not intended to be modified

from the signed binary provided by Intel.

These three x86 “negative privilege rings” provide hardware protection of vari-

ous kinds and each has its own restricted area of memory. However, none of these

technologies serve as a viable solution to the problem of secure remote computa-

tion. It is no surprise that Intel eventually developed Software Guard Extensions

(SGX), their own implementation of a TEE in order to address this problem. Be-

fore we address SGX specifically, we will continue to track the development of

Trusted Execution Environments (TEEs) by starting with their use in handsets,

the precursor to today’s smartphones.

2.3 Birth of a TEE

The concept of securing computation is not a new idea. As we have seen with

Intel ME, neither is the technique of using a processor other than the main, gen-

eral purpose CPU for secure computation. For almost two decades [47] hardware

manufacturers have relied on Trusted Platform Modules (TPMs) for a similar kind

8



of secure computation. In 2009 the Trusted Computing Group (TCG) specifica-

tion for a TPM was ratified as an ISO standard. A TPM is a system that must

remain separate from the system it reports to: the host system. It can be a single

physical component that communicates with the host system over a simple bus.

TPMs can have their own processor, RAM, ROM, and flash memory. While the

host system cannot directly change the values of the TPM memory, it can use the

simple bus to send and receive information. As of TPM version 2.0, the TPM

can now be a part of the main processor, however it must use hardware memory

partitioning and use a well defined interface instead of the simple bus. The use of

the main processor as a TPM may add significantly more speed, but at the cost

of more complexity. TPMs contain random number generators, cryptography key

generators, and secure storage.

While TPMs have many of the features we require of our TEEs, they were

designed with securing small amounts of data like cryptographic keys, not entire

applications. TPMs focus on security over speed and their cryptographic algo-

rithms may be purposely run at much slower speeds than is possible with a CPU,

let alone a cryptographic accelerator. TPMs do, however, provide a valuable tool

for a TEE to use as part of its chain of trust2. Concepts used in a TPM like

secure storage and isolated memory are expanded in a TEE with concepts like

isolated and protected IO and isolated RAM. It is not surprising that we see the

first industry efforts around TEEs around the same time that the ISO standard

for TPMs is published.

2Unsurprisingly, the concept of a “chain of trust” comes out of electronic commerce security
publications from the 1990’s [40]. The internet opened up the concept of electronic commerce to
a much broader audience. In doing so, it also opened up a much larger attack surface for threat
models to consider.
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TEEs were first defined by the Open Mobile Terminal Platform (OMTP) Hard-

ware Working Group and ratified in 2009 [45]. This standard was designed specif-

ically for “handset manufacturers”. The OMTP standard was transferred to the

Wholesale Applications Community (WAC) in 2010 and in July 2012 WAC itself

was closed, with the OMTP standards being transferred to The GSM Associa-

tion (originally Groupe Spécial Mobile) [48]. The OMTP standard defines an

“execution environment” as a combination of five elements: a processing unit, a

bus, physical memory, a boot process, and the contents of the execution environ-

ment [45]. These contents include the code, data, and keys required for computa-

tion. The OMTP document goes on to describe two sets of security requirements

which meet their definition of a TEE, called “Profile 1 and 2”. Profile 2 provides

greater security than Profile 1, however both meet their definition of a TEE.

Both profiles provide protection against unauthorized memory access given a

list of vulnerable attack surfaces summarized in Table 2.1. The core requirements

for an OMTP TEE cover these “threat groups” to different degrees. There are 27

core requirements in total and it is out of the scope of this thesis to list or go into

details on them. Sufficed to say that they address the attack surfaces described

in Table 2.1. Also, it is clear from the threat groups described that these threat

models are only applicable to handsets and do not cover typical embedded devices.

Another standards body called GlobalPlatform took up the task of standardizing

the use of TEEs across multiple embedded platforms.

GlobalPlatform Incorporated is a nonprofit industry organization that began

in 1999 with the mission of providing standardization around mobile payment

devices and software. In 2011 they created a TEE model [25] that met the needs of

embedded use cases. They define a TEE as a system providing “isolated execution,
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Group Attack Surface

Group 1 Hardware modules used for accessing memories, only including at-
tacks mounted via modules built into the “mobile equipment” de-
sign (e.g. DMA module)

Group 2 Colour LCD controllers or “graphics chip of the mobile device”
designed to be pointed at memory blocks and could dump that
information to the screen

Group 3 Removal of battery or external memory card

Group 4 Replacement of flash when power is off

Group 5 Extract secrets by bus monitoring (e.g. hardware probes)

Group 6 Attached devices (mod chips) used to attack data between flash
and the System on Chip (SoC) or in external RAM.

Group 7 Replacement of flash when power is on

Table 2.1: Attack surfaces as grouped by the OMTP. This table is created
from data available in section 2.1 of the OMTP document. [45]

integrity of Trusted Applications (TAs), and integrity and confidentiality of TA

assets” [25]. A GlobalPlatform TEE is more rigorous than the OMTP standard

in that it requires a security certification provided by GlobalPlatform and must

comply with the following GlobalPlatform standards: TEE Protection Profile,

TEE Client API Specification, and TEE Internal Core API Specification [23, 24,

27].

Unlike in the OMTP standard, GlobalPlatform first introduces the concept of

attestation in its definition of a Root of Trust (RoT). We will discuss attestation

in depth for each of our technologies we cover, as well as in chapter 6 where we

consider this property of a TEE and if it can be considered optional [58]. Standards
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and specifications from groups like OMTP and GlobalPlatforms paved the way for

the creation of mobile devices capable of secure remote computation. Indeed,

the smartphone revolution would only have been possible with the ability to run

trusted applications allowing users to interact with financial, healthcare, and other

valuable data.

PCB

Power Control IC

System On Chip

I/O Interfaces

Video Keyboard Other

Non-volitile

Memory

(Flash)

Volitile
Memory
(RAM)

Embedded
Secure

Element

Removable

Secure

Element

Off-SoC
Security

Processor

RTC

Other
Secure
Assets

Potential TEE hosting components

Other system components

Optional component

Key

Figure 2.1: The board level chipset architecture of a typical mobile device.
The concept of an embedded or removable secure element allows for devices like a
TPM which may hold secure data but will not host the TEE. A TEE may reside
on the SoC itself as with Arm TrustZone. However, it is possible to physically
separate the TEE from the SoC and still be compliant with the GlobalPlatform
model. This figure was recreated and simplified from Figure 2-1 on page 15 of the
GlobalPlatform Technology TEE System Architecture Version 1.2. [25].

In Figure 2.1 we see a very common mobile device system diagram with the
12



possible TEE hosting components listed as both on and off chip. GlobalPlatforms

differentiates between the Rich Execution Environment (REE) and the Trusted

Execution Environment (TEE). The REE focuses on extensibility and versatility

whereas the TEE has only one purpose: to “provide a safe area of the device

to protect assets and execute trusted code” [25]. These standards were first put

into use by complex SoCs with the release of processors implementing the ARM

Cortex A5 core in 2012. These cores included Arm TrustZone as well as a reference

firmware implementation for building secure applications. Arm TrustZone has

since become the de facto standard for embedded devices as well as as Android-

based mobile phones requiring a TEE.

Up to now, we have only covered relatively simple use cases like handsets,

smartphones, and embedded devices. Bridging the gap between these simple de-

vices and desktop or server processors will require we cover the current dominant

architecture in that space, namely the x86 family implemented by Intel and AMD.

2.4 From Handsets to the Cloud

In 2013 at a workshop titled Hardware and Architectural Support for Security and

Privacy (HASP), Intel introduced Software Guard Extensions (SGX) for Intel ar-

chitecture. SGX is not an extension to the x86 architecture, but rather to the Intel

architecture. As such, AMD developed their own solution called Secure Encrypted

Virtualization (SEV). As mentioned previously, we will not discuss AMD SEV in

this thesis as its architecture is quite different from Intel SGX. While there are sev-

eral papers published in the proceedings from the HASP 2013 workshop [1, 30, 42],

as well as two patents from Intel’s original filings [32, 41], we will use a more recent

paper by Costan [15] as well as a recent whitepaper from Intel [31] in exploring
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SGX.

Intel’s introduction of SGX opened up the desktop and laptop markets to a new

type of software application capable of hardware-backed secure “enclaves”. It also

gave application developers on Intel platforms the chance to utilize both local and

remote attestation, providing assurance from the vendor regarding code integrity

and confidentiality. It wasn’t until 2021 that Intel would make this technology

available in multi-socket Xeon CPUs, opening the door for cloud providers to take

advantage of TEEs on Intel platforms [13].

2.5 RISC-V: An Open Source TEE

RISC-V is a popular modern architecture developed at the Parallel Computing Lab

(Par Lab), which is part of the University of California at Berkeley. Perhaps the

most notable thing about this architecture is that it has been developed using the

same methodology as open source software. The specifications are published using

a Creative Commons license, and all code examples or artifacts of the specification

use permissive licenses like the BSD licenses or the Apache license [62]. The work

done on the RISC-V specifications is overseen by a non-profit organization called

RISC-V International, an organization registered in Switzerland.

The Trusted Execution Environment Task Group of RISC-V International has

developed a specification called Physical Memory Protection (PMP) as part of

the RISC-V Privileged Specification [63]. RISC-V PMP extends the concept of

Physical Memory Attributes (PMA) to include multiple configurable sections of

memory whose access rights can be altered by firmware running at the highest priv-

ilege level. RISC-V PMP is certainly a very basic type of TEE, however plans to
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extend its capabilities have already been drafted in a new specification called Ex-

tended Physical Memory Protection (ePMP). Likewise, drafts of S-Mode Physical

Memory Protection (sPMP) and I/O Physical Memory Protection (IOPMP) are

set for ratification in 2021. We will discuss all of these types of memory protection

in detail in chapter 5.

This chapter has given a brief background of Trusted Execution Environments

(TEEs) and we have been selective in mentioning only a few of the many examples

of hardware security that influenced the development of TEEs. We have shown that

any given TEE builds off the technologies of the past, even when incorporating new

instructions or hardware unique to TEEs. As we will see, without technologies and

standards like the TPM ISO standard of 2009, TEEs would not have the means

to perform many of the advanced features like attestation which are critical to

some applications. We continue now with an overview of our three technologies

for comparison: Intel Software Guard Extensions (SGX), Arm TrustZone, and

RISC-V Physical Memory Protection (PMP).
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A Timeline of TEE Related Events

1990 • Intel releases SMM

2005 • First processor using VT-x released

2006 • Firmware vulnerabilities in SMM published

2008 • Intel ME released
First VM Escape CVEs published

2009 • OMTP TEEs standard published
TPM ISO standard

2011 • GlobalPlatform TEE specification published

2012 • ARM Cortex-A5 with TrustZone

2013 • TrustZone vulnerability published
Intel introduces Software Guard Extensions (SGX)

2015 • Intel Skylake chips with SGX publicly available

2016 • Intel ME rootkit CVE published
SGX attack published [64]

2017 • RISC-V PMP specification ratified
SGX critical CVE published

2019 • Microsemi releases SoC with RISC-V PMP

2020 • RISC-V ePMP, sPMP, IOPMP specifications drafted

Figure 2.2: An overview of modern hardware security features, specifica-
tions, and vulnerabilities In this timeline, events pertaining to TEEs are in blue
and vulnerabilities in hardware security technologies are in red. Dates of vulner-
abilities are not exact, see https://cve.mitre.org/ for exact dates and severity.
Dates of technology releases are estimates and taken by the first broadly available
product release with the given feature available.
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Chapter 3

Intel Software Guard Extensions

3.1 The Intel SGX Solution

Intel Software Guard Extensions (SGX) is built on designs of software attestation

already proven in technologies like the Trusted Platform Module (TPM) and Intel

Trusted Execution Technology (TXT). In SGX, these concepts of software attesta-

tion are used to create containerized sections of memory on the remote computer

called “secure enclaves” where data and code can be loaded or executed securely.

These enclaves are verified by both a cryptographic attestation key of the con-

tainer’s contents as well as a hardware Root of Trust (RoT) manufacturer’s key.

Unlike the TPM and TXT technologies, SGX securely operates only on a small

amount of data and code called the Trusted Compute Base (TCB), leaving the

majority of memory outside this TCB.

3.2 Initial SGX Enclave Setup

Configuration settings for SGX exists as part of the platform firmware, and most

firmware vendors provide simple tools for enabling SGX. If SGX is enabled, the

firmware is responsible for setting aside a memory region called the Processor

Reserved Memory (PRM), and most firmware tools allow specifying the size of the

space allocated. The firmware allocates the PRM by setting a pair of model-specific

registers (MSRs), collectively known as the PRMRR. The CPU will then protect

the PRM from all non-enclave memory accesses including kernel, hypervisor and

System Management Mode (SMM) accesses, as well as Direct Memory Access
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(DMA) from peripherals [15].

RAM

ROM
Internal

peripherals

Processing
core(s)

Intel SGX

External
memory

External
peripherals

On-chip security subsystem

Typical Intel SGX Processor

Figure 3.1: A high level overview of Intel SGX layout on a processor. Both
the processor and the platform firmware, which on Intel systems will likely be an
implementation of Unified Extensible Firmware Interface (UEFI), must support
SGX. The rest of the platform, including external peripherals and memory, have no
knowledge of SGX. The details of how Intel implements SGX within the processor
are not documented in detail publicly. Reproduced as a simplified version of Figure
2-3 of the GlobalPlatform specification [25].

This section of specially allocated memory is used to store the Enclave Page

Cache (EPC), which are the 4kb pages holding both the enclave data and code.

The exact layout of the PRM and EPC are model-specific, and depend on firmware

settings. While untrusted system software both assigns these EPCs to an enclave

and loads them with data, it is the CPU which keeps track of all the EPCs ensuring

that they only belong to one enclave. Once the system software loads data into

the enclave it asks the CPU to mark that enclave as initialized, after which no
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other data may be loaded into the enclave as this setup process is disabled for that

enclave. After initialization, a measurement of the enclave is taken by means of a

cryptographic hash. Checking that measurement later ensures that any operations

performed on the enclave are done so in a secure environment.

Firmware sets up the PRM

CPU creates the blank EPC and stores it in the PRM

OS loads data into the enclave

CPU marks the enclave as initialized

CPU hashes the enclave’s initial state

Figure 3.2: Workflow for setting up an enclave. It is important to note that
the firmware which sets up the PRM and creates the EPC is vendor specific. As
of the writing of this thesis, it is highly probable that the firmware is based on the
open source project TianoCore, an implementation of UEFI spearheaded by Intel
in 2006 and now led by engineers from companies like Intel, Arm, Apple, and Red
Hat.

3.3 Executing SGX Enclave Code

Execution flow can only move into an enclave via a special CPU instruction EEN-

TER, much like switching from user mode to kernel mode. The actual execution

happens in “user mode” also known as “privilege ring 3” and takes advantage of

address translation from the operating system or hypervisor. The benefit to this

model is that the OS or hypervisor will quickly provide address translation low-

ering overhead. As Costan notes, “the operating system and hypervisor are still

in full control of the page tables and extended page tables (EPT), and each en-

clave’s code uses the same address translation process and page tables as its host

application. This minimizes the amount of changes required to add SGX support
19



to existing system software.” [15]. The downside is that code executing inside the

enclave does not have access to system calls (syscall) or any other high privilege

operations. An inability to make system calls limits the types of operations that

can be preformed inside an enclave. The code executing inside the enclave does

have access to its entire address space which includes the “host application” that

caused the creation of the enclave.

The CPU executing the enclave code will perform an Asynchronous Enclave

Exit (AEX) whenever execution moves outside the enclave such as servicing an

interrupt or during a page fault. The CPU state is saved inside the enclave memory

metadata before exiting, ensuring that the CPU can securely restore the state of

enclave execution. There are special machine mode CPU instructions that are used

both in allocating EPC pages to the enclave as well as evicting those pages into

untrusted DRAM. Page management instructions allow code outside the enclave

to operate on code within the enclave. SGX uses cryptographic protections to

assure the confidentiality, integrity, and “freshness” [15] of the evicted EPC pages

while they are stored in untrusted memory.

As mentioned the application that makes calls into an enclave or “host appli-

cation” lives in the same address space as the enclave code and data. Restricting

host and enclave to the same address space has benefits in terms of application

size variability, but may open the host application up to attack should the enclave

code become compromised [55]. SGX allows enclaves to execute multiple threads

through a Thread Control Structure (TCS) which allows multiple logical cores to

execute enclave code. Within the EPC metadata, reserved secure memory called

the State Save Area (SSA) allows the threads to save their state when a context

switch happens, like servicing an interrupt. In this way, Intel SGX is able to allow
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a specific amount of code and data to remain protected while still allowing access

to that data by code outside the trust boundary.

3.4 Life Cycle of an SGX Enclave

non-
existent

not
initialized

initialized
initialized
(in use)

ECREATE

EINIT

EADD
EEXTEND

page manage-
ment instructions

EENTER
ERESUME

EEXIT
AEX

EREMOVE

page manage-
ment instructions

EGETKEY
EREPORT

Figure 3.3: Intel SGX enclave life cycle. The enclave’s memory is protected in
states shaded blue. Note that in the enclave is not secure while in the uninitialized
state as pages are being added or extended. Until a measurement is loaded into
the MRENCLAVE register, code and data integrity can not be assured. The CPU
will call AEX in order to service interrupts, and the state of the enclave will be
saved in the SSA. Reprinted as a simplified version from Costan’s Figure 63 [15].

In order to understand the life cycle of an enclave, we must consider the spe-

cific x86 instructions used to create and manage these enclaves. Many of these

instructions which create enclaves, extend pages, and remove enclaves operate in

“privilege ring 0”, one of the most privileged modes. Whereas attestation, enter-

ing, and exiting the enclave can be done from “privilege ring 3” the least privileged
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mode. The first of the privileged instructions in our life cycle is ECREATE which

fills a protected data structure located inside the EPC with the size and measure-

ment hash of the enclave. This data structure, called the SGX Enclave Control

Structure (SECS), is used by the hardware and is not directly accessible to soft-

ware. The system will then add pages to the EPC with the EADD instruction, and

extend the EPC page measurement with the EEXTEND instruction. When exe-

cuting EADD and EEXTEND the system will ensure that the page’s address range

is within the Enclave Linear Range (ELRANGE). The EEXTEND instruction al-

lows for the accumulation of a hash of all the pages in the EPC. This measurement

can be used later for attestation that the enclave has not been tampered with or

changed in some way.

It is important to note that in its uninitialized state, none of the enclave code

or data is encrypted. For example, any privileged code running at “privilege ring

0” can gain access to these data and structures. Enclaves must be initially built

on a system that is known to be secure, such that the measurements taken are

considered a “gold standard” with which to preform attestation on a local or

remote machine at some later time. When the EINIT instruction is called, the

enclave is considered fully built, the measurement is locked down, and “privilege

ring 3” (user) applications can now enter the enclave and attest that it contains

the code and data that the developer intended.

EBLOCK, ETRACK, EWB, and ELOAD1 are paging instructions run with

“privilege ring 0” privileges. The goal is to allow the paging of secure pages into

and out of main memory while ensuring the confidentiality and integrity of those

1Actually, two load commands, ELDB and ELDU both load into memory a previously evicted
page, with ELDB for blocked and ELDU for unblocked. Pages may be blocked when being
prepared for eviction. All future accesses to blocked pages will result in a page fault.
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pages. Information stored inside the EPC called the Paging Crypto MetaData

(PCMD) keeps track of the identity of the enclave the page belongs to and a

pointer to an access rights structure. There is also a Version Array (VA) which is

used to store the version numbers of pages evicted from the EPC. These versioned

and access controlled pages are therefore hardware protected, and any change to

the versioning, access rights, or origins of the page will result in a page fault. It is

possible to have 2 instances of the same enclave, however pages cannot be swapped

between them, and the hashes of these pages will not be the same.

Once an application has requested that “privilege ring 0” components build the

enclave and EENTER is called, the enclave may begin execution. The hardware is

responsible for saving (AEX) and restoring (ERESUME) the architectural state of

execution should any external events like interrupts or exceptions cause execution

to leave the enclave. The EGETKEY and EREPORT instructions operate in user

mode (“privilege ring 3”) and seal data based on the key the developer provides.

Using these two instructions SGX applications operating in “privilege ring 3” are

able to preform local attestation of the enclave, perhaps the most vital function of

any Trusted Execution Environment (TEE). Finally, once the enclave is no longer

needed, the system will call EEXIT, and a synchronous enclave exit will occur. As

Costan notes, “EEXIT does not modify most registers, so enclave authors must

make sure to clear any secrets stored in the processor’s registers before returning

control to the host process.” [15].

3.5 Attestation with Intel SGX

Software attestation of enclaves is required to ensure the integrity of the enclave.

This attestation can happen locally between two enclaves on the same platform or
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remotely between two different platforms. As previously noted, the measurement

of the enclave includes a SHA-256 hash of the enclave’s attributes as well as the

content, position, and access rights of its pages. This measurement is stored in a

register called MRENCLAVE which represents the enclave’s TCB. The EREPORT

instruction is used to generate a signed report of this TCB and the EGETKEY

instruction then retrieves the key used to validate said report. Local attestation of

enclaves can be done using symmetric encryption as the hardware can ensure the

integrity of the single key being used to verify the MRENCLAVE value. Remote

attestation must be done using asymmetric encryption (both a public and private

key) and requires the remote SGX enabled platform to query an Intel attestation

server.

Local attestation can be used by enclaves running on the same platform and

will provide assurance as to the identity of the enclaves. The local enclave which

attests to the reporting enclave is called the “Quoting Enclave” [31]. Figure 3.4

provides a high level overview of the attestation process including both local and

remote attestation. On today’s complex and connected systems, local attestation

alone is not enough to assure that the platform and enclave are genuine SGX

enclaves [34]. Remote attestation requires asymmetric keys as well as a remote

server with which to verify the quote of an enclave.

Intel platforms include two statistically unique “root keys” which provide as-

surance that the system is indeed a genuine Intel SGX platform. These include the

Root Provisioning Key and the Root Seal Key [31] which are stored in hardware

fuses. Intel also provides a more advanced form of asymmetric encryption called

Enhanced Privacy ID (EPID). EPID is essentially a group signature where the

system can attest to a message being signed by a member of the group without
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Figure 3.4: Local and remote attestation of an Intel SGX enclave. A remote
challenger may request that an application provide attestation. The application
must then request a report from the enclave and locally verify that against a
quoting enclave. The quoting enclave will use the remote along with asymmetric
keys to produce a remote attestation “quote” to be returned to the challenger.
The challenger may then use some verification service to check the validity of the
quote. This figure was reproduced from Figure 1 [31].

divulging the identify of the signer. The signature algorithm is nothing new [11]

and has been included in the ISO/IEC 20008 and 20009 standards. EPID includes

several revocation schemes which allow keys to be revoked based on checks per-

formed by the verifier and/or issuer. The Intel Attestation Service (IAS) will take

submission of quotes provided, verify the validity of the signatures, and verify that

they have not been revoked.

In this chapter, we have briefly described Intel Software Guard Extensions

(SGX) from the initial setup of the enclave through to the remote attestation of

that enclave’s contents. This system is by far the most complex of the three we will

examine in this thesis. We have only covered the properties that are necessary to
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understand if we are to appropriately apply our method of comparison. Depend-

ing on the use case, a much more in depth knowledge of SGX may be required.

However, this thesis will show that even with this rudimentary understanding, one

can still apply rigorous method to analysing features of a TEE. Next, we will cover

Arm’s framework for building TEEs called TrustZone, as well as the reference im-

plementations of their firmware: Trusted Firmware-A (TF-A) and Open-source

Portable TEE (OP-TEE).
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Chapter 4

Arm TrustZone

4.1 The Arm TrustZone Solution

Arm released TrustZone in 2004 for their “general purpose compute” cores, and

only as recently as 2016 did they extend this technology to their cores designed

for microcontrollers [51]. When evaluating how Arm’s TrustZone works, we must

remember several important distinctions. Firstly, the Arm specifications include

several different architectures with several different states. Each Arm architecture

and state combination may operate slightly differently in regard to how TrustZone

is implemented. This thesis will only consider the ARMv8-A architecture1 running

in the AArch642 state. Secondly, because Arm Limited licenses their cores to

hardware manufacturers, System on Chips (SoCs) and platforms may choose to

implement security in many ways, and with much more flexibility than in Intel

platforms. For simplicity’s sake, this thesis will only cover firmware solutions

for TrustZone implementations provided by Linaro’s open source projects Trusted

Firmware-A (TF-A) and Open-source Portable TEE (OP-TEE).

Arm SoC processors create a more absolute separation between the concepts of

“secure” and “normal or insecure” operation than Intel Software Guard Extensions

(SGX). At its highest level this is accomplished using the Secure Configuration

1Arm Limited produces three ISA profiles [3]: A-Profile for general purpose compute, R-Profile
for real-time, and M-Profile for microcontrollers. These profiles can be seen in the architecture
version naming scheme, such that ARMv8-A is “version 8” of the ARM instruction set, with a
focus on general purpose compute. The cores that Arm Limited licenses to customers are labeled
“Cortex”, with ARM Cortex-A55 referencing a specific microarchitecture implementation of the
ARMv8-A ISA.

2AArch64 is the 64-bit state of any ARMv8-A core which is capable of also running in the
32-bit state called AArch32 [3].
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Register (SCR) “Non-Secure bit” (NS) with 1 meaning non-secure and 0 meaning

secure. This is perhaps the most fundamental element that separates Arm’s two

security worlds. Digging a bit deeper, this separation of worlds is accomplished

using four separate primitives: one on the bus, one on the SoC core, one as part

of the memory infrastructure, and finally one as part of the debug infrastructure.

RAM

ROM
Internal

peripherals

Processing
core(s)

SoC

External
memory

External
peripherals

One Possible TrustZone Platform

Figure 4.1: A high level overview of Arm TrustZone layout on an SoC.
Unlike Intel SGX, TrustZone is present as part of much of the SoC’s platform.
Shaded areas imply that some logic is present which allows TrustZone to secure
the Trusted Execution Environment (TEE). Though not shown in this figure, in
TrustZone systems, even the bus contains logic separating secure and normal op-
eration. Reproduced as a simplified version of Figure 2-3 of the GlobalPlatform
specification [25].

Firstly, the bus interface, called the Advanced Microcontroller Bus Architecture

(AMBA) Advanced eXtensible Interface (AXI), partitions all of the SoC’s hardware

and software resources by taking advantage of a set of bits. Hardware logic present

in this “TrustZone-enabled AMBA3 AXI bus fabric” [3] ensures that no “Secure

World” resources can be accessed by “Normal World” components. These bits
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include AWPROT for write transactions and ARPROT for read transactions where

like the NS bit low is Secure and high is Non-secure.

Secondly, SoCs which implement the ARMv8-A instruction set must also im-

plement extensions which enable a single physical processor core to safely and

efficiently execute code from both the Normal World and the Secure World in a

time-sliced fashion [44]. The value of the Non-Secure bit is read from the SCR

and passed along down the bus to the memory controller and peripherals. A new

instruction, the Secure Monitor Call (SMC), is added which allows the core to

switch between the secure and normal modes. We will discuss the secure monitor

firmware which is responsible for handling these interrupts in the next section.

Thirdly, the memory infrastructure includes security features like TrustZone

Address Space Controller (TZASC) and TrustZone Memory Adapter (TZMA) [44].

The TZASC allows for configuration of the secure and normal world memory re-

gions. It does so by partitioning DRAM into areas which have secure world access

and those regions which have normal world access. This process can only be done

from the secure world. The TZMA serves a similar function for any off-chip mem-

ory such as an off-chip ROM. The way in which this memory partitioning happens

is based on the specific SoC implementing TrustZone. SoC manufacturers can

provide robust or simple partitioning and it is important to understand the imple-

mentation of your specific SoC’s memory controller to properly understand how

TrustZone has been implemented.

Lastly, the security-aware debug infrastructure controls debug access to the

Secure World. This includes “secure privileged invasive (JTAG) debug, secure

privileged non-invasive (trace) debug, secure user invasive debug, and secure user

non-invasive debug” [3]. By using two different signals into the core along with two
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different bits in a secure register, the core can report either invasive or non-invasive

debug info. In this way, the core is able to debug either the normal world only, or

it can debug both the secure and normal worlds together. These four primitives

provide a framework or scaffolding on which to build a platform capable of secure

computation.

In the next section we discuss the firmware that will implement a TEE using

TrustZone’s features. First, we will point out a potentially confusing difference

between how Intel and Arm create privilege levels. Unlike Intel platforms which

refer to their privilege levels as privilege rings, Arm uses “Exception Levels” EL0

through EL3 [4]. Here EL3 is the highest, most privileged level where as EL0 is the

lowest and least privileged level. Much like with the x86 architecture, exceptions

like data aborts, prefetch aborts, and other interrupts can be taken from the level

at which they occur to the same or any higher privileged level, but not a level

which has less privileges. So, for example, an interrupt occurring in the OS kernel

(EL1) can be handled in the kernel or in the secure monitor (EL3), but not in

the lower privileged application level (EL0). Practically speaking this means that

the user applications running on a system which has not been compromised will

not have access to kernel or lower exceptions. Another common confusion point

between Arm and Intel is that Intel’s “privilege ring 0” is the highest privilege

level while Arm’s “EL0” is the lowest privilege level.

See Table 4.1 for a complete list of privilege levels, their description, and how

they might be implemented in an ARMv8-A system. Each exception level man-

ages its own page tables and control registers with the exception of EL0 which is

managed by EL1 [4]. This is a common practice across architectures where the

kernel level mode controls the page table for the applications running on top of it.
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Privilege Level Description Implementation

EL-0 Application Privilege Level Supported by CPU architecture

EL-1 Kernel Privilege Level Supported by CPU architecture

EL-2
Virtualization Privilege Level
(Optional)

Supported by CPU architecture

EL-3 Secure Privilege Level
Supported by CPU architecture
or a dedicated embedded
security processor

Table 4.1: Arm Privilege Level Mapping

As we will see, this division is taken advantage of by the ARMv8-A architecture

to enable the separation of memory accesses between the Secure World and the

Normal World.

4.2 Arm Trusted Firmware

Since 2013, Arm, in cooperation with several other industry leaders, has pro-

vided Trusted Firmware-A (TF-A) as an open source reference implementation

of the firmware required to develop Secure World software for A-Class devices

(including ARMv8-A). TF-A provides many features including secure device ini-

tialization, modular boot flow, trusted boot, and the secure monitor that allows

switching between the Normal World and the Secure World. It should be noted

that all of this code and documentation is freely available online [38]. The Trusted

Firmware Project is a ‘not for profit’ open source project hosted by Linaro Limited

(“Linaro”).

Arm Trusted Firmware uses the scaffolding provided by the A-Class devices
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to implement the key aspects of TrustZone, namely Trusted Boot and the Secure

Monitor. There are currently over 30 platforms supported by Trusted Firmware

and because the code is open source (BSD 3-clause), porting new platforms can be

done by following many of the existing open source examples. Before we explore

Arm Trusted Firmware, we must first understand how an Arm platform can be

initialized in a secure state, specifically using Trusted Board Boot (TBB). TBB

is based on two standards, the Arm Trusted Base System Architecture (TBSA)

[5] and the Arm Trusted Board Boot Requirements (TBBR) [6]. Both of these

specifications are client-based solutions and it is likely that server based solutions

are in development internally at Arm.

Cold Reset

Trusted Boot ROM SoC TEE Configuration

Arm Trusted Firmware (ROM or Trusted SRAM)

Trusted OS Execution

Normal World Bootloader Execution

Figure 4.2: A significantly simplified boot flow for setting up a secure
chain of trust on an Arm system running Trusted Firmware. Here we see
the boot flow from a cold reset all the way to the Normal World bootloader which
may load any untrusted OS kernel.

As soon as the SoC comes out of power-on-reset, execution happens in integrity

protected memory like on-chip Boot ROM or Trusted SRAM. At this stage we have

access to a Root of Trust Public Key Hash (ROTPK) located in one of the SoC’s

One Time Programmable (OTP) Efuse registers. These keys are usually SHA-256

and the Efuse is burned by the manufacturer to ensure the integrity of the keys.

This secure ROM firmware code is often called the Bootloader Stage 1 or BL1,
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and it is responsible for checking the validity of the ROTPK. Using this key, BL1

can verify the hash of the next bootloader stage (BL2). The code in BL1 is the

only code that must run in EL3, minimizing the amount of initialization code that

must run at this critical privilege level.

Once in BL2, the code is executing in Secure World EL2 and the firmware can

use the ROTPK to extract the Trusted World ROTPK and the Normal World

ROTPK, which are used in turn to validate the Secure World Trusted OS hash as

well as the Normal World Untrusted OS hash. All of these keys and hashes are

included as extensions to the x.509 standard format, however there is no need for

a valid Certified Authority (CA) certificate, as we are verifying the contents of the

certificates and not the validity of a certificate issuer. BL2 also does some RAM

initialization before it passes off to BL3 where the Secure Monitor is implemented.

This Secure Monitor runs in EL3 and is responsible for loading both the Se-

cure OS as well as the Normal World bootloader. This bootloader might be U-

Boot or some Unified Extensible Firmware Interface (UEFI) implementation like

TianoCore. This Secure Monitor stays resident in memory during the life of the sys-

tem and will manage the interactions between the Normal and Secure Worlds. All

of these stages (BL1 - BL3) of TBB are implemented by Arm’s Trusted Firmware-A

(TF-A) reference implementation.

Once the Trusted Firmware has initialized the system in a secure state, we

have initialized two worlds, the Trusted World and the Normal World. It is per-

haps easiest to think about the interaction between these two worlds in much the

same way we think about making calls from user mode into kernel mode in Linux

systems. In Linux systems, we take advantage of system calls (syscall) to bridge a

trust boundary between the kernel’s concerns like interacting with a network card
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Generic
Application

App w/Security

Scheduler
TrustZone

driver

Security Service
Standalone
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Cross-world
IPC manager

Scheduler

Secure Monitor

Normal World Secure World

Kernel Kernel

User
Privileged

EL3 Exception

SMC

Figure 4.3: Secure World implementation using ARM TrustZone. The SoC
boots into the Secure World and a monitor is registered which acts as the interface
between the “secure” and “normal” worlds. All EL3 exceptions are caught by the
secure monitor, and there is a special EL3 exception called a “secure monitor call”
which is used to switch the processor between the two worlds. Figure recreated
and modified from the original [59].

and the user application’s concerns like displaying a web page. At no point in

this interaction should the user application code have access to the network card’s

buffers, however the kernel is able to read and write these buffers and mediate the

flow of data to/from the client application. This “guarded” flow of data is similar

to how memory in the Secure World is kept separate from the Normal World using

an instruction which generates an exception called a Secure Monitor Call (SMC).

4.3 TrustZone Attestation

Local attestation using TrustZone is dependent on several measurements taken

during the boot process. If the boot process is not secured then “all bets are off”,

and we cannot assure the integrity or confidentiality of the code or data inside the

TEE. We will follow this boot flow step by step, and each step number is illustrated
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in Figure 4.4.

At power on, implicitly trusted code living in secure ROM or SRAM is executed.

Since Boot Loader 1 (BL1) is responsible for authenticating the BL2 stage it verifies

the Root of Trust (RoT) public key in the BL2 content certificate against the RoT

public key stored in the hash (Figure 4.4 – Step 1). BL1 then verifies the BL2

content certificate using the enclosed RoT public key (Step 2). BL1 loads BL2 into

memory and verifies the hash (Step 3) and execution is transferred to BL2 (Step

4). Since BL2 is responsible for authenticating all of the possible BL3x stages (e.g.

BL31 , BL32 , BL33 ), BL2 verifies the RoT public key in the certificate against

RoT public key stored in the hash (Step 5). BL2 then verifies the certificate using

its RoT public key and saves the trusted world (TW) and normal world (NW)

public keys. BL2 uses the TW public key to verify the BL3x certificate (Step 6)

and verifies the BL3x content certificate using the BL3x public key (Step 7). BL2

can now extract and save the BL3x hash used for BL3x image verification (Step 8).

BL2 verifies the BL33 key certificate using the NW public key (Step 9) and verifies

the BL33 content certificate using the BL33 pub key(Step 10). BL2 extracts and

saves the BL33 hash used for BL33 image verification (Step 11). Finally, execution

is transferred to verified BL3x (Step 12) and BL33 images (Step 13).

We have now securely booted, and our secure monitor provided by TF-A should

be loaded into BL31 running in the highest privilege level of EL3. The trusted OS,

Open-source Portable TEE (OP-TEE) is loaded into BL32 and runs at EL1. Any

trusted applications will run in EL0 of the “secure world” built on top of this secure

OS. A “normal world” bootloader like U-Boot or some UEFI implementation is

loaded into BL33 and runs in the privilege level of EL23. An operating system

3Systems boot UEFI at EL2 allowing for a hypervisor aware OS to be loaded. Booting UEFI
at EL1 is likely done within a hypervisor hosted guest OS, allowing a UEFI-compliant OS to be
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Figure 4.4: Trusted Board Boot (TBB) flow in Trusted Firmware-A (TF-
A) The boot flow begins with implicitly trusted keys and code living in some
secure ROM or SRAM (BL1). Each stage of the boot is then verified against the
RoT public key and each bootloader stage is hash checked. All this information
can be found in the Arm TBBR-CLIENT documentation [6]. This diagram and
flow description were recreated from a presentation by Matteo Carlini entitled “Se-
cure Boot on ARM Systems: Building a Complete Chain of Trust Upon Existing
Industry Standards Using Open-source Firmware”.
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like Linux or Windows can now load their kernel into memory and will operate at

privilege level EL1. Finally “normal world” applications can be loaded by the OS

and run in privilege mode EL0. These applications can make SMCs with the OP-

TEE kernel driver in the non-secure world to act as a bridge to trusted applications

running in the secure world.

OP-TEE will load Trusted Applications (TAs) into memory when a Rich Ex-

ecution Environment (REE) application makes a request SMC with the corre-

sponding UUID of the TA. For Linux-based systems, the TAs consist of an ELF

binary, signed and possibly encrypted, named from the UUID of the TA. It is the

responsibly of the trusted OS to load the TAs from the REE file system and to

check the integrity of the TAs as part of the chain of trust. OP-TEE maintains a

version database of all the TAs it has loaded and checks the version of each TA

before loading. The version database prevents downgrading of the TA to a earlier,

possibly insecure version.

Since loading a TA from the REE file system creates an inherently larger attack

surface, there are two ways for OP-TEE to load applications from a more secure

location. The first method is known as “early TA” and allows applications to

be linked into the data section of the TEE core blob itself. The “early TA”

method has two benefits: applications can be loaded from a known secure source

and applications can be loaded before the normal world or its file system have

been initialized. The other, more robust option is to load the application from

secured storage, an OP-TEE implementation of the GlobalPlatform specification

for Trusted Storage [25].

OP-TEE secure storage follows the GlobalPlatform TEE Core API document

booted.
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Figure 4.5: The OP-TEE Chain of Trust builds off the secure boot chain
of trust. From Figure 4.4, we loaded the secure monitor into BL31 and our secure
OS, OP-TEE, into BL32 . With that chain of trust complete, we can now use
the keys present in OP-TEE to load trusted applications into our TEE. The TEE
functions and libraries actually live in the same area and are separated here only
for convenience.

[26] defining “Trusted Storage API for Data and Keys” in section 5. The details

of OP-TEE secure storage are beyond the scope of this thesis. The reader should

understand that regardless of where the applications are loaded from, they are

signed with a key from the trusted OS. OP-TEE Trusted Applications (TAs) are

signed with the pre-generated 2048-bit RSA private key provided by the trusted

OS developer as shown in Figure 4.5. These keys should be stored in a hardware

security module like a Trusted Platform Module (TPM), however the security

model for any given TA is left up to the trusted OS developer. Currently, OP-

TEE only supports one private key per trusted OS. As such, each TA will be signed

with the same key. This step completes the chain of trust and we are able to assure

that each step in loading the application, from PoR to loading the application into

memory, has occurred in a way which preserves the integrity and confidentiality of
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the data as well as the integrity of the code.

The complexity of remote attestation on mobile platforms, specifically cell

phones, has been well studied and understood for over a decade [43]. There have

been many recent efforts towards a more formally proven type of remote attesta-

tion [12, 20] which can be used in IoT and embedded applications. However, Arm

TrustZone as a framework leaves the implementation of remote attestation as an

exercise for the platform vendor or manufacturer. We will return to this point in

Chapter 6 when we present a comparison of our discussed TEEs.

In this chapter, we have shown how Arm has designed a framework on which

hardware manufacturers and system vendors can hang an implementation of a

TEE. Unlike with Intel SGX, and perhaps core to Arm’s business model, many

of the implementation details are left to the manufacturer. This allows for great

flexibility at the cost of engineering resources and time. Next, we will explore

RISC-V Physical Memory Protection (PMP), and describe a system which is open

source from the ISA through to user space applications. As we will show, open

source specifications allow for even greater flexibility than Arm TrustZone, though

again at a greater cost.
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Chapter 5

RISC-V Physical Memory Protection

5.1 The RISC-V Open Source ISA

RISC-V is the fifth generation of reduced instruction set computer (RISC) proces-

sors, which have been in development since the 1980s at the University of California

at Berkeley. Hence the name RISC-V has the “five” spelled out as a Roman nu-

meral. One cannot talk about RISC-V’s history without mentioning that of the

MIPS ISA, which began in the same timeframe at Stanford in the 1980s. While

MIPS was very popular in its own right, RISC was the inspiration for many ISAs

including Sun Microsystems’ SPARC line, DEC’s Alpha line, Intel’s i860 and i960

processors, and indeed the ARM processors that most of us now carry in our

pockets.

RISC-V is by no means the first open source ISA. Sun Microsystems intro-

duced the OpenSPARC project in 2005 using the GNU Public License (GPL) [2].

As many students of SoC architecture classes will know, the MIPS architecture

was provided under an “open use” license in a pilot program by Wave Computing

allowing its use in educational settings without licensing fees. ARM has partly

opened its architecture allowing specific partners to proposed changes to the ISA

they license. Many of these changes in industry practices reflect a growing need

for openness in hardware. As Asanović notes, “While instruction set architectures

(ISAs) may be proprietary for historical or business reasons, there is no good tech-

nical reason for the lack of free, open ISAs” [8]. RISC-V is also not an example of

40



open source hardware as there is nothing inherent in the specifications encourag-

ing the end product to be non-proprietary. However, it is certainly an enabler for

open source hardware development by facilitating the sharing of ideas in the form

of ISA extensions and hardware tooling.

Care must be taken not to assume that the value found in open source software

can be simply replicated in the hardware world. However, there is value to be

gained for certain. Many of the same foundations underpinning open source soft-

ware development as well as many of the lessons learned by those communities can

be applied in hardware. Red Hat’s Patent Promise and the growing problem that

international regulations introduce are just two examples [49]. The fundamental

concept of extensibility is perhaps the most obvious cross-cutting concern between

open source hardware and software. Tim O’Reilly mentions the importance of

extensibility to the proliferation of open source software 1990’s. As O’Reilly notes,

“According to Linus Torvalds, Linux has succeeded at least in part because it

followed good design principles, which allowed it to be extended in ways that he

didn’t envision when he started work on the kernel. Similarly, Larry Wall explains

how he created Perl in such a way that its feature-set could evolve naturally, as hu-

man languages evolve, in response to the needs of its users.” [46]. Key to RISC-V’s

success will be the proliferation of open source extensions, tools, and designs that

anyone can use as a platform on which to produce and launch innovative hardware.

RISC-V Physical Memory Protection (PMP) is developed as part of the “TEE

Task Group” of RISC-V International. While membership in RISC-V International

is required to participate in the development of specifications, membership is free

for individuals and open to anyone. Specifications are developed using public

mailing lists, and a review of each specification is open to a public review period
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before ratification. The specifications themselves are stored on a public GitHub

repository where anyone can view the text during its development. RISC-V PMP

was added to the Privileged ISA Specification [63] in 2019. Several libraries have

been introduced to take advantage of this technology including: Multizone [50],

Sanctum [16], TIMBER-V [65], Mi6 [10], and Keystone Enclave [14, 36, 37]. This

thesis will concentrate on Keystone Enclave as it is open source and still in active

development.

5.2 The RISC-V Memory Model

An understanding of how RISC-V handles memory is required in order to under-

stand how RISC-V PMP protects said memory. There are two current memory

models available as part of the RISC-V specification. The first memory model pre-

sented in the specification is the RISC-V Weak Memory Order (RVWMO) model,

“which is designed to provide flexibility for architects to build high-performance

scalable designs while simultaneously supporting a tractable programming model”

[62]. There is also the “Ztso” extension which gives us the RISC-V Total Store

Ordering (RVTSO) memory consistency model. One can think of RVTSO as the

“less flexible” model when compared to RVWMO. We will only cover RVWMO

briefly here as knowledge of RVTSO is not required to understand PMP, nor is a

deep understanding of the RVWMO required.

The memory model of any instruction set architecture defines the values re-

turned by a load. As such, we must first understand what we are loading into

memory. RISC-V hardware threads, which are referred to in the specification as

“harts” [62], have a byte-addressable address space of 2XLEN bytes for all memory

accesses. Here, XLEN refers to the width of a register in either 32 or 64 bits.

42



Words are defined as having 32 bits. Halfwords are 16 bits, doublewords are 64

bits (8 bytes), and so on. The address space can be thought of as a ring, so that

the last memory address is adjacent to the first. Memory instructions will simply

wrap around the space ignoring that they have effectively “walked off the end”.

The specification leaves room for virtual memory by allowing for both explicit and

implicit stores and loads. Chapter 3 of the RISC-V Unprivileged Specification [62]

introduces the “Zifencei” extension, which defines a fence instruction that explic-

itly synchronizes writes to instruction memory and instruction fetches on the same

hart. The order in which these loads and stores happen is up to the implementa-

tion, and the rules for consistency are defined in the memory model.

The microarchitecture implementing any given memory model is only required

by the architecture to follow the rules set forth in the model. This model does

not set any other regulation on how the implementation achieves those rules, be

the implementation speculative or not, in order or out of order, multithreaded or

not, etc. As such, the RVWMO starts by defining a set of primitives it uses to

define the model. The base primitives are load and store, defined in Chapter 8

which covers the “A” Standard Extension for Atomic Instructions [62]. It then

uses a combination of axiomatic and operational semantics to define how memory

consistency should be achieved.

The RVWMO model defines the syntactic dependencies of memory operations.

This is essentially a way to understand what the differences are between memory

operations and the instructions which generate those operations. The memory

model then defines thirteen rules that allow for the program order of each hart to

be consistent with the global order of all operations, called the “preserved program

order”. The rules cover overlapping address ordering, explicit synchronization,
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syntactic dependencies, and pipeline dependencies. The model then defines three

axioms: the Load Value Axiom, the Atomicity Axiom, and the Progress Axiom.

Any implementation which follows the RVWMO memory model must conform to

the thirteen rules and satisfy the three axioms.

5.3 RISC-V Physical Memory Attributes

RISC-V system’s physical memory map has various properties and capabilities that

are described in detail in the Privileged Specification [63] and referred to as Physical

Memory Attributes (PMA). These attributes determine things like read, write, and

execute permissions of a specific region of physical memory. Most systems built

on the RISC-V architecture will require that the PMAs are checked later in the

pipeline and that this check is done in hardware. This is in contrast to other

architectures where these types of checks are done in virtual page tables where the

Translation Lookaside Buffer (TLB) contains the information the pipeline needs

regarding these attributes. RISC-V systems call the mechanism for making these

checks the “PMA checker” and many physical attributes will be hardwired into the

checker when designing the chip. For those attributes that are not known at design

time there are special platform specific control registers that can be configured at

runtime.

Memory regions are given attributes based on if they are part of main mem-

ory or part of I/O. The access width of a region can be anything from 8-bit byte

to long multi-word bursts. As the specification states, “Complex atomic mem-

ory operations on a single memory word or doubleword are performed with the

load-reserved (LR) and store-conditional (SC) instructions.” [63]. RISC-V also

allows for special atomic memory operations (AMOs) which are instructions that
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perform operations for multiprocessor synchronization. A given PMA will contain

information regarding which atomic operations are allowed for a specific region of

memory. Table 5.1 lists the AMO available to I/O as of this writing.

AMO Class Supported Operations

AMONone None

AMOSwap amoswap

AMOLogical above + amoand, amoor, amoxor

AMOArithmetic above + amoadd, amomin, amomax, amominu, amomaxu

Table 5.1: Classes of AMOs supported by I/O regions. Reproduced from
the original RISC-V Privileged Specification [63].

As mentioned earlier, regions of memory will be classified either as main mem-

ory or as I/O, and this must be considered by the FENCE instruction when or-

dering memory. Regardless of whether the memory model used is RVWMO or

RVTSO, memory regions may be classified as either having relaxed or strong or-

dering. Strongly ordered memory regions use a “channel” mechanism to guarantee

ordering. Using PMAs, systems can decide to set the type of ordering dynamically

or not. The specification requires that all regions of memory be coherent, such

that any change made by one agent to a memory region must eventually be visi-

ble other agents of the system. Cacheability is left up to the platforms, however

three types are called out: “master-private, shared, and slave-private” [63]. PMAs

will describe the specific cache features of each region as well as if the region is

idempotent.
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Processor Mode Description

U Mode User Processor Mode

S Mode Supervisor Processor Mode

H Mode Hypervisor Processor Mode (Draft)

M Mode Machine Processor Mode

Table 5.2: RISC-V Privilege Level Mapping is similar to Arm’s exception
level mapping in that we have four modes. The most privileged machine mode is
the only required mode.

5.4 RISC-V Physical Memory Protection

Unlike PMAs, RISC-V Physical Memory Protection (PMP) consists of a set of

configurations that can be changed dynamically during runtime. The privileged

specification describes a “PMP unit” as a set of “per-hart machine-mode control

registers to allow physical memory access privileges (read, write, execute) to be

specified for each physical memory region.” [63]. These registers must be checked

in parallel with the PMA attributes described in the previous section.

As we discussed in the previous two chapters, processor privilege levels or

“modes” are a critical foundation to our security model. RISC-V PMP allows for

specific registers that are only available to the highest privileged machine-mode or

m-mode. The different processor modes for RISC-V are described briefly in Table

5.2. Note that H Mode is still only in the draft state, and is not applicable when

discussing PMP. While PMP is available in both 64 bit and 32 bit versions, we will

only describe 32 bit configurations in this thesis. It is enough for our comparison

that we understand a 64 bit implementation to be possible and to hold to the same

or standards as the 32 bit version.
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(a)

31 24 23 16 15 8 7 0

pmp3cfg pmp2cfg pmp1cfg pmp0cfg pmpcfg0

8 8 8 8
31 24 23 16 15 8 7 0

pmp7cfg pmp6cfg pmp5cfg pmp4cfg pmpcfg1

8 8 8 8
31 24 23 16 15 8 7 0

pmp11cfg pmp10cfg pmp9cfg pmp8cfg pmpcfg2

8 8 8 8
31 24 23 16 15 8 7 0

pmp15cfg pmp14cfg pmp13cfg pmp12cfg pmpcfg3

8 8 8 8

(b)
31 0

address[33:2] (WARL)
32

(c)
7 6 5 4 3 2 1 0

L (WARL) WIRI A (WARL) X (WARL) W (WARL) R (WARL)
1 2 2 1 1 1

Figure 5.1: RV32 PMP CSR layout and format as well as the address
register format. Figure 5.1a describes the RV32 PMP configuration CSR layout.
Figure 5.1b is the PMP address register format for RV32. Lastly, Figure 5.1c
shows the PMP configuration register format. Figures reproduced from the RISC-
V privileged specification [63].

There are currently up to 16 PMP configuration registers available in both

32 and 64 bit modes and their layout for 32 bit is shown in Figure 5.1a. Next,

in Figure 5.1c, we see a description of the layout for those configuration regis-

ters where WARL is Write-Any Read-Legal and WIRI is Write-Ignored Read-

Ignored. This is to say that the two bits 5 and 6 are simply ignored in this

register as they are reserved. All the other bits will follow the RISC-V com-

mon WARL field rules as defined in the CSR section of the specification. There

is also an address register format defined in Figure 5.1b, which is the starting

address of the PMP region and encodes bits 33–2 of the 34-bit physical address

length1. No “stop address” is required, and if only one PMP region is defined, it

1Per the RISC-V specification, “The Sv32 page-based virtual-memory scheme described in
Section 4.3 supports 34-bit physical addresses for RV32, so the PMP scheme must support ad-
dresses wider than XLEN for RV32.” [63].
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will encompass the entire memory space. Indeed when many systems boot they

may choose to create a single PMP region with read/write/execute enabled for all

modes as a default setting.

The “L” bit of the configuration register defines if that region of memory is

locked and cannot be read, written, or executed from, regardless of the processor

mode. A reset is required for m-mode to once again control that CSR and allow

that region’s permissions to change. As mentioned, bits 6 and 5 are reserved. Bits

4 and 3 define the type of address matching scheme that will be used to match

the store or load address range against the PMP address register. The options

for this two bit value are OFF, Top of Range (TOR), Naturally Aligned 4-byte

region (NA4), or Naturally Aligned Power of Two (NAPOT). If set to NAPOT the

granularity can be set by the system to any NAPOT value greater than or equal to

8. The last three bits are set to 1 or 0 for read, write, and execute, with 1 meaning

“enabled” and 0 meaning “disabled”. These bits currently apply to both S Mode

and U Mode, though we will discuss the future of S Mode PMP in a following

section.

Using these configuration registers and address registers, RISC-V systems are

able to create regions of memory with simple read, write, and execute privileges

enforced by hardware. This allows systems to build secured areas of memory

similar to that of both Intel Software Guard Extensions (SGX) and Arm TrustZone.

However, without a framework on which to build these secured areas of memory,

the specification only enables hardware engineers to create a foundation on which

to build a Trusted Execution Environment (TEE). We will now examine Keystone

Enclave, an open source framework for building hardware TEEs using RISC-V

PMP as the foundation.
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5.5 Keystone Enclave

One of the first TEE solutions for RISC-V PMP came out of the MIT Computer

Science & Artificial Intelligence Laboratory (CSAIL) and a project called Sanctum

[16]. This work was done just before the RISC-V PMP task group ratified the first

version of their specification for PMP in 2017. As such it was more of a prototype

and required non-standard extensions to the RISC-V core. Keystone Enclave came

out of efforts of researchers at UC Berkeley and takes advantage of the ratified PMP

specification.
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Figure 5.2: A high level overview of possible RISC-V PMP configurations.
RISC-V is highly customize and we can imagine many different possible solutions
when building a platform. Shaded areas imply that some logic is present which
allows PMP to secure the TEE. Reproduced as a simplified version of Figure 2-3
of the GlobalPlatform specification [25] as well as Teschke’s rendering [59].

As detailed in Figure 5.3, Keystone is a full software stack containing a firmware

base which launches both trusted and untrusted “runtimes”. These “runtimes”

then launch both trusted, isolated applications into the enclave as well as untrusted
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applications into the user space of a Linux-based operating system. Keystone de-

fines a set of TEE primitives [36]: Secure Boot, a “Secure Source of Randomness”,

and Remote Attestation. Keystone builds its framework off these primitives and

allows for customization of their firmware which they call a secure monitor (SM).

The SM is used to “enforce TEE guarantees on the platform” [37], and does so

by taking advantage of key properties of RISC-V machine mode. These properties

include machine mode’s programmability, its ability to delegate interrupts, and its

ability to manage memory access using PMP.

Figure 5.3: A high level overview of a Keystone Enclave system. The Key-
stone codebase includes the security monitor, enclave runtime, enclave application,
Linux as an untrusted OS, and untrusted host applications. Reprinted from Figure
1 [37].

There are two key features of RISC-V PMP which Keystone takes advantage of

in building their framework. The first is memory isolation which allows the secure

monitor (SM) running in machine mode to restrict access to the enclave’s memory.

The second feature is the ability for PMP to allow Keystone Enclave secure applica-

tions to use multiple hardware threads in executing code. As Lee notes, “RISC-V
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provides per-hardware-thread views of physical memory via machine-mode and

PMP registers. Using RISC-V thus allows multiple concurrent and potentially

multi-threaded enclaves to access disjoint memory partitions while also opening

up supervisor-mode and the MMU for enclave use.” [36].

Figure 5.4: Keystone memory isolation using RISC-V PMP as a prim-
itive. Keystone separates each untrusted and trusted application into its own
memory space. The secure monitor (SM) is responsible for ensuring that the
proper pmpcfg and pmpaddr configurations are applied with the correct permis-
sions. Reprinted from Figure 2 [37].

Looking at Figure 5.4, we can see the way in which Keystone Enclave restricts

access to several sections of memory. Keep in mind that the priority of these

regions are read from top to bottom with the top being the highest priority and

the bottom the lowest. In the untrusted context a lowest priority area is created

in order to give read, write, and execute permission to both supervisor and user

modes. This allows the untrusted OS, in this case Linux, to run applications

anywhere outside the secure monitor and enclave regions. The security monitor

sets its own region configuration as the highest priority such that no other code
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should be allowed access to the secure monitor’s region. When a context switch

is made into machine mode (E1 Context), the processor begins executing enclave

code. The secure monitor switches the enclave (E1) and user application (U1)

configuration bits. Those regions of memory now have read, write, and execute

privileges until the context switches back to the “Untrusted Context”.

The memory management of these enclaves is controlled by the Keystone En-

clave runtime called “Eyrie” which can be seen in the high level diagram in Figure

5.3 as RT1 and RT2. Eyrie runs in Supervisor Mode and not only performs page

table operations, but also allows for dynamically resizing the enclave. The security

monitor has a plugin which allows for pages which must be evicted from secure

memory to be encrypted such that the confidentiality of the data can be assured

as it leaves the trusted region. This plugable interface of the secure monitor and

Eyrie runtime, along with the open source nature of the project as a whole, allows

for great flexibility. For example, the secure monitor has an “on-chip memory

plugin” [37] that allows for use of a scratchpad memory onto which the enclave

can be loaded. The Eyrie runtime has a plugin which allows an enclave to com-

municate with host applications in a secure manner using a shared buffer. While

syscalls are not allowed inside the enclave itself, the secure monitor can either

proxy those syscalls to the untrusted application, or run them in a trusted context

if appropriate (e.g. mmap, brk, getrandom) [37].

While Keystone Enclave provides many features that we require in our defi-

nition of a TEE, some features are notably left to the user. Remote attestation

is possible, however as the Keystone authors note, “Key distribution, revocation,

attestation services, and anonymous attestation are orthogonal challenges” [37].

There are projects currently working on the problem of remote attestation on
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RISC-V hardware [56], however these efforts are still in their infancy. Keystone

Enclaves provide a method of local attestation which makes use of provisioned keys.

Enclaves can, during runtime, request signed attestation from the secure monitor

in a kind of attestation report similar to that found in Sanctum [35]. This local

attestation is built off of a Secure Boot process that is very similar to TrustZone’s

model, and includes the use of hardware key management and cryptographic en-

gines. Efforts to continue work on secure boot RISC-V systems is the focus of

research [29], but no dominant technology currently exists as a de facto standard.

5.6 Future Extensions of RISC-V Memory Protection

Three additional features of RISC-V PMP will doubtless play a role in future work

done on Keystone Enclave or any RISC-V based TEE framework. The first is

a draft of an Extended Physical Memory Protection (ePMP) specification which

details how PMP will be able to secure user mode code from being executed by

machine mode. Attacking user mode from a more privileged mode is a well known

security vulnerability first address in Intel Ivy Bridge processors about a decade ago

[53]. Seagate recently announced their completion of a chip which takes advantage

of this draft ePMP features. The draft ePMP specification is currently supported

inside the Spike simulator, which is the de facto functional simulator for RISC-

V [7]. ePMP has also been implemented in open source hardware cores like the

Ibex core from lowRISC [39] as well as the open source Root of Trust (RoT)

OpenTitan [28].

The second additional feature, S-Mode Physical Memory Protection (sPMP),

is also in draft status as of this writing. sPMP will provide a way to ensure that

systems without virtual memory can take full advantage of PMP. Currently the
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separation between S Mode and U Mode is done in virtual memory. This extension

will allow for PMP configuration registers specifically reserved for S Mode, moving

that protection from virtual memory into hardware registers. While sPMP is not

implemented yet in any simulators or publicly available hardware, sPMP will likely

see more development this year as the specification nears ratification.

The final additional feature, the draft specification for I/O Physical Memory

Protection (IOPMP), aims to provide memory protection for additional memory

masters such as Direct Memory Access (DMA). These memory masters will all

share one IOPMP unit that will allow for both single core and multi-cores sys-

tems, support error reporting, and support a scalable number of IOPMP entries.

The current draft specification defines an address table and IOPMP configuration

registers which provide address matching for each of the IOPMP addresses.

All three of these extensions, ePMP, sPMP, and IOPMP are in various stages

of ratification by RISC-V International. As such, their features are still in flux to

different degrees. However, ePMP, sPMP, and IOPMP show the direction that

RISC-V is heading in terms of TEE development as an attempt to provide as many

if not more features than currently available TEE technologies.

We have now covered three different implementations of a Trusted Execution

Environment (TEE). These high level descriptions will act as a general reference in

the next chapter where we will provide a method for comparing these technologies.

The method we present can be applied to any set of TEEs regardless of their

complexity or their intended target hardware. The three examples of a TEE have

provided a foundation for the systematic and rigorous comparison that will be

detailed in the following chapter.
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Chapter 6

Trusted Execution Environment Comparisons

6.1 A Method for Comparing TEEs

When we compare Intel Software Guard Extensions (SGX), Arm TrustZone, RISC-

V Physical Memory Protection (PMP), or any group of Trusted Execution Envi-

ronments (TEEs) we must first consider what we are comparing. As such we define

any given TEE based on a set of properties that the TEE must implement or op-

tionally might implement. We will make the assumption that the end goal of the

comparison is to choose a TEE that best meets the needs of the system architect.

As such, we must take the system architect’s needs into consideration in choos-

ing which properties that we will compare. An architect designing an embedded

system with no access to networking will certainly not require traditional remote

attestation, as an example.

As mentioned in Chapter 1, we will use the properties of a TEE as defined by

the Confidential Computing Consortium (CCC) [58]. The CCC is an open source

project that brings together hardware vendors, cloud providers, and software devel-

opers to accelerate the adoption of TEE technologies and standards. They define

code integrity, data integrity, and data confidentiality as three required properties

of any hardware TEE. All three of the TEE technologies which we have summa-

rized in the preceding chapters provide these three required features in different

ways. The CCC also discusses more advanced features like code confidentiality,

authenticated launch, programmability, attestation, and recoverability, which can

be considered optional properties of a TEE. As a final option of a TEE, we will
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include extensibility, which will be discussed in detail shortly.

Notably absent from our list of required properties is code confidentiality. There

are several reasons why one might want code to be confidential. Code may contain

proprietary algorithms for machine learning or other intellectual property. Likewise

code may contain information about health or safety systems which must remain

confidential to assure functional safety. On the other hand, the code that runs

inside the TEE may be open source, making the feature of code confidentiality

nonessential. As such, code confidentiality is considered an optional property by

our definition.

By authenticated launch, we mean a mechanism by which the TEE can prevent

a host application from loading, or limit its functionality based on a set of criteria

or security model. One can think of this in terms of a banking application on a

cell phone. If any stage of the attestation process fails, we want to recognize that

code integrity can no longer be assured. We may want to fail to load the banking

application with appropriate errors if code integrity is compromised. However,

we may want some of the features of the banking application available, while

restricting others. Authenticated launch may restrict withdrawing funds from an

account while allowing the application to provide text messaging with technical

support in order to resolve the problem.

By programmability, we mean the ability of a TEE to be programmed with

code that is unrestricted and able to be changed by the end user. This is apposed

to a TEE with a limited set of available functions or one that is pre-programmed by

the manufacturer or system vendor. Programmability will be limited by the type

of instructions which are allowed to be executed from inside the TEE. The size of

the region of code that is allowed to be used by the TEE may also be restricted.
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Lastly, the way in which code running inside the TEE is allowed to communicate

with code running outside the TEE is also a consideration of programmability. We

will consider a TEE programmable to different degrees based on these limitations.

By attestation, we will use the definition by the CCC provided in Section

6 of their paper [58]. The attestation workflow starts with a secure connection

between the two parties, identified as the verifier and the attester. The verifier

must first challenge the attester to initiate the check. The challenge from the

verifier signals to the attester that it must communicate with trusted hardware

to request a measurement of the TEE. The trusted hardware is responsible for

the measurement value as well as any certification of origin. The attester can

then return these values to the verifier. The verifier will check any signatures

provided based on the security model. Attestation may be performed locally on

the host machine. If the verifier is on a remote machine to that of the attester we

would consider that to be remote attestation. Attestation should take advantage

of a Root of Trust (RoT), however that root of trust may be either hardware or

software based. If a given system contains a hardware RoT we can consider that

system more secure by the same definition we gave earlier of a hardware TEE.

By recoverability, we mean a way for the TEE to “roll back” to some known

good state should a failure occur while preforming validation on the integrity or

confidentiality of the system. The goal of recoverability is to re-establish trust in

the Trusted Compute Base (TCB). Part of the TCB may not be easily recoverable.

For example, if the platform firmware loaded onto an Intel SGX system is found

to be untrustworthy, a simple firmware update may not be capable of removing

malicious code. However, if the code running inside the SGX enclave is found to be

untrustworthy, simply reloading that code from its original source may be enough
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to reliably restore trust in the application.

Finally, we add extensibility as the final optional property of a TEE. Extensi-

bility was not defined in the CCC document, however extensibility can be observed

to some extent in all three TEE technologies we have covered. We define exten-

sibility as the ability to customize the deployment and management of the TEE

environment, including hardware, firmware, and software. This property comes

at the cost of supporting those customizations. As Linus’s Law states, “Given

enough eyeballs, all bugs are shallow” [52]. Regardless, the burden of support for

customization must be a consideration, and a healthy open source project is no

small feat.

While these properties are a good starting point for analysis and comparison,

we must break these properties down further in order to engage in a more rigorous

comparison. Authenticated launch can be broken up into two parts: the ability

to prevent application launch, or the ability to launch applications with limited

functionality. Programmability will be broken into three types: the size available to

the TCB, the number of unique trusted applications one can run, and the number

trusted OS’s one can run to manage these applications. Attestation can be divided

into three parts, with remote attestation, local attestation, and if a hardware root

of trust is available. Recoverability will be divided into three parts describing

system which allow: revocation of keys or other components, ability to recover

the TCB using a hardware RoT, and finally if re-issuing keys is possible without

the need for re-provisioning. Extensibility will be broken up into three parts:

hardware, firmware, and software. We will consider the levels of extensibility as

either “highly extensible”, “somewhat extensible”, or “not extensible”.
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6.2 Mapping Data Points

This method uses tables to chart the comparison of these properties and sub-

properties we have discussed. In the following Tables 6.1, 6.2, and 6.3, we give

example tables for the three technologies discussed in the previous chapters. The

first Table 6.1 covers all six of the optional properties of a TEE that we have

discussed in this chapter. Rather than grading each implementation of the property

in a simple “good, better, best” fashion, we list if the property is possible in the

given solution, and if so, the dependency of that property. Next, in Tables 6.2

and 6.3, we pick two of the optional properties of a TEE and divide them into the

smaller pieces we mentioned in the previous section. A more rigorous comparison

can then be made on the details of each property.

This thesis only breaks down two of the optional properties of a TEE into

greater detailed tables. It is left up to the reader to continue this process for the

additional properties. Also, as a reminder to the reader, the data provided in this

thesis can and will change drastically over time. All of the following tables are

meant as examples to the process of comparison and should not be considered as

complete and wholly valid data sources.

Noting that the optional property of a TEE is available and listing required

dependencies is helpful, however we also make a point to parenthetically note an

example dependency where applicable. At the highest level, as in Table 6.1, this

can be quite broad indeed. For example, attestation is possible with TrustZone and

is provided locally by firmware or remotely by SoC manufacturers like Qualcomm.

This is further illustrated in Table 6.2, where we show that local attestation can

be achieved merely by using the appropriate firmware, however to achieve remote

attestation, a system like Qualcomm’s MSM8974 Snapdragon-based platform is
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required [57]. Again, note that we are using quite an old example with Qualcomm’s

MSM8974, circa 2016. Readers wishing to implement this method of comparison

would be wise to chose current security platforms. Likewise, we list Intel as the

only current solution to providing remote attestation for SGX solutions, however

it is highly likely that other solutions are available.

The final Table 6.3 compares extensibility and requires we provide context. The

table works from high level features like the Software Development Kit (SDK), to

low level features like the actual HDL used to generate the TEE. As mentioned

earlier, extensibility does not require that the system in question be open source.

However, since open source options exist, and those systems are inherently exten-

sible, we have listed those where possible. To say that the firmware is open source

and therefore extensible does not provide enough explanation, and we should be

more precise with our definition. Looking at TrustZone, the trusted OS provided

by Open-source Portable TEE (OP-TEE) and secure boot provided by Trusted

Firmware-A (TF-A) allow a high level of customization and extension. Likewise

the Keystone project allows developers to extend its feature set with a set of “plu-

gable interfaces” [37]. While Intel and others have worked to provide open source

and extensible firmware for their platforms, the goal of those firmware projects

is not to provide systems with a way to extend the features provided by Intel

SGX. Therefore, while firmware available for SGX is indeed open source, it is not

specifically designed with extensibility for SGX in mind.

As mentioned earlier, extensible systems as described in Table 6.3 may lack

vendor-supplied support options. While Intel systems may seem like the more

ridged of the three options, Intel aims to provide a high level of support for their
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large cloud and data center customers. Providing adequate support to those cus-

tomers is a delicate balance between the ability to customize Intel systems and

the need to provide uniformly high quality support to those customers. One can

certainly build a RISC-V system which is completely customized from the HDL to

the software SDK, but the responsibility of supporting that system will lie with

the entity which customized it or the open source community built up around that

system.

Intel SGX Arm TrustZone RISC-V PMP

Attestation
Platform
dependent (Intel,
Supermicro)

SoC
manufacturer
dependent
(Qualcomm)

Firmware
(Keystone,
Sanctum)

Authenticated
Launch

Platform
dependent (Intel)

Firmware
dependent
(TF-A)

Firmware
dependent (none,
currently)

Code
Confidentiality

Provided by SGX

Platform
Dependent
(MCIMX8M-
EVKB)

Provided by PMP

Programmable Provided by SGX
Provided by
TrustZone

Firmware
(Keystone)

Recoverable
Platform
dependent
(Supermicro)

Firmware
dependent
(TF-A)

Firmware
dependent (none,
currently)

Extensible Not extensible
Somewhat
extensible

Highly extensible

Table 6.1: Several optional TEE features and the dependencies of those
features. Optional features of a TEE can be provided by the technology itself,
by the chip manufacturer, by the platform vendor, or by the firmware. In turn,
the firmware can be provided to the end user by the hardware manufacturer, by
the platform vendor, or can be custom. We mention some possible examples of
platforms manufacturers or firmware providers where applicable in parentheses.
TEE Technologies are colored in green while properties of the TEE are colored in

yellow . These data points are examples to the process of comparison and should
not be considered as a valid or current source of information.
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Intel SGX Arm TrustZone RISC-V PMP

Remote
Attestation

Intel dependent
Platform
dependent
(Qualcomm)

Not available

Local
Attestation

Inherent in SGX
Firmware
dependent
(TF-A)

Firmware
dependent
(Keystone)

Hardware
RoT

Platform
dependent (Intel,
Supermicro)

Platform
dependent
(MCIMX8M-
EVKB)

Platform
dependent
(MPFS-ICICLE-
KIT-ES)1

Table 6.2: The possible attestation features and the dependencies of those
features. Each technology provides local and remote attestation as a possibility.
However, each technology requires that the consumer of the technology commit
some level of effort into implementing their specific security model. Notably absent
is remote attestation for RISC-V PMP. Remote attestation is indeed possible on
these platforms, however no implementation is currently considered standard, and
certainly no implementation is open source as of the writing of this thesis. TEE
Technologies are colored in green while properties of the TEE are colored in

yellow . These data points are examples to the process of comparison and should
not be considered as a valid or current source of information.

1 There is a RISC-V hardware root of trust that is available and fully open source,
including an open source HDL implementation [28]. As an example platform one
might use the Microchip PolarFire SoC Icicle kit (MPFS-ICICLE-KIT-ES). This
platform contains non-volatile FPGA fabric which is made up of logic elements,
on-chip memory, and math blocks. This is ideal for creating a hardware RoT.
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Intel SGX Arm TrustZone RISC-V PMP
Open Source
SDK

Y (Intel SGX
SDK)

Y (OP-TEE) Y (Keystone)

Open Source
Firmware

Y (TianoCore,
coreboot)

Y (TF-A) Y (Keystone)

Extensible
HDL

N Y Y

Open Source
HDL

N N Y

Table 6.3: The possible extensibility features and the dependencies of
those features. We consider open source options to be inherently extensible.
Proprietary solutions are extensible only if modifications are supported by the
vendor, as is the case with Arm and “extensible HDL”. Certainly few if any Arm
vendors will allow you to modify their HDL directly, however Arm’s IP model
does allow for some inherent modification by allowing one to pick and choose
which IP they wish to use. Note that with Intel SGX, the concept of open source
firmware will only allow limited extensibility to the functionality of the TEE. TEE
Technologies are colored in green while properties of the TEE are colored in

yellow . These data points are examples to the process of comparison and should
not be considered as a valid or current source of information.
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6.3 Considerations and Limitations

In this comparison we have not distinguished between platform manufacturers and

platforms vendors. As an example, Supermicro is a platform manufacturer which

might produce a platform based on an Intel Xeon Processor currently code named

“Ice Lake-SP” which will support SGX on multi-socket systems. They might then

sell those platforms to a vendor like Hewlett Packard or Dell. How Intel SGX

will function on these platforms becomes a combination of the instructions Intel

has added to the architecture, the workflow inherent in the microarchitecture, how

the chipset is assembled, how Supermicro assembled that chipset into a platform,

and how HP or Dell supports that platform with firmware, software, and possibly

remote attestation services. The same is true of Arm systems and RISC-V systems.

One quickly sees the complexity of securing systems in the real world. Our method

for comparison is meant only as a high level tool for assessing the appropriateness

of a TEE technology to a use case.

The method we have described will also be limited by the scope of the use case.

The complexity of the comparison will grow in a linear manner to the complexity

of the use case. One can quickly postulate that a multi-party system based on

heterogeneous TEEs will reach levels of complexity such that this method begins

to break down, or at the very least requires much more rigor than the simple

comparisons shown here. This method is submitted not as a golden standard for

comparison, but rather as a baseline on which further research may provide avenues

for comparison not imagined in this thesis.
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Chapter 7

Conclusion

This thesis has described a method that allows for a comprehensive and rigorous

comparison of Trusted Execution Environments (TEEs). This method involves

identifying the properties of interest for hardware architects, firmware authors,

and TEE software designers alike. Key to our comparison of the implementations

of those properties is breaking each property down into relevant constituent parts.

The relevancy of each property will depend on the use case of the designer, and

should be taken into account during comparison. This method does not provide

us with which technology is the “best,” but rather gives us insight into which TEE

might best fit a specific set of needs.

There are several use cases for systems requiring a TEE that this thesis does

not take into account. These use cases could be the subject of future work in

improving this methodology. Multi-socket processors [34] add another layer of

complexity to TEEs and should be considered for cloud compute or data center

use cases. Likewise systems might require multiple TEEs or heterogeneous TEE

environments, perhaps for enhanced security use cases. As an example, a system

running both TrustZone alongside RISC-V Physical Memory Protection (PMP)

may require communication between these different TEEs to assure secure com-

putation. Examining the details of how these systems are able to interact and

communicate allows for new avenues of comparison. Future work covering these

use cases would add to the rigorous nature of this method.

This proposed method will save hardware architects the frustration that comes
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with a wide range of technology choices. The method provides an organizational

framework for characterizing properties of a TEE and provides value to product

designers who must focus on possible use cases ranging from mobile devices to cloud

services. It is possible that this method may be insufficient for some future version

of a TEE, as evidenced by how new technologies like RISC-V Physical Memory

Protection (PMP) are both mimicking older technologies as well as developing

new and innovative features. However, as the use of TEEs becomes more common

and these technologies take on new unique properties, it is likely that these new

properties will be easily integrated into this method of comparison.
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[18] B. Delgado and K. L. Karavanic, “Performance implications of system man-

agement mode,” in 2013 IEEE International Symposium on Workload Char-

acterization (IISWC), 2013, pp. 163–173.

[19] D. Eldar, A. Kumar, and P. Goel, “Configuring Intel active management

technology.” Intel Technology Journal, vol. 12, no. 4, 2008.

[20] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “Hydra: hybrid design for

remote attestation (using a formally verified microkernel),” in Proceedings of

69

http://eprint.iacr.org/2016/086
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan


the 10th ACM Conference on Security and Privacy in wireless and Mobile

Networks, 2017, pp. 99–110.

[21] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A

virtual machine-based platform for trusted computing,” in Proceedings of the

nineteenth ACM symposium on Operating systems principles, 2003, pp. 193–

206.

[22] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation,

Stanford University, Stanford, CA, USA, 2009.

[23] GlobalPlatform Inc, “GlobalPlatform TEE Client API Specification Version

1.0,” 07 2010.

[24] ——, “GlobalPlatform TEE Client API Specification Version 1.0,” 07 2010.

[25] ——, “GlobalPlatform Technology TEE System Architecture Version 1.2,” 11

2018.

[26] ——, “GlobalPlatform TEE Internal Core API Specification Version 1.2.1,”

05 2019.

[27] ——, “GlobalPlatform TEE Protection Profile Version 1.3,” 09 2020.

[28] S. Guilley, M. Le Rolland, and D. Quenson, “Implementing secure applications

thanks to an integrated secure element,” in 7th International Conference on

Information Systems Security and Privacy, 2021.

[29] J. Haj-Yahya, M. M. Wong, V. Pudi, S. Bhasin, and A. Chattopadhyay,

“Lightweight secure-boot architecture for RISC-V system-on-chip,” in 20th

70



International Symposium on Quality Electronic Design (ISQED). IEEE,

2019, pp. 216–223.

[30] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,

“Using innovative instructions to create trustworthy software solutions,”

in Proceedings of the 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy, ser. HASP ’13. New York,

NY, USA: Association for Computing Machinery, 2013. [Online]. Available:

https://doi.org/10.1145/2487726.2488370

[31] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel software

guard extensions: EPID provisioning and attestation services,” White Paper,

vol. 1, no. 1-10, p. 119, 2016.

[32] S. P. Johnson, U. R. Savagaonkar, V. R. Scarlata, F. X. McKeen, and C. V.

Rozas, “Technique for supporting multiple secure enclaves,” Dec. 2010, US

Patent 8,972,746.

[33] P. A. Karger and A. J. Herbert, “An augmented capability architecture to

support lattice security and traceability of access,” in 1984 IEEE Symposium

on Security and Privacy, 1984, pp. 2–2.

[34] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij, “In-

tegrating remote attestation with transport layer security,” arXiv preprint

arXiv:1801.05863, 2018.

[35] I. Lebedev, K. Hogan, and S. Devadas, “Secure boot and remote attestation

in the sanctum processor,” in 2018 IEEE 31st Computer Security Foundations

Symposium (CSF). IEEE, 2018, pp. 46–60.

71

https://doi.org/10.1145/2487726.2488370


[36] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An
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