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Abstract

We analyze the mathematical robustness of slow massively parallel interior corner

flows in low gravity environments. An interior corner provides a preferential orienta-

tion in low gravity environments. This is a luxury usually only found on earth. It also

provides a passive pumping mechanism due to geometry of a conduit. The driving

force for this flow is a pressure difference due to local surface curvature gradients.

An alternative reasoning is that due to the geometrical constraints the interior corner

surface energy is unbounded below. This results in the liquid wicking into corners

indefinitely. Interior corner flow’s main quantity of interest is the meniscus height

h(z, t). With this variable one can calculate an average velocity w̄, flow rate Q, and

volume of liquid in the corner V . Our study is different from most as it is highly

in-depth look at finite domains, while the majority of previous solutions focus on

similarity solutions of infinite, or semi-infinite domains. Boundary conditions, more

specifically the functions that are assigned to the governing equation, play an integral

role to meniscus height. We study a simplified problem of corners initially filled with

quiescent liquid at t = 0, and boundary conditions are instantaneously applied when

t > 0. Approximate asymptotic expressions are found for this process, but more

importantly a method of approximating nonlinear heat equations as a sequence of

linear heat equations is proved as a viable method for engineering purposes. Time

varying boundary conditions are analyzed using a method of model-approximation.
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This is where we simply remove the nonlinearity of the governing equation and insert

a fitting term η. The method works surprising well for a range of constant and time

varying boundary conditions. In all cases the relative error between solutions is less

than 10%. This is a major theme of the thesis, that is, force initial value bound-

ary value problems to be linear via a substitution and achieve results sufficient for

engineering analysis. For parallel corners, volume can transfer between corners in a

multiple corner system. This motivates formulating an ODE governing the average

height H(t) instead of meniscus height h(z, t). We formulate an N corner start-up

problem similar to the analysis of a single corner. This solution is only true for a

quasi-steady process for creeping flows. In order to feed a corner fluid, manifold

tubing is required. Tubing presents a drastic geometrical difference where manifold

resistance is much greater then the corner. This means for parallel flows that the dy-

namics of the system is governed by the transients introduced by the corner’s ability

to store volume. Real world system fluid properties can vary from temperature, con-

centration, and other gradients. These effects alter the meniscus height. We consider

temperature and concentration gradients which add additional terms to the spatial

derivative side of the equation. The property variation is captured by only three axial

location-dependent coefficient functions. Finally, corners that are pinned along the

top edge are shown to have a governing equation with a similar form to meniscus

height h(z, t) equation. The simplifications used to establish analytical results can

also be utilized for numerical solutions, difference being that the new quantity of

interest is now the axially-dependent contact angle function θ(z, t), which is now free

to pivot about the top edge of the groove.
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1 Introduction

This thesis is an analysis inspired by a proposed design for a CO2 scrubbing system for

space environments. A scrubbing system is any system that removes CO2 from the air

in a closed environment. The design is inspired by current submarines scrubbers that

utilize gravity driven thin film flows. The gravity force is replaced with a combination

of surface tension, wetting characteristics, and conduit geometry. Surface tension is a

bulk behavior of surface molecules being attracted to each other. It can be measured

and used as a parameter in equations. Wetting characteristics are encoded in the the

contact angle of a liquid θ, which is defined as the angle a liquid makes when wetting a

locally flat surface. In space environments the gravity force is negligible compared to

surface tension. Negligible is defined as the Bond number being sufficiently small, or

Bo = ρgR2/σ � 1. Surface tension allows for a passive driving force with no moving

parts or pumps. Our design proposes to replace the gravity force with surface tension

and utilize interior corner flow. Interior corner flow is flow along the sharp corners of

containers because of dominate surface tension pressure gradients. Sharp is quantified

by the Concus-Finn condition [1]. It sets a mathematical limit on the combination of

fluid contact angle and the half-interior corner angle, (α+θ) < π/2. An effective thin

film is built up from thousands of parallel interior corners of finite length. Currently

there is no foundation of analysis for interior corner flow in finite domains. The

current state of knowledge lay in semi-infinite or infinite domains [2, 3]. A recent
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work analyzed this flow in a finite domain with the caveat of symmetric zero boundary

conditions [4]. Our work greatly advances the transient modeling of interior corners

in finite domains with arbitrary boundary conditions. Furthermore, the methods

developed herein promise a novel method to estimate nonlinear diffusion equations

in finite domains. Single corner analysis in chapters 1-4 are an in-depth development

of the equations and solution for interior corners in finite domains. Chapters 5 we

consider the additional effects of changing temperature and concentrations. These

additional gradients create a larger system of governing equations, and scale analysis

show first order effect are all axial C(z, t), T (z, t). The time scales of the concentration

and temperature equations are much less than the momentum, and this make the

thermophysical steady-state with axial variations. The effects lead to a new governing

equation for meniscus height h(z, t). All the thermo-physical effects are encoded

by three coefficient functions a(z), b(z), c(z). Analysis of these functions produce

estimates on liquid property variations. Chapter 6 suggests the immediate future

work of considering fully filled open channel interior corners with a moving contact

line. We make a change of perspective and notice that the contact angle θ(z, t) is

the true independent quantity, and we formulate a new governing equation. This

new equation is highly nonlinear, but in a final parting we present an incredible

approximation method to estimate the dynamics of this scenario.

3
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Figure 1.1: In gravity is a. and we see a slight rise in the wicking tip L. The effects of
surface tension become important in the dash line area when R is small. For
b. we’ve isolated the dashed lined area and highlighted a cross planar section.
Interior corner flow models the behavior around this wicking tip and considers
a cross-sectional mass balance. In c. we sketch this cross planar view of the
wicking tip. The variables involved in (1.1),(1.2) and (1.3) are all present.

1.1 Key Assumptions

The scope of this research is to study the governing equations of interior corner flow

and to interpret its solutions to aid in an engineering design. In the literature the

phrase corner is sometimes replaced with triangular-groove [5] or open-wedge [6], but

the governing equations are the same. All interior corner flow must satisfy three

major conditions in order to arrive at the governing equation.

Negligible Gravity Force These assumption are summarized in figure 1.1. The

first is a requirement is on the Bond number,

Bo =
ρgR2

σ
� 1. (1.1)
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This is a ratio of the gravity force to surface tension force. On earth this condition can

be met at very small length-scales. One can see with the naked eye interior corner

effects looking at a container with sharp corners filled with liquid. Right around

the interior corner the length scale is very small R → 0, and surface forces become

comparable to the gravity force. The gravity force fights to flatten all points with

respect to the z-direction established by the earth’s surface. The surface tension force

fights to flatten the surface force with respect to outward normal established by the

free-surface. Close to the corner these forces are in opposite direction. This balance of

forces results in the tip of the liquid to be slightly higher than the bulk. We however

are interested in low-g environments where g ∼ O(10−6). With the gravity force

negligible everywhere, equilibrium surfaces become much more exotic. The study

of these equilibrium surfaces was the focus of early investigations and summarized

greatly in [7, 8].

Length Scales The second assumption is on the meniscus height h to the flow

direction length scale L. This height is the ray which bisects the interior corner and

ends at the liquid surface. We follow [9] and call this the center-line meniscus height.

Our analysis begins with the assumption that our wedges have finite length L <∞.

This introduces then a length scale condition that

ε2 =

(
h

L

)2

� 1. (1.2)

This assumption greatly reduces the Navier-Stokes equations leaving only the axial

momentum equation and continuity. After mass is conserved, the governing equa-

tion is a differential equation for the meniscus height function h(z, t). This one-

5



dimensional model is quite robust because of the condition is on ε2, not ε. This

means as long as h/L ∼ 0.3, (1.2) is satisfied.

Concus - Finn The third condition is called the Concus Finn condition [1].

θ + α <
π

2
(1.3)

This requirement is a statement about non-existence to the minimum surface equation

for the interior corner. Concus and Finn refined the broad statement of non-existence

to unbounded-solution. The potential energy of the surface has an unbounded well

if this condition is met. Force is the gradient of potential which gives rise to the

pressures to drive the flow. In drop tower experiments the force of gravity can be

momentarily reduced. This reduction of gravity combined with (1.3) exhibits a flow

where the liquid tip rapidly advances along the interior corner. The short time scale

of the flow offers much more useful transport applications. This flow can be seen on

earth at your kitchen sink. Arrange two microscope slides and have their tips meet

to make a sharp wedge. Dip this wedge into a fluid reservoir and observe the wicking

tip. This conversion of surface potential to kinetic energy only goes so far. Once

the wicking corner reaches the tip of the container the boundary conditions of the

problem change and the model breaks down. This “kitchen-sink” experiment has been

extended and the time scale made universal [10]. This work concludes this wicking

occurs for all values of Bo, large or small.

6



1.2 A Passive CO2 Scrubbing System

The entirety of this analysis is focused on answering engineering questions about a

CO2 scrubber for space cabins. Today air is scrubbed aboard the I.S.S. using a porous

media. The scrubbing occurs at the gas-solid interface between the air stream and

the porous media. For more details on this system refer to [11]. On Earth, liquid-

gas interfaces scrub the air on submarines, and they do it very efficiently [12]. This

has motivated harnessing the fundamental physics used in the submarine. On the

submarine, gravity is the driving force for a thin film flow. The thin film creates large

surface area for the liquid-gas interface chemistry to occur. This chemistry involves

the molecular interactions between the gas and liquid. The CO2 taken up by the

scrubbing liquid is then boiled off. Buoyancy forces drive the CO2 gas bubbles out of

the scrubbing liquid. The question is how do you attain a stable, large surface-area,

thin-film flow in space.

Because we are interested in space, we only investigate situations where (1.1)

holds. This means we do not have the luxury of using the gravity force to create

a thin-film flow. We instead use parallel interior corners which give rise to a flow

direction and a large surface area. A comparison of the two scenarios is given in

figure 1.2. This simplified sketch is highly idealized. Thousands of corners are needed

to create enough surface area. Considering the risks involved with space systems,

thousands of corners require some amount of theoretical confidence. To complicate

things even more, each corner has a restriction on its length L. Because of this, the

design requires banks of massively parallel units arranged in series. The most current

experiment is set to test a bank of 512 interior corners flowing in parallel. This

massively parallel-series system mimics another terrestrial fluid transport device, the

7



Δ𝑃 ~ 𝜌𝑔 sin(𝜃)
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𝐴𝑠 ~(𝑓 ഥ𝐻𝑁)𝐿

Figure 1.2: An equivalent gravity driven thin-film can be simulated with several parallel
corners.

tree. Enormous amounts of parallel flowing elements allows for a robust system. A

tree maintains a steady state function even in harsh environmental conditions. It is

understood that capillary action alone cannot account for getting liquid to the upper

leaves. The trunk of a tree regardless has a flow rate Q thru it. We model that corner

flow is occurring in air filled cavities of leaves and roots. This rationale for utilizing

interior corner flow has been implemented, prototyped, and tested. Experiments have

investigated steady-state operation, start-up transients, and extreme flow rate regimes

have been preformed [13]. The largest number of corners tested to date has been 16

[14]. This number is orders of magnitudes below the necessary number of corners

needed. Analytical predictions will help to build confidence for future experiments

involving thousands of corners. If these massively parallel experiments agree to the

theory, then the solutions can help guide designs. We follow a classical approach to
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𝑃atm

𝑃grd

Q

𝑃in

𝑃out

N Generations

N Generations

𝚫𝑷𝐩𝐮𝐦𝐩 = 𝑸𝑹trunk

𝚫𝑷𝐩𝐮𝐦𝐩

… 𝑃out − 𝑃inCO2 Rich Air 2N Corners

Figure 1.3: A schematic of the analogy of parallel interior corners to a tree pumping
liquid. Leaves, trunk, and roots are modeled as circuit elements. Connecting
the leaves to the roots creates a closed loop. A pump is required to resupply
the liquid pumped by the interior corner.
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study rigorously an individual finite corner in hope to extend the results to a circuit

analogy. Direct numerical simulation for thousands of wedges is infeasible. This is

not to say that highly accurate numerical simulations of this flow are not underway.

There have been many advancement on this front in recent years [15, 16]. However,

just as the Maxwell field equations are never directly solved for large electrical circuit

networks, we see no reason the direct computation of the Navier-Stoke equations

should be done for this model. Moreover, today analysis of parallel micro-fluidic

systems has seen success with [17]. Finally, heat resistance networks have served as

a rapid first step in design for hundreds of years. The same can be said for fluid

pipe networks. All of these networks originally came from research into governing

equations. The results have then gone on to be automated into software which help

speed up cheap numerical testing of parallel systems.

1.3 Literature Review

Capillary fluidics in micro-gravity environments was first a study of fluid statics,

specifically the free surface. Early works began from Russian mathematicians who

calculated several equilibrium surfaces [7]. Concus and Finn did work in several

equilibrium surfaces as well summarized in [18], but critically determined (1.3) in [1].

This gave analytical rigor to make an analysis of interior corner flows and consider

dynamical problems and velocity field calculations. We note that capillary rise is a

much older problem dating back to Washburn in [19] and had been applied for years.

Bressler made an early investigation of these “capillary grooves” by considering the

increase of heat transfer due to evaporation at the tip in [20]. The cross sectional

velocity fields were calculated soon after using a Galerkin boundary method in [21].
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In the next decade more grounded application analysis emerged. Lenormand

experimented with 2D etched networks causing increased imbibition and wetting in

[22]. Theorizing the mechanism was this flow he went on to make flow-rate regimes

and calculations. Ransohoff determined a dimensionless flow resistance and further

more found approximations utilizing hydraulic diameters amounted in large errors

[23]. Stability started to become investigated with Langbein in [24]. It is important

to note that all the results of all these investigations lay on the assumption that

the domain was infinite and similarity solutions were possible. The flow schematic

was always some form of Figure 1.4. The main quantity of interest in the case of

Washburn, Bressler, and of “capillary rise” was L(t), but in later years more details

and predictions of h(z, t) were to come.

The 1990’s saw a large boom in the analysis, experimental, and numerical inves-

tigations of h(z, t). These works verified the analysis with experiments done aboard

drop towers, parabolic flights, and numerical calculations. Dreyer has some of the

first of these work in [25], where he identified three time domains of transition in drop

tower experiments. His investigation tracked the leading meniscus tip L(t) and af-

firmed the governing equation as an accurate model for the flow. We should note that

a leading meniscus tip corresponds a stretching domain of a similarity solution analy-

sis method. Dong later looked at square tubes and developed the use of dimensionless

flow resistance as a viable analysis tool in [6]. Importantly at this stage it was shown

that the imbibition rate was proportional to (σ/µ)1/2. Remarkable advancement on

the governing equations of this flow was done by Romero & Yost [5]. They identified

the distinct different nature of the solution if the groove was partially or fully filled.

Their similarity solution methods as well created a path way for much more general-
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𝑃𝑜𝑢𝑡 ~ lim
𝐻2→0

−
𝜎

𝐻2

𝑃𝑖𝑛 ~−
𝜎

𝐻1

ℎ 0, 𝑡 = 𝐻1

ℒ 𝑡

ℎ 𝑧, 𝑡 ~ 𝐹(𝜂 =
𝑧2

𝑡
)

ℎ ℒ 𝑡 , 𝑡 → 0 𝑧 ∈ [0,∞)

Figure 1.4: The semi-infinite domain problem or moving boundary problem require the
end boundary to be zero. There are several different similarity solutions de-
pending on the assigned boundary conditions. Solutions are possible for var-
ious assumptions imposed on L(t). However all these assumptions require
L→∞ and t→∞. Here we have assigned a constant height at h(0, t) = H1.
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ized solutions later on as well. Weislogel and Lichter essentially closed the book on

interior corner flows with flat walls in [9, 26]. They generalized all similarity solutions

and importantly connected specific power law values to different physical problems

the solutions modeled.

There is one critical work by Peterson [27] in this decade we must discuss. Peter-

son was interested in capillary flow in wicking up grooves at an angle and enhancing

heat transfer, similar to Bressler. The major quantity of interest was the “dry-out”

location of the leading tip L(t)→ L0. He had experimental data for this tip, and its

location was proportional to the evaporation rates which could enhance heat transfer.

Instead of a numerical investigation, Peterson approximated the nonlinear governing

equation he derived for L(t) as a solvable Bernoulli type differential equation. Im-

portantly an analytical solution was available for the later. His investigation was

analytical and experimental, The predictions from this approximate model agreed

with experimentation for a parameter sweep of Bond numbers Bo, Capillary numbers

Ca, and various wedge geometry. In the coming chapters we do the same for the

governing equation. Unlike Peterson, we compare numerical and analytical solutions

for parameter sweeps.

After the 2000’s the analysis of this interior corner flow shifted into perturbing

initial and boundary conditions slightly. Weislogel investigated sinusoidal perturbed

initial condition in an infinite column in [28], and considered compound capillary flow

in the interior of a polygon in [29]. These bulk flow predictions motivated the use of

this flow for prospective design solutions summarized in [30, 31]. This process of the

analysis of the governing equation for this flow inspiring design is still active today re-

ferring to [14, 32, 33, 34]. The boundary condition of symmetric flat walls was relaxed
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by Chen and Tang in [35, 36, 37, 38], he analyzed rounded and asymmetric corners

and found asymptotic solutions. Su numerically studied variable shear stress distri-

bution across the liquid interface in [39], This marks an early example of considering

surface tension gradients long the wedge. Keep in mind this boundary condition vari-

ation violates the assumptions needed to arrive at the governing equation for h(z, t),

so numeric investigation was required. Su had no physical laws describing this shear

stress distribution at the surface. It was only a assigned boundary condition. Defer-

entially wetted corner walls were analyzed analytically by Golliher in [40], this still

followed the 1D model but instead modeled a changing contact angle due to surface

wetting characteristics in manufactured corners.

In the most recent studies even more alterations to the boundary and initial con-

ditions have been made, but even more applications of the analysis to different micro-

gravity scenarios has been demonstrated. Dynamical boundary conditions with ap-

plication to bubble migration in conduits was made by Weislogel in [3]. The draining

of the bottom of cylindrical fuel tanks has been analyzed by McCraney [4, 15] Entire

classes of corner wall geometry have been solved by Zhou in [41]. The governing

equation in disguise was used to analyze parallel micro-fluidic channels for Lab-on-a-

Chip applications by Calver in [17]. Everything discussed so far however all relied on

similarity solution methods which were made possible due to a time varying domain

L(t), infinite or semi-infinite domain L → ∞, or symmetric zero boundary condi-

tions h(−L/2, t) = h(L/2, t) = 0. The most far reaching analysis for this governing

equation equation when it comes to finite domains was made recently by White in

[42]. Here is was proven that the solution to the governing equation was stable in

the Lyapunov sense. This will be a critical fact for us later on. The results requires
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constant boundary conditions in finite domains which exactly what we address in

Chapter 3. We are confident in our results and methods since in hind sight we are

simply providing an explicit expression for a specific case of their work.

1.4 Mathematical Formulation

The formulation of this flow starts from the Naiver-Stokes equations with a lubrica-

tion approximation (1.2). Scaling for depended variables are motivated using Fig. 1.5

and Fig. 1.6. We will follow the derivation found in recent work by McCraney [4],

for more details on scaling of the interface boundary conditions we refer back to the

seminal work Weislogel & Lichter [9]. Our work is concerned with the solutions to the

governing equations in finite domains not the derivation itself. We begin with the fun-

damental flow schematic found shown below in Fig. 1.5. The Navier-Stoke equations

are made dimensionless using the scales found in Table 1.1. There are two geometrical

function f, FA which appear in both figures. These functions are determined by the

geometry of Fig. 1.6. Importantly the general interface boundary condition may be

solved to first order to conclude that the interface is a series of circular arcs along

the z-axis. The constraint that this interface curve must be a circular arc make de-

termining the expressions f(α, θ), FA(α, θ) and exercises in trigonometry. It is found

by relating the cross-sectional radius of curvature R to the meniscus height h with

R = fh and is determined to be,

f(α, θ) =
sinα

cos θ − sinα
. (1.4)

15



The area function As = FAh
2 is determined to be,

FA(α, θ) = f 2

(
cos θ sin δ

sinα
− δ
)
, (1.5)

with δ = π/2− (α+ θ). In order to justify a one-dimensional model we compare the

cross-sectional curvature the the aspect ratio

ε2f � 1. (1.6)

This condition can be stated in terms of the the perpendicular curvatures with some

manipulation as
ε

L
� 1

hf
=

1

R
. (1.7)

This comparison shows the dependence f has on the assumption as well as corner

length. If the corner length becomes increasingly small (1.7) cannot be satisfied.

However, this is just the same as failing assumption (1.2). This constraint is about

curvature, angles, and liquid. This is because (1.7) is a comparison of approximate

parallel curvature (left-hand side) to cross-sectional curvature (right-hand side). This

condition is also a guide for corner design and liquid selection. The left hand side

should be thought of as fixed by corner length scales. The right side constrains the

angle in the model. The right hand side involves f , which is an expression that couples

a fluid property θ and corner geometry α. Various values of f show how changing

interior corner angle α or liquid can break this assumption. The main interpretation is

to use narrow corners for a liquids. The most common half interior angle is α = 7.5◦.
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𝑃𝑜𝑢𝑡 ~ −
𝜎

𝐻2

𝑃𝑖𝑛 ~ −
𝜎

𝐻1

ℎ 0, 𝑡 = 𝐻1

ℎ 𝐿, 𝑡 = 𝐻2

𝐿 < ∞

𝑧 ∈ [0, 𝐿]

ℎ 𝑧, 𝑡

Figure 1.5: The governing flow schematic for interior corner flow in a constant finite do-
main L < ∞. The boundary conditions are constant with h(0, t) = H1 and
h(L, t) = H2. When H1 > H2 flow is downstream as depicted here, if H1 < H2

flow is simply in the opposite direction.

Table 1.1: A summary of all dimensionless variables. The scaling is motivated by the
geometry shown in Fig. 1.5, 1.6. Dimensional quantities are indicated with
an uppercase prime. Here H is the dimensional height of the corner, and
volumetric flow rate is denoted as Q.

Length Velocity Other
x = x′/H u = u′/εW0 P = HfP ′/σ
y = y′/H tanα v = v′/εW0 tanα t = W0t

′/L
z = z′/L w = w′/W0 A = A′/H2 tanα
h = h′/H W0 = εσ sin2 α/µf ε = H/L

〈w〉 = 〈w〉′/W0 Q = Q′/W0H
2 tanα
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q

a

h

R

d

y

x

As

Figure 1.6: A geometrical cross sectional sketch of the interior corner. The tip of the
corner should be set at the origin point (0, 0). It is an exercises in geometry
to derive the relationship As = FA(θ, α)h2. There exists a function f(α, θ)
which relates the radius of curvature R to the meniscus height h. The free
surface of the liquid is indicated by the triangle. We introduce the curvature
angle δ = π/2− (θ + α) here which will arise in later formulae.
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With these assumption the full system of equations is determined to be

ε4Su+
Du

Dt
= −∂p

∂x
+ ε2∇2u, (1.8)

ε4 tan2 αSu+
Dv

Dt
= −∂p

∂y
+ ε2 tan2 α∇2v, (1.9)

ε2Su+
Dw

Dt
= −∂p

∂z
+∇2w, (1.10)

∂A

∂t
+
∂Q

∂z
= 0, (1.11)

where Su = σρH/µ2, superscript + is geometrical scaling by sin4 α/f , and D/Dt is

the standard material derivative of fluid mechanics. The Suratman number can be

thought of as a Reynolds number using a capillary velocity scale V ∼ σ/µ. One should

appreciated the power of sin4 α in the inertial terms as well. This invokes even more

that thin corners are viscous flow, this is reasonable as the thinner a corner becomes

most of the flow is restricted to no-slip at the walls. All that can move is then just

a thin strip of liquid interface at the “top” driven by surface pressure gradients. We

have defined a non-dimensional Laplacian operator as well to be

∇2 ≡ sin2 α
∂2

∂x2
+ cos2 α

∂2

∂y2
+ ε2 sin2 α

∂2

∂z2
. (1.12)

A solution comes from considering asymptotic solutions in powers of ε2. In the limit

of ε2 → 0 and Su+ ∼ ε2 the leading order effect leave only eq. (1.10). The governing

equation for the velocity field in the axial direction is then,

∂p

∂z
= ∇2w, (1.13)
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with boundary conditions w(wall) = 0,∇w(surface) = 0. A very important property

of eq. (1.13) is that it is proven that a solution exists and is unique for any function

∂p/∂z. Understand the power of this statement. This means we may not know what

the pressure gradient is but is valid to define an average flow-rate thru a cross sectional

plane. We define an average velocity in thru the cross sectional plane by

〈w〉 =
1

A(z, t)

∫
A(z,t)

w(x, y)dA. (1.14)

The problem closes when considering the pressure gradient scale relationship

∂p

∂z
∼ ∂

∂z

1

h
,

∼ − 1

h2
∂h

∂z
.

Combining this with (1.14) we know in a 〈w〉 ∼ −∂h/∂z. Equality is achieved via an

unknown proportionality term Fi such that

〈w〉 = −Fi
∂h

∂z
. (1.15)

Early investigations [9] have proven numerically that 1/8 . Fi . 1/6. The governing

equation for h(z, t) is determined by substitution of A = FAh
2, (1.15) into (1.11) and

is found to be
∂h2

∂t
=
Fi
3

∂2h3

∂z2
,

and re-scaling time to be τ = 3t/Fi we arrive at a very succinct governing equation

∂h2

∂τ
=
∂2h3

∂z2
. (1.16)
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Already a world of analysis is available to us. This equation shows that the dynamics

of h(z, τ) follow exactly the theory of nonlinear diffusion models where entire classes

of solutions have been found in the past [43]. This is also why this work could

have major implications in other fields, since any nonlinear diffusion model of the

form (1.16) could use the results. In fact, we ourselves utilize analysis of nonlinear

diffusion equations to claim solution existence and uniqueness to our model problem.

We will drop the notation τ at this stage, since it is just a re-scaling by a constant

value. This means herein all expressions with t are actually τ .

1.4.1 Initial Conditions & Boundary Conditions

For all of the analysis in chapters 1-4 we study eq. (1.16). This equation governs the

dynamics of Fig. 1.5. Our last discussion is on the boundary and initial conditions

assigned to this partial differential equation. The boundary conditions are applied

at the inlet and outlet and shown in Fig. 1.5. There are three types of boundary

conditions one could assign to this equation for t > 0 and z = {0, 1} (Dirichlet,

Neumann, and Robin). We will only consider Dirichlet boundary conditions where

the value of h(z, t) is prescribed at the inlet z = 0 and outlet z = 1. These are

are called Dirichlet and in their most general form the prescribed values could be

functions of time,

h(0, t) = H1(t) (1.17)

h(L, t) = H2(t). (1.18)
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Next, our initial condition the meniscus height take for t = 0 and z ∈ [0, 1],

h(z, 0) = H0(z). (1.19)

We have compatibility conditions we must require between H0(z), H1(t), H2(t) that is

H0(0) = H1(0) H0(1) = H2(0) (1.20)

These are sufficient conditions for us so that we may claim that a solution to eq. (1.16)

exists and is unique. It cannot be stressed how important this proof if to us. What

it means is if we can construct some infinite series solution that is converging, we can

be confident that it is converging to the solution. There are additional requirements

on our initial and boundary function which all relate to solutions being physical.

0 < H0(z), H1(t), H2(t) ∀t > 0&z ∈ [0, 1] (1.21)∣∣∣∣dH0

dz

∣∣∣∣ <∞ ∀z ∈ (0, 1) (1.22)

There is a much richer question of how relaxed the assumptions can be so that (1.16)

admits a solution. We cite the work for Zischka & Chow [44] or other analysis of

partial differential equations for more details on this topic. We have now fully set-up

the general framework to investigate the dynamics of interior corner flows in finite

domains. So let’s begin.
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2 Steady State Analysis

We first investigate the steady state solution for the meniscus height along the corner.

This solution will help determine a steady state flow resistance function. For a single

flow element, we will assume that the volume is constant. Our solution is presented

in a generalized fashion valid for all boundary heights and initial conditions. The

meniscus height is dependent on an average initial fill level H and the ratio of the

boundary heights β = H2/H1. This non-dimensional parameter β is a measure of

flow rate Q. Flow rate is maximum at β = 0, and minimum at β = 1. Invoking

volume conservation, an expression for flow rate Q(β) will be shown. For our CO2

scrubbing application, the required flow rate is low such that β → 1. This situation

allows a Taylor expansion about β = 1 such that we can express boundary conditions

as an infinite sum
∑
pk(1− β)n. Using this expansion, an asymptotic time evolution

solution is found in chapter 3. Finally, we calculate the number of corners needed for

a required flow rate given our maximum flow rate in a corner.

2.1 Generalized Steady State Solution

It has been shown many times over a steady state solutions exist for a single interior

corner. This steady state solution has been utilized countless time for quasi-steady

investigations in [3], and most of the work reference in Sec. 1.3. It is worth men-

tioning just how accurate this steady state solution is. Flight experiments have been
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Figure 2.1: A low gravity aircraft experiment exhibiting a steady state profile. The test
device is identical to 1.5. At the entrance and exit (1.6) fails to hold and the
one-dimensional cross flow model breaks down. Our model is only valid for
the region drawn in dashed white which covers most of the corner.

preformed in controlled low gravity environments and the solution we present has

indeed been experimentally verified. Figure 2.1 is an image from these experiments

and depicts illustration of this. In the immediate vicinity of the entrance and exit of

the corner, stream-wise curvature cannot be neglected and the one dimensional cross-

flow curvature model breaks down. Since we are following the formulation made in

Sec. 1.4, unless stated otherwise, all equations herein are dimensionless via Table 1.1.

Our first problem to address is the steady state profile for constant boundary

heights h(0, t) = H1 and h(1, t) = H2. The system of equations to solve is found by

setting the governing equations time derivative to zero. Volume conservation in the

corner takes an integral form. We leave the initial condition as a generic function

f(z) which satisfies eq. (1.20). This orients our analysis still within the framework

described in Sec. 1.4. This generic function f(z) should not to be confused with

the geometric scaling function f(α, θ) defined by eq. (6.1). This distinction should
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be clear as f(α, θ) has relevant two angular arguments. The steady state system of

equations is then

0 =
∂2h3

∂z2
(2.1)

H1/H = h(0)

H2/H = h(1)

f(z) = h(z, 0)

0 =
d

dt

∫
FAh

2dz. (2.2)

The steady state solution is found from integrating (2.1) twice and applying the

boundary conditions to find

h(z) = (H3
1 + (H3

2 −H3
1 )z)1/3. (2.3)

By defining a non-dimensional parameter β = H2/H1, this ratio is independent of

scale as well. Using β, we express the steady state solution as

h(z; β) =
H1

H
(1− (1− β3)z)1/3. (2.4)

We would like our solution to be expressed in tunable parameters such as a fill level

and flow rate. This is the overall goal for all analysis, to define solutions (the unknown)

in terms of initial and boundary conditions (the known). To achieve this we must

express the steady state independent of H1 and express the boundary height ratio as

a function of flow rate β(Q). We determine H1 using our volume conservation integral

(2.2). Since it is a conserved quantity we equate the initial volume in the corner at
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t = 0 to the steady state volume when t→∞.

∫ 1

0

FAf
2 dz =

∫ 1

0

FAh
2 dz (2.5)

For the de-pinned case the area function FA is a constant and may be factored out.

This factoring is precisely why things get complicated in chapter 7. It is here we

must make some assumption on the initial condition f(z). The simplest sub problem

is the start-up problem where at t = 0 the corner is at a constant fill level H0. This

corresponds to a dimensional relation,

Hf(z) =


H1 z = 0

H0 0 < z < 1

H2 z = 1

(2.6)

This constant initial condition is sufficient for any f(z). That is even for a complex

initial condition f(z) with lots of variation we could idealize a start up problem. This

is because we can always find an equivalent H0 for any initial condition f(z). All we

must do it take the root mean square of the arbitrary function f(z).

H0 =

(∫ 1

0

f(z)2
)1/2

(2.7)

We substitute (2.6) and (2.4) into (2.5) and preform integration. This yields our

expression for H1 as

H1 = H0

√
5(1− β3)

3(1− β5)
. (2.8)

Now we substitute (2.8) into (2.4) to obtain our general steady state solution. We
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plot this function in figure 2.2 and glean physical implications of values of β.

hs(z) =
H0

H

√
5(1− β3)

3(1− β5)
(1− (1− β3)z)1/3. (2.9)

For β > 1, we have flow reversal. This makes sense as flow direction is always in the

direction of the smaller boundary heights. Because of this, we will restrict ourselves

to only studying β ∈ [0, 1], and will always keep the convention that H2 < H1. The

most troublesome case is when β = 0. This can occur in two separate ways. The first

is if H2 = 0, which unfortunately corresponds to an infinite pressure for P ∼ −1/H.

The second is if H1 →∞, which is infinitely wrong. We can side step these headaches

by relying on the physical nature of a corner’s design. In order to deliver fluid to the

corner manifold tubing must be introduced. If the right pressure increases to much

the meniscus height will drop down below the exit outlet and bubble ingestion will

occur. This puts a lower limit for the value H2 avoiding any infinite pressure.

Another point to add is the scaling made in table 1.1. We now have 4 scales

of height to choose from namely the height of the corner H and H0, H1, H2. If we

rescaled all terms by the initial fill level H0 instead of H all expressions look much

simpler. This is why we suggest a scaling by H0 not H, as is done in previous works

We will carry the same scaling formulation as previous work accept for this one scale.

Using (2.9) we can calculate a dimensional flow rate thru the corner as Q = A〈w〉.

With some algebraic manipulation we can express flow rate purely in terms of liquid

and corner parameters and H0 and β.

Q′(β) = −H
3
0FAFiσ sin2 α

3µfL

√
53(1− β3)5

35(1− β5)3
(2.10)
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Figure 2.2: The side profile of an interior corner. h is the centerline meniscus height. Is
in the direction left to right.Various values of β are plotted with an initial fill
level of H0 = 1. When β = 1 the boundary heights are equal and there is no
flow rate. When β = 0 the flow rate is at a theoretical maximum.

It has been shown that suitable approximations for FA and Fi are tan(α) and 1/7

respectively. Using these approximations, the scale flow rate is

Q′ ∼ σ(H0 sin(α))3

21µfL cos(α)
. (2.11)

If the geometric corner properties are constant, this scale is highly sensitive to our

initial fill level H0. Flowrate naturally is quite sensitive to corner geometry α as

well, which is expected. As corner get wider there is more available interface area to

transport liquid.

The non-dimensional form of (2.10), which is found using (2.11), is

Q(β) = −

√
53(1− β3)5

35(1− β5)3
. (2.12)
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Now (2.12) tells us an analytical form of β(Q) is impossible. This is because it would

require inverting a fifth order polynomial. This forces us to either graphical inversion

or approximate methods. In the next section we will develop asymptotic series based

on β. This will be critical in developing the transient solution.

2.2 An Asymptotic Expansion Parameter φ

We can now utilize (2.9) to express the steady state as an asymptotic series. From

figure 2.2 we see that for β ∼ 1 model slow creeping flows. Recall the driving force

is a difference in local curvature which is proportional to meniscus height. So if the

inlet and outlet meniscus heights are almost the same β ≈ 1, then there is not much

of a pressure gradient to drive any flow. This can also be seen from (2.12). Because

of this, in all of our taylor expansions we will choose to expand about β0 = 1. We

will expand (2.12) about β = 1 up to O((1 − β)3) as an example. We also define a

new parameter φ = 1− β. This new parameter is simply a convenience to make the

equations simpler. This expansion can be done in software such as Mathematica or

Maple. The first three terms are given as an example

h(z) = 1 + (z − 1

2
)φ+ (−z2 +

1

2
z +

1

24
)φ2 + O(φ3) (2.13)

The general form of this expansion is a series in powers of φ with increasing coefficient

polynomials pk(z) of order k.

h(z) =
∞∑
k=0

pk(z)φk (2.14)
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If we evaluate the coefficient polynomials pk(z) at the boundary we form an infinite

series. This series converges since we’ve ensured φ < 1, k ≥ 0, and z ∈ [0, 1] The

polynomial evaluated at a specific z gives scalar numbers pk(0) and pk(1). These

numbers again can be calculated using software such as Mathematica. As an example

here are the first three terms of the boundary value series. Figure 2.3 plots the first

15 values of these coefficients.

h(0, t) = 1 +
1

2
φ+

1

24
φ2

h(1, t) = 1− 1

2
φ− 11

24
φ2

We will from now on refer to the constant coefficients pk(0) and pk(1) as {Ak, Bk}

respectively. This allow us to form our boundary value series

h(0, t) =
∞∑
k=0

Akφ
k (2.15)

h(1, t) =
∞∑
k=0

Bkφ
k, (2.16)

and we are now ready to look for an asymptotic transient solution of the form

h(z, t) =
∞∑
k=0

hk(z, t)φ
k (2.17)

There is one more expansion that is of interest. That is expanding (2.12) about

β0 = 1. Since we are setting out to determine an asymptotic solution for h(z, t) with

respect to the parameter φ, It would be helpful to have a quick calculation to see if

a given flow rate justifies a linear approximation. A two term taylor series of (2.12)
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Figure 2.3: The boundary value series are plotted for k ≤ 15. This sequence of numbers
is conditionally convergent as well. For k > 15 the coefficients become quite
negligible, however we will need several terms later on to model the nonlinear
effects.
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gives

Q = φ− 1

2
φ2 + O(φ3). (2.18)

This approximation can be inverted analytically which yields

φ = 1−
√

1− 2Q. (2.19)

From (2.19) we can see that if Q � 1 then our asymptotic expansion parameter is

indeed small. Figure 2.4 is a plot comparing the exact and approximate flow rate

inversion. as well as the relative error of the approximation. We have marked where

%10 error occurs as well. Remarkably this inversion is sufficient for over half the

domain of Q, which is limited by ingestion at β = 0. However, we could select

several expansion of (2.12), for instance, if we expand about β0 = 0 we get insight to

variations around nearly maximum flow rates. However, looking at figure 2.4 we see

that (2.18) does quite a good job of an inversion for small Q < 0.5.

2.3 A System Pump Curve for The Corner

The steady state analysis so far can help give an analytical system pump curve for

the interior corner. This curve can help characterize the ability to pump liquid in

low gravity designs. To develop a pump curve we want to express ∆P (Q). One thing

should be evident just from this definition alone. Since we already know there is a

maximum flow rate Q ≈ 0.717 corresponding to β = 0 ∴ H2 = 0, and given that have

shown P = −1/fH, we must expect this curve to diverge to infinity quite rapidly.

This is exactly why we need several thousand corners in parallel to achieve a large

flowrate.
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Figure 2.4: The approximate inversion (2.18) is compared to the true graphically inverted
(2.12). The domain of allowed values is Q ∈ [0,

(
53/35

)1/2 ≈ 0.717). The
relative error between the curve diverges as Q → 0.717 which is expected.
What is surprising however is the approximation is under %10 (black dashed
line) for nearly %70 of the domain

The pressure gradient across the corner can be expressed in terms of the boundary

heights H1 and H2. From scaling the Navier-Stoke equations with the aspect ratio

ε = H/L, we know this pressure is valid up to O(ε2). The non dimensional pressure

gradient is

∆P =
( 1

H2

− 1

H1

)
. (2.20)

Multiply the left hand side by 1 = H1/H1 and utilizing (2.8) we derive,

=
( 1

H2

− 1

H1

)H1

H1

,

=
1

H1

( 1

β
− 1
)
,

∆P =
(√3(1− β5)

5(1− β3)

)( 1

β
− 1
)
.
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Figure 2.5: The relative system pump equation is plotted in the same manner as Fig 2.4.
We have indicated a %10 error at the dashed black line. A first order approxi-
mation for ∆P , we can see is not as good as it is for β(Q). However identifying
an upper bound for linearization is still a useful result

In order to plot a system curve we must use a composition with β(Q). However

using (2.18) we can also preform another expansion about Q = 0. This will allow

us an analytical system pump curve expression. But more importantly it allows us

to see exactly when a corner behaves like a circuit with linear resistance. Expanding

∆P (β(Q)) about Q = 0 we find that,

∆P (Q) ≈ Q+ O(Q3) (2.21)

Which means circuit have linear flow resistance up to O(Q3). We can compare this in

figure 2.5 conclude that as long as the non-dimensional flow rate in a corner satisfies

Q / 0.3, the system component can be linearized.
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2.3.1 Number of Corners

The largest concern for these corners is the problem of bubble ingestion. If the flow

rate becomes too high in one of the corners the leading edges H2 will dip below an

exit hole at the bottom of the corner. This gap will form bubbles because the once an

opening occurs the negative pressure draws air into the line. The negative pressure

as well draws the fluid towards the hole but the mass of the fluid causes it to move

slower. The imbalance causes more air to be drawn in before the the whole is closed

forming a bubble. This process would continue to persist as well if the pressure

gradient is maintained across the inlet and outlet of the corner. In more extreme

cases dry out can occur in a corner making a corner become effectively useless. We

would like to avoid this ever happening. A first estimate is then how many corners

would system need to ensure we likely avoid bubbles. Figure 2.6 is a diagram of

an idealized parallel circuit of corners. The question is how many corners would be

needed to avoid ingestion. For this section we will use dimensional expressions. By

conservation of mass we know the flow rate thru the corners must sum to the required

Q. So for N corners we must have,

Qreq =
N∑
n=1

qn.
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n = 2

n = N

q1

q2

q𝑁

DP

n = 1

Figure 2.6: A system diagram of parallel corners acting as a flow separator. Each corner
is counted by the index n.

Using (2.10) we come up with a maximum flow rate thru each corner β = 0. We have

to idealize that the initial fill level in every corner is H0.

=
N∑
n=1

H3
0FAFiσ sin2 α

3µfL

√
53(1− β3)5

35(1− β5)3

≤
N∑
n=1

H3
0FAFiσ sin2 α

3µfL

√
53

35

Qreq <
0.717H3

0FAFiσ sin2 α

3µfL
N
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We are free to to increase N until this inequality is satisfied for any Qreq. This gives

a minimum number of corners Nmin with

Nmax =
3QreqµfL

0.717H3
0FAFiσ sin2 α

. (2.22)

This calculation also requires that all geometrical and fluid parameters are identical

for the N corners. We will also use the approximations for FA and Fi used in (2.11)

to better simplify the result.

Nmin =
21QreqµfL cos(α)

0.717H3
0σ sin3(α)

(2.23)

The most unrealistic assumption we’ve made here is that all the corner fill levels are

exactly identical. If we want a safe average to to better estimate a safe number of

corner it is reasonable that we require that small initial fill levels have large effects to

our mean. Let us assume that for each index N , an initial fill level can be assigned

to a given corner or H0(n) n ∈ {1, ..., N}. For a conservative estimate of Mmin we

suggest to simply use the min(H0(n)).
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3 Approximate Transient Analysis

The first dynamical problem addressed is sudden changes to flow rate in a corner

δQ. This problem aims to describe disturbances to a steady state interior corner.

This can arise in operation because of variations in a pump. We model this situation

by assuming the initial condition is a steady state solution at some β0. We assign

different boundary heights instantaneously at t = 0 to some different βf . Our analysis

begins by solving the transient In order to find a time evolution solution, we use

asymptotic methods. We utilize our generalized steady state expansion (2.9) to form

an asymptotic series. This boundary height series reduces the problem to solving an

infinite sequence of sub problems. By the grace of god, these problems are nothing

but heat equations with constant boundary conditions and arbitrary source terms

Sk,n(z, t). The source terms cannot be determined, yet upper bounds are used to give

estimates for the dynamics of sudden perturbations. The transients end up identical

to the classical heat equation numerically and analytically.

3.1 The Start-Up Problem

The first transient problem we will solve is the start-up problem. This will model an

interior corner that is initially flat with zero flow rate. When a pump is suddenly

started a pressure gradient is imposed across the corner. These boundary pressures

correspond to constant height boundary conditions. This disagreement between the

38



h(z, 0) = H h(z, t) = h(z)
H1

H2

H1

H2

Q = 0

OFF ON ON

𝜕𝑡 ≠ 0

a. b. c.

Figure 3.1: Three successive instances of time are shown during a start-up process. At
first in image a. there is no pressure differential across the corner, the heights
are equal an there is no flow rate. When the pump is turned on in part b.
the boundary heights adjust instantaneously to H1 and H2. We seek a time
constant τ that characterizes this decay to steady state depicted in part c.

boundary values and the initial condition introduces a transients we wish to study. At

the start we are in grey analytical grounds. This is because the initial condition (2.6)

satisfies (1.20), however it is discontinuous. In this simple instance we are save by

White [42], where it is proven the solution is asymptotically stable. This means that

any perturbation to an initial condition must decay to the analytical steady state.

This however does not say anything about time dependent boundary conditions. For

that we will introduce a model approximations nd investigate the error numerically.

For now we will press along assuming we can still speak of the solution h(z, t) to this

problem. The expression in this section are non-dimensional are dimensionalized using

tab 1.1. This solution reveals nothing profound as this time constant τ is identical

what one gets from scaling. However the methods used provides a framework to solve

much more complicated problems involving the corner. For now we will retain the

constant volume assumption. Everything physically described is concisely formulated
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as differential system,

∂h2

∂t
=
∂2h3

∂z2
(3.1)

h(0, t) = H1 (3.2)

h(1, t) = H2 (3.3)

h(z, 0) = H0 (3.4)

We are still assuming volume conservation in the corner. This allows us to utilize

our generalized steady state equation (2.9) found in chapter 2. To begin, we pose the

naive asymptotic ansatz.

h(z, t) =
∞∑
k=0

hk(z, t)φ
k (3.5)

Our asymptotic parameter is no arbitrary small number but it is none other than

φ = 1 − β. This is why such great detail was made sin chapter 2 ensuring there

was a method of approximately calculating β(Q). To engineer flowrate is a given for

which this parameter can be calculated. As long as the non-dimensional flowrate in

the corner is small our inversion is valid as shown in Fig 2.4. Moreover, we have

already seen that φ ≈ 0 represents slow flow rates. Each successive term represents a

better approximation to slightly faster flow rates. Our results are not trivial either,

any systems utilizing this interior corner flow will operate at small Reynolds numbers.

This slow flow condition actually implies that a first order term solution is reasonably

sufficient for modeling. But of course, what’s the fun in just one.
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3.2 An Asymptotic Solution

Asymptotic analysis require tedious calculations. This makes computer algebra sys-

tems a great tool. Everything is a consequence of substituting (3.5) into (3.1). After

the algebra is carried out a new system of k heat equation determined. A critical step

is the expansion of (2.9) about β = 1. This generate a sequences of numbers as shown

in fig. 2.3 which fully define the boundary conditions for these k differential equations.

We give the first 4 only to highlight an important pattern. The kth equation is O(φk).

∂h0
∂t

= h0
∂2h0
∂z2

+ 2
(∂h0
∂z

)2
(3.6)

∂h1
∂t

= h0
∂2h1
∂z2

+ 4
∂h0
∂z

∂h1
∂z

+ h1
∂2h0
∂z2

(3.7)

∂h2
∂t

= h0
∂2h2
∂z2

+ h1
∂2h1
∂z2

+ 2
(∂h1
∂z

)2
+ 4

∂h0
∂z

∂h2
∂z

+ h2
∂2h0
∂z2

(3.8)

∂h3
∂t

= h0
∂2h3
∂z2

+ D3(h0, h1, h2) (3.9)

In (3.9), we have abstracted the remaining terms to a non-linear differential operator

Dk. This operator couples all the previous solutions and only contains spatial deriva-

tives. For the kth order equation this generic operator would couple all k−1 previous

solutions Dk(h0, . . . , hk−1). All the equations have associated boundary conditions

and initial conditions.

h0(0, t) = 0 h0(1, t) = 0 h0(z, 0) = 1 (3.10)

h1(0, t) =
1

2
h1(1, t) = −1

2
h1(z, 0) = 0 (3.11)

h2(0, t) =
1

24
h2(1, t) = −11

24
h2(z, 0) = 0 (3.12)
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h0(z, 0) = 1 only because of the initial condition for the given start-up problem

we’ve described. It is important to realize that for all k > 0, all initial conditions

hk(z, 0) ≡ 0. This is only a specific instance though, an arbitrary initial condition

function h(z, 0) = f(z) would have many non zero polynomial terms for k > 0. We

will try to address this at the end of this section.

We write out the kth boundary and initial conditions utilizing (2.15).

hk(0, t) = Ak hk(1, t) = Bk hk(z, 0) = 0 (3.13)

Great simplification comes from solving the zeroth order equation. The equation

(3.6) combined with (3.10) implies the constant solution h0 = 1. Using (3.13) we

write down the general system to solve for k > 0.

∂hk
∂t

=
∂2hk
∂z2

+ Dk (3.14)

hk(0, t) = Ak (3.15)

hk(1, t) = Bk (3.16)

hk(z, 0) = 0 (3.17)

The solution to (3.14) can be written down analytically. What we are doing is quite

simply leveraging an existence and uniqueness proof for this system of equations [45,

46, 47]. It has been proven many times over that whatever function Dk is, the

solution exists and is unique. However, this is only true as long as D)k satisfy certain

smoothness and continuity conditions, none of which are important for engineering

purposes.
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The solution is expressed as a fourier series with time varying coefficients ak,n(t).

hk(z, t) =
∞∑
n=1

ak,n(t) sin(nπz) (3.18)

The coefficients are defined as

ak,n(t) = Γk,n + exp[−n2π2t]Sk,n(t) (3.19)

The term Γk,n is the effect of the boundary condition to the solution and are defined

as

Γk,n =
2φk

nπ
(Ak − (−1)nBk) (3.20)

The much more indirect term is Sk,n. It represents all the non linear coupling of the

previous solutions.

Sk,n(t) =

∫ t

0

dk,n exp[n2π2t′]dt′ (3.21)

with

dk,n = 2

∫ 1

0

Dk sin(nπz)dz. (3.22)

One could argue that all we have done at this stage is push all the complexity into

this Sk,n term. However, (3.19) tells us that the coefficients decay to constants as

t→∞ if Sk,n is a bounded function. Further more we actually know that Sk,n must

be bounded precisely because of existence and uniqueness proofs for the solution to

problem (3.1).
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3.2.1 O(φ) Solution

With out any approximation we can write down the first order solution. We substitute

h0 = 1 into (3.7). In the general framework D1 = 0. This simplifies it to a linear heat

equation.

∂h1
∂t

=
∂2h1
∂z2

h1(0, t) =
1

2

h1(1, t) = −1

2

h1(z, 0) = 0

Which has the solution,

h1(z, t) =
1

2
− z −

∞∑
n=1

(1 + (−1)n)

nπ
exp[−n2π2t] sin(nπz) (3.23)

Remember all this work was to only derive the solution’s functional form. We set

out to determine time constants for the evolution. We re-dimensionalize for the time

constant of first order perturbations,

τ1 =
µfL2

4π2Hσ sin2 α
. (3.24)

We have then learned two things from this analysis. One is the additional scaling

factor of 4/pi2, the other is the that a linearization of the governing equation for

the start up problem possesses a completely analytical solution. This is the only

difference from the time constant found from a simple scale balance. For volume
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conserving interior corners the transients for sudden disturbances is (3.24). This is

remarkably true even for φ→ 1, which the purpose of the next calculations. We plot

a comparison to a numerical solution in figure 3.2.

3.2.2 O(φ2) Solution

For the second order solution we must make some approximation assumption to arrive

at something we can write down. We substitute h0 = 1 into (3.8). The constant

boundary conditions {Ak, Bk} are found from Mathematica. Many terms zero out

because of h0 = 1. The second order differential system to solve is,

∂h2
∂t

=
∂2h2
∂z2

+ D2(h1) (3.25)

h2(0, 1) =
1

24
(3.26)

h2(1, t) =
−11

24
(3.27)

h2(z, 0) = 0. (3.28)

Here we see the first simplification of h0 = 1. It makes the differential operator D2

not a function of h0. This isn’t the simplest forcing functions for the heat equation

but a forcing function it is. There are subtle convergence mathematics that go into

proving such a function is well defined even. We will simply blaze along assuming

whatever has to be assumed is. In the end we are comparing to a numerical solution

to see if any of our methodologies hold any water.

D2(h1) = h1
∂2h1
∂z2

+ 2
(∂h1
∂z

)2
. (3.29)
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Recall that h1 was an infinite series itself. To the mathematician this operation may

well not be defined. For the engineer, ignorance is bliss. In order to obtain higher

order solutions we will make use of the existence of the solution itself. We are going

to construct a series solution based on certain properties of (2.9) and (3.29). We

require that the kth steady-state solution must be equal to the pk(z) found in (2.14).

This allows us to solve for the limiting case of D2.

0 =
∂2h2
∂z2

+ lim
t→∞

D2

− lim
t→∞

D2 =
∂2h2
∂z2

=
∂2p2
∂z2

=
∂2

∂z2
(−z2 +

1

2
z +

1

24
)

lim
t→∞

D2 = 2

The second consideration is how quickly does this forcing function limit to its steady

state value. Here is where we make a rough estimate based on (3.29). Considering

the scales of (3.29) and utilizing our time scale (3.24),

D2 ∼
h21
L2
,

∼ exp[−t/τ1]2

L2
,

∼ exp[−2t/τ1]

L2
.

This short scale argument tells us that the D2 forcing function reaches its steady

state twice as fast as the other differential terms. The higher order Dk by the same
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Figure 3.2: Slow transients with φ = 0.1

arguments decay like Dk ∼ exp[−2kt]. This gives good reason to approximate the

coupling term as its steady state function. This makes a much more solvable heat

equation system. We compare the numerical and analytical solution in figure 3.3.

Calculating this infinite series solution is actually slower than numerically solving it.

This solution required 300 terms of both series to best approximate the spatial dis-

tribution. However the purpose is to demonstrate how the decay rate even for large

values of β is eq (3.24). We can push this method further for flow rates approach-

ing the maximum, β → 0. Moreover, this method of approximating a complicated

coupling term could prove useful for other nonlinear problems. We push this method

for flow rates approaching the maximum, β → 0.5. The comparison of the analytical

and numerical is given in figure 3.4.
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Figure 3.3: Medium transients with φ = 0.35
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Figure 3.4: Large transients with φ = 0.5
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3.2.3 O(φk) Solution

We now can lay out the program to construct the kth order solution. This is not

completely analytical as is requires software to calculate the pk(z) coefficient functions.

First we calculate Dk using pk(z).

Dk = −pk(z)′′ (3.30)

Now the system is solved as it can be put in the form of (3.18) using (3.19), (3.20),

(3.22), and (3.21). We now see just how powerful (2.14) is. The coefficient polynomial

functions pk(z) do a number of things. It helps formulate an infinite sequence of

solvable problems. It calculates Ak. It calculates Bk. It approximates nonlinear

coupling function Dk It has allowed us to construct a solution.

3.2.4 Steady-State Initial Condition f(z) = hs(z; β0)

We extend our methods to develop transients to address perturbations between two

distinct steady state solutions. We can investigate closely into quasi-steady dynamics

this way. Let us say that the flowrate in the corner is some function of time Q(t),

and at a given time t0 the system is at a steady state defined by (2.9). This is

to say h(z, t0) ≡ hs(z; β(Q(t0))). We can simply think of β0 ≡ β(Q(t0)). Since t0

is just a reference time value we set it to zero and just think of time progressing

forwards from this point. Now we look at a sudden jump from a flowrate defined by

β(Q(t0)) 7→ β(Q(t0 + δt)). The steady state functions are identified by an initial flow

at β0 which is suddenly jumped to a new flow rate β. Staying in the framework set
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in section 1.4 the initial condition for this model is,

h(z, 0) = f(z) ≡


H1 z = 0

hs(z, β0) 0 < z < 1

H2 z = 1

(3.31)

The start-up problem is actually a special case of this problem with β0 = 1. We apply

the same expansion methods used in the start-up problem. This function has its own

taylor series now in the variable β0 or equivalently φ0 = 1− β0.

f(z) =
∞∑
k=0

pk(z)φk0 (3.32)

There are now two competing parameters which we are assuming we know, where we

start φ0, and where we end φ. This requires algebraic manipulation of (3.32).

f(z) =
∞∑
k=0

pk(z)(
φ

φ
)kφk0

=
∞∑
k=0

pk(z)(
φ0

φ
)kφk

=
∞∑
k=0

Φkpk(z)φk (3.33)

This new ratio Φ is a measure of the difference between the steady states. These step

have been taken in order to make expansions all in terms of the same parameter φ.

This is so we can keep our asymptotic assumption (3.5). The only difference to so

far is some relaxation on the initial condition. Following the same arguments and
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process of section 3.1, we have new initial conditions for the ktextth sub problem as,

hk(z, 0) = Φkpk(z). (3.34)

The time varying fourier coefficients functions ak,n(t) now have an additional term.

ak,n(0) = 2Φk

∫ 1

0

pk(z) sin(nπz)dz. (3.35)

This term represents the initial condition effect on the solution. The new coefficients

function can be expressed as three distinct terms. We can reuse the definitions for

(3.20) and (3.21)

ak,n(t) = Γk,n + exp[−n2π2t]{ak,n(0) + Sk,n(t)} (3.36)

The first term is out boundary term that ensures the solution decays to the steady

state prescribed by Ak, Bk. The second term is the initial condition term which is

simply the fourier expansion of each pk(z). The third term is effect of the nonlinear

coupling of all k solutions in Dk. This general solution agrees with the start-up

problem when f(z) = 1, which simply makes ak,n(t) = 0 for k > 0.

3.3 Time Dependent Boundary Conditions

The most un-physical assumption so far is this instantaneous shift in boundary val-

ues. We now analyze boundaries which are functions of time {H1(t), H2(t)}. We

will require some basic functional assumptions on these boundary functions. The

derivative of the boundary is a velocity in the y direction. In order to arrive at our
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governing equation this velocity scaled with the z velocity as V0 ∼ εW0. However,

the boundaries could be much slower than this estimate since

∣∣∣dHi

dt

∣∣∣ = V0 < εW0. (3.37)

Where i = {1, 2} in the above expression. Practical functions to assign to the bound-

aries could be periodic or exponential. For periodic boundaries one could model a

peristaltic pump used to circulate fluid with Hi ∼ A sin(ωt + ψ).. An exponential

function models a slow approach a constant value, Hi ∼ A + B(1 − exp[t/τ ]). This

fixes the pesky "instantaneous" shift of the boundary values from the initial condi-

tion in the start-up formulation. We first begin with a scale analysis on the impact

these boundary functions have on solutions. We search for an influence length ` and a

boundary time scale τb. Previously we scaled h with a representative height H0 calcu-

lated from the the initial condition using (2.7). The boundary time scale is calculated

to be

τB ∼
H0

V0
. (3.38)

In this time scale we do not use the length of the corner as we are considering the

time scale of up and down motion in the corner. We insert these time scales into the

governing equation to find ` is

` =

√
FiH2

0W0

3V0
. (3.39)

The boundary effects are inversely proportional to the boundary velocity. If the

boundary velocity is on the same order as the characteristic velocity, then the influence
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length is proportional to the height of the corner H0. With this concept we see that

for very slow boundary velocities the influence length extends into the entire solution

domain. In the original formulation recall our governing scales had V ∼ εW0. This is

the maximum boundary velocity our model can handle before inertial effects must be

considered. We use a standard approximation Fi = 1/7 to see the maximum influence

length at the boundaries is,

` ≤ H0√
21ε

. (3.40)

We already know then that the boundary velocities must be slow but how slow is

different question. To answer this we introduce a parameter a. We express the

boundary velocities as V0 = εaW0, with a ≥ 1. This allows us to split the effects of

time varying boundaries into simpler cases involving an analysis on a. We restrict

a < 1 because in this case V � W0, and all the assumptions used to derive the

governing equation are violated. Specifically, this means our velocity scaling was

incorrect as the dominate velocity would be up and down in the corner. This analysis

would require a full 3D analysis, this is a very interesting new path for this type of

flow and readers are encouraged to tackle such an applicable problem.

When we use the boundary time scale t ∼ 3L/FiV0 the new non-dimensional

governing equation is

∂h2

∂t
= ε2−a

∂2h3

∂z2
. (3.41)

The governing equation in this form shows a dependence on the boundary velocity

with the parameter a.
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Quasi-Steady a� 1

The first approximation we make are for very slow boundary functions. This is a

limiting case for when boundaries are weak functions of time. These are quasi-steady

flows. The solution is expressed in terms of the time dependant boundary functions

H1(t), H2(t).

h(z, t) = H1(t)(1− (1− β(t)3)z)1/3 (3.42)

We keep the same definition of β only now it is a function of time. This solution

does not require volume conservation either. However, eq. (3.42) will be our main

equation used to formulate the dynamics of average meniscus height in chapter 4.

Transient Boundaries a ∼ 2

There is a case when the boundary variations are on the same time scale as the

governing equations. This is really a fully dynamics problem and forces us into

strange new territory to approximate the transients. At this stage we will introduce

inspired by a new technique inspired by [27]. We refer to this technique as model-

approximation. We will simply alter the governing equation to yield analytical results.

This method is contentious, however we are confident in its accuracy by comparing it

to stable numerical solutions. We also are hinted a remarkable heat equation similarity

based on reoccurring transients in all the asymptotic analysis. It is quite stunning

how accurate an approximation this is when we compare numerical and analytical

solution surfaces with a relative error metric. We preface that we have no theory or

proof that such a method like this is general.

We are motivated by addressing the real non-linearity of our governing equation,

a mismatch of exponents. Let us revisit the original initial boundary value problem
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to solve. In our rescaling we assume that a ∼ 2. This means that ε2−a = η′ ∼ O(1)

Keep in mind that unless the corner is fully pinned this means our model is only valid

for 0 < h(z, t) < H0.

∂h2

∂t
= η′

∂h3

∂z2
, (3.43)

h(0, t) = H1(t) (3.44)

h(1, t) = H2(t) (3.45)

h(z, 0) = f(z) (3.46)

If the governing equation was instead,

∂h̃3

∂t
= η

∂h̃3

∂z2
, (3.47)

h̃3(0, t) = H3
1 (t) (3.48)

h̃3(1, t) = H3
2 (t) (3.49)

h̃3(z, 0) = f 3(z), (3.50)

we would have an infinite fourier series solution with time varying fourier coefficients.

The solution would come from a defining u = h̃3 and solving the differential system

using Fourier Series. The solution is,

u(z, t) =
∞∑
n=0

an(t) sinnπz, (3.51)
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where an(t) are solutions to n ordinary differential equations,

dan
dt

+ ηλnan = η2nπ(H3
1 (t)− (−1)nH2

2 (t)) (3.52)

an(0) = 2

∫ 1

0

f 3(z) sinnπzdz. (3.53)

The main question is then: How similar is h̃ is to h(z, t)?

This is the purpose of this final section and will be a reoccurring theme through

out this entire thesis. We have introduced a parameter η to the right hand side of

the equation as an “analytical” fitting parameter. We are motivated to do this as we

have altered the power on the left hand side of the differential equation, so something

heuristically must be adjusted on the right. We compare the numerical solutions of

both systems of equations and the analytical series solution. (3.51). The results are

seen in fig. 3.5 and fig. 3.6. It is remarkable how well the approximation is when we

select η = 4. This choice of η = 4 was done only with a manual bisection method

selecting integers. There certainly is room for an optimum selection of η in the future.

We present only our findings for this approximation methods that seems almost too

good to be true. In table xx, we present the error between the two solutions using

η = 4 and do a parameter sweep of boundary time scales. The initial condition

becomes less important as time grows which again verifies the recent stability proof

[42].

For a comparison we need to define a class of boundary functions. We are moti-

vated by applications of the proposed system and select cyclical functions modeling
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peristaltic pump frequencies. Our general class of boundary function as then,

H1(t) = A sin(ω1t) +H(0), (3.54)

H2(t) = B sin(ω2t) +H(1). (3.55)

Our parameter sweep is done for 0 < A,B < 0.3, 0 < ω1, ω2 < 100 The amplitudes

are bounded by A,B < 0.3 in order to ensure that h(z, t) > 0 for t > 0. Notice

our class of boundary function is constructed so that h(0, 0) = H1(0) ≡ H(0) and

h(1, 0) = H2(0) ≡ H(1). This is a continuity condition which allows us to assume a

solution exists and is unique. This is not an unreasonable assumption since, at least

in my experience, I have never seen a liquid in two places at the same time. This

importantly allows us to leverage the existence and uniqueness proof [44]. We are

only interested in real positive solutions 0 < h(z, t) ∈ R. This means even though we

are considering h̃ = u1/3, we know the other two solutions of this root are complex.

This means the inversion is one to one and valid for our purposes.

We must assume an initial condition at this stage in order to calculate anything.

This assumption is interesting and certainly a subject of further analysis. A rigorous

mathematical question would be to see if there exists from f(z) such that the solution

to eq. (3.43) diverges as t→∞. We will not worry about this detail as the results are

striking enough to present alone. We will use a simple constant initial condition used

in section 3.1. This is a general enough assumption, because we are more concerned

with the agreement of the solutions as time marches on and the initial conditions

becomes nothing but a memory. For a numerical simulation we will set T = 1000.

Given these assumption we have reduced the dimensional enough to populate a
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relative error surface. Our independent variables will be the ratio of the frequencies

and amplitudes A = A/B,Ω = ω1/ω2. We also plot in fig. (3.6) an error surface with

a maximum relative error defined as

∆(A,Ω) = max
|h̃(z, t)− h(z, t)|

h(z, t)
t ∈ [0, T ) z ∈ [0, 1] (3.56)

There are two ways to calculate h̃(z, t). One is to compute a partial sum of (3.51),

or to compute a numerical solution to u(z, t) and then compute u1/3. We provide

both simply to show agreement converges in both cases. This is shown in Fig. 3.6

and notice that the relative error is under 5% for the analytical h̃ and numerical. A

full parameter sweep table is far too large to include in a document, however a full

numerical investigation has been made mapping out this entire parameter space. The

data can be downloaded at,

https://github.com/smohler/thesis/.../error.csv

and investigated further. The main conclusion is that never once in this parameter

sweep did relative error grow beyond %5. I myself was truly surprised by this given

the ad-hoc nature of selecting η = 4

58



Nonlinear

Linear

Figure 3.5: A comparison of the solution surfaces with parameters A = 0.3, B = 0.05,
ω1 = 1, ω2 = 0.8. Graphically the surfaces are coincident even though the
h̃(z, t) is the solution to a linear equation. The analytical solution for the
linear case here is using N = 300 terms of the Fourier Series. The numerical
integration tolerance is set at the default values in Mathematica. For an entire
parameter sweep the surfaces resemble this, so this example is an illustration
of how well this approximation works
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% Error

Figure 3.6: The relative error between the solutions surface in Fig. 3.51. This particular
case is quite low but shares a common theme of this approximations. Most
of the error is in the middle of the domain about z ≈ 0.5. As we move closer
to the boundaries the errors decays to zero. This error surface continues like
this even for t→ 1000, which suggest that a stable approximation is achieved
with this method.
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4 Average Height Dynamics

The capacitance is an open channel’s ability to store volume. Until now our analysis

has been limited by assuming constant volume in the corner. In a real system of

parallel channels, the corners exchange fluid volume with each other. For instance,

if one channel were to become instantly blocked the volume of that corner would be

distributed to the others channels. This distribution would be seen as an increase in

the average height along the corner H̄. We derive a nonlinear differential equation that

governs the balance of flowrate thru and filling of a channel. Several assumptions must

be met to satisfy this equation and they are developed herein. This evolution equation

serves the model function for the capacitor term in a circuit network idealization. An

implicit integral solution is found and an approximations are made. The solution

behavior is dependent on the initial condition and boundary conditions of the corner.

It is determined that as time approaches infinity or if the initial profile and steady

state profile are approximately the same the solution behaves as an exponential. This

agrees with the analysis made so far when volume is conserved. If the initial average

height is far away from the steady state average height and the corner is draining,

the solution behaves with a power law H̄ ∼ t−k when t = 0, but still converges to an

exponential as t → ∞. Finally if initial average height is far away from the steady

state average but the corner is filling, the solution can be approximated as a cube

root of an exponential function.
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4.1 Average Meniscus Height

We are concerned with the volume drain or gain in a corner which means we seek to

understand the dynamics of volume in the corner V(t). At this point we focus on a

single corner. Until this point we have assumed that volume is conserved in a single

corner V ′(t) ≡ 0. We are now ready to relax this assumption. First we will define an

average meniscus height to be the root mean square of the integrated domain. This

assigns a single height value H(t) given a meniscus profile function h(z, t).

H(t) =

(∫ 1

0

h(z, t)2dz

)1/2

. (4.1)

With this definition we can now consider the volume dynamics in terms of average

meniscus height via,
dV

dt
=

d

dt

∫ 1

0

h(z, t)2dz =
dH2

dt
. (4.2)

To formulate a tractable model we first assume the existence of a steady state solution.

This means when it comes to corner accumulating or draining from a corner an

equilibrium is reached and

lim
t→∞

H(t) = H∞. (4.3)

This is a delicate assumption. We are a-priori assuming that given set corners with an

arbitrary distribution of initial fill levels, the system attains a steady state where all

the corners reach an equilibrium fill level H∞. This fill level is attributed to the steady

state flow-rate thru the corner. This is analogous to our original start-up problem

but now we have a parallel problem. Figure 4.1 is a schematic of such a process. At

t = 0 we have a system with many flat meniscus profiles all filled at different height
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values Hi(0) = Hi, where i = 1, 2, . . . N . These define N initial conditions to assigned

to the N nonlinear partial differential equations governing each individual corner. At

this stage we will still only focus on a single corner and drop the subscript i. The

major analysis is on the process of volume draining or gaining in the corner due to an

imbalance of flowrate in and out of the corner. The next question is what boundary

conditions do we assign to these N differential equations? This is the boundary value

problem which complicates all the matter.

If we knew exactly what the flowrate was in each corner at any instant in time

we could close this problem. One first approximation is to assume that a constant

flowrate is instantaneously imposed on every corner when t > 0. This amounts to

constant height values at the inlet and outlet of each corner. This process is just as

physical as our original start-up formulation discussed in 3, but unlike a single volume

conserving we can now have two cases for boundary heights. The first is volume drain

when H2 < H1 < H0, the second is volume gain when H0 < H2 < H1. We will ignore

cases when H1 < H2 as this is just the reversed flow situation.

In fig. 4.1a. we illustrate this process of instantaneously imposed boundary values,

and in fig 4.1c. we depict the steady state meniscus profile in every corner. This is

where all interior corner settle down to some calculated H∞. The murky waters lay in

the transients sketched in fig 4.1b. A major simplification comes from the realization

that instantaneously boundary conditions should be ignore entirely. The reason being

the solution can only model volume dynamics with opposing flowrate directions. This

is impossible as flowrate will always be left to right in these corners. Volume is really

accumulated from flowrate imbalance at the ends of the corner which slowly raise or

lower. Thinking back to sec 3.3 this is the the quasi-steady case when a � 1. This
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ℎ1 𝑧, 0 = ℋ1

ℎ2 𝑧, 0 = ℋ2

ℎ𝑁 𝑧, 0 = ℋ𝑁

Q ( t = 0 ) = 0

ON

Q ( t > 0 ) ≠ 0

ON

…

Q = Constant

H1

H2

H1

H2

H1

H2

𝑑𝑉

𝑑𝑡
≠ 0

ℎ𝑠(𝑧; 𝛽, 𝐻∞)

ℎ𝑠(𝑧; 𝛽, 𝐻∞)

ℎ𝑠(𝑧; 𝛽, 𝐻∞)

a.) b.) c.)

Figure 4.1: An illustration of the parallel start-up problem analogy. In a. all corners are
filled to some arbitrary level, they are free to be greater or less than steady
state fill level H∞ seen in c.. In b. we sketch how volume is not conserved in
a single corner.

motivates us to analyze volume dynamics in a corner as a quasi-steady process. This

allows us to port over the results of chapter 2 to investigate volume dynamics.

4.2 Quasi-Steady Volume Exchange

The assumption of quasi-steady manifests itself with very slow moving boundaries.

Even with this Quasi-Steady assumption this means that the flow speed parameter

is a function of time β(t). We would like to disjunct this assumption and say β is a

constant function. The following discussion is heuristic argument that this is valid.

Initially when t = 0 we will assume a flat meniscus height of H with β(0) = 1.

In the end we also are assuming that a slow flowrate is reached so similar to (4.3) we
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say,

lim
t→∞

β(t) = 1− ε ≡ φ0, (4.4)

and ε � 1. We have kept the same asymptotic parameter φ that was used heavily

in chapter 3. It is important to remember that given a small value of Q we have a

means to calculate φ0.

Since we are assuming equilibrium is eventually met with (4.3), we model these

boundary functions {H1(t/τ1), H2(t/τ2)} with just barely different time constants

τ1 ≈ τ2 � 1. We require that in the limit of these functions,

lim
t→∞

H1(t/τ1) = H∞(1 + ε1), (4.5)

lim
t→∞

H2(t/τ2) = H∞(1− ε2). (4.6)

where i = 1, 2, and 0 < εi � 1. Notice in the limits that H2 < H1 and furthermore,

φ0 =
1− ε2
1 + ε1

≈ 1. (4.7)

We next look at the transients of β(t), letting superscript (′) = d/dt and taking the

derivative we find

dβ

dt
=

H2H
′
1

τ2
− H1H

′
2

τ1
H2

2

. (4.8)

We now need derivative information on the boundary functions H ′
i(t). This comes

from the original scaling of the equations, recall that v0 ∼ εw0, and therefore H ′
1 ∼

H
′
2 ∼ εw0. With this final scale a necessary condition for when we can say β′(t) ≈ 0
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is

H2
2 � εw0

(
H2

τ2
− H1

τ1

)
≈ 0. (4.9)

A sufficient condition would be,
H2

τ2
=
H1

τ1
. (4.10)

Which means that not only do we need the time constants for the boundaries to be

large, but they indeed must be similar with τ2 ≈ τ1. With (4.10) we may approximate

β(t) ≈ φ0.

This allows for flowrate to be calculating using (2.9). We calculate flowrate of

quasi-steady flows using the generalized steady state equation (2.9).

Q(φ0, H(t)) = −H(t)3Γ(φ0) (4.11)

Γ(β) =

(
53

35

(1− β3)5

(1− β5)3

)1/2

(4.12)

This expression now lets us analyze the dynamics of this average fill height H(t). For

a large parallel system, fundamentally flow is split up from an initial source Qtot. The

simplest assumption is that for N corners, the flow is equally distributed amongst all

the corners at steady state. This means for a single corner in a parallel network the

steady state flowrate thru it becomes

lim
t→∞

Q(β(t), H(t)) =
Qtot

N
. (4.13)

We should note that a much more advanced analysis could be made with two more

refinements. One is to allow a more complicated distribution of flowrate in the corners.

A general approach would be to model the distribution with a partition of unity such
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that,

Qtot(t) =
N∑
i=1

φi(t)Qtot(t). (4.14)

Notice that (4.13) is a specific case of (4.14) where φi(t) = 1/N .

Let us now set a constant flow speed β = φ0 such that (4.10) holds. This simply

means that 1 − ε < φ0 < 1 where ε = ε2/(1 + ε1) We assume that we have a set of

corner all with an initial fill level H(0). Recall we have dropped indices for now as we

are still only analyzing one single corner. At this stage we already can make a bulk

prediction of the volume dynamics.

Case 1: Volume Gain,
Qtot

N
> Q(φ0, H(0)),

Case 2: Volume Drain, 0 <
Qtot

N
≤ Q(φ0, H(0))

The real power of all the assumptions made with (4.10), (4.13), and (4.3), is we can

now calculate H∞ to be

H∞ =

(
Qtot

N

)1/3
1

Γ(φ0)
. (4.15)

The power of (4.15) is that we have developed a set of assumptions that inform us

about the initial state and final state of a corner. We can calculate the boundary

heights in the final state using our generalized steady state solution (2.9)

H1 = h(0;φ0, H∞) (4.16)

H2 = h(1;φ0, H∞) (4.17)

We should remark that while we are using φ0 as an independent variable it really
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is dependent on flow rate. This illustrates even more the usefulness of (2.19). An

example situation would go as follows. A flowrate Qtot is set by an engineering

requirement. Given corner dimensions and fluid properties Qtot is then subdivided

into a design corner count N . This calculation is made explicit with (2.23). Next a

φ0 is calculated after qi is non-dimensionalize by Aw0 using (2.19). We also should

note that we can always satisfy qi � 1 simply by adding more corners into such a

parallel system. This means given a flowrate in the corner qi = Qtot/N � 1, we can

determine φ0, H∞, H1, H2.

4.3 Governing Nonlinear ODE

We will now develop a dynamical model of the volume transient in a corner. Our

model is highly restrictive given the assumptions developed so far. However, we make

the case that this is at least a starting point for more detailed investigations. If

a solution can be found there is always hope that more complicated solutions can

transform in some fashion to it, so our efforts are not completely in vein. Our model

begins with a small change in volume dV in a corner. Instead of considering a small

positive change in time dt we will use a negative difference −dt. We do this because

we already know the end state of this model and are only interested in the dynamics

of getting from initial to final state.

dV = Q(φ0, H∞)(−dt)−Q(φ0, H(t)(−dt) (4.18)

We non-dimensionalize this equation with the following scales:

H ′ ∼ H0 t′ ∼ 3L/FiW0Γ(φ0). (4.19)
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Here (′) refers to a dimensional quantity. We also define new parameter γ = H∞/H0 ∈

(0,∞) which is analogous to β. It is a non-dimensional number which measures the

intensity of flow rate. The difference between β and γ, is that β measures the axial

flow intensity while γ measures the cross-sectional flow intensity. Again, similar to β

when γ ≈ 1 we have very little flow. When H0 → 0 we have a very shallow corner

and γ → ∞. There is an interesting consequence of this which we can see from the

implicit solution of (4.20). The dimensionless governing equation becomes,

dH2

dt
+H3 = γ3, (4.20)

H(0) = 1. (4.21)

The right hand side of (4.20) is a constant value of γ for this parallel start-up prob-

lem. This comes from assigning constant boundary conditions to the original partial

differential equation. Similarly initial condition (4.21) originates from a root-mean-

square of the partial differential equation initial condition h(z, 0). The right hand

side of (4.20) would be a function of time if the boundary functions of the corre-

sponding PDE were also functions of time. Figure 4.2 plots the solution family for

(4.20) sampling various values of H(0) using Mathematica. We see indeed as t→∞

that H(t)→ 1. This supports the odd technique of considering −dt in our derivation.

Notice a distinction in the transients for γ < 1 and γ > 1. For γ < 1 we have draining

corners and it takes significantly longer to achieve steady state, so much so that for

γ = 0 it is never reached. For the case γ > 1, filling corners, we see very sharp

curvatures which attain steady state rapidly.
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Figure 4.2: The solution family is plotted for various initial conditions γ3 = [0 : 0.25 : 2].
The solution is starkly different about the point γ = 1. For initial condition
γ > 1 the solution behaves more more like an exponential. For γ < 1 the
solution is more similar to H ∼ t−1.
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The analytical implicit solution to (4.20) is found to be,

3C0γ − 3
γt

2
=

1

2
ln

[
(H − γ)2

(H − γ)2 + 3γH

]
+
√

3 arctan

[
2H + γ√

3γ

]
. (4.22)

The integration constant C0 is,

γC0 =
1

6
ln

[
(1− γ)2

(1− γ)2 + 3γ

]
+

√
3

3
arctan

[
2 + γ

γ
√

3

]
. (4.23)

This solution comes from various steps of integration by substitution. Analytical

inversion to fully determine H(t) is impossible due to the linear combination of tran-

scendental functions.

4.3.1 Asymptotic Analysis for γ

We will now investigate the dynamics for the various magnitudes of γ and t. In

each case we get a simplification which can then be inverted, yielding an analytical

expression for H(t). There are two branches of this solution defined by γ. For volume

draining we are in the domain γ ∈ (0, 1), while for volume gaining we investigate

γ ∈ (1,∞). For each of these branches we have “early time” large time dynamics

t → ∞. These are characterized by t → 0 and t → ∞ respectively. We seek a full

picture of the solution H(t) by considering γ ∈ (0, 1)
⋃

(1,∞). Our analysis is all

dependent on an initial ansatz of

H(t) = δ0(γ)H0(t) + δ1(γ)H1(t) + δ2(γ)H2(t) + . . . , (4.24)

where {δi(γ)} is an asymptotic sequence such that δi+1/δi → 0. We have left the

asymptotic sequence general because δi(γ) ≡ γi will not work for the case γ = 1. It
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is certainly of interest to investigate the dynamics about this point for two reasons.

(a) Volume variation in the corner in practice are very small due to creeping flow

rates β ≈ 1. Since H represents a root mean square of a meniscus profile the

variation in this value due to flow intensity is extremely small. One can show

this when considering (2.9) with 0 ≤ β ≤ 1.

(b) Since we are considering massively parallelized corners where N ∼ O(104) large

jumps in flow rate must come from hundreds of corners becoming blocked in-

stantaneously.

Draining or Filling γ ∼ 1 We are considering variations about so we will say

γ3 = 1 ± ε. This will make for a much more cleaner analysis. Cast in this frame

work, the asymptotics give us O(1) and O(ε) differential systems to solve. The O(1)

system is

dH2
0

dt
+H3

0 = 1, (4.25)

H0(0) = 1. (4.26)

while the O(ε) is

2
dH1

dt
+ 3H1 = ±1, (4.27)

H1(0) = 0. (4.28)

72



This give an asymptotic solution for volume variation when γ ∼ 1

H(t) ∼ 1± ε

3
(1− e−3t/2) (4.29)

and agrees with the numerical solutions as well. The rest of this chapter could be

skipped for this solution has the most useful conclusions. The main one being we

can approximate volume gain or drain in a corner exactly like a capacitor in a circuit

model. This is because the form of (4.27) is linear and mimics a model of capacitance.

Draining γ → 0 For this case the solution is analytical and reveals the H ∼ 1/t

time scales which come from the original equation.

lim
γ→0

H0(t) =
2

2 + t
. (4.30)

Filling γ > 1 First when γ → ∞, the solution looks like H(t) = γ3. A more

interesting case though is for large but finite values of γ > 1. In this case a corner

could fill to around two or three times its initial fill level. Situations like this could

arise in such a massively large system so we should consider their dynamics. In this

case we have no techniques to approximate the solution, this is because we are forces

to determine the inversion of (4.22). We can however use our model approximation

which we have used previously in sec 3.3 to obtain analytical expressions. We instead

solve equation,

η
dH3

dt
+H3 = γ3 (4.31)
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Figure 4.3: Model approximation is used to estimate the dynamics of γ ' 1. In this
plot the parameters are set a η = 0.44 and plot γ3 = [0.1 : 0.3 : 3]. Notice
the approximation gets worse as γ increases. This suggests there is some
dependence for an optimal η(γ) for a best approximation.

with the same initial condition (4.21). We have inserted an arbitrary scaling term η

to compensate for our alteration H2 7→ H3. This equation has the analytical solution

H(t) =
(
γ3 + (1− γ3)e−t/η

)1/3
. (4.32)

Figure 4.3 is a comparison of these solution for γ3 ∈ (1, 3) and η = 0.44. The value of

η was chosen a heuristic bisection method just as we did in sec 3.3. Determining an

optimal constant is certainly an interesting question for future research. Figure 4.3.b

is the relative error between the solutions. We again find that this model approxi-

mation does a fantastic job with a relative error below 4%. In this scenario though

there is a caveat. The approximation is getting worse as γ increases. This does

suggest there may be some optimal mapping η(γ) that could prove to provide good

approximation for γ ∈ (1,∞).
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5 Multiple Corners

In this chapter we only derive the resistances and capacitances of individual circuits.

We follow a methodology of a recent micro-fluidic parallel investigations[17]. That

is, we lay the foundations for an electrical circuit analogy approximation. The crux

of this is to identify a resistance suitable resistance term Rc, and a capacitance C to

associate to each corner element. We do some manipulation to derive these quantities,

the analytical electrical circuit solution can be found by following the methods of

engineering circuit analysis. We do not present such analysis herein as we ran out of

time and had to graduate eventually. However we do provide the explicit expressions

for Rc, C that could be implemented into a much larger software implementation at

a future date.

5.1 Flow Circuit Analogy

We have made an extensive investigation on the dynamics of flow in a corner of finite

length. This was all motivate however to answer the question about how a system

of several thousand corners would behave. Circuit analogies are quite productive for

engineers to make first principles decisions with. Our analysis so far has identified the

limits of our 1D model for the corner and now we will continue toward formulating

a linear flow circuit. Each corner is modeled as an RC circuit element. In order for

liquid to reach these corners as well manifold tubing must installed we will model it
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with laminar flow in cylindrical pipes. The relation,

∆P =
8µL

πr4
Q (5.1)

defines a our manifold pressure drops in the system, with flow resistance RM =

8µL/πr4. Manifold tubing inherently has many twists curves and bends. Imagine all

these effects can be encapsulated in a term R̃(i) where i will refer to a specific path.

This can be modeled with an additional resistance terms such as RM(i) = RM + R̃(i).

Corners will be indexed with i = 1, . . . , N . Fig. 5.1 is a schematic depicting this

idealization of such a system. Notice that each interior corner is modeled as a parallel

unit of a resistor Rc and capacitor. This is motivated by the analysis of Sec. 4, where

we showed that variations about an average fill level behave linearly.

Circuit Resistance The first question is what is the resistance associated to each

corner. We calculate this by considering the dimensional pressure gradient across a

steady state corner. We find

∆P ′ =
σ

f(θ, α)

( 1

H ′2
− 1

H ′1

)
. (5.2)

We have already shown that flowrate thru a corner establishes boundary conditions.

In general this means βi = β(Qi). The explicit dependence to boundary conditions

to be

∆P =
σ

H0f

(√3(1− β5)

5(1− β3)

)( 1

β
− 1
)
. (5.3)

Next we return to the steady state flowrate expression Eq. (2.10), which is as well a

function of β and H. We have discussed at length how our model is only valid for
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Figure 5.1: Massively parallel interior corner idealized as a flow circuit. Importantly there
are resistors to and from each corner RM (i). These manifold resistors are
dominant, meaning corners contribute to transients not resistance to a system.
A simpler model is then just two resistors attached to a parallel capacitor and
wire block.

77



quasi-steady processes. This motivates an expansion about β = 1 in Eq. (5.2) and

Eq. (2.10), yielding

∆P ′ ≈ −(β − 1)σ

fH0

, (5.4)

Q′ ≈ |(β − 1)|σH3
0 sin2(α)FAFi

3fµL
. (5.5)

We equate these expressions by multiplying Eq. (5.5) by 3L cosαµ/H4
0 sin3. This

gives us an approximate Pousielle type law for the corner resistance,

∆P ′ =
3Lµ(1− β)

H4
0 sin2 αFAFi

Q. (5.6)

We use well verified approximation Fi ≈ 1/7 to find the corner resistance to be

Rc =
21Lµ(1− β)

H4
0 sin2 αFA

. (5.7)

We can now investigate a resistance ratio in terms of our old asymptotic parameter

φ defined in Ch. 3
Rc

RM

=
21φπ

sin2 αFA

(
r

H0

)4

. (5.8)

We will remark that yes φ is a function of flowrate as seen in Eq. (2.19). However

no matter the variation we must lay in the quasi-steady range where flows are at a

creeping pace. Given our assumptions this restricts 0 < φ� 1. The most dominant

term however is this ratio of manifold tube radius to the initial corner fill height r/H0.

Considering this ratio it is by necessary design that r/H0 < 1. Since this ratio is then

raised to such a large power this resistance ratio is a very small number. Figure 5.2.
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Figure 5.2: The ratio of manifold and corner resistance as a function of geometry.

is a plot of this ratio for a sweep of parameters.

Circuit Capacitance We now look for a corner capacitance. This will utilize the

first order asymptotic model found in the end of Ch. 4. Recall this expansion we valid

for γ = H∞/H0 ≈ 1 and for quasi-steady processes. A capacitance analogy begins

with a definition,

C
dm

dt
=

dP

dt
(5.9)

This definition is borrowed identically from the theory of electricity with a relabeling

of variables. We will use the mass of liquid in the corner m instead of electrical

charge q and pressure P instead of voltage v for our potential. The capacitance is

a proportionality constant between the rate of change of pressure and the rate of

change in flowrate. We calculate both side separately then and search for what a
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model expression for C would be;

dm

dt
= ρ

dV

dt
= ρQ

= ρ
d

dt

∫ 1

0

FAh
2dz

= ρ
dH2

0

dt
dP

dt
= − d

dt

σ

fH0

=
σ

fH2
0

dH0

dt
.

We achieve equality if we let

C =
σ

2ρfH3
0

. (5.10)
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6 CO2 Absorption Effects

So far, our governing equation for meniscus height has constant density, viscosity, and

surface tension functions. We now make a short analysis on the effects of additional

gradients imposed on a corner. The variables of interest are concentration C(z, t) and

temperature T (z, t). Their governing partial differential equations are identical. The

thermo-physical properties {µ, ρ, σ} are functions of both temperature and concentra-

tion. A scale analysis shows the dominate effects are in the axial direction with a very

slow time scale. The temperature and concentration steady state solutions T (z), C(z),

yields model expressions for µ(T,C), σ(T,C), µ(T,C). These thermo-physical gradi-

ents effect the meniscus height when they are substituted into a mass balance across

the corner. This derives a new governing equation for the meniscus height along the

corner. This new equation is highly nonlinear, but importantly all the effects of the

property variations is encoded into three coefficient functions a(z), b(z), c(z). This

makes a connection between property variation and an analysis of these coefficient

functions. More is to be done here as model approximation is still a viable to estimate

the full solution of this complex problem. One can compare a numerical solution to

an analytical one where the time derivative part of the governing equation is changes

with h2 7→ h3, just as was done in sec. 3.3. We do not preform this analysis herein, we

only derive the coefficient functions. At a later date which publications will illustrate

and quantify just how effective this method is.
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6.1 Introduction

The operation for CO2 scrubber necessarily requires an increase in density. An in-

crease in density changes the volume of liquid in the corner which change the resistance

and capacitance. We increase the fidelity of the interior corner model by including

the effects of sorbent liquid absorbing CO2 from the ambient air. The process is mod-

eled as a mass flux across the free surface of the liquid. The model produces a new

governing equation for the meniscus height that is similar except for an additional

terms. These additional term makes an analytical steady state solution intractable.

We can however identify the functional connection between property variations and

coefficient functions a(z), b(z), c(z). The effects of these coefficient functions slightly

alter the meniscus height.

The degassing phase of a CO2 scrubber introduces heat to boil off the absorbed

gas. The addition of a temperature gradient alters the surface tension, viscosity, and

density properties of the liquid. Changes in these properties directly contribute to

the characteristic time expression. The goal of this analysis is to calculate correction

factors for the degassing and absorbing operations. We will assume that the contact

angle θ remains constant. From experiments we know this not to be the case. Slight

molecular changes to a fluid can result in reasonably large hysteresis ∆θ ∼ 10°. The

analysis of constant θ only show how insignificant the effects are to meniscus height

h(z, t). These functions σ(T ) and µ(T ) are left arbitrary for now but be addressed

later on. We derive a new governing equation for meniscus height h(z, t) and find

new terms. An entire class of steady state solutions is possible that are dependent on

σ(T ), µ(T ), and ρ(T ).
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6.2 Mathematical Formulation

Critical dimensions are noted for the slender finite interior corner capillary flow

sketched in Fig. 1.5. The corner is partially-filled with a wetting liquid of viscos-

ity µ and surface tension σ and satisfies the Concus Finn condition. The function

h(z, t) is the height of the meniscus center-line along the corner, where h(0, t) ≡ H1 is

the inlet boundary height, used also as the characteristic height of the flow, L is the

corner length, and h(L, t) ≡ H2 > 0. A variety of similarity solutions arise [3, 28, 4]

for the condition h(L, t) = 0. The slenderness ratio ε = H1/L appears in the dimen-

sionless momentum equations [9] and serves as a small parameter allowing asymptotic

analyses when ε2 � 1. This limit enables the lubrication approximation in the mo-

mentum balance while reducing the normal stress condition at the free surface to

the Young-Laplace equation, which is solved analytically to find the entire transient

free surface as a series of circular arcs in x-y planes. This result allows us to define

a dimensional local radius of curvature R(z, t) = fh(z, t) for any point z0 ∈ [0, L],

where

f(α, θ) =
sinα

cos θ − sinα
(6.1)

is a geometric surface curvature function. We note that the axial pressure is given by

P = σ/R.

Nondimensionalization of the governing equations is established using the scales

listed in Table 6.1 The dimensionless momentum, concentration, and heat equations

adopt the material derivative operator D/Dt ≡ ∂/∂t+(V·∇). The critical dimension-

less groups that arise are Suratman number Su = ρ0σ0L/µ
2
0, species Peclet number

PeD = σ0L/µ0D, and thermal Peclet number Peκ = σ0L/µ0κ (or thermal Marangoni
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number), where D and κ are the liquid species and thermal diffusivities, respectively.

These groups are essentially Reynolds and Peclet numbers defined on the capillary

velocity scale σ0/µ0. The superscript + adds geometric scaling to Su+ = Su sin4 α/f ,

Pe+D = PeD sin4 α/f , and Pe+κ = Peκ sin4 α/f . We will also define a dimensionless

Laplacian operator

∇2 ≡ sin2 α
∂2

∂x2
+ cos2 α

∂2

∂y2
+ ε2 sin2 α

∂2

∂z2
. (6.2)

With these definitions the general system of equations is

ε4Su+
Du

Dt
= −∂p

∂x
+ ε2µ∇2u, (6.3)

ε4 tan2 αSu+
Dv

Dt
= −∂p

∂y
+ ε2 tan2 αµ∇2v, (6.4)

ε2Su+
Dw

Dt
= −∂p

∂z
+ µ∇2w, (6.5)

∂ρA

∂t
+
∂ρQ

∂z
= 0, (6.6)

ε2Pe+D
DC

Dt
= ∇2C, (6.7)

ε2Pe+κ
DT

Dt
= ∇2T. (6.8)

The associated boundary conditions in terms of the velocity vector fieldV = [u, v, w]T ,

and the stress tensor T = µ(∇V +∇VT )− P I are

n ·Tn = σ(∇ · n), (6.9)

n ·Tt = ∇σ · t. (6.10)

Thermal gradients cause ∇σ 6= 0 which induce additional surface stresses. Inertial
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Table 6.1: A summary of all dimensionless variables. The scaling is motivated by the
geometry shown in fig. 1.5. Dimensional quantities are indicated with an up-
percase prime.

Length Velocity Properties Other
x = x′/H1 u = u′/εW0 σ = σ′/σ0 P = H1fP

′/σ0
y = y′/H tanα v = v′/εW0 tanα ρ = ρ′/ρ0 t = W0t

′/L
z = z′/L w = w′/W0 µ = µ′/µ0 A = A′/H2

1 tanα
h = h′/H1 W0 = εσ0 sin2 α/fµ0 ε = H1/L

〈w〉 = 〈w〉′/W0 T = T ′/T0
Q = Q′/W0H

2
1 tanα C = C ′/C∞

terms may be neglected at zeroth order when ε2Su+ � 1, ε2Pe+D � 1, and ε2Pe+κ � 1,

which is frequently the case due to the slenderness of the flow.

Concentration Gradients

The presence of concentration gradients at the interface create variations in fluid

thermophysical parameters ρ, σ, µ. Surface tension varies with temperature and con-

centration and can create additional shear flows at the interface. Viscosity variations

alter the shear stresses at the wall causing an increase or decrease of flow magnitude.

Finally density variations due to gas absorption alter the inertial character of the

flow. In the limit of ε2Pe+D → 0, eq. (6.7) reduces to a Laplace equation for C(x, y, z).

Due to the scaling in eq. (6.2), zeroth order effects are in the x, y cross dimensional

plane, while first order effects of ε2 are in the axial z direction. In second order effects

of order ε4, concentration has variations in the x-y plane. These effects model the

concentration distribution in the thin penetration layer on near the interface. Second

order effects will be ignored herein. Since the zeroth order effects only imply that

concentrations must be constant in a cross sectional plane, we will refer to the con-

centration field as C and not C1 as would be the case in standard asymptotic analysis,
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These effects are governed by

∂C

∂t
=

sin2 α

Pe+D

∂2C

∂z2
, (6.11)

C(0, t) = 0 & C(1, t) = 1, (6.12)

C(z, 0) = 1. (6.13)

The boundary conditions and initial conditions require some discussion. Our bound-

ary conditions model pure liquid entering the corner on the left hand side at z = 0

and fully saturated liquid at the outlet, z = 1. We impose an initial condition that

at the beginning of this process our corner is fully saturated at C∞. These conditions

then model the transients and behavior of pure liquid continually refilling a corner

which is a process common in CO2 scrubbing application [12, 11]

Temperature Gradients

Temperature gradients follow an identical formulation as concentration. The zeroth

order effects conclude constant temperature values in an arbitrary cross section within

the corner. The first order effects of ε2 imply linear axial variations in the z-direction.

We again will neglect the second order effects since they are on the order of ε4, and

further more refer to The first order system of equation is found to be

∂T

∂t
=

sin2 α

Pe+κ

∂2T

∂z2
, (6.14)

T (0, t) = 1 & T (1, t) = Tout, (6.15)

T (z, 0) = Tout. (6.16)
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Pressure Gradients

We consider the zeroth order effects of in the limit of ε2Su+ → 0. In the slender flow

limit, ε2 � 1 and ε2f � 1, the momentum eqs. (6.3)-(6.5) and eqs. (6.18), (6.19)

reduce to,

∂p

∂z
= µ

(
sin2 α

∂2w

∂y2
+ cos2 α

∂2w

∂x2

)
, (6.17)

0 = w(x, y = ±x), (6.18)
f

sinα

dσ

dz
= µ

(
K1(α)

∂w

∂x
−K2(α)

∂w

∂y

)
. (6.19)

We have defined geometrical scaling functions K1 = sin2 α/(sin2 α + (S ′)2 cos2 α)1/2

and K2 = S ′ cos2 α/(sin2 α + (S ′)2 cos2 α)1/2, where S(y) = x defines the interface

curve at each cross-sectional plane illustrated in fig. 1.6.

There are two critical facts about this system of equations. First the system is

known to have a unique solution w(x, y) which allows us to define an average velocity

as

〈w〉 =
1

A

∫
A(z,t)

w(x, y)dA. (6.20)

Second the system is linear which allows us to construct the solution via superposition

or two solutions. The first solution wp(x, y) is the pressure driven part where we let

dσ/dz = 0 in eq. (6.19). The second is the shear driven solution ws(x, y) where

∂p/∂z = 0 in eq. (6.17). The solution is a linear functional combination of these two

functions given by,

w(x, y) =
1

µ

∂p

∂z
wp(x, y) +

f

µ sinα

dσ

dz
ws(x, y) (6.21)
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We substitute eq. (6.21) into eq. (6.20) and abstract the details of the integration

over the cross-sectional area into O(1) geometrical functions Fi, Ei. These functions

have been found to be weakly dependent on α and sufficient approximations is made

with 1/7 . Fi . 1/8. We will assume the same can be said for Ei. Moreover,

because of eq.(6.11), (6.14) we know that temperature and concentration variation

is predominantly in the z-direction. This justifies that the coefficient functions that

appear in eq.(6.21) play no role in the integration. We note that P = −σ(z)/fh(z, t)

which leads us to an expression for average axial velocity,

〈w〉 = −Fi
µ

(
σ
∂h

∂z
− 1

h

dσ

dz

)
+
Ei
µ

fh

sinα

dσ

dz
(6.22)

Continuity

Our final governing dynamical equation comes from the integrated continuity equation

eq. (6.6). Substituting Q = 〈w〉A, A = FA(α, θ)h2, and eq. (6.22) into eq. (6.6) and

defining E = 1 + Eif/Fi sinα we derive

∂h2

∂t
= a(z)

∂2h3

∂z2
+ b(z)

∂h3

∂z
+ c(z)h3, (6.23)

h(0, 1) = 1 & h(1, t) =
H2

H1

≡ β (6.24)

h(z, 0) = g(z), (6.25)
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where have defined

a(z) =
Fiσ

3µ
(6.26)

b(z) =
Fi
3ρ

{ d

dz

(ρσ
µ

)
− 3E

ρ

µ

dσ

dz

}
(6.27)

c(z) = −FiE
ρ

{ d

dz

(ρ
µ

)dσ

dz
+
(ρ
µ

)d2σ

dz2

}
. (6.28)

Here we have defined E = 1 + fEi/Fi sinα. We have set the corner to have some

initial meniscus height curve g(z) at t = 0. Our boundary conditions imply a constant

pressure gradient across the corner. The majority of the analysis herein focuses on

the effects of the magnitudes and functional forms of equations (6.26), (6.27), (6.28).

Notice that by selecting equations of state such that σ(T,C), ρ(T,C), µ(T,C) coupled

with the steady state solutions to eq. (6.11) and eq. (6.14) make (6.23) a fully defined

differential system. This makes the study of thermophysical parameter variation in a

slender corner an analysis of defining equation of states. Currently there is no theory

to derive these equations of state for a liquid which forces us to empirical formulae

obtained from experiments or linear approximations. The later case is suitable if we

consider only small temperature and concentration gradients.
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7 The Pinned Corner

Another layer of complexity for the interior corner flow dynamics is the case of a

pinned contact line. This occurs when the fluid has filled the corner completely. When

the fluid pins to the corner the contact line can freely increase or decrease creating two

cases. One is if it increases to the liquid’s contact angle on the exterior top surface

and wet outward. The other is if it decrease until it equals the contact angle on the

interior of the corner, de-pin, and leave us with the results of this thesis. This variable

angle creates a non-constant area scale function FA which can no longer be taken out

of the spatial derivative in the governing equation. However, the meniscus height in

this case is only a function of the contact line angle h(θ(z, t)). We can formulate a

new governing differential equation using the chain rule and the geometrical functions

FA(θ), h(θ), and f(θ). This analysis gives a path for future work to create much more

accurate models of the corner flows which, in operation, are usually pinned. Even if

not pinned, sensitivity derivative show the largest contribution to meniscus height is

contact angle hysteresis. As the liquid properties change over large time intervals the

contact angle will indeed change. This long scale dynamic will be of great importance

to the future of understanding this passive system.
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7.1 Fully filled corners

Describe fully filled corners and the problems they arise in. Almost always in practice

corners end up fully filled and with the liquid pinned at the top corner. We seek to

have corners as full as possible, since larger heights correspond to more surface area

for diffusion to take place. Previous analysis focuses on the depinned problem because

of the soluble problems it provides. This last section aims to set the stage for new

investigations which are more realistic for engineering designs. We will keep all of the

assumptions made in chapter 1 but relax the condition on FA = FA(θ, α). We also

must assume that the corner geometry is constant in the axial direction α 6= α(z).

There is still much further work to be done in estimation of more complex cases.

The most interesting case would be a combination of both pinned and depinned

dynamics occurring within the corner. This would occur if the upstream pressure is

low enough. The location where the fluid depins would be some z0 ∈ (0, L). At this

point the meniscus will form a cusp and be non-differentiable. This makes hope of

an equation to describe both sections impossible. A patching between both solutions

would be necessary.

7.2 Mathematical Formulation

For the pinned condition we shall reformulate our governing equation only slightly. We

will shift our focus to θ(z, t). The geometry illustrated in figure 7.1 shows h = H− s.

The circle arc height s is a trigonometric formula.

h = H(1 + f(1− cos δ))−1. (7.1)
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Figure 7.1: Each subscript refers to an advancing time step. Here the contact angle begins
at θ0 and the next time step is at θ1. The cross sectional area is now a function
of this changing contact line angle. The height of the meniscus changes one-
to-one with this contact line angle.
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Figure 7.2: Here we have set H = 1. As θ(z, t) varies we see h(θ) is monotonically in-
creasing function for all values of α. For smaller values of α i.e. thin corners,
we see less variation in height due to θ.

As long as one knows the height of the interior corner while empty the meniscus

height can be calculated. Recall that δ = π/2 − (α + θ) and is simply a shifting

of angles. Any derivatives simply make a change of sign as the angles are inversely

proportional. We plot the function for various half interior angles in figure 7.2. All

pinned dynamics correspond to sliding along these curves for a given α. Our goal is

to determine the suitable θ parameterization along these curves.

What is important about eq. (7.1) is that we have set up the composition h(θ). So

area can be thought of as 

A(z, t) = FA(θ(z, t))h2(θ(z, t)) and Q(z, t) = FiA(θ(z, t))∂zh(θ(z, t)) These functional 

form are far to nonlinear to make any analysis useful. We shall in-stead state that A = 

A(θ) and use eq (7.1) for our governing equation. The governing
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equation comes from the same mass balance made in chapter 1.

∂A

∂t
= −∂Q

∂z
,

∂A

∂θ

∂θ

∂t
= −Fi

∂

∂z
(A
∂h

∂θ

∂θ

∂z
).

It is helpful now to denote dA
dθ

= A′ and to shift to subscript partial differentiation.

We carry on and find,

A′θt = FiA
′hθθ

2
z + FiA(hθθθ

2
z + hθθzz), (7.2)

θt = (Fihθ + Fi
A

A′
hθθ)θ

2
z + (Fi

A

A′
hθ)θzz, (7.3)

θt = a(θ)θ2z + b(θ)θzz. (7.4)

In (7.4) we have abstracted the coefficient functions to a(θ) and b(θ). The properties

of these function is the majority of the rest of this analysis. One should notice the

remarkable similarity to the previous governing equation for the meniscus height. But

at this stage, one could solve this equation and use the solution for θ(z, t) to calculate

meniscus height, flowrate, and surface area, {h,Q, SA}.

7.3 Analysis of a(θ) and b(θ)

The full expressions for these coefficient functions are quite formidable. The simplest

analysis we can preform is to plot both functions for small domains of θ. Figure 7.3

and 7.4 are plots of both a(θ) and b(θ). Whatever the output of the function θ(z, t)

is, the value of a(θ(z, t)), b(θ(z, t)) must exist on these curves. We plot the entire

domain of contact angles as well. The right of the center red line are non-wetting
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liquids, to the left are the wetting liquids. We select three values of of the half interior

corner α = {7.5◦, 15◦, 25◦}. These angles represent thin, medium, and wide corners

respectively. Figure xxa. shows that the entire output of a(θ) < 2,∀θ ∈ (0, π). Figure

xxb shows similarly that 0 < b(θ) < θ,∀ ∈ (θmin, π), where θmin ≈ 0.6 radians. There

is a major conclusion just from this.

The depinned case can be thought of as just a relabeling of variables θ 7→ h, with

specific coefficient functions a(h) ≡ 2 and b(h) ≡ h

θt = a(θ)(θz)
2 + b(θ)θzz

ht = 2(hz)
2 + hhzz.

From the above discussion we can conclude now that

θt < ht. (7.5)

This is quite a stunning result. We know that the dynamics of a pinned corner now

are much slower than corners with free contact lines. There is also another major

difference between the structure of the these equations. This is that a(θ) < 0 for

some values of θ depending on the corner angle.

7.4 Approximate Solution

A solution for (7.4) is not available. The form of the equation may be simpler, but

the shear nonlinearity and number of terms in the coefficient functions a(θ) and b(θ)

make even the modest asymptotic analysis quite ugly. At this point we simply change

the governing equation to yield a solution. What is incredible about this one is all we

95



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

θ

a
(θ
)

α = π/32

α = π/16

α = π/8

Figure 7.3: A plot of coefficient function a(θ). The thick line above indicates that a(θ) < 2.
The thin black line is the zero line. Notice that a(z) may take on positive or
negative values
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Figure 7.4: A plot of coefficient function b(θ). The thick line shows that b(θ) < θ, as
long as θ ' 0.5. Notice that comparing to Fig. 7.3, b(θ) has a much weaker
dependence to α. Also, unlike a(θ), b(θ) is a strictly positive function.
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have to do is replace b(θ) 7→ 〈b〉. This makes the differential equation to solve instead

θt = 〈b〉θzz, (7.6)

with boundary conditions θ(0, t) = θ1, θ(1, t) = θ2 and initial condition θ(z, 0) = θ0.

The motivations to do this come only from how successful this method has been thru

out this entire thesis. Figure 7.5, 7.8 compares the solutions to these two differential

equations. We have three solutions compared. There is the numerical solution to

the original equation, the numerical solution to the approximation equation, and the

infinite series analytical solution to approximation model. The solutions are nearly

coincident. Surprisingly the standard linear heat equation does a better job at ap-

proximating the pinned case. We observe that the largest error in this approximation

is at the beginning when adjusting from an initial condition. An immediate gap that

could be filled is to mimic the work of [42], and prove that the pinned governing equa-

tion is also Lyapunov stable, or better yet asymptotically or exponentially stable. I

myself cannot add any more to this analysis but encourage other to take a stab at it,

the analysis is quite painful given the shear size of the coefficient functions a(θ), b(θ).

With that I will end encouraging you, the reader, to maybe consider model ap-

proximation when facing on nonlinear diffusion in finite domains. I will end with a

most surprising fact that even in a dynamical boundary function case just we studied

in sec. 3.3, eq. 7.6 does a fantastic job. We illustrate this finally with fig. 7.7 and

fig. 7.8. This error still was bounded just as it was in sec. 3.3 never becoming greater

than 10% relative error. Fascinating.
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Nonlinear

Linear

Figure 7.5: An example of the two solution surfaces superimposed on one another. The
approximation is so good that the two surface are coincident making the en-
tire surface look blue. This example is done with α = π/8, θ1 = π/6, θ2 =
π/8, θ(z, 0) = θ2z

2 + θ1(z − 1)2
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Figure 7.6: We plot the relative error between surfaces along the z = 0.5 plane, where
the error is largest since it is the furthest from the boundaries. The initial
condition is kept the same as it is in Fig. 7.5, The relative error of this ap-
proximation is inversely proportional to α. The error however decays do to a
1% at steady state.
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Nonlinear

Linear

Figure 7.7: A model comparison for time dependent boundary conditions. The boundary
conditions here are θ(0, t) = π

8 + 0.4 sin(πt), θ(1, t) = π
6 + 0.1 sin(2πt).
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Figure 7.8: We plot the relative error in the same fashion as we did in Fig. 7.6. The
relative error of this approximation is still inversely proportional to α, now
there is no decay to a steady state. However, the error never exceeds 10% as
time continues.
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