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Abstract 

Computer adaptive testing formats, based in item response theory (IRT), are becoming an 

increasingly popular approach to testing in healthcare because they offer numerous 

psychometric and practical advantages to assessment when compared to static tests that 

rely on classical test theory. Fergadiotis and colleagues (2015) have developed computer 

adaptive versions of the Philadelphia Naming Test (PNT) short-forms, which have 

demonstrated acceptable precision and standard error of measurement when compared to 

the static short-forms and original full-length assessment. This study sought to use 

synthetic data simulations using the catIrt R package (Nydik, 2014) to investigate 

possible advantages of the use of tailored provisional ability scores at the start of a CAT 

PNT. Results revealed no significant improvement in the performance of the test when 

starting at a tailored provisional ability score. These results further guide next steps in 

developing more precise computer adaptive tests for assessing anomia and additionally 

demonstrated the advantages of computer simulations in advancing this line of work.  
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Introduction 

Aphasia is a general term that describes impairments of language following brain 

damage, typically when the damage occurs in the language dominant hemisphere 

(Goodglass & Wingfield, 1997). It is characterized by a variety of impairments related to 

communication, such as difficulty with speaking, understanding language, reading, or 

writing. Anomia, the inability to access, retrieve, and phonologically encode the name of 

an object or concept, is the most prevalent deficit associated with aphasia (Goodglass, 

1993). Individuals with anomia experience major negative impacts to their ability to 

communicate what they want efficiently or accurately. This can become incredibly 

frustrating or even debilitating in day-to-day life (Goodglass, 1993). 

One of the most commonly used methods for assessing severity of word-finding 

difficulty is confrontation picture naming. Picture naming tests are the primary choice for 

assessing anomia because they provide consistent assessment content (Goodglass, 1993). 

In connected speech or discourse tasks, individuals can modify their language output for 

certain words; thus, compensating for their word-retrieval difficulties. With picture 

naming tasks, all individuals are presented with a specific stimulus that has a specific 

target and must produce the same word (Goodglass, 1993). Thus, standardized picture 

naming tests present an avenue to even and constrain the testing demands for more 

accurate assessment of the underlying deficit. 

There are a variety of standardized tests for confrontation picture naming (e.g., 

Boston Naming Test [BNT; Kaplan et al., 2001], Philadelphia Naming Test [PNT; Roach 

et al., 1996], naming subtest of the Western Aphasia Battery Revised [WAB-R; 
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Lippincott, Williams, & Wilkins, 2007], etc.). Of these, the PNT is a commonly used tool 

in research investigations due to its strong psychometric properties (Walker & Schwartz, 

2012). A study by Walker and Schwartz (2012) on this test found excellent test-retest 

reliability and that the PNT as a measure of anomia severity is a strong predictor of 

overall aphasia severity as quantified by the Western Aphasia Battery Revised (WAB-R) 

Aphasia Quotient (Walker & Schwartz, 2012). Additionally, the items on the PNT have 

high naming agreement, as indicated by 85% or greater of a group of 30 control 

participants responding to the image with the appropriate target word (Roach et al., 

1996). 

The PNT is composed of 175 black-and-white line drawings of objects that 

present a range of occurrence in everyday language. However, the considerable length of 

the PNT means that, despite its superior reliability and positive psychometric properties, 

it is often inappropriate for use in many clinical settings where productivity demands 

impact time available for assessment and patient stamina determines the feasibility of 

completing the assessment. To address this problem, Walker and Schwartz (2012), 

developed two 30-item short-forms of the PNT. Both forms have been shown to correlate 

highly with the original long-form PNT (Walker & Schwartz, 2012).  

Although the PNT short-forms (Walker & Schwartz, 2012) offer the advantage of 

shorter administration time while maintaining a strong correlation with the long-form 

PNT, there are limitations associated with their use. The PNT short-forms are based in 

classical test theory, and therefore have certain psychometric weaknesses (Hula et al., 

2020). As static tests containing a fixed item set, they are most precise for people with 
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average severity, while being less precise for those at the extreme high or low ends (Hula 

et al., 2020). Additionally, the PNT short-forms assume the standard error of 

measurement is uniform regardless of the ability level of the individual taking the test 

(Walker & Schwartz, 2012), while in reality the standard error of measurement varies 

with the difficulty of the test as it relates to the ability of the test-taker (de Ayala, 2013). 

As a result, measures for monitoring change in naming ability pre- and post-treatment 

may be distorted as the individual’s naming ability does or does not change. 

To address these limitations, Fergadiotis, Hula and their colleagues have 

developed an item response theory (IRT) version of the PNT. IRT (Lord & Novick, 1968) 

is a psychometric framework used often for psychological testing that assumes the 

characteristic being measured is on an unobservable, or latent, continuum that jointly 

references the difficulty of test items and the ability level of the individuals being tested 

(Embretson & Yang, 2006). IRT models use information about the difficulty of a test 

item and the ability level of the test-taker to predict how the individual will respond to an 

item. A commonly used IRT model is the one-parameter logistic model (1PL) which 

calculates the probability an individual will respond correctly to an item based on the 

item’s difficulty and the individual’s estimated ability level (theta). The model often has 

ability level scaled to a mean = 0 and standard deviation = 1, and item difficulty is then 

placed on the same scale (Fergadiotis et al., 2015). When item difficulty and person 

ability level are equal, the probability a patient will answer the item correctly is 50%. 

When item difficulty is greater than person ability level, the probability of a correct 



 

 

4 

 

response is lesser, while the inverse is true for person ability level greater than item 

difficulty.  

Fergadiotis, Kellough & Hula (2015) have investigated the applicability of IRT 

models to the PNT and its associated short-forms and have found that models based on 

item difficulty and person ability are quite precise when assessing object naming ability 

using the PNT short-forms. In their 2015 study, Hula, Fergadiotis, and Kellough 

developed two computer adaptive versions of the PNT, one thirty-item form (PNT CAT-

30) and one variable length (PNT CAT-VL). Both forms were compared to the full-

length PNT and the two PNT short forms developed by Walker and Schwartz (2012). 

Results found that both the PNT CAT-30 and PNT CAT-VL correlated significantly 

greater with the full-length PNT than the PNT30A form and the PNT CAT-VL correlated 

with the full-length test more strongly than the PNT30B (Fergadiotis et al., 2015). These 

results have good implications for the use of an IRT based computer adaptive test (CAT) 

version of the Philadelphia Naming Test. 

An important feature of IRT models in adaptive testing is information. In IRT, 

each item is associated with an item information function which shows the level of 

information each item contributes for the estimation of ability (Hula, Kellough, & 

Fergadiotis, 2015). The function reaches its peak precision at the ability level that 

corresponds to the item’s difficulty (Hula et al., 2015). The square root of the inverse of 

this function represents the standard error for that item, thus information refers to the 

extent an item reduces the uncertainty of an ability estimate (Hula et al., 2015). In an 

IRT-based CAT, the algorithm utilizes each item’s information function so that the 
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computer can discern which items are most informative at a given ability level score 

(Hula et al., 2015). When item information functions for multiple items are overlaid, we 

can produce a test information function that models the information for the collective, 

administered items for an individual test-taker (Hula et al., 2015). As more items closer 

to the test-taker’s “true” ability level score are administered, the information for the 

overall test is maximized and the result is more precise (Hula et al., 2015).   

Computer adaptive testing is a testing format in which a computer algorithm 

collects responses from the test-taker throughout the testing process and presents items 

that have been calculated to provide the most information about the test-taker’s “true” 

ability level (Fergadiotis et al., 2015). CAT begins with the individual being assigned a 

preliminary ability level score, typically the mean (= 0), and then are presented with a 

first item with a difficulty level that matches the preliminary ability score. The individual 

responds either correctly or incorrectly, and the computer uses the individual’s response 

to update the provisional ability score, and then selects either an easier or more difficult 

item that would be maximally informative based on the updated ability level score. The 

individual is presented with the new item, and the process repeats until a stop rule is met. 

For fixed-length tests, this is after the target number of items have been administered. For 

variable-length tests, this is after a predetermined level of precision is met.  

By presenting a series of optimally informative items to the test-taker, computer 

adaptive tests can maintain the precision of measurement of a test while being relatively 

shorter than a non-adaptive test. Some adaptive tests are administered without the use of 

a computer through basal and ceiling rules (such as with the BNT), that determine a start 
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point based on prior notions of the individual’s ability (due to age, scores on related 

external measures, etc.) and a stop point that is determined by their performance on the 

test so far (e.g. three consecutive questions incorrect) (Mills & Stocking, 1996). This 

requires the test to be organized so that items increase in difficulty as the test goes on and 

each individual must be presented with each item in order until the stop rule is reached, a 

feature not found in the BNT. Items are not presented in order of increasing difficulty, so 

some participants may not be presented with easier items that they would have named 

correctly, thus resulting in an incorrectly lowered score. 

The majority of IRT based computer adaptive tests begin by selecting an item at 

the mean ability level and proceeding from there; however, clients’ “true” ability scores 

are not always equivalent to the mean. Additional information from clinical impressions 

and other measures can inform a general sense of an individual’s severity of anomia. This 

general sense of aphasia severity can be used to select a testing start point that may be 

closer to their actual ability level than the mean. It is possible that estimating a person’s 

general aphasia severity and starting them at a start point closer to this perceived severity 

can help optimize the results of the test by either requiring fewer items to be administered 

to reach the stop rule or resulting in a greater number of optimally informative items to be 

administered. 

The purpose of this study is to determine the possible advantages of developing 

computer adaptive testing software for confrontational naming tests that allows clinicians 

to select a starting provisional ability score based on clinical impressions and/or 

additional measures, such as scores from other standardized aphasia assessments. Testing 
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software that allows clinicians to choose a starting point as an alternative to software that 

starts testing for all clients at a mean provisional ability score may have implications for 

improving the efficiency and accuracy of computer adaptive naming tests on an 

individual basis, since the starting point for the test would be tailored to the unique 

presentations of aphasic individuals. To address this premise, we ask the following 

research questions: 1) Is there a difference between mean level of uncertainty for ability 

estimate scores for computer adaptive naming tests that begin at an average provisional 

ability score and those that begin at a provisional ability estimate set equal to the “true” 

ability score? and 2) Is there a difference between the mean concordance of computer 

adaptive naming test ability estimate scores and “true” ability estimate scores for 

computer adaptive naming tests that start at an average ability estimate and computer 

adaptive naming tests that begin at a provisional ability estimate set equal to the “true” 

ability score?  

Regarding the first question, we hypothesize that level of uncertainty will be more 

precise for the tests that start at the test-taker’s “true” ability score compared to tests that 

start at a default provisional score. This is because in the latter scenario, the test would 

start at the mean and then present items that would gradually approach the client’s “true” 

ability estimate. In a fixed-length computer adaptive test, this would mean potentially 

fewer maximally informative items would be presented, especially for individuals who 

are severely or mildly impaired. With an overall less informative item set, the confidence 

interval for the final ability estimate score would be wider, and therefore uncertainty 

about the “true” ability score would be greater. For the prior scenario, it is probable the 
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test would present more items that are closer to the client’s “true” ability estimate and 

therefore are more informative. The more informative the item set presented, the 

narrower the confidence interval for the final ability estimate score. 

Our hypothesis for the second question is similar to the hypothesis above. We 

presume ability estimate scores for tests that allow clinicians to select starting points 

based on prior knowledge of the client will be more precise than ability estimate scores 

for tests that begin at a predetermined provisional ability score. Similarly, to narrowing 

confidence intervals through presenting a greater number of maximally informative items 

for the individual, the test would present items that would gradually approach the 

individual's “true” ability estimate score, resulting in a more precise estimate within a 

fixed number of items. 

The proposed research questions explore the limiting case, in which we compare 

current conditions of computer adaptive testing with starting provisional ability score set 

at the mean to the ideal conditions: computer adaptive testing with a starting provisional 

ability score equivalent to test-taker’s “true” ability score, conditions that will not 

realistically occur in a clinical setting since the “true” ability score cannot be known. In 

doing this, we optimize the outcomes of the test by presenting the test-taker with a 

maximally informative initial test item. The difference between these conditions will 

create the theoretical space for improvement and demonstrate the greatest potential 

advantages for creating CAT software that allows clinicians to select a starting point 

based on other factors (e.g. clinical impressions, alternative measures). If the 

improvement between the two conditions is insignificant, then we can know advantages 
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in realistic clinical conditions will also be insignificant and proceed with exploring 

alternative approaches to augment the estimation process. However, if the space for 

improvement between current conditions and ideal conditions is significant, it may 

warrant further investigation of potential advantages in more realistic conditions and 

guide future research. 
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Methodology 

Synthetic Data Post Hoc Simulation 

 The catIrt package was used in R Studio to simulate the results of the computer 

adaptive version of the Philadelphia Naming Test under the two conditions. The catIrt 

package (Nydik, 2014) simulates computer adaptive tests based on a vector of ability 

values, a matrix of item parameters, and item selection and termination criteria. The 

available code can be found in Appendix A. To begin, generating (i.e., “true”) ability 

scores were created for 1000 simulees by generating random thetas using the rnrom 

function in R. These thetas represent the generating ability parameters of the hypothetical 

cases that were ran through the simulated CAT PNT under the two conditions. For this 

simulation, the 1000 cases were generated to adhere to the distribution from the study by 

Fergadiotis et al. (2015) according to which the mean equaled 0.1 and the standard 

deviation equaled 1.44 

The next step was to generate simulated responses for all 175 items of the PNT 

for each of the 1000 simulees. To this end, the generating ability parameters (i.e. thetas) 

and the known PNT item parameters from Fergadiotis et al. (2015) were used. The 

responses were generated under a 1-parameter logistic model.  

After the datasets were generated, a classical post hoc simulation using synthetic 

data was performed. For the uninformed Condition 1, every CAT simulation was based 

on the same initial ability estimate across simulees (ability estimate = 0) whereas 
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for Condition 2, the generating thetas were provided as the initial ability estimate. Other 

than that, catIRT was configured identically across conditions.  

Specifically, catIRT code required the specification of start, middle, and final 

phase of the simulation. First, the options for specifying the start of the CAT were 

configured. These settings applied to the first five items. The key parameter in this block 

of code was “init.theta”. If “init.theta” was a scalar, every simulee had the same starting 

value (i.e., Condition 1). Otherwise, simulees had different starting values based on the 

respective element of “init.theta” (Condition 2). Further, no constraints were imposed on 

the level of difficulty parameters for items selected during the starting portion of the 

CAT. Additionally, the adaptive algorithm was specified to select the single best item 

that maximized the unweighted Fisher information precisely at theta. Finally, thetas were 

estimated based on the expected a posteriori scoring and theta was constrained to fall 

between -4 and 4.  

Next, the middle phase of the simulation was specified. The phase was configured 

similarly to the start phase. The only difference was that after the first five items, theta 

estimation was based on maximum likelihood. 

Finally, the final phase of the simulation was configured. The key parameter here 

was "term" which can be configured to terminate the CAT either after a specified number 

of items ("fixed") or after a certain standard error measurement is achieved ("precision"). 

For this study, each simulation was terminated after the administration of 30 items.  
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Statistical Analysis 

 The first research question asked whether there was a difference between mean 

level of uncertainty for ability estimate scores for computer adaptive naming tests that 

begin at an average provisional ability score and those that begin at a provisional ability 

estimate set equal to the “true” ability score. To answer this question, the average 

standard errors of measurement across the two conditions were compared using a paired 

samples t-test with an alpha level set equal to .001. The second research question asked 

whether there was a difference between the mean concordance of computer adaptive 

naming test ability estimate scores and “true” ability estimate scores for computer 

adaptive naming tests that start at an average ability estimate and computer adaptive 

naming tests that begin at a provisional ability estimate set equal to the “true” ability 

score. To answer the second question, the correlations between the thetas generated 

under each condition and the generating thetas were compared statistically using 

Steiger’s approach (Steiger, 1980) as implemented in Lee and Preacher’s  (2013) online 

Java application. 
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Data and Results 

Research Question 1: Differences on Average SEM across Conditions 

Descriptive statistics for the standard error of measurement associated with the 

administration of the full item bank and each of the two conditions can be found in Table 

1. A graphical representation of the three empirical SEM’s as a function of the generating 

theta can be seen in Figure 1. As expected, and as can be seen in Figure 1, the SEM of 

measurement associated with the administration of the full item bank was considerably 

lower compared to the two CAT conditions.  

      

      

Table 1 

Descriptive Statistics for the SEM Based on the Full Item Bank and the Two Simulated 

Conditions 

 Full Item Bank Condition 1       Condition 2 

Mean 0.187  0.336  0.334 

SD 0.145       0.091  0.088 

Min 0.131  0.291  0.291 

Max 0.081  0.815  0.815 

Note. Condition 1 refers to the uninformed CAT simulation and Condition 2 refers to the 

CAT simulation for which initial values were provided.  
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Figure 1. A graphical representation of the standard error of 

measurement associated with the full item bank and the two 

conditions. 

 

The difference of the average SEM from the first condition (M = 0.336, SD = 

0.091) and the second condition (M = 0.334, SD = .087) was not statistically 

significant, t(999) = 1.583, p = .114. Therefore, no evidence was found that the two CAT 

simulated conditions were associated with different levels of average SEM. 

Research Question 2: Differences on Correlations with “True” Theta across 

Conditions 

Table 2 includes the descriptive statistics associated with the “true” theta and the 

estimated theta under the two simulated CAT conditions.  
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Table 2 

Means, SD's, and Correlations among “true” and CAT-generated thetas 

 “True” Theta  Condition 1  Condition 2 

“True” Theta 1     
Condition 1 0.968  1   
Condition 2 0.969  0.964  1 

      
Mean 0.118  0.114  0.116 

SD 1.395  1.442  1.44 

 

 Based on the Steiger’s approach, the difference between the correlation based on 

thetas generated under Condition 1 and the “true” theta and thetas generated under 

Condition 2 and the “true” theta was not statistically significant, z(999)=-.556, p = .58. 
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Discussion 

The primary aim for this study was to investigate potential advantages to 

developing computer adaptive software for confrontation naming tests that would allow 

for selection of an initial provisional ability score compared to the current standard in 

which computer adaptive tests begin at an empirically estimated common provisional 

ability score. It was hypothesized that starting test-takers at a provisional ability score 

closer to their “true” ability level would result in a more precise result, as this could 

potentially increase the number of maximally informative items presented to the test-

taker. We addressed this aim by comparing current CAT practice standards against the 

limiting case and asked the following research questions: 1) Is there a difference between 

mean level of uncertainty for ability estimate scores for computer adaptive naming tests 

that begin at an average provisional ability score and those that begin at a provisional 

ability estimate set equal to the “true” ability score? and 2) Is there a difference between 

the mean concordance of computer adaptive naming test ability estimate scores and 

“true” ability estimate scores for computer adaptive naming tests that start at an average 

ability estimate and computer adaptive naming tests that begin at a provisional ability 

estimate set equal to the “true” ability score? 

Simulated trials of fixed-length CAT PNTs using the catIrt package in R Studio 

were run under two conditions: the first under the current practice of starting the CAT at 

a provisional ability score equivalent to the mean, and the second under the limiting case, 

in which the CAT started at a provisional ability score equivalent to the simulees’ “true” 

ability score. In theory, equating initial ability level estimates to the “true” ability level of 
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the simulees would optimize the start point of the test and investigate the ideal 

conditions. 

Despite assigning simulees their “true” ability estimates as their initial ability 

level estimate in Condition 2, according to the results of these simulations, there was a 

negligible improvement in the performance of the test between the two conditions. 

Condition 2, starting simulees at a provisional ability level equivalent to their “true” 

level, and therefore with a maximally informative first item, presented no real advantages 

for test precision over the current practice of starting a test taker at the mean ability level. 

Both conditions resulted in strong correlations for the final CAT ability level scores with 

the simulees’ “true” ability levels. Moreover, these strong correlations are not 

significantly different from each other. The CAT under Condition 1 was comparably 

precise in determining ability level. This suggests there might not be practical advantages 

to creating CAT software that would allow clinicians to adjust the provisional ability 

level estimate based on their clinical impressions or some alternative factor (e.g., a score 

from another standardized measure) without considering additional information. With no 

significant improvement occurring in the limiting case, ergo ideal conditions, we can 

assume there will be no advantage to this option in a realistic clinical setting where the 

client or patients’ “true” ability levels cannot be known and subjective impressions about 

a client or patients’ ability level will vary from clinician to clinician. 

One potential reason the results demonstrate no significant improvement could be 

because the current CAT PNT is already performing at a high level of efficiency given 

the current item bank. As stated above, the CAT under Condition 1 demonstrated a strong 
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correlation between the calculated ability level score and the simulees’ “true” ability 

levels. The current practice of starting test-takers with an ability level estimate is 

resulting in overall good performance from the CAT. Such high precision for the CAT in 

this regard means there could be little space for improvement by adding the additional 

information of a starting point closer to the individuals’ “true” score. 

Although the non-significant results of this study do not support changing the 

current CAT set-up to include tailored provisional ability level scores, this study 

highlights the utility of simulations in making further advancements in this area. 

Simulations of CATs present several advantages over collecting such data from live 

participants. The first benefit being that with simulations, information that could never be 

known in a realistic setting, such as a latent trait, can be treated as known. In this study, 

simulations allowed the simulees’ “true” ability scores to be known, and therefore a 

better understanding of the precision of the test could be obtained. Comparing this to 

testing the precision of the CAT on live participants, for whom we can never know their 

“true” ability, it is possible to know how accurately the test estimated the simulee’s 

ability level. 

Another advantage to simulations is that there is no test, re-test bias. Each 

condition was run in isolation for each simulee. Responses to items were predetermined, 

therefore the results of the CATs in each condition can be analyzed on their own. If this 

study had been conducted with live subjects, each subject would have had to have taken 

the CAT twice (once under each condition) which could alter the selection of informative 

items available for a participant or the results of the second condition could be impacted 
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by a learning effect if the participant had seen an item in the previous condition or had 

become more comfortable with the format of the test over time. These factors that could 

impact the results are non-existent for simulations.   

In addition to these positive implications, simulations offer a practical advantage. 

While designing and running simulations to create data for 1000 simulees was 

accomplished in a matter of weeks, obtaining this same data from live subjects would 

have been a much more cumbersome task. Collecting this same dataset from live people 

with aphasia presents numerous challenges. First, recruiting participants and 

administering two CAT PNTs to 1000 individuals would take an extensive amount of 

time. Additionally, conducting this research with live participants would have used 

excess resources, and therefore would have cost far more. Simulating CAT PNTs costs 

relatively little and could be completed in much less time, preserving resources. 

Limitations 

Although simulations present these advantages, there are limitations. Studies 

based in computer simulations are limited in external validity because they often 

represent the most controlled, ideal environments for data collection, conditions which 

are hardly ever reproduced in realistic settings. The results from studies based in 

computer simulations would have to be repeated with live participants to better be able to 

understand how the results transfer to realistic settings and conditions. While this appears 

to be a significant disadvantage, the ease with which simulations can be run means they 

can be an important step in prioritizing which investigations are worth pursuing with live 

participants in a clinical setting, thereby preserving resources and time. The results of this 
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simulation study, although statistically insignificant, have provided important information 

that will guide future research in improving efficiency and precision of computer 

adaptive naming tests without requiring the use of extensive resources and excess time. 

Future Directions 

Although tailored provisional ability scores alone did not have a significant effect 

in this study, future research can look into additional ways to optimize CAT efficiency by 

finding ways to provide the CAT with additional information about the test-taker at the 

start. In this study, only one additional piece of information – an estimate of what the 

client or patient’s “true” ability level may be – was given to the test; however, this is 

limited information. The CAT was provided with a tailored provisional ability score that 

estimates the test-taker’s “true” ability level, but with a wide range of uncertainty around 

it. Next steps for optimizing CAT efficiency can investigate whether providing the CAT 

with a tailored start point and a confidence interval around that start point may increase 

the precision or efficiency of the test. In a clinical setting this could be done through the 

use of additional aphasia measures, such as the WAB-R, to inform the CAT PNT. The 

WAB-R has a naming subtest for which an estimated ability and 95% confidence interval 

can be inserted into the starting information of the CAT to better inform how the 

algorithm updates ability estimates and selects test items.  
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Appendix A 

catIrt Simulation Code 

theta <- rnorm(n=1000, mean=.1, sd=1.44) 

params <- read.csv 

b.params <- data.matrix(params, rownames.force = NA) 

b.resp <- simIrt(theta = theta, params = b.params, mod = "brm")$resp 

catStart1 <- list(init.theta = 0, n.start = 5, 

                  select = "UW-FI", at = "theta", 

                  n.select = 1, it.range = NULL, 

                  score = "EAP", range = c(-4, 4), 

                  step.size = 3, leave.after.MLE = FALSE) 

catMiddle1 <- list(select = "UW-FI", at = "theta", 

                   n.select = 1, it.range = NULL, 

                   score = "MLE", range = c(-6, 6), 

                   expos = "none") 

catTerm1 <- list(term = "fixed", n.min = 10, n.max = 30) 

cat1 <- catIrt(params = b.params, mod = "brm", 

               resp = b.resp, theta = theta, 

               catStart = catStart1, 

               catMiddle = catMiddle1, 

               catTerm = catTerm1) 

summary(cat1, group = TRUE, ids = "none") 
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catStart2 <- list(init.theta = theta, n.start = 5, 

                  select = "UW-FI", at = "theta", 

                  n.select = 1, it.range = NULL, 

                  score = "EAP", range = c(-4, 4), 

                  step.size = 3, leave.after.MLE = FALSE) 

catMiddle1 <- list(select = "UW-FI", at = "theta", 

                   n.select = 1, it.range = NULL, 

                   score = "MLE", range = c(-6, 6), 

                   expos = "none") 

catTerm1 <- list(term = "fixed", n.min = 10, n.max = 30) 

cat2 <- catIrt(params = b.params, mod = "brm", 

               resp = b.resp, theta = theta, 

               catStart = catStart2, 

               catMiddle = catMiddle1, 

               catTerm = catTerm1) 

summary(cat2, group = TRUE, ids = "none") 
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