
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

7-26-2021 

Regional Characteristics and Variability of Extreme Regional Characteristics and Variability of Extreme 

Precipitation and Atmospheric Rivers in Past, Precipitation and Atmospheric Rivers in Past, 

Present, and Future Climates Over the Contiguous Present, and Future Climates Over the Contiguous 

United States United States 

Emily Anne Slinskey 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Atmospheric Sciences Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Slinskey, Emily Anne, "Regional Characteristics and Variability of Extreme Precipitation and Atmospheric 
Rivers in Past, Present, and Future Climates Over the Contiguous United States" (2021). Dissertations and 
Theses. Paper 5760. 
https://doi.org/10.15760/etd.7631 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/187?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5760&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5760
https://doi.org/10.15760/etd.7631
mailto:pdxscholar@pdx.edu


 

 

 

Regional Characteristics and Variability of Extreme Precipitation and 

Atmospheric Rivers in Past, Present, and Future Climates 

over the Contiguous United States 

 

 

   

    

by  

  

Emily Anne Slinskey  

 

  

 

 

     

A dissertation submitted in partial fulfillment of the  

requirements for the degree of  

  

  

  

  

Doctor of Philosophy  

in  

Earth, Environment and Society  

  

  

  

  

Dissertation Committee:  

Paul Loikith, Chair  

Andrew Martin 

Kelly Gleason 

Duane Waliser 

Andrew Rice 

 

 

  

Portland State University  

2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Emily Anne Slinskey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 i 

Abstract 

 

This dissertation examines the regional and seasonal variability of extreme precipitation 

and atmospheric rivers (ARs) across the contiguous United States (CONUS) in past, 

present, and future climates. An extreme precipitation categorization scheme, designed to 

monitor and track the multi-scale variability of extreme precipitation, is applied to a 

range of precipitation measurement products as an assessment of observational 

uncertainty. To investigate the importance of ARs across the CONUS, an objective AR 

identification algorithm is applied to global reanalysis to identify and characterize AR 

characteristics regionally over the observational record. Projected change in AR day 

frequency, geometry, intensity, and associated precipitation is quantified in Phase 6 of the 

Coupled Model Intercomparison Project (CMIP6) under the Shared Socioeconomic 

Pathway 585 (SSP 585) high-end emissions warming scenario.  

 

Extreme precipitation most commonly occurs across the mountains of the western US in 

the winter and over the southeastern US in the summer and fall, associated with ARs and 

tropical systems, respectively. Observational uncertainty assessment results reveal 

historical precipitation measurement approaches, including in situ, satellite-derived, 

gridded in situ, and reanalysis, capture the principal spatial patterns of extreme 

precipitation climatology, with considerable variability in event frequency, spatial extent, 

and magnitude. Higher native resolution products most closely resemble in-situ 

observations, capturing a greater frequency of high-end multi-day totals relative to lower 

resolution products, even after rescaling, implying a systematic resolution-related bias.  



 

 

 

ii 

 

Within the observational record, ARs are most frequent in the fall and winter in the West, 

spring in the Great Plains, and fall in the Midwest and Northeast, showing regional and 

seasonal variability in basic geometry and IVT. Linked AR precipitation characteristics 

suggest that a substantial proportion of extreme events are associated with ARs over 

many parts of the CONUS, including the eastern US, characterized by seasonally-varying 

moisture transport patterns and lifting mechanisms. Analysis of change between five 

CMIP6 model historical simulations and future projections, under the SSP585 warming 

scenario, suggests notable increases in AR day frequency, intensity, and geometry by the 

end of the 21st century (2071-2100). Projections indicate ARs will comprise a greater 

share of the total climatological precipitation that falls CONUS-wide, as well as an 

increasing percentage of the occurrence of the top 5% of multi-day extremes.   

 

The findings from this dissertation aim to identify and quantify uncertainty in the 

regional-scale variability of extreme precipitation and associated meteorological 

mechanisms among observations and global climate model projections. Future climate 

change impacts studies require an improved dynamical and physical process-based 

understanding of extreme precipitation. Results from this dissertation can further support 

future investigation into the spatiotemporal variability of the underlying synoptic scale 

weather patterns (i.e., meteorological characteristics and dynamical processes) associated 

with enhanced precipitation formation during an AR.  
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Chapter 1: Introduction 

 

1.1 Motivation  

According to the United States (US) Fourth National Climate Assessment (NCA) Climate 

Science Special Report (CSSR; USGCRP 2017), and references therein, an increase in 

the intensity and frequency of heavy precipitation is evident over many regions of the 

contiguous United States (CONUS; Easterling et al. 2017), especially over the last 

several decades. This report further states with ‘high confidence’ that increases in heavy 

precipitation are projected to continue with regional-scale variability in the sign and 

magnitude of projected change (Janssen et al. 2014, 2016). Given the severity of extreme 

precipitation impacts (e.g., flooding, landslides, debris flows) and the associated 

importance to both human and natural systems (e.g., life, property, ecosystems), realizing 

potential variability and change at local through regional scales under warming is critical.  

 

A growing body of evidence, informed by both the observed record and future 

projections, attribute increases in the atmosphere’s water holding capacity with warming, 

governed by the Clausius-Clapeyron relationship, as the primary cause of intensification 

within the hydrologic cycle (e.g., Wehner et al. 2013; Kunkel et al. 2013a, 2013b). 

However, due to the complex nature and diverse interacting drivers of extreme 

precipitation (e.g., extratropical cyclones, tropical cyclones, mesoscale convective 

systems, the North American monsoon system; Kunkel et al. 2012), change is not 

uniform in space and varies by region (Tabari et al. 2019). Constraining uncertainty 

surrounding changes in extreme precipitation requires an improved understanding of the 
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driving meteorological mechanisms and processes as opposed to the associated statistics 

alone. 

 

The World Climate Research Programme (WCRP) has identified “Weather and Climate 

Extremes” as one of seven Grand Challenges1 representing areas of emphasis in scientific 

research. Two key questions are raised as essential to addressing this challenge, 

specifically regarding the sufficiency of observations for studying extremes, as well as 

the roles of local through synoptic scale processes in the formation of extremes. Towards 

this end, the recurrent theme of this dissertation is to provide a thorough assessment of 

regional variability in extreme precipitation and associated meteorological mechanisms 

across the CONUS among observations and future projections. As a basis for 

understanding extreme precipitation distribution and variability across the CONUS, in 

Chapter 2 an extreme precipitation categorization scheme is developed and applied to a 

suite of diverse precipitation measurement products as a measure of observational 

uncertainty. As the dominant meteorological mechanism for producing precipitation 

across the West, a systematic and uniform investigation of atmospheric river (AR) 

characteristics and impacts is carried out for all regions across the CONUS in past, 

present, and future climates. As a benchmark for future change, Chapter 3 presents a 

robust observational assessment of AR occurrence, geometry, magnitude, and associated 

precipitation across seasons and regions over the CONUS. Projected change in AR 

characteristics and impacts is subsequently quantified in Chapter 4, based on a detailed 

 
1 https://www.wcrp-climate.org/component/content/article/63-gc-extremes?catid=32&Itemid=266  

https://www.wcrp-climate.org/component/content/article/63-gc-extremes?catid=32&Itemid=266
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comparison between the historical simulation and future projections of five global 

climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 

(CMIP6) database. Chapter 5 summarizes each chapter’s key findings and implications 

for future work surrounding an improved dynamical and physical process-based 

understanding of extreme precipitation formation in ARs.  

 

While some of the findings documented here complement existing research, the 

combination of each individual chapter within this dissertation serves to provide a more 

holistic and complete understanding of the regional and seasonal variability of extreme 

precipitation and AR characteristics and co-occurrence across the CONUS in past, 

present, and future climates. As a contribution to the continuing efforts of the NCA, all 

chapters provide intuitive and interpretable results at regionally-relevant scales, 

computed at each grid point as well as summarized over the seven NCA regions across 

the CONUS. This chapter serves to summarize and identify gaps in the relevant scientific 

literature as well as outline the recurring theme, individual aims, and structure of this 

dissertation. 

 

1.2 Background 

1.2.1 Extreme Precipitation: Climate Change, Mechanisms, and Monitoring 

A number of studies have documented a significant increase in the frequency and 

intensity of extreme precipitation events across the CONUS (e.g., Karl et al. 1996; Karl 

and Knight 1998; Groisman et al. 2004, 2005, 2012, Kunkel et al., 2003, 2007; 
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Alexander et al. 2006). Occurring when the air is nearly completely saturated, projections 

of extreme precipitation intensification across the globe are strongly linked to increases 

in atmospheric water vapor with warming at the rate of Clausius-Clapeyron (CC) scaling. 

The CC relationship states that, given constant relative humidity, the water holding 

capacity of the atmosphere will increase exponentially with temperature 𝑇 at a rate of 

~7% per degree Celsius of warming, yielding 

 

𝑑𝑒𝑠

𝑑𝑇
=  

𝐿𝑣 𝑒𝑠

𝑅𝑣 𝑇2
 

(1) 

where 𝑒𝑠 is saturation vapor pressure, 𝐿𝑣 is the latent heat of vaporization, and 𝑅𝑣 the gas 

constant of water vapor (Bolton 1980; Iribarne and Godson 1981).  

 

Reasoning around CC scaling is strongest at higher latitudes where air tends to be closer 

to saturation, and relative humidity is roughly constant through seasonal changes in 

temperature (Allen and Ingram 2002), suggesting the response may be different at lower 

latitudes. While CC scaling has been widely used to explain the intensification of 

extreme precipitation across the mid-latitudes (e.g., Frich et al. 2002; Christensen and 

Christensen 2003; Sherwood et al. 2010; Donat et al. 2016; Lu et al. 2018; Nayak et al. 

208; Giorgi et al. 2019; Morrison et al. 2019; Oh et al. 2020 Sousa et al. 2020), rates of 

change are expected to vary regionally (Ivancic and Shaw 2016). At local to regional 

scales, departures from the CC relationship, so called super-CC scaling (greater than 7%) 

and sub-CC scaling (less than 7%), can be consequences of different factors (e.g., 
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moisture availability, type of precipitation, annual cycle, percentile of precipitation 

intensity, and regional weather patterns). Across the CONUS,  several studies have 

documented super-CC rates across the East (Lepore et al. 2014), including across the 

interior of New York (Shaw et al. 2011), with the largest rates found in the North Central 

US (Mishra et al. 2012; Lepore et al. 2014). While in the West, sub-CC conditions have 

been identified as a result of regionally variable threshold temperatures due to seasonal 

moisture availability (i.e., wet winters and dry summers; Ivancic and Shaw 2016). The 

applicability of the CC equation to extreme precipitation intensity assumes that fully 

saturated atmospheric conditions are attainable with some regularity across a given 

temperature range, however this is not necessarily the case for all regions across the 

CONUS.  

 

Given CC scaling will affect precipitation asymmetrically across the CONUS, 

uncertainty in the changing distribution and character of precipitation extremes is further 

driven by a wide range of associated regionally variable mechanisms and processes. 

While all extremes share some environmental commonalities, such as anomalous 

moisture availability and a lifting mechanism, the meso- through synoptic scale patterns 

and conditions vary regionally with strong seasonality and inter-annual variability. 

Tropical cyclones and hurricanes have generated extensive, devastating and costly 

impacts across the Southeast. Extratropical cyclones (ETC’s), often associated with other 

key mechanisms, including ARs (Dacre et al. 2015) and warm/cold fronts (Catto and 

Pfahl 2013), are a major contributor to cool season extreme precipitation events across 



 

 

 

6 

the West (Kunkel et al. 2012). Summertime convection and intense winter storms drive 

heavy precipitation events seasonally in the Northeast (Howarth et al. 2019). 

Thunderstorms in the summer are a common mechanism for extremes characterized by 

localized, heavy and impactful storm totals across the central and southern Great Plains. 

Meso-scale convective systems (MCS’s) have been identified as responsible for between 

30 and 70% of warm season rainfall in a region spanning the Rocky Mountains to the 

Mississippi River (Fritsch et al. 1986). This radically different meteorological realization 

of extreme events across the CONUS requires monitoring at fine spatiotemporal scales 

capable of capturing this regional variability and its potential for change under warming.   

 

Indices for extreme precipitation have been developed and applied in multiple studies 

using a diverse set of datasets and methods (Zhang et al. 2011 and references therein). 

Specific to the US, precipitation extremes have been monitored using the US Climate 

Extremes Index (Gleason et al. 2008). Values and trends are available at CONUS and 

broad regional scales but not at local or sub-regional (e.g., state, water district, mountain 

range etc.) scales. Additionally, the US Environmental Protection Agency has a heavy 

precipitation climate indicator, which records the fraction of land area over the CONUS 

experiencing heavy precipitation in a given year. While concise and intuitive, these 

current approaches to climate monitoring are limited in their ability to provide 

information at impacts-relevant scales meaningful for stakeholders. With the potential for 

change in the frequency and intensity of highly regionalized phenomena (i.e., ARs or 
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tropical cyclones) associated with extreme precipitation under warming, the ability of 

monitoring efforts to discern changes at local through regional scales is imperative.  

 

1.2.2 Atmospheric Rivers: Definition, Impacts, and Climate Change 

Among a number of storm types, including tropical systems, severe convective storms, 

and winter storms, ARs were highlighted for the first time as a key topic of the Fourth 

NCA CSSR’s chapter on “Extreme Storms.” The report states with ‘medium confidence’ 

that the frequency and severity of landfalling ARs on the US West Coast will increase as 

a result of increasing evaporation and resulting higher atmospheric water vapor content 

that occurs with increasing temperature (i.e., CC relationship described above, Eq.1). 

 

ARs are long, narrow filamentary corridors of strong horizontal water vapor transport 

(Zhu and Newell 1998) associated with important hydrometeorological impacts. 

Operating as one part of a larger, synoptic scale dynamical system, ARs are generally 

found in the warm sector of an ETC associated with a low-level jet (LLJ) ahead of the 

cold front (Ralph et al. 2004, 2005, 2006; Zhang et al. 2018). While only covering ~10% 

of Earth’s zonal circumference, ARs are responsible for >90% of the total poleward 

water vapor transport in the midlatitudes (Zhu and Newell 1994, 1998). Given the intense 

transport of warm, moist air, ARs comprise the ideal conditions for forced precipitation 

through their interaction with a suitable lifting mechanism (e.g., orographic, frontal, 

convective, dynamic), fueling extreme precipitation and flooding events (Dettinger 

2011). 
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As important features within the global hydrologic cycle, both the abundance and 

absence of ARs have major societal and environmental impacts (Ralph et al. 2019). In 

water-stressed regions, such as the western US, ARs provide a crucial source of 

freshwater through rain and snowfall at higher elevations (Guan et al. 2010; Dettinger et 

al. 2011) with the potential to mitigate drought conditions (Dettinger 2013). In this 

region, ARs are responsible for up to 30-50% of annual precipitation and water resources 

(Dettinger et al. 2011; Guan et al. 2010; Lavers and Villarini 2015; Ralph et al. 2013). On 

the other hand, the extreme precipitation (Ralph and Dettinger 2012) and high winds 

(Waliser and Guan 2017) often associated with ARs can lead to devastating floods and 

costly damages (Ralph and Dettinger 2011; Ralph et al. 2012; Corringham et al. 2019).  

 

The most defining feature of an AR, and most related to the precipitation-generating 

mechanism, is their intense water vapor transport. AR intensity is measured by column-

integrated water vapor transport (IVT),  

 

𝐼𝑉𝑇 =  
1

𝑔
√(∫ 𝑞𝑢𝑑𝑝

𝑝𝑡

𝑝𝑠

)

2

+ (∫ 𝑞𝑣𝑑𝑝
𝑝𝑡

𝑝𝑠

)

2

 

(2) 

where 𝑔 is standard gravity, 𝑢 and 𝑣 zonal and meridional wind, respectively, 𝑞 specific 

humidity, 𝑝𝑠 surface pressure, and 𝑝𝑡 an upper-atmospheric reference pressure (typically 

between 500 and 200 hPa; Newell 1992). The equation (Eq. 2) integrates a combined 
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measure of moisture and wind, or moisture flux, over a column in the atmosphere. For 

simplicity, IVT can be defined as the magnitude of water vapor transport and can further 

be separated into distinct contributions from thermodynamics (i.e., atmospheric moisture 

content 𝑞) and dynamics (i.e., atmospheric motion or wind 𝑢 and 𝑣). The change in the 

thermodynamic component of IVT can be understood through the CC equation (Eq. 1) 

described above. Increases in the moisture component of IVT are expected to meet super-

CC scaling (Gao et al. 2015), while the contribution from changes in winds is hardly 

detectable (Lavers et al. 2013). 

 

In the US, the majority of AR research has focused on the West (see Ralph et al. 2020 

and references therein), largely driven by water availability concerns and potential risk 

from associated hydrometeorological impacts. In California, landfalling ARs explain a 

large proportion of annual precipitation (Guan et al. 2010; Dettinger et al. 2011) and are 

associated with a majority of precipitation extremes (Ralph et al. 2004; Ralph and 

Dettinger 2012) and flooding across the region (Ralph et al. 2006, 2013). Destructive 

flooding due to extreme streamflow and prolonged heavy rainfall under AR conditions 

has also been documented over parts of Oregon and Washington (Neiman et al. 2008b, 

2011; Ralph et al. 2011; Warner et al. 2012; Collow et al. 2020). Furthermore, in a study 

extending to British Columbia, Neiman et al. (2008a) identified ARs as modulators of the 

region’s climate, yielding important hydrologic consequences, including increased 

precipitation, flows, vapor fluxes, and changes in snow water equivalence.  
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Considerably less attention has focused on the role of ARs in regions across the central 

and eastern US, however, evidence suggests that some heavy precipitation and high-

impact flood events have been associated with the presence of AR-like conditions. For 

example, Moore et al. (2012) and Lackmann et al. (2013) linked an AR to catastrophic 

flooding in Tennessee and Kentucky in May 2010. Rabinowitz et al. (2018) found 15 AR 

events between 2010-2015 contributed to 67% of the total monthly precipitation in 

Mississippi River Valley. These case studies are further supported by research linking 

AR-like features to strong synoptic scale weather systems across the southeastern US 

(e.g., Pfahl et al. 2014; Mahoney et al. 2016; Debbage et al. 2017; Miller et al. 2018). 

Across the Midwest, ARs feeding moisture into regions of deep convection contributed 

to the May/June floods of 2008 (Budikova et al. 2010; Dirmeyer and Kinter 2009; Smith 

et al. 2013). Nakamura et al. (2013) further presents evidence of AR conditions governed 

by an anomalous semi-stationary ridge off the US East Coast leading to flooding in the 

Ohio River Basin. Concurrently, Lavers and Villarini et al. (2013), identified ARs as a 

major flooding agent over the central US through associated seasonal composites of 

average mean sea level pressure anomalies. Although not recognized as ARs, several 

studies have further noted the role of anomalous water vapor fluxes and ‘tropical 

moisture feeds’ as drivers of extreme precipitation over parts of the Northeast (Howarth 

et al. 2019; Teale and Robinson 2020).  

 

The importance of ARs in weather and climate has further motivated a number of climate 

change studies (Waliser and Rutz 2020), focused mainly on the west coast of North 
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America (e.g., Dettinger 2011; Pierce et al. 2013; Gao et al. 2015; Payne and 

Magnusdottir 2015; Radić et al. 2015; Warner et al. 2015; Hagos et al. 2016; Shields and 

Kiehl 2016a, 2016b) and Europe (Gao et al. 2016; Lavers et al. 2013; Ramos et al. 2016; 

Shields and Kiehl 2016a). Research suggests that AR day frequency, geometry, IVT 

magnitude, seasonality, and associated flood risk may change under future simulations of 

climate. Augmenting the studies above, Espinoza et al. (2018) performed a global study 

investigating climate change projection effects on ARs using CMIP5. Results show a 

50% increase in AR day frequency, with a total decrease in the number of individual AR 

events globally, alongside a 25% increase in AR length, width, and strength across North 

America. Along the US West Coast, changes in ARs are predominantly driven by 

increases in atmospheric water vapor due to warming. Warner et al. (2014) projects an 

increase of 290% in historical 99th percentile IVT days by the end of the century, 

consistent with projected increases identified elsewhere (Radić et al. 2015; Shields and 

Kiehl 2016a).  

 

While an increase in global mean precipitation is expected under warming, the response 

of ARs as it contributes to this change is still uncertain. Investigations of projected 

impacts specific to ARs are scarce but in general the moistening of the atmosphere and 

thermodynamic response of IVT to warming is expected to increase AR precipitation 

overall (Lavers et al. 2013; Gao et al. 2015, 2016; Payne et al. 2020). However, it’s 

important to note that while future ARs will contain more moisture, changes in 

atmospheric circulation (Hu et al. 2017) and precipitation efficiency (Siler and Roe 
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2014), among others, will likely play a role in potential change in the amount and 

distribution of AR precipitation in the future. Together with a limited understanding of 

observed change, a high degree of uncertainty remains around regional changes in AR 

characteristics and impacts under warming outside of the western coastlines of North 

America and Europe (Payne et al. 2020). The multiple roles ARs play in the climate 

system and the complexity of their impacts motivate the importance of a uniform holistic 

approach across regions CONUS-wide. 

 

1.3 Structure of the Dissertation  

The overarching theme of this dissertation is to improve our understanding of extreme 

precipitation and AR variability, over both the observational record and among climate 

model projections, with regional specificity across the CONUS. This is explored across 

the seasonal cycle using a broad array of data types, including in-situ, gridded in-situ, 

reanalysis, satellite-derived, and climate model output. A wide range of metrics are used 

to improve our understanding of precipitation extremes and ARs independently as well as 

collectively. Results are consistently presented at each grid-point as well as summarized 

across regions for an intuitive, yet thorough, understanding of local to regional-scale 

variability. Each chapter has specific objectives that contribute to overarching theme of 

this dissertation, as outlined below.  

 

In Chapter 2, an extreme precipitation categorization scheme is developed and applied to 

a range of precipitation measurement products. The approach, which assigns extreme 
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precipitation categories, based on three-day storm totals, at each data point (i.e., grid 

point or gauge station), is designed to be intuitive and easily interpretable, informing on 

variability and change at impacts-relevant scales. The usefulness and utility of this 

monitoring scheme is further demonstrated through its application as the basis for a 

dataset intercomparison to assess observational uncertainty across a wide range of 

historical precipitation measurement approaches. Differences, similarities, and apparent 

limitations among datasets are identified using a number of metrics and summary 

statistics important for understanding regional changes in extreme precipitation 

frequency and magnitude. Regional variability in the categorized extreme precipitation 

climatology is also summarized and discussed relative to likely attributable 

meteorological mechanisms and storm types.  

 

Chapter 3 investigates the role of ARs uniformly across the CONUS over the 

observational record. An objective AR detection algorithm is applied to global reanalysis 

to characterize AR day frequency, geometry, and intensity. The seasonal distribution of 

preferred AR moisture pathways is identified to distinguish canonical AR characteristics 

in each region. Identified ARs are further linked with multi-day precipitation totals, as 

described in Chapter 2, using high resolution gridded in-situ precipitation measurements 

to assess regional variability in AR-driven climatological precipitation and extremes. 

Aggregate measures of AR characteristics are summarized regionally, as well as at each 

grid point, to illustrate the geospatial climatology. 
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In Chapter 4, the objective AR detection algorithm applied in Chapter 3 is used to 

quantify change in ARs between CMIP6 historical simulations and future projections 

under the high-end warming scenario, SSP585. The algorithm uses a relative threshold 

consistent for the current and future climate to characterize projected climate change 

impacts on AR day frequency, geometry, intensity, and associated precipitation. Multi-

day total precipitation extremes are identified based on future thresholding and linked 

with detected ARs to assess change in their co-occurrence. Results are presented as the 

multi-model mean and computed for the historical simulation, mid and end-of-century 

projections, and difference at each grid point as well as aggregated across regions. 

Individual model distributions of several important AR characteristics are also shown to 

evaluate inter-model similarities and differences.  

 

Finally, the main findings and conclusions of this dissertation are summarized in Chapter 

5. Implications of results and avenues for future work relating to this field of research are 

considered and discussed.  

 

Chapters 2 and 3 are based on published peer-reviewed articles in the Journal of 

Hydrometeorology. These chapters are presented as they are published with some minor 

changes to formatting. 
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Chapter 2: An Extreme Precipitation Categorization Scheme and its Observational 

Uncertainty over the Continental United States 

 

This chapter is published as: Slinskey, E. A., P. C. Loikith, D. E. Waliser, and A. 

Goodman, 2019: An Extreme Precipitation Categorization Scheme and its Observational 

Uncertainty over the Continental United States, Journal of Hydrometeorology, 20(6), 

1029-1052, https://doi.org/10.1175/JHM-D-18-0148.1. 

 

Abstract 

An extreme precipitation categorization scheme, used to temporally and spatially 

visualize and track the multi-scale variability of extreme precipitation climatology, is 

applied over the Continental United States. The scheme groups three-day precipitation 

totals exceeding 100 mm into one of five precipitation categories, or “P-Cats”. To 

demonstrate the categorization scheme and assess its observational uncertainty across a 

range of precipitation measurement approaches, we compare the climatology of P-Cats 

defined using in situ station data from the Global Historical Climatology Network-Daily 

(GHCN-D), satellite derived data from the Tropical Rainfall Measuring Mission 

(TRMM), gridded station data from the Parameter-elevation Regression on Independent 

Slopes Model (PRISM), global reanalysis from the Modern-Era Retrospective Analysis 

for Research and Applications, version 2, and regional reanalysis from the North 

American Regional Reanalysis. While all datasets capture the principal spatial patterns of 

P-Cat climatology, results show considerable variability across the suite in frequency, 

spatial extent, and magnitude. Higher resolution datasets, PRISM and TRMM, most 

https://doi.org/10.1175/JHM-D-18-0148.1
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closely resemble GHCN-D and capture a greater frequency of high-end P-Cats relative to 

the lower resolution products. When all datasets are rescaled to a common coarser grid, 

differences persist with datasets originally constructed at a high resolution maintaining a 

higher frequency and magnitude of P-Cats. Results imply that dataset choice matters 

when applying the P-Cat scheme to track extreme precipitation over space and time. 

Potential future applications of the P-Cat scheme include providing a target for climate 

model evaluation and a basis for characterizing future change in extreme precipitation as 

projected by climate model simulations. 

 

2.1 Introduction  

Extreme precipitation is associated with a multitude of societal and environmental 

impacts across the United States (US). Often accompanying severe weather events, 

including hurricanes, snowstorms, and atmospheric rivers, these meteorological 

phenomena pose threat to property, agriculture, infrastructure, and human life while also 

playing a key role in the water budget (Kunkel et al. 2013). According to the 2017 

National Climate Assessment (NCA) Climate Science Special Report, climate change is 

projected to alter the frequency, severity, and seasonality of extreme precipitation across 

the US (Easterling et al. 2017). Climate change mitigation policies and adaption 

initiatives are greatly influenced by societal vulnerabilities to climate impacts like those 

associated with extreme precipitation. Therefore, a comprehensive understanding and 

intuitive way to track and project change across space and time at impacts-relevant scales 

is critical.   
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Climate model projections of future change in global precipitation generally follow the  

Clausius-Clapeyron relationship projecting the atmosphere’s water holding capacity to 

increase exponentially with temperature at roughly 7% per degree Celsius warming 

(Allen and Ingram 2002; Trenberth et al. 2003; and Pall et al. 2007). Consistent with 

these expectations, a number of studies have suggested that anthropogenic climate 

warming may be attributable to an increase in the probability and severity of recent 

notable heavy precipitation events over the US such as September 2013 in Colorado (Pall 

et al. 2017), the rainfall from Hurricane Harvey (Risser et al. 2017), and the August 2016 

Louisiana event (Wang et al. 2016). However, the sign and magnitude of observed 

changes in extreme precipitation are not always immediately apparent from observational 

analysis at local through regional scales. This is due in part to the character of extreme 

precipitation varying considerably over space and time, making it difficult to detect an 

anthropogenic signal above natural variability (Easterling et al. 2000; O’Gorman and 

Schneider et al. 2009). Furthermore, understanding observed and projected changes in the 

frequency and intensity of key mechanisms associated with extreme precipitation, such as 

tropical cyclones and atmospheric rivers, is still an area of active research (e.g., Knight 

and Davis 2009; Prat and Nelson 2013; Gao et al. 2015; Behrangi et al. 2016; Mahoney 

et al. 2016; Lamjiri et al. 2017).     

 

Several extreme precipitation indices have been developed and applied to a diverse set of 

datasets using a range of methods to examine changes in extreme precipitation over space 
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and time (Zhang et al. 2011 and references therein). One example is a set of extreme 

indices developed by the Expert Team on Climate Change Detection and Indices as part 

of the World Climate Research Programme Project on Climate Variability and 

Predictability, known as the “ETCCDI” (Frich et al. 2002, Alexander et al. 2006). These 

indices are designed to address a broad range of global climate information needs ranging 

from the frequency of precipitation threshold exceedances to the maximum length of wet 

spells. Specific to the US, precipitation extremes have been monitored using the US 

Climate Extremes Index (Gleason et al. 2008) in addition to the US Environmental 

Protection Agency’s climate indicator for annual heavy precipitation aggregated over the 

conterminous United States (CONUS; US EPA 2016). While concise and useful, these 

monitoring approaches provide a great deal of climate information at broad global and 

national scales, but less information at local to regional scales. The regional variability in 

extreme precipitation can be large across a single climate region (e.g., the Northwest or 

Southeast), therefore it is important that monitoring addresses the need for regional 

relevance while also providing a similarly high level of intuitive interpretability.    

 

The ability to detect, analyze, and track changes in extreme precipitation is also heavily 

dependent on the reliability of observations and a number of precipitation climatology 

and dataset intercomparison studies have been conducted at global and regional scales 

highlighting these differences (e.g., Adler et al. 2001; Guirguis and Avissar 2008 

respectively). In situ station data is commonly accepted as a primary source and often 

used as a reference relative to other products. However, station observations are spatially 
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heterogeneous and may be temporally inconsistent, creating observational gaps (Kidd et 

al. 2017). Satellite-based precipitation measurements, on the other hand, are spatially 

seamless regardless of in situ gauge density or quality, however these datasets exhibit 

bias resulting from instrumental and algorithmic error (Sapiano and Arkin 2009; Chen et 

al. 2013; Behrangi et al. 2014a; Tan et al. 2016). Similarly, bias can be introduced to 

analysis products through data assimilation and model errors (Bukovsky and Karoly 

2007; Bosilovich et al. 2008; Reichle et al. 2017), to gridded in situ products through 

spatial interpolation (Daly 2006), and simply from spatial resolution (Herold et al. 2017). 

Additionally, the high spatial and temporal variability characterizing precipitation 

extremes has been shown to result in exceedingly low agreement among a range of global 

precipitation measurement products (Donat et al. 2013). Because the dataset one uses has 

been shown to matter, it is critical to understand and, where possible, constrain 

observational uncertainty when monitoring and tracking precipitation extremes.  

 

Here we present a climatology of an extreme precipitation categorization scheme as an 

intuitive way to interpret extreme precipitation climatology, variability, and change over 

space and time and evaluate its observational uncertainty across a range of datasets. The 

application of this scheme is motivated by the need for an intuitive, pointwise climate 

indicator for extreme precipitation that can be provided clearly at scales relevant to 

societal and environmental impacts. The broad and diverse range of extreme precipitation 

impacts makes the regional information provided by the indicator suitable for a wide 

range of interests concerned with heavy precipitation climatology, variability, and change 
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at the local through CONUS levels including scientists and practitioners. The approach, 

which is analogous to the familiar Saffir-Simpson hurricane intensity scale, assigns 

categories from one to five to extreme three-day precipitation totals at each data point 

(grid cell or rain gauge). However, unlike the Saffir-Simpson scale, this approach is not 

designed to rank an individual storm event, but rather provide information at climate 

scales for pointwise magnitudes of heavy three-day precipitation totals while being 

extensible across datasets, time, and space. This approach, adapted from the “R-Cat” 

categorization scheme first presented in Ralph and Dettinger (2012), can then be 

stratified by season, geographic sub-region, or time period, while change in extreme 

event categories can be monitored across multiple spatial and temporal scales. By 

examining the observational uncertainty of this scheme, this study highlights both the 

utility of the approach as a means to depict the climatology of extreme precipitation, as 

well as what considerations should be made when choosing a reference dataset. 

 

2.2 Data 

We apply the extreme precipitation categorization scheme to five datasets, each 

constructed using a different approach and all provided at a relatively high spatial 

resolution. All datasets used for the intercomparison are summarized in Table 2.1 and 

described in more detail below.   

 

2.2.1 Tropical Rainfall Measuring Mission (TRMM) 3B42V7   

Satellite-derived precipitation data are from NASA’s TRMM Multi-Satellite Precipitation  
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Analysis (TMPA herein) 3B42V7 product (Huffman et al. 2007; Huffman and Bolvin 

2015). Prior to its decommissioning in 2015, TMPA was NASA’s flagship precipitation 

measurement product (Liu et al. 2012). TMPA is provided with a 3-hourly temporal and 

0.25° latitude/longitude spatial resolution, globally from 50°N to 50°S latitude from 

1998-2015. TMPA measurements are produced using microwave-calibrated infrared (IR) 

estimates from multiple geo-stationary earth-orbiting and low-earth orbiting satellites 

(Huffman et al. 2007). The final precipitation estimates contain microwave-derived 

measurements and calibrated thermal IR-derived estimates. The spatial domain accounts 

for the tendency of microwave and IR estimates to lose skill at higher latitudes (Huffman 

et al. 2010). The 3B42V7 product incorporates monthly in situ gauge observations from 

the Global Precipitation Climatology Center and the Climate Assessment and Monitoring 

System for bias adjustment.   

 

2.2.2 Integrated Multi-Satellite Retrievals for GPM (IMERG)   

As a part of the Global Precipitation Measurement (GPM) mission, the Integrated Multi-

satellite Retrievals for GPM (IMERG herein) product was developed as an extension of 

TMPA after decommission. IMERG data are provided at 0.1° latitude/longitude 

resolution every half hour between 60°N and 60°S latitude (Hou et al. 2014; Liu 2016). 

The GPM core observatory presents an increased orbiting inclination over TRMM, from 

35° to 65° respectively, rendering more extensive latitudinal coverage (Huffman et al. 

2017). Additionally, more advanced instrumentation capable of capturing multiple phases 

of precipitation is possible through the addition of a higher frequency radar offering an 
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improved sensitivity to light precipitation as well as to snow and ice. IMERG integrates 

algorithms from TMPA, the Climate Prediction Center morphing technique, and 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks. As of the writing of the paper, IMERG extends from April 2014 to the present, 

but will be retro-processed to overlap the TRMM era. IMERG and TMPA are freely 

available via the GES DISC.   

 

2.2.3 Parameter-Elevation Regressions on Independent Slopes Model (PRISM)   

PRISM uses point data and a digital elevation model (DEM) to generate gridded 

precipitation data (Daly et al. 1994). We utilize the daily PRISM product, offered on a 

0.04° latitude/longitude grid over the CONUS. The PRISM technique attempts to account 

for physiographic effects such as coastal proximity and orography using the linear 

regression between gauge measurements and the elevation of the gauge taken from a 

DEM (Daly et al. 1994, 2002, 2008). The gauge measurements used for interpolation 

were supplied by various sources including the US National Weather Service 

Cooperative Observer Network and the Natural Resources Conservation Service daily 

snow pack telemetry gauges. Station network density relates to population density (Daly 

et al. 2007). The PRISM product is freely available from Oregon State University’s 

PRISM Climate Group portal.    
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2.2.4 Modern-Era Retrospective Analysis for Research and Applications version 2 

(MERRA-2) 

The MERRA-2 atmospheric reanalysis product provides 3-hourly precipitation estimates 

generated on a 0.5° x 0.625° latitude-longitude grid. MERRA-2 is the latest multi-year 

reanalysis product produced by NASA’s Global Modeling and Assimilation Office using 

the Goddard Earth Observing System version 5 (Molod et al. 2015; Gelaro et al. 2017; 

Reichle et al. 2017). This product corrects model generated precipitation estimates with 

observations, showing marked improvements upon its predecessor MERRA (Rienecker 

et al. 2011; Reichle et al. 2017). The method for merging observed precipitation into 

MERRA-2 assimilates aerosols and integrates MERRA-Land reanalysis for correction 

(Reichle et al. 2017). Estimates are further merged with precipitation generated by the 

MERRA-2 atmospheric general circulation model weighted according to latitude.   

 

2.2.5 North American Regional Reanalysis (NARR) 

NARR is based on the regional Eta Model and its 3D variation data assimilation system 

initialized from lateral boundary conditions provided by the National Centers for 

Environmental Information (NCEI) (Mesinger et al. 2006) and is freely available through 

the National Oceanic and Atmospheric Administration’s Earth System Research 

Laboratory. This product is provided at a 3-hourly temporal resolution and a 32km spatial 

resolution (Lin et al 1999). Precipitation gauge observations are used to adjust 

atmospheric moisture and energy field estimates to improve model-derived precipitation 

fields.   
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2.2.6 Global Historical Climatology Network (GHCN) 

In situ daily observations are from the NCEI Global Historical Climatology Network-

Daily (GHCN-D) product (Menne et al. 2012). This dataset contains comprehensive in 

situ climatic data that have undergone extensive quality control procedures to limit 

internal, spatial, and temporal inconsistencies (Durre et al. 2010). For this study, only 

gauges reporting at least 90% of days over the period of 1998-2015 are included. The 

data are frequently updated and can be obtained freely via the web from NCEI.   

 

2.3 Methodology 

2.3.1 Extreme Precipitation Categorization Scheme   

Extreme precipitation totals are grouped into five categories, or “P-Cats”, according to 

their overall accumulated three-day total. P-Cats are defined as follows using even 100 

mm thresholds as intuitive bounds on each category. A three-day total between 100 and 

199 mm is assigned to P-Cat 1, 200 and 299 mm to P-Cat 2, 300 and 399 mm to P-Cat 3, 

400 and 499 mm to P-Cat 4, and greater than 500 mm to P-Cat 5 (Fig. 2.1). Three-day 

totals are defined as the sum of accumulated precipitation for that day and the two 

preceding days such that if a P-Cat 4 is recorded on January 4th at a given location, the 

precipitation accumulated over January 2nd, 3rd, and 4th totaled between 400 and 499 

mm. This window is then moved forward by one day each time step so that the three-day 

total for each day includes the sum of that day and the previous two. The P-Cat approach 

is a slightly modified version of the rainfall category or “R-Cat” approach introduced by 
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Ralph and Dettinger (2012). This scheme is also used operationally by the Scripps 

Institute of Oceanography Center for Western Weather and Water Extremes  

(http://cw3e.ucsd.edu/) to categorize discrete rainfall events associated with AR landfalls 

over California. Here we use the term “P-Cat” to clarify that this scheme is not only 

geared towards rainfall, hence the more general “precipitation”. While similar to the R-

Cat scale, the P-Cat approach offers an intuitive way to interpret and visualize extreme 

precipitation climatology across the CONUS and applied as an indicator of climate 

change and variability. Our P-Cats 2-5 are the same as R-Cats 1-4, however we introduce 

a lower category to capture a wider geography of extreme precipitation and a greater 

diversity of associated meteorological mechanisms. Multiday totals have been suggested 

as highly relevant to regional hydrologic impacts including flooding and landslides 

(Ralph and Dettinger 2012). Furthermore, Ralph and Dettinger (2012) indicate that the 

three-day window provides the best representation of major storms, with two-day totals 

missing storms and four-day periods revealing negligible differences to three-day 

periods.   

 

We note that in using a fixed threshold we are capturing the most extreme three-day 

totals defined relative to the CONUS, rather than relative to the climatology of the grid 

point or station where the P-Cat occurs. As such, some dry portions of the CONUS do 

not observe P-Cat events during the time period of our analysis while other wetter places 

experience relatively frequent P-Cats. While this can be viewed as a caveat, the set of 

fixed thresholds provides an intuitive way to view extreme precipitation climatology and 

http://cw3e.ucsd.edu/
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track change in the magnitude of extreme precipitation over space and time. Furthermore, 

while not applied in this study, variants on the P-Cat approach could be developed that 

are regionally specific or customized for different datasets. In that sense, the threshold 

approach can also carry potential for novel climate model evaluation of extreme 

precipitation and assessment of projections of future changes. 

 

2.3.2 Dataset Comparison   

To assess the effect of observational uncertainty on using the P-Cat approach we compare 

the magnitude and frequency of P-Cats across a five-dataset suite. Magnitude is assessed 

by comparing the maximum observed P-Cat at each data point while frequency is 

examined both through total P-Cat occurrence as well as the average number of P-Cats 

observed per year or season. Dataset comparisons are performed and summarized over 

the CONUS as well as over the seven multi-state defined NCA regions (Fig. 2.2; 

Easterling et al. 2017). All comparison analyses are performed at the annual and seasonal 

scales with winter defined as December, January, February (DJF), spring as March, 

April, May (MAM), summer as June, July, August (JJA), and fall as September, October, 

November (SON). Comparison is performed over the period 1998-2015, which is the 

period of maximum overlap across all datasets. Additionally, IMERG is compared with 

TMPA for the years of overlap (2014-2015). In all analyses involving GHCN-D, the 

station data is used only for qualitative comparison to what can be considered ground 

truth.     
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Results for all the datasets are presented both on their native grid and a common grid for 

comparison and to assess the effect of spatial scale on P-Cat frequency and magnitude. 

Gridded datasets were rescaled, prior to assigning P-Cats, to a common 0.625° x 0.5° 

grid over the CONUS. This resolution matches that of the coarsest resolution product 

included in the study, MERRA-2. To rescale each gridded product, the first-order 

conservative remapping technique introduced in Jones (1999) was used. Conservative 

remapping acts to maintain the areal average (Chen 2008), unlike alternate methods such 

as bi-linear, bi-cubic, or distance weighted, and has been used in a number of studies 

(e.g., Nikulin et al. 2012; Kalognomou et al. 2013; Diaconescu et al. 2015). The spatial 

correspondence between the patterns of the regridded results are quantitatively 

summarized using Taylor diagrams, in terms of the centered root mean squared 

difference (CRMSD), standard deviation, and correlation coefficient (Taylor 2001). To 

construct a Taylor diagram, one dataset must be chosen as the reference to measure 

dataset similarities and differences against. In all Taylor diagrams here, PRISM is used as 

the reference dataset, chosen because it is the only gridded dataset based primarily on 

gauge data; however, this is not to say that PRISM is without bias. 

 

2.4 Results 

2.4.1 Annual Precipitation Climatology 

As a first order comparison of dataset precipitation climatology, annual mean 

precipitation is shown for each dataset on its native grid in Fig. 2.3. All datasets show 

similar general climatology patterns, however, using GHCN-D as a reference (Fig. 2.3a), 
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considerable differences across the datasets emerge. First order differences relate to the 

representation of the effect of topography on precipitation, with the high-resolution 

PRISM (Fig. 2.3b) best resembling GHCN-D over the mountainous West and the lowest 

resolution MERRA-2 (Fig. 2.3e) showing the least detail. TMPA also has a notable dry 

bias relative to GHCN-D across the mountains of the Northwest despite its relatively 

high spatial resolution (Fig 2.3c), likely due to limitations in the ability of TMPA to 

measure snowfall (Bharti and Singh 2015). NARR (Fig. 2.3d) has a broad dry bias over 

much of the Southeast compared with GHCN-D and the other three datasets. MERRA-2 

is too coarse to resolve most details of individual mountain ranges; however, it does 

show some qualitative similarities with GHCN-D over the coastal Northwest and 

northern Rocky Mountains.   

 

2.4.2 Maximum P-Cats   

The maximum recorded P-Cats are presented for the full year (Fig. 2.4), for DJF (Fig. 

2.5), and for SON (Fig. 2.6). Fall and winter are chosen for seasonal analysis because 

they are concurrent with the most widespread occurrence of heavy precipitation, 

spanning two primary meteorological mechanisms consistent with the findings in Kunkel 

et al. (2012): atmospheric rivers often associated with extratropical cyclones in the West 

in both seasons (Neiman et al. 2008a, 2008b; Ralph and Dettinger 2011, 2012) and 

tropical systems in the Southeast in the fall (Knight and Davis 2009; Knutson et al. 2010; 

Kunkel et al. 2010). Results are summarized across seasons and sub-regions using Taylor 

diagrams in Fig. 2.7.   



 

 

 

29 

 

The spatial distribution of maximum observed P-Cats in GHCN-D (Fig. 2.4a, analogous 

to Fig. 2.3 from Ralph and Dettinger 2012) generally resembles the precipitation 

climatology in Fig. 2.3, with the highest P-Cats coinciding with the highest annual 

rainfall. This is supported in the West by the prevalence of high-end P-Cats across the 

coastal mountain ranges, the Sierra Nevada and Cascade ranges, and the Transverse 

Ranges of Southern California. High-end P-Cats are also more prevalent in the Southeast 

stretching from Texas eastward to the Carolinas. The maximum P-Cats recorded during 

this period are generally much lower across the Great Plains, the desert Southwest, and 

the interior western rain shadows.   

 

All datasets capture the general pattern of relatively high P-Cats in the western mountains 

and Southeast, and low P-Cats over the Great Plains and Southwest. However, 

considerable differences are apparent in extent and magnitude. For example, PRISM 

shows the most widespread P-Cat 4 and 5s, likely due at least in part from it having the 

finest grid resolution and being constructed using gauge data. PRISM also shows a 

multitude of high-end P-Cats over the Southeast, which the other datasets do not capture, 

possibly indicative of localized convective precipitation that can be captured by the 

relatively dense gauge network used to construct PRISM here. TMPA (Fig. 2.4c) also 

captures a greater occurrence of high-end extremes compared to NARR and MERRA-2 

(Figs. 2.4d, 2.4e).   
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While regridding reduces some of the P-Cat magnitudes through spatial smoothing, some 

differences persist (right column of Fig. 2.4; i.e., regridded to MERRA-2 resolution). In 

the case that high resolution is necessary for capturing processes leading to extreme 

precipitation (Herold et al. 2017), such as localized convection, then it is possible that a 

high-resolution dataset will maintain some high-end totals compared with the coarser 

products. Potentially illustrative of this effect, PRISM maintains a relatively high number 

of P-Cat 2-4s after regridding (Fig. 2.4f). The same effect is apparent for TMPA over the 

Southeast and Northwest. In addition to spatial resolution, other factors may also be 

important in determining the level of agreement after interpolation, including differences 

in the ability of the analysis products to accurately capture land-atmosphere interaction or 

potential bias and overestimation in PRISM (Mesinger et al. 2006; Bharti and Singh 

2015; Molod et al. 2015).   

 

The Taylor diagrams in Fig. 2.7a,b summarize the dataset correspondence for the 

CONUS annually and seasonally and NCA sub-regions annually respectively. At the 

seasonal scale (Fig. 2.7a), NARR and MERRA-2 show a lower spatial standard deviation 

across all seasons with TMPA generally exceeding PRISM. TMPA also has a greater 

spread in pattern correlation resulting in larger CRMSD values compared with NARR 

and MERRA-2, especially for DJF and MAM. Both NARR and MERRA-2 cluster 

closely at the CONUS scale across the seasonal cycle. Less spread is apparent at the sub-

region scale (Fig. 2.7b) with all datasets revealing similar spatial variance and correlation 

relative to PRISM.   
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In SON, the highest observed P-Cats captured by GHCN-D (Fig. 2.5a) are over the 

Pacific Northwest, central Texas, and the Gulf and Atlantic Coasts of the Southeast. P-

Cat 1 and 2s are common throughout the higher elevations of the West and across the 

Midwest through the Northeast. Several examples of Southwest to Northeast oriented 

bands of P-Cat 2s are apparent in the central US. For example, one band extends from 

northern Illinois to southeastern Michigan and provides a useful baseline for comparing 

the details of the other datasets. In many cases, very high-end P-Cats can readily be 

traced to the contributing storm. For example, the high values over eastern North 

Carolina are the result of Hurricane Floyd that made landfall in September of 1999, 

which brought catastrophic societal impacts (Easterling et al. 2000). The similarities 

between Figs. 2.4 and 2.5 over the Southeast indicate that most of the highest recorded P-

Cats occur during SON here.  

 

Consistent with our previous findings, PRISM captures the greatest magnitude and spatial 

extent of high-end totals (Fig. 2.5b), sharing the most qualitative similarities with the 

GHCN-D results, including the collocation of the southwest to northeast oriented bands 

of P-Cat 2s across the Midwest and topographic enhancement in the West. These features 

are generally captured in the other datasets, however with lower magnitudes. In some 

cases, regional-scale details are not similar across the suite especially in the case of the 

high-end P-Cats over the Southeast where MERRA-2 and NARR show varying degrees 

of dissimilarities with the other datasets. As in Figs. 2.3 and 2.4, there is a close 
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relationship between spatial resolution and P-Cat magnitude, however even considering a 

systematic resolution related bias, some fundamental differences persist.   

 

After spatial interpolation, PRISM and TMPA maintain high-end totals over Washington 

and North Carolina (Fig. 2.5f,g). MERRA-2 and NARR generally show systematically 

lower PCat magnitudes relative to the regridded PRISM and TMPA, providing further 

evidence of factors other than resolution being influential on dataset agreement (Fig. 

5e,h). In Fig. 2.7c dataset spread is small between MERRA-2 and NARR, especially 

across the variance ratio, while TMPA tends to exceed PRISM’s spatial variance in most 

sub-regions. Note that we omit results for Great Plains North because of its very low 

number of grid cells with P-Cats. In DJF (Fig. 2.6), the overall spatial coverage of 

stations recording P-Cats is lower than SON, especially across the central US. GHCN-D 

shows the most extreme precipitation occurring along the western mountains stretching 

from northern Washington to southern California and across the southern Midwest and 

Southeast (Fig. 2.6a). This is evidence that the intense precipitation from North Pacific 

extratropical cyclones is maximized by the orographic enhancement of landfalling 

atmospheric rivers (e.g., Neiman et al. 2008a, 2008b; Guan et al. 2010, 2013; Ralph and 

Dettinger 2012). Across the eastern half of the CONUS, high-end P-Cats are the result of 

strong mid-latitude cyclones that strengthen along the strong temperature gradients 

formed by southward excursions of Arctic air masses.   
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In agreement with GHCN-D, PRISM shows many of the high-end totals that occur across 

the West (Fig. 2.6b). TMPA’s limitations at capturing snowfall are apparent with 

considerable under-estimation of the magnitude of P-Cats along the Sierra Nevada and 

Cascades (Fig. 2.6c). These results are consistent with Behrangi et al. (2014a), 

emphasizing the inherent challenges associated with measuring precipitation in remote 

regions, where station data are sparse, orography and fine scale processes are key, and 

precipitation type limits utility of TMPA retrievals. Substantial differences in the 

magnitude of P-Cats captured by NARR and MERRA-2 (Fig. 2.6d,e) suggest that grid 

resolution may inhibit the ability of a dataset to capture the impact of localized 

phenomena, although both datasets capture the broad patterns of P-Cats across the West 

and Southeast.    

 

While regridding reduces the overall magnitude of P-Cat intensity in PRISM and TMPA, 

both datasets continue to show more P-Cat 2 and 3s. Over the Southeast, resolution does 

not appear as important at capturing high-end P-Cats, which is consistent with the typical 

synoptic scale storms that result in extreme precipitation here in winter. This also 

provides evidence that differences across datasets are also driven by dataset construction, 

and not solely a result of grid resolution. The Taylor diagram in Fig. 2.7d shows that 

TMPA exhibits a higher variance relative to PRISM over the Southeast and roughly the 

same in the Northwest, with all other datasets and sub-regions showing a slightly lower 

spatial variance than PRISM and pattern correlation coefficients between 0.9 and 0.99.   
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2.4.3 P-Cat Frequency   

As for comparison of P-Cat magnitude in the above section, P-Cat frequency, computed 

as P-Cats per year or season, is compared across the entire year (Fig. 2.8), for SON (Fig. 

2.9), and for DJF (Fig. 2.10). Differences across the data suite are also presented as 

biases, with reference to PRISM. Results are further summarized using Taylor diagrams 

in Fig S1.1.   

 

The highest annual frequency of P-Cats in GHCN-D (Fig. 2.8a) generally corresponds 

spatially to the highest magnitude P-Cats in Fig. 2.4a. These areas include the Southeast 

and the mountains of the Pacific Northwest and California where annual P-Cat frequency 

exceeds 20. For reference, if a station shows an average frequency of 20 P-Cats/year, this 

would mean that on average 20 days of every year are part of a three-day precipitation 

total that exceeds 100 mm. In such cases, heavy precipitation is relatively common and 

the simple occurrence of a P-Cat may not necessarily be considered highly extreme in a 

local climatological context. In contrast, a large swath of the eastern half of the domain 

experiences between 2 and 8 P-Cats annually, while P-Cats are infrequent across the 

High Plains and the inland West. P-Cats 1 and 2 make up the vast majority of P-Cats/year 

CONUS-wide with some areas of the West and Southeast recording as many as two high-

end P-Cats/year (not shown).  

 

All datasets capture similar principal spatial patterns of annual P-Cat frequency. 

Qualitatively, PRISM (Fig. 2.8e) most closely resembles GHCN-D, even capturing many 
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of the small-scale features in areas of complex terrain and regional variations in the 

Southeast. TMPA (Fig. 2.8f) shows notable positive frequency bias across the eastern 

half of the CONUS and over the valleys of the coastal Northwest with lower frequencies 

across the western mountains, compared with PRISM. NARR and MERRA-2 both share 

similarities, with systematically lower P-Cat occurrence compared with PRISM after 

regridding. NARR shows a greater frequency of P-Cats across the Sierra Nevada 

compared with MERRA-2, however both datasets show considerable negative frequency 

biases across most of the West.   

 

During SON (Fig. 2.9), GHCN-D shows the highest frequency of P-Cat occurrence in the  

Northwest and Southeast with values exceeding 10 P-Cats per season along the coasts of  

Washington and Oregon and between 2 and 4 in southeast Texas and southwest 

Louisiana (Fig. 2.9a). This indicates that at least 4 days per fall are part of a 100-mm or 

greater three-day precipitation total on average in these places. There are many 

commonalities between the frequency map in Fig. 2.9a and the maximum P-Cat map in 

Fig. 2.5a, with many of the regions that experience high values of one also experiencing 

high values of the other. However, this isn’t always the case in some parts of the South 

and along the Atlantic Coast of Florida where P-Cats are common, but rarely exceed P-

Cat 2.  

 

Consistent with expectations based on the above results, the observation-based TMPA 

and PRISM (Fig. 2.9b,e) share the most similarities with GHCN-D. PRISM captures the 
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overall spatial patterns and frequency magnitudes, but it is also capable of resolving 

small scale features such as higher frequencies over southeastern Texas. Over the 

Northwest, as in other analyses, TMPA’s limitation at capturing frozen precipitation 

likely contributes to its negative biases over the mountains (Behrangi et al. 2014a), 

however it shows a weak positive frequency bias across the lower elevations of the 

coastal Northwest. NARR and MERRA-2 resemble each other with systematic low 

frequency bias across the CONUS (Fig. 2.8f-h).   

 

During winter (Fig. 2.10a), the P-Cat frequencies are highest across the mountains of 

Washington, Oregon, and California with elevated P-Cat frequencies also occurring in 

the higher elevations of Idaho, Utah, and Arizona. In contrast, the other area of high P-

Cat occurrence is a broad swath of the South and southern Midwest where Gulf of 

Mexico moisture fuels heavy precipitation associated with midlatitude cyclones. PRISM 

(Fig. 2.10b) captures the mountain ranges across the West and the general pattern in the 

East (Fig. 2.10e). PRISM underestimates the isolated high frequency P-Cats that GHCN-

D captures over the higher terrain of Idaho and Utah. TMPA (Fig. 2.10b) resembles both 

PRISM and GHCN-D, but with substantial high frequency biases over the lower 

elevations of the West Coast and throughout the Southeast (Fig. 2.10f). A physical 

explanation for this widespread bias in TMPA is unclear as it is not consistent with 

findings from other seasons or at the annual scale. TMPA also shows negative biases 

along the immediate Pacific Coast, suggesting frozen precipitation is not the only 

contributor to underestimation in the West. NARR and MERRA-2 are quite similar with 
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overall negative frequency biases across the CONUS with the exception of some western 

valleys.   

 

2.4.4 Annual P-Cat Occurrence 

Figs. 2.11-2.13 show spatially aggregated P-Cat frequencies over time. Here we only 

show results for annual frequency at the CONUS scale, for DJF over the Northwest, and 

for SON over the Southeast to capture the regions and corresponding seasons where 

high-end P-Cats are most common. In each figure, the left column shows the number of 

P-Cats per category on the native grid of each dataset, while the right column represents 

the datasets interpolated to the MERRA-2 grid. This means that all things equal, prior to 

regridding the coarser resolution datasets will have a lower frequency of P-Cat 

occurrence, simply because there are more data points in the high resolution cases. In this 

sense, the left column is intended for qualitative comparison while the right column 

compares datasets with an equal number of data points.    

 

For most years the full range of P-Cats occurs somewhere over the CONUS according to 

GHCN-D (Fig. 2.11a). There is no apparent systematic trend in the frequency of any P-

Cat occurrence across the CONUS and the datasets. Comparing each dataset to GHCN-

D, datasets tend to show a similar evolution of interannual variability. For example, the 

year 2000 shows a relative minimum in P-Cat 2s in all datasets. Consistent with results 

from Figs. 2.4-2.10, high-end P-Cats are most common in PRISM (Fig. 2.11b) while they 

are most rare in NARR and MERRA-2 (Figs. 2.11d,e). When compared on a common 
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grid, P-Cat 1 frequencies are more comparable across the suite. PRISM (Fig. 2.11f) 

maintains a number of P-Cats 3 and 4s after regridding. The coefficients of variation for 

each P-Cat time series, computed as the standard deviation of each dataset’s annual 

frequency divided by its mean, are recorded in Table 2.2. All datasets show a greater 

year-to-year variability in higher-end P-Cats relative to lower-end P-Cats. For example, 

GHCN-D has a coefficient of variation for the annual frequency of P-Cat 5s that greatly 

exceeds that of P-Cat 1s.   

 

During SON over the Southeast (Fig. 2.12), GHCN-D shows a high number of P-Cat 4 

and 5s occurring during 1998 and 1999 (Fig. 2.12a) with considerable interannual 

variability throughout the record. PRISM (Fig. 2.12b) continues to show the greatest 

number of high-end P-Cats compared with the other datasets. TMPA also captures 

higher-end P-Cats in the early part of the record (Fig. 2.12c), including 1999. NARR and 

MERRA-2 (Fig. 2.12d,e) show primarily P-Cat 1 and 2s, with MERRA-2 showing some 

P-Cat 3s in 1998 and 1999 suggesting that it realistically represents the high-end totals 

captured in the finer resolution datasets but with diminished magnitude. This reduced 

magnitude of extremes likely results in part from the coarser reanalysis resolution, but 

differences may also stem from the dataset generating algorithms. When compared on a 

common grid, dataset agreement is much stronger, although NARR stands out as having 

the lowest P-Cat occurrence, and datasets capture similar interannual variability. The 

coefficient of variation results continue to show greater variability among the most 

extreme P-Cats across the five-dataset suite (Table 2.3).    
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Resolving topography is important for capturing P-Cats in DJF in the Northwest sub-

region (Fig. 2.13). GHCN-D and PRISM (Fig. 2.13a,b) show the most qualitative 

agreement including with interannual variability, with NARR also sharing commonalities 

in year-to-year fluctuations (Fig. 2.13d). When compared on common grids, overall 

magnitudes of P-Cat 1s are in reasonable agreement across the suite, however interannual 

variability is still somewhat different in TMPA (Fig. 2.13g) compared with PRISM and 

NARR (Fig. 2.13f,h). These results further suggest using caution when measuring and 

monitoring extreme precipitation across areas of complex terrain where orographic 

effects on precipitation are key and extremes are often associated with frozen 

precipitation. The dataset’s annual P-Cat frequency results for DJF in the Northwest 

continue to show greater variability as the P-Cats increase (Table 2.4).   

 

2.4.5 Comparison of Individual Storms 

While the primary aim of implementing the P-Cat scheme in this study is to track and 

describe extreme precipitation climatology at the grid point scale, as another way to 

intercompare the five datasets and as a way to further demonstrate the reliability of the P-

Cat approach in capturing extreme precipitation, we show the P-Cat values associated 

with individual historically impactful storms. Fig. 2.14 shows four examples while 

additional examples are provided in Figs. S1.2-S1.4. Examples were chosen to capture a 

wide range of storm types occurring across a diverse range of geographic areas. The top 

row shows the P-Cat values associated with the landfall of Hurricane Floyd in September 
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of 1999. Note that the P-Cat values are based on the three-day rainfall totals ending on 

the date specified to the right of each row. All datasets capture high-end P-Cats (3-5) 

over a similar region, while NARR shows relatively modest P-Cats. This indicates that 

all datasets with the exception of NARR are capable of capturing the magnitude of 

rainfall associated with this intense tropical system.  

  

In the second row from the top, P-Cats from a notable atmospheric river event from 

November 2006 are shown with generally good qualitative agreement across the datasets 

despite the coarser datasets showing overall lower P-Cat magnitudes. There is some 

indication, however, that PRISM overestimates the magnitude of rainfall over the 

northern Oregon Coastal Mountains and the Olympic Mountains. The third row from the 

top compares P-Cats for an intense winter storm that occurred during December 2015. 

All datasets capture the swath of P-Cats 1 and 2 extending from northeast Texas into 

central Illinois indicating reasonable qualitative agreement in the magnitude and extent of 

heavy precipitation from this powerful winter storm. Lastly, the bottom row shows a 

comparison for a strong mesoscale convective system that occurred in September 2004. 

While all datasets can capture the convective precipitation to the extent that it surpasses 

the P-Cat 1 threshold, TMPA shows a relatively larger area of P-Cats compared with the 

other datasets suggesting some difference how it captures convective precipitation in this 

event. We also note that the P-Cat approach is capable of visualizing the propagation of 

weather events that produce heavy rainfall totals. Fig. S1.5 shows five-day evolutions of 

P-Cats for two hurricanes and one winter storm. The P-Cats show the temporal, spatial, 



 

 

 

41 

and intensity evolution of the storms highlighting the efficacy of the three-day total 

approach to capture observed heavy precipitation events. 

 

2.4.6 IMERG Intercomparison 

Considering the potential benefits of using remote sensing to continuously monitor and 

track extreme precipitation over time, we compare IMERG data to its predecessor, 

TMPA in Fig. 2.15. The latest release (V6) of IMERG fuses the early precipitation 

estimates of the TRMM satellite (2000-2015) with the more recent precipitation 

estimates collected during operation of the GPM satellite (2014 - present). At the time 

this study was conducted, we leveraged the existing overlap period (April 2014 - 

December 2015), using the maximum observed P-Cats as well as total observed P-Cat 

frequency for comparison. Over this two-year period, there is some indication that 

IMERG captures more small-scale features and better represents extremes over the 

mountainous West (Fig. 2.15c). These results are likely attributable, at least in part, to 

IMERG’s higher spatial resolution, but may also be due to improvements in GPM 

sensors to measure snow (Hou et al. 2014). This qualitatively brings IMERG closer to 

GHCN-D with exceptions. For example, IMERG does a poorer job at capturing the band 

of P-Cat 2s stretching from northeast Texas through Missouri compared with TMPA and 

overestimates P-Cat magnitude over eastern Tennessee and northern Alabama. P-Cat 

frequencies reveal similarities between TMPA and IMERG (Fig. 2.15d).   
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2.5 Summary and Conclusions 

Here we present a climatology of a categorization scheme for monitoring and tracking 

change in extreme precipitation over space and time and assess its observational 

uncertainty. The approach assigns a category between one and five to three-day storm 

totals (Fig. 2.1). Intended as a way to track extreme precipitation as a climate indicator, 

this scheme provides a platform for monitoring change in extreme precipitation across 

scales, datasets, time, and geography. However, precipitation observation products are all 

associated with some degree of bias, making it important to understand and attempt to 

constrain observational uncertainty when analyzing extremes. To demonstrate the utility 

of the P-Cat scheme as a way to track extreme precipitation events in time and space and 

to highlight the importance of understanding observational uncertainty, we apply the 

three-day total categorization as a basis for dataset intercomparison across four gridded 

products, spanning a range of construction methodologies, and in situ station data.   

  

All gridded datasets capture the principal spatial patterns of mean annual precipitation 

climatology, with higher resolution datasets capturing more orographic features than the 

lower resolution datasets (Fig. 2.3). Focusing on extremes, the magnitude (Figs. 2.4-2.7) 

and frequency of P-Cats (Figs. 2.7-2.11) are assessed using the P-Cat scheme as a metric 

for intercomparison. In general, the higher resolution datasets more closely resemble 

gauge data across the CONUS and seasons. Specifically, PRISM shares many detailed 

commonalities with station data while the next highest resolution dataset, TMPA, is also 

similar overall. NARR and MERRA-2 reanalysis show systematically lower magnitude 
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and frequency of P-Cats across the CONUS and seasonal cycle. TMPA shows 

systematically lower P-Cat magnitudes and frequencies across the mountains of the West 

during fall and winter when a large portion of precipitation falls as snow, consistent with 

known limitations of TMPA at capturing frozen precipitation.   

 

When all datasets are interpolated to a common coarser grid, differences persist but are 

reduced. In particular, the datasets that were originally constructed at the highest spatial 

resolution often maintain the highest magnitude of P-Cats, even after coarsening of the 

gridded data. This feature could result from a number of factors; however, one likely 

contributor is the fact that a dataset constructed originally at fine resolution is able to 

capture extreme events that simply could not be resolved at coarser grids (Herold et al. 

2017). This may be particularly acute in areas of complex topography where, for 

example, PRISM is able to resolve local high magnitude events that the other datasets are 

simply not capable of capturing. Other factors could include other underlying biases in 

the dataset stemming from factors such as spatial and temporal heterogeneity in gauges 

(Kidd 2001), sensor sensitivity to precipitation type (Behrangi et al. 2012, 2014b) or 

methods of retrieving precipitation from individual sensors in satellites (Kummerow et al. 

2011), interpolation methods or misrepresentation due to the sparseness of the observing 

network (Min et al 2011), and general deficiencies and model limitations simulating 

precipitation amounts in reanalysis (Kharin et al. 2013).  The annual occurrence of P-

Cats shows similar differences across the suite, with a general positive relationship 

between grid resolution and the number of P-Cats (Figs. 2.11-2.13). 
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Preliminary assessment of IMERG, the follow-on satellite product to TMPA, suggests 

some potential improvements over TMPA in capturing frozen precipitation and fine-scale 

extremes (Fig. 2.15). Ultimately, results suggest satellite data show promise in capturing 

the overall patterns of heavy precipitation climatology, which could lead to improved 

monitoring in regions with sparse ground observations. It is worth noting that since this 

analysis was conducted, the IMERG record has been extended back to the year 2000. A 

recent global study by Arabzadeh et al. (2020) intercompares atmospheric river 

precipitation in remote sensing and reanalysis products globally, using IMERG’s longer 

data record (2001-2018), finding IMERG overestimated AR-related precipitation, 

misrepresented cold season light precipitation and snowfall, as well as deviated 

significantly from reanalysis at fine regional scales, attributed to a lack of sufficient in 

situ observations for calibration. However, at a higher temporal (30-minute) and spatial 

resolution (0.1°), the IMERG dataset offers the opportunity for capturing localized short-

duration extremes across a larger latitudinal extent (60°N-S). IMERG has further been 

shown to depict the duration, spatial extent, and speed of storm propagation as it 

contributes to local and regional precipitation accumulation and heavy precipitation event 

impacts across the CONUS, characteristics difficult or impossible to extract from 

previous generation, lower resolution gridded datasets (Zhou et al. 2019).  

 

We acknowledge some assumptions and limitations in use of the P-Cat scheme as a 

climate indicator for extreme precipitation. First, the use of fixed thresholds for the entire  
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CONUS is intended to highlight the heaviest precipitation across the domain in an 

intuitive way. As such, some drier regions do not record P-Cats as defined in this study, 

even though smaller totals may be considered impactful relative to local climatology. The 

synoptic scale of measurement also captures totals at a temporal scale often associated 

with impacts such as flooding and landslides (Ralph and Dettinger 2012) but does not 

distinguish between shorter and longer duration totals. This may be relevant for lower-

end P-Cats that could result from short duration extreme convective events. It is also 

possible that a single storm may be counted more than once due to the moving three-day 

window used to construct the P-Cat. Finally, while we include the five datasets here in an 

effort to capture a range of measurement methods while focusing on high resolution 

products, this analysis could be extensible to other observations.   

 

Overall, the P-Cat characterization scheme applied here offers several opportunities for 

future research and applications. By comparing P-Cat climatology in climate model 

simulations of the historical climate to observations, this scheme could provide a novel 

target for climate model evaluation. As further extension of the P-Cat approach for 

dataset intercomparison, P-Cat thresholds could be customized to a dataset’s grid 

resolution to account for the inherently lower magnitude of extremes captured at coarser 

versus finer resolutions although this could come with somewhat reduced levels of 

intuitiveness since a P-Cat 1 would be different for different datasets. The P-Cat scheme 

could also be used for assessing future projections of changes in extreme precipitation in 

climate models. Lastly, the P-Cat approach is easily extensible to other regions, 
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facilitating temporal and spatial tracking and monitoring of extremes, dataset 

intercomparison, model evaluation, and future change assessment. 
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Chapter 3: A Climatology of Atmospheric Rivers and Associated Precipitation for 

the Seven US National Climate Assessment Regions 

 

This chapter is published as: Slinskey, E. A., P. C. Loikith, D. E. Waliser, B. Guan, and 

A. Martin, 2020: A Climatology of Atmospheric Rivers and Associated Precipitation for 

the Seven U.S. National Climate Assessment Regions, Journal of 

Hydrometeorology, 21(11), 2439-2456, https://doi.org/10.1175/JHM-D-20-0039.1. 

 

Abstract 

Atmospheric Rivers (ARs) are long, narrow filamentary regions of enhanced vertically 

integrated water vapor transport (IVT) that play an important role in regional water 

supply and hydrometeorological extremes. Here, an AR detection algorithm is applied to 

global reanalysis from Modern-Era Retrospective Analysis for Research and 

Applications, version 2 (MERRA-2) to objectively and consistently characterize ARs 

regionally across the continental United States (CONUS). AR characteristics and 

associated precipitation are computed at the grid point scale and summarized over the 

seven US National Climate Assessment (NCA) regions. ARs are most frequent in the fall 

and winter in the West, spring in the Great Plains, and fall in the Midwest and Northeast. 

ARs show regional and seasonal variability in basic geometry and IVT. AR IVT 

composites reveal annually consistent northeastward directed moisture transport from the 

Pacific Ocean in the West, while moisture transport patterns vary seasonally across the 

Southern Great Plains and Midwest. Linked AR precipitation characteristics suggest that 

a substantial proportion of extreme events, defined as the top 5% of three-day 

https://doi.org/10.1175/JHM-D-20-0039.1
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precipitation totals, are associated with ARs over many parts of CONUS, including the 

East. Regional patterns of AR-associated precipitation highlight that seasonally-varying 

moisture transport and lifting mechanisms differ between the East and the West where 

orographic lifting is key. Our study aims to contribute a comprehensive and consistent 

CONUS-wide, regional-scale analysis of ARs in support of ongoing NCA efforts. Given 

the CONUS-wide role ARs play in extreme precipitation, findings motivate continued 

study of associated climate change impacts.   

 

3.1 Introduction 

Atmospheric rivers (ARs) are long, narrow regions of strong horizontal water vapor 

transport (Zhu and Newell 1994, 1998; Ralph et al. 2004) responsible for a multitude of 

hydrometeorological impacts (Guan et al. 2010; Dettinger et al. 2011; Neiman et al. 

2011; Moore et al. 2012; Dettinger 2013; Mahoney et al. 2016). Typically associated with 

a low-level jet (LLJ) ahead of the cold front in the warm sector of an extratropical 

cyclone (AMS 2017), ARs cover only ~10% of Earth’s zonal circumference but account 

for >90% of the total poleward water vapor transport in the midlatitudes (Zhu and Newell 

1998; Guan and Waliser 2015). A typical AR is several thousand kilometers long and 

only a few hundred kilometers wide, capable of transporting more water than the largest 

rivers on Earth (Ralph et al. 2017). Enhanced precipitation occurs when the AR interacts 

with a mechanism capable of lifting it beyond saturation level. Some examples include 

orographic lifting (Ralph et al. 2005), convection (Letkewicz and Parker 2010), and 

synoptic scale frontal systems (Businger 1990), among others.   
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In water-stressed regions, such as parts of southwestern United States (US), ARs provide 

a crucial source of water through replenishing reservoirs, contributing to snowpack at 

higher elevations, and often alleviating existing drought conditions (Guan et al. 2010; 

Dettinger 2013; Paltan et al. 2017). On the other hand, the extreme precipitation 

associated with ARs can lead to flooding (Ralph et al. 2006; Neiman et al. 2011; Konrad 

and Dettinger 2017), rain-on-snow events (Guan et al. 2016), levee breaks (Florsheim 

and Dettinger 2015), landslides (Young et al. 2017), debris flows (Oakley et al. 2017), 

and avalanches (Hatchett et al. 2017). Furthermore, research linking ARs with underlying 

patterns of damaging coastal extreme winds (Waliser and Guan 2017) and resulting storm 

surges (Khouakhi and Villarini 2016) suggests ARs are associated with effects beyond 

their role in precipitation extremes.   

  

The hydrometeorological extremes associated with ARs are well documented along the 

West Coast. Water availability concerns in California have motivated a growing number 

of analyses, identifying landfalling ARs as responsible for between 30%-70% of the 

annual precipitation (Guan et al. 2010; Dettinger et al. 2011; Gershunov et al. 2017) as 

well as the majority of precipitation extremes (Ralph et al. 2004; Ralph and Dettinger 

2012; Lamjiri et al. 2017) and flooding across the state (Ralph et al. 2006, 2013). 

Destructive flooding associated with AR conditions has also been documented over parts 

of Oregon and Washington (Neiman et al. 2008a, 2011; Warner et al. 2012). A study 

extending from the Mexico/California border northward into British Columbia, Canada, 
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highlighted the importance of ARs in modifying the region’s climate and yielding 

important hydrologic consequences, including increased precipitation, river/stream flows, 

vapor fluxes, and changes in snow water equivalent (Neiman et al. 2008b).   

  

Considerably less attention has focused on the role of ARs in other regions of the US; 

however, a number of heavy precipitation and high-impact flood events have been linked 

with AR-like conditions across parts of the central/eastern US. For example, Moore et al. 

(2012) and Lackmann et al. (2013) linked AR conditions with severe flooding in 

Tennessee in May 2010. More recently, Rabinowitz et al. (2018) found 15 AR events 

between 2010-2015 contributed to 67% of the total monthly precipitation across the 

north-central Mississippi River Valley, consistent with Lavers and Villarini (2013b). 

Nakamura et al. (2013) further presents evidence of AR conditions governed by an 

anomalous semi-stationary ridge east of the US East Coast attributable to flooding in the 

Ohio River Basin. Across the Southeast, ARs have been documented as an important 

contributor to annual rainfall totals and heavy precipitation event frequency (Mahoney et 

al. 2016; Debbage et al. 2017; Miller et al. 2018). Despite this documented importance of 

ARs across the Continental United States (CONUS), AR climatology has not received the 

same level of comprehensive documentation away from the West Coast.   

  

The importance of ARs in weather and climate has further prompted increasing interests 

in the behavior of ARs under global warming (e.g., Dettinger 2011; Lavers et al. 2013; 

Gao et al. 2015; Payne and Magnusdottir 2015; Warner et al. 2015; Hagos et al. 2016; 
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Shields and Kiehl 2016; Espinoza et al. 2018; Gershunov et al. 2019). Existing literature 

suggests that many aspects of ARs may change under future warming, including 

frequency, geometry, integrated water vapor transport (IVT) magnitude, seasonality, and 

associated flood risk (Waliser and Cordiera 2020, and references therein). Furthermore, 

changes in the frequency or intensity of ARs could affect the occurrence and magnitude 

of associated precipitation and flooding, warranting continued observational analysis to 

benchmark historical change and provide a target for model evaluation (e.g., Guan and 

Waliser 2017).  

  

ARs were highlighted for the first time in the Fourth National Climate Assessment 

(NCA) Climate Science Special Report (CSSR) as a key topic in its chapter on “Extreme 

Storms” (Kossin et al. 2017). Key findings in the report summarized the importance of 

ARs along the US West Coast to snowpack and annual precipitation. It also highlighted 

possible future increases in the frequency and severity of landfalling ARs related to 

increased evaporation and higher atmospheric water vapor concentrations with increasing 

temperature. Motivation for this work is to help provide a more comprehensive and 

consistent CONUS-scale analysis of ARs over the seven NCA regions (Fig. 2.2) as a 

contribution to future reports. In this study we regionally examine AR climatologies 

across the CONUS and investigate the associated precipitation characteristics. The 

hydrometeorological importance of ARs has prompted significant incentive to improve 

our understanding of ARs at regional scales to inform resource management, hazard 

resilience, and decision-making as well as provide a basis for assessing future change. 
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Previous studies have explored AR climatology across a range of spatial scales and 

geographies (e.g.,Dettinger et al. 2011; Moore et al. 2012; Rutz et al. 2014; Guan and 

Waliser 2015; Lavers and Villarini 2015; Mahoney et al. 2016; Debbage et al. 2017), 

however this study is novel in the level of detail it provides in regards to AR 

characteristics and their relation to extreme precipitation at a relatively high spatial 

resolution over the CONUS. Furthermore, this study, to the authors’ knowledge, is the 

first to summarize AR climatology and importance as a mechanism for extreme 

precipitation over the seven NCA regions. 

 

3.2 Data 

3.2.1 Modern-Era Retrospective Analysis for Research and Applications, version 2 

(MERRA-2) 

ARs are identified using the National Aeronautics and Space Administration’s (NASA) 

Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-

2; Gelaro et al. 2017) reanalysis internally-derived IVT fields. Daily average IVT is 

calculated from hourly MERRA-2 IVT data provided on a 0.5° latitude × 0.625° 

longitude grid (Bosilovich et al. 2016) spanning 36 years over the period of 1981-2016. 

IVT is generated from zonal and meridional winds and specific humidity fields. The use 

of internally derived IVT values through the MERRA-2 system have the advantage of 

being calculated across all (internal) model time steps and on all model vertical 

coordinates, not just the standard output pressure levels, and therefore may be preferable 

over coasts and mountains (Dettinger et al. 2018). MERRA-2 uses the Goddard Earth 
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Observing System Model, version 5 (GEOS-5) state-of-the-art data assimilation system 

and is freely available online through the Goddard Earth Sciences (GES) Data and 

Information Services Center (DISC) (http://disc.sci.gsfc.nasa.gov/mdisc/). While other 

reanalysis products could be employed to detect ARs, MERRA-2 has been utilized in the 

study of ARs in previous studies (e.g., Guan and Waliser 2017; Lora et al. 2017; 

Mundhenk et al. 2018) and is the default reference dataset for the AR Tracking Method 

Intercomparison Project (ARTMIP; Shields et al. 2018) facilitating the comparison of 

results from this study across other AR detection algorithms. AR characteristics based on 

MERRA/MERRA-2 and ERA-Interim are remarkably similar to each other (e.g., Guan 

and Waliser 2015, 2017, 2019; Guan et al. 2018), and the selection of a specific 

contemporary reanalysis product is not expected to change the conclusions of this paper. 

 

3.2.2 Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

Spatially interpolated, ground-based precipitation measurements were obtained from the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et al. 

2008). This dataset incorporates observations from monitoring networks across the 

CONUS and uses a weighted regression to interpolate climate data based on topographic 

and physiographic variables using a digital elevation model. PRISM offers high 

resolution precipitation measurements on a 0.04° latitude/longitude grid over the CONUS 

that have been used in a wide range of climatology studies (e.g., Behrangi et al. 2016; 

Demaria et al. 2017; Kim et al. 2018). A detailed assessment of observational uncertainty 

in PRISM, alongside a suite of historical precipitation measurement approaches, in 

http://disc.sci.gsfc.nasa.gov/mdisc/
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capturing three-day extreme precipitation climatology can be found in Chapter 2. Daily 

precipitation estimates available from 1981 are used for this analysis. PRISM data can be 

obtained from the PRISM Climate Group at Oregon State University 

(http://prism.oregonstate.edu/). 

 

3.3 Methodology 

3.3.1 AR Identification   

The objective identification of ARs employed here is based on the approach introduced in 

Guan and Waliser (2015) and later updated and validated with in-situ/dropsonde data in 

Guan et al. (2018). This approach applies a combination of geometry and IVT 

magnitude/direction criteria to identify contiguous regions (i.e., areas of connected grid 

cells), or “objects”, of enhanced IVT transport. Objects first retained from IVT 

magnitude thresholding (i.e., above the seasonally- and geographically-dependent 85th 

percentile) are further filtered using directional and geometric requirements. In addition 

to having an appreciable poleward component (>50 kg m−1 s−1), more than 50% of the 

area of the IVT object must have IVT directions within 45° of the mean IVT direction of 

the object. This ensures general coherence in IVT direction within the object. Geometric 

requirements are then applied, and objects longer than 2000 km with length-to-width 

ratios >2 are retained as ARs. Multiple, sequentially higher IVT magnitude thresholds 

(i.e., 85th- 95th percentiles at an increment of 2.5) are applied if an IVT object fails the 

other criteria. For each of the 12 months, the 85th percentile IVT is shown for reference in 

Fig. S2.1. The use of multiple IVT thresholds allows for the identification of ARs within 

http://prism.oregonstate.edu/
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the core region of a larger, wider object that may not meet the geometry criteria (Guan et 

al. 2018).  

  

The AR detection algorithm employed here consists of a broad and generalized AR 

definition, as in Zhu and Newell (1998), that does not impose predetermined 

geographical requirements for AR identification (as noted in Guan and Waliser 2017) and 

does not isolate collocated mechanisms of moisture transport (e.g., North American 

Monsoon, etc.). This method defines ARs based on moisture transport and connected 

object characteristics only. Therefore, it does not consider spatiotemporally related 

phenomena (e.g., fronts and extratropical cyclones) that are part of the phenomenological 

understanding of ARs in the global climate. Defining ARs in this way is consistent with 

current literature (Shields et al. 2018), and it is beyond the scope of this study to attempt 

to link AR objects with any phenomena besides extreme precipitation. We will alert the 

reader when interpreting AR activity, characteristics, and hydrometeorological impacts if 

such interpretation overlaps with other well-documented phenomena of the climate 

system, such as tropical and extratropical cyclones, convective systems, etc. 

 

3.3.2 Linked AR Extreme Precipitation Days 

Extreme precipitation days are defined as three-day precipitation totals exceeding the 95th  

percentile of non-zero three-day totals, calculated at each grid cell. The use of a 

percentile-based threshold defines extremes based on the local climatology. Three-day 

totals are calculated such that each day’s three-day total includes the sum of that day and 
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the previous two (as in Chapter 2). While single-day totals are a common measure for 

precipitation, the use of multiday totals have been shown to better capture some heavy 

precipitation impacts while also reducing uncertainty due to temporal mismatch among 

data products (Ralph and Dettinger 2012). Herein we refer to qualifying three-day totals 

as extreme precipitation days. An AR extreme precipitation linkage is made when at least 

one AR is present during the three-day window defining the precipitation extreme.   

  

A minimum distance-based interpolation scheme is used to link AR characteristics, 

defined using MERRA-2, with PRISM’s high resolution precipitation measurements. We 

developed this process to assign MERRA-2’s coarser resolution grid cells to PRISM’s 

finer resolution grid cells. More specifically, each PRISM grid cell is linked with the 

MERRA-2 grid cell that has the shortest distance from the grid cell center. All analyses 

are performed seasonally with winter defined as December, January, February, spring as 

March, April, May, summer as June, July, August, and fall as September, October, 

November. 

 

3.4 Results 

3.4.1 AR Characteristics 

3.4.1.1 AR Frequency   

The seasonal distribution of AR frequency, calculated at each grid cell as the percentage 

of days when the grid cell is within the boundary of an AR for that season, across the 

CONUS is shown in Fig. 3.1. Results show ARs are primarily a cold season phenomenon 
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along the West Coast. Consistent with Rutz et al. (2014), maxima occur in the winter in 

the Southwest and in the winter and fall in the Pacific Northwest (PNW; Fig. 3.1a,d). 

East of the Rocky Mountains, AR occurrence is notable throughout the year. A 

wintertime maximum is evident across the Southeast with a rate of AR occurrence of  

>13% of winter days (Fig. 3.1a). High AR occurrence over the Great Plains and Ohio 

River Valley in the spring (~12%; Fig. 3.1b) may be related to moisture transport through 

features like the Great Plains LLJ (Nakamura et al. 2013; Lavers and Villarini 2013) and 

“Maya Express” (Budikova et al. 2010; Dirmeyer and Kinter 2009; Smith et al. 2013). 

Over the central US, the highest rainfall rates occur during the spring and summer 

coinciding with a seasonal maximum in convective activity (e.g., Dirmeyer and Kinter 

2010; Villarini et al. 2011b), where elevated AR frequency is also evident (Fig. 3.1b,c). 

Consistent with Nakamura et al. (2013), a springtime maximum in the Ohio River Basin 

(Fig. 3.1b) supports the strong link between ARs and flooding across the region. 

Similarly, several studies have shown a strong connection between ARs and flooding 

across parts of the central US (e.g., Lavers and Villarini 2013; Nakamura et al. 2013). An 

example of a particularly high-impact and persistent AR event was the 1-2 May 2010 

flood in Nashville, Tennessee (Moore et al. 2012). Although given considerably less 

attention in the literature, ARs occur across the seasonal cycle in the Northeast with a 

notable maximum in the fall, consistent with Hsu and Chen (2020) and the high AR 

precipitation fraction (AR contribution to total annual rainfall) noted in Lavers and 

Villarini (2015).   
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3.4.1.2 AR Magnitude and Direction   

The seasonal distribution of mean IVT magnitude and direction at each grid cell for all 

AR days between 1981-2016 is shown in Fig. 3.2. An AR day is defined as any part of 

the identified AR object that is spatially collocated with that grid cell. Results reveal a 

seasonally consistent west-to-east gradient of AR IVT across the CONUS, with the 

exception of the immediate West Coast. Maxima in mean IVT during AR days are 

evident during the winter and fall in the PNW ranging between 400-450 kg m-1 s-1 along 

the Coast Range and Cascade Mountains of Oregon and Washington. For the Southwest, 

and more specifically coastal California and the Sierra Nevada, the mean IVT maximum 

occurs during the winter between 300-400 kg m-1 s-1. Maxima in IVT magnitude for these 

regions is consistent with the seasonal distribution of AR occurrence in Fig. 3.2a-d. 

Lower IVT values across the western interior may be reflective of the influence of 

upwind topography, which acts to decrease the water vapor transport as an AR penetrates 

inland (Rutz et al. 2014). Elevation can also lead to reduced IVT magnitude since there is 

less atmosphere to integrate over and water vapor concentrations are much higher at 

lower elevations. Seasonal mean IVT direction across the West Coast is predominantly 

from the southwest. This follows the well-known horizontal moisture transport pathway 

from the sub-tropics to the extratropics that is sometimes referred to as the “Pineapple 

Express” when originating near Hawaii (Lackmann and Gyakum 1999; Dettinger 2011; 

Dettinger et al. 2011).   

  



 

 

 

59 

East of the Rocky Mountains, elevated IVT on AR days is extensive, revealing a 

pronounced line separating the eastern half of the country from the dry West. It is during 

the spring and summer over the Great Plains that the export of moisture from the tropics 

by way of the Gulf of Mexico is at a maximum (Knippertz and Wernli 2010), however 

elevated mean IVT is apparent in the fall as well. Moisture in this region is known to be 

transported from the Caribbean and Gulf of Mexico by way of the northern branch of the 

Caribbean LLJ, which feeds into the Great Plains LLJ (Mestas-Nuñez et al. 2007; 

Dirmeyer and Kinter 2010). This moisture transport pathway has been coined the “Maya 

Express,” exhibiting a north-south orientation. While Fig. 3.2 does not show moisture 

transport upstream of the CONUS, this feature appears to be reflected among the mean 

IVT direction vectors for this region. During the summer in the Midwest, across the  

Mississippi Valley, mean IVT values >500 kg m-1 s-1 are evident (Fig. 3.2c). In 

connection with the Great Plains LLJ, ARs have been documented as transporting 

moisture into regions of deep convection or mesoscale convective systems (MCSs; e.g., 

Anderson and Arritt 2001), with recent examples documented in May/June 2008 in the 

U.S. Midwest (Budikova et al. 2010; Dirmeyer and Kinter 2009; Smith et al. 2013). 

Similarly, the Ohio River Valley, across Tennessee and Kentucky, reveals areas of high 

IVT, notably during the spring and fall at  >500 kg m-1 s-1. This region is affected by 

extratropical cyclones that travel eastward across the US, advecting moisture northward 

from the Gulf of Mexico (Lavers and Villarini 2015). The Appalachian Mountains are 

highlighted by decreased mean AR IVT values relative to the rest of the region, likely 

due to low-level moisture reduction through orographically enhanced precipitation (e.g., 
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Smith et al. 2011) and higher elevation. Overall, IVT magnitude is considerably higher in 

the East compared to the West in all seasons, with the exception of the immediate coastal 

zones of the PNW in the fall and winter. 

 

3.4.1.3 AR Area 

The seasonal distribution of AR area is shown in Fig. 3.3. AR area is calculated as the 

median area for all ARs that have overlapped a grid cell. Median, as opposed to mean, 

values are used to limit the influence of outliers among the often non-normal AR area 

distributions. AR area has important implications for the spatial extent of associated 

impacts. During the winter, high values of AR area are prominent in the Northwest 

extending across the country from western Washington to eastern North Dakota with 

values >6x106 km2. Although less frequent, high AR area values over the interior west 

likely represent large features that originate in the Pacific and penetrate inland (Fig. 3.3a). 

Some examples include the January 2010 AR event that penetrated eastward across the 

Pacific Ranges breaking hydrometeorological records across Arizona (Neiman et al. 

2013; Hughes et al. 2014) and the November 2006 events that not only severely impacted 

Oregon and Washington but reached Glacier National Park, Montana causing extensive 

flooding (Neiman et al. 2008b; Rutz et al. 2014; Mueller et al. 2017). The signal of inland 

penetrating ARs over the western US is evident in the spring and fall as well (Fig. 

3.3b,c). Results show that the largest ARs occur more commonly across the West 

compared to the East with an extensive portion of the Southwest and Southern Great 
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Plains experiencing ARs with a smaller areal extent (< 2x106 km2) during the summer 

(Fig. 3.3c). 

 

3.4.2 AR Composites 

To synthesize the spatial characteristics of the ARs in each region, seasonal composites 

of AR IVT magnitude and direction, along with AR axis density plots, for a major city in 

each of the seven NCA regions are shown in Figs. 3.4 (winter/fall) and 3.5 

(summer/spring). Each composite represents the mean characteristics of AR IVT 

magnitude and direction at each grid cell for all AR days where the city was within the 

boundaries of an AR object (left side of Figs. 3.4,3.5a-n). AR axis density plots illustrate 

the cross-AR location of maximum IVT, showing the typical locations of the greatest AR 

intensity when an AR is affecting the city of interest for a given NCA region (right side 

of Figs. 3.4,3.5a-n). Following Guan and Waliser (2015), the AR axis is calculated by 

identifying the two grid cells on the boundary of the object to locate the maximum great 

circle distance. The arc is further divided into small segments equal to the number of grid 

cells between the outermost points. The great circle arc perpendicular to each segment is 

identified and, of the grid cells intersected by the arc, the one with maximum IVT is 

noted. The axis is defined by connecting the grid cells of maximum IVT. 

 

3.4.2.1 Winter/Fall Composites 

Winter/fall composite and axis density plots are shown in Fig. 3.4. Regions of composite 

IVT magnitude and direction for Portland, Oregon (OR), Los Angeles, California (CA), 
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and Rapid City, South Dakota (SD) during the winter reveal similar patterns of 

predominantly northeastward directed AR IVT from the Pacific Ocean (Fig. 3.4a-c), 

often associated with “Pineapple Express” type moisture transport. In the fall, IVT 

strength and direction is similar although the total number of AR days for each city is 

lower compared to the winter, with Los Angeles, CA and Rapid City, SD less than 

Portland, OR (Fig. 3.4h-j). Axis density plots show a relatively wide north-south swath of 

AR axes, roughly centered on both cities (Fig. 3.4a-c,h-j), with high axis density over the 

cities themselves. For all regions, we note that in some cases AR axes appear 

geographically removed from the city. This occurs when the AR object touches the city 

on one end but the bulk of the AR extends well away from the city. Axis density plots 

also reveal regions of maxima that are likely associated with local topography where IVT 

isn’t being depleted from orographic uplift. For example, high values of axis density are 

found along the Columbia River and Snake River Valleys in the Portland, OR composite 

(Fig. 3.4a).   

  

The pattern of composite IVT magnitude for Rapid City, SD (Fig. 3.4c,j) demonstrates 

the importance of inland penetrating ARs. This occurs where lower or less consistent 

topographical barriers allow for high water vapor transport over the interior West, 

common during the cool season (Rutz et al. 2014). In contrast with typical moisture 

transport in the western US, eastern regions can experience corridors of strong water 

vapor transport that extend from multiple different moisture source regions, including the 

Gulf of Mexico, Caribbean Sea, and Atlantic Ocean (e.g., Pfahl et al. 2014). Composite 
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IVT analyses for Oklahoma City, Oklahoma (OK) show moisture transport over both the 

Pacific and Gulf of Mexico on AR days (Fig. 3.4d,k). Other cities across the eastern US, 

including Columbus, Ohio (OH), Augusta, Maine (ME), and Washington DC, reveal 

similar patterns of composite IVT magnitude and direction as well as axis density during 

the cold season with a relative high occurrence of AR days (Fig. 3.4e-n). Compared with 

western US, cities in the East tend to show a stronger northward component in IVT 

direction further indicative of differing patterns of water vapor transport. According to 

several studies, ARs with different IVT directions are known to produce different 

orographic precipitation distributions and hydrological impacts (e.g., Ralph et al. 2003; 

Neiman et al. 2011, 2013; Hughes et al. 2014; Hecht and Cordeira 2017). ARs in the East 

with a stronger northward component likely run parallel to the Appalachian Mountains, 

rather than orthogonal like along the West Coast, thus resulting in a different impact 

magnitude from orographic lifting. Rainfall may also result more from frontal lifting in 

the East compared with the predominance of orographic lifting in the West.   

 

3.4.2.2 Summer/Spring Composites 

Summer/spring composite and axis density plots are shown in Fig. 3.5. ARs along the 

West Coast are most common during the fall and winter, therefore AR day frequency and 

magnitude for Portland, OR and Los Angeles, CA in the spring and summer (Fig. 

3.5a,b,h,i) is decreased relative to results in Fig. 3.4. In general, when ARs occur during 

spring/summer in these cities they continue to transport moisture directed predominantly 

northeastward, although with a decreased maximum in IVT magnitude relative to 
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winter/fall phenomena. IVT vectors directed northwest in southern California during the 

summer suggest ARs may occur alongside and include contribution from other 

meteorological mechanisms (e.g., North American Monsoon; Guan and Waliser 2017). 

Rapid City, SD displays a smaller spatial area of composite IVT, less suggestive of a 

predominant influence from inland penetrating ARs, as well as a stronger northward 

directed component in IVT direction (Fig. 3.5c,j). Similarly, Oklahoma City, OK shows 

seasonal maxima in the fall and spring, along with a north-south oriented band of high 

axis density extending from Texas to the Great Lakes in the spring (Fig. 3.5k). IVT 

composite results are consistent with studies that identify influence from “Maya Express” 

moisture transport which has been linked to a number of impactful flooding events across 

the central US (Moore et al. 2012; Lavers and Villarini 2013; Nakamura et al. 2013). A 

similar pattern of water vapor transport is shown in Columbus, OH during the spring 

(Fig. 3.5l) with a strong northward component in IVT direction. During summer/spring, 

ARs have been known to supply regions of deep convection across the central US with 

ample low-level moisture, resulting in heavy precipitation and flooding (Lavers and 

Villarini 2013). As for the East Coast, Augusta, ME and DC continue to show broad 

regions of elevated composite IVT throughout the spring and summer.   

 

3.4.3 Linked AR Precipitation Characteristics 

3.4.3.1 Fraction of AR Precipitation to Total Precipitation 

The percent of climatological precipitation that falls on an AR day is shown in Fig. 3.6 

for each season. An AR day is defined at a grid cell as any day where an AR object 



 

 

 

65 

spatially overlaps with the grid cell and all precipitation (>1mm) that falls on that day is 

considered AR precipitation. A value of 100% would indicate that all precipitation that 

falls at that grid cell is associated with an AR. Across the CONUS, regional and seasonal 

variability in AR precipitation is apparent. ARs explain ~30% of the precipitation in areas 

across the Northwest in the winter and fall (Fig. 3.6a,d). Across California, values show 

ARs are responsible for over 50% of precipitation during the fall and winter, consistent 

with Guan et al. (2010), Dettinger et al. (2011), and Gershunov et al. 2017. East of the 

Rocky Mountains, maxima in AR precipitation fractions are also apparent, notably in the 

Southeast and Midwest, during the winter, spring, and fall (Fig. 3.6a,b,d). Notable AR 

fractions in the Southeast show that ARs account for between 3055% of the total 

precipitation in the region. Several studies have demonstrated the importance of AR 

moisture in producing impactful precipitation across the Southeast, markedly during the 

winter and shoulder seasons, which is consistent with results shown here (e.g., Moore et 

al. 2012, Mahoney et al. 2016, Debbage et al. 2017). Summer stands out with notable low 

percentages suggesting that ARs are less influential in producing precipitation during 

these months, possibly because heavy precipitation here is often associated with localized 

convection and non-AR tropical disturbances (Fig. 3.6c). In the northeast, high AR 

precipitation fractions in the winter can be associated with impactful snowfall events, 

such as in the winter of 2009/2010 (Halverson and Rabenhorst, 2010). In general, ARs 

provide a substantial proportion of annual precipitation to many parts of the CONUS, 

however other mechanisms also play an important role, especially in the summer. 
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3.4.3.2 ARs and Extreme Precipitation    

The seasonal distribution of the fraction of linked AR extreme precipitation days relative 

to the total number of extreme precipitation days, calculated at each grid cell, is shown in 

Fig. 3.7. A value of 100% indicates that all extreme precipitation days (defined in the 

methods section) at that grid cell were associated with an AR. ARs represent an 

important meteorological mechanism for generating wintertime precipitation extremes 

along the West Coast (Fig. 3.7a). They are associated with a majority of extreme 

precipitation days across much of California and the coastal zones of Oregon and 

Washington. During the winter  ~8% of the Southwest had an extreme precipitation 

fraction >90% (Table S2.1). While ARs weaken as they propagate inland due to the 

precipitating out of low-level water vapor resulting from orographic lift, they also 

comprise a large proportion of extreme days for inland areas of the West during the 

winter and fall. For example, while Arizona has a relatively low AR frequency (Fig. 3.1), 

it has values between 70-100% indicating that when it does experience an extreme 

precipitation day it’s often associated with an AR. These results are consistent with 

existing literature linking several impactful extreme precipitation days with AR 

conditions across the interior West (Rutz et al. 2012; Neiman et al. 2013; Hughes et al. 

2014; Rivera et al. 2014).   

  

Regions east of the Rocky Mountains also experience maxima in precipitation extremes 

associated with ARs. In the eastern and central US, AR fractions are highest in the 

winter, spring, and fall with several regions revealing notable maxima. For example, the 
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Ohio River Valley, specifically across the Tennessee and Kentucky border, reveals high 

AR extreme precipitation fractions during the winter and spring (Fig. 3.7a,b), with 

between 75-85% of extreme precipitation events concurrent with an AR. These results 

are consistent with Lavers and Villarini (2013) which identified ARs as a major flooding 

agent over the central US. The Southeast displays elevated AR extreme precipitation 

fractions during the non-summer months, consistent with Mahoney et al. (2016), where 

winter and spring events across the western portion of the region are linked to strong 

synoptic weather systems transporting water vapor from the Gulf of Mexico. During the 

winter ~7% of the Southeast region has extreme precipitation fractions >90% (Table 

S2.1). Although not all snowfall in the Northeast is associated with ARs, maxima in 

wintertime AR-driven precipitation extremes across this region may be associated with 

impactful snowstorms (Lavers and Villarini 2015).  

  

The fraction of AR days with extreme precipitation relative to the total number of AR 

days at each grid cell is shown in Fig. 3.8, plotted as a percent. In other words, a value of 

100% would indicate that all ARs are associated with an extreme precipitation day, as 

defined by the three-day total. The highest percentages are found across the West Coast 

and western mountains during the winter (Fig. 3.8a), although few places exceed 40%. 

This indicates that even where ARs are common, and a high percentage of extreme 

precipitation days are associated with an AR, many ARs occur without there being an 

extreme precipitation day. This result emphasizes that ARs are not always hazardous, and 

can be beneficial or simply benign when it comes to precipitation impacts (Corringham et 
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al. 2019). During the wintertime, the Rocky Mountains are visible with higher fractions 

on the west (windward) side of the range compared to the drier east (leeward) side, 

supporting the notion that this range is the second major topographic barrier encountered 

by landfalling ARs across the West (Fig. 3.8a).   

  

The notably low AR fractions throughout the central US, stretching across the Northern 

and Southern Great Plains, indicate that ARs are rarely associated with extreme 

precipitation days, despite their frequent occurrence in some portions of the region. 

Results show ~10-20% of ARs are associated with extreme precipitation days across the 

eastern half of the US, with greater percentages, between 25-35%, across the Great Lakes 

and Ohio River Valley in the winter (Fig. 3.8a). In these regions, orographic lifting of AR 

moisture is minimal or non-existent, so other synoptic and mesoscale forcing (e.g., 

convection, frontal, isentropic lift) must play a role in AR-related precipitation intensity 

and duration. For example, Mahoney et al. (2016) identifies a number of precipitation 

triggering mechanisms working in conjunction with corridors of water vapor transport 

linked to heavy precipitation over the southeastern US, including synoptic scale frontal 

systems, landfalling tropical cyclones, MCS’s, and orographic lifting over the 

Appalachian Mountains. Linked AR extreme precipitation fractions clearly demonstrate 

the importance of ARs as a mechanism for heavy precipitation in many portions of the 

CONUS, including across the East.   
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3.4.4 NCA Region Summaries 

3.4.4.1 Seasonal and Regional Distribution of AR Magnitude, Area, and Direction 

Annual distributions of AR magnitude, direction, and area are shown for each of the 

seven NCA regions (Fig.2.2) in the histograms in Fig. 3.9. ARs in each region must have 

at least 10% of their grid cells within the region bounds to be counted in the histogram. 

AR IVT magnitude reveals a distribution with a slightly longer right-tail in regions across 

the western half of the country, including the Northwest (skewness of 0.90), Southwest 

(skewness of 0.80), and Northern (skewness of 0.51)/Southern Great Plains (skewness of 

0.28; Fig. 3.9a-d), and close to normal or symmetric distributions among regions in the 

East (Fig. 3.9e-g). In general, western sub-regions tend to have lower median IVT 

magnitudes compared to the East. The Northeast has the highest median IVT magnitude 

at ~413 kg m-1 s-1 (Fig. 3.9f). The seasonal distribution of AR IVT magnitude shows 

western sub-regions with maxima during the winter (Fig.S2.2a-d) and the eastern regions 

during the summer (Fig. S2.4e-g). Across all seven NCA regions, AR area has a 

positively skewed distribution with skewness values ranging between 1.25-1.77 and all 

regions revealing a median area between 0.18-0.23x107 km2 (Fig. 3.9h-n). The Northwest 

and Northeast share the highest median area of 0.23x107 km2 (Fig. 3.9h,m). The seasonal 

spread of AR area continues to show positively skewed distributions with all seven 

regions experiencing the largest ARs during the winter months, with medians between 

~0.25-0.35x107 km2 (Fig S2.2h-n). AR IVT is consistently directed in the northeastward 

direction, with median IVT direction for all regions ranging between ~50°-58° (with 0° 

due North; Fig.2.9o-u). All regions indicate that AR IVT typically has a stronger 
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eastward than poleward component and ARs with a westward component are rare, 

consistent with Guan and Waliser (2015). Seasonally, western regions experience the 

most eastward directed ARs during the winter (Fig.S2.2a-d), while eastern regions reveal 

a higher occurrence of north/northeastward directed ARs, suggesting influence from 

southern moisture sources, such as the of Gulf of Mexico. 

 

3.4.4.2 NCA Region Summary of AR Characteristics 

AR characteristics, as described at the grid point scale above, are summarized over the 

seven NCA regions in Figure 3.10 and reported in Table 3.1. Here, region shading 

provides a measure of AR frequency and arrow size, direction, and color refers to median 

AR IVT magnitude, direction, and area, respectively. AR frequency for a given NCA 

region is normalized by area (i.e., number of AR days per 10,000 km2) to account for 

differences in region size. ARs in each region are again identified under the condition 

that at least 10% of the grid cells of the AR object are within the region boundaries. 

Results show that the largest area (arrow color) and magnitude (arrow length) ARs occur 

in the winter and fall in the Northwest and Southwest, which is consistent with earlier 

results at the grid point scale (Figs. 3.2a,4a). ARs during the winter in the Northern Great 

Plains also tend to have the largest area, likely related to cool season inland penetrating 

ARs originating over the Pacific Ocean, which must be relatively large in order to reach 

such an area. These three regions also experience ARs with similar median IVT 

directions, ~60° or northeastward, during the winter (Fig. 2.10a; Table 3.1). During the 

spring and summer ARs in the West tend to have a smaller areal extent, between 1-
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2.5x106 km2, and magnitude, between 200-250 kg m-1 s-1 (Fig. 3.10b,c). In the Southern 

Great Plains, AR frequency and magnitude are highest in the spring and summer. 

Springtime ARs in this region tend to be directed more north/northeastward, relative to 

other seasons, with a median IVT direction of ~46° (Table 3.1). The Midwest has 

similarly directed ARs, experiencing its highest magnitude ARs in the summer and fall 

(Fig. 3.10c,d). The Northeast reveals notable maxima in AR frequency and magnitude, 

compared with the rest of the country, across the seasonal cycle. During the winter and 

fall, ARs in the Southeast are relatively larger in areal extent, between 2-2.5x106 km2 

(Fig 3.10d), with little seasonal variation in magnitude. Although useful in summarizing 

AR characteristics over the NCA regions, in some cases summarized characteristics may 

mask sub-regional scale variations, for example those induced by topographic barriers. 

 

3.4.4.3 NCA Region Summary of AR Precipitation   

Seasonally and regionally summarized AR precipitation characteristics are illustrated in 

Fig. 3.11 and recorded in Table 3.2. Here, region shading (green) refers to extreme 

precipitation day frequency, calculated as the spatial median of the total number of 

qualifying days experienced by the region over the study period. Each region has an 

illustrated bucket depicted with a water level, white bar, and gray bar. The water level 

refers to the median fraction of AR precipitation or the amount of precipitation that fell 

on AR days relative to the total precipitation amount. The white bar refers to the median 

extreme precipitation fraction, or the number of linked AR extreme precipitation days 

relative to the total extreme precipitation day frequency. The gray bar refers to the 
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median AR fraction or the number of linked AR extreme precipitation days relative to the 

total AR day frequency.   

  

Results show that the Northwest experiences the greatest number of extreme precipitation 

days during the winter and spring (Fig. 3.11a,b). In the winter, ARs are responsible for 

~25% of the total precipitation received in the region with close to 75% of the extreme 

precipitation days related to an AR (Table 3.2). The Southwest also shows a maximum in 

the fraction of AR precipitation extremes in the winter (Fig. 3.11a), with 66% of all 

precipitation days linked to ARs and ~15% of the ARs in the region resulting in an 

extreme (Table 3.2). Only a small proportion, between 5-10%, of the total precipitation 

experienced in the Northern Great Plains is attributable to ARs across the seasonal cycle. 

In the Southern Great Plains, results show that ARs play an important role with the 

highest number of extreme precipitation days occurring in the spring and summer (Fig. 

3.11b,c) and over 50% of the extreme precipitation days related to an AR (Table 3.2) in 

the spring. Likewise, the Midwest shares extreme precipitation day maxima in the spring 

and summer. During these months ARs explain between 50-55% of the extreme 

precipitation days and >20% of the total precipitation experienced by the region. The 

Northeast has a relatively high occurrence of extreme precipitation days across the 

seasonal cycle, accounting for the most precipitation during the fall and winter (Fig. 

3.11a,d), in some cases related to impactful snow storms experienced by the region. 

Consistent with Mahoney et. al (2016), ARs are more influential in the Southeast during 
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the cool/transition season months (fall-spring; Fig. 3.11a,b,d) where ARs are linked to 

between 70-80% of the extreme precipitation days (Table 3.2).   

 

3.5 Summary and Conclusions 

In the Fourth NCA CSSR, ARs were identified as a key topic in its chapter on “Extreme  

Storms,” focused primarily on the US West Coast. However, research has shown that 

ARs frequently occur and impact many regions across the CONUS. To expand our 

understanding and documentation of regional AR impacts, we consistently apply an 

objective AR detection algorithm to global reanalysis to provide a fine-scale pointwise 

and regionally aggregated annual and seasonal understanding of AR frequency, physical 

characteristics, and impacts across the CONUS summarized over the seven NCA regions. 

AR detection is based on IVT magnitude thresholds, as well as a number of geometric 

and directional criteria following the technique described in Guan and Waliser (2015) and 

updated in Guan et al. (2018).   

  

Seasonal climatologies of AR frequency across the CONUS reveal ARs in the Northwest 

and Southwest are most common in the winter and fall (Fig. 3.1a,d). Although 

considerably less widely studied, AR occurrence east of the Rocky Mountains is 

observable across the seasonal cycle with notable maxima across the Southeast in the 

winter and in the central US Mississippi River Basin during the summer and shoulder 

seasons (Fig. 3.1b-d). Mean IVT magnitude and direction results illustrate the influence 

of the mountainous coastal terrain across the West acting as a barrier reducing water 
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vapor transport as ARs penetrate inland (Fig 3.2a). Generally higher levels of background 

moisture and a more diverse array of precipitation triggering mechanisms in the East 

likely explain differences in AR occurrence and associated impacts compared to the 

West. Even with a generally drier background environment, the largest area ARs occur in 

the interior western US (>4.5x106 km2) demonstrating a strong signature of large features 

penetrating inland from the Pacific Ocean across the interior during the winter (Fig. 3.3a).   

  

Seasonal patterns of water vapor transport during AR days for major cities across the 

seven NCA sub-regions were identified based on AR axis density plots and an IVT 

composite analysis (Figs. 3.4,3.5). Western cities reveal predominantly northeastward 

directed IVT influenced by moisture transported from the tropical pacific indicative of 

the well-known “Pineapple Express” phenomenon (Fig. 3.4 a-c). Cities in the East show 

seasonally varying patterns of water vapor transport. Notable north-south oriented bands 

of moisture were apparent among AR axis density plots for cities across the central US in 

the spring (Fig. 3.5k,l), consistent with literature identifying “Maya Express” moisture 

transport fueling the Great Plains LLJ.   

  

Objectively identified ARs were further linked with high resolution precipitation 

measurements to examine the relationship between ARs and precipitation across the 

CONUS. Results show that ARs explain ~30% of the precipitation in areas across the 

Northwest and ~50% of the precipitation over parts of California during the fall and 

winter (Fig. 3.6a,b). Across the Midwest and Southeast, maxima in the ratio of AR 
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precipitation to total precipitation are evident during the winter and shoulder seasons 

(Fig. 3.6a,b,d). The seasonality of linked AR extreme precipitation days in the western 

and eastern US has also been shown to starkly differ, with winter/fall (Fig. 3.7a,b) days 

being markedly more prominent in the West and summer/spring (Fig. 3.7b,c) days 

dominant in the eastern and central US. The fraction of linked AR extreme precipitation 

days relative to the total amount of ARs days revealed higher and more variable fractions 

west of the Rocky Mountains compared to areas to the east, likely related to the regional 

differences in precipitation triggering mechanisms (Fig. 3.8).   

  

Regionally aggregated AR IVT and precipitation characteristics are summarized across 

the seven NCA regions in Figs. 3.9-3.11. Histograms of the distribution of three basic AR 

characteristics, including IVT magnitude, direction, and area, reveal regional variations in 

distribution shape and median values. Higher values of median IVT magnitude are 

apparent in the East compared to the West (Fig. 3.9a-g), while both the Northwest and 

Northeast reveal maxima in AR area (Fig. 3.9h,m). All regions indicate that AR IVT 

typically has a stronger eastward than poleward component, with a rare occurrence of 

ARs with a westward component (Fig. 3.9o-u). Regionally aggregated statistics for AR 

characteristics show seasonal variability in AR size, strength, direction, and frequency 

(Fig. 3.10). Similarly, regionally summarized AR precipitation statistics highlight the 

importance of ARs in fueling precipitation extremes across the US (Fig. 3.11).   
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Two caveats should be considered when interpreting results from this climatology. The 

first is choice of dataset and the second is choice of detection algorithm. While MERRA-

2 has been used extensively for AR detection in recent literature (Guan and Waliser 2017; 

Lora et al. 2017; Mundhenk et al. 2018; Shields et al. 2018), results could vary slightly 

with use of a different reanalysis but are not expected to change the conclusions of this 

paper (Guan and Waliser 2015, 2017, 2019; Guan et al. 2018). The detection algorithm 

applied here is based on a well-documented approach, however sensitivity of results to 

algorithm choice, although beyond the scope of this current study, would add robustness 

to this climatology (e.g., Shields et al. 2018; Rutz et al. 2019). The detection algorithm 

also cannot identify AR-linked phenomena, meaning that although the physical 

interpretation of an AR across regions may differ, for example an extratropical cyclone in 

a Northwest AR versus the Great Plains LLJ in Midwest ARs, the method is unable to 

objectively account for it.  

  

The results of this study can be leveraged in two ways. First, the results can be used as a 

benchmark for considering how climate change may affect AR features and impacts. 

Second, observed AR characteristics can be used to evaluate the performance of climate 

models at simulating the seasonality and regional distribution of AR characteristics and 

precipitation extremes across the CONUS. Ultimately, this study yields insight into the 

fundamental importance of ARs in the hydroclimate of the CONUS and how that 

importance varies by region.  
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Chapter 4: Assessment of Projected Climate Change Effects on Atmospheric Rivers 

and Associated Precipitation in CMIP6 Models for the Seven US National Climate 

Assessment Regions  

 

Abstract 

A uniform regional approach across the contiguous United States (CONUS) is used to 

quantify how atmospheric rivers (ARs) change between Coupled Model Intercomparison 

Project Phase 6 (CMIP6) historical simulations and future projections under the Shared 

Socioeconomic Pathway (SSP) 585 warming scenario. An objective AR detection 

algorithm, using percentile-based integrated water vapor transport (IVT) thresholding 

defined in the historical climate, is applied to CMIP6 to characterize climate change 

impacts on AR frequency, geometry, intensity, and associated precipitation. Future 

changes in AR characteristics and associated precipitation are computed at the grid point 

scale and summarized over the seven US National Climate Assessment (NCA) regions 

across the CONUS. End of the century (2071-2100) projections indicate increases of up 

to ~11 more AR days per season regionally, notably across the West in the winter, central 

and southeastern US in the spring, parts of the East in the summer, and Pacific Northwest 

and interior West in the fall. AR IVT magnitude shows notable increases of up to ~55 kg 

m-1 s-1 across parts of the western and eastern US, with little future change in mean AR 

IVT direction regionally. Projected change in AR linked precipitation indicates ARs will 

be responsible for a larger proportion, up to +20% seasonally, of total climatological 

precipitation in most regions by the end of the century. AR days linked with extreme 

precipitation days are projected to make up a greater majority of total extreme 

precipitation day occurrence of up to +30% seasonally, notably across the West in the 



 

 

 

78 

winter and Midwest in the spring and fall. Results from this study aim to inform the 

continued efforts of the NCA concerning anticipated changes in weather and hydrology 

extremes across the CONUS. 

 

4.1 Introduction  

An extensive and growing body of literature (Ralph et al. 2020 and references therein) 

has highlighted the significance of atmospheric rivers (ARs) within the global water 

cycle (Zhu and Newell 1998; Newman et al. 2012) as well as to the occurrence and 

modulation of hydrometeorological extremes (Ralph et al. 2006; Rutz et al. 2014; Lavers 

et al. 2011; Viale and Nuñez 2011; Warner et al. 2012; Moore at al. 2012). Projections of 

extreme precipitation intensification across the globe are strongly linked to increases in 

atmospheric water vapor with warming at the rate of Clausius Clapeyron scaling, about 

7% (°C-1) (Wehner et al. 2013; Kunkel et al. 2013s, 2013b). This robust thermodynamic 

response of atmospheric moisture has the potential to alter AR frequency, strength, 

precipitation, and associated hydrological extremes in the future (Hagos et al. 2016; 

Mahoney et al. 2018; Singh et al. 2018; Curry et al. 2019). With change likely already 

underway, a robust understanding of model fidelity and future projections of AR 

precipitation extremes at regional scales is of the upmost importance. 

 

ARs are long, narrow filamentary corridors of strong horizontal water vapor transport 

(Zhu and Newell 1994, 1998), influential to the hydroclimate of a number of regions in 

the mid-latitudes. ARs have an established influence on regional precipitation extremes 
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and associated impacts throughout the contiguous United States (CONUS; as shown in 

Chapter 3 and Slinskey et al. 2020), including across the West Coast (Neiman et al. 

2008a; Guan et al. 2010; Dettinger et al. 2011; Ralph and Dettinger 2012; Lamjiri et al. 

2017), interior west (Rutz et al. 2012, 2014, 2015; Neiman et al. 2013; Hughes et al 

2014; Rivera et al. 2014); Northwest (Neiman et al. 2008b, 2011; Collow et al. 2020), 

central/Midwest (Lavers and Villarini 2013; Rabinowitz et al. 2018), and Southeast 

(Moore et al. 2012; Mahoney et al. 2016; Debbage et al. 2017; Miller et al. 2018;). 

Elsewhere AR-like features and conditions have also been identified and linked with 

impactful precipitation (Businger et al. 1990; Budikova et al. 2010; Letkewicz and Parker 

2010; Pfahl and Wernli 2012; Pfahl et al. 2014), for example “tropical moisture feeds” 

(Howarth et al. 2019) and anomalous water vapor flux (Teale and Robinson et al. 2020) 

in the Northeast.  

 

Despite the key role ARs play in global water and energy cycles and their influence on 

regional precipitation distribution and extremes, only a limited number of studies have 

evaluated AR representation among global climate models (GCMs). Of the existing AR 

modeling studies, few have been diagnostic and scrutinized the details of processes, such 

as those associated with water budgets; cloud, convection, and latent heat processes; or 

meso-scale circulations (Waliser and Cordeira 2020). Several studies investigating the 

ability of climate models to realistically simulate ARs and associated precipitation found 

that Coupled Model Intercomparison Project Phase 5 (CMIP5) models produce the large-

scale weather patterns associated with ARs reasonably well (Payne and Magnusdottir 
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2015, Gao and Leung 2016, Ramos et al. 2016, Warner and Mass 2017). AR response to 

warming has been found to hinge on several key factors at the root of biases, including 

model physics, dynamical core, and resolution which can vary from model to model 

(Wick et al. 2013; Hagos et al. 2015; Guan and Waliser 2017). A more recent study 

(Norris et al. 2021), evaluated extreme precipitation days over California using 28 

CMIP6 models, finding models underestimate the magnitude of integrated water vapor 

transport (IVT; a measure of AR intensity) associated with extreme precipitation. The 

varying degrees of uncertainty associated with AR representation within GCMs can be 

used to guide interpretations of projected change in the future.  

 

A number of studies have assessed the degree to which ARs and associated impacts will 

change under warming across the West Coast (Dettinger 2011; Gao et al. 2015; Hagos et 

al. 2016; Payne & Magnusdottir 2015; Radić et al. 2015; Shields and Kiehl 2016a, 

2016b; Warner et al. 2015; Gershunov et al. 2019), Europe (Gao and Leung 2016; Lavers 

et al. 2013; Ramos et al. 2016; Shields and Kiehl, 2016a), and globally (Espinoza et al. 

2018). The majority of the above studies used CMIP5 to identify change in AR 

characteristics, including intensity, frequency, geometry, and location. Across North 

America, studies show an increasing trend in the frequency and intensity of AR days in 

future climates, with Gao and Leung (2016), Ramos et al. (2016), and Shields et al. 

(2016) finding that ARs will comprise an increasing share of extreme precipitation in 

some regions. However, disagreement around changes in CMIP5 simulated AR 

seasonality and regional patterns of AR frequency remains among existing work (Payne 
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and Magnusdoittir 2015, Lavers et al. 2015, Warner and Mass 2015). In a global analysis, 

Espinoza et al. (2018) found an increase of ~50% in AR conditions, supported by ~25% 

increase in AR length, width, and strength. Given the importance of ARs in determining 

water vapor and precipitation distribution, along with the character and pattern of 

extreme precipitation, a uniform CONUS-wide analysis of the projected effect of climate 

change on ARs with regional specificity is warranted. 

 

In this study, the latest suite of state-of-the-art GCMs from the CMIP6 database are used 

to assess change in the regional climatology of AR characteristics and associated 

precipitation across the CONUS. A global, objective AR detection algorithm (Guan and 

Waliser 2015; Guan et al. 2018) is applied to five CMIP6 models to evaluate change in 

AR day frequency, geometry, and IVT characteristics. To assess the effect of climate 

change on AR impacts, the contribution of ARs to projected changes in precipitation 

characteristics and extreme precipitation frequency is quantified. All metrics are 

calculated at each grid point and summarized over the seven US National Climate 

Assessment (NCA) regions across the CONUS (Fig. 2.2). 

 

4.2  Data and Methodology  

CMIP6 (Eyring et al. 2016) is used to identify ARs and associated precipitation among 

the historical period (1984-2013) and mid- (2036-2065) and end-of-century (2071-2100) 

projections under the Shared Socioeconomic Pathway (SSP) 585, also referred to as the 

high-end emissions warming scenario. The SSP-585 scenario updates the Representative 
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Concentration Pathway (RCP) 8.5 from CMIP5 (O’Neill et al. 2016). IVT values are 

constructed using daily values of 3-D wind and water vapor, and monthly surface 

pressure at all available pressure levels, including 1000, 850, 700, 500, and 250 hPa, 

extending to the surface. Five CMIP6 models, limited by the model output availability 

necessary for calculating IVT, are used in this analysis and are detailed in Table 4.1. 

Only the first ensemble member from each model is used for the historical and SSP-585 

projections. Model output is interpolated to a uniform 1° lat-lon grid following the IVT 

calculation but prior to the analysis detailed in Sections 4.2.1 and 4.2.2. Daily 

precipitation model output is used to link identified AR days with associated 

precipitation. The CMIP6 data are available from the Earth System Grid Federation 

(ESGF) archive (https://esgf-node.llnl.gov/search/cmip6/). 

 

4.2.1 Objective AR Detection Algorithm  

The global AR detection algorithm introduced in Guan and Waliser (2015), and updated 

in Guan et al. (2018), is used to identify AR days among model historical simulations and 

future projections. The approach combines a multiple, sequential percentile-based 

technique (i.e., 85th-95th  percentile of geographically and seasonally dependent 

climatological IVT) with a minimum IVT threshold (100 kg m-1 s-1), to identify 

contiguous features characterized by anomalous water vapor transport. To ensure 

coherence, more than half of the area of the AR must share consistency in direction 

(within 45°) with the overall mean IVT direction, in addition to an appreciable poleward 

component (>50 kg m−1 s−1). The method requires an AR be ≥2000 km in length and have 

https://esgf-node.llnl.gov/search/cmip6/
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a length/width ratio ≥ 2. This technique has facilitated a consistent examination of basic 

AR characteristics on a global scale in a number of studies involving AR climatology and 

variability, global model evaluation (Guan and Waliser 2017), AR-related extreme events 

(Waliser and Guan 2017), and the effect of climate change on ARs (Espinoza et al. 

2018). For this analysis, IVT thresholding is defined based on the historical simulation 

and applied to future projections to identify ARs within each individual model. While 

using historical-based thresholding offers an understanding for potential change in AR-

features based on the current climate, ARs defined using future thresholds would likely 

have higher IVT magnitude percentiles, generating a lower number of AR days during 

the future period than shown here. 

 

4.2.2 Linked AR Extreme Precipitation  

Extreme precipitation days are defined as exceedances of 95th percentile non-zero three-

day precipitation totals calculated at each grid point (consistent with Chapter 3 and 

Slinskey et al. 2020). The use of a percentile-based threshold ensures consideration of the 

local climatology when defining extremes. Each three-day total includes the sum of that 

day and the previous two (as in Chapter 2,3 and Slinskey et al. 2019, 2020). Multi-day 

totals have been shown to better capture some heavy precipitation impacts while also 

reducing uncertainty due to temporal mismatch among data products (Ralph and 

Dettinger 2012). Herein, qualifying three-day totals are referred to as extreme 

precipitation days. Linked AR extreme precipitation days occur when at least one AR day 

is present during a precipitation extreme’s three-day window. 
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4.3 Results  

4.3.1 Historical Simulations 

AR frequency (days/season) is calculated at each grid point, as the number of days when 

a given grid point is within the boundary of an AR, for the historical period (1984-2013) 

in Fig. 4.1. Results are shown for MERRA-2 (Fig.4.1a-d), the reference, and the 

historical simulation multi-model mean (Fig. 4.1e-h) for the 5 CMIP6 models included in 

this analysis (Table 4.1). Comparison of MERRA-2 and the multi-model mean reveals 

AR day frequency patterns are reasonably well-represented in the CMIP6 models, 

lending confidence to their ability to reproduce the principle spatial patterns of AR 

climatology. Notable positive AR day frequency biases are visible across the West in 

DJF, MAM, and SON (Fig.4.1e,f,h). Across the East, positive frequency biases are 

visible in the Southeast in the MAM and JJA (Fig.4.1f,g), while over parts of the 

Northeast and Midwest moderate negative frequency biases occur in DJF and MAM (Fig. 

4.1e,f), respectively.  

 

Model evaluation of additional AR characteristics across the CONUS have shown that 

AR IVT biases among CMIP6 models tend to be negative, with most regions and seasons 

below 10% (Gonzalez-Hirshfeld et al. 2021). Results also show high positive AR area 

biases across all seasons and regions, suggesting low confidence in CMIP6 model ability 

to accurately capture this metric. Simulated linked AR extreme precipitation metrics tend 

to agree well with observations in most regions, excluding areas of complex terrain, 
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signifying possible model constraints in resolving orographic precipitation processes. 

Overall, biases across variables suggest the historically simulated multi-model mean is a 

reasonable representation of the observational reference, with regional and seasonal 

variability among biases for different AR characteristics.  

 

4.3.2 Projected Change in AR Characteristics  

4.3.2.1 AR Day Frequency  

Multi-model mean AR day frequency (days/season) is calculated at each grid point and 

shown for the historical simulation period, mid- and end-of-century projections, and 

change across the seasonal cycle in Fig. 4.2. Results show an increase in the number of 

AR days consistently across all seasons and regions, to varying degrees, by the end of the 

century (Fig. 4.2q-t). End-of-century change generally follows the patterns of mid-

century change (Fig. 4.2m-p) except with a greater magnitude. Across the West, end-of-

century AR day frequency maxima are most prominent in SON (Fig. 4.2l), with 

regionally aggregated increases of ~10 more AR days in the Northwest and Northern 

Great Plains and ~7 more AR days in the Southwest. End-of-century AR day occurrence 

in the interior West may be related to projected increases in inland penetrating ARs along 

the West Coast (Mahoney et al. 2018). 

 

East of the Rocky Mountains, projections show the most AR days occurring in winter 

across the Southeast (Fig. 4.2i), throughout the Mississippi River Basin and Ohio River 

Valley in MAM (Fig. 4.2j), and across parts of the Midwest in SON (Fig. 4.2l). Increases 
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in AR days in the Central US and Great Plains in MAM, follow expectations of projected 

change in another major mechanism for moisture transport in the region, the Great Plains 

low-level jet (LLJ), which is projected to increase in the southern plains in the spring and 

in the central plains in the summer (Tang et al. 2017). The seasonal distribution of AR 

day frequency maxima generally mimics the historical patterns (Fig. 4.2a-d), suggesting 

that regions across the East that have shown a relatively high count of AR days in the 

past will receive more by the end of the century. The Northeast shows notable increases 

in the MAM, JJA, and SON (Fig. 4.2r-t) with ~6-7 more AR days projected regionally in 

the future (Fig. 4.2v-y). 

 

4.3.2.2 AR Magnitude and Direction 

As a measure of AR strength, multi-model mean AR IVT magnitude and direction is 

shown for the historical simulation and future projection periods in Fig. 4.3a-l. Change, 

or the difference between the future projection and historical simulation, in AR IVT 

magnitude is shown for the mid-century, end-of-century, and regionally aggregated end-

of-century in Fig 4.3m-y. Mean AR IVT magnitude is calculated at each grid point as the 

average IVT value across all days detected as an AR. Change in IVT direction was found 

to be negligible, with little to no change by the end of the century, and therefore was left 

out of Fig. 4.3m-y.  

 

Among the historical simulation (Fig. 4.3a-d), results show a large geographical stretch 

of the eastern US with IVT magnitude values ranging from 450-550 kg m-1 s-1 across the 
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seasonal cycle, while along the West Coast elevated values tend to occur in DJF and 

SON, generally delineated by the Coast Range and Cascade Mountains. As with AR 

frequency, end-of-century change in IVT magnitude (Fig. 4.3m-p) generally follows mid-

century change (Fig. 4.3q-t) at a higher magnitude. Regional change across the West 

Coast shows an increase of ~24 kg m-1 s-1 in the Southwest, mainly occurring in 

California (Fig. 4.3q), in DJF (Fig. 4.3u) and ~37 kg m-1 s-1 in the Northwest in SON 

(Fig. 4.3y) by the end of the century. These results are generally consistent with existing 

literature finding dramatic AR IVT increases along the West Coast with warming (e.g., 

Warner et al. 2015). In the Southeast in DJF, MAM, and SON, AR IVT magnitude 

increases by >30 kg m-1 s-1 across the region (Fig. 4.3u,v,y). The greatest regional 

change, relative to the historical simulation, in IVT magnitude on AR days occurs in the 

Northeast with an increase of around ~42 kg m-1 s-1 in MAM and SON (Fig. 4.3v,y).  

 

4.3.2.3 AR Area 

The seasonal distribution of projected change in AR area, calculated at each grid point as 

the median area of all collocated AR objects, is shown in Fig. 4.4. Projected change in 

AR area has the potential for important implications regarding the spatial extent of 

associated impacts as well as the number of detected AR days in the future. In the 

historical simulation, the largest ARs occur in DJF (Fig. 4.4a), with smaller ARs evident 

in MAM and JJA. Projections of change by the end of the century are consistently 

positive across all regions and seasons (Fig. 4.4m-t). In the end-of-century period in DJF, 

maxima in AR area values are broad, extending from western Washington to Wisconsin 
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with values ranging between 7.5-8.5 x106 km2 magnifying mid-century change (Fig. 

4.4i). High AR area values persist across the northern half of the country and interior 

west across the seasonal cycle, specifically in SON with regional increases of 3.8 x106 

km2 in the Northwest and 3.5 x106 km2 in the Northern Great Plains (Fig. 4.4y). The 

eastern half of the country, notably the Northeast and Southeast, generally experiences 

ARs with a smaller areal extent compared to the West, although change by the end of the 

century remains positive, generally between ~2-3 x106 km2. 

 

4.3.3 Projected Change in Linked AR Precipitation Characteristics 

4.3.3.1 Proportion of AR Precipitation to Total Precipitation  

Projected change in the percent of climatological precipitation (>1mm) that falls on a 

detected AR day, defined at each grid point when any part of an identified AR object is 

spatially collocated with that grid point, is shown in Fig. 4.5. For context, a value of 

100% would indicate that all the precipitation recorded at a grid point was associated 

with an AR. Across the seasonal cycle, among the historical simulation (Fig. 4.5a-d), 

ARs are responsible for a higher percentage of total precipitation during DJF, MAM, and 

SON, leaving JJA with generally lower values consistent with lower AR day occurrence 

during this season (Fig. 4.5c). In the West, historical simulations reveal ARs are 

responsible for 50-60% of the total precipitation along the West Coast in DJF and SON 

(Fig. 4.51a,d). Historic maxima in AR-driven precipitation occur in the Northeast in DJF 

and SON at ~35-40% (Fig. 4.5a,d), while in the Southeast values vary seasonally at 
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around at  ~35% in MAM and ~45-50% in DJF across the Ohio River Valley in SON 

(Fig. 4.5b,d).  

 

By the end of the century, increases in AR-related precipitation are visible across most 

regions (Fig. 4.5 i-l). In the Northwest and Southwest, ~45-55% of precipitation is AR-

related in DJF and SON, with ~70% AR-related in California in DJF, MAM, and SON 

(Fig. 4.5 i,j,l). Across the East, values approaching 60% are visible in the Southeast in 

SON and MAM, in the Ohio River Valley in SON, and in the Northeast in DJF and SON 

(Fig. 4.5 i,j,l).  Regional change is highest in MAM in the Midwest and Northeast at 

+16% and in SON in the Northwest at +17% and Northeast at +15%. Generally, results 

show positive projected change in the fraction across regions and seasons by the end of 

the century, suggesting future ARs will be responsible for a larger proportion of the 

seasonal precipitation that falls CONUS-wide. The notable decrease in AR-driven 

precipitation visible in southern California in JJA (Fig. 4.5o,s), suggests ARs are 

projected to make up a smaller fraction of precipitation during these months, possibly 

signifying an increased role by other mechanisms. This change may be related to 

influence by monsoon-driven convection, which has been documented as impactful to 

warm season precipitation in this region (Higgins et al. 1997).  

 

4.3.3.2 ARs and Extreme Precipitation  

Figure 4.6 shows the seasonal distribution of projected change in the fraction (%) of 

linked AR extreme precipitation days relative to the total number of extreme precipitation 
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days calculated at each grid point. Here a value of 100% indicates that all of the extreme 

precipitation days (defined in section 4.2.2) captured at a grid point are associated with 

an AR. In DJF the western US, a region that has historically experienced a large 

proportion of AR-driven precipitation extremes (Fig. 4.6a), maintains high values 

ranging between 90-100% among the mid- and end-of-century projections (Fig. 4.6e,i). 

This could be related to changes in the occurrence of inland penetrating ARs. In a study 

by Mahoney et al. (2018), marked increases in inland precipitation were documented 

through stronger, deeper moisture transport penetrating the Coastal and Cascade 

Mountains of Oregon and ‘spilling over’ into the Snake River Valley fueling orographic 

precipitation in the Sawtooth Mountains. Elevated values in the future are also visible 

along the West Coast in MAM and interior West in SON (Fig. 4.6j,l), further illustrated 

by the dissipating signature of the Sierra Nevada, suggesting reduced orographic 

efficiency in the future (Siler and Roe et al. 2014). This is especially evident among 

projected change values in the Northern Great Plains region in MAM, JJA, and SON 

(Fig. 4.6r-t). Although at relatively lower percentages overall, compared to other regions, 

results show the region experiencing some of the largest relative increases at ~20% in 

these seasons (Fig. 4.6v-y).  

 

Increased AR-driven extreme precipitation in the future is also evident across regions in 

the East. A larger proportion of extreme precipitation days are associated with ARs in the 

Midwest and Northeast in MAM (Fig. 4.6r). Although ARs make up a considerable 

proportion of extremes across the Southeast in DJF, MAM, and SON (Fig. 4.6a,b,d), the 
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region is projected to experience some of the lowest values of change, between +4-8% 

across the seasonal cycle. Parts of the central US also tend to experience a lower 

proportion of extremes linked to ARs relative to the other regions, however projections of 

change are consistently positive across the region. Overall, results indicate ARs will 

contribute to a larger proportion of extreme precipitation days across many parts of the 

CONUS by the end of the 21st century, suggesting a possible diminished role by other 

meteorological mechanisms.  

 

The seasonal distribution of the fraction of linked AR extreme precipitation days relative 

to the total number of AR days and associated projected change is shown in Fig 4.7. Here 

a value of 100% would indicate that all AR days detected at a grid point were associated 

with an extreme precipitation day. It’s important to note that when interpreting this 

metric, the use of a percentile based threshold (i.e., 95th) for defining multi-day extreme 

precipitation, limits the number of extreme precipitation days possible (i.e., top 5% of 

days for each season over the 30-yr climatology). This combined with a relatively larger 

number of AR days (having been detected using a different set of percentile-based 

thresholds) will necessarily produce lower percentages than previously shown in the 

extreme precipitation fraction.  

 

Historically, the highest percentages are visible across the West, specifically along the 

coast and western mountain ranges, with values between 30 and 40% during some 

seasons (Fig. 4.7a-d). By the end of the century, the fraction of linked days to AR days 
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across the West lessens by ~5-6% in the Northwest and Southwest (Fig. 4.7u-y), 

suggesting that a number of AR days will occur without a precipitation extreme. This 

result emphasizes that ARs are not always hazardous and can be beneficial or benign 

when it comes to precipitation impacts. The signature of the Rocky Mountains is visible 

throughout most seasons among both the historical simulation and future projections, 

revealing higher fractions along the windward side of the range and relatively lower 

fractions on the leeward side. While this supports the concept of the Rockies as the 

second major topographic barrier encountered by ARs in the West, projections generally 

show the central US with the only positive change, suggesting future ARs may penetrate 

complex terrain and cause impactful precipitation on the leeward side of the range. 

Fractions in the East are generally lower compared to the West, indicating that ARs in the 

East are less likely to be associated with a precipitation extreme than those in the West. 

This result likely speaks to the diverse range of precipitation triggering mechanisms (e.g., 

convective or frontal lift) in the East, compared to the West. However, end-of-century 

change in the East is consistent with the West (Fig. 4.7q-t), indicating a smaller 

proportion of linked days to AR days. Regional aggregates further show a notable 

consistent decrease in the Southeast at ~4% across all seasons by the end of the 21st 

century (Fig. 4.7u-y).  

 

For better interpretation of the decreased end-of-century change shown here, it’s 

important to note that increases in the number of AR days in the future are evident 

(shown in Fig. 4.2). With 95th percentile extreme precipitation thresholds defined in the 
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future, even if all possible extreme precipitation days are associated with an AR, there are 

likely to be more projected AR days than extreme precipitation days, generating a lower 

proportion of linked days to AR days. Negative change could result from changes in the 

linked AR extreme precipitation days contributing to this fraction, warranting additional 

analysis to fully understand potential implications of the results. Even with a robust 

understanding of IVT and the CC relationship under warming signifying a higher 

moisture content in future ARs, a number of other factors could have implications on 

AR-precipitation characteristics in the future necessitating deeper analysis in future AR 

impacts studies.    

 

4.3.4 NCA Region Summaries  

4.3.4.1 Inter-model Comparison of Regional and Seasonal Distributions of AR Size and 

Strength 

As a means of comparing individual model output among projected change in the AR 

characteristics shown at the grid point scale in Figs. 4.3 and 4.4, individual model 

boxplots representing the seasonal distribution of AR magnitude and AR area, for each of 

the seven NCA regions, are shown in Figs. 4.8 and 4.9. Each figure contains 4 panels 

(rows) corresponding to a different season, with varying colors for distinction between 

regions (columns). Model names are labeled along the horizontal axis. Each region’s 

colored boxplots show the end-of-century distribution, while gray boxplots show the 

historical distribution, depicted side-by-side to illustrate change and allow for inter-

model comparison. The solid colored (end-of-century projection) and gray (historical 
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simulation) lines through each region’s boxplots reflect the multi-model mean value. The 

asterisk (*) on each boxplot signifies the 95th percentile of the distribution. Here, AR 

characteristics shown for each region represent ARs that had at least 10% of their area 

within the region bounds.  

 

AR magnitude is shown in Fig. 4.8 as the distribution of maximum IVT (kg m-1 s-1) for 

all ARs detected in a given region. A shift in the multi-model mean magnitude of 

maximum AR IVT is apparent from the historical distribution to the end-of-century 

projection, indicating that the AR maximum IVT will increase in the future across all 

regions and seasons. DJF and SON display the distributions with the largest spread, 

highest values, and greatest change, relative to the historical simulation (Fig. 4.8a,d), 

exceeding 2000 kg m-1 s-1 in SON by the end of the century in some models in some 

regions, consistent with seasonal maxima in mean AR IVT shown in Fig. 4.3. In MAM, 

the Southern Great Plains, Midwest, Northeast, and Southeast regions reveal distributions 

with less spread and lower values of maximum AR IVT, rarely exceeding 1500 kg m-1 s-

1, compared to regions in the West (Northwest, Southwest, Northern Great Plains) which 

tend to show larger values and positively skewed distributions (Fig. 4.8b). The MRI-

ESM2-0 model has a notably high 95th percentile value in MAM and SON across all 

regions compared to other models (Fig. 4.8b,d), while the median value for the MPI-

ESM1-2-LR model tends to be lower relative to other models, notably in SON (4.8d). 

Qualitatively, model spread is lowest for regions in the East in DJF, MAM, and JJA, 

compared to model output among regions in the West.  
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Regional boxplots of AR area (x107 km2) are shown for each model in Fig. 4.9. All 

models project increases in AR area size and variability by the end of the century across 

all regions and seasons. Models generally agree that the largest ARs occur in SON across 

all regions, with the ACCESS-ESM1-5 and MRI-ESM2-0 models capturing the largest 

ARs during those months, in some cases exceeding 3 x107 km2 among the end-of-century 

distributions (Fig. 4.9d). ARs in MAM and JJA (Fig. 4.9b,c) tend to be smaller in areal 

extent compared to DJF and SON (Fig. 4.9a,d), with 95th percentile values rarely 

exceeding 1.5 x107 km2 in future projections. Distributions of AR area are consistently 

positively skewed across all seasons and regions, including MAM and JJA where 

distributions show less spread (Fig. 4.9b,c). Overall, model spread shows regional and 

seasonal variability, with the smallest spread occurring among regions in the East in DJF 

and JJA (Fig. 4.9a,c), where models tend to show similar median values, 95th percentiles, 

and range, and largest spread in SON across all regions (Fig. 4.9d). 

 

4.3.4.2 NCA Region Summary of AR Characteristics  

End-of-century change in AR characteristics, shown at the grid point scale in Figs. 4.5-

4.7, are summarized over the seven NCA regions in Fig. 4.10. Here shading reflects 

projected change in AR frequency and arrow size and color refer to change in maximum 

AR IVT magnitude and AR area, respectively. Arrow direction represents mean end-of-

century AR IVT direction. Projected change in AR frequency for a given NCA region is 

normalized by area (i.e., number of AR days per 10,000 km2) to account for differences 
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in region size. ARs in each region are again identified under the condition that at least 

10% of the grid points of the AR object are within the region boundaries.  

 

Results show the largest changes in AR area (arrow color) occur in the Northwest, 

Southwest, Northern Great Plains, Midwest and Northeast in SON (Fig. 4.10d) and in the 

Northwest in DJF (Fig. 4.10a). Change in maximum AR IVT magnitude (arrow length) is 

greatest in the Northwest and Northern Great Plains in DJF (Fig. 4.10a) and consistently 

across all regions in SON (Fig. 4.10d). Notable changes in AR day frequency are 

apparent in the Northwest in JJA (Fig. 4.10c) at ~5 more AR days/10,000 km2 and in the 

Northeast in MAM (Fig. 4.10b) at ~6 more AR days/10,000 km2, where relatively 

smaller changes in AR magnitude and area are projected. The Midwest and Southern 

Great Plains experience the greatest increase in AR days in MAM (Fig. 4.10b), with 

relatively modest increases in AR magnitude, between 100 and 150 kg m-1 s-1. JJA 

reveals generally smaller changes in AR days and AR area (Fig. 4.10c), with regions in 

the East experiencing greater changes in AR magnitude than regions in the West. There 

is little regional variability among regionally aggregated AR direction in the future.  

 

4.3.4.3 NCA Region Summary of AR Precipitation Characteristics 

Seasonally and regionally summarized end-of-century change in AR precipitation 

characteristics are illustrated in Fig. 4.11. Here, region shading (brown-to-green) reflects 

change in the 95th percentile threshold for the three-day precipitation totals used to define 

extreme precipitation days. Each region further displays an illustrated bucket depicted 
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with a red and blue water level as well as a dark and light stacked gray bar. The water 

level refers to the median fraction of AR precipitation or the amount of precipitation that 

fell on AR days relative to the total precipitation amount, among the historical simulation 

(blue) and end-of-century projection (red). The depth of the red line, therefore, reflects 

the change labeled on each bucket. The adjacent bar refers to the median extreme 

precipitation fraction, or the number of linked AR extreme precipitation days relative to 

the total number of extreme precipitation days for the historical simulation (dark gray) 

and end-of-century projection (light gray). Again, the depth of the light gray bar reflects 

change in the percentage here.  

 

Results show the largest increases in the 95th percentile extreme precipitation threshold 

occur in the Southeast and Northwest in DJF (Fig. 4.11a), while the majority of regions 

in JJA experience a decrease in the threshold by the end of the century (Fig. 4.11c). In 

MAM in the Southern Great Plains, Southeast, and Northeast, as well as in SON in the 

Northwest, ARs are projected to be responsible for 15% more of the total climatological 

precipitation (Fig. 4.11b,d). In the Northwest and Southwest, the largest proportion of 

linked days to extreme precipitation days occurs in DJF at ~85-95% with small future 

change and in SON at ~70-75% historically with 15% and 10% increase by the end of the 

century, respectively (Fig. 4.11a,d). The Northern Great Plains experiences relatively 

large increases in the extreme precipitation fraction across the seasonal cycle, displaying 

percentages between 20-30% in the historical simulation with comparable increases by 

the end of the century, between +15-20%. In the Southeast, ARs are projected to be 
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responsible for between 45-50% of the total precipitation in DJF, MAM, and SON and 

experience proportions between 70-75% of linked days to extreme days by the end of the 

century (Fig. 4.11a,b,d). Historically consistent with Mahoney et. al (2016), ARs are 

projected to become more influential in the Southeast during the cool/transition season 

months (fall-spring). The Northeast shows an increase in the 95th percentile extreme 

precipitation threshold in all seasons, including JJA. Among the historical simulation, 

ARs are responsible for 20-30% of the total precipitation across the seasonal cycle and 

between 50-65% of extreme precipitation days in DJF, MAM, and SON, with projected 

changes each ranging from +5-15% by the end of the century (Fig. 4.11a,b,d). The 

Southwest is projected to experience a 10% increase in AR-driven precipitation, as well 

as in the proportion of linked days to extreme days in all seasons except for JJA, which 

shows little-to-no change in the future. 

 

4.4 Summary and Conclusions 

Across the CONUS, research on the effect of climate change on ARs and associated 

hydrometeorological impacts is limited. The growing body of evidence documenting 

ARs and AR-like conditions driving precipitation extremes and flooding among the 

observational record warrants a CONUS-wide assessment of change under warming. To 

expand our understanding of the regional-scale variability in potential change in AR 

characteristics and associated precipitation, an objective AR detection algorithm is 

applied to five CMIP6 GCMs to provide a pointwise and regionally aggregated seasonal 
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understanding of AR frequency, magnitude, geometry, and impacts over the seven NCA 

regions across the CONUS.  

 

Climatologies of projected change in AR frequency (Fig. 4.2) across the CONUS reveal 

increased AR day frequency in all regions and seasons by the end of the century. Notable 

increases in SON are evident for the Northwest, Southwest, and Northern Great Plains, 

indicating ~7-11 more AR days per season in the future. Projections of higher AR IVT 

magnitude by the end of the century in the Northern Great Plains (Fig. 4.3q-t) may point 

to lower precipitation efficiency by orography along the western boundary of the region. 

The thermodynamic response of the atmosphere, signifying a higher moisture content 

within an atmospheric column at high altitudes, may lessen the effect of orographic 

forcing (Siler and Roe 2014; Shi and Durran 2016), the dominant precipitation lifting 

mechanism along the West Coast, potentially altering the frequency and magnitude of 

inland penetrating ARs in the future. Increased AR day frequency in the Southern Great 

Plains, Midwest, and Northeast is also prominent among end-of-century projections in 

MAM (Fig. 4.2r).  

 

IVT magnitude on AR days is also expected to increase in all US regions across the 

seasonal cycle (Fig. 4.3). Maxima in AR IVT magnitude in the future occur in the 

Northwest and Southwest in DJF and SON (Fig. 4.3q,t). Regions across the eastern US, 

including the Midwest, Northeast, and Southeast, reveal large increases in AR intensity 

in MAM and SON (Fig. 4.3r,t). Projections reveal some of the largest regional increases 
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in AR IVT magnitude occur in the Northeast, ranging between ~34-43 kg m-1 s-1. 

Increased atmospheric moisture with warming, based on CC scaling, has been shown as 

the primary cause of intensified IVT (Lavers et al. 2015). Increased IVT on AR days, 

although not the only determinant, poses potential influence to AR-related precipitation 

patterns and intensity (Pendergrass 2018).  

 

Increased AR area (Fig. 4.4) is also expected under warming based on mid- and end-of-

century projections. The largest ARs in the future are projected to occur in the Northwest 

and Northern Great Plains, increasing by up to ~4 x107 km2 in areal extent, suggesting 

potential for an increased role by vast inland penetrating ARs by the end of the century. 

Changes in AR geometry may also be linked to projected increases in AR days, as 

individual AR features will comprise a larger geographic area relative to the historical 

period. These results are consistent with Espinoza et al. 2018, which notes an increase in 

AR conditions (days) as well AR length and width.  

 

Objectively detected ARs among model historical simulations and future projections 

further linked with precipitation characteristics signify potential change in AR impacts 

across the CONUS (Fig 4.5-4.7). Results show ARs are projected to play a bigger part in 

the total precipitation experienced by US regions, specifically in the Northwest in SON 

where ARs are projected to be responsible for ~17% more of the total precipitation in the 

region (Fig. 4.5y). AR-related precipitation is also shown to increase substantially in the 

Midwest and Northeast in MAM at 16% by the end of the century (Fig. 4.5v). Projections 
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of linked AR extreme precipitation days relative to the total number of extreme days, 

shows high percentages projected across the West in most seasons (Fig.4.6). While the 

dependency of local warming on precipitation intensity has been shown to modulate the 

rate of snowfall decline in the Cascades and Sierra Nevada (Rupp and Li 2017), change 

in AR driven precipitation under warming accompanied by expectations around changes 

in freezing level across the Northwest (Catalano et al. 2019), may influence the balance 

of rain versus snow, posing significant ramifications for water resource management, 

hydropower production, and natural ecosystems. Increases in extreme precipitation days 

that are AR-related are also evident across the Southern Great Plains, Midwest, and 

Northeast in MAM (Fig 4.6r). In general, the proportion of linked AR extreme 

precipitation days to AR days is projected to decrease across most US regions by the end 

of the century (Fig.4.7). This result may imply an increased role by other extreme 

precipitation-causing meteorological mechanisms; however, a more robust interpretation 

requires continued analysis on projected change in AR linked extreme precipitation days 

in the future.  

 

Regional summaries of AR characteristics and associated precipitation across the seven 

NCA regions are shown in Figs. 4.8-4.11. Individual model boxplots of historical and 

future distributions of maximum AR IVT and AR area reveal an increase in AR 

magnitude and size by the end of the century across all regions and seasons with a high 

level of model agreement (Figs. 4.8-4.9). Regionally aggregated statistics show large 

increases CONUS-wide in maximum AR IVT by ≥ +150 kg m-1 s-1 and AR area in SON, 
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as well as in the Northwest and Northern Great Plains in DJF (Fig. 4.10). Regionally 

summarized AR precipitation characteristics (Fig. 4.11) show an increase in 95th 

percentile multi-day precipitation across all regions and seasons, apart from JJA which 

largely sees a decrease in the threshold by the end of the century. ARs are broadly 

projected to become responsible for a larger proportion of wet days in most regions, 

notably in the Northwest in SON and in the Southern Great Plains, Midwest, and 

Northeast in MAM (Fig. 4.11b,d). Projected increases in the proportion of linked days to 

extreme precipitation days are also evident with regional and seasonal variability.  

 

Several caveats should be considered when interpreting results from the climatologies of 

projected change presented here. The use of five models in this analysis is not sufficient 

for a robust sampling of model physics or internal variability. Results further require 

statistical significance testing, to determine error bars for projections of future change. 

Additionally, results have yet to be fully reconciled with a CMIP6 climate model 

evaluation being carried out in parallel to this study, which will offer a direct evaluation 

of CMIP6 model representation of AR characteristics and associated precipitation across 

NCA regions (Gonzalez-Hirshfeld et al. 2021). It’s important to note that several 

methodological choices presented here have the potential to alter results, including 

historically defined IVT thresholding for AR detection and 95th percentile precipitation 

extremes defined in the future. AR detection using future IVT would likely result in 

lower values of AR day frequency due to a higher 85th percentile under warming. The use 

of historically defined 95th percentile precipitation extremes would also alter results and 
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conclusions from this analysis, with a higher frequency of extreme precipitation days 

likely. Ultimately, this study provides added understanding of the regional variability in 

projected change regarding the character and associated impacts of ARs and further 

highlights the continued need for improving our understanding of the effect of climate 

change on ARs across all US regions. 
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Chapter 5: Summary, Conclusions, and Implications of Future Work  

 

Extreme precipitation is associated with multiple societal impacts including threats to 

property, agriculture, infrastructure, and even human life. While it is recognized that 

anthropogenic climate warming will alter precipitation extremes globally, considerable 

uncertainty remains around the sign and magnitude of change at local to regional scales 

(Wehner et al. 2010; Fischer et al. 2014; Farnham et al. 2018). In order to constrain the 

regional drivers of this uncertainty, an improved understanding of the roles of associated 

local through synoptic scale processes is required. The recurrent theme of this 

dissertation is to provide an in-depth understanding of regional variability in extreme 

precipitation and associated meteorological mechanisms in past, present, and future 

climates across the contiguous United States (CONUS). In particular, analyses focus on 

documenting the frequency and magnitude of precipitation extremes and atmospheric 

rivers (ARs) seasonally over the seven National Climate Assessment (NCA) regions 

across the CONUS, in both recent and future decades.  

 

In Chapter 2, an extreme precipitation categorization scheme is developed and applied to 

a range of diverse precipitation measurement approaches to monitor and track extreme 

precipitation regionally across the CONUS, as well as to better understand and constrain 

observational uncertainty. Chapter 3 applied an objective AR detection algorithm to 

global reanalysis to identify and characterize ARs and associated precipitation regionally 

across the CONUS. Chapter 4 extended the analysis performed in Chapter 3 to identify 

regional-scale variability in projected change in AR characteristics and associated 
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precipitation under warming across the CONUS. This chapter summarizes and discusses 

the key findings of each chapter, their implications and relevance within the scientific 

community, as well as opportunities and avenues for future work, as outlined below.  

 

5.1 Development and Application of an Extreme Precipitation Categorization 

Scheme and Assessment of Observational Uncertainty 

In Chapter 2, a gridded indicator of change in extreme precipitation over the CONUS is 

developed and applied to monitor and track precipitation extremes over both space and 

time. Developed as a contribution to NASA’s support of the continuing efforts of the 

NCA, a key goal of this analysis was to apply the scheme as a target for a dataset 

intercomparison to constrain observational uncertainty and assess the effect of resolution 

on the ability of a dataset to capture small-scale extremes. The indicator itself manifested 

as a precipitation category (P-Cat) ranking system based on assigning a P-Cat to three-

day precipitation totals exceeding 100mm of total accumulated precipitation. P-Cats are 

categorized such that, 100-200 mm is assigned P-Cat 1, 200-300 to P-Cat 2, 300-400 to 

P-Cat 3, 400-500 to P-Cat 4, and 500+ to P-Cat 5. To better understand and constrain 

observational uncertainty, the P-Cat scheme is applied as a target for a dataset 

intercomparison across a range of precipitation measurement products constructed using 

different techniques. The intercomparison includes in situ station data from the Global 

Historical Climatology Network-Daily (GHCN-D), satellite-derived data from the 

Tropical Rainfall Measuring Mission (TRMM), gridded station data from the Parameter-

elevation Regression on Independent Slopes Model (PRISM), global reanalysis from the 
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Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-

2), and regional reanalysis from the North American Regional Reanalysis (NARR). 

 

Results from this analysis provide a complete and intuitive way to interpret and visualize 

extreme precipitation climatology across the CONUS. One of the more striking results is 

that the most extreme precipitation events occur across the mountains of the western US 

in the winter and across the southeastern US in the summer and fall, associated with ARs 

and tropical systems, respectively. Dataset intercomparison results provide additional 

insight into observational uncertainty and the importance of dataset choice when 

applying the P-Cat scheme to track extreme precipitation over space and time. All 

datasets included capture the principal spatial and temporal patterns of precipitation 

extremes across the CONUS, however, considerable differences exist in the magnitude 

and spatial extent of P-Cat climatology. In general, the datasets with the finest native 

resolution best capture the magnitude and spatial detail of P-Cat magnitude and 

frequency as measured by in-situ station data. This result is consistent with expectations 

that finer resolution gridded data should be able to resolve events at the far tails of the 

precipitation event probability distribution as compared with coarser data where spatial 

smoothing would reduce the magnitude of extremes. However, after datasets are spatially 

interpolated to a coarser grid, higher resolution products maintain the highest magnitude 

and frequency of P-Cat events, suggesting that a high native resolution is important for 

fundamentally capturing local-scale extremes. Additionally, satellite-derived products 
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show robust limitations at capturing extremes in regions of complex terrain across the 

West, specifically where frozen precipitation is a major contributor to extreme events.  

 

The extreme precipitation categorization scheme described above was developed as a 

‘heavy precipitation’ pilot indicator of climate change for use by the NCA. It was 

specifically constructed to improve upon the current indicator which failed to provide 

regionally specific, versatile, and user-oriented information at relevant spatial and 

temporal scales meaningful to most stakeholders. To better address the goals of the NCA, 

the P-Cat scheme was designed and executed to allow for easy calculation, visualization, 

and discernability of spatiotemporal changes in extreme precipitation frequency and 

intensity. Its usefulness extends to a wide range of user-communities from both private 

and public sectors, including water resource managers, local and state governments, 

agricultural and construction interests, and urban planners. The indicator is now available 

as a web-based platform, using the open-source python-based Bokeh library2, as a point 

and click interactive web platform for computing and visualizing P-Cat variability across 

NCA sub-regions and time-periods. In addition, the observational dataset 

intercomparison performed here provided a necessary understanding of the range of 

observational uncertainty in extreme precipitation climatology, allowing for more robust 

conclusions about the implications associated with choosing a precipitation platform for 

use as a primary reference.   

 

 
2 https://bokeh-gis.geog.pdx.edu/app  

https://bokeh-gis.geog.pdx.edu/app
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Following the analysis presented in Chapter 2, the continued use of the P-Cat 

methodology offers a range of avenues for future work. The P-Cat approach is easily 

extensible to other regions, or globally, to facilitate temporal and spatial tracking and 

monitoring of extremes. The dataset intercomparison can be applied to additional 

precipitation measurement products (i.e., radar). The indicator also has application for 

use as a target for climate model evaluation, as well as integration within NASA Jet 

Propulsion Laboratory’s Regional Climate Model Evaluation System, as a novel measure 

of model skill at realistically simulating extreme precipitation climatology. To improve 

the extensibility of the P-Cat scheme, which uses a fixed threshold to define P-Cats, a 

flexible P-Cat scale has since been developed (not shown here). This flexible scale uses 

in situ station observations to assign each P-Cat a percentile range based on a CONUS-

wide three-day precipitation total frequency distribution. Percentiles are further used to 

identify P-Cat events among observational datasets, such that all datasets will necessarily 

have some occurrence of all five categories and when applied, acts to remove systematic 

bias that may be related to grid resolution, providing a different angle on dataset 

intercomparison. In turn, this flexible scheme is customizable for a given geographical 

region or dataset. Finally, the P-Cat methodology and usefulness as an indicator of 

climate change offers a basis for exploring the driving meteorological mechanisms 

associated with P-Cat events (e.g., ARs).  
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5.2 Identification of Atmospheric Rivers and Linked Precipitation Regionally 

Across the CONUS Within the Observational Record 

In Chapter 3, an objective AR identification algorithm is applied to global reanalysis, 

from MERRA-2, to consistently characterize ARs and associated precipitation regionally 

across the CONUS. The approach involves a combination of percentile-based IVT 

thresholding, as well as a series of geometric and directional requirements to identify 

coherent regions of enhanced IVT. Characteristics, including AR day frequency, IVT 

magnitude, and area, as well as several metrics assessing linked AR extreme 

precipitation, are computed at each grid point and summarized over the seven NCA 

regions across the CONUS. Precipitation extremes are identified based on three-day 

precipitation totals exceeding the 95th percentile at each grid point. A minimum distance-

based interpolation scheme is used to link AR characteristics, defined using MERRA-2, 

with PRISM’s high resolution precipitation measurements. To further discern the spatial 

characteristics of ARs in each region, seasonal composites of AR IVT magnitude and 

direction, along with AR axis density plots, are computed for a major city in each of the 

seven NCA regions.  

 

Seasonal climatologies of AR frequency reveal ARs in the Northwest and Southwest are 

most common in the winter and fall, with greater than 10% of days having a detected AR. 

Although considerably less widely studied, AR occurrences east of the Rocky Mountains 

are observable across the seasonal cycle with notable maxima of greater than 12% in the 

Southeast in the winter and 10% in the Central US during the summer and shoulder 
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seasons. Composites of IVT for cities exhibiting different AR climatologies, further 

highlight regional variability among AR geometries and associated water vapor 

pathways. Detected ARs linked with precipitation measurements show that ARs are 

responsible for up to 50% of the total precipitation that falls over parts of the Northwest 

and Southwest during the fall and winter, as well as across the Midwest and Southeast 

during the spring. A substantial proportion of extreme precipitation days are also 

associated with ARs over many parts of the CONUS, including the eastern US. However, 

the seasonality of linked AR extreme precipitation days is starkly different across 

regions. For example, across the Northwest close to 75% of extreme precipitation days 

are linked to ARs in the winter, while across the Midwest and southern Great Plains ARs 

play an important role during the summer with over 50% of extreme precipitation days 

AR-related. Results suggest generally higher levels of background moisture and a more 

diverse array of precipitation triggering mechanisms in the East are likely responsible for 

differences in AR occurrence and impacts compared to the West. 

 

The role of ARs and associated impacts have been well-documented across the western 

US, with considerably less attention focused on the influence of ARs in other regions 

across the CONUS. However, a growing body of evidence, predominantly in the form of 

case-studies and regionally specific analyses, support links between AR-like conditions 

and a number of heavy precipitation and high-impact flood events across parts of the 

central/eastern US. This study was the first to summarize AR climatology and 

importance as a mechanism for extreme precipitation consistently, at relatively fine 



 

 

 

111 

spatial scales, over the seven NCA regions across the CONUS. In turn, results offer 

insight into the fundamental importance of ARs to the hydroclimate of many regions 

across the CONUS where they have been largely under-studied. While it was beyond the 

scope of the study to attempt to link AR objects with any phenomena besides extreme 

precipitation, interpretation of AR activity, characteristics, and hydrometeorological 

impacts across regions largely overlapped with a number of other well-documented 

phenomena of the climate system, speaking to the complex and interwoven mechanisms 

driving AR impacts. For example, high AR occurrence over the Great Plains and Ohio 

River Valley in the spring indicated potential linkages to moisture transport through 

features like the Great Plains low-level jet and “Maya Express.” Furthermore, high rates 

of AR extreme precipitation across the eastern half of the US, where orographic lifting of 

AR moisture is minimal or non-existent, suggests new insights regarding the role of non-

orographic or synoptic and mesoscale forcing (e.g., convection, frontal, isentropic lift) in 

AR-related precipitation patterns, intensity, and duration across the East. 

 

Results from this study can be leveraged in a number of ways to support ongoing work. 

The observed AR characteristics and metrics used to assess regional variability here are 

currently being applied to evaluate the performance of climate models at accurately 

representing the seasonality and regional distribution of AR characteristics and 

precipitation extremes across the CONUS (Gonzalez-Hirshfeld  et al. 2021). Observed 

patterns of AR frequency, geometry, magnitude, and impacts further serve as a 

benchmark for quantifying projections of change in future AR characteristics under 
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global warming (i.e., Chapter 4). Insight surrounding the role of non-orographically 

driven AR precipitation further motivates questions regarding the key synoptic 

environments (i.e., meteorological characteristics, dynamical processes, lifting 

mechanisms) responsible for producing precipitation during an AR and their regional 

variability. With a growing understanding of the geographical extent of AR impacts, a 

number of analyses that have been applied to the West Coast can equally be applied to 

the East. For example, ARs have been documented as influential in modulating drought 

along the US West Coast (Dettinger 2013). With additional insight from this analysis as 

to the substantial role of ARs in regional precipitation and extremes across the East, 

questions emerge around the role ARs and drought in regions East of the Rockies, such 

as the agriculturally rich Great Plains. Finally, results from this analysis have the 

opportunity to motivate continued robust regional-scale analyses of AR importance in 

regions around the globe where they may not yet be fully understood. 

 

5.3 Quantification of the Effect of Climate Change on Atmospheric River 

Characteristics and Associated Precipitation using CMIP6 Models  

In Chapter 4, an objective AR identification algorithm is applied to five Coupled Model 

Intercomparison Project Phase 6 (CMIP6) models to quantify projected change in AR 

characteristics and associated precipitation by the end of the century. AR identification 

uses relative IVT thresholding consistent for the current and future climate and is applied 

uniformly and consistently across CONUS. Change is quantified between each CMIP6 

model’s historical simulation (1984-2013) and mid- (2036-2065) and end-of-century 
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(2071-2100) projections under the Shared Socioeconomic Pathway (SSP) 585, or high-

end emissions warming scenario. The projected impact of warming on AR frequency, 

geometry, intensity, and associated precipitation is quantified at the grid point scale as 

well as summarized over the seven NCA regions across the CONUS. ARs are 

subsequently linked with extreme precipitation occurrence, defined as three-day 

precipitation totals exceeding the 95th percentile relative to a given time period. An AR 

extreme precipitation linkage is made when an AR is collocated with at least one day in 

the three-day total used to define the extreme. An inter-model comparison, assessed 

model spread among historical simulation and end-of-century projection results for the 

distribution of AR IVT magnitude and area among ARs detected in each NCA region 

stratified by season.  

 

Projections indicate that increases in AR days will occur across all regions and seasons 

by the end of the 21st century. Notable maxima occur in the West in the winter, central 

and southeastern US in the spring, parts of the Northeast in the summer, and Pacific 

Northwest and interior West in the fall. AR IVT magnitude is also projected to increase 

across all regions and seasons by the mid- and end-of century, with little-to-no change in 

AR IVT direction. Some of the greatest regional change in AR IVT is projected to occur 

in the Northeast by +40 kg m-1 s-1 in the spring and fall. Projections of the seasonal 

distribution of AR area also show positive change in the future, indicating some of the 

largest ARs will occur across the Northwest and Northern Great Plains in the winter and 

fall. Model intercomparison results show a high degree of model agreement regarding 



 

 

 

114 

increased maximum AR IVT magnitude and AR area by the end of the century. Linked 

AR precipitation characteristics indicate ARs will be responsible for a larger proportion 

of total precipitation in most regions by the end of the century, notably in the Midwest 

and Northeast in the spring and in the Northwest and Northeast in the fall by +15-17%. 

The proportion of linked AR extreme precipitation days to the total number of extreme 

days is also projected to increase, with a large expanse of the West maintaining between 

90-100% in the winter and the Ohio River Valley experiencing between ~70-85% in the 

winter, spring, and fall. Projections of the proportion of linked days to AR days reveal 

largely negative change in the future, requiring further assessment of the projected 

change in linked days.  

 

This work was carried out as an extension of the analysis presented in Chapter 3, and was 

motivated by the need for a more holistic and comprehensive understanding of ARs and 

their response to climate change across the CONUS. While the documentation of 

observed change, characteristics, and impacts of ARs outside of the western US is 

limited, as mentioned above, our understanding of projected change in ARs under 

warming in most US regions, at impacts-relevant scales, is largely non-existent. Using 

the latest available state-of-the-art suite of global climates models (GCM’s) from the 

CMIP6 database, this is the first study, to date, to assess climate change effects on ARs 

over the seven NCA regions across the CONUS. Results are further presented at grid 

point through regional scales, to capture and record fine-scale changes, as well as 

communicate aggregated regional results, most relevant to society and stakeholders. 
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While results across the West largely corroborated with existing literature documenting 

increases in AR frequency, intensity, and associated impacts in the future, this work 

further illuminated potential change in regions across the East, where AR research is 

minimal. The combination of the observational analysis in Chapter 3 and this climate 

change assessment aim to provide a more comprehensive and consistent CONUS-scale 

analysis of ARs for the continued efforts of the NCA as a contribution to future reports.  

 

While the documented effects of warming on ARs within this analysis are thorough, 

interpretation of the results relies heavily upon climate model fidelity and the ability of 

climate models to realistically simulate AR climatology relative to observations. Towards 

this end, an evaluation of AR representation in CMIP6 models is currently being carried 

out in parallel to this assessment and preliminary results do show some notable biases 

which have not yet been thoroughly reconciled with projections (Gonzalez-Hirshfeld et 

al. 2021). In addition to a contextual understanding of model performance, results from 

this analysis motivate the need for continued diagnostic studies to identify sources of 

systematic bias in AR representation among models to improve simulations and 

projections. This analysis employs a multi-model approach in an effort to reduce the 

sensitivity of results to any one model’s construction choices. However, due to 

limitations in data availability, the use of only five model further lends itself to the 

inclusion of more models, as data becomes available, to reduce sensitivities. Results 

further motivate the incorporation of additional metrics (e.g., AR duration, 

thermodynamic vs dynamic drivers of change in AR IVT, etc.) for evaluating the 
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changing role of ARs with warming across US regions. Future research identifying the 

key synoptic environments and processes that contribute to precipitation formation in 

ARs, their representation among climate models, and their potential for change under 

warming is critical to an improved understanding of potential intensification and regional 

variability of AR impacts in the future.  

  

5.4 Concluding Remarks 

While extreme precipitation is generally expected to intensify under global warming, 

uncertainty remains around the sign and magnitude of change at local through regional 

scales. With change likely underway and impacts being felt, a firm and comprehensive 

understanding of future projections of extreme precipitation at impacts-relevant scales is 

both critical and urgent. The results and conclusions from this dissertation aim to identify 

and quantify uncertainty in the regional-scale variability of extreme precipitation 

climatology and associated meteorological mechanisms in past, present, and future 

climates. As a contribution to the continuing efforts of the NCA, each main chapter 

provides information at regionally-relevant scales, computed at each grid point as well as 

summarized over the seven NCA regions across the CONUS. The methodologies and 

statistical analyses applied here are simple, yet robust, measures of regional variability 

and change that can easily be reproduced to foster and support continued analyses on 

precipitation extremes.  

 



 

 

 

117 

The World Climate Research Program’s ‘Weather and Climate Extremes’ Grand 

Challenge identifies two key questions as critical to its advancement. These questions 

address whether current observations are sufficient for studying extremes and what the 

roles of local through synoptic scale processes are in the formation of extremes. The 

culmination of the three main chapters of this dissertation directly addresses these widely 

recognized challenges. To address observational sufficiency, Chapter 2 demonstrates 

differences among data products at capturing extreme precipitation climatology across 

the CONUS. Amidst substantial variability, product limitations were largely driven by 

native grid resolution in reanalysis products, misrepresentation of complex terrain and 

snowfall in satellite-derived products, and spatiotemporal inconsistencies among in situ 

data. Observations are the key foundation for understanding long-term climate variability 

and change. Continued investigation of data limitations and inconsistencies is necessary 

to inform future instrumental and algorithmic improvements required to underpin 

detection and attribution studies and model evaluation. 

 

To address the roles of synoptic, regional, and local scale processes in the formation of 

extremes, Chapters 3 and 4 focus on ARs, which exist as one part of a larger, synoptic 

scale dynamical system driving precipitation extremes across the CONUS. ARs play a 

substantial role in driving extreme precipitation across many regions CONUS-wide, with 

the potential for change under warming reinforcing their importance to water resources. 

ARs have their own physical and statistical properties, which vary locally, regionally, 

and seasonally, but are distinct from other storms and weather phenomena. Recognition 
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of their special roles in weather and climate extremes will allow for more targeted 

responses to both the risks and benefits to society now and in the future. Better 

quantification of the importance of meteorological mechanisms and their interactions is 

critical for reducing uncertainties in projections and improving sub-seasonal to decadal 

predictability of extreme precipitation and attribution.  

 

Looking forward, future climate change impacts studies require an improved dynamical 

and physical process-based understanding of extreme precipitation and the associated 

driving meteorological mechanisms. Given the important role ARs play in the regional 

hydrometeorology of the US and their role in weather and water extremes, understanding 

how the underlying synoptic scale weather patterns associated with enhanced AR 

precipitation events will change in the future is imperative. The profound effects of 

topographic forcing on winter mid-latitude cyclones and AR conditions are well-

documented across the US West Coast (Ralph et al. 2006; Neiman et al. 2008a; Paltan et 

al. 2017). However, this is not the only mechanism inducing the upward motion of 

moisture necessary for triggering precipitation; other processes, such as synoptic and 

mesoscale systems, can play an important role in the intensification of precipitation via 

convective motion. At present, an observed robust investigation of the multiscale 

interactions and dynamic environment within ARs that drive associated extreme 

precipitation across regions over the CONUS does not exist. Knowledge of these 

synoptic regimes is necessary to address the current challenges in AR forecasting and 

projections of their distribution, intensity, and frequency. Future work leveraging the 
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findings from this dissertation, aims to carry out a rigorous and robust investigation of 

the underlying dynamics driving AR precipitation extremes and their spatiotemporal 

variability across the CONUS. Reducing uncertainty in the regional-scale variability and 

disproportionate rates of change in extreme weather and climate events across the 

CONUS is crucial in order to mitigate risk and reduce negative impacts to natural 

systems and society. 
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Chapter 2 Tables 

Agency 

Source 

Dataset   Spatial 

Resolution 

Temporal 

Resolution 

Data Source Reference 

NASA  TMPA  TRMM Multi- 

Satellite Precipitation  

Analysis 3B42V7  

0.25° x 

0.25°  

3-hourly  Satellite  Huffman 

et al. 

(2007)  

NASA  IMERG  Integrated 

MultiSatellite 

Retrievals for GPM  

0.1° x 0.1°   30-minute  Satellite  Huffman 

et al. 

(2017)  

OSU  PRISM  Parameter-Elevation  

Regressions on  

Independent Slopes  

Model   

0.04° x 

0.04°   

Daily  Gridded in 

situ station 

data  

Daly et al. 

(1994)  

NASA  MERRA-

2  

Modern Era  

RetrospectiveAnalysis 

version 2  

0.625° x 

0.5°   

3-hourly  Global  

Reanalysis  

Molod et 

al. (2015)  

NCEP  NARR  North American  

Regional Reanalysis  

32 km x 32 

km  

3-hourly  Regional 

Reanalysis 

with gauge 

assimilation   

Mesinger 

et al.  

(2006)  

NOAA  GHCN-D  Global Historical  

Climatology Network  

  Daily  In situ station 

data  

Menne et 

al. (2012)  

  

Table 2.1 Datasets used in the intercomparison and their associated specifications.  
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Coefficients of Variation                                                                                        

Annual P-Cat Frequency: CONUS                                                                         

  P-Cat 1  P-Cat 2  P-Cat 3  P-Cat 4  P-Cat 5  

GHCN-D  0.1506  0.3602  0.4901  0.9164  1.3614  

PRISM  0.2029  0.4466  0.7060  0.9800  1.2972  

TMPA  0.2834  0.7035  1.4352  2.2687  4.2426  

NARR  0.256  0.6584  1.3625      

MERRA-2  0.3701  0.9433  2.7955  4.2426    

  

Table 2.2 Dataset’s coefficient of variation values for each P-Cat’s annual frequency 

across the CONUS.   
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Coefficients of Variation                                                                                    

SON P-Cat Frequency: Southeast                                                                           

  P-Cat 1  P-Cat 2  P-Cat 3  P-Cat 4  P-Cat 5  

GHCN-D  0.4325  0.7217  1.1422  1.856  2.7255  

PRISM  0.4839  0.7796  1.4984  1.8646  2.2129  

TMPA  0.5626  1.0129  2.2725  3.2571  4.2426  

NARR  0.5970  1.0043  3.0870      

MERRA-2  0.6522  1.2568  2.9218  4.2426    

 

Table 2.3 Same as in Table 2 except for SON and only over the Southeast sub-region.  
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Coefficients of Variation                                                                                        

DJF P-Cat Frequency: Northwest                                                                          

  P-Cat 1  P-Cat 2  P-Cat 3  P-Cat 4  P-Cat 5  

GHCN-D  0.4082  0.6106  1.4798  2.4589  4.2426  

PRISM  0.4393  0.6483  0.9957  1.5989  1.9965  

TMPA  0.8906  1.7957  4.2426      

NARR  0.5802  1.3096  2.7069      

MERRA-2  0.6997  2.5205        

 

Table 2.4 Same as in Table 2 except for DJF and only over the Northwest sub-region.   
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Chapter 3 Tables 

 
    

                

                 

                 

                 

                 

                 

                 

                 

 

Table 3.1 Aggregated statistics for seasonal AR characteristics summarized over each of 

the seven NCA regions including AR frequency (ARs/10,000 km2); median IVT 

magnitude (kg m-1 s-1); median direction of mean AR IVT (degree), and median AR area 

(x106 km2).  
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Table 3.2 Aggregated statistics for seasonal AR precipitation characteristics summarized 

over each of the seven NCA regions including extreme precipitation day frequency 

(spatial median); fraction of AR precipitation relative to total precipitation (%); fraction 

of AR extreme precipitation relative to total extreme precipitation days (%); and fraction 

of AR extreme precipitation relative to total AR days (%).    
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Chapter 4 Tables 

Model Native Grid 

MPI-ESM1-2-HR 384x192 0.7° 

BCC-CSM2-MR 320x160 1.1° 

MRI-ESM2-0 320x160 1.1° 

ACCESS-ESM1-5 192x144 1.5° 

MPI-ESM1-2-LR 192x96 1.9° 

Note: Native grid spacing is calculated as (
360

𝑁𝑙𝑜𝑛

180

𝑁𝑙𝑎𝑡
)

0.5

 , where Nlon and Nlat are the 

number of grid points in the x and y direction (as in Norris et al. 2021; see study for 

relevant caveats). Models are listed in ascending order of native grid spacing. 

 

Table 4.1 CMIP6 models included in study. 
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Chapter 2 Figures  

 
 

Figure 2.1 P-Cat thresholds and associated colors used in subsequent figures.  
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Figure 2.2 The seven NCA sub-regions and the associated abbreviations.  
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Figure 2.3 Average annual precipitation over the period of 1998-2015. Results are for (a) 

GHCN-D, (b) PRISM, (c) TMPA, (d) NARR, and (e) MERRA-2.   
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Figure 2.4 Maximum observed P-Cat at each grid point over the 1998-2015 period. (a-d) 

Maximum P-Cats on native grid, (e-h) maximum P-Cats on common MERRA-2 grid. 

Spatially interpolated datasets are indicated with an asterisk. Color scale is as in Figure 

2.1. Un-shaded grid points indicate that no P-Cat has occurred during the data record.  
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Figure 2.5 Same as in Figure 2.4 except for SON.  
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Figure 2.6 Same as in Figure 2.4 except for DJF.  
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a) Annual and Seasonal: CONUS  b) Annual: Sub-Regions  

c) SON: Sub-Regions  d) DJF: Sub-Regions  
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Figure 2.7 Taylor diagrams quantifying the spatial correspondence of the maximum 

observed P-Cats for TMPA, MERRA-2, and NARR relative to PRISM. Results are for 

(a) the CONUS annually and seasonally, (b) relevant NCA sub-regions annually, (c) 

September, October, November for the NCA sub-regions, and (d) December, January, 

February for the NCA sub-regions. Each dataset is labeled by a symbol with each season 

and sub-region assigned a color as defined in the legends in the top two panels. The x and 

y axes correspond to the standard deviation ratio between the indicated dataset and 

PRISM. The radial axis is the pattern correlation, and the distance between the symbol 

and the PRISM location is proportional to the centered root mean squared difference 

between the spatial field of the maximum P-Cats of the indicated dataset and PRISM, 

normalized by the spatial standard deviation of the PRISM field. 
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Figure 2.8 (a-e) Mean annual frequency of P-Cat occurrence over the 1998-2015 record, 

(f-h) the difference between the mean annual frequency of P-Cat occurrence in the 

indicated dataset and PRISM. Frequencies are recorded as the number of P-Cats per year. 

Spatially interpolated datasets are indicated with an asterisk.   
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Figure 2.9 Same as in Figure 2.8 except for SON. 
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Figure 2.10 Same as in Figure 2.8 except for DJF. 
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Figure 2.11 Annual frequency of observed P-Cats over the 1998-2015 period. (a-d) 

Annual frequency of P-Cats on native grid, (e-h) annual frequency of P-Cats on common 

grid. Spatially interpolated datasets are indicated with an asterisk. Gray bars represent P-

Cat 1, green P-Cat 2, yellow P-Cat 3, orange P-Cat 4, and red P-Cat 5 as in the legend in 

Figure 2.1. Results are plotted on a log scale. 
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Figure 2.12 Same as in Figure 2.11 except for SON and only over the Southeast sub-

region.  
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Figure 2.13 Same as in Figure 2.11 except for DJF and only over the Northwest sub-

region.  
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Figure 2.14 P-Cat values for four individual storm events. The color scheme follows 

previous figures. P-Cat values are computed as the three-day precipitation total ending on 

the day indicated at the right of each row. Storms include a tropical cyclone (Floyd), an 

atmospheric river, a synoptic scale mid-latitude winter cyclone, and a mesoscale 

convective system (MCS). 
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Figure 2.15 Maximum observed P-Cats during April 2014-December 2015, the 

TMPA/IMERG overlap period. Results are for (a) GHCN-D, (b) IMERG, (c) TMPA, (d) 

Annual frequency per grid cell/station observed over time record. 
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Chapter 3 Figures 

  

Figure 3.1 AR frequency (% of days) between 1981-2016 at each grid cell. Results are 

for (a) December, January, and February; (b) March, April, and May; (c) June, July, and 

August; and (d) September, October, and November. 
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Figure 3.2 Mean IVT (kg m-1 s-1; shading) and mean IVT direction (arrows) for AR 

days between 1981-2016 at each grid cell. Results are for (a) December, January, and 

February; (b) March, April, and May; (c) June, July, and August; and (d) September, 

October, and November. 
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Figure 3.3 Median AR area (x106 km2) between 1981-2016 at each grid cell. Results are 

for (a) December, January, and February; (b) March, April, and May; (c) June, July, and 

August; and (d) September, October, and November.  
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Figure 3.4 AR composites for cities, denoted by black ‘x’, in each of the 7 NCA regions. 

Composite IVT (kg m-1 s-1) and mean IVT direction (vectors) for all AR days between 

1981-2016 at each grid cell (columns 1&3). AR day count per season is denoted in red in 

the top right corner in each city composite panel. AR axis density for all AR days 1981-

2016 at each grid cell (columns 2&4). Results are for December, January, and February 

(columns 1&2); and September, October, and November (columns 3&4). 
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Figure 3.5 Same as in Figure 3.4 except results are for June, July, and August (columns 

1&2); and March, April, and May (columns 3&4). 
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Figure 3.6 AR precipitation fraction calculated as the percent of AR-driven precipitation 

relative to the total precipitation between 1981-2016 at each grid cell. Results are for (a) 

December, January, and February; (b) March, April, and May; (c) June, July, and 

August; and (d) September, October, and November. 
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Figure 3.7 AR extreme precipitation fraction (% of days) calculated as the number of 

linked 95th percentile extreme precipitation AR days relative to the total number of 95th 

percentile extreme precipitation days between 1981-2016 at each grid cell. Results are for 

(a) December, January, and February; (b) March, April, and May; (c) June, July, and 

August; and (d) September, October, and November. 
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Figure 3.8 AR fraction (% of days) calculated as the number of linked AR 95th 

percentile extreme precipitation days relative to the total number of AR days between 

1981-2016 at each grid cell. Results are for (a) December, January, and February; (b) 

March, April, and May; (c) June, July, and August; and (d) September, October, and 

November. 
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Figure 3.9 Histograms of basic characteristics of ARs detected over all months between 

1981–2016. The red lines in each panel indicate the median. Results are for the 

magnitude of mean IVT (kg m-1 s-1; column 1); AR area (x107 km2; column 2); and 

direction of mean IVT (degree; column 3) for each of the seven NCA regions (rows).   
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Figure 3.10 Summarized AR characteristics for each NCA region. AR occurrences per 

unit area (shading; number of AR days per season per 10,000 km2). Arrows represent 

median AR IVT direction (degree), IVT magnitude (arrow size; kg m-1 s-1), and median 

AR area (x106 km2; arrow shading). ARs in each region are identified under the 

condition that at least 10% of the grid cells of the AR shape are within the region 

boundaries. Results are for (a) December, January, and February; (b) March, April, and 

May; (c) June, July, and August; and (d) September, October, and November. 
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Figure 3.11 Summarized AR precipitation characteristics for each NCA region. Extreme 

precipitation day frequency calculated as the spatial median of the total number of 

qualifying days that occurred during each season at each grid cell across each region. AR 

precipitation fraction, calculated as the percent of AR-driven precipitation relative to the 

total precipitation is illustrated as the water level in a bucket. AR extreme precipitation 

fraction (% of days) calculated as the number of linked 95th  percentile extreme 

precipitation AR days relative to the total number of 95th  percentile extreme 

precipitation (white bar) and AR fraction (% of days) calculated as the number of linked 

AR 95th percentile extreme precipitation days relative to the total number of AR days 

(gray bar) between 1981-2016 at each grid cell. Results are for (a) December, January, 

and February; (b) March, April, and May; (c) June, July, and August; and (d) September, 

October, and November. 
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Chapter 4 Figures   

 
Figure 4.1 AR day frequency (days/season) calculated at each grid cell for (a-d) 

MERRA-2 and (e-h) the multi-model mean for the 5 CMIP6 models analyzed in this 

study for the historical period (1984-2013). 
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Figure 4.2 Multi-model mean AR day frequency (days/season) at each grid point for the 

(a-d) historical period (1984-2013); (e-h) mid-century (2071-2100) SSP 585 warming 

scenario; (i-l) end-of-century (2071-2100) SSP 585 warming scenario; (m-p) mid-century 

change (col. 2 minus col. 1); (q-t) end-of-century change (col. 3 minus col. 1); and (u-y) 

regional mean end-of-century change. Results are for December, January, and February 

(DJF); March, April, and May (MAM); (c) June, July, and August (JJA); and September, 

October, and November (SON). 
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Figure 4.3 Multi-model mean AR IVT magnitude (kg m-1 s-1) and direction (arrows) at 

each grid point for the (a-d) historical period (1984-2013); (e-h) mid-century (2071-2100) 

SSP 585 warming scenario; (i-l) end-of-century (2071-2100) SSP 585 warming scenario; 

(m-p) mid-century change (col. 2 minus col. 1); (q-t) end-of-century change (col. 3 minus 

col. 1); and (u-y) regional mean end-of-century change. Results are for December, 

January, and February (DJF); March, April, and May (MAM); (c) June, July, and August 

(JJA); and September, October, and November (SON).  
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Figure 4.4 Multi-model mean median AR area (x106 km2) at each grid point for the (a-d) 

historical period (1984-2013); (e-h) mid-century (2071-2100) SSP 585 warming scenario; 

(i-l) end-of-century (2071-2100) SSP 585 warming scenario; (m-p) mid-century change 

(col. 2 minus col. 1); (q-t) end-of-century change (col. 3 minus col. 1); and (u-y) regional 

mean end-of-century change. Results are for December, January, and February (DJF); 

March, April, and May (MAM); (c) June, July, and August (JJA); and September, 

October, and November (SON).  
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Figure 4.5 Multi-model mean AR precipitation fraction (%) calculated as the percent of 

AR-driven precipitation relative to the total precipitation at each grid point for the (a-d) 

historical period (1984-2013); (e-h) mid-century (2071-2100) SSP 585 warming scenario; 

(i-l) end-of-century (2071-2100) SSP 585 warming scenario; (m-p) mid-century change 

(col. 2 minus col. 1); (q-t) end-of-change (col. 3 minus col. 1); and (u-y) regional mean 

end-of-century change. Results are for December, January, and February (DJF); March, 

April, and May (MAM); (c) June, July, and August (JJA); and September, October, and 

November (SON).  
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Figure 4.6 Multi-model mean AR extreme precipitation fraction (% of days) calculated 

as the number of linked AR 95th percentile extreme precipitation days relative to the total 

number of extreme precipitation days for the (a-d) historical period (1984-2013); (e-h) 

mid-century (2071-2100) SSP 585 warming scenario; (i-l) end-of-century (2071-2100) 

SSP 585 warming scenario; (m-p) mid-century change (col. 2 minus col. 1); (q-t) end-of-

century change (col. 3 minus col. 1); and (u-y) regional mean end-of-century change. 

Results are for December, January, and February (DJF); March, April, and May (MAM); 

(c) June, July, and August (JJA); and September, October, and November (SON).  
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Figure 4.7 Multi-model mean AR fraction (% of days) calculated as the number of linked 

AR 95th percentile extreme precipitation days relative to the total number of AR days for 

the (a-d) historical period (1984-2013); (e-h) mid-century (2071-2100) SSP 585 warming 

scenario; (i-l) end-of-century (2071-2100) SSP 585 warming scenario; (m-p) mid-century 

change (col. 2 minus col. 1); (q-t) end-of-century change (col. 3 minus col. 1); and (u-y) 

regional mean end-of-century change. Results are for December, January, and February 

(DJF); March, April, and May (MAM); (c) June, July, and August (JJA); and September, 

October, and November (SON).  
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Figure 4.8 Boxplots representing the distribution of the magnitude of maximum IVT (kg 

m-1 s-1)  for ARs that had at least 10% of their grid points in a given NCA region for 5 

CMIP6 models. Each model’s end-of-century (2071-2100) distribution is illustrated in 

varying colors to distinguish between NCA region. The historical simulation distribution 

for a given model is depicted by a gray boxplot. The 95th percentile value for each model 

is denoted by an asterisk (*). The end-of-century (colored) and historical simulation 

(gray) multi-model mean is represented by a continuous line for each region. Results are 

for December, January, and February (DJF); March, April, and May (MAM); (c) June, 

July, and August (JJA); and September, October, and November (SON). 
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Figure 4.9 Same as in Figure 4.8 except results are for median AR area (x107 km2). 
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Figure 4.10 Summarized end-of-century change in multi-model mean AR characteristics 

by NCA region. Change in AR day count per unit area (shading; ARs/10,000 km2) for 

ARs that had at least 10% of their grid points in a given region. Arrows represent end-of-

century median AR IVT direction (degree), change in the magnitude of maximum IVT 

(arrow size; kg m-1 s-1), and change in AR area (x106 km2; arrow shading) by the end-of-

century period (2071-2100). Results are for (a) December, January, and February; (b) 

March, April, and May; (c) June, July, and August; and (d) September, October, and 

November.  
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Figure 4.11 Summarized end-of-century change in multi-model mean AR characteristics 

by NCA region. Change in 95th percentile three-day precipitation totals by the end-of-

century (shading; mm). The AR precipitation fraction, calculated as the percent of AR-

driven precipitation relative to the total precipitation, is illustrated as the bucket water 

level and is shown for the historical period (1984-2013; blue), end-of-century SSP 585 

warming scenario (2071-2100; red), and difference (labeled). The AR extreme 

precipitation fraction (% of days), calculated as the number of linked AR 95th percentile 

extreme precipitation days relative to the total number of extreme precipitation days, is 

shown for the historical period (1984-2013; dark gray bar) and end-of-century SSP 585 

warming scenario (2071-2100; light gray bar). 
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Appendix A: Supplementary Material for Chapter 2 

 
 

Figure S1.1 Taylor diagrams quantifying the spatial correspondence of the mean 

frequency of P-Cat occurrence patterns for TMPA, MERRA-2, and NARR relative to 

PRISM. Results are for (a) the CONUS annually and seasonally, (b) relevant NCA sub-

regions annually, (c) September, October, November for the NCA sub-regions, and (d) 

December, January, February for the NCA sub-regions. Each dataset is labeled by a 

a) Annual and Seasonal: CONUS  b) Annual: Sub-Regions  

c) SON: Sub-Regions  d) DJF: Sub-Regions  
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symbol with each season and sub-region assigned a color as defined in the legends in the 

top two panels. The x and y axes correspond to the standard deviation ratio between the 

indicated dataset and PRISM. The radial axis is the pattern correlation, and the distance 

between the symbol and the PRISM location is proportional to the centered root mean 

squared difference between the spatial field of the maximum P-Cats of the indicated 

dataset and PRISM, normalized by the spatial standard deviation of the PRISM field. 
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Figure S1.2 Comparison of P-Cat values for five individual tropical cyclones. P-Cat 

values are for the three day total ending on the day indicated on the right. The datasets are 

(from left to right) GHCN-D, PRISM, TMPA, NARR, and MERRA2. 
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Figure S1.3 Same as for Figure S1.2 except for four synoptic scale mid-latitude cyclones. 
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Figure S1.4 Same as for Figure S1.2 except for two atmospheric river events. 
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Figure S1.5 Maps depicting storm propagation across five days of three notable heavy 

rainfall events.  
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Appendix B: Supplementary Material for Chapter 3 

Region >90% >95% 100% 

  DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON 

CONUS 3.161% 0.141% 0.031% 0.758% 0.522% 0.004% 0.031% 0.058% 0.003% 0 0.031% 0 

Northwest 2.188% 0 0 1.606% 0 0 0 0.019% 0 0 0 0 

Southwest 8.419% 0.065% 0.137% 2.173% 2.037% 0 0.137% 0.234% 0.014% 0 0.137% 0.001% 

Great Plains North 0 0 0 0 0 0 0 0 0 0 0 0 

Great Plains South 0 0 0 0 0 0 0 0 0 0 0 0 

Midwest 0.003% 0.003% 0 0.294% 0 0 0 0.004% 0 0 0 0 

Northeast 0 0 0 0 0 0 0 0 0 0 0 0 

Southeast 6.777% 0.791% 0 0.523% 0.416% 0.025% 0 0.024% 0. 0 0 0 

 

 

Table S2.1 The percentage of grid cells across the CONUS and within each NCA region 

that have an extreme precipitation fraction (or percent of linked AR extreme precipitation 

days relative to the total number of extreme precipitation days) of >90%, >95%, and 

100% for the period of 1981–2016.   
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Figure S2.1 The 85th percentile of IVT magnitude (kg m−1 s−1) at each grid cell for the 

period of 1981–2016. A total of 12 maps, for 12 overlapping 5-month seasons, are used 

to threshold daily IVT in the detection of ARs. The 85th percentile (and 100 kg m-1 s-1, 

whichever is greater) is the lower limit for the multiple, sequentially higher IVT 

percentile thresholds (i.e., 85th - 95th) used for AR detection.  
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Figure S2.2 Histograms of basic characteristics of ARs detected during December, 

January, and February between 1981–2016. In each panel, red lines indicate the median 
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while the value in blue represents skewness. Results are for the magnitude of mean IVT 

(kg m-1 s-1; column 1); AR area (x107 km2; column 2); and direction of mean IVT 

(degree; column 3) for each of the 7 NCA regions (rows). 
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Figure S2.3 Same as in Figure S2.2 except results are for March, April, and May.  
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Figure S2.4 Same as in Figure S2.2 except results are for June, July, and August.  
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Figure S2.5 Same as in Figure S2.2 except results are for September, October, 

November.  
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