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Abstract
Kinematic demands from lateral soil deformations can be a major cause of damage to
maritime and highway transportation structures such as wharves, ports, and bridges. Data
from five centrifuge tests on pile-supported wharves were used to evaluate the accuracy
of Newmark Sliding Block Analysis in estimating the kinematic demands on piles. The
piles in the centrifuge tests were subjected to varying degrees of liquefaction-induced
lateral ground deformations. Pile-pinning effects were included in the analysis by
incorporating the lateral pile resistance in the limit-equilibrium slope stability analysis.
The results of the analysis have shown that the median Newmark displacements better
estimated the centrifuge permanent end-of-shaking displacements but underestimated the
measured peak transient displacements. On the other hand, the median + 1o Newmark
displacements better estimated the peak transient displacements. The measured peak
transient displacements were on average 2.3 times larger than the measured permanent
displacements in these centrifuge tests. The median + 1o Newmark displacements were

on average 1.4 times larger than the median displacements.
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1.0 Introduction

Past earthquakes have shown that kinematic demands from lateral soil deformations can
be a major cause of damage to maritime and highway transportation structures such as
wharves, ports, and bridges (e.g. Hamada et al. 1986, Finn 2005, Turner et al. 2016, and
Cubrinovski et al. 2017). Lateral ground deformations can be caused due to liquefaction
and cyclic softening and degradation of foundation soils due to earthquake loads. Design
of pile foundations under kinematic, lateral ground deformations is commonly performed
by estimating free-field soil displacements profile with depth, adjusting the free-field
displacements for the restraining effects of pile foundations (i.e. pile pinning effects) and
applying the pile-restrained soil displacements to the end-nodes of p-y springs as
explained in Caltrans (2012). In practice, free-field displacements are estimated either by
empirical methods based on case history observations such as Youd 1981, empirical-
mechanistic approaches such as Idriss and Boulanger 2008, variations of Newmark
sliding block analysis such as Newmark 1965 and Makdisi and Seed 1978, or nonlinear
dynamic analysis. Pile-pining effects of pile foundations are evaluated by incorporating
the resisting forces from the piles in limit equilibrium using methods with varying

complexities such a Broms 1964, and Caltrans (2012; 2016).

In research performed by Armstrong et al. (2014), they compared equivalent static
analysis with and without pile pinning effects to three centrifuge models and found that
the estimated residual shear strength for liquefied sand played an important role in
estimated soil displacements and illustrates the uncertainty and sensitivity of residual

shear strength correlations and its effect on equivalent static models. They developed a
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method for determining the soil displacement profile based on the maximum shear strain
in the soil. In the study presented here, the method provided by Armstrong et al. (2014)
resulted in negligible deformations in the rock fill and dense sand, and approximately

linear deformation in the loose sand.

In research performed by Kramer and Makdisi (2018), an investigation to the
applicability of Newmark analysis to lateral spreading soil was performed as soil shear
resistance changes during the course of ground shaking, which is generally inconsistent
with the assumptions of Newmark sliding block analysis. This research has showed that
large uncertainty exists when predicting lateral spreading displacements and that
selection of ground motions, calculation method, and shear strength can have a

significant effect on the estimated displacements.

The objective of this study was to evaluate the accuracy of Caltrans’s pile-pinning
method that is specifically developed for highway and bridge foundations in estimated
the soil displacements for typical pile-supported wharf structures. Data from 5 centrifuge
tests on pile-supported wharves (McCullough et al. 2001) were used to evaluate the
accuracy of Newmark Sliding Block Analysis and Caltrans pile pinning method to
estimate the kinematic demands on piles. The piles in the centrifuge tests were subjected
to varying degrees of liquefaction-induced lateral ground deformations. Pile-pinning
effects were included in the analysis by incorporating the lateral pile resistance in the
limit-equilibrium slope stability analysis. In evaluating this method in comparison to the
centrifuge data, we were able to determine how well incorporating pile-pinning effects

estimate the lateral ground displacements and kinematic demands on piles.

The following section of this paper describes the properties and geometry of the five
2



centrifuge tests and the results. Section 3 of this report describes how the soil
displacements were computed using the Newmark method incorporating pile pinning
effects generally consistent with the procedures outlined in Caltrans (2012; 2016). These
calculated soil displacements using the Newmark analysis were then compared to the
measured displacement of the centrifuge tests. Section 4 of this report describes the
kinematic demand on the piles based upon the seismically induced soil displacements.
The comparison between the measured centrifuge displacements and estimated Newmark
displacement as well as the kinematic demands of the piles are discussed in the

concluding remarks of this paper.



2.0 Centrifuge Experiments

The results of five centrifuge tests on pile-supported wharves were used in this study to
evaluate the accuracy of current methods in estimating kinematic demands on piles. The
piles in these centrifuge tests were subjected to varying magnitudes of ground
deformations. The pile-supported wharf structures generally consisted of a wharf deck,
supported by piles installed on or near sloping ground. The sloping ground generally
consisted of loose sand, dense sand, or a rock dike. Below the sloping area, the soils
consisted of either dense sand or clay. The piles were embedded through the rock, sand,
or clay into dense, foundation sand. The centrifuge tests included a range of soil relative
densities that resulted in no-liquefaction, partial liquefaction, or full liquefaction which
provided a wide range of conditions against which the existing design methods could be
evaluated. This research project primarily focused on geotechnical portions of the

structure such as the pile foundations, and soil characteristics. Other structural elements

such as the wharf deck and pile connections were not analyzed or modeled in the

centrifuge experiments.

Details for the centrifuge tests can be found in a series of data reports in McCullough et
al. (2000), Schlechter et al. (2000a, b), and Boland et al. (2001a, b). The pile,
superstructure, and soil properties and the applied input motions are provided in Souri et

al. (2019). All tests included a wharf deck supported by 21 piles configured in a 7-by-3



setup. The piles consisted of aluminum pipe piles with outer diameters ranging from 0.38

m to 0.64 m (in prototype scale). The centrifuge scale factor was 40.1 for all tests.



3.0 Estimating Soil Displacements

The kinematic demands on piles can be estimated using different methods with varying
levels of complexity, including the simplified Newmark sliding block analysis (Newmark
1965) to a more detailed two- or three-dimensional dynamic analysis that incorporates
soil-structure interaction. In the subsequent analysis, the soil displacements were
computed using the Newmark method incorporating pile pinning effects generally
consistent with the procedures outlined in Caltrans (2012,2016). The procedure includes
estimating the yield acceleration using pseudo-static limit equilibrium analysis (this
analysis was performed using the computer program SlopeW using the Spencer method
of slices). The pile pinning effects were incorporated by estimating pile resistances using
p-y analysis (this analysis was performed in LPILE). The yield acceleration was used in
Newmark analysis to compute soil displacements (this analysis was performed using the
computer program SLAMMER). The Newmark sliding block analysis, pseudo-static

slope stability analysis, and p-y analysis was used concurrently to estimate displacement

demand. The reduction in ground displacement resulting from the resisting shear force
from of the piles was assessed by determining the displacement equivalence between the
deflecting foundation and sliding block displacement. The loading of the piles by the soil
displacement is assessed where the base of the p-y springs is displaced an amount equal
to the ground displacement. The amount of displacement from a sliding block analysis
where the peak displacement is determined by the yield coefficient of the block (ky) and

modeled ground accelerations. A pseudo-static slope stability analysis was performed to



determine the geometry of the failure mass and its corresponding yield coefficient. This
yield coefficient was then used in the sliding block analysis using the computer program

SLAMMER to determine the estimated ground displacement.

As described above, the estimated of soil displacement incorporating pile-pinning effects
includes three steps that are performed by three steps in parallel. More details are

provided in sections 3.1 through 3.3 below.

1: SlopeW, Equilibrium slope stability analysis to estimate Ky which is an input for
Newmark Sliding Block Analysis (Step 3). The pile-pinning effects were included in the
limit equilibrium slope stability analysis using pile shear forces that are estimated in the
p-y analysis (Step 2). Full details of SlopeW analysis are provided in the appendix of this

report.

2: LPILE, p-y analysis was performed in LPILE to estimate pile shear forces along the
failure surface to be used in the limit equilibrium analysis (Step 1). The analysis is
performed for a range of soil displacements between zero and the estimated free-field
displacement. The estimated shear force applied in each SlopeW analysis is provided in

the appendix of this report.

3: SLAMMER, The Ky values determined from the limit equilibrium slope stability
analysis (Step 1) are incorporated into the Newmark Sliding Block Analysis to determine
estimated soil displacements. The Ky values derived from each SlopeW analysis is

provided in the appendix of this report



3.1 Estimating Lateral Pile Resistance

Pile shear forces along the ground failure surface provide resisting forces that act as
reinforcements and result in a reduction of cyclically induced ground displacements.
These resisting forces can be estimated by performing lateral load analysis on piles using
p-y analysis. These analyses were performed in LPILE v.9.09 (Itasca 2016). Soil
displacements were applied to the end node of p-y springs, shear forces were extracted at
the approximate depth of shear failure surface for each pile and were applied in a slope

stability analysis that is described in the next section.

LPILE analysis was performed to get a pile shear resistance for a range of soil
displacements. An idealized soil displacement profile was used to impose soil
displacements to the end nodes of p-y springs and incrementally increased to develop pile
resisting curves. Soil displacements were applied using the idealized soil displacement
profiles assuming zero shear strain in rockfill, linear reduction within the loose sand and
zero shear strain in dense sand. Details on how the idealized soil displacements were
developed and comparison with centrifuge results are discussed later in this paper. These
properties used in the LPILE analysis were calibrated against the centrifuge results and
described in detail in Souri et al. (2020). The p-y springs were modified using p-
multipliers (Pm) proportional to the pore water pressure ratio Ry generated during the

ground motion: Pm=1.2 — 1.1*Ru for Ru > 0.2 and Pn= 1.0 for Ru < 0.2, as the effect of

pore pressure generation is assumed to be negligible when Ru is below 0.2. The recorded
excess pore pressure ratios in centrifuge tests were used in this study. In practice, these
values can be estimated from effective stress site response analysis or from simplified

correlations with the factor of safety against liquefaction. Each pile was modeled as a
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single pile. Group framing effects were not considered in the baseline analysis and it was
found that including group effect (i.e., equal displacement at pile head) has negligible
effect when the failure surface is deeper than 10D because the group effect affects the
pile head shear which dissipates by 10D depth. Sensitivity on group effect is provided
later. Pile head was assumed to be fixed against rotation since the wharf deck was
relatively rigid. The pile spacing ranged between approximately 7D and 16D. Therefore,

no group reduction factor was used in accordance with AASHTO (2014).

Figure 1 shows representative LPILE analysis results for NJMO1 Event 11. Figure 1
shows the soil displacements that were imposed to the end node of p-y springs in LPILE
for a case where the ground surface displacement was 0.07 m (this displacement
corresponds to the value estimated using Newmark analysis as described later). These
displacements were only applied for the piles that passed through the failure mass. As
seen in this figure, it was assumed that the rockfill moved monolithically with equal
displacements throughout. The shear strains were assumed to be uniform within the
liquefying loose sand. It was assumed that the underlying dense sand did not accumulate
significant shear strain. The accuracy of these assumptions is evaluated against the
centrifuge test measurements later in this paper. The pile shear forces were extracted at
the depth of failure surface. The failure surface is determined using slope stability
analysis that is described later. As seen in the figure, the shear force in piles at the failure
surface depends on the thickness of the liquefiable layer and the overlying nonliquefiable
crust (i.e., rockfill). Caltrans (2016) recommends extracting the shear forces in the center
of the liquefying layer. The analysis here shows that extracting shear force from the
center or at the depths corresponding to the failure surface are the same.

9



3.2 Limit Equilibrium Analysis

The vyield accelerations for each test were determined by using pseudo-static limit
equilibrium analysis and were assumed to be constant during throughout the acceleration
time histories while performing the Newmark analysis. Because the pile foundations are
embedded through the estimated failure surface, the foundation can partially restrain the
movement of the slope with the shear strength of the piles. This beneficial resistance of
the piles against the laterally moving ground (i.e., the pile pinning effects) were
considered by including the piles as reinforcement elements in the limit equilibrium

analysis.

Limit equilibrium in SlopeW was performed for a range of pile shear resistance values
calculated from LPILE (Vi) to calculate a corresponding yield acceleration (Ky). The
Spencer method of slices was utilized for modeling. For defining trial slip surfaces, both
rigid block and circular failure surfaces were analyzed for each centrifuge test. The
failure surface that generated the lowest yield acceleration that results in a factor of safety
of 1 under seismic loading was considered the critical failure surface and used in the
analysis. The critical failure surfaces for each centrifuge test are provided in the
appendix of this report. In this study, the failure surface was modeled such that the
centrifuge box was modeled as the boundary. Therefore, the trial slip surfaces in this
study did not pass beyond the centrifuge box. The effect of this assumption on the
boundary condition on the critical failure surface and estimated soil displacements are

evaluated in the sensitivity analysis section.

The shear strength in the liquefiable sand layer in the limit equilibrium analysis was

determined based on the maximum value of equivalent friction angle (Ebeling and
10



Morrison 1992) and residual undrained shear strength of liquefied soil (Kramer and
Wang 2007). An equivalent friction angle was calculated that was proportional to the
pore water pressure ratio recorded in the centrifuge tests.. The friction angle for drained
conditions for Nevada sand with different relative densities were obtained from
McCullough et. al 2001 (relative densities are presented on Table 1) Because the
effective friction angle determined from the Ebeling and Morrison method is not
applicable to large pore pressure ratios (Ebeling and Morrison 1992), a residual
undrained shear strength was specified where Ru values were greater than 90%. The
residual undrained shear strength of liquefied soil using Kramer and Wang (2007) was
consistent with the weighted approach proposed by Kramer (2008) using correlations by
Kramer and Wang (2007), Idriss (1998), Olson and Stark (2002), and Idriss and
Boulanger (2008). The properties of the equivalent friction angle and residual shear
strength are presented on Table 3. In the ten centrifuge experiments studied here, the
equivalent friction angle determined by Ebeling and Morrison (1992) was controlled
when Ru was generally less than 90 percent. Sensitivity of the predicated displacements
to the Sr values are evaluated later in this paper. The pore pressure ratios and the

corresponding Sr values are presented in Table 3 for two shaking events for each test.

Figure 2 shows a representative limit equilibrium analysis utilizing SlopeW for NJM01
Event 11. The shear resistance from LPILE with a specific displacement was
incorporated into the analysis. The horizontal yield acceleration that provides a factor of

safety of 1.0 is used in the subsequent Newmark analysis.

The yield acceleration in the example shown in Figure 2 was 0.053g. Since the pile

resistances depend on soil displacements, which in turn depend on Newmark analysis,
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which in turn depend on the yield accelerations, a trial-and-error approach needs to be
used to reach to equilibrium. This process is described in the next section. The final Ky
values (after reaching equilibrium) for two shaking events in each test is provided in

Table 3.

3.3 Newmark Sliding Block Analysis

Newmark was performed using acceleration time histories recorded in the centrifuge tests
within the failure mass for a range of Ky values to calculate the magnitude of

accumulated soil displacement at the ground surface during cyclic loading.

The Java computer program SLAMMER developed by the United States Geological
Survey (USGS) to estimate slope displacement was used to calculate the slope
displacements using the critical yield acceleration developed from the pseudo-static limit
equilibrium analysis and accelerometer data from accelerometers within the inferred
failure mass. The uncoupled, rigid block methods were utilized for performing the
calculations. Newmark analyses are typically performed in practical applications using
accelerations that are obtained from site response modeling; however, in this study, the
recorded accelerations from centrifuge tests were used as the input for the Newmark
analysis. Therefore, uncertainties in ground motion estimation associated with site
response analysis are minimized. The location of the accelerometers that were used in the
Newmark analysis are shown in Figure 3 (left figures) on the cross sections for all the
five centrifuge tests. These accelerometers were selected based on the location of the
shear failure plane. The accelerometers that were located inside the failure mass were

used as input to the Newmark analysis. This resulted in 6 to 12 input accelerations for

12



Newmark analysis which were used later to calculate slope displacements corresponding
to median and median + 1 standard deviation (o) to evaluate the uncertainties in the

predicted displacements.

The shear failure planes were determined from slope stability analyses (black lines in
Figure 3 (left). These failure planes were generally in agreement with the inferred failure
planes from the centrifuge tests (red lines in Figure 3 left). The inferred failure planes
from the centrifuge tests were determined from the peak transient soil displacement
profiles that were back-calculated by double integrating the acceleration time histories at
the location of accelerometers. The difference between the failure surfaces from slope
stability analysis and inferred from centrifuge tests were more significant for cases where
a deep-seated failure occurred due to soft Bay Mud in NJMO1 or shear failure underneath

CDSM layer in SMS01 which was not keyed in the underlying dense sand.

The pile pinning curves for each test (two shaking events per test) are shown in Figure 3
(right). The soil properties used in the equivalent static slope stability models for each
centrifuge test is presented on Table 1. Each figure includes the following curves: (a)
Pile shear resistances show the pile shear resistances summed for all the piles that pass
through the failure surface. These curves are developed from LPILE analysis for a range
of imposed soil displacements. (b) Sliding mass shear resistance curves which show the
inverse relationship between the sum of resisting forces from the piles along the failure

surface and the slope displacements calculated from Newmark analysis. Results for two

13



shaking events are shown for each centrifuge test. The pile shear resistance curves are
generally similar for the two events except minor differences from the difference in p-y
properties in each event due to different pore pressure ratios in each event. The sliding
mass curves are different for each event since the input accelerations are different in each
shaking event. The sliding mass curves are plotted for the median and median + 1o for
each shaking event. The median +1 ¢ displacement results in larger shear resistance from
the piles compared to the median soil displacements, which consequently results in
smaller increases in displacement as +1 o displacements calculated in the free-field
condition. Therefore, the compatible displacement should be estimated based on an
intersection of the pile-resisting curve and the resisting force vs sliding mass
displacement curve. The intersection of the pile shear resistance curve and the sliding
mass curve denote the ‘equilibrium’ point where the imposed displacements in LPILE
analysis are compatible with the calculated displacements from Newmark analysis. For
example, in NJMO1, the predicted slope displacements in the first shaking event are 7.3
cm and 10 cm for the median and median + 1o, respectively. It is useful to note that the
measured slope displacement in the centrifuge test was 9cm. The predicted and measured
displacements are compared later in the next section. In the centrifuge test SMS02, the
estimated failure plane was near the bottom of the piles. Therefore, the shear resistance

provided by the piles was minimal and had little effect on the analysis.

It is worth noting that the displacement corresponding to zero resisting force (i.e., the
intersection of the sliding mass shear resistance curve with the horizontal axis) shows the
free field displacements without considering pile pinning effects. The  significant

difference between the free-field slope displacements and the pile-restraint displacements

14



highlights the benefits of including pile-pinning effects in the analysis.

The pile spacing is an input parameter in the limit equilibrium analysis. The pile
resistance forces are assumed to be applied over the defined pile spacing. In the analysis
in this study, it was assumed that the resistances from three rows of piles was distributed
over the width of the centrifuge container (i.e., pile spacing = 6.1 m and container width
= 15.2 m). However, in practical applications in estimating embankment deformations,
other methods such as those described in Caltrans (2012) may be more appropriate.

Sensitivity of the predicted displacements to pile spacing is provided later in this paper.

15



4.0 Results

The results of the estimated soil displacements were compared to the measured centrifuge
displacements in section 4.1 below. Sensitivity analyses were performed to provide insight
on some key assumptions that are made in design, including selection of input ground
motions, pile spacing, soil shear strength, and pile group effect. The results of the

sensitivity analysis are presented in sections 4.2 through 4.5.

4.1 Comparison of Newmark vs Centrifuge Soil Displacements

Time histories for measured centrifuge soil displacement data is compared to the predicted
soil displacements from Newmark analysis for individual acceleration data using the
estimated critical yield accelerations. This comparison was performed to validate the
Newmark analysis. The displacement time history should somewhat resemble the
measured centrifuge in the negative direction as our analysis calculated displacements in
one direction. As explained earlier, the accelerometers within the failure mass were
selected for the analysis. As shown in this figure, the Newmark Displacements
incrementally accumulate at every large bayward cycle that exceeds the yield acceleration.
In SMS02, where the yield acceleration was large since liquefaction was not triggered (i.e.
Ky=0.195 g for SMS02 Event 30 and 0.184 g for SMS02 Event 35), the acceleration cycles
did not exceed the yield acceleration in the first event and resulted in zero predicted
displacements. These time histories are also used to compare the Newmark displacements
to the measured permanent and peak transient displacements. Acknowledging that the

Newmark analysis is developed to predict the permanent slope deformations, it is observe

16



from the time histories that in some cases, the predicted Newmark displacements are closer
to the permanent measured displacements (such as NJMO1 Event 11) and in other cases the
Newmark displacement time histories do not closely fit the centrifuge displacement data.

These comparisons are discussed in more detail in the next section.

The Newmark displacements are compared against the measured permanent (end of

shaking) displacements in Figure 5 (left) and the peak transient displacements in Figure 5
(right) for all the ten shaking events considered in this study. The results show that the
median Newmark displacements better estimated the centrifuge permanent end of shaking
displacements but underestimated the measured peak transient displacements. On the other
hand, the median + 1o Newmark displacements better estimated the peak transient
displacements. The measured peak transient displacements were on average 2.3 times
larger than the measured permanent displacements in these centrifuge tests. The median +
lo Newmark displacements were on average 1.4 times larger than the median
displacements when compatibility of the displacements is considered (i.e. when pile-
pinning curves were developed for median and median +1 standard deviation
displacements separately. For cases where compatibility of displacements are not
considered (i.e. pile-pinning curves developed for median displacements are used), the
median +lc were on average 2.0 times larger than the median displacements. For
comparison, the median +1c displacements estimated from Bray and Travasarou (2007)

prediction models are approximately 1.9 times larger than the median values.

17



4.2 Sensitivity to Input Ground Motions

As described earlier data from the accelerometers within the estimated failure mass were
used in the Newmark analysis in this study. Figure 6 shows the predicted displacements
from all the accelerometers in the model for NJMO1 Event 11 as an example. Considering
that the measured permanent displacement was approximately 0.1 m, the contour
corresponding to 0.1 m delineates the accelerometers that over- or under- predict
permanent soil displacements. It is observed that the failure surface that is determined from
slope stability analysis reasonably flags the accelerations that should be used in Newmark
analysis to reasonably predict the permanent soil displacements. It is also observed that
using the accelerations at the base of the model (i.e. within the dense sand) underestimate
measured displacements. It is also observed that the predicated Newmark displacements
using accelerations that locate just below the failure surface also underpredict the measured
displacements. It is also observed that the accelerations at the ground surface overpredict
the measured displacements. Therefore, it is recommended for design to use the
accelerations estimated within the failure mass as a basis for performing Newmark

analysis. In practice, these accelerations are derived from site response analysis.

4.3 Sensitivity to Pile Spacing

Characterizing the extent of the foundation influence zone on the laterally spreading
ground depends on the width and length of the lateral spreading as explained in
Brandenberg and Turner (2017). Caltrans (2016), on a basis of embankment geometries
typically encountered for highway bridge structures, recommends using an effective width

based on the width and height of the embankment or 1.5 times foundation width in case of
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no embankments where the width of the failure mass is much larger than the foundation

width.

The plan view of NJMO1 is shown in Figure 7. The actual center-to-center pile spacing was
6.1 m. The foundation width times 1.5 divided by three rows of piles was 7.6 m. The total
width of the centrifuge box divided by three rows of piles was 9.15 m. Based on the
geometry of the centrifuge test and the results of dissected data after the tests, it appeared
that the slope moved fairly uniformly across the width of the centrifuge box. Therefore, the
total width of the centrifuge box was used as the effective width and the pile spacing of

9.15 m was used as the baseline analysis in this study.

To evaluate the sensitivity of the predicted slope displacements to this assumption, the
baseline pile spacing was 9 meters, and the spacing for sensitivity was analyzed at 12 m
and 6 m for NJMOL1. The results are presented in the Figure 8. The results from the pile
spacing of 6m and 12m resulted in slope displacements ranging from 5cm to 8.5cm
respectively for NJMO1 Event 11. In general, increasing the pile spacing for NJMO1 by 50
percent (12 meters) increased the estimated slope displacement by approximately 15
percent. Decreasing the pile spacing by 50 percent decreased the estimated slope
displacement by roughly 10 percent. Considering that the measured permanent
displacement was approximately 10 cm in the centrifuge test, the equivalent width

approach proposed by Caltrans (2012) did not improve the soil displacement estimates.
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4.4 Sensitivity to Residual Strength of Liquefied Soils (Sr)

Various approaches have been proposed to determine the residual strength (Sr) of liquefied
soils for the purpose of slope stability analysis. As explained earlier, in this study, we used
the greater value from effective friction angle approach by Ebeling and Morrison (1992)
and Kramer and Wang (2007). As a result, in cases where liquefaction was not triggered
(with Ru generally lower than 85%) Ebeling and Morrison (1992) was applied, and in cases
where liquefaction either triggered or Ru was greater than 85%, Kramer and Wang (2007)
were applied. In cases where liquefaction was triggered, the Sr estimated from Kramer and
Wang (2007) and other commonly used correlations were similar. This is shown in Figure
9 (Left) where the shear resistance profile for NJMO1 is shown as an example. While the
shear resistance calculated from Ebeling and Morrison in the middle of the loose sand layer
was approximately 22 kPa for NJMO1 on both events, the estimated Sr value from several
different residual shear strength correlations ranged from 8.0 kPa to 18.4 kPa. The Kramer

and Wang (2007) weighted approach provided a shear strength of 11.7 kPa.

To evaluate the sensitivity of the predicted slope displacement to the assumed Sr value, the
slope stability analysis was performed for two different methods: Ebeling and Morrison
(1992) and Kramer and Wang (2007). The different pile shear resisting forces for the two
Sr approaches are plotted in Figure 9 (Right). Note that the pile shear force curve is not
changed because the liquefied soil in LPILE analyses was modeled with APl Sand p-y
curve with a Ru-proportional p-multiplier. Therefore, the choice of residual shear strength

model in the slope stability analysis did not affect the pile lateral load analysis. Using a
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residual shear strength (Kramer and Wang) for NJMO1 Event 11, the Newmark analysis
yielded a median displacement of 12cm as opposed to 7cm from the Ebeling and Morrison
method. Considering that the measured permanent displacement was approximately 10 cm
in the centrifuge test, both Sr methods illustrated the same level of accuracy in predicting
the slope stability (Kramer and Wang method slightly overpredicting the slope

displacements).

4.5 Sensitivity to Pile Group Effect

Ideally, the pile group effects should be considered in design since the piles are attached at
top and move together. However, this boundary condition is sometimes ignored in design
especially if piles are modeled individually (such as LPILE). The effects of including or
ignoring pile group effects on the predicted slope displacements are evaluated in this
section. Figure 10 displays two shear forces along the piles in NJMO1 as an example.
Results from two types of LPILE analyses are shown. One where pile grouping effect is
included by forcing the pile heads to move equally, and the other assuming single piles that
are fixed against rotation at pile head but do not necessarily move equally. It was found
that boundary conditions at the pile head have negligible effect on the shear forces in the
piles at the location of failure surface when the failure surface was at depths greater than

10D (pile diameters) below the ground surface.

Pile shear force at the failure surface depth is generally the same with and without group
effect for the profiles studied here as the failure surfaces were typically more than 10 pile
diameters in depth. The critical failure surface in NJMO1 did not pass through all of the

piles. Therefore, this centrifuge test would have the greatest contrast in displacements and
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forces since the wharf deck would have an assumed uniform displacement and piles 5
through 7 would not have a displacement applied from the failure surface. Because of
these attributes, NJMO01 was assumed to be the centrifuge test that would be most affected

by the pile grouping effect.

4.6 Sensitivity of the Equivalent Static Analysis to Model Boundary Conditions

The centrifuge tests were designed such that the centrifuge box would behave as free-field
condition. However, it is acknowledged that this assumption was not exactly the case,
because of imbalanced mass of soil on the left and right side of the model as well as the
transient change of stiffness in the loose, liquefiable soil during ground motions. In this
study, the equivalent static analysis models created in SlopeW were bounded by the
geometry of the centrifuge models. To evaluate the effect of this assumption to the
estimated soil displacements, this sensitivity analyses was performed by extending the
boundary of the SlopeW model beyond the centrifuge box to reach free field conditions.
The centrifuge model for NJMO1, event 11 was extended to a width of approximately 100m
as opposed to the 69m width of the centrifuge box. Figure 11 displays the example of the
equivalent static SlopeW model with extended boundary and Figure 12 displays two pile-
pinning curves; one from the analysis presented in previous sections, and one based upon
the extended boundary. The results of this analysis have shown that the median estimated
Newmark displacement with the extended boundary is approximately 18cm as opposed to
a median Newmark displacement of 7.3cm from the initial analysis. The two boundary

conditions analyzed in this sensitivity analysis envelope the real boundary conditions in
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the centrifuge tests which is supported by the measured displacement of 10cm in the

centrifuge test.
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5.0 Summary and Conclusions

Data from 5 centrifuge tests on pile-supported wharfs were used to evaluate the accuracy
of Newmark Sliding Block Analysis to estimate the kinematic demands on piles. The piles
in the centrifuge tests were subjected to varying degrees of liquefaction-induced lateral
ground deformations. Pile-pinning effects were included in the analysis by incorporating
the lateral pile resistance in the limit-equilibrium slope stability analysis. The accuracy of
incorporating pile-pinning effects in estimating the ground displacements and kinematic
demands on piles were evaluated by comparing the estimated displacements to the
measured data from centrifuge tests. Sensitivity analyses were performed to provide
insight on some key assumptions that are made in design, including, selection of input

ground motions, pile spacing, soil shear strength, and pile group effect.

The results of the analysis showed that the median Newmark displacements better
estimated the centrifuge permanent end-of-shaking displacements but underestimated the
measured peak transient displacements. On the other hand, the median + 1o Newmark
displacements better estimated the peak transient displacements. The measured peak
transient displacements were on average 2.3 times larger than the measured permanent
displacements in these centrifuge tests. The median + 16 Newmark displacements were on
average 1.4 times larger than the median displacements when compatibility of the
displacements are considered (i.e. when pile-pinning curves were developed for median
and median +1 standard deviation displacements separately. For case where compatibility
of displacements are not considered (i.e. pile-pinning curves developed for median

displacements are used), the median +1c were on average 2.0 times larger than the median
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displacements. For comparison, the median +1c displacements estimated from Bray and
Travasarou (2007) prediction models are approximately 1.9 times larger than the median

values.

Sensitivity analyses showed that predicated Newmark displacements using acceleration
time histories below the failure surface underpredict the measured displacements, and that
the accelerations at the ground surface overpredict the measured displacements. Therefore,
it is recommended for design to use the accelerations estimated within the failure mass as
a basis for performing Newmark analysis using procedures such as Makdisi and Seed

(1978).

The extent of the foundation influence zone on the laterally spreading ground affects the
pile spacing that is used in the limit equilibrium analysis. Sensitivity analyses were
performed to evaluate the applicability of the equivalent width approach (i.e. foundation
width times 1.5) proposed by Caltrans on the basis of highway bridge foundations, for
wharf structures. The sensitivity analyses performed for centrifuge test NJMO1
(representative of a typical marginal pile-supported wharf) showed that increasing the pile
spacing by 50 percent increased the estimated slope displacement by approximately 15
percent and decreasing the pile spacing by 50 percent decreased the estimated slope
displacement by roughly 10 percent. On the basis of this sensitivity analysis, the equivalent
width approach proposed by Caltrans (2012) did not improve the soil displacement

estimates.
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Utilizing different shear strength using different residual strength methods for NJMO01
Event 11, the Newmark analysis yielded a median displacement of 12cm using the Kramer

and Wang method as opposed to 7cm from the Ebeling and Morrison method.

Considering that the measured permanent displacement was approximately 10 cm in the
centrifuge test, both Sr methods illustrated the similar level of accuracy in predicting the
slope stability. It is recommended to estimate the residual shear strength using the weighted
approach proposed by Kramer (2008) in liquefied soils when pore pressure ratio is greater
than 90% and the Ebeling and Morrison (1992) in cases where pore pressure ratio is less

than 90%.

For NJMO1, pile shear force at the failure surface depth is generally the same with and
without group effect for the profiles studied here. The pile head condition appears to have
a negligible effect at the depth of the failure surface if the failure surface is more than 10

pile diameters in depth.

Uncertainty of estimated accelerations were not considered in this study. In practice,
accelerations are obtained from performing site response analysis. Uncertainly for
developing pore water pressures were not considered. In practice, the pore pressures can
be estimated using correlations of Ru and factor of safety against liquefaction such as
Marcuson et al. (1990). The potential effects after multiple shaking events of soil
properties were not considered in this study. The results presented here are based on the

geometries of the centrifuge tests that were analyzed in this study.
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Tables

Table 1. Pile, superstructure, soil properties and ground motions in centrifuge tests (in
prototype scale)

Applied Scaled

ground PGA
Test Superstructure motions at  at base
ID! Pile properties 2 properties Soil properties base (2)

NIMO1  Pile D=0.64 m Wharf deck Nevada loose sand Dr = 39% Event 11: 0.15/
t=0.036 m 33.7m x 15.2  Nevada dense sand, Dr = 82% Loma 0.73
L=272m m X% 0.25 m, Rockfill, friction angle = 45 deg  Prieta® /

El=2.1e5 kPa-m* mass=714.8 Event 13:
Mg Northridge*

NJM02 Pile D=0.38 m Wharf deck Nevada loose sand Dr =45% Event 42: 0.19/
t=0.036 m 249 m x 12.2  Nevada dense sand, Dr = 85% Loma 0.72
L=251m m X 0.25 m, Bay Mud, undrained shear Prieta’ /

El =4.1e4 kPa-m* mass = 265.8 strength = 38 kPa Event 55:
Mg Rockfill, friction angle = 45 deg ~ Northridge*

SMSO01  PileD=0.38 m Wharf deck Nevada loose sand Dr = 30% Event 25: 0.42/
t=0.036 m 249 m x 12.2  Nevada dense sand, Dr = 70% Loma 0.40
L=251m m X 0.25 m, CDSM, unconfined compressive  Prieta® /

El =4.1e4 kPa-m* mass=265.8 strength = 0.9 MPa Event 44:
Mg Rockfill, friction angle =45 deg ~ Northridge*

SMS02 PileD=0.64m Wharf deck Nevada dense sand, Dr = 70% Event 30: 0.20/
t=10.036 m 28.1 m x 12.0  Rockfill, friction angle =45 deg  Loma 0.56
L=243m m x 0.78 m, Prieta’ /

EI=2.1e5 kPa-m* mass=951.6 Event 35:
Mg Northridge*

JCBO1  Pile D=0.64 m Wharf deck Nevada loose sand Dr = 40% Event 18: 0.15/
t=0.036 m 28.1mx 12.0  Nevada dense sand, Dr = 74% Loma 0.15
L=243m m x 0.78 m, Rockfill, friction angle = 45 deg ~ Prieta’ /

EI=2.1e5 kPa-m* mags=951.6 Event 23:
Mg Loma
Prieta’

1. The centrifuge scale factor was 40.1 for all tests.
2. Pile group consists of 21 piles (in a 3-by-7 setup).
3. 1989 Loma Prieta Outer Harbor Station.

4. 1994 Northridge Rinaldi Station. This time history was recorded less than 10 km from
the fault and included a velocity pulse.
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Table 2. P-Y spring properties used in LPILE
p-Multiplier

Total Modulus of Undrained due to
Unit Friction Subgrade Shear Strain  Dynamic
P-Y Weight,y Angle, Reaction, K Strength, Factor Excess
TestID  Material Spring  (kN/m*) ¢ (deg)  (kN/m3) CkNm? ESO ~ PWP
NJMO01 Loose Nevada API Sand 19.4 33 3500 - - 0.2
Sand
(DR =39%)
Dense Nevada API Sand 20.4 37 3500 - - --
Sand
(DR = 82%)
Rockfill Cemented 20.5 45 5200 15 - --
c-phi
NIMO02 Loose Nevada API Sand 18.7 33 3500 - - 0.6
Sand
(DR =45%)
Dense Nevada API Sand 20.8 37 3500 - - 0.8
Sand
(DR = 85%)
Bay Mud Soft Clay 15.7 -- -- 38 0.02 --
(Matlock)
Rockfill Cemented 20.8 45 5200 15 - --
c-phi
SMS01 Dense Nevada 20.1 37 3500 - - 0.3
Sand
(DR =70%)
Cement Deep 19.6 -- -- 450 0.1 0.7
Soil
Mixing (CDSM)
Rockfill Cemented 20.3 45 5200 -- -- 0.6
c-phi
SMS02 Dense Nevada API Sand 20.1 37 3500 -- - --
Sand
(DR =82%)
Rockfill Cemented 20.0 45 5200 15 - 0.5-0.8
c-phi
JCBO1 Loose Nevada API Sand 19.4 33 3500 - - 0.2-0.6
Sand
(DR =40%)
Dense Nevada  API Sand 20.2 37 3500 - - 0.7
Sand
(DR = 74%)
Rockfill Cemented 20.0 45 5200 15 - --
c-phi

1. PWP = pore water pressure
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Table 3. Soil shear strength, pore pressure properties, yield acceleration, and calculated
Newmark displacement in the five centrifuge tests

Sr (Middle of Newmark
Soil Layer)!, Excess PP Ratio, Ru, Displacement
kPa (%) (cm)
Yield
Loose Dense Loose Dense  Acceleration, Std.
Model Event Sand Sand Sand Sand Ky (g) Mean Dev
NIMO1 11 22.8 103.9 80 24 0.053 7.3 2.7
NIMO1 13 21.7 102.5 81 25 0.098 25.5 7.5
NIMO02 42 36 70.1 52 21 0.063 5.8 1.2
NIMO02 55 30 70.1 60 21 0.127 23.9 5.1
SMSO01 25 *7.4 26.7 100 47 0.085 15.0 7.0
SMSO01 44 8.3 323 81 36 0.135 15.6 8.4
SMS02 30 n.a. 119.1 n.a. 30 0.195 0.0 0.0
SMS02 35 n.a. 119.1 n.a. 30 0.184 9.6 2.35
JCBO1 18 *9.5 39.6 94 30 0.043 17.3 5.7
JCBO1 23 *9.5 46.3 84 18 0.036 15.6 10.4

1. Ebeling and Morrison (1992) method was utilized for calculation of Sr with exception
to some loose sand layers, these layers are marked with “*” where Kramer and Wang
(2007) method were utilized.
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Figures

Note: Soil displacements estimated from Newmark
and applied to end-node of p-y springs assuming no

deformations within rockfill
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Note: Shear forces in piles at intersection with failure
surface extracted from p-y models and applied in slope
stability analysis
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Fig. 1. Lateral load behavior of piles in LPILE: (a) soil displacements applied to the end
node of p-y springs, (b) shear forces along the piles and at the failure surface.
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Fig. 2. Representative limit equilibrium analysis in SlopeW Model for NJMO1 Event 11
incorporating pile pinning effects. Shear resistance from LPILE Applied at Failure
Surface.
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Fig. 3. (Left) Five centrifuge models with inferred and modeled Failure Surfaces, and accelerometers used

in Newmark displacements. (Right) Pile-pinning curves from sliding mass and pile shear resistance for

each event.
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Fig. 7. Plan view for NJMO1 centrifuge test with pile spacing and dimensions.
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Fig. 8. Pile-pinning curves based upon different pile spacings for NJMO1, Event 11.
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Fig. 9. (Left) Calculated soil shear strength with depth for NJMO1 using different
methodologies. (Right) Estimated pile resistances and sliding mass displacements
utilizing two different shear strength models (Kramer and Wang and Ebeling and

Morrison).
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