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Abstract 

Quantum computing has become an important research field of computer science and 

engineering. Among many quantum algorithms, Grover’s algorithm is one of the most 

famous ones. Designing an effective quantum oracle poses a challenging conundrum in 

circuit and system-level design for practical application realization of Grover’s algorithm. 

 

In this dissertation, we present a new method to build quantum oracles for Grover’s 

algorithm to solve graph theory problems. We explore generalized Boolean symmetric 

functions with lattice diagrams to develop a low quantum cost and area efficient quantum 

oracle. We study two graph theory problems: cycle detection of undirected graphs and 

generalized hypercube partitioning. We present a novel method to design a quantum oracle 

to solve Boolean function minimization problems which occur in classical circuit 

optimization.  
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 Chapter 1: Introduction  

1.1 Overview 

At a conference on physics and computation at the Massachusetts Institute of Technology 

(MIT) in 1981, Richard Feynman, one of the greatest physicists of his time, asked the 

question, “Can we simulate physics on a computer? The answer is no, at least not all the 

physics, but one of its branches called quantum mechanics.” Studies on the laws of nature 

at the atom and particle level have been of interest in the field of quantum mechanics. If 

we tried to simulate this on a standard computer, then we would end up with the problem 

of having to deal with too many variables that the computer would not be able to handle. 

For instance, if a particle is described by two variables, then for n particles, we would need 

2n variables. Therefore, if we have 1,000 particles, then we would need 21,000 variables, and 

the computers that we have at present will seldom, if ever, have enough memory to store 

such large quantities of values. Hence, instead of trying to simulate quantum mechanics on 

a computer, our goal was changed to building a quantum mechanical computer that would 

be dramatically better than ordinary computers. 

 

The question of how to practically design a quantum computer was answered for the first 

time with the prototype for a quantum computer demonstrated on February 13, 2007, by 

D-Wave Systems, Inc. at the Computer History Museum in Mountain View, California. It 
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consisted of a 16-qubit quantum annealing processor. On May 11, 2011, D-Wave 

announced D-Wave One, “The world’s 1st commercially-available quantum computer” 

operating on a 128-qubit chipset via quantum annealing to solve optimization problems, 

and on August 20, 2015, they also announced the general availability of a 1,000+ qubit 

quantum computer called the D-Wave 2X system, which was designed to handle complex 

problems. 

 

There are several technologies and types of quantum computers being developed. 

Technology giants like Google, Microsoft, Intel, and IBM are coming together in quantum 

computer competitions in different areas, such as quantum design automation, quantum 

simulators, quantum algorithms, quantum chip design, and quantum cloud computing. 

 

There are three concepts in the IBM 2020 quantum roadmap: kernels, algorithms, models. 

The kernel developers are focusing on creating high-performance quantum circuits. 

Algorithm developers rely on these circuits to develop groundbreaking quantum algorithms 

that might provide an advantage over current classical computers. Model developers apply 

these algorithms to solve real-world problems in chemistry, physics, biology, machine 

learning, and optimization by creating different quantum models. 
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In this dissertation, we propose a quantum algorithm design methodology with which to 

solve graph-theory-related problems in which we make use of the symmetry of Boolean 

functions. Our methodology is based on lattice diagrams and the Grover algorithm. We 

transferred the graph problems to constraint satisfaction problem that uses Boolean 

symmetry. We took the area-efficiency advantage of the lattice diagram into account to 

create our quantum oracles with reduced complexity and, thus, reduced quantum-

realization costs. 

 1.2 Research Goals  

When researchers use Grover’s algorithm to solve practical problems, they face several 

issues when building an efficient oracle. These issues can potentially influence quantum 

computation performance. 

1. The quantum gates are used in the oracle. How is the use of certain gates reflected 

in the total quantum cost the simulation time of a quantum oracle? How will the 

synthesis methods for binary quantum gates affect the number of ancilla qubits, the 

performance of simulation, and the costs of the circuit of the oracle and the entire 

Grover algorithm? 

2. How can the quantum oracle be synthesized with fewer ancilla qubits? How does 

the cost of ancilla qubits affect the performance of the quantum oracle? 
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3. Normally quantum oracles are synthesized with Feynman, swap, inverter, and 

Toffoli gates. However, compared to the classical switching circuit, quantum 

mechanics have flexibility in creating the base gates. Can we find better quantum 

gates with which to synthesize an oracle? 

4. Because it is limited to the number of qubits a quantum computer can operate, a 

solution based on a pure quantum algorithm is still not applicable using current 

technology. A hybrid classical/quantum algorithm is the most promising method to 

use to solve many problems. What improvements can be achieved by using such a 

combination? 

 I focus on creating an efficient quantum oracle for Grover’s algorithm to solve constraint 

satisfiability problems (CSPs) and other problems that can be transformed into CSPs. My 

methodology for building a quantum oracle is based on symmetrical Boolean functions and 

lattice diagrams and aims to reduce quantum computing costs and improve efficiency by 

using lattice diagrams to implement the oracle in the form of a symmetrical Boolean 

function. I proposed transforming non-symmetric functions into symmetric functions by 

using the reminder function. My contributions also include building several quantum 

oracles and hybrid classical/quantum algorithms with which to solve practical problems, 

such as the Hamiltonian cycle detection problem, how to minimize the switching function, 

and how to solve some logic puzzles. 
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 1.3 Related works 

There are four categories of problems discussed in my dissertation: Cycle detection and 

hypercube partitioning problems, Switching function minimization problems, Maximum 

Independent Set problems (MISp), CSPs. 

 

Problems 1 and 3 are classical graph-theory-related problems, and there are many related 

papers [58–77] on this problem in quantum computing as well. Problem 2 is an electronic 

design automation (EDA) problem. It has been well studied in classical computing but has 

not attract enough attention in quantum computing yet. The river crossing puzzle is 

categorized into Problem 4. Few researchers [78–80] have studied this kind of problem in 

quantum computing. 

 

Graph-theory-related problems have been well-studied from a variety of aspects. Most of 

the related papers involve modeling an arbitrary graph with the adjacent matrix model or 

the adjacency list model based on Christoph’s paper [58, 59]. In that paper [58], Christoph 

et al. studied the quantum query complexity of these two graph models with the minimum 

spanning tree problem. In their next paper [59], they extended the idea using Grover’s 

algorithm and presented a quantum exponential searching algorithm based on Grover’s 

algorithm. The ideas in these two papers inspired many subsequent works in quantum 
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computing. There are many papers on the cycle detection problem and Hamiltonian cycle 

detection problem [60–65]. Most of them involve the use of Grover’s algorithm. The papers 

[60, 61] present an overview of how to solve the Hamiltonian cycle problem in quantum 

computing. Vidya [60] briefly introduced the Hamiltonian cycle problem and a possible 

way to speed up Grover’s algorithm for this problem. Rudolph [61] presented an adjacent 

matrix model with a quantum circuit that can be used as the oracle function in Grover’s 

algorithm. Similar to Rudolph’s idea, Burger [62] presented a detailed quantum circuit of 

the adjacent matrix model to solve the Hamiltonian cycle detection problem. The authors 

of both of these papers used Grover’s algorithm to check the connections of all vertices in 

the adjacent matrix model to determine whether a cycle exists in the graph. Da-Jian [63] 

introduced a quantum algorithm on an adiabatic quantum processor. This algorithm takes 

advantage of Grover’s algorithm in brutal searching. Similarly, Yimin’s algorithm [64] is 

a Grover-based algorithm, they present a hybrid framework to solve the Hamiltonian cycle 

problem. The difference between Yimin’s  method and Da-jian’s method is in the graph 

modeling and encoding part. Anuradha [65] presented a quantum algorithm with which to 

solve the Hamiltonian cycle problem based on quadratic unconstrained binary optimization 

(QUBO). This method is similar to that of a Grover-based algorithm but with a different 

problem formulation. In QUBO, the problem needs to be formulated into a group of linear 

equations while Grover’s oracle can be expressed using a Boolean function. 
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The traveling salesman problem (TSP) can be transformed into a Hamiltonian cycle 

detection problem, and there are also some papers [66–70] on this topic. Eppstein [66] 

conducted a scientific analysis of the classical algorithm to solve the Hamiltonian cycle 

and TSP problems. Based on Eppstein’s paper, Mingyu introduced his quantum algorithms 

[67]. Minyu et al. presented an exponential quantum algorithm using branch searching to 

solve the TSP problem in a degree-3 graph. In their next paper [68], they extended their 

algorithm to a degree-4 graph. Dominic [69] used a similar technique to improve Xiao’s 

algorithm with higher-degree graphs. Karthik [70] showed a gate-level implementation of 

Grover’s algorithm to solve the TSP on IBM’s quantum simulator. Karthik also modeled 

the distance matrix of a four-city TSP and got the result from IBM’s quantum simulator. 

 

Another problem discussed in my dissertation is the problem of hypercube partitioning. 

Hayato [71] and Eugenio [72] proposed different graph partitioning algorithms for a 

quantum annealing system. Hayato’s provided a generalized graph partitioning algorithm 

using QUBO. His work was inspired by biology and chemical applications. Eugenio 

focused on partitioning a graph into Hamiltonian subgraphs. With the power of D-Wave, 

the maximum size of a graph that can be processed is 4,000 vertices with 5,200 edges. 
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The maximum independent set problem (MIS) and its related problem, the maximum 

clique (MC) problem, are famous graph problems, there are many papers [73–77] that use 

these problems as an example to prove the advantages of quantum computing. Alan’s paper 

[73] contains an overview of how to use Grover’s algorithm to solve MC problems. The 

author of this paper explained Grover’s algorithm and its application to MC problems. 

Arpita’s paper [74] contains a circuit-level solution to problems. The authors designed a 

quantum circuit to check the maximum clique in a 3-vertex graph and a 4-vertex graph and 

then simulated their circuit using IBM’s quantum simulator. Another quantum algorithm 

that involves the use of quantum walking was introduced in Xi’s paper [75]. Quantum 

walking is a different searching algorithm from Grover’s algorithm. Xi proposed the use 

of three algorithms for graphs with different degrees. These papers [76, 77] investigated 

the quantum solutions to the MC problem in a quantum annealing model. A quantum 

annealer can provide higher accuracy and more quantum registers than adiabatic 

architecture. The most famous product of this technology is D-wave. Elijah et al. [76] 

proposed a framework for a quantum decomposition algorithm for solving MC problems. 

In their paper, they analyzed the lower bound of their algorithm for the MC problem and 

predicted the performance of their algorithm on future D-wave architectures. Similar to 

Elijah et al., Guillaume’s group [77] proposed a quantum algorithm with which to solve 

MC problems using a quantum annealer and QUBO. 

 



 

 

                                                    9 

 

Thanks to Grover’s algorithm and other quantum searching algorithms, the CSP is a 

promising area that can show the advantage of quantum computing. Ashley [78] provided 

a knowledgeable introduction to the quantum walk and Grover’s algorithm in CSP by 

giving examples of backtracking trees. Zhengbing [79] provides a quantum algorithm on a 

quantum annealing system for CSP. This algorithm is based on Boolean constraints and 

function decompositions. In a recent paper, Koen et al. [80] provided a benchmark QPack 

that contains many CSPs like MaxCut, domination set, and the traveling salesman problem. 

Their benchmark considered not only running time and complexity analysis but also the 

cost and accuracy of quantum algorithms. Hong [81] presented three quantum-classical 

algorithms with which to solve weighted constraint satisfaction problems (WCSPs), one 

for Boolean WCSPs and the other two for general WCSPs on quantum annealers with the 

QUBO. Despite that progress, there remain many unsolved questions about the circuit-

level implementation of the quantum algorithm and the advantages of quantum computing 

compared to classical computing. 

1.4 Dissertation Outline 

This dissertation is organized as outlined below: 
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Chapter 2: Different quantum gates are introduced, along with a few basic concepts of 

quantum mechanics. Grover algorithms are explained in detail. Two examples of Grover 

searching are presented to show the importance of quantum oracle in Grover algorithms. 

 

Chapter 3: Lattice diagrams are introduced. Shannon, positive, and negative Davio lattices 

are presented, along with how they are realized in quantum circuits. Different structures of 

lattice diagrams (single output/multiple outputs) are discussed, and the simplification of 

the lattice diagrams is explored. 

 

Chapter 4: The quantum oracle design methodology is introduced, and graph-theory-

related problems are formulated using examples to demonstrate the details of our 

methodology. 

 

Chapter 5: By transferring the Boolean minimization problems into graph problems. We 

created a hybrid quantum algorithm to solve the Boolean minimization problem and 

designed a methodology for generating the quantum oracle. 

 

Chapter 6: We Investigated two logic puzzles with our quantum oracle building 

methodology—the river crossing puzzle and the MIS problem. 
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Chapter 7: Conclusion and future work. This chapter contains a summary of the research 

results of this dissertation. Further research work and approaches are also discussed. 
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 Chapter 2: Background 

 

The first papers that verify quantum mechanics and quantum models for computation by 

experiments were published in the 1980s [27,28]. The landmark paper about the quantum 

computing model was published in 1985 by Deutsch [29], this paper considered the relation 

between the quantum computation model and the Turing machine, which is an important 

issue to address when building a quantum computer.  

In this chapter, we summary quantum gates and circuits are used in this dissertation. The 

quantum gates are introduced by a unitary matrix. For the quantum circuits, examples are 

provided to demonstrate their characteristics. At the end of this section, Grover’s algorithm 

is introduced by equation derivation and simulation, this is the kernel algorithm of our 

methodology.   

2.1 Quantum Gates and Circuits 

Before introducing the quantum gates, we want to give a brief introduction to Dirac 

notation, also known as bra-key notation, which is used to present vectors in quantum 

mechanics.  

Dirac Bra-Ket Notation  

Dirac notation was introduced by Paul Dirac in 1939 [55], the notation uses angle bracket 

“ ” and vertical bar “ ” to denote the product of vectors or the action of linear function 
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on vector in complex vector space. Inner product, outer product, and tensor product are the 

three most used functions in quantum mechanics. 

 

Inner product:  

Outer product:  

Tensor product :  

 is called a ket , it is usually represented as a column vector,  is called bra, it is the 

complex conjugate of ket (V*), usually represented as a row vector. In the quantum 

computer research area, Bra-ket notation is a standard notation to describe quantum 

bits(qubits).  

 

In contrast to the classical computer, a quantum computer would work with quantum bits, 

qubit, Qubit is denoted with eigenstates(states) and , and they exist in a 

superposition of these states: , where   are complex numbers 
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satisfying the normalization condition:  [3]. The superposition of a qubit 

can be present on a Bloch Sphere [3] in Fig 2.1. The basis state are and , and the 

superposition of    can be converted to unique coordinates on the sphere by 

.  

 

     

Figure 2.1 Bloch sphere [35].  

 

A qubit can be operated by a quantum logic gate, resulting in the rotation of the state vector 

to a different location on the Bloch Sphere [3]. For example, a qubit from basis state , 

which is the top point on the z-axis, when , the state of this qubit moves to 
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, later we will introduce, this rotation can be performed by Hadamard gate. 

Comparing to a classical logic bit which only uses state 0 and 1, the quantum superposition 

state like  means this qubit can be state   and  at the same time, these 

two states have a probability to be measured, and the state of this qubit can be decided only 

when it is observed in the measurement. The superposition of a qubit enables 

parallelization of computation. Many quantum algorithms are taking this advantage to 

provide a great speed-up for solving sorts of classical problems [29 -33]. 

 

Like the classical logic gates that are the building blocks of a classical circuit, we have 

quantum gates that act on qubits and are the basic building blocks in quantum circuits. The 

special asset of these gates is the power of reversibility. Unitary matrices may also 

represent the functioning of these gates. 

  

Next, we would introduce some of the commonly used quantum gates [1]: Hadamard gate, 

Pauli rotation gates, Swap gate, CNOT (Controlled NOT) gate, Toffoli gate, Fredkin gate. 

We can find similarity in function of some quantum gates and classical logic gates, like 
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Pauli rotation gate, Pauli X gate is changing the state from to  or  to , its 

function is similar as the classical inverter.  

 

Hadamard Gate:  

This gate maps  basis state  to  and  basis state  to                    

  

 

It is represented by the unitary matrix:  

 

 

 

Figure 2.2 One qubit Hadamard Gate [35] 

In Fig.2.2, the initial state is , it can be resented in matrix , after 

we apply the Hadamard gate, the state changed from  to 
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, the new state  is 

, the probability of observing and  in this 

qubit are equal. This is an important feature of Hadamard gate. 

When we apply the Hadamard gate to a  parallel n-qubit system prepared in a state , 

the output state produced by the Hadamard gate is an equal superposition of all the integers 

in the range from 0 to 2n-1 

i.e. where,  is the 

computational basis state represented by the binary number that maps to the corresponding 

number ‘j’ in base {1,0}. Take vector state for an example, the entire space of the 

output of Hadamard gate is created with 23 basic states, such as:  

  

 

Pauli X, Y, and Z Gates:  

The Pauli X gate is the quantum equivalent of the NOT gate in classical logic, while the Y 

and Z gates rotate the qubit along the Y and Z axis, respectively, on the Bloch sphere in 

Fig2.1. 

The Pauli X gate maps  to  and  to , the equivalent Pauli matrix is: 
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(2.1) 

 

It corresponds to the rotation of the Bloch ball around the X-axis by π (180) radians.  

The Pauli Y gate maps  to i  and  to –i , the Pauli Y matrix is: 

 

 

 

(2.2) 

 

It equates to the rotation of the Bloch ball around theY-axis by π (180) radians.  

The Pauli Z gate maps  to -  and leaves state  as is, the Pauli Z matrix is: 

 

 

 

(2.3) 

 

It equates to the rotation of the Bloch ball around the Z-axis by π (180) radians.  

 

Swap Gate:  

This gate swaps two qubits as per its basis state, it is given by the matrix in Fig 2.3: 
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Figure 2.3 Matrix of Swap gate 

 

 

Figure 2.4 Symbol of SWAP gate 

For example, if the input state is , its matrix representation is : 

 

 

(2.4) 

When we apply the Swap gate to this state: 

 

 

(2.5) 
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From the out of Swap gate, we can find the state changed from  to . 

The Swap gate can only perform a swap operation between two qubits, but we can use 

multiple Swap gates to perform a swap in a quantum circuit which input size is larger than 

two.  

 

CNOT Gate:  

This is a controlled-NOT gate that acts on two or more qubits; the first line/qubit is a control 

line/qubit that decides whether to flip the rest of the qubits. When the first qubit is set to 

 , it performs a NOT operation on the rest of the qubits; otherwise, it leaves them 

unchanged. It is represented by the matrix in Fig. 2.5: 

 

Figure 2.5 Matrix of CNOT gate 

 

Figure 2.6 Symbol of CNOT 
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Toffoli Gate:  

This is also called the Universal quantum gate as the other gates can be deduced from this 

gate. It functions as a CCNOT (CONTROLLED CONTROLLED NOT) gate on three 

qubits. If the first two qubits are in state  then it flips the third qubit, else it leaves it 

unchanged. It is given by the following matrix in Fig. 2.7: 

 

Figure 2.7 Matrix of Toffoli gate 

 

Figure 2.8 Symbol of the Toffoli gate 
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We use a truth table to give a straightforward view of the Toffoli gate. This gate maps 

input state  to output   as: 

 

Table 2.1. Truth Table of the Toffoli Gate 

Input Output 

  

  

  

  

  

  

  

  

 

Fredkin Gate 

This gate is also called a CSWAP (Controlled- Swap) gate. It is a three-qubit gate used to 

perform a controlled swap, it only swaps the lower two qubits when the first line is 
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activated. The benefit of this gate is its conservation of 0’s and 1’s throughout. The matrix 

representation is in Fig. 2.9.  

 

Figure 2.9 Matrix of Fredkin gate 

 

Figure 2.10 Symbol of Fredkin gate  

Next, we would like introduce some quantum circuits which are used in our methodology. 

  

Quantum Counter (Quantum Accumulator) 

This circuit is a basic component used in our oracle, the function of this circuit is to count 

and sum up the number of targets.  
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Figure 2.11 4-qubit quantum accumulator 

The top line in Fig. 2.11 is called the control line, this circuit only accumulates when the 

control line equals to . The remaining four lines are the output lines, they record how 

many times the control line has been activated, then output the number in the format of a 

vector. The output lines need to be initialized with  .  The quantum accumulator needs 

to be implemented in cascade connection in the circuit, the number of counters is decided 

by the number of targets that need to be counted.     

 

Figure 2.12 Example of a quantum accumulator 
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For example, in the circuit of Fig 2.12, there are four counters to accumulate the results 

from related targets. If and only if the related control line (CL) is true, the counter is 

activated. Suppose all the control lines are true in Fig. 2.12, let us look back to Fig. 2.11 

for the inner structure of each counter. For the first counter, only the Feynman gate at the 

right side is on, this gate flips the initialized value 0 to 1, and the value of the rest qubits 

just pass through, the output of this circuit is [1000]. The data input of the accumulator is 

fed by the output of the previous one, this connection makes the gates inside of each 

accumulator be triggered sequentially. For example, the input of the second accumulator is 

[1000], the Feynman gate and two-input Toffoli gate in Fig 2.11 are triggered on, the output 

of the accumulator is [0100], taking the most significant bit (MSB) from the right side of 

this vector, this binary vector equals to 2.    

 

Quantum Inequality Comparator 

Quantum inequality comparator, as shown in Fig 2.13, is another important circuit template 

used in our oracle, the function of this circuit is comparing the value of two inputs. 

 



 

 

                                                    26 

 

 

Figure. 2.13 2-qubit comparator 

In Fig 2.13, it is a two-qubit inequality comparator. The bottom data line is the output of 

this inequality comparator, when the input data are the same qubit vector, the output line 

returns 1; otherwise, the output line returns 0. Similarly, Equality Comparator and other 

comparators can be built to be used in Grover Oracles.  

Because of the quantum cost of large Toffoli gate is extremely expensive, our oracle uses 

the accumulator and comparator to replace the Toffoli gate. Besides the quantum cost, the 

combination of accumulator and comparator also is more flexible in constraint satisfaction 

problem (CSPs), for example, each of the control line is a result of a constraint, if the oracle 

need to disable some of the constraints, for Toffoli gate, the blocked constraints must be 

specific, otherwise, the oracle can not decide where to put the invertor on the Toffoli gate. 

However, in accumulator and comparator structure, the oracle only concerns the numbers 

of satisfied constraints, it doesn’t need to check which specific constraint is true. This 

property provides more flexibility in some CSPs comparing to the Toffoli gate.  
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2.2 Quantum Circuit Simulation  

This dissertation is entirely devoted to the Grover Algorithm, which is the most useful 

quantum algorithm with many practical applications in engineering problems. The name 

Grover is derived from its inventor, but it is somewhat misleading. This is not an algorithm; 

rather, it is a general method to speed-up loops that search without additional information. 

Therefore, the Grover algorithm can be applied to many problems giving quadratic speedup 

for each loop of some “higher-level algorithm.”  

For the speedup of Grover Searching, it is like looking for a white marble among three 

black marbles in an urn. The worst case is, after picking out every black marble, we finally 

find the white marble. However, with Grover searching, if we know we are looking for the 

white marble, we can take it out firsthand; that is the power of quantum searching, find the 

target in only one shot. In general, with N marbles the classical algorithm would need in 

the worst case N searches (evaluations of the oracle), but the quantum algorithm of Grover 

would need only !        

A simple example is shown in Figure 2.14. We do not know the function of the Boolean 

inside the oracle, but we know that this function has only one true minterm. In this case, it 

is for minterm it will be: 101(binary vector). Assuming that it is the only 

solution, the problem is finding the solution between the possible eight minterms of the 3-
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bit length data, which are 000, 001, 010, 011, 100, 101, 110, and 111. The normal method 

to solve this problem would need to test the classical circuit 7 times to find the solution. In 

a quantum algorithm, only one oracle is enough, as illustrated below. The blocks with 

symbol X and Z in Fig. 2.14 are Pauli X gate and Pauli Z gate, the block with H is 

Hadamard gate.  

 

 

Figure 2.14: Example of Grover algorithm with a single Toffoli gate to realize the 

minterm of three-variable function. 

The number of qubits is the length of data in this problem. Our target uses hidden items; 

for easy reading, it uses decimal numbers here. Like the stem graph shown above, we will 

have a relatively high probability of getting the solution compared with other minterms 

after two iterations.   
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The next example is a Boolean satisfaction problem (SAT); the probability of changing 

every input qubit is shown in detail in this example.   

 

Example 2.1 

In this SAT example, the oracle is a Boolean equation: F(a,b,c) = (a+b’)(a’+c), its 

quantum circuit implementaltion is Fig 2.15 

 

 

Figure 2.15 Oracle of this equation 

 

ab/c 0 1 

00 1 1 

01 0 0 
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11 0 1 

10 0 1 

Figure 2.16  K-map of this equation 

From the K-map, there are four solutions for this SAT problem; the Unique solution Grover 

searching is a special case of Multiple solution searching; for the Multiple solution 

problems, theoretically, we will obtain an equal probability of each solution by Grover 

searching after the maximum iteration.   

Fig. 2.17 is the same implementation of F(a,b,c); the different part is, there are many swap 

gates used here. Based on the current technology, qubits can only talk to their neighbor's 

lines. Then we need to use a swap gate to pull those qubits up or down for the correct 

operation. This optimization is not only for a circuit but also needed inside the realizetion 

of the Toffoli gate. In Fig 2.17, we use the standard symbol of the Toffoli gate. However, 

inside, we also add two swap gates for the same reason, shown in Fig 2.18. After applying 

the swap gate, this Toffoli gate model can be simplified because of the two Feynman gates 

in a red block; the simplified version is shown in Fig 2.18.b  

The rest of the quantum schematic in this dissertation all use the same technology, for the 

reader’s convenience, the Swap gate will not be draw in the rest of the dissertation.  
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Figure 2.17  Extended version of the SAT oracle with Swap gates for the Grover 

algorithm 

 

 

Figure 2.18 (a): Inner structure of Toffoli gate (b): Simplified Toffoli gate 
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2.3 Grover’s Algorithm 

2.3.1. Introduction  

To search an unsorted database with N entries, Grover’s algorithm requires N dimensional 

state space, represented by n= log2N qubits. The best classical algorithm requires time in 

the order of O(N) to search over the unordered set, while Grover [2] takes only 

units of time for the same, resulting in a quadratic speedup. Such speedup is achieved due 

to the quantum superposition of the states. The working is as follows: 

For an ‘n’ qubit system, the search space is N = 2n with all bits initialized to state as: 

 
(2.6) 

To bring this into a superposition state, a Hadamard transformation is done as: 

 

 

 

 

(2.7) 

 

This ensures equal amplitude of associated with every possible configuration of 

qubits in the system and an equal probability that the system will be in one of the 2n 
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states. Quantum algorithms use amplitude amplification to achieve the qualities of quantum 

amplitudes which differentiate them from simple probabilities. The main idea is to select 

the right kind of phase-shifting operator that satisfies some conditions at each iteration. For 

example, a phase shift of  is nothing but the multiplication of the amplitude by -1, this 

changes the orientation of the vector but not the probability of its being in the state. In this 

algorithm, subsequent transformations are done on the system to take advantage of that 

difference in amplitude to separate that state(s) of a differing phase(s) and to ultimately 

increase the probability of the system being in that state(s). 

 

The next set of transformations is referred to as the Grover Iteration, which performs 

amplitude amplification and is repeated: times. This ensures that we attain the 

optimal probability of the state being observed to be the correct one and according to 

Grover [2] this is achieved at a rotation of  radians. The first step to the iteration is the 

use of an oracle called the Quantum Oracle O. This oracle is a black-box function, meaning 

it can observe and modify the system without collapsing to a classical state and it indicates 

if the system is in the correct state by rotating it by  radians, else it does nothing. 

Quantum oracle implementations often use extra bits(ancilla bits), which are unnecessary 

in this implementation, so the oracle’s impact on may be written as: 
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(2.8) 

 

Where f(x) = 1 if x is in the correct state and f(x) = 0 otherwise. The implementation of 

f(x) depends on the problem at hand. 

 

The next step is called the diffusion transform, it is the key point of Grover’s Algorithm.   

After the phase inversion from previous step, the diffusion transform flips the amplitude of 

every states by an operator called Grover diffusion operator . The function of 

this operator is shown as following:  

 

 

 

(2.9) 

 

 

 

 

 

(2.10) 

The diffusion operator flips the amplitude of state , but for the state , this operator 

didn’t change the amplitude. 



 

 

                                                    35 

 

The entire diffusion operator may be written as:  

 

For arbitrary state , where is the amplitude, when we apply the diffusion 

operator to it: 

 

 

 

(2.11) 

Where  is the mean amplitude of every states, , N is the number of items in 

the database. From the equation one can see that the amplitude of each state is flipped by 

the mean amplitude [34]. 

 

Regarding the runtime of the Grover iteration, the exact runtime of the oracle depends on 

the problem at hand, so the call to the oracle is viewed as one operation. Hence the total 

runtime for one iteration is ϴ(2n), from the two Hadamard transformations, plus O(n) for 

the phase shift gate leading to O(√N) = O(√2n) = O(2n/2) iterations each with a runtime of 

O(n) is O(2n/2).  
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Figure 2.19 Circuit diagram for Grover’s algorithm for the oracle. 

Example 2.2:  

Consider a system of N = 8 = 23 states and the state being searched is 011. This system can 

be represented by n = 3 qubits as follows: 

Where ai is the amplitude of the quantum state . The system is initialized to state zero. 

Applying the first set of Hadamard transformations to obtain a superposition of states with 

equal amplitude probabilities is: 
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 (2.12) 

 

            

 

Figure 2.20 Initialized amplitude of quantum states 

The number of iterations to find all solutions: and is rounded to 2 

iterations. 

For iteration 1, the oracle query will negate the amplitude of the state |011> (as we are in 

search of this state from the superposition) giving: 

 

 

 

(2.13) 

 

  

 



 

 

                                                    38 

 

 

Figure 2.21 Amplitudes of quantum states after the phase inversion    

Now, the diffusion transform is performed as , which will increase the 

amplitudes by their difference from the average, decreasing if the difference is negative:  

 

 

 

 

 

(2.14) 

Apply the following property of identity:  

 

 

 

 

(2.15) 

 

 

 

 

(2.16) 
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Hence, 

 (2.17) 

Which appears as in Fig. 2.22 

    

Figure 2.22 Amplitudes of quantum states after the first Grover iteration 

The same transformations are applied for the second iterations as follows: 
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On the second round of diffusion transform, apply the diffusion operator:  

 

 

Figure 2.23 Amplitudes of quantum states after the second Grover iteration 
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2.3.2 Simulations 

We will use here a simulation to show the internal quantum data change during the 

execution of the Grover Algorithm. The simulations have been performed on MATLAB 

and the amplitude of each state will be exported into an Excel worksheet.  

 

The circuit for the Grover implementation is as follows: 

 

 

 

 

 

 

 

Figure 2.24 Implementation of Grover search for a three-input Toffoli gate 

The code implemented allows the user to select a size for Grover implementation. The 

algorithm was initially tested for a Toffoli gate oracle and then extended to SAT problems. 

Also, each gate is defined as a separate function for ease of access.  
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Toffoli Oracle: 

This is a three-bit gate (but the algorithm can have this extended to N bits) as follows: 

 

Table 2.2 Truth table of example oracle 

a b b Output 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1(Target) 

 

For a three-qubit Grover, . It needs two iterations to obtain the correct 

measurement. The following graphs are simulation results from MATLAB.  
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Figure 2.25 Amplitude of each state after Hadamard gate.  

 

Figure 2.26 Result of the first iteration 
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Fig 2.26 shows the result of each stage in the first round of Grover’s algorithm, the phase 

inversion can be observed clearly at the sub-figure “after oracle” in Fig.2.26, and the 

amplitude implication can be found in the final result. 

 

Figure 2.27 Result of the second iteration 

In last figure of Fig. 2.27, the amplitude of rest items is reduced below 0.2 comparing to 

the value around 0.3 in Fig.2.26, this the trick of Grover’s algorithm. As mentioned 

previously, there is a maximum rounds of Grover’s algorithm, for this example, the number 

is 2. If we perform the third round, then the superposition of target item would be collapsed. 

[14] 
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2.3.3 Quantum Oracle 

This oracle is specific to the Satisfiability problem (SAT): F = (a+b’) (a’+c) 

 

 

 

Figure 2.28 Oracle for the 2-SAT problem 

This is designed to test the working of Grover’s algorithm on more practical applications 

as many problems may be reduced to SAT-based problems. By SAT-based problems I 

mean not only POS SAT (Product of Sums SAT) but any other Boolean formula that can 

be satisfied or not. For instance, ESOP or Product of ESOPs. The Toffoli oracle mentioned 

previously has been replaced with this oracle and the results will be slightly different from 

the previous one due to the presence of multiple satisfying conditions as shown in the Tab. 

2.3 below: 
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Table 2.3 Truth table for F(a, b, c, d, e) 

a b c F=(a+b’)(a’+c) 

0 0 0 1 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

 

Variable d and e are not listed in the table because they do not affect the result of the output 

of this function. Based on the number of input variables, there needs to be multiple 

iterations to get the final results with the highest possible measurement probability. 

The results of simulation for each iteration are as follows: 
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Figure 2.29 Results of the first iteration 

 

Figure 2.30 Results of the second iteration 
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After two iterations of the Grover search, we can find that the largest amplitude items are 

3, 7, 23, and 31. Since there are two ancillary bits here, we need to decode those results to 

get the final result; for state 3, its binary representation is 00011, the 2 LSBs (Least 

Significant Bit) are ancillary bits ”11”, so the solution will be a=0 B=0 and C=0.  

 

Figure 2.31 Results of the third iteration 
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Figure 2.32 Results of the fourth iteration 

 

Figure 2.33 Results of the fifth iteration 
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In this example, because there are five input variables, to get the best result, the number of 

iterations should be  

But from the simulation results, we noticed that the amplitude of targets in the second 

iteration is ten times greater than others, meanwhile that number in the fifth iteration is 

four. The phenomenon is caused by the redundant input variables d and e, these two 

variables is independent with the output of the oracle function. So in this case, when we 

build the circuit, the redundant input variables should be removed.  

The oracle function is built from a Boolean logic function, the problem of redundancy 

removal is similar to the same problem in classical Boolean logic, there are many methods 

to solve this problem like Binary decision diagrams (BDDs) [56,57].  

 

There are four solutions to this problem: at iteration 1, we can find the phase-amplitude 

(AMP) of these four solutions is 0.42, compared with other minterms is 0.1, the probability 

amplitude of them is 0.422=0.17, 0.12=0.01. We can find that the probability of the 

measured solution is 17 times larger than non-solution. In the next Grover searching 

iteration, the AMP is changed to 0.48 and 0.05; the probability amplitudes are 0.23 and 

0.0025, 0.23/0.0025 = 92.  

Based on the condition of the Grover algorithm, this iteration is the upper bound. In the 

next iteration, the AMP will collapse, and the solution’s probability amplitude will 
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decrease. From Figure 2.29 to 2.33, we can prove this phenomenon; in iteration 3, the 

amplitudes of solution and non-solution are 0.28 and 0.15, and the related probability 

amplitudes will be 0.08 and 0.02. With the Grover algorithm, we have a higher probability 

of finding one solution in the multiple solution searching problems; but what if we want to 

find solutions? 

 

Suppose we have a problem; after Grover searching, there are four solutions: A, B, C, D. 

The probability of finding a good solution is 100%. The probability of finding each solution 

is the same. The probability of finding one different solution at first search is 100%. Since 

all solutions are different, there is a 100% probability of getting a different solution at the 

first time.    

 

The combinations of picking two solutions between four solutions are:  

 

 

(2.18) 

In these ten cases, there are four combinations (AA, BB, CC, DD) that contains the same 

solutions. 

So the probability of finding two different solutions in the second search is 6/10=0.6 

combinations of picking three solutions are: 
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(2.19) 

Similarly, there are ten combinations (AAA…DDD, AAB, AAC, …, CCD) contains same 

solutions.  

 

So the probability of finding three different solutions in the third search is 10/20=0.5. 

The probability of picking 4 solutions is: 

 

 

(2.20) 

There are 23 duplicate combinations for this case, and the probability is 12/35=0.34 

Number of searches Probability to find the target 

1st 100% 

2nd 60% 

3rd 50% 

4th 35% 
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2.4 Summary of Chapter 2 

In this chapter, Quantum gates and related details from quantum mechanics were 

introduced, based on those quantum gates, quantum counter and comparator were 

presented, which are used in our quantum oracle design methodology. Quantum Grover’s 

algorithm was presented step by step with equation derivation and simulation. Grover 

algorithm was shown to be efficient in single target searching problem. However, there are 

not many papers that would explore the situation with multiple solutions, this problem was 

discussed at the end of this chapter. 
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 Chapter 3: Boolean Symmetric Function and Quantum Lattice Diagram 

Note: Some of the contents of this chapter have been published in the following paper:  

P. Gao, Y.Li, M.A. Perkowski and X. Song “Realization of Quantum Oracles using 

Symmetries of Boolean Functions”, Quantum Inf. Comput. vol. 20 (5&6), 2020. 

 

The kernel of a quantum oracle is an implementation of a decision function, which the 

output of this function is only 0 or 1.  Synthesizing the oracle is therefore a problem in 

Boolean Circuit specification and minimization. This decision function is implemented 

with quantum gates in the oracle, the number of the quantum gates and the complexity of 

the circuit greatly affect the quantum cost of an oracle. From the current size of quantum 

cells, the quantum cost is still a problem to be concerned about when designing quantum 

oracles. How to use Boolean symmetric function and Lattice diagram to design an area-

efficient oracle are mainly discussed in this chapter. This approach of designing Grover 

oracle bottom-up using reversible logic and blocks with ancilla qubits is the new 

contribution of my dissertation.        

3.1 Boolean Symmetric Functions  

Let  f  be a total Boolean function: , where B = {0,1} and n>1. 

Definition 1 (Totally Symmetric Boolean Function) 
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A Boolean function f is totally symmetric if its output is invariant under any permutation 

of its input bits: 

 for all permutations  of {1, …, n}. 

A single index symmetric function S can be denoted Sk such that, for every true minterm 

mi of S, the number of positive literals in all true minterms of this function is k and the 

number of negative literals is n-k. 

For example, a symmetric function  is denoted S1, 

where  means a is a negative literal in the minterm �̅�𝑏𝑐̅. Each minterm of F(a, b, c): 

, has only one positive literal. 

The symmetry property of S1 can be shown by permuting the input from (a, b, c) to (a, c, 

b), which means the order of input variables b and c are transposed. The new equation is 

 after changing the order, which is the same function as S1. This 

property should be satisfied for any pair of variables. 

Increasing k from 1 to 2, we create another single index symmetric function in which all 

the minterms have two positive literals, such as  By combining 

multiple single index symmetric functions, we obtain a multiple index symmetric function, 

such as S1+S2=S1,2. 
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Definition 2 (Polarity Vector) 

Given a Boolean function , its polarity vector is a vector of  (y1, y2, …, 

yn), where yi is either a positive or negative literal of variable xi. 

By introducing the polarity vector, the symmetric function can be extended to the concept 

of a generalized symmetric function. The original definition of the totally symmetric 

function is a special case in which the polarity vector contains only positive literals. 

 

Definition 3 (Generalized symmetric function) 

Given a Boolean function  and a polarity vector (y1, y2, …, yn), 

. By substituting each literal in the polarity vector with , a 

new function is derived; if is a symmetric function, 

then is a generalized symmetric function. 

Generalized symmetric functions can be denoted by polarity vectors as  such 

that, for every minterm mi of S, the total number of literals identical to the literal yi in 

polarity vector (y1,y2, …, yn) is k. For the n-variable Boolean function, there are 2n polarity 

vectors and there are 2n ways to create a generalized symmetric function. 
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For example, a Boolean function is not symmetric by 

Definition 1, since the minterm abc has no negative literals. However, if we use a polarity 

vector  to generate a new function g(a, b, c), where in will be 

replaced by a, b, c in g(a, b, c), . With this 

replacement, the new function g(x, y, z) becomes a symmetric function S2, thus making f(a, 

b, c) a generalized symmetric function with polarity vector  denoted . 

3.2 Lattice Diagram 

3.2.1 Introduction 

There exist several structures to realize Boolean symmetric functions [4,5,6]. Universal 

Akers arrays (UAAs) are well-known because of their area efficiency and planar layouts 

[7]. Lattice diagrams [4] inherit this property from UAAs but, in several cases, are even 

more efficient. First, comparing them to UAAs’ rectangular shapes, lattice diagrams start 

with tree expansion and then combine non-isomorphic nodes at the same levels, thus 

always forming triangle or trapezoid shapes that keep only the minimum necessary size of 

repeated variables. Second, instead of assuming only Shannon expansion in UAAs, lattice 

diagrams can use Shannon expansion and positive and/or negative Davio expansions. In 
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the case of synthesizing quantum circuits consisting of natural Toffoli gates, the Davio 

expansions lead to more efficient quantum circuits than the Shannon expansions. 

Based on the structure and number of outputs, lattice diagrams can be classified into single-

output or multi-output lattices. Both these types can use Shannon or any Davio expansion, 

any of the two Davio expansions, or any combination of these. 

 

Figure 3.1. Single-output lattice diagram. 

 

Fig. 3.1 shows a directed acyclic graph of a three-level generalized lattice diagram for a 

symmetric function with three input variables. In this example, G1 is the output cell 

controlled by variable a. For a lattice realizing a symmetric function of three variables, the 

signals W, X, Y, and Z are always constants. 
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Expansion type is also a critical characterization of lattice diagrams. If every cell in a lattice 

diagram has a uniform expansion, then the lattice can be named after the expansion typs. 

For instance, in a Shannon lattice, all the cells use only Shannon expansions. 

Let  and  be the positive and negative cofactors of a Boolean function  f  with respect 

to variable x1, respectively. Here, is , where x1 is replaced by 0, while 

 is , where x1 is replaced by 1. , where the symbol  

means exclusive-OR (XOR). We define  as a Boolean difference for x1. 

The Shannon expansion of with respect to variable x1 [5] is defined as 

follows: 

 
 

(3.1) 

The positive Davio expansion [5] of with respect to variable x1 is the 

following: 

  

(3.2) 

The negative Davio expansion of  with respect to variable x1  is the 

following: 
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(3.3) 

In the Shannon lattice, the expansion function of each cell can be represented by a 2-to-1 

multiplexer [6], the logic formulation of which is , where a is 

the selecting signal and x, y are data inputs. A multiplexer symbol is shown in Fig. 3.2. 

 

Figure 3.2. A 2-to-1 multiplexer with control variable a and data inputs x, y. 

There are two types of lattice hierarchies: single-output and multi-output. Fig. 3.3 (a) is a 

single-output Shannon lattice, and (b) is a multi-output Shannon lattice. The lattice in Fig. 

3.3 (a) has three input variables: a, b, c. The single-output lattice has fewer constant inputs 

than the multi-output lattice. The multi-output Shannon lattice has one extra level to realize 

a symmetric function with the same number of input variables. The top multiplexer in Fig. 

3.3 (b) is hypothetical; it can be replaced by a constant in a real circuit. Both lattice 

diagrams can be simplified by substituting signals 0 or 1 to constant symbols. 
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Figure. 3.3 Shannon lattices for three-variable functions: (a) single-output and (b) 

multiple-output. 

For a positive Davio lattice, its expansion function for each cell is

, which can be realized by XOR and AND gates. Fig. 3.4 shows 

its symbol. By changing the polarity of s, this cell can be used in the negative Davio lattice 

as well. For demonstration purposes, we will use positive Davio lattices as an example in 

Fig. 3.5. 
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Figure 3.4 Davio gate. 

Similar to Shannon lattices, Davio lattices also have two hierarchies.  

 

Figure 3.5 Davio lattices for three-variable functions: (a) a single-output Davio lattice 

and (b) a multi-output Davio lattice. 
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The constants of a single-output lattice can be changed for different symmetric functions. 

The next section discusses constants and symmetric functions in more detail. For multi-

output lattices, constants are determined for symmetric functions, since this lattice can 

generate all symmetric functions by adding simple functions, such as OR or XOR, to 

outputs. 

In addition to Shannon lattices and positive/negative Davio lattices, the lattice cell can also 

be built using mixtures of these three expansions. Fig. 3.6 shows an example of a 

generalized lattice. It uses Shannon expansion for variable a, positive Davio expansion for 

variable b, and negative Davio for variable c. 

 

Figure 3.6 Generalized lattice diagram. 
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3.2.2 Realization Boolean Symmetric Functions using Lattice Diagrams 

This subsection presents both single-output and multi-output Shannon lattices and 

discusses the relation between input constants in lattice and a related symmetric function. 

A Boolean function Q(a,b,c), it can be implemented by lattice layout from Fig. 3.7. The 

expansion function of each cell is a Shannon expansion, realized by a 2-to-1 multiplexer. 

The level controlled by variable c is the terminal level of this lattice. 

 

Figure 3.7 Single-output Shannon lattice.  

The output function of each cell in the lattice can be derived by applying the equation of 

multiplexer. The output function of the lattice in Fig. 3.7 is: 

 

 

 

(3.4) 

In this equation, each coefficient constant is linked with different terms of Q(a, b ,c), and 

each term is a symmetric index of Q(a, b, c). For example, �̅��̅�𝑐̅ is a symmetric function 
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 = W. If we set W to 1 and X, Y, Z to 0, respectively then  

will be the output of the lattice. The examples in this section are demonstrated with polarity 

vector (a, b, c) to keep the consistency. We will use S0(a, b, c), instead of , 

for a short notation in the remaining of this section. 

The symmetric function Q(a, b, c) from Fig. 3.7 can be rewritten to the following format 

to emphasize the role of the constants W, X, Y, Z, and individual symmetry indices. 

 

 

(3.5) 

 

By selecting different coefficient values, the related symmetric function will be created at 

the output of this lattice. The sequence of coefficient constants W, X, Y, Z at the bottom 

of the lattice is called a symmetry vector. We create a table for all the single symmetric 

indices of function Q(a, b, c) in Tab. 3.1. 
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Table 3.1. Symmetric function with the related vector for Shannon Lattice Diagram 

Symmetric 

Function 

Symmetry 

vector 

[W,X,Y,Z] 

S0 [1,0,0,0] 

S1 [0,1,0,0] 

S2 [0,0,1,0] 

S3 [0,0,0,1] 

 

By changing the symmetry vector, the lattice can generate all the symmetric functions of 

Q(a,b,c). For example, [0,1,0,1] generates the symmetric function S1,3(a,b,c). 

In the multi-output lattice, we need to shift the control variables to the second level and 

change the top multiplexer to the output constant 1. The top two levels can be simplified 

into outputting a and , an optimization discussed in section 3.3 with more detail. 
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Figure 3.8. Multi-output Shannon lattice. 

While the lattice in Fig. 3.7 can realize any single-output symmetric function by selecting 

a symmetry vector, the lattice in Fig. 3.8 has the property that all symmetric indices of 

Q(a,b,c) can be realized by simple logic operations on outputs out1, out2, out3, and out4. 

 

 

 

 

(3.6 ~ 3.9) 

This multi-output lattice is useful for multi-output Boolean functions, such as full-adder, 

compressor, counter, and arithmetic functions. For example, a 1-bit full-adder has three 



 

 

                                                    68 

 

inputs a, b, cin, and two outputs sum and carry-out, both of which can be transformed into 

symmetric notation: 

 

 

(3.10 ~ 3.11) 

 

Two XOR gates that can combine out1 and out2 for carry-out and out1 and out3 for a sum 

are needed to realize these two functions with a three-level multi-output lattice. Since the 

lattice in Fig. 3.7 realizes only a single-output function, to realize a multi-output function 

like the above adder, one would need two single-output lattices, as the multi-output lattice 

structure uses fewer gates. 

3.2.3 Realizing Symmetric Function with Davio Lattices 

Compared to Shannon lattices, Davio lattices use fewer quantum gates for each cell and 

fewer ancilla lines [10] as well as lower resource cost for a quantum circuit layout for the 

linear nearest-neighbor model (LNN) [10]. 
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Figure 3.9. Davio lattice structure that realizes all three variable symmetric functions with 

W, X, Y, and Z as constants and functions with more variables in case W, X, Y, and Z 

are variables or simple functions. 

We use the same function to show the difference in constant values between Shannon and 

Davio lattices. Fig. 3.9 shows a three-level positive Davio lattice, the output equation of 

which can be derived: 

 

 

 

    (3.12) 

 

In this equation, each constant is multiplied by a term so that each is a symmetric function. 

For example abc contains the minterms 𝑎𝑏𝑐̅, 𝑎�̅�𝑐, �̅�𝑏𝑐, 𝑎𝑏𝑐, which is S1,3(a,b,c). 
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Different from the polynomial normal form of Shannon expansion, Davio expansion uses 

the Zhegalkin normal form; its polynomial expansion can be derived by a binary matrix 

called the “Zhegalkin polynomial matrix” [11], which is generated recurrently: 

 

D0=1,  

 

(3.13) 

 

where j=1,2,…,m. Fig. 3.10 shows the matrix used in our example. 

 

 

 

Figure 3.10. Zhegalkin polynomial matrix for three variables. 

In this matrix, every row represents the constants in a Davio lattice and every column 

represents symmetric functions from S0 to S3. For example, the second row [0 1 0 1] means 

the related symmetric function of constant X is S1,3. The equation of Q(a,b,c) can be 

expressed with symmetric functions as follows: 

 S0 S1 S2 S3 

W 1 1 1 1 

X 0 1 0 1 

Y 0 0 1 1 

Z 0 0 0 1 
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(3.14) 

 

Different from Shannon expansion, each constant is associated with one multiple index 

symmetric function. We can get the same symmetric function indices as in a Shannon 

lattice by selecting a different order of constants. For example, if we need function S1, we 

can make both X and Z 1 and the remaining constants 0. In a Davio lattice, each part is 

connected with an XOR gate, so the equation . 

Tab. 3.2 shows symmetric functions with related binary vectors. 

Table 3.2. Symmetric function with the related vector for Positive Davio Lattice Diagram 

Symmetric 

Function 

Symmetry 

Vector 

[W,X,Y,Z] 

S0 [1,1,1,1] 

S1 [0,1,0,1] 

S2 [0,0,1,1] 

S3 [0,0,0,1] 
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Like multi-output Shannon lattices, Davio lattices can also be built in reverse, as shown in 

Fig. 3.11. 

 

Figure 3.11. Multi-output Davio lattice with a reversed shape. 

The outputs of this lattice are the following: 

 

 

 

(3.15~3.17) 

By using the XOR operator, we can get all multiple index symmetric functions. For 

example, to get S0(a,b,c), because S0 can be derived into , we 

can obtain S0 by connecting out1, out2, out3, and 1 with an XOR gate. 
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3.3 Quantum Implementation of Boolean Symmetric Function with Lattice Diagrams 

In the previous section, we presented the layout of the Lattice diagram for the Boolean 

symmetric function in various formats. For the Davio Lattice diagram, its base cell Davio 

gate can be mapped into the quantum circuit by Toffoli gate (Introduced in Chapter 2). 

Shannon Lattice diagram needs a few more steps because its base cell is a 2-to-1 

Multiplexer. 

 

Figure 3.12 Quantum implementation of 2-to-1 Multiplexer . 

For the whole Lattice diagram, because the inputs of the root node in the Lattice diagram 

are always constants, the structure can be simplified. Fig. 3.13 presents an example of 

simplifying symmetric function S1(a,b,c). In Fig. 3.13 (b), since both the input of the right 

corner cell are 0, the output of this cell is not related to c, its value is always 0. We can 

remove this cell and replace that place with a 0. The remaining figures follow the same 

method. 
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Figure 3.13 (a) the original Lattice Diagram of S1(a,b,c). (b) Removing the bottom-right 

cell. (c) Removing the level of input variable c. (d) Removing the level of input variable 

b. 
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Figure 3.14 Quantum circuit of figure 3.13 (a). 

 

Figure 3.15 Simplified quantum circuit of figure 3.14 (a). 

The original Lattice uses 16 Toffoli gates and six inverters, the simplified circuit used three 

Toffoli gates, one Feynman gate, and seven inverters, which obviously uses fewer gates 

than the original circuit and reduces significantly the quantum cost for large functions. 
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3.4 Realizing Non-Symmetric Functions with Lattice Diagrams 

In the previous sections, we showed the advantage of Lattice Diagrams in realizing 

symmetric functions. For non-symmetric function, there are many methods to transform 

them into symmetric [36,37,38]. We purposed a new method based on reminder function 

decomposition.  

Our decomposition method creates a circuit composed of two parts: an upper part that is a 

remainder function usually expressed in ESOP [38] and a lower part that is a symmetric 

function implemented with a lattice diagram. These two parts are connected with the XOR 

operator. The following is a brief outline of the decomposition methodology for function 

F. 

 

(1) Choose a random polarity vector to start. 

(2) Create all or some polarity vectors with corresponding lattice structures. Select a few 

with the simplest symmetric functions based on those polarity vectors. 

(3) For all symmetric functions from step 2, calculate their remainder functions with the 

original function F. The remainder functions are denoted by R0, R1, . . ., Rk. 

(4) Evaluate the cost of the remainder function by the number of literals and operators, 

select the minimal cost remainder function, and create the lattice diagram for its symmetric 

part. 
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The following example presents details of the above decomposition method. Consider this 

non-symmetric function: 

 

 

(3.18) 

Its Karnaugh map is Tab. 3.3 as following: 

Table 3.3 Karnaugh map for function f(a,b,c,d) 

ab/cd 00 01 11 10 

00 0 1 0 1 

01 0 0 1 0 

11 0 0 1 0 

10 1 0 0 0 

 

First, we decide that the order of variables in the polarity vector is a, b, c, d. The expansion 

type is positive Davio expansion. In the second step, we create all 16 different symmetric 

functions based on polarity vectors. Next, for each symmetric function, the corresponding 

remainder function is calculated. For example, the decomposition of a symmetric function 
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with polarity vector  is . The function 

is the remainder function.  

For polarity vector , the decomposition to a lattice and remainder is 

. It has a more complicated 

remainder function: . After comparing all possible 

remainder functions, we find the polarity vector  leads to the minimal cost 

remainder function. 

3.5 Summary of Chapter 3 

In this chapter, The Boolean symmetric functions were introduced. Two types of their 

expansions: Shannon expansion, Positive/Negative Davio expansion were discussed in 

detail and illustrated with examples. Different structures of quantum Lattice diagrams are 

explored. The simplification of the quantum Lattice diagram was presented, this example 

was to demonstrate the area-efficient property of quantum Lattice diagrams. At the end of 

this section, a method of transforming non-symmetric function to symmetric function was 

introduced.  
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 Chapter 4: Design Quantum Oracle for Graph Theory Problems 

 

Note: Some of the contents of this chapter have been published below:  

P. Gao, Y.Li, M.A. Perkowski and X. Song “Realization of Quantum Oracles using 

Symmetries of Boolean Functions”, Quantum Inf. Comput. vol. 20 (5&6), 2020 

 

This chapter introduces a methodology of building quantum oracles with Symmetric 

Boolean functions to solve graph theory problems. Graph theory problems are an excellent 

candidate for using quantum oracle to solve because many classical problems can be 

transformed into the graph theory problems.  

4.1 Modeling a Graph with a Boolean Expression 

In graph theory, the graph-partitioning problem is finding a subset of edges or vertices of 

the original graph, each of which is called a “subgraph.” Based on the properties of 

subgraphs, there are many different decompositions. Here, we are mainly interested in 

searching symmetric loop in arbitrary graph and partitioning an arbitrary graph into 

symmetric graphs, because the symmetric graph [12] is a vital category in graph theory and 

topology. 
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Definition 1 (Graph) [47] 

A graph G is a pair G = (V,E), consisting a nonempty set V of vertices (nodes), a set E, 

disjoint from V, of edges of graph G, where V = {v1,v2,…,vi}, E = {e1,e2,…,ei}. 

 

Definition 2 (Path, Cycle, Loop (self-loop), Degree) [47] 

A path in a graph is a sequence of distinct vertices v1, v2, …, vn such that (vi, vi+1) is an 

edge for each i = 1, …, n-1. When two vertices are the end points of an edge, they are called 

adjacent. 

 

A cycle is a graph with the equal number of vertices and edges whose vertices can be placed 

around a circle that two vertices are adjacent if and only if they appear consecutively along 

the circle. 

 

A self-loop is an edge whose endpoints are equal.  

The degree of vertex v  V, denoted deg(v), is the number of edges incident to v. If deg(v) 

=0, then vertex v is called isolated. 

 

Definition 3 (Simple graph, Subgraph, Clique) [47] 
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A simple graph is a graph having no self-loops or multiple edges. Multiple edges are edges 

having the same pair of endpoints. 

 

A subgraph of a graph G is a graph H such that  and . 

In a graph, a set of pairwise adjacent vertices is called a clique. For a clique with n vertices, 

denoted as Kn. 

   

Definition 4 (Symmetric Loop)  

A graph G(E,V), if all pairs of vertices , there exists a path from u to v, and the 

deg(u) = deg(v), then graph G is a symmetric loop.    

 

We notice that there are some interesting properties of the symmetric loop, which can be 

modeled by a Boolean function. Given a simple graph G(E,V), there exists a subgraph H 

(V(H),E(H)), in which H is a symmetric loop.  

 

Our model begins with the feature of a vertex on the symmetric loop.  Given a vertex u  

V, there exists a set of edges Eu ={e1,e2,…,ei}, Eu E, i = 1, … , m, where m is the number 

of edges that are connected to vertex u. Set Eu can be encoded with a Boolean vector B ={ 
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b1,b2,…,bi }, i = 1, … , m. Boolean vector B can be represented by literal 

,  is positive if and only if its related edge , otherwise it is negative.   

 

Rule (Symmetric Loop) 

If vertex u is in symmetric loop L, then there must be at least two positive literals in its 

Boolean vector B, because there is one edge for entering this vertex, and another edge for 

exiting this vertex.  

 

For a vertex u connected with n edges, this rule can be written into the following Boolean 

expression:  

 

 

(4.1) 

For a symmetric loop L with t vertices, its expression is the following:  

 

 

(4.2) 
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Theorem: For , if there is a satisfied result, then a symmetric 

loop exists in the graph. 

Proof: Based on the definition of the symmetric loop, all nodes in the loop can be expressed 

by a Boolean function u, which input is the edges connected to this node. Because if all 

node functions are satisfied at the same time which is the Equation L, the input of every 

function u shows a path which is a symmetric loop. 

Based on Definition 4, we can add more rules to model some specific graphs like Hamilton 

cycle, spanning tree, and hypercube.  In this dissertation, we are interested in the Hamilton 

cycles and in the hypercubes. 

 

Definition 5 (Hamilton cycle) 

Let G be a graph with n3 vertices. A cycle that contains every vertex of G is called a 

Hamilton cycle. 

 

Similar to a symmetric loop, we can derive a rule for a Hamilton cycle. The input and 

output of the Boolean function is the same as the symmetric loop, the different part is using 

Exclusive-OR(XOR) instead of Inclusive-OR(OR). This is because a vertex should only 

be passed once in a Hamilton cycle.    
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Rule (Hamilton cycle) 

The rule of Hamilton cycle H with t vertices can be written into the following Boolean 

expression:  

 

 

(4.3) 

Where n is the number of edges connected to a vertex in Hamilton cycle H.  

Definition 6 (Hypercube)  

The hypercube graph Qn is an undirected regular graph with 2n vertices, where each vertex 

corresponds to a binary string of length n. Two vertices labeled by string x and y are 

connected by an edge if and only if x can be obtained from y by changing a single bit.   

 

Figure 4.1 n-cube graph. (a) Q1 for n=1 (b) Q2 for n=2 (c) Q3 for n=3 
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In Fig. 4.1, three hypercube graphs Q1, Q2, Q3.  Let’s take Q2 for example to explain how 

to get a hypercube graph following the Definition 6. There are four nodes in Q2, and the 

binary strings for every adjacent node should only have one different position. For 

hypercube with 2n vertices, Qn can be defined recursively in terms of the Cartesian product 

of two graphs as follow: 

 
 

(4.3) 

K2 is a clique with two nodes. It’s the isomorphic graph of Q1.  

From the equation 4.3, the hypercube Q2 can be derived using the equation Q2 = K2  Q1,  

Hypercube Q1 can be represented by a set {0,1} which is the binary string of every node in 

Q1, because Q1 and K2 are isomorphic. Then they can be represented by the same set.  Q2= 

{0,1}{0,1} = {00,01,10,11}, because the set of binary strings of Q2  is derived. The next 

step is to assign the binary string to each node and make the connections between nodes 

(00,01), (00,10), (01,11), (10,11).  

F. Harary, J. P. Hayes’s work [17] extends the original definition of hypercube to a 

generalized hypercube by introducing a multivalued string. In their paper, they proved that 

binary string encoding can be replaced by a multivalued string such as ternary or 

quaternary. The generalized hypercube can be defined in a Cartesian product of two clique 

graphs as follows: 
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(4.4) 

Variables m and n are the number of nodes for the cliques. For example, let’s assume m=2, 

n=3. K2 is the same graph that we used in the previous example. For K3, it is shown in 

Fig.4.2 (b), it requires ternary string to encode each node. After encoded K2 and K3, the 

next step to get the generalized hypercube Q(2,3) is by Cartesian product,  Q(2,3)= {0,1} 

{0,1,2} = {00,01,02,10,11,12},  Fig. 4.2 (c) shows Q(2,3).  

 

Figure 4.2 Example of generalized hypercube graph. (a) Clique K2 (b) Clique K3 (c) 

Generalized hypercube Q(2,3) 
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4.2 Methodology of Building Quantum Oracles for Hamilton Cycle and Hypercube 

Graph 

In this section, we introduce our methodology of building a quantum oracle using the 

Grover algorithm to solve graph partition problems related to symmetric loop, Hamiltonian 

cycle, and hypercube.  

 

From the previous section, we found the Boolean expression of the symmetric loop, 

Hamiltonian cycle, and hypercube is only counted on the number of positive literals, which 

can be written into a Boolean symmetric function. With the advantage of Boolean 

symmetric functions and Lattice Diagrams, the oracle is made more efficient than by 

building it directly from Boolean equations. This is important at least because of the 

quantum decoherence.  

 

There is a little different to build oracle for a hypercube, as compared to a symmetric loop 

and a Hamiltonian cycle. Because the degree of the hypercube is not only 2, and to model 

some hypercube graph requires more than one index in symmetric function, this part is 

discussed at the end of this section. The following steps are applicable for those three 

graphs and any further graph which can be transformed into a Boolean function. 
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Let us first consider the symmetric loop as an example. Given a graph G(E,V) with n 

vertices there exists a subgraph L(EL,VL) which is a symmetric loop. Our problem is to 

find the partition of L(EL,VL). 

 

Step 1. A Boolean symmetric equation of every vertex needs to be derived. The classical 

computer would fetch the information from graph G, find the degree of all vertices, and 

then group them by the same degree because the vertices with the same degree have the 

same structure in the Lattice diagram.  

 

Step 2. After we get the Boolean symmetric functions, we need to use a satisfiability solver 

(SAT solver) on the classical computer to check this equation. If this equation is not 

satisfiable, then we stopped here, because there is no a symmetric loop in the graph. 

Otherwise, we record the result of SAT solver as a reference solution to our quantum 

oracle.  

 

Step 3. Based on the previous step, the size of Lattice diagrams is given to the classical 

computer and generates the required Lattice Diagram. Let us take the quantum loop for 

example, from the previous section, we know its lattice diagram is based on symmetric 

function S2. The classical computer also generates a mirror circuit S-2 like in Fig 4.3, this 

mirror circuit will reset the data on the input wire to the initial state. Therefore, this data 



 

 

                                                    89 

 

can be used for the next blocks. The mirror circuit is an inverse circuit of S2. The bold line 

with input 0s is a bus which contains results of each symmetric blocks, this bus line is the 

control signal of the quantum counter block as mentioned in Chapter 2. The input of the 

Lattice diagram is the edge set E. It is sent into the oracle in the format of bit vector.  

 

Figure 4.3 Quantum oracle for graph problem with n vertices 

Step 4. In the oracle, we use a quantum counter and comparator (Find the details in Chapter 

2) to replace the large AND gate. Because the quantum cost of the AND gate is huge (Find 

the details in Chapter 2), the input of the comparator is the number of vertices in graph G, 

we use counter here to collect the number of satisfied symmetric functions. Then this 

number is compared to the number of vertices, if the result of the equality comparator is 1, 

it means that the symmetric functions of all the vertices are satisfied.  
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Step 5. After the oracle is ready, we can connect it to the Grover searching module. Fig. 

4.3 is a block diagram of our oracle, in Grover search we need to run the Grover search 

multiple iterations to get the final result, which means this oracle needs to repeat many 

times as well. After all the oracle and Grover searching module are set up, the simulation 

can start. 

 

Step 6. After the result is returned, we can use the result from SAT solver to verify the 

correctness of our oracle. In some case, the problem may have multiple solutions, but 

Grover can only return one result per time, and during the next searching round, this result 

still has the same probability as other results to be found. To solve this problem, we need 

to remove this result from the searching space, after every round of Grover searching, we 

add a circuit of this result to the oracle, which makes the output gratitude of this input 

combination equals 0. This add-on circuit is connected after the original oracle.    

Example 4.1 describes a quantum oracle designed with our methodology.  
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Example 4.1 

Consider the following graph G=<V, E>, where V={A, B, C, D} and E={e1, e2, e3, e4, e5, 

e6} (Fig. 4.4). All Hamiltonian cycles of this graph are obtained by sets of edges from the 

oracle: {e1, e2, e3, e4}, {e1, e6, e3, e5}, and {e2, e6, e4, e5}. 

 

Figure 4.4 Graph G of example 4.1 

For this example, we relate a symmetric function to each node (Tab. 4.1). 

Table 4.1. Symmetric functions for verities in Fig. 4.4 

 Vertex function Symmetric 

A   

B   

C   
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D   

 

For node A, it Boolean function is , the term 

in this expression means edge e1 and edge e4 are selected, edge e5 is not selected, 

that is because in a Hamiltonian cycle there should be only two edges selected for a vertex. 

If there exists a set of selected edges that satisfy F, then at least one cycle exists. Moreover, 

the set of edges is a Hamiltonian cycle. As we see, we convert the graph partition problem 

into a Boolean satisfiability problem with several symmetric functions. Function F can then 

be represented in the form of a product of symmetric functions:                              

 

 

 

(4.5) 

Each symmetric function defines a constraint for one node. 

Please note that only symmetric function S2 is used in our method here. For different graph 

cases, the input variables of symmetric functions need to be changed based on the edges 

incident to the related vertex. Based on the consistent format of symmetric function, there 

is a pattern of symmetry vector for different numbers of the input variables. Considering 

the quantum cost, we use Davio lattice in this problem. (see Chapter 2)  
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In Fig.4.4, we can find the symmetry vector of S2 for three variables, which is [0 0 1 1]. As 

discussed in Chapter 2, we can extend the Zhegalkin polynomial matrix to get any 

symmetric functions with the different number of input variables, for example, Fig. 4.5 is 

the Zhegalkin polynomial matrix for symmetric function f (e1, e2, e3, e4, e5, e6). 

 

 

Figure 4.5 Zhegalkin polynomial matrix for seven input variables. 

To get S2(e1, e2, e3, e4, e5, e6), the symmetry vector is [0 0 1 1 0 0 1]. Because of the 

recurrent structure in the matrix, the pattern “0 0 1 1” is repeated here. It can be easily 

proved that for different numbers of input variables, the symmetry vector of S2 always 

contains the pattern “0 0 1 1”, for example, the symmetry vector of a 5-variables function 

S2(a, b, c, d, e) is [0 0 1 1 0 0]. With this property, we can estimate the number of Davio 
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gates needed in the general case of symmetric function S2, it is , where a is the 

number of input variables.      

 

Our approach to partitioning graphs into cycles uses the Grover algorithm [14]. To detect 

if there is a cycle in a graph, we must check all possible combinations of the selected edges 

in the graph, and the Grover algorithm promises a quadratic acceleration when searching 

through all possible combinations of edges. The edges are encoded into a binary vector as 

the input of the oracle. Meanwhile, the output result is also returned as a binary vector. 

Knowing the incidence matrix of the graph, the node base representation of all cycles can 

be found by a classical computer. 

 

The oracle for solving this problem needs three blocks: a set of symmetric functions (one 

for each node), a counter of satisfied nodes, and an equality comparator. The symmetric 

function block is built with lattice diagrams, as shown in the previous Chapter. The counter 

used here counts the number of satisfied symmetric functions in Equation F. This block is 

also known as a “counter of ones”. Information about the structure of the counter and 

comparator can be found in Chapter 2. We realized this counter by repeating increment 

gates [15], a single increment gate adds 1 to the value of the input when its control is 

activated. When it is not activated, the gate does nothing. This step can also be realized 
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with a multiple-input Toffoli gate, but with the higher number of inputs, the quantum cost 

of a Toffoli gate rises dramatically. By using the counter instead of a Toffoli gate as a 

global AND, we reduce the number of respective ancilla qubits from n to log n. It was for 

this reason that we have chosen the counter in our design. Because we use the counter 

instead of a Toffoli gate, we need an equality comparator to check if all symmetric 

functions in equation F are satisfied. 

 

 

Figure 4.6 Quantum oracle for example 4.1 
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4.3 Hypercube Partitioning Problem 

In the previous section, based on the subgraph the index of symmetric function could be 

different in the constraint block, with a small modification, our oracle can be changed for 

searching generalized hypercube graph.  

Our oracle is designed for finding all partitions of an arbitrary undirected graph to regular 

graphs. Different from the graph partitioning in the previous section, for hypercube 

partitioning, the degree of every node in a hypercube subgraph is not limited to 2. The 

index of our symmetric function should be defined by the category of the subgraph.  

 

 

Figure 4.7 Example graph for hypercube partitioning  
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In Fig. 4.7 the minimum degree of this graph is 3, so we choose S3 as our symmetric 

function to build the oracle. Since the size of this example is larger than the previous one, 

here only list the symmetric function of vertices A, B, D, since vertex D is the only vertex 

has degree 6 in the graph, the functions of vertex A and B are the most used structures in 

the oracle. The lattice diagrams of these three symmetric functions are the templates used 

in our oracle, by switching the input edges, the lattice diagram can be applied to the vertex 

with the same number of degree. For example, vertex A and C has the same degree, after 

we created the lattice diagram of vertex A, switching this lattice’s input edges (e1, e2, e3, 

e4, e5) to (e4, e7, e8, e9, e10), the output of this new lattice is 

. The mirror circuit in the oracle 

can also to be created using this trick.  

 

 

 

(4.6) 

  
                             

bbbbb(4.7) 
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(4.15) 

 

 

 

 

 

  

  (4.16) 

 

 

(4.17) 

Under this constraint, quantum simulation result finds partition {{A, B, C, I, H, G}, {D, E, 

F, L, K, J}}. The set {A, B, C, I, H, G} here is a generalized hypercube K2K3 showed 

with blue edges in Fig.4.7, another set {D,E,F,L,K,J} with red edges is a K(3,3). In this 
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example, S3 is just for demonstration, during the real problem, the degree can be changed 

to find particular hypercube graphs or symmetric graphs in an arbitrary undirected graph. 

Papers [39,40] investigates more general cases of the relationship between Hypercube 

graphs and symmetric graphs. 

Table 4.2 The number of symmetric graphs related to the degree of vertex and number of 

vertices. [40] 

 

In Tab. 4.2 some patterns can be easily found. For example, the numbers 1 on the diagonal 

of this table correspond to clique graphs which can be easily verified. The graphs in column 

with label 2 correspond to graphs with degree=2. If the number of vertices n is a prime then 

there is only one related symmetric graph, and this graph is a cycle [40]. For those non-

prime numbers, those graphs may contain subgraphs, for n=6, one of the solutions is a 

cycle with six nodes, another solution is built with two cycles of three nodes each. Similarly, 
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generalized hypercube graphs can be found.  For example, n=6 degree =3 is a hypercube 

of which is shown in Fig. 4.2(c). But there is another symmetric 

graph with the same number of vertices and degree, this graph is K(3,3), unfortunately, our 

quantum oracle cannot distinguish these two graphs, we need to do that step on a classical 

computer. Since hypercube graph is generated by Cartesian product of clique graph, so its 

minimum chromatic number should be the largest clique in the hypercube [39]. By 

comparing the chromatic number of the graphs we can find hypercube from other 

symmetric graphs. As we see the chromatic number of K(3,3) is 2 while the chromatic 

number of generalized hypercube  is 3. Similarly, we can distinguish 

generalized hypercubes among symmetric graphs for other values of number of nodes and 

degree of edges.   

  

Besides the complete hypercube, our oracle can be extended to find partial hypercubes as 

well. In partial hypercube partitioning, we find all subsets of nodes that are sub-hypercubes 

(cliques) but we allow nodes that do not belong to any sub-hypercube.  
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Figure 4.8 Example graph for partial hypercube 

Thus, for the graph in Fig. 4.8 all individual subgraph partitions: {{A, B, C}, {D, E, F}}, 

{{A, C, D, E}, {B}, {F}}, {{A, B, C, E}, {D, F}} and many others will be effective 

solutions.  The small modification of oracle is to allow the subsets of nodes. Thus, change 

can be implemented by adding the index of this node’s symmetric function, for example, 

if we set the symmetric function of node B and F to S0,1, node A, C, D and E to S2. 

 

 

 

(4.18) 

 

 

 

 

(4.19) 
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(4.20) 

 

 

 

(4.21) 

 

 

 

 

(4.22) 

 

 

 

(4.23) 

 

With this added index 0, When searching the hypercube, our oracle would consider nodes 

B and F could be a scatter node in a possible solution. Then the subgraph with nodes {A, 

C, D, E} can be found. The partial partitioning extends the ability our methodology in 

finding symmetric subgraphs in general graphs.        

4.4 Quantum Simulators and Tools  

There are two quantum simulators used in our experiments: Quipper, and Qiskit.  
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Quipper is an embedded functional programing language for quantum computation, 

developed by a group of researchers at Dalhousie University. It uses Haskell as the host 

language, with its data types, combinators, and a library of Haskell functions. Quipper uses 

an extended model of quantum computation. It enables both quantum and classical wires 

and operations in a circuit. Although Quipper is a good platform for simulating quantum 

circuits, it has also some drawbacks. One of the drawbacks is that its code is not portable 

and is difficult to debug, because the compiler presents the compilation errors in the host 

language, not the embedded language. Another drawback is that Haskell lacks some 

features that are useful in quantum programming: linear type and dependent type. Quipper 

was developed as a part of a funded project. It did not have good support after that project 

was finished. The last update for this package was sent out in 2019.  

Besides Quipper, there are many other quantum simulators developed for researchers, 

Microsoft’s Q#, IBM’s Qiskit, and Intel’s IQS. IQS is recently announced by Intel, it is 

still not open for public access. Q# is similar to Quipper, it is embedded with Microsoft’s 

own functional language F#, compared to Quipper, Q# has better support, but it also has 

drawbacks like Quipper because of the property of embedded language. We have tried Q# 

with some of our oracles, but it does not have good support for gate-level simulation, and 

it is difficult to fix errors in the low-level quantum simulation. Then we move to Qiskit. 

Qiskit is an open-source quantum computing framework, it is based on Python.  Qiskit 
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contains four libraries: Terra, Aqua, Aer, Ignis.  Terra covers all low-level quantum 

computing like gate design, Aqua, and Aer provides quantum simulation and emulation 

from algorithmic-level to gate-level, Ignis includes constructors related to quantum 

hardware characterization, verification, and correction. Taken together Qiskit can provide 

the most comprehensive software solution for quantum computing. In our experiment, we 

mainly use Aer which can provide a gate-level simulation.     

Besides the quantum simulators, we also use SAT solver(miniSAT) and reversible circuit 

synthesizer(RevKit) to verify and evaluate our results.  

4.5 Result Analysis and Quantum Cost Estimation  

 The quantum oracle used in this chapter mainly consist of the following three parts: the 

block representing graph, the counter, and the equality comparator. The block representing 

graph is composed of various symmetric function blocks realized in quantum circuit by 

lattice diagrams, one for each vertex of the graph. The quantum cost of the oracle is 

estimated by adding the quantum costs of these three parts for an arbitrary graph. Because 

of the linear layout [18] of the lattice diagram, the size of the symmetric function block is 

proportional to the number of its input variables. As we discussed in Chapter 3 the number 

of Davio gates needed for a single symmetric function block, and the quantum cost of 

Davio gate is equal to CNOT gate. Thus, the cost of one symmetric function block  can 
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be estimated as  , where d is the number of edges connected to the vertex x. 

Because we need a mirror circuit for every vertex, the cost of the circuit for one vertex is 

5𝑑2 − 5𝑑. The total cost of the block representing the graph is the sum of the costs of 

circuits for all single vertices. Let us denote the number of edges incident to vertex i by di.  

Therefore, the cost of the block representing the graph is the following:                                                    

 

 

(4.24) 

where V is the number of vertices in the graph. The counter is realized with multiple 

increment gates. A well-known implementation of increment gates is built with multiple-

input Toffoli gates and an inverter. Reference [18] proved that the quantum cost of an m-

qubit Toffoli gate is  The cost of a single increment gate in our oracle is:   

 

 

(4.25) 

Because this gate requires 𝑙𝑜𝑔2𝑉 qubits. The number of repetitions of the increment gates 

is V, and the total cost of the counter block is . The 

equality comparator block is built with two CNOT gates and one N input Toffoli gate, 

where N is the size of the input numbers to the comparator. N is in our oracle, so 
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the cost of the comparator block is . The total cost of the 

oracle is the sum of the above three costs:                                             

 
 

(4.26) 

The qubits needed for this oracle are divided into two groups. One group represents the 

search space with superpositions, and the other is the ancilla qubits initialized with 

constants. The qubits needed for the search space are the number of edges in the graph. For 

the ancilla qubits, the counter and comparator blocks need  in total. The 

ancilla qubits for the symmetric blocks are based on the maximum number of edges 

connected to the vertex in the graph.  

 

To evaluate our quantum oracle, we use RevKit as a comparison, which is a well-known 

reversible circuit synthesis toolkit. It is an open-source package for reversible circuit design 

and synthesis, for the synthesis part, it provides a variety of methods like BDD, KFDD, 

transform-based, heuristic synthesis. For the work of this chapter we used the BDD based 

method for comparison. Here we only compare the symmetric function part, because other 

blocks in our oracle like the comparator are not using Lattice diagrams. The cost of those 

parts is the same for different synthesis methods. The oracle function used in Tab. 4.3 is 

from example 4.1. 
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Table 4.3 Comparisons of different synthesis methods 

 

Synthesis Method 

Number of 

quantum 

gates 

 

Ancilla 

qubits 

Revkit(BDD-

based) 

142 1 

Shannon Lattice 

Method 

50 22 

Davio Lattice 

Method 

35 

 

9 

 

The results in Tab. 4.3 do not involve the consideration of the mirror circuit, because it is 

easy to get the result by doubling the number of quantum gates. The results present the 

advantage of area efficiency of our oracle, to realize the same function, our oracle cost 

fewer gates and ancilla lines than the BDD-based method.  
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4.6 Summary of Chapter 4 

Two graph theory problems were formulated at the beginning of this chapter. Then we 

transformed those graph problems into Boolean satisfiability problems (SAT problems).  

A methodology of building quantum oracle to solve those SAT problems was introduced 

and presented in detail by examples. At the end of this chapter, the quantum complexity of 

our oracle was discussed, and the quantum costs of our quantum oracle with different 

realizations are compared, those results were based on Quipper and Revkit. 
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 Chapter 5: Hybrid Quantum/Classical Algorithm to Minimize Switching 

Functions based on Graph Partitions  

 

In this chapter we introduce a new methodology to build a hybrid quantum oracle to solve 

the minimization of switching functions, this is based on my previously discussed quantum 

oracle in chapter 4. This hybrid oracle is discussed in detail with two examples.    

5.1 Introduction 

Minimization of Boolean functions is a classical problem in logic synthesis of VLSI circuit 

design, it has many applications like symbolic minimization of logic function and Boolean 

decomposition.  

 

There are many logic minimization tools like Espresso and MINI, they are based on 

heuristic iterative improvement techniques, in general, those tools can only give suboptimal 

results and no clues for how far to get the global minimum. My method involves 

transferring this problem into a graph partition problem and using quantum searching to 

find the global minimum result for arbitrary Boolean functions. Unfortunately, large size 

NP-hard problems must be solved to find the exact solution. Often the methods require also 

to generate astronomic numbers of prime implicants. Solving these problems with classical 
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computers, even parallel computers, seems to not lead to interesting results and even not 

much has been published in recent years on these topics. However, future quantum 

computers give a promise. With the fast development of quantum circuits, several 

researchers focus on creating quantum algorithms for problems in graph theory. Although 

now only small problems can be solved, future quantum computers will be able to achieve 

“quantum advantage”.  This gives promise to the work presented here that is not practical 

at the moment.  

Our methodology is a hybrid quantum-classical algorithm, because the quantum computer 

can only take qubits as the input data. We need to use the classical computer to prepare the 

input data for the quantum computer and for collecting the results.  

 

Definition 1 (Cube) 

Let xi be a Boolean variable, A Boolean function with n inputs is defined as: 

 

 

 

(5.1) 

where , Let , then 

otherwise it is 0. is called a literal of variable . Boolean product of literals is called 

a product term or a cube. 

 

Definition 2 (Majority degree) 
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In the compatibility graph G(E, V), the verities have the same degree can be grouped into 

a set. For the set which contains the most number of vertices, its degree is called the 

majority degree.  

 

Definition 3 (Implicant) 

A product implicant of a logic function is a product term such that if the term is true then 

so is the function.  

A prime implicant is an implicant that is not fully contained within any other implicants. 

 

We assume that the readers are familiar with basic operations of the cube such as union, 

intersection, disjoint sharp. A formal definition of those terms can be found in [26]. 

 

In this section, we are focusing on Disjoint Sum of Product (DSOP) which is one of the 

operations not commonly used to minimize the Boolean switching functions. A DSOP 

realization of a Boolean function can be represented as a hypercube graph in which a 

realization with disjoint products of literals corresponds to disjoint partitioning to sub-

hypercubes. This can be extended to Sum of Products (SOP) [20,21] by removing literals 

from each disjoint cube thus transforming it to a prime implicant. 
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5.2 Solving DSOP/SOP and Minimization Problems for Boolean Functions using 

Partial Hypercube Partitioning 

We present a small example of partial hypercube partitioning in Chapter 4. In this chapter, 

we apply our oracle to solve the DSOP/SOP minimization problems. Normally, SOP 

minimization is reduced to finding the set of all prime implicants (primes) and next solving 

the set-covering problem to cover all true minterms with set of primes of the lowest cost. 

We follow the approach [19] to find DSOP first. For instance, in one variant our hybrid 

algorithm solves the DSOP minimization by finding partitions to large product implicants 

first and follows with partitions to smaller products. The result is not optimal but we obtain 

the quadratic speedup to the quantum component of this problem. DSOP can be 

transformed to SOP equations by enlarging each product implicant to the cheapest prime 

implicant [19].  

  

DSOP minimization. All minterms included in a product implicant are pairwise compatible 

[19] so the nodes of these minterms are all pairwise connected by edges in the graph (a 

clique, a sub-hypergraph). For instance, for a Boolean function specified by the set of 

minterms 0000, 0001, 0100, 0101, 0111, 0110, 1111, 1110 the minterms 0000, 0001, 0100, 

0101 create a clique or a 3-Regular subgraph that is disjoint from the other 3-Regular 

subgraph 0111, 0110, 1111, 1110. This complete partition is a disjoint partition (clique 
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covering) leading to a DSOP solution �̅� c + b c of this function. This is also an optimal 

SOP, as products 𝑎 ̅ c and bc are disjoint. In another DSOP variant the subgraph {0100, 

0101, 0111, 0110} is found which corresponds to prime 𝑎 ̅ b to be next used in covering. 

The detailed presentation of similar algorithms can be found in [19], for which in our recent 

work presented here we created quantum oracles for the Grover algorithm. 

 

SOP minimization. Every product implicants found from the DSOP found is individually 

extended to the largest prime for SOP using the method from [19]. In rare cases, but only 

in unspecified Boolean functions, minterms in a clique can be pairwise compatible but not 

compatible as a group thus they do not create a product implicant [19]. In this case, a special 

transformation is done [19] to create a SOP or a three-level circuit is synthesized. 

Our hybrid algorithm contains three parts: preprocessing, quantum search, and 

postprocessing. The first part is the data preprocessing at the classical computer, the 

second part uses our quantum oracle to performing Grover quantum searching as a 

subroutine, the last part is collecting and transforming the result from the second part, this 

part is running on a classical computer.  

Preprocessing (Classical Computer) 
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The input of our algorithm is an arbitrary Boolean function, for the input Boolean function, 

firstly, my algorithm would transfer this function into a compatibility graph.  

The input function is read in format with On/Off set, every implicant in On set becomes a 

node in the compatibility graph, then perform union operator to generate edges in the graph.   

 

The complexity of this part is based on the number of input variables, for the function of 

m true minterms, the complexity of the preprocessing part is O(m2). After the compatibility 

graph is generated, the following pieces of information are needed for the next steps:  the 

relation of edges and nodes, degree of every node.   

Quantum searching (Quantum Computer) 

In this part, the main idea is similar to the concept in Chapter 4, we transformed the 

minimization problem into a partial hypercube partition problem.  
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For the partial partition, the symmetric functions in the oracle need two indices (a,b). The 

initial value of variable a is the majority degree of the compatibility graph. If the number 

is 0, then a would be assigned to the degree of the second majority node. If the majority 

degree is not unique, then the index a can be chosen from either group of nodes. The second 

index b is initialized to be 0, this index aims to identify the nodes and their connected edges 

which are not included in the result of the current searching procedure and keep them from 

being removed by the algorithm.   

 

To find the best solution, both indices can be changed during the multiple calls of the 

Grover algorithm. After the result is returned in the first searching, it would be saved in a 

classical computer, then the classical computer removes this solution from searching space 

by disabling the related edges at the input of the quantum algorithm. In the next round, the 

classical computer modifies the first index a in (a,0), and runs our oracle with the reduced 

searching space. If no result is found, then index a is changed to the degree of the second 

majority node and this procedure is repeated until all edges are removed.  

Postprocessing (Classical Computer) 

The results of each searching round are saved in the classical computer. When the whole 

searching process is finished, the DSOP/SOP of this function can be derived by performing 

a supercube calculation on sets of nodes. Because of the binary encoding, the result of 
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quantum searching is in a format of vector like (10101110111), in the result, 1 means this 

edge is selected, 0 means not selected. When the result of the final round is received, the 

classical algorithm transfers the information about edges into nodes, and then performs a 

union operation on those nodes to get the implicants of DSOP/SOP. 

Additional details can be found in the following examples. 

 

Example 5.1      

Given is a Boolean function: , its K-map is 

presented in Fig. 5.1. 

    cd 

ab 

 

00 

 

01 

 

11 

 

10 

00 0 1 0 0 

01 0 1 1 1 

11 1 1 1 0 

10 0 0 1 0 

Figure 5.1 Karnaugh map for function F(a, b, c, d) 
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Based on the input function F(a, b, c, d), a compatibility graph is created by a classical 

computer, every true minterm in F(a, b, c, d) is a node in this graph, minterm a
_

 b
_

 c
_

 d is 

node n1 in Fig. 5.2, the detailed node information is in Tab. 1. Next a supercube operation 

[19] is executed for every two minterms. If the supercube of two minterms doesn’t contain 

any false minterm, then create an edge between the two nodes that correspond to these 

minterms. For example, the union result of node n2 and n7 is ,  the term bd doesn’t 

contain any false minterms in the original function, so there is an edge between these 2 

nodes. The union result of n1 and n3 is , this term contains false minterms 

, so n1 and n3 are not connected.   

 

Table 5.1 Node and edge connection for Fig.5.2 

Node (related 

minterms) 

Edges connected to 

this node 

n1( ) e1 

n2( ) e1,e2,e4,e5 

n3( ) e2,e3,e5,e7 



 

 

                                                    120 

 

n4( ) e3 

n5( ) e8 

n6( ) e4,e6,e8,e9 

n7( ) e6,e7,e9,e10 

n8( ) e10 

 

  

Figure 5.2 Compatibility graph for function F(a, b, c, d) 
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After the compatibility graph and the required information is created, we can move to the 

quantum part. The majority degree of this example are 1 and 4, as we previously discussed, 

the index could be 1 or 4. If we choose 1, then the symmetric function would be S0,1 , the 

first searching would return (1010000101), edges: e1,e3,e8, and e10 are selected.  

 

Figure 5.3 Reduced graph for function F(a, b, c, d)  

 

In the next round, those edges are disabled at the input space, and the symmetric functions 

are changed into S0,3, the rest of the edges are founded in this round. The result of the first 

round is (1010000101), transformed implicants of this vector are: . 

The result of the second round is (0101111010), transformed implicants of this vector are: 

. The final DSOP of function F(a, b, c, d) are:     
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 (5.2) 

or  

 (5.3) 

If we choose indices (4,0) as an initial value to star our search, the result is the same, but 

there is a little difference in the procedure, because there is no satisfied result for S0,4 in the 

first search, because we can not only choose nodes which degree is 4, meanwhile keep the 

rest nodes at 0 degree. If the degree equals to 4 is satisfied, that means the degree of nodes: 

n1, n4, n5, and n8 is 1. Then the whole symmetric function is not satisfied. At this point, 

we have to reduce the indices to (3,0) and keep the procedure moving forward. 

We would present another example to illustrates how our method handles a case in which 

there are multiple solutions during the search. 

Example 5.2  

This example, to minimize function G(a, b, c, d) from Fig. 5.4 (a). Because the degree of 

the majority nodes is 3, the hybrid algorithm starts with symmetric function S0,3. Under 

this constraint, there are multiple solutions that can be found, the edges between nodes m1, 

m2, m4, m5 are selected as a possible solution for illustration. The results of the first search 

is ( ). 
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 Fig. 5.4 (c) is the reduced graph after removing the results of the first run, the degree of 

the majority nodes is still 3. After applying the constraint with symmetric function S0,3, 

there is no result found. This is the case that index i needs to be changed to the degree of 

the second majority node, which is 2. With this modification, multiple results can be found, 

the same as in the first search. In the example, the quantum computer finds the edges, then 

classical computer transfers edges to nodes (m2, m3, m6) and (m4, m7, m8) for instance,  

and the result is: ( ).  

Fig. 5.4 (d) is the reduced graph after removing the edges related to nodes (m2, m3, m6) 

and (m4, m7, m8). Applying our algorithm with Fig. 5.4 (d), the indices are (1,0). The 

algorithm keeps the indices as (1,0) until all product implicants are found. As the final 

result,  the optimal SOP is found: .       
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Figure 5.4 (a)Karnaugh map of Boolean Function G(a,b,c,d). (b) Compatibility graph of 

G(a,b,c,d). (c) Reduced graph after the first search. (d) Reduced graph after the second 

search.                                                                      
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5.3 Summary of Chapter 5  

The hybrid algorithm presented above illustrates how several abstract decision and 

optimization problems can be reduced to graph theory problems base on symmetric 

functions. These problems include graph coloring, graph covering, maximum cliques, 

shortest path, longest path, Traveling Salesman, and domination. Similar methods can be 

applied to minimization of ESOP and factorized ESOP expressions [20,24]. In these 

problems the concept of compatibility of certain Boolean functions is fundamental and 

serves to define various partitioning problems to symmetric functions, such as those 

presented in sections 1 to 5. Edges are created for pairs of compatible nodes. In addition, 

please note that many interesting and practical problems can be also reduced to some of 

these graph theory problems [20,25].  For instance, a sudoku puzzle can be reduced to a 

graph coloring problem. We believe there are other fascinating problems in Graph Theory 

and Topology that would get more efficient solutions with the power of quantum 

computing.    

 

 

 

 



 

 

                                                    126 

 

 Chapter 6 Designing Quantum Oracles for Logic Games 

 

When we are formulating those graph theory problems in the previous chapter, we also get 

some by-products during the group discussion. We investigate our methodology of 

building the quantum oracle and the hybrid quantum algorithm with the River crossing 

puzzle (Missionaries and Cannibals problem), Maximum independent set problem.  

6.1 Quantum Oracles for River Crossing Puzzle 

The river Crossing puzzle is a very old and famous planning problem, the earliest known 

problem can be traced by Alcuin’s manuscript in the 9th century [41], and this problem has 

many variations, like wolf, goat, cabbage, human puzzle, Missionaries and Cannibals 

problem. With the given constraints like the number of passengers, the maximum capacity 

of items on a boat, this puzzle can be formulated as a searching problem, given a state space 

which is encoded by every item in this problem, the difficulty of the problem is how to find 

the safe path in the state space without violating any constraint condition. These puzzles 

could become NP-Hard with more constraints [41] and can be solved by transferring them 

to graph problems [42]. During we were formulating our problems, we noticed the 

missionaries and cannibals puzzle and found interesting symmetry property inside this 

puzzle.  



 

 

                                                    127 

 

The description of missionaries and cannibals puzzle is that there are three missionaries 

and three cannibals who want to cross a river from left bank to right. A boat is available 

and it only holds two peoples at a time, this boat can be operated by any combination of 

missionaries and cannibals by any number (one or two) and it can’t move automatically. If 

the number of missionaries at either bank of the river, or during the transportation, is less 

than cannibals at any time, the cannibals will eat those missionaries. The goal of this puzzle 

is to find a safe sequence to move all people to the other side of the river. 

This puzzle is used as an example to introducing classical searching algorithms like depth-

first or breadth-first, so we ask ourselves can we use a quantum searching algorithm to 

solve this puzzle?  

Before we apply Grover’s searching algorithm to solve this puzzle, we need to build an 

oracle function. To formulate this puzzle, we conclude two constraints:  

(1) Bank safety constraint: The number of the missionary should be always greater than 

the cannibal’s number. This constraint will keep all items in both banks in a safe condition. 

(2) Valid movement constraint: The boat can’t move by itself, it must be operated by one 

passenger. This constraint will keep all movement between two banks are satisfying the 

valid condition.   
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6.1.1 Modeling the Constraints of River Crossing Puzzle 

For building a quantum oracle, we need to formulate these two constraints into Boolean 

logic function. Assuming the number of missionaries and cannibals is equal, and it is n. 

Missionary and cannibal are denoted by literal M and C, where .  

denotes the n-th cannibal at bank one,   denotes the n-th cannibal at bank two.  

 

Example 6.1 

In the example, we choose n=3 to present the constraints in the Boolean logic expression. 

For three missionaries and three cannibals, the bank safety constraint can be concluded as 

following cases: 

1. Three missionaries and one cannibal at the same bank. 

2. Two missionaries and two cannibals at the same bank. 

3. Three missionaries and two cannibals at the same bank. 

4. Three missionaries and three cannibals at the same bank. 

5. Three missionaries and three cannibals at the different banks. 

Let us consider the unsafety cases: 

1. Three cannibals and one missionary at the same bank. 

2. Three cannibals and two missionaries at the same bank. 

3. Two cannibals and one missionary at the same bank. 
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Each case needs to be transformed into a Boolean logic expression, the unsafety condition 

has fewer expressions. Considering the size of the oracle, the unsafety condition is a better 

option. 

Take the first cases in unsafety cases to demonstrate the transformation of Boolean logic 

expression. Because the statement doesn’t mention the cannibals and missionaries stay at 

bank 1 or bank 2, we need to consider both banks. 

For the case “Three cannibals and one missionary at the same bank”, its Boolean logic 

expression:  

 (6.1) 

Transforming into Boolean symmetric function: 

 (6.2) 

The Boolean logic expressions for the rest cases in unsafety condition are: 

 (6.3) 

And 
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(6.4) 

The final expression in Symmetric Function format is: 

 (6.5) 

Equation 6.5 can be simplified by an XOR gate as follows: 

 (6.7) 

the simplified equation is:  

 (6.8) 

Next step, for the valid movement constraint, the Boolean logic expression needs to check 

the value of this object at the current state is different from the value at the previous state. 

The notation  is extended to , where m is the current state of n-th cannibal, the next 

state denoted as . A valid movement between two banks means there should only be 

one or two literals is different from the value of its previous state, in Boolean logic 
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expression it is:  and . We use 

literal  to represent the XOR result of two states.  

 (6.9) 

Continued with the example of three missionaries and three cannibals,  

 (6.10~15) 

Then the valid movement constraint of this example can be easily written into symmetric 

function because it only counts the number of positive literals for Z. Its symmetric function 

is:   

Combining those two constraints, we could get the symmetric Boolean function of this 

oracle: 

 (6.16) 

6.1.2 Results Analysis 

This puzzle is different from those problems in Chapters 4 and 5, it is a sequential decision 

problem [43]. The searching space of this puzzle for quantum Grover’s algorithm is all 
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states (all possible movement) in the puzzle, and any of a safe state is a solution (target) in 

Grover’s searching procedure. The solutions of problems in Chapter 4 and 5 are 

independent of each other, but for the sequential problem, the current state is based on the 

previous state, to find the solution of this type of problems, that means we need to find all 

of the states which are satisfied with the constraints in the searching space. For the example 

with three missionaries and cannibals, there are 32 states (containing the begin and end 

state, all missionaries and cannibals are at the same bank), and 13 safe states, this is verified 

by miniSAT based on our equations. For quantum simulation, we didn’t run the exhaust 

simulation to find all of the solution states, since it cost too much time for Grover’s 

algorithm in the multiple target searching problems.  

 

The performance of Grover’s searching algorithm in solving this type of problem is not 

comparable with a classical computer now, paper [44] introduced the capability and 

limitation of most quantum algorithms, even Google proved a dramatic advantage of 

quantum computing [45] comparing with the classical computer in a specific problem, but 

quantum computing still has significant drawbacks in some area. How to take the 

advantage of quantum computing and find an efficient methodology to create hybrid 

classical-quantum algorithms, is still a question for many quantum computing researchers, 

and this is also one of the motivations of this dissertation. 
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6.2 Quantum Oracle for Maximum Independent Set Problem 

 The maximum independent set (MIS) problem is a basic graph optimization problem, but 

it has many applications in topology. [46]  

 

Definition 1 (Maximum independent set) [48] 

Given an undirected graph G = (V,E) a subset of nodes is an independent set if and 

only if there is no edge in E between any two nodes in S. A subset of nodes S is a clique if 

every pair of nodes in S have an edge between them in G. 

 

Based on this Definition 1, the MIS problem is the following: given a graph G(V,E) find 

an independent set in G of maximum cardinality. This problem has many classical 

algorithms to solve this problem like greedy [51], linear-programming [50], and random 

selection algorithm [49].  
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Figure 6.1 (a) Example graph with 5 vertices and 3 edges. (b) complement graph of G, 

denoted as G` 

An efficient way to find the maximum clique is to consider its complement graph [48], our 

oracle is designed based on this idea. For example, the maximum clique in G` is {b, c, d, 

e}, it is the maximum independent set of G.  

The idea of this oracle is from combinatory logic, for the input graph , is the 

incidence function that associate with each edge of G, if e is an edge in graph G, , 

, , the vertices u and v are called the ends of e.[47] Next our oracle 

needs to create a POS, each sum term in the POS is generated from ,

. Next, our oracle needs to change the POS to SOP, then count 

the number of literals for every product in SOP expression, find the smallest product, 
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denoted as set S. The complement set of S is the maximum independent set of G.  The 

details of our oracle are shown in the following example. 

 

Figure 6.2 Example graph G with five vertices and five edges 

Example 6.2 

Given graph , incidence functions for every edge in graph G:

.  To model this 

graph, we need to generate a set of literals , which related to the nodes 

in graph G.  Graph G can be written into a Boolean expression:  

 (6.17) 
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By definition of the independent set, if two vertices are connected, then these two vertices 

can not be in the same independent set. Every satisfied minterm of equation 6.17 is a set of 

clique in the complement graph of G. To find the maximum independent set, we just need 

to find the smallest size of product term in equation 6.17, and its complement set is the 

maximum independent set of graph G. The smallest product of equation 6.17 is ab and ae, 

then the maximum independent set of this problem is cde and bcd.  

Our quantum oracle to solve this problem contains two constraint blocks: positive-literal 

block and function satisfiability block. 

The function of a positive-literal block is to constraint the number of positive literal in the 

solution, since the satisfied minterms only contain positive literals, any result that contains 

negative literal is unacceptable. And we also need to find the smallest term for the 

independent set. This block contains a quantum accumulator and equality comparator. The 

quantum accumulator is to counting numbers of positive literal at the input side. The 

comparator checks the result from the accumulator and comparing it with the user’s 

threshold to pursue the smallest minterm. 
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Figure 6.3 Block diagram of the positive-literal block for example 6.2 

The function satisfiability block is similar to the SAT example in chapter 2, it is a problem-

specific circuit that depends on the POS equation. 

   

Figure 6.4 Block diagram for example 6.2 
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6.3 Summary of Chapter 6 

Two quantum oracles of logic puzzle problems are presented in this chapter. The river 

crossing puzzle discussed the limitation of Grover’s algorithm in sequential problems, this 

pitfall is caused by multiple targets in the searching space, it is an open problem in Grover’s 

algorithm. Some papers [52,53,54] provide quantum walk as an alternative solution for 

multiple target searching problems. The oracle of MIS problem inherits the same 

methodology in chapters 4 and 5, this is a general idea in our oracle design methodology 

to solve constraint satisfaction problem (CSPs).    
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 Chapter 7: Conclusion and Future Work 

7.1 Conclusion 

In the research work, a quantum algorithm based on the Grover searching algorithm was 

developed. We used our methodology and Boolean symmetric functions to design different 

quantum oracles to solve graph-theory-related problems. We explored our oracle design 

methodology on two graph theory problems (i.e., cycle detection and hypercube partition) 

and extended the solution to the hypercube partition problem to a quantum algorithm to 

solve the Boolean function minimization problem. Current computers still cannot give 

exact optimal solutions to the Boolean function minimization problem because the solution 

requires astronomic numbers of prime or product implicants. The methodology used to 

design the quantum oracle in this dissertation has many applications in graph-theory-

related problems and a significant impact on various optimization problems. 

 

As far as we know, there are no quantum algorithms for graph partitioning, as defined here. 

There are also no classical algorithms for the problems formulated and solved in Chapter 

4. There are no quantum algorithms that can be used to solve classical DSOP and SOP 

minimization problems, as presented in Chapter 5. These problems, like clique covering 

and similar, are all NP-hard. The presented methods will become practical with the 

appearance of quantum computers that can handle more qubits than current technology. 
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The usefulness of these algorithms for noisy intermediate-scale quantum (NISQ) era 

computing should be also studied. 

 7.1.1 Contributions  

This research has resulted in the following accomplishments: 

 The invention of a new quantum oracle for searching for cycles in a graph 

 The invention of a new quantum oracle to partition the Hamiltonian cycle in a graph 

 The creation of a new methodology for designing a quantum oracle based on graph 

theory to solve the Boolean minimization problem 

 The realization of several graph-theory-related quantum oracles and simulations in 

Qiskit and Quipper 

 The realization of two quantum oracles that can solve the Boolean minimization 

problem in Qiskit 

 7.2 Future Work 

The research in this dissertation can be extended in the following directions:  

 Extending the Boolean minimization oracle to a multivalued logic minimization oracle 

 Using the flexibility of the symmetric function to explore additional graph-theory-

related problems, like graph coloring, TSP, and vertex covering 

 Applying our oracle design methodology to additional combinatory problems 
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 Optimizing the inner connections of quantum lattice structures to reduce the quantum 

cost of producing lattice diagrams 
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