
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

8-9-2021

Quantum Grover's Oracles with Symmetry Boolean Quantum Grover's Oracles with Symmetry Boolean

Functions Functions

Peng Gao
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons, and the Theory and Algorithms Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Gao, Peng, "Quantum Grover's Oracles with Symmetry Boolean Functions" (2021). Dissertations and
Theses. Paper 5750.
https://doi.org/10.15760/etd.7622

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5750&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5750
https://doi.org/10.15760/etd.7622
mailto:pdxscholar@pdx.edu

Quantum Grover’s Oracles with Symmetry Boolean Functions

by

Peng Gao

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Dissertation Committee:
Xiaoyu Song, Chair
Marek Perkowski

Fu Li
Jingke Li

Portland State University
2021

 i

Abstract

Quantum computing has become an important research field of computer science and

engineering. Among many quantum algorithms, Grover’s algorithm is one of the most

famous ones. Designing an effective quantum oracle poses a challenging conundrum in

circuit and system-level design for practical application realization of Grover’s algorithm.

In this dissertation, we present a new method to build quantum oracles for Grover’s

algorithm to solve graph theory problems. We explore generalized Boolean symmetric

functions with lattice diagrams to develop a low quantum cost and area efficient quantum

oracle. We study two graph theory problems: cycle detection of undirected graphs and

generalized hypercube partitioning. We present a novel method to design a quantum oracle

to solve Boolean function minimization problems which occur in classical circuit

optimization.

 ii

 Acknowledgments

This dissertation would not have been accomplished without the countless support I

received during my study, to which I express my sincere gratitude and appreciation.

First and foremost, I would like to thank my advisor Prof. Song for his engorgement and

exceptional advice, throughout my doctoral program. His research and working attitude are

a great standard for me to learn.

I would also like to wholeheartedly thank Prof. Perkowski for his enormous help on my

career. The weekly meetings with him are greatly helpful for my career, these meetings

introduced me to the research area of quantum computing.

I would like to express my sincerest gratitude to my advisory committee. I am grateful for

their sacrifice of valuable time.

My life in Portland would not have been so enjoyable without friends and colleagues:

Yiwei Li, Huajie Yang, Bin Lin, Quchun Yu, Xiao Li, Paul Canarsky, Yingcong Li, Nelson

Tan, Amer Aimen, Thinh Nguyen.

 iii

Last but not the least, this dissertation is dedicated to my family. I would like to thank my

parents and other relatives for their endless support and encouragement.

 iv

Table of Contents

Abstract .. i

Acknowledgments... ii

List of Tables .. vii

List of Figures .. viii

Chapter 1: Introduction ..1

1.1 Overview ... 1

1.2 Research Goals.. 3

1.3 Related works.. 5

1.4 Dissertation Outline .. 9

Chapter 2: Background ..12

2.1 Quantum Gates and Circuits ... 12

2.2 Quantum Circuit Simulation ... 27

2.3 Grover’s Algorithm ... 32

2.3.1. Introduction ... 32

2.3.2 Simulations .. 41

2.3.3 Quantum Oracle ... 45

2.4 Summary of Chapter 2 .. 53

Chapter 3: Boolean Symmetric Function and Quantum Lattice Diagram54

3.1 Boolean Symmetric Functions .. 54

 v

3.2 Lattice Diagram .. 57

3.2.1 Introduction .. 57

3.2.2 Realization Boolean Symmetric Functions using Lattice Diagrams

... 64

3.2.3 Realizing Symmetric Function with Davio Lattices 68

3.3 Quantum Implementation of Boolean Symmetric Function with Lattice

Diagrams ... 73

3.4 Realizing Non-Symmetric Functions with Lattice Diagrams 76

3.5 Summary of Chapter 3 .. 78

Chapter 4: Design Quantum Oracle for Graph Theory Problems79

4.1 Modeling a Graph with a Boolean Expression ... 79

4.2 Methodology of Building Quantum Oracles for Hamilton Cycle and

Hypercube Graph .. 87

4.3 Hypercube Partitioning Problem... 96

4.4 Quantum Simulators and Tools .. 104

4.5 Result Analysis and Quantum Cost Estimation .. 106

4.6 Summary of Chapter 4 .. 110

Chapter 5: Hybrid Quantum/Classical Algorithm to Minimize Switching

Functions based on Graph Partitions ...111

5.1 Introduction ... 111

 vi

5.2 Solving DSOP/SOP and Minimization Problems for Boolean Functions

using Partial Hypercube Partitioning .. 114

5.3 Summary of Chapter 5 .. 125

Chapter 6 Designing Quantum Oracles for Logic Games ...126

6.1 Quantum Oracles for River Crossing Puzzle .. 126

6.1.1 Modeling the Constraints of River Crossing Puzzle 128

6.1.2 Results Analysis ... 131

6.2 Quantum Oracle for Maximum Independent Set Problem 133

6.3 Summary of Chapter 6 .. 138

Chapter 7: Conclusion and Future Work ...139

7.1 Conclusion .. 139

7.1.1 Contributions.. 140

7.2 Future Work .. 140

References ..142

 vii

 List of Tables

Table 2.1. Truth Table of the Toffoli Gate ... 22

Table 2.2 Truth table of example oracle ... 42

Table 2.3 Truth table for F(a, b, c, d, e) .. 46

Table 3.1. Symmetric function with the related vector for Shannon Lattice Diagram 66

Table 3.2. Symmetric function with the related vector for Positive Davio Lattice Diagram

 ... 71

Table 3.3 Karnaugh map for function f(a,b,c,d) ... 77

Table 4.1. Symmetric functions for verities in Fig. 4.4 .. 91

Table 4.2 The number of symmetric graphs related to the degree of vertex and number of

vertices. ... 101

Table 4.3 Comparisons of different synthesis methods .. 109

Table 5.1 Node and edge connection for Fig.5.2 .. 119

 viii

 List of Figures

Figure 2.1 Bloch sphere .. 14

Figure 2.2 One qubit Hadamard Gate [35] ... 16

Figure 2.3 Matrix of Swap gate .. 19

Figure 2.4 Symbol of SWAP gate... 19

Figure 2.5 Matrix of CNOT gate .. 20

Figure 2.6 Symbol of CNOT .. 20

Figure 2.7 Matrix of Toffoli gate .. 21

Figure 2.8 Symbol of the Toffoli gate .. 21

Figure 2.9 Matrix of Fredkin gate ... 23

Figure 2.10 Symbol of Fredkin gate ... 23

Figure 2.11 4-qubit quantum accumulator .. 24

Figure 2.12 Example of a quantum accumulator .. 24

Figure. 2.13 2-qubit comparator ... 26

Figure 2.14: Example of Grover algorithm with a single Toffoli gate to realize the minterm

of three-variable function. ... 28

Figure 2.15 Oracle of this equation ... 29

Figure 2.16 K-map of this equation ... 30

Figure 2.17 Extended version of the SAT oracle with Swap gates for the Grover algorithm

 ... 31

Figure 2.18 (a): Inner structure of Toffoli gate (b): Simplified Toffoli gate 31

 ix

Figure 2.19 Circuit diagram for Grover’s algorithm for the oracle. 36

Figure 2.20 Initialized amplitude of quantum states ... 37

Figure 2.21 Amplitudes of quantum states after the phase inversion 38

Figure 2.22 Amplitudes of quantum states after the first Grover iteration 39

Figure 2.23 Amplitudes of quantum states after the second Grover iteration 40

Figure 2.24 Implementation of Grover search for a three-input Toffoli gate 41

Figure 2.25 Amplitude of each state after Hadamard gate. .. 43

Figure 2.26 Result of the first iteration ... 43

Figure 2.27 Result of the second iteration .. 44

Figure 2.28 Oracle for the 2-SAT problem ... 45

Figure 2.29 Results of the first iteration ... 47

Figure 2.30 Results of the second iteration ... 47

Figure 2.31 Results of the third iteration .. 48

Figure 2.32 Results of the fourth iteration .. 49

Figure 2.33 Results of the fifth iteration ... 49

Figure 3.1. Single-output lattice diagram. .. 58

Figure 3.2. A 2-to-1 multiplexer with control variable a and data inputs x, y. 60

Figure. 3.3 Shannon lattices for three-variable functions: (a) single-output and (b) multiple-

output. ... 61

Figure 3.4 Davio gate. ... 62

 x

Figure 3.5 Davio lattices for three-variable functions: (a) a single-output Davio lattice and

(b) a multi-output Davio lattice. .. 62

Figure 3.6 Generalized lattice diagram. .. 63

Figure 3.7 Single-output Shannon lattice.. 64

Figure 3.8. Multi-output Shannon lattice. ... 67

Figure 3.9. Davio lattice structure that realizes all three variable symmetric functions with

W, X, Y, and Z as constants and functions with more variables in case W, X, Y, and

Z are variables or simple functions. .. 69

Figure 3.10. Zhegalkin polynomial matrix for three variables. .. 70

Figure 3.11. Multi-output Davio lattice with a reversed shape. .. 72

Figure 3.12 Quantum implementation of 2-to-1 Multiplexer . .. 73

Figure 3.13 (a) the original Lattice Diagram of S1(a,b,c). (b) Removing the bottom-right

cell. (c) Removing the level of input variable c. (d) Removing the level of input

variable b. .. 74

Figure 3.14 Quantum circuit of figure 3.13 (a). .. 75

Figure 3.15 Simplified quantum circuit of figure 3.14 (a). ... 75

Figure 4.1 n-cube graph. (a) Q1 for n=1 (b) Q2 for n=2 (c) Q3 for n=3 84

Figure 4.2 Example of generalized hypercube graph. (a) Clique K2 (b) Clique K3 (c)

Generalized hypercube Q(2,3) ... 86

Figure 4.3 Quantum oracle for graph problem with n vertices ... 89

 xi

Figure 4.4 Graph G of example 4.1 .. 91

Figure 4.5 Zhegalkin polynomial matrix for seven input variables. 93

Figure 4.6 Quantum oracle for example 4.1 ... 95

Figure 4.7 Example graph for hypercube partitioning .. 96

Figure 4.8 Example graph for partial hypercube .. 103

Figure 5.1 Karnaugh map for function F(a, b, c, d) .. 118

Figure 5.2 Compatibility graph for function F(a, b, c, d) ... 120

Figure 5.3 Reduced graph for function F(a, b, c, d).. 121

Figure 5.4 (a)Karnaugh map of Boolean Function G(a,b,c,d). (b) Compatibility graph of

G(a,b,c,d). (c) Reduced graph after the first search. (d) Reduced graph after the second

search. ... 124

Figure 6.1 (a) Example graph with 5 vertices and 3 edges. (b) complement graph of G,

denoted as G` .. 134

Figure 6.2 Example graph G with five vertices and five edges 135

Figure 6.3 Block diagram of the positive-literal block for example 6.2 137

Figure 6.4 Block diagram for example 6.2 ... 137

 1

 Chapter 1: Introduction

1.1 Overview

At a conference on physics and computation at the Massachusetts Institute of Technology

(MIT) in 1981, Richard Feynman, one of the greatest physicists of his time, asked the

question, “Can we simulate physics on a computer? The answer is no, at least not all the

physics, but one of its branches called quantum mechanics.” Studies on the laws of nature

at the atom and particle level have been of interest in the field of quantum mechanics. If

we tried to simulate this on a standard computer, then we would end up with the problem

of having to deal with too many variables that the computer would not be able to handle.

For instance, if a particle is described by two variables, then for n particles, we would need

2n variables. Therefore, if we have 1,000 particles, then we would need 21,000 variables, and

the computers that we have at present will seldom, if ever, have enough memory to store

such large quantities of values. Hence, instead of trying to simulate quantum mechanics on

a computer, our goal was changed to building a quantum mechanical computer that would

be dramatically better than ordinary computers.

The question of how to practically design a quantum computer was answered for the first

time with the prototype for a quantum computer demonstrated on February 13, 2007, by

D-Wave Systems, Inc. at the Computer History Museum in Mountain View, California. It

 2

consisted of a 16-qubit quantum annealing processor. On May 11, 2011, D-Wave

announced D-Wave One, “The world’s 1st commercially-available quantum computer”

operating on a 128-qubit chipset via quantum annealing to solve optimization problems,

and on August 20, 2015, they also announced the general availability of a 1,000+ qubit

quantum computer called the D-Wave 2X system, which was designed to handle complex

problems.

There are several technologies and types of quantum computers being developed.

Technology giants like Google, Microsoft, Intel, and IBM are coming together in quantum

computer competitions in different areas, such as quantum design automation, quantum

simulators, quantum algorithms, quantum chip design, and quantum cloud computing.

There are three concepts in the IBM 2020 quantum roadmap: kernels, algorithms, models.

The kernel developers are focusing on creating high-performance quantum circuits.

Algorithm developers rely on these circuits to develop groundbreaking quantum algorithms

that might provide an advantage over current classical computers. Model developers apply

these algorithms to solve real-world problems in chemistry, physics, biology, machine

learning, and optimization by creating different quantum models.

 3

In this dissertation, we propose a quantum algorithm design methodology with which to

solve graph-theory-related problems in which we make use of the symmetry of Boolean

functions. Our methodology is based on lattice diagrams and the Grover algorithm. We

transferred the graph problems to constraint satisfaction problem that uses Boolean

symmetry. We took the area-efficiency advantage of the lattice diagram into account to

create our quantum oracles with reduced complexity and, thus, reduced quantum-

realization costs.

 1.2 Research Goals

When researchers use Grover’s algorithm to solve practical problems, they face several

issues when building an efficient oracle. These issues can potentially influence quantum

computation performance.

1. The quantum gates are used in the oracle. How is the use of certain gates reflected

in the total quantum cost the simulation time of a quantum oracle? How will the

synthesis methods for binary quantum gates affect the number of ancilla qubits, the

performance of simulation, and the costs of the circuit of the oracle and the entire

Grover algorithm?

2. How can the quantum oracle be synthesized with fewer ancilla qubits? How does

the cost of ancilla qubits affect the performance of the quantum oracle?

 4

3. Normally quantum oracles are synthesized with Feynman, swap, inverter, and

Toffoli gates. However, compared to the classical switching circuit, quantum

mechanics have flexibility in creating the base gates. Can we find better quantum

gates with which to synthesize an oracle?

4. Because it is limited to the number of qubits a quantum computer can operate, a

solution based on a pure quantum algorithm is still not applicable using current

technology. A hybrid classical/quantum algorithm is the most promising method to

use to solve many problems. What improvements can be achieved by using such a

combination?

 I focus on creating an efficient quantum oracle for Grover’s algorithm to solve constraint

satisfiability problems (CSPs) and other problems that can be transformed into CSPs. My

methodology for building a quantum oracle is based on symmetrical Boolean functions and

lattice diagrams and aims to reduce quantum computing costs and improve efficiency by

using lattice diagrams to implement the oracle in the form of a symmetrical Boolean

function. I proposed transforming non-symmetric functions into symmetric functions by

using the reminder function. My contributions also include building several quantum

oracles and hybrid classical/quantum algorithms with which to solve practical problems,

such as the Hamiltonian cycle detection problem, how to minimize the switching function,

and how to solve some logic puzzles.

 5

 1.3 Related works

There are four categories of problems discussed in my dissertation: Cycle detection and

hypercube partitioning problems, Switching function minimization problems, Maximum

Independent Set problems (MISp), CSPs.

Problems 1 and 3 are classical graph-theory-related problems, and there are many related

papers [58–77] on this problem in quantum computing as well. Problem 2 is an electronic

design automation (EDA) problem. It has been well studied in classical computing but has

not attract enough attention in quantum computing yet. The river crossing puzzle is

categorized into Problem 4. Few researchers [78–80] have studied this kind of problem in

quantum computing.

Graph-theory-related problems have been well-studied from a variety of aspects. Most of

the related papers involve modeling an arbitrary graph with the adjacent matrix model or

the adjacency list model based on Christoph’s paper [58, 59]. In that paper [58], Christoph

et al. studied the quantum query complexity of these two graph models with the minimum

spanning tree problem. In their next paper [59], they extended the idea using Grover’s

algorithm and presented a quantum exponential searching algorithm based on Grover’s

algorithm. The ideas in these two papers inspired many subsequent works in quantum

 6

computing. There are many papers on the cycle detection problem and Hamiltonian cycle

detection problem [60–65]. Most of them involve the use of Grover’s algorithm. The papers

[60, 61] present an overview of how to solve the Hamiltonian cycle problem in quantum

computing. Vidya [60] briefly introduced the Hamiltonian cycle problem and a possible

way to speed up Grover’s algorithm for this problem. Rudolph [61] presented an adjacent

matrix model with a quantum circuit that can be used as the oracle function in Grover’s

algorithm. Similar to Rudolph’s idea, Burger [62] presented a detailed quantum circuit of

the adjacent matrix model to solve the Hamiltonian cycle detection problem. The authors

of both of these papers used Grover’s algorithm to check the connections of all vertices in

the adjacent matrix model to determine whether a cycle exists in the graph. Da-Jian [63]

introduced a quantum algorithm on an adiabatic quantum processor. This algorithm takes

advantage of Grover’s algorithm in brutal searching. Similarly, Yimin’s algorithm [64] is

a Grover-based algorithm, they present a hybrid framework to solve the Hamiltonian cycle

problem. The difference between Yimin’s method and Da-jian’s method is in the graph

modeling and encoding part. Anuradha [65] presented a quantum algorithm with which to

solve the Hamiltonian cycle problem based on quadratic unconstrained binary optimization

(QUBO). This method is similar to that of a Grover-based algorithm but with a different

problem formulation. In QUBO, the problem needs to be formulated into a group of linear

equations while Grover’s oracle can be expressed using a Boolean function.

 7

The traveling salesman problem (TSP) can be transformed into a Hamiltonian cycle

detection problem, and there are also some papers [66–70] on this topic. Eppstein [66]

conducted a scientific analysis of the classical algorithm to solve the Hamiltonian cycle

and TSP problems. Based on Eppstein’s paper, Mingyu introduced his quantum algorithms

[67]. Minyu et al. presented an exponential quantum algorithm using branch searching to

solve the TSP problem in a degree-3 graph. In their next paper [68], they extended their

algorithm to a degree-4 graph. Dominic [69] used a similar technique to improve Xiao’s

algorithm with higher-degree graphs. Karthik [70] showed a gate-level implementation of

Grover’s algorithm to solve the TSP on IBM’s quantum simulator. Karthik also modeled

the distance matrix of a four-city TSP and got the result from IBM’s quantum simulator.

Another problem discussed in my dissertation is the problem of hypercube partitioning.

Hayato [71] and Eugenio [72] proposed different graph partitioning algorithms for a

quantum annealing system. Hayato’s provided a generalized graph partitioning algorithm

using QUBO. His work was inspired by biology and chemical applications. Eugenio

focused on partitioning a graph into Hamiltonian subgraphs. With the power of D-Wave,

the maximum size of a graph that can be processed is 4,000 vertices with 5,200 edges.

 8

The maximum independent set problem (MIS) and its related problem, the maximum

clique (MC) problem, are famous graph problems, there are many papers [73–77] that use

these problems as an example to prove the advantages of quantum computing. Alan’s paper

[73] contains an overview of how to use Grover’s algorithm to solve MC problems. The

author of this paper explained Grover’s algorithm and its application to MC problems.

Arpita’s paper [74] contains a circuit-level solution to problems. The authors designed a

quantum circuit to check the maximum clique in a 3-vertex graph and a 4-vertex graph and

then simulated their circuit using IBM’s quantum simulator. Another quantum algorithm

that involves the use of quantum walking was introduced in Xi’s paper [75]. Quantum

walking is a different searching algorithm from Grover’s algorithm. Xi proposed the use

of three algorithms for graphs with different degrees. These papers [76, 77] investigated

the quantum solutions to the MC problem in a quantum annealing model. A quantum

annealer can provide higher accuracy and more quantum registers than adiabatic

architecture. The most famous product of this technology is D-wave. Elijah et al. [76]

proposed a framework for a quantum decomposition algorithm for solving MC problems.

In their paper, they analyzed the lower bound of their algorithm for the MC problem and

predicted the performance of their algorithm on future D-wave architectures. Similar to

Elijah et al., Guillaume’s group [77] proposed a quantum algorithm with which to solve

MC problems using a quantum annealer and QUBO.

 9

Thanks to Grover’s algorithm and other quantum searching algorithms, the CSP is a

promising area that can show the advantage of quantum computing. Ashley [78] provided

a knowledgeable introduction to the quantum walk and Grover’s algorithm in CSP by

giving examples of backtracking trees. Zhengbing [79] provides a quantum algorithm on a

quantum annealing system for CSP. This algorithm is based on Boolean constraints and

function decompositions. In a recent paper, Koen et al. [80] provided a benchmark QPack

that contains many CSPs like MaxCut, domination set, and the traveling salesman problem.

Their benchmark considered not only running time and complexity analysis but also the

cost and accuracy of quantum algorithms. Hong [81] presented three quantum-classical

algorithms with which to solve weighted constraint satisfaction problems (WCSPs), one

for Boolean WCSPs and the other two for general WCSPs on quantum annealers with the

QUBO. Despite that progress, there remain many unsolved questions about the circuit-

level implementation of the quantum algorithm and the advantages of quantum computing

compared to classical computing.

1.4 Dissertation Outline

This dissertation is organized as outlined below:

 10

Chapter 2: Different quantum gates are introduced, along with a few basic concepts of

quantum mechanics. Grover algorithms are explained in detail. Two examples of Grover

searching are presented to show the importance of quantum oracle in Grover algorithms.

Chapter 3: Lattice diagrams are introduced. Shannon, positive, and negative Davio lattices

are presented, along with how they are realized in quantum circuits. Different structures of

lattice diagrams (single output/multiple outputs) are discussed, and the simplification of

the lattice diagrams is explored.

Chapter 4: The quantum oracle design methodology is introduced, and graph-theory-

related problems are formulated using examples to demonstrate the details of our

methodology.

Chapter 5: By transferring the Boolean minimization problems into graph problems. We

created a hybrid quantum algorithm to solve the Boolean minimization problem and

designed a methodology for generating the quantum oracle.

Chapter 6: We Investigated two logic puzzles with our quantum oracle building

methodology—the river crossing puzzle and the MIS problem.

 11

Chapter 7: Conclusion and future work. This chapter contains a summary of the research

results of this dissertation. Further research work and approaches are also discussed.

 12

 Chapter 2: Background

The first papers that verify quantum mechanics and quantum models for computation by

experiments were published in the 1980s [27,28]. The landmark paper about the quantum

computing model was published in 1985 by Deutsch [29], this paper considered the relation

between the quantum computation model and the Turing machine, which is an important

issue to address when building a quantum computer.

In this chapter, we summary quantum gates and circuits are used in this dissertation. The

quantum gates are introduced by a unitary matrix. For the quantum circuits, examples are

provided to demonstrate their characteristics. At the end of this section, Grover’s algorithm

is introduced by equation derivation and simulation, this is the kernel algorithm of our

methodology.

2.1 Quantum Gates and Circuits

Before introducing the quantum gates, we want to give a brief introduction to Dirac

notation, also known as bra-key notation, which is used to present vectors in quantum

mechanics.

Dirac Bra-Ket Notation

Dirac notation was introduced by Paul Dirac in 1939 [55], the notation uses angle bracket

“ ” and vertical bar “ ” to denote the product of vectors or the action of linear function

 13

on vector in complex vector space. Inner product, outer product, and tensor product are the

three most used functions in quantum mechanics.

Inner product:

Outer product:

Tensor product :

 is called a ket , it is usually represented as a column vector, is called bra, it is the

complex conjugate of ket (V*), usually represented as a row vector. In the quantum

computer research area, Bra-ket notation is a standard notation to describe quantum

bits(qubits).

In contrast to the classical computer, a quantum computer would work with quantum bits,

qubit, Qubit is denoted with eigenstates(states) and , and they exist in a

superposition of these states: , where are complex numbers

 14

satisfying the normalization condition: [3]. The superposition of a qubit

can be present on a Bloch Sphere [3] in Fig 2.1. The basis state are and , and the

superposition of can be converted to unique coordinates on the sphere by

.

Figure 2.1 Bloch sphere [35].

A qubit can be operated by a quantum logic gate, resulting in the rotation of the state vector

to a different location on the Bloch Sphere [3]. For example, a qubit from basis state ,

which is the top point on the z-axis, when , the state of this qubit moves to

 15

, later we will introduce, this rotation can be performed by Hadamard gate.

Comparing to a classical logic bit which only uses state 0 and 1, the quantum superposition

state like means this qubit can be state and at the same time, these

two states have a probability to be measured, and the state of this qubit can be decided only

when it is observed in the measurement. The superposition of a qubit enables

parallelization of computation. Many quantum algorithms are taking this advantage to

provide a great speed-up for solving sorts of classical problems [29 -33].

Like the classical logic gates that are the building blocks of a classical circuit, we have

quantum gates that act on qubits and are the basic building blocks in quantum circuits. The

special asset of these gates is the power of reversibility. Unitary matrices may also

represent the functioning of these gates.

Next, we would introduce some of the commonly used quantum gates [1]: Hadamard gate,

Pauli rotation gates, Swap gate, CNOT (Controlled NOT) gate, Toffoli gate, Fredkin gate.

We can find similarity in function of some quantum gates and classical logic gates, like

 16

Pauli rotation gate, Pauli X gate is changing the state from to or to , its

function is similar as the classical inverter.

Hadamard Gate:

This gate maps basis state to and basis state to

It is represented by the unitary matrix:

Figure 2.2 One qubit Hadamard Gate [35]

In Fig.2.2, the initial state is , it can be resented in matrix , after

we apply the Hadamard gate, the state changed from to

 17

, the new state is

, the probability of observing and in this

qubit are equal. This is an important feature of Hadamard gate.

When we apply the Hadamard gate to a parallel n-qubit system prepared in a state ,

the output state produced by the Hadamard gate is an equal superposition of all the integers

in the range from 0 to 2n-1

i.e. where, is the

computational basis state represented by the binary number that maps to the corresponding

number ‘j’ in base {1,0}. Take vector state for an example, the entire space of the

output of Hadamard gate is created with 23 basic states, such as:

Pauli X, Y, and Z Gates:

The Pauli X gate is the quantum equivalent of the NOT gate in classical logic, while the Y

and Z gates rotate the qubit along the Y and Z axis, respectively, on the Bloch sphere in

Fig2.1.

The Pauli X gate maps to and to , the equivalent Pauli matrix is:

 18

(2.1)

It corresponds to the rotation of the Bloch ball around the X-axis by π (180) radians.

The Pauli Y gate maps to i and to –i , the Pauli Y matrix is:

(2.2)

It equates to the rotation of the Bloch ball around theY-axis by π (180) radians.

The Pauli Z gate maps to - and leaves state as is, the Pauli Z matrix is:

(2.3)

It equates to the rotation of the Bloch ball around the Z-axis by π (180) radians.

Swap Gate:

This gate swaps two qubits as per its basis state, it is given by the matrix in Fig 2.3:

 19

Figure 2.3 Matrix of Swap gate

Figure 2.4 Symbol of SWAP gate

For example, if the input state is , its matrix representation is :

(2.4)

When we apply the Swap gate to this state:

(2.5)

 20

From the out of Swap gate, we can find the state changed from to .

The Swap gate can only perform a swap operation between two qubits, but we can use

multiple Swap gates to perform a swap in a quantum circuit which input size is larger than

two.

CNOT Gate:

This is a controlled-NOT gate that acts on two or more qubits; the first line/qubit is a control

line/qubit that decides whether to flip the rest of the qubits. When the first qubit is set to

 , it performs a NOT operation on the rest of the qubits; otherwise, it leaves them

unchanged. It is represented by the matrix in Fig. 2.5:

Figure 2.5 Matrix of CNOT gate

Figure 2.6 Symbol of CNOT

 21

Toffoli Gate:

This is also called the Universal quantum gate as the other gates can be deduced from this

gate. It functions as a CCNOT (CONTROLLED CONTROLLED NOT) gate on three

qubits. If the first two qubits are in state then it flips the third qubit, else it leaves it

unchanged. It is given by the following matrix in Fig. 2.7:

Figure 2.7 Matrix of Toffoli gate

Figure 2.8 Symbol of the Toffoli gate

 22

We use a truth table to give a straightforward view of the Toffoli gate. This gate maps

input state to output as:

Table 2.1. Truth Table of the Toffoli Gate

Input Output

Fredkin Gate

This gate is also called a CSWAP (Controlled- Swap) gate. It is a three-qubit gate used to

perform a controlled swap, it only swaps the lower two qubits when the first line is

 23

activated. The benefit of this gate is its conservation of 0’s and 1’s throughout. The matrix

representation is in Fig. 2.9.

Figure 2.9 Matrix of Fredkin gate

Figure 2.10 Symbol of Fredkin gate

Next, we would like introduce some quantum circuits which are used in our methodology.

Quantum Counter (Quantum Accumulator)

This circuit is a basic component used in our oracle, the function of this circuit is to count

and sum up the number of targets.

 24

Figure 2.11 4-qubit quantum accumulator

The top line in Fig. 2.11 is called the control line, this circuit only accumulates when the

control line equals to . The remaining four lines are the output lines, they record how

many times the control line has been activated, then output the number in the format of a

vector. The output lines need to be initialized with . The quantum accumulator needs

to be implemented in cascade connection in the circuit, the number of counters is decided

by the number of targets that need to be counted.

Figure 2.12 Example of a quantum accumulator

 25

For example, in the circuit of Fig 2.12, there are four counters to accumulate the results

from related targets. If and only if the related control line (CL) is true, the counter is

activated. Suppose all the control lines are true in Fig. 2.12, let us look back to Fig. 2.11

for the inner structure of each counter. For the first counter, only the Feynman gate at the

right side is on, this gate flips the initialized value 0 to 1, and the value of the rest qubits

just pass through, the output of this circuit is [1000]. The data input of the accumulator is

fed by the output of the previous one, this connection makes the gates inside of each

accumulator be triggered sequentially. For example, the input of the second accumulator is

[1000], the Feynman gate and two-input Toffoli gate in Fig 2.11 are triggered on, the output

of the accumulator is [0100], taking the most significant bit (MSB) from the right side of

this vector, this binary vector equals to 2.

Quantum Inequality Comparator

Quantum inequality comparator, as shown in Fig 2.13, is another important circuit template

used in our oracle, the function of this circuit is comparing the value of two inputs.

 26

Figure. 2.13 2-qubit comparator

In Fig 2.13, it is a two-qubit inequality comparator. The bottom data line is the output of

this inequality comparator, when the input data are the same qubit vector, the output line

returns 1; otherwise, the output line returns 0. Similarly, Equality Comparator and other

comparators can be built to be used in Grover Oracles.

Because of the quantum cost of large Toffoli gate is extremely expensive, our oracle uses

the accumulator and comparator to replace the Toffoli gate. Besides the quantum cost, the

combination of accumulator and comparator also is more flexible in constraint satisfaction

problem (CSPs), for example, each of the control line is a result of a constraint, if the oracle

need to disable some of the constraints, for Toffoli gate, the blocked constraints must be

specific, otherwise, the oracle can not decide where to put the invertor on the Toffoli gate.

However, in accumulator and comparator structure, the oracle only concerns the numbers

of satisfied constraints, it doesn’t need to check which specific constraint is true. This

property provides more flexibility in some CSPs comparing to the Toffoli gate.

 27

2.2 Quantum Circuit Simulation

This dissertation is entirely devoted to the Grover Algorithm, which is the most useful

quantum algorithm with many practical applications in engineering problems. The name

Grover is derived from its inventor, but it is somewhat misleading. This is not an algorithm;

rather, it is a general method to speed-up loops that search without additional information.

Therefore, the Grover algorithm can be applied to many problems giving quadratic speedup

for each loop of some “higher-level algorithm.”

For the speedup of Grover Searching, it is like looking for a white marble among three

black marbles in an urn. The worst case is, after picking out every black marble, we finally

find the white marble. However, with Grover searching, if we know we are looking for the

white marble, we can take it out firsthand; that is the power of quantum searching, find the

target in only one shot. In general, with N marbles the classical algorithm would need in

the worst case N searches (evaluations of the oracle), but the quantum algorithm of Grover

would need only !

A simple example is shown in Figure 2.14. We do not know the function of the Boolean

inside the oracle, but we know that this function has only one true minterm. In this case, it

is for minterm it will be: 101(binary vector). Assuming that it is the only

solution, the problem is finding the solution between the possible eight minterms of the 3-

 28

bit length data, which are 000, 001, 010, 011, 100, 101, 110, and 111. The normal method

to solve this problem would need to test the classical circuit 7 times to find the solution. In

a quantum algorithm, only one oracle is enough, as illustrated below. The blocks with

symbol X and Z in Fig. 2.14 are Pauli X gate and Pauli Z gate, the block with H is

Hadamard gate.

Figure 2.14: Example of Grover algorithm with a single Toffoli gate to realize the

minterm of three-variable function.

The number of qubits is the length of data in this problem. Our target uses hidden items;

for easy reading, it uses decimal numbers here. Like the stem graph shown above, we will

have a relatively high probability of getting the solution compared with other minterms

after two iterations.

 29

The next example is a Boolean satisfaction problem (SAT); the probability of changing

every input qubit is shown in detail in this example.

Example 2.1

In this SAT example, the oracle is a Boolean equation: F(a,b,c) = (a+b’)(a’+c), its

quantum circuit implementaltion is Fig 2.15

Figure 2.15 Oracle of this equation

ab/c 0 1

00 1 1

01 0 0

 30

11 0 1

10 0 1

Figure 2.16 K-map of this equation

From the K-map, there are four solutions for this SAT problem; the Unique solution Grover

searching is a special case of Multiple solution searching; for the Multiple solution

problems, theoretically, we will obtain an equal probability of each solution by Grover

searching after the maximum iteration.

Fig. 2.17 is the same implementation of F(a,b,c); the different part is, there are many swap

gates used here. Based on the current technology, qubits can only talk to their neighbor's

lines. Then we need to use a swap gate to pull those qubits up or down for the correct

operation. This optimization is not only for a circuit but also needed inside the realizetion

of the Toffoli gate. In Fig 2.17, we use the standard symbol of the Toffoli gate. However,

inside, we also add two swap gates for the same reason, shown in Fig 2.18. After applying

the swap gate, this Toffoli gate model can be simplified because of the two Feynman gates

in a red block; the simplified version is shown in Fig 2.18.b

The rest of the quantum schematic in this dissertation all use the same technology, for the

reader’s convenience, the Swap gate will not be draw in the rest of the dissertation.

 31

Figure 2.17 Extended version of the SAT oracle with Swap gates for the Grover

algorithm

Figure 2.18 (a): Inner structure of Toffoli gate (b): Simplified Toffoli gate

 32

2.3 Grover’s Algorithm

2.3.1. Introduction

To search an unsorted database with N entries, Grover’s algorithm requires N dimensional

state space, represented by n= log2N qubits. The best classical algorithm requires time in

the order of O(N) to search over the unordered set, while Grover [2] takes only

units of time for the same, resulting in a quadratic speedup. Such speedup is achieved due

to the quantum superposition of the states. The working is as follows:

For an ‘n’ qubit system, the search space is N = 2n with all bits initialized to state as:

(2.6)

To bring this into a superposition state, a Hadamard transformation is done as:

(2.7)

This ensures equal amplitude of associated with every possible configuration of

qubits in the system and an equal probability that the system will be in one of the 2n

 33

states. Quantum algorithms use amplitude amplification to achieve the qualities of quantum

amplitudes which differentiate them from simple probabilities. The main idea is to select

the right kind of phase-shifting operator that satisfies some conditions at each iteration. For

example, a phase shift of is nothing but the multiplication of the amplitude by -1, this

changes the orientation of the vector but not the probability of its being in the state. In this

algorithm, subsequent transformations are done on the system to take advantage of that

difference in amplitude to separate that state(s) of a differing phase(s) and to ultimately

increase the probability of the system being in that state(s).

The next set of transformations is referred to as the Grover Iteration, which performs

amplitude amplification and is repeated: times. This ensures that we attain the

optimal probability of the state being observed to be the correct one and according to

Grover [2] this is achieved at a rotation of radians. The first step to the iteration is the

use of an oracle called the Quantum Oracle O. This oracle is a black-box function, meaning

it can observe and modify the system without collapsing to a classical state and it indicates

if the system is in the correct state by rotating it by radians, else it does nothing.

Quantum oracle implementations often use extra bits(ancilla bits), which are unnecessary

in this implementation, so the oracle’s impact on may be written as:

 34

(2.8)

Where f(x) = 1 if x is in the correct state and f(x) = 0 otherwise. The implementation of

f(x) depends on the problem at hand.

The next step is called the diffusion transform, it is the key point of Grover’s Algorithm.

After the phase inversion from previous step, the diffusion transform flips the amplitude of

every states by an operator called Grover diffusion operator . The function of

this operator is shown as following:

(2.9)

(2.10)

The diffusion operator flips the amplitude of state , but for the state , this operator

didn’t change the amplitude.

 35

The entire diffusion operator may be written as:

For arbitrary state , where is the amplitude, when we apply the diffusion

operator to it:

(2.11)

Where is the mean amplitude of every states, , N is the number of items in

the database. From the equation one can see that the amplitude of each state is flipped by

the mean amplitude [34].

Regarding the runtime of the Grover iteration, the exact runtime of the oracle depends on

the problem at hand, so the call to the oracle is viewed as one operation. Hence the total

runtime for one iteration is ϴ(2n), from the two Hadamard transformations, plus O(n) for

the phase shift gate leading to O(√N) = O(√2n) = O(2n/2) iterations each with a runtime of

O(n) is O(2n/2).

 36

Figure 2.19 Circuit diagram for Grover’s algorithm for the oracle.

Example 2.2:

Consider a system of N = 8 = 23 states and the state being searched is 011. This system can

be represented by n = 3 qubits as follows:

Where ai is the amplitude of the quantum state . The system is initialized to state zero.

Applying the first set of Hadamard transformations to obtain a superposition of states with

equal amplitude probabilities is:

 37

 (2.12)

Figure 2.20 Initialized amplitude of quantum states

The number of iterations to find all solutions: and is rounded to 2

iterations.

For iteration 1, the oracle query will negate the amplitude of the state |011> (as we are in

search of this state from the superposition) giving:

(2.13)

 38

Figure 2.21 Amplitudes of quantum states after the phase inversion

Now, the diffusion transform is performed as , which will increase the

amplitudes by their difference from the average, decreasing if the difference is negative:

(2.14)

Apply the following property of identity:

(2.15)

(2.16)

 39

Hence,

 (2.17)

Which appears as in Fig. 2.22

Figure 2.22 Amplitudes of quantum states after the first Grover iteration

The same transformations are applied for the second iterations as follows:

 40

On the second round of diffusion transform, apply the diffusion operator:

Figure 2.23 Amplitudes of quantum states after the second Grover iteration

 41

2.3.2 Simulations

We will use here a simulation to show the internal quantum data change during the

execution of the Grover Algorithm. The simulations have been performed on MATLAB

and the amplitude of each state will be exported into an Excel worksheet.

The circuit for the Grover implementation is as follows:

Figure 2.24 Implementation of Grover search for a three-input Toffoli gate

The code implemented allows the user to select a size for Grover implementation. The

algorithm was initially tested for a Toffoli gate oracle and then extended to SAT problems.

Also, each gate is defined as a separate function for ease of access.

 42

Toffoli Oracle:

This is a three-bit gate (but the algorithm can have this extended to N bits) as follows:

Table 2.2 Truth table of example oracle

a b b Output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1(Target)

For a three-qubit Grover, . It needs two iterations to obtain the correct

measurement. The following graphs are simulation results from MATLAB.

 43

Figure 2.25 Amplitude of each state after Hadamard gate.

Figure 2.26 Result of the first iteration

 44

Fig 2.26 shows the result of each stage in the first round of Grover’s algorithm, the phase

inversion can be observed clearly at the sub-figure “after oracle” in Fig.2.26, and the

amplitude implication can be found in the final result.

Figure 2.27 Result of the second iteration

In last figure of Fig. 2.27, the amplitude of rest items is reduced below 0.2 comparing to

the value around 0.3 in Fig.2.26, this the trick of Grover’s algorithm. As mentioned

previously, there is a maximum rounds of Grover’s algorithm, for this example, the number

is 2. If we perform the third round, then the superposition of target item would be collapsed.

[14]

 45

2.3.3 Quantum Oracle

This oracle is specific to the Satisfiability problem (SAT): F = (a+b’) (a’+c)

Figure 2.28 Oracle for the 2-SAT problem

This is designed to test the working of Grover’s algorithm on more practical applications

as many problems may be reduced to SAT-based problems. By SAT-based problems I

mean not only POS SAT (Product of Sums SAT) but any other Boolean formula that can

be satisfied or not. For instance, ESOP or Product of ESOPs. The Toffoli oracle mentioned

previously has been replaced with this oracle and the results will be slightly different from

the previous one due to the presence of multiple satisfying conditions as shown in the Tab.

2.3 below:

 46

Table 2.3 Truth table for F(a, b, c, d, e)

a b c F=(a+b’)(a’+c)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Variable d and e are not listed in the table because they do not affect the result of the output

of this function. Based on the number of input variables, there needs to be multiple

iterations to get the final results with the highest possible measurement probability.

The results of simulation for each iteration are as follows:

 47

Figure 2.29 Results of the first iteration

Figure 2.30 Results of the second iteration

 48

After two iterations of the Grover search, we can find that the largest amplitude items are

3, 7, 23, and 31. Since there are two ancillary bits here, we need to decode those results to

get the final result; for state 3, its binary representation is 00011, the 2 LSBs (Least

Significant Bit) are ancillary bits ”11”, so the solution will be a=0 B=0 and C=0.

Figure 2.31 Results of the third iteration

 49

Figure 2.32 Results of the fourth iteration

Figure 2.33 Results of the fifth iteration

 50

In this example, because there are five input variables, to get the best result, the number of

iterations should be

But from the simulation results, we noticed that the amplitude of targets in the second

iteration is ten times greater than others, meanwhile that number in the fifth iteration is

four. The phenomenon is caused by the redundant input variables d and e, these two

variables is independent with the output of the oracle function. So in this case, when we

build the circuit, the redundant input variables should be removed.

The oracle function is built from a Boolean logic function, the problem of redundancy

removal is similar to the same problem in classical Boolean logic, there are many methods

to solve this problem like Binary decision diagrams (BDDs) [56,57].

There are four solutions to this problem: at iteration 1, we can find the phase-amplitude

(AMP) of these four solutions is 0.42, compared with other minterms is 0.1, the probability

amplitude of them is 0.422=0.17, 0.12=0.01. We can find that the probability of the

measured solution is 17 times larger than non-solution. In the next Grover searching

iteration, the AMP is changed to 0.48 and 0.05; the probability amplitudes are 0.23 and

0.0025, 0.23/0.0025 = 92.

Based on the condition of the Grover algorithm, this iteration is the upper bound. In the

next iteration, the AMP will collapse, and the solution’s probability amplitude will

 51

decrease. From Figure 2.29 to 2.33, we can prove this phenomenon; in iteration 3, the

amplitudes of solution and non-solution are 0.28 and 0.15, and the related probability

amplitudes will be 0.08 and 0.02. With the Grover algorithm, we have a higher probability

of finding one solution in the multiple solution searching problems; but what if we want to

find solutions?

Suppose we have a problem; after Grover searching, there are four solutions: A, B, C, D.

The probability of finding a good solution is 100%. The probability of finding each solution

is the same. The probability of finding one different solution at first search is 100%. Since

all solutions are different, there is a 100% probability of getting a different solution at the

first time.

The combinations of picking two solutions between four solutions are:

(2.18)

In these ten cases, there are four combinations (AA, BB, CC, DD) that contains the same

solutions.

So the probability of finding two different solutions in the second search is 6/10=0.6

combinations of picking three solutions are:

 52

(2.19)

Similarly, there are ten combinations (AAA…DDD, AAB, AAC, …, CCD) contains same

solutions.

So the probability of finding three different solutions in the third search is 10/20=0.5.

The probability of picking 4 solutions is:

(2.20)

There are 23 duplicate combinations for this case, and the probability is 12/35=0.34

Number of searches Probability to find the target

1st 100%

2nd 60%

3rd 50%

4th 35%

 53

2.4 Summary of Chapter 2

In this chapter, Quantum gates and related details from quantum mechanics were

introduced, based on those quantum gates, quantum counter and comparator were

presented, which are used in our quantum oracle design methodology. Quantum Grover’s

algorithm was presented step by step with equation derivation and simulation. Grover

algorithm was shown to be efficient in single target searching problem. However, there are

not many papers that would explore the situation with multiple solutions, this problem was

discussed at the end of this chapter.

 54

 Chapter 3: Boolean Symmetric Function and Quantum Lattice Diagram

Note: Some of the contents of this chapter have been published in the following paper:

P. Gao, Y.Li, M.A. Perkowski and X. Song “Realization of Quantum Oracles using

Symmetries of Boolean Functions”, Quantum Inf. Comput. vol. 20 (5&6), 2020.

The kernel of a quantum oracle is an implementation of a decision function, which the

output of this function is only 0 or 1. Synthesizing the oracle is therefore a problem in

Boolean Circuit specification and minimization. This decision function is implemented

with quantum gates in the oracle, the number of the quantum gates and the complexity of

the circuit greatly affect the quantum cost of an oracle. From the current size of quantum

cells, the quantum cost is still a problem to be concerned about when designing quantum

oracles. How to use Boolean symmetric function and Lattice diagram to design an area-

efficient oracle are mainly discussed in this chapter. This approach of designing Grover

oracle bottom-up using reversible logic and blocks with ancilla qubits is the new

contribution of my dissertation.

3.1 Boolean Symmetric Functions

Let f be a total Boolean function: , where B = {0,1} and n>1.

Definition 1 (Totally Symmetric Boolean Function)

 55

A Boolean function f is totally symmetric if its output is invariant under any permutation

of its input bits:

 for all permutations of {1, …, n}.

A single index symmetric function S can be denoted Sk such that, for every true minterm

mi of S, the number of positive literals in all true minterms of this function is k and the

number of negative literals is n-k.

For example, a symmetric function is denoted S1,

where means a is a negative literal in the minterm �̅�𝑏𝑐̅. Each minterm of F(a, b, c):

, has only one positive literal.

The symmetry property of S1 can be shown by permuting the input from (a, b, c) to (a, c,

b), which means the order of input variables b and c are transposed. The new equation is

 after changing the order, which is the same function as S1. This

property should be satisfied for any pair of variables.

Increasing k from 1 to 2, we create another single index symmetric function in which all

the minterms have two positive literals, such as By combining

multiple single index symmetric functions, we obtain a multiple index symmetric function,

such as S1+S2=S1,2.

 56

Definition 2 (Polarity Vector)

Given a Boolean function , its polarity vector is a vector of (y1, y2, …,

yn), where yi is either a positive or negative literal of variable xi.

By introducing the polarity vector, the symmetric function can be extended to the concept

of a generalized symmetric function. The original definition of the totally symmetric

function is a special case in which the polarity vector contains only positive literals.

Definition 3 (Generalized symmetric function)

Given a Boolean function and a polarity vector (y1, y2, …, yn),

. By substituting each literal in the polarity vector with , a

new function is derived; if is a symmetric function,

then is a generalized symmetric function.

Generalized symmetric functions can be denoted by polarity vectors as such

that, for every minterm mi of S, the total number of literals identical to the literal yi in

polarity vector (y1,y2, …, yn) is k. For the n-variable Boolean function, there are 2n polarity

vectors and there are 2n ways to create a generalized symmetric function.

 57

For example, a Boolean function is not symmetric by

Definition 1, since the minterm abc has no negative literals. However, if we use a polarity

vector to generate a new function g(a, b, c), where in will be

replaced by a, b, c in g(a, b, c), . With this

replacement, the new function g(x, y, z) becomes a symmetric function S2, thus making f(a,

b, c) a generalized symmetric function with polarity vector denoted .

3.2 Lattice Diagram

3.2.1 Introduction

There exist several structures to realize Boolean symmetric functions [4,5,6]. Universal

Akers arrays (UAAs) are well-known because of their area efficiency and planar layouts

[7]. Lattice diagrams [4] inherit this property from UAAs but, in several cases, are even

more efficient. First, comparing them to UAAs’ rectangular shapes, lattice diagrams start

with tree expansion and then combine non-isomorphic nodes at the same levels, thus

always forming triangle or trapezoid shapes that keep only the minimum necessary size of

repeated variables. Second, instead of assuming only Shannon expansion in UAAs, lattice

diagrams can use Shannon expansion and positive and/or negative Davio expansions. In

 58

the case of synthesizing quantum circuits consisting of natural Toffoli gates, the Davio

expansions lead to more efficient quantum circuits than the Shannon expansions.

Based on the structure and number of outputs, lattice diagrams can be classified into single-

output or multi-output lattices. Both these types can use Shannon or any Davio expansion,

any of the two Davio expansions, or any combination of these.

Figure 3.1. Single-output lattice diagram.

Fig. 3.1 shows a directed acyclic graph of a three-level generalized lattice diagram for a

symmetric function with three input variables. In this example, G1 is the output cell

controlled by variable a. For a lattice realizing a symmetric function of three variables, the

signals W, X, Y, and Z are always constants.

 59

Expansion type is also a critical characterization of lattice diagrams. If every cell in a lattice

diagram has a uniform expansion, then the lattice can be named after the expansion typs.

For instance, in a Shannon lattice, all the cells use only Shannon expansions.

Let and be the positive and negative cofactors of a Boolean function f with respect

to variable x1, respectively. Here, is , where x1 is replaced by 0, while

 is , where x1 is replaced by 1. , where the symbol

means exclusive-OR (XOR). We define as a Boolean difference for x1.

The Shannon expansion of with respect to variable x1 [5] is defined as

follows:

(3.1)

The positive Davio expansion [5] of with respect to variable x1 is the

following:

(3.2)

The negative Davio expansion of with respect to variable x1 is the

following:

 60

(3.3)

In the Shannon lattice, the expansion function of each cell can be represented by a 2-to-1

multiplexer [6], the logic formulation of which is , where a is

the selecting signal and x, y are data inputs. A multiplexer symbol is shown in Fig. 3.2.

Figure 3.2. A 2-to-1 multiplexer with control variable a and data inputs x, y.

There are two types of lattice hierarchies: single-output and multi-output. Fig. 3.3 (a) is a

single-output Shannon lattice, and (b) is a multi-output Shannon lattice. The lattice in Fig.

3.3 (a) has three input variables: a, b, c. The single-output lattice has fewer constant inputs

than the multi-output lattice. The multi-output Shannon lattice has one extra level to realize

a symmetric function with the same number of input variables. The top multiplexer in Fig.

3.3 (b) is hypothetical; it can be replaced by a constant in a real circuit. Both lattice

diagrams can be simplified by substituting signals 0 or 1 to constant symbols.

 61

Figure. 3.3 Shannon lattices for three-variable functions: (a) single-output and (b)

multiple-output.

For a positive Davio lattice, its expansion function for each cell is

, which can be realized by XOR and AND gates. Fig. 3.4 shows

its symbol. By changing the polarity of s, this cell can be used in the negative Davio lattice

as well. For demonstration purposes, we will use positive Davio lattices as an example in

Fig. 3.5.

 62

Figure 3.4 Davio gate.

Similar to Shannon lattices, Davio lattices also have two hierarchies.

Figure 3.5 Davio lattices for three-variable functions: (a) a single-output Davio lattice

and (b) a multi-output Davio lattice.

 63

The constants of a single-output lattice can be changed for different symmetric functions.

The next section discusses constants and symmetric functions in more detail. For multi-

output lattices, constants are determined for symmetric functions, since this lattice can

generate all symmetric functions by adding simple functions, such as OR or XOR, to

outputs.

In addition to Shannon lattices and positive/negative Davio lattices, the lattice cell can also

be built using mixtures of these three expansions. Fig. 3.6 shows an example of a

generalized lattice. It uses Shannon expansion for variable a, positive Davio expansion for

variable b, and negative Davio for variable c.

Figure 3.6 Generalized lattice diagram.

 64

3.2.2 Realization Boolean Symmetric Functions using Lattice Diagrams

This subsection presents both single-output and multi-output Shannon lattices and

discusses the relation between input constants in lattice and a related symmetric function.

A Boolean function Q(a,b,c), it can be implemented by lattice layout from Fig. 3.7. The

expansion function of each cell is a Shannon expansion, realized by a 2-to-1 multiplexer.

The level controlled by variable c is the terminal level of this lattice.

Figure 3.7 Single-output Shannon lattice.

The output function of each cell in the lattice can be derived by applying the equation of

multiplexer. The output function of the lattice in Fig. 3.7 is:

(3.4)

In this equation, each coefficient constant is linked with different terms of Q(a, b ,c), and

each term is a symmetric index of Q(a, b, c). For example, �̅��̅�𝑐̅ is a symmetric function

 65

 = W. If we set W to 1 and X, Y, Z to 0, respectively then

will be the output of the lattice. The examples in this section are demonstrated with polarity

vector (a, b, c) to keep the consistency. We will use S0(a, b, c), instead of ,

for a short notation in the remaining of this section.

The symmetric function Q(a, b, c) from Fig. 3.7 can be rewritten to the following format

to emphasize the role of the constants W, X, Y, Z, and individual symmetry indices.

(3.5)

By selecting different coefficient values, the related symmetric function will be created at

the output of this lattice. The sequence of coefficient constants W, X, Y, Z at the bottom

of the lattice is called a symmetry vector. We create a table for all the single symmetric

indices of function Q(a, b, c) in Tab. 3.1.

 66

Table 3.1. Symmetric function with the related vector for Shannon Lattice Diagram

Symmetric

Function

Symmetry

vector

[W,X,Y,Z]

S0 [1,0,0,0]

S1 [0,1,0,0]

S2 [0,0,1,0]

S3 [0,0,0,1]

By changing the symmetry vector, the lattice can generate all the symmetric functions of

Q(a,b,c). For example, [0,1,0,1] generates the symmetric function S1,3(a,b,c).

In the multi-output lattice, we need to shift the control variables to the second level and

change the top multiplexer to the output constant 1. The top two levels can be simplified

into outputting a and , an optimization discussed in section 3.3 with more detail.

 67

Figure 3.8. Multi-output Shannon lattice.

While the lattice in Fig. 3.7 can realize any single-output symmetric function by selecting

a symmetry vector, the lattice in Fig. 3.8 has the property that all symmetric indices of

Q(a,b,c) can be realized by simple logic operations on outputs out1, out2, out3, and out4.

(3.6 ~ 3.9)

This multi-output lattice is useful for multi-output Boolean functions, such as full-adder,

compressor, counter, and arithmetic functions. For example, a 1-bit full-adder has three

 68

inputs a, b, cin, and two outputs sum and carry-out, both of which can be transformed into

symmetric notation:

(3.10 ~ 3.11)

Two XOR gates that can combine out1 and out2 for carry-out and out1 and out3 for a sum

are needed to realize these two functions with a three-level multi-output lattice. Since the

lattice in Fig. 3.7 realizes only a single-output function, to realize a multi-output function

like the above adder, one would need two single-output lattices, as the multi-output lattice

structure uses fewer gates.

3.2.3 Realizing Symmetric Function with Davio Lattices

Compared to Shannon lattices, Davio lattices use fewer quantum gates for each cell and

fewer ancilla lines [10] as well as lower resource cost for a quantum circuit layout for the

linear nearest-neighbor model (LNN) [10].

 69

Figure 3.9. Davio lattice structure that realizes all three variable symmetric functions with

W, X, Y, and Z as constants and functions with more variables in case W, X, Y, and Z

are variables or simple functions.

We use the same function to show the difference in constant values between Shannon and

Davio lattices. Fig. 3.9 shows a three-level positive Davio lattice, the output equation of

which can be derived:

 (3.12)

In this equation, each constant is multiplied by a term so that each is a symmetric function.

For example abc contains the minterms 𝑎𝑏𝑐̅, 𝑎�̅�𝑐, �̅�𝑏𝑐, 𝑎𝑏𝑐, which is S1,3(a,b,c).

 70

Different from the polynomial normal form of Shannon expansion, Davio expansion uses

the Zhegalkin normal form; its polynomial expansion can be derived by a binary matrix

called the “Zhegalkin polynomial matrix” [11], which is generated recurrently:

D0=1,

(3.13)

where j=1,2,…,m. Fig. 3.10 shows the matrix used in our example.

Figure 3.10. Zhegalkin polynomial matrix for three variables.

In this matrix, every row represents the constants in a Davio lattice and every column

represents symmetric functions from S0 to S3. For example, the second row [0 1 0 1] means

the related symmetric function of constant X is S1,3. The equation of Q(a,b,c) can be

expressed with symmetric functions as follows:

 S0 S1 S2 S3

W 1 1 1 1

X 0 1 0 1

Y 0 0 1 1

Z 0 0 0 1

 71

(3.14)

Different from Shannon expansion, each constant is associated with one multiple index

symmetric function. We can get the same symmetric function indices as in a Shannon

lattice by selecting a different order of constants. For example, if we need function S1, we

can make both X and Z 1 and the remaining constants 0. In a Davio lattice, each part is

connected with an XOR gate, so the equation .

Tab. 3.2 shows symmetric functions with related binary vectors.

Table 3.2. Symmetric function with the related vector for Positive Davio Lattice Diagram

Symmetric

Function

Symmetry

Vector

[W,X,Y,Z]

S0 [1,1,1,1]

S1 [0,1,0,1]

S2 [0,0,1,1]

S3 [0,0,0,1]

 72

Like multi-output Shannon lattices, Davio lattices can also be built in reverse, as shown in

Fig. 3.11.

Figure 3.11. Multi-output Davio lattice with a reversed shape.

The outputs of this lattice are the following:

(3.15~3.17)

By using the XOR operator, we can get all multiple index symmetric functions. For

example, to get S0(a,b,c), because S0 can be derived into , we

can obtain S0 by connecting out1, out2, out3, and 1 with an XOR gate.

 73

3.3 Quantum Implementation of Boolean Symmetric Function with Lattice Diagrams

In the previous section, we presented the layout of the Lattice diagram for the Boolean

symmetric function in various formats. For the Davio Lattice diagram, its base cell Davio

gate can be mapped into the quantum circuit by Toffoli gate (Introduced in Chapter 2).

Shannon Lattice diagram needs a few more steps because its base cell is a 2-to-1

Multiplexer.

Figure 3.12 Quantum implementation of 2-to-1 Multiplexer .

For the whole Lattice diagram, because the inputs of the root node in the Lattice diagram

are always constants, the structure can be simplified. Fig. 3.13 presents an example of

simplifying symmetric function S1(a,b,c). In Fig. 3.13 (b), since both the input of the right

corner cell are 0, the output of this cell is not related to c, its value is always 0. We can

remove this cell and replace that place with a 0. The remaining figures follow the same

method.

 74

Figure 3.13 (a) the original Lattice Diagram of S1(a,b,c). (b) Removing the bottom-right

cell. (c) Removing the level of input variable c. (d) Removing the level of input variable

b.

 75

Figure 3.14 Quantum circuit of figure 3.13 (a).

Figure 3.15 Simplified quantum circuit of figure 3.14 (a).

The original Lattice uses 16 Toffoli gates and six inverters, the simplified circuit used three

Toffoli gates, one Feynman gate, and seven inverters, which obviously uses fewer gates

than the original circuit and reduces significantly the quantum cost for large functions.

 76

3.4 Realizing Non-Symmetric Functions with Lattice Diagrams

In the previous sections, we showed the advantage of Lattice Diagrams in realizing

symmetric functions. For non-symmetric function, there are many methods to transform

them into symmetric [36,37,38]. We purposed a new method based on reminder function

decomposition.

Our decomposition method creates a circuit composed of two parts: an upper part that is a

remainder function usually expressed in ESOP [38] and a lower part that is a symmetric

function implemented with a lattice diagram. These two parts are connected with the XOR

operator. The following is a brief outline of the decomposition methodology for function

F.

(1) Choose a random polarity vector to start.

(2) Create all or some polarity vectors with corresponding lattice structures. Select a few

with the simplest symmetric functions based on those polarity vectors.

(3) For all symmetric functions from step 2, calculate their remainder functions with the

original function F. The remainder functions are denoted by R0, R1, . . ., Rk.

(4) Evaluate the cost of the remainder function by the number of literals and operators,

select the minimal cost remainder function, and create the lattice diagram for its symmetric

part.

 77

The following example presents details of the above decomposition method. Consider this

non-symmetric function:

(3.18)

Its Karnaugh map is Tab. 3.3 as following:

Table 3.3 Karnaugh map for function f(a,b,c,d)

ab/cd 00 01 11 10

00 0 1 0 1

01 0 0 1 0

11 0 0 1 0

10 1 0 0 0

First, we decide that the order of variables in the polarity vector is a, b, c, d. The expansion

type is positive Davio expansion. In the second step, we create all 16 different symmetric

functions based on polarity vectors. Next, for each symmetric function, the corresponding

remainder function is calculated. For example, the decomposition of a symmetric function

 78

with polarity vector is . The function

is the remainder function.

For polarity vector , the decomposition to a lattice and remainder is

. It has a more complicated

remainder function: . After comparing all possible

remainder functions, we find the polarity vector leads to the minimal cost

remainder function.

3.5 Summary of Chapter 3

In this chapter, The Boolean symmetric functions were introduced. Two types of their

expansions: Shannon expansion, Positive/Negative Davio expansion were discussed in

detail and illustrated with examples. Different structures of quantum Lattice diagrams are

explored. The simplification of the quantum Lattice diagram was presented, this example

was to demonstrate the area-efficient property of quantum Lattice diagrams. At the end of

this section, a method of transforming non-symmetric function to symmetric function was

introduced.

 79

 Chapter 4: Design Quantum Oracle for Graph Theory Problems

Note: Some of the contents of this chapter have been published below:

P. Gao, Y.Li, M.A. Perkowski and X. Song “Realization of Quantum Oracles using

Symmetries of Boolean Functions”, Quantum Inf. Comput. vol. 20 (5&6), 2020

This chapter introduces a methodology of building quantum oracles with Symmetric

Boolean functions to solve graph theory problems. Graph theory problems are an excellent

candidate for using quantum oracle to solve because many classical problems can be

transformed into the graph theory problems.

4.1 Modeling a Graph with a Boolean Expression

In graph theory, the graph-partitioning problem is finding a subset of edges or vertices of

the original graph, each of which is called a “subgraph.” Based on the properties of

subgraphs, there are many different decompositions. Here, we are mainly interested in

searching symmetric loop in arbitrary graph and partitioning an arbitrary graph into

symmetric graphs, because the symmetric graph [12] is a vital category in graph theory and

topology.

 80

Definition 1 (Graph) [47]

A graph G is a pair G = (V,E), consisting a nonempty set V of vertices (nodes), a set E,

disjoint from V, of edges of graph G, where V = {v1,v2,…,vi}, E = {e1,e2,…,ei}.

Definition 2 (Path, Cycle, Loop (self-loop), Degree) [47]

A path in a graph is a sequence of distinct vertices v1, v2, …, vn such that (vi, vi+1) is an

edge for each i = 1, …, n-1. When two vertices are the end points of an edge, they are called

adjacent.

A cycle is a graph with the equal number of vertices and edges whose vertices can be placed

around a circle that two vertices are adjacent if and only if they appear consecutively along

the circle.

A self-loop is an edge whose endpoints are equal.

The degree of vertex v V, denoted deg(v), is the number of edges incident to v. If deg(v)

=0, then vertex v is called isolated.

Definition 3 (Simple graph, Subgraph, Clique) [47]

 81

A simple graph is a graph having no self-loops or multiple edges. Multiple edges are edges

having the same pair of endpoints.

A subgraph of a graph G is a graph H such that and .

In a graph, a set of pairwise adjacent vertices is called a clique. For a clique with n vertices,

denoted as Kn.

Definition 4 (Symmetric Loop)

A graph G(E,V), if all pairs of vertices , there exists a path from u to v, and the

deg(u) = deg(v), then graph G is a symmetric loop.

We notice that there are some interesting properties of the symmetric loop, which can be

modeled by a Boolean function. Given a simple graph G(E,V), there exists a subgraph H

(V(H),E(H)), in which H is a symmetric loop.

Our model begins with the feature of a vertex on the symmetric loop. Given a vertex u

V, there exists a set of edges Eu ={e1,e2,…,ei}, Eu E, i = 1, … , m, where m is the number

of edges that are connected to vertex u. Set Eu can be encoded with a Boolean vector B ={

 82

b1,b2,…,bi }, i = 1, … , m. Boolean vector B can be represented by literal

, is positive if and only if its related edge , otherwise it is negative.

Rule (Symmetric Loop)

If vertex u is in symmetric loop L, then there must be at least two positive literals in its

Boolean vector B, because there is one edge for entering this vertex, and another edge for

exiting this vertex.

For a vertex u connected with n edges, this rule can be written into the following Boolean

expression:

(4.1)

For a symmetric loop L with t vertices, its expression is the following:

(4.2)

 83

Theorem: For , if there is a satisfied result, then a symmetric

loop exists in the graph.

Proof: Based on the definition of the symmetric loop, all nodes in the loop can be expressed

by a Boolean function u, which input is the edges connected to this node. Because if all

node functions are satisfied at the same time which is the Equation L, the input of every

function u shows a path which is a symmetric loop.

Based on Definition 4, we can add more rules to model some specific graphs like Hamilton

cycle, spanning tree, and hypercube. In this dissertation, we are interested in the Hamilton

cycles and in the hypercubes.

Definition 5 (Hamilton cycle)

Let G be a graph with n3 vertices. A cycle that contains every vertex of G is called a

Hamilton cycle.

Similar to a symmetric loop, we can derive a rule for a Hamilton cycle. The input and

output of the Boolean function is the same as the symmetric loop, the different part is using

Exclusive-OR(XOR) instead of Inclusive-OR(OR). This is because a vertex should only

be passed once in a Hamilton cycle.

 84

Rule (Hamilton cycle)

The rule of Hamilton cycle H with t vertices can be written into the following Boolean

expression:

(4.3)

Where n is the number of edges connected to a vertex in Hamilton cycle H.

Definition 6 (Hypercube)

The hypercube graph Qn is an undirected regular graph with 2n vertices, where each vertex

corresponds to a binary string of length n. Two vertices labeled by string x and y are

connected by an edge if and only if x can be obtained from y by changing a single bit.

Figure 4.1 n-cube graph. (a) Q1 for n=1 (b) Q2 for n=2 (c) Q3 for n=3

 85

In Fig. 4.1, three hypercube graphs Q1, Q2, Q3. Let’s take Q2 for example to explain how

to get a hypercube graph following the Definition 6. There are four nodes in Q2, and the

binary strings for every adjacent node should only have one different position. For

hypercube with 2n vertices, Qn can be defined recursively in terms of the Cartesian product

of two graphs as follow:

(4.3)

K2 is a clique with two nodes. It’s the isomorphic graph of Q1.

From the equation 4.3, the hypercube Q2 can be derived using the equation Q2 = K2 Q1,

Hypercube Q1 can be represented by a set {0,1} which is the binary string of every node in

Q1, because Q1 and K2 are isomorphic. Then they can be represented by the same set. Q2=

{0,1}{0,1} = {00,01,10,11}, because the set of binary strings of Q2 is derived. The next

step is to assign the binary string to each node and make the connections between nodes

(00,01), (00,10), (01,11), (10,11).

F. Harary, J. P. Hayes’s work [17] extends the original definition of hypercube to a

generalized hypercube by introducing a multivalued string. In their paper, they proved that

binary string encoding can be replaced by a multivalued string such as ternary or

quaternary. The generalized hypercube can be defined in a Cartesian product of two clique

graphs as follows:

 86

(4.4)

Variables m and n are the number of nodes for the cliques. For example, let’s assume m=2,

n=3. K2 is the same graph that we used in the previous example. For K3, it is shown in

Fig.4.2 (b), it requires ternary string to encode each node. After encoded K2 and K3, the

next step to get the generalized hypercube Q(2,3) is by Cartesian product, Q(2,3)= {0,1}

{0,1,2} = {00,01,02,10,11,12}, Fig. 4.2 (c) shows Q(2,3).

Figure 4.2 Example of generalized hypercube graph. (a) Clique K2 (b) Clique K3 (c)

Generalized hypercube Q(2,3)

 87

4.2 Methodology of Building Quantum Oracles for Hamilton Cycle and Hypercube

Graph

In this section, we introduce our methodology of building a quantum oracle using the

Grover algorithm to solve graph partition problems related to symmetric loop, Hamiltonian

cycle, and hypercube.

From the previous section, we found the Boolean expression of the symmetric loop,

Hamiltonian cycle, and hypercube is only counted on the number of positive literals, which

can be written into a Boolean symmetric function. With the advantage of Boolean

symmetric functions and Lattice Diagrams, the oracle is made more efficient than by

building it directly from Boolean equations. This is important at least because of the

quantum decoherence.

There is a little different to build oracle for a hypercube, as compared to a symmetric loop

and a Hamiltonian cycle. Because the degree of the hypercube is not only 2, and to model

some hypercube graph requires more than one index in symmetric function, this part is

discussed at the end of this section. The following steps are applicable for those three

graphs and any further graph which can be transformed into a Boolean function.

 88

Let us first consider the symmetric loop as an example. Given a graph G(E,V) with n

vertices there exists a subgraph L(EL,VL) which is a symmetric loop. Our problem is to

find the partition of L(EL,VL).

Step 1. A Boolean symmetric equation of every vertex needs to be derived. The classical

computer would fetch the information from graph G, find the degree of all vertices, and

then group them by the same degree because the vertices with the same degree have the

same structure in the Lattice diagram.

Step 2. After we get the Boolean symmetric functions, we need to use a satisfiability solver

(SAT solver) on the classical computer to check this equation. If this equation is not

satisfiable, then we stopped here, because there is no a symmetric loop in the graph.

Otherwise, we record the result of SAT solver as a reference solution to our quantum

oracle.

Step 3. Based on the previous step, the size of Lattice diagrams is given to the classical

computer and generates the required Lattice Diagram. Let us take the quantum loop for

example, from the previous section, we know its lattice diagram is based on symmetric

function S2. The classical computer also generates a mirror circuit S-2 like in Fig 4.3, this

mirror circuit will reset the data on the input wire to the initial state. Therefore, this data

 89

can be used for the next blocks. The mirror circuit is an inverse circuit of S2. The bold line

with input 0s is a bus which contains results of each symmetric blocks, this bus line is the

control signal of the quantum counter block as mentioned in Chapter 2. The input of the

Lattice diagram is the edge set E. It is sent into the oracle in the format of bit vector.

Figure 4.3 Quantum oracle for graph problem with n vertices

Step 4. In the oracle, we use a quantum counter and comparator (Find the details in Chapter

2) to replace the large AND gate. Because the quantum cost of the AND gate is huge (Find

the details in Chapter 2), the input of the comparator is the number of vertices in graph G,

we use counter here to collect the number of satisfied symmetric functions. Then this

number is compared to the number of vertices, if the result of the equality comparator is 1,

it means that the symmetric functions of all the vertices are satisfied.

 90

Step 5. After the oracle is ready, we can connect it to the Grover searching module. Fig.

4.3 is a block diagram of our oracle, in Grover search we need to run the Grover search

multiple iterations to get the final result, which means this oracle needs to repeat many

times as well. After all the oracle and Grover searching module are set up, the simulation

can start.

Step 6. After the result is returned, we can use the result from SAT solver to verify the

correctness of our oracle. In some case, the problem may have multiple solutions, but

Grover can only return one result per time, and during the next searching round, this result

still has the same probability as other results to be found. To solve this problem, we need

to remove this result from the searching space, after every round of Grover searching, we

add a circuit of this result to the oracle, which makes the output gratitude of this input

combination equals 0. This add-on circuit is connected after the original oracle.

Example 4.1 describes a quantum oracle designed with our methodology.

 91

Example 4.1

Consider the following graph G=<V, E>, where V={A, B, C, D} and E={e1, e2, e3, e4, e5,

e6} (Fig. 4.4). All Hamiltonian cycles of this graph are obtained by sets of edges from the

oracle: {e1, e2, e3, e4}, {e1, e6, e3, e5}, and {e2, e6, e4, e5}.

Figure 4.4 Graph G of example 4.1

For this example, we relate a symmetric function to each node (Tab. 4.1).

Table 4.1. Symmetric functions for verities in Fig. 4.4

 Vertex function Symmetric

A

B

C

 92

D

For node A, it Boolean function is , the term

in this expression means edge e1 and edge e4 are selected, edge e5 is not selected,

that is because in a Hamiltonian cycle there should be only two edges selected for a vertex.

If there exists a set of selected edges that satisfy F, then at least one cycle exists. Moreover,

the set of edges is a Hamiltonian cycle. As we see, we convert the graph partition problem

into a Boolean satisfiability problem with several symmetric functions. Function F can then

be represented in the form of a product of symmetric functions:

(4.5)

Each symmetric function defines a constraint for one node.

Please note that only symmetric function S2 is used in our method here. For different graph

cases, the input variables of symmetric functions need to be changed based on the edges

incident to the related vertex. Based on the consistent format of symmetric function, there

is a pattern of symmetry vector for different numbers of the input variables. Considering

the quantum cost, we use Davio lattice in this problem. (see Chapter 2)

 93

In Fig.4.4, we can find the symmetry vector of S2 for three variables, which is [0 0 1 1]. As

discussed in Chapter 2, we can extend the Zhegalkin polynomial matrix to get any

symmetric functions with the different number of input variables, for example, Fig. 4.5 is

the Zhegalkin polynomial matrix for symmetric function f (e1, e2, e3, e4, e5, e6).

Figure 4.5 Zhegalkin polynomial matrix for seven input variables.

To get S2(e1, e2, e3, e4, e5, e6), the symmetry vector is [0 0 1 1 0 0 1]. Because of the

recurrent structure in the matrix, the pattern “0 0 1 1” is repeated here. It can be easily

proved that for different numbers of input variables, the symmetry vector of S2 always

contains the pattern “0 0 1 1”, for example, the symmetry vector of a 5-variables function

S2(a, b, c, d, e) is [0 0 1 1 0 0]. With this property, we can estimate the number of Davio

 94

gates needed in the general case of symmetric function S2, it is , where a is the

number of input variables.

Our approach to partitioning graphs into cycles uses the Grover algorithm [14]. To detect

if there is a cycle in a graph, we must check all possible combinations of the selected edges

in the graph, and the Grover algorithm promises a quadratic acceleration when searching

through all possible combinations of edges. The edges are encoded into a binary vector as

the input of the oracle. Meanwhile, the output result is also returned as a binary vector.

Knowing the incidence matrix of the graph, the node base representation of all cycles can

be found by a classical computer.

The oracle for solving this problem needs three blocks: a set of symmetric functions (one

for each node), a counter of satisfied nodes, and an equality comparator. The symmetric

function block is built with lattice diagrams, as shown in the previous Chapter. The counter

used here counts the number of satisfied symmetric functions in Equation F. This block is

also known as a “counter of ones”. Information about the structure of the counter and

comparator can be found in Chapter 2. We realized this counter by repeating increment

gates [15], a single increment gate adds 1 to the value of the input when its control is

activated. When it is not activated, the gate does nothing. This step can also be realized

 95

with a multiple-input Toffoli gate, but with the higher number of inputs, the quantum cost

of a Toffoli gate rises dramatically. By using the counter instead of a Toffoli gate as a

global AND, we reduce the number of respective ancilla qubits from n to log n. It was for

this reason that we have chosen the counter in our design. Because we use the counter

instead of a Toffoli gate, we need an equality comparator to check if all symmetric

functions in equation F are satisfied.

Figure 4.6 Quantum oracle for example 4.1

 96

4.3 Hypercube Partitioning Problem

In the previous section, based on the subgraph the index of symmetric function could be

different in the constraint block, with a small modification, our oracle can be changed for

searching generalized hypercube graph.

Our oracle is designed for finding all partitions of an arbitrary undirected graph to regular

graphs. Different from the graph partitioning in the previous section, for hypercube

partitioning, the degree of every node in a hypercube subgraph is not limited to 2. The

index of our symmetric function should be defined by the category of the subgraph.

Figure 4.7 Example graph for hypercube partitioning

 97

In Fig. 4.7 the minimum degree of this graph is 3, so we choose S3 as our symmetric

function to build the oracle. Since the size of this example is larger than the previous one,

here only list the symmetric function of vertices A, B, D, since vertex D is the only vertex

has degree 6 in the graph, the functions of vertex A and B are the most used structures in

the oracle. The lattice diagrams of these three symmetric functions are the templates used

in our oracle, by switching the input edges, the lattice diagram can be applied to the vertex

with the same number of degree. For example, vertex A and C has the same degree, after

we created the lattice diagram of vertex A, switching this lattice’s input edges (e1, e2, e3,

e4, e5) to (e4, e7, e8, e9, e10), the output of this new lattice is

. The mirror circuit in the oracle

can also to be created using this trick.

(4.6)

bbbbb(4.7)

 98

(4.8)

(4.9)

 (4.10)

 99

(4.11)

(4.12)

(4.13)

(4.14)

 100

(4.15)

 (4.16)

(4.17)

Under this constraint, quantum simulation result finds partition {{A, B, C, I, H, G}, {D, E,

F, L, K, J}}. The set {A, B, C, I, H, G} here is a generalized hypercube K2K3 showed

with blue edges in Fig.4.7, another set {D,E,F,L,K,J} with red edges is a K(3,3). In this

 101

example, S3 is just for demonstration, during the real problem, the degree can be changed

to find particular hypercube graphs or symmetric graphs in an arbitrary undirected graph.

Papers [39,40] investigates more general cases of the relationship between Hypercube

graphs and symmetric graphs.

Table 4.2 The number of symmetric graphs related to the degree of vertex and number of

vertices. [40]

In Tab. 4.2 some patterns can be easily found. For example, the numbers 1 on the diagonal

of this table correspond to clique graphs which can be easily verified. The graphs in column

with label 2 correspond to graphs with degree=2. If the number of vertices n is a prime then

there is only one related symmetric graph, and this graph is a cycle [40]. For those non-

prime numbers, those graphs may contain subgraphs, for n=6, one of the solutions is a

cycle with six nodes, another solution is built with two cycles of three nodes each. Similarly,

 102

generalized hypercube graphs can be found. For example, n=6 degree =3 is a hypercube

of which is shown in Fig. 4.2(c). But there is another symmetric

graph with the same number of vertices and degree, this graph is K(3,3), unfortunately, our

quantum oracle cannot distinguish these two graphs, we need to do that step on a classical

computer. Since hypercube graph is generated by Cartesian product of clique graph, so its

minimum chromatic number should be the largest clique in the hypercube [39]. By

comparing the chromatic number of the graphs we can find hypercube from other

symmetric graphs. As we see the chromatic number of K(3,3) is 2 while the chromatic

number of generalized hypercube is 3. Similarly, we can distinguish

generalized hypercubes among symmetric graphs for other values of number of nodes and

degree of edges.

Besides the complete hypercube, our oracle can be extended to find partial hypercubes as

well. In partial hypercube partitioning, we find all subsets of nodes that are sub-hypercubes

(cliques) but we allow nodes that do not belong to any sub-hypercube.

 103

Figure 4.8 Example graph for partial hypercube

Thus, for the graph in Fig. 4.8 all individual subgraph partitions: {{A, B, C}, {D, E, F}},

{{A, C, D, E}, {B}, {F}}, {{A, B, C, E}, {D, F}} and many others will be effective

solutions. The small modification of oracle is to allow the subsets of nodes. Thus, change

can be implemented by adding the index of this node’s symmetric function, for example,

if we set the symmetric function of node B and F to S0,1, node A, C, D and E to S2.

(4.18)

(4.19)

 104

(4.20)

(4.21)

(4.22)

(4.23)

With this added index 0, When searching the hypercube, our oracle would consider nodes

B and F could be a scatter node in a possible solution. Then the subgraph with nodes {A,

C, D, E} can be found. The partial partitioning extends the ability our methodology in

finding symmetric subgraphs in general graphs.

4.4 Quantum Simulators and Tools

There are two quantum simulators used in our experiments: Quipper, and Qiskit.

 105

Quipper is an embedded functional programing language for quantum computation,

developed by a group of researchers at Dalhousie University. It uses Haskell as the host

language, with its data types, combinators, and a library of Haskell functions. Quipper uses

an extended model of quantum computation. It enables both quantum and classical wires

and operations in a circuit. Although Quipper is a good platform for simulating quantum

circuits, it has also some drawbacks. One of the drawbacks is that its code is not portable

and is difficult to debug, because the compiler presents the compilation errors in the host

language, not the embedded language. Another drawback is that Haskell lacks some

features that are useful in quantum programming: linear type and dependent type. Quipper

was developed as a part of a funded project. It did not have good support after that project

was finished. The last update for this package was sent out in 2019.

Besides Quipper, there are many other quantum simulators developed for researchers,

Microsoft’s Q#, IBM’s Qiskit, and Intel’s IQS. IQS is recently announced by Intel, it is

still not open for public access. Q# is similar to Quipper, it is embedded with Microsoft’s

own functional language F#, compared to Quipper, Q# has better support, but it also has

drawbacks like Quipper because of the property of embedded language. We have tried Q#

with some of our oracles, but it does not have good support for gate-level simulation, and

it is difficult to fix errors in the low-level quantum simulation. Then we move to Qiskit.

Qiskit is an open-source quantum computing framework, it is based on Python. Qiskit

 106

contains four libraries: Terra, Aqua, Aer, Ignis. Terra covers all low-level quantum

computing like gate design, Aqua, and Aer provides quantum simulation and emulation

from algorithmic-level to gate-level, Ignis includes constructors related to quantum

hardware characterization, verification, and correction. Taken together Qiskit can provide

the most comprehensive software solution for quantum computing. In our experiment, we

mainly use Aer which can provide a gate-level simulation.

Besides the quantum simulators, we also use SAT solver(miniSAT) and reversible circuit

synthesizer(RevKit) to verify and evaluate our results.

4.5 Result Analysis and Quantum Cost Estimation

 The quantum oracle used in this chapter mainly consist of the following three parts: the

block representing graph, the counter, and the equality comparator. The block representing

graph is composed of various symmetric function blocks realized in quantum circuit by

lattice diagrams, one for each vertex of the graph. The quantum cost of the oracle is

estimated by adding the quantum costs of these three parts for an arbitrary graph. Because

of the linear layout [18] of the lattice diagram, the size of the symmetric function block is

proportional to the number of its input variables. As we discussed in Chapter 3 the number

of Davio gates needed for a single symmetric function block, and the quantum cost of

Davio gate is equal to CNOT gate. Thus, the cost of one symmetric function block can

 107

be estimated as , where d is the number of edges connected to the vertex x.

Because we need a mirror circuit for every vertex, the cost of the circuit for one vertex is

5𝑑2 − 5𝑑. The total cost of the block representing the graph is the sum of the costs of

circuits for all single vertices. Let us denote the number of edges incident to vertex i by di.

Therefore, the cost of the block representing the graph is the following:

(4.24)

where V is the number of vertices in the graph. The counter is realized with multiple

increment gates. A well-known implementation of increment gates is built with multiple-

input Toffoli gates and an inverter. Reference [18] proved that the quantum cost of an m-

qubit Toffoli gate is The cost of a single increment gate in our oracle is:

(4.25)

Because this gate requires 𝑙𝑜𝑔2𝑉 qubits. The number of repetitions of the increment gates

is V, and the total cost of the counter block is . The

equality comparator block is built with two CNOT gates and one N input Toffoli gate,

where N is the size of the input numbers to the comparator. N is in our oracle, so

 108

the cost of the comparator block is . The total cost of the

oracle is the sum of the above three costs:

(4.26)

The qubits needed for this oracle are divided into two groups. One group represents the

search space with superpositions, and the other is the ancilla qubits initialized with

constants. The qubits needed for the search space are the number of edges in the graph. For

the ancilla qubits, the counter and comparator blocks need in total. The

ancilla qubits for the symmetric blocks are based on the maximum number of edges

connected to the vertex in the graph.

To evaluate our quantum oracle, we use RevKit as a comparison, which is a well-known

reversible circuit synthesis toolkit. It is an open-source package for reversible circuit design

and synthesis, for the synthesis part, it provides a variety of methods like BDD, KFDD,

transform-based, heuristic synthesis. For the work of this chapter we used the BDD based

method for comparison. Here we only compare the symmetric function part, because other

blocks in our oracle like the comparator are not using Lattice diagrams. The cost of those

parts is the same for different synthesis methods. The oracle function used in Tab. 4.3 is

from example 4.1.

 109

Table 4.3 Comparisons of different synthesis methods

Synthesis Method

Number of

quantum

gates

Ancilla

qubits

Revkit(BDD-

based)

142 1

Shannon Lattice

Method

50 22

Davio Lattice

Method

35

9

The results in Tab. 4.3 do not involve the consideration of the mirror circuit, because it is

easy to get the result by doubling the number of quantum gates. The results present the

advantage of area efficiency of our oracle, to realize the same function, our oracle cost

fewer gates and ancilla lines than the BDD-based method.

 110

4.6 Summary of Chapter 4

Two graph theory problems were formulated at the beginning of this chapter. Then we

transformed those graph problems into Boolean satisfiability problems (SAT problems).

A methodology of building quantum oracle to solve those SAT problems was introduced

and presented in detail by examples. At the end of this chapter, the quantum complexity of

our oracle was discussed, and the quantum costs of our quantum oracle with different

realizations are compared, those results were based on Quipper and Revkit.

 111

 Chapter 5: Hybrid Quantum/Classical Algorithm to Minimize Switching

Functions based on Graph Partitions

In this chapter we introduce a new methodology to build a hybrid quantum oracle to solve

the minimization of switching functions, this is based on my previously discussed quantum

oracle in chapter 4. This hybrid oracle is discussed in detail with two examples.

5.1 Introduction

Minimization of Boolean functions is a classical problem in logic synthesis of VLSI circuit

design, it has many applications like symbolic minimization of logic function and Boolean

decomposition.

There are many logic minimization tools like Espresso and MINI, they are based on

heuristic iterative improvement techniques, in general, those tools can only give suboptimal

results and no clues for how far to get the global minimum. My method involves

transferring this problem into a graph partition problem and using quantum searching to

find the global minimum result for arbitrary Boolean functions. Unfortunately, large size

NP-hard problems must be solved to find the exact solution. Often the methods require also

to generate astronomic numbers of prime implicants. Solving these problems with classical

 112

computers, even parallel computers, seems to not lead to interesting results and even not

much has been published in recent years on these topics. However, future quantum

computers give a promise. With the fast development of quantum circuits, several

researchers focus on creating quantum algorithms for problems in graph theory. Although

now only small problems can be solved, future quantum computers will be able to achieve

“quantum advantage”. This gives promise to the work presented here that is not practical

at the moment.

Our methodology is a hybrid quantum-classical algorithm, because the quantum computer

can only take qubits as the input data. We need to use the classical computer to prepare the

input data for the quantum computer and for collecting the results.

Definition 1 (Cube)

Let xi be a Boolean variable, A Boolean function with n inputs is defined as:

(5.1)

where , Let , then

otherwise it is 0. is called a literal of variable . Boolean product of literals is called

a product term or a cube.

Definition 2 (Majority degree)

 113

In the compatibility graph G(E, V), the verities have the same degree can be grouped into

a set. For the set which contains the most number of vertices, its degree is called the

majority degree.

Definition 3 (Implicant)

A product implicant of a logic function is a product term such that if the term is true then

so is the function.

A prime implicant is an implicant that is not fully contained within any other implicants.

We assume that the readers are familiar with basic operations of the cube such as union,

intersection, disjoint sharp. A formal definition of those terms can be found in [26].

In this section, we are focusing on Disjoint Sum of Product (DSOP) which is one of the

operations not commonly used to minimize the Boolean switching functions. A DSOP

realization of a Boolean function can be represented as a hypercube graph in which a

realization with disjoint products of literals corresponds to disjoint partitioning to sub-

hypercubes. This can be extended to Sum of Products (SOP) [20,21] by removing literals

from each disjoint cube thus transforming it to a prime implicant.

 114

5.2 Solving DSOP/SOP and Minimization Problems for Boolean Functions using

Partial Hypercube Partitioning

We present a small example of partial hypercube partitioning in Chapter 4. In this chapter,

we apply our oracle to solve the DSOP/SOP minimization problems. Normally, SOP

minimization is reduced to finding the set of all prime implicants (primes) and next solving

the set-covering problem to cover all true minterms with set of primes of the lowest cost.

We follow the approach [19] to find DSOP first. For instance, in one variant our hybrid

algorithm solves the DSOP minimization by finding partitions to large product implicants

first and follows with partitions to smaller products. The result is not optimal but we obtain

the quadratic speedup to the quantum component of this problem. DSOP can be

transformed to SOP equations by enlarging each product implicant to the cheapest prime

implicant [19].

DSOP minimization. All minterms included in a product implicant are pairwise compatible

[19] so the nodes of these minterms are all pairwise connected by edges in the graph (a

clique, a sub-hypergraph). For instance, for a Boolean function specified by the set of

minterms 0000, 0001, 0100, 0101, 0111, 0110, 1111, 1110 the minterms 0000, 0001, 0100,

0101 create a clique or a 3-Regular subgraph that is disjoint from the other 3-Regular

subgraph 0111, 0110, 1111, 1110. This complete partition is a disjoint partition (clique

 115

covering) leading to a DSOP solution �̅� c + b c of this function. This is also an optimal

SOP, as products 𝑎 ̅ c and bc are disjoint. In another DSOP variant the subgraph {0100,

0101, 0111, 0110} is found which corresponds to prime 𝑎 ̅ b to be next used in covering.

The detailed presentation of similar algorithms can be found in [19], for which in our recent

work presented here we created quantum oracles for the Grover algorithm.

SOP minimization. Every product implicants found from the DSOP found is individually

extended to the largest prime for SOP using the method from [19]. In rare cases, but only

in unspecified Boolean functions, minterms in a clique can be pairwise compatible but not

compatible as a group thus they do not create a product implicant [19]. In this case, a special

transformation is done [19] to create a SOP or a three-level circuit is synthesized.

Our hybrid algorithm contains three parts: preprocessing, quantum search, and

postprocessing. The first part is the data preprocessing at the classical computer, the

second part uses our quantum oracle to performing Grover quantum searching as a

subroutine, the last part is collecting and transforming the result from the second part, this

part is running on a classical computer.

Preprocessing (Classical Computer)

 116

The input of our algorithm is an arbitrary Boolean function, for the input Boolean function,

firstly, my algorithm would transfer this function into a compatibility graph.

The input function is read in format with On/Off set, every implicant in On set becomes a

node in the compatibility graph, then perform union operator to generate edges in the graph.

The complexity of this part is based on the number of input variables, for the function of

m true minterms, the complexity of the preprocessing part is O(m2). After the compatibility

graph is generated, the following pieces of information are needed for the next steps: the

relation of edges and nodes, degree of every node.

Quantum searching (Quantum Computer)

In this part, the main idea is similar to the concept in Chapter 4, we transformed the

minimization problem into a partial hypercube partition problem.

 117

For the partial partition, the symmetric functions in the oracle need two indices (a,b). The

initial value of variable a is the majority degree of the compatibility graph. If the number

is 0, then a would be assigned to the degree of the second majority node. If the majority

degree is not unique, then the index a can be chosen from either group of nodes. The second

index b is initialized to be 0, this index aims to identify the nodes and their connected edges

which are not included in the result of the current searching procedure and keep them from

being removed by the algorithm.

To find the best solution, both indices can be changed during the multiple calls of the

Grover algorithm. After the result is returned in the first searching, it would be saved in a

classical computer, then the classical computer removes this solution from searching space

by disabling the related edges at the input of the quantum algorithm. In the next round, the

classical computer modifies the first index a in (a,0), and runs our oracle with the reduced

searching space. If no result is found, then index a is changed to the degree of the second

majority node and this procedure is repeated until all edges are removed.

Postprocessing (Classical Computer)

The results of each searching round are saved in the classical computer. When the whole

searching process is finished, the DSOP/SOP of this function can be derived by performing

a supercube calculation on sets of nodes. Because of the binary encoding, the result of

 118

quantum searching is in a format of vector like (10101110111), in the result, 1 means this

edge is selected, 0 means not selected. When the result of the final round is received, the

classical algorithm transfers the information about edges into nodes, and then performs a

union operation on those nodes to get the implicants of DSOP/SOP.

Additional details can be found in the following examples.

Example 5.1

Given is a Boolean function: , its K-map is

presented in Fig. 5.1.

 cd

ab

00

01

11

10

00 0 1 0 0

01 0 1 1 1

11 1 1 1 0

10 0 0 1 0

Figure 5.1 Karnaugh map for function F(a, b, c, d)

 119

Based on the input function F(a, b, c, d), a compatibility graph is created by a classical

computer, every true minterm in F(a, b, c, d) is a node in this graph, minterm a
_

 b
_

 c
_

 d is

node n1 in Fig. 5.2, the detailed node information is in Tab. 1. Next a supercube operation

[19] is executed for every two minterms. If the supercube of two minterms doesn’t contain

any false minterm, then create an edge between the two nodes that correspond to these

minterms. For example, the union result of node n2 and n7 is , the term bd doesn’t

contain any false minterms in the original function, so there is an edge between these 2

nodes. The union result of n1 and n3 is , this term contains false minterms

, so n1 and n3 are not connected.

Table 5.1 Node and edge connection for Fig.5.2

Node (related

minterms)

Edges connected to

this node

n1() e1

n2() e1,e2,e4,e5

n3() e2,e3,e5,e7

 120

n4() e3

n5() e8

n6() e4,e6,e8,e9

n7() e6,e7,e9,e10

n8() e10

Figure 5.2 Compatibility graph for function F(a, b, c, d)

 121

After the compatibility graph and the required information is created, we can move to the

quantum part. The majority degree of this example are 1 and 4, as we previously discussed,

the index could be 1 or 4. If we choose 1, then the symmetric function would be S0,1 , the

first searching would return (1010000101), edges: e1,e3,e8, and e10 are selected.

Figure 5.3 Reduced graph for function F(a, b, c, d)

In the next round, those edges are disabled at the input space, and the symmetric functions

are changed into S0,3, the rest of the edges are founded in this round. The result of the first

round is (1010000101), transformed implicants of this vector are: .

The result of the second round is (0101111010), transformed implicants of this vector are:

. The final DSOP of function F(a, b, c, d) are:

 122

 (5.2)

or

 (5.3)

If we choose indices (4,0) as an initial value to star our search, the result is the same, but

there is a little difference in the procedure, because there is no satisfied result for S0,4 in the

first search, because we can not only choose nodes which degree is 4, meanwhile keep the

rest nodes at 0 degree. If the degree equals to 4 is satisfied, that means the degree of nodes:

n1, n4, n5, and n8 is 1. Then the whole symmetric function is not satisfied. At this point,

we have to reduce the indices to (3,0) and keep the procedure moving forward.

We would present another example to illustrates how our method handles a case in which

there are multiple solutions during the search.

Example 5.2

This example, to minimize function G(a, b, c, d) from Fig. 5.4 (a). Because the degree of

the majority nodes is 3, the hybrid algorithm starts with symmetric function S0,3. Under

this constraint, there are multiple solutions that can be found, the edges between nodes m1,

m2, m4, m5 are selected as a possible solution for illustration. The results of the first search

is ().

 123

 Fig. 5.4 (c) is the reduced graph after removing the results of the first run, the degree of

the majority nodes is still 3. After applying the constraint with symmetric function S0,3,

there is no result found. This is the case that index i needs to be changed to the degree of

the second majority node, which is 2. With this modification, multiple results can be found,

the same as in the first search. In the example, the quantum computer finds the edges, then

classical computer transfers edges to nodes (m2, m3, m6) and (m4, m7, m8) for instance,

and the result is: ().

Fig. 5.4 (d) is the reduced graph after removing the edges related to nodes (m2, m3, m6)

and (m4, m7, m8). Applying our algorithm with Fig. 5.4 (d), the indices are (1,0). The

algorithm keeps the indices as (1,0) until all product implicants are found. As the final

result, the optimal SOP is found: .

 124

Figure 5.4 (a)Karnaugh map of Boolean Function G(a,b,c,d). (b) Compatibility graph of

G(a,b,c,d). (c) Reduced graph after the first search. (d) Reduced graph after the second

search.

 125

5.3 Summary of Chapter 5

The hybrid algorithm presented above illustrates how several abstract decision and

optimization problems can be reduced to graph theory problems base on symmetric

functions. These problems include graph coloring, graph covering, maximum cliques,

shortest path, longest path, Traveling Salesman, and domination. Similar methods can be

applied to minimization of ESOP and factorized ESOP expressions [20,24]. In these

problems the concept of compatibility of certain Boolean functions is fundamental and

serves to define various partitioning problems to symmetric functions, such as those

presented in sections 1 to 5. Edges are created for pairs of compatible nodes. In addition,

please note that many interesting and practical problems can be also reduced to some of

these graph theory problems [20,25]. For instance, a sudoku puzzle can be reduced to a

graph coloring problem. We believe there are other fascinating problems in Graph Theory

and Topology that would get more efficient solutions with the power of quantum

computing.

 126

 Chapter 6 Designing Quantum Oracles for Logic Games

When we are formulating those graph theory problems in the previous chapter, we also get

some by-products during the group discussion. We investigate our methodology of

building the quantum oracle and the hybrid quantum algorithm with the River crossing

puzzle (Missionaries and Cannibals problem), Maximum independent set problem.

6.1 Quantum Oracles for River Crossing Puzzle

The river Crossing puzzle is a very old and famous planning problem, the earliest known

problem can be traced by Alcuin’s manuscript in the 9th century [41], and this problem has

many variations, like wolf, goat, cabbage, human puzzle, Missionaries and Cannibals

problem. With the given constraints like the number of passengers, the maximum capacity

of items on a boat, this puzzle can be formulated as a searching problem, given a state space

which is encoded by every item in this problem, the difficulty of the problem is how to find

the safe path in the state space without violating any constraint condition. These puzzles

could become NP-Hard with more constraints [41] and can be solved by transferring them

to graph problems [42]. During we were formulating our problems, we noticed the

missionaries and cannibals puzzle and found interesting symmetry property inside this

puzzle.

 127

The description of missionaries and cannibals puzzle is that there are three missionaries

and three cannibals who want to cross a river from left bank to right. A boat is available

and it only holds two peoples at a time, this boat can be operated by any combination of

missionaries and cannibals by any number (one or two) and it can’t move automatically. If

the number of missionaries at either bank of the river, or during the transportation, is less

than cannibals at any time, the cannibals will eat those missionaries. The goal of this puzzle

is to find a safe sequence to move all people to the other side of the river.

This puzzle is used as an example to introducing classical searching algorithms like depth-

first or breadth-first, so we ask ourselves can we use a quantum searching algorithm to

solve this puzzle?

Before we apply Grover’s searching algorithm to solve this puzzle, we need to build an

oracle function. To formulate this puzzle, we conclude two constraints:

(1) Bank safety constraint: The number of the missionary should be always greater than

the cannibal’s number. This constraint will keep all items in both banks in a safe condition.

(2) Valid movement constraint: The boat can’t move by itself, it must be operated by one

passenger. This constraint will keep all movement between two banks are satisfying the

valid condition.

 128

6.1.1 Modeling the Constraints of River Crossing Puzzle

For building a quantum oracle, we need to formulate these two constraints into Boolean

logic function. Assuming the number of missionaries and cannibals is equal, and it is n.

Missionary and cannibal are denoted by literal M and C, where .

denotes the n-th cannibal at bank one, denotes the n-th cannibal at bank two.

Example 6.1

In the example, we choose n=3 to present the constraints in the Boolean logic expression.

For three missionaries and three cannibals, the bank safety constraint can be concluded as

following cases:

1. Three missionaries and one cannibal at the same bank.

2. Two missionaries and two cannibals at the same bank.

3. Three missionaries and two cannibals at the same bank.

4. Three missionaries and three cannibals at the same bank.

5. Three missionaries and three cannibals at the different banks.

Let us consider the unsafety cases:

1. Three cannibals and one missionary at the same bank.

2. Three cannibals and two missionaries at the same bank.

3. Two cannibals and one missionary at the same bank.

 129

Each case needs to be transformed into a Boolean logic expression, the unsafety condition

has fewer expressions. Considering the size of the oracle, the unsafety condition is a better

option.

Take the first cases in unsafety cases to demonstrate the transformation of Boolean logic

expression. Because the statement doesn’t mention the cannibals and missionaries stay at

bank 1 or bank 2, we need to consider both banks.

For the case “Three cannibals and one missionary at the same bank”, its Boolean logic

expression:

 (6.1)

Transforming into Boolean symmetric function:

 (6.2)

The Boolean logic expressions for the rest cases in unsafety condition are:

 (6.3)

And

 130

(6.4)

The final expression in Symmetric Function format is:

 (6.5)

Equation 6.5 can be simplified by an XOR gate as follows:

 (6.7)

the simplified equation is:

 (6.8)

Next step, for the valid movement constraint, the Boolean logic expression needs to check

the value of this object at the current state is different from the value at the previous state.

The notation is extended to , where m is the current state of n-th cannibal, the next

state denoted as . A valid movement between two banks means there should only be

one or two literals is different from the value of its previous state, in Boolean logic

 131

expression it is: and . We use

literal to represent the XOR result of two states.

 (6.9)

Continued with the example of three missionaries and three cannibals,

 (6.10~15)

Then the valid movement constraint of this example can be easily written into symmetric

function because it only counts the number of positive literals for Z. Its symmetric function

is:

Combining those two constraints, we could get the symmetric Boolean function of this

oracle:

 (6.16)

6.1.2 Results Analysis

This puzzle is different from those problems in Chapters 4 and 5, it is a sequential decision

problem [43]. The searching space of this puzzle for quantum Grover’s algorithm is all

 132

states (all possible movement) in the puzzle, and any of a safe state is a solution (target) in

Grover’s searching procedure. The solutions of problems in Chapter 4 and 5 are

independent of each other, but for the sequential problem, the current state is based on the

previous state, to find the solution of this type of problems, that means we need to find all

of the states which are satisfied with the constraints in the searching space. For the example

with three missionaries and cannibals, there are 32 states (containing the begin and end

state, all missionaries and cannibals are at the same bank), and 13 safe states, this is verified

by miniSAT based on our equations. For quantum simulation, we didn’t run the exhaust

simulation to find all of the solution states, since it cost too much time for Grover’s

algorithm in the multiple target searching problems.

The performance of Grover’s searching algorithm in solving this type of problem is not

comparable with a classical computer now, paper [44] introduced the capability and

limitation of most quantum algorithms, even Google proved a dramatic advantage of

quantum computing [45] comparing with the classical computer in a specific problem, but

quantum computing still has significant drawbacks in some area. How to take the

advantage of quantum computing and find an efficient methodology to create hybrid

classical-quantum algorithms, is still a question for many quantum computing researchers,

and this is also one of the motivations of this dissertation.

 133

6.2 Quantum Oracle for Maximum Independent Set Problem

 The maximum independent set (MIS) problem is a basic graph optimization problem, but

it has many applications in topology. [46]

Definition 1 (Maximum independent set) [48]

Given an undirected graph G = (V,E) a subset of nodes is an independent set if and

only if there is no edge in E between any two nodes in S. A subset of nodes S is a clique if

every pair of nodes in S have an edge between them in G.

Based on this Definition 1, the MIS problem is the following: given a graph G(V,E) find

an independent set in G of maximum cardinality. This problem has many classical

algorithms to solve this problem like greedy [51], linear-programming [50], and random

selection algorithm [49].

 134

Figure 6.1 (a) Example graph with 5 vertices and 3 edges. (b) complement graph of G,

denoted as G`

An efficient way to find the maximum clique is to consider its complement graph [48], our

oracle is designed based on this idea. For example, the maximum clique in G` is {b, c, d,

e}, it is the maximum independent set of G.

The idea of this oracle is from combinatory logic, for the input graph , is the

incidence function that associate with each edge of G, if e is an edge in graph G, ,

, , the vertices u and v are called the ends of e.[47] Next our oracle

needs to create a POS, each sum term in the POS is generated from ,

. Next, our oracle needs to change the POS to SOP, then count

the number of literals for every product in SOP expression, find the smallest product,

 135

denoted as set S. The complement set of S is the maximum independent set of G. The

details of our oracle are shown in the following example.

Figure 6.2 Example graph G with five vertices and five edges

Example 6.2

Given graph , incidence functions for every edge in graph G:

. To model this

graph, we need to generate a set of literals , which related to the nodes

in graph G. Graph G can be written into a Boolean expression:

 (6.17)

 136

By definition of the independent set, if two vertices are connected, then these two vertices

can not be in the same independent set. Every satisfied minterm of equation 6.17 is a set of

clique in the complement graph of G. To find the maximum independent set, we just need

to find the smallest size of product term in equation 6.17, and its complement set is the

maximum independent set of graph G. The smallest product of equation 6.17 is ab and ae,

then the maximum independent set of this problem is cde and bcd.

Our quantum oracle to solve this problem contains two constraint blocks: positive-literal

block and function satisfiability block.

The function of a positive-literal block is to constraint the number of positive literal in the

solution, since the satisfied minterms only contain positive literals, any result that contains

negative literal is unacceptable. And we also need to find the smallest term for the

independent set. This block contains a quantum accumulator and equality comparator. The

quantum accumulator is to counting numbers of positive literal at the input side. The

comparator checks the result from the accumulator and comparing it with the user’s

threshold to pursue the smallest minterm.

 137

Figure 6.3 Block diagram of the positive-literal block for example 6.2

The function satisfiability block is similar to the SAT example in chapter 2, it is a problem-

specific circuit that depends on the POS equation.

Figure 6.4 Block diagram for example 6.2

 138

6.3 Summary of Chapter 6

Two quantum oracles of logic puzzle problems are presented in this chapter. The river

crossing puzzle discussed the limitation of Grover’s algorithm in sequential problems, this

pitfall is caused by multiple targets in the searching space, it is an open problem in Grover’s

algorithm. Some papers [52,53,54] provide quantum walk as an alternative solution for

multiple target searching problems. The oracle of MIS problem inherits the same

methodology in chapters 4 and 5, this is a general idea in our oracle design methodology

to solve constraint satisfaction problem (CSPs).

 139

 Chapter 7: Conclusion and Future Work

7.1 Conclusion

In the research work, a quantum algorithm based on the Grover searching algorithm was

developed. We used our methodology and Boolean symmetric functions to design different

quantum oracles to solve graph-theory-related problems. We explored our oracle design

methodology on two graph theory problems (i.e., cycle detection and hypercube partition)

and extended the solution to the hypercube partition problem to a quantum algorithm to

solve the Boolean function minimization problem. Current computers still cannot give

exact optimal solutions to the Boolean function minimization problem because the solution

requires astronomic numbers of prime or product implicants. The methodology used to

design the quantum oracle in this dissertation has many applications in graph-theory-

related problems and a significant impact on various optimization problems.

As far as we know, there are no quantum algorithms for graph partitioning, as defined here.

There are also no classical algorithms for the problems formulated and solved in Chapter

4. There are no quantum algorithms that can be used to solve classical DSOP and SOP

minimization problems, as presented in Chapter 5. These problems, like clique covering

and similar, are all NP-hard. The presented methods will become practical with the

appearance of quantum computers that can handle more qubits than current technology.

 140

The usefulness of these algorithms for noisy intermediate-scale quantum (NISQ) era

computing should be also studied.

 7.1.1 Contributions

This research has resulted in the following accomplishments:

 The invention of a new quantum oracle for searching for cycles in a graph

 The invention of a new quantum oracle to partition the Hamiltonian cycle in a graph

 The creation of a new methodology for designing a quantum oracle based on graph

theory to solve the Boolean minimization problem

 The realization of several graph-theory-related quantum oracles and simulations in

Qiskit and Quipper

 The realization of two quantum oracles that can solve the Boolean minimization

problem in Qiskit

 7.2 Future Work

The research in this dissertation can be extended in the following directions:

 Extending the Boolean minimization oracle to a multivalued logic minimization oracle

 Using the flexibility of the symmetric function to explore additional graph-theory-

related problems, like graph coloring, TSP, and vertex covering

 Applying our oracle design methodology to additional combinatory problems

 141

 Optimizing the inner connections of quantum lattice structures to reduce the quantum

cost of producing lattice diagrams

 142

 References

[1] Nielsen, M. A., and Chuang, Isaac L. (2000). Quantum computation and quantum

information (10th anniversary edition.). Cambridge University Press.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database search,”

arXiv:quant-ph/9605043, May 1996, Accessed: Jun. 27, 2019. M. Chrzanowska-

Jeske and A. Mishchenko, “Synthesis for Regularity using Decision Diagrams,” in

IEEE International Symposium on Circuits and Systems, pages 4721–4724. 2005

[3] Yanofsky, Noson S, and Mannucci, Mirco A. (2008). Quantum Computing for

Computer Scientists. Cambridge University Press.

[4] D. Shah, M. A. Perkowski, "Synthesis of quantum arrays with low quantum costs

from Kronecker Functional Lattice Diagrams" , IEEE Congress on Evolutionary

Computation, 2010. Pages 24 -28

[5] M. Lukac, D. Shah, M. Perkowski, and M. Kameyama, “Synthesis of Quantum

Arrays from Kronecker Functional Lattice Diagrams,” IEICE Trans. Inf. Syst., vol.

E97.D, no. 9, pages 2262–2269, 2014.

[6] M. Chrzanowska-Jeske and A. Mishchenko, “Synthesis for Regularity using

Decision Diagrams,” in IEEE International Symposium on Circuits and Systems,

pages 4721–4724. 2005

[7] S.B. Akers, “A rectangular logic array”, Trans. IEEE Computer, VOL. C-21, pages

848-857, 1972.

[8] T. Sasao, "A new expansion of symmetric functions and their application to

nondisjoint functional decompositions for LUT-type FPGAs", Proc. Int. Workshop

Logic Synthesis, pages 105-110, 2000.

[9] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli,

"Logic Minimization Algorithms for VLSI Synthesis", The Kluwer International

 143

Series in Engineering and Computer Science, Vol. 2, Boston, MA: Kluwer

Academic Publishers, 1984.

[10] M. A. Perkowski, D. Shah, M. Kameyama, “Synthesis of quantum circuits in

Linear Nearest Neighbor model using Positive Davio Lattices”, FACTA

UNIVERSITATIS (NIS) SER.: ELEC. ENERG. vol. 24, no. 1, April 2011, 71-87.

[11] V. P. Suprun, D. A. Gorodecky, “Matrix Method of Polynomial Expansion of

Symmetric Boolean Functions”, Automatic Control and Computer Sciences, vol.

47, no. 1, pages 1–6, 2013

[12] Godsil, C. and Royle, G. Algebraic Graph Theory. New York: Springer-Verlag,

2001

[13] M. A. Perkowski, M. Chrzanowska-Jeske, and Y. Xu, “Lattice diagrams using

reed-muller logic”, in IFIP WG 10.5 Workshop on Applications of the Reed-Muller

Expansion in Circuit Design, pages 85–102, 1997.

[14] L.K. Grover. “A fast quantum mechanical algorithm for database search”. In Proc.

28th Annual ACM Symposium on Theory of Computing, pages 212–219,1996.

[15] Y. Li, E. Tsai, M. A. Perkowski, and X. Song, “Grover-based Ashenhurst-Curtis

decomposition using quantum language quipper,” Quantum Information &

Computation, vol. 19, pp. 35–66, 2018.

[16] W. H. Mills, “Some Complete Cycles on the n-Cube,” Proc. Amer. Math. Soc.,

vol. 14, no. 4, pp. 640–643, 1963

[17] F. Harary, J. P. Hayes, and H.-J. Wu, “A survey of the theory of hypercube

graphs,” Comput. Math. Appl., vol. 15, no. 4, pp. 277–289, 1988, doi:

10.1016/0898-1221(88)90213-1.

[18] Maslov, D., and Dueck, G. W. (2003). Improved Quantum Cost for n-bit Toffoli

Gates. Electronics Letters, 39(25), 1790. https://doi.org/10.1049/el:20031202

 144

[19] M.J. Ciesielski, S. Yang, and M.A. Perkowski, “Multiple-Valued Boolean

Minimization Based on Graph Coloring”, in Proc. 1989 IEEE Int. Conf. Comp.

Design, USA, pp.265-265, 1989.

[20] A. Mishchenko, and M.A. Perkowski, “Fast Heuristic Minimization of Exclusive-

Sums-of-Products”, in Proc. Proc. Reed-Muller’2001, Japan, pp. 213-215 .2001.

[21] N. Song and M.A. Perkowski, “Minimization of Exclusive sum-of-products

expressions for multiple-valued input, incompletely specified functions”. IEEE

Trans. CAD, Vol. 15, (4), pp. 385-395. 1996.

[22] E. Chow, H. Madan, J. Peterson, D. Grunwald, and D. Reed, “Hyperswitch

network for the hypercube computer,” in Proc. 15th Intern. Symp. Comp. Arch. pp.

90–99, 1988.

[23] R. Babbush et al., “Encoding Electronic Spectra in Quantum Circuits with Linear

T Complexity,” Phys. Rev. X, vol. 8, no. 4, pp. 041-015, Oct. 2018.

[24] M.A. Perkowski, A. Mishchenko, M. Chrzanowska-Jeske, "Generalized Inclusive

Forms — New Canonical Reed-Muller Forms Including Minimum ESOPs" VLSI

Design Vol. 1, pp. 13-21, 2002.

[25] P. Gao, Y.Li and M.A. Perkowski, Realization of Quantum Oracles using

Symmetries of Boolean Functions, Quantum Inf. Comput. vol. 20 (5&6), pp. 418-

448, 2020.

[26] Rudell, R.L, and Sangiovanni-Vincentelli, A. (1987). Multiple-Valued

Minimization for PLA Optimization. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 6(5), 727–750.

[27] Aspect, Alain, Dalibard, Jean, and Roger, Gérard. (1982). Experimental Test of

Bell's Inequalities Using Time- Varying Analyzers. Physical Review Letters,

49(25), 1804–1807.

 145

[28] Müller, K A, and Bednorz, J G. (1987). The Discovery of a Class of High-

Temperature Superconductors. Science (American Association for the

Advancement of Science), 237(4819), 1133-1139.

[29] Deutsch, David. (1985). Quantum Theory, the Church-Turing Principle and the

Universal Quantum Computer. Proceedings of the Royal Society of London. Series

A, Mathematical and Physical Sciences, 400(1818), 97-117.

[30] Harrow, Aram W, Hassidim, Avinatan, and Lloyd, Seth. (2009). Quantum

algorithm for linear systems of equations. Physical Review Letters, 103(15),

150502.

[31] Grover, Lov K. (1997). Quantum Mechanics Helps in Searching for a Needle in

a Haystack. Physical Review Letters, 79(2), 325-328.

[32] Shor, P.W. (1994). Algorithms for quantum computation: Discrete logarithms and

factoring. Proceedings 35th Annual Symposium on Foundations of Computer

Science, 124-134.

[33] Rebentrost, Patrick, Mohseni, Masoud, and Lloyd, Seth. (2014). Quantum support

vector machine for big data classification. Physical Review Letters, 113(13),

130503.

[34] J., Abhijith, Adetokunbo Adedoyin, John Ambrosiano, Petr Anisimov, Andreas

Bärtschi .etc. 2020. “Quantum Algorithm Implementations for Beginners.”

ArXiv:1804.03719 [Quant-Ph].

[35] Frisk Kockum, Anton. (2014). Quantum Optics with Artificial Atoms.

[36] U. Kalay, M. A. Perkowski, D. V. Hall, B. Steinbach, and S. A.Shahjahan,

“Rectangle Covering Factorization of ESOPs Into ScanBased Levelized Circuits

with Universal Test Set,” 2007.

[37] R. K. Brayton. Factoring Logic Functions. IBM J. Res.Develop., 31(2),Mar. 1987.

 146

[38] B. Schaeffer, L. Tran, A. Gronquist, M. Perkowski, and P. Kerntopf, “Synthesis

of Reversible Circuits Based on Products of Exclusive OR Sums,” in 2013 IEEE

43rd International Symposium on MultipleValued Logic, 2013, pp. 35–40, doi:

10.1109/ISMVL.2013.54.

[39] Praeger, Cheryl E., and Ming-Yao Xu. 1989. “A Characterization of a Class of

Symmetric Graphs of Twice Prime Valency.” European Journal of Combinatorics

10(1):91–102.

[40] McKay, B. D. and Royle, G. F. "The Transitive Graphs with at Most 26 Vertices."

Ars Combin. 30, 161-176, 1990.

[41] Ito, Hiro, Langerman, Stefan, and Yoshida, Yuichi. (2015). Generalized River

Crossing Problems. Theory of Computing Systems, 56(2), 418-435.

[42] Csorba, P, Hurkens, C.A.J, and Woeginger, G.J. (2012). The Alcuin Number of a

Graph and Its Connections to the Vertex Cover Number. SIAM Review, 54(1), 141-

154.

[43] Beard, Randal W. (2018). Decision Making Under Uncertainty: Theory and

Application. IEEE Control Systems, 38(6), 114-115.

[44] Montanaro, Ashley. (2016). Quantum algorithms: An overview. Npj Quantum

Information, 2(1), 15023.

[45] Arute, Frank, Arya, Kunal, Babbush, Ryan, Bacon, Dave, Bardin, Joseph C,

Barends, Rami, . . . Martinis, John M. (2019). Quantum supremacy using a

programmable superconducting processor. Nature (London), 574(7779), 505-510.

[46] Lefschetz, S. (1975). Applications of algebraic topology : Graphs and networks :

The Picard-Lefschetz theory and Feynman integrals (Applied mathematical

sciences (Springer-Verlag New York Inc.) ; v. 16). New York: Springer-Verlag.

 147

[47] Bondy, J., and Murty, U. S. R. (1976). Graph theory with applications. New

York: Elsevier Science Publishing.

[48] West, D. (1996). Introduction to graph theory. Upper Saddle River, NJ: Prentice

Hall.

[49] Luby, M. (1986). A simple parallel algorithm for the maximal independent set

problem. SIAM Journal on Computing, 15(4), 1036-1053.

[50] Blelloch, Guy, Fineman, Jeremy, and Shun, Julian. (2012). Greedy sequential

maximal independent set and matching are parallel on average. Proceedings of the

Twenty-fourth Annual ACM Symposium on Parallelism in Algorithms and

Architectures, 308-317.

[51] Colombi, Marco, Mansini, Renata, and Savelsbergh, Martin. (2017). The

generalized independent set problem: Polyhedral analysis and solution

approaches. European Journal of Operational Research, 260(1), 41-55.

[52] Ambainis, Andris. (2010). Quantum Search with Variable Times. Theory of

Computing Systems, 47(3), 786-807.

[53] Brun, Todd A, Carteret, H. A, and Ambainis, Andris. (2003). Quantum random

walks with decoherent coins. Physical Review. A, Atomic, Molecular, and Optical

Physics, 67(3), Physical review. A, Atomic, molecular, and optical physics, 2003-

03, Vol.67 (3).

[54] Ambainis, Andris. 2004. “Quantum Walks and Their Algorithmic Applications.”

ArXiv:Quant-Ph/0403120.

[55] Dirac, P. A. M. (1939). A new notation for quantum mechanics. Mathematical

Proceedings of the Cambridge Philosophical Society, 35(3), 416-418.

[56] Bryant, R. E. (1986). Graph-Based Algorithms for Boolean Function

Manipulation. IEEE Transactions on Computers, C-35(8), 677-691.

 148

[57] Menon, P.R, Ahuja, H, and Harihara, M. (1994). Redundancy identification and

removal in combinational circuits. IEEE Transactions on Computer-aided Design

of Integrated Circuits and Systems, 13(5), 646-651.

[58] Chris. Durr, M. Heiligman, P. Hoyer, M. Mhalla. (2006). Quantum query

complexity of some graph problems. SIAM Journal on Computing, 35(6), 1310-

1328

[59] Chris. Durr, and Peter, Hoyer, Peter. (1996). A Quantum Algorithm for Finding

the Minimum. Arxiv.

[60] Vidya Raj, C., and M. S. Shivakumar. (2007). Applying Quantum Algorithm to

Speed Up the Solution of Hamiltonian Cycle Problems. in Intelligent Information

Processing III. Vol. 228,. 53–61

[61] Rudolph, T. (1996). Quantum computing Hamiltonian cycles. Arxiv

[62] Burger, John Robert. (2005). Quantum Algorithm Processors to Reveal

Hamiltonian Cycles. Arxiv

[63] Dajian Zhang, Dianmin Tong, Yao Lu, Guilu Long. (2015). An Alternative

Adiabatic Quantum Algorithm for the Hamiltonian Cycle Problem.

Communications in Theoretical Physics, 63(5), 554-558.

[64] Ge, Yimin, and Dunjko, Vedran. (2019). A hybrid algorithm framework for small

quantum computers with application to finding Hamiltonian cycles. Arxiv.

[65] Mahasinghe, Anuradha, Hua, Richard, Dinneen, Michael, and Goyal, Rajni.

(2019). Solving the Hamiltonian Cycle Problem using a Quantum Computer.

Proceedings of the Australasian Computer Science Week Multiconference, 1–9.

[66] Eppstein, David. (2007). The Traveling Salesman Problem for Cubic

Graphs. Journal of Graph Algorithms and Applications, 11(1), 61–81.

 149

[67] Xiao, Mingyu, and Nagamochi, Hiroshi. (2016). An Exact Algorithm for TSP in

Degree-3 Graphs Via Circuit Procedure and Amortization on Connectivity

Structure. Algorithmica, 74(2), 713–741.

[68] Xiao, Mingyu, and Nagamochi, Hiroshi. (2016). An Improved Exact Algorithm

for TSP in Graphs of Maximum Degree 4. Theory of Computing Systems, 58(2),

241–272.

[69] Moylett, Dominic J, Linden, Noah, and Montanaro, Ashley. (2016). Quantum

speedup of the Travelling Salesman Problem for bounded-degree graphs. Arxiv

[70] Srinivasan, Karthik, Satyajit, Saipriya, Behera, Bikash K, and Panigrahi, Prasanta

K. (2018). Efficient quantum algorithm for solving travelling salesman problem:

An IBM quantum experience. Arxiv

[71] Ushijima-Mwesigwa, Hayato, Negre, Christian F. A, and Mniszewski, Susan M.

(2017). Graph Partitioning using Quantum Annealing on the D-Wave System.

Arxiv

[72] Cocchi, Eugenio, Tignone, Edoardo, and Vodola, Davide. (2021). Graph

Partitioning into Hamiltonian Subgraphs on a Quantum Annealer. Arxiv

[73] Bojić, Alan. (2012). Quantum Algorithm for Finding a Maximum Clique in an

Undirected Graph. Journal of Information and Organizational Sciences, 36(2), 91.

[74] Sanyal, Arpita, Saha, Amit, Saha, Debasri, Saha, Banani, and Chakrabarti, Amlan.

(2020). Circuit Design for Clique Problem and Its Implementation on Quantum

Computer. Arxiv

[75] Li, Xi, Wu, Mingyou, and Chen, Hanwu. (2019). Algorithm for Finding the

Maximum Clique Based on Continuous Time Quantum Walk. Arxiv

[76] Pelofske, Elijah, Hahn, Georg, and Djidjev, Hristo N. (2019). Solving large

Maximum Clique problems on a quantum annealer. Arxiv

 150

[77] Chapuis, Guillaume, Djidjev, Hristo N, Hahn, Georg, and Rizk, Guillaume.

(2018). Finding Maximum Cliques on the D-Wave Quantum Annealer. Arxiv

[78] Montanaro, Ashley. (2015). Quantum walk speedup of backtracking algorithms.

Arxiv

[79] Bian, Zhengbing, Chudak, Fabian, Israel, Robert Brian, Lackey, Brad, Macready,

William G, and Roy, Aidan. (2016). Mapping Constrained Optimization Problems

to Quantum Annealing with Application to Fault Diagnosis. Frontiers in ICT, 3.

[80] Mesman, Koen, Al-Ars, Zaid, and Möller, Matthias. (2021). QPack: Quantum

Approximate Optimization Algorithms as universal benchmark for quantum

computers. Arxiv.

[81] Xu, Hong, Sun, kexuan., Koenig, Sven., Hen, Itay., and Kumar, (2020). Hybrid

Quantum-Classical Algorithms for Solving the Weighted CSP. Proceedings of the

International Symposium on Artificial Intelligence and Mathematics.

	Quantum Grover's Oracles with Symmetry Boolean Functions
	Let us know how access to this document benefits you.
	Recommended Citation

	Thesis Template

