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Abstract 

 

Forest Park is a 5,100-acre urban forest located in Portland, Oregon, that has been 

impacted by various anthropogenic stressors including logging, fragmentation, invasive 

species, air pollution and recreation use due to its proximity to the urban environment. This 

legacy of land use coupled with natural disturbances has resulted in changes to forest 

structure, composition, and function—threatening the long-term sustainability of the park. 

Past research in Forest Park has identified a lack of regenerating shade-tolerant conifers, 

particularly western hemlock and western red cedar species, in the section of the park 

closest to the city. Typically, western hemlock and western red cedar typically establish 

later in Douglas-fir-western hemlock forest types in the Pacific Northwest and the 

successful regeneration of these species is a critical development process that leads toward 

multilayered canopy and structurally complex old-growth stand conditions. Achieving this 

old-growth condition in the park is one of the goals of current management activities which 

include, invasive species removal and replanting shade-tolerant conifers in degraded 

sections of the park. Since conifer recruitment dynamics are less understood in novel urban 

forests, these management actions would benefit from science-based guidance on current 

ecological conditions in the park. 

In order to better understand conifer recruitment dynamics in this urban forest, a 

targeted sampling approach was utilized to find and monitor existing shade-tolerant conifer 

juveniles to characterize and quantify the multi-scale environmental habitat conditions at 

those sites as possible drivers of juvenile presence. Microsite factors associated with the 

presence of each juvenile species were modeled using a boosted regression tree approach. 
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Vigor was qualitatively assessed for each juvenile sampled and vigor rankings were 

analyzed using topographic and stand level factors. Juveniles were typically observed in 

areas with less understory fern cover (6 – 22%) than the surrounding area (26 – 73%). 

Coarse woody debris was heavily associated with the presence of western hemlock 

juveniles with 84% of juveniles found established in downed nurse logs or stumps. 

Decreased litter cover was also significantly associated with western hemlock juveniles 

within the park units (56 – 65%). At the stand level, decreased canopy cover density was 

associated with higher juvenile vigor for both species (~95%) and decreased overstory 

density (191 trees/ha) was associated with higher vigor for western red cedar juveniles. 

Juveniles of both species were observed more frequently on north facing slopes and in park 

management units farther from urban environments. Based on these results, microsite, 

stand level, and site topographical factors need to be considered when implementing 

restoration techniques to promote natural regeneration of shade-tolerant conifers and 

identifying locations to plant new seedlings. 
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Chapter 1: General Introduction 

 

The successful regeneration of shade-tolerant conifer species, western hemlock 

(Tsuga hetereophylla), and western red cedar (Thuja plicata) is fundamental to the long-

term sustainability of mixed-conifer forests in the Pacific Northwest (PNW). However, 

novel disturbance regimes introduced by humans have impacted natural ecosystems and 

interrupted important ecological processes. Impacts from land use change, habitat 

fragmentation, climate change, invasive species, and urbanization have altered natural tree 

regeneration processes and caused shifts in forest species composition (Dey et al. 2019). 

These anthropogenic stressors can be particularly impactful in urban forests based on their 

proximity to the urban environment and high population densities (Dwyer 2000; Nowak et 

al. 2010). Consequently, these impacts have created novel forest conditions that threaten 

the long-term resilience of forested ecosystems. Urban forest managers have been tasked 

to increase stand structural complexity, promote resilience, and restore natural ecosystem 

functioning. Knowledge regarding how current environmental conditions affect critical 

ecological processes such as tree regeneration in urban forests is currently lacking yet is 

needed to provide science-based guidance to management practices.  

Western hemlock and western red cedar are two prominent late-successional 

conifer species present in the Douglas-fir (Pseudotsuga menziesii) dominated forests of the 

PNW. Both species are shade-tolerant and typically establish later in forest development 

after shade-intolerant pioneer species such as Douglas-fir. Shade-tolerance is a 

physiological characteristic of trees and refers to the ability of a tree species to undergo the 

stages of its life cycle in low-light conditions (Franklin 2018).  In the absence of major 
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disturbances, shade-tolerant species will typically replace more shade-intolerant species as 

forest develop over time (Franklin 2018). The presence of a multi-layer canopy with shade-

tolerant conifer species in codominant the overstory is indicative of a stand developing 

towards old-growth conditions (Freund et al. 2014; Franklin 2018). Understanding the 

dynamics of western hemlock and western red cedar regeneration is of critical importance 

for managers seeking to promote the development of managed stands towards structurally 

complex, old-growth conditions.  

In recent decades, forest managers have been tasked to either protect existing old-

growth reserves or to promote old-growth characteristics in younger stands. For example, 

the Northwest Forest Plan ended clearcutting of old-growth forests on federal land and 

emphasized the restoration of late-successional forests (Phalan et.al. 2019; USDA Forest 

Service; USDI Bureau of Land Management 1994).  Retaining older patches of forest helps 

to provide wildlife habitat, seed sources, carbon sequestration and other ecosystem services 

(Spies and Franklin 1996; Schrader 1998). While there are many multifaceted benefits to 

increasing structural complexity and promoting old-growth conditions in PNW forests, but 

the development of old-growth forests is complex and takes centuries to unfold.  

Old-Growth Forest Development 

Franklin et. al. 2002 describes a broadly cited model of natural stand development 

using Douglas-fir-western hemlock forests of the PNW as an example. After large 

disturbances, early seral species such as Douglas-fir are the first to typically establish on 

the landscape during the cohort establishment phase. As these early pioneer species 

continue to grow, eventually their canopy overlap resulting in complete canopy closure of 
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the stand. After canopy closure, stands typically undergo the biomass accumulation and 

competitive exclusion phase that is characterized by rapid growth, and density-dependent 

mortality or self-thinning. After stands have reached 80-100 years in age, there is generally 

a transition into the maturation stage where pioneer canopy trees reach maximum height 

and crown diameter. At this stage, shade-tolerant species establish in the understory, 

although establishment rates are highly variable. In the following decades to centuries, 

vertical diversification occurs as the shade-tolerant species grow into co-dominant canopy 

positions creating a multi-layered canopy. Horizontal diversification occurs with 

increasing gap development and the increased dominance of shade-tolerant conifers. These 

are general stand development stages that lead towards structurally complex, old-growth 

forest conditions. The development of structurally complex forests is highly variable and 

can take centuries (Franklin & Dyrness 1988). This model emphasizes the importance of 

structural features in addition to live trees and the impact that disturbance legacies leave 

on future stand development. However, post-Euro-American settlement forest stands in the 

PNW have experienced altered disturbance regimes that have excluded important legacy 

forest structures.  

Human Impacts on Forest Development in the Pacific Northwest 

Human-induced disturbance regimes have altered the natural development of 

Douglas-fir-western hemlock forests in the PNW (Franklin & Dynress 1988; Spies et al 

2002). Logging, grazing, introduction of non-native species, urbanization, and 

fragmentation have altered current forest structure and composition particularly near urban 

areas and valleys (Spies et al. 2002). Forest logging operations such as clearcutting are 
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more frequent and intense than natural disturbances but less variable in size (Spies et al. 

2002). The post-disturbance conditions associated with clear-cut logging differ from the 

conditions following natural disturbances (e.g., wildfires, windfall, insect/disease). 

Clearcutting practices remove all remnant seed trees as well as woody debris (Franklin et. 

al 2002). Remnant trees are important legacy structures left after disturbances as they 

influence the spatial patterns of establishing seedlings post-disturbance (Goslin 1997). 

Without important legacy forest structural components, conifer regeneration densities and 

rates in the Coast Range are highly variable following large-scale disturbances (Franklin 

et. al. 1981). Current patterns of forest structure and composition in the PNW have largely 

resulted from these impacts from human activities and are currently still driven by patterns 

in land ownership. Private forests are generally managed to maximize timber production 

while public forests are generally managed in a more ecologically holistic approach to 

support multiple uses.  To that degree, understanding the dynamics of shade-tolerant 

regeneration is applicable for managers seeking to promote natural forest development in 

stands impacted by past human activities.  

Regeneration of Western Hemlock and Western Red Cedar 

Tree regeneration is defined as the renewal of a tree crop by self-sown seed or 

vegetative means and is a multi-stage process that includes seed production, seed dispersal, 

germination, seedling establishment, and seedling survival/growth (Oliver and Larson 

1996; Ford-Robertson 1971). These individual stages and other site-specific environmental 

conditions necessary for establishment of new trees are referred to as the regeneration niche 

(Grubb 1977).  The regeneration niche model implies that certain environmental conditions 
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must be met in concurrence with individual regeneration processes for trees to successfully 

regenerate. One of the main tenets of the regeneration niche concept is that the physical 

environment combined with legacies of land use and disturbance that a seedling is exposed 

to, affects its probability of survival and recruitment into the stand (Dey et al. 2019).  

 There are different multi-scale biotic and abiotic environmental factors that can 

influence the probability for successful regeneration to occur for a tree species (Figure 1).  

These include factors that affect the microsite environment such as seedbed substrate, 

shading objects, vegetation cover, and litter depth. Factors affecting regeneration at the 

stand level include canopy cover density, stand density and presence of adequate seed 

sources. Landscape scale environmental factors in include slope, aspect, and slope position. 

The regeneration niche is species-specific therefore the requirements for western hemlock 

and western red cedar to successfully regenerate need to be investigated individually. 

Western hemlock and western red cedar are typically associated with old growth forests, 

but their rates of establishment and recruitment in PNW forests development are less 

known. Understanding the different environmental factors associated with the natural 

regeneration of these species can provide insights into old growth forest development and 

management practices. 

 

 

 

 



 6 
 

 

 

 

 

  

 

 

Western hemlock seed availability 

 Western hemlock is monoecious containing male and female reproductive 

structures on the same tree (Packee 1990). Flowering and pollination occur from mid to 

late April in western Oregon. The development of cones is variable, but cones typically 

mature by September – October with seeds falling shortly after (Packee 1990). Western 

hemlock is considered a good seed producing species with abundant cone crops beginning 

to occur when trees turn 15-30 years old (Colangeli and Owens 1990; Turner 1985). The 

number of viable seeds ranges from 10 – 20 per cone with mast years occurring every 3-4 

years. Good seed years can produce up to 20 million seeds per hectare from 100-year-old 

stands in coastal Oregon in mast years (Packee 1990). These seeds have large wings and 

can travel far distances from parent trees. In a 12.5 mph wind, a seed released from a height 

of 200 feet can travel up to 2000 feet (Packee 1990). Factors that affect seed loss include 

Figure 1. Conceptual model displaying environmental and species-specific factors that affecting 

regeneration of tree species. Adapted from Davis et al. 2018. 
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ovule abortion, insufficient pollination, lack of fertilization and embryo degeneration 

(Colangeli and Owens 1990). Seeds are only viable during their first growing season 

(Packee 1990).  

Western hemlock germination 

    Germination rates for western hemlock seeds are sensitive to temperature with 

an optimal temperature around 68° F (20°C), but seeds can germinate in temperature above 

freezing given sufficient time (Packee 1990). With adequate moisture, seeds germinate 

well on both organic and mineral substrates including duff, litter, rotten wood, or mineral 

soil (Packee 1990). It appears the principal requirement for western hemlock seed beds is 

adequate moisture and in drought conditions organic material can dry out before the 

seedling’s radicle can reach the mineral soil and moisture (Packee 1990).  However, 

decayed wood is an ideal substrate for germinates because of its moisture retention 

capacity, particularly in shaded environments (Harmon et al. 1986). The small seed size of 

western hemlock leaves it susceptible to desiccation particularly in certain exposed 

substrates such as litter or duff—making germination difficult (Haig et al. 1941).   Heavy 

seed loss can occur via predation of small mammals, but predation rates can be highly 

variable (Gashwiler 1970; Harmon and Franklin 1989).  

Western hemlock seedling establishment, survival & growth 

Western hemlock seedling establishment has been strongly associated with the 

presence of decayed logs, or “nurse” logs particularly in closed canopy forests (Harmon & 

Franklin 1989; Gray 1997; Christy & Mack 1984; Franklin & Dyrness 1988) An 

experiment by Harmon and Franklin (1989) in Cascade Head on the Oregon coast found 
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more western hemlock seedlings surviving on logs than on mineral soil in areas of similar 

moisture and vegetation. Competition with herbs and mosses on the forest floor appears to 

be responsible the abundance of seedlings found on nurse logs. In Christy and Mack’s 

study (1984) in the Western Cascades, almost all western hemlock juveniles observed were 

rooted on decaying logs although logs covered only 10-30% of the forest floor. Decaying 

logs can provide a safe site from competing ferns, herbs, and mosses on the forest floor. 

Initial seedling growth is slow with 2-year-old seedling typically less than 8 inches in 

height. Once seedlings establish with increased light conditions, it is not uncommon to 

observe average growth rates of 24 inches per year (Packee 1990).  

Canopy gaps created after treefall can help facilitate juvenile establishment and 

growth due to increased soil moisture and light resources (Gray & Spies 1996). Gap 

position is important for developing juveniles as northern edges of gaps receive more direct 

solar radiation which can negatively impact developing juveniles (Gray & Spies 1996). 

Western hemlock seedling densities have been observed to be 3-9 times greater in gaps 

than in closed canopies within the same stand (Spies et al. 1990). Increased seedling growth 

has been observed with increasing gap size and increased seedling densities are typically 

associated with older gaps (Gray & Spies 1996; Spies et al. 1990). 

Western red cedar seed availability 

The reproductive structures of western red cedar are classified as monoecious with 

separate male and female strobili on the same tree (Schopmeyer 1974). Pollination most 

commonly occurs in March with fertilization occurring in late May for trees located in the 

coastal region (Owens et al. 1984). Cones mature about 5 months after pollination and seed 
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fall begins shortly after—typically from September - December (Minore 1990). Lack of 

pollination or pollen inviability are the major causes for reduced seed efficiency and seed 

loss (Colangeli and Owens 1990). Cones average around 3-6 seeds, but cones are 

commonly abundant and heavy seed crops common with a 3–4-year interval between large 

seed crops typical (Schopmeyer 1974; Owens 1995). Seeds are about 6 mm long with 

wings typically same size as the body (Schopmeyer 1974). Most seeds fall within 300 feet 

of parent trees (Minore 1990).   Major seed fall occurs during October and November and 

average annual can vary from 247,000 to 2.470,00 seeds per hectare in coastal forests 

(Minore 1990). Seed production typically begins when these trees reach 15-30 years old 

(Turner 1985).  Western red cedar regeneration is typically not limited by lack of seed 

production.  

Western red cedar germination 

Germination of western red cedar seeds is most successful in light or moderate 

shade (Minore 1972). Minore (1972) observed average seed germination rates that were 2 

times higher in low and moderate shade treatments versus heavy shade treatment in field 

plots located in the Cascade Head Experimental Forest. This study also examined organic 

substrate types (duff versus rotten wood) influence on seed germination and did not find 

any significant trends. However, some studies have indicated that germination success is 

influenced in part by substrate type. A study by Klinka and Feller (1998) found that the 

western red cedar seeds germinated more frequently and successfully on burned floor forest 

substrate compared to mineral soil and undisturbed forest floor substrates. Another study 

by Haig (1941) found that western red cedar seeds germinated 5-10 times more 
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successfully on burnt and unburnt mineral soil compared to duff. Haig concluded that 

fluctuations in the moisture content of duff, particularly on exposed sites, coupled with the 

relatively small seed size of western red cedar could in part explain why seeds failed to 

germinate as successfully on duff substrates. Seeds have been shown to escape rodent and 

bird predation, but high mortality rates can occur during the germination phase. (Gashwiler 

1967). Germination is unlikely to occur after the first year of seed fall (Minore 1990). 

Based on observations from growth chamber trials, seeds can germinate quickly, given 

warmer temperatures: 15 – 25 °C (Harrington 2020). This ability to germinate quickly 

differs from other local conifer species such as Douglas-fir and allows for germination in 

the fall months given optimal temperatures.  

Western red cedar seedling establishment, survival & growth 

As western red cedar typically produces abundant, viable seed crops that have high 

survival rates therefore it appears that seedling establishment and survival is a critical 

limiting stage in the life cycle of the species. Seedlings have been found to establish 

successfully on mineral soil in post-fire landscapes (Feller and Klinka 1998). Exposed 

mineral soil has been observed to be a favorable seedbed conditions for cedar establishment 

while heavy moss cover can limit establishment (Lepage et. al. 2000).  Seedlings can 

establish on decaying wood, logs, and organic material (Christy and Mack 1984). Western 

red cedar seedlings benefit from partial shading because of the stress that drought and high 

temperatures can inflict on the juveniles.  

Seedling establishment appears to be more successful in partially open areas and 

gaps compared to closed forest canopies (Spies et al., 1990). Canopy gap position has also 
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been shown to affect seedling establishment due to the north-south shade gradient effect in 

northern hemisphere forests (Wright et. al. 1998). North ends of gaps are typically sunnier 

than the southern ends of gaps subsequently creating a soil moisture gradient within the 

canopy gap. Wright et. al. (1998) observed increased western red cedar seedling emergence 

and higher seedling survival in southern ends of canopy gaps compared to northern ends.  

Shrub layers can inhibit the growth of seedlings in coast regions due to competition 

for forest floor nutrients and seedling growth has been observed to increase following shrub 

removal. (Messier 1993). Management of competing vegetation can improve the early 

development of western red cedar seedlings and saplings. Removal of competing 

vegetation has shown to increase the height of juveniles more effectively than removal of 

shading aboveground vegetation (Adams et. al. 1991). This indicates that transpiration 

related stress may be more critical component to western red cedar juvenile survival than 

light competition. Western red cedar is very shade tolerant and can endure long periods of 

suppressed growth in shaded, subordinate canopy positions (Wright 1998). 

Western red cedar also can reproduce vegetatively. This can occur in three different 

types of vegetative reproduction: layering of lower branches, rooting from fallen branches 

and development from fallen trees (Minore 1990). Layering occurs when a branch of the 

tree touches the forest floor and eventually roots into the ground.  

Urban Forests 

Urban forests provide critical ecosystem services to local communities. Their 

importance continues to grow with 80% of the US population currently living within urban 

areas (Nowak 2010). These ecosystem services include carbon sequestration, air pollution 
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removal, shading/cooling benefits, improved water quality, flood control, wildlife habitat, 

and cultural benefits (Nowak et al. 2006; Solecki et al. 2000; Dwyer et al. 1992; Bolund & 

Hunhammar 1999). However, urban forests are subjected to additional stressors not 

experienced as heavily in remote, wildland forests and therefore are at greater risk of 

having natural ecological processes impacted or interrupted. These stressors include air 

pollution, fragmentation, invasive species, recreation use and urban heat island effect 

(Ballantyne et al. 2014; Stolte 1996; Pye 1988; Copp 2014). These anthropogenic 

disturbances alter natural forest developmental processes and can create novel forest 

conditions that ultimately lower the resilience of the ecosystem (Dwyer 2000).  

These broad range of disturbances in the urban environment can impact tree 

regeneration and the long-term sustainability of urban forests. Invasive species are often 

more prevalent in urban ecosystems this can potentially impact plant recruitment. For 

example, English ivy can depress the diversity of local plant community, but plant 

communities can restore themselves following removal and persistence of native seeds in 

seedbank (Biggerstaff et. al. 2007). Seed availability can be a limiting factor affecting 

regeneration in urban forests because of dispersal limitations due to fragmentation and lack 

of seed source.  A lack of recruitment of late successional species has been observed urban 

forests, possibly result of novel disturbance regimes introduced via urbanization and past 

land use history (Broshot 2007).  

Forest Park 

 Forest Park is a 5,100-acre (2000 hectares) urban forest located in Portland Oregon 

and is managed by Portland Parks and Recreation (PPR). The park is situated along the 



 13 
 

eastern side of the Tualatin Mountains northwest of downtown Portland. Forest Park is 7 

miles in length and ranges from 0.5 – 1.5 miles in width (Broshot 1999). The Forest Park 

Natural Resource Management Plan was developed in 1995 and organized the park into 

three management units: south, central, and north (City of Portland 1995). These 

management units align with an urban to rural gradient with south management unit 

experiencing more recreation use and degradation. The park is heavily used for recreation 

including hiking, running and mountain biking with over 80 miles of trails. The park 

provides recreation opportunities for an estimated 550,000 visitors each year (Myers 2014; 

Van Deren et. al. 2018). The park is one of the largest natural areas within a city’s limit 

nationwide (McAllister et al. 2011). Forest Park provides numerous ecosystem services to 

the community including clean air and water, flood control, wildlife habitat, climate 

regulation, biodiversity, and recreation. (Meyers 2013). Forest Park also serves as a 

wildlife corridor connecting the Portland metro region to the Coast Range. This habitat 

connectivity component of the park is critical for species dispersal throughout northwest 

Oregon by allowing plants and animals to carry out life functions in more suitable habits 

(Meyers 2013). The long-term sustainability of Forest Park is crucial to maintain these 

important ecosystem services in the region.  

Forest Park is located within the western hemlock vegetation zone and is connected 

to the Oregon Coast Range (Franklin and Dyrness 1988). As a result of logging and land 

use practices, this vegetation zone is dominated by early seral species such as Douglas-fir 

(Pseudotsuga menziesii) (Spies et al. 2002). Over time and in the absence of major 

disturbance, later succession species such as western hemlock and western red cedar 

dominate the landscape. However, this is exceedingly rare as these forests are subject stand 
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replacing wildfire disturbance events with a fire return interval before Euro-American 

settlement estimated at around 200-300 years (Franklin 2018). Other common tree species 

in Forest Park include grand fir (Abies grandis), bigleaf maple (Acer macrophyllum), red 

alder (Alnus rubra), pacific yew (Taxus brevifolia), and cascara (Rhamnus purshiana). The 

park experiences a maritime climate characterized by wet winters, dry summers, and mild 

temperatures all year (Franklin & Dynress 1988). 

Forest Park’s history has been strongly characterized by human activities in the 

region. In the early nineteenth century, indigenous groups occupied regions along the banks 

Lower Columbia and Lower Willamette Rivers—including two villages in present day 

Portland (DeVoto 1953). Indigenous groups were composed of several branches of the 

Chinookan-speaking people including those of the Multnomah, Kathlamet, Clackackamas, 

Chinook, Tualatin Kalapuya and Molalla. European settlers arrived in the region in the 

early 1800’s and began clearing for settlement and agriculture (Munger 1960). By the mid-

1800’s settlers had developed trails through the Tualatin Mountains to transport and trade 

crops to settlements along the Willamette River. The development of land for residential 

use gradually increased around the Tualatin Mountains along flatter ridge tops and bases 

while the steeper hills were logged by residents. These land use patterns continued into the 

20th century as the hills of west of Portland were continually logged by early settlers (Houle 

1988). By the early 20th century, most of the landscape making up Forest Park today had 

been clear cut. In addition to logging activities, the park has experienced three major 

wildfire events in 1889, 1940 and 1951 (Munger 1960). These wildfires cumulatively 

impacted over 1200 acres within the park, impacting the central unit of the park the most 

heavily (Houle 1988; Munger 1960). 
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Recent research in Forest Park has identified differing forest structure and 

composition on an urban to rural gradient. The abundance of deciduous canopy cover, 

bigleaf maple and red alder, is most notable in the south and central sections of the park 

(Broshot 2007).  Urban sections of the park also lack standing dead trees (Dresner et al. 

2017). Lower amounts of coarse woody debris have been observed in the south unit of the 

park compared to north unit and reference site (Addessi 2017).  Invasive species such as 

English ivy (Helix hedera) has increased in south sections of the park and has displaced 

native understory species (Copp 2014; Butler 2019).   A lack of recruitment of shade-

tolerant conifer species has been observed in the park, particularly in sections of park 

closest to urban proximity has led to concern over the successional trajectory of the park 

(Broshot 2007; Dresner et al. 2017). 
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Chapter 2: Multi-scale Growing Conditions Associated with Western Hemlock and 

Western Red Cedar in Forest Park, Portland, Oregon 

 

Introduction 

Urban forests are impacted by novel disturbance regimes introduced by humans 

that impact natural ecological processes such as tree regeneration. One of the largest urban 

forests in the United States is Forest Park, a large second-growth urban mixed-conifer 

forest in Portland, Oregon, whose recent history is characterized by human activities and 

disturbances. Tree regeneration is one ecological process that is of concern in urban mixed-

conifer forests like Forest Park. Past land use history and disturbances have created a 

heterogenous composition of stands associated with different dominant vegetation types 

and successional stages within the park (Broshot 2007; McAllister et al. 2011), but one 

specific issue that has been documented in certain sections of the park is a lack of shade-

tolerant conifer recruitment (Broshot 2007; Dresner et al. 2017). In much of Forest Park, 

this recruitment may be limited by the availability of legacy forest structural components 

such as remnant seed trees, snag trees and downed woody debris that are necessary for 

subsequent successional stages to occur. In addition, the park has been impacted by 

urbanization including effects of fragmentation, invasive species, and recreation use 

(Broshot 2007; Prather 2014; Van Winkle 2014). These impacts have resulted in forest 

conditions that constitute a novel state and differ from those of pre-Euro-American 

settlement stands (Christy et al. 2008), leading to concerns over the trajectory and future 

stand development in the park.  
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 Current management goals in the park include promoting structural diversity and 

setting vegetation trajectories towards structurally complex, old-growth conditions 

(McAllister et al. 2011; City of Portland 1995). The recruitment of shade-tolerant conifers 

such as western hemlock and western red cedar can help to achieve those management 

goals. However, the scarcity of western hemlock and western red cedar species present 

management challenges. Current management efforts include removal of invasive species 

and replanting seedlings of shade-tolerant species in degraded areas of the park.  These 

restoration activities would benefit from science-based guidance on current ecological 

conditions in urban forests, because recruitment dynamics that are well understood based 

on decades of research in less disturbed forests may not be as predictable in the novel, 

understudied context of degraded urban forests in a changing climate. Therefore, to address 

the knowledge gap regarding western hemlock and western red cedar juvenile 

establishment and survival in urban forests, this study will examine multi-scale 

environmental conditions associated with naturally regenerated juveniles of each species 

in Forest Park.  

Study Objectives and Research Questions 

This research builds on previous studies that have identified a lack of recruiting 

shade-tolerant conifers, particularly in the sections of the park closest to urbanized areas. 

This study seeks to further understand and characterize the multi-scale environmental 

conditions associated with shade tolerant conifer regeneration in Forest Park by addressing 

the following research questions: 



 18 
 

1. What are the environmental conditions associated with the establishment and 

recruitment western hemlock and western red cedar juveniles? 

2. Are the environmental conditions associated with the regeneration of western 

hemlock and western red cedar similar in different park management units? 

3. What environmental predictor variables best predict presence of western 

hemlock and western red cedar regeneration? 

4. What environmental factors contribute to low and high vigor in western 

hemlock and western red cedar juveniles? 

Because effective forest management actions rely on accurate estimates of current 

ecological conditions, the results of this study will provide insights into shade-tolerant 

conifer regeneration in Forest Park along with recommendations to inform future 

management decisions.  

Methods 

To investigate the patterns of conifer regeneration in areas of Forest Park that were 

differentially affected by human activities, study locations were chosen to align with an 

urban-rural gradient using the Portland Parks and Recreation (PP&R) defined management 

unit boundaries. Plot locations were installed in the south and north management units as 

well as the Burlington unit (Figure 2). The south management unit (1,236 acres), located 

between W. Burnside Road and Firelane 1, nearest to NW Portland and receives the most 

recreation use, and has been the focus of recent restoration efforts. The north management 

unit (1,558 acres), located between Germantown Road and Newberry Road, is further from 

the city and receives fewer visitors as a result.  Plots were also installed in a 38-acre, old 
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growth preserve owned by the Forest Park Conservancy, referred to as the Burlington unit 

in this study. While this preserve does not meet the technical definition of an old growth 

stand because it has too few large tree, snags, downed logs, and the stand is too small 

(Franklin & Dyrness 1988), However, the Burlington unit does contain some very large, 

Douglas-fir trees, some older than 400 years, and contains many structural components 

consistent with old growth conditions (Broshot 2007). Furthermore, because it has not been 

impacted by logging or wildfires in recent centuries (Broshot 1999), the Burlington unit 

was used as a reference control to compare results from the north and south management 

units. Plots were established and data collection occurred from summer 2019 through fall 

2020.  

 

 

 

 

 

 

 

 

 

Figure 2. Juvenile site locations in each sample unit of Forest Park. Blue points represent 

western red cedar (THPL) sites, and the red points represent western hemlock (TSHE) sites. 
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Due to the scarcity of shade-tolerant juveniles in the study area, a targeted field 

sampling approach was utilized for field sampling. Juveniles were searched away from 

trails within the three sample units: north, south, and Burlington (reference). Juvenile 

encounter frequency was used as a co-variate of overall juvenile landscape abundance per 

species. Encounter frequency was calculated by tracking total search time and number of 

individuals observed on sampling track. Encounter frequency was tracked within each 

management unit and dominant overstory vegetation type. Plot locations were selected to 

ensure: 1) a representative amount of juvenile growth forms (seedling vs sapling) and 2) a 

proportional number of plots in each dominant overstory vegetation type present in the 

park. Juvenile conifers were categorized either as seedlings—individuals less than 1.37 

meters in height or saplings—individuals greater than 1.37 meters in height with diameters 

less than 12.7 cm (U.S. Forest Service 2020). Dominant overstory vegetation types were 

categorized in three groups for this study: mixed-conifer, mixed-conifer-deciduous and 

deciduous. Plots were installed at the site of the target juvenile conifer. Areas of recent 

replanting efforts were identified, and locations with transplants were not chosen for 

sampling or factored into search time calculations.   

After a juvenile conifer was identified for sampling, a plot center was established at the 

location of the juvenile. Topographical variables such as slope, aspect, and slope position 

were measured at the plot center. Next, paired 1 m2 microsite plots were established at 1) 

the juvenile conifer (plot center) and 2) a randomly placed location ~1-2 meters from the 

juvenile (Figures 3 & 4). The microsite plot installed around the juvenile conifer is referred 

to as the “regeneration” microsite and it is associated with the presence of the target conifer 
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species. The microsite plot randomly installed ~1-2 meters away from the juvenile is 

referred to the “control” microsite plot and is associated with the absence of the target 

conifer species. The placement of the control microsite was determined by a random 

number generator that generated a random integer from 0-360, and that number was used 

as the compass azimuth for placing the control plot. If the control microsite landed on 

another target juvenile conifer species, a new random azimuth direction was generated, and 

the plot was placed again.  Microsite plots were monitored using quadrat frame and the 

quadrat frame was aligned toward the cardinal directions when placed around each 

juvenile. 

 

 

 

 

Figure 3. Schematic of paired plot monitoring layout. Regeneration microsite plot installed around 

seedling/sapling and a control microsite plot installed randomly within 1-2 meters. Tree density and basal 

area measured around regeneration microsite plot using variable radius plot method. 
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After plot establishment different multi-scale environmental factors were measured 

(Figure 5; Table 1). Visual estimates were made to the nearest percent for vegetation and 

forest floor substrate cover using a 1 m2 quadrat at each microsite plot location. Vegetation 

cover was recorded according to the following categories: herbaceous (forbs and grasses), 

shrubs (plants with woody stems), English Ivy (Helix hedera) and ferns. Forest floor 

substrate cover was categorized as rock, bare soil, litter, duff, moss, coarse woody debris 

(CWD), and fine woody debris (FWD) (Table 1). Coarse woody debris was defined as 

downed wood in the 1000-hour fuel class, greater than 7.6 cm (3 in) diameter (Harmon et 

al. 1986). Fine woody debris was defined as 1-, 10- and 100-hour fuels or downed woody 

material less than 7.6 cm. Litter and duff depth measurements were also taken at the base 

of each juvenile and at random in the control microsite plots. Four litter and duff 

measurements were recorded and averaged in each microsite plot.  Canopy cover density 

was recorded at both microsite plots using a densiometer. Canopy cover measurements 

Figure 4. The photo on the left displays an example of a regeneration microsite plot and the photo on the 

right displays an example of a control microsite plot. 
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were recorded at each cardinal direction around the juvenile’s canopy extent, and the values 

were then averaged at each juvenile site. The following hypotheses were tested for paired 

microsite plots: 

• Hypothesis 1: Regeneration microsite plots will have a dissimilar vegetation cover, 

forest floor substrate coverages and litter/duff depths compared to the control 

microsite plots.  

• Hypothesis 2: Regeneration microsite plots will have a lower canopy cover density 

(more open) than the control microsite plots. 

Tree density and basal area were measured around the juvenile sample using a variable 

radius plot or point sampling method. Variable radius plots are commonly used in forest 

inventory assessments and provide a rapid method to assess tree basal area and density 

(Hovind & Rieck 1961; Shiver & Borders 1996). In this method a basal area factor prism 

is used select “in” trees to measure in the plot. Diameter at breast height (DBH) was then 

measured for each “in” tree.  Individual juvenile characteristics such as height and diameter 

were also measured.  
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Since tree regeneration is strongly affected by temperature and soil moisture, 

topographic components such as slope, slope position and aspect were also measured at 

each plot location. In the northern hemisphere, southwest slopes are typically associated 

with drier and hotter conditions while northwest slopes are typically associated with cooler 

and wetter conditions. McCune and Keon (2002) developed the heat load index (HLI) to 

account for direct solar radiation input throughout a given landscape. This method 

transforms aspect and slope to produce a heat load index value from 0 (coolest) to 1 

(hottest). A HLI raster layer was derived from a 1 m2 digital elevation model (DEM) for 

each of the three sample units. The DEM layer was derived from a 2014 LiDAR flyover 

point cloud data courtesy of the Oregon Department of Geology and Mineral Industries 

(DOGAMI). Topography also influences hydrological and geomorphological processes 

that affect soil moisture. A steady state wetness index called topographic wetness index 

Figure 5. Conceptual model displaying different hierarchal levels of environmental factors monitored at 

juvenile site locations. 
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(TWI) is a function of both slope and the upstream contributing area of a given location on 

a landscape can be used to model aspects of the local hydrology. TWI is highly correlated 

with soil attributes such as horizon depth, silt percentage, and organic matter content and 

aims to model soil water content (Moore et al. 1991). A raster layer of TWI was derived 

using a 1 m2 DEM for each sample unit. Additionally, Slope position was also recorded at 

the juvenile site location. This refers to the general location of the established juvenile 

conifer on the hillslope. The following categories were used: crest, upper slope, middle 

slope, lower slope, toe slope, depression, and level. Slope position can influence spatial 

variation of soil properties throughout the landscape by controlling the movement of water 

and material on the hillslope. 
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Table 1. Environmental variables measured at each plot location. Vegetation and forest floor substrate 

cover variables measured in 1 m2 quadrat around juvenile conifer and control site. 

         

        Tree vigor was qualitatively assessed for each juvenile species monitored. Vigor was 

categorized into three different classes: above average (AA), average (A), and low (L). 

These classes were determined by live crown ratio, early needle senescence, crown density, 

branchlet length, and needle chlorosis observed in each sampled species (Table 2).  Live 

crown ratio was measured on juveniles large and old enough to exhibit more complex 

crown structure. Live crown ratio is the ratio of the crown length to total tree height or 

Category Variable Method of Measurement Units 

Abiotic Heat Load Index (HLI) Derived from 1m2 DEM Unitless 

 

Topographic Wetness 

Index (TWI) Derived from 1m2 DEM Unitless 

 Aspect Field Measured (Compass) Degrees 

 Slope Field Measured (Clinometer) Degrees 

 Mineral Soil Cover 
Field Measured (1 m2 quadrat, visually 
estimated)  % 

 Rock Cover 

Field Measured (1 m2 quadrat, visually 

estimated)  % 

    

    

Biotic Tree Density 

Field Measured (Variable Radius Plots 2 

M BAF) Trees ha-1 

 Tree Basal Area 

Field Measured (Variable Radius Plots 2 

M BAF) m2  ha-1 

 Canopy Cover Density 

Field Measured (Densiometer, 4 

measurements averaged) 

% Canopy 

Cover 

 

Understory Vegetation 

Cover 

Field Measured (1 m2 quadrat, cover 

classes organized by functional group or 

species of interest - Shrub, Herbaceous, 

Fern and Ivy)  % 

 

Coarse & Fine Woody 

Debris 

Field Measured (1 m2 quadrat, visually 

estimated)  % 

 Moss Cover 

Field Measured (1 m2 quadrat, visually 

estimated)  % 

 Litter & Duff Cover 

Field Measured (1 m2 quadrat, visually 

estimated)  % 

  

Litter & Duff Depth 

Field Measured (4 measurements taken 

and averaged  

in each microsite plot) cm 
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percentage of tree’s total height that has foliage (U.S. Forest Service 2020; Deyoung 2016).  

Needle chlorosis assessment was based on foliar color where the proportion of yellowing 

needles was the basis for vigor classification. Low needle chlorosis indicates greater needle 

chlorophyll retained which in turn increases photosynthetic capacity (Grulke 2020; Nowak 

et. al. 1991).  Crown density is the amount of crown branches, foliar retention and needle 

mass that blocks light visible through the crown (U.S Forest Service 2020). The different 

environmental variables associated with each vigor class for each species was analyzed to 

determine any patterns or trends. Hypotheses for the juvenile vigor assessment are as 

follows: 

• Hypothesis 3: Juveniles classified in the AA vigor class will be present at sites with 

a lower canopy and tree density than juveniles classified in the A or L vigor classes. 

• Hypothesis 4: Juveniles classified in the AA vigor class will present at sites with a 

higher TWI and lower HLI than sites juveniles classified in the A or L vigor classes. 

 

Table 2. Qualitative variables measured during rapid vigor assessment of juvenile conifers.  

 

  Qualitative Vigor Classification   

Vigor Qualitative Variable Low (L) Average (A) 

Above 

Average (AA) Reference 

Live Crown Ratio <0.2 <0.4 >= 0.4 USFS (2020) 

Crown Density Qualitatively classified into each of the 3 classes USFS (2020) 

Early Needle Senescence  Severe Mild Not Present Grulke (2020) 

Branchlet Length 

Thinner 

Branchlets 

Intermediate 

Length Greater Length Grulke (2020) 

Needle Chlorosis % >=15 <15 0 Grulke (2020) 
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Figure 6. Conceptual model of juvenile vigor class assessment analysis. 

 

Statistical Analysis 

        Non-parametric based tests were used in lieu of one-way ANOVA approaches 

because many of the results did not meet test assumptions for parametric approaches such 

as normality or equal variance. Wilcoxon rank-sum tests were used to determine significant 

differences among different microsite environmental variables measured in each paired 

microsite plot. Kruskal Wallis tests were used to test significant differences in different 

overstory density between sample units. A post-hoc Dunn’s test was used determine 

significance differences between sample units. The relationship between juvenile conifer 

presence and microsite predictor variables was modeled using a boosted regression tree 

(BRT) approach. The BRT technique is a non-parametric regression method that combines 

classification and regression trees (CART) with a boosting algorithm, leveraging the 

advantages of CART models without losing predictive performance. Advantages of using 
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CART-based approaches for ecological modeling include the ability to use predictor 

variables of different types and distributions and for accommodating missing data.  Models 

were built using R Studio software version 1.2.5 (RStudio Team 2019). The BRT models 

were built using the ‘gbm’ package and its extensions (Ridgeway 2006; Elith et. al. 2008).  

       To ensure each model’s accuracy, the presence (regeneration microsite plots) and 

absence (control microsite plots) data were partitioned with an 80-20 split, such that 80% 

of the data was used to train each model and 20% of the data was used to test each model. 

Model validation was conducted using 3 metrics: percent deviation explained in 

independent (testing) data, percent deviation explained by cross-validation procedure, and 

area under the operating curve (AUC) averaged during cross-validation testing. A 

confusion matrix was also generated to assess each model’s accuracy and to display any 

misclassification errors. Cohen’s kappa statistic was also reported from each confusion 

matrix to compare the observed accuracy of each model with expected or random accuracy. 

This performance statistic was included because the model has a 50/50 chance of correctly 

classifying juvenile presence and additional metrics besides misclassification rate are 

necessary to assess a classification model’s performance. The Kappa statistic essentially 

reports how much better the model is performing over a model that guesses at random 

based on frequency of each class.  

        Each model was fit using the gbm.step function to identify the optimal number of 

boosting trees. The optimal number of boosting trees was calculated using k-fold cross-

validation in the gbm.step function. The data was divided into 10 subsets in the k-fold cross 

validation where 1 subset was held out for validation and the other 9 subsets were used to 
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train the model. The function then fit a model of increasing complexity, i.e., increasing 

number of nodes in trees, calculating the residual deviance at each step along the way. 

After each fold processed, the function calculated the average residual deviance and its 

standard error and then identified the optimal number of trees as that at which the deviance 

was minimized. Additional model parameters were also adjusted, these included tree 

complexity = 3, learning rate = 0.005 and bag fraction = 0.7. 

        In order to eliminate non-informative variables, the models were simplified using the 

gbm.simplify function. This function dropped the least important predictor variable, then 

re-fitted the model and repeated the process. This process utilized a 10-fold cross-

validation procedure that progressively simplified the model at each fold and used the 

average cross-validation error to decide how many variables can be removed from the 

original model without losing predictive performance. Once the optimal number of 

predictor variables to drop was identified, the model was then fit again with the remaining 

predictor variables.  

Results 

       Across the three study areas in Forest Park, 90 plots were established and monitored 

in this research. In the south management unit, 38 plots were established (18 TSHE plots 

and 20 THPL plots), which included 40 total juveniles monitored (6 seedlings and 34 

saplings). In the north management unit, 40 plots were established (20 plots of each 

species), and a total of 44 juveniles were monitored (12 seedlings and 32 saplings). In the 

Burlington reference unit, 12 plots were established (6 of each species) which included 12 

total juveniles (3 seedlings and 9 saplings). Juveniles were tracked and encountered more 
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frequently in the reference and north units compared to the south unit (Table 3). Search 

encounter rate in the north unit for TSHE was 18.6 individuals per hour and 32.2 

individuals per hour for THPL. Juveniles of both species were encountered least frequently 

in the south unit with an encounter rate for TSHE was 5 individuals per hour and 11.2 

THPL individuals per hour. 

Table 3. Juvenile search and encounter frequency metrics including mean species encountered per hour, 

total search time and total distance searched. Values in parentheses indicate the standard error. 

Unit TSHE Per Hour THPL Per Hour Total Time (hr) Total Distance (km) 

South 5 (1.5) 11.2 (3.3) 12.7 16.6 

North 18.6 (4.1) 32.2 (4.8) 14.9 18.2 

Burlington  10.7 (7.6) 34.3 (6.1) 1.7 2.4 

 

      The plots ranged in elevation from 260 to 980 feet and were established in 

representative aspects and slope positions. Both species sites were similar in topography 

ranging from 21-22 degrees in mean slope, 0.53-0.56 in mean heat load index and 2.9-3.1 

in mean topographic wetness index (Table 4). Juveniles of each species were observed 

most frequently on NW, N and NE facing slopes (58% of juveniles) and observed less 

frequently on SE, S and SW facing slopes (22% of juveniles; Figure 7). Since, NW, N and 

NE facing slopes accounted for 51% of the study area , while SE, S and SW facing slopes 

accounted for 30% of the study area, this shows a habitat preference for NW, N, and NW 

facing slopes. 
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Table 4. Summary statistics of topographic variables measured at each juvenile species’ sites. 

 

 

 

 

 

 

Topographic Variable TSHE  THPL  Entire Park 

Elevation Range (Feet) 330 - 951  257 - 980 36 – 1,127 

Mean Slope (Degrees) 21.8 21.2 24.1 

Slope Range (Degrees) 4 – 33.5 3 - 39 0 – 81.4 

Mean HLI 0.53 0.56 0.5 

HLI Range 0.12 – 1.05 0.15 -1 0.01 – 1.06 

Mean TWI 2.89 3.05 3.02 

TWI Range 0.01 – 8.7 0.5 - 9 0 – 18.4 

N E   S    W N            E                 S W 

Figure 7. Distribution of aspect positions recorded for each species in each sample unit. 
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Vegetation Cover Effects on Juvenile Presence 

Vegetation Cover at TSHE Sites 

        Vegetation cover differed at regeneration and control microsite plots only in the fern 

categories. Fern cover was significantly lower in regeneration plots in all management units 

for TSHE (Figure 8). Mean fern cover ranged from 6 - 16% in regeneration microsite plots 

and ranged from 35 - 65% in corresponding control microsite plots (Table 5). Shrub cover 

ranged from 1 – 12% between microsite and control plots in all units but was not 

significantly different. Ivy was only observed in microsite plots located in the south 

management unit but was minimally present in both regeneration and control plot (~1%). 

Herbaceous cover was also negligible at TSHE sites ranging from 0-5% and not 

significantly different.  

Vegetation Cover at THPL Sites 

At THPL sites, vegetation cover differed at regeneration and control microsite plots 

in fern and shrub categories but not in every unit (Figure 9). Mean fern cover ranged from 

9 - 21% at regeneration microsite plots and 26 - 72% at control microsite plots and was 

only significantly different in the north unit (p=0.0003; Table 5). Shrub cover ranged from 

3 – 19% at regeneration microsite plots and 13 – 32% at control microsite plots with shrub 

cover significantly lower in the south and Burlington units (p=0.05; p=0.06; Table 5). Ivy 

was mainly present in the south unit ranging from 4 – 7% at both regeneration and control 

microsite plots but was not significantly different. Herbaceous cover was minimally 

present at sites in each unit with the most herbaceous cover observed in south unit (Table 

5), although not significantly different between regeneration and control microsite plots 
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< 0.01 =** 

< 0.001=*** 

 

< 0.05= * 

< 0.01 =** 

< 0.001=*** 

 

Figure 8. Distributions of vegetation cover percentages by category observed at TSHE juvenile sites. 
Boxplots with solid fill represent the seedling/sapling microsite plot (R) and the outlined boxplots 

represent the control microsite plot (C). 

Figure 9. Distributions of vegetation cover percentages by category observed at THPL juvenile sites. 

Boxplots with solid fill represent the seedling/sapling microsite plot (R) and the outlined boxplots 

represent the control microsite plot (C). 
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Table 5. Mean vegetation percent cover for each vegetation cover group. Percent cover visually estimated 

in 1 m2 quadrat surrounding the seedling/sapling. Values in parentheses indicate the standard error. 

1Indicates logarithmic transformation used in statistical analysis.  
2Indicates a square root transformation used in statistical analysis. 

 

 

Forest Floor Substrate Effects on Juvenile Presence 

Forest Floor Substrate Cover at TSHE Sites 

Coarse wood debris (CWD) was prevalent at TSHE regeneration microsite plots in 

every sample unit (Figure 10). About 84% of regenerating TSHE juveniles were found 

established on CWD. Mean CWD cover ranged from 23 - 53 % at regeneration plots and 

2 - 12% at control plots and was significantly higher in regeneration microsite plots at each 

unit—south (p=0.008), north (p=<0.0001) and Burlington (p=0.05; Table 6). Mean litter 

Sample 

Unit 

Cover 

Type 

TSHE  THPL  

  Regeneration 

Plots 

(n=46) 

Control 

Plots 

(n=48) 

 

P-value 

Regeneration 

Plots 

(n=50) 

Control 

Plots 

(n=50) 

 

P-value 

 

 

South Unit 

Herb 1.4 (0.6) 3.9 (1.3) .0981 5.7 (2.5) 10.2 (3.4) 0.13 

Shrub 1.3 (0.5) 6.7 (2.8) 0.231 3.1 (1.7) 13 (5.5) 0.06 

Ivy 0.8 (0.5) 1.5 (0.7) 0.34 6.5 (2.6) 3.8 (1.4) 0.94 

Fern 6 (2.3) 35.2 (7.8) <0.00011 15.6 (4.3) 26 (6.4) 0.29 

 

 

North Unit 

Herb 2.6 (1.2) 5.2 (3) 0.892 1 (0.4) 2.8 (1.8) 0.651 

Shrub 8.9 (2.6) 11.8 (4.6) 0.892 19.4 (4.6) 14 (4.4) 0.24 

Ivy 0 (0) 0 (0) NA 0.3 (0.3) 0 (0) NA 

Fern 14.4 (4.5) 62.9 (8.2) 0.00032 21.4 (5.8) 72.9 (7.1) <0.0001 

 

Burlington 

Unit 

(Reference) 

Herb 0.3 (0.3) 3.0 (2.4) 0.42 1.0 (0.8) 0.2 (0.2) 0.52 

Shrub 1.7 (1.7) 3.7 (1.8) 0.78 10.8 (8.0) 31.7(6.7) 0.05 

Ivy 0 (0) 0 (0) NA 0 (0) 0 (0) NA 

Fern 15.3 (7.5) 60.8 

(12.6) 

0.01 10 (2.8) 34.5 

(14.0) 

0.26 
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cover was significantly lower at regeneration microsite plots in the north and south units 

(Table 6). Litter cover ranged from 56 - 65% at regeneration microsite plots at all units 

while ranging from 74 - 92% in corresponding control microsite plots. Mean duff depth 

was significantly larger only in the south unit at around ~10 cm in regeneration microsite 

plots (Table 6; p=0.001). Litter depths ranged from 3 – 6 cm at both regeneration and 

control microsite plots in all units and were significantly different.  Moss cover was 

significantly higher in regeneration microsite plots only in the north unit at 16% (Table 6; 

p=0.006). Fine woody debris (FWD) was present at most site locations but not significantly 

different between regeneration and control microsites. Exposed mineral soil, rock duff 

substrates were exceedingly rare in each unit and observed least frequently amongst 

substrate categories.  

Forest Floor Substrate Cover at THPL Sites 

While multiple trends were observed between TSHE juveniles and forest floor 

substrate categories, THPL juveniles were not strongly associated with any substrate 

category (Figure 11). No substrate category was significantly different between 

regeneration and control microsite plots at THPL sites (Table 6). Only 17% of regenerating 

THPL juveniles were found established on CWD, and mean CWD cover was typically low 

at regeneration microsite plots and not significantly different from control microsite plots 

in any unit (Table 6). Litter depths ranged from 5.5 – 7 cm at regeneration microsite plots 

and duff depths were negligible and ranged from 0.7 – 1.5 cm.   
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< 0.05= *, < 0.01 =**,  

< 0.001=*** 

 
Figure 10. Distributions of vegetation cover percentages by category observed at TSHE juvenile sites. 
Boxplots with solid fill represent the seedling/sapling microsite plot (R) and the outlined boxplots 

represent the control microsite plot (C). 

< 0.05= *, < 0.01 =**,  

< 0.001=*** 

 
Figure 11. Distributions of vegetation cover percentages by category observed at THPL juvenile 

sites. Boxplots with solid fill represent the seedling/sapling microsite plot (R) and the outlined 

boxplots represent the control microsite plot (C). 
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 Table 6.  Mean forest floor substrate variables measured at each target species site. Values in parentheses 

indicate the standard error. Litter and duff depth measured in cm.  

1Indicates logarithmic transformation used in statistical analysis.  
2Indicates a square root transformation used in statistical analysis. 

 

 

 Unit Substrate  

Category 

TSHE  

 

THPL  

 

  Regen 

Plots  

(n=45)  

Control 

Plots 

(n=47) 

 

P-value 

Regen 

Plots 

 (n=49) 

Control 

Plots 

(n=49) 

 

P-value 

 

 

 

 

South 

Unit 

Litter (%) 55.9 (5.3) 74.3 (5.8) .009 76.4 (4.3) 72.7 (6.4) 0.69 

Moss (%) 3.1 (0.8) 2.8 (0.6) 0.9 2.9 (1.1) 5 (2) 0.57 

CWD (%) 22.5 (6.1) 1.9 (1.8) 0.008 3.1 (1.4) 4.4 (3.1) 0.56 

FWD (%) 14.5 (2) 10.8 (1.9) 0.122 16.5 (2.8) 14.9 (2.7) 0.69 

Mineral (%) 0.7 (0.5) 1.5 (1) 0.672 2.8 (1.8) 5.3 (2.6) 0.21 

Rock (%) 1.1 (1.1) 0.5 (0.5) na 0 (0) 0 (0) na 

Duff (%) 4.8 (2.3) 3.9 (3.6) 0.242 0.2 (0.2) 0 (0) na 

 Litter Depth  5.5 (0.6) 4.7 (0.6) 0.3 5.7 (0.8) 5.2 (1) 0.34 

 Duff Depth  10 (2.1) 1 (0.3) .001 1.3 (0.4) 0.4 (0.1) 0.421 

 

 

 

 

 

North 

Unit 

Litter (%) 65.1 (6.2) 91.7 (2.6) 0.0003 88 (4) 92.6 (1.8) 0.59 

Moss (%) 16.3 (4.1) 2.4 (0.9) .0061 2.9 (0.9) 1.7 (0.4) 0.42 

CWD (%) 52.8 (8.7) 0.9 (0.5) <0.001 9.6 (4.9) 6.35 (2.5) 0.782 

FWD (%) 12.4 (2.2) 14.8 (3.4) 0.721 21 (5) 12.2 (3) 0.192 

Mineral (%) 0.3 (0.3) 0.3 (0.1) na 3.3 (2.2) 0.2 (0.2) na 

Rock (%) 0.01 (0.01) 0 (0) na 0 (0) 0 (0) na 

Duff (%) 1.7 (0.8) 0 (0) na 0.1 (0.1) 0.05 (0.05)  na 

 Litter Depth  6.9 (1.4) 6.1 (0.7) 0.59 6.9 (0.8) 8.4 (1) 0.262 

 Duff Depth  6.7 (4.9) 1.6 (0.6) 0.191 1.4 (0.4) 1.5 (0.5) 0.8 

 

 

 

Ref. 

Unit 

Litter (%) 61.3 (10) 78 (11.9) 0.38 87.5 (3.2) 88.8 (6.6) 0.87 

Moss (%) 11.8 (4) 9.5 (6.3) 0.52 24.3 (22) 1.8 (1.2) 0.38 

CWD (%) 47.5 (11) 8 (6.5) 0.03 6.3 (3.8) 5 (3.5) 0.9 

FWD (%) 10.3 (4.3) 20 (7) 0.24 15 (4.6) 11.3 (4.7) 0.65 

Mineral (%) 0 (0) 0.5 (0.2) na 0 (0) 0 (0) na 

Rock (%) 0 (0) 0 (0) na 0 (0) 0 (0) na 

Duff (%) 0.8 (0.8) 2 (3) na 0 (0) 0 (0) na 

 Litter Depth  4.8 (1.4) 3.4 (0.8) 0.43 5.5 (0.9) 3.5 (1.1) 0.38 

 Duff Depth  19.1 (8.1) 2.3 (1.4) 0.11 0.7 (0.3) 1.1 (0.4) 0.19 
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Forest Structure and Composition  

Forest Structure at TSHE Sites 

Mean total tree density was relatively similar at TSHE sites in each unit ranging 

from 213 - 270 trees/ha and not significantly different between sample units (Table 7; 

Figure 12). Bigleaf maple (ACMA) was more prevalent in the north (148 trees/ha) and 

south (102 trees/ha) units compared to the reference unit (33 trees/ha; p=0.05; Table 7). 

The lowest density of Douglas-fir (PSME) was observed in the south unit (21 trees/ha). 

Western hemlock density ranged from 48 - 52 trees/ha with the highest density in the 

reference unit and the lowest density in the north unit. Western red cedar density ranged 

from 17 - 84 tree/ha with the lowest density observed in the south unit and the highest 

observed in the reference old-growth stand. More snags were observed in the reference unit 

than in the north or south units (Table 7). No significant difference was found between 

mean canopy cover density at TSHE microsite plot locations (97.2%) and control plot 

locations (97.4%; Table 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Stand density distributions by tree species in each sample unit observed at TSHE sites. 

Significance thresholds < 0.05= *, < 0.01 =**, < 0.001=***. 
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Forest Structure at THPL Sites   

Mean total stand density was highest in the north unit (251 trees/ha) and lowest in 

the south unit (193 trees/ha) with the north and Burlington units significantly higher than 

the south unit (p=0.006; Table 7). Consistent with results from TSHE sites, bigleaf maple 

was more prevalent in the south (104 trees/ha) and north (116 trees/ha) units compared to 

the reference site (78 trees/ha) although not significantly different between units. Western 

red cedar density was lowest in the south unit (2 trees/ha) and highest in the reference unit 

(89 trees/ha).  Douglas fir density was highest in the north unit (83 trees/ha) and lowest in 

the south unit (43 trees/ha). Snags were also more abundant in the reference unit than in 

the north of south units at THPL juvenile sites. While canopy cover density was slightly 

Figure 13. Stand density distributions by tree species in each sample unit observed at THPL sites. 

Significance thresholds < 0.05= *, < 0.01 =**, < 0.001=***. 
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lower at regeneration sites than in the north and south units, the difference was not 

statistically significant (Table 8).   

 
Table 7. Mean density (trees ha-1) of mature overstory trees present at TSHE and THPL juvenile sites. 

Standard error reported in parentheses. 

P-values calculated by Kruskal-Wallis tests. Results with different superscript are significantly different 

from each other below 0.05 threshold determined by post hoc Dunn’s test. 
1Indicates square root transformation for statistical analysis 

 

 

 
Table 8. Mean canopy cover density measured at each species regeneration (R) microsite plots and control 

(C) microsite plots in each sample unit. 

 

 

 

 

 

 

 

 Overstory 

Species 

South 

(n=18) 
North 

(n=20) 
Burlington  

(Reference) 

(n=12) 

P-Value 

 

 

 

TSHE 

Total 212.7 (24.6)1 271.3 (32.3)1 224.3 (48.7)1 0.49 

ACMA 101.6 (16.2)a 147.9 (33.8)a 33.2 (15.5)b 0.05 

PSME 20.8 (8.5)a 46.8 (11)b 54.9 (19.2)b 0.04 

TSHE 47.9 (13.3) 28.11 (4.7) 52.2 (20.2) 0.68 

THPL 16.8 (9.6)a 28.6 (13.6)ab 84 (48.9)bc 0.02 

ALRU 7.7 (4.5) 11 (4.5) 0 (0) 0.33 

Snags 24 (10.8) 43 (14.1) 66 (34) 0.07 

 

 

 

THPL 

Total 193.3 (25.8)1a 310.2 (30.8)1b 280.2 (35.1)1b 0.006 

ACMA 104.4 (18.7) 116.4 (17.8) 78.3 (24.2) 0.55 

PSME 42.8 (18.2) 83.3 (22.9) 64.7 (8.3) 0.06 

TSHE 22 (8.7) 11.9 (3.7) 29.5 (9.5) 0.28 

THPL 1.5 (1.2)a 66.6 (20.7)b 107.7 (29.9)c <0.0001 

ALRU 0.9 (4.1)a 19.4 (5.6)b 0 (0) 0.02 

Snags 20 (8.9)a 25.8 (9.3)a 147.6 (57.1)b 0.007 

Unit TSHE-R TSHE-C P-value THPL-R THPL-C P-value 

South 97.2 (0.4) 97.4 (0.5) 0.7 96.6 (0.6) 98 (0.4) 0.2 

North 97.3 (0.6) 98.5 (0.3) 0.1 98.1 (0.3) 98.8 (0.2) 0.1 

Burlington 98.2 (0.6) 98.4 (0.7) 0.1 98.6 (0.3) 98.1 (0.5) 0.6 
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Shade-Tolerant Conifer Prevalence in Overstory 

 The stand level overstory results from both TSHE and THPL sites were further 

summarized to examine overall abundance of shade-tolerant species present in overstory 

and abundance of potential seed-bearing trees. Overall shade-tolerant conifer density was 

highest in the reference unit (142 trees/ha) and lower in both the south (63 trees/ha) and 

north (78 trees/ha) units (p=0.005). The density of TSHE seed trees (trees greater than 30 

cm in diameter) was also highest in the reference unit (20 trees/ha) compared to the south 

and north units (Table 9). THPL seed tree density was lowest in the south unit but 

progressively increased in both north and reference units. THPL seed tree density was 

significantly different in each sample unit (p=0.001).  

Table 9. Shade tolerant conifer overstory and seed tree density estimated from measurements taken at 

sampling locations where juveniles were found. 

P-values calculated by Kruskal-Wallis tests. Results with different superscript are significantly different 

from each other below 0.05 threshold determined by post hoc Dunn’s test. 

 

Juvenile Vigor 

 Across all management units, juveniles of average and above average vigor 

outnumbered low vigor juveniles of both species (Figure 14). Western hemlock juvenile 

vigor class distribution was more varied by unit, while western red cedar vigor class 

distribution was more spatially even (Figure 14). Over all units, observed TSHE juveniles 

 South  North Burlington 

(Reference) 

P-value 

Shade Tolerant Conifer Density  63.3 (12.9)a 78.4 (15.5)a  141.5 (25.8)b 0.005 

TSHE Seed Trees (>30 cm DBH)  15.4 (3.5) 15.5 (2.8) 20.4 (6.8) 0.6 

THPL Seed Trees (>30 cm DBH)  2.3 (1.2)a 16.5 (3.3)b 24.9 (4.4)c <0.0001 
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were assigned to the following classes: 17 – above average (AA), 13 – average (A) and 13 

– low average (L). Observed THPL juveniles were assessed as follows: 17 - AA, 23 - A, 

and 7 – L. Fewer low vigor juveniles were observed compared to the A and AA classes for 

both species. Mean HLI and TWI observed for different vigor classes of THPL juveniles 

was also not significantly different. Heat load index (HLI), and topographic wetness index 

(TWI) did not differ significantly across vigor classes of both species (Table 10). Mean 

stand density was significantly different among vigor classes only for THPL juveniles 

(P=0.01; Table 10).  

Figure 14. Relative percentages of observed vigor class by species and sample unit. 

 

Table 10. Mean stand level variables assessed for each juvenile species’ vigor classes. Vigor class codes: 

AA = above average vigor, A = average vigor and L = low vigor.  

 TSHE  THPL  

Stand Variable L 

(n=13) 

A 

(n=15) 

AA 

(n=21) 

P-value L 

(n=7) 

A 

(n=23) 

AA 

(n=17) 

P-value 

HLI 0.56 0.54 0.53 0.83 0.53 0.58 0.66 0.45 

TWI 2.6 2.7 3.02 0.84 2.9 3.3 2.7 0.47 

Trees ha-1 246.6 256.9 235.23 0.53 288.6 290.4 190.9 0.01 

Canopy Cover (%) 97.8 97.6 95.8 0.3 98.3 97.9 96.5 0.18 
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Predictive Models  

A boosted regression tree classification model was built to predict presence of each 

target species using microsite environmental variables. These predictor variables included 

forest floor substrate and vegetation cover categories measured at each species regeneration 

and control microsite plots. Both models performed moderately well on independent 

testing data and after cross-validation. The simplified TSHE model was fitted with 350 

trees and the simplified THPL model was fitted with 250 trees. The optimal number of 

trees to use in each model was based on the cross-validation results.  Correlation between 

environmental variables for both species was assessed using Pearson’s correlation 

coefficients (r; Figure 15; Figure 16). CWD and moss cover were the most positively 

correlated of the TSHE environmental predictor variables (r=0.54), while CWD and litter 

were the most negatively correlated at TSHE sites (r=-0.5). Other notable correlations 

include CWD and fern at TSHE sites (r=-0.4). At THPL sites, the largest correlation was 

observed between litter and mineral cover (r=-0.66), while herb and litter were also 

negatively correlated (r=-0.47). No environmental predictor variables were initially 

dropped in first BRT models. The gbm.simplify function was used to determine which 

predictor variables to drop based on their relative contributions to the models. Five 

predictor variables were dropped in the TSHE model: rock, duff, ivy, mineral and herb. 

Seven predictor variables were also dropped in the THPL model: CWD, litter, moss, rock, 

duff, ivy, and mineral.  



 45 
 

The most important predictors of juvenile TSHE presence were CWD and Fern 

cover (Table 11; Figure 17). CWD contributed most to the model at 51% and had a positive 

effect on the probability of TSHE juvenile presence.  Fern cover contributed 23% to the 

model and had negative effect on the probability of TSHE presence. Shrub, litter, FWD 

and moss cover all had negative effects, but each contributed less than 10%. Fern cover 

was the most important predictor variable in the THPL model (Table 11; Figure 18), 

contributing 43% to the model and had a negative effect on the probability of THPL 

presence, followed by shrub and herb cover. FWD had a small positive effect on the 

presence of THPL juveniles, contributing ~5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Correlation coefficient matrix containing Pearson correlation coefficients for all microsite 

environmental predictor variables used in the TSHE boosted regression tree model. 
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The simplified BRT models identified the most important pair-wise interactions for 

both species, and pairs included the most influential predictor for each model (Figure 19). 

For the TSHE model, the most important pair-wise interaction was between CWD and fern 

cover which produced an interaction size value of 4.5. CWD and fern cover were negatively 

correlated, such that higher CWD cover increased the probability of TSHE presence while 

higher fern cover decreased the probability of TSHE presence. The next most important 

pair-wise interaction identified in the TSHE model was between fern and shrub cover, 

which produced an interaction size value of 1.8.  

For the THPL model, the most important pair-wise interaction identified was 

between fern and shrub cover, which produced an interaction size value of 14. Higher cover 

of both variables decreased the probability of THPL juvenile presence. Fern and herb cover 

were the next highest interaction with an interaction size of 5.1 (Table 11).  

Figure 16. Correlation coefficient matrix containing Pearson correlation coefficients for all microsite 

environmental predictor variables used in the THPL boosted regression tree model. 

 

 

Figure 10. Partial dependency plots of probability of TSHE presence based on microsite predictor variables. 

Positive values on Y-axis are associated with higher probability of juvenile presence.Figure 11. Correlation 

coefficient matrix containing Pearson correlation coefficients for all microsite environmental predictor 

variables used in the THPL boosted regression tree model. 

 

 

Figure 12. Partial dependency plots of probability of TSHE presence based on microsite predictor 

variables. Positive values on Y-axis are associated with higher probability of juvenile presence. 

 

Figure 13. Partial dependency plots of probability of TSHE presence based on microsite predictor variables. 

Positive values on Y-axis are associated with higher probability of juvenile presence.Figure 14. Partial 

dependency plots of probability of TSHE presence based on microsite predictor variables. Positive values on 

Y-axis are associated with higher probability of juvenile presence.Figure 15. Correlation coefficient matrix 

containing Pearson correlation coefficients for all microsite environmental predictor variables used in the 

THPL boosted regression tree model. 

 

 

Figure 16. Partial dependency plots of probability of TSHE presence based on microsite predictor variables. 

Positive values on Y-axis are associated with higher probability of juvenile presence.Figure 17. Correlation 
coefficient matrix containing Pearson correlation coefficients for all microsite environmental predictor 

variables used in the THPL boosted regression tree model. 
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Table 11. Microsite environmental predictor variable influence and ranking for each species model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Species Predictor Contribution (%) Effect 

 
 

 

 

 
Microsite  

Presence/Absence 

 
 

Western 

hemlock 

(TSHE) 

CWD 50.6 + 

Fern 22.9 - 

Shrub 10.3 - 

Litter 6.7 - 

FWD 5.7 - 

Moss 3.8 - 

   
 Western red 

cedar 

(THPL) 

Fern 

Shrub 

42.9 

34.6 

- 

- 

 Herb 17.2 - 

 FWD 5.3 + 

Figure 17. Partial dependency plots of probability of TSHE presence based on microsite predictor variables. 

Positive values on Y-axis are associated with higher probability of juvenile presence. 
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The TSHE BRT model performed better overall than the THPL model based on 

confusion matrix results (Table 12). The TSHE model deviance explained ranged from 

33% – 17% with the highest reported from the cross-validation procedure. The TSHE 

model performed well on independent testing data with a 0.73 AUC and 33% of deviance 

explained. The overall accuracy of the TSHE BRT model was 83%, including a 

misclassification rate of 17% based on the confusion matrix created from the model’s 

predicted classification of independent testing data. The TSHE model produced a 0.67 

Kappa statistic. In contrast, the THPL model explained a lower proportion of deviance, 

ranging from 11 - 18% (Table 12). The highest deviance explained was reported from the 

fit model with independent testing data. The AUC values reported from the cross-validation 

procedure and independent testing data were both around 0.72. The overall accuracy of the 

Figure 18. Partial dependency plots of probability of TSHE presence based on microsite predictor variables. 

Positive values on Y-axis are associated with higher probability of juvenile presence. 

 

 

Figure 18. Partial dependency plots of probability of TSHE presence based on microsite predictor variables. 

Positive values on Y-axis are associated with higher probability of juvenile presence. 

 

 

Figure 19. Partial dependency plots of probability of TSHE presence based on microsite predictor variables. 

Positive values on Y-axis are associated with higher probability of juvenile presence. 

 

 

Figure 20. Partial dependency plots of probability of TSHE presence based on microsite predictor variables. 

Positive values on Y-axis are associated with higher probability of juvenile presence. 
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THPL model was 72% with a 28% misclassification rate. The THPL model produced a 

Kappa statistic of 0.44. Model accuracy was based on the confusion matrix created from 

the model’s predicted classification of independent testing data.  

Table 12. Summary of evaluation metrics for both juvenile conifer species BRT model. AUC and % 

deviance explained for 10-fold cross validation and independent testing data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Cross-validation Independent  Confusion Matrix 

Model AUC % Deviance 

Explained 

AUC % Deviance 

Explained 

Misclassification 

Rate (%) 

Overall 

Accuracy (%) 

Kappa 

Statistic 

TSHE  0.89 36.1 0.73 32.5 16.7 83.3 0.67 

THPL 0.71 11.2 0.72 18.6 27.8 72.2 0.44 

A B

 

C D 

Figure 19. Three-dimensional partial dependence plots displaying the strongest interactions between 

predictor variables in each species model. These include fern and CWD cover (A) and fern and shrub cover 

(B) in the TSHE model. Also includes fern and shrub cover (C) and shrub and herb cover (D) in the THPL 

model. 
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Discussion 

Microsite Level Factors – Vegetation Cover  

A study hypothesis was that regeneration microsite would differ from control 

microsites in total vegetation cover. The results of this study suggest that the successful 

establishment of both juvenile conifer species is sensitive to competitive dynamics 

occurring within understory plant communities. This was most evident in the analysis of 

the regeneration microsite and control microsite plot level variables. Juveniles of both 

species were consistently observed in microsite locations lacking heavy shrub and fern 

cover. Furthermore, fern and shrub cover were much denser away from juvenile conifers, 

i.e., in the control microsite plots (Figures 8; Figure 9). Shrub cover did not differ 

significantly between controls plots of TSHE species but was typically more abundant at 

control plots of THPL juveniles. Shrub cover was identified as an important variable in 

predicting presence of each species but not to the same magnitude as fern cover (Table 11). 

Understory vegetation can limit establishment of subordinate conifers due to competition 

for soil moisture, light, soil nutrients, and growing space (Balandier et al. 2006; Messier 

1993; Beach and Halpern 2001). Other mechanisms in which dense understory vegetation 

inhibits tree regeneration include allelopathy, physical impediments of seedling 

germination and establishment and other indirect effects e.g., increased herbivory, 

increased presence of seed/seedling predators (Royo & Carson 2006).  Most understory 

species observed in regeneration sites were native species, but invasive species such as 

English ivy are a large concern for park stakeholders. 
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English ivy was only observed in plots established in the south management unit. 

However, the presence of ivy was very negligible in both the regeneration plots and control 

plots. The ivy invasion is most prevalent in the south unit and has been the focus of 

restoration and management activities in the park for many decades (City of Portland 

1995). The impacts of ivy on seedling establishment and growth were not specifically 

examined in this study. However, the results of this study suggest that understory 

competition is a significant barrier to seedling establishment. English ivy grows in thick 

dense mats and has observed to exclude native understory plants (Copp 2014). Increased 

ivy presence could limit the available microsites required for conifer seedling 

establishment. Conversely, other studies in other PNW urban forests concluded that 

establishment, germination, and survival of juvenile TSHE and THPL was limited by 

scarce coarse wood debris presence, not competition from English ivy (Ettinger et al. 

2017). 

Microsite Level Factors – Substrate Cover  

Western hemlock juveniles were strongly, positively associated with the presence 

of CWD. These results were not surprising as the relationship between western hemlock 

regeneration occurring on decayed logs has been well documented (Christy & Mack 1984; 

Harmon & Franklin 1989; Schrader 1998). CWD serves as a safe site where TSHE 

seedlings can establish and grow with relatively little competition from ferns, shrubs, 

mosses, and herbs. CWD cover was negatively correlated with both fern and litter cover 

further displaying the facilitating role that downed logs provide on the forest floor surface. 

These results are consistent with other studies that identified a lack of CWD or nurse logs 
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as an important limiting factor to western hemlock establishment and survival in areas 

where seed source was present (Harmon and Franklin 1989; Ettinger et al. 2017). The 

strong pattern of TSHE establishment on CWD in this study further supports the assertion 

that understory vegetation competition is a critical factor inhibiting seedling establishment 

and recruitment in Forest Park. Juveniles were established more frequently on partially 

decomposed logs than sound logs. This pattern has been observed in other studies as 

moderately decomposed logs still maintain ability to shed litter and provide safe site from 

vegetation yet provide a substrate for seeds to lodge (Christy & Mack 1984).  THPL 

juveniles were also found established on CWD (17% of samples) but not to the same degree 

as TSHE juveniles (84%).  

Litter cover was significantly lower at regeneration sites for in the north and south 

units for TSHE juveniles. Litter depth and cover can affect microsite conditions and inhibit 

seedling emergence and establishment by reducing water availability and providing a 

barrier between seed and mineral soil (Caccia & Ballaré 1998; Kostel-Hughes et al. 2005). 

Litter depth was not significantly different in regeneration versus control microsite plots 

for either species management units. Overall, the accumulation of litter on the forest floor 

did not appear to be a significant barrier to seedling establishment. Duff cover was 

generally negligible at all plots and occasionally present at TSHE sites with CWD 

presence. Duff depth was significantly greater at TSHE sites in all units again due to the 

presence of CWD. Over time, CWD decomposes and produces duff under the litter layer 

which explains the larger depth duffs observed at TSHE juvenile sites. Litter and duff 
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layers were not measurable at sites where the juvenile was growing raised off the forest 

floor on a stump or nurse log. 

Microsite Model Performance 

 The BRT models were both relatively accurate in predicting presence based on 

microsite variables (Table 12). The TSHE model performed better than the THPL model 

based on results from confusion matrices. This was possibly due to the strong relationship 

between CWD substrate cover and TSHE juvenile presence. THPL juveniles appear to not 

be limited by substrate composition to the same degree at TSHE juveniles, therefore 

substrate cover variables were not influential in the THPL model. The deviation explained 

metric, which describes how well the model fit the data, was low for each model. This is 

not surprising as these models were built with only microsite level data and there are many 

other factors that influence presence of juveniles. However, the models were moderately 

successful in classifying testing data with misclassification rates ranging from 17 - 28%. 

Cohen’s kappa statistic was used to better assess model prediction performance since the 

model had a 50/50 chance of correctly classifying presence of a juvenile. The TSHE model 

produced at Kappa statistic of 0.67 which is rated as substantial and the THPL model 

produced a Kappa statistic of 0.44 which is rated as moderate (Landis & Koch 1977).  

The models confirmed trends observed in summarization of microsite variables 

between regeneration and control plots. The trends included the decreased presence of 

vegetation cover contributing to higher probability of presence of both species and the 

higher CWD cover contributing to higher probability of presence of TSHE juveniles. The 

model identified important interactions between microsite predictor variables which helps 
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shed light on microsite dynamics impacting juvenile establishment (Figure 18). For 

example, the strongest interaction value was observed between fern and CWD cover—

displaying how CWD provides a safe site for juvenile establishment away from competing 

ferns. While the model performed moderately well, it could be improved with additional 

topographic and stand level variables of absence locations for each species.  

Stand Level Factors 

Stand composition and structure are important determinants of western hemlock 

and western red cedar regeneration but these factors have been heavily altered in Forest 

Park due to past disturbances (Broshot 2007; Schrader 1998). Sampled juveniles were 

established in stands ranging from mean densities of 200-300 trees/ha. These densities were 

typically lower than overall stand density measured in other studies within Forest Park, 

indicating that juvenile establishment and recruitment may be more successful in areas of 

lower stand density (Broshot 2007). Other studies have observed increased juvenile 

survival, growth, and recruitment in stands with decreasing overstory density (Dodson et 

al 2014; Maas-Hebner et al. 2005).  Structural metrics such as tree density appear to impact 

the regeneration potential of shade-tolerant species but another perhaps more critical stand 

factor is the presence of shade-tolerant seed trees in the overstory.  

Seed production and dispersal were not directly measured in this study but potential 

seed sources within the plot locations were tracked. Seed production and dispersal compose 

the first stages of conifer regeneration and the availability of seed producing trees greatly 

influences the regeneration potential of a given species in the stand (Dey et al 2020). The 

density of TSHE seed trees (DBH > 30 cm) at both species’ sites was consistent among all 
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units (15 – 20 trees/ha). TSHE juveniles were found more frequently in the north and 

referent units than in the south unit but the density of potential seed trees was consistent 

among all units. This emphasizes the importance of seed source—even when TSHE 

juveniles were scarce, they were located near older parent trees. Western hemlock seedling 

densities are strongly related to the abundance of mature overstory parent trees and stand 

age (Schrader 1998).  

 Stand structure and composition differed in the south and north units versus the 

reference Burlington unit. The prevalence of bigleaf maple in the two management units 

was a notable difference from the stand species composition in the reference unit. Bigleaf 

maple is commonly associated with Douglas fir-western hemlock forests in the PNW, but 

typically increases in abundance, particularly in riparian zones, during intermediate to late 

stages of succession (Niemiec 1995).  Expansion of deciduous species such as bigleaf 

maple and red alder is also accelerated due to disturbances (Franklin & Dynress 1988).  

Due to Forest Park’s history of wildfires and clear-cut logging practices, the prevalence of 

bigleaf maple is not surprising. Pure bigleaf maple-dominated stands account for 33% of 

the area of the park, while 50% of the park is composed of a mix of bigleaf maple with 

conifer species. The increasing dominance of bigleaf maple in Forest Park could have 

negative impacts on recruitment of shade-tolerant conifers. Bigleaf maple has the capacity 

to grow rapidly when canopy gaps are created in overstory and outcompete the slower 

establishing shade-tolerant conifers for resources. Other studies have identified similar 

trends regarding bigleaf maple abundance in the park (Broshot 2007; Dresner et al. 2017). 
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The density of standing dead (snag) trees was also much lower in the main park 

sections versus the reference site. The lack of snags present in the north and south units of 

the park is not surprising due to the younger age of the stand and history of clear-cut 

logging. Snags are important forest structural components for wildlife habitat, but 

eventually generate downed wood which is critical for the optimal microsite formation for 

western hemlock seedlings.  

A study hypothesis was that canopy cover at juvenile locations would be lower than 

at corresponding controls. This was generally not the case at site locations. Mean canopy 

cover densities at were typically lower at regeneration plots compared to control plots for 

both species but not significantly lower (Table 8). This in part could be explained by study 

design as control plots were randomly placed ~2 meters away from the regeneration plot, 

which is not enough distance to observe differing canopy cover density. Increased light 

availability can lead to greater survival and growth of establishing juvenile shade-tolerant 

conifers (Wright et al. 1998; Weber et al. 2017). More data and experimental studies are 

needed to address the impacts of light availability and shade-tolerant conifer regeneration 

in Forest Park.  

Juvenile Vigor 

The different environmental factors associated with juvenile vigor were not clearly 

identified in this study. Live crown ratio typically fluctuated the most among vigor metrics 

with juveniles with higher vigor maintaining more live foliage and juveniles with low vigor 

associated with less foliage. It was hypothesized that higher vigor would be associated with 

larger canopy openings (decreased canopy cover), lower HLI and higher TWI. Of these 
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hypotheses, decreased canopy cover generally followed the predicted trend. While not 

statistically significant, juveniles of both species in the AA vigor class had a mean canopy 

cover ~96% while juveniles in the L vigor class had a mean canopy cover ~98% (Table 10; 

P=0.3; P=0.2). More sample sizes would help to increase the statistical power of this trend, 

but nonetheless decreased canopy cover appear to be beneficial to juvenile vigor. Canopy 

openings or gaps are created when individual trees or groups of trees die. Openings in the 

canopy allow for increased light availability to reach the forest floor, potentially reaching 

established shade-tolerant juveniles. Higher growth rates, increased establishment, and 

survival rates for TSHE and THPL have been observed in canopy gaps compared to closed-

canopy areas (Gray 1996).  

Topographic indices HLI and TWI were not significant explanatory variables for 

juvenile vigor. It was hypothesized that low vigor would be associated at sites with higher 

HLI and lower TWI due to the influence of soil moisture availability and transpiration 

related stress. However, there were not substantial differences amongst these variables 

between vigor classes. Impacts from solar radiation and temperature are possibly mitigated 

in a closed canopy environment where overstory canopy shades the developing juveniles.  

Management Implications 

 Implementing management practices to promote natural regeneration of western 

hemlock and western red cedar will be difficult in certain park sections due to the low 

abundance of seed source and relative lack of CWD present in Forest Park (Addessi 2017). 

Forest Park is composed of a patchwork of stands that vary in species composition, 

developmental/successional stage, and structure (McCallister et al. 2012; Broshot 2007). 
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Some areas will be more feasible to manage towards old-growth conditions than others, 

such as mixed-conifer stands versus deciduous-dominated stands. Potential management 

actions to promote natural regeneration of shade-tolerant conifer species include protecting 

and retaining large seed trees of western hemlock and western red cedar as well as thinning 

early successional species such as bigleaf maple. Reducing overstory density in targeted 

areas could help release established shade-tolerant juveniles and accelerate the 

development of a multilayered, structurally complex canopy (Dodson et al 2014; Maas-

Chan et al. 2006; Hebner et al. 2005, Bailey & Tappeiner 1998).  However, Forest Park is 

subject to regulatory limitations due to its status as a municipal city park, such that 

restoration practices involving individual tree removal may not be feasible, thus other 

restoration options may need to be considered.  

There have been recent efforts to replant conifers seedlings in the Balch Creek 

watershed located within the south management unit. The results of this study can help 

guide future replanting efforts, specifically the microsite and stand level factors identified 

in this study (Table 5; Table 6) should be considered when searching for locations to plant 

juvenile conifers. While naturally regenerating western hemlock prefer CWD substrates, 

this may not be a requirement for transplants. Transplanted seedlings have completed the 

beginning stages of natural regeneration, therefore focusing on factors that affect survival 

and growth of juvenile transplants is most relevant. Transplants need to be planted in 

locations free of competing ferns and shrubs. Vegetation control techniques could be 

utilized in replanting areas. This includes targeted mechanical or chemical removal of 

competing understory vegetation in replanting zones. Canopy gaps and low density stand 

areas are also preferred locations for planting. Large canopy gaps are favorable for juvenile 
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growth and recruitment and therefore need to be targeted for replanting efforts. 

Furthermore, if canopy gap creation via tree removal is not a feasible management action, 

then locating existing canopy gaps (See Appendix) to replant would achieve a similar 

outcome. Topography needs to be considered along with microsite and stand level factors 

as 58% of juveniles were observed on NW, N and NE facing slopes while these slope 

aspects account for 51% of the study area, indicating a habitat preference for these 

locations. Meanwhile, 22% of juveniles were observed on SE, SE and SW facing slope 

aspects which account for 30% of the study area.  

Future transplants should be systematically planted and monitored to further to 

better understand multi-scale factors associated with seedling survival and growth. For 

example, comparing the success of planting transplant seedlings and sowing seeds in areas 

of dense ivy cover versus ivy removal areas will help to better managers gain a better 

understanding on the impacts of ivy to conifer regeneration in the park. Furthermore, 

planting seedlings in areas manually thinned to reduce overstory density could be 

monitored and compared to un-thinned controls to further determine whether selective 

thinning is an effective management option for increasing conifer regeneration. 

While conifer regeneration is an important component of current management 

goals, there are competing management goals within Forest Park. Managers 

simultaneously seek to reduce risk of catastrophic wildfire while promoting the 

development of structurally complex forest conditions. The presence of deciduous trees 

may act as fire break due to their moisture retaining ability and help reduce fire risk 

(McAllister et al. 2011). Meanwhile, promoting shade-tolerant recruitment leading to a 

multilayered canopy could create hazardous ladder fuel conditions. Furthermore, while 
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Forest Park follows its own city council approved natural resource management plan 

(NRMP) that established goals and plans for the park, it is still subject to Title 33 

Environmental Zoning regulations for proposed activities not specifically described in the 

NRMP. These regulations can make certain management activities such as overstory tree 

removal difficult to implement (Johnson, personal communication, 2021). These 

competing goals and the strict regulatory environment in the park present a challenge for 

implementing certain restoration practices such as creating canopy gaps and thinning 

deciduous overstory density.   

Study Limitations  

This study did not directly measure seed production and dispersal. These are early 

and critical stages of the regeneration process that need to be taken in account when 

assessing current regeneration conditions in the park.  However, the focus of this study was 

related to multi-scale growing conditions for juveniles therefore, missing the seed 

production and dispersal component did not impact overall research goals. Small sample 

sizes limited predictive model development for juvenile vigor, e.g., 8 low vigor samples 

for THPL.  Due to their scarcity, seedlings < 5 years old were largely missing in this study. 

The lack of young seedlings found could also be a result of observer bias as smaller 

seedlings are more difficult to detect on the forest floor. The targeted sampling approach 

allowed for efficient detection of target species but may be biased toward taller more visible 

juveniles. However, past studies with more conventional sampling designs have also 

identified a dearth of young shade-tolerant seedlings in the south unit (Broshot 2007), 

indicating the lack of young seedlings observed in this study is likely due to their scarcity 
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rather than observer bias. This study combined seedling and sapling growth forms together 

in analysis. The dynamics of establishment, survival and growth can change as seedlings 

grow into saplings. For example, as taller saplings are less influenced by competitive 

pressures of understory vegetation and more sensitive to overstory density (Dodson et al. 

2014). This study presents a more generalized view of shade-tolerant conifer regeneration 

habitat suitability in analyzing both growth forms together.  

Belowground dynamics considering relationships between soil properties and 

ectomycorrhizal networks and juvenile establishment were not examined in this study. 

Mycorrhizal networks can facilitate western hemlock establishment and recruitment 

through carbon and other resource transfer (Christy et al. 1982; Orrego 2018). Other soil 

properties such as nutrients, pH, and organic matter were not examined in this study. Future 

studies that include essential forest functional components such as soil and belowground 

dynamics are needed to better understand conifer regeneration dynamics in Forest Park. 

Future Considerations 

 This study could improve with larger sample sizes of each species.  The research 

questions relating to juvenile vigor were not fully answered in part because of low sample 

size collected in each vigor class.  Repeated visits to juvenile locations to monitor survival, 

growth and whether they are successfully recruited into the stand would increase 

understanding of recruitment dynamics.  More information is needed regarding seed 

production and dispersal in Forest Park. Installing seed traps in different park units in areas 

with ample shade-tolerant seed trees could help to determine whether current shade-

tolerant regeneration is limited by seed production and dispersal, microsite conditions, or 
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other factors. Experimental approaches to restoration activities coupled with monitoring 

assessments need be implemented to provide further guidance to the effectiveness of 

proposed management options.  

Conclusion 

The results of this study conclude that multi-scale environmental factors impact 

shade-tolerant regeneration patterns in Forest Park and need to be considered when 

implementing restoration practices. At the microsite level, competitive understory 

vegetation dynamics appear to inhibit the establishment of juvenile conifers, as most were 

observed in areas of significantly lower fern cover. Most TSHE juveniles were found to be 

established on nurse logs, indicating the importance of CWD as a critical substrate 

requirement for TSHE establishment. Meanwhile, THPL juveniles appear to be limited 

solely by understory vegetation cover, not by substrate composition. Additionally, the 

presence of adequate seed sources was critical for natural regeneration to occur within the 

park. Juveniles of both species were located near potential parent trees. While most 

juveniles were typically located on N, NW and NE facing slopes, topography did not 

appear to impact overall juvenile vigor—larger sample sizes are needed to further explore 

patterns between topography and vigor. Decreased canopy cover and overstory density 

benefit juvenile vigor. Juveniles were observed more frequently in the north and reference 

unit than in the south unit. While the results of this study indicate that local environmental 

factors impact patterns of shade-tolerant conifer regeneration in the park, current impacts 

from urbanization and past land use practices may also have negative implications for the 

future regeneration potential of current stands in Forest Park.  
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Past land use activities such as logging, and effects of urbanization have affected 

natural regeneration processes in the park. Past clear cuts have removed many legacy 

features, such as CWD and seed sources, required for natural regeneration of late 

succession species.  Due to these land use factors, managing for structurally complex, 

multi-layered forests conditions that are consistent with old-growths forests will be a 

challenge for park managers. Protecting and developing seed trees of shade-tolerant 

species, as well as increasing the recruitment of shade-tolerant juveniles, will be important 

for promoting their natural regeneration. One promising technique to promote shade-

tolerant species is targeted thinning of deciduous species, such as bigleaf maples in areas 

around shade-tolerant seed trees and juveniles yet may not be feasible given the regulatory 

limitations in the park. If creating canopy gaps via tree removal is not feasible, locating 

existing canopy gaps to plant seedlings may be the most practical option. Ongoing 

replanting efforts need to consider microsite and stand level factors identified in this study 

when locating future locations for transplants.   

Promoting regeneration of western hemlock and western red cedar will help 

accelerate structural complexity and steer stand development more consistent with old-

growth conditions within Forest Park. However, natural regeneration processes have been 

altered due to novel disturbance regimes, resulting in stands that differ in forest structure 

and composition from historic analogues.  These current stand conditions have implications 

for overall forest resilience and the ability of the park to provide important ecosystem 

services to the community. In addition to novel disturbance regimes introduced by 

urbanization and land use change, the future stand conditions of Forest Park will be driven 

by changes in local climate. As global temperatures continue to rise, Portland is estimated 
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to have climate conditions similar to the current climate of Sacramento, California, by 

2080, which would result in summers being 88% drier than current conditions (Fitzpatrick 

& Dunn 2019). These projected changes to climate patterns, along with current evidence 

of western red cedar dieback in the region, present further challenges to urban forest 

managers in the PNW and reasons for concern regarding future forest resilience and 

composition in the region.   The future composition of Forest Park will depend in part on 

current management intervention as well as innovative and adaptive restoration practices.  
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Appendix A 

Canopy Gap Analysis 

Canopy gap locations were identified in the south management unit to guide future 

replanting efforts. This analysis was conducted in ArcGIS Pro 2.5.2. Gaps were located 

using 2019 LiDAR data courtesy of DOGAMI. The highest hit and bare earth DEM raster 

datasets were subtracted to create a canopy height model. Next, the height  values 1-20 ft 

and everything greater than 20 ft in the height model were reclassified into two different 

classes. This raster output was converted into vector format using the Raster to Polygon 

tool. After the conversion, polygons in the canopy class (> 20 ft) were deleted and the 

remaining polygons are associated with canopy gaps. An attribute field for area was created 

and square feet was calculated for the canopy gaps. Gaps less than 100 ft2 were selected 

and deleted and gaps created from powerlines, roads and trails were also deleted. The 

output from these methods created a polygon feature class containing canopy gaps greater 

than 100 ft2 in the south management unit of Forest Park (Appendix, Figure 1). 

To determine which of the identified canopy gaps were most suitable to replant 

conifers a weighted overlay analysis was completed using the gaps layer and topographic 

raster layers. Slope, heat load index (HLI), and topographic wetness index (TWI) were 

each clipped with the canopy gaps layer. Next, each of the topographic layers were 

reclassified. These layers were then used in a weighted overlay tool. On a 1-10 scale, lower 

values of slope (<20°) were scaled higher, lower values of HLI (<0.56) were scaled higher, 

and higher values of TWI  (> 8.6) were scaled higher. TWI and HLI were weighted at 40% 

each and slope was weighted at 20%. The final output displays most optimal canopy gaps 
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to replant transplant conifers based on topography including lower HLI, higher TWI and 

lower slope (Appendix, Figure 2). 

Figure 1. Canopy gap locations greater than 100 ft2 in the South management unit of Forest Park. 
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Figure 2. Canopy gap suitability analysis for replanting western hemlock and western red cedar juveniles. 

HLI, TWI and slope layers were clipped to canopy gaps layer and then a weighted overlay analysis was 

utilized to identify optimal canopy gaps to plant seedlings.   
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