
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

8-16-2021

Automated Statistical Structural Testing Techniques Automated Statistical Structural Testing Techniques

and Applications and Applications

Yang Shi
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Engineering Commons, and the Software Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Shi, Yang, "Automated Statistical Structural Testing Techniques and Applications" (2021). Dissertations
and Theses. Paper 5762.
https://doi.org/10.15760/etd.7633

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5762&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5762
https://doi.org/10.15760/etd.7633
mailto:pdxscholar@pdx.edu

Automated Statistical Structural Testing

Techniques and Applications

by

Yang Shi

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Dissertation Committee:

Xiaoyu Song, Chair

Fu Li

Jingke Li

Marek Perkowski

Portland State University

2021

i

ABSTRACT

Statistical structural testing(SST) is an effective testing technique that produces

random test inputs from probability distributions. SST shows superiority in fault-

revealing power over random testing and deterministic approaches since it heritages

the merits from both of them. SST ensures testing thoroughness by setting up a

probability lower-bound criterion for each structural cover element and test inputs

that exercise a structural cover element sampled from the probability distribution,

ensuring testing randomness. Despite the advantages, SST is not a widely used

approach in practice. There are two major limitations. First, to construct proba-

bility distributions, a tester must understand the underlying software’s structure,

which is difficult to obtain in the real-world testing scenario. Although automated

search is able to construct probability distributions iteratively, the efficiency re-

mains unsatisfiable. Second, SST is limited to unit testing or programs with small

structural complexity.

The first research objective is to analyze the root cause of the unsatisfiable

efficiency. It turns out that a strong statistical structural coverage criterion results

in a high impact of the noisy fitness estimation. Hence, we proposed a weakened

criterion that can significantly reduce the search time without the loss of substantial

fault-detecting power. We also developed a search algorithm called CACOR that

resists the noisy fitness influence. The input distribution model harnesses a set of

weighted uniform distributions over the input domain space, which is enumerated

effectively by the constrained ant colony optimization strategies. Experimental

ii

studies demonstrate the excellent search performance of the CACOR algorithm

and the high-grade fault-detecting ability of the input distributions produced by

the algorithm.

The second research objective is to apply the SST strategy to the real-world

testing industries. The mutation-based fuzzing technique (e.g., AFL) has enjoyed

great success due to the automation of the testing process and, more importantly,

the ability to discover critical vulnerabilities. The role of SST in the fuzzer is a

test input provider when AFL is stuck in discovering new program paths. We

noticed that AFL is often stuck in testing the code structures with deeply nested

conditions and scanty input sub-domain spaces. AFL’s mutation strategy often

produces inputs that stay in the same or upper condition level and hardly trigger

the deeper level. For scanty input subdomain space, AFL acts as random testing.

We perform a comprehensive search to construct input distribution such that both

of the outgoing edges of a conditional statement are guaranteed to be triggered

with a probability lower bounds threshold. The experimental study demonstrates

that the lead time to discover bugs with SST is significantly decreased.

iii

DEDICATION

This work is dedicated to my daughter Jiayan who joined us when I was

writing my dissertation, for giving me unlimited happiness and pleasure.

iv

ACKNOWLEDGMENTS

Throughout my Ph.D. career, I have received a great deal of support and assistance.

I cannot make this dissertation possible without their supports.

I would first like to thank my supervisor, Dr. Xiaoyu Song, whose expertise

was invaluable in formulating the research questions and methodology and pro-

vided guidance throughout my studies. I would also like to thank my dissertation

committee members, Dr. Jingke Li, Dr. Fu Li, and Dr. Marek Perkowski, for

serving on my committee.

I sincerely thank my parents for their unconditional trust, timely encourage-

ment, and endless patience. I thank with love to Siying and Jiayan, my wife and

one-year-old daughter. Finally, I deeply thank my best friends, Yansheng Li, Yiwei

Li, Ding Luo, and Xiao Li, who spent an incredible journey with me in Portland,

OR.

v

TABLE OF CONTENTS

Abstract . i

Dedication . iii

Acknowledgments . iv

List of Tables . viii

List of Tables . viii

List of Figures . ix

List of Figures . ix

1 Introduction . 1

1.1 Problem Statement . 1

1.2 Proposed Approach . 3

1.3 Dissertation Outline . 5

2 Background . 6

2.1 Statistical Structural Testing . 6

2.1.1 Input Distribution Model . 7

2.1.2 Fault Discovery Ability Model 8

2.2 Evolutionary Algorithms . 9

2.2.1 Genetic Algorithm . 10

2.2.2 ACO Algorithm . 11

2.3 Search-based Software Testing . 12

3 Effectiveness Assessment Of Search-based Statistical Structural

Testing . 13

3.1 Overview . 14

3.2 Effectiveness Estimation of Input Distributions 16

vi

3.2.1 Effective Test Set Size . 16

3.2.2 Estimation of Expected Errors Found Eb 20

3.2.3 Estimation of the Effective Region R 20

3.3 Search-based Statistical Structural Testing 22

3.3.1 Input Distribution Model . 23

3.3.2 Input Distribution Construction 23

3.4 Fitness Criteria . 25

3.4.1 Tri-Low-Bound . 26

3.4.2 p-L1-Max . 26

3.4.3 Weights Calculation for Tri-Low-Bound 27

3.4.4 Weights Calculation for p-L1-Max 28

3.5 Experiments . 29

3.5.1 Estimation Accuracy . 30

3.5.2 Estimation Results . 30

3.5.3 Search Results . 34

3.5.4 Efficiency . 36

3.6 Summary . 36

4 Software Statistical Structural Testing: An ACO-based approach 40

4.1 Overview . 40

4.2 The CACOR Approach . 44

4.2.1 The Ant Dynamics . 45

4.2.2 CACOR Implementation . 46

4.2.3 The Overall Process . 51

4.3 Experiments . 52

4.3.1 Benchmark Programs . 53

4.3.2 Experiment One: Search Efficiency 53

4.3.3 Experiment Two: Fault-detecting Ability 62

4.4 Summary . 66

5 Search-based Statistical Structural Fuzzing 68

5.1 Introduction . 68

5.2 Overview . 69

5.2.1 Input Probability Distribution 69

5.2.2 Ant System Dynamics . 69

5.3 Motivations . 71

vii

5.4 Methodology . 72

5.4.1 Overview . 73

5.4.2 Trace Infomration . 74

5.4.3 Trace Graph . 75

5.4.4 Comprehensive Search . 76

5.5 Evaluation . 77

5.5.1 Fault-detecting Ability . 78

5.6 Summary . 80

6 Other SBST techniques . 81

6.1 Construct The A Matrix . 83

6.2 Self-adaptive Search with L2-distance Criterion 84

6.2.1 Penalty Function . 85

6.2.2 Distance to Optimal Solution 86

6.2.3 Automated Adaptive Search 88

6.2.4 The Complete Work-flow . 91

6.3 Multi-objective search with Nonpreemptive Goal Programming . . . 92

6.3.1 Nonpreemptive Goal Programming 93

6.3.2 Priority Factor . 94

6.3.3 Example: Benefit of using priority factor 95

6.3.4 Optimizing the A Matrix . 96

6.3.5 The GAGP algorithm . 101

6.3.6 Example: Bin Prune Process 103

7 Related Works . 104

7.1 Statistical structural testing . 104

7.2 Fuzz testing techniques . 106

8 Conclusion . 108

Bibliography . 111

viii

LIST OF TABLES

2.1 An Example of Input Distribution 8

3.1 SUT Characteristics . 29

3.2 RMSE Table . 30

3.8 Effectiveness Table . 35

3.3 Effective Test Set Size Region on Tri. 38

3.4 Effective Test Set Size Region on BestMove. 38

3.5 Effective Test Set Size Region on Nichneu. 39

3.6 Search Results for 1.0-L1-Max . 39

3.7 Search Results for Tri-Low-Bound 39

4.1 Benchmark Programs . 57

4.2 Search Performance Part One . 58

4.3 Search Performance Part Two . 59

4.4 Number of Tests for Full Fault Coverage 64

5.1 Branch distance function for conditions 77

5.2 SUT statistics . 78

5.3 Bugs found by SBSFuzz, AFL and AFLFast 78

5.4 Time to expose to vulnerabilities 79

6.1 Examples of Arrangements . 87

6.2 Fitness And Rankings For Arrangements A,B,C,D 87

ix

LIST OF FIGURES

2.1 An example of control flow graph 9

2.2 Workflow of Genetic Algorithm(left) and Ant Colony Optimiza-

tion(right) . 10

3.1 Three typical effectiveness functions from theoretical perspective . . 18

3.2 The overall workflow . 24

3.3 Figures for comparing Random Testing and Biased Input Distribu-

tion Testing . 32

3.4 The bar charts of effectiveness-to-cost ratio for investigated coverage

criteria . 36

4.1 The testing environment . 42

4.2 Solution Construction Mechanism 45

4.3 A representation of solution pool 47

4.4 Fault Detection Ability Test on Mutation Testing Group 60

4.5 Fault Detection Ability Test On Siemens Test suite 61

5.1 Example of nested conditions . 71

5.2 SBSFuzz’s architecture . 73

5.3 Architecture of the comprehensive search 76

6.1 work-flow of the input distribution construction process 82

6.2 An example work-flow of a solution under evaluation 103

8.1 Research mindset . 108

1

Chapter 1

INTRODUCTION

PROBLEM STATEMENT

Software testing plays a critical role in the software development process. In gen-

eral, it takes more than 40%-50% of the total development costs [1]. To increase

the quality of a test data set, researchers have conducted extensive investigations

in both testing methodologies and algorithms. This dissertation is concerned with

two testing techniques.

Statistical Structural Testing(SST) is a generalized random testing method.

Instead of applying the uniform distribution in random testing, SST constructs a

probability distribution(a.k.a input distribution) such that every structural cover

element (e.g, branch cover element) can be triggered at least with equal probability.

In this way, test randomness characteristic is preserved meanwhile achieving a high

level of code coverage. It is demonstrated that test randomness is crucial to discover

errors that can be triggered with a scanty test input domain space [2]. Despite

the advantages, SST is not a widely used approach in practice. To construct

probability distributions, a tester requires to understand the underlying software’s

structure which is difficult to obtain in the real-world testing scenario. Although

Clark [3] demonstrated that automated search is able to derive such probability

distributions, the efficiency is unsatisfiable. Search is suitable only for unit testing

or programs with elementary structural complexity.

2

Fuzzing is an automated testing technique to discover vulnerabilities by feeding

managed random inputs to the system under test(SUT). With the rapid growth

of cloud computing, fuzzing is employed in the cloud platform like Google’s OSS-

Fuzz platform, which continuously tests open-source applications and found over

1000 bugs in 5 months [4]. The mutation-based fuzzing technique is one of the

most popular fuzzing strategies at present. The fuzzers such as AFL apply genetic

operators to mutate and reproduce test inputs. AFL employs a feedback loop to

assess a test input’s goodness. A test input that discovers a new path is retained

and will be mutated further in the next cycles. AFL relies on a huge amount

of mutated test inputs in the hope to discover new paths. This blind mutation

strategy without the structural knowledge of the SUT makes AFL inefficient.

This dissertation is concerned with the search-based SST’s(SBSST) efficiency

as well as the fuzzer’s mutation strategy. We observe the following key challenges

in the two testing methodologies.

• Curse of uncertainty in SBSST. The curse of uncertainty in SBSST

originates from the fitness calculation, which is an estimation of the cover

element’s triggering probability. The under/overestimate of a probability

distribution leads the search algorithm in the wrong direction, causing an

expansion in the search’s lead time.

• Path discovery deficiency in AFL. Due to the blind mutation strategy,

AFL performs badly in code structural characteristics with deeply nested

conditions and conditions with scanty input subdomain spaces. For deeply

nested conditions, AFL executes the same or above level of conditions in

the majority of cycles. For conditions with scanty input subdomain spaces,

AFL’s mutation strategy acts as random testing and finds the input subdo-

main space with sheer luck.

3

PROPOSED APPROACH

We have proposed a scalable framework that generates test inputs as a comple-

mentary for mutation-based fuzzing. The framework leverages improved SBSST’s

technique that randomly produces test inputs with prioritization. The key com-

ponents are listed in the following.

• Improved SBSST. We mitigate the noisy fitness estimation impact from

two perspectives. First, we analyze how the coverage criterion’s strength

affects the noisy fitness estimation. It turns out that a strong statistical

structural coverage criterion results in a high impact of the noisy fitness es-

timation. Hence, we proposed a weakened criterion that can significantly

reduce the search time but without loss of substantial fault-detecting power.

Second, we investigate search algorithms that resist noisy fitness estimation.

Based on the existing Ant Colony Optimization, we developed a constrained

ACO algorithm (CACOR) that is dedicated to the SST problem. Experimen-

tal studies demonstrate the excellent search performance of the (CACOR) al-

gorithm and the high-grade fault-detecting ability of the input distributions

produced by the algorithm.

• Enhanced AFL. We developed a test input generator called SBSFuzz with

the search-based SST technique for AFL. The test input generator works as

complementary to mutation-based fuzzing when AFL is stuck in discovering

new program paths. In the test input generator, we maintain a trace graph

and a set of optimized probability distributions. To efficiently discovering

new paths, we prioritize test inputs in terms of the exercised program traces.

The input-sensitivity prioritization allows test inputs in the scanty input

subdomain spaces to be sampled with priority. The path-depth prioritization

allows test inputs that execute paths with deeper depth to be sampled with

priority. The sampled test input is then fed back to AFL for testing.

4

More details of these components are summarized in the following.

p-L1-Max criterion. The proposed criterion is called fairness-enhanced-sum-

of-triggering-probability, short for p-L1-Max. The p-L1-Max criterion evaluates

an input distribution based on the estimated sum of triggering probabilities on

branches, and the input distribution must satisfy the fairness property which mea-

sures the L2 distance from the input distribution to the uniform distribution. We

use a parameter p to manually adjust the importance of the two objectives. In

this way, the input distribution generation process can be tuned to bias on either

L1-Max or fairness. The traditional criterion uses the lowest triggering probability

among all branches (Tri-Low-Bound) which is considered a strong criterion. Our

experiments show that by using a relaxed constraint p-L1-Max as an evaluation

criterion, the time consumption on search is significantly reduced. However, the

fault-detecting ability remains at the same level.

Fault-detecting ability. We leverage the mutation testing technique to produces

templated buggy binaries for measuring the fault-detecting ability of input distri-

butions. However, what is the definition of an input distribution’s fault-detecting

ability? We introduce a definition of expected faults found in the effective test set

size region. To measure the effective test set size region, we present a theoretical

analysis of the expected faults found in terms of test set sizes. We use the uniform

distribution as a baseline to derive the effective test set size region’s definition.

The CACOR algorithm We modeled the input distribution construction process

as a resource allocation optimization problem and utilizes the ant colony metaphor

to solve the problem. We modeled the input distribution as a sum of weighted

one-dimensional uniform distributions. Each uniform distribution occupies a non-

overlapped, consecutive input sub-domain space (a.k.a a bin). The objective is to

5

assign the proper amount of weight and input sub-domain size to each uniform

component. The ant colony optimization algorithm(ACO) is an ideal algorithm to

solve such optimization problems with its extension generalizes the search domain

space from discrete to continuous. ACO algorithm can minimize the negative im-

pact of noisy fitness estimation. Since the fitness of an individual is aggregated in

the long run, the noisy fitness estimation influence will decrease as search iteration

increases.

SBSFuzz. The SBSFuzz consists of three components: a modified AFL that can

communicate with other processes via an inter-process protocol, a Trace analyzer

that maintains a trace graph and produces test inputs, and a comprehensive search

engine that produces input distributions. SBSFuzz utilizes a modified AFL as the

main fuzz engine. The trace analyzer runs its instrumentation version of the target

binary with the test input to obtain a piece of fine-grained path information. It

also starts a thread to initiate the comprehensive search engine when necessary.

DISSERTATION OUTLINE

Chapter one provides an introduction. Chapter two provides background knowl-

edge. Chapter three describes the noisy fitness impact and the proposed criteria.

Chapter four introduces the proposed search algorithm. Chapter five introduces

the application of SST in mutation-based fuzzing. Chapter six introduces other

search-based SST methods. Chapter seven briefly describes the related works.

Chapter eight makes the conclusion and describes the future works.

6

Chapter 2

BACKGROUND

STATISTICAL STRUCTURAL TESTING

An SUT usually consists of n ≥ 1 inputs. Each input is associated with a domain

space. In this article, we assume the inputs are independent. We use a domain

D = [L,H] representing the cross product of the n domain spaces. L denotes the

lowest element, and H denotes the highest element in D.

Input Distribution: An input distribution, denoted as P (x) is a discrete

probability distribution over an input domain space D, where x represents a test

input, x ∈ D.

In SST, an SUT is essentially treated as a control flow graph. In the context of

this dissertation, an edge is also known as a branch cover element (BCE). A BCE

is said to be triggered by an input x if the path in a control flow graph executed

by x contains the corresponding edge. Hence, for the entire input domain space

D, there exists a subset of the input domain space that triggers each branch cover

element.

Triggering Probability: Suppose that an SUT has C = {c1, . . . , cm} BCEs.

Let ci denote the i-th BCE and Dci denotes the subset of the input domain space

that triggers ci. The probability of triggering a cover element ci is defined as the

sum of the probabilities of each input in Dci . Formally,

7

trii =
∑
x∈Dci

P (x) (2.1)

where trii is the probability of a randomly sampled input from the input dis-

tribution triggering ci.

However, for SUTs with a sizeable input domain space, it is often infeasible to

calculate the triggering probabilities using this equation. In these scenarios, the

use of samples to estimate the triggering probabilities becomes necessary. Suppose,

given a sampled test input set, the number of times that each BCE is triggered

is {k1, . . . , km} respectively. It is known that the number of triggered ci follows

a binomial distribution with the triggering probability trii[5]. In this case, the

unbiased estimation of triggering probability for ci is

ˆtrii =
ki∑m
i=1 ki

(2.2)

2.1.1 Input Distribution Model

In this dissertation, we mainly consider the input distribution model as a sum of

weighted uniform distributions, where each uniform distribution is applied to an

input sub-domain space, also known as a bin. For an input distribution model of k

non-overlapping consecutive bins, the input domain space is split by the bins into

intervals

D =
{
bδ0, δ1e, bδ1, δ2e, . . . , bδk−1, δke

}
(2.3)

where δ0 = L and δk = H. Other δis denotes the boundary value between

the i-th bin and the (i+1)-th bin. Since bins are non-overlapping, δi−1 ≤ δi. Let

8

w = {w1, . . . , wk} be the set of weights applied to each uniform distribution. The

weight vector w satisfies the following constraints:

k∑
i=1

wi = 1, wi ≥ 0 ∀wi ∈ w (2.4)

Given a set of values for the weights {w1, . . . , wk} and the boundaries {δ1, . . . , δk},

the probability of selecting an input x ∈ D is

P (x) =
k∑
i=1

wi ∗ U(x), x ∈ bδi−1, δie (2.5)

where U(x) represents a uniform distribution component in the model.

As an example, consider a SUT that takes an input x whose domain space

ranges from 0 to 99. Its control flow graph is shown in Figure 2.1. The SUT has

8 branch cover elements (BCEs) {e1, . . . , e8} which forms 5 linearly independent

paths, shown in Table 2.1. To ensure all BCE’s triggering probabilities are maxi-

mized, each linearly independent path should be triggered with equal probability.

A test input’s probabilityP (x) is then assigned to the reciprocal of its subdomain’s

cardinality multiply by 1
5

to ensure the 20% BCEs’ triggering probabilities.

Linearly Independent Paths Input Sub-domains Sub-domain Size P (x)

e1 x < 10 10 0.02

e2 e4 x > 20 80 0.0025

e2 e3 e6 x > 15 & x ≤ 20 5 0.04

e2 e3 e5 e7 x > 10 & x ≤ 12 2 0.1

e2 e3 e5 e8 x > 12 & x ≤ 15 3 0.067

Table 2.1: An Example of Input Distribution

2.1.2 Fault Discovery Ability Model

This dissertation leverages Duran’s fault discovery ability model. Suppose that an

input domain space is re-organized into many consecutive, non-overlapped subsets.

9

Figure 2.1: An example of control flow graph

In each subset, the test inputs are uniformly selected. Let θi be the failure rate of

the i-th partition, which refers to the probability that a randomly selected input

triggers the system failure. Let pi be the probability of selecting the i-th partition,

k be the total number of partitions and n be the test set size. The expected

number of errors found under the assumption that each partition contains one

error is formulated as follows:

E(k, n, θ,p) = k −
k∑
i=1

(1− piθi)n

EVOLUTIONARY ALGORITHMS

Evolutionary Algorithm(EA) are heuristic algorithms which solve problems with

rules of thumb or common sense approaches. Heuristic algorithms usually are

not expected to find the best answer to a problem but are only expected to find

solutions that are ”close enough” to the best. In this dissertation, we consider

10

two EA, the Genetic algorithm (GA) and the Ant Colony Optimization (ACO)

algorithm.

Figure 2.2: Workflow of Genetic Algorithm(left) and Ant Colony Optimiza-

tion(right)

2.2.1 Genetic Algorithm

The workflow of GA is shown on the left side of Figure 2.2. GA starts from

initializing a pool of solutions. Then, it selects individuals from the pool with

roulette-wheel slection. Then its genetic operation produces child solutions to form

a new solution pool from the chosen solutions. The fitness function then evaluates

all the child solutions. If the termination condition does not meet, the new solu-

tion pool undergoes the same process. GA usually stops with three termination

11

conditions. First, the iteration reaches the maximum limit. Second, the fitness of

the best solution reaches the target value. Third, the fitness of the best solution

does not improve over the last n iterations.

The Genetic operations are the essence of GA. The conventional Genetic Al-

gorithm(GA) is used to optimize a bit string. The process to recombine two

bit-strings is called recombination. A standard recombination method is called

one-point-crossover, in which the operator swaps two portions of bit-strings from

a crossover point. The crossover point is a randomly selected value between 0 and

the maximum index of a bit string. The process to flip a bit of the bit-string is

called mutation. A general method is to select a small mutation probability m.

After the crossover process, each bit in the child bit-string has a m probability of

flipping to the opposite value. The probability value generally ranges from [0, 1].

Too high of a mutation probability makes the GA acting as a random search; Too

low of a mutation probability results in the search falls into local optima.

2.2.2 ACO Algorithm

The ACO algorithm was first developed to solve the traveling salesman problem.

Each ant travels from one city to another until all cities are passed and then

deposits pheromone on the path. Pheromones are not only deposited, but they

also evaporate. The probability that an ant travels from one city to another is

proportional to the pheromone levels between the cities. The workflow of the

ACO algorithm is shown on the right side of Figure 2.2. The algorithm begins

by initializing a pool of ants. All the ants start traveling simultaneously. Each

ant randomly selects a city to travel with pheromone-level-proportionate-selection.

After finishing traveling, the fitness evaluation function calculates the exercised

path distance and derives the pheromone amount. Then on each visited path,

the pheromone levels are accumulated based on the amount. In the meantime,

pheromone levels on each unvisited path are evaporated at a constant rate. This

12

process continues until the shorted path distance does not change over the last n

iterations.

There are many variations of the ACO algorithm. In this dissertation, we adopt

the one from [6] that applies the ACO algorithm to the real-domain space (ACOR.

The essence of ACO is the updating pheromone process. In ACOR, pheromone

accumulation and evaporation functions are simulated by a weighted Gaussian

distribution, which we will give a detailed description in chapter 4.

SEARCH-BASED SOFTWARE TESTING

Search-based software testing (SBST), as the name implies, utilizes heuristic search

algorithms to solve software testing problems. Generally, two issues need to be

considered in order to apply the SBST methods. First, problem encoding. The

candidate solutions should be encoded in a way that the search algorithm is able

to manipulate. Second, fitness evaluation. The fitness function guides the search

algorithm towards a better solution. The fitness function is problem-specific and

needs to be defined accordingly. For instance, Temporal Testing tries to find a

system’s best-case and worst-case execution times. The fitness function is simply

a measure of the system’s wall-time [7; 8]. Structural Testing tries to utilize a test

set to maximize a structural coverage criterion. A commonly used fitness function

proposed by Wegener et al. [9] incorporates two metrics, known as the approach

level and the branch distance. In this dissertation, we focus on the SBST’s scheme

for the SST problems.

13

Chapter 3

EFFECTIVENESS ASSESSMENT OF SEARCH-BASED STATISTICAL

STRUCTURAL TESTING

Search-based statistical structural testing (SBSST) is a promising technique that

uses automated search to construct input distributions for statistical structural

testing. It has been proved that a simple search algorithm, for example, the hill-

climber is able to optimize an input distribution. However, due to the noisy fitness

estimation of the minimum triggering probability among all cover elements (Tri-

Low-Bound), the existing approach does not show a satisfactory efficiency. Con-

structing input distributions to satisfy the Tri-Low-Bound criterion requires an

extensive computation time. Tri-Low-Bound is considered a strong criterion, and

it is demonstrated to sustain a high fault-detecting ability. In this chapter, we try

to answer the following question: if we use a relaxed constraint that significantly

reduces the time consumption on search, can the optimized input distribution

still be effective in fault-detecting ability? We propose a type of criterion called

fairness-enhanced-sum-of-triggering-probability (p-L1-Max). The criterion utilizes

the sum of triggering probabilities as the fitness value and leverages a parameter p

to adjust the uniformness of test data generation. We conducted extensive exper-

iments to compare the computation time and the fault-detecting ability between

the two criteria. The result shows that the 1.0-L1-Max criterion has the highest

efficiency, and it is more practical to use than the Tri-Low-Bound criterion. To

measure a criterion’s fault-detecting ability, we introduce a definition of expected

faults found in the effective test set size region. To measure the effective test set

size region, we present a theoretical analysis of the expected faults found with

14

respect to various test set sizes and use the uniform distribution as a baseline to

derive the effective test set size region’s definition.

OVERVIEW

Statistical structural testing has been studied for decades. In SST, test inputs are

sampled from probability distributions (a.k.a, input distributions) over the input

domain space. The distributions guarantee that a sampled test input has a prob-

ability greater than a threshold to trigger each branch cover element (BCE) under

test. This criterion increases the chance of triggering BCEs associated with a small

input sub-domain space, resulting in a higher fault-detecting ability than random

testing [10]. Constructing such distributions is not a trivial work. A tester needs

to know the input sub-domain space associated with each cover element and then

assign the right probabilities to each space to create an optimal input distribution.

Fortunately, this process can be automated by the search-based software testing

framework. Search-based SST(SBSST) is similar to the traditional search-based

coverage-driven approaches where a test input set is refined during the system

under test (SUT’s) run-time. However, SBSST optimizes an input distribution’s

parameter values and uses sampled test input sets to evaluate fitness. A general

evaluation criterion is the Triggering Probability Lower Bound (Tri-Low-Bound),

where the minimum triggering probability among all BCEs under test is used as the

fitness value. Poulding and Clark in [11] demonstrate the effectiveness of using the

hill-climbing algorithm to search input distributions with the Tri-Low-Bound crite-

rion. However, the time consumption on search is a significant concern. The criti-

cal issue is that the estimated triggering probabilities cause over/underestimation,

which significantly misleads the search direction. Moreover, if a BCE under test

is associated with a diminutive input sub-domain space, triggering the BCE is

considered a rare event. The probability estimation of a rare event is usually in-

accurate. We conducted a small experiment to show the problem: Our synthetic

15

SUT has two inputs, with each consist of 30 elements. A cover element C can be

triggered by 4 non-consecutive test inputs, and the sample set used to estimate

fitness has 90 test inputs. We use the hill-climbing algorithm with a Tabu list

to search for an input distribution that maximizes C’s triggering probability. The

fitness is estimated with the Wilson Score approach with continuity correction [12].

Over 5000 iterations, fitness swings around 0.01, and the confidence band ranges

from near 0 to an average around 0.15, which could not provide helpful informa-

tion to guide the search direction moving forward. Tri-Low-Bound is considered

a strong criterion since every BCE’s triggering probability is constrained. In this

chapter, we answer the following question: If we use a relaxed constraint

that significantly reduces the time consumption on search, can the op-

timized input distribution still be effective in fault-detecting ability?

We propose a new criterion called fairness-enhanced-sum-of-triggering-probability

(p-L1-Max). Instead of Tri-Low-Bound, the sum of triggering probabilities could

reduce the noisy fitness influence by estimating the group of events. However, it

causes the search direction biasing to one input sub-domain space, whereas the

rests take zero chances to be sampled. Hence, we also take fairness a parameter p

into consideration, which tunes the distribution to be uniform. A question raised

is how to compare two criteria. In SST, test inputs are sampled from distributions,

and the test set size is proportional to fault-detecting ability. In this chapter, we

provide a theoretical analysis of the fault-detecting ability in terms of various test

set sizes. We use the uniform distribution as a baseline to derive the effective

test set size region R where SST outperforms random testing and determine the

expected faults found in R as the effectiveness measure of criteria. To compare

two criteria, we use the effectiveness-to-cost ratio, where cost is the wall-time on

search. This chapter starts from presenting a method called effectiveness-to-cost

ratio to evaluate the fault-detecting ability of criteria for SST problems. Then,

we introduce a new criterion(p-L1-Max) and conducted a series of experiments to

16

compare the proposed and traditional criteria. Our results show that the proposed

criterion has a better effectiveness-to-cost ratio, and it is more realistic in practical

uses.

EFFECTIVENESS ESTIMATION OF INPUT DISTRIBUTIONS

An optimized input distribution is a biased uniform distribution. The point of

biasing the uniform distribution is to detect faults more effectively than random

testing. Given a test set size, if the number of faults found by the uniform dis-

tribution outperforms or equal to the biased input distribution, the biased input

distribution should have no effectiveness, since random testing does not require

the input distribution construction process. Hence, to investigate an input distri-

bution’s effectiveness, we should determine the effective test set sizes.

3.2.1 Effective Test Set Size

To find effective test set size theoretically, we adopt Duran’s fault revealing ability

model. Suppose that an input domain space is re-organized into many consecutive,

non-overlapped subsets. In each subset, the test inputs are uniformly selected. Let

θi be the failure rate of the i-th partition, which refers to the probability that a

randomly selected input triggers the system failure. Let pi be the probability of

selecting the i-th partition, k be the total number of partitions and n be the test

set size. The expected number of errors found under the assumption that each

partition contains one error is formulated as follows:

E(k, n, θ,p) = k −
k∑
i=1

(1− piθi)n (1)

17

For a uniform input distribution, pi = 1
k
, ∀i ∈ {1, . . . , k}. Then, the effective-

ness of a biased input distribution is the following:

E = Eb − Er =
k∑
i=1

(1− 1

k
θi)

n −
k∑
j=1

(1− pjθj)n (2)

We are interested in the maximum and minimum of E with respect to various n.

This function is a summation over exponential functions. An intuitive re-formation

can be done as follows: Suppose that a set U = {(1 − 1
k
θ1), . . . , (1 − 1

k
θk)}, A set

B = {(1− p1θ1), . . . , (1− pkθk} and C(x) is an indication function that C(x) = 1

if x ∈ U ; C(x) = −1 if x ∈ B. Then, Equation 2 can be written as follows:

E =
∑

α∈U∪B
C(α)αn (3)

Shestopaloff in [13] proves the following corollary of the above function: ”if

there exists a sequence of α such that 0 < αN . . . α0 < 1, C0 > 0. This series can

change its algebraic sign a maximum of two times. It can have a maximum of two

extrema. It monotonically converges to zero after the second extremum, which is

always a maximum.” α0 refers to the maximum fault-detecting rate of a partition,

it can be either from U and B. We analyze them separately. let Ti denote index

sets that stores indexes for U and B. Specifically,

T1 = {ti|pi > 1
n
}

T2 = {tj|pj < 1
n
}

(4)

Suppose that α0 is an element in {Ui|i ∈ T1}. Forming an order over U ∪ B

with one algebraic sign change is impossible. With two algebraic sign changes, the

sequence should be the following:

18

Figure 3.1: Three typical effectiveness functions from theoretical perspective

{Ui| i ∈ T1} > {Bi|i ∈ T1 ∪ T2} > {Ui| i ∈ T2}

+ − +

(5)

where ” > ” indicates that any element in the left set is greater than any

element in the right set. This ordering relation reflects a type of input distribu-

tions. The leftmost figure of Figure 3.1 shows an example of effectiveness function

which satisfies the above sequence. The maximum effectiveness point is on the

intersection of the effectiveness curve and the dashed red line and it monotonically

converges to 0 after the maximum.

Suppose that the maximum value α0 is an element in {Bi|i ∈ T2}. Then, the

19

sequence with two algebraic sign changes is

{Bi| i ∈ T2} > {Ui|i ∈ T1 ∪ T2} > {Bi| i ∈ T1}

− + −

(6)

It is noted that C0 is a negative number. To applying the shestopaloff’s corol-

lary, the indication function outputs the opposite number, and the output E should

multiply -1 to coincide with the original output. The leftmost graph in Figure 3.1

shows an example of an effectiveness function that satisfies the above sequence.

The zero-effectiveness test set size is marked by the blue dashed line. After this

point, the uniform distribution outperforms the biased input distribution. The

maximum effectiveness test set size is marked by the red dashed line. If a sequence

contains more than two algebraic sign changes, a possible outcome can be depicted

by the rightmost figure of 3.1. For this case, there is only one extreme, and it is a

maximum.

Hence, for three situations in above, each effectiveness function shows a max-

imum effectiveness test set size. Further, we can conclude that there is a range

of test set sizes that the effectiveness of biased input distribution outperforms the

uniform distribution, and we call it the effective region. Formally, Let nm denotes

the test set size at the maximum effectiveness an ns, ns > nm denotes the test

set size at the zero or minimum effectiveness. The effective region, denoted by R,

ranges within [nm, ns]. Then the effectiveness for a coverage criterion, which mea-

sures the average number of faults found per test for each test set in the effective

region is defined as follows:

η =
1

ns − nm + 1

ns∑
k=nm

1

k
∗ Eb (7)

In the later assessments of criteria, for each system under test (SUT), we esti-

mate ns, nm and Eb, and calculate the effectiveness based on Equation 7.

20

3.2.2 Estimation of Expected Errors Found Eb

To estimate the expected errors found, we use 32 test sets sampled with replace-

ment from the input distribution. Each test set runs against the mutation testing

tool, named Milu [14], to retrieve mutation scores. The averaged 32 sets of mu-

tation scores are calculated to estimate the expected errors found by an input

distribution at each test set size. Mutation testing is a software testing method

dedicated to evaluating the effectiveness of a test set. In mutation testing, a SUT

is mutated into a set of mutants. Each mutant is a copy of the SUT injected with

an artificial fault. A test input is said to kill a mutant if one of the mutant’s

execution results is different from the original SUT. A mutant that produces the

same result as the original SUT is called an equivalent mutant. Mutation score,

defined as the percentage of the killed but excepting the equivalent mutants, is an

estimation of the expected errors found (i.e., fault-detecting ability) by a test set.

3.2.3 Estimation of the Effective Region R

With the given sets of mutation scores at each test set size, we perform the least-

square regression on the data set to create estimation functions of fault detecting

ability with the test set size n for both biased input distributions and the uni-

form distributions. To find the effective test set region with strong confidence, we

perform hypothesis testing on the data set. It is difficult to fit the data into the

sum of exponential functions. Instead, we created an exponential function model

presented in the following to best fit the averaged mutation scores at each test size:

pl = a2 + aa10 (a4n+ a3)
a0−1e−a1(a4n+a3) (8)

where {a1, . . . , a4} are the learning parameters, pl,n are the training variables where

pl denote the percentage of living mutants left, which is equal to 1-ms and n de-

notes the test set size. The reason not to directly applying mutation score is

21

that the exponential functions are convex with ms ≥ 0, whereas the 8 is concave.

The function model is a gamma distribution without the normalization constant.

{a2, a3, a4} are the parameters used to shift or scale the input and output. Hypoth-

esis testing makes statistical inference on mutation score sets when comparing the

effectiveness of the uniform and biased input distributions at each test set size. If

there is no significant evidence showing either one performs better, even with the

difference shown by the estimated curves, their effectiveness is treated as equal.

We perform a one-tailed hypothesis testing with the Wilcoxon rank-sum test [15]

on the two mutation score sets at each test set size. The confidence level is 0.05.

Specifically, the hypotheses are:

• H0: there is no significant difference between mutation scores that produced

by random testing and input distributions constructed from an evaluation

metric.

• H1: The mutation scores produced by random testing is significantly different

from mutation scores produced by input distributions constructed from an

evaluation metric.

22

Algorithm 1 Algorithm to determine nm, ns

1: procedure DetermineTestSetSize
2: input: fb - learned function for biased distribution
3: fu - learned function for uniform distribution
4: pv - p-values
5:

6: output: ns, nm - test set sizes
7:

8: if NumOfTestSetSize(pv ≤ 0.05) then
9: nm, ns don’t exist

10: else
11: tsmax = argmaxn(fb, fu)
12: if pv(tsmax) ≤ 0.05 then
13: nm = tsmax
14: end if
15: {tsmin} = argminn(fb, fu)
16: ns = { t |t ∈ tsmin, tsmax > tsmin}
17: end if
18: return ns, nm
19: end procedure

To determine the effective set size region, we present Algorithm 1. If there is

no test set size such that the corresponding p-value is less than 0.05, the biased

input distribution is indifferent from the uniform distribution on the fault detecting

ability at any test set size that below the maximum set size. Otherwise, the learned

functions fb,fu are used to mathematically derive the test set size at the maximum

effectiveness tsmax and the zero-effectiveness set of test set sizes tsmin. If the p-

value at tsmax is less than 0.05, nm is determined to be tsmax. If there exists a test

set size t in tsmax such that t is greater than nm, then ns is determined to be t.

SEARCH-BASED STATISTICAL STRUCTURAL TESTING

In this section, we provide a formal representation of SBSST. In SST, a SUT is

essentially treated as a control flow graph where each node represents a linear

sequence of basic blocks, and each edge represents the flow of control between

23

basic blocks [16]. In the context of structural testing, an edge is also known as

a branch cover element (BCE). A BCE is said to be triggered by an input x if

the path in CFG executed by x contains the corresponding edge. Hence, for the

entire input domain space D, there exists a subset of the input domain space

that triggers each BCE. Suppose the BCE ci is under test. P (x) denotes a discrete

probability distribution over the input domain space. The probability of triggering

the BCE ci is the sum of the probabilities of each input in Dci . However, it is not

possible to enumerate all inputs to derive the triggering probability. Therefore, we

estimate the triggering probabilities derived from the sampled input set. Suppose

the sampled set size is n, and the test size triggers ci is nci . The estimated triggering

probability of ci is
nci
n

.

3.3.1 Input Distribution Model

We choose the sum of the weighted uniform distributions as the input distribution

model, which is formally defined as follows:

P (x) =
k∑
i=1

wi ∗ U(x), x ∈ Si (9)

where the weight vector w satisfies:

k∑
i=1

wi = 1, wi ≥ 0 ∀wi ∈ w (10)

U(x) is a multi-dimensional uniform distribution whose dimension equals the

input domain space’s dimension. The uniform distributions are applied on the

consecutive, none-overlapped sub-input domain spaces, denoted as {S1, . . . , Sku}.

3.3.2 Input Distribution Construction

We view the input distribution construction shown in Figure 3.2 as a two-step pro-

cess: First, we arrange sub-input domains to each uniform distribution’s boundary.

24

Figure 3.2: The overall workflow

Second, we assign weights to the uniform distributions. In each iteration, the ge-

netic operators produce an arrangement to form a new set of uniform distributions.

Each uniform distribution generates a sampled input set to run with SUT to esti-

mate triggering probabilities. Then, we apply numerical optimization methods to

derive the best weights from the estimated triggering probabilities to maximize the

overall triggering probabilities. The purpose of adopting the Genetic Algorithm

(G.A) is to search for the best arrangement. The detail of G.A is described as

follows.

• Encoding: The chromosome is encoded as an array of integers. Each inte-

ger δi represents the size of an input sub-domain space. The lower boundary

li of the i-th uniform distribution equals
∑i−1

k=0 δk. The upper boundary ui of

the i-th uniform distribution equals li + δi.

• Recombination: We adopt the two-point crossover strategy. The two-

point crossover randomly selects two positions from two individuals and

swaps the contents between them. The crossover rate setups to 0.9.

25

• Mutation: We adopt the uniform mutation strategy. The uniform mu-

tation operator mutates a gene by randomly picking up an input set and

assigning the index of the input set into the gene. Each gene has a probabil-

ity of 0.8 to be mutated.

• Selection: We adopt the roulette-wheel selection strategy with elitism for

reproduction. Elitism is applied to ensure the best solution in the current

iteration is still available for reproduction in the next generations.

• Fitness Evaluation: The fitness function depends on the criterion, which

is described in later section.

• Stop criteria: The main loop continues until one of the two stop conditions

is satisfied. First, the fitness does not improve over the last 100 iterations.

Second, the number of iterations reaches a pre-set maximum value.

FITNESS CRITERIA

This section provides formal definitions of Tri-Low-Bound and p-L1-Max criteria

and shows how to use numerical optimization methods to derive the weight vec-

tors. Before start, we reformulate the triggering probabilities to matrix form. The

triggering probabilities in all sub-domains can be written in a matrix form, de-

noted by A, where each column represents a sub-domain in the set S, and each

row represents a BCE. The value aij of the i-th row and the j-th column is the

triggering probability of the BCE ci in Sj.

A =

S1 S2 ... Sku

tri1 a11 a12 . . . a1ku

tri2 a21 a22 . . . a2ku
...

...
...

...
...

trim am1 am2 . . . amku

26

Given a matrix A, the triggering probability vector Pc is the linear combination

of the column vectors with scalar vector w:

Pc =

a11

a21
...

am1

w1 +

a12

a22
...

am2

w2 + · · ·+

a1ku

a2ku
...

amku

wku (11)

where ku denotes the number of components in the input distribution model. ku is

set to m which is the number of branch cover points (i.e. the row counts of matrix

A).

3.4.1 Tri-Low-Bound

The Tri-Low-Bound criterion for statistical structural testing originates from the

definition of the statistical test set quality, which is defined as the minimum prob-

ability of triggering a cover element by a test set. Formally,

Tri-Low-Bound = min{Pc1 , . . . , Pcm}

3.4.2 p-L1-Max

The proposed p-L1-Max criterion evaluates an input distribution based on the es-

timated sum of triggering probabilities, and the input distribution must satisfy the

fairness property. According to Equation 11, the sum of triggering probabilities,

denoted by fA(w) can be derived by adding up the dot product of each row vector

of matrix A and the weight vector:

fA(w) =
m∑
j

wj
∑
i

aij (12)

Since the weight vector is constrained by Equation 10, we can view Equation 12

as a m-Simplex. The maximum value L1-Max is equal to the maximum sum of

column vectors of matrix A:

L1-Max = max

{∑
i

ai1, . . . ,
∑
i

aim

}
(13)

27

Hence, the weight associated with the maximum sum of column vectors equals 1.0.

The weights associated with the rest columns are 0.0. This situation brings up the

fairness issue, where only the bins selecting the element that is associated with the

maximum weight has the ability to be sampled. Other bins have no chance to be

sampled.

It is the fact that the uniform distribution is the fairest distribution, since each

input has equal probability to be sampled. Therefore, we define the fairness prop-

erty as the L2-distance from the input distribution to the uniform distribution. We

use a tuning parameter p to manually adjust the importance of the two objectives.

In this way, the input distribution generation process can be directed to focus more

on L1-Max or the fairness. The formal definition of criterion p-L1-Max is defined

as follows:

p-L1-Max =

`2 =

∑
x∈D

[P (x)− U(x)]2 subject to:

∑
i

Pci ≥ L1-Max ∗ p
(14)

In this study, we use the following values for the tuning parameter p:

p ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. The optimization objective becomes to minimize the

L2-distance of the input distribution and the uniform distribution, with constrains

that the estimated sum of triggering probabilities should be at least greater than

the proportion of the maximum sum of triggering probabilities.

3.4.3 Weights Calculation for Tri-Low-Bound

The fitness measure for Tri-Low-Bound is the minimum value in the triggering

probability vector Pc. Our objective is to optimize the weight vector such that the

minimum value in the triggering probability vector is maximized. The problem of

Maximizing the inner minimum is equivalent to the following linear programming

problem where the objective is to maximize the variable v with respect to weight

28

vector w. Specifically, the optimization problem is defined as follows:

max v subject to

v −
∑m

j=1 aijwi ≤ 0 ∀i ∈ {1, . . . ,m}∑k
j=1wi = 1

wi ≥ 0, i ∈ {w1, ..., wm}

(15)

This is a standard linear programming problem.We selected to use the active set

method provided in ALGLIB [13] to solve the problem.

3.4.4 Weights Calculation for p-L1-Max

The fitness for criterion p-L1-Max is measured by the sum of estimated triggering

probabilities. To calculate the sum of estimated triggering probabilities, the weight

vector w should be optimized according to the definition of p-L1-Max in Equation

14. This optimization problem uses the tuning parameter p whose value can be

categorized into three types:

• p = 0: Any feasible weight vector satisfies the constraint
∑

i Pci ≥ 0. The

L2-distance is 0. The derived input distribution is a uniform distribution.

• p = 1: The constraint
∑

i Pci = L1-Max. Then, it is not necessary to mini-

mize the L2-Distance. The fitness equals L1-Max.

• p > 0 & p < 1: see below.

The optimization problem defined in Equation 14 with p > 0 & p < 1 is a

Constrained Quadratic Programming(CQP) problem which can be solved by the

active set method. To form the problem as a CQP problem, we construct the

quadratic matrix Q and the linear vector H. After expanding the L2-Distance

equation, matrix Q is found to be a diagonal matrix with elements {qi,i = 2 ∗

|Si|−2bin, ∀i ∈ {1, . . . ,m}}. The vector H has elements {hi = −2∗|Si|−1bin∗|S|
−1
bin, ∀i ∈

29

{1, . . . ,m}}. The size of an input set |Si|bin is equal to the number of bins in the

input set.

The whole process to optimize the weight vector starts from checking the value

of p. If p equals 0, the process finishes and outputs the uniform distribution. If p

equals 1, the process ignores the fairness property and use L1-Max as the fitness.

If p is between 0 & 1, the process first forms matrix Q and vector H. Then the

process applies the active set method to derive the optimal weight vector w∗.

EXPERIMENTS

Table 3.1: SUT Characteristics

SUT NLOC CCN NBC Domain Size Param

Triangle 27 22 28 1000 3
BestMove 91 28 42 262144 2
Nichneu 2344 626 502 1679616 8

Our experiment’s objective is to compare the effectiveness-to-cost ratios of SSBST

by adopting different criteria. Hence, we naturally divided the experiments into

three sections: the effectiveness, the search run-time, and the effectiveness-to-cost

ratio sections. For criterion p-L1-Max, we select p={0.2,0.4,0.6,0.8,1.0} for study.

We implemented the G.A by C++ and C# under the Windows 10 environment.

We use the mutation testing tool under Ubuntu 12. The hardware configuration

is IntelCore i7-4770K 3.50GHz with 16GB DDR3 memory. We continue to use

the benchmark programs provided by Poulding that are sufficient for our research

purpose. The characteristics are shown in Tab. 1. NLOC denotes the number of

lines of code. CCN denotes the Cyclomatic complexity of a SUT. NBC denotes

the number of branches of a SUT. Param denotes the number of input variables.

Triangle and Nichneu can be found in [17][18].

30

Table 3.2: RMSE Table

RMSE rnd 0.1 0.2 0.3 0.4 0.5

tri 7.70E-03 7.67E-03 1.16E-02 4.27E-03 5.05E-03 4.90E-03
bestMove 1.43E-02 1.54E-02 1.88E-02 9.02E-03 1.35E-02 1.75E-02
nichneu 1.82E-03 3.40E-03 3.01E-03 3.17E-03 2.96E-03 2.52E-03

RMSE 0.6 0.7 0.8 0.9 1 lb

tri 7.36E-03 5.78E-03 4.53E-03 4.33E-03 3.37E-03 2.05E-03
bestMove 1.65E-02 1.73E-02 2.36E-02 1.50E-02 1.40E-02 8.38E-03
nichneu 5.18E-03 2.70E-03 1.95E-03 3.41E-03 1.41E-01 4.21E-03

3.5.1 Estimation Accuracy

The estimation accuracy for the learned functions can be measured by the root

mean square errors, which are presented in Table 3.2. In general, the smaller

RMSE, the fitter the estimated model. If the RMSE value is smaller or equal to

0.3, the estimated model is acceptable [19]. In Table 3.2, the maximum value is

0.141, and the averaged value is 0.0117, which is far less than 0.3. Hence, our fitted

curves can accurately predict the expected numbers of errors found as test set size

varies.

3.5.2 Estimation Results

We select three coverage criteria including 0.2-L1-Max, 1.0-L1-Max, and Tri-Low-

Bound for graphical representation. The detailed assessment data for all of the

coverage criteria are shown in Table 3.3, Table 3.4 and Table 3.5 respectively.

Figure 3.3 shows the learned function curves for the biased input distribution,

marked as purple and the uniform input distribution, marked as blue and the p-

values at each test set size for the three coverage criteria for all SUTs. The dashed

blue line represents the test set size at nm, whereas the dashed yellow line represents

the test set size at ns. The Triangle SUT is shown in the first row. The p-values

31

for all coverage criteria have the pyramidal peak shape, which indicates that the

mutation scores of biased and uniform distributions are significantly different on

the left side and right side of the peak. The inflection points of the peaks, which

p-values are at least greater than 0.9 are the test set sizes that ns is most possibly

located. By solving the two learned functions mathematically, it can be seen that

ns is very close to the inflection point. nm is calculated mathematically by solving

the equation of the deviate of the difference of the two learned functions. It can

be seen that the p-value at nm is less than 0.05.

32

(a) 0.2-L1-Max on Tri (b) 1.0-L1-Max on Tri (c) Tri-Low-Bound on Tri

(d) 0.2-L1-Max on BestMove (e) 1.0-L1-Max on BestMove
(f) Tri-Low-Bound on Best-
Move

(g) 0.2-L1-Max on Nichneu (h) 1.0-L1-Max on Nichneu (i) Tri-Low-Bound on Nichneu

Figure 3.3: Figures for comparing Random Testing and Biased Input Distribution
Testing

For BestMove, the p-values for all coverage criteria are decreasing as the test set

size increases. The Tri-Low-Bound criterion shows the highest decreasing speed.

Observing from the function curves, it can be seen that the difference of two

functions is gradually decreasing after the test set size nm. Hence, it can be

33

inferred that after the maximum test set size, which is set to 100, there exists a

pyramidal peak that is similar to the Triangle SUT. However, within the 100 test

set size, ns is located at the maximum test set size. For Nichneu, the p-values

behave differently for each coverage criteria. The p-values in 0.2-L1-Max are all

above 0.05, which indicate that the biased input distribution is indifferent from

the uniform distribution in detecting faults. The p-values in 1.0-L1-Max have a

pyramidal peak shape, and ns is located near the inflection point. The p-values for

Tri-Low-Bound have multiple local optima, which indicate that ns could possibility

resides in a relatively large test set size interval than the unique global optima.

Seen from Figure 3.3, the mathematical derived ns matches this observations.

Table 3.3, 3.4 and 3.5 provide the detailed data list for all coverage criteria. A

cell in the column p − value < 0.05 test size is filled with TRUE if there exists

an effective test set region. Otherwise, it is filled with FALSE. If no such region

exists, there is no significant difference between a biased input distribution and the

uniform distribution in the test set size ranges within [0, n]. For Tri and BestMove,

such region exists on coverage criteria. For Nichneu, the biased input distributions

begin to take effect when the p value of the p-L1-Max coverage criteria increases

to 0.8.

As described in Section 2.2, the effectiveness measures the difference of the

fault detecting abilities between a biased input distribution and the uniform in-

put distribution. The test set size nm provides the maximum effectiveness. The

column Improvement% shows the percentage increment of mutation scores from

the random testing method at the test set size nm. The Improvement data reflects

how a biased input distribution outperforms the uniform distribution at the test

set size nm. The column p-value on nm shows the p-values at the maximum effec-

tiveness. For all of the SUTs and any coverage criteria, the p-values are less than

0.05, which provides confidences on the estimated maximum effectiveness.

34

The data in the Improvement% column shows that the Tri-Low-Bound is sig-

nificantly superior to any p-L1-Max coverage criteria except for the Triangle SUT.

In Triangle, the 1.0-L1-Max outperforms Tri-Low-Bound with 15% lead. We sus-

pect that the estimation error on the test set size nm, which are all round up to

integers, is the potential cause of the problem. However, in general, one conclusion

can be made on the improvement of biased input distribution over uniform at test

set size nm for all coverage criteria. That is,

Tri-Low-Bound ≥ 1.0-L1-Max ≥ . . . ≥ 0.2-L1-Max

The column ms on ns shows the mutation scores at test size ns. The values

in this column indicate the maximum fault detecting rate that can be achieved

with the effectiveness equals 0. Therefore, the p-value at the test size ns should

be greater than 0.05. For Tri and Nichneu, the p-values shown in the column

p-values on ns are both greater than 0.4. For BestMove, as discussed previously,

the maximum test set size is not large enough to show the ”true” ns. Therefore,

the p-values for BestMove are both less than 0.05.

3.5.3 Search Results

The search results are shown in Table 3.6 and Table 3.7. The first five columns show

the fitness statistics. The column Fit. Of Unif. Dist presents the fitness values

for the uniform distribution. The column Improv. presents the increment in the

percentage of the averaged fitness of a searched input distribution over the fitness

of the uniform distribution. The fitness improvement is much more significant by

using the Tri-Low-Bound criteria. The last four columns present the computation

time statistics. It can be observed that for each SUT, the averaged computation

time for the Tri-Low-Bound criteria is greater than the 1.0-L1-Max criteria.

35

Effectiveness

Table 3.8: Effectiveness Table

Effectiveness Triangle BestMove Nichneu

0.2-L1-Max 3.20E-02 1.01E-02 –
0.4-L1-Max 3.80E-02 1.21E-02 –
0.6-L1-Max 3.81E-02 1.40E-02 –
0.8-L1-Max 4.79E-02 1.35E-02 7.41E-03
1.0-L1-Max 5.77E-02 1.50E-02 9.83E-03

Tri-Low-Bound 3.43E-02 2.03E-02 8.91E-03

The effectiveness measure η, which is defined in Equation 7, represents the averaged

number of errors found per test in the effective test set size region. The effectiveness

data is shown in Table 3.8. For Triangle and Nichneu, The 1.0-L1-Max coverage

criterion outperforms the Tri-Low-Bound criteria by 68.22% and 10.32% accord-

ingly. For BestMove, Tri-Low-Bound outperforms 1.0-L1-Max, since ns equals 100,

which is not the ”true” ns. Based on the above observations, we conclude that

1.0-L1-Max outperforms Tri-Low-Bound in effectiveness. Another observation is

that, as the cyclomatic complexity increases, the superiority of Tri-Low-Bound is

decreasing.

We also noticed that adding more fairness into the input distribution construc-

tion process does not benefit the fault-detecting ability. We believe this is due

to the defect of using mutation testing as a tool to evaluate the fault-detecting

ability. As the fairness increases, the estimated sum of triggering probabilities

decreases. From the test thoroughness point of view, it is reasonable to believe

the fault-detecting ability drops. However, the real faults sometimes is more diffi-

cult to discover than mutation testing tool which is automatically produced from

a template. Hence, the fairness property must have its value in the real testing

scenario.

36

(a) Effectiveness-to-Cost Ratio
for Triangle

(b) Effectiveness-Cost Ratio
for BestMove

(c) Effectiveness-Cost Ratio for
Nichneu

Figure 3.4: The bar charts of effectiveness-to-cost ratio for investigated coverage
criteria

3.5.4 Efficiency

The Efficiency which is expressed as the fraction of the effectiveness over the search

time indicates the overall value of using a particular coverage criterion. Figure 3.4

shows the efficiency for each coverage criteria in the three SUTs. For all SUTs,

the efficiency for 1.0-L1-Max is significantly greater than the Tri-Low-Bound. For

p-L1-Max coverage criteria, the efficiency decreases as p decreases. Except for

Nichneu where the 0.2, 0.4, 0.6-L1-Max has no efficiency, p-L1-Max shows a higher

efficiency value than Tri-Low-Bound. Hence, a conclusion can be made that the

search algorithm by using the 1.0-L1-Max coverage criteria has the most efficiency

in detecting software faults. The Tri-Low-Bound has the least efficiency, due to

the large computation time it requires to search for the optimal input distribution.

SUMMARY

The current search-based statistical structural testing has its limitations on the

efficiency. The major reason is the noisy fitness estimation of triggering probabil-

ities. This paper aims to improve the efficiency from the point view of criteria.

We proposed a new criterion, called p-L1-Max, and conducted experiments to

37

compare the efficiency of input distributions produced against the p-L1-Max and

the traditional Tri-Low-Bound criterion. The experiments show that although

Tri-Low-Bound criteria could give the highest effectiveness, but it also brings the

significant increment on the computation time. Thus, the efficiency of using Tri-

Low-Bound is much lower than others. On the other hand, 1.0-L1-Max has a

bit less effectiveness than Tri-Low-Bound, however brings the highest efficiency.

Hence, our conclusion is that in the practical applications, we recommend to use

the 1.0-L1-Max criterion.

38

T
ab

le
3.

3:
E

ff
ec

ti
ve

T
es

t
S
et

S
iz

e
R

eg
io

n
on

T
ri

.

M
e
tr

ic
p

-v
a
lu

e
<

0
.0

5
p

o
in

ts
n
m

p
-v

a
lu

e
o
n

n
m

m
.s

.
o
n

n
m

E
ff

e
c
ti

v
e
n

e
ss

o
n

n
m

Im
p

ro
v
e
m

e
n
t

%
n
s

p
-v

a
lu

e
o
n

n
s

m
.s

.
o
n

n
s

0.
2

T
R

U
E

6
5.

87
E

-0
6

6
.4

2
E

-0
1

3
.1

7
E

-0
1

97
.6

4%
6
7

9.
4
6E

-0
1

8.
6
8E

-0
1

0.
4

T
R

U
E

4
4.

53
E

-0
6

6
.0

0
E

-0
1

3
.5

4
E

-0
1

14
4
.2

6%
5
9

9.
8
9E

-0
1

8.
59

E
-0

1
0.

6
T

R
U

E
4

1.
57

E
-0

6
6
.2

4
E

-0
1

3
.6

0
E

-0
1

13
6
.8

9%
6
0

4.
1
7E

-0
1

8.
61

E
-0

1
0.

8
T

R
U

E
3

2.
67

E
-0

6
5
.9

7
E

-0
1

3
.7

6
E

-0
1

17
0
.0

7%
4
6

5.
7
0E

-0
1

8.
31

E
-0

1
1

T
R

U
E

3
7
.8

5
E

-0
7

5.
8
5E

-0
1

3
.9

4E
-0

1
2
06

.6
3%

3
4

4.
0
9E

-0
1

7.
81

E
-0

1
lb

T
R

U
E

4
1.

9
2E

-0
7

6.
8
9E

-0
1

4.
4
0E

-0
1

17
5.

8
6%

77
8
.6

0E
-0

1
8.

75
E

-0
1

T
ab

le
3.

4:
E

ff
ec

ti
ve

T
es

t
S
et

S
iz

e
R

eg
io

n
on

B
es

tM
ov

e.

M
e
tr

ic
p

-v
a
lu

e
<

0
.0

5
p

o
in

ts
n
m

p
-v

a
lu

e
o
n

n
m

m
.s

.
o
n

n
m

E
ff

e
c
ti

v
e
n

e
ss

o
n

n
m

Im
p

ro
v
e
m

e
n
t

%
n
s

p
-v

a
lu

e
o
n

n
s

m
.s

.
o
n

n
s

0.
2

T
R

U
E

74
4.

99
E

-0
2

8
.4

9E
-0

1
9.

09
E

-0
2

11
.9

9
%

1
00

3
.3

7E
-0

2
8.

98
E

-0
1

0.
4

T
R

U
E

45
5.

65
E

-0
2

7
.5

2E
-0

1
1.

08
E

-0
1

16
.6

9
%

1
00

7
.2

0E
-0

2
8.

80
E

-0
1

0.
6

T
R

U
E

33
4.

38
E

-0
2

7
.0

8E
-0

1
1.

46
E

-0
1

25
.9

2
%

1
00

1
.3

8E
-0

2
8.

76
E

-0
1

0.
8

T
R

U
E

31
2.

22
E

-0
2

7
.2

3E
-0

1
1.

76
E

-0
1

32
.2

7
%

1
00

4
.3

2E
-0

3
8.

89
E

-0
1

1
T

R
U

E
26

1.
14

E
-0

2
7
.0

1E
-0

1
2.

02
E

-0
1

40
.4

2
%

10
0

5.
56

E
-0

3
9
.0

0
E

-0
1

lb
T

R
U

E
12

1
.3

6
E

-0
5

7
.1

5
E

-0
1

3
.8

0
E

-0
1

1
13

.1
1
%

10
0

8
.2

5
E

-0
5

8
.9

9
E

-0
1

39

T
ab

le
3.

5:
E

ff
ec

ti
ve

T
es

t
S
et

S
iz

e
R

eg
io

n
on

N
ic

h
n
eu

.

M
e
tr

ic
p

-v
a
lu

e
<

0
.0

5
p

o
in

ts
n
m

p
-v

a
lu

e
o
n

n
m

m
.s

.
o
n

n
m

E
ff

e
ct

iv
e
n

e
ss

o
n

n
m

Im
p
ro

v
e
m

e
n
t

%
n
s

p
-v

a
lu

e
o
n

n
s

m
.s

.
o
n

n
s

0.
2

F
A

L
S

E
–

–
–

–
–

–
–

–
0.

4
F
A

L
S

E
–

–
–

–
–

–
–

–
0.

6
F
A

L
S

E
–

–
–

–
–

–
–

–
0.

8
T

R
U

E
8

9.
20

E
-0

4
9.

40
E

-0
2

4.
22

E
-0

2
81

.6
7%

33
9.

25
E

-0
1

2.
39

E
-0

1
1

T
R

U
E

4
5.

96
E

-0
3

8.
40

E
-0

2
5.

65
E

-0
2

20
5.

71
%

17
6.

16
E

-0
1

1.
00

E
-0

1
lb

T
R

U
E

2
2.

46
E

-0
3

5.
42

E
-0

2
4.

13
E

-0
2

32
1.

65
%

31
3.

01
E

-0
1

1.
62

E
-0

1

T
ab

le
3.

6:
S
ea

rc
h

R
es

u
lt

s
fo

r
1.

0-
L

1-
M

ax

1
.0

-L
1
-M

a
x

M
in

F
it

n
e
ss

A
v
g
.

F
it

n
e
ss

M
a
x

F
it

n
e
ss

F
it

.
O

f
U

n
if

.
D

is
t.

Im
p
ro

v
.

M
in

R
u
n
T

im
e

A
v
g
.

R
u
n
ti

m
e

M
a
x

R
u
n
ti

m
e

T
ri

a
n
g
le

9.
41

E
+

00
1.

08
E

+
01

1.
30

E
+

01
2.

54
E

+
00

32
5.

34
%

5.
98

E
-0

1
7.

83
E

-0
1

9.
42

E
-0

1
B

e
st

M
o
v
e

8.
41

E
+

00
8.

63
E

+
00

8.
88

E
+

00
7.

65
E

+
00

12
.7

7%
5.

57
E

+
00

6.
16

E
+

00
6.

97
E

+
00

N
ic

h
n
e
u

2.
49

E
+

02
2.

49
E

+
02

2.
49

E
+

02
1.

39
E

+
02

78
.2

9%
1.

48
E

+
01

1.
61

E
+

01
1.

79
E

+
01

T
ab

le
3.

7:
S
ea

rc
h

R
es

u
lt

s
fo

r
T

ri
-L

ow
-B

ou
n
d

T
ri

-L
o
w

-B
.

M
in

F
it

n
e
ss

A
v
g
.

F
it

n
e
ss

M
a
x

F
it

n
e
ss

F
it

.
O

f
U

n
if

.
D

is
t.

Im
p
ro

v
.

M
in

R
u
n
T

im
e

A
v
g
.

R
u
n
ti

m
e

M
a
x

R
u
n
ti

m
e

T
ri

a
n
g
le

1.
11

E
-0

1
1.

21
E

-0
1

1.
25

E
-0

1
6.

00
E

-0
3

19
09

.7
1%

5.
14

E
+

00
1.

28
E

+
01

3.
23

E
+

01
B

e
st

M
o
v
e

8.
33

E
-0

3
1.

40
E

-0
2

1.
88

E
-0

2
6.

10
E

-0
5

22
88

1.
30

%
9.

33
E

+
01

1.
06

E
+

02
1.

78
E

+
02

N
ic

h
n
e
u

1.
11

E
-0

2
1.

11
E

-0
2

1.
11

E
-0

2
2.

00
E

-0
4

54
55

.5
6%

1.
58

E
+

02
1.

87
E

+
02

2.
73

E
+

02

40

Chapter 4

SOFTWARE STATISTICAL STRUCTURAL TESTING: AN ACO-BASED

APPROACH

Statistical structural testing(SST) has been proved to be more effective than ran-

dom testing and deterministic coverage-driven testing in fault-detecting ability.

Automated search is able to automate the input distribution construction process

for SST. However, due to the impact of the noisy environment, the existing search

algorithm is still ineffective. In this dissertation, we present a novel statistical

search algorithm called constrained ant colony optimization on the real domain

(CACOR) for deriving effective input distributions. The input distribution model

harnesses a set of weighted uniform distributions over the input domain space,

which is enumerated effectively by the constrained ant colony optimization strate-

gies. Experimental studies demonstrate the excellent search performance of the

CACOR algorithm and the high-grade fault-detecting ability of the input distribu-

tions produced by the CACOR algorithm.

OVERVIEW

Search-based software testing (SBST) refers to a testing framework that uses meta-

heuristic optimization techniques to automate testing tasks. SBST is a dynamic

testing process where a test object is refined during the system under test’s (SUT’s)

run-time until it satisfies a coverage criterion. A classical implementation proposed

by Xanthakis [20] applies Genetic Algorithms (G.A.) to refine a test input set.

They aimed to cover all the branches with the least amount of test inputs. For

41

each targeted branch, they conducted the G.A. to search a test input that triggers

it. The SBST framework has been successfully applied to the real-world testing

industry. In particular, EvoSuite[21] applies a novel hybrid approach that generates

and optimizes whole test suites towards satisfying a coverage criterion for classes

written in Java code.

Statistical structural testing (SST) is a traditional testing method that uses a

probability distribution over the system under test’s input domain space (a.k.a,

input distribution) to generate test inputs. SST inspects a SUT as a control flow

graph. On the graph, an edge, a node, or a path are all types of structural cover el-

ements. An input distribution guarantees that the cover elements can be triggered

at least greater than a target probability value. This requirement ensures that ev-

ery cover element has a ”good” chance to be triggered by a randomly selected test

input from an input distribution. Compared with random testing, which selects

test inputs from a uniform distribution, SST is more ”balanced” in terms of SUT’s

structure. Thevenod-Fosse et al. in [22] provide empirical results demonstrat-

ing the superior efficacy of test sets generated using structural statistical testing,

compared to test sets of the same size generated using random testing and de-

terministic structural testing. They constructed input distributions either from

static analysis for simple programs or a manual trial-and-error process for complex

programs, which creates nonnegligible labor costs in the testing process.

Search-based Statistical Structural Testing (SBSST) is able to automate the

distribution construction process. Similar to SBST, SBSST is also a dynamic pro-

cess. As shown in Figure 4.1, input distribution(s) are sampled to produce test

input set(s) that run(s) with the instrumented SUT to form a set of program traces

in terms of edges. For instance, the trace {1, 0, 1, 0} indicates that a test input

triggers edge e1 and e3, but does not trigger edge e2 and e4. The trace set is then

used to estimate each edge’s triggering probability, and the minimum triggering

probability among all edges is used as the fitness measure. According to the fitness

42

Figure 4.1: The testing environment

values, the input distribution construction algorithm produces new distributions

by modifying the existing ones. This process continues until a sampled test input

set satisfies a coverage criterion. Simon and Pual in [3] provide convincing em-

pirical evidence that automated search can derive optimal input distributions in

a reasonable timeframe. They modeled the input distribution as a Bayesian net-

work and applied the traditional hill-climbing strategy as the input distribution

construction algorithm.

In their experiments, the hill-climber performs well for SUT tri and neichneu.

However, it performs poorly for bestMove whose BCEs’ input sub-domain space

is non-consecutive and small. The issue resides in the estimated triggering prob-

abilities. The estimation brings noises to search, which significantly increases the

computation time. The problem is especially evident when a BCE’s input subdo-

main space is non-consecutive and small, and triggering the BCE is considered a

rare event. The probability estimation of a rare event is usually inaccurate. We

conducted a small experiment to show the problem: Our synthetic SUT has two

inputs, with each consist of 30 elements. A cover element C can be triggered by 4

non-consecutive test inputs, and the sample set used to estimate fitness has 90 test

43

inputs. We use the hill-climber with a Tabu list to search for an input distribution

that maximizes the triggering probability of C. The estimation uses the Wilson

Score approach with continuity correction. Over the 5000 iterations, fitness swings

around 0.01. The confidence band, which ranges from near 0 to an average around

0.15, could not provide useful information to guide the search direction.

This issue reminds us that the search algorithm for the SBSST problem should

be effective in an uncertain environment. Compared with various EA algorithms,

Ant Colony Optimization (ACO) can deal with arbitrarily large noise in a graceful

manner [23]. Due to the pheromone accumulation effect, the estimated fitness for

an input distribution is aggregated, and the noise is reduced in the long run. In

this article, we present to use an extension of the ACO algorithm for SBSST. We

model the input distribution as a sum of weighted one-dimensional uniform distri-

butions. Each uniform distribution occupies a non-overlapped, consecutive input

sub-domain space (a.k.a a bin). In the view of ACO, constructing an optimized in-

put distribution is a resource allocation process. There are two resources: the size

of an input domain space and the bins’ probabilities. Assigning the right amount

of input sub-domain size and the associated probability to each bin to maximize

the triggering probabilities is the optimization objective. The size of an input do-

main space can sometimes be enormous. For instance, an integer’s size is 232. By

using a discrete optimization strategy, enumerating the whole input domain space

is not possible. Hence, we adopt Socha’s ACOR algorithm, which expands the

discrete ACO to the continuous domain [6]. Since the resource amount always has

an upper boundary and lower boundary, we modify Socha’s algorithm to satisfy

constraints and name it the CACOR algorithm.

We performed experimental studies to demonstrate the search efficiency of the

CACOR algorithm. The comparison takes place between CACOR and the hill-

climbing algorithm, which to the best knowledge, is the only algorithm used in

44

SBSST. The experimental study also shows the fault-detecting ability of the op-

timized input distributions by two assessment methods. The first method is mu-

tation testing, which uses a template to produce faulty source code versions. The

fault-detecting ability is measured by the percentage of mutants killed by an input

distribution’s sampled tests. The second method focuses on the fault-detecting

ability of real software bugs. We use the Siemens test suite as a benchmark [24].

Each SUT in the suite contains many copies of faulty versions with mistakes made

by programmers.

In this chapter, we start with a detailed description of the proposed algorithm,

followed by presents the experimental results to demonstrate the effectiveness of

the algorithm.

THE CACOR APPROACH

We model the input distribution construction as a resource allocation process.

The input sub-domain space and the weights applied to each uniform distribution

component are represented as two types of resources. The ACO algorithm aims to

allocate proper resources to each component in order to minimize a fitness function.

Specifically, the two types of resources are:

• Resource One: Bin’s Interval.The total amount of available resources

for allocating the intervals of k bins is the size of the input domain space

H −L+ 1. Let {∆1,∆2, . . . ,∆k} denotes the input sub-domains (resources)

allocated to each bin separately. The boundary value δi where 1 ≤ i ≤ k− 1

equals

δi =
i∑

k=1

∆k + L (4.1)

• Resource Two: Weights The total amount of available resources for al-

locating weight values is 1. For each weight component, the resource is the

weight value itself which is denoted as wi.

45

Figure 4.2: Solution Construction Mechanism

4.2.1 The Ant Dynamics

Figure 4.2 presents the any dynamics. There are two types of vertices, the weight

ω and the bin’s interval ∆. An ant could select either one to proceed at first. For

each resource type, an ant begins with randomly selecting a permutation order

of vertices (for instance, {C1, C2, C3}). Next, it moves to each vertice in the se-

lected order and randomly assigns a resource value with pheromone-proportionate

selection. The resource value is at most equal to the remaining resources (R).

Pheromone amount represents the degree of preference that an ant would choose

a resource amount for a vertice.

The above workflow could be implemented by the traditional discrete ACO al-

gorithm. However, there are several issues. First, in the above model, the resource

weights are quantized into countable intervals. An accurate solution requires the

weight variable to be a continuous variable. Second, as the number of components

increases, it becomes infeasible to enumerate all of the permutation orders. Third,

the available resource amounts at each component subject to a constraint. These

three issues lead us to continuous ACO, which generalizes the problem domain

46

space from discrete to continuous.

4.2.2 CACOR Implementation

There are several implementations of the ACO algorithm generalized to continuous

domains [25; 26]. In this study, we adopt Socha’s ACOR algorithm [6]. The ACOR

algorithm belongs to a category of estimation of density algorithms which uses a

probability density function(PDF) to produce new populations.

Population and PDF

Figure 4.3 illustrates a solution pool with n solutions for resource allocations that

satisfy the constraints on the w set and the ∆ set. The constraints are formally

defined as follows:
∑k

i=1 ∆i = H − L+ 1; ∆i ≥ 0 ∀i ∈ {1, . . . , k}

∑k
i=1wi = 1; wi ≥ 0, ∀i ∈ {1, . . . , k}

(4.2)

The i-th column, represented as the i-th bin stores the valid values for weight

wi and the input sub-domain size ∆i. The right-most column stores the scores

for each solution in the pool. To simulate the two pheromone updating functions,

Socha uses a probability model called the Gaussian kernel PDF on each column of

the population pool. The probability model applied on the i-th column is defined

as

Gi(r) =
n∑
j=1

sj ∗ N (rij, σ
i
j) (4.3)

where Gi(r) refers to the probability of the resource value r for the i-th bin. In this

context, resource refers to both the weights and the input domain size. N (rij, σ
i
j)

denotes a normal distribution centered at the resource value rij with a variance of

47

Figure 4.3: A representation of solution pool

σij. The score sj is determined by the equation

sj =
1

qn
√

2π
e
− (l−1)2

2q2n2 (4.4)

where l denotes the ranking of the l-th best solution in the population and, q is a

preference parameter. A small value of q leads to the selection of Gaussian com-

ponents that are more biased towards the current best solution in the population,

resulting in a fast convergence speed but the possibility of being trapped in a lo-

cal optimum and vice versa. σij denotes the averaged distance between the j-th

solution and the other solutions in the i-th column. σij is defined

σij = ρ
n∑
k=1

√
(rik − rij)2

n− 1
(4.5)

where ρ > 0 is also a preference parameter. The higher the value of ρ, the lower

the convergence speed, but the less possibility of being trapped in the local optima.

Solution Generation

To produce a new solution, three steps are performed. First, as in the discrete

case, a permutation order of Gaussian kernel PDFs is randomly selected.

Second, for each selected Gi in order, a Gaussian component is randomly se-

lected with score proportionate selection. Specifically, the probability of selecting

48

the i-th solution is

Pi =
si∑n
i=1 si

Third, since the available resources at Gi are

ra = rt −
i−1∑
k=1

rk (4.6)

where rk denotes the taken resource amount on the k-th order of the Gaussian

kernel PDF sequence, sampling a new resource value at Gi must satisfy the con-

straint that ri ≤ ra. That is, the selected Gaussian component is truncated to the

[0, ra] domain space. To sample a truncated Gaussian component, we adopt the

accept-reject sampling (ARS) method [27].

The concept behind the ARS method is to use an alternative distribution g(r)

to sample a resource value rs. This value is accepted as a sampled value from a

truncated Gaussian component if

u ≤ f(rs)

M ∗ g(rs)

where f(rs) denotes the PDF of the selected Gaussain component, u is a random

variable following the U(0, 1) distribution, and M is a constant derived from

M = sup
r

(
f(r)

g(r)

)
(4.7)

If f(r) is z ∼ N (0, 1), a standard Gaussian pdf , a common pair for g(r) is a shifted

standard exponential distribution. The exponential distribution provides a lower

bound constraint on x. However, the available resource ra is a higher-bound con-

straint. To coincide with the exponential distribution property, ra is mirrored from

higher-bound to lower-bound by using Gaussian distribution’s symmetrical prop-

erty. After the sampling process, the actual sampled resource amount is derived

from the result of the ARS process followed by another mirroring of the result.

After the first mirroring process, the lower-bound constraint is ri ≥ 2rij− ra where

49

rij represents the mean of the j-th Gaussian component in the i-th Gaussian kernel

PDF. Then the truncated Gaussian distribution can be written as

ri ∼ N (rij, σ
i
j)I(ri ≥ 2rij − ra) (4.8)

I is an indication function that outputs 1 if ri satisfies the condition and otherwise

outputs 0. It is also known that N (rij, σ
i
j) = σij ∗ z + rij where z ∼ N (0, 1). The

standardized version of the truncated Gaussian distribution is therefore

zt ∼ N (0, 1)I(z ≥
rij − ra
σij

) (4.9)

Thus, f(r) is the standard normal distribution which PDF is f(r) = e−
1
2
r2 . Since

the lower-bound constraint is
rij−ra
σij

, the PDF of the exponential distribution g(r)

is setup to be

g(r) =

e
− 1

2
(r−

rij−ra
σi
j

)

r ≥ 0

0 r < 0

(4.10)

Next, in order to find the optimal value M , we expand the equation f(r)
g(r)

and solve

the following equation:

d

dr

[
e
0.5r2+r−

rij−ra
σi
j

]
= 0 (4.11)

Finally, M is derived as

M = e
1
2
−
rij−ra
σi
j (4.12)

50

Algorithm 2 Procedure of Sampling Resources and the CACOR algorithm

1: procedure SampleResAmount
2: input: l - a column index in the

pool
3: ra - available resources
4: S - solution pool
5:
6: output: r∗ - sampled resource

amount
7:
8: rli = ScorePropotionateSelection(Sl)
9: rc = 2rli − ra

10: σlj = ρ
∑n

k=1

√
(rlk−r

l
j)

2

n−1

11: rz =
rc−rli
σlj

12: η(r) = f(r)
Mg(r) = e

1
2
r2+r− 1

2

13:
14: r∗ = −1
15: while true do
16: rs = y + rz, y ∼ Exp(1.0)
17: if rs > 2rli then
18: continue
19: end if
20: u ∼ U(0, 1)
21: if u ≤ η(rs) then
22: r∗ = rs
23: break
24: end if
25: end while
26:
27: r∗ = 2rli − r∗
28: return r∗
29: end procedure

procedure CACO
2: input: k - number of bins

ch - fitness history length

4: cs - stop condition constant

6: output: S∗ - The 1st rank solution
in the pool

8: Hf ← ∅
S ← PopulationInitialization()

10: FitnessEvaluation(S)
SortAndUpdateScore(S)

12:
while g ≤ gmax do

14: g = g + 1
St ← ∅

16: for i = 1 to ns do
L = PermOrder(k)

18: for r in {w,∆} do
ra = rt

20: for l in L do
ril = Sample(l, ra, S)

22: ra = ra − ril
Sit ← ril

24: end for
end for

26: end for

28: S = St
FitnessEvaluation(S)

30: SortAndUpdateScore(S, I)
S∗ = Sbest

32: Hf ← f∗

div = CalStdDiv(Hf , ch)
34: if div ≤ cs then

break
36: end if

end while
38: return S∗

end procedure

Algorithm 4 illustrates the process of sampling an amount of resources for

a selected component (column) in the pool. The process starts by calling the

ScorePropotionateSelection function to randomly selects a mean value rli for the

Gaussian component. Next, the higher-bound constraint ra is converted to the

lower-bound rc. The variance of the Gaussian component is then computed with

Equation 10 and the constraint rc standardized to rz. Next, the process enters

a loop that terminates when an acceptable condition is satisfied. In the loop, a

51

random value rs is first sampled from the Exp(1.0) distribution and then rz is

calculated. In order to prevent sampling of the negative resource value, rs must be

smaller than 2rli. Finally, a random value u is sampled from U(0, 1). If u ≤ η(rs),

the sampled result rs is accepted. Once accepted, rs is converted to the real re-

source value r∗.

Fitness Evaluation

The fitness of an input distribution is represented by the distances to the optimal

triggering probability 1
|CC| . Formally,

f(t̂ri) =
∑m

i=1 s(
ˆtrii)

where s(x) =

1
|CC| − x,

1
|CC| − x > 0

0, otherwise

(4.13)

The fitness value equals zero when input distribution is optimal. To calculate the

estimated triggering probabilities(ˆtrii), we first estimate the triggering probabili-

ties for each bin. Suppose t̂ribi denotes the estimated triggering probabilities of the

i-th bin, the overall estimated triggering probabilities are derived by the following

formula:

t̂ri =
k∑
i=1

wi ∗ t̂ribi

4.2.3 The Overall Process

The complete CACOR algorithm is detailed in Algorithm 4. To begin with, the his-

tory fitness list Hf is initialized to empty and the PopulationInitialization function

randomly produces a pool of initial solutions. Then, the FitnessEvaluation func-

tion calculates the fitness of each solution in the pool and the SortAndUpdateScore

function then ranks the population according to the fitness values. The algorithm

52

then enters the main loop. In the main loop, the algorithm begins by producing a

pool of new solutions and storing them in St. More specifically, in order to produce

a new solution, the algorithm first randomly generates a permutation order of the

column indices of the pool. Then, for each resource type (ω or ∆), the SampleRe-

sAmount function takes the bins index l, the current available resource amount

ra and the solution pool S as inputs and outputs a sampled resource value. The

returned value ril is assigned to the l-th component of the new solution Sit and

the available resource amount is reduced by the value of ril . After producing a set

of new solutions, the algorithm replaces the existing pool S by St and enters the

fitness evaluation phase. Next, the score of each solution in the pool is updated

once more with the SortAndUpdateScore function, alongside the history fitness list

Hf .

The main loop has two termination conditions. The first condition is met when

the algorithm reaches the maximum generation limit gmax. The second condition

is met when the standard deviation (div) of the fitness stored in Hf is less than

cs.

EXPERIMENTS

The primary objective of our experimental study is to demonstrate the efficiency of

the proposed search algorithm. To my best knowledge, hill-climbing algorithm is

the only search algorithm being used [3]. Hence, we implemented the hill-climbing

algorithm for comparison. The secondary objective is to show the fault-revealing

ability of the input distributions produced by the search algorithm. We used a

benchmark program called Siemens testing suite to show the ability to discover

real faults. We also performed mutation testing to show the fault discover rate.

All of the experiments run on Linux with Core i7 with 3.5 GHz, 8 logical processors

and 16 GB memory.

53

4.3.1 Benchmark Programs

The detail information of the benchmark programs are listed in Table 4.1, in which

benchmark programs are divided into two groups. The first group shown above

the triangle function are collected from Siemens test suite. The Siemens test suite

is dedicated to studying the fault detection capabilities of control-flow and data-

flow coverage criteria[24]. In the suite, for each program under test, there are

multiple faulty versions of the source code. Each faulty version contains an error.

The second groups after non crossing biased decend uses mutation testing. The

program domain sizes range from 1000 to 26200. Specifically, bestMove determines

the best move for the current player in a tic-tac-toe (noughts-and-crosses) game.

bestMove has the largest domains size and complexity among all SUTs. Moreover,

it has a small sub-domain space of only 4 non-consecutive inputs that exercises

a branch cover element, which makes the search more difficult. triangle receives

three integer numbers and decides the kind of triangle they represent: equilateral,

isosceles, scalene, or no triangle. gcd computes the greatest common denominator

of the two integer arguments. calday computes the day of the week given a date

as three integer arguments. bessel computes the Bessel functions given an order

n and real argument. These programs1 are presented in [28]. lednum2, which is

originated from the WCET project [29] reads ten values as input and output half

to LCD. In the table, CC refers to the cyclomatic complexity, LOC represents the

line of code in the SUT.

4.3.2 Experiment One: Search Efficiency

To assess the efficiency and the effectiveness of the proposed solution, we run

CACOR and hill climbing algorithm(H.C) for 32 times separately over 27 bench-

mark program functions. The hill-climbing algorithm has two types of operations

1http://tracer.lcc.uma.es/problems/testing/index.html
2http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

54

to create a neighbor solution. The first operation alters a bin’s size by shifting

up/down the upper bound of the bin. The second operation alters the weight

value assigned to the associated bin. In each iteration, a new input distribution is

produced by first randomly selecting a bin, followed by randomly performing one

of the two operations.

The search performance of CACOR and Hill-climbing algorithm are assessed

by the following evaluation metrics:

1. The average achieved fitness values(AvgFit) by a search algorithm

2. The average run time of a search algorithm. (C.T)

To measure the achieved fitness value, we let the two search algorithms run

until either the target fitness value is reached or the fitness values in the last ten

iterations do not change within a standard deviation of 0.01. If search algorithm

A finishes before search algorithm B, we rerun A until B finishes and use the best

fitness value of A in the previous runs. We repeat this process for 32 times and

averaging the fitness and computation time as the experimental results. Since the

fitness represented by the triggering probability is estimated from samples, it is

normal to see noises from estimation. Hence, we broaden the stopping criterion

from the optimal to the near-optimal input distribution with a range of fitness

values f = [0, 0.05].

The search results are shown in Table 4.2. Specifically, H.C and CACOR cannot

reach the target fitness value when testing bessel, bestMove, calday and esc(function

names appended with #). However, CACOR’s fitness value is closer to the target

than H.C, with sacrifices of C.T to converge to a better local optimum. The four

SUTs have a common trait: Both of them carry BCEs with a small non-consecutive

input sub-domain space, which leads to a rugged fitness landscape, causing search

inefficiency. For this type of SUTs, we should consider the trade-off between C.T

and fitness value. It might not be worth spending extra C.T to gain a small fitness

55

improvement. For functions with names appended with *, CACOR reached the

target fitness value, whereas H.C did not. Although the computation time of H.C

is shorter than CACOR in some functions, CACOR outperformed H.C, since H.C

converged into a local optimum, whereas CACOR converged into a global optimum.

In the rest functions(not marked with # and *), both CACOR and H.C reached the

target fitness value. CACOR’s computation time is less than H.C except find nth

and get token, where there is not much difference in C.T between the two search

algorithms. CACOR outperformed H.C.

Above all, the CACOR algorithm produced the near-optimal input distribu-

tions for 72.41% of benchmark functions whereas Hill-climbing algorithm produced

48.28%. These observations provide the evidence that the CACOR algorithm is

more effective than the hill-climbing algorithm. To conclude with much higher

confidence, we performed the rank-sum test on the fitness values for the 32 runs.

The hypotheses are defined as follows:

• H0: There is no significant difference on the fitness value of the best input

distributions produced from the CACOR or the hill climbing algorithm

• Ha: The fitness value of the best input distribution produced from the

CACOR algorithm is significantly smaller than the one produced from the

Hill-climbing algorithm.

Except for the SUTs with optimal input distributions, the p-values (see Column

CACOR
−−→HC in Table 4.2) are far less than 0.05. The null hypothesis is rejected.

To see the difference of the fault-detecting ability between the biased input dis-

tribution and the uniform input distribution, it is also necessary to list the avgFit

value for the uniform distribution and calculate the percentage of improvement on

avgFit by using the CACOR algorithm (see Table 4.2). The minimum improve-

ment is 30.011% on get token function in the program printtokens. The maximum

improvement is 100% on 13 programs which avgFit values are 0. Furthermore, no

56

benchmark program shows the negative improvements.

We also noticed that the CACOR algorithm performs less effectiveness for the

mutation testing group than the Siemens group. The major reason resides in the

complexity of the functions. Except gcd, the rest functions have relative higher

cyclomatic complexities and the larger amount of BCEs than functions in the

Siemens suite. One of the potential solutions is to partition the BCEs into a set

of groups. For each group, the CACOR algorithm produces an input distribution.

57

T
ab

le
4.

1:
B

en
ch

m
ar

k
P

ro
gr

am
s

F
u

n
ct

io
n

F
a
u

lt
y

V
er

si
on

s
B

C
E

C
C

L
O

C
P

ro
gr

am
D

om
ai

n
S

iz
e

ge
t

to
ke

n
v
1
,v

2
,v

3,
v
4

{8
,.
..
,3

3}
17

50

p
ri

n
tt

ok
en

s2
4.

06
E

+
03

is
st

r
co

n
st

an
t

v
5,

v
1
0

{9
4
,.
..
,9

9}
4

16
is

n
u

m
co

n
st

an
t

v
6

{8
8
,.
..
,9

3}
4

18
is

to
ke

n
en

d
v
7
,v

8
,v

9
{3

4
,.
..
,4

7}
10

23

ge
t

to
ke

n
v
1
,v

2
,v

3,
v
5

{8
,.
..
,2

5}
23

77
p

ri
n
tt

ok
en

s
4.

07
E

+
03

n
u

m
er

ic
ca

se
v
7

{1
3
,.
..
,3

1}
4

27

d
o
d

as
h

v
1,

v
2,

v
5,

v
9,

v
10

,v
11

,v
32

{1
0
,.
..
,1

9}
11

35

re
p

la
ce

4.
68

E
+

03

su
b

li
n

e
v
3
,v

4
,v

6,
v
13

{5
2
,.
..
,5

5}
6

22
st

cl
os

e
v
8
,v

1
6

{1
1
,1

2}
2

16
m

a
ke

p
at

15
,2

8,
29

,3
0

{2
4
,.
..
,4

3}
17

56
om

at
ch

v
14

,v
1
8,

v
24

,v
25

,v
26

,v
27

,v
31

{5
6
,.
..
,7

3}
17

58
ad

d
st

r
v
17

{0
,1
}

2
16

ge
tc

cl
v
22

{2
0
,2

1}
2

20

fi
n

d
n
th

v
1,

v
6

{4
,.
..
,7
}

4
13

sc
h

ed
u

le
2.

42
E

+
03

u
n
b

lo
ck

p
ro

ce
ss

v
2

{2
4
,.
..
,2

7}
3

19
u

p
gr

ad
e

p
ro

ce
ss

p
ri

o
v
3
,v

4
,v

5,
v
7,

v
8

{1
8
,.
..
,2

3}
4

24

In
fo

T
b

l
v
1,

v
7
,

v
13

{1
2
,.
..
,4

1}
17

85
to

tI
n

fo
2.

79
E

+
03

gs
er

v
8
,

v
15

{2
,.
..
,5
}

4
15

al
t

se
p

te
st

v
3,

v
5
,

v
9,

v
12

,
v
13

,
v
14

{6
,.
..
,1

3}
14

24
tc

as
1.

58
E

+
03

n
on

cr
os

si
n

g
b

ia
se

d
cl

im
b

v
1
,

v
2,

v
4,

v
20

{2
,3
}

6
16

n
on

cr
os

si
n

g
b

ia
se

d
d

ec
en

d
v
6,

v
7,

v
8,

v
11

,v
15

,v
16

,v
17

,v
18

,v
19

{4
,5
}

6
16

tr
ia

n
g
le

50
01

m
u

ta
n
ts

{0
,.
..
,2

7}
22

53
tr

ia
n

gl
e

9.
26

E
+

03
gc

d
35

1
m

u
ta

n
ts

{0
,.
..
,5
}

6
38

gc
d

4.
04

E
+

04
ca

ld
ay

6
80

m
u

ta
n
ts

{0
,.
..
,2

1}
12

72
ca

ld
ay

8.
12

E
+

06
b

es
se

lj
3
04

1
m

u
ta

n
ts

{0
,.
..
,2

7}
17

24
5

b
es

se
l

4.
04

E
+

04
lc

d
n
u

m
3
00

1
m

u
ta

n
ts

{0
,.
..
,3

1}
17

64
le

d
n
u

m
1.

00
E

+
03

b
es

tM
ov

e
5
00

1
m

u
ta

n
ts

{0
,.
..
,4

1}
29

13
2

b
es

tM
ov

e
2.

62
E

+
05

58

T
ab

le
4.

2:
S
ea

rc
h

P
er

fo
rm

an
ce

P
ar

t
O

n
e

F
u
n
ct

io
n

C
.T

(H
.C

)
C

.T
(C

A
C

O
R

)
A

v
gF

it
P

-v
al

u
e

C
A

C
O

R
H

C
U

n
if

or
m

C
A

C
O

R
->

H
C

C
A

C
O

R
->

U
n
if

or
m

b
es

se
l#

8
31

.6
0

19
36

.4
18

0.
12

5
0.

27
8

0.
35

1
1.

84
48

6E
-1

1
1.

50
99

3E
-1

1
b

es
tM

ov
e#

23
9
3.

4
6

29
86

.3
17

0.
08

0
0.

55
7

0.
65

5
1.

43
23

E
-1

1
1.

43
23

E
-1

1
ca

ld
ay

#
24

0
7
.3

8
2
21

8.
99

7
0.

10
7

0.
16

2
0.

17
6

1.
28

40
9E

-1
0

1.
26

03
E

-1
1

g
cd

*
4
06

.3
2

2
78

.9
54

0.
01

1
0.

14
3

0.
15

3
8.

08
94

7E
-1

2
8.

08
94

7E
-1

2
lc

d
n
u
m

*
2
8
8.

4
8

49
7.

23
7

0.
04

7
0.

81
6

0.
87

2
1.

50
99

3E
-1

1
1.

50
99

3E
-1

1
tr

ia
n
g
le

*
7
4
1.

7
8

5
96

.6
44

0.
05

0
0.

42
1

0.
58

2
3.

23
74

5E
-1

2
2.

60
95

2E
-1

2
a
d
d
st

r
2
.7

6
2
.1

91
0.

00
0

0.
00

0
0.

00
1

9.
99

00
0E

-0
1

7.
27

58
3E

-0
5

d
o
d
a
sh

3
.9

52
1
.4

13
0.

00
0

0.
01

7
0.

05
1

3.
18

72
7E

-0
8

1.
18

28
4E

-1
2

es
c#

28
0
.5

4
95

.7
55

0.
10

2
0.

20
8

0.
28

3
1.

43
82

4E
-0

7
1.

40
01

6E
-1

1
g
et

cc
l*

3.
9
3
2

20
.4

85
0.

00
0

0.
11

6
0.

36
5

2.
39

42
0E

-0
8

6.
05

89
0E

-1
3

m
ak

ep
at

6
9.

78
2.

03
2

0.
00

0
0.

00
1

0.
01

4
3.

30
83

7E
-0

4
6.

05
89

0E
-1

3
o
m

a
tc

h
3
.2

4
3

2.
15

7
0.

00
0

0.
01

0
0.

06
7

6.
35

57
6E

-1
0

2.
60

95
2E

-1
2

st
cl

o
se

*
3
5
3.

28
45

.1
4
8

0.
00

0
0.

37
4

0.
49

6
4.

56
43

0E
-1

1
2.

05
54

9E
-1

2

59

T
ab

le
4.

3:
S
ea

rc
h

P
er

fo
rm

an
ce

P
ar

t
T

w
o

F
u
n
ct

io
n

C
.T

(H
.C

)
C

.T
(C

A
C

O
R

)
A

v
gF

it
P

-v
al

u
e

C
A

C
O

R
H

C
U

n
if

or
m

C
A

C
O

R
->

H
C

C
A

C
O

R
->

U
n
if

or
m

su
b
li
n
e

3.
54

1.
59

9
0.

00
0

0.
00

0
0.

00
1

9.
99

00
0E

-0
1

1.
07

88
6E

-0
2

a
lt

se
p

te
st

56
.0

4
2.

26
5

0.
00

0
0.

00
3

0.
03

6
3.

30
83

7E
-0

4
6.

05
89

0E
-1

3
n
cb

c
4
.8

6
2.

23
8

0.
00

0
0.

00
0

0.
02

4
4.

07
61

5E
-0

2
6.

05
89

0E
-1

3
n
cb

d
31

.0
8

2.
43

5
0.

00
0

0.
00

1
0.

04
4

4.
07

61
5E

-0
2

6.
05

89
0E

-1
3

g
cf

38
.2

8
2.

93
6

0.
00

0
0.

00
0

0.
01

1
9.

99
00

0E
-0

1
8.

28
62

3E
-1

2
g
se

r*
41

9
.4

6
38

6.
40

8
0.

00
3

0.
23

7
0.

25
8

3.
23

94
7E

-1
2

3.
23

94
7E

-1
2

in
fo

tb
l

4.
44

2.
99

8
0.

00
0

0.
00

0
0.

00
3

1.
66

85
5E

-0
1

2.
88

60
1E

-1
1

g
et

to
ke

n
*

4
77

.1
2

11
3.

40
0.

05
1

0.
06

1
0.

07
5

2.
42

80
1E

-0
3

1.
50

99
3E

-1
1

n
u
m

er
ic

ca
se

*
36

9
.6

61
6.

71
5

0.
05

2
0.

85
1

1.
04

0
1.

40
20

2E
-1

1
5.

50
98

6E
-1

2
g
et

to
ke

n
2.

44
4

2.
79

5
0.

00
0

0.
00

8
0.

04
0

1.
39

40
0E

-0
3

6.
05

89
0E

-1
3

is
n
u
m

co
n
st

a
n
t*

39
1.

56
59

.3
78

0.
00

1
0.

35
3

0.
52

4
8.

96
89

6E
-1

1
3.

23
94

7E
-1

2
is

st
r

co
n
st

an
t*

49
6
.0

19
7.

53
0

0.
00

0
0.

23
5

0.
39

4
1.

58
01

1E
-1

2
1.

58
01

1E
-1

2
is

to
ke

n
en

d
2
0
.8

2
3.

18
7

0.
00

0
0.

00
4

0.
02

9
1.

39
40

0E
-0

3
6.

05
89

0E
-1

3
fi
n
d

n
th

3
.5

4
3.

04
3

0.
00

0
0.

00
0

0.
00

4
9.

99
00

0E
-0

1
6.

52
78

1E
-0

8
u
n
b
lo

ck
p
ro

ce
ss

11
.4

3.
15

9
0.

00
0

0.
00

0
0.

01
3

9.
99

00
0E

-0
1

6.
05

89
0E

-1
3

u
p
g
ra

d
e

p
ro

ce
ss

p
ri

o*
7
.4

37
18

.9
40

0.
00

0
0.

23
7

0.
32

7
1.

63
41

7E
-1

0
3.

23
94

7E
-1

2

60

Figure 4.4: Fault Detection Ability Test on Mutation Testing Group

61

Figure 4.5: Fault Detection Ability Test On Siemens Test suite

62

4.3.3 Experiment Two: Fault-detecting Ability

To measure the fault-detecting ability, we collect multiple faulty versions of the

original copy of each SUT function. For each one of the thirty two evolved in-

put distributions, five test sets with each containing two hundred test inputs are

sampled. Each test input runs both of the original and the faulty versions of the

executable. If the outputs produced from the faulty versions are different from the

original SUT’s output, the faults are explained as ”killed.” A higher amount of

faults found by a test set indicates a superior fault-detecting ability of the corre-

sponding input distribution.

Two resources are used to collect the faulty versions of SUTs. First resource

comes from a mutation testing tool, called Milu [30] to automatically generate a

set of 350 to 5000 first-order and second-order mutants (faulty versions) for each

SUT. Second resource comes from the Siemens test suite. The suite provides a set

of benchmark programs and 7 to 41 faulty versions for each program.

The objective of the experiments on the fault-detecting ability is to demonstrate

that an input distribution which satisfies or closes to the proposed criterion reveals

an superior fault-detecting ability. The fault-detecting ability is expressed as the

expected number of faults found at each test set size.

Mutation Testing Group

For each program in the mutation testing group, the mutant quantity produced

by Milu is large. The faults are injected perhaps every possible location in the

source code. In the mutant set, not every mutant is valid. For instance, the

calDay function has 680 mutants. However, most of them trigger the segment fault

exception. In this situation, although the output from mutants and the original

copy are different, the ”killed” mutant does not provide any useful information

for the fault-detecting ability assessment. On the other hand, the live mutants

possibly exist in the mutant set. These mutants cannot be ”killed” by any test

63

input. Hence, the fault-detecting rate hardly reaches 100%.

Theoretically, the biased input distribution cannot always outperform the uni-

form input distribution for all levels of test set size and vice versa [2]. Due to the

randomness nature of mutant generation and the sum-up-to-one property on the

probability distribution, some faults have a higher chance while other faults have

lower chances being detected. Thus, at certain levels of test set size, the uniform

input distribution should perform equally good as the biased input distribution.

Hence, the comparison of the fault detecting ability via mutation testing requires

knowing the interval of the test set size that CACOR outperforms random testing.

The test set sizes inside of the interval are so-called the effective test set sizes.

The mutation testing results are shown in the Figure 4.4 in which, the left axis

represents the averaged expected faults found per test (the fault detection rate)

at each test set size over the 160 test sets. The right axis represents the rank-sum

test results for the test sets that comes from CACOR or random testing. If the

p-value is less than 0.05, CACOR is significantly better than random testing in the

expected faults found per test.

Except for CalDay and Gcd, all the other programs show a clear effective test

set size interval. For the CalDay program, executing most of the mutants raises

the segment fault exception. Hence, the fault-detecting rate starts from a high

level at the initial test set size and converges to 100% in the early test stages. For

comparison, CACOR performs almost the same as random testing with a slightly

worse performance at the test set size around 4. ForGcd, all of the mutants can

be ”killed” by any test input. We believe that the Gcd program’s structure is

sensitive to its output. Then, whenever a modification is made on the program

structure, the output is altered.

For BestMove and Tri, both of the effective test set size starts from 1. The

upper bounds of the effective test set size are approximately 105 and 44 respec-

tively. The p-values with test set sizes of more than 83 and 37 test inputs are

64

Table 4.4: Number of Tests for Full Fault Coverage

Function
A.F

p-Value
CACO Random

addstr 4.20E+02 7.88E+02 1.55E-04
dodash 1.00E+03 1.00E+03 1.00E+00
esc 6.51E+02 6.15E+02 5.77E-01
getccl 6.45E+02 8.77E+02 1.15E-02
makepat 4.06E+02 9.51E+02 3.95E-07
omatch 8.20E+02 1.00E+03 6.62E-04
stclose 8.31E+02 8.07E+02 6.98E-01
subline 2.12E+02 6.62E+02 1.58E-07
alt sep test 7.34E+02 1.00E+03 3.45E-07
ncbc 8.11E+02 1.00E+03 1.46E-04
ncbd 8.69E+02 1.00E+03 5.58E-03
gcf 6.54E+01 5.69E+02 6.41E-09
gser 2.87E+00 1.10E+00 9.89E-05
infotbl 6.48E+01 5.37E+02 1.50E-08
get token 5.76E+02 9.91E+02 2.93E-07
numeric case 4.77E+02 5.69E+02 5.04E-01
get token 1.55E+02 6.80E+02 6.36E-08
is num constant 2.10E+00 2.76E+01 6.39E-05
is str constant 3.90E+00 4.38E+01 1.64E-03
is token end 1.09E+02 5.33E+02 1.92E-06
find nth 8.23E+02 8.66E+02 7.17E-01
unblock process 1.48E+01 2.90E+02 1.01E-09
upgrade process prio 3.27E+02 6.67E+02 6.66E-04

greater than 0.05. This implies that CACOR does not significantly outperform

the random testing with more than 83 or 37 test inputs for BestMove and Tri

respectively. For Besselj and lcd num, the effective test set sizes start from 18 and

4 respectively. The p-values are dramatically decreasing as the test set size cross

the starting point. The upper bounds of the effective test set size, which are far

from the lower bound cannot be suiteably displayed in the graph.

The above results demonstrate that biased input distributions provide superior

fault-detecting ability than random testing at the majority of test set sizes. Fur-

thermore, at the highest test set size shown in the graph, the fault-detecting rates

65

of the biased input distributions are higher than 0.8. This observation implies that

even though the fault-detecting rates from random testing might exceed biased in-

put distributions with larger test set sizes (for bestMove or tri), random testing

has a relatively small space of improvement on the fault-detecting rate. Hence, the

above results provide evidence that, for mutation testing group, the biased input

distributions show a superior fault-detecting ability.

Siemens Test suite

In the Siemens test suite, each program has a few artificial faults that are publicly

known erroneous mistakes. To assess the fault detection ability of an input distri-

bution by using the provided faults, we use the following two assessment metrics.

1. The average number of faults discovered at each test set size. (A.T)

2. The average number of test inputs required to discover all faults. (A.F)

The A.T results are represented as a set of stacked bar charts in Figure 4.5.

It can be seen that the summation of the average discovered faults for each test

set size results from CACOR (shown on the LHS bar) are always greater than ran-

dom testing (shown on the RHS bar) except for the benchmarks tcas, printtokens,

schedule and totinfo with test set size equals 1. We argue that the smaller test set

size is not useful for evaluating the actual fault detection ability in a practical test-

ing environment. Speaking in detail, with regards to schedule, 86% of comparisons

for each function in every test set size shows that the average faults discovered

by using the CACOR approach are higher than the random testing method. With

regards to other programs, the statistics are 0.69%, 0.995%, 0.79%, 0.998% and

0.667% for printtokens, printtokens2, replace, tcas and tcas respectively.

The A.F results are shown in Table 4.4. Only for the program dodash, both

of the CACOR and random testing methods cannot reach the full fault coverage

within the 1000 (the maximum) tests. For other programs, ncbd requires the

66

largest (869) test set size by using the CACOR algorithm. To compare the A.F

between the two methods with confidence, we performed the two-tail rank-sum

test. The p-values (see Table 4.4) indicate that the CACOR and random testing

are not significantly different in the expected faults found for functions dodash, esc,

stclose, numeric case and find nth. In other functions, random testing outperforms

CACOR in 61.63% for gser, whereas CACOR outperforms random testing for the

rest functions. The largest improvement from random testing is 94.89% on function

unblock process. The smallest improvement from random testing is 13.10% on

function ncbd.

Among the overall (23) benchmark functions, 73.9% of them demonstrate that

the fault detection ability of biased input distributions produced by the CACOR

algorithm is superior to random testing. 21.7% of the functions show that there

is no statistical difference between the two methods. Lastly, 4.3% of the functions

show that random testing outperforms CACOR. This results provide the evidence

that, CACOR algortihm is more efficient in detecting faults than random testing.

SUMMARY

Statistical structural testing is a powerful tool for software testing. However, due

to the complicated input distribution construction process, it is hard to apply it

to real-world problems. Even with the help of automated search, under an uncer-

tain environment, search is primarily inefficient. In this chapter, we introduced

a novel search-based input distribution construction algorithm called constrained

ant colony optimization on the real domain (CACOR). We model the input dis-

tribution construction process as a resource allocation process and uses the ant

colony metaphor to optimize an input distribution. ACO can deal with arbitrar-

ily large noise in a graceful manner due to the pheromone accumulation effect.

The traditional discrete ACO is not suitable for SBSST since a vast input domain

could explode computation resources. Hence, we adopt the ACOR algorithm and

67

enhance it to support constrained optimization for SBSST problems. The exper-

imental study shows that CACOR algorithm has a significant advantage over the

hill-climbing algorithm in searching for optimal input distributions. More impor-

tantly, CACOR can derive the target solution in a reasonable timeframe.

There are three areas for future works. First, the current SBSST is still limited

to unit testing with considerable cyclomatic complexity. Coverage-driven fuzzing is

a popular testing approach that has been used in the industry recently. Coverage-

driven fuzzing treats the SUT as a black box, and the test inputs are randomly

generated without the structural knowledge of the SUT. One research direction is

to improve fuzz testing by using the SBSST approach. Second, we could continue

to explore other search algorithms, which might perform better than CACOR algo-

rithm in a noisy environment. Third, the current SBSST only deals with primitive

data types, whereas handle complex data types(e.g., string, class) is necessary for

real-world applications.

68

Chapter 5

SEARCH-BASED STATISTICAL STRUCTURAL FUZZING

INTRODUCTION

Coverage-guided fuzzing is one of most practical fuzzing strategies at present.

Comparing to grammar-based fuzzers, it requires much lower computational over-

head. In practise, the coverage-guided fuzzers such as AFL, libFuzzer, FairFuzz

have shown the profound effectiveness in revealing bugs and security vulnerabil-

ities for a wide range of real world software, including various system libraries,

jpeg reader, webbrowers etc. Those fuzzers are also deployed in the cloud platform

like Google’s OSS-Fuzz platform, which continuously test open source applica-

tion and found over 1000 bugs in 5 months. AFL essentially tries to evolve test

cases with respect to branch coverage. The whole process is similar to the hill-

climbing algorithm, where during each cycle, a test case(parent) is mutated to

produce an offspring, and the offspring undergoes evaluation against the branch

coverage. If the branch coverage is higher than the one received from the par-

ent, this offspring becomes the parent in the next cycle. Same as AFL’s test

case enhancement process, the probability distribution can be trained on-the-fly

via search-based methods. Poulding and Clark has demonstrated the efficacy and

practicality use of hill-climbing algorithm to search for such optimal distribution.

However, their bench-mark programs are relatively simple. To study the effec-

tiveness of the search-based SST framework for uncovering the vulnerabilities, we

applied this framework into AFL and conducted experiments with real-world bina-

ries for comparison. Instead of hill-climbing algorithm, we develop a novel search

69

algorithm called CACOR, dedicating to searching for optimal probability distri-

bution, and compare the fault-detecting ability of our algorithm with the popular

fuzzing technique AFL.

OVERVIEW

This section briefly introduces the proposed search-based framework, followed by

providing the definition of input probability distributions. Lastly, it explains the

input distribution construction process via the ant system dynamics.

5.2.1 Input Probability Distribution

We build a set of discrete probability distributions over the input domain space. In

AFL, a test case can be a binary file or text. For binary file, byte is the minimum

data unit for memory access, whereas for text file, a character is represented by a

byte value. Hence, we use the byte-level representation for the input domain space.

For each byte, we assign probabilities to every possible outcome x ∈ {0, 255}.

Formally, the probability distribution for the i-th byte is denoted as Pbi(x) where

x ∈ {0, 255}. We also define a CACOR specific parameter δ representing the

minimum unit of probability amount can be assigned to an outcome. The CACOR

approach models the probability distribution optimization problem as a resource

allocation problem. The resource refers to the total amount of probabilities values,

which is 1.0.

5.2.2 Ant System Dynamics

Ant foraging phenomenon can be viewed as a positive feedback loop system. In the

system, rational ants always choose the shortest path to a food source. The two

key mechanisms involved are the pheromone accumulation process which describes

the accumulation of pheromones on a path, and the pheromone evaporation process

which describes the evaporation of pheromones over time. Suppose each ant emit

70

the same amount of pheromones on the path, and the pheromones are evenly

distributed. The shortest path to a food source would have the highest amount of

pheromones. A rational ant favors the path that has more pheromones. Therefore,

it is more likely to pick the shortest path. In the meantime, the pheromones on all

the paths are constantly evaporating over the time. The final outcome is that only

the shortest path contains pheromones, and all the ants have to travel along this

path. We use the ant system dynamics to explain the resource allocation problem

for constructing probability distributions. For each byte, there are 256 outcomes,

each outcome requires a probability value. We could assign p ∈ {0, δ, 2δ, ..., 1} to

an outcome. Therefore, the total number of possible values for each outcome is 1
δ
.

Assume an ant system tries to select the best value for each outcome. Suppose an

ant firstly selected 2δ for outcome 0. The resources left for the remaining outcomes

are 1 − 2δ. It can be seen that the values available to the next outcome depends

on the previous resource assignment. This brings up two observations:

• The ant travel path is order-dependent(ie. 0→ 1→ 2→ 3 is different from

0 → 2 → 3 → 1). However, the pheromones represents the favor level of a

resource assignment is independent of paths.

• When an ant select resource amount, it is constrained to the available re-

sources.

Based on the above key points, The proposed ant system works as follows.

An ant always firstly randomly pick up a permutation order of the outcomes(e.g.

C1 → C2 → C3). For each outcome in turn, the ant will pick up a resource value

according to the pheromone level left on the value. However, the value is also

constrained on the available resources(e.g R, R
′
, R

′′
). Once the resource allocation

completes, we calculate the pheromone amount based on the fitness evaluation of

the newly generated input distribution. Then, we update the pheromone on the

assigned resource values. Also, we update pheromone on all resource values for

71

Figure 5.1: Example of nested conditions

simulating the pheromone evaporation process. If we continue this process for

enough cycles, the ants would finally favor with the resource values that have the

most pheromones.

MOTIVATIONS

While AFL can produce a wide range of mutated inputs, the ability to discover

new program paths is still questionable. We list the following code structures that

AFL is hard to perform well.

Deep nested conditions

In this code structure, with a random mutation strategy, the majority of generated

input cannot reach the deeper condition. For instance, in Figure 5.1, suppose AFL

has found an input that exercises buf[0] == ’a’ and buf[1] == ’b’ and buf[2] !=

’c’. By randomly mutating a byte in one of the 4 bytes in buf, the produced test

72

input has the probability of 2−10 to reach buf[2] == ’c’, has the probability of 0.75

to remain in the current path, and has the probability of 0.25 ∗ 255
256

to reach buf[0]

!= ’a’. It is noticed that the path buf[0] != ’a’ occupied the majority of exercised

paths in the previous runs.

To increase the chance to trigger the deeper condition, AFLfast deploys an

indirect way that controls the mutation times. AFLfast notice that the high-

density region of exercised paths are all in buf[0] != ’a’, then its energy scheduler

will reduce the mutation times on the path that exercise buf[0] != ’a’ and increase

the mutation times on the path that exercises buf[0] == ’a’ and buf[1] == ’b’.

Let n denote the mutation times. The probability of exercising at least one times

of the path buf[0] == ’a’ and buf[1] == ’b’ and buf[2] == ’c’ is 1 − (1 − 2−10)n.

It is noticed that the chance becomes greater as n increases. However, choosing

the value of n is still debatable. Effortless test’s quantity is high if n is too large,

whereas chances to discover the deeper condition are low if n is too small.

Scanty input sub-domain space

It is common to see the code structure that holds a conditional statement with

a scanty input sub-domain space. The code in Figure 5.1 shows such structure.

Another example is the magic bytes, which refers to a block of arcane byte values

used to designate a file type (e.g, jpeg). Generally, an application decides whether

to continue execution by checking with the magic bytes. To test the application,

the condition to check with magic bytes must be true. Random mutation strategy

for this type of code structure is inefficient. In Figure 5.1, triggering the taken

branch of any conditional statement requires an average of 1024 tests.

METHODOLOGY

This section first provides an overview of the proposed method followed by giving

a detailed description about each component.

73

Figure 5.2: SBSFuzz’s architecture

5.4.1 Overview

The SBSFuzz is different from the AFLfast in the way that it actively produces

random test inputs that trigger a target path. The SBSFuzz’s architecture is

shown in Figure 5.2. SBSFuzz utilizes a modified AFL as the main fuzz engine.

Before running the instrumented binary with a mutated test input (e.g, t9 in

the graph), AFL sends a signal to the trace analyzer via FIFO, an interprocess

communication protocol(IPC). The trace analyzer then runs its instrumentation

version of the target binary with the test input (t9) to obtain a piece of fine-grained

path information. The trace analyzer then uses the path information to update a

trace graph. By examining the trace graph, the trace analyzer decides to produce

a random test input if AFL is stuck in uncovering new paths in the last 100 cycles.

74

The test input is sent to AFL via FIFO and replaces the ready-to-run test input.

Nodes in a trace graph represent conditional statements. Each node is asso-

ciated with an input probability distribution. The chance of a randomly selected

test input that exercises an outgoing edge is proportionate to the path depths after

the edge.

To randomly generate a test input, the trace analyzer follows two steps. First, it

randomly selects a node in the graph with input-sensitivity proportionate selection.

Second, it samples a test input from the node’s input distribution.

If the input distribution is unavailable, the trace analyzer initiates a thread

to run a comprehensive search to find the input distribution. The search begins

with a deterministic strategy to discover individual test inputs that exercise all

outgoing edges. Then, the statistical strategy leverages the discovered test inputs

to construct input distributions.

5.4.2 Trace Infomration

The compile-time instrumentation allows recording the following trace information.

• cmp id . The instrumentation assigns unique id stars from 1 to each cmp

instruction sequentially.

• edge id . The instrumentation assigns a unique and random 32-bit unsigned

id to the beginning of each basic block.

• source/destination operand values . The instrumentation stores the source

and destination operand values before executing the cmp instruction.

• jump type. The instrumentation stores the jump type that follows each cmp

instruction.

Each information is stored in a Linux shared memory which is limit to 64MB

per allocation in the Ubuntu kernel. The Typical shared memory size of the cmp id

trace for the LAVA-M benchmark is 16MB.

75

An example of the cmp id trace information is shown in the followings:

1,2,5,10,12,13,17,20. Due to the spatial limitations, loop detail is deliberately

ignored. The above cmp id trace is equivalent to 1,2,5,10,12,13,10,12,13,17,20

5.4.3 Trace Graph

The trace analyzer maintains a trace graph G(V,A) to record exercised program

paths. In the graph, V denotes the set of cmp id, A denotes the edge id that con-

nects between source and destination cmp id pairs. Each cmp id node is associated

with a probability distribution to randomly generate test inputs. The trace ana-

lyzer keeps a counter for each exercised edge to record the testing progress. When

no new program paths found, it randomly produce test inputs in accordance with

the test input’s ability to discover new paths. We measure the ability from two

perspectives.

Cmp’s input-sensivity

Let mk denote the number of test input exercises the taken edge of the k-th cmp id

node in the trace graph, nk denote the number of input exercises the non taken edge

of the k-th cmp id node in the trace graph. We borrow the idea from information

entropy for cmp’s input sensitivity Ik, which is defined as follows:

Ik = −(
mk

mk + nk
∗ log2

mk

mk + nk
+

nk
mk + nk

∗ log2
nk

mk + nk
)

cmp node’s input sensitivity measures the chances that test inputs generated in

the previous runs can affect the execution flow of the cmp node. Note that if I

equals 1, meaning 50% chances are observed on both outgoing edges, this node has

low priority to be sampled. On the other end, if I equals 0, meaning all previous

test inputs are observed on one edge. The cmp node possibly owns a scanty input

subdomain, or it might be a condition that checks the loop counts. This type of

node has a high priority to be investigated.

76

Figure 5.3: Architecture of the comprehensive search

The trace analyzer performs a input-sensivity proportionate selection to select

a cmp id node before producing a test input from the associated probability dis-

tribution. Specifically, the probabilitypk of selecting the k-th cmp id node is

p =
Ik∑
i Ii

5.4.4 Comprehensive Search

Path depth

We set up the probability distribution that triggers an outgoing edge with priority

to the existing longest path after the edge. In the example of Figure 5.1, suppose

that at the current stage, AFL found e2 and e1, e4. The trace analyzer requires to

set up a probability distribution for node ”buf[0] == ’a’. Note that only the test

inputs that execute e1 provide testing benefits, since the observed path depth at

present after e1 is 1, whereas path depth at present after e2 is 0. In this case, testing

e1 has the higher priority. Formally, let dt be the depth of the existing path depth

after the taken edge, dn be the depth of the existing path depth after the non-taken

edge. The expected triggering probability for the taken edge is trit = dt
dt+dn

and

the expected triggering probability for the non-taken edge is trin = 1− dt
dt+dn

.

Figure 5.3 shows the overview of the search algorithm. In the trace graph, each

cmp id node holds repositories to store test inputs for both outgoing edges. If no

77

test inputs are found in one repository, the trace analyzer starts a deterministic

search via differential evolution. Then, CACOR is performed to construct the input

distribution. The differential evolution(DE) leverages the branch distance and the

cmp id level to measure a test input’s fitness. By checking with the jump type,

the DE selects a proper branch distance function as the fitness measure.

Table 5.1: Branch distance function for conditions

jump type fitness

jeq f = abs(dest - src)
jne f = -abs(dest - src)
jae/ja/jge/jg f = dest - src
jbe/jb/jle/jl f = src - dest

Table 6.2 shows the list of the jump types with branch distance functions.

SBSFuzz’s testing strategy deploys a direct way that performs random walks over

the existing trace graph. At each cmp id node, we construct an input probability

distribution. The test inputs sampled from the distribution guarantee to trigger

the outgoing edge with a probability lower bound. Setting up the probability

criterion helps to prioritize tests to deep paths. In the example of Figure 5.1,

A example input distribution for node ”buf[0] == ’a’ is P 0(x =′ a′) = 100%

P i(x ∈ S) = 1
|S|S = 0, 1, ..., 127

EVALUATION

To evaluate SBSFuzz’s bug-discovering ability, we compared the number of bugs

found by SBSFuzz, AFL, and AFLFast with the LAVA-M benchmark and multi-

ple CVEs. We conducted experiments under the platform with an AMD Ryzen

Threadripper 1950X 16-Core Processor and 16 GB memory running 64-bit Ubuntu

18.04 LTS.

78

5.5.1 Fault-detecting Ability

LAVA-M

LAVA is a technique for producing common corpora by injecting a large number

of realistic bugs into program source code. LAVA-M is a set of faulty binaries

injected by LAVA. LAVA-M consists of four GNU coreutils programs: uniq, base64,

md5sum, and who. Each program is injected with multiple well-crafted and realistic

bugs. Each injected bug has a unique ID. Table 5.2 shows the SUT’s statistics.

Table 5.2: SUT statistics

ELOC Listed bugs

base64 104 44
md5sum 297 57
uniq 195 28
who 279 1443

Table 5.3: Bugs found by SBSFuzz, AFL and AFLFast

Program
AFL AFLFast SBSFuzz

bugs found total inputs bugs found total inputs bugs found total inputs

uniq 28 9 22,072k 12 16,854k 27 12,984k
base64 44 0 29,341k 10 22,005k 43 14,778k
md5sum 57 0 19,225k 9 14,251k 50 11,792k
who 2136 0 10,611k 22 8058k 214 6,632k

We compared the fault-discovery ability of SBSFuzz with AFL and AFLFast.

We let each fuzzer run 5 hours on each binary in the LAVA-M test set and repeat

five times to report the average performance. The search algorithm takes an input

file size of less than 50kbytes. For differential evolution, the search pool consists of

50 input files. For CACOR, the search pool consists of 20 input distributions. The

sample-set size is set to 500. The search terminated when either fitness equals 0 or

no fitness improvement during the last 100 runs. Table 5.3 compares the bugs found

by SBSFuzz with AFL and AFLFast. SBSFuzz found more bugs in each binary

79

Table 5.4: Time to expose to vulnerabilities

Vulnerability
nm objdump c++filt

AFL AFLFast SBSFuzz AFL AFLFast SBSFuzz AFL AFLFast SBSFuzz

CVE-2016-2226 18.48 6.82 4.31 32.64 17.23 12.14 13.26 7.23 5.49
CVE-2016-4487 1.57 0.5 0.63 18.92 10.23 6.53 3.73 2.14 1.53
CVE-2016-4488 5.74 2.53 2.48 12.43 11.74 7.48 2.43 1.23 1.12
CVE-2016-4489 10.13 6.25 3.84 18.29 7.32 8.21 7.24 4.31 3.26
CVE-2016-4490 3.21 1.42 0.72 8.74 2.10 2.24 2.11 0.74 1.23
CVE-2016-4491 19.12 9.14 10.13 29.21 19.32 15.43 7.43 2.13 2.04
CVE-2016-4492 10.32 6.59 4.86 20.32 14.32 10.23 14.21 5.42 4.89
CVE-2016-4493 3.28 1.24 1.14 7.24 4.31 2.71 8.43 3.15 2.84
CVE-2016-6131 19.21 12.34 5.32 21.34 15.43 12.53 11.23 5.22 4.83

Average 10.12 5.20 3.71 18.79 11.33 8.61 7.79 3.51 3.03

in the data set. Particularly, SBSFuzz has found 214 bugs in who, nine times

more than AFLFast, whereas AFL did not find any bug. SBSFuzz outperforms

the other two fuzzers mainly due to its active searching strategy. LAVA injects

bugs with the ”magic bytes” format. The magic bytes are not copied directly but

computed from input files. The high effectiveness of detecting bugs on LAVA-

M demonstrated that SBSFuzz’s input distribution setup allows the paths with a

deeper depth to be executed with priority. Those paths are valuable to catch bugs.

Real Vulnerabilities

GNU Binutils is a non-trivial and widely used open-source Linux utility for eval-

uating fuzzer’s performance. It consists of several famous tools, including nm,

c++filt. We choose the same experimental settings as AFLFast, which leverages

GNU Binutils v2.26 as the subject. AFLFast discovered several vulnerabilities,

and nine of them are assigned with CVE numbers. To compare the performance

of SBSFuzz with AFLFast and AFL, we run both fuzzers with utility nm, c++filt,

and objdump. Each utility makes use of the libiberty library which exposes to the

listed CVE vulnerabilities. We run each utility five times and compare the average

time first to expose each listed vulnerability. As observed from Table 5.4, although

for particular CVEs(e.g, CVE-2016-4493 on nm), SBSFuzz performs at the same

80

level of fuzzing time. On average, SBSFuzz caught the vulnerabilities with fuzzing

time 29% less than AFLFast for nm binary, 24% less than AFLFast for objdump

and 13% less than AFLFast for c++filt.

SUMMARY

The structural coverage-guided fuzz testing technique is getting more and more

popular recently. The most popular tools AFL and AFLFast show a satisfactory

bug-revealing ability. The principle behind the sense is that a test case that could

detect more paths has a higher chance of discovering bugs. However, if a bug can

only be triggered by a small subset of the test input sub-domain spaces, the bug is

hard to be detected. To minimize this negative effect, we proposed to use a more

tightened coverage criterion: statistical branch coverage, which is demonstrated

to be more effective in the fault discovering ability. The test cases are sampled

from a probability distribution in our approach, and we developed comprehensive

search algorithms to evolve the distribution. Our experimental results showed that

SBSFuzz is more efficient in discovering vulnerabilities than AFLFast and AFL.

81

Chapter 6

OTHER SBST TECHNIQUES

In this chapter, we consider an input distribution construction process as a two-

step process shown in Figure 6.1. We begin with sampling the entire input domain

space by stratified sampling method, which takes samples in each consecutive and

non-overlapped sub-input domain space (a.k.a, bins). Then we estimate the trig-

gering probabilities in bin-wise by running the samples with a SUT and store the

triggering probabilities in a bin triggering probability table. Recall that the input

distribution model is the weighted sum of uniform distributions. Given the table,

our target is to optimize the weight vector ω and the arrangement of bins for each

uniform component. Suppose there are k bins that store inputs. Each bin denoted

as bi is an input set Si and is associated with a weight parameter wi. wi ranges

in [0, 1], represents the probability of selecting the input set Si.
∑k

i=1wi = 1.

Each input x can choose 1 out of the k bins to be stored. An arrangement is the

selection of bins over the entire input domain space S.

For simplicity, we assume the independence of each input variable. The input

distribution model is a weighted sum of uniform distributions over a collection of

bins in which the vectors of triggering probabilities associated with each bin are

linearly independent. The input distribution formula is defined as follows:

P (x) =
k∑
i=0

wi ∗ U(x), x ∈ Si

The triggering probabilities revealed by the weighted uniform distribution can

be written in a matrix form A, where the columns represent the bins, the rows

82

Figure 6.1: work-flow of the input distribution construction process

represent the branch cover elements. The value of the i-th row and the j-th column

denoted as aij is the triggering probability of ci in bj.

A =

b1 b2 ... bk

tri1 a11 a12 . . . a1k

tri2 a21 a22 . . . a2k
...

...
...

...
...

trim am1 am2 . . . amk

The parameters under control are the weight vector ω and arrangement of bins,

83

which forms a matrix A. Optimizing the arrangement of bins is a combinatorial

optimization problem, which we adopt the Genetic algorithm to search for the

solution. Depending on the chosen optimization objective, tunning the weight

vector requires different techniques. In this chapter, we introduce two objectives.

CONSTRUCT THE A MATRIX

We construct the primitive matrix A from samples to estimate the triggering proba-

bilities. We adopt the Stratified Random Sampling approach. The benefit of using

SRS is that it may produce a smaller error of estimation than a simple random

sampling approach of the same sample size. On the other hand, it could also

reduce the search complexity by decreasing the search dimension for the Genetic

Algorithm.

Domain Partitioning into Stratums The entire input domain space is par-

titioned into s equivalent size, non-overlapping, consecutive groups, denoted by

δ: {δ0, . . . , δs−1}. Suppose the input domain space is 1-dim, with x ∈ Z+. Let d

be the sub-input domain size, then δi represents sub-input domain space ranges

within: [i ∗ d, i ∗ (d+ 1)].

Estimating Triggering Probabilities in Statum For each δi, we randomly

select equal number of inputs from its sub-input domain space and run against

the SUT to retrieve the cover element information. Then the estimated triggering

probabilities for δi, denoted by ˆtriδi : [p1i , p
2
i , . . . , p

m
i] can be derived by applying

Equation 2.2.

Estimating Triggering Probabilities in a Primitive Matrix A An ar-

rangement of inputs in terms of δ set is the concatenation of the input sets or bins,

in which each set Si is a mutually exclusive subset of δ. Let siδ be the subset of δ

84

that belongs to the i-th bin Si. Formally, an arrangement C is defined as follows:

C = S1 ‖ S2 ‖ . . . ‖ Sm

where :

S1 = s1δ , s
1
δ ⊆ δ

S2 = s2δ , s
2
δ ⊆ δ \ s1δ

...

Sm = smδ , s
m
δ ⊆ δ \

⋃
sxδ , x ∈ {1, . . . ,m− 1}

Then, the triggering probability for the i-th column of the primitive matrix A,

denoted by α̂i is derived by averaging the estimated triggering probabilities of the

elements in siδ. The formula is defined as follows:

α̂i =
1

|siδ|
∗
∑
X∈siδ

t̂riX

SELF-ADAPTIVE SEARCH WITH L2-DISTANCE CRITERION

The first objective leverages the L2-distance between the estimated triggering prob-

abilities t̂ri and the expected triggering probabilities tri. Formally,

d(w) =
m∑
i=1

(A ∗w[0 : m−1] + b− tri)2

This equation is a quadratic form which has a unique global solution w* that

minimizes the distance d. w* can be analytically derived as follows:

{ w∗[0 : m−1] = (ATA)−1AT (b− t̄ri)

w∗m = 1−
∑
w∗i

(6.1)

85

Hence, for any arrangement of inputs, there is one and only one weight vec-

tor that provides the minimum distance. In other words, there is one optimal

arrangement that minimizes the distance d(w*). However, a solution from the

least square method might violate the inequality constraints on the weight vector.

We could consider the least square problem as a Constrained Quadratic Opti-

mization problem and use iterative methods, for instance, the interior method to

solve the problem. However, since those methods are iterative, embedding them

in GA causes a massive computation time. In GA, 5000 generations run with 100

individuals required to run the CQO algorithm 5 ∗ 104 times, which is not feasible.

Consequently, we reduce the search domain space from {w, bins′arrangement}

to bins’ arrangement only. Then, the optimization objective becomes searching for

an optimal arrangement such that the L2-distance is minimized and the derived

weight vector satisfies its constraints. To deal with invalid weight vectors, we add

a penalty for an arrangement produced by GA if the associated weight vector is

invalid.

6.2.1 Penalty Function

The penalty of w∗i denoted by gi(w
∗
i) is defined in the following:

gi(w
∗
i) = [max(0,−1 ∗ w∗i − fmin)]b

Where fmin represents the minimum feasible value of wi. Since ∀i, wi ≥ 0, the

minimum feasible value of wi is set to 0. b is a control parameter, which reprensets

the rate of penalty increment as wi turns negative. This equation shows that if wi

is far away from 0 in the negative direction, the penalty of w∗i increases. If wi ≥ 0,

there is no penalty.

86

The normalized penalty of w∗i , denoted by Gi(w
∗
i) is defined as follow:

Gi(w
∗
i) =

{ dp,
gi(w

∗
i)

m
> 1.0

gi(w
∗
i)

m
, otherwise

Where ”dp” is a sizeable constant number, represents the ”death penalty.” If

any arrangement experiences the death penalty on one or more w∗i , It is most likely

to be phased out in the evolvement. In this way, GA is concentrated on searching

in the sub-domain space ranges within [−m,m].

Finally, the penalty, denoted by IN(w∗) is defined as the average normalized

penalty of w∗. Formally,

IN(w∗) =
1

m
∗
∑

(Gi(w
∗
i))

6.2.2 Distance to Optimal Solution

The distance to optimal solution incorporates the penalty function into considera-

tion. Therefore, the L2-distance d should be normalized in the range of [0, 1]. Let

dN(w∗) denotes the normalized L2-distance:

dN(w∗) =

{ d(w∗)−d(w∗)min
d(w∗)max−d(w∗)min , d(w∗) < d(w∗)max

1, otherwise

Where d(w∗)min represents the minimum value of d(w∗), its value is setup to 0.

If w satisfies all of the constraints, d(w∗) equals to 0. d(w∗)max represents the

maximum value of d(w∗), its value is manually set up to m2. Same as the penalty

function, d(w∗)max limits the search-range to [0,m2]. An arrangement which d(w∗)

and IN(w∗) equal 0, the corresponding input distribution is optimal. Thus, the

distance to optimal solution is defined as the L2-distance between the current

solution (dN(w∗), IN(w∗)) and the optimal solution (0, 0).

f(w∗) =
√

(dN(w∗)2 + (IN(w∗))2

87

Arrangement: A
C.E S1 S2 S3

Path
#1

1 0 0

Path
#2

0 1 0

Path
#3

0 0 1

Arrangement: B
C.E S1 S2 S3

Path
#1

0.2 0.4 0.5

Path
#2

0.6 0.3 0.3

Path
#3

0.2 0.3 0.2

Arrangement: C
C.E S1 S2 S3

Path
#1

0.5 0.7 0.8

Path
#2

0.2 0.1 0.1

Path
#3

0.3 0.2 0.1

Arrangement: D
C.E S1 S2 S3

Path
#1

0.8 0.2 0.2

Path
#2

0.2 0.8 0.2

Path
#3

0.2 0.2 0.8

Table 6.1: Examples of Arrangements

Fitness
Arr. dN IN f Rank
A 0 0 0 1
B 2× 10−3 0 2.1× 10−22

C 0 dp dp
m

4
D 4.5× 10−21.67× 10−15× 10−2 3

Table 6.2: Fitness And Rankings For Arrangements A,B,C,D

88

As an example, Table 6.1 shows the triggering probabilities from 4 arrangements

for an SUT with 3 independent paths, and t̄ri is set to [0.3, 0.6, 0.1]. Table 6.2

shows dN ,IN ,f and the ranking of the 4 corresponding arrangements. Arr.A is an

ideal input distribution where Sci = Si, its rank is 1. Arr.B has feasible weights,

and the overall fitness is grater than Arr.D, it is ranked 2. Arr.C gives the optimal

dN , but its w2 = −10. Therefore, its IN = dp. Suppose dp = 1, the total fitness

equals to 0.33, it is ranked 4.

6.2.3 Automated Adaptive Search

Searching for an arrangement that satisfies the weight vector constraints is difficult

since the feasible weight vector domain space is quite small ([0, 1]). The weight

vector may remain invalid when GA terminates. It is necessary to explore the

solution space more strategically. Therefore, we develop a strategy to break down

the overall optimization process into several levels.

• Level-1: The population contains no feasible solution. It usually occurs when

solutions in the population are far away from the feasible solution region.

Hence, GA’s objective in Level one is to minimize the penalty of weight

vectors.

• Level-2: The population contains a proportion 1 − r of infeasible solutions.

r is a constant value ranges within [0, 1]. Although feasible solutions have

a higher fitness value than infeasible solutions, the infeasible solution is still

valuable to the search algorithm. For instance, infeasible solution ”x” might

be more close to the optimal than the feasible solution ”x2”. Since the feasi-

ble solution does not give GA more information than the infeasible solution

towards the optimal. Hence, GA’s objective in Level-2 varies according to

r. If r is small, the search is guided towards the direction of minimizing the

penalty. If r becomes large, the search is directed towards minimizing the

distance to optimal.

89

• Level-3: The population converges into the feasible solution region, the only

objective of GA is to search for the minimum distance-to-optimal solution.

To apply the above strategy into search, we adopt the Self-Adjust Penalty Func-

tion(SAPF) method [31]. The SAPF is a generic fitness function, which adjusts

penalties based on the distribution of the population. If the population has too

many infeasible solutions, the GA emphasizes searching for feasible solutions. On

the other hand, if the population has many feasible solutions, the GA emphasizes

the distance to an optimal solution. The major advantage of the SAPF method is

that it saves much work tunning the penalty coefficient.

Evaluating the fitness of an arrangement requires the following steps: First,

with a given estimated triggering probability vectors âi, we form the matrix A and

vector b. Second, by using the Least Square Method, we solve for the weights

vector w∗ and the distance to optimal solution d(w∗). Third, we calculate the

overall fitness, the normalized distance to optimal, and the normalized penalty.

Finally, we apply the SAPF method to fitness calculation. Specifically, let F be

the set of feasible solutions in the population, the SAPF method defines the fitness

function as follows:

φ(w) = dist(w) + (1− r)X(w) + rY (w)

Where:

dist(w) =

{ IN(w), if F = ∅

f(w), if F 6= ∅

(6.2)

And:

X(w)

{ 0, if F = ∅

IN(w), if F 6= ∅

(6.3)

90

Y (w)

{ 0, if x ∈ F

dN(w), if x 6∈ F

(6.4)

Where r ∈ [0, 1] represents the proportion of feasible solutions in the population.

It is clear that if there is no feasible solution in the pool, the fitness only depends

on the penalty. On the other hand, if there are feasible solutions in the pool,

the proportion r guides the search into two directions: 1. If r closes to 1, Y (w),

represented as the cost-based penalty, takes the major effect for fitness evaluation.

2. If r closes to 0, X(w), represented as the constraint violation penalty, takes the

major effect for fitness evaluation. The SAPF method suits the SST problem well.

In the problem, the initial population might start from many infeasible solutions.

GA mostly searches towards the direction to the feasible solution region. As it-

eration increases, the infeasible solution counts become smaller, and GA becomes

more focused on minimizing the distance to optimal solutions.

91

6.2.4 The Complete Work-flow

Algorithm 3 GA-LS Algorithm

1: procedure GALS(D,np,nc,ns,t̄ri)
2: s0 ←− GenerateRandomSolution(np, nc)
3: triList←− Sampling(D,ns, nc)
4: g = 0
5: wList = ∅
6: while !SC do
7: fitnesses = FitnessEva(sg, triList,wList, t̄ri)
8: parentsg = RouletteWheelSel(sg, fitnesses)
9: sg+1 = Reproduction(parentsg)

10: g = g + 1
11: end while
12: sbest = sg[fitnesses.Index(min(fitness))]
13: wbest = wList[fitnesses.Index(min(fitness))]
14: if sbest.contains(x < 0) = true then
15: wbest = GoldfarbIdnaniSolver(sbest)
16: end if
17: return (sbest,wbest)
18: end procedure
19:

20: procedure FitnessEvaluation(sg,triList,wList,t̄ri)
21: fitnesses = ∅
22: for i=1 to np do
23: A,b = DeriveMatrixAandV ectb(sgi , triList)
24: v = b− t̄ri
25: d(w∗),w∗ = LeastSquareMethod(A, v)
26: wListi = w∗

27: f, dN , IN = OverallF itnessEva(d(w∗),w∗)
28: φ = AdjustF itness(f, dN , IN ,w

∗)
29: fitnessesi = φ
30: end for
31: returnfitnesses
32: end procedure

The algorithm starts by splitting the input domain space into ∆ set. For each

set, we take an equal number of n samples uniformly, followed by running them

against the SUT to estimate the triggering probabilities. Next, GA is started to

92

allocate elements from set ∆ into set S. In each iteration, new arrangements are

produced by the two-point crossover and the multi-point uniform mutation oper-

ators. after a new arrangement is produced, the least square method calculates

the optimal probability assignments w∗ that minimizes the distance to optimal

d(w∗). An individual’s fitness depends on the following factors: the normalized

distance to optimal, the normalized infeasibility, and the feasible solution counts

in the population. After calculating the fitness for each solution in the population,

roulette wheel selection with elitism is performed to compose a new population.

The following conditions terminate the search algorithm: First, the search algo-

rithm finds the optimal solution. Second, the fitness value has not improved since

the last 200 generations. Third, the generation reaches the pre-fined maximum.

If the second or third conditions terminate the search algorithm, we take the best

arrangement found in the last generation and run a constrained quadratic solver

to find the near-optimal probability assignments.

MULTI-OBJECTIVE SEARCH WITH NONPREEMPTIVE GOAL
PROGRAMMING

Given a matrix A, the problem of maximizing Pc w.r.t w is formally defined as

follows:

93

max Pc

s.t
∑k

i=1wi = 1

wi ≥ 0, i ∈ {1, ..., k}

where Pc1 = a11w1 + a12w2 + · · ·+ a1kwk

Pc2 = a21w1 + a22w2 + · · ·+ a2kwk
...

Pcm = am1w1 + am2w2 + · · ·+ amkwk

(6.5)

Since each row is a convex function, it is obvious to see that for any Pci ∈ Pc, its

maximum value:

P ∗ci = aij

with

wj = 1.0

where

j = Index(max(ai)), ai : {ai1, . . . , aik}

(6.6)

Therefore, each column vector in the matrix A is an optimal solution in the

Pareto Optimal Set. However, these are not the preferred solutions. For instance,

if we choose any column vector as the final solution for a 3 × 3 identity matrix,

66.7% of cover elements have 0 chance of being triggered. If a bug is in the 66.7%

input sub-domain space, the bug will never expose. To avoid such problems, we

adopt the Nonpreemptive Goal Programming method.

6.3.1 Nonpreemptive Goal Programming

The Nonpreemptive Goal Programming method minimizes the deviations from

established goals under a given set of constraints rather than maximizing the ob-

jective function directly as Linear Programming. The value of deviation variables

94

represents the distance of the objective function’s actual and target value. Each

deviation variable is associated with a priority factor that represents the relative

importance of each objective. NGP tries to minimize the sum of the products of

each deviation variable and the associated priority factor such that each objective

value can be maximized.

Specifically, let {S1, . . . ,Sm} be the set of deviations and {I1, . . . , Im} be the set

of priority factors for each triggering probability respectively. The targeted value

for each cover element is set to its expected triggering probability respectively. In

this case, minimizing Si is equivalent to increase the actual triggering probability

so that the gap between Pci and the expected ¯trii can be minimized.

Then, the original optimization problem can be written in the NGP form as

follows:

min I1S1 + · · ·+ ImSm

subject to

a11w1 + a12w2 + · · ·+ a1kwk + S1 ≥ ¯tri1

a21w1 + a22w2 + · · ·+ a2kwk + S2 ≥ ¯tri2
...

am1w1 + am2w2 + · · ·+ amkwk + Sm ≥ ¯trim

w1 + · · ·+ wk = 1

wi ≥ 0, i ∈ {1, ..., k}

(4)

6.3.2 Priority Factor

In the SST problem, a solution in the Pareto Optimal Set is more preferred than

another if its triggering probability low bound, derived from min(Pc) is greater

than the other one.

95

Suppose, given a matrix A, the maximum triggering probability for cover ele-

ment ci is the smallest among all of the cover elements. To minimize the objective

function defined in Equation 4, decreasing the value of deviation Si doesn’t have

much influence on the function output. In other words, the triggering probability

for ci is less important than other cover elements for the optimization objective. In

often, the solution trii after optimization is close to 0, and therefore, the result Pc

is not a preferred solution. To overcome this problem, we set up a linear relation

between the maximum triggering probability and the priority factor for each cover

element such that a cover element with the maximum triggering probability P ∗ci

below a threshold δ needs to be prioritized. Also, the more distance from δ, the

higher the priority value should be. Thus, we create a function of I in terms of

P ∗ci and a pre-defined constant δ. The function is formally defined as follows:

Ii =

{ 2
δ
∗ (δ − P ∗ci) + 1, P ∗ci < δ

1, otherwise

Where δ = 1
|c| . When P ∗ci = 0, the priority factor is at the maximum value,

which is 3. If the maximum triggering probability reaches or beyond δ, the priority

factor is at the minimum 1.0. On the other hand, if the maximum triggering

probability is below δ, the priority value is linearly increased as the maximum

triggering probability moves towards 0.

6.3.3 Example: Benefit of using priority factor

To illustrate the effect of the priority factor function, we give an example of Aex

matrix, shown in the next and compare two sets of priority values, one with equal

96

priority, and the other with values generated by the function.

Aex =

0.6 0.2

0.0 0.27

0.30 0.01

In Aex, P

∗
c2

and P ∗c3 are below δ value. After apply Simplex Method with equal pri-

ority values, the solution S1 gives the actual triggering probabilities {0.6, 0.0, 0.3}

with weights {1.0, 0.0}. On the other hand, with the use of the priority factor

function, which sets the priority values to {1, 1.38, 1.2}, the solution S2 gives the

actual triggering probabilities {0.33, 0.18, 0.11} with weights {0.33, 0.66}. S2 is

more preferred than S1 since 0.11 > 0.0.

6.3.4 Optimizing the A Matrix

This section first shows the benefit of using full column rank A matrix to an

SST problem. In what follows, we provide an algorithm that, given an input

arrangement, the A matrix can be pruned to be linearly independent.

Sample Diversity

In the SST problem, the diversity of sampled inputs can affect the quality of the

test set. A higher diversity usually leads to a better fault detecting ability [?].

However, it is often the case that probability low bound and diversity contradict

each other. For instance, if only one input x ∈ S triggers ci, and if the probability

low bound is 0.5, the input x occupies 50% of spaces in the test set. Of course,

nearly 50% of spaces are wasted.

In the process of searching for an optimal arrangement that maximizing the

probability low bound, the loss of diversity is not inevitable. However, it is better

to preserve diversity as much as possible. In our approach, we create a so-called Bin

Prune Process, which re-arranges a given arrangement such that the corresponding

97

matrix A, also named as the primitive matrix A becomes a full column rank matrix

A∗. And the linear independence property of column vectors provides a certain

level of diversity.

Benefit of Linearly Independence

A direct measure of diversity is the distribution variance. For the proposed weighted

uniform input distribution model presented in Equation (2.1), the total variance

equals to the following equations:

{
σ2 = σ2

1w
2
1 + σ2

2w
2
2 + · · ·+ σ2

mw
2
m

σi =
k2i−1
12

(10)

Where ki denotes the size of the input set Si.

Without loss of generality, for any arrangement, we split the set of column

vectors T into two sets. L represents the linearly independent vectors. N represents

T \ L. And the Equation 10 is re-arranged according L and N as follows:

σ2 = [σ2
L1
w2
L1

+ σ2
L2
w2
L2

+ . . .] + [σ2
N1
wN1 + σ2

N2
wN2 + . . .]

(11)

According to the Theorem of Linear Programming, for any basic feasible solu-

tion w, wN = 0. Thus, the total variance only equals to the left portion of the

Equation 11. If a matrix A is not full column rank, at least one inputs reside in

the bins that belong to the right portion of the Equation 11, the total variance

is shrunken by these slipping inputs, since they have 0 probability being sampled.

Hence, To have a full variance matrix A, we create the Bin Prune Process.

Bin Prune Process

The Bin Prune Process, which is based on the Gram–Schmidt Process, which pro-

duces matrix A∗ from a given primitive matrix A. The Gram-Schmidt Process is

98

used to generate an orthogonal set U = {u1, . . . , uk} for a finite, linearly indepen-

dent set S = {v1, . . . , vk}. It can also be adopted to determine whether a vector

v is a linear combination of the existing linearly independent set S. If it is, the

vector v can be decomposed by the orthogonal set U . If it is not, a new orthogonal

basis vector uv is produced such that the vector v can be decomposed by the union

of U and uv

The overall process is mainly a recursion on the following equation, which

decomposes vector v into two orthogonal basis vectors ui and o.

o = v − 〈 v, ui〉
〈ui, ui〉

ui (4)

Suppose, we want to verify vector vk+1. The process started from decomposing

vk+1 into vector u1 and vector o1. In the next iterations, it further decompose

the remainder vector oi−1 into ui and oi. If vector oi−1 is in parallel with ui, the

process stops. In this situation, v is linearly dependent of S.

Suppose vector vk+1 is a linear combination of vm, vn ∈ S, n > m > 1. Since

vk+1 is the linear combination of vm and vn, vk+1 is also the linear combination

of um and un. Since um and un are perpendicular to all the other vectors in the

orthogonal set, the following equation is true:

〈 vk+1, ui〉 = 0, ∀i ∈ {1, . . . , k} \ {m,n} (5)

99

Algorithm 4 BinPruneProcess

1: procedure BinPruneProcess
2: input: a - arrangement of inputs
3: A - primitive matrix A
4:
5: output: A∗ - pruned matrix A
6: a+ - pruned arrangement
7:
8: a+, A∗, U ←− a1, A1, A1

9:
10: for i = 2 to nb do
11: li, u = ProduceOrthBasisV ector(Ai, U)
12: if li = true then
13: v∗, u∗, a∗ = Ai, u,ai
14: else
15: U = U \ Ulen−1
16: v∗ = 1

2 ∗ (A∗len−1 +Ai)
17: u∗ = ProduceOrthBasisV ector(v, U)
18: a∗ = ai ∪ a+

len−1
19: end if
20: a+, U,A∗ ←− a∗, u∗, v∗
21: end for
22: return A∗,a+

23: end procedure
24:
25: procedure ProduceOrthBasisVector
26: input: v - a vector
27: U - orthogonal set
28:
29: output: li - a boolen variable. Ture if v is L.I. of U
30: u - orthogonal basis vector
31: vt = v
32: li = false
33: for i = 1 to no do
34: if 〈|evt |, |eui

|〉 = 1.0 then
35: li = true
36: break
37: else
38: vt = vt − 〈 v

t,ui〉
〈ui,ui〉ui

39: end if
40: end for
41: u = vt

42: return li, u
43: end procedure

At the beginning, the first orthogonal basis vector u1 and the vector vk+1 is

selected as inputs to Equation 4. According to Equation 5, the function output

100

is o = vk+1. At the following i < m iterations, the function continuously outputs

vk+1. At iteration m, since om ⊥ um and un ⊥ um, om and un must be in parallel.

At the next m < i < n iterations, according to Equation 5, the function output

remains om. At iteration n, on−1 = om. It is clear that on−1 and un are in parallel.

Hence, if a vector is a linear combination of S, the process must reach to an

iteration i such that oi−1 and ui are in parallel.

If vk+1 is linearly independent of S, vk+1 is also linearly independent of U . In

this case, all of the orthogonal basis vectors can be exercised.

The main steps to derive matrix A∗ from the primitive matrix A are described

in Algorithm 4. In the beginning, the first column vector A1 is added to the

orthogonal set U and the matrix A∗. Also, the first bin a1 is added to the new

arrangement a+. Then for each column vector Ai, i ≥ 2, the algorithm performs

the following process: First, it calls the function ProduceOrthBasisVector, which

takes a column vector Ai and the orthogonal set U as inputs, and output a Boolean

value li to indicate whether Ai is independent of U . It also outputs the remaining

orthogonal basis vector u if Ai is independent of U . If li is true, {Ai, u, ai} is

added to {A∗, U, a+} respectively. If li is false, the latest inserted vector A∗len−1

is averaged over the column vector Ai. Then the orthogonal basis vector Ulen−1

is updated by calling ProduceOrthBasisVector. On the bin side, the algorithm

updates the latest inserted bin a+
len−1 by performing the union operation with the

currently being exercised bin ai.

101

6.3.5 The GAGP algorithm

Algorithm 5 GAGP Algorithm

1: procedure GAGP
2: input: S - input domain space
3: nk - sample size
4: nδ - number of sub-input domain space
5: nµ - population size
6: γc - crossover rate
7: γm - mutation rate
8: tri - expected triggering probabilities
9:

10: output: s∗t - the best arrangement
11: w∗ - the optimal weights associated with s∗t
12:
13: s0 ←− GenerateInitialSolutionPool(nµ)

14: t̂ri←− SRSampling(nk, nδ)
15: g = 0
16: w∗ = ∅
17: while !SC do
18: f ,w, s+g = Evaluation(sg, tri, t̂ri)
19: s∗g,w

∗ = BestIndividual(s+g ,w)
20: parents = Selection(s+g , f)
21: newPool = Reproduction(parents, γc, γm)
22: g++
23: sg = newPool
24: end while
25: return (s∗g,w

∗)
26: end procedure
27:
28: procedure Evaluation
29: input: s - solution pool

30: t̂ri - estimated triggering probabilities
31: tri - expected triggering probabilities
32:
33: output: f - individual fitness
34: w - optimal weights
35: s+ - light weight individuals
36:
37: f ,w, s+ ←− ∅
38: for i=1 to nµ do

39: A = ProduceAMatrix(t̂ri, si)
40: A∗, si+ = BinPruneProcess(A, si)
41: Pi

c,w
i = GoalProgramming(A∗, si+, tri)

42: f ilb = ProbabilityLowBound(Pi
c)

43: f ,w, s+ ←− f ilb,wi, si+

44: end for
45: return (f ,w, s+)
46: end procedure

102

The GAGP algorithm to optimize an input distribution is presented in Algorithm

5. The process starts from randomly generating a pool of initial solutions s0. Next,

the SRSampling function performs the Stratified Random Sampling over the input

domain space to estimate the triggering probabilities t̂ri w.r.t δ set. Next, GA

starts to evolve arrangements. In the Selection function, the rolette-wheel-selection

method is applied. In the Reproduction function, the two-point-crossover operator

and the uniform-mutation operator are performed with a pre-defined rate: γc, γm.

Elitism is applied to GA to stabilize the search process. The evolution stops when

either of the two conditions SC are satisfied:

1. The number of iterations reaches to τmax

2. The maximum fitness in the pool doesn’t vary within 5% standard deviation

over the last 30 generations.

Specifically, the solution encoding and the Evaluation function is described as

follows:

Encoding

A chromosome, represented as an arrangement, is encoded as an array of integers.

Each position of the array represents an element in the δ set. The length of the

array equals the size of the δ set. Each integer represents a selection of bins.

Evaluation

In the Evaluation function, an arrangement si undergoes four processes. First, it

is used to create the corresponding primitive A matrix by the function ProduceA-

Matrix. Second, it is refined by the BinPruneProcess. With the generated matrix

A∗ and the refined arrangement si+, the function GoalProgramming produces the

weights vector w and the estimated triggering probability set Pi
c. At the end, the

fitness of the refined arrangement is the probability low bound of the triggering

probability set.

103

Figure 6.2: An example work-flow of a solution under evaluation

6.3.6 Example: Bin Prune Process

The example SUT has 3 branch cover elements. Its input domain space is divided

into 6 subsets. The overall data and the workflow is shown in Figure 6.2. A child

solution s0, which has three bins is sent to the function ProduceAMatrix to create

its A matrix. It is observed from Figure 6.2 that the column vector A[3] is a

linear combination of A[1] and A[2]. Therefore, after the BinPruneProcess, the

new solution s∗0 whose positions hold the index of the third bin in the solution

s0 are replaced by the index of the second bin, and the matrix A∗ only has two

columns. Finally, with the matrix A∗ as the input, the function GoalProgramming

produces the optimal weight vector w, the triggering probabilities Pi
c. The fitness

of the new solution s∗0 is the minimum value in the vector Pi
c, which is 0.3575.

104

Chapter 7

RELATED WORKS

STATISTICAL STRUCTURAL TESTING

The traditional coverage-oriented test data generation has been widely studied for

decades. In those studies, people believe that a test set that achieves a higher cov-

erage provides a more thorough test indicating a stronger fault-detecting ability

[32]. However, Tasiran pointed out that the through tests may not provide a high

fault-detecting ability [33]. Also, even a coverage criterion subsumes another, the

test data set that satisfies the first criterion does not necessarily prove the stronger

fault-detecting ability. The lack of randomness using the traditional method is one

of the reasons causing low fault-detecting rate. Since the coverage criteria require

a fixed number of tests for each cover element, there is no chance that a partic-

ular cover element can be triggered multiple times than another. However, the

chances are beneficial for detecting faults. In the early work, Duran and Ntafos

[34] performed the cost-effective analysis for random testing. They showed that the

random testing demonstrates a higher fault detecting ability over branch testing

for some fault programs that have critical errors that can be discovered with a low

failure rate. To combine the randomness and the traditional coverage adequacy

into test data generation, Thevenod-Fosse created a new method, called Statisti-

cal Structural Testing (SST). In SST, test inputs are sampled from a probability

distribution over the input domain space. The distribution guarantees that the

sampled test inputs have probabilities at least greater than a pre-defined value to

trigger each cover element (a.k.a, the triggering probability lower bound). They

105

compared the fault-detecting power from the three approaches: deterministic, ran-

dom, and SST by using mutation testing technique [35]. The experiment results

demonstrate that the test set generated by SST is superior efficacy in detecting

software fault. Constructing an optimal input distribution that satisfies the prob-

abilistic coverage is not a trivial work. A tester needs to know the knowledge of

the sub-input domain space associated with each cover element. Then he needs to

assign proper probabilities to each sub-input domain space to create an optimal

input distribution. However, as the computing power increases dramatically in re-

cent years, the Search-Based Software Testing (SBST) framework has gained much

attention. SBST refers to a software testing methodology that automates the test

data generation process using intelligent search algorithms. It is often a dynamic

testing process, meaning that the test set is refined during the SUT’s run-time. A

typical contribution made by Tracey, al.[36] used G.A to build the test set against

the branch coverage criteria. Up to now, there are plenty of Meta-heuristic algo-

rithms dedicated to generating test input set [37; 38]. The SBST framework for

SST problems is firstly studied by Poulding and Clark. They modeled the input

distribution as a Bayesian Network, with nodes represented as inputs, the values in

each node defined as a collection of sub-input domain spaces. Their objective is to

optimize the Bayesian network’s parameters such that the sampled inputs achieve

a probability lower-bound of triggering each branch. They used the hill-climbing

as the search algorithm. Their experiment results demonstrated the practicality of

applying the SBST framework for producing an optimal input distribution. How-

ever, their experiment results also show that efficiency is still a crucial issue. Based

on their research, we analyze the problem that causes the low-efficiency issue and

proposed the new criterion p-L1-Max.

106

FUZZ TESTING TECHNIQUES

Fuzz testing refers to a testing strategy that randomizes test inputs in test data

generation. How to randomize test inputs to make efficient test is a hot research

area. In this chapter, we give a brief overview of the state-of-art fuzzers.

IoT protocols fuzzing: An IoT system can consist of a large number of

devices. Those devices are all connected and communicated by IoT protocols. De-

tecting vulnerabilities in the protocols have a significant influence on web security

and privacy. Bernhard in [39] combines automata learning and fuzz testing tech-

niques for testing the MQTT protocols. SungJin Kim, et al. proposed a smart

seed selection strategy to generate seeds efficiently for fuzzing IoT protocols [40].

Fw-fuzz [41] is proposed to detect vulnerabilities of network protocols on firmware.

SPFuzz [42] proposed a hierarchical scheduling framework for fuzzing stateful net-

work protocols.

Kernel Fuzzing Due to the complexity of an operating system, testing kernels

is complex. Up to now, there exist several techniques for kernel fuzzing. NTFUZZ

[43] is designed to fuzz Windows operating system, which can automatically infer

system call types with static binary analysis. Hydra [44] is an extensible fuzzing

framework that provides building blocks for file system fuzzing.

Grammar-based fuzzing is a technique to leverage SUT’s specifications

to generate test inputs efficiently. This method benefits the most for test inputs

that have a complex structure. Soyeon Park, et al in [45] invented the aspect-

preserving mutation to detect bugs in javascript programs. The G-EvoSuite [46]

combines search-based testing with grammar-based fuzzing for detecting highly

structured input data.

Differential fuzzing uses different programs of the same functionality as

107

cross-referencing oracles, comparing their outputs across many inputs: any dis-

crepancy in the programs’ behavior on the same input is marked as a poten-

tial bug. Differential fuzzing has been successfully applied for detecting side-

channel vulnerabilities[47], vulnerabilities in C compilers[48] and deep learning

systems[49].

108

Chapter 8

CONCLUSION

Figure 8.1: Research mindset

This dissertation addressed several weaknesses of the existing SBSST approach

and proposed solutions to overcome the shortcomings. Figure 8.1 gives a mindset

view of the research path. The SBSST has two key issues, the curse of uncertainty

issue and the unsalable issue. To minimize the curse of uncertainty issue, we

proposed two solutions. We proposed a relaxed coverage criterion called P-L1-

Max, which provides input distribution the same level of fault-detecting ability

while requires less search time. We also proposed the CACOR algorithm, which

109

shows the ability to search in a noisy environment. Additionally, we formally define

the fault-detecting ability with respect to input distributions. To let the BSST’s

testing method be applicable for real-world programs, we proposed a fuzzing tool

called SBSFuzz.

The main contributions are concluded as follows:

p-L1-Max Based on the observation, a strong statistical structural coverage

criterion results in a high impact of the noisy fitness estimation. Hence, we pro-

posed the p-L1-Max criterion, which can significantly reduce the search time with-

out the loss of substantial fault-detecting power.

CACOR We investigated search algorithms that resist noisy fitness estimation.

Based on the existing Ant Colony Optimization, we developed a constrained ACO

algorithm CACOR that is dedicated to the SST problem. Experimental studies

demonstrate the excellent search performance of the CACOR algorithm and the

high-grade fault-detecting ability of the input distributions produced by the algo-

rithm.

SBSFuzz We developed a test input generator called SBSFuzz with the search-

based SST technique for AFL. The test input generator works as complementary

to mutation-based fuzzing when AFL is stuck in discovering new program paths.

In the test input generator, we maintain a trace graph and a set of optimized

probability distributions. To efficiently discovering new paths, we prioritize test

inputs in terms of the exercised program traces. The input-sensitivity prioritiza-

tion allows test inputs in the scanty input subdomain spaces to be sampled with

priority. The path-depth prioritization allows test inputs that execute paths with

deeper depth to be sampled with priority. The sampled test input is then fed back

to AFL for testing.

110

Other SBSFuzz Techniques We proposed a new SBST workflow that lever-

ages the A matrix to generate test inputs. We modeled the optimization problem

either as a multi-objective problem or the least square problem. The noisy fitness

estimation cannot influence the search algorithm in the new workflow. Hence, a

future research direction is to apply this method to fuzz testing.

111

BIBLIOGRAPHY

[1] R. S. Pressman, Software Engineering (3rd Ed.): A Practitioner’s Approach.

USA: McGraw-Hill, Inc., 1992.

[2] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” IEEE

Trans. Softw. Eng., vol. 10, p. 438–444, July 1984.

[3] J. A. Clark and S. Poulding, “Efficient software verification: Statistical test-

ing using automated search,” IEEE Transactions on Software Engineering,

vol. 36, pp. 763–777, nov 2010.

[4] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl: Path

sensitive fuzzing,” in 2018 IEEE Symposium on Security and Privacy (SP),

pp. 679–696, 2018.

[5] V. Chew, “Point estimation of the parameter of the binomial distribution,”

The American Statistician, vol. 25, no. 5, pp. 47–50, 1971.

[6] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,”

European Journal of Operational Research, vol. 185, no. 3, pp. 1155–1173,

2008.

[7] P. Puschner and R. Nossal, “Testing the results of static worst-case execution-

time analysis,” in Proceedings 19th IEEE Real-Time Systems Symposium

(Cat. No.98CB36279), pp. 134–143, 1998.

112

[8] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres, “Testing real-time sys-

tems using genetic algorithms,” Software Quality Journal, vol. 6, p. 127–135,

Oct. 1997.

[9] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment for

automatic structural testing,” Information and Software Technology, vol. 43,

no. 14, pp. 841–854, 2001.

[10] P. Thevenod-Fosse, H. Waeselynck, and Y. Crouzet, “An experimental study

on software structural testing: deterministic versus random input generation,”

in [1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First In-

ternational Symposium, pp. 410–417, 1991.

[11] S. Poulding and J. A. Clark, “Efficient software verification: Statistical test-

ing using automated search,” IEEE Transactions on Software Engineering,

vol. 36, no. 6, pp. 763–777, 2010.

[12] S. Wallis, “Binomial confidence intervals and contingency tests: Mathematical

fundamentals and the evaluation of alternative methods,” Journal of Quanti-

tative Linguistics, vol. 20, no. 3, pp. 178–208, 2013.

[13] Y. K. Shestopaloff, Sums of exponential functions and their new fundamental

properties, with applications to natural phenomena. AKVY Press, 2008.

[14] Y. Jia and M. Harman, “Milu: A customizable, runtime-optimized higher

order mutation testing tool for the full c language,” in Testing: Academic

Industrial Conference - Practice and Research Techniques (taic part 2008),

pp. 94–98, 2008.

[15] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bul-

letin, vol. 1, no. 6, pp. 80–83, 1945.

113

[16] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on Com-

piler Optimization, (New York, NY, USA), p. 1–19, Association for Computing

Machinery, 1970.

[17] “Triangle, http://tracer.lcc.uma.es/problems/testing/index.html.”

[18] “Nichneu, http://tracer.lcc.uma.es/problems/testing/index.html.”

[19] A. J. S. C. e. a. R. Veerasamy, H. Rajak, “Validation of qsar models - strategies

and importance,” International Journal of Drug Design and Discovery, vol. 3,

pp. 511–519, 2011.

[20] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Kara-

poulios, “Application of genetic algorithms to software testing,” in Proceedings

of the 5th International Conference on Software Engineering and Applications,

pp. 625–636, 1992.

[21] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,” in

Proceedings of the 2011 11th International Conference on Quality Software,

QSIC ’11, (USA), p. 31–40, IEEE Computer Society, 2011.

[22] P. Thevenod-Fosse, H. Waeselynck, and Y. Crouzet, “An experimental study

on software structural testing: deterministic versus random input generation,”

in [1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First In-

ternational Symposium, pp. 410–417, 1991.

[23] T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton, “Robustness of ant

colony optimization to noise,” in Proceedings of the 2015 Annual Conference

on Genetic and Evolutionary Computation, GECCO ’15, (New York, NY,

USA), p. 17–24, Association for Computing Machinery, 2015.

114

[24] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the ef-

fectiveness of dataflow- and control-flow-based test adequacy criteria,” in Pro-

ceedings of 16th International Conference on Software Engineering, pp. 191–

200, 1994.

[25] S. Tsutsui, “Ant colony optimization for continuous domains with aggregation

pheromone metaphor,” 01 2004.

[26] F. O. de Franca, G. P. Coelho, F. J. Von Zuben, and R. R. d. F. Attux, “Mul-

tivariate ant colony optimization in continuous search spaces,” in Proceedings

of the 10th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’08, (New York, NY, USA), p. 9–16, Association for Computing Ma-

chinery, 2008.

[27] L. Martino and J. Mı́guez, “Generalized rejection sampling schemes and ap-

plications in signal processing,” Signal Processing, vol. 90, p. 2981–2995, Nov

2010.

[28] E. Alba and J. F. Chicano, “Software testing with evolutionary strategies,” in

Rapid Integration of Software Engineering Techniques (N. Guelfi and A. Sa-

vidis, eds.), (Berlin, Heidelberg), pp. 50–65, Springer Berlin Heidelberg, 2006.

[29] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen wcet

benchmarks - past, present and future,” in Proceedings of the 10th Interna-

tional Workshop on Worst-Case Execution Time Analysis, July 2010.

[30] Y. Jia and M. Harman, “Milu: A customizable, runtime-optimized higher

order mutation testing tool for the full c language,” Proc. Int. Conf. Testing:

Academic and Industrial Conf. Practice and Research Techniques, 08 2008.

[31] B. Tessema and G. Yen, “A self adaptive penalty function based algorithm for

115

constrained optimization,” in 2006 IEEE International Conference on Evolu-

tionary Computation, pp. 246–253, 2006.

[32] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and

adequacy,” ACM Comput. Surv., vol. 29, p. 366–427, Dec. 1997.

[33] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of

hardware designs,” IEEE Design Test of Computers, vol. 18, no. 4, pp. 36–45,

2001.

[34] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” IEEE

Transactions on Software Engineering, vol. SE-10, no. 4, pp. 438–444, 1984.

[35] W. Howden, “Weak mutation testing and completeness of test sets,” IEEE

Transactions on Software Engineering, vol. SE-8, no. 4, pp. 371–379, 1982.

[36] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated framework

for structural test-data generation,” in Proceedings 13th IEEE International

Conference on Automated Software Engineering (Cat. No.98EX239), pp. 285–

288, 1998.

[37] J. H. Andrews, T. Menzies, and F. C. Li, “Genetic algorithms for randomized

unit testing,” IEEE Transactions on Software Engineering, vol. 37, no. 1,

pp. 80–94, 2011.

[38] A. A. L. de Oliveira, C. G. Camilo-Junior, and A. M. R. Vincenzi, “A coevo-

lutionary algorithm to automatic test case selection and mutant in mutation

testing,” in 2013 IEEE Congress on Evolutionary Computation, pp. 829–836,

2013.

[39] B. K. Aichernig, E. Muškardin, and A. Pferscher, “Learning-based fuzzing

of iot message brokers,” in 2021 14th IEEE Conference on Software Testing,

Verification and Validation (ICST), pp. 47–58, 2021.

116

[40] “Smart seed selection-based effective black box fuzzing for iiot protocol,” J

Supercomput, p. 10140–10154, 2020.

[41] Z. Gao, W. Dong, R. Chang, and Y. Wang, “Fw-fuzz: A code coverage-

guided fuzzing framework for network protocols on firmware,” Concurrency

and Computation: Practice and Experience, vol. n/a, no. n/a.

[42] C. Song, B. Yu, X. Zhou, and Q. Yang, “Spfuzz: A hierarchical schedul-

ing framework for stateful network protocol fuzzing,” IEEE Access, vol. 7,

pp. 18490–18499, 2019.

[43] J. Choi, K. Kim, D. Lee, and S. Cha, “Ntfuzz: Enabling type-aware kernel

fuzzing on windows with static binary analysis,” in 2021 2021 IEEE Sympo-

sium on Security and Privacy (SP), (Los Alamitos, CA, USA), pp. 677–693,

IEEE Computer Society, may 2021.

[44] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding bugs

in file systems with an extensible fuzzing framework,” ACM Trans. Storage,

vol. 16, May 2020.

[45] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing javascript engines

with aspect-preserving mutation,” in 2020 IEEE Symposium on Security and

Privacy (SP), pp. 1629–1642, 2020.

[46] M. Olsthoorn, A. van Deursen, and A. Panichella, “Generating highly-

structured input data by combining search-based testing and grammar-

based fuzzing,” in Proceedings of the 35th IEEE/ACM International Con-

ference on Automated Software Engineering, ASE ’20, (New York, NY, USA),

p. 1224–1228, Association for Computing Machinery, 2020.

[47] S. Nilizadeh, Y. Noller, and C. S. Păsăreanu, “Diffuzz: Differential fuzzing for

117

side-channel analysis,” in Proceedings of the 41st International Conference on

Software Engineering, ICSE ’19, p. 176–187, IEEE Press, 2019.

[48] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha: Effi-

cient domain-independent differential testing,” in 2017 IEEE Symposium on

Security and Privacy (SP), pp. 615–632, 2017.

[49] J. Guo, Y. Zhao, H. Song, and Y. Jiang, “Coverage guided differential ad-

versarial testing of deep learning systems,” IEEE Transactions on Network

Science and Engineering, vol. 8, no. 2, pp. 933–942, 2021.

	Automated Statistical Structural Testing Techniques and Applications
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1630345683.pdf.bPZzd

