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Abstract 

Atmospheric rivers (ARs)—long corridors of intense atmospheric water vapor 

transport—significantly influence the hydrologic cycle and regional hydrometeorological 

extremes across the contiguous United States (CONUS). Ongoing and future climate 

change may alter AR characteristics and impacts, making confident climate model 

projections of future change, especially at regional scales, of critical importance. In 

order to better constrain uncertainty in such projections of future change, we perform a 

comprehensive climate model evaluation of AR climatology over the CONUS. Using an 

established AR detection algorithm, we evaluate the representation of ARs in historical 

simulations (1984-2013) from a suite of models participating in the sixth phase of the 

Coupled Model Intercomparison Project (CMIP6). Models are evaluated against the 

Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) 

reanalysis. Model performance for individual models and the multi-model mean is 

presented for AR frequency, intensity, area, and linked extreme precipitation in order to 

highlight systematic biases. Results are summarized over seven US National Climate 

Assessment regions. Positive AR frequency biases are present in the Western CONUS for 

all seasons except summer, with positive biases for the Southeast in summer/spring as 

well. The Midwest and Eastern CONUS show negative biases in spring and fall, 

respectively. AR area is systematically overestimated across models, with all regions and 

seasons showing significant positive biases. AR IVT biases are low for all seasons and 

regions except the Southwest during winter. ARs in models make up a larger percentage 
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(positive bias) of extreme precipitation just east of the Sierras in winter/spring than in 

observations, with negative biases predominating in other seasons/regions. Conversely, 

ARs are more likely to lead to extreme precipitation in simulations, with the exception of 

parts of the Midwest and Northern Great Plains in summer. Some positive AR frequency 

biases may be explained by the large positive AR area biases. Overall, there is 

reasonable qualitative pattern agreement between MERRA-2 and models in the 

examined variables, particularly AR frequency and AR IVT. 
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Chapter 1 Introduction 

Atmospheric rivers (ARs) are filamentary bands of elevated water vapor transport, 

instrumental for the poleward transport of moisture in the extratropics (Zhu and Newell 

1998; Newman et al. 2012), and often associated with the leading edge of a cold front in 

midlatitude cyclones (Ralph et al. 2017). Research on ARs has received growing 

attention in the scientific community and their importance to the hydrologic cycle and 

regional hydrometeorological extremes is well documented in the United States West 

Coast, where they are associated with both hazards and benefits. In that region, they 

are linked to heavy rainfall (Ralph and Dettinger 2012), floods and levee breaks (Neiman 

et al. 2011; Florsheim and Dettinger 2015; Konrad and Dettinger 2017), storm surges 

caused by associated winds (Khouakhi and Villarini 2016), and severe mass wasting 

events (Hatchett et al. 2017; Oakley et al. 2017; Young et al. 2017). Conversely, ARs can 

replenish water supply (Guan et al. 2010; Dettinger et al. 2011), break droughts 

(Dettinger 2013), and exhibit a variety of ecological impacts (Herbst and Cooper 2010; 

Florsheim and Dettinger 2015; Albano et al. 2017).1 In the US, ARs and their effects are 

not confined to the Eastern Pacific (Slinskey et al. 2020), with several impacts identified 

elsewhere in the US, including precipitation in the Mississippi Valley (Rabinowitz et al. 

2018), precipitation in the southeast US (Miller et al. 2018), and a flooding event in 

Tennessee (Lackmann et al. 2013). 

1 This list was based on Table 5.1 of Dettinger et al. (2019). 
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These substantial impacts have prompted multiple studies aiming to assess projected 

changes in ARs under continued global warming and results suggest potentially 

substantial changes (Espinoza et al. 2018 and the studies summarized therein; Zhao 

2020). Both thermodynamic and dynamic mechanisms are shown to contribute to these 

projected changes. Increased temperatures due to global warming lead to higher 

moisture content in the atmosphere through the Clausius-Clapeyron relationship; this in 

turn can increase IVT—a thermodynamic response identified as a primary cause for 

higher future AR frequency in some regions (Lavers et al. 2013). Dynamic changes in 

wind speed and direction as well as shifts in the extratropical jet stream induced by 

global warming have also been found to produce changes in future ARs (Gao et al. 2015; 

Gao et al. 2016).  

Model evaluations are an important precursor to any complete future climate 

projection study, as they quantify the biases of historical simulations against 

observations. This provides a measure of the models’ intrinsic ability to faithfully 

reproduce the phenomenon under study. The present study offers a climate model 

evaluation specific to ARs in the Contiguous United States (CONUS), informing future 

projection studies in the same region and constraining their uncertainty. The 

interpretation of any associated future impacts of projected ARs must take into account 

the uncertainty of those projections, making the climate model evaluation an integral 

step in the overall process. The following review of AR climate model evaluations 

performed to-date places the current study in its broader context. 
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A handful of studies have investigated model bias in reproducing AR characteristics—

most as part of future projection analysis studies. Both overestimation (positive model 

bias) and underestimation (negative model bias) have been found in simulated AR 

frequency. Examining landfalling ARs in western North America, Gao et al. (2015) found 

that models capture seasonal and latitudinal variation in AR frequency well, with an 

underestimation of springtime AR days in the southwest coast. The sign of biases varied 

seasonally. Hagos et al. (2015) examined the dynamical core2 and grid resolution of two 

GCMs and generally saw a decrease in AR frequency with higher horizontal spatial 

resolution. Focusing on the Northeast Pacific coast, Payne and Magnusdottir (2015) 

evaluated CMIP5 models against two reanalysis products, finding generally positive 

average frequency bias. Hagos et al. (2016), examining multiple ensemble members of 

one model, found positive biases in the number of landfalling AR days, which were more 

pronounced for AR extreme precipitation days. Biases were related in part to an 

equatorward jet displacement, although the biases in both wind speed and extreme 

precipitation were found to have little impact on projected future changes. Espinoza et 

al. (2018) evaluated CMIP5 projections of ARs globally against ERA-Interim reanalysis. 

They found AR frequency in midlatitude regions to be negatively biased by roughly ten 

percent in the multimodel mean. Likewise, Guan and Waliser (2017) performed a global 

model evaluation of models from the Global Energy and Water Cycle Experiment 

2 The dynamical core is the component of a climate model which solves fluid motion equations that 
determine atmospheric dynamics and relates them to the model grid (Jun et al. 2018). 
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(GEWEX) Atmospheric System Study (GASS)–Year of Tropical Convection (YoTC) 

Multimodel Experiment. They found that roughly half the models had a notable positive 

frequency bias while only a few had notable negative biases. Radić et al. (2015), using a 

unique identification scheme leveraging self-organizing maps to identify IVT patterns 

associated with ARs, found model AR frequency in British Columbia to display larger 

errors than other variables (analysis based on five CIMP5 models). Differences in 

methodology notwithstanding, these at times diverging results can be at least partially 

explained by the scale and location of differing study areas. They underscore the value 

in region and scale-specific AR model evaluations. Indeed, Zhao et al. (2020) examined 

global AR frequency using a new high resolution GCM, finding that while overall 

agreement with reanalysis was good, significant regional biases of opposite signs 

existed. 

In terms of AR spatial distribution, multiple studies have found generally good 

agreement between observations and models (e.g. Gao et al. 2015; Payne and 

Magnusdottir 2015; Guan and Waliser 2017; Espinoza et al. 2018). Other variables tend 

to show more variability in biases. Radić et al. (2015) found AR precipitation and 

extreme ARs to be well represented in the models they examined. Broadly speaking, 

Guan and Waliser (2017) note that coarser models tend to exhibit larger error, but not 

monotonically. For IVT magnitude, Espinoza et al. (2018) saw a negative bias between 

15-25% for global midlatitude AR IVT in the multimodel mean. Guan and Waliser (2017)

found IVT to have notably smaller biases than AR frequency, with zonal IVT showing a 
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slight positive bias. Lavers et al. (2015), while not specifically examining ARs, found IVT 

to be generally well represented in the multimodel mean of CMIP5 historical runs 

compared to reanalysis. Norris et al. (2021) evaluated Coupled Model Intercomparison 

Project Phase 6 (CMIP6) models, finding that most of the examined models 

underestimated IVT magnitude associated with extreme precipitation in California.  

While these studies have proved invaluable in assessing ARs in climate models, a gap in 

understanding and quantifying how climate models reproduce ARs remains (Waliser et 

al. 2019), especially on regional scales outside the Northeastern Pacific or Western 

Europe. In some cases, model biases can be commensurate with projected changes (Gao 

et at. 2015), highlighting the potential value in bias quantification. The increasing 

attention paid to other regions and the future climate model projections of ARs 

necessitates a better understanding of climate model performance specific to ARs for 

those areas. In particular, Slinskey et al. (2020) established a climatology of ARs in the 

CONUS, setting the stage for a future climate projection AR study in the same region. In 

that light, this study evaluates AR climate model performance in the CONUS. 

While Guan and Waliser (2017) used their version one algorithm (Guan and Waliser 

2015) to perform their global model evaluation, the present study uses their slightly 

modified version two algorithm (tARget version 2; Guan and Waliser 2018). Our analysis 

distinguishes itself in two ways that render it relevant and novel: (1) we use the latest 

generation of CMIP6 climate models, which are not the same as those used in Guan and 

Waliser (2017). (2) Whereas their study is global, this paper focuses on the CONUS and 
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examines these variables at much smaller regional levels, namely the seven National 

Climate Assessment (NCA) regions. Region mean aggregates help illustrate regional 

variation for all examined variables. This focus addresses the gap in AR climate model 

evaluations for parts of the US outside the West Coast, allowing potentially meaningful 

regional model biases obscured on the global scale to become apparent. Moreover, this 

scale of analysis translates more easily to the scale of local AR impacts. It also informs a 

concurrent future projection study for the CONUS, which together aim to contribute to 

the NCA. Figure 1 shows a map of the study area and the relevant NCA regions 
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Chapter 2 Data 

2.1 Reference reanalysis 

Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2; 

Gelaro et al. 2017) serves as the reference dataset for objective AR identification. 

Originally on a 0.5° latitude × 0.625° longitude grid mesh, MERRA-2 data were rescaled 

to a 1.5o x 1.5o grid using bilinear interpolation. To facilitate comparison with climate 

models, MERRA-2 data were interpolated to daily resolution from hourly timesteps. 

For the precipitation reference, a gauge-based rather than reanalysis-based dataset was 

chosen, namely the Climate Prediction Center (CPC) Global Unified Gauge-Based 

Analysis of Daily Precipitation (Xie et al. 2007; Chen et al. 2008a; Chen et al. 2008b)3. 

Since primarily 3-day precipitation totals are used in the analysis, we consider the 

effects of any temporal offsets between MERRA-2 and CPC negligible. 

2.2 Climate models 

Simulated historical global climate data are from the Coupled Model Intercomparison 

Project Phase 6 (CMIP6; Eyring et al. 2016). All CMIP6 global climate models covering 

the study period (1984-2013) that provided specific humidity and horizontal wind 

components throughout the troposphere at a daily temporal resolution and surface 

pressure at a monthly temporal resolution were included in the analysis. While daily 

3 CPC Global Unified Precipitation data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, 
from their web site at https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. 
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weather variability can change surface pressure at sub-monthly scales making daily 

surface pressure ideal for computing daily IVT, we use monthly values as a compromise 

to increase the sample size of CMIP6 models, since most models did not provide daily 

surface pressure as of the writing of this paper. At the time of writing, eight models met 

the above criteria. Additionally, daily precipitation is required to compute linked AR 

precipitation metrics. However, currently one of the eight models used for AR 

characteristics does not have daily precipitation available (AWI-ESM-1-1-LR). This model 

is excluded from the precipitation analysis but included in all other analysis. All model 

data were regridded to a common 1.5o x 1.5o resolution grid via bilinear interpolation.  
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Chapter 3 Methods 

3.1 IVT Calculation 

IVT calculations were performed before spatial interpolation at the daily timescale. IVT 

was calculated from wind and specific humidity fields vertically integrated across all 

above-ground pressure levels of the following: 300, 500, 700, 850 and 1000 hPa. Since 

only pressure levels at or above the surface are used, for a given grid cell and day, one 

or more levels may be unavailable. Given that a significant distance often separates the 

lowest available pressure level from the surface, IVT values are linearly extrapolated to 

surface pressure level from the lowest available pressure level. This better accounts for 

rich moisture and enhanced horizontal winds often present at lower levels within ARs. 

Comparisons between AR detection results with and without IVT extrapolation showed 

sensitivity in high elevation regions, where candidate AR objects often failed to meet the 

100 kg m-1 s-1 IVT fixed lower-limit threshold without extrapolation. For some models, it 

was necessary to interpolate horizontal wind fields prior to IVT calculation such that 

they were collocated with specific humidity, since there was grid staggering. 

3.2 Detection Algorithm 

We use the IVT-based tARget version 2 objective AR detection algorithm for AR 

identification (Guan and Waliser 2018). A summary of key detection criteria follows (for 

a complete description see Guan and Waliser 2015 and 2018). IVT magnitude must meet 

a minimum of 100 kg m-1 s-1 and be above the monthly 85th percentile IVT threshold for 

that grid cell over the study period, calculated as a 5-month average centered on the 
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present month. The length of the object must be greater than 2000 km, have a 

length/width ratio greater than two, and contain a poleward meridional IVT component 

greater than 50 kg m-1 s-1. Objects where more than half the grid cells have an IVT 

direction that deviates by more than 45o from the mean IVT direction are excluded, as 

well as objects where the mean IVT deviates by more than 45o from the overall object 

orientation. Additionally, sequentially higher IVT thresholds are applied in 2.5 percentile 

increments up to the 95th percentile to identify ARs of higher IVT intensity potentially 

nested within regions of lower IVT that fail to meet the geometry criteria but remain 

above the 85th percentile.  

Dataset-dependent IVT thresholds are used in this study. This allows for AR definition in 

the context of each model’s respective climatology, minimizing the influence of overall 

IVT biases on AR frequency. In contrast, AR IVT magnitude could show greater sensitivity 

to overall IVT biases compared to reanalysis-based IVT thresholds—as noted by Guan 

and Waliser (2017), where the latter was used. The choice here reflects an emphasis on 

evaluating AR frequency patterns and biases irrespective of general IVT biases, which 

could inform the interpretation of AR frequency changes in future projections, where a 

warmer atmosphere will likely increase overall IVT. 

The application of the algorithm has impacts on the properties of detected ARs. Since 

daily timesteps are used in this study, no distinction is made between AR days resulting 

from multi-day overlap of the same synoptic object versus overlap from a different AR 

object altogether. Thus, AR frequency does not directly measure the number of unique 
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AR occurrences, but rather the number of days under which an AR object is spatially 

coincident with a given grid cell. The model-dependent thresholding means that 

comparisons between AR objects across models must be interpreted appropriately. 

Since different IVT thresholds define ARs in each model, the overall IVT biases of each 

model will have a notable influence on the AR IVT intensity values. 

3.3 AR Characteristics and Linked Precipitation 

All AR characteristics and precipitation metrics are calculated as 30-year climatologies 

(1984-2013) at each grid cell over the CONUS. The metrics are the same as those in 

Slinskey et al. (2020). An extreme precipitation day is defined as any day where the sum 

of the precipitation for that day and the two preceding days exceeds the 95th percentile 

of all equivalent non-zero 3-day precipitation totals over the study period. The use of 

such 3-day totals follows Slinskey et al. (2020) and has the advantage of highlighting 

prolonged extreme precipitation events—particularly important from an impacts 

perspective (Ralph and Dettinger 2012)—as well as smoothing any temporal offset 

between MERRA-2 and CPC reanalyses. A linked extreme precipitation AR day is any AR 

day that is also an extreme precipitation day. Two AR linked precipitation metrics are 

used in this study: AR extreme precipitation fraction and AR fraction. They are 

calculated by normalizing the number of extreme precipitation AR days by the total 

number of extreme precipitation days or by the total number of AR days, respectively. 

Examples of both metrics are given in the relevant section below.  
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Chapter 4 Results 

4.1 Atmospheric River Frequency 

A day where any part of an AR object is coincident with a grid cell is considered an AR 

day at that grid cell. For a given season, AR frequency is calculated at each grid cell as 

the total number of AR days at that grid cell over the study period divided by the 

number of years in the study period. This yields values in easily interpretable units of 

(AR) days/season. For example, a DJF AR frequency value of 10 days/season for a 

particular grid cell means that, on average, the grid cell experienced 10 AR days per 

winter. Note that multi-day AR objects will be counted once for each day of overlap at a 

given grid cell, so AR days are not a direct measure of independent AR objects. 

Statistical significance for biases is assessed using a two-sided t-test at a 95% confidence 

level, where the interannual variability provides the variance, as in Payne and 

Magnusdottir (2015). All statistical significance is calculated this way unless otherwise 

stated. 

Figure 2 shows AR day frequency maps for the multimodel mean. Comparisons between 

MERRA-2 and CMIP6 (columns (a) and (b), respectively) reveal broad pattern agreement 

across seasons. Negative and positive statistically significant biases exist (stippling in 

column (c)), underscoring the influence of both season and location on model 

performance. Simulations for winter display notable biases over the Southwest and the 

greater West Coast, where values are exaggerated throughout. The Southwest and 
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Northern Great Plains multimodel mean NCA region aggregate percent bias values for 

winter are well above 25 percent (Figure 3), the highest for any region and season. 

Negative biases are smaller in magnitude where they occur. These tend to concentrate 

over the eastern CONUS, with the exception of summer, where they appear in the 

Northwest and Southwest. Although the Northwest and northern Southwest biases are 

statistically significant, the region experiences so few ARs in summer that the 

implications are minimal, especially from an impacts perspective. In winter, the eastern 

CONUS centered on the Southeast shows negative biases, although these are not 

statistically significant. The frequency minimum seen in the Northern Great Plains and 

Midwest is markedly dampened in the multimodel mean, suggesting projected ARs 

either penetrate beyond the western mountain ranges more often, persist longer when 

they do, or both. 

In spring, the models fail to capture the area of lower AR frequency in the Southwest, 

while in the Midwest lower frequencies are exaggerated. This simultaneously leads to 

positive biases over the Southwest and negative biases in the Midwest. Bias distribution 

for fall is largely the same as winter, although the western CONUS positive biases 

subside and the negative biases shift from the Southeast to the Northeast. 

The NCA region aggregate percent biases for each model (Figure 3) reveal a range of 

model spread across seasons and regions. The CanESM5 model consistently displays 

large negative bias, even for regions and seasons when other models are almost all 
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biased in the opposite direction. The Northern Great Plains region in winter has the 

largest model spread, with the Southwest and Northern Great Plains overall displaying 

large spreads for winter and fall. Regions/seasons with the highest model agreement 

tend to exhibit the smallest error. It is notable that the Southwest in winter—the season 

when it experiences the most ARs—is also the season with the highest percent bias and 

model spread, indicating the AR day biases are high both as a percent and in absolute 

terms. It is noteworthy that the multimodel mean nearly always either outperforms or 

closely tracks the individual model with the lowest normalized regional bias. 

4.2 Atmospheric River Area 

AR area is calculated for a grid cell as the median surface area (km2) of all ARs that had 

any overlap with that grid cell. The full area of an AR object is used, even if it extends 

beyond the CONUS. For example, a DJF AR area value for a particular grid cell of 5.5 x 

106 km2 means that the median area of all the winter ARs that passed over that grid cell 

during the climatological period is 5.5 x 106 km2. Note again that multi-day AR objects 

will be counted once for each day of overlap. Thus, for the purposes of this study, the 

same synoptic AR object is considered a new AR each day. 

In this case, since medians are compared, the Mann-Whitney U test is used to assess 

statistical significance at the 95% confidence level. The rank-based test evaluates 

whether the distribution of AR area across all days at each grid cell differs significantly 

between MERRA-2 and the CMIP6 multimodel mean. 
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Figure 4 shows multimodel mean AR area maps, exhibiting positive biases across all 

regions and seasons, with summer having the lowest biases. Virtually all biases are 

statistically significant and nearly all NCA regions/seasons display percent bias values 

above 20% in the multimodel mean (Figure 5). Winter has the highest biases both as a 

percent and in absolute terms. Some broad pattern characteristics are captured, such as 

the maximum in winter covering the Southwest, Northwest, and increasing into the 

Northern Great Plains. However, pattern agreement is lower than for AR frequency. 

Note that while there is still considerable model spread in region aggregate percent 

biases (Figure 5), almost all models show positive biases across seasons and regions. 

Every instance of negative bias except one comes from the CanESM5 model. This 

uniform agreement points to systematic overrepresentation of large ARs in the surveyed 

CMIP6 models. We can confidently state that the models simulate AR area that is on 

average larger than in MERRA-2 almost uniformly across seasons in the CONUS, 

especially in winter. Note that winter is the season when ARs already tend to be the 

largest in MERRA-2. It should also be noted that this does not necessarily directly 

translate to median AR object size itself displaying commensurate biases, as one AR can 

be counted multiple times across days. Implications of this are elaborated further in the 

discussion.  
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4.3 Atmospheric River Integrated Water Vapor Transport 

Figure 6 shows multimodel mean AR IVT maps, revealing strong seasonality and pattern 

agreement between models and MERRA-2. Compared to AR frequency and area, overall 

biases are markedly lower in magnitude and opposite in sign (-). The Southwest stands 

out as an exception, with a winter region aggregate percent bias near 20%—roughly half 

the percent bias in AR frequency for the same region. Similar to AR frequency, the 

Northwest exhibits negative biases in the summer, which appear notable when 

normalized (roughly -20%). However, only about half of the regional grid cells show 

statistical significance and the low intensity of ARs for the region/season exaggerates 

the moderate -40 kg m-1 s-1 IVT magnitude bias when viewed as a percent. Although 

individual grid cells might show percent biases extending to -20/+40% for some seasons, 

high values are generally sporadic and overall NCA region aggregates show good 

agreement between projections and MERRA-2. Biases in IVT direction are only slightly 

visually detectable and not statistically significant, although they are most notable over 

the Colorado Plateau in spring, and California in summer. 

Figure 7 reveals that with the exception of winter, models agree overall in showing 

predominantly negative IVT magnitude biases, although the range of these biases is still 

considerable. Note that the CanESM5 model is not an outlier for this variable. The 

multimodel mean NCA percent biases are lowest in IVT magnitude out of all examined 

variables, near or below +/- ten percent in most cases. 
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4.4 Linked Atmospheric River Extreme Precipitation 

The qualitative distribution of AR extreme precipitation fraction patterns is well 

captured in the multimodel mean (Figure 8). AR extreme precipitation fraction at a grid 

cell, reported as a percent, represents the number of extreme precipitation AR days 

normalized by the total number of extreme precipitation days for a given season. For 

example, an extreme precipitation fraction value of 70% for a particular grid cell means 

that 70% of extreme precipitation days are linked to AR days in that location. Overall, 

there is an overestimation (underestimation) of AR extreme precipitation fraction west 

(east) of the Rockies. The maxima along the West coast for winter, spring, and fall 

appear, as do the minima in the Great Plains for all seasons. Statistical significance for 

biases is sporadic, with two noteworthy exceptions: the Great Basin region in winter and 

east of the Mississippi in fall (particularly the Southeast). The former is part of a greater 

pattern of high values (> 80%) found along the West Coast extending beyond the Sierra 

and Cascades. The minimum over the Northern Great Plains, however, shows close 

spatial agreement in the models. This suggests ARs in models are perhaps retaining 

more moisture as they move across the western mountain ranges than in models, 

widening their ability to produce extreme precipitation over a larger area. We see the 

higher IVT values in this region/season for projections (Figure 6) that we would expect if 

this were the case. The lower multimodel mean extreme precipitation linkages 

coastward of the Sierra/Cascades than in MERRA-2 (Figure 8) are largely due to the 

influence of one anomalous model (CanESM5), suggesting that the AR extreme 
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precipitation often linked to orographic uplift in the coastal ranges is still captured and 

even overestimated in most models (not shown).  

AR fraction, shown in Figure 10, represents the number of extreme precipitation AR 

days normalized by the total number of AR days at a given grid cell. For example, an AR 

fraction value of 40% for a particular grid cell means that 40% of all AR days are also 

extreme precipitation days.  

The statistically significant negative biases for AR extreme precipitation fraction in the 

Southeast pairs with statistically significant positive biases in AR fraction (Figure 10), 

indicating that while simulated AR events are not less likely to produce extreme 

precipitation, other extreme precipitation mechanisms play a larger role than in 

observations. This aligns with the negative AR frequency biases (Figure 2) for the same 

season/region. The reasons behind this shift remain unclear and merit further 

investigation.  

The spatial distribution of the regional biases in AR fraction (Figure 10) trends more 

positive than those for AR extreme precipitation fraction (Figure 8), meaning ARs are 

more likely to produce extreme precipitation events in simulations than in MERRA-2. 

Figures 9 and 11 illustrate the difference as well, where, with the exception of winter, 

negative biases predominate in the former while positive biases predominate in the 

latter. Locations where negative AR extreme precipitation fraction biases accompany 

positive AR fraction biases (e.g. interior Southeast in fall) indicate that more ARs 
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(relatively) produce extreme precipitation while constituting a smaller portion of overall 

extreme precipitation. 

Much like for AR frequency, in AR extreme precipitation fraction the CanESM5 model 

deviates drastically from all other models in showing pronounced negative biases for all 

regions/seasons. Interestingly, this does not hold true for AR fraction, where the same 

model shows generally positive biases and is in better alignment with other models. This 

suggests the ARs in CanESM5 are not less likely to produce extreme precipitation than 

other models, but other mechanisms dominate overall extreme precipitation in contrast 

to MERRA-2 and other models, possibly due to a scarcity of ARs in the first place.  
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Chapter 5 Discussion 

The primary goal of this study is to identify and quantify biases in AR detection and 

characterization in CMIP6 climate models. Although an exhaustive diagnosis of the 

drivers underlying those biases lies beyond the scope of the present evaluation, several 

germane points merit mention. The notable positive AR frequency biases in the Western 

CONUS during all seasons except summer do not, on the whole, coincide with 

commensurate or even same-signed IVT magnitude biases, ruling out a simple IVT bias 

based explanation for the overestimation of AR frequency. Note that the model-

dependent percentile IVT thresholding in the AR detection algorithm already guards 

against this, but if such a scenario were at play, we would still expect the intensity of 

ARs to be higher, which we do not uniformly see. This points to potential dynamic 

processes or thermodynamic influence beyond that reflected in IVT values. Winter in 

the Southwest NCA region is an exception, where AR IVT and AR frequency biases 

broadly align. That region notwithstanding, we see large positive frequency biases in 

regions/seasons where there are minimal or opposing IVT magnitude biases. Both of 

these suggest discrepancies in IVT do not largely account for AR frequency biases. 

A similar conclusion could be reasonably drawn for AR area and AR IVT (Figures 4 and 6). 

AR IVT correlates even less with the outsized AR area values in projections than with AR 

frequency, meaning that while models overrepresent larger ARs, they are not typically 

more intense. Thus, different mechanisms seem to underly AR IVT biases versus AR 

area/frequency biases. AR area biases show much better alignment with AR frequency 
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biases than AR IVT biases do. Many of the regions/seasons with high AR frequency 

biases also display large area biases (e.g. Northern Great Plains in winter), suggesting 

that the large positive area biases could, in part, account for the positive frequency 

biases: consistently larger ARs overlap more grid cells on a given day, leading to more 

AR days even if the number of ARs remains constant. Larger ARs will also take longer to 

pass over a given grid cell, increasing the likelihood of multi-day overlap. The role of this 

correspondence, however, should not be overemphasized, as several regions/seasons 

with significant positive AR area bias do not show commensurate bias in AR frequency—

in some cases showing negative bias instead. The same putative dynamic origin of 

oversized ARs could also influence AR frequency in a parallel but independent fashion, 

or a separate dynamic cause altogether could be at play. 

One other possibility is that ARs are slower moving in models. This could account for 

higher AR frequency as well as AR area in the models: a slower AR would be more likely 

to overlap a grid cell for consecutive days, increasing the number of AR days; this would 

preferentially skew the increase in AR days towards larger ARs, since a slow-moving 

larger AR will gain more multi-day overlap than an equally slow smaller AR. Differences 

in the trajectory of AR propagation—distinct from IVT direction—should be considered 

as well. Regions with negative AR frequency biases and positive AR area biases in the 

same season (e.g. NW summer and NE winter) indicate that AR area is not driving the 

frequency bias there. Discrepancies in AR trajectory could account for a reduction in AR 
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frequency even if AR area is higher. Further research is needed to determine if and to 

what extend the speed and trajectory of AR propagation plays a role in these biases. 

In relation to the wet season in the western CONUS in particular, precipitation processes 

could influence AR frequency, area, and IVT biases. As suggested above, if simulated ARs 

retain more moisture when encountering orography, this would bias IVT high and 

simultaneously allow the AR object to persist for longer, which could increase the 

number of AR days. The higher IVT values also lend themselves to larger ARs. One 

possible explanation for this could be loss of orographic lift due to model constraints in 

resolving complex terrain. This does not necessarily contradict that AR extreme 

precipitation fraction linkages are still high in this region, as the AR fraction results show 

that a larger proportion of ARs produce extreme precipitation events. The possibility of 

inverting cause and effect should also be considered: higher IVT values in ARs could lead 

to higher AR fraction. However, even with higher baseline IVT, it remains then to explain 

why AR extreme precipitation fraction is so high in the rain shadow of high mountain 

ranges. 
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Chapter 6 Summary and Conclusion 

This paper presented an evaluation of AR representation in CMIP6 models for the 

CONUS, with a focus on NCA subregions. We identified a range of biases in AR 

characteristics dependent on region, season, and variable examined. The following is a 

summary of the most salient takeaways: 

1. Overall AR frequency patterns are reasonably well represented in the evaluated

CMIP6 models, lending confidence to their ability to reproduce broad AR related

spatial patterns. Caution should be used when interpreting future changes in AR

frequency for the regions of notable biases (see below) due to uncertainty in

their causes and possible non-linear scaling under future warming.

2. Notable positive AR frequency biases are present in the Western CONUS for all

seasons except summer, with winter biases in the Southwest and Great Plains

North particularly high.

3. The Southeast exhibits significant positive frequency biases in spring and

summer.

4. The Northeast and Midwest show moderate negative frequency biases in winter

and spring, respectively.

5. AR IVT biases tend to be negative and are lowest in magnitude of all examined

characteristics, with most regions and seasons below ten percent. The

Southwest is an exception, showing positive biases in all seasons except summer.
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6. Positive AR Area biases are high across all seasons and regions. In particular, area

biases for DJF are exceedingly high, excluding the Southeast and Northeast. Low

confidence should be placed in the ability of these CMIP6 models to accurately

capture AR area as defined in this study.

7. CMIP6 models reasonably simulate AR extreme precipitation fraction and AR

fraction, capturing the principal pattern of both distributions. Significant positive

AR extreme precipitation biases are present downwind of the Sierra and

Cascades ranges, possibly indicating model constraints in resolving orographic

precipitation processes.

8. The CanESM5 model is a major outlier for AR frequency, AR extreme

precipitation fraction, and—to a lesser extent—AR area.

9. Taken together, the biases across variables suggests a possible dynamic

component to the high AR frequency and AR area biases, although this does not

exclude potential concomitant thermodynamic causes. Further research is

needed to shed light on these inferred drivers.

It should be noted that reanalysis data is not itself without error. However, its use as an 

observational dataset is well-established in climate model evaluation studies, as it 

provides high-quality spatially and temporally continuous historical data (Gelaro et al. 

2017). The use of direct observation data instead has precedent in AR studies (e.g. Ralph 

et al. 2013), but this can only be applied to locations and times with such data, and as a 

consequence only proves suitable for limited objects of study. Quantifications of 
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reanalysis data error with reference to AR detection have been performed and can 

inform model evaluations (e.g. Guan and Waliser 2018). Importantly, Guan and Waliser 

2017 found that differences between reanalysis products, on the whole, were 

substantially smaller than differences between a given reanalysis and projections. 

Nevertheless, future expansions of this work would benefit from including other 

reanalysis products and a measure of observational uncertainty. 

In the same vein, sensitivities to the choice of AR detection algorithm are well 

documented (Shields et al. 2018; Rutz et al. 2019; O’Brien et al. 2020). While the 

applicability of the current study is certainly not confined to work using the Guan and 

Waliser (2015) algorithm, future research could include a suite of AR detection 

algorithms alongside multiple reanalysis products to increase the robustness of the 

results and broaden their relevance.
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Table 1. Climate model and reference data used in this study. All climate models are from the Coupled Model Intercomparison Project, Phase 6 
(CMIP6). MERRA-2 and CPC are abbreviated for Modern-Era Retrospective Analysis for Research and Applications, Version 2, and Climate Prediction 
Center, respectively. Horizontal resolution for CMIP6 models is approximate. 

CMIP6 Model Institution (Country) Horizontal Resolution 
(latitude x longitude)

AWI-ESM-1-1-LR Alfred Wegener Institute, Helmholtz Centre for Polar and 
Marine Research (Germany)

1.875° × 1.875°

BCC-CSM2-MR Beijing Climate Center (China) 1.125° × 1.125°
CanESM5 Canadian Centre for Climate Modelling and Analysis, 

Environment and Climate Change Canada (Canada)
2.81° × 2.81°

MIROC6 Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute, The University of 

Tokyo, National Institute for Environmental Studies, and RIKEN 
Center for Computational Science (Japan)

1.41° × 1.41°

MPI-ESM-1-2-HAM Max Planck Institute for Meteorology (Germany) 1.875° × 1.875°
MPI-ESM1-2-HR Max Planck Institute for Meteorology (Germany) 0.94° × 0.94°
MPI-ESM1-2-LR Max Planck Institute for Meteorology (Germany) 1.875° × 1.875°
MRI-ESM2-0 Meteorological Research Institute (Japan) 1.875° × 1.875°
Reference Product
MERRA-2 National Aeronautics and Space Administration, Global 

Modeling and Assimilation Office (United States)
0.5° × 0.625°

CPC Daily Precipitation National Oceanic and Atmospheric Administration Climate 
Prediction Center (United States) 

0.5° × 0.5° 
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Figure 1. Map of the study region (the CONUS) and the seven NCA sub-regions examined in the research. 
Figure from Slinskey et al. (2020)
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Figure 2. Seasonal AR day frequency maps for the CONUS for (a) MERRA-2, (b) CMIP6, and bias maps for (c) grid points and (d) the NCA regional mean. 
All values are in units of days/season and each row represents a different meteorological season (winter through fall, from top to bottom). Stippling in 
column (c) indicates where CMIP6 biases are statistically significant. 



29 

Figure 3. Mean AR frequency percent biases (y-axis) for each NCA region (x-axis) by model for (a) winter, 
(b) spring, (c) summer, and (d) fall. The multimodel mean is also shown (black cross). Region abbreviations
are in Figure 1.
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Figure 4. Seasonal median AR area maps for the CONUS for (a) MERRA-2, (b) CMIP6, and bias maps for (c) grid points and (d) the NCA regional mean. 
All values are in units of km2 and each row represents a different meteorological season (winter through fall, from top to bottom). Stippling in column 
(c) indicates where CMIP6 biases are statistically significant.
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Figure 5. Mean AR area percent biases (y-axis) for each NCA region (x-axis) by model for (a) winter, (b) 
spring, (c) summer, and (d) fall. The multimodel mean is also shown (black cross). Region abbreviations are 
in Figure 1.
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Figure 6. Seasonal AR IVT magnitude (shading) and direction (arrows) maps for the CONUS for (a) MERRA-2, (b) CMIP6, and IVT magnitude bias maps 
for (c) grid points and (d) the NCA regional mean. In column (b), black arrows show CMIP6 IVT direction while gray arrows underneath show MERRA-2 
IVT direction for comparison. All shading values are in units of kg m-1 s-1 and each row represents a different meteorological season (winter through fall, 
from top to bottom). Stippling in column (c) indicates where CMIP6 IVT magnitude biases are statistically significant.

32
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Figure 7. Mean IVT magnitude percent biases (y-axis) for each NCA region (x-axis) by model for (a) winter, 
(b) spring, (c) summer, and (d) fall. The multimodel mean is also shown (black cross). Region abbreviations
are in Figure 1.
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Figure 8. Seasonal AR extreme precipitation fraction maps for the CONUS for (a) MERRA-2, (b) CMIP6, and bias maps for (c) grid points and (d) the NCA 
regional mean. All values are in units of percent and each row represents a different meteorological season (winter through fall, from top to bottom). 
Stippling in column (c) indicates where CMIP6 biases are statistically significant.
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Figure 9. Mean AR extreme precipitation fraction percent biases (y-axis) for each NCA region (x-axis) by 
model for (a) winter, (b) spring, (c) summer, and (d) fall. The multimodel mean is also shown (black cross). 
Region abbreviations are in Figure 1.
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Figure 10. Seasonal AR fraction maps for the CONUS for (a) MERRA-2, (b) CMIP6, and bias maps for (c) grid points and (d) the NCA regional mean. All 
values are in units of percent and each row represents a different meteorological season (winter through fall, from top to bottom). Stippling in column 
(c) indicates where CMIP6 biases are statistically significant.
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Figure 11. Mean AR fraction percent biases (y-axis) for each NCA region (x-axis) by model for (a) winter, (b) 
spring, (c) summer, and (d) fall. The multimodel mean is also shown (black cross). Region abbreviations are 
in Figure 1.
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