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Abstract 

 
Exposure to diesel emissions causes a range of health effects throughout the body, 

impairing; respiratory, cardiovascular, central nervous, renal, and cognitive systems. 

Diesel particulate matter (DPM) in Portland, Oregon is prevalent due to the layout of 

highly trafficked roadways, rail lines, and marine ports exposing a dense population to 

high levels of exhaust pollution. These high concentrations of ambient diesel emissions 

disproportionately impact minority and low-income populations.   

Ground-based monitoring and modeling are two ways to assess ambient DPM. 

However, there are uncertainties in modeled DPM due to knowledge gaps in emissions 

inventories as well as lack of model validation against ground-based measurements. We 

propose a framework for efficient assessment of localized diesel emission sources, and 

model validation.  

Sources of diesel identified as having the largest uncertainty in previous modeling 

studies were assessed for activity data and emissions were sampled for each main source 

type. We monitored for a range of traffic related air pollutants such as Black carbon and 

Nitrogen Oxides in two communities. These measurements will enable us to assess 

dispersion models, and better characterize DPM sources that are impacting the health of 

these communities. Fuzzy cluster analysis’s applicability in air quality is shown through 

several studies but not yet for diesel identification. Fuzzy Cluster analysis was 

investigated as a potential tool for simplified source characterization. We demonstrate its 

practical use and discuss the opportunities and challenges of interpreting fuzzy clustering 

output.  
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In summary we present a suite of tools, accessible to most municipalities in the 

US, that can be used to fill in knowledge gaps or validate models to help communities to 

better understand and plan to mitigate their health risk from exposure to DPM.  
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Chapter 1. Introduction 

Our modern society is reliant on diesel engines for construction, goods 

movement, and transportation (Miller & Jin, 2019). Yet, exposure to emissions from 

these diesel engines has been shown to cause a spectrum of health issues (Lutes, 2007). 

Diesel exhaust, which is made up of a mixture of mostly nitrogen, water, carbon dioxide 

(CO2), particulate matter (PM), gases,  polycyclic aromatic hydrocarbons (PAHs), and 

metals (Wang, Wang, Bai, Wang, & Zhao, 2019), causes oxidative stress, tissue damage, 

and inflammation, leading to a range of effects throughout the body including respiratory, 

cardiovascular, central nervous, renal, and cognitive systems (Reis et al., 2018). Diesel 

emissions are also a climatic concern. Black carbon (BC), which is major particulate 

component of diesel exhaust, (Reşitoʇlu, Altinişik, & Keskin, 2015) is also the second 

highest pollutant in global warming potential second to CO2 (Bond et al., 2013).  

Diesel emissions pose a wicked problem: diesel engines form the backbone of our 

transportation, and construction infrastructure, but their emissions our damaging human 

and environmental health.  Yet, implementing a solution is not easy as there is little 

incentive for owners to bear the cost of switching to newer cleaner engines or retrofitted 

emissions control technology when the health and environmental benefits accrue largely 

to others.  

Diesel emissions in Portland are concerning because Multnomah County was 

ranked in the top five percent in the nation for diesel exposure (US EPA, 2014, NATA).  
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The Portland Air Toxics Solutions (PATS) found minority and low-income communities 

in the Portland metropolitan region are disproportionately impacted by air toxics.   One 

aim of this thesis is to serve Environmental Justice (EJ) communities of Portland with 

better knowledge of sources elevating their exposure. How does a community know what 

concentrations of DPM it might being exposed to? The two general methods of finding 

ambient concentrations of DPM are dispersion models and receptor monitoring. Receptor 

monitoring is the breakdown of pollution contribution to various sources from monitored 

data. Dispersion models use emissions inventories that include rate of operation, and rates 

of pollution from exhausts. These terms are activity rate (AR) for rate of pollutant and 

emissions factor (EF) for rate of pollution.  

The PATS study used CALPUFF (Oregon Department of Environmental Quality, 

2012), an atmospheric dispersion model with inputs of activity rates (AR) and emissions 

factors (EF), which is the amount of pollutant per amount of fuel burned. Inputs are 

spatially and temporally used in conjunction with meteorology and topography to create a 

map of pollution across a study area. The source emissions were estimated in PATS using 

data inputs that were mostly from national fleet averages, and fleet turnover (Oregon 

Department of Environmental Quality, 2012). These assumptions particularly for the 

Portland Metro area have been shown in recent statewide emission inventory update that 

Oregon and Portland specifically vary from what was expected in PATS (Eastern 

Research Group, 2020).  

Originally, the model was performed in 2007 as the Portland Air Toxics 

Assessment (PATA), and it was performed again with updated information in 2011 to 
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PATS as a predictive model for the year of 2017 (Oregon Department of Environmental 

Quality, 2012). From the PATs report, DPM primarily comes from cars, trucks, marine, 

construction, and rail sources. The sources above were the focus of this study excluding 

cars since detailed information was already available for cars through emissions testing 

with the state Department of Motor Vehicles.  

DPM is not a single pollutant, and thus there is no simple way of measuring it. 

DPM is made up of a soot-particle core, volatile organic compounds (VOC) and 

Polycyclic Aromatic Hydrocarbons (PAH), with gases absorbed onto the surface and 

absorbed into the particles (Downing, 2015). The components of diesel are not unique to 

diesel, and each pollutant is emitted by other combustion sources in various amounts and 

ratios. There is no direct way to measure DPM as predicted by models. There is a need to 

ground-truth results from dispersion models, to be able to confirm accurate input data, 

and find impactful sources.   

DEQ, in partnership with Portland State University (PSU), Reed College, and 

Neighbors for Clean Air, received funding to improve the understanding of diesel 

emissions exposure in Portland OR, and how environmental justice communities are 

disproportionately impacted. To improve the PATS predictions of DPM, data was 

collected on emissions factors (EF) from each primary source present in the metropolitan 

area. Activity rate and site specific information is important in improving models for 

locally relevant exposure estimates (Isakov & Venkatram, 2006). Therefore, source 

activity assessments were performed to understand the spatial and temporal variability of 

how diesel emissions are being emitted in the Portland Metro region.  
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After source data inputs were assessed, community monitoring took place to 

ground-truth models in critical neighborhoods. Current ground-based methods for finding 

diesel by field sampling use filter-based methods and, apply multivariate statistical 

methods such as the EPA Positive Matrix Factorization (PMF) and Principal Components 

Analysis (PCA) (Hopke, 2016). The filter-based method of sampling takes in a minimum 

of 24-hour air flow onto a filter paper that is then analyzed in a laboratory setting for a 

matrix of analytes. EPA PMF typically needs at least a few hundred filter sample days 

per site to properly converge with reliable results (US-EPA, 2014). Due to these 

requirements, the cost of laboratory analysis, labor costs, and siting, add up to be 

expensive and time intensive.  

Monitoring methods that take extensive time for collected potentially can 

potentially miss changes in diesel exposures. Diesel sources are transient in nature, such 

as construction sites operating in different areas, and moving locations when projects are 

complete. Construction diesel emissions are also largely associated with the phase of 

large soil movement called the earthworks phase, and later phases emit considerably less 

emissions (Heidari & Marr, 2015). Diesel emissions from on-road and non-road engines 

are dictated by regulation, through increasingly stringent performance-based emission 

standards. Emission standards need to be met at time of engine manufacturing and need 

to meet a tier set through the US EPA (Coglianese & Nash, 2017). Current methods for 

meeting standards are through Exhaust Gas Recirculation (EGR), Diesel Particulate 

Filters (DPF) and Selective Catalytic Reduction (SCR) (Reşitoʇlu et al., 2015). As fleets 

turnover to newer tiered engines, pollutant contributions by source will change.  Marine 
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and rail emissions are dictated through EPA emissions tiers, market demands for various 

goods, contractual agreements with suppliers, and through agreements between Ports, rail 

and, government agencies (Oregon Department of Transportation, 2014). The disparity 

between the changing nature of diesel, the time and cost of traditional ground-based 

monitoring show a need for a new method of DPM determination. Based on the above 

knowledge gaps, there is a need for low-cost and less time-intensive methods of 

measuring DPM, a method of inferring local diesel sources from measurements, and 

accessible information to communities of disproportionate impact from such 

measurements. The updated knowledge of pollution sources is needed to make direct and 

effective solutions. Lastly, the result of this study is a framework that can be used in 

future diesel emissions ground-based assessments.  

 

  

Figure 1-1. PATS dispersion output for DPM aggregated to census tracts (left). High 

spatial resolution NO2 map from predictive model and ground-based measurements (right). 
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Chapter 2. Model Source Inputs Improvement  

2.1  Model improvements Introduction 

 

The two main types of data needed for source emission estimation are activity rate 

(AR) and emission factor (EF). AR is traffic volume, speed, and temporal data to average 

activity at a location. Emission factors are a mass of pollutant emitted per amount of fuel 

burned. For example, a common emission factor is g BC/ kg diesel fuel, which can also 

be in power usage as well, often seen in fleet standards regulations. The calculation 

adapted from Tang et. Al, 2015 of EF for BC is shown in Equation. 1.  

 

Equation 1. 

𝐸𝐹𝐵𝐶 =
∫ [𝐵𝐶(𝑡) − 𝐵𝐶(𝑡1)] 𝑑𝑡

𝑡2

𝑡1

∫ [𝐶𝑂2(𝑡) − 𝐶𝑂2(𝑡1)] 𝑑𝑡
𝑡2

𝑡1

∗  𝑊𝐶 
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Figure 2-1. Example plume capture for calculation for a BC emission factor using 

equation 1. 

 

Where the denominator is the integration of CO2 from the starting and ending 

inflection points of the rise in emissions measured, minus the background. An example 

plume from this study is shown in  Figure 2-1.  The background for each plume is found 

by averaging five minutes before and after a plume. Then, divide the pollutant, in this 

case BC integrated from start to finish. Multiply the ratio by a carbon weight fraction for 

a specific fuel. Diesel’s carbon weight fraction is 0.87 (Johnson et al., 2013a). Johnson et 

al., also explain that CO2 is converted to just carbon based on the assumption that all 

other gaseous carbon species are in trace amounts. This is done through a mass balance 

equation using the molecular weight ratio of carbon and oxygen. 

Rail was the first source assessed. A pilot data collection for rail took place during 

the month of August 2018. After the pilot study, a portable measurement system (PMS) 
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was designed for mobile monitoring and capture of emissions further described in 

Appendix A. Full data collection for the main sources took place from March 2019-

October 2019.   

 

Table 1. Instrumentation setup for Portable Pollution Monitoring 

Instrument Measurement Units Time base 

Magee Scientific AE33 Black carbon ng/m3 or µg/m3 1 sec 

Li-COR 850 CO2 µ mol/mole (ppm) 1 sec 

EcoChem PAS2000 p-PAH ng/m3 6 sec 

TSI DustTrak 8533 PM 2.5 & PM10   µg 1 sec 

MicroAeth MA300 Black carbon & 

Lat & Long 

ng/m3 1 sec 

2.2  Rail Pilot Study      

 Rail emissions come from rail-line movement, and railyards. Railyards pose a 

different difficulty in modelling emissions due to the complexity of activity that happens 

onsite. Railyard emissions were investigated to capture plumes and characterize 

emissions from a Portland specific yard. a large comprehensive study of yard emissions 

and activities has not yet been performed in Portland. Methods similar to (Johnson et al., 

2013b), were attempted at the Brooklyn Railyard. A monitoring trailer was set up at a 

garage door manufacturing facility with a shared fence to the Brooklyn railyard. Table 2 

goes over the measurements made at the Brooklyn railyard.  In addition, the instruments 
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listed in Table 2, a video camera watching the rail activity recorded for 24 hours a day 

during sampling for the month of August 2018. 

 

Table 2. Instrument used at the Brooklyn Railyard Pilot study 

 

 

 Data was continuously monitored at the lowest time resolution obtainable, and a 

plume was detected if there was a rise in CO2 of at least 25 ppm above background 

concentrations with a locomotive occurrence within a period of a minute or two via video 

footage. 

Despite having setup with what seemed like an ideal sampling location and 

design, plumes that connected with locomotives passing were not able to be 

distinguished. A potential hypothesis for this is that the exhaust plumes were higher than 

Instrument Measurement Unit Time base 

Teledyne T200 NOx Ppb 1 minute 

Teledyne SO2 Ppb 1 minute 

thermo scientific Ozone 

Analyzer 

Ozone Ppb 1 sec 

TSI NanoScanSMPS 

3910 

particle size distribution of 

10nm to 420nm 

Nm 1 minute 

TSI Optical Particle Sizer 

3330 

particle size distribution of 

0.3 to 10 µm 

Nm 1 minute 

Magee Scientific AE33 Black carbon ng/m3 1 sec 

EcoChem PAS2000 p-PAH ng/m3 1 minute 



10 

 

the sampling inlets. Another potential error could be that the truck loading station was 

nearby to the west of the rail transect, and with many trucks moving and idling nearby 

could have made the CO2 plume indistinguishable from the rail passing by.  

2.3 Rail Mobile Monitoring 

Due to the rail pilot study instrumentation being unable to detect plumes next to 

the locomotive stacks, a new sampling method was designed. Based on trucking tunnel 

studies (Dallmann et al., 2013, Ban-Weiss et al.,  2009) and other rail plume capture 

studies (Tang et al., 2015), being in a location above a passing locomotive exhaust was 

ideal. Pedestrian bridges that were far enough away from major traffic sources, and 

where locomotives passed underneath, representing typical inner-city rail speeds and load 

was key. Multiple locations were found that fit the criteria via Google maps and 

Geographic Information System (GIS) rail routes. Ease of access and transportation to 

each sampling location was also important. Sampling took place on the East Bank 

Esplanade on the waterfront in Downtown, but road traffic emissions interfered heavily 

with plume detection. Pier Park in North Portland was attempted but infrequent trains, 

difficult terrain, and distance made sampling here less than ideal. Thus, most samples 

took place at Brooklyn railyard crossing at the northern end of the yard and the Spring 

Water Corridor for ease of bike access, little to no traffic interference, and frequent train 

traffic under a variety of operating conditions.   

It was found that plume captures were most successful under low wind conditions 

and thus in the early morning hours. Each sampling day began with zero calibrating the 



11 

 

DustTrak and p-Trak, allowing the aethalometer roughly five minutes to warm up, while 

the CO2 and p-PAH data logging was set up. Then, the aethalometer and p-PAH 

monitors’ connected sampling lines routed to a PM2.5 impactor were hung up on the side 

of bridge fence above where exhaust stacks would pass underneath. The CO2 Teflon 

tubing was duct-taped to the outside of the impactor with the inlet as close to the particle 

inlet as possible to ensure the same air mass was sampled.  

 Once a train was close, the researcher would walk off the bridge far enough away 

as to mitigate personal exposure, take a photo or video with a timestamp, and track the 

speed using a radar gun. Time, train identification numbers, speed, rail owner, and other 

notes were recorded after the passing. 

 Emission factors were calculated for BC and some p-PAH based off Equation 1 

using R programming (R Core team, 2020) for data pre-processing. PSi-plot software was 

used to find the area under the curve for both CO2 and BC.  Results of BC EF’s by 

company type is shown in Figure 2-2. Amtrak had the highest emissions factor on 

average, but across all owners there are high standard deviations. A higher sample size is 

suggested to increase certainty of averages. Even though there was a wide range of EF’s 

and difference between company, the total average emission factor was on par with Tang 

et al. (2015), of 0.87 +/- 0.66 g BC/ kg fuel burned.  
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Figure 2-2. Average BC emission factor by rail company, and total average emission 

factor = 0.9 +/- 0.23 g BC/ kg diesel total n = 23.  UP = 13, Amtrak n= 8, BNSF = 2 

  

To check rail AR, a schedule or previous detailed rail crossings would be needed. 

Rail schedules are not released to the public due to the risk to national security. A way to 

find activity rates based off locally relevant data is from the state department of 

transportation. In this instance for safety and public concerns, Oregon Department of 

Transportation keeps a record of average annual daily train crossings. Based on rail rights 

and ownership, rail lines can be assigned an activity rate and emission factor, from how 

many crossings occur on average in a day.  

Obtaining the emissions factors and comparing to the national average, along with 

rail line specific ARs are useful for future modelers. By checking predicted versus actual 

emission rates, it can be determined how to best perform future model runs. 
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2.4 Marine 

  Sampling for marine emissions was very similar to rail mobile monitoring, 

without the ability to be above the exhaust stack. Sampling took place at Kelly Point Park 

at the most northern tip of Portland, where the Columbia River and the Willamette 

converge. Due to the difference in stack height to inlet, and dilution by the time a plume 

reached the inlets, detecting marine emissions using the above method was not feasible. 

A BC monitor (Magee Scientific aethalometer, AE33) and a CO2 (Li-COR 850) were 

setup at a DEQ site on Sauvie Island near the Columbia River. Similar to plume capture 

attempts on Kelly Point, plumes were too diluted for detection and Island traffic often 

interfered with measurements. 

 In addition to the above difficulties, we were informed by the Port of Portland 

that there was a large decrease in vessel traffic due to market forces and loss of contracts. 

This is confirmed through Port of Portland’s report of vessel data years 2010 through 

2020 shown in Figure 2-3. Since 2010 there has been a decline of roughly 180 vessels 

docking at Port of Portland per year, from 575 in 2010 to 394 per year in 2020.  The 

reduced activity made it unfavorable for measuring emission factors, because of time 

restraints for measurements and low likelihood of plume capture.  For this reason, 

activity rates were focused on for the remaining portion of marine vessel source 

characterization.  
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Figure 2-3. Number of vessel calls to the Port of Portland annually from 2010 to 2020. 

 

Evidenced by Port of Portland’s decline in vessel traffic, marine activity can vary 

greatly due to market forces and port dynamics. Emissions estimates could be quickly 

outdated if based on long term port activity assumptions. A way to ground truth what is 

in a model for activity assessment is to compare input data to vessel Automatic 

Identification System (AIS) data. AIS is sent from every ship in the world that is over 

300 gross tonnage, with location, time, speed, type, direction, length, beam, and draft 

(Brown & Aldridge, 2019). The data can be as detailed as every minute. For dispersion 

models this level of data is likely not needed. However, factors such as speed and type 

and engine usage could be useful in correcting assumptions made in models previously 

(Brown & Albridge, 2019). Data is free and publicly available for the United States at 

Marinecadastre.gov.   
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2.5 Distribution Centers 

 

 Trucking included in PATS as On-Road mobile was identified as an area that 

needed assessment. When looking at the evidence for trucking, normal operations were 

well known. Emission factors are well studied, and activity is tracked by ODOT and used 

currently by DEQ. An area within the trucking industry that is less investigated is the 

impact of distribution centers on local diesel emissions exposure by attracting more diesel 

truck activity.   

 To investigate the impact that distribution centers have above normal traffic and 

trucks, sampling of NO2 for fresh emissions was performed around three distribution 

centers of varying sizes. Ogawa© passive NO2 samplers were set out for at least 10-12 

days during summer months and analyzed in the Sustainable Atmospheres Research 

(STAR) Lab by undergraduate students Ashley Placek and Tiffany Mosher. NO2 is 

makes up a large portion of diesel emissions and is considered the second-best proxy for 

diesel emissions (__). Results showed that surrounding distribution centers even near 

highways had spots of higher NO2 concentrations compared to residential neighborhoods. 

In Figure 2, there were high levels of NO2 on the opposite side of a distribution center, 

and lower levels of NO2 on the freeway side of the Albertsons distribution center (in 

blue). Distribution centers thus are a source that could use further investigation as a 

potential source for the additional activity.   
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Figure 2-4. NO2 passive sampler results surrounding distribution centers. WinCo 

distribution in Woodburn, OR. Albertsons (bottom right), and Bridgestone (top right) in 

Portland, OR. Blue squares represent location of distribution centers. Figure 1a shows a 

trucking entrance on the right blue square. Figure 1b, shows a distribution center hub, 

identified with a circle and main traffic corridor in a line and Albertsons distribution 

center in the bottom square.  
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2.6 Construction 

Construction EFs are difficult to sample because of site liability and access. 

Therefore, a similar sampling design to rail mobile monitoring was created to assess 

relative contribution from construction. The bike stroller was used just as a stroller for 

walking around sites and inside contained the sampling instruments. On the stroller 

handle was the inlet and the cover of the stroller was placed over the front for ambiguity. 

Walking transects took place in blocks looping directly around the perimeter of the 

construction site and then an outer loop. Each sampling day these loops were repeated 

from before construction started at 7am until roughly noon when winds picked up and 

caused too much variability to reliably catch construction emissions. Sampling on 

weekends was also performed in the mornings as well to show the difference between 

weekend versus weekday rush hour impact. 

The results are shown in Figure 2-. Figure 2-a., shows weekend sampling. Figure 

2-b, shows before construction starts, and Figure 2-c, shows while active construction is 

happening at a single construction site in downtown operating diesel equipment. It is seen 

in Figure 2-c, that emissions are higher directly surrounding the site. This is not due to 

general rush hour traffic or road traffic, because the surrounding area was consistently at 

least 2 µg/m3 lower than the construction loop.  

Construction emissions were not able to be quantified with EFs in this study, 

however, it was shown that construction adds to the pollution load in a city above normal 

condition. When a site is active in highly polluting stages of construction such as the 
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earthworks phase, then this could cause hotspots of pollution within a city. As well as a 

city that is going through growth, with many construction sites, could cause a regional 

background concentration to increase. In the updated emissions inventory of Oregon non-

road diesel, construction made up 18.2 percent of total diesel emissions for the state, with 

the there being a larger proportion of construction in urban areas versus rural. This means 

that Portland’s construction emissions are hard to spatially predict but may cause a 

region-wide risk to increased diesel particles.  

Figure 2-5. Rasterized sampling 

route circling a large construction 

site in downtown Portland, OR 

(blue triangle). Weekends (left), 

before construction startup (top 

right), and during active 

construction (bottom right). 

a. 

c. 

b. 
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2.7  Summary of source sampling 

All the primary sources sampled for were assessed with locally relevant emissions 

measurements and data. Rail emissions estimates are improved through collection of a 

sample of EFs of locomotives in operation through Portland. ODOT rail crossing data 

was collected and used to create an up-to-date activity assessment, that can be compared 

to inputs for dispersion models. Marine emissions were not successfully sampled. 

However, marine AIS data is a detailed up-to-date data source for AR. The AIS data can 

be used to develop a better future understanding of marine emissions through comparison 

between previous model data inputs. Emission proxies can be created using ship type, 

and engine usage within the modelling domain.  

Each activity rate data source obtained was free, publicly available, and available 

in most other cities outside of the Portland region. For these reasons, the above methods 

can be implemented as part of a framework for assessing dispersion model accuracy in 

other regions that would like to assess dispersion models, or diesel exposure.  

Source sampling investigations provide a better understanding of activity rates, 

what certain fleet makeups are, and spatial distribution of source activity. This supplies 

knowledge to the upcoming community sampling analysis, in which major sources can be 

compared with monitored DPM proxies.  
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Chapter 3. Community Monitoring 

3.1 Community Monitoring Introduction  

Community monitoring took place to find sources of diesel pollution that were 

most impacting the health of EJ communities in Portland. It was decided that two 

neighborhoods would be monitored over different seasons to capture a range of seasonal 

variability. It would be reasonable to assess at maximum two neighborhoods based on 

resources. Each neighborhood was monitored for 4-6 months using a similar suite of 

instruments and set up as the rail pilot study. The neighborhoods were chosen using a 

scaled vulnerability and exposure map produced by Vivek Shandas and Yasuyo Makido 

of the PSU Sustainable Urban Places Research (SUPR) lab. The exposure assessment 

was based off a high spatial resolution study of NO2 in Portland using ground-based 

sampling and LUR modelling (Rao, et al., 2014), and the PATS estimate of DPM. The 

exposures were scaled with socioeconomic metrics that have been linked to individuals 

more vulnerable to exposure, including poverty, non-white races, elderly living alone, 

percent under 18 years of age, and population density.  The resulting two neighborhoods 

that had the highest vulnerability score were the Cully and Jade districts. Both 

neighborhoods have a high proportion of people of color and low-income housing. Jade 

particularly is home to a large proportion of Pacific-Islander and Asian heritage.  
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Figure 3-1. Vulnerability map for Portland OR, with scaled diesel vulnerability score at 

the census tract level.  

 

  

The Cully site was monitored first since DEQ already had an air toxics 

monitoring site set up in Cully. Adding to the suite of sampling would provide a 

robustness and attention to analysis. The Jade site was contracted with the Bureau of 

Environmental Services at the Brooklyn Pump station after Cully monitoring was 

complete.  
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3.2 Cully Monitoring 

 The Cully monitoring site is located at Helensview School (45.562234, -

122.575693) in North Portland about 780 meters from the interstate 205 ramp and 1.3 

miles or 2 km Southeast of the airport. It is located on the south side of Killingworth Ave. 

and Columbia Blvd., both of which are heavily trafficked during rush hours, and by HDD 

traffic. Parallel to Columbia Blvd. are train tracks that carry mostly Union Pacific 

locomotives. North of the airport is the Columbia River with the marine diesel activity 

coming from the port of Vancouver and pleasure craft and local tugboats. The site is 

located on a relatively flat and open field next to a community garden.  

3.2.1 Cully Sampling Methods 

 

In June of 2018, the Oregon DEQ set up a long-term monitoring station in the 

Cully neighborhood at Helensview School. The site consisted of a trailer containing a BC 

monitor and nephelometer for PM mass. Toxics were sampled every six days using high 

and low volume samplers. Metals, PAH’s, carbonyls, and VOCs were analyzed at the 

DEQ’s Hillsboro chemistry department. Previous results and findings are published 

periodically in the station report (2018 Oregon Air Toxics Monitoring Summary, 2018) . 

In mid-October of 2019, the PSU STAR lab added gas analyzers; NOx/NO2 (Teledyne 

T200), Ozone (Dasibi 1008), particle analyzers; p-PAH (EcoChem PAS2000), and 

Optical Particle sizer (OPS) (TSI 3330). Before the equipment was set up, each 

instrument was calibrated accordingly. The Nanoscan Mobility Particle Sizer (TSI 3910) 

was added to this site, but due to pump failure, it was removed early in the campaign. 
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Each instrument was setup for one minute sampling, except the ozone monitor was set up 

for 30 second sampling via analogue to digital converter. The OPS was set up for 

scheduled monitoring for the maximum memory it could hold of 10 days. Within the 10-

day window the instruments were checked, data was downloaded, and the OPS data was 

cleared and setup for monitoring again. Failure to start sampling occurred on multiple 

occasions, causing blocks of data for the OPS to be missing. Continuous sampling took 

place from June 2018 to March 2020 when PSU STAR lab equipment was removed. 

DEQ is continuing monitoring of toxics, including BC and PM measurements.  

3.2.2 Cully Results 

 

 General descriptive statistics including mean, range, and median are shown for 

Cully at one hour averaging intervals in Table 3. Source apportionment of BC to 

proportion of fossil fuel associated BC (ffmass) and biomass wood burning BC (bbmass) 

masses is explained in Appendix A. The BC and specifically the ffmass are 7 and 5 times 

higher respectively than the Oregon ambient benchmark concentration (ABC) for DPM. 

NOx and NO2 are still within attainment based on the National Ambient Air Quality 

Standards, but the maximum seen for all pollutants agree that there are events of high 

concentrations that could cause acute exposure health risks (Functions et al., 1998). Such 

as the maximum of ffmass and BC being 4.7 µg/m3, which is 47 times the cancer 

benchmark risk. Most of the wind during this time came from the East and South 

Directions as seen in Figure 3-2, from the direction of I-205 and the surrounding 

neighborhood, implying that on-road traffic is a major source for this site.  
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Table 3. Summary statistics for Cully site measurements 

 
WD WS BC ffmass bbmass NO2 NOx O3 

Units DEGREES MPH µG/M3 µG/M3 µG/M3 PPB PPB PPB 

Min 0.5 0.6 0.0 0.0 0.0 0.4 0.9 0.1 

Median 137.8 5.0 0.4 0.3 0.1 10.0 13.1 16.7 

Mean 161.3 5.7 0.7 0.5 0.3 10.7 18.0 16.9 

Max 359.4 19.2 6.7 4.7 2.5 41.7 153.6 43.4 
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Despite the wind mostly coming from the East and Southeast, when the wind does 

come from the North and West there are higher concentrations of pollutants seen in 

Figure 3-3. When the winds shift in the summer months pollutants would be blowing 

high concentrations into the surrounding neighborhood more often. The ffmass in Figure 

3-3 lines up in better agreement with NOx 

and NO2 Polar Plots than the bbmass in 

Figure 3-3. The agreement of diesel proxy 

measurements over bbmass shows that 

there is traffic activity evidenced in Cully.  

 Fossil fuel mass polar plot can be 

compared with the Oregon DEQ Facility 

Profiler Lite map (ODEQ, 2020) of air 

quality permits. By looking at all the 

sources together compared to where high 

concentration loads are coming from, 

source characterization is more obtainable. In Figure 3-4 the, the ffmass polar plot from 

Figure 3-3is laid over the map of permitted facilities. It is seen that there is some 

directional correlation between northern air masses and the freeway. There are less 

distinct hot spots of ffmass concentration as seen in NOx and NO2 in Figure 3-3. There 

are many permitted facilities in the area for NOx, and these hot spots in the polar plot 

suggest point sources. In Figure 3-4 there is a lack of hotspots, and this suggests a non-

point source or more specifically a mobile source that is spatially dispersed.   

 
 

Figure 3-2. Windrose of Cully Monitoring 

during diesel pollution sampling. 
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Figure 3-3.  Polar Plots of main pollutants at the Cully monitoring site. 
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In Figure 3-5 you can see that bbmass is lower than ffmass through all metrics. There 

are times at night when fossil fuel activity is down and wood burning is up that causes the 

two to be nearly equal, but bbmass does not make up the major source of exposure. In 

Figure 8 the difference between ffmass and bbmass is greater in the summer but less in 

the winter. However, in total ffmass is much higher than bbmass contribution. Ffmass 

reduces on the weekends, while bbmass does not change. The above means that traffic 

related activities are likely the culprit of health risks to the community.  

  

Figure 3-4. ffmass over air quality permitted facilities (squares) around the Cully 

monitoring site. 
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 Seasonally, Figure 3-5 and Figure 3-6 it appears there is less pollution than in 

summer months. However, this is more likely due to higher atmospheric boundary layer 

in the summer causing more mixing and dilution of pollutants. Therefore, activity and 

sources likely remain constant, but the exposure is slightly less due to dilution.  

 

 

 

 

 

 

 

 

  

Figure 3-5. ffmass and bbmass at Cully compared by hour and day of the week 

(top), hour (bottom left), month (bottom middle), and day of week (bottom right) 
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3.2.3 PAH Analysis at Cully  

 PAHs are known to be carcinogenic and is a major part of the danger of diesel 

emissions exposure  (Lewtas, 2007). Lewtas discusses how PAHs are composed of 

hundreds of different semi-volatile compounds that have multiple naphthalene rings. The 

instrument EcoChem PAS2000 used for measuring PAHs for this study does real-time 

photo-electric ionization of particles (EcoChem Analytics, 2000). Particles alone should 

not have a charge, but the PAH attached to the particle will produce an electron if excited 

by a photon. Thus, the measurements from this instrument are only from particle bound 

PAHs. This is a different measurement technology compared to more traditional ways of 

  

Figure 3-6. ffmass and bbmass compared by month and by hour averages. 
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collecting PAH data through full speciation on a polyurethane foam (PUF) (Ravindra, 

Sokhi, & Van Grieken, 2008).   

Data of speciated PAHs and a real-time PAH monitor were compared. First using 

the speciated PAHs from DEQ, diagnostic ratios were explored. Diagnostic ratios are 

ratios of a pair of PAHs in this case plotted against a ratio pair of another set of PAHs. 

PAHs composition is dependent of engine and fuel parameters, and can be different 

sources will emit PAHs with different characteristics  (de Souza & Corrêa, 2016). The 

placement of points on the graph shows by what source that sample/day was dominated. 

Figure 3-7 shows that the results from Cully all fall within the biomass combustion 

section. Based on Ravindra, et. al. (2008), measurements of PAHs using PUF samplers 

are often hard to perform correctly, and much of the common methods in use lose the 

more volatile compounds during sampling. This could be seen in Figure 3-7 if there are 

Figure 3-7. PAH diagnostic ratio from DEQ PUF sampler. 
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critical PAHs lost from the sample in warmer months because diesel is dominated by 

lower molecular weight PAHs.  

 

  

Next, the total PAHs from the PUF samplers and the average daily p-PAH were 

compared in Figure 3-8. There is some agreement with an R- squared values of 0.64 but 

not strong between the two and a larger sample size is needed to truly compare. Since 

these could only be compared on the one in six days that the PUF sampler was run, there 

was a small sample size during the Cully monitoring. The p-PAH monitor only detects 

PAHs with three or more rings, making Naphthalene undetected by this monitor. 

Naphthalene was taken out of the total for the PUF sampler results and compared to the 

p-PAH but the R2 value reduced. More samples would show the variability across 

different scenarios.  

Figure 3-8. Comparison between p-PAH monitor and PUF 1-in-6 day sampler. 
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3.3 Jade Monitoring 

3.3.1 Sampling Methods 

         The Jade district site (45.500758, -122.571661) is located west of Interstate 205, 

South of Division Street and North of Powell Boulevard within a residential 

neighborhood. Specifically, the site is located at a wastewater pump station with a pond 

and trees on the east and to the west is a gravel road. This road could cause spikes of high 

counts for coarse particle dust. Traffic from arterials and the interstate here are the main 

obvious sources impacting the sites. Topologically, Jade is located between two Buttes, 

which could cause wind shadows. Kelly Butte is located East by ~ 1000 m, and Mount 

Tabor is Northwest by 1.13 miles. 

In conjunction with Bureau of Environmental Services, DEQ was able to place a 

trailer on the Brooklyn pump station site and secure power from the pump station. The 

trailer had an AC unit, a computer, a met tower for wind speed and direction, and an 

Aethalometer measuring BC (Magee Scientific AE33) with a PM2.5 cyclone impactor all 

provided and maintained by DEQ. The NOx, OPS, O3 and SO2 monitors were brought 

from Cully to the lab for maintenance checks and calibrations. In addition to the above 

monitors to replace PM mass estimation, a TSI DustTrak was added to the sampling 

suite. The Jade site was fully set up on March 23rd, 2020. This was a day after the 

Portland stay-at home order due to COVID-19 had been issued. Monitoring at Jade 

continued until the Wildfires and smoke events that started on September 6th, 2020.  
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 Site visits were similar in manner to Cully. Most of the instruments were 

connected to the DEQ data logging system Envidas. Instruments that were not included 

the DustTrak and OPS, which needed periodic scheduling, zeroing, and data downloading 

for memory storage. Thus, site visits were between once to every two weeks at minimum. 

The Jade site did not include p-PAH so that the instrument could remain longer at Cully 

for future comparisons of PAH monitoring methods. Jade did not include any filter based 

or toxics measurements.  

3.3.2 Jade Monitoring Results 

 Summary statistics are shown in Table 4. The mean of BC and ffmass are 0.3 and 

0.2 µg/m3, respectively. This is double the DPM ambient benchmark set by Oregon. NOx 

and NO2 are 5 and 6 ppb, respectively. These values are not particularly high, especially 

compared to Cully, and other monitoring sites. There are high maximum values but for 

BC these are not as high as seen in Cully as well. The median and mean values of 

pollutants are relatively close meaning that the concentrations during sampling remained 

somewhat stable, despite the presence of outliers.  

 

 

 

 



34 

 

 

Table 4. Descriptive Statistics for Jade site monitoring 

 

WD WS BC ffmass     bbmass NO2 NOx O3 

Units degrees mph µg/m3 µg/m3 µg/m3 ppb ppb ppb 

min  0 0.1 0 0 0 0 0.9 0.5 

median  191 0.9 0.24 0.17 0.06 4.1 4.6 21.6 

mean  167 1 0.34 0.23 0.11 5.1 6 22.4 

max 360 4.2 4.35 2.81 3.27 24.1 64.87 92.8 

 

 

 

 

Figure 3-9. Jade site wind rose for sampling duration. 
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Figure 3-10. Polar plots of main pollutants at the Jade monitoring site. 
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 The ffmass polar Plot from Figure 3-10 of ffmass is shown in Figure 3-11 over a 

map of the Jade district. The hotspots for higher pollution concentration appear over the 

highway and directly over the site itself. The higher contribution close in and around the 

site is indicative of lower wind speeds. Generally, with polar plots alone it would be hard 

to definitively point to a source because the plot is wind speed and direction, and there is 

no way of determining distance. However, it is reasonable to assume that there are not 

major diesel sources on Kelly Butte, the butte causes a wind shadow which would slow 

the transport of pollutants from behind. The highway therefore is claimed to be a not 

surprising source for fossil fuel BC.  The only permitted sources within figure _ are gas 

stations and this would not be a major contributor over highway traffic emissions.  

 

 

 

 

 

 

 

 

 

 
 

Figure 3-11. ffmass overlaying a map of air quality permitted facilities in Jade. 
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z   

Figure 3-12 shows bbmass and ffmass as they vary through hour of the day for all 

days (top) then hour of the day averaged for all seven days (bottom left), average by 

month (bottom- middle), and by average for each weekday (bottom- right). Uncertainty is 

shown by the width of the bars and lines. There is relatively high certainty with these two 

variables for each time component, and ffmass is higher in each way. Expected common 

patterns are observed in each time variable. In the hourly averaged plot (bottom-left) 

ffmass shows evidence of impact of both morning and evening rush hours. In the same 

plot bbmass shows a general diurnal pattern that lacks the morning rush hour peak. The 

  

 

Figure 3-12. ffmass and bbmass at Jade compared by hour and day of the week 

(top), hour (bottom left), month (bottom middle), and day of week (bottom right) 
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particles the linger from the day stick around in the evening, and potentially more from 

wood fired stoves due to stagnation, and when atmospheric boundary layer raises, the 

bbmass lowers. Wood stoves are evidenced in the monthly averaged plot (bottom-middle) 

because of the large drop in the warmer months. The top plot is useful to check the hourly 

averaged plot to make sure there are not abnormal patterns or odd days. On Saturday 

night there is a higher amount of bbmass, which could also be attributed to wood stoves 

or bonfires. 

 

Figure 3-12, shows how the ffmass and BC in general is less predictable 

compared to other sites. It was investigated as to whether this was an effect of COVID-19 

shutdown. Traffic volume via Portal (Portal, 2021)  from Powell to I-205 on ramp near 

 

Figure 3-13. Traffic volume from on ramp from Powell to I-205 from 2019 to 

the end of monitoring at Jade. 
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the Jade site was pulled from January 1st 209 to August 7th, 2020, when reliable data from 

Jade ended. The difference of average traffic volume by hour from before March 22nd, 

2020, to the end of sampling compared to the year prior is shown in Figure 3-13. There is 

a small decline in traffic volume, however, not enough to substantially explain the 

difference in concentration and variability between monitoring sites. The Jade monitoring 

site is nestled in a residential community with two buttes surrounding it. The topography 

likely adds variability to the wind patterns in the community, making it harder to detect 

common patterns. Also, concentrations are likely less than in Cully due to the lack of 

many sources and industrial activity. Even though ffmass is not expected from industrial 

plants and manufacturing, the draw of diesel trucks, and trains in the area do contribute to 

this. By comparing Jade and Cully’s ffmass, Cully is likely more impacted by diesel PM 

compared to Jade. Jade is only connected to on-road traffic, and this is not distinguishable 

from diesel specifically. However, since Jade is only traffic and is lower than Cully, it 

can be considered that the addition of exposure in Cully is due to diesel emissions.  

3.4 SE Lafayette Comparison 

 

 DEQ monitors pollutants at an inner SE Portland location that is representative of 

urban residential background concentration pollution. This site is on SE Lafayette Street, 

a block south of Powell Blvd. By comparing urban background concentrations to the 

Cully and Jade site, excess diesel pollution burden can be examined. In Table 5 the 

average concentrations of BC, ffmass and bbmass from an Aethalometer (Magee 

Scientific, AE33) are shown. BC was elevated in comparison to Jade and less than Cully. 
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The ffmass and bbmass were 0.35 µg/m3 and 0.28 µg/m3, respectively. The percent 

contribution from both BC measurements are closer compared to Cully and Jade. The 

hourly graph of ffmass and bbmass in  Figure 3-14 show there is a morning rush hour 

peak for ffmass and bbmass lacks the same rush hour pattern. The difference between 

biomass burning (wood smoke) widens during the day when the atmospheric boundary 

layer rises, then narrows as the evening hours approach with presumably residential 

wood-smoke rises with cooler nighttime temperature and fireplace usage. The residential 

wood-smoke is also seen in the right graph in Figure 3-14, when the bbmass exceeds or 

matches ffmass, while the difference is more pronounced in the warmer months.  

 

Table 5. Aethalometer averages for SE Lafayette Monitoring site. 

measurement Average µg/m3 

BC 0.64 

ffmass 0.35 

bbmass 0.28 

 

 

Figure 3-14. SEL ffmass and bbmass by hour (left), and by month (right). 
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SEL had a pollution load of total BC that is between Cully and Jade sites. There 

was a larger proportion on bbmass meaning that woodsmoke in this site and has a more 

dominant impact than the other sites identified with diesel vulnerability. Even though 

bbmass had a higher relative contribution at SEL, ffmass still outweighed total 

contribution of BC with a higher overall average. This shows that even in residential 

background stations, that traffic sources dominate BC exposure.  
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Chapter 4. Model validations  

 The output for the PATS model has the nearest two receptors concentration at 14 

times the Oregon DPM ambient benchmark concentration of 1.4 µg/m3 at Cully. At the 

Jade site, the concentration is 0.4 µg/m3 for the PATS model. However, measured 

concentrations of BC were 0.5 and 0.2 µg/m3 at Cully and Jade, respectively. That is a 

difference of 0.9 and 0.2 at Cully and Jade respectively of the PATs model compared to 

ground-based monitoring. Further, the source category that were most influential the 

receptors in the PATS model receptors was construction making up 0.37 µg/m3 at Cully 

and 0.2 µg/m3 at Jade. This proportion of construction that is included in PATS 

subtracted from the total makes the values much closer to the ground-based quantities.  

 The Community Monitoring and Analysis System (CMAS) C-Port was created by 

the University of North Carolina Chapel Hill and supported by the United States EPA. 

CMAS is an online tool that does quick easily performed dispersion models for research 

grade analysis of fossil fuel emissions (Hill, 2016). It includes much of the same inputs as 

PATS with traffic volume, rail, marine, and point sources.  After running a model for 

wintertime average conditions (Cully sampling season), with neutral atmospheric 

conditions, and not modifying any of the default inputs, the modelled concentrations for 
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PATS, CMAS, and observed are shown in 

 

Figure 4-1. At Cully, the ffmass concentration was 0.5 µg/m3, which is a 1.0µg/m3 less 

than the PATS predicted. The C-PORT concentration for this area was roughly 0.3 µg/m3 

lower than the observed concentrations. For warm weather and neutral conditions at the 

Jade site the CMAS modelled concentration was 0.18 µg/m3 and the measured ffmass 

was 0.2 µg/m3, the PATS model predicted this area to have 0.42 µg/m3. The PATS was 

much higher than the CMAS and observed concentrations. However, Jade was sampled 

only during the peak of the 2020 Pandemic shutdown and thus should have somewhat 

lower concentrations to normal.  

 

Table 6. Comparison of ground-based measurements, PATS, and CMAS C-Port models. 

 Observed (ffmass 

µg/m3) 

PATS (DPM 

µg/m3) 

C-PORT (EC 

PM2.5 µg/m3) 

PATS -

construction 

Cully  0.5 1.5 0.22 0.98 

Jade  0.2 0.42 0.18 0.23 
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Figure 4-1. Comparison of measurements PATS and C-PORT modelled DPM 

 

 The main source affecting both the Cully and the Jade sites in the PATS model is 

the expected construction emissions.  The contribution from construction sector were 

expected to be 0.4 and 0.2 µg/m3 for Cully and Jade, respectively. If these concentrations 

were deducted, then the concentrations match more closely to observed values. Jade’s 

concentration is less than the expected post-construction deduction. C-PORT expects that 

99 percent of Jade’s emission are from traffic, so this could be due to the slight decline 

from traffic. However, the modelled and observed results are very close and it performed 

well at estimating exposure. Most sources are relatively the same between PATS and C-

PORT, except construction is not included in C-PORT. It should be noted that 

construction was not paused or reduced due to COVID-19 as this was a business sector 

that could remain working outside.  
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Chapter 5. Fuzzy C-means Cluster Analysis 

5.1  Cluster Rationale 

Source characterization was attempted at each neighborhood that would lead to a 

more detailed understanding of community exposure. The traditional method of PMF 

analysis requires uncertainty values for each sample (US-EPA, 2014) and is designed for 

long-term sampling. Other methods could have been used, but many of such methods rely 

on back trajectories in conjunction with emission inventories (Salimi et al., 2014). Back 

trajectories using Hysplit were explored, however, for this application it was found that 

the minimum height Hysplit uses would be too high for an inter-urban and high-

resolution analysis sought for in this study. Hysplit is meant more for a regional or city 

wide at best resolution. Therefore, there is not much improvement of knowledge over 

general meteorological measurements included in the analysis already.  

Using the in-situ measurements, a greater level of detail is obtained through 

higher temporal resolution. Through the greater level of detail, it was expected that 

patterns would arise that would differentiate diesel from gasoline sources. Cluster 

analysis was chosen as the optimal choice for the task. There are few studies that use 

cluster analysis in air pollution apportionment,(Thrane & Gunderson, 1986) (Thrane, 

1987)(Salimi et al., 2014), and none to date for diesel emissions, or using the same 

pollutants. Testing the ability of cluster analysis for high time-resolution sampling 

furthers our understanding of potential for low-cost source apportionment, and limitations 

of cluster analysis.  
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 Cluster analysis is simply a multivariate analysis technique like Principal 

Components Analysis by using a distance matrix, and by finding the closest points to 

each other. Further, clusters are found by minimizing the distance between points. Where 

the center of each cluster is, is a characteristic or pattern that is descriptive of all the 

points that belong to that cluster. Since air masses are not from one source only, a fuzzy 

cluster analysis was used instead to capture the mixture of contribution more accurately. 

In the popular k-means clustering and other agglomerative clustering techniques, a 

sample or data point can only belong to a single cluster. Fuzzifying a cluster analysis 

shows each data points strength of relationship to the cluster center from zero to one. 

Complete membership or absolute center of the cluster would be one and not belonging at 

all to the cluster would be zero (Dalmaijer, Nord, & Astle, 2020). By using a fuzzy 

analysis instead of a regular k-means, each data sample of air mass can have a score for 

how much it relates to each cluster pattern. Then those scores can be shown through other 

variables such as wind patterns, time variations or how each cluster correlates to 

individual variables.  

         Hierarchical techniques were not used because atmospheric sampling dynamics 

make for fast switching sources, and rapid changes in the data. Therefore, hierarchical 

clustering would not perform well, and the other option was agglomerative clustering. 

This technique places highly dimensional data into a distance matrix. Then, based on this 

distance matrix, points close to each other are placed in a group. 

         The measure of distance chosen was the Pearson Correlation (Kassambara & 

Mundt, 2019). This measure finds the most linearly similar points. Other potential and 



47 

 

popularly used distance measures are the Euclidean, Spearman, Manhattan, and more. 

Pearson was chosen as the best fit for this analysis based on the data not fitting 

assumptions of the Euclidean distance for normality.. 

         The analysis starts with selecting the variables of interest, that would be useful in 

finding diesel sources. Thus, variables associated with fossil fuel combustion were used 

as analysis inputs. Variables used in each mode are shown in the correlation result plot in 

figure Figure 5-6 for Cully and Figure 5-12 for Jade. The measurements included in the 

analysis were bbmass, ffmass, ozone, SO2 and PAH when available, Particle size 

distribution was measured with an Optical Particle Sizer (OPS), which measures particle 

sizes 0.3-10 µm distributed into 17 bins. 

5.2 Cully Clustering Results 

Cully clustering used OPS size bins 1-3 (0.3 -0.5 µm), ffmass, bbmass, SO2, 

Ozone, PAH, NO2 and NOx. The Calinski method in Figure 5-1shows that even 

though two is marked in the red dot as the most optimal, but this is the default that 

is shown when no real clustering is found. Therefore, four clusters were chosen 

based off the orange (next best).  



48 

 

A reasonable cluster structure was found, based off silhouette width plot in Figure 

5-3 shows the average width to be 0.57. The sample sizes are also shown in Figure 5-3, 

and there are very unequal sample sizes between groups, with cluster three being the 

largest. The resulting cluster plot is shown in Figure 5-2 where the main two dimensions 

of variability are shown on the axes. It can also be observed in Figure 5-2 that there are 

not major outliers in the data but little separation between clusters.  

Figure 5-1. Sample partitioning among various groups (left), and best number of 

partitions using Calinski criterion (right) for Cully. 
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Figure 5-3. Silhouette width plot for 4 partitions for Cully 

Figure 5-2. Cluster plot of Cully fuzzy clustering. 
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Cluster one has a distinct hot spot in Figure 5-4 to the east. It lacks a time-of-day 

variation in Figure 5-5. On Monday and Sunday, it does have higher values, this could be 

due to a large contribution or extreme value leading this value.  

 Cluster 2 has the smallest sample size, and a weak silhouette width of 0.29. In 

Figure 5-4 the cluster seems to appear from North easterly winds and low mixing states. 

In Figure 5-5 there is no large variations in time of day, or day of week. Cluster 2 does 

correlate well with bbmass, PAH, ffmass, BC, and NOx. It appears that it correlates the 

best with BC with 80 Pearson correlation coefficients, this would explain why its 

correlated with both bbmass and ffmass.  

 Cluster 3 has the most samples and highest silhouette width of 0.76 and thus has a 

strong structure. In Figure 5-4, cluster 3 comes from well mixed air seen by the low 

membership in the bullseye of the chart, meaning that the air is moving when cluster 

three is present. When it is present it is coming from Southeast winds and North westerly 

winds roughly between five and ten mph. These directions are potentially around 

Killingsworth and I-205. Cluster 3 is not highly correlated with any particular pollutant as 

the other clusters are. However, it is most correlated with NO2, which is indicative of 

fresh combustion emissions. In Figure 5-5 this cluster is elevated during working hours, 

and with the NO2 correlation, and potential traffic directionality, it could be identified as 

a traffic source.  

 Cluster 4 also has a very low silhouette width of 0.28, and a medium sample size. 

In Figure 5-4 there is a striking directionality with this source. It has a strong presence 
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with winds from the Southwest. In Figure 5-6 it is also strongly correlated with Ozone 

and somewhat wind direction. For these reasons it would be hypothesized that cluster 

four is a solar radiation and Ozone dominated cluster. In the average by hour shows that 

there is a morning peak of cluster four. This peak could be due to the reduction of O3 in 

the ambient atmosphere due to the reaction with NO and NO2, and thus the reduction 

during morning rush hour.  

 In conclusion cluster 3 is the strongest cluster and can be potentially interpreted as 

fresh traffic emissions. To confirm this there a correlation to traffic volume would be 

ideal. Cluster 1 is the next best cluster and could potentially just be represented by 

particle count. Cluster 2 and 4 are the weakest and should be interpreted with limited 

Figure 5-4. Polar plot of four cluster fuzzy memberships in Cully. 
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confidence. Overall, there was a reasonable structure in the clustering that was influenced 

by the strength of Cluster 3.  

 

 

 

 

 

Figure 5-5. Cully’s Time Variation plot of fuzzy cluster memberships equaling 1. Hour 

and day of week (top), average hour contribution (bottom-left), month (bottom-

middle), day-of-week (bottom-right) 
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Figure 5-6. Cully’s correlation plot based on Pearson correlation coefficient 

between fuzzy cluster memberships and model variables. 
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5.3  Cluster Results for Jade  

 Jade clustering was best performed with variables NOx, NO2, bbmass, ffmass, and 

particle size bins 1-3 (0.3 – 0.5 µm) the same as Cully. The data was also averaged to 15 

minutes to match the Cully analysis and reduce run times.  The Calinski criterion showed 

2 as optimal but as described in the Cully clustering, the next best number was chosen 

again.  

 

 

 Figure 5-7. sample partitioning among various groups (left), and best number of 

partitions using Calinski criterion (right) for Jade. 
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Figure 5-9. Silhouette width plot for 4 partitions for Jade. 

 

Figure 5-8. Cluster plot of Jade fuzzy clustering. 
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 The average Silhouette width for Jade is 0.53, which, is slightly less than Cully 

and barely making it into the category of having a reasonable structure. The sample sizes 

per cluster are very different with cluster one having the largest group by far and the 

strongest width of 0.77. Clusters 2, 3 and 4 have silhouette widths of 0.28, -0.18, and 

0.33, respectively. There does not appear to be strong outliers in Figure 5-8, but there is 

strong overlap between cluster 3 and cluster 1. The overlap is the reason for the negative 

silhouette score for cluster 3.  

 In Figure 5-8 Cluster 1 is seen to be very squished together at the left side of the 

cluster plot, while the other clusters spread off from there. In Figure 5-10 cluster 1 comes 

from the south and from the northwest and a smaller hotspot to the East. There is little 

variation in time patterns seen in Figure 5-11, however, this as to be expected has the 

most contribution of membership seen in all the time variations. This cluster is not 

correlated with other variables in Figure 5-12. Cluster 1 could be a background variable 

that just describes where the general wind and there are no extreme pollutants standing 

out.  

Cluster 2 in yellow in Figure 5-9 and 26 is the next largest sample size. Cluster 2 

is shown in Figure 5-8 to be present during low mixing and stagnation, with small 

amounts coming from 45 and roughly 120 degrees. This cluster is correlated most with 

ffmass NOx and NO2, while being negatively correlated with Ozone. If this were a diesel 

or traffic source it would be expected that there would be a general traffic pattern but 
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there is only a morning peak at 6 am and then a complete drop for the afternoon hours 

that would be expected to be higher.  

Cluster 3 in grey for Figure 5-9 and 26 has a negative silhouette score and thus the 

negative samples could have been assigned to the wrong cluster. With this in mind, there 

are still interesting patterns that could be looked at. Starting with Figure 5-12 this cluster 

is correlated with Ozone and wind speed. This is similar to what was seen in Cully except 

for with wind direction. In Figure 5-10 there is a hot spot in 5 mph NE of the site that 

could mean when winds are high, its able to transport Ozone. As well as in Figure 5-11 

there is a peak after noon. All the post analysis graphs for cluster 3 point towards a solar 

radiation and Ozone pattern.  

Cluster 4 has the smallest sample size and contains the most spread-out points in 

Figure 5-8. Due to the small sample size Figure 5-10 and Figure 5-11 have little 

contribution or variability. In Figure 5-11 there is the faintest rise in concentration during 

nighttime hours, and a dip from March to April. Figure 5-12 shows cluster 4 is correlated 

with bbmass and the particle size bins. All the observations indicate that cluster 4 could 

be wood smoke. As the time frame for Jade took place during spring and summer wood 

smoke from household fireplaces likely reduced and accounts for the level of 

membership for this cluster. Comparing this cluster to a wintertime analysis could be 

useful to see the impact wood smoke has on the community.  

   In conclusion, cluster 1 appears to be a background concentration. Cluster 2 

could be a traffic source, but without more evidence. Cluster 3 is likely based on solar 
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radiation and ozone but is weak. The overlap between solar radiation and ozone to a 

background source however does make sense, as these two in theory have regional and 

dispersed natures, unlike nearby combustion sources. Lastly cluster 4 is likely wood 

smoke.  

 

Figure 5-10. Polar plot of four cluster fuzzy memberships in Jade. 

Figure 5-11. Jade's time Variation plot of fuzzy cluster memberships equaling 

1. Hour and day of week (top), average hour contribution (bottom-left), month 

(bottom-middle), day-of-week (bottom-right) 
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Figure 5-12. Jade's correlation plot based on Pearson correlation coefficient 

between fuzzy cluster memberships and model variables. 
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5.6  Summary of Fuzzy Clustering  

 

 On average reasonable structures were found in the clusters for Cully and Jade, 

with some clusters having more strength than others. The ability to interpret clusters 

however is limited. The OPS measured at a range that has little overlap in diesel and 

gasoline particle size mode ranges. If used, the TSI SMPS would have been able to pick 

up the differences between gasoline and diesel (Rivas et al., 2020).  

 Cluster analysis is an exploratory tool. One should be wary of performing a full 

source apportionment with cluster analysis.  However, patterns could arise from stronger 

clusters and then the analyzer could look through clusters for patterns such as was shown 

above. Fuzzy c-means analysis is a promising tool for future works that aim to look at 

high time-resolution multivariate data. 

 Other ways in which this analysis could be improved in the future would be to 

ensure more complete data, to create a larger sample size. Imputations were an option but 

not performed based on the idea that the missingness differed across variables. If 

instruments were not recording and data was imputed during that time frame and there 

was a spike in concentration for related pollutants, the strength of the analysis would be 

reduced.  
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Chapter 6. Conclusion 

6.1 Summary of Project 

Field investigations were performed for each of the four sources with the highest 

uncertainty from the PATS model, namely rail, marine, distribution centers and 

construction.  

(1) Rail: Estimations of DPM emissions from rail were improved by obtaining locally 

relevant emission factors and activity assessments.  

(2) Marine vessel activity was improved with a high-resolution activity data.  

(3) Distribution centers were identified as a viable source for modelling and proves to 

be a section of urban emissions for further research.  

(4) Construction has been shown through community monitoring and direct 

measurements that it does in fact cause local impacts, but for chronic exposure 

modelling methods have a need improved inputs.   

Modeled ambient concentrations of DPM in the PATS model were considerably higher 

than at each of the ground-based monitoring sites. The main contribution of DPM for 

each site was construction, and with this source deducted from the totals, the ambient 

concentrations matched more reasonably to observation, although not perfectly. 

Therefore, we concluded that construction may the cause of the most model error for the 

following reasons. Construction emissions contributions were much higher than all the 

other sources. It is not feasible for there to be extreme improvement upon the other 
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sources because the other sources (i.e., traffic, rail, marine, NRMs) have better 

inventories, emission factors, and activity data representations. As well as the differences 

seen in the normal traffic contribution and minimum in COVID-19 are not large enough 

to conclude the disparity between modelled versus observed traffic emissions. 

Considering that monitoring has taken place before and during the pandemic shutdown 

shows that the model does not perform well enough to predict DPM for a variety of 

scenarios. 

Potential reasons that the expected emissions are so much higher is that models 

assume engines to be running 24 hours a day, as well as the same emissions all 

throughout the construction site lifetime. In real site operations there are more limited 

working hours, and emissions largely occur during the earthworks phase (Heidari & 

Marr, 2015). Despite construction not showing to be a major contributing factor based on 

long-term sampling, the source is not negligible to adverse health effects. Construction 

near residents has been shown to cause elevated concentrations as seen in figure 3 from 

the construction sampling performed. For short term acute exposure, we need to be weary 

of emissions. As well as for a global standpoint of emissions for climate warming 

impacts (Kassambara & Mundt, 2019).  

 Ground-based monitoring has been able to prove useful in finding sources with 

disparities in models. Using locally relevant data inputs and using measurement proxies 

is a useful way of ground-truthing models for DPM. For future modeling, these methods 

can be used individually to assess each source for potential improvements. Such checks 

include emission factors, and activity rate assessments, and ground-based monitoring to 
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compare rough values of ffmass and total DPM model results. Models and especially 

predictive models need to be compared to measured concentrations, continuing work in 

comparisons and thus model improvements will continue to grow our understanding of 

urban air pollution exposure and highlight gaps in knowledge.  

It is recommended for future dispersion modelers to create clear documentation of 

data inputs, to ensure future comparisons. Clearer data inputs could also allow for more 

citizen participation in the future. When a community knows what is going into a model, 

there is more opportunity for involvement and citizen data collection. Which when 

communities are involved with creating and solving problems, sustainable and long-

lasting solutions are more likely to be reached, that benefit the community, and ideally 

avoiding unintentional consequences (Wolch, Byrne, & Newell, 2014).  
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6.2 Use as a Framework  

The above methods can be used as a framework for assessing diesel emissions for 

other regions and cities in the United States or if similar resources are available. 

Collecting data around hard to measure sources can show relative impact from a source in 

an area, such as how construction was monitored. Collecting a sample of emission factors 

from a subset of fleet can help to assess whether input emission factors are way off from 

the fleet that is in-use in a region. As well as using high resolution AIS data for tracking 

ship movements is a great tool, especially for port cities. Then to ground-truth models 

and give EJ communities an extra layer of knowledge, monitoring using in-situ 

measurements that are descriptive of diesel emissions. Each of these data sources are free 

an available to the public, making this framework accessible.  

 

Figure 6.2-1. Flow chart of proposed framework steps 
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Figure 6.2-1 shows the framework as a flow chart. First, atmospheric dispersion 

modelers should assess what sources included the most uncertainty with the largest 

potential for exposure based on previous models. Then, data collection through sources 

identified in this study should be collected for AR and targeted source emissions testing if 

possible. Then, monitor ffmass and bbmass in multiple communities that are suspected to 

have a disproportionate vulnerability to diesel exposure. Compare patterns in each 

monitoring site, expected sources and other easy to run models.  

The above framework for assessing diesel emissions is useful to speed up the 

process of research and study design development, thus making diesel model ground-

truthing more accessible and efficient. This is an iterative process, and results will feed 

into future models that will need similar validations.  
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Appendix A.  Instrumentation 

 

Portable Measurement System (PMS)  

Emissions measurements were made using a portable measurement system (PMS) 

designed by the PSU STAR lab. The system consisted of a bike carrier/stroller (Burley 

D’lite) with a wood board inside as a base on top of foam cushioning. Screw hooks were 

used around the instruments to secure with bungee cords and extra foam was placed 

between instruments if needed for shock absorption. Particulate analyzers used non-static 

tubing. The BC (Magee Scientific AE33) and the particle bound PAH (p-PAH) 

(EcoChem PAS2000) analyzers were connected using a T fitting from an omni-

directional inlet with a PM2.5 impactor. The Li-COR 850 CO2 was the only gas analyzed 

and used Teflon tubing and a particle filter for the inlet. The system was powered by a 

Yeti1400 Goalzero Lithium battery. A summary of all the instruments used in the PMS is 

outlined in table 1.  
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Table 7. Instrumentation setup for Portable Pollution Monitoring 

INSTRUMENT MEASUREMENT UNITS TIME BASE 

MAGEE SCIENTIFIC 

AE33 

BLACK CARBON ng/m3  1 SEC 

LI-COR 850 CO2 µ MOL/MOLE (PPM) 1 SEC 

ECOCHEM PAS2000 P-PAH ng/m3 6 SEC 

TSI DUSTTRAK 8533 PM 2.5 & PM10   µg 1 SEC 

MICROAETH MA300 BLACK CARBON 

LAT & LONG 

ng/m3 1 SEC 

 

 

 

Aethalometer BC Source Apportionment 

  

 For the community monitoring, additional measurements from the aethalometer 

were used. The instrument has seven wavelengths that beam onto a filter paper loaded 

with the sample air and then a separate spot with clean air. Wavelengths measure 

between 370 and 950 nm. The total BC is considered the light absorption at 880 nm. 

Aside from BC there is also brown carbon, which, is from biomass burning instead of 

fossil fuel sources which is absorbed best at 950 nm (Sandradewi et at., 2008, Magee 

Scientific Inc, 2016). Brown carbon is absorbed at the 450 nm while fossil fuel is 

absorbed at 950 nm.  

The aethalometer uses the Sandradewi et al., (2008) method, with the below 

equation from the AE33 manual (Magee Scientific Inc, 2016) to calculate internally 

biomass burning percent of total BC.  The portion of BC that is not BB is fossil fuel 

percent. If both proportions are multiplied by the total BC concentration, then a mass 



72 

 

concentration is obtained for fossil fuel mass (ffmass) and biomass burning mass 

(bbmass).  

 

 

 

Figure A-1. Magee Scientific AE33 internal calculation of ffmass and bbmass. 
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Appendix B. Fuzzy C-Means Methods 

 

Cluster validation methods 

         The most traditional way of finding an optimal number of clusters is with the 

Calinski method, but this only works if there are equal sample sizes within the cluster 

(Kassambara & Mundt, 2019). Therefore, the next best option is the simple structure 

index (SSI). However, through trial and error, manually finding the best model outputs 

agreed with the Calinski method. 

 Results are assessed based off the tightness of their clusters and against 

maximizing the distance between clusters (P. J. Rousseeuw, 1987). The silhouette width 

is most often used as a metric for assess cluster strength for individual clusters and total 

average. The silhouette width ranges from -1 to 1. It is considered to have a strong 

structure if greater than 0.71, reasonable if between 0.51 and 0.7, weak between 0.26 and 

0.5, and no substantial structure less than 0.25 (P. J. Rousseeuw, 1987).  

 

Cluster Analysis Workflow 

 The workflow for performing cluster analysis in R programming went as follows. 

Variables of interest were chosen if time averaging was used then this would be next. 

Outliers are removed by removing anything outside of 1.5 times the interquartile range 

method. Then rows with missingness were removed. Next, the data is scaled to a z-score 
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and centered to ensure comparability across differing units. The optimal number of 

clusters are found next using the CaskadeKM function from the vegan package (Oksanen 

et al., 2019). The fanny function in the package from the Cluster package was used for its 

simplicity (P. Rousseeuw, Struyf, Hubert, Studer, & Roudier, 2021). A member exponent 

is the factor applied to the algorithm to make it fuzzy and 1.5 most typically used. This 

number ranges from 1 (completely crisp) to 2 (full fuzziness). It was found that using a 

slightly crispy cluster analysis provided the best results with a membership exponent of 

1.2. Then, the number of clusters and data frame are specified in the fanny function.  

 After the fanny function is performed and output stored, silhouette widths are 

analyzed using a summary function and graphically using the factoextra package 

(Kassambara & Mundt, 2019). Then, all post-analysis visualizations were performed 

from openair (Kassambara & Mundt, 2019).  
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