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Abstract

In three phase, high-voltage transmission systems, synchronous generators accelerate or

decelerate to adapt to changing power transfer requirements that occur during system

disturbances. In network electrical power systems, frequency changes constantly based

on system dynamics. Modeling network dynamics from oscillations and transients using

time-synchronized measurements can provide real-time information, including angular

displacements, voltage and current phasors, frequency changes, and rate of signal system

decay from positive-sequence components.

Power system voltage and current waveforms are not steady-state sinusoids, especially

during system disturbances. These waveforms contain sustained harmonic and non-harmonic

components. Additionally, because of faults and other switching electromagnetic transients,

there may be step changes in the magnitude and phase angles of these waveforms. Reso-

nances in the power network create additional frequencies. Other disturbances may exhibit

relatively slow changes in phase angles and magnitudes due to oscillations of machine rotors

during electromechanical disturbances.

Power System stability is that property of a system that enables the synchronous ma-

chines of the system to respond to a disturbance and return to normal operating conditions.

To determine the system characteristics, analysis of system stability can be performed by

transient, dynamic and steady-state stability studies.
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Power systems are heavily inter-connected with many hundreds of machines that interact

dynamically through the medium of their high voltage networks. Transient stability studies

are performed to study the power system electromechanical dynamic behavior, and are

aimed to determine if the system will remain in synchronism following major disturbances.

The measurement equipment and computer modeling required, both in time and cost, can be

extensive.

The equation governing the motion of the rotor of a synchronous machine is based on an

elementary principle of dynamics, where accelerating torque is the product of the moment

of inertia of the rotor times its angular acceleration. During a disturbance, how the rotor

will accelerate or decelerate is described in relative motion by the swing equation.

This research uses archived Phasor Measurement Unit (PMU) data obtained from the

Bonneville Power Administration (BPA) to demonstrate a feasible technique for transient

stability system analysis. This work demonstrates a practical method of using Rate of

Change of Frequency (ROCOF) from PMU data with a MATLAB analysis fit program to

determine the system coefficients used to calculate the damping coefficient D, and inertia

constant H , which are necessary to create a practical swing equation.

Because PMU data have become an important component in wide-area measurements

used in many power systems, PMU data are readily available to make quick, useful approxi-

mations. With the event of a large disturbance that excites system dynamics, valuable data

are obtained from PMUs with useful coefficients around the power system.

The method described in this work evaluates PMU data with a MATLAB fit program,
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which successfully analyzes ROCOF measurements under transient conditions through

signal decay to provide quality measurements and determine the coefficients of the swing

equation.
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1 Introduction

1.1 Problem Statement

Stability is the ability of a power system to remain in synchronous equilibrium under steady

operating conditions, and to regain a state of equilibrium after a disturbance has occurred [1].

Since stability is a problem associated with the parallel operation of synchronous machines,

it might be suspected that the problem appeared when synchronous machines were first op-

erated in parallel. The first serious problem of parallel operation, however, was not stability,

but hunting [2]. Hunting are sustained oscillations in speed due to the periodic variations in

torque applied to generators. Prior to 1890 parallel operation of synchronous machines was

accomplished in isolated instances [3]. The problem did not assume importance until after

the change from belted machines to engine driven machines, and from smooth to slotted

armature construction.

Most of the ac generators were driven by direct-connected steam engines. The pulsating

torque by those engines gave rise to hunting, which was sometimes aggravated by resonance

between the period of pulsation of prime mover torque and the electromechanical period of

the power system [2].

The periodic variations in the torque applied to the generators caused periodic variations

in speed. The resulting periodic variations in voltage and frequency were transmitted to the
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motors connected to the system. Oscillations of the motors caused by these variations in

voltage and frequency would sometimes cause motors to lose synchronism entirely if their

natural frequency of oscillation coincided with the frequency of oscillation caused by the

engines driving the generators [4].

To mitigate the oscillations, damper windings were first developed to reduce seriousness

of hunting, and later the problem largely disappeared with the use of turbines. But with the

development of large, heavily interconnected systems with hundreds of machines connected

by long transmission lines, the stability of power systems has become more complex. In three

phase, high-voltage transmission systems, synchronous generators accelerate or decelerate

to adapt to changing power transfer requirements that occur during system disturbances.

In actual network systems, voltage and frequency changes constantly, based on system

dynamics [4].

The stability problem is concerned with the behavior of synchronous machines after

they have been perturbed, causing a readjustment of the voltage angles of the synchronous

machines. If this perturbation does not involve any net change in power, the machines

should return to their original state. If an imbalance between the supply and demand is

created by a change in load, in generation, or in network conditions, a new operating state is

necessary [5].

Adjustment to the new operating condition is called the transient period. The system

behavior during this time is the dynamic system performance, which is of concern in defining

system stability [5]. The main criteria for stability is that the synchronous machine maintain
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synchronism at the end of the transient period. The transient following a system perturbation

is oscillatory in nature. If the system is stable, these oscillations will be damped to a new

stable operating condition. Power system stability requires that system oscillations be

damped. This damped condition is referred to as asymptotic stability, where the system

contains inherent forces that tend to reduce oscillations [5].

Stability studies, which evaluate the impact of disturbances on the electromechanical

dynamic behavior of a power system, are either transient or steady-state. System models

used in such studies are complex. Disturbances can be large or small depending on the

origin. Transmission faults, sudden load changes, loss of generation, and line switching are

examples where nonlinear equations describing the dynamics of a power system cannot be

linearized for purpose of analysis.

The ability of a generator or groups of generators to remain in synchronism immediately

following a sudden disturbance is the initial swing. However, following a large disturbance

a transiently-stable condition is obtained. Transient stability is typically viewed as first

swing stability. Signal analysis can be performed during this first-swing following a system

fault to obtain useful data. By analyzing the ROCOF from PMU data, in the response

of a second-order system of signal decay, the ROCOF can be linearized and filtered to

obtain coefficients of the swing equation. This research characterizes a practical method for

determining coefficients of the swing equation as a tool for system characterization.
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1.2 Objectives of Work

A literature study was performed to assess the applications in small signal analysis and the

impact of this project. It is apparent that time-synchronized phasor measurements have

become an important component of wide area measurements in powers systems, and the

custom applications are extensive. The goal of this study was to develop a useful method to

determine the coefficients of the swing equation with PMU data using a unique MATLAB

analysis program. The simulations and results were then used in the development of this

method. The research here distinguishes itself for being a practical method to provide a

quick check when evaluating a system’s swing equation. By analyzing positive-sequence

frequency data from three different PMU locations at multiple transmission-level events,

signal data can be used to determine useful swing equation coefficients.

From this work, a method to optimize starting data sets are discussed. The purpose of

this methodology review was to mitigate ancillary transients and improve the program’s

filtered best-fit output. Additionally, an automatic function that could be incorporated into

the filter program is discussed, but was not used for this study.
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2 Design Methodology

2.1 Why D & H

The modern view of the stability problem dates from the 1924 Winter Convention of the

American Institute of Electrical Engineers when a group of papers [3] called attention to the

importance of the problem and presented the results of the first laboratory tests on miniature

systems proportioned to simulate a power system having a long transmission line. Another

important step was taken 1925 when the first field tests [6] [7] on stability were made on

the system of Pacific Gas and Electric Company. Much additional practical information [8]

on the problem was obtained by transient recording apparatus, first installed on the system

of the Southern California Edison Company. Stability, in the sense employed by the First

Report of Power System Stability [9], is concerned with the successful parallel operation

of ac machines as affected by the magnitude of power transmitted. This problem existed

since the beginning of parallel operation. During a period from 1924 to 1933, the theory of

system stability was carefully investigated.

To better understand the Damping Coefficient (D) and the Inertia Constant (H), we first

look at the Swing Equation.
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2.1.1 Swing Equation

If you consider a synchronous generator with electromagnetic torque Te running at syn-

chronous speed ωsm, during normal steady-state operation, the mechanical torque Tm = Te.

If there is a perturbation in the system it will result in an acceleration or deceleration torque,

where Ta = Tm − Te. With Ta > 0 if accelerating, and Ta < 0 if decelerating.

By the law of rotation, the swing equation governs the motion of the machine rotor

relating the inertia torque to the resultant of the mechanical and electrical torques of

the rotor [5]. Both Anderson and Kimbark provide an excellent discussion of units and

dimensional analysis of the swing equation [2][5].

J
d2θm
dt2

= Ta = Tm − Te (N ·m) (2.1)

Where the symbols have the following definitions:

• J = the total moment of inertia of the rotor masses, in kg ·m2

• θm = the angular displacement of the rotor with respect to a stationary axis, in

mechanical radians

• t = time in seconds

• Tm = the mechanical or shaft torque supplied by the prime mover less retarding torque

to rotational losses, N ·m

• Te = the net electrical or electromagnetic torque, in N ·m
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In equation 2.1, J is the total moment of inertia of the rotating masses. θm is the rotor

angular position with respect to a stationary axis.

θm = ωsmt + δm (2.2)

Equation 2.2, is the angular position, where ωsm is the synchronous speed of the machine,

and δm is the angular displacement of the rotor. Since θm is measured with respect to a

stationary axis, it is an absolute measure of the rotor angle. Taking the derivatives of equation

2.1 with respect to time provide equations 2.3 and 2.4.

dθm
dt

= ωsm +
dδm
dt

(2.3)

d2θm
dt2

=
d2δm
dt2

(2.4)

Equation 2.3 shows that the rotor angular velocity dθm/dt is constant and equals syn-

chronous speed only when dδm/dt is zero. Therefore, dδm/dt represents the deviation of

the rotor speed from synchronism. Substituting equation 2.4 in equation 2.1, we obtain

J
d2δm
dt2

= Ta = Tm − Te (N ·m) (2.5)

Now it is convenient to show the angular velocity of the rotor in equation 2.6.

ωm =
dθm
dt

(2.6)

Power equals torque times angular velocity. Multiply equation 2.5 by ωm to obtain the

power equation 2.7.
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Jωm
d2δm
dt2

= Pa = Pm − Pe (W ) (2.7)

Where Pm is the shaft power input to the machine less rotational losses. Pe is the electrical

power crossing its air gap, and Pa is accelerating power which accounts for any unbalance

between Pm and Pe.

The coefficient Jωm is the angular momentum of the rotor; at synchronous speed ωsm,

it is denoted by M and called the inertia constant of the machine.

M
d2δm
dt2

= Pa = Pm − Pe (W ) (2.8)

It is noted that the angular momentum M is not strictly constant [2] because the angular

velocity ωm varies somewhat during the swings which follow a disturbance. However, in

practice, ωm does not differ significantly from synchronous speed when the machine is

stable, and since power is more convenient in calculations than torque, equation 2.8 is

preferred.

In machine data developed for stability studies, another constant related to inertia is the

H constant, which is defined by equation 2.9.

H =
stored kinetic energy in megajoules at synchronous speed

machine rating in MV A

H =
1
2
Jω2

sm

Smach
=

1
2
Mωsm

Smach
(MJ/MV A) (2.9)
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Where Smach is the three-phase rating of the machine in megavoltamperes. Solving for M

we obtain equation 2.10 in mechanical radians.

M =
2H

ωsm
Smach (MJ/radm) (2.10)

When we substitute M into equation 2.10, we obtain equation 2.11. Where δm is expressed

in mechanical radians and ωsm is expressed in mechanical radians per second.

2H

ωsm

d2δm
dt2

=
Pa

Smach
=

Pm − Pe
Smach

(unit less) (2.11)

Thus, we can write the equation in per unit form where both δ and ωs have consistent

units, which may be mechanical or electrical degrees or radians. H and t have consistent

units since megajoules per megavoltamperes is in units of time in seconds and Pa, Pm, and

Pe must be in same base as H. When subscript m is associated with ω, ωs, and δ, it means

mechanical units are being used; otherwise, electrical units are implied.

2H

ωs

d2δ

dt2
= Pa = Pm − Pe (per unit) (2.12)

where M =
2H

ωs
(2.13)

Equation 2.12 is the swing equation of the machine, and is the fundamental equation which

governs the rotational dynamics of the synchronous machine in stability studies.

Additionally, ωs is the synchronous speed in electrical units. The swing equation with

an electrical frequency of f, Hertz becomes equation 2.3.

H

πf

d2δm
dt2

= Pa = Pm − Pe (per unit) (2.14)
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Equation 2.3 applies when δ is in electrical radians.

H

180f

d2δm
dt2

= Pa = Pm − Pe (per unit) (2.15)

Equation 2.15 applies when δ is in electrical degrees. The swing equation 2.12 is the

fundamental equation which governs the rotational dynamics of a synchronous machine in

stability studies. It is a second order differential equation, which can be approximated as

two first order differential equations 2.16 and 2.17.

2H

ωs

dω

dt
= Pm − Pe (per unit) (2.16)

dδ

dt
= ω − ωs (2.17)

In a stability study for a large system with many machines geographically dispersed over

a wide area, it is desirable to minimize the number of swing equations to be solved. This can

be done if the transmission line fault, or other disturbance on the system, affects the machines

within a network so that their rotors swing together. In such cases, the machines within

the network can be combined into a single equivalent machine just as if their rotors were

mechanically coupled and only one swing equation needs to be created for an equivalent

"generator" representing the network, as illustrated in Figure 2.1.

If we look at two generators in a single plant that are connected to the same bus and are

electrically remote from a network disturbance, the swing equations on the common base

are equations 2.18 and 2.19.
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Figure 2.1: Large, networked power system as a single generator.

2H1

ωs

d2δ1

dt2
= Pm1 − Pe1 (per unit) (2.18)

2H2

ωs

d2δ2

dt2
= Pm2 − Pe2 (per unit) (2.19)

Adding the equations together with δ1 and δ2, which are denoted by δ since the rotors

swing together, creates equation 2.20.

2H

ωs

d2δ

dt2
= Pm − Pe (per unit) (2.20)
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Where H,Pm, and Pe in equation 2.20 are in the form of swing equation 2.12.

H = (H1 +H2)

Pm = (Pm1 + Pm2)

Pe = (Pe1 + Pe2)

This can then be solved to represent the combined plant dynamics.

Machines that swing together are called coherent machines. It is noted that, when both

ωs and δ can be expressed in electrical degrees or radians, the swing equations for coherent

machines can be combined together even though the rated speeds are different. This allows

stability studies that involve many machines to reduce the number of swing equations that

are needed to be solved.

For any pair of non-coherent machines in a system, swing equations 2.18 and 2.19 can be

written. Divide each equation by its left-handed side coefficients and subtract the resultant

equations, results in equation 2.21.

d2δ1

dt2
− d2δ2

dt2
=
ωs
2

(
Pm1 − Pe1

H1

− Pm2 − Pe2
H2

)
(2.21)

Multiply each side by
(

H1H2

H1+H2

)
and rearrange to obtain equation 2.22.
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2

ωs

(
H1H2

H1 +H2

)
d2(δ1 − δ2)

d2
=
Pm1H2 − Pm2H1

H1 +H2

− Pe1H2 − Pe2H1

H1 +H2

(2.22)

This can be simplified in the form of equation 2.12 to obtain equation 2.23.

2H12

ωs

d2δ12

d2
= Pm12 − Pe12 (2.23)

In equation 2.23 the relative angle δ12 equals δ1 - δ2. The equivalent inertia, weighted

input, and output powers are defined by the following:

H12 =
H1H2

H1 +H2

(2.24)

Pm12 =
Pm1H2 − Pm2H1

H1 +H2

(2.25)

Pe12 =
Pe1H2 − Pe2H1

H1 +H2

(2.26)

Another application of these equations is a two-machine system having only one genera-

tor. Where the generator is (machine one) and synchronous motor is (machine two), both

connected by a network of pure reactances. Whatever change occurs in one generator output

is absorbed by the other generator, which can be written as the following.

Pm1 = −Pm2 = Pm

Pe1 = −Pe2 = Pe

(2.27)
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Where Pm12 = Pm, Pe12 = Pe and then equation 2.23 reduces to

2H12

ωs

d2δ12

dt2
= Pm − Pe

Equation 2.22 illustrates that stability of a machine within a system is a relative property

associated with its dynamic behavior with respect to the other machines of the system. In

order to be stable, the angular differences between all machines must decrease after the final

switching operation, such as the opening of a circuit breaker to clear a fault. This is not

specifically the angle between the machine’s rotor and a synchronously rotating reference

axis, but more importantly its the relative angles between machines.

The aforementioned information on a two-machine system can be categorized by two

types; those having one machine of finite-inertia swinging with respect to an infinite bus,

and those having two finite-inertia machines swinging with respect to each other.

An infinite bus may be considered from stability purposes as a bus at which is located a

machine of constant internal voltage, having zero impedance and finite inertia. The point

of connection of a generator to a large power system may be regarded as such a bus. In

all cases, the swing equation assumes the form of equation 2.12. The equation for Pe is

essential to this description.

2.1.2 The Power-Angle

In the swing equation for the generator, the input mechanical power from the prime mover

Pm is considered constant. This assumption can be made because conditions in the electrical
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Figure 2.2: Generator Circuit and Phasor Diagram [4]

network are not expected to change before control systems can react to an event. Since

Pm is constant in equation 2.12, the electrical power output Pe will determine whether the

rotor accelerates, decelerates, or remains at synchronous speed. When Pe equals Pm the

machine operates at steady-state synchronous speed. When Pe changes from this value the

rotor deviates from synchronous speed. Changes in Pe are determined by conditions in

the transmission networks, distribution networks, and the loads on the system to which the

generator supplies power. Electrical network disturbance or events, resulting from severe

load changes, faults, or circuit breaker operations, may cause the generator output Pe to

change, in which case electromechanical transients arise.

The fundamental assumption is that the effect of the machine speed variations upon the

generated voltage is negligible so that the manner in which Pe changes is determined by the

load flow equations applicable to the state of of the electrical network, and by the model
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chosen to represent the electrical behavior of the machine. Each synchronous machine is

represented for transient stability studies by its transient internal voltage E’ in series with

the transient reactance X ′d as shown in Figure 2.2 in which Vt is the terminal voltage. This

corresponds to the steady-state representation in which synchronous reactance Xd is in

series with the synchronous internal voltage E. Since each machine must be considered

relative to the system of which it is part, the phasor angle of the machine quantities are

measured with respect to a common reference.

Figure 2.3: Schematic Diagram Transient Reactances [10]

Figure 2.3 represents a generator supplying power through a transmission system to a

receiving end at bus 2. The schematic represents the transmission system of linear passive

components and includes the transient reactance of the generator. The voltage E ′1 represents

the transient internal voltage of the generator at bus 1. The voltage E ′2 at the receiving end

represents an infinite bus, or as the transient internal voltage of a synchronous motor whose

transient reactance is included in the network.

The elements of the bus admittance matrix for the network reduced to two nodes in
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addition to the reference node, is equation 2.28.

Ybus =

 Y11 Y12

Y21 Y22

 (2.28)

Complex power into the bus is given by equation 2.29.

Pk + jQ1 = V∗k

N∑
n=1

YknVn (2.29)

Letting k and N equal 1 and 2, respectively, and substituting E’2 for V can be written as

equation 2.30 at bus 1.

P1 + jQ1 = E’1(Y11E’1)∗ + E’1(Y12E’2)∗ (2.30)

Where the following internal voltages and admittances apply.

E ′1 = |E ′1|∠δ1 : E ′2 = |E ′2|∠δ2

Y11 = G11 + jB11 : Y12 = |Y12|∠θ12

Since in the solution of the swing equation only real power is involved we have equation

2.31.

P1 = |E’1|2G11 + |E’1|E’2 |Y11| cos(δ1 − δ2 − θ12) (2.31)

Q1 = − |E’1|2B11 + |E’1|E’2 |Y12| sin(δ1 − δ2 − θ12) (2.32)

Similar equations apply at bus 2 by interchanging the above subscripts in equations 2.31

and 2.32.
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If we define the following,

δ = δ1 − δ2

and define a new angle γ such that,

γ = θ12 −
π

2

we obtain Equations 2.33 and 2.34.

P1 = |E’1|2G11 + |E’1|E’2 |Y12| sin (δ − γ) (2.33)

Q1 = − |E’1|2B11 − |E’1|E’2 |Y12| cos (δ − γ) (2.34)

The equation 2.31 can be rewritten as Equation 2.35, which is the Power Angle Equation.

Pe = Pc + Pmax sin (δ − γ) (2.35)

Where Pc and Pmax are the following.

Pc = |E ′1|
2
G11 : Pmax = |E ′1| |E ′2| |Y12| (2.36)

Since P1 represents the electrical power output of the generator, it has been replaced

by Pe in the power-angle equation 2.35; its graph as a function δ is called the power-angle

curve. The parameters Pc, Pmax, and γ are constants for a given network configuration

and constant voltage magnitudes |E’1| and |E’2|. For a purely reactive network, which is a

common assumption when conducting power system analysis, all the elements of the Ybus

are susceptances, where both G11 and γ are zero.
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The power-angle equation for a pure reactance network then becomes equation 2.37.

Pe = Pmax sin δ (2.37)

And Pmax can be written as equation 2.38.

Pmax =
|E ′1| |E ′2|

X
(2.38)

Where X is the transfer reactance between E ′1 and E ′2.

The swing equation 2.15 for the machine can be written as equation 2.39, where H is in

megajoules per megavoltampere, f is the electrical frequency, and rotor angle δ is in electrical

degrees.

H

180f

d2δ

dt2
= Pm − Pmax sin δ (per unit) (2.39)

The graphical plot of the power-angle equation is shown in Fig. 2.4.

2.1.3 Synchronizing Power Coefficients

The requirement for a synchronous generator is that it will not lose synchronism when small

temporary changes occur in the output of a machine. To highlight this requirement, for a

fixed mechanical input power Pm, consider small incremental changes in the operating point

parameters. Stevenson [4] provides excellent discussion of units and dimensional analysis

of synchronizing power coefficients.

δ = δ0 + δ∆ : Pe = Pe0 + Pe∆ (2.40)
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Figure 2.4: Power-Angle Equation Plot [4]

The subscript zero denotes the steady-state operating point values and the subscript zero

identifies the incremental variations from those values. Substituting equation 2.40 into 2.35,

to obtain the power-angle equation for a general two-machine system in the form of of the

following equations.

Pe0 + Pe∆ = Pmax sin (δ0 + δ∆) (2.41)

Pe0 + Pe∆ = Pmax (sin δ0 cos δ∆ + cos δ0 sin δ∆) (2.42)

δ∆ is a small incremental displacement from δ0.

sin δ∆
∼= δ∆ and cos δ∆

∼= 1 (2.43)
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Then equation 2.42 becomes 2.44

Pe0 + Pe∆ = Pmax sin δ0 + (Pmax cos δ0) δ∆ (2.44)

where strict equality is now used. At the initial operating point δ0,

Pm = Pe0 = Pmax sin δ0 (2.45)

and from the equations 2.44 and 2.45 it follows that

Pm − (Pe0 + Pe∆) = − (Pmax cos δ0) δ∆ (2.46)

Substituting the incremental variables of equation 2.40 into the basic swing equation 2.12,

we obtain equation 2.47.

2H

ωs

d2(δ0 + δ∆)

d2
= Pm − (Pe0 + Pe∆) (2.47)

Replacing the right-hand side of this equation by 2.46 and transposing terms, we obtain

equation 2.48,

2H

ωs

d2δ∆

dt2
+ (Pmaxcos δ0) δ∆ = 0 (2.48)

where δ0 is a constant value. Noting that Pmax cos δ0 is the slope of the power-angle curve

at the angle δ0, we denote the slope as Sp and define it as equation 2.49.

Sp =
dPe
dδ

∣∣∣∣
δ=δ0

= Pmax cos δ0 (2.49)

Where Sp is called the synchronizing power coefficient. When SP is used in equation 2.48,

the swing equation governing the incremental rotor-angle variations may be written in the

form of equation 2.50.

d2δ∆

dt2
+

ωsSp
2H

δ∆ = 0 (2.50)
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This is a linear, second-order differential equation, the solution to which depends upon the

algebraic sign of Sp. When Sp is positive, the solution of δ∆(t) corresponds to that of simple

harmonic motion where the oscillations are of an undamped sinusoid of angular frequency

ωn. The equation of simple harmonic motion is the following equation.

d2x

dt2
+ ω2x = 0

This has a general solution with constants A and B determined by initial conditions.

x(t) = A cos ωn t+ B sin ωn t

When Sp is negative, the solution δ∆(t) increases exponentially without limit.

The angular frequency of undamped oscillations is given by equation 2.51.

ωn =

√
ωsSp
2H

(elec rad/s) (2.51)

Which corresponds to the frequency of oscillation given by equation 2.52.

fn =
1

2π

√
ωsSp
2H

(Hz) (2.52)

2.1.4 Equal-Area Criterion

The swing equations developed in the power angle equations are nonlinear in nature. Formal

solution of such equations can not be explicitly found. Even the case of a single machine

swinging with respect to an infinite bus is very difficult to obtain literal-form solutions and

therefore digital computer methods are normally used. To examine the stability of a two-

machine system without solving the swing equation, a direct approach is possible. Kimbark
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[2] and Stevenson [4] provide excellent discussion of units and dimensional analysis of

equal-area criterion of stability.

Consider a Single Machine Infinite Bus (SMIB) system, as shown in Figure 2.5. At point

P close to the bus number one , a three-phase fault occurs and it is cleared by circuit breaker

A after a short period. Therefore, the effective transmission system is unaltered except while

the fault is on. The short circuit caused by the fault is effectively at the bus and so the

electrical power from the generator is zero until the fault is cleared. The physical conditions

before, during, and after the fault can be understood by analysing the power-angle curves in

Figure 2.6.

Figure 2.5: SMIB System with Short Transmission line [4]

Originally the generator is operating at synchronous speed with a rotor angle of δ0 and

the input mechanical power Pm equals the output electrical power Pe as shown at point a

in Figure 2.6a. When the fault occurs at t = 0, the electrical power output is suddenly zero

while the input mechanical power is unaltered as shown in Figure 2.6b. The difference in
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power must be accounted for by a rate of change of stored kinetic energy in the rotor masses.

This can be accomplished only by an increase in speed, which results from the constant

accelerating power Pm. If we denote the time to clear the fault tc, then for time t less than tc

the acceleration is constant and is given by equation 2.53.

d2δ

dt2
=

ωs
2H

Pm (2.53)

While the fault is on, the velocity increase above synchronous speed is found by integrating

equation 2.53 to equation 2.54.

dδ

dt
=

∫ t

0

ωs
2H

Pmdt =
ωs
2H

Pm t (2.54)

A further integration with respect to time yields equation 2.55 for the rotor angle position.

δ =
ωsPm
4H

t2 + δ0 (2.55)

Equations 2.54 and 2.55 show that the velocity of the rotor relative to the synchronous

speed increases linearly with time while the rotor angle advances from δ0 to the angle at

clearing δc; that is, Figure 2.6 the angles δ goes from b to c. At the instant of the fault

clearing, the increase in rotor speed and the angle of separation between the generator and

the infinite bus are given, respectively, by equation 2.56 and equation 2.57.

dδ

dt

∣∣∣∣
t=tc

=
ωsPm
2H

tc (2.56)

δ(t)

∣∣∣∣
t=tc

=
ωsPm
4H

t2c + δ0 (2.57)

When the fault is cleared at the angle δc, the electrical power output immediately

increases to a value corresponding to point d on the power-angle curve. At d the electrical
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Figure 2.6: Power-Angle Curves [4]

power output exceeds the mechanical power input and thus the acceleration is negative. As

a consequence, the rotor slows down as Pe goes from d to e in Figure 2.6c. At e the rotor

speed is again synchronous although the rotor angle has advanced to δx. The angle δx is

determined by the fact that areas A1 and A2 must be equal. The accelerating power at e

is still negative (retarding), and so the rotor cannot remain at synchronous speed but must
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continue to slow down. The relative velocity is negative and the rotor angle moves back

from δx at e along the power-angle curve of Figure 2.6 c to point a at which the rotor speed

is less than synchronous. From a to f the mechanical power exceeds the electrical power

and rotor increases speed again until it reaches synchronism at f. Point f is located so that

areas A3 and A4 are equal. In the absence of damping the rotor would continue to oscillate

in the sequence f-a-e, e-a-f, etc., with synchronous speed occurring at e and f.

In the system where the machine is swinging with respect to an infinite bus, the use of

the principle of equality of areas, called the equal-area criterion, determines the stability

of the system under transient conditions without solving the swing equation. Although not

applicable to multimachine systems, the method helps in understanding how certain factors

influence the transient stability of any system.

The derivation of the equal-area criterion is made for one machine and an infinite bus

although the method can be adopted to two-machine systems. The swing equation for the

machine connected to the bus is equation 2.58.

2H

ωs

d2δ

dt2
= Pm − Pe (2.58)

Define the angular velocity of the rotor relative to synchronous speed as equation 2.59.

ωr =
dδ

dt
= ω − ωs (2.59)

Differentiating equation 2.59 with respect to t and substituting in equation 2.58 we obtain

equation 2.60.

2H

ωs

dωr
dt

= Pm − Pe (2.60)
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When the rotor speed is synchronous, ω equals ωs and ωr is zero. Multiplying both sides of

equation 2.60 by ωr = dδ
dt

we obtain equation 2.61.

H

ωs
2ωr

dωr
dt

= (Pm − Pe)
dδ

dt
(2.61)

The left-hand side of the equation can be rewritten to provide equation 2.62.

H

ωs

d(ω2
r)

dt
= (Pm − Pe)

dδ

dt
(2.62)

Multiplying by dt and integrating, we obtain equation 2.63.

H

ωs
(ω2

r2
− ω2

r1
) =

∫ δ2

δ1

(Pm − Pe)dδ (2.63)

The subscripts for the ωr terms corresponds to the δ limits, where the rotor speed ωr1

corresponds to angle δ1 and ωr2 corresponds to δ2. Since ωr represents the departure of the

rotor speed from synchronous speed, we can determine that if the rotor speed is synchronous

at δ1 and δ2, then correspondingly, ωr1 = ωr2 = 0. Under this condition equation 2.63

becomes equation 2.64. ∫ δ2

δ1

(Pm − Pe) dδ = 0 (2.64)

This equation applies to any two points δ1 and δ2 on the power-angle diagram, provided

they are at which the rotor speed is synchronous. In Figure 2.6b two such points are a

and e corresponding to δ0 and δx. If we perform the integration in steps, we can write the

following. ∫ δc

δ0

(Pk − Pe)dδ +

∫ δx

δc

(Pm − Pe) dδ = 0 (2.65)

or ∫ δc

δ0

(Pk − Pe)dδ =

∫ δx

δc

(Pm − Pe) dδ (2.66)
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The integral applies to the fault period while the right integral corresponds the immediate

post fault period up to the point of maximum swing δx. In Figure 2.6b Pe is zero during the

fault. The shaded area A1 is given by the left-hand side equation 2.66 and the shaded area

A2 is given by the right-hand side. So the two areas A1 and A2 are equal.

Since the rotor speed is synchronous at δx and also at δy in Figure 2.6c the same reasoning

shows that A3 equals A4. The areas A1 and A4 are directly proportional to the increase

in kinetic energy of the rotor while it is decelerating. This can be seen by inspection of

both sides of equation 2.63. The equal-area criterion states that whatever kinetic energy is

added to the rotor following a fault must be removed after the fault to restore the rotor to

synchronous speed.

The shaded area A1 is dependent upon the time taken to clear the fault. If there is a

delay in clearing, the angle δc is increased; likewise the area A1 increases and the equal-area

criterion requires that area A2 also increase to restore the rotor to synchronous speed at a

larger angle of maximum swing δx. If the delay in clearing is prolonged where the rotor

angle δ swings beyond the angle δmax in Figure 2.6 then the rotor speed at that point on

the power-angle curve is above synchronous speed when positive accelerating power is

again encountered. Under the influence of this positive accelerating power the angle δ will

increase without limit and instability results. Therefore there is a critical angle for clearing

the fault in order to satisfy the requirements of the equal-area criterion for stability. This

angle, called the critical clearing angle δcr is illustrated in Figure 2.7. The corresponding

critical time for removing the fault is called the critical clearing time δcr.
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Figure 2.7: Power-Angle Curves with critical-clearing [4]

From Figure 2.7, both the critical clearing angle and the critical clearing time can be

calculated as follows. The rectangle area A1 in equation 2.67.

A1 =

∫ δcr

δ0

Pmdδ = Pm(δcr − δ0) (2.67)

While the area for A2 is equation

A2 =

∫ δmax

δcr

(Pmax sinδ − Pm) dδ

A2 = Pmax (cos δcr − cos δmax) − Pm(δmax − δcr)

(2.68)

equating the expressions for A1 and A2, and transposing terms, yields equation 2.69.

cos δcr =

(
Pm
Pmax

)
(δmax − δ0) + cos δmax (2.69)

We see from the sinusoidal power-angle curve that δmax is equation 2.70.

δmax = π − δ0 (elec rad) (2.70)
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And that Pm is equation 2.71.

Pm = Pmax sin δ (2.71)

Substituting for δmax and Pm in equation 2.69, simplifying the result and solving for δcr, we

obtain equation 2.72 for the critical clearing angle.

δcr = cos−1[(π − 2δ0) sin δ0 − cos δ0] (2.72)

The value for δcr calculated from this equation, when substituted for the right-hand side of

equation 2.57, yields equation 2.73.

δcr =
ωsPm
4H

t2cr + δ0 (2.73)

From which is found equation 2.74 for the critical clearing time.

tcr =

√
4H(δcr − δ0)

ωsPm
(2.74)

Although the equal-area criterion can be applied only for the case of two machines or

one machine and an infinite bus, it is very useful means for beginning to see what happens

when a fault occurs and helpful in understanding transient stability.

2.1.5 Why are there stability studies

Synchronous machines do not easily fall out of step under normal conditions. Stability

studies are needed to understand the stability limit of synchronous machines to determine

whether the machines remain in synchronism after a disturbance.

Power-system stability is a term applied to alternating-current electric power systems,

denoting a condition in which the various synchronous machines of the given system remain
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in synchronism, or "in step," with each other [2]. Conversely, instability denotes a condition

involving a loss of synchronism, or falling "out of step."

Stability can be formally defined as follows: Stability when used with reference to a

power system, is that attribute of the system, or part of a system, which enables it to develop

restoring forces between the elements thereof, equal to or greater than disturbing forces so

as to restore a state of equilibrium between the elements [11].

Successful operation of a power system depends largely on an electrical power system’s

ability to provide reliable and uninterrupted service to the loads [5]. The reliability of the

power supply implies much more than being available. Ideally, the loads must be fed at

constant voltage and frequency at all times.

The stability limit for a system with synchronous machines can be considered the same

as the power limit, and is defined as: A stability limit is the maximum power flow possible

through some point in the system when the entire system or part of the system to which the

stability limit refers is operating with stability [11]. When a synchronous machine loses

synchronism or "falls out of step" with the rest of the system, its rotor runs at a higher or

lower speed than required to generate voltages at system frequency [12]. The slip between

the rotating stator field (corresponding to system frequency) and the rotor field results in

large fluctuations in the machine power output, current and voltage; this causes the protection

system to isolate the unstable machine from the system.

Instability in a power system may be manifested in different ways depending on the
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system configuration and operating mode. Traditionally, the stability problem has been one

of maintaining synchronous operation. Since power systems rely on synchronous machines

for generation of electrical power, a necessary condition is that all the synchronous machines

remain in synchronism. This aspect of stability is influenced by the dynamics of generator

rotor angles and power-angle relationships.

Rotor angle stability is the ability of interconnected synchronous machines of a power

system to remain in synchronism. Voltage stability is the ability of a power system to

maintain acceptable voltages at all buses in the system under normal operating conditions

and after being subjected to a disturbance. For the voltage to be stable, the synchronous

machines must run in synchronism. The long-term and mid-term stability are relatively new

to the literature on power system stability [12]. Long-term stability is associated with the

slower and longer-duration phenomena that accompany large-scale system upsets and on the

resulting large, and sustained mismatches between generation and consumption of active

and reactive power. In mid-term stability, the focus is on synchronizing power oscillations

between machines, including the effects of some of the slower phenomena and possibly

large voltage or frequency excursions [12].

Stability studies are usually classified into three types depending upon the nature and

magnitude of the disturbance. These are transient, dynamic, and steady-state stability studies.

In all stability studies, the objective is to determine whether or not the rotors of the machines

being perturbed return to constant speed operation.
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Transient stability studies constitute the major analytical approach to the study of power-

system electromechanical behavior. Transient stability studies are aimed at determining if

the system will remain in synchronism following major disturbances such as transmission

system faults, sudden load changes, loss of generating units, or line switching. Such

studies began more than 70 years ago, but were confined to consideration of dynamic

problems of not more than two machines [5]. Present-day powers systems are vast, heavily

interconnected systems with many hundreds of machines which can dynamically interact

through the medium of their extra-high and ultra-high voltage networks.

Dynamic and steady-state stability studies are less extensive in scope and involve one

or just a few machines undergoing gradual changes in operating conditions. Both dynamic

and steady-state stability studies concern the stability of the locus of essentially steady-state

operating points of the system. Dynamic and steady-state differ in the degree of detail used

to model the machines. In dynamic stability studies, the excitation system and turbine-

governing system are represented along with synchronous machine models, which provide

for flux-linkage variation in the machine air-gap [5]. Steady-state stability problems use

simple generator models, which treat the generator as a constant voltage source. The solution

technique of dynamic and steady-state stability problems is to examine the stability of the

system under incremental variations about an equilibrium point. The nonlinear differential

and algebraic equations for a system can be replaced by a set of linear equations, which

are then solved by methods of linear analysis to determine whether a machine remains in

synchronism following small changes from the operating point.
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Transient stability studies involve large disturbances, which do not allow a linearization

process to be used. Non-linear differential and algebraic equations must be solved by

direct methods or by iterative step-by-step procedures. Transient stability problems can be

subdivided into first-swing and multiswing stability problems. First-swing stability is based

on a simple generator model without representation of the control systems. Usually the time

period under study is the first second following a system fault. If the machines of the system

are found to remain in synchronism within the first second, the system is stable. Multiswing

stability problems extend over a longer study period and consider the effects of generator

control systems. Machine models are much more complex in transient stability studies [5].

2.1.6 Small-Signal Stability

A synchronous machine, when perturbed, will have several modes of oscillations with

respect to the rest of the system. There are cases where coherent groups of machines

oscillate with respect to other groups of machines. The oscillations cause fluctuations in bus

voltages, system frequencies, and tie-line power flows. If two similar systems are connected

together through a tie-line, it is evident that they can vary in speed together as one machine

or that the two systems can oscillate against each other about a point in the middle of the tie

or that both modes of oscillation can occur simultaneously [13]. It is important that these

oscillations should be small in magnitude and should be damped if the system is to be stable

in the sense of the definition of stability [5].

When an electric power system is subjected to a small disturbance it may be temporary

34



or permanent. If the system is stable, we would expect that for a temporary disturbance

the system would return to its initial state, while a permanent disturbance would cause the

system to acquire a new operating state after a transient period. In either case, synchronism

should not be lost. Under normal operating conditions a power system is subjected to small

disturbances at random. It is important that synchronism not be lost under these conditions.

Thus system behavior is a measure of dynamic stability as the system adjusts to small

perturbations. Both Kundur and Anderson provide an excellent discussion of units and

dimensional analysis of the small-signal stability [12][5].

With electric power systems, the change in electrical torque of a synchronous machine

following a perturbation can be evaluated into torque components. Where in equation 2.75

∆Te = Ts ∆δ + TD ∆ω (2.75)

Ts∆δ is the component of torque change in phase with the rotor angle perturbation ∆δ. This

is referred to as the synchronizing torque component, and Ts is the synchronizing torque

coefficient.

TD∆ω is the component of torque in phase with the speed deviation ∆ω, which is referred

to as the damping torque component, and TD is the damping torque coefficient.

System stability depends on the existence of both components of torque for each syn-

chronous machine. Lack of synchronizing torque results in instability through aperiodic

drift in rotor angle, and the lack of sufficient damping torque results in oscillatory instability.

Figure 2.8 illustrates the rotor stability phenomena of a small-disturbance response with
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a generator connected to a large power system. In part (a), in the absence of automatic

voltage regulation (i.e., constant field voltage) the instability is due to lack of sufficient

synchronizing torque. This results in instability through a non-oscillatory mode. With

continuously acting voltage regulation, the small-disturbance stability problem is corrected

with sufficient damping of the system oscillations, as illustrated in part (b). Instability is

normally through oscillations of increasing amplitude.

The criteria for small-disturbance is that the system can be linearized about a quiescent

operating state. The power-angle relationship for a synchronous machine connected to an

infinite bus obeys a sine law seen in equations 2.37 and 2.38, which is illustrated in equation

2.76.

Pe =
|E ′1| |E ′2|

X
sin δ = Pmax sin δ (2.76)

From equations 2.40 and 2.44 it shows that

Pe = Pe0 + Pe∆

Pe0 + Pe∆ = Pmax sin δ0 + (Pmax cos δ0) δ∆

for small perturbations the change in power is approximately proportional to the change

in angle from equation 2.77, where the quantities, in parenthesis is the slope of the power

angle curve at δ0.

Pe∆ = (Pmax cos δ0) δ∆ (2.77)

Sp from equation 2.49 was defined to be the synchronizing power coefficient.

Sp =
dPe
dδ

∣∣∣∣
δ=δ0

= Pmax cos δ0
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Figure 2.8: Nature of small-disturbance response [12]

Typical examples of small disturbances are a small change in the scheduled generation of

one machine, which results in a change in its rotor angle δ, or a small load added to the

network.

The response of a power system to impacts is oscillatory. If the oscillations are damped

and sufficient time has elapsed where the deviations in the state of the system are small,
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the system is stable. However, if the oscillations grow in magnitude or the oscillations are

sustained indefinitely, the system is unstable.

If the power system is perturbed, it will acquire a new operating state. If the perturbation

is small, the new operating state will not be significantly different from the initial one. Thus

the operation is in the neighborhood of a certain quiescent x0. In this limited range of

operation a nonlinear system can be described mathematically by linearized equations.

The method of analysis used to linearize the differential equations describing system

behavior is to assume small changes in system quantities such as δ∆, ν∆, and P∆ (change in

angle, voltage and power respectively). Equations for these variables are found by making

Taylor series expansion about x0 and neglecting higher order terms [14]. The behavior or

the motion of these changes is then examined. In examining the dynamic performance of

the system, it is important to ascertain not only that growing oscillations do not result during

normal operations, but also that the oscillatory response to small impacts is well damped.

When the disturbances causing system changes disappear, the motion of the system is

then free. Stability is then assured if the system returns to its original state. Such behavior

can be determined in a linear system by examining the characteristic equation of the system.

If the mathematical description of the system is in state-space form, i.e., if the system is

described by a set of first order differential equations, the free response of the system can be

determined from the eigenvalues of the A matrix, as seen in equation 2.78.

ẋ = Ax + Bu (2.78)
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Where x is the vector of state variables, B is the input matrix, and u is the vector of input

controls. Eigenvalues for a given matrix A can be evaluated as a solution of equation 2.79. λ

is a vector of eigenvalues and I is an identity matrix of the same order of matrix A.

|λI − A| = 0 (2.79)

If the order of the state matrix A is nxn then there will be n eigenvalues, which could be

real or complex.

• (i) When the eigenvalues have negative real parts, the original system is asymptotically

stable.

• (ii) When at least one of the eigenvalues has a positive real part, the original system is

unstable.

• (iii) When the eigenvalues have real parts equal to zero, it is not possible on the basis

of the first approximation to say anything in general.

The time dependent characteristic of a mode corresponding to an eigenvalue λi is given by

eλi
t
. Therefore, the stability of a system is determined by the eigenvalues as follows:

• (a) A real eigenvalue corresponds to a non-oscillatory mode. A negative real eigen-

value represents a decaying mode. The larger its magnitude, the faster the decay. A

positive real eigenvalue represents aperiodic instability.
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• (b) Complex eigenvalues occur in conjugate pairs, and each pair corresponds to an

oscillatory mode.

The associated c’s (scalar product representing the magnitude of excitation) and eigenvectors

will have appropriate complex values so as to make the entries of x(t) real at every instant of

time. Where in equation 2.80

(a+ jb)e(σ−jω)t + (a− jb)e(σ+jω)t (2.80)

has the form

eσt sin(ωt + θ) (2.81)

which represents a damped sinusoid for negative σ.

The real component of the eigenvalues gives the damping, and the imaginary component

gives the frequency of oscillation of increasing amplitude. A negative real part represents a

damped oscillation whereas a positive real part represents oscillation of increasing amplitude.

Thus, for a complex pair of eigenvalues:

λ = σ ± jω (2.82)

The frequency of oscillation in Hz is given by 2.84.

f =
ω

2π
(2.83)

This represents the actual or damped frequency. The damping ratio is given by equation

ζ =
−σ√
σ2 + ω2

(2.84)
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The damping ratio ζ determines the rate of decay of the amplitude of the oscillation,

and the nature of the system response. If ζ is greater than 1, both eigenvalues are real

and negative; if ζ is equal to 1, both eigenvalues are equal to −ωn; and if ζ is less than 1,

eigenvalues are complex conjugates, as seen in equation 2.85.

λ = −ζωn ± jωn
√

1− ζ2

= σ ± jω

(2.85)

The location of the eigenvalues in the complex plane with respect to ζ and ωn is illustrated

in Figure 2.9.

Figure 2.9: Eigenvalues damped cosine oscillations in complex plane [12]
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2.1.7 Transient Stability

The natural tendency of a generator connected to a power system is to deliver electrical

power equal in amount to the mechanical power delivered to its shaft less its own losses.

This condition of equilibrium is satisfied when the counter-torque due to armature currents

and field is exactly equal to the mechanical torque applied at the shaft by the prime mover.

When such a situation arises that there is a difference in the mechanical and electrical torque,

the generator either speeds up or slows down until a new position of equilibrium is reached;

and during the transition stage, the inertia forces due to the moving masses act in a manner

which tends to prevent any change in speed [15].

The transient stability studies involve the determination of whether or not synchronism

is maintained after the machine has been subjected to a severe transient disturbance. This

may be sudden application or loss of load, or a fault on the system. The resulting response

involves large excursions of generator rotor angles and is influenced by the nonlinear power-

angle relationship. Stability depends on both the initial operating state of the system and the

severity of the disturbance [12]. Usually, the system is altered so that the post disturbance

steady-state operation differs from that prior to the disturbance.

The duration of a fault condition has a very important effect on the stability of a

system. The fault condition reduces synchronising power directly by altering the equivalent

circuit constants and indirectly by reducing the effective machine voltages through the

demagnetizing action of fault currents [9].

42



In transient stability studies the period of interest is usually limited to 3 to 5 seconds

following a disturbance, although it may extend to about ten seconds for very large systems

with dominant interarea modes of oscillation [12].

2.1.8 Damped Oscillations

In describing transients and damped oscillation, it helps to consider a feature in forced

oscillations, which is the energy in the oscillation. This is characterized in equation 2.86.

m
d2x

dt2
+ γm

dx

dt
+ mω2

0x = F (t) (2.86)

F (t) is the cosine function on t. The work done by the force per second, i.e., the power, is

the force times velocity. The differential work in a time dt is Fdx/dt, which is illustrated in

equation 2.87. The Feynman Lectures on physics [16] provides an excellent discussion of

units and dimensional analysis of damped oscillations.

P = F
dx

dt
= m

[(
dx

dt

)(
d2x

dt2

)
+ ω2

0x

(
dx

dt

)]
+ γm

(
dx

dt

)2

· (2.87)

The terms in brackets are the kinetic energy of motion and the other is the potential energy, or

the energy stored in oscillation. When the average power is evaluated over many cycles when

the oscillator is forced, all the energy ultimately ends up in the resistive term γm(dx/dt)2.

The mean power P is characterized by equation 2.88.

P = γm

(
dx

dt

)2

(2.88)
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And the average power can be written as equation 2.89.

P =
1

2
γmω2x2

0 (2.89)

At any moment there is a certain amount stored energy E, which can be written as equation

2.90.

E =
1

2
m

[(
dx

dt

)2
]

+
1

2
mω2

0

(
x2
)

E =
1

2
m
(
ω2 + ω2

0

) 1

2
x2

0

(2.90)

Stored energy is called the Q of the system, and Q is defined as 2π times the mean stored

energy, divided by the work done per cycle as illustrated in equation 2.91.

Q = 2π
1
2
m(ω2 + ω2

0)(x2)

γmω2(x2)2π
ω

=
ω2 + ω2

0

2γω
(2.91)

For a good oscillator close to resonance, equation 2.91 can be simplified by setting ω = ω0,

where equation 2.92 is the definition of Q.

Q =
ωn
γ

(2.92)

Where L can be substituted for m, R for mγ, and 1
C

for mω2
0 . The Q at resonance is Lω

R
,

where ω is the resonance frequency, and γ = R
L

is the electrical resistance. A transient is a

solution of the differential equation where there is no force present, but the system is simply

not at rest. Suppose an oscillation is driven by a force for awhile, then the force is removed

for a very high Q system. When the force is acting, the stored energy stays the same, and

there is a certain amount of work done to maintain it. When the force is removed, and no

more work is being done; then the losses consume the energy of the supply until there is
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no more driver. The losses will have to consume the energy that is stored. For example, if

Q
2π

= 1000. Then the work done per cycle is 1
1000

of the stored energy. Since it is oscillating

with no driving force, that in one cycle the system will still lose a thousandth of its energy

E, which would normally have been supplied by the driver, and it will continue oscillating,

always losing 1
1000

of its energy per cycle.

For a high Q system, equation 2.93 would apply. In each radian the system losses a

fraction 1
Q

stored energy E.

dE

dt
= −ωE

Q
(2.93)

Thus in a given amount of time dt the energy will change by an amount ω dt
Q

, since the

number of radians associated with the time dt is ωdt. With respect to its frequency, the

system moves with little force, so it will oscillate at essentially the same frequency. Where

ω is the resonant frequency ω0, and the stored energy is characterized by equation 2.94. This

would be the measure of the energy at any moment.

E = E0e
−ω0

t
Q = E0e

−γt (2.94)

With respect to the amplitude of the oscillation of time, the energy in a spring goes as

the square of velocity; so the total energy goes as the square of displacement. Thus the

displacement, the amplitude of oscillation, will decrease half as fast because of the square.

The damped transient motion will be an oscillation of frequency close to the resonance

frequency ω0, in which case the amplitude of the sine-wave motion will diminish as e−γ
t
2
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This is characterized by equation 2.95, and is illustrated in Figure 2.10.

x = A0e
−γ t

2 cos ω0t (2.95)

Figure 2.10: Damped Cosine Oscillation [16]

To analyze the differential equation of the motion itself, it can be evaluated as a solution

of an exponential curve, x = Aeiαt. Evaluating this term in equation 2.86 with F (t) = 0,

using the rule that each time you differentiate with x with respect to time, it is multiplied by

iα. After substitution equation 2.96 is obtained.

(−α2 + iγα + ω2
0)Aeiαt = 0 (2.96)

The net result be zero at all times, which is not possible unless A = 0, where it would

motionless. If the equation was evaluated as equation 2.97,

− α2 + iγα + ω2
0 = 0 (2.97)
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this can be solved to find α by equation 2.98 , which will provide a solution of A that will

not be zero.

α = i
γ

2
±
√
ω2

0 −
γ2

4
(2.98)

Where γ is small compared with ω0, so that ω2
0 −

γ2

4
is positive. This provides two solutions

seen in equations 2.99 and 2.100.

α1 = i
γ

2
±
√
ω2

0 −
γ2

4
= i

γ

2
+ ωγ (2.99)

α2 = i
γ

2
±
√
ω2

0 −
γ2

4
= i

γ

2
− ωγ (2.100)

The solution for x is x1 = Aeiα1t, where A is a constant. By substituting α1 in the first part

of the two solutions, and calling
√
ω2

0 −
γ2

4
= ωγ . Thus iα1 = −γ

2
+ iωγ , and we obtain

x = Ae(− γ
2

+iωγ)t, which is characterized in equation 2.101.

x1 = Ae−γ
t
2 eiωγt (2.101)

This is an oscillation at frequency ωγ , which is close to frequency ω0. The amplitude of

oscillation is decreasing exponentially, and by taking the real part in equation 2.101, we get

equation 2.102. This is similar to equation 2.95, except with a frequency ωγ .

x1 = Ae−γ
t
2 cos ωγt (2.102)

The other solution is α2, is seen in equation 2.103 when ωγ is reversed and set negative.

x2 = Be−γ
t
2 e−iωγt (2.103)

This will illustrate that x1 and x2 are a solution of equation equation 2.95 with F = 0, then

x1 + x2 is also a solution. so the general solution for x is characterized in equation 2.104

x = e−γ
t
2 (Aeiωγt + Beiωγt) (2.104)
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For x to be real, Be−ωγt will have to be the complex conjugate of Aeωγt that the imaginary

parts will disappear. This shows that B is the complex conjugate of A so the real solution x

is seen in equation 2.105. This is an oscillation with a phase shift and a damping.

x = e−γ
t
2 (Aeiωγt + A∗eiωγt) (2.105)

2.1.9 Characteristic Equations

The natural frequencies of oscillation of a synchronous machine, when perturbed, will

have several modes of oscillations with respect to the rest of the system. There are cases

where coherent groups of machines oscillate with respect to other groups of machines. The

oscillations cause fluctuations in bus voltages, system frequencies, and tie-line power flows.

When there is a difference in angular velocity between rotor and air gap, and induction

torque will be set up on the rotor tending to minimize the difference of velocities.

Referencing the linear second-order differential equation from 2.50, which is written in

the form of the following

d2δ∆

dt2
+

ωsSp
2H

δ∆ = 0

Introduce the damping power into swing equation

Pd = D
dδ

dt
(2.106)

Lets substitute Ps for Sp from equation 2.49 and as seen in equation 2.50 for the synchroniz-

ing power coefficient. This will be used for the following characteristic equations:
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Solution of Swing Equation

H

πf0

d2∆δ

dt2
+D

d∆δ

dt
+ Ps∆δ = 0 (2.107)

d2∆δ

dt2
+ 2ζωn

d∆δ

dt
+ ω2

n ∆δ = 0 (2.108)

Dividing the left-hand side of equation 2.107 by Ps will result in equation 2.109.

H
PS

πf0

d2∆δ

dt2
+
D

Ps
+ ∆δ = 0 (2.109)

Multiplying the left-hand side of equation 2.108 by 1
ω2
n

will result in equation 2.110.

1

ω2
n

d2∆δ

dt2
+

2ζωn
ω2
n

+ ∆δ = 0 (2.110)

Further reducing, the left-hand side of equation 2.109 can be rewritten as equation 2.111.

〈
D

Ps
=

2ζ

ωn

〉
(2.111)

Then the left-hand side of equation 2.110 can be rewritten as equation 2.112.

〈
H

Ps
=
πf0

ω2
n

〉
(2.112)

Applying Laplace transformation to equation 2.107 we obtain equation 2.113.

s2 +
πfs
H
Ds +

πfs
H
Ps = 0 (2.113)

As seen in equation 2.113, this is characteristic of the standard second-order system written

in equation 2.114 .

s2 + 2ζωns+ ωn
2 = 0 (2.114)
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Additionally, we can characterize equations 2.115 and 2.116 from the second-order equation.

The Natural Frequency

ωn =

√
πfs
H
Ps (2.115)

The Damping ratio

ζ =
D

2

√
πfs
HPs

(2.116)

The eigenvalues in equation 2.113 can also be evaluated from the roots of characteristic

equation given in equation 2.114 to obtain equation 2.117.

s1, s2 = −ζωn ± jωn
√

1− ζ2 (2.117)

Damped frequency of oscillation.

ωd = ωn
√

1− ζ2 (2.118)

Roots of Swing Equation

∆δ =
∆δ√
1− ζ2

e−ζωnt sin(ωdt+ θ) (2.119)

δ = δ0 +
∆δ√
1− ζ2

e−ζωnt sin(ωdt+ θ) (2.120)

Rotor Angel Frequency

∆ω = − ωn∆δ√
1− ζ2

e−ζωnt sin(ωdt) (2.121)
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ω = ω0 +
ωn∆δ√
1− ζ2

e−ζωnt sin(ωdt) (2.122)

Response time constant

τ =
1

ζωn
=

2H

πf0D
(2.123)

Settling time

ts ∼= 4τ (2.124)

As H increases ts will increase, while ωn and ζ decrease.

2.2 Numerical Solutions of the Swing Equation

Transient stability analysis requires the solution of a system of coupled non-linear differential

equations by numerical integration, and direct methods.

Any one of several well known step-by-step procedures may be chosen for numerical

integration of the differential equations. The fourth-order Runge-Kutta method is often used

in production-type transient stability programs. Other methods, such as the Euler method,

the Modified Euler method, the trapezoidal method, and predictor-corrector methods like the

following step-by-step method are alternatives. Since classical stability studies have been

performed for many years, long before digital computers became available, it is worthwhile

to look at the techniques which were used for hand calculations [17].
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2.2.1 Step-by-Step Method

For large systems we depend on the digital computer which determines δ versus t for

all machines in which we are interested; and δ may be plotted versus t for a machine to

determine the swing curve of that machine. The angle δ is calculated as a function of time

over a period long enough to determine whether δ will increase without limit or reach a

maximum and start to decrease. Although the latter result usually indicates stability, on an

actual system where a number of variables are taken into account it may be necessary to

plot δ versus t over a long enough interval to be sure δ will not rise again without returning

to a low value. Stevenson [4] and Kimbark [2] provide an excellent discussion of units and

dimensional analysis of step-by-step solution to the swing equation.

By determining swing curves for various clearing times the length of time permitted

before clearing a fault can be determined. Standard interrupting times after a fault for circuit

breakers and their associated relays are commonly 8, 5, 3 or 2 cycles after a fault occurs and

thus breaker speeds may be specified. Calculations should be made for a fault in the position

which will allow the least transfer of power from the machine and for the most severe type

of fault for which protection against loss of stability is justified.

A number of different methods are available for the numerical evaluation of second-order

differential equations in step-by-step computations for small increments of the independent

variable. The more elaborate are only practical when the computations are performed on a

digital computer. The step-by-step method used for hand calculation is necessarily simpler.
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In the method for hand calculation the change in the angular position of the rotor during a

short interval time is computed by making the following assumptions:

1. The accelerating power Pa computed at the beginning of an interval is constant from

the middle of the preceding interval to the middle of the interval considered.

2. The angular velocity is constant throughout any interval at the value computed for

the middle of the interval. Of course, neither of the assumptions are true, since δ is

changing continuously and both Pa and ω are functions of δ. As the time interval is

decreased, the computed swing curve approaches the true curve.

Figure 2.11 will help in visualizing the assumptions. the accelerating power is computed for

the points enclosed in circles at the ends of the n− 2, n− 1, and n intervals, which are the

beginning of the n− 1, n, and n+ 1 intervals. The step curve of Pa in Figure 2.11 results

from the assumption Pa is constant between midpoints of the intervals. Similarly, ωr, the

excess of the angular velocity ω over the synchronous angular velocity ωs, is shown as a

step curve that is constant throughout the interval at the value computed for the midpoint.

Between the coordinates n− 3
2

and n− 1
2

there is a change in speed caused by the constant

accelerating power. The change in speed is the product of the acceleration and the time

interval, and as seen in equation 2.125

ωr,n− 1
2
− ωr,n− 3

2
=

d2δ

dt2
∆t =

180f

H
Pa,n−1 ∆t (2.125)
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Figure 2.11: Actual and assumed values of Pa, ωr, and δ as functions of time [4]

The change in δ over any interval is the product of ωr for the interval and the time interval.

Thus, the change in δ during the n− 1 interval is written in equation 2.126.

∆δn−1 = δn−1 − δn−2 = ∆tωr,n− 3
2

(2.126)

and during the nth interval written in equation 2.127

∆δn = δn − δn−1 = ∆tωr,n− 1
2

(2.127)
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Subtracting equation 2.126 from equation 2.127 an substituting equation 2.125 in the

resulting equation to eliminate all values of ωr yields equation 2.128.

∆δn = ∆δn−1 + kPa,n−1 (2.128)

where equation 2.129 is used.

k =
180f

H
(∆t)2 (2.129)

Equation 2.128 is the important one for the step-by-step solution of the swing equation

with the necessary assumptions enumerated, for it shows how to calculate the change in δ

during an interval if the change in δ for the previous interval and the accelerating power

for the interval in question are known. Equation 2.128 shows that, subject to the stated

assumptions, the change in torque angle during a given interval is equal to the change in

torque angle during the proceeding interval plus the accelerating power at the beginning of

the interval times k. The solution progresses through enough intervals to obtain points for

plotting the swing curve. Greater accuracy is obtained when the duration of the intervals is

small. An interval of 0.05s is usually satisfactory.

The occurrence of a fault cause a discontinuity in the accelerating power power Pa,

which is zero before a fault and a definite amount immediately following the fault. The

discontinuity occurs at the beginning of the interval, when t = 0. Reference to Figure 2.11

shows that the method of calculation assumes that the acceleration power computed at the

beginning of an interval is constant from the middle of the proceeding interval to the middle

of the interval considered. When the fault occurs, we have two values of Pa at the beginning
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of an interval, and we must take the average of those two values as our constant accelerating

power.

There are two factors which can act as guideline criteria for the relative stability of a

generating unit within a power system. These are the angular swing of the machine during

and following a fault conditions and the critical clearing times. The H constant and the

transient reactance X ′d of the generating unit have a direct effect on both these criteria.

Evaluation of equation 2.128 and equation 2.129 indicates that the smaller theH constant,

the larger the angular swing during any time interval. On the other hand, equation 2.36

shows that Pmax decreases as the transient reactance of the machine increases. This is so

because the transient reactance forms part of the overall series reactance of the system

which is the reciprocal of the transfer admittance. Examination of Figure 2.11 shows that

all three power curves are lowered when Pmax is decreased. Accordingly, for a given shaft

power Pm, the initial rotor angle δ0 is increased, δmax is decreased, and a smaller difference

between δ0 and δcr exists for a smaller δmax. The net result is a decreased Pmax constrains

a machine to swing through a smaller angle from its original position before it reaches a

critical clearing time to decrease and lessons the probability of maintaining stability under

transient conditions.
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2.2.2 Euler Method

The differential equations to be solved in power system stability analysis are nonlinear

ordinary differential equations with known initial values:

dx

dt
= f(x, t) (2.130)

as illustrated in equation 2.130, where x is the state vector of n dependent variables and

t is the independent variable time. The objective is to solve x as a function of t, with the

initial values of x and t equal to x0 and t0, respectively. Kundur [12] provides an excellent

discussion of units and dimensional analysis of numerical integration techniques of Euler

and Runge-Kutta (R-K) methods.

Evaluating the first-order differential equation 2.130 with x = x0 at t = t0. Figure 2.12

illustrates the principle of applying the Euler method. At x = x0, t = t0 we can approximate

the curve representing the true solution by its tangent having a slope illustrated below

dx

dt

∣∣∣∣
x=x0

= f(x0, t0)

where ∆x,

∆x =
dx

dt

∣∣∣∣
x=x0

·∆t

The value of x at t = t1 = t0 + ∆t is given by

x1 = x0 + ∆x = x0 +
dx

dt

∣∣∣∣
x=x0

·∆t (2.131)
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The Euler method is equivalent to using the first two terms of the Taylor series expansion or

x around the point (x0, t0) as seen in equation 2.132.

x1 = x0 + ∆ (ẋ) +
∆2

2!
(ẍ0) +

∆t3

3!
(
...
x0) + · · · (2.132)

After using Euler technique for determining x = x1 corresponding to t = t1 then another

short time step ∆t is taken to determine x2 corresponding to t2 = t1 +∆t as seen in equation

x2 = x1 +
dx

dt

∣∣∣∣
x=x1

·∆t (2.133)

By applying the technique successfully, values of x can be determined corresponding to

different vales of t.

Figure 2.12: Euler Method [12]

The method considers only the first derivative of x and is referred to as a first-order

method.To give sufficient accuracy for each step, δt has to be small. This will increase

round-off errors, and the computational effort will be very high.
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In the application of numerical integration methods, it is important to consider the

propagation of error, which may cause slight errors made early in the process to be magnified

in later steps. Numerical stability depends on the propagation of error. If early errors carry

through but cause no significant further errors later, the method is said to be numerically

stable. If early errors cause other large errors later, the method is said to be numerically

unstable.

2.2.3 Modified Euler Method

The standard Euler method results in inaccuracies because it uses the derivative at the

beginning of the interval as though it applied throughout the interval. The modified Euler

method tries to overcome this problem by using the average of the derivatives at the two

ends. The modified Euler consists of the following steps: predictor step. By using the

derivative at the beginning of the step, the value at the end of the step is predicted as seen in

equation 2.134.

xp1 = x0 +
dx

dt

∣∣∣∣
x=x0

·∆t (2.134)

Corrector step. By using the predicted value of xp1, the derivative at the end of the step is

computed and the average of this derivative and the derivative at the beginning of the step is

used to find the corrected value as written in equation 2.135.

xc1 = x0 +
1

2

(
dx

dt

∣∣∣∣
x=x0

+
dx

dt

∣∣∣∣
x=xp1

)
∆t (2.135)

If desired, a more accurate value of the derivative at the end of the step can be calculated,

again by using x = xc1. This derivative can be used to calculate a more accurate value of the
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average derivative, which is used to apply the corrector step again. This process can be used

repeatedly until successive steps converge with the desired accuracy.

2.2.4 Runge-Kutta (R-K) Methods

The R-K methods approximate the Taylor series solution. However, unlike the formal Taylor

series solution, the R-K methods do not require explicit evaluation of the derivatives higher

than the first. The effects of the higher derivatives are included by several evaluations of the

first derivative. Depending on he number of terms effectively retained in the Taylor series,

there are R-K methods of different orders.

2.2.5 Second-Order (R-K) Method

Referring to the differential equation 2.130, the second-order R-K formula for the value of

x at t = t0 + ∆t is written in equation 2.136

x1 = x0 + ∆x = x0 +
k1 + k2

2
(2.136)

Where

k1 = f(xn, tn)∆t

k2 = f(xn + k1, tn + ∆t)∆t

2.2.6 Fourth-Order (R-K) Method

The general formula giving the value of x for the (n+ 1)st step is written in equation 2.137.

xn+1 = xn +
1

6
(k1 + 2K2 + 2k3 + k4) (2.137)
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Where

k1 = f(xn, tn)∆t

k2 = f

(
xn +

k1

2
, tn +

∆t

2

)
∆t

k3 = f

(
xn +

k1

2
, tn +

∆t

2

)
∆t

k4 = f(xn + k3, tn + ∆t)∆t

The physical interpretation of the above solution is as follows:

• k1 = (slope at the beginning of the time step)∆t

• k2 = (first approximation to the slope at mid-step)∆t

• k3 = (second approximation to the slope at mid-step)∆t

• k4 = (slope at the end of step)∆t

• ∆x = 1
6
(k1 + 2k2 + 2k3 + k4)

Where ∆x is the incremental value of x given by the weighted average of estimates based

on slopes at the beginning, midpoint, and end of the time step.

2.3 How do D & H characterize the system

In the initial form of the swing equation 2.8, as written below, the damping term (proportional

to dδ
dt

) is absent because the assumption of a lossless machine and the torque damper winding
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had been ignored.

M
d2δ

dt2
= Ps = Pm − Pe

Damping needs to be considered in transient analysis since Pe depends upon the sine angle

of δ, as seen in the power angle equation 2.37.

The inertia constant H and damping coefficient D in our original swing equation can be

illustrated in a synchronous machine in characteristic equation 2.107.

H

πf

d2δ

dt2
+D

dδ

dt
= Ps = Pm − Pe

Maintaining electrical grid frequency within an acceptable range is critical for stability

to a power system that constantly experiences fluctuations in generation and demand. One of

the primary requirements for reliable operation of a power system is dependent on a stable

frequency response.

This frequency response, or rate at which grid frequency changes is referred to as the

Rate of Change of Frequency (ROCOF). Frequency response is dependent on the inertia

constant H, and damping coefficient D, both of which are critical system parameters that

characterize the power system. The inertia constant and damping coefficient are both

frequency dependent. Typical values for H range from 2-10 seconds [11]. Where as the

damping constant, a typical estimate is that a 1% decline in frequency will reduce load by

1%-2%, which is a damping constant between 1-2 [18].
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Inertia in a power system refers to the energy stored in synchronous generators and

some large industrial motors. The actual relationship between energy and frequency can be

referenced to equation 2.90, and is given by the equation E = Iω2 where I is the generators

moment of inertia (a quantity determined by the amount and distribution of mass of the

generator), and ω is the rotational speed of the system. This stored kinetic energy in the

form of rotational inertia provides a tendency to remain rotating, which is an important

property in maintaining a stable frequency. If a power source fails, inertia resists the drop in

frequency, which provides the grid time to balance generation and demand [18]. This is due

to the electro-mechanical behavior, a generator’s rotating mass provides kinetic energy to the

grid, or absorbs energy from the grid, in case of frequency deviation[12]. The combination

of inertia constant and total capacity of online synchronous generators determines the total

inertia. Grid size is a key factor in the total inertia, and therefore how fast the frequency

declines.

Damping coefficient represents a variety of damping sources, including control loops

and loads. The actual damping constant for loads in the United States is not well understood.

[18].

Analysis of damping can be complex, but yields a physical explanation for positive

and negative damping torques of a synchronous machine. It has been found that the

torque of a synchronous machine consists of three components, two dependent on the

speed of the machine and the third on the angle between the rotating field and the rotor.

When a synchronous machine oscillates, the change of the first two components produces
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positive and negative damping torques of the synchronous machine. The change in the third

component produces synchronizing torque. The positive component of the damping torque

is called rotor-damping while the negative component is called stator-damping.[19]. The

damping coefficient D includes the various damping torque components, both mechanical

and electrical. Values of the damping coefficient usually used in stability studies are in the

range of 1-3 pu [2].

It is recognized that synchronous machines connected to a power system exhibit electrical

torques giving a spring action (torques proportional to angular displacement) and damping

action (torques proportional to velocity). The spring action together with inertia results in a

torsional natural frequency of the order of 1-to-4 cycles per second [20].

The damping coefficient is the inverse of the time constant of the system. The significance

of which, determines the rate at which the change in frequency returns to an acceptable

range after a disturbance, or event that causes a deviation in frequency.

2.4 How, historically, have D & H been determined

Historically, since the early work of Bell and Louis’s Practical Properties of Polyphase

Apparatus in 1894 to C. P. Steinmetz’s Notes on the theory of Synchronous Motors in

1902, a great attention and effort was focused to studying the problem of stability between

1919-1934 [9].

The synchronous machine formulas are based on the vector diagrams developed by R. E.
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Doherty and C. A. Nickle in their series of of papers in 1926 [21] on synchronous machines,

and also developed by R. H Park in his paper on Two-reaction Theory 1929 [22]. Equations

for the damping and synchronizing components of pulsating torque caused by a given small

angular position of the rotor circuits had been derived by Park. These papers also provided

early details of the step-by-step stability calculations as noted by F. R. Longley in 1930 [23].

Equations for damping torques angles of synchronous machines during disturbances

were further developed by S. B. Crary and M. L. Waring in 1932 [24], which was essentially

based on the numerical evaluation of Duhamel Integrals .

As noted by M. M. Liwschitz in 1941, the straight mathematical analysis of the damping

problem on the synchronous machine leads to very complicated results. From these results,

the conception of the phenomena occurring in the machine is very difficult, and in addition

the formulas obtained are so long that the calculation becomes tedious and errors could be

easily made [19].

Descriptions of equivalent circuits were developed that were preferable to calculating

synchronizing torques as though the field was the only circuit in the rotor, and the amortisseur

or additional circuits regarded simply as that of producing damping torque is equal to Tdpδ

[22]. Where Td represents the damping torque coefficient for small oscillations about the

angle δ.

Mathematical analysis on the damping problem had progressed in developing less

complicated physical explanations for the positive and negative damping of synchronous

65



machines [19], on the basis to derive simpler formulas for the calculation of damping torques;

positive component of the rotor-damping and the negative component of the stator-damping.

Where rotor-damping is is determined directly by the slope of the speed-torque curves.

Approximate formula values for stator-damping could be determined.

Further developments on simplifying formulas for spring and damping coefficients of

synchronous machines were created by L. A. Kilgore and E. C. Whitney 1950 [20], where

they developed a more exact method. For very low frequency oscillations (less than one

cycle per second) the slope of the power curve could be used for small angular oscillations,

which in general produced lower values. For higher frequency oscillation, currents were

induced in the field damper windings, which tend to stiffen the spring action and produced

values under load higher than the conventional method.

C. Concordia developed results of calculations for damping and synchronizing torque

coefficients of synchronous machines over a wide range of parameters [25]. The torques

were calculated by the formulas given by R. H. Park [22]. Concordia, from the continued

interest in damping and synchronizing torques, demonstrated that the equations given by

Park are practically as simple and convenient to use as any of the numerous approximations

that had been proposed from time to time.

It is common practice in stability studies to provide a means of adding D damping that

is proportional to speed or slip. D is is the per unit damping coefficient used to compute a
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damping torque Td [5] defined as

Td = Dω∆u (per unit) (2.138)

The value used D depends greatly on on the kind of generator model used and particularly

on the modeling of the amortisseur windings. The value of D depends on the units. When

torque is calculated MW then the slip ω∆ in pu becomes equation 2.139.

Td = (SBD)ω∆u (MW ) (2.139)

It is also common to see the slip calculated in Hertz f∆ Hz, as written in equation 2.140.

Td = (SB
D

fr
)f∆ = D′f∆ (MW ) (2.140)

Where SB is three-phase MVA base, fr is the base frequency in Hz, an f∆ is the slip in Hz.

A value sometimes used is D′ in equation 2.140 is

D′ =
PG
fr

(
MW

Hz

)
(2.141)

Where PG is the scheduled power generated in MW . This corresponds to the damping

Coefficient D seen in equation 2.142.

D =
PG
SB

(per unit) (2.142)

In the early days when prime movers consisted mostly of reciprocating machines the

pulsating torque made parallel operation difficult. This was successfully solved by damper

windings in that the damper winding absorbed the energy of oscillation between machines

and prevented the oscillations from becoming cumulative.
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During a transient, other extraneous torques are developed in a synchronous machine.

The most important component is associated with the damper windings. While these torques

are usually small in magnitude, their effect on stability is not negligible [5]. The most

important effects are the following.

• Positive-sequence damping results from the interaction between the positive-sequence

air gap flux and the rotor windings, particularly the damper windings. This effect is

beneficial since it tends to reduce the magnitude of the machine oscillations, especially

after the first swing. It is usually assumed to be proportional to the slip frequency.

• Negative-sequence braking results from interaction between negative-sequence air

gap flux during asymmetrical faults and the damper windings. Negative-sequence

torque is always retarding the rotor. Its magnitude is significant only when the rotor

damper winding resistance is high.

• The dc braking is produced by the dc component of the armature current during

faults, which induces currents in the rotor winding of fundamental frequency. their

interaction produces a torque that is always retarding the rotor.

Westinghouse engineers in 1944 [11] provided and excellent general discussion of units and

dimensional analysis of how inertia constants and acceleration were determined in the past.

The inertia of a synchronous machine is a significant factor in stability since it affects

the natural period of oscillation, or time required to reach a point beyond which recovery is
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possible. Knowledge of the inertia constant H is a required for determination of acceleration

and deceleration of the rotor. It represents the stored energy per kva and can be computed

from the moment of inertia and speed by the following expression:

H =
0.231(WR2)(rpm)210−6

kva
cycles per minute (2.143)

where

• WR2 is the moment of inertia in pounds-feet squared

• rpm is the speed in revolutions per minute

The range of inertia constants for various types of synchronous machines is illustrated in

Figure 2.13.

The accelerating power depends on the initial operating conditions and upon the differ-

ence of input and output, including the effects of losses. Thus, for a synchronous generator

the accelerating power , which is variable ∆P is written in equation 2.144.

∆P = Pi − (P0 + L) (2.144)

Where Pi is the mechanical input power, P0 is the electrical output, and L is the total losses.

The natural frequency of undamped electro-mechanical oscillation for a synchronous ma-

chine connected to an infinite bus and shaft connected to reciprocating machinery is written

in equation 2.145.

fn =
35200

n

√
Prf

WR2
(2.145)
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Figure 2.13: Inertia Constants from 1937 [9]

where

• fn = Natural frequency in cycle per minute

• n = speed of machine in revolutions per minute

• Pr = Synchronizing power

• f = Frequency of circuit in cycles per second
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• WR2 = Moment of inertia of a synchronous machine and shaft connected prime

mover or load, in pounds foot squared

The synchronizing power is the power at synchronous speed corresponding to the torque

developed at the air gap between the armature and the field. The synchronizing coefficient Pr

is determined by dividing the shaft power in kWby the corresponding angular displacement

of the rotor in electrical radians.

The displacement angle of the rotor for a given current power is written in equation 2.146.

where

δ = tan−1 Īxqcosθ

Et + Īsinθ
(2.146)

• δ = Rotor displacement angle in electrical radians

• Ī = Per-unit armature current

• Et = Per-unit armature terminal voltage

• θ = Power-factor angle

• xq = Per-unit quadrature-axis synchronous reactance

With the inertia constant H , and the accelerating power or decelerating power ∆P it is

possible to calculate the acceleration as written in equation 2.147.

α =
(180)(f)(∆P )

(H)(kva)
(2.147)
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where α is the acceleration or deceleration in electrical degrees per second per second,

f is the system frequency in cycles per second, H is the inertia constant in kilowatt-seconds

per kva as calculated by equation 2.143.

• f = system frequency in cycles per second

• ∆P is the kilowatts available for acceleration (or deceleration)

• H = inertia constant in kilowatts-seconds per kva as calculated by equation 2.143.

Angle-time or swing curves could then be calculated by means the step-by-step procedure.

A typical form used historically was created by Westinghouse engineers, and is illustrated

in Table 2.4. Among the series of calculation required to present in tabular form, references

were often made to figures and models like one illustrated in Figure 2.11. This would be

used for details of method approximating acceleration„ velocity, and angle changes. Below

is the Step-by-Step Form as seen in 1944.

Solution Machine Nos. Total Kva

Machine, WR2 = lbs · ft2

H = stored energy, kilowatt-seconds per kva

Acceleration, α = 180(f)(∆P )
(H)(kva)

= k∆P

k = 180f
(H)(kva)

=
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PMech. = kilowatts, mechanical input

Step-by-Step Calculations written in tabular form

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Time angle θ Elec. ∆P , kw Accle., α Accel. Vel. change Velocity Angle Angular Angular Final
sec Degrees Output Mechanical Degrees per Time ∆ω, ω, Time Change for Change for Angle

plus Input Sec per Increment Degrees Degrees Increment Machine for Degrees
losses* minus sec per sec per sec Under Con- other

kw (Electrical sideration Machine
Output plus ∆θ ∆θ′,

losses) degrees Degrees

- - - PMech − (3) (4)xk - (5)x(6) (7) + (8)n−1 - (8)x(9) ** (2) + (10) + (11)

0.0 θ0 P0 PMech − P0 k∆P0 = α0+ ∆/2 ∆ω1 ω0 + ∆ω1 = ω1 ∆t ω1∆t = ∆θ1 ∆θ′1 θ0 + ∆θ1 + ∆θ′1 = θ1

0.1 θ1 P1 PMech − P1 k∆P0 = α1 ∆t ∆ω2 ω1 + ∆ω1 = ω2 ∆t ω2∆t = ∆θ2 ∆θ′2 θ1 + ∆θ2 + ∆θ′2 = θ2

0.2 θ2 P2 PMech − P2 k∆P0 = α2 ∆t ∆ω3 ω2 + ∆ω1 = ω3 ∆t ω3∆t = ∆θ3 ∆θ′3 θ2 + ∆θ3 + ∆θ′3 = θ3

0.3- θ3 P3− PMech − P3− k∆P0 = α3− ∆t/2 Ve ω3 + Ve -

0.3+ θ3 P3+ PMech − P3+ k∆P0 = α3+ ∆t/2 ∆ω4 ω3 + (Ve + ∆ω4) = ω4 ∆t ω4∆t = ∆θ4 ∆θ′4 θ3 + ∆θ4 + ∆θ′4 = θ4

0.4 θ4 P4 PMech − P4 k∆P0 = α4 ∆t ∆ω5 ω4 + ∆ω5 = ω5 ∆t ω5∆t = ∆θ5 ∆θ′5 θ4 + ∆θ5 + ∆θ′5 = θ5

0.5 θ5

Table 2.1: Suggested Form for Step-by-Step Angle-Time Calculations
[11].

2.5 PMU background

Historically, C.P. Steinmetz developed the phasor vector notation, where the sine-function

of time is represented by a constant numerical quantity, instead of an independent variable

"time". Thus, a complex number representing a sinusoidal function whose amplitude A,

angular frequency ω, initial phase θ are time-variant. Making use of the polar coordinate

system on a complex plane, where the vector is formed by its imaginary and real parts

rotating around the origin. This was presented in the article, "Complex Quantities and Their

Uses in Electrical Engineering," [26], and presented at the Proceedings of the International

Electrical Congress held in the Chicago, August of 1893.

Time synchronized phasors, or synchrophasors, are calculated from data samples using a

common time signal, as referenced in IEEE C37.118.1 [27] for synchrophasors. The origins

of the synchrophasor evolved from computer systems dedicated to substation protection

and control data logging functionality. New applications were developed that could utilize
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the microprocessor power, specifically a microcomputer based Symmetrical Component

Distance Relay (SCDR) [28]. Synchrophasors are measured using a Phasor Measurement

Unit (PMU. These devices can be stand-alone or enabled from a protective device. This

device was first developed by Phadke & Thorp at Virginia Tech [29] in Blacksburg, VA in

the 1988.

PMUs require a common and accurate correct timing reference. A convenient timing

reference, described in [27], establishes the relationship between the Coordinated Universal

Time (UTC) time scale and the phase of the reference cosine wave. The Global Positioning

System (GPS) is the source of time synchronization for synchrophasors. GPS receivers

transmit UTC as an offset, which allows local time to be utilized with a satellite clock by

using a local signal type such as Inter-range Instrumentation Group Time Code Format B

(IRIG-B). The IRIG-B modulates the required signal at the accuracy for the PMU.

Using the received IRIG-B signal to time-stamp the acquired voltage and current values,

PMUs estimate phasors that are synchronized with UTC [30], as illustrated in Figure 2.14.

We represent the sinusoidal voltage signal as shown in equation 2.148.

Vx(t) = Vxcos(2πft+ δx) = Vxcos(ωt+ δx) (2.148)

• Vx = Signal amplitude in volts

• δx = Angle in radians

• f = Frequency in Hertz
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Figure 2.14: Synchrophasor illustration using the UTC reference [30]

• ω = Angular frequency in radians per second

• t = Time in seconds

PMUs provide time-synchronized information on phasor angles at different locations

within a power system, including real-time frequency and rate of change of frequency, as

illustrated in Figure 2.15.

The functionality of a PMU enables it to measure positive-sequence data. Positive

sequence voltage phasor information is a parameter of vital significance, whereby the

collection of all positive sequence voltage phasors constitutes the state-vector of a power

system [28]. Figure 2.16, illustrates two sinusoidal signals, which represent voltages at
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Figure 2.15: Synchrophasors associate phasor measurements to an absolute time reference across the power
system [30]

different power system locations. Signal angles can be measured with respect to a time-

synchronized common reference, where the angle difference ∆δ can be calculated.

Figure 2.16: Voltage signal angles at different locations [30]

Frequency is significant in real-time phasor measurements. Phasors are a steady-state

concept applied at a single frequency. In an actual network, system frequency changes

constantly, based on system dynamics.
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The swing equation determines generator speed, which in turn determines the frequency

at the generator output. When each generator swing equation reaches equilibrium, the

operating frequency is the same on all points of the network.

During a power system disturbance, the phasor angle and frequency undergo local

changes. Equation 2.149 expresses frequency f as a function of nominal frequency f0 and

the angle δ.

f = f0 +
1

2π

dδ

dt
(2.149)

When measuring frequency, synchrophasors are always computed in relation to the system

nominal frequency (f0) [27]. The rate of change of frequency (ROCOF) is shown in equation

2.150.

ROCOF (t) =
df(t)

dt
(2.150)

The rate at which grid frequency changes is directly measured at different locations were

PMUs are deployed. The data obtained are significant, and useful in determining the

coefficients of the swing equation, which directly characterize the power system.
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3 Results & Analysis

3.1 How to derive D & H from PMU data

DampingD and inertiaH are calculated using the rate of change of frequency ROCOF PMU

data. The data analyzed in this report represent thirteen separate transmission-level events,

which include both 230 kV and 500 kV systems. Data from each event were measured

by three separate PMUs deployed at different locations. Time-stamped, positive-sequence

voltage and frequency data were measured at a rate 60 samples per second. The total data

for each event captured 10,800 time-stamped measurements. These data included data prior

to, during, and after the event signal where a second-order system equation method could be

used to analyze the oscillations of a disturbance.

Referencing the solution of the swing equation in Section 2.1.9 characteristic equations,

the linearized swing equations, 2.107 and 2.108, are rewritten below as equations 3.1 and

3.2. Angular momentum is written in terms of the inertia constant H and damping D to

create the standard expression shown in 3.1. The standard form of the second-order equation

differential equation for analyzing the dynamics of a linear system is shown in equation 3.2.

H

πf0

d2δ

dt2
+D

dδ

dt
+ Ps = 0 (3.1)

d2δ

dt2
+ 2ζωn

dδ

dt
+ ω2

n = 0 (3.2)
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Equation 3.1 is divided by the synchronizing power coefficient (Ps) and equation 3.2 is

multiplied by (1/ω2
n), further reduced and rewritten as equations 3.3 and 3.4, where both

the inertia constant and damping coefficient are in terms of Ps.

D

Ps
=

2ζ

ωn

(
1
rad
s

)
(3.3)

H

Ps
=
πf0

ω2
n

(
1

( rad
s

)2

)
(3.4)

As previously mentioned, frequency is significant in time-synchronized phasor measure-

ments for characterizing a power system. From the second-order equations, both natural

frequency ωn in equation 3.5, and the damping ratio ζ in equation 3.6 can be determined by

the rate of change of frequency. These coefficients are used to calculate D and H in the fit

filter program.

ωn =

√
πfs
H
Ps

(
rad

s

)
(3.5)

ζ =
D

2

√
πfs
HPs

(unit− less) (3.6)

3.2 Fit Filter Program

The fit filter program analyzes a system disturbances, i.e. events, and reads the rate of

change frequency data through an undamped second-order system equation to determine the

coefficients of the swing equation. Source code for the fit program is persistently archived

within the PSU Library’s PDXScholar website [31].
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In the first function of the program, the data file for each event is categorized in a datastore

file for handling tall arrays. This is configured to read csv files from three PMUs per each

event that will be run in fit column function.

The fit column function finds the best fitting second-order exponential function for the data

sets. The data are time-stamped from the PMUs so the first column in each csv file coincides

with each consecutive rate of change of frequency. This filters the decay fit data, which will

be run through a separate function that determines the event period.

Peak amplitude is then determined, where it compares the data set maximum values and

inverse maximum values. The function then returns the highest values and indexes it to be

used in another function that finds the event period.

All the data in an event time period are parameterized by a moving window that is established

from the maximum amplitude. A window size of 50 samples is correlated with a moving

average index of 0.002 in length to establish the event period. The convergence of the

moving mean average was determined to be better for these data than using five τ due to the

length of the data. Typical event periods are small, ranging from a few cycles to a couple

seconds. The event files used for this analysis were on average 10,800 measurements in

length at 60 samples per second, requiring the program to run through 180 seconds of data.

After the event period is established, the filter data function defines the numerator and

denominator of a rational transfer function. Visual inspection of initial data sets found

a window size of three gave a reasonable fit. Where the window size is the numerator

80



(
1/windowsize

1

)
in the rational transfer function.

The exponential coefficients and functions are parameterized into decay fit filtered data. This

function correlates time, peak amplitude, and Goodness of Fit (GOF) for a second order

system for damping ratios between zero to one to calculate zeta and the natural frequency.

The damping ratio is indexed between 0.001 and 1 with a step size of 0.001 and ωn, which is

related to tau τ and is calculated by 4
ζτ

. The data are then run through the second differential

equation, shown in equation 3.7.

Decay = Ae(−ζωnt) · cos
(
ωn
√

1− ζ2 · t
)

(3.7)

The coefficients that are calculated from this program include ζ , ωn, Amplitude and GOF.

3.3 PMU Test Data

The PMU data used for this analysis were provided by BPA, Portland, OR. These data are

persistently archived within the PSU Library’s PDXScholar website [31].

The event files are transmission-level events. However, the PMU locations were not

identified. There are thirteen separate events. As previously mentioned, the events were

measured by three PMUs at a rate of sixty samples per second, acquiring positive-sequence

voltage and frequency data. There are a total of thirty-nine event signals used for this

analysis. The event data are stored using the csv file format. The following list are the events

recorded:
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Figure 3.1: Flow diagram for the fit filter program that analyzes ROCOF PMU data to determine the coefficients
of a second-order undamped system.

• Event 1: Outage on BPA Direct Current (DC) line going from the Dalles, OR area

down to California

• Event 2: Line trip that led to a 2600 MW gen drop

• Event 3: Insertion of the 1400 MW brake resistor at Chief Joseph

• Event 4: Generator outage in Montana

• Event 5: Generator outage in the Lower Columbia region
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• Event 6: Fault on a couple of lines at one station, causing a loss of over 2200 MW

• Event 7: Line trip leading to a 1400 MW generation drop

• Event 8: Line trip on a major line bringing generation from Montana

• Event 9: Outage on BPA DC line (similar to event 1 from the previous set)

• Event 10: Trip/reclose/trip on a line in the lower Columbia region

• Event 11: Insertion of the 1400 MW brake resistor at Chief Joseph

• Event 12: Insertion of the 1400 MW brake resistor at Chief Joseph

• Event 13: Insertion of the 1400 MW brake resistor at Chief Joseph

3.4 Sample preparation prior to using fit filter program

The PMU data in each of the event files contains measurements prior, during, and after

the event. Non event data includes frequencies and noise that limit the effectiveness of

the fit filter program. The data sets are 10,800 measurements in length, compared to the

small signal of the actual event, which are 600-800 measurements long. Sample preparation

requires truncating the data from 10,800 down to the event lengths at the defined period.

In Figure 3.2(C), the complete signal of Event 3-PMU 1 is illustrated, which is a 10,800

measurement data set. When all 10,800 measurements are run through the fit program

the event signal registered approximately 780 measurements in length, as shown in Figure

3.2(B). Evaluating Figure 3.2(B) further, the signal illustrates that the red line of the fit
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program does not follow the PMU data, shown in blue, close enough to provide useful

approximations of the system coefficients.

With a visual inspection of the small signal length, the next step is to zoom into the

signal where the peak amplitude and signal decay occurs, as illustrated in Figure 3.2(D).

The fit program determines positive and negative peak amplitudes as the starting point of

calculations for the second-order undamped system. To provide a consistent methodology,

the event is measured just prior to the peak amplitude to capture the signal at the start of

decay, and at the end, when the event signal is no longer decaying. If additional peaks

occur after the initial peak, the start of the event signal can be adjusted to provide a more

accurate PMU data set. In this example, the event is determined to be from 3861 to 4398

measurements, or 767 samples in length.

Consistent evaluation of event sample lengths is important. As illustrated in Figure

3.2(C), where the correct initial start of the signal was used, but also included the signal

length out to 1400 measurements, which consisted of excessive noise at the end of the signal

decay, and thus, reducing the goodness of fit. Conversely, if the start of the sample length

is measured past the peak amplitude, or past the final peak amplitude if there are multiple

peaks, then the fit will be greatly reduced. The sinusoidal fit will distort and take on a

parabolic shape.

The final step is to use the truncated signal. In this example the PMU data set is truncated

to approximately 800 measurements, and the results are illustrated in Figure 3.2(E), for
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the event signal, and figure 3.2(F), matching the complete signal length evaluated. The fit

program calculated useful results that correlated time, peak amplitude, and goodness of fit

for a second-order undamped system, whereby the coefficients of the swing equation could

be determined by time-synchronized measurements. The results for Event 3-PMU 1, are

listed in Table 3.1.

Event 3: All Data vs. Truncated PMU Data

All Truncated
Standard Standard
Deviation Average Deviation Average

ζ 0.0153 0.133 0.00125 0.146
ωn 0.000414 0.0471 0.000115 0.0466
GOF 0.675 -0.326 0.117 0.334
D/Ps 0.604 5.662 0.0723 7.198
H/Ps 1490 85128 643 112025
Tau 18.42 161.50 1.3 168

Table 3.1: Statistical Comparison Event 3: All PMU Data vs. Truncated PMU Data

3.5 Signal Outliers

The method developed in this paper to determine the coefficients of a second-order undamped

system does not work for all PMU event signals. Each of the thirteen events were measured

by three PMUs at separate locations, for a total of thirty-nine event data sets. Of those

thirty-nine events, the fit program method produced good results from twenty-seven. Twelve

PMU data sets produced less than ideal results, which are considered outliers.

Events that include multiple high-frequency transients and other oscillatory signals are

difficult to adequately calculate signal decay in a fit program. Multiple spikes in amplitude

can throw off the start of an event period. Additionally, multiple steps in the sinusoidal

signal within the signal decay can distort the moving window, and indexing of fit step
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Figure 3.2: PMU data sample preparation for fit filter program. Truncate 10,800 PMU measurements to
determine event period, from initial start through end of decay.

increments. These effects, coupled with excessive oscillatory signal response can distort the

final measurement of signal decay.
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Figure 3.3, evaluating the signal from Event 1-PMU 1, illustrates how the fit program

could not adequately fit the signal decay. The full data set is approximately 7500 measure-

ments in length, where the actual event period length was visually approximated to be 850

measurements. The event signal was then evaluated between 2800 and 3450 measurements.

The next step was to truncate the front-half of the signal down to a 4500 data set length.

From inspection, the event signal was present in wave form, but distorted. When the signal

was further truncated past the approximate end of decay, using a 800 data set length, there

was little to no improvement in the goodness of fit.

3.6 Plots

The analysis of the data includes the system coefficients, goodness of fit, and the calculated

results for D, H and τ . The event signals were plotted in the fit filter program, and then data

sets for each event were plotted in Excel X-Y plots. An excel block-and-whisker plot was

created to illustrate the statistical comparison between all PMU data to truncated PMU data.

In Figure 3.4, ζ, ωn, GOF , D/Ps, H/Ps and τ are plots of all PMU data (in blue) for

thirteen events compared to all truncated data (in red). From initial observation, the plots

illustrate that truncated data provides a tighter grouping of results, which produces more

refined values.

Figure 3.4(A), illustrates the damping ratio ζ , which is referenced by equation 3.6. The

coefficient ζ has a standard deviation of 0.191 for all data compared to 0.140 for truncated

data. A consistent value for ζ is 0.146, where 0.161 is the average. This value determines
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Figure 3.3: Example of a PMU data outlier. Data set identified and truncated to initial start of event. No
improvement made in GOF results when truncating from 4500 to 800 data set period.
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the rate of decay of the amplitude of oscillation. Typical values ζ range from 0.137 to

0.150. Figure 3.4(B) illustrates the undamped natural frequency ωn of oscillation, which is

referenced by equation 3.5. The coefficient ωn has a standard deviation of 0.110 compared

to 0.075 for truncated. A consistent value for ωn is 0.0405, where 0.0697 is the average.

Typical values for ωn range from 0.0309 to 0.048. As the synchronizing power coefficient

Ps increases, the natural frequency increases, and the damping ratio decreases. An increase

in the damping coefficient D increase the damping ratio, whereas and increase in the inertia

constant decreases both ωn and ζ .

Figure 3.4(c) illustrates the goodness of fit (GOF ). The goodness of fit has a standard

deviation of 0.904 compared to 0.750 for truncated. A consistent value for GOF is 0.170

where -0.236 is the average. Goodness of fit correlates the decay fit filtered data with time

and peak amplitude. The closer to zero, the better the fit with the oscillation of decay.

Typical values range from 0.001 to 0.400. Figure 3.4(D) illustrates the damping coefficient

D/Ps. The damping coefficient has a standard deviation of 25.410 compared to 9.657 for

truncated. A consistent value for D/Ps is 7.20 where 7.34 is the average. Typical values

range from 5.00 to 8.00. Figure 3.4(E) illustrates the inertia constant H/Ps. The inertia

constant has a standard deviation of 192952 compared to 40278 for truncated. A consistent

value for H/Ps is 114761 where 83522 is the average. Typical values range from 72000

to 124000. Figure 3.4(F) illustrates the time constant τ . The time constant has a standard

deviation of 47.805 compared to 37.935 for truncated. A consistent value for τ is 169 where

136.71 is the average. The time constant relates ζ and ωn to the settling time of exponential
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decay. Typical values for τ range from 140 to 180. Data for statistical comparisons are

listed in Table 3.2.

[A] [B]

[C] [D]

[E] [F]

Figure 3.4: Statistical box-and-whisker plots of all PMU data. Untruncated data (blue) compared to truncated
(red) data. BOX encompasses exclusive median. ’X’ marks the average. Dots show the Outliers. Line is the
Mean. Whiskers are the upper and lower quartiles.
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All PMU Data vs. ALL Truncated PMU Data

All Truncated
Standard Standard
Deviation Average Deviation Average

ζ 0.191 0.182 0.140 0.161
ωn 0.110 0.108 0.075 0.069
GOF 0.904 -0.771 0.750 -0.236
D/Ps 25.410 9.976 9.657 7.342
H/Ps 192,952 89,471 40,278 83,522
Tau 47.805 118.28 37.935 136.71

Table 3.2: Statistical Comparison of All PMU Data vs. Truncated PMU Data
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4 Discussion

4.1 Potential Sources of Error

As previously mentioned, the peak amplitude, which indicates the start of the event, can

throw off the fit program if there are secondary spikes in amplitude. Adjustments in signal

start time, as well as the end of signal decay need to be made. This may take several attempts

to provide a reasonable fit.

High frequency oscillations can reduce the effectiveness of the fit program. Some signals

can not be evaluated with this fit program method.

Depending on the PMU measurements of a specific event, the indexing steps and moving

mean average may need to be adjusted.

Depending on number of data sets measured, i.e., voltages and frequency, the PMU data

being evaluated must be set up to correlate with the exact number of columns to read of rate

of change of frequency. Additionally, the time header needs to be included.
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4.2 Improvements

The sample preparation requires visual inspection and iterative steps to determine an event

signal length. A function could be developed in the fit filter program that would automate the

process to determine the event period length, if the event period length is not predetermined

in the PMU data set.

Additional functionality could be realized if an additional function could be inserted that

would automatically read the number of PMUs in the data set and determine columns of

rate of change of frequency correlated to time. The current fit program has a function that

has to be manually directed to those columns of data.

4.3 BPA Chief Jo Example

In 1973, Bonneville Power Administration (BPA) constructed a 1400 MW dynamic braking

resistor at Chief Joseph substation in north central Washington. The braking resistor was

designed to enhance stability in the Pacific Northwest, and increase capacity of the Pacific

Northwest-Southwest inter-tie.

Faults near the large concentrations of BPA generation tend to accelerate the entire

Pacific Northwest generating area. This produces angular swings between the Pacific

Northwest and the interconnected systems, and can cause separation of the interconnection

points although each area remains intact. When the Pacific Northwest experiences a severe

fault, a post-fault speed deviation between that area and its neighbors will result, which is
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proportional to the product of the fault accelerating power and the fault duration. If this

speed deviation is great enough, the tie-line synchronizing power may be insufficient to

maintain transient stability [32].

The dynamic brake resistor is designed to dissipate 1400 MW of power when energized

to 240 kV, and can withstand a three second run time. Appropriate application of the resistor

brake at Chief Joseph immediately after a fault helps retard the Pacific Northwest generating

area sufficiently to prevent tripping of the Pacific Northwest-Southwest inter-tie [32].

The primary purpose of the Chief Joseph braking resistor is to restrain the generating area

when accelerated by a severe fault to prevent loss of synchronism. In addition to the benefits

of improving stability in the operating area for first and second-swing fault applications,

the application of determining the system signal response can be performed by temporarily

inserting the dynamic brake, and measuring the signal response, essentially pinging the

system with a delta load function. Earlier methods of using Chief Joseph dynamic brake

to measure signal response included inserting and removing the brake after several cycles.

The velocity is measured from the accelerating power, steady-sate frequency and H . The

relative velocity of a generator directly relates to the stored energy in the inertia of the

generator. Damping can then be measured from the brake output power response decay

from its initial power level, and associated time constants to evaluate the sinusoids with the

swing equation. Current methods include probing signal injection after Chief Joseph brake

insertion by measuring frequency sine wave deviations and ambient noise ring-downs with

PMU data [33].
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4.4 Discussion of Results

Measuring the signal response by dynamic brake insertion has a cost associated with its use,

from power requirements to engineering analysis. Test equipment that directly measures

synchronous generator output, and transient stability software for modeling analysis are

expensive. The benefit is real-time analysis, but at a cost.

Originally the stability of power systems was calculated principally in terms of maximum

power, which could be be carried under steady-load conditions. However, a much more direct

and accurate method of approach to the problem is to calculate the effect of disturbances

directly, that is, to calculate stability under transient conditions [34].

This thesis presents a unique method of modeling the swing equation using time-

synchronized phasor measurements from electrical transients, which produces useful co-

efficients of the swing equation at minimal cost. Our challenge is that we have to wait for

an event to occur to obtain PMU measurements. With the event of a large disturbance that

excites system dynamics, valuable data are obtained from PMUs with useful coefficients,

which are available around the power system.

As shown in Table 4.1, twenty-seven separate PMU data sets recorded measurements that

provided consistent damping coefficients D
Ps

and inertia constants H
Ps

after the measurements

were truncated, which measure between 5 to 8 for D, and between 72000 to 123000 for H .

In addition to the D
Ps

and H
Ps

values meeting established parameters, the values illustrated
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in Table 4.1 provide a unique and useful comparison of the relationship between D
Ps

and H
Ps

.

When comparing the truncated values for D
Ps

and H
Ps

, the values are noticeably close for each

event, as compared to D
Ps

and H
Ps

values between their respective events. This comparison

shows that D
Ps

and H
Ps

differ through time, depending on the configuration of the power

system.

Further illustrating the effectiveness of the method used in this work to prepare data

sets for evaluation, ideally, working with data sets that contain just the event measurements

would remove the truncating step to determine the event period. However, regardless of the

length of PMU measurements, a data set can be prepared for evaluation with this method.

From the thirty-nine PMU data sets evaluated, twelve PMU data sets did not provide

data that yielded adequate results. This includes event No.4 and event No.8, where both

were line trips from a generator outage in Montana. This effectively excluded six PMU

data sets. The remaining six PMUs did not produce adequate results, because of PMU

observability, in that they were not optimally placed to capture good measurements for

those events. These twelve outlier PMU data sets are illustrated in Table 4.2. However, the

method proved to yield consistent results for the other PMUs in those same events. Table

4.3 provides an overview of the results, which illustrates the twenty-seven PMU data sets

that yielded consistent results for determining the coefficients of a second-order undamped

system.

Furthermore, this works demonstrates that readily available PMU data from an event
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Damping Coefficient D
Ps

and Inertia Constant H
Ps

for 27 PMUs
D
PS

H
PS

Event-PMU All Data Truncated All Data Truncated

E1-PMU1 0.137 6.68 2764 97547
E1-PMU2 7.094 6.09 126381 95811
E1-PMU3 0.356 6.87 3560 100219

E2-PMU1 5.718 6.07 98637 92565
E2-PMU2 5.643 5.97 97566 90655
E2-PMU3 7.758 7.44 106757 120856

E3-PMU1 5.154 7.20 85489 114761
E3-PMU2 5.320 7.10 86746 113195
E3-PMU3 6.510 7.28 83149 114120

E5-PMU1 0.496 7.90 4642 105632
E5-PMU2 29.85 7.90 56286 108272

E6-PMU1 0.233 7.97 3803 88486
E6-PMU2 4.736 7.77 45756 83110
E6-PMU3 0.093 6.66 1146 91617

E7-PMU1 15.10 6.44 84339 95620
E7-PMU2 9.606 7.07 92350 95680

E9-PMU1 7.564 6.33 97849 100750
E9-PMU2 6.899 6.50 102424 103099
E9-PMU3 8.385 6.33 96813 100750

E10-PMU1 5.551 8.04 84634 116184
E10-PMU2 9.710 7.59 143468 123933
E10-PMU3 0.118 8.03 1364 111652

E11-PMU1 5.635 5.62 74233 72877
E11-PMU3 10.39 5.66 62714 73941

E12-PMU3 7.273 5.81 72831 78817

E13-PMU1 6,903 5.84 86246 85550
E13-PMU3 7.388 5.92 83034 86083

Table 4.1: Statistical Comparison of 27 PMUs that yielded consistent results, illustrating useful truncated
values between 5 to 8 for D

Ps
, and 72000 to 123000 for H

Ps
.
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Damping Coefficient D
Ps

and Inertia Constant H
Ps

for 12 PMUs
D
PS

H
PS

Event-PMU All Data Truncated All Data Truncated

E4-PMU1 2.780 3.11 21551 21413
E4-PMU2 4.011 2.97 21457 21594
E4-PMU3 163.00 65.00 1252077 199105

E5-PMU3 14.18 10.72 76551 101595

E7-PMU3 10.615 8.61 87046 91931

E8-PMU1 0.329 0.284 1289 1306
E8-PMU2 3.872 2.272 16332 17776
E8-PMU3 0.455 0.279 1234 1266

E11-PMU2 1.444 1.43 15762 16036

E12-PMU1 6.745 4.821 72474 84297
E12-PMU2 1.435 1.171 15558 15789

E13-PMU2 1.572 1.53 23051 22767

Table 4.2: 12 PMUs that did not yield adequate results, D
Ps

and H
Ps

.

can provide useful data to determine the coefficient of the swing equation, thus, providing a

low-cost, simple, and reproducible method to evaluate the characteristics of a power system

during transient conditions.
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Coefficients and Constants for 27 PMUs

Event
PMU ζ ωn GOF τ D

Ps
H
Ps

E1-PMU1 0.147 0.0439 0.396 154 6.68 97547
E1-PMU2 0.135 0.0443 0.550 167 6.08 95811
E1-PMU3 0.149 0.0433 0.175 154 6.87 100219
E2-PMU1 0.137 0.0451 0.525 161 6.07 92565
E2-PMU2 0.136 0.0456 0.580 161 5.96 90655
E2-PMU3 0.147 0.0394 -0.0433 172 7.44 120856
E3-PMU1 0.146 0.0405 0.169 169 7.20 114761
E3-PMU2 0.145 0.0408 0.396 169 7.10 113195
E3-PMU3 0.148 0.0406 0.434 169 7.28 114120
E5-PMU1 0.167 0.0422 -2.197 141 7.90 105632
E5-PMU2 0.165 0.0417 -0.399 145 7.90 108272
E6-PMU1 0.184 0.0461 -0.003 117 7.97 88486
E6-PMU2 0.185 0.0476 0.452 113 7.76 83110
E6-PMU3 0.151 0.0453 -0.099 146 6.65 91617
E7-PMU1 0.143 0.0444 -0.875 157 6.44 95620
E7-PMU2 0.157 0.0443 -1.224 143 7.07 95680
E9-PMU1 0.137 0.0432 -2.152 168 6.33 100750
E9-PMU2 0.139 0.0427 0.365 168 6.50 103099
E9-PMU3 0.137 0.0432 -1.327 168 6.33 100750

E10-PMU1 0.162 0.0402 0.307 153 8.04 116184
E10-PMU2 0.148 0.0390 0.590 173 7.58 123933
E10-PMU3 0.165 0.0410 0.163 147 8.03 111652
E11-PMU1 0.143 0.0508 0.013 137 5.62 72877
E11-PMU3 0.143 0.0509 0.319 138 5.66 73941
E12-PMU3 0.142 0.0489 0.300 144 5.80 78817
E13-PMU1 0.137 0.0469 0.031 155 5.83 85550
E13-PMU3 0.138 0.0466 0.260 155 5.92 86083

Table 4.3: Results of 27 PMUs, which include determined coefficients natural frequency ωn, damping ratio ζ,
the goodness of GOF, compared with calculated damping coefficients D

Ps
and Inertia constants H

Ps
.
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5 Conclusion

The equation governing the motion of the rotor of a synchronous machine is based on an

elementary principle of dynamics, where accelerating torque is the product of the moment

of inertia of the rotor times its angular acceleration. During a disturbance, how the rotor

will accelerate or decelerate is described in relative motion by the swing equation.

During transient conditions when a disturbance excites system dynamics, valuable data

are obtained from PMUs with useful coefficients that are available around the system. The

coefficients of the swing equation can be obtained by evaluating event period data sets PMU

rate of change of frequency measurements. These coefficients are then used to calculate the

important damping coefficient D and inertia constant H , which characterize the restoring

ability of a power system after a disturbance.

PMU data are readily available. However, obtaining event data is achieved by either

purposefully inserting a dynamic resistor brake and obtaining measurements, like the BPA’s

dynamic brake at Chief Joseph substation, or waiting until an event occurs and obtaining

PMU measurements that are observable for that system.

PMU data sets for events can include just the event period, or any number of measure-

ments, in addition to the event period that is being evaluated. This work demonstrates an
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economical and effective method for determining the event period start, truncating large

PMU data sets to determine an event period through end of decay to reduce variability and

improve goodness of fit, when evaluating event samples through a fit filter program. The fit

filter program reads the rate of change frequency data through an undamped second-order

system equation to determine the coefficients of the swing equation.

This research uses archived PMU data obtained from BPA in order to illustrate the

viability of this method. The event files are transmission-level events. There are thirteen

separate events, which were measured by three PMUs at a rate of sixty samples per second,

acquiring positive-sequence voltage and frequency data. There are a total of thirty-nine

event signals used for this analysis. The event data are stored using the csv file format.

The rate of change of frequency data are evaluated through the fit filter program, where

the filtered data are calculated by the undamped second-order equation, which yields the

coefficients for damping ratio ζ, natural frequency ωn, and goodness of fit GOF. These

coefficients are then used to calculate D
Ps

, H
Ps

, and the time-constant τ .

From the thirty-nine PMUs, twenty-seven PMUs produced data sets that provided

consistent results. The outleirs are reviewed in the Discussion of Results, section 4.4, which

clarify that two events from six PMUs were not able to obtain adequate measurements

for the same type of event. The other six PMUs that did not produce good results were

in a location that did not provide the necessary observability, or included high-frequency

oscillations.
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The results of the typical consistent values for twenty seven PMUs are illustrated in

Table 5.1, which include the evaluated coefficients (natural damping ratio ζ , frequency ωn,

goodness of fit (GOF) with calculated damping coefficients D
Ps

and Inertia constants H
Ps

.

Typical Good Values for Coefficients and Constants

ζ ωn GOF τ D
Ps

H
Ps

0.137-0.150 0.031-0.048 0.001-0.400 140-180 5.00-8.00 72000-124000

Table 5.1: Results of 27 PMUs, which include the evaluated coefficients damping ratio ζ, natural frequency
ωn, the goodness of GOF, with calculated damping coefficients D

Ps
and Inertia constants H

Ps
.

This work successfully demonstrates a unique method of modeling the swing equation

using time-synchronized phasors by using ROCOF from PMU data and a MATLAB analysis

fit program to determine the second-order coefficients. These coefficients are used to

calculate the damping coefficient D
Ps

, and inertia constant H
Ps

. These coefficients are necessary

to create a practical swing equation.

The value obtained from these results illustrates an economical method for transient

system analysis using readily available and useful coefficients that are necessary to create a

practical swing equation

Future work could lead to improvements in the program functionality. By developing an

automated process of truncating long PMU data sets, event periods can then be automatically

determined. During the truncating of an event data set, multiple peak amplitude spikes are

evaluated to determine when the actual event period starts. A function could be created

to optimize initial start times just prior to the final peak amplitude, right before the signal
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decays. Additional functions could be developed to automatically adjust window sizes of

transfer functions, and tune parameters of indexing to improve the goodness of fit.
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Appendix A: X-Y Plots

A.1 X-Y Plots
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Figure A.1: All (blue) vs. Truncated (red) PMU Data-Zeta (ζ)
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Figure A.2: All (blue) vs. Truncated (red) PMU Data-Natural Frequency (ωn)
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Figure A.3: All (blue) vs. Truncated (red) PMU Data-Goodness of Fit (GOF)
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Figure A.4: All (blue) vs. Truncated (red) PMU Data-Time Constant (τ )
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Figure A.5: All (blue) vs. Truncated (red) PMU Data-Damping Coefficient ( D
Ps

)
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Figure A.6: All (blue) vs. Truncated (red) PMU Data-Inertia Constant ( H
Ps

)
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Appendix B: Event Signals

B.1 Event Signals
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Figure B.1: Event 1: Outage on BPA DC line going from the Dalles, OR area down to California.
PMU1-PMU3 listed top to bottom.
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Figure B.2: Event 2: Line trip that led to a 2600 MW gen drop.
PMU1-PMU3 listed top to bottom.
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Figure B.3: Event 3: Insertion of the 1400 MW brake resistor at Chief Joseph.
PMU1-PMU3 listed top to bottom.
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Figure B.4: Event 4: Generator outage in Montana.
PMU1-PMU3 listed top to bottom.
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Figure B.5: Event 5: Generator outage in the Lower Columbia region.
PMU1-PMU3 listed top to bottom.
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Figure B.6: Event 6: Fault on a couple of lines at one station, causing a loss of over 2200 MW.
PMU1-PMU3 listed top to bottom.
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Figure B.7: Event 7: Line trip leading to a 1400 MW generation drop.
PMU1-PMU3 listed top to bottom.
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Figure B.8: Event 8: Line trip on a major line bringing generation from Montana.
PMU1-PMU3 listed top to bottom.
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Figure B.9: Event 9: Outage on BPA DC line (similar to event 1 from the previous set).
PMU1-PMU3 listed top to bottom.
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Figure B.10: Event 10: Trip/reclose/trip on a line in the lower Columbia region.
PMU1-PMU3 listed top to bottom.
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Figure B.11: Event 11: Insertion of the 1400 MW brake resistor at Chief Joseph.
PMU1-PMU3 listed top to bottom.
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Figure B.12: Event 12: Insertion of the 1400 MW brake resistor at Chief Joseph.
PMU1-PMU3 listed top to bottom.
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Figure B.13: Event 13: Insertion of the 1400 MW brake resistor at Chief Joseph.
PMU1-PMU3 listed top to bottom.
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Appendix C: Fit Filter Program

C.1 MATLAB Code
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Figure C.1: MATLAB fit program code for second-order underdamped system.
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Figure C.2: MATLAB fit program code for second-order underdamped system.

132



Figure C.3: MATLAB fit program code for second-order underdamped system.
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