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Abstract 

Hyperspectral imagery has become a common remote sensing data type used in 

tree species classifications because of its rich spectral signals that allow the detection of 

the variations in canopy reflectance. While high spatial resolution hyperspectral imagery 

provides fine spatial resolution for discerning surface objects, it has the inherent 

drawbacks of expensive acquisition costs, large data sizes, and can be computationally 

taxing to use. This study attempts to determine a relationship between crown level tree 

species classification accuracy and hyperspectral spatial resolution. Future tree species 

classification projects can make use of this relationship by targeting a spatial resolution 

that best avoids the drawbacks of hyperspectral imagery. I processed a 37-band 

hyperspectral mosaic that has a 0.3 meters resolution and resampled it to 0.5, 1.0, 2.0, 

3.0, and 5.0 meters mosaics and used a support vector machine (SVM) classifier to create 

tree species classifications for each of the resampled mosaics to examine the relationship 

between spatial resolution and classification accuracies. The mosaic covers a 50 sq-km 

study site in El Dorado County, California.  The classifier used tree species data that I 

collected in the field as training and validation data. The results show that there was no 

significant classification accuracy difference between the resolutions. The averaged 

overall accuracies were highest when using the 1.0 meters mosaic (73.23%) and dropped 

when increasing or decreasing the spatial resolutions. The 5.0 meters mosaic yielded a 

minimum overall accuracy of 64.42%. The finding suggests that spatial resolution is not a 

critical factor in classification accuracy, indicating that reasonable classification results 

can be achieved using either coarser resolution imagery, such as those collected with 

satellite or airborne sensors, or fine resolution imagery, such as those collected with 

unmanned aerial vehicles (UAV). The crown size of the trees appears to be an important 
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factor mediating classification accuracy and image resolution. The knowledge gained in 

this study could help remote sensing project managers to determine a resolution that best 

fits their budget and computational power.
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Chapter 1. Introduction 

Hyperspectral imagery has become a common remote sensing data type used in 

tree species classifications because of its rich spectral signals that allow the detection of 

the variations in canopy reflectance (Fassnacht et al., 2016). High spatial resolution 

hyperspectral imagery has the inherent drawbacks of expensive acquisition costs, large 

data sizes, and can apply strain to computational resources (Peña et al., 2013; Dalponte et 

al., 2008). The main goal of this research is to examine how image spatial resolution 

affects the classification accuracy. The knowledge gained in this study could help remote 

sensing project managers to determine a resolution that best fits their budget and 

computational power. In this paper, I attempt to determine the relationship between the 

spatial resolution of hyperspectral imagery and the affect it has on tree species 

classification accuracy.

Tree species classification is a form of remote sensing-based image classification 

used to map the distribution of trees and their species. The classification maps have 

applications in precision forestry, fire risk management, and invasive species monitoring 

(Dalponte et al., 2012; Colgan et al., 2012; Asner et al., 2015 #2). 

Over the past 35 years, remotely sensed data has become increasingly more 

extensive and available due to advancements in sensing technologies and publicly 

accessible satellite data (Fassnacht et al., 2016). This trend, coupled with improvements 

in computational capabilities, has led to increases in tree species classification complexity 

and popularity (Fassnacht et al., 2016). A more in-depth understanding of the relationship 

between hyperspectral imagery and their classifications can lead to improvements in tree 

species classification mapping and further its applications. 
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Chapter 2. Background  

Digital image classification routines have been used to generate tree species maps 

at different forest scales. Some research has classified tree species using relatively low-

resolution imagery to create dominant species maps that cover large areas. Martin et al. 

(1998) determined the dominant forest species composition at a coarse grain, tree stand 

scale. Their study used 20m AVIRIS hyperspectral imagery. According to Martin et al. 

(1998), they found that it was not possible to adequately investigate the classification of 

individual deciduous species because most of the deciduous stands in the study area were 

a mix of three or more species. At low resolutions, each pixel was larger than the tree 

crowns mapped in the scene. Martin et al. (1998) mapped dominant forest stand species, 

but studies have used fine resolution imagery to classify species type at an individual tree 

scale. For example, Alonzo et al. (2013) determined the species of individual tree crowns 

using 3.7m resolution hyperspectral imagery. Roth et al. (2015) compared tree species 

classification results from fine and coarse grain images of the same scene and concluded 

that changing the resolution of imagery used in species classifications altered the final 

accuracy. Peña et al. (2013) found that resampling images from a native 0.3m resolution 

to coarser pixel sizes decreased the overall classification accuracy.  

 A review of 129 publications of tree species classification articles by Fassnacht et 

al. (2016) saw overall classification accuracies between 55-98%. They found that the 

resolution of remote sensing data, tree species count, and complexity of ecology 

contributed to the range of accuracies and hypothesized that there may be a relationship 

between image resolution and classification accuracy. The goal of this research is to 
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examine how image spatial resolution affects the classification accuracy using 

hyperspectral images that were resampled to different spatial resolutions. 
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Chapter 3. Research Question 

What is the relationship between spatial resolution and classification accuracy 

for tree species classifications using hyperspectral imagery at an individual tree crown 

scale? This paper compares the accuracy of tree species classifications at altered ground 

sample resolutions to derive a resolution-accuracy relationship. I hypothesized that the 

highest resolution achieves the greatest overall accuracy. This result would align with and 

confirm the results of a previous study by Peña et al. (2013), which researched the 

relationship on an alternative set of species in Chile. 

I am interested in the relationship because it will help inform future hyperspectral 

project managers with determining image collection specifications. Acquiring 

hyperspectral data can be expensive when mounted to a fixed-wing aircraft. A better 

understanding of the relationship between spatial resolution and achievable image 

classification accuracy will help determine if unmanned aerial vehicles (UAV) or satellite 

platforms are a viable and more desirable image collection alternative for mapping tree 

species distributions. 
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Chapter 4. Literature Review  

4.1 Publishing Trends in Tree Species Classification Research 

Publications using digital image classification to classify tree species in remote 

sensing data have substantially increased over 35 years (Fassnacht et al., 2016). This 

change is a function of the increased availability of remote sensing imagery and LiDAR 

data. Figure 1 provides a graph of tree species classification-related publication trends 

based on the review performed by Fassnacht et al. (2016). Compared with multispectral 

and airborne LiDAR, hyperspectral classification articles saw the biggest increase from 

2005-2010 to 2010-2015, until Fassnacht et al. (2016) was published. 

 

Figure 1. Trends in tree species classification publications (Fassnacht et al., 2016). 

4.2 Hyperspectral Imagery 

Hyperspectral imaging, also called image spectroscopy, is a type of remote 

sensing imagery. Goetz and Strivastava (1985) defined it as “the acquisition of images in 
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hundreds of contiguous, registered, spectral bands such that for each pixel a radiance 

spectrum can be derived.” Though Goetz and Strivastava (1985) were defining 

hyperspectral imagers that recorded using analog film, modern electronic sensors collect 

the same passive signal (Goetz, 2007). Hyperspectral sensors are commonly mounted to 

aerial platforms onboard fixed-wing aircraft as well as satellite and UAV platforms 

(Goetz, 2007, Coulter et al., 2007).  

Hyperspectral sensors typically collect hundreds of contiguous bands from the 

visible to near-infrared (VNIR) region of the electromagnetic spectrum and stretch into 

the shortwave infrared (SWIR) region (Coulter et al., 2007). The wavelengths of these 

regions range from around 0.4 µm to 2.5 µm (Goetz, 2007). This range is useful because 

sensors are able detect strong radiative signals without large amounts of atmospheric 

interference, and because this range corresponds well with detecting the chemical and 

physical properties of surface features. The spectral reflectance properties of a target are 

captured and stored across a hyperspectral image’s contiguous bands (Green et al., 1998). 

Figure 2 displays how the bands of a hyperspectral image are compiled and represent 

spectral values.  
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Figure 2. A representation of a hyperspectral image. The pixels of a hyperspectral image 

are composed of contiguous bands representing values from the visible to the shortwave 

infrared region of the electromagnetic spectrum (Goetz, 2007). 

 

Researchers initially used hyperspectral imagery to detect geologic surface 

composition (Meer et al., 2012). Tree species, like surface minerals, have been identified 

in hyperspectral imagery through categorization of their unique reflectance spectra 

(Asner et al., 2015 #2). Distinctive biophysical and biochemical properties determine a 

tree’s reflectance spectrum (Asner, 1998; Asner et al., 2015 #1). These properties, unique 

to different tree species, create identifiable scattering patterns across the VNIR and SWIR 

wavelengths (Asner, 1998; Asner et al., 2015 #2) 
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Figure 3. Spectral signatures of 20 dominant trees from Zhao et. al (2016). 
 

4.3 LiDAR 

 LiDAR, short for light detection and ranging, is a technology that uses laser 

pulses and the known speed of light to create a three-dimensional digital representation of 

a target (Gatziolis and Andersen, 2008). LiDAR sensors are mounted on aircraft to target 

and model landscape terrain (Gatziolis and Andersen, 2008). Researchers use LiDAR 

datasets to create digital elevation models (DEM) and feature height rasters (FHR) among 

other forms of analysis (Koch, 2010).  

LiDAR data provides three-dimensional tree structure information such as tree 

height and crown width (Reitberger et al., 2008). Lidar-derived tree structure information 

has been used as ancillary data during hyperspectral imagery to improve tree species 

classifications (Reitberger et al., 2008). The perimeters of individual trees have been 

extracted from FHRs to create vectors representing tree crowns (Colgan et al., 2012; 

Zhang and Qiu, 2012). LiDAR-derived tree crown polygons have been used in 
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conjunction with raster classifications to vectorize classification results and inventory 

trees (Zhang and Qiu, 2012; Alonzo et al., 2013). In the review of tree species 

classifications by Fassnacht et al. (2016), 56 of 129 publications used tree crown 

polygons as part of their methodology. In general, the use of LiDAR FHR and crown 

polygons in conjunction with multi- or hyperspectral imagery improves tree species 

classification accuracy.  

 

4.4 Digital Image Classification  

Digital image classification is a computer-based process that categorizes pixels in 

an image into classes based on their values. There are two general types of digital image 

classification, unsupervised and supervised. One major difference between the two is 

how the classes are defined. 

In unsupervised classification, the user does not define the categories through 

pixel training. Lu and Weng (2007, p. 803) define unsupervised classification as 

“clustering-based algorithms used to partition the image into several classes based on the 

statistical information inherent in the image.” Commonly used unsupervised classifiers 

are ISODATA (Ball and Hall, 1965) and K-means (Burrough et al., 2000). Unsupervised 

classifications are limited in their use because their results do not always correspond with 

informal classes. 

During supervised classification, the user defines the classes before running the 

classifier (Richards, 2013). The user selects training pixels for each category, and the 

resultant classification categorizes the remaining pixels in the image into the user-defined 

categories. A survey of classification methods by Lu and Weng (2007) suggests that a 
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supervised classification is optimal when land cover types are known and sufficient 

reference data is available to identify target features within the imagery. 

Rapid increases in computation capacity and open source environments have 

assisted the rise of advanced classification algorithms such as machine learning (Hsu et 

al., 2003, Mountrakis et al., 2011), decision tree (Pal, 2005), and deep learning classifiers 

(Chen et al., 2014). The review by Fassnacht et al. (2016) found that support vector 

machine (SVM), a machine learning algorithm, was the most widely used classifier when 

classifying tree species.  

SVM is advantageous for remote sensing scenes with complex class variability 

and high-dimensional data (Lu and Weng, 2007). This advantage is beneficial for tree 

species classifications due to the complex spectral diversity of species-rich forests and the 

high-dimensionality hyperspectral imagery. SVM requires less training data than other 

machine learning algorithms, which helps regions with limited surveyed ground truth 

data. However, SVM demands a sizable computational cost due to an inherently complex 

algorithm and requires functional parameter tuning, which is a process to find the best 

combination of SVM parameters that yields the most accurate classification results (Hsu 

et al., 2003, Mountrakis et al., 2011). 

SVM is a per-pixel classifier that clusters image spectra into a multidimensional 

feature-space, dimensions based on the number of input bands, and plots each data point 

by values. Hyperplanes separate the feature-space pixel clusters, defining how each pixel 

is classified (Hsu et al., 2003, Mountrakis et al., 2011). Figure 3 provides an example of 

simple linear hyperplane functionality.  
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Per-pixel classifiers assign each pixel in an image into one of the classification’s 

mutually exclusive classes. Spectral variability within heterogeneous landscape units can 

cause per-pixel classification results to be noisy due to inherent variation within the same 

class, such as incident light differences across tree crowns (Janssen and Molenaar, 1994). 

Vector data subdivide images into parcels, and the statistical attribution of per-pixel 

classification results helps avoid variation (Aplin et al., 2001; Blaschke, 2010). 

Attribution of pixel results to vector data is often called per-field classification (Lu and 

Weng, 2007), receiving its name from agricultural field studies. Zhang and Qiu (2012) 

attributed the results of a tree species classification to tree crown polygons to avoid 

outlier results from spectral variation across tree crowns. Tree crown complexity can lead 

to the misalignment of imagery and tree crown vectors. Misalignment creates drawbacks 

such as statistical errors caused by the inclusion of non-crown pixels. 

 
Figure 4. A linear Support Vector Machine example in two dimensions (Burges, 1998). 
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4.5 Tree Species Classification Scheme and Class Count 

A classification scheme defines the categories that classified objects get arranged 

by. In digital image classification, classification schemes define the classes that the 

classifier discriminates the scene’s pixels into (Jensen, 1996). Species-level classification 

schemes are typical in remote sensing-based tree classifications (Roth et al., 2015; Peña 

et al., 2013). Studies have also classified using genus schemes (Dalponte et al., 2013) and 

simultaneous classification of both species and genus (Jensen et al., 2012).  

The species classification review by Fassnacht et al. (2016) found that class 

counts were highly variable across publications, ranging from three to seventeen species. 

Jensen et al. (2012) and Ferreira et al. (2016) classified less than ten species. Both 

included “other” classes which act as a catch-all for trees that do not match any of the 

species put forth for classification. Alonzo et al. (2013) included fifteen species in their 

urban forest study, and Colgan et al. (2012) produced results with sixteen species, both 

including one “other” category. 

 

4.6 Classification Scale and Spatial Resolution 

Tree species classification scales range from classifying tree stands to individual 

tree crowns. Tree-stand scale classifications have utilized imagery such that a single pixel 

is composed of many trees (Roth et al., 2015). At a tree-crown scale, at least one or more 

pixels represent a single tree (Fassnacht et al., 2016; Alonzo et al., 2013). 

Roth et al. (2015) attempted to determine an optimal spatial resolution for stand-

level species classifications using a range of low resolution hyperspectral images. Their 

study resampled imagery to 20, 40, and 60 meter pixel resolutions. Dominant species 
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were classified using each resolution, and the results were compared. They found that 

stand-level dominant species classification accuracy increases at coarse resolutions up to 

60 meters, with an overall accuracy range of 61 to 96%. Peña et al. (2013) similarly 

sought to find a relationship between crown-level species classification accuracies and 

image resolution. The Peña et al. (2013) study used much higher resolutions of 0.3, 0.6, 

0.9, 1.2, 1.5, and 1.8 meters. The results of Peña et al. (2013) show higher resolution 

pixels produced the highest accuracy classifications. However, they also warn of 

excessive spectral complexity between pixels with a higher spatial resolution, confusing 

their classifications. 

 Pixel size affects the measured light stored as a pixel value (Coulter et al., 2007). 

Coarse pixel sizes reduce spectral variability by averaging a larger area’s spectral 

response (Dalponte et al., 2013; Roth et al., 2015). A coarse pixel resolution has the 

potential to mix the spectral response of multiple tree species or non-tree related objects 

into a single pixel value. Mixed pixels are likely to be misclassified during digital image 

classification. The misclassification is due to the variance of mixed pixels from the 

training pixels used to define each species (Dalponte et al., 2013). 

 

4.7 Accuracy Assessment 

 A tree species classification’s accuracy is derived using reference data of known 

tree species in a scene (Baldeck and Asner, 2014). A confusion matrix is a widely used 

accuracy assessment method of digital image classifications (Foody, 1996; Jensen et al., 

2012; Lu and Weng, 2007). The user’s and producer’s accuracy of each species, the 

overall accuracy, and the classifications kappa statistic can be determined using a 
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confusion matrix (Jensen et al., 2012; Lu and Weng, 2007). The overall accuracies of the 

species classification publications reviewed by Fassnacht et al. (2016) ranged from 65%-

100%, which are considered as acceptable accuracies of tree species maps derived from 

remotely sensed imagery. 
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Chapter 5. Methodology 

I resized a high-resolution hyperspectral image to produce six images with 

degraded resolutions and used an SVM classifier to perform tree species classifications 

from each of the resolutions. In July 2016, I conducted a tree survey to collect tree 

species data for SVM classification training and validation. Half of the trees from the 

field survey dataset were randomly assigned as classification training trees, while the 

other half were for classification validation. SVM ingested pixels from the tree crowns of 

trees labeled as “training” to train the classification. The tree species classification results 

were cross referenced with the validation trees to determine classification accuracy using 

a confusion matrix. To prevent sampling and training bias, I performed ten classifications 

for each resolution and reassigned the surveyed trees as either training or validation trees 

after each classification. 

5.1 Study Site 

The Sierra Nevada is a North American mountain range between California's 

Central Valley and the Great Basin, primarily running along California’s eastern border. 

Included within the Sierra Nevada are three national parks and nine national forests. The 

region provides valuable resources for timber, grazing, minerals, water, and hydropower 

(Centers for Water and Wildland Resources, 1996). The forest land is also used for 

outdoor activities and is considered sacred to some communities. 

The study site (Figure 4) is a forested region within the western Sierra Nevada, in 

El Dorado County. Starting at the town of Placerville, the study area extends south, 
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covering 50 square kilometers. The elevation of the site is around 1800 feet above sea 

level.  

Ecologists categorize the western Sierra Nevada forests into five biotic zones. 

Starting from the highest elevation downward, these are alpine, subalpine, upper 

montane, lower montane, and foothills. The study site sits at a transition zone between 

foothills and lower montane. The tree types in the study area are primarily woodland and 

chaparral trees with some mixed conifers. Urban forest landscapes and ornamental tree 

species are also present due to residential areas within the study site. 

Contact between trees and power lines cause many of California’s wildfires (Cal 

Fire, 2018 #2). The Department of Forestry and Fire Protection (Cal Fire) produces 

California Fire Hazard Severity maps for California’s counties. According to their 2016 

fire hazard map, Cal Fire designated the study area as moderate to high fire risk. From the 

Cal Fire incident archive, in 2016, California experienced 6959 wildfires that burned 

669,000 acres. Fire suppression cost during 2015-2016 was $608 million (CalFire, 2018 

#1).  

To prevent fire ignition, vegetation management teams have combined electrical 

utility infrastructures, mapped using GIS (Jensen and Cowen, 2011), and tree species 

classification results to identify high fire risk trees. According to Cal Fire’s Fire 

Prevention Field Guild, vegetation management teams modify their fire prevention 

method based on a tree’s species (California, 2008). Some species of conifer call for 

having their tops removed to prevent fire. Many hardwood species have stressed or dead 

limbs removed, while others such as grey pine or eucalyptus call for complete removal. 
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Aside from fire management, tree classifications have acted as data for climate 

and ecology research (Van Ewijk et al., 2014). Tree stress and mortality, fire fuel, and 

susceptibility to invasive pests are potential risks associated with climate change 

throughout some regions of Sierra Nevada (Anderegg et al., 2015). Creating tree species 

maps for the study area could provide a more informed response to fire management 

issues and forest ecology.  
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Figure 5. The extent of the study area displayed in a true color display of the 

hyperspectral mosaic.  
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5.2 Data  

5.2.1 Hyperspectral Imagery 

For this study, I used a hyperspectral image mosaic as input data for tree species 

classification. The hyperspectral imagery was collected by Quantum Spatial 

Incorporation (QSI) in July 2016 using a Headwall Photonics E-Series VNIR sensor. 

Forty-two hyperspectral flight line images were collected to cover the entire study site. 

Sensor operators set the native image resolution of the imagery to achieve a 0.3m ground 

sample size and 111 bands between 0.4 µm and 1.0 µm. 

During the course of my thesis research, I worked for QSI as a hyperspectral 

analyst and processed the hyperspectral images that I used in my research as a part of my 

job. I converted raw hyperspectral images to radiance using Headwall Photonic’s 

SpectralView software. The software converts each pixel’s digital number value to watts 

per steradian per square meter. The conversion makes use of a sensor-specific factory 

calibrated correction provided by Headwall Photonics.  

As light travels through the atmosphere, photons become altered due to scattering 

and absorption from atmospheric compounds before encountering an airborne sensor 

(Green et al., 1998). The light is changed to varying magnitudes across the spectral range 

depending on atmospheric composition and condition. Atmospheric correction routines 

attempt to ensure that pixel values match surface reflectance and that spectral magnitudes 

match across flight lines (Gao et al., 2009). An atmospheric correction converts imagery 

from radiance to reflectance values (Beisl et al., 2008).  

I performed an atmospheric correction on each of the hyperspectral flight lines 

using ATCOR-4 (Airborne and Topographic Correction) software’s Rugged Terrain 
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Correction by ReSe Applications. ATCOR-4 utilizes a radiative transfer model. To 

perform the correction, ATCOR-4 required the aircraft’s altitude, elevation, latitude, 

longitude, and sun angle of each pixel. ATCOR-4 allowed for an aerosol and water vapor 

column to be specified. The software used these to best model the atmosphere during 

image collection. I chose a “Rural” aerosol condition and set the water vapor content to 

0.4cm; reasonable values for the study area during the summer.  

Following the atmospheric correction, I orthorectified the hyperspectral flightline 

images using Parge (Parametric Geocoding and Orthorectification) software by ReSe 

Applications. The orthorectification required a DEM, sensor GPS data, and aircraft 

attitude angles. Boresight angles determined the sensor’s angular offset from the aircraft. 

Parge’s semi-automatic boresight calibration procedure calculated the boresight angles. 

The procedure followed the standard method for a push-broom sensor, using repeated 

features within overlapping cross-hatch flight lines to determine offsets. Boresight angles 

were adjusted until orthorectified pixel misalignment was less than three pixels. Once the 

boresight angles were determined, flight lines were batch orthorectified.  

Following the radiometric and geometric calibration steps, I used ENVI’s Mosaic 

tool to combine the flight lines into a single mosaic. The mosaic step made ordered the 

flightlines by acquisition order, placing the flightlines collected last on top. No feathering 

setting was applied to preserve the pixel values and avoid creating mixed pixels.  

The full contiguous range of hyperspectral bands are often more than needed in 

terms of a spectral sample when classifying tree species (Baldeck and Asner, 2014). I 

removed highly correlated spectra using ENVI’s Resize tool to reduce the hyperspectral 
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mosaic’s data size. The mosaic was resized to every third band starting at the first band, 

contracting from 111 to 37 bands. 

 

5.2.2 Feature Height Raster 

A LiDAR dataset supplied three-dimensional information of the study area. QSI 

acquired and processed the LiDAR dataset in June 2016. The data they produced was a 

DEM and the highest hit raster with a spatial resolution of 0.076 meters. The pixel values 

of the highest hit raster represent the height of objects on the surface plus the elevation of 

the surface. I created a feature height raster (FHR) using ENVI’s Band Math tool by 

subtracting the DEM from the highest hit raster. 

 

5.2.3 Tree Field Survey 

 I performed a field survey of the study area in July 2016. The survey occurred 

over four days. The purpose of the survey was to sample the location and species of trees 

visible in the imagery to train and validate the tree species classifications.  

 I sampled over 300 trees throughout the study area where public roads and paths 

were available. Portions of the study area were not accessible due to private land 

restrictions. The samples were logged in Google Earth using a field computer. To create a 

sample, I identified the species of a tree in the field and located the same tree in Google 

Earth’s imagery. I then placed a marking point on the imaged tree crown and labeled it 

with the appropriate species name. Once back from the field, I located trees sampled trees 

in the hyperspectral imagery by referencing the Google Earth imagery. I drew polygons 

around the perimeter of sampled tree crowns visible in the 0.3m hyperspectral mosaic. 
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Pixel values within the tree crown polygon represent spectral signatures for training the 

tree species classification. The majority of the classified pixels in each crown polygon 

represent the classified tree species of the crown polygon and were compared to the 

surveyed tree species in the accuracy assessment. If the surveyed tree was not visible in 

the hyperspectral imagery or if the surveyed tree was in question in any way, then the 

surveyed tree record was not used. 

 

5.3 Data Preparation 

5.3.1 Pixel Resolution Resizing 

I resized the 0.3 meter 37 band reflectance mosaic five times, creating 0.5, 1.0, 

2.0, 3.0, and 5.0 meter mosaics. ENVI’s Resize Data tool created the new mosaics. The 

tool allows users to specify a resampling method. The Pixel Aggregate method closely 

represents the pixel values that would have been recorded if the image was originally 

captured at the new pixel size. Pixel Aggregate uses a weighted average of all the pixels 

that contribute to the resampled pixel to derive a new resampled value. 

 

5.3.2 Mask Creation 

Masks limited the classification to pixels that represent trees. A mask is a raster 

that corresponds with a classification input raster, specifying the classification to skip the 

pixels covered by the mask. 

To exclude non-vegetated pixels from the classification, I created Normalized 

Difference Vegetation Index (NDVI) masks. I used ENVI to calculate NDVI rasters from 
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each mosaic and fed them into ENVI’s Create Mask tool. I set the masking threshold to a 

minimum allowable NDVI value of 0.7.  

In addition to the non-vegetated mask derived from NDVI, I also created a 

shadow mask for each of the six mosaics using ENVI’s Create Mask tool. Pixels with a 

reflectance value of 0.1 or less on the IR reflectance band (with a wavelength of 0.8 

microns) were shadows of trees.  

To ensure that all ground and short objects were excluded from the classification, 

I created a height mask by labeling pixels with an FHR value of 2 meters or lower using 

ENVI’s Create Mask tool. I then used GDAL’s warp function to create a resized height 

mask for each of the six mosaics.  
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Figure 6. Example of the three types of masks combined to include in the tree species 

classification. The mask data source in the left column and the derived mask in the right 

column. The final combined mask in the bottom right. 

 

The final combined classification mask for each spatial resolution contains pixels 

that were labeled as being short, non-vegetated, or shadow in the height, NDVI, and 

shadow masks.   Figure 6 provides a visual example of the mask creation and combing 

process. 
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5.5 Tree Species Classification 

I used the machine learning python module SciKit-Learn (https://scikit-

learn.org/stable/modules/svm.html#) to perform the SVM classification. SciKit-Learn 

provides a few SVM classifier options. I set the SVM classifier’s kernel type to radial 

basis function (RBF), which allows the classifier to build complex, non-linear decision 

boundaries for classification. An RBF SVM classifier has two primary parameters. The C 

parameter sets the decision function margin and the gamma parameter determines how 

far a single training pixel reaches its decision boundaries (https://scikit-

learn.org/stable/auto_examples/svm/plot_rbf_parameters.html). A high C value creates 

finer decision boundaries that enclose the support vectors of the training data better. A 

high gamma value reduces the reach of a support vector to its decision boundaries. The 

values for both parameters were set using SciKit-Learn’s built-in cross-validation routine. 

Cross-validation determines the optimal C and gamma values by taking a small subset of 

pixels and running test classifications on them. A range of C and gamma values were 

tested until the routine determined the highest performing paired values. The incremental 

changing values for C used the formula 2�, where x ranged as an integer from -2 to 8. 

The values for gamma were created using the same formula, where x ranged as an integer 

from -9 to 1. 

The pixels within the tree crown polygons were used to train the classifier. The 

tree polygons were randomly split 50-50 and designated as either a training or validation 

tree. All unmasked pixels with a center point within the training polygons were used to 

train the classifier. 
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The hyperspectral mosaic was classified ten times at each resolution. Once each 

of the six resolution mosaics was classified using the same set of training trees, the tree 

crown polygons were reshuffled and randomly assigned again as either for training or for 

validation. In total, there were 60 classified tree species raster maps. I also recorded the 

processing time to complete the first classification of each resolution 

 

5.6 Accuracy Assessment 

 I created sixty confusion matrices, 10 for each of the six resolution results. The 

confusion matrices compared the classified results to the true species type for each of the 

validation polygons. The output of the SVM classifier is a classified raster. All of the 

classified pixels within a tree crown do not always match with the same species. To 

determine a single class for a tree crown, the tree crown polygons were used. A tree’s 

class was set to match the majority of classified pixels within each tree crown polygon. 

A mean averaged overall accuracy and kappa were determined for each resolution 

to condense the 60 confusion matrices. These were created by averaging the initial 

overall accuracies and kappa statistics from 10 confusion matrices within a resolution. 
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Chapter 6. Results 

6.1 Tree Survey 

Once I converted the surveyed tree dataset to tree crown polygons, eleven 

dominant species had sufficient sample counts (Table 1). Canyon Live Oak and 

Ponderosa Pine had the highest sample rate. I grouped the Eucalyptus trees into a genus-

level class because of their limited count at a species level. I created the Other Conifer 

and Other Broadleaf categories to group species with low sample counts. The Other 

Conifer class consists of Coastal Redwood, Aleppo Pine, and Jeffery Pine. The Other 

Broadleaf class consists of Big Leaf Maple, Black Locust, London Plane, Tree of 

Heaven, Black Walnut, and Fremont Cottonwood. 

Figure 7 is a map of the distribution of surveyed trees. Tree distribution was 

limited to roads and public locations due to a large amount of private land throughout the 

study site.  

Figure 8 details the variation in tree crown size through a graphing display of 

polygon areas ranges for each species. Valley Oak had the greatest area range and Deodar 

Cedar had both the smallest range and lowest average crown area. 
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Table 1. Tree species name and sample count of surveyed tree crown polygons. 

 

 

Figure 7. Field survey tree sample location and species. 
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Figure 8. Range of tree crown area for each species. The points along the range lines 

represent the averaged crown areas. 

 

6.2 Resize Hyperspectral Mosaics 

I spectrally calibrated, orthorectified, and mosaicked hyperspectral flight lines 

with a 0.3 meters spatial resolution. The result is a hypercube mosaic with 111 spectral 

bands and a file size of 1.8TB. Reducing the bands to 37, leaving one out of every third 

band, reduced size of the 0.3 meter mosaic to 602GB. 

I spatially resized the 0.3m hyperspectral mosaic to 0.5, 1.0, 2.0, 3.0, and 5.0 

meters (Figure 9). This procedure reduced the data size significantly to 217GB, 55GB, 

14GB, 6GB, and 2GB, respectively. 
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Figure 9. Examples of hyperspectral images with different spatial resolutions in true 

color display. 

 

6.3 Classification Results 

 I classified all the hyperspectral mosaics using SVM on pixels that were outside 

the classification mask. The classification masks were created by combining an NDVI 

mask, a shadow mask, and an FHR derived height mask into a single combined mask for 

each resolution.  

The result of the classification step was 60 classified tree species raster maps, 10 for each 

resolution. Each map has 9 tree species. They are California Black Oak, Blue Oak, 

Canyon Live Oak, Valley Oak, Deodar Cedar, Incense Cedar, Gray Pine, Ponderosa Pine, 

and one genus class (Eucalyptus). In addition, there are two “other” classes (Other 

Conifer and Other Broadleaf).  

Figure 10 displays a sample classification result at each resolution. Figure 11 displays a 

1.0m tree species classification of the entire study site. The gap in the middle of 

classification is due to limited LiDAR coverage. 
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The species results seem to match the observations from the aggregated field 

survey data. Based on the classification in Figure 11 and the species pixel counts in Table 

2, the study site is dominated by Canyon Live Oak (37%) and California Black Oak 

(18%) with a sizable Ponderosa Pine population (7%). The species dominance and 

distribution match the field survey’s result. 

A large population of Blue oak exists on the western side of the study area and a large 

pocket of Ponderosa Pine sits in the northeast section. The existence of oak dominance in 

the west and Ponderosa Pine in the east may mark a transition from foothill woodlands to 

lower montane biozones. The average elevation increases towards the northeast of the 

study site. The elevation increase supports the classification results of Ponderosa Pine 

clustered in the northeast region. 

 

 
Figure 10. Example tree species classification results from each of the six spatial 

resolutions. 
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Figure 11. Tree species classification result of the study area. The resolution of the 

classified raster is one meter. See Figure 9 for map legend. 
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Table 2. Per-class pixel count and percent of total classified pixels from each of the 

classified mosaics. 

Class 

Pixels Count 

(0.3m) 

Percent of 

Total Pixels 

(0.3m) 

Pixels Count 

(0.5m) 

Percent of 

Total Pixels 

(0.5m) 

Pixels Count 

(1.0m) 

Percent of 

Total Pixels 

(1.0m) 

Blue Oak 150,742,736 16.60 61,816,197 15.60 12,457,839 12.55 

California 
Black Oak 162,575,527 17.91 74,914,273 18.91 17,935,507 18.06 

Canyon Live 
Oak 300,950,260 33.15 131,893,152 33.29 37,198,525 37.46 

Deodar 
Cedar 30,338,385 3.34 12,649,834 3.19 1,830,152 1.84 

Eucalyptus 13,413,210 1.48 6,600,293 1.67 1,196,192 1.20 

Gray Pine 45,058,384 4.96 18,933,511 4.78 5,216,315 5.25 

Incense 
Cedar 13,146,717 1.45 7,594,046 1.92 1,333,854 1.34 

Ponderosa 
Pine 68,478,841 7.54 25,703,803 6.49 7,396,299 7.45 

Valley Oak 76,648,041 8.44 34,532,257 8.72 9,909,204 9.98 

Other 
Broadleaf 33,564,072 3.70 16,619,307 4.20 3,680,843 3.71 

Other 
Conifer 13,019,704 1.43 4,900,943 1.24 1,139,628 1.15 

Pixels Count 

(2.0m) 

Percent of 

Total Pixels 

(2.0m) 

Pixels Count 

(3.0m) 

Percent of 

Total Pixels 

(2.0m) 

Pixels Count 

(5.0m) 

Percent of 

Total Pixels 

(5.0m) 

Blue Oak 3,848,573 15.36 1,866,756 16.77 659,006 16.44 

California 
Black Oak 5,231,071 20.88 2,592,081 23.28 759,053 18.94 

Canyon Live 
Oak 9,315,314 37.18 4,340,366 38.98 1,644,936 41.04 

Deodar 
Cedar 169,432 0.68 40,249 0.36 16,677 0.42 

Eucalyptus 183,491 0.73 58,148 0.52 28,778 0.72 

Gray Pine 1,169,823 4.67 455,023 4.09 160,437 4.00 

Incense 
Cedar 502,687 2.01 281,636 2.53 125,593 3.13 

Ponderosa 
Pine 1,899,358 7.58 744,034 6.68 273,766 6.83 

Valley Oak 2,003,429 8.00 587,832 5.28 284,940 7.11 

Other 
Broadleaf 365,877 1.46 150,640 1.35 41,203 1.03 

Other 
Conifer 365,877 1.46 17,463 0.16 13,401 0.33 
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Figure 12 provides details on the processing time to complete the first 

classification at each mosaic resolution. When resolution increases from coarse to fine, 

the classification time increases. The pixel count of the 0.3m mosaic was much more than 

the 5.0m mosaic, which is the likely culprit for increasing processing time. As the pixel 

size approaches 0, the processing time increases exponentially toward infinite.  

 

Figure 12. A. Classification time versus cell size. B. Classification time versus cell 

count. 

6.4 Accuracy Assessment 

 I calculated the accuracy of each classification. To do this, I used a confusion 

matrix which compared the validation tree dataset from the field survey to the classified 

majority species within each tree crown polygon. For individual confusion matrix results, 

see the appendix. The overall accuracy and kappa statistic from each classification is 

listed in Table 3. Table 3 also provides an averaged overall accuracy and kappa statistic 

for each resolution. 

The TV_# represents each time a classification was created using a new randomly 

assigned training and validation dataset.  
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The 1.0 meter imagery produced classifications with the greatest average overall 

accuracy and kappa. The 5.0 meter imagery produced the lowest accuracy. The 2.0 meter 

image produced the greatest range in classification accuracies. Figure 13 details the 

overall classification accuracy range for each pixel resolution. Figure 14 shows that 

Valley Oak experienced the highest average producer’s accuracy across each resolution, 

while both Other Conifer and Other Broadleaf were consistently low. 

Table 3. Overall accuracy and kappa statistic for ten classification iterations per pixel 

size. Averaged overall accuracy and kappa for each pixel size along the bottom. 

0.3 m 0.3 m 0.5 m 0.5 m 1.0 m 1.0 m 2.0 m 2.0 m 3.0 m 3.0 m 5.0 m 5.0 m 

TV 1 65.79 0.613 71.05 0.67 74.35 0.709 72.81 0.691 73.28 0.696 65.14 0.601 

TV 2 70.18 0.662 69.3 0.65 74.35 0.709 72.17 0.686 71.05 0.671 61.09 0.557 

TV 3 69.06 0.648 70.67 0.67 70.09 0.659 73.13 0.693 70.48 0.664 68.2 0.636 

TV 4 66.08 0.616 69.6 0.65 73.48 0.699 73.36 0.698 73.36 0.698 63.35 0.583 

TV 5 69.43 0.651 73.04 0.69 72.49 0.686 70.56 0.663 68.83 0.643 61.09 0.554 

TV 6 71.93 0.683 71.62 0.68 70.48 0.666 72.37 0.687 69.16 0.65 67.58 0.629 

TV 7 67.98 0.638 72.73 0.69 75.98 0.728 75.11 0.718 72.12 0.682 65.26 0.602 

TV 8 68.42 0.643 71.93 0.68 73.04 0.694 68.56 0.642 70.87 0.668 60.65 0.551 

TV 9 69.26 0.649 73.04 0.693 73.16 0.694 68.26 0.639 70.26 0.66 63.8 0.585 

TV 10 70.61 0.666 74.89 0.714 74.89 0.714 75.88 0.725 73.57 0.699 68.06 0.635 

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa 

Avg 68.87 0.647 71.79 0.679 73.23 0.696 72.22 0.684 71.3 0.673 64.42 0.593 

*OA = Overall Accuracy
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Figure 13. Classification accuracy range and averaged overall accuracy for each pixel 

resolution.  

 

Figure 14. Average producer’s accuracy versus pixel resolution. Average producer’s 

accuracy was created by calculating the mean producer’s accuracy from the ten 

classifications created at each resolution. 
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Chapter 7. Discussion 

 By comparing the classification results at each resolution, the results suggest that 

tree species classification accuracy is a function of hyperspectral image resolution. 

However, depending on the user or use case of the species maps, the range in 

classification accuracies maybe be considered negligible or significant. 

It is possible that at higher resolutions, the pixels were able to capture natural 

inter-crown biophysical variability which may have produced too much variance in each 

species class for the classification to perform successfully. This explanation may be a 

reason why the tree crowns in the high-resolution classifications displayed in figure 10 

were not classifying homogeneously but instead were composed of mixed species.  

 The drop in classification accuracy of the low-resolution images may be a result 

of the pixel size being larger than a portion of the surveyed tree crowns. Around 10% of 

the tree crowns were less than 25 square meter, which is the ground footprint size of the 5 

meter pixels. The spectral values of a pixel larger than a tree crown would represent 

reflected light from both the tree and its surroundings. Mixed pixels likely confused the 

classifier and produced a decrease in classification accuracy. 

 Valley Oak experienced consistently high producer’s accuracy across each 

resolution (Figure 14). Valley Oak also had some of the largest tree crown areas (Figure 

8). The large crown size likely contributed to the high producer’s accuracy by allowing 

more pixels to be included in the majority analysis which determined the final class for 

each tree crown. Deodar Cedar had an exceptionally small average tree crown, as well as 

producer’s accuracies that were much lower than the Valley Oak’s. It is difficult to 

determine a relationship between species-specific accuracy and tree crown size, however, 
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Other Broadleaf and Other Conifer both had consistently poor producer’s accuracies with 

somewhat small crown sizes (Figure 14 and 8). Their crown sizes may have been a 

contributing factor that caused their accuracies to be low. 

The results of this study indicate that my hypothesis was wrong. My expectations 

for this study were that the images with the highest spatial resolutions would produce the 

greatest accuracy. The 1.0m and 2.0m mosaics produced the highest average overall 

accuracies, while the 0.3m image produced the second-lowest overall accuracy.  

Peña et al. (2013) performed a similar study to this one, degrading the spatial 

resolution of a hyperspectral image to test for optimal tree species classification 

resolutions. They used the spectral angle mapper classifiers to classify common trees in 

the Rio Clarillo reserve in Chile. The best overall and per-class accuracy of Peña et al. 

(2013) was reached with their highest spatial resolution of 0.3m. They suggest, however, 

that a pixel size just a little smaller than the tree crown diameter is the most appropriate 

to represent the spatial variability of the trees of interest. The discrepancy between the 

results of this study compared to Peña et al. (2013) could be a result of differing crown 

diameters between the two sets of the species of interest.  

I believe that one of the largest limitations of this study was the lack of a 

thoroughly designed field survey. This caused the training and validation dataset to be 

statistically biased. Due to the limited area of public access, the field survey was not able 

to achieve a uniformly random distribution of sampled trees. Measuring & Monitoring 

Plant Populations, a guide to plant populations sampling by Elzinga et al. (1998), 

indicates that a random cluster sampling methodology similar to the one used in this 

research is more appropriately used for smaller geographic regions. They mention that a 
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disadvantage to cluster sampling methodology is that it is difficult to figure out how 

many clusters need to be sampled in order to appropriately represent the population of 

interest. Sampling using a grid-cell method, which divides the study site using a grid, 

would help increase sample distribution and uniformity. The sample count per species 

was also low. Little effort was made to match the count per species to the study site’s 

natural species population count. One method for ensuring that species sample count is 

proportionate to the natural species population is to use existing data from the study site 

(Elzinga et al., 1998). U.S. Forest Service provides reference species population data 

through their publicly available CalVeg vegetation classification maps (Existing 

Vegetation – CalVeg, 2004). With a larger and more thoroughly distributed field survey, 

the classification results may reveal a more reliable relationship between tree species 

classification accuracy and hyperspectral spatial resolution. 

 An interesting result from of this study was the relationship between pixel 

resolution and classification time. The time to classify the 0.3m image (820 minutes) was 

close to two orders of magnitude more than the 5.0m image (7 minutes) while still 

achieving a comparable averaged overall accuracy (Figure 12 A). The classification time 

increases exponentially when the resolution increases (Figure 12 A) and the classification 

time increases linearly with the pixel count as the resolution increases (Figure 12 B). This 

indicates that computational time is proportional to the number of pixels used in the 

classification. Users should factor in pixel count and computational time when selecting a 

resolution. 

 The results of this study are significant because they suggest that reasonable 

classification results can be achieved using imagery at scales associated with airborne 
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sensors, as well as UAV and high-resolution satellite imagery. Airborne scale acquisition 

costs are high and require skilled personnel. UAV image collection campaigns may be a 

more cost-efficient way to collect imagery for tree species classification. Future studies 

should use the relationship identified in this study to help them choose a resolution that 

best fits their budget and computational power. 

 The classification accuracy results are relatively low, in the mid 60% to mid 70% 

range. Continued research should attempt to further understand the relationship between 

classification accuracy to hyperspectral imagery resolution while also working toward 

achieving higher accuracy results. The classification input for this study was a simple 

reduced-band reflected raster. Studies have had success improving their species 

classification accuracy by including image-derived products into their classification. 

Bands from principal component analysis and vegetation indices have been used as 

classification inputs to increase results (Jensen et al., 2012 & Krishnayya, 2014). Derived 

image products and improved tree survey data may reveal a more detailed relationship 

between accuracy and spatial resolution.  
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Chapter 8. Conclusion 

 Hyperspectral imagery has become a common remote sensing data type used in 

tree species classifications. High spatial resolution hyperspectral imagery has the inherent 

drawbacks of expensive acquisition costs, large data sizes, and can be computationally 

taxing to use. This study attempted to find a relationship between spatial resolution of 

hyperspectral imagery and tree species classification accuracy. By comparing the 

classification results at each resolution, the results suggest that tree species classification 

accuracy is not related to hyperspectral image resolution. Depending on the user or use 

case of the classification maps, the variations in classification accuracies maybe be 

considered negligible. The crown size of the trees appears to be an important factor 

mediating classification accuracy and image resolution. Tree species with smaller crown 

size are more likely to be misclassified on images with coarser resolution. The 

classification processing time for higher resolutions was much larger than at lower spatial 

resolution, appearing to the number of pixels being classified. Future research may 

further investigate the relationship by comparing classification results produced from 

more comprehensive field survey datasets and image-derived products. 
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Appendix: Classification Confusion Matrices 
A. Confusion matrix for individual classification runs of 0.3m images.

0.3m #1 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 11 0 0 0 0 5 0 3 1 0 0 20 55.00

Deodar Cedar 0 7 0 1 0 0 1 0 1 0 1 11 63.64

Eucalyptus 1 0 7 0 0 0 0 0 0 0 0 8 87.50

Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00

Incense Cedar 0 0 1 0 12 0 1 0 0 0 1 15 80.00

Live Oak 7 1 0 0 0 24 0 1 5 0 0 38 63.16

Ponderosa Pine 0 1 0 0 2 1 36 1 0 0 1 42 85.71

Valley Oak 2 0 0 0 0 1 0 11 6 1 0 21 52.38

Black Oak 2 0 0 0 0 9 0 6 13 2 0 32 40.63

Other Deciduous 0 0 1 0 0 1 1 1 1 4 1 10 40.00

Other Conifer 0 1 0 0 4 0 0 1 0 0 4 10 40.00

Count 23 10 9 22 18 41 39 24 27 7 8 Accuracy Kappa

User's 47.83 70.00 77.78 95.45 66.67 58.54 92.31 45.83 48.15 57.14 50.00 65.79 0.613

0.3m #2 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 16 0 0 0 0 3 0 0 1 0 0 20 80.00

Deodar Cedar 0 8 0 2 1 0 0 0 0 0 0 11 72.73

Eucalyptus 1 0 5 0 0 0 0 0 0 1 0 7 71.43

Gray Pine 0 1 0 21 0 0 0 0 0 0 0 22 95.45

Incense Cedar 0 1 0 0 11 0 3 0 0 0 0 15 73.33

Live Oak 4 0 0 0 0 26 0 2 7 0 0 39 66.67

Ponderosa Pine 0 1 0 0 1 2 34 1 0 0 0 39 87.18

Valley Oak 3 0 0 0 0 3 1 10 2 1 0 20 50.00

Black Oak 2 0 0 0 0 5 0 6 19 1 0 33 57.58

Other Deciduous 0 1 0 0 2 2 0 0 1 6 0 12 50.00

Other Conifer 0 1 0 0 3 0 0 1 0 1 4 10 40.00

Count 26 13 5 23 18 41 38 20 30 10 4 Accuracy Kappa

User's 61.54 61.54 100.00 91.30 61.11 63.41 89.47 50.00 63.33 60.00 100.00 70.18 0.662

0.3m #3 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 0 0 4 0 2 2 0 0 20 60.00

Deodar Cedar 0 10 0 0 0 0 0 0 0 1 0 11 90.91

Eucalyptus 1 0 5 0 0 0 0 0 1 0 0 7 71.43

Gray Pine 0 0 0 21 0 0 0 0 1 0 0 22 95.45

Incense Cedar 0 0 1 0 6 0 4 0 0 1 3 15 40.00

Live Oak 1 0 0 0 0 31 1 4 1 0 0 38 81.58

Ponderosa Pine 0 0 1 0 2 0 34 1 0 2 0 40 85.00

Valley Oak 0 0 0 0 0 3 1 6 9 0 0 19 31.58

Black Oak 0 1 0 0 0 5 0 4 20 1 0 31 64.52

Other Deciduous 0 0 2 0 0 0 0 1 1 6 0 10 60.00

Other Conifer 1 1 0 0 1 0 2 0 0 2 3 10 30.00

Count 15 12 9 21 9 43 42 18 35 13 6 Accuracy Kappa

User's 80.00 83.33 55.56 100.00 66.67 72.09 80.95 33.33 57.14 46.15 50.00 69.06 0.648

0.3m #4 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 10 0 0 1 0 5 0 2 3 0 0 21 47.62

Deodar Cedar 0 7 1 1 0 0 1 0 1 0 0 11 63.64

Eucalyptus 0 0 6 0 0 0 0 0 0 1 0 7 85.71

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 0 0 0 12 0 3 0 0 0 0 15 80.00

Live Oak 3 1 0 0 0 21 0 7 4 1 0 37 56.76

Ponderosa Pine 0 0 0 0 1 1 36 0 0 1 1 40 90.00

Valley Oak 2 0 0 0 0 4 0 11 3 0 0 20 55.00

Black Oak 3 1 0 0 0 7 0 3 16 1 0 31 51.61

Other Deciduous 0 1 0 0 2 2 1 0 3 4 0 13 30.77

Other Conifer 0 1 0 0 3 0 1 0 0 0 5 10 50.00

Count 18 11 7 24 18 40 42 23 30 8 6 Accuracy Kappa

User's 55.56 63.64 85.71 91.67 66.67 52.50 85.71 47.83 53.33 50.00 83.33 66.08 0.616

0.3m #5 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 0 0 5 0 1 1 0 0 19 63.16

Deodar Cedar 0 9 0 0 0 0 1 1 0 0 0 11 81.82

Eucalyptus 1 0 6 0 0 0 0 0 0 1 0 8 75.00

Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00

Incense Cedar 0 1 0 0 9 0 5 0 0 0 0 15 60.00

Live Oak 2 1 0 0 0 25 0 3 8 0 0 39 64.10

Ponderosa Pine 0 0 0 0 1 1 38 1 0 0 1 42 90.48

Valley Oak 4 0 0 0 0 3 0 7 6 0 0 20 35.00

Black Oak 1 1 0 0 0 5 1 4 20 0 0 32 62.50

Other Deciduous 0 0 0 0 0 3 1 0 0 8 0 12 66.67

Other Conifer 0 3 0 0 1 0 2 0 0 0 4 10 40.00

Count 20 15 6 21 11 42 48 17 35 9 5 Accuracy Kappa

User's 60.00 60.00 100.00 100.00 81.82 59.52 79.17 41.18 57.14 88.89 80.00 69.43 0.651
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0.3m #6 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 14 0 1 0 0 2 0 2 1 0 0 20 70.00 
Deodar Cedar 0 7 0 1 0 0 1 0 1 0 1 11 63.64 
Eucalyptus 1 0 6 0 0 0 0 0 0 0 0 7 85.71 
Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00 
Incense Cedar 0 0 1 0 12 0 1 0 0 0 1 15 80.00 
Live Oak 6 1 0 0 0 25 0 3 3 1 0 39 64.10 
Ponderosa Pine 0 1 0 0 2 0 37 0 0 1 0 41 90.24 
Valley Oak 3 0 0 0 0 1 0 11 5 0 0 20 55.00 
Black Oak 1 1 0 0 0 2 0 5 21 1 0 31 67.74 
Other Deciduous 0 1 0 0 0 1 0 0 3 5 3 13 38.46 
Other Conifer 0 1 0 0 3 0 1 0 0 0 5 10 50.00 
Count 25 12 8 22 17 31 40 21 34 8 10 Accuracy Kappa 
User's 56.00 58.33 75.00 95.45 70.59 80.65 92.50 52.38 61.76 62.50 50.00 71.93 0.683 

 

0.3m #7 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 7 0 0 0 0 6 0 6 0 0 0 19 36.84 
Deodar Cedar 0 10 0 0 0 0 1 0 0 0 0 11 90.91 
Eucalyptus 0 0 7 0 0 0 0 0 0 1 0 8 87.50 
Gray Pine 0 2 0 19 0 0 0 0 0 0 0 21 90.48 
Incense Cedar 0 1 0 0 12 0 2 0 0 0 0 15 80.00 
Live Oak 0 0 0 0 0 25 1 4 7 2 0 39 64.10 
Ponderosa Pine 0 1 0 0 1 0 35 0 0 1 1 39 89.74 
Valley Oak 2 0 0 0 0 2 2 8 7 0 0 21 38.10 
Black Oak 1 1 0 0 0 5 0 3 20 2 0 32 62.50 
Other Deciduous 0 1 0 0 0 1 0 0 1 8 2 13 61.54 
Other Conifer 0 2 0 0 4 0 0 0 0 0 4 10 40.00 
Count 10 18 7 19 17 39 41 21 35 14 7 Accuracy Kappa 
User's 70.00 55.56 100.00 100.00 70.59 64.10 85.37 38.10 57.14 57.14 57.14 67.98 0.638 

 

0.3m #8 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 9 0 0 2 0 6 0 3 0 0 0 20 45.00 
Deodar Cedar 0 8 0 1 0 0 0 0 1 0 1 11 72.73 
Eucalyptus 1 0 6 0 0 0 0 0 0 1 0 8 75.00 
Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00 
Incense Cedar 0 0 0 0 12 0 3 0 0 0 0 15 80.00 
Live Oak 4 3 0 0 0 23 0 2 6 0 0 38 60.53 
Ponderosa Pine 0 0 1 0 2 0 35 0 0 0 1 39 89.74 
Valley Oak 2 0 0 0 0 5 1 8 3 1 0 20 40.00 
Black Oak 2 0 0 0 0 4 0 3 22 1 0 32 68.75 
Other Deciduous 0 2 0 0 0 2 2 0 0 5 3 14 35.71 
Other Conifer 0 1 0 0 1 0 0 1 0 0 7 10 70.00 
Count 18 14 7 24 15 40 41 17 32 8 12 Accuracy Kappa 
User's 50.00 57.14 85.71 87.50 80.00 57.50 85.37 47.06 68.75 62.50 58.33 68.42 0.643 

 

0.3m #9 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 12 0 0 0 0 7 0 1 0 0 0 20 60.00 
Deodar Cedar 0 9 0 1 0 0 0 0 1 0 0 11 81.82 
Eucalyptus 1 0 5 0 0 0 0 0 0 1 0 7 71.43 
Gray Pine 0 0 0 20 0 1 0 0 0 0 0 21 95.24 
Incense Cedar 0 0 0 0 11 0 4 0 0 0 0 15 73.33 
Live Oak 3 2 0 0 0 24 0 5 6 0 0 40 60.00 
Ponderosa Pine 0 0 0 0 1 1 40 0 0 1 0 43 93.02 
Valley Oak 4 0 0 0 0 2 1 11 2 1 0 21 52.38 
Black Oak 3 0 0 0 0 5 0 2 21 1 0 32 65.63 
Other Deciduous 0 0 0 0 0 1 1 1 1 5 2 11 45.45 
Other Conifer 0 2 0 0 1 0 3 0 1 1 2 10 20.00 
Count 23 13 5 21 13 41 49 20 32 10 4 Accuracy Kappa 
User's 52.17 69.23 100.00 95.24 84.62 58.54 81.63 55.00 65.63 50.00 50.00 69.26 0.649 

 

0.3m #10 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 10 0 0 1 0 5 0 3 1 0 0 20 50.00 
Deodar Cedar 0 7 0 1 1 0 2 0 0 0 0 11 63.64 
Eucalyptus 0 0 6 1 0 0 0 0 0 1 0 8 75.00 
Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00 
Incense Cedar 0 0 0 0 12 0 2 0 0 0 0 14 85.71 
Live Oak 3 0 0 1 0 28 0 4 3 1 0 40 70.00 
Ponderosa Pine 0 0 1 0 2 1 35 0 0 1 0 40 87.50 
Valley Oak 1 0 0 0 0 2 0 11 6 0 0 20 55.00 
Black Oak 1 1 0 0 0 3 1 3 21 1 0 31 67.74 
Other Deciduous 0 0 0 0 1 2 0 0 1 6 2 12 50.00 
Other Conifer 1 0 0 0 2 0 1 0 3 0 3 10 30.00 
Count 16 8 7 26 18 41 41 21 35 10 5 Accuracy Kappa 
User's 62.50 87.50 85.71 84.62 66.67 68.29 85.37 52.38 60.00 60.00 60.00 70.61 0.666 
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B. Confusion matrix for individual classification runs of 0.5m images.
0.5m #1 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 1 0 3 0 3 2 0 0 21 57.14

Deodar Cedar 0 8 0 0 0 0 2 0 0 0 1 11 72.73

Eucalyptus 1 0 7 0 0 0 0 0 0 0 0 8 87.50

Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00

Incense Cedar 0 1 0 0 11 0 1 0 0 0 1 14 78.57

Live Oak 8 1 0 0 0 26 0 1 2 0 0 38 68.42

Ponderosa Pine 0 0 0 0 1 2 37 1 1 0 0 42 88.10

Valley Oak 2 0 0 0 0 0 0 12 7 0 0 21 57.14

Black Oak 1 0 0 0 0 7 0 5 18 1 0 32 56.25

Other Deciduous 0 0 1 0 0 1 0 0 1 6 1 10 60.00

Other Conifer 0 1 0 0 3 0 1 1 0 0 4 10 40.00

User's 50.00 72.73 87.50 95.45 73.33 66.67 90.24 52.17 58.06 85.71 57.14 71.05 0.671

0.5m #2 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 14 0 1 0 0 1 0 1 4 0 0 21 66.67

Deodar Cedar 0 8 0 2 1 0 0 0 0 0 0 11 72.73

Eucalyptus 1 0 5 0 0 0 0 0 0 1 0 7 71.43

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 1 0 0 10 0 3 0 0 0 0 14 71.43

Live Oak 2 1 0 0 0 26 0 3 7 0 0 39 66.67

Ponderosa Pine 1 0 0 0 3 0 32 0 0 2 1 39 82.05

Valley Oak 3 0 0 0 0 1 1 12 3 0 0 20 60.00

Black Oak 2 0 0 0 0 6 0 6 19 0 0 33 57.58

Other Deciduous 0 1 0 0 0 2 1 0 1 6 1 12 50.00

Other Conifer 1 1 0 0 3 0 1 0 0 0 4 10 40.00

Count 24 12 6 24 17 36 38 22 34 9 6 Accuracy Kappa

User's 58.33 66.67 83.33 91.67 58.82 72.22 84.21 54.55 55.88 66.67 66.67 69.30 0.652

0.5m #3 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 11 0 0 0 0 7 0 1 2 0 0 21 52.38

Deodar Cedar 0 9 0 0 0 0 0 0 0 1 1 11 81.82

Eucalyptus 0 0 6 0 0 0 0 0 0 1 0 7 85.71

Gray Pine 0 0 0 21 0 0 0 0 1 0 0 22 95.45

Incense Cedar 0 2 0 0 7 0 5 0 0 0 1 15 46.67

Live Oak 0 0 0 0 0 31 0 3 4 0 0 38 81.58

Ponderosa Pine 0 0 1 0 4 2 32 0 0 1 0 40 80.00

Valley Oak 0 0 0 0 0 2 1 11 6 0 0 20 55.00

Black Oak 1 0 0 0 0 4 0 4 21 1 0 31 67.74

Other Deciduous 0 0 1 0 0 0 1 0 1 6 1 10 60.00

Other Conifer 0 1 0 0 2 0 2 0 1 0 4 10 40.00

Count 12 12 8 21 13 46 41 19 36 10 7 Accuracy Kappa

User's 91.67 75.00 75.00 100.00 53.85 67.39 78.05 57.89 58.33 60.00 57.14 70.67 0.666

0.5m #4 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 1 0 4 0 1 3 0 0 21 57.14

Deodar Cedar 0 7 1 0 0 0 2 0 0 0 1 11 63.64

Eucalyptus 0 1 6 0 0 0 0 0 0 0 0 7 85.71

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 0 0 0 10 0 4 0 0 0 0 14 71.43

Live Oak 6 3 0 0 0 24 0 1 3 1 0 38 63.16

Ponderosa Pine 0 0 0 0 0 1 37 1 0 0 1 40 92.50

Valley Oak 2 0 0 0 0 2 0 13 3 0 0 20 65.00

Black Oak 2 0 0 0 0 5 0 4 19 0 1 31 61.29

Other Deciduous 0 1 0 0 1 3 2 0 0 4 2 13 30.77

Other Conifer 0 0 0 0 4 0 2 0 0 0 4 10 40.00

Count 22 12 7 23 15 39 47 20 28 5 9 Accuracy Kappa

User's 54.55 58.33 85.71 95.65 66.67 61.54 78.72 65.00 67.86 80.00 44.44 69.60 0.655

0.5m #5 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 1 0 0 3 1 0 2 0 0 20 65.00

Deodar Cedar 0 9 0 0 0 0 2 0 0 0 0 11 81.82

Eucalyptus 1 0 6 0 0 0 1 0 0 0 0 8 75.00

Gray Pine 0 0 0 20 0 1 0 0 0 0 0 21 95.24

Incense Cedar 0 0 0 0 11 0 3 0 0 1 0 15 73.33

Live Oak 2 0 0 0 0 34 0 0 3 0 0 39 87.18

Ponderosa Pine 0 0 0 0 1 1 38 1 0 0 1 42 90.48

Valley Oak 2 0 0 0 0 2 0 10 6 0 0 20 50.00

Black Oak 0 1 0 0 0 4 0 7 20 0 0 32 62.50

Other Deciduous 0 0 0 0 0 3 2 0 2 5 0 12 41.67

Other Conifer 0 3 0 0 2 0 3 0 0 0 2 10 20.00

Count 18 13 7 20 14 48 50 18 33 6 3 Accuracy Kappa

User's 72.22 69.23 85.71 100.00 78.57 70.83 76.00 55.56 60.61 83.33 66.67 73.04 0.691
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0.5m #6 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 16 0 0 0 0 2 0 1 1 0 0 20 80.00 
Deodar Cedar 0 7 0 1 0 0 1 1 0 0 1 11 63.64 
Eucalyptus 1 0 6 0 0 0 0 0 0 0 0 7 85.71 
Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00 
Incense Cedar 0 1 0 0 12 0 1 0 0 0 1 15 80.00 
Live Oak 6 0 0 0 0 27 0 3 3 0 0 39 69.23 
Ponderosa Pine 1 0 0 0 3 0 36 1 0 0 0 41 87.80 
Valley Oak 1 0 0 0 0 0 0 13 7 0 0 21 61.90 
Black Oak 1 1 0 0 0 4 0 5 19 1 0 31 61.29 
Other Deciduous 0 0 0 0 0 2 0 0 2 4 5 13 30.77 
Other Conifer 0 1 0 0 3 0 2 0 1 0 3 10 30.00 
Count 26 10 6 22 18 35 40 24 33 5 10 Accuracy Kappa 
User's 61.54 70.00 100.00 95.45 66.67 77.14 90.00 54.17 57.58 80.00 30.00 71.62 0.679 

 

0.5m #7 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 11 0 0 0 0 4 0 3 2 0 0 20 55.00 
Deodar Cedar 0 10 0 0 0 0 1 0 0 0 0 11 90.91 
Eucalyptus 0 1 7 0 0 0 0 0 0 0 0 8 87.50 
Gray Pine 0 1 0 19 0 0 0 0 1 0 0 21 90.48 
Incense Cedar 0 1 0 0 13 0 1 0 0 0 0 15 86.67 
Live Oak 2 0 0 0 0 30 0 1 7 0 0 40 75.00 
Ponderosa Pine 0 0 0 0 1 1 36 0 0 1 0 39 92.31 
Valley Oak 2 0 0 0 0 3 1 10 6 0 0 22 45.45 
Black Oak 1 0 0 0 0 7 0 1 21 2 0 32 65.63 
Other Deciduous 0 1 0 0 0 2 1 0 1 7 1 13 53.85 
Other Conifer 0 2 0 0 4 0 0 0 0 0 4 10 40.00 
Count 16 16 7 19 18 47 40 15 38 10 5 Accuracy Kappa 
User's 68.75 62.50 100.00 100.00 72.22 63.83 90.00 66.67 55.26 70.00 80.00 72.73 0.690 

 

0.5m #8 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 8 0 0 1 0 8 0 3 0 0 0 20 40.00 
Deodar Cedar 0 8 0 1 1 0 1 0 0 0 0 11 72.73 
Eucalyptus 0 0 6 1 0 1 0 0 0 0 0 8 75.00 
Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00 
Incense Cedar 0 0 0 0 12 1 1 0 0 0 0 14 85.71 
Live Oak 3 1 0 2 0 28 0 2 3 0 0 39 71.79 
Ponderosa Pine 0 0 0 0 1 0 38 0 0 0 0 39 97.44 
Valley Oak 2 0 0 0 0 2 1 10 5 0 0 20 50.00 
Black Oak 2 0 0 0 0 2 0 5 22 1 0 32 68.75 
Other Deciduous 1 2 0 0 0 1 2 0 0 4 4 14 28.57 
Other Conifer 0 1 0 0 1 0 0 1 0 0 7 10 70.00 
Count 16 12 6 26 15 43 43 21 30 5 11 Accuracy Kappa 
User's 50.00 66.67 100.00 80.77 80.00 65.12 88.37 47.62 73.33 80.00 63.64 71.93 0.681 

 

0.5m #9 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 16 0 0 0 0 4 0 0 0 0 0 20 80.00 
Deodar Cedar 0 9 0 1 0 0 0 0 1 0 0 11 81.82 
Eucalyptus 0 0 6 0 0 0 0 0 0 1 0 7 85.71 
Gray Pine 0 0 0 20 0 0 1 0 0 0 0 21 95.24 
Incense Cedar 0 0 0 0 11 0 3 0 0 0 0 14 78.57 
Live Oak 5 0 0 0 0 27 1 1 6 0 0 40 67.50 
Ponderosa Pine 0 2 0 0 3 0 37 0 0 1 0 43 86.05 
Valley Oak 4 0 0 0 0 0 2 11 4 0 0 21 52.38 
Black Oak 2 0 0 0 0 6 0 2 22 0 0 32 68.75 
Other Deciduous 0 1 0 0 0 1 1 0 1 5 2 11 45.45 
Other Conifer 1 1 0 0 2 0 2 0 0 0 4 10 40.00 
Count 28 13 6 21 16 38 47 14 34 7 6 Accuracy Kappa 
User's 57.14 69.23 100.00 95.24 68.75 71.05 78.72 78.57 64.71 71.43 66.67 73.04 0.693 

 

0.5m #10 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 12 0 0 1 0 4 0 0 3 0 0 20 60.00 
Deodar Cedar 0 6 0 1 1 0 3 0 0 0 0 11 54.55 
Eucalyptus 0 0 6 0 0 0 0 0 0 2 0 8 75.00 
Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00 
Incense Cedar 0 0 0 0 11 0 1 0 0 0 1 13 84.62 
Live Oak 4 0 0 0 0 30 0 3 3 0 0 40 75.00 
Ponderosa Pine 0 0 0 0 1 0 38 1 0 0 0 40 95.00 
Valley Oak 0 0 0 0 0 4 0 12 4 0 0 20 60.00 
Black Oak 0 0 0 0 0 4 0 5 21 1 0 31 67.74 
Other Deciduous 0 0 0 0 1 1 0 0 1 8 1 12 66.67 
Other Conifer 1 0 0 0 2 0 2 0 1 0 4 10 40.00 
Count 17 6 6 24 16 43 44 21 33 11 6 Accuracy Kappa 
User's 70.59 100.00 100.00 91.67 68.75 69.77 86.36 57.14 63.64 72.73 66.67 74.89 0.714 



50 

C. Confusion matrix for individual classification runs of 1.0m images.
1.0m #1 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 0 0 3 0 5 0 0 0 20 60.00

Deodar Cedar 0 8 0 1 0 0 0 0 1 0 1 11 72.73

Eucalyptus 1 0 7 0 0 0 0 0 0 0 0 8 87.50

Gray Pine 0 1 0 20 0 0 0 0 0 0 0 21 95.24

Incense Cedar 0 0 0 0 11 0 3 0 0 0 1 15 73.33

Live Oak 3 1 0 0 0 31 0 2 2 0 0 39 79.49

Ponderosa Pine 0 1 0 0 3 1 35 0 0 1 1 42 83.33

Valley Oak 1 0 0 0 0 0 0 14 7 0 0 22 63.64

Black Oak 1 0 0 0 0 3 0 4 23 1 0 32 71.88

Other Deciduous 1 1 0 0 0 0 1 0 1 6 0 10 60.00

Other Conifer 0 0 0 0 3 0 2 1 0 0 4 10 40.00

Count 19 12 7 21 17 38 41 26 34 8 7 Accuracy Kappa

User's 63.16 66.67 100.00 95.24 64.71 81.58 85.37 53.85 67.65 75.00 57.14 74.35 0.709

1.0m #2 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 14 0 0 0 0 3 0 2 1 0 0 20 70.00

Deodar Cedar 0 9 0 1 1 0 0 0 0 0 0 11 81.82

Eucalyptus 1 0 6 0 0 0 0 0 0 0 0 7 85.71

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 0 0 0 10 0 4 0 0 1 0 15 66.67

Live Oak 1 0 0 1 0 30 0 3 5 0 0 40 75.00

Ponderosa Pine 0 0 0 0 3 1 32 1 0 1 1 39 82.05

Valley Oak 3 0 0 0 0 2 1 12 3 0 0 21 57.14

Black Oak 2 0 0 0 0 1 0 5 25 0 0 33 75.76

Other Deciduous 0 0 0 0 1 1 1 0 0 7 2 12 58.33

Other Conifer 0 1 0 0 3 0 0 1 1 0 4 10 40.00

Count 21 10 6 24 18 38 38 24 35 9 7 Accuracy Kappa

User's 66.67 90.00 100.00 91.67 55.56 78.95 84.21 50.00 71.43 77.78 57.14 74.35 0.709

1.0m #3 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 10 0 0 0 0 6 0 3 1 0 0 20 50.00

Deodar Cedar 1 7 0 0 0 0 1 0 0 1 1 11 63.64

Eucalyptus 0 0 6 0 0 0 0 0 0 0 0 6 100.00

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 0 0 0 5 0 5 0 0 1 4 15 33.33

Live Oak 2 0 0 0 0 29 1 2 5 0 0 39 74.36

Ponderosa Pine 0 0 1 0 5 0 33 0 0 1 0 40 82.50

Valley Oak 1 0 0 0 0 2 1 14 3 0 0 21 66.67

Black Oak 0 0 0 0 0 5 0 3 22 1 0 31 70.97

Other Deciduous 0 0 1 0 0 0 0 0 2 6 1 10 60.00

Other Conifer 0 1 0 0 2 0 2 1 0 0 3 9 33.33

Count 14 8 8 22 12 42 43 23 33 10 9 Accuracy Kappa

User's 71.43 87.50 75.00 100.00 41.67 69.05 76.74 60.87 66.67 60.00 33.33 70.09 0.659

1.0m #4 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 0 0 4 0 3 1 0 0 21 61.90

Deodar Cedar 0 6 2 0 0 0 2 0 1 0 0 11 54.55

Eucalyptus 0 0 6 0 0 0 0 0 0 1 0 7 85.71

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 0 0 0 13 0 2 0 0 0 0 15 86.67

Live Oak 10 0 0 0 0 26 0 2 1 0 0 39 66.67

Ponderosa Pine 0 0 0 0 0 1 37 0 0 1 1 40 92.50

Valley Oak 1 1 0 0 0 2 0 15 2 0 0 21 71.43

Black Oak 2 0 0 0 0 3 1 4 21 0 0 31 67.74

Other Deciduous 0 0 0 0 2 2 4 0 0 5 0 13 38.46

Other Conifer 0 1 0 0 3 0 1 0 0 0 5 10 50.00

Count 26 8 8 22 18 38 47 24 26 7 6 Accuracy Kappa

User's 50.00 75.00 75.00 100.00 72.22 68.42 78.72 62.50 80.77 71.43 83.33 73.48 0.699

1.0m #5 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 1 1 2 0 0 2 0 0 19 68.42

Deodar Cedar 0 10 0 0 0 0 0 0 0 0 1 11 90.91

Eucalyptus 0 1 6 0 0 0 0 0 0 0 0 7 85.71

Gray Pine 0 1 0 20 0 0 0 0 0 0 0 21 95.24

Incense Cedar 0 1 0 0 10 0 4 0 0 0 0 15 66.67

Live Oak 1 0 0 0 0 33 0 0 6 0 0 40 82.50

Ponderosa Pine 0 0 0 0 0 1 37 1 0 0 3 42 88.10

Valley Oak 3 0 0 0 1 1 0 10 6 0 0 21 47.62

Black Oak 0 1 0 0 0 3 0 7 21 0 0 32 65.63

Other Deciduous 0 0 0 0 0 3 4 0 1 4 0 12 33.33

Other Conifer 0 2 0 0 3 0 2 0 0 0 2 9 22.22

Count 17 16 6 21 15 43 47 18 36 4 6 Accuracy Kappa

User's 76.47 62.50 100.00 95.24 66.67 76.74 78.72 55.56 58.33 100.00 33.33 72.49 0.686
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1.0m #6 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 16 0 0 0 0 1 0 2 1 0 0 20 80.00

Deodar Cedar 0 7 0 1 0 0 0 0 1 0 2 11 63.64

Eucalyptus 0 0 6 0 0 0 0 0 0 0 0 6 100.00

Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00

Incense Cedar 0 0 0 0 10 0 1 1 0 1 2 15 66.67

Live Oak 7 0 0 0 0 24 1 3 4 0 0 39 61.54

Ponderosa Pine 0 0 0 0 4 0 36 1 0 0 0 41 87.80

Valley Oak 1 0 0 0 0 2 1 13 4 0 0 21 61.90

Black Oak 2 1 0 0 0 2 0 4 21 1 0 31 67.74

Other Deciduous 0 0 0 0 0 1 1 1 2 4 4 13 30.77

Other Conifer 0 1 0 0 4 0 1 1 0 0 2 9 22.22

Count 26 9 6 22 18 30 41 26 33 6 10 Accuracy Kappa

User's 61.54 77.78 100.00 95.45 55.56 80.00 87.80 50.00 63.64 66.67 20.00 70.48 0.666

1.0m #7 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 0 0 4 0 2 0 0 0 19 68.42

Deodar Cedar 0 10 0 0 0 0 0 0 0 0 1 11 90.91

Eucalyptus 0 1 7 0 0 0 0 0 0 0 0 8 87.50

Gray Pine 0 1 0 20 0 0 0 0 0 0 0 21 95.24

Incense Cedar 0 0 0 0 12 0 2 0 0 1 0 15 80.00

Live Oak 2 0 1 0 0 31 0 1 5 0 0 40 77.50

Ponderosa Pine 0 1 0 0 1 1 35 0 0 1 0 39 89.74

Valley Oak 0 0 0 0 0 4 1 12 5 0 0 22 54.55

Black Oak 1 0 0 0 0 3 0 4 22 2 0 32 68.75

Other Deciduous 0 1 0 0 0 1 2 1 1 7 0 13 53.85

Other Conifer 0 2 0 0 2 0 0 0 0 0 5 9 55.56

Count 16 16 8 20 15 44 40 20 33 11 6 Accuracy Kappa

User's 81.25 62.50 87.50 100.00 80.00 70.45 87.50 60.00 66.67 63.64 83.33 75.98 0.728

1.0m #8 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 9 0 0 1 0 5 0 5 0 0 0 20 45.00

Deodar Cedar 0 7 0 1 0 0 1 0 0 0 2 11 63.64

Eucalyptus 0 0 6 0 0 0 0 0 0 1 0 7 85.71

Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00

Incense Cedar 0 0 0 0 12 0 2 0 0 1 0 15 80.00

Live Oak 4 1 0 0 0 30 0 1 4 0 0 40 75.00

Ponderosa Pine 0 0 0 0 1 0 37 0 0 1 0 39 94.87

Valley Oak 2 0 0 0 0 2 1 12 4 0 0 21 57.14

Black Oak 2 0 0 0 0 5 0 2 23 0 0 32 71.88

Other Deciduous 0 2 0 0 1 2 3 0 0 3 3 14 21.43

Other Conifer 0 1 0 0 0 0 0 1 0 0 8 10 80.00

Count 17 11 6 23 14 44 44 21 31 6 13 Accuracy Kappa

User's 52.94 63.64 100.00 91.30 85.71 68.18 84.09 57.14 74.19 50.00 61.54 73.04 0.694

1.0m #9 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 17 0 0 0 0 3 0 0 0 0 0 20 85.00

Deodar Cedar 0 9 0 1 0 0 0 0 1 0 0 11 81.82

Eucalyptus 1 0 5 0 0 0 0 0 0 1 0 7 71.43

Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00

Incense Cedar 0 0 0 0 11 0 4 0 0 0 0 15 73.33

Live Oak 4 0 0 0 0 28 1 2 5 0 0 40 70.00

Ponderosa Pine 0 1 0 0 2 1 36 0 0 1 2 43 83.72

Valley Oak 3 0 0 0 0 1 1 12 4 0 0 21 57.14

Black Oak 2 0 0 0 0 5 0 2 23 0 0 32 71.88

Other Deciduous 0 1 0 0 2 2 1 0 1 4 0 11 36.36

Other Conifer 1 2 0 0 3 0 1 0 0 0 3 10 30.00

Count 28 13 5 22 18 40 44 16 34 6 5 Accuracy Kappa

User's 60.71 69.23 100.00 95.45 61.11 70.00 81.82 75.00 67.65 66.67 60.00 73.16 0.694

1.0m #10 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 14 0 0 0 0 5 0 0 1 0 0 20 70.00

Deodar Cedar 0 6 0 1 0 0 2 0 0 1 1 11 54.55

Eucalyptus 0 0 6 0 0 0 1 0 0 0 0 7 85.71

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 0 0 0 11 0 1 0 0 1 1 14 78.57

Live Oak 3 0 0 0 0 32 0 3 2 0 0 40 80.00

Ponderosa Pine 0 0 0 0 2 0 35 1 0 2 0 40 87.50

Valley Oak 1 0 0 0 0 3 0 13 4 0 0 21 61.90

Black Oak 0 0 0 0 0 4 0 5 21 1 0 31 67.74

Other Deciduous 0 0 0 0 2 1 0 0 2 6 1 12 50.00

Other Conifer 0 0 0 0 1 0 2 1 0 1 4 9 44.44

Count 18 6 6 23 16 45 41 23 30 12 7 Accuracy Kappa

User's 77.78 100.00 100.00 95.65 68.75 71.11 85.37 56.52 70.00 50.00 57.14 74.89 0.714
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D. Confusion matrix for individual classification runs of 2.0m images.
2.0m #1 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 9 0 0 1 0 2 0 5 0 0 1 18 50.00

Deodar Cedar 0 8 0 0 0 0 1 0 0 0 1 10 80.00

Eucalyptus 1 0 7 0 0 0 0 0 0 0 0 8 87.50

Gray Pine 0 1 0 20 0 0 0 0 0 0 0 21 95.24

Incense Cedar 0 1 0 0 13 0 2 0 0 0 0 16 81.25

Live Oak 3 0 0 0 0 31 0 2 3 0 0 39 79.49

Ponderosa Pine 0 0 0 0 1 0 38 1 0 2 0 42 90.48

Valley Oak 2 0 0 0 0 1 0 12 7 0 0 22 54.55

Black Oak 1 1 1 0 0 3 0 2 22 2 0 32 68.75

Other Deciduous 0 0 0 0 0 2 3 0 1 3 1 10 30.00

Other Conifer 0 2 0 0 4 0 0 1 0 0 3 10 30.00

Count 16 13 8 21 18 39 44 23 33 7 6 Accuracy Kappa

User's 56.25 61.54 87.50 95.24 72.22 79.49 86.36 52.17 66.67 42.86 50.00 72.81 0.691

2.0m #2 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 16 1 0 0 0 0 0 2 0 1 0 20 80.00

Deodar Cedar 0 8 0 0 2 0 0 0 0 0 0 10 80.00

Eucalyptus 1 1 5 0 0 0 0 0 0 0 0 7 71.43

Gray Pine 0 1 0 21 0 0 0 0 1 0 0 23 91.30

Incense Cedar 0 1 0 0 10 0 4 0 0 0 0 15 66.67

Live Oak 8 2 0 0 0 29 0 1 0 0 0 40 72.50

Ponderosa Pine 0 0 0 0 3 1 32 1 0 1 1 39 82.05

Valley Oak 3 0 0 0 0 4 1 11 2 0 0 21 52.38

Black Oak 2 0 0 0 0 0 0 7 24 0 0 33 72.73

Other Deciduous 0 1 0 0 1 1 1 0 0 6 2 12 50.00

Other Conifer 0 1 0 0 3 1 0 0 0 1 4 10 40.00

Count 30 16 5 21 19 36 38 22 27 9 7 Accuracy Kappa

User's 53.33 50.00 100.00 100.00 52.63 80.56 84.21 50.00 88.89 66.67 57.14 72.17 0.686

2.0m #3 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 0 1 2 0 4 1 0 0 20 60.00

Deodar Cedar 0 9 0 0 0 0 2 0 0 0 0 11 81.82

Eucalyptus 0 0 5 1 0 1 0 0 0 0 0 7 71.43

Gray Pine 0 1 0 22 0 0 0 0 0 0 0 23 95.65

Incense Cedar 0 1 0 0 6 1 4 0 0 0 4 16 37.50

Live Oak 1 0 0 0 0 36 0 0 2 0 0 39 92.31

Ponderosa Pine 0 0 0 0 4 2 33 0 0 0 1 40 82.50

Valley Oak 1 0 0 0 0 2 1 11 6 0 0 21 52.38

Black Oak 1 0 0 0 0 4 1 1 23 1 0 31 74.19

Other Deciduous 0 0 1 0 0 2 1 0 1 5 0 10 50.00

Other Conifer 0 1 0 0 2 0 1 1 0 0 4 9 44.44

Count 15 12 6 23 13 50 43 17 33 6 9 Accuracy Kappa

User's 80.00 75.00 83.33 95.65 46.15 72.00 76.74 64.71 69.70 83.33 44.44 73.13 0.693

2.0m #4 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 0 1 3 0 3 0 0 0 20 65.00

Deodar Cedar 0 6 0 0 0 1 2 0 0 0 1 10 60.00

Eucalyptus 0 0 6 0 0 1 0 0 0 0 0 7 85.71

Gray Pine 0 0 0 21 0 0 0 0 1 0 0 22 95.45

Incense Cedar 0 1 0 0 13 0 1 0 0 0 1 16 81.25

Live Oak 8 2 0 0 0 27 0 1 1 0 0 39 69.23

Ponderosa Pine 0 0 0 0 0 0 37 1 0 1 1 40 92.50

Valley Oak 1 0 0 0 0 3 0 14 3 0 0 21 66.67

Black Oak 1 0 0 0 0 5 0 3 21 1 0 31 67.74

Other Deciduous 1 1 0 0 1 1 4 0 0 5 0 13 38.46

Other Conifer 0 1 0 1 2 0 1 0 0 0 5 10 50.00

Count 24 11 6 22 17 41 45 22 26 7 8 Accuracy Kappa

User's 54.17 54.55 100.00 95.45 76.47 65.85 82.22 63.64 80.77 71.43 62.50 73.36 0.698

2.0m #5 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 0 1 3 0 1 1 0 0 18 66.67

Deodar Cedar 0 10 0 0 0 0 0 0 0 0 1 11 90.91

Eucalyptus 0 0 6 0 0 2 0 0 0 0 0 8 75.00

Gray Pine 0 0 0 20 0 0 1 0 1 0 0 22 90.91

Incense Cedar 0 1 0 0 10 0 4 0 0 0 1 16 62.50

Live Oak 1 0 0 0 0 35 0 0 4 0 0 40 87.50

Ponderosa Pine 0 0 0 0 2 2 36 1 0 0 1 42 85.71

Valley Oak 3 0 0 0 1 2 0 9 6 0 0 21 42.86

Black Oak 0 0 0 0 0 3 0 8 21 0 0 32 65.63

Other Deciduous 0 0 0 0 0 3 4 1 1 2 1 12 16.67

Other Conifer 0 2 0 0 4 0 0 0 0 1 2 9 22.22

Count 16 13 6 20 18 50 45 20 34 3 6 Accuracy Kappa

User's 75.00 76.92 100.00 100.00 55.56 70.00 80.00 45.00 61.76 66.67 33.33 70.56 0.663
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2.0m #6 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 15 0 0 0 0 3 0 1 0 0 0 19 78.95

Deodar Cedar 0 7 0 0 0 0 0 0 1 0 2 10 70.00

Eucalyptus 0 0 6 1 0 0 0 0 0 0 0 7 85.71

Gray Pine 0 1 0 20 0 1 0 0 0 0 0 22 90.91

Incense Cedar 0 0 1 0 9 0 1 1 0 1 3 16 56.25

Live Oak 5 0 0 0 0 27 0 2 5 0 0 39 69.23

Ponderosa Pine 0 0 0 0 5 0 35 1 0 0 0 41 85.37

Valley Oak 1 0 0 0 0 1 0 13 6 0 0 21 61.90

Black Oak 1 1 1 0 0 1 0 3 23 1 0 31 74.19

Other Deciduous 0 0 0 0 0 0 3 1 2 6 1 13 46.15

Other Conifer 0 0 0 1 3 0 0 1 0 0 4 9 44.44

Count 22 9 8 22 17 33 39 23 37 8 10 Accuracy Kappa

User's 68.18 77.78 75.00 90.91 52.94 81.82 89.74 56.52 62.16 75.00 40.00 72.37 0.687

2.0m #7 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 0 1 1 0 4 0 0 0 18 66.67

Deodar Cedar 0 10 1 0 0 0 0 0 0 0 0 11 90.91

Eucalyptus 0 0 7 0 0 0 0 0 0 1 0 8 87.50

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 2 0 0 11 0 2 0 0 0 0 15 73.33

Live Oak 3 0 1 0 0 30 1 2 3 0 0 40 75.00

Ponderosa Pine 0 1 0 0 1 0 36 0 0 1 0 39 92.31

Valley Oak 1 0 0 0 0 3 2 12 4 0 0 22 54.55

Black Oak 2 0 0 0 0 4 0 4 21 1 0 32 65.63

Other Deciduous 0 1 0 0 0 2 1 0 1 7 1 13 53.85

Other Conifer 0 2 0 0 2 0 1 0 0 0 4 9 44.44

Count 18 16 9 22 15 40 43 22 29 10 5 Accuracy Kappa

User's 66.67 62.50 77.78 100.00 73.33 75.00 83.72 54.55 72.41 70.00 80.00 75.11 0.718

2.0m #8 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 9 0 0 1 0 5 0 4 0 0 0 19 47.37

Deodar Cedar 1 7 0 0 1 0 0 0 0 0 1 10 70.00

Eucalyptus 0 0 6 1 0 0 1 0 0 0 0 8 75.00

Gray Pine 0 1 0 19 1 0 0 0 0 0 0 21 90.48

Incense Cedar 0 1 0 0 9 0 3 0 0 0 2 15 60.00

Live Oak 2 1 0 0 0 34 0 1 2 0 0 40 85.00

Ponderosa Pine 0 0 0 0 1 1 36 0 0 1 0 39 92.31

Valley Oak 2 0 0 1 0 3 1 10 4 0 0 21 47.62

Black Oak 2 1 0 0 0 6 0 4 19 0 0 32 59.38

Other Deciduous 0 1 0 0 0 1 4 1 1 4 2 14 28.57

Other Conifer 0 1 1 0 2 1 1 0 0 0 4 10 40.00

Count 16 13 7 22 14 51 46 20 26 5 9 Accuracy Kappa

User's 56.25 53.85 85.71 86.36 64.29 66.67 78.26 50.00 73.08 80.00 44.44 68.56 0.642

2.0m #9 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 0 0 3 0 2 0 0 0 18 72.22

Deodar Cedar 0 9 0 1 0 1 0 0 0 0 0 11 81.82

Eucalyptus 1 0 4 0 0 0 0 0 0 1 1 7 57.14

Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00

Incense Cedar 0 0 0 0 10 0 3 0 0 0 3 16 62.50

Live Oak 5 2 0 0 0 26 0 3 4 0 0 40 65.00

Ponderosa Pine 0 0 0 0 4 1 35 0 0 2 1 43 81.40

Valley Oak 1 0 0 0 0 1 1 10 8 0 0 21 47.62

Black Oak 1 0 0 0 0 6 0 1 24 0 0 32 75.00

Other Deciduous 0 0 0 0 2 2 3 0 0 2 2 11 18.18

Other Conifer 1 2 0 0 4 0 0 0 0 0 3 10 30.00

Count 22 13 4 22 20 40 42 16 36 5 10 Accuracy Kappa

User's 59.09 69.23 100.00 95.45 50.00 65.00 83.33 62.50 66.67 40.00 30.00 68.26 0.639

2.0m #10 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 15 0 0 1 0 3 0 1 0 0 0 20 75.00

Deodar Cedar 0 6 0 0 0 1 2 0 0 0 1 10 60.00

Eucalyptus 0 0 6 1 0 0 1 0 0 0 0 8 75.00

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 0 0 0 12 0 1 0 0 0 2 15 80.00

Live Oak 2 0 0 0 0 34 0 2 2 0 0 40 85.00

Ponderosa Pine 0 0 0 0 1 1 34 1 0 2 1 40 85.00

Valley Oak 2 0 0 0 0 2 0 11 6 0 0 21 52.38

Black Oak 0 0 0 0 0 1 0 5 24 1 0 31 77.42

Other Deciduous 0 0 0 0 0 1 3 0 0 6 2 12 50.00

Other Conifer 1 0 0 0 2 0 2 0 0 1 3 9 33.33

Count 20 6 6 24 15 43 43 20 32 10 9 Accuracy Kappa

User's 75.00 100.00 100.00 91.67 80.00 79.07 79.07 55.00 75.00 60.00 33.33 75.88 0.725
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E. Confusion matrix for individual classification runs of 3.0m images. 
3.0m #1 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 11 0 0 2 1 2 0 5 0 0 0 21 52.38 
Deodar Cedar 0 9 0 0 1 0 1 0 0 0 0 11 81.82 
Eucalyptus 0 0 8 0 0 0 0 0 0 0 0 8 100.00 
Gray Pine 0 1 0 21 0 0 0 0 0 0 0 22 95.45 
Incense Cedar 0 0 0 0 13 0 3 0 0 0 0 16 81.25 
Live Oak 1 0 0 0 0 36 0 1 1 0 0 39 92.31 
Ponderosa Pine 0 1 0 0 2 0 35 1 0 3 0 42 83.33 
Valley Oak 3 0 0 0 0 1 0 9 9 0 0 22 40.91 
Black Oak 1 0 0 0 0 8 0 4 18 0 0 31 58.06 
Other Deciduous 0 0 0 0 0 3 1 0 1 5 0 10 50.00 
Other Conifer 0 0 0 0 4 0 1 0 0 0 5 10 50.00 
Count 16 11 8 23 21 50 41 20 29 8 5 Accuracy Kappa 
User's 68.75 81.82 100.00 91.30 61.90 72.00 85.37 45.00 62.07 62.50 100.00 73.28 0.696 

 

3.0m #2 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 15 0 0 1 0 1 0 3 1 0 0 21 71.43 
Deodar Cedar 0 8 0 0 1 0 0 0 0 0 1 10 80.00 
Eucalyptus 1 0 5 0 0 0 0 0 0 1 0 7 71.43 
Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00 
Incense Cedar 0 0 0 0 10 0 4 0 0 0 1 15 66.67 
Live Oak 4 0 0 0 0 31 0 2 2 1 0 40 77.50 
Ponderosa Pine 0 1 0 0 2 1 33 1 0 1 0 39 84.62 
Valley Oak 2 0 0 0 0 1 1 9 7 0 1 21 42.86 
Black Oak 0 0 0 0 0 1 0 8 24 0 0 33 72.73 
Other Deciduous 0 0 0 0 1 2 4 0 0 2 1 10 20.00 
Other Conifer 0 1 0 0 2 0 3 0 0 1 3 10 30.00 
Count 22 10 5 23 16 37 45 23 34 6 7 Accuracy Kappa 
User's 68.18 80.00 100.00 95.65 62.50 83.78 73.33 39.13 70.59 33.33 42.86 71.05 0.671 

 

3.0m #3 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 13 0 0 0 0 3 0 4 1 0 0 21 61.90 
Deodar Cedar 0 9 0 0 0 1 1 0 0 0 0 11 81.82 
Eucalyptus 0 0 6 0 0 1 0 0 0 0 0 7 85.71 
Gray Pine 0 0 0 21 0 0 0 0 1 0 0 22 95.45 
Incense Cedar 0 2 0 0 5 0 5 0 0 1 3 16 31.25 
Live Oak 0 0 0 0 0 36 0 1 1 1 0 39 92.31 
Ponderosa Pine 0 1 1 0 5 1 30 1 0 1 0 40 75.00 
Valley Oak 0 0 0 0 0 2 1 12 6 0 0 21 57.14 
Black Oak 1 0 0 0 0 4 0 3 22 1 0 31 70.97 
Other Deciduous 0 0 1 0 0 3 0 0 3 3 0 10 30.00 
Other Conifer 0 1 0 0 3 0 0 1 0 1 3 9 33.33 
Count 14 13 8 21 13 51 37 22 34 8 6 Accuracy Kappa 
User's 92.86 69.23 75.00 100.00 38.46 70.59 81.08 54.55 64.71 37.50 50.00 70.48 0.664 

 

3.0m #4 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 14 0 0 0 0 4 0 2 0 1 0 21 66.67 
Deodar Cedar 0 7 1 1 0 1 1 0 0 0 0 11 63.64 
Eucalyptus 0 0 6 0 0 1 0 0 0 0 0 7 85.71 
Gray Pine 0 1 0 20 0 0 0 0 1 0 0 22 90.91 
Incense Cedar 0 2 0 0 12 0 1 0 0 0 0 15 80.00 
Live Oak 6 0 0 0 0 31 0 2 0 0 0 39 79.49 
Ponderosa Pine 0 0 0 0 1 0 37 1 0 0 1 40 92.50 
Valley Oak 2 0 0 0 0 2 0 12 5 0 0 21 57.14 
Black Oak 0 0 0 0 0 6 0 4 20 1 0 31 64.52 
Other Deciduous 0 1 0 0 0 0 2 0 1 6 2 12 50.00 
Other Conifer 0 1 1 2 2 0 1 0 0 0 3 10 30.00 
Count 22 12 8 23 15 45 42 21 27 8 6 Accuracy Kappa 
User's 63.64 58.33 75.00 86.96 80.00 68.89 88.10 57.14 74.07 75.00 50.00 73.36 0.698 

 

3.0m #5 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 13 0 0 1 0 3 2 1 0 0 0 20 65.00 
Deodar Cedar 0 8 0 0 0 1 1 1 0 0 0 11 72.73 
Eucalyptus 0 0 5 0 0 2 0 0 0 0 1 8 62.50 
Gray Pine 0 0 0 19 0 1 0 0 1 0 0 21 90.48 
Incense Cedar 0 1 0 0 9 0 5 0 0 0 1 16 56.25 
Live Oak 4 0 0 0 0 32 0 0 4 0 0 40 80.00 
Ponderosa Pine 0 0 0 0 1 0 38 1 0 0 2 42 90.48 
Valley Oak 1 0 0 1 0 3 0 11 4 0 1 21 52.38 
Black Oak 0 2 0 0 0 2 0 8 20 0 0 32 62.50 
Other Deciduous 1 0 0 0 0 2 2 0 3 2 1 11 18.18 
Other Conifer 0 3 0 0 1 0 3 0 0 0 2 9 22.22 
Count 19 14 5 21 11 46 51 22 32 2 8 Accuracy Kappa 
User's 68.42 57.14 100.00 90.48 81.82 69.57 74.51 50.00 62.50 100.00 25.00 68.83 0.643 
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3.0m #6 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 2 1 3 0 1 0 0 0 20 65.00

Deodar Cedar 0 9 0 0 1 0 0 0 0 1 0 11 81.82

Eucalyptus 0 0 7 0 0 0 0 0 0 0 0 7 100.00

Gray Pine 1 1 0 18 0 0 0 1 0 0 0 21 85.71

Incense Cedar 0 1 0 0 11 0 2 0 0 1 0 15 73.33

Live Oak 6 0 0 0 0 26 0 2 5 0 0 39 66.67

Ponderosa Pine 0 1 0 0 4 0 35 0 1 0 0 41 85.37

Valley Oak 2 0 0 0 1 0 0 14 4 0 0 21 66.67

Black Oak 1 0 0 0 0 7 0 3 19 1 0 31 61.29

Other Deciduous 1 0 0 0 2 2 3 0 2 1 1 12 8.33

Other Conifer 0 0 0 1 4 0 0 0 0 0 4 9 44.44

Count 24 12 7 21 24 38 40 21 31 4 5 Accuracy Kappa

User's 54.17 75.00 100.00 85.71 45.83 68.42 87.50 66.67 61.29 25.00 80.00 69.16 0.650

3.0m #7 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 0 0 0 1 3 0 4 0 0 0 20 60.00

Deodar Cedar 1 5 0 1 0 1 2 0 0 0 1 11 45.45

Eucalyptus 0 0 7 0 0 1 0 0 0 0 0 8 87.50

Gray Pine 1 1 0 18 0 1 0 0 0 0 0 21 85.71

Incense Cedar 0 0 0 0 11 0 3 0 0 0 0 14 78.57

Live Oak 2 0 0 0 0 33 0 2 3 0 0 40 82.50

Ponderosa Pine 0 1 0 0 1 0 37 0 0 0 0 39 94.87

Valley Oak 2 0 0 0 0 3 1 14 2 0 0 22 63.64

Black Oak 1 0 0 0 0 5 0 5 20 1 0 32 62.50

Other Deciduous 2 1 0 0 0 1 0 1 1 2 2 10 20.00

Other Conifer 0 2 0 0 1 0 2 0 0 0 4 9 44.44

Count 21 10 7 19 14 48 45 26 26 3 7 Accuracy Kappa

User's 57.14 50.00 100.00 94.74 78.57 68.75 82.22 53.85 76.92 66.67 57.14 72.12 0.682

3.0m #8 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 11 0 0 2 0 3 0 5 0 0 0 21 52.38

Deodar Cedar 0 6 1 2 1 0 1 0 0 0 0 11 54.55

Eucalyptus 0 0 7 0 0 1 0 0 0 0 0 8 87.50

Gray Pine 0 0 0 21 0 0 0 0 1 0 0 22 95.45

Incense Cedar 0 0 0 0 7 0 4 0 0 0 4 15 46.67

Live Oak 5 0 0 0 0 31 0 2 2 0 0 40 77.50

Ponderosa Pine 0 0 0 0 1 2 36 0 0 0 0 39 92.31

Valley Oak 1 0 0 2 0 1 1 10 6 0 0 21 47.62

Black Oak 1 0 0 0 0 3 0 3 25 0 0 32 78.13

Other Deciduous 1 1 0 0 0 1 3 0 0 4 1 11 36.36

Other Conifer 0 1 1 0 1 0 2 0 0 0 5 10 50.00

Count 19 8 9 27 10 42 47 20 34 4 10 Accuracy Kappa

User's 57.89 75.00 77.78 77.78 70.00 73.81 76.60 50.00 73.53 100.00 50.00 70.87 0.668

3.0m #9 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 1 0 3 0 2 1 0 0 20 65.00

Deodar Cedar 0 8 0 1 0 1 0 0 0 0 0 10 80.00

Eucalyptus 0 0 3 0 0 3 0 0 0 0 1 7 42.86

Gray Pine 0 0 0 22 0 0 0 0 0 0 0 22 100.00

Incense Cedar 0 1 0 0 11 0 2 0 0 0 1 15 73.33

Live Oak 4 0 0 0 0 32 0 3 1 0 0 40 80.00

Ponderosa Pine 0 0 0 0 3 0 37 0 0 2 1 43 86.05

Valley Oak 1 0 0 0 0 1 1 10 8 0 0 21 47.62

Black Oak 1 0 0 0 0 5 0 1 25 0 0 32 78.13

Other Deciduous 2 0 0 0 2 2 3 0 0 1 2 12 8.33

Other Conifer 0 2 0 1 3 0 3 0 0 0 1 10 10.00

Count 21 11 3 25 19 47 46 16 35 3 6 Accuracy Kappa

User's 61.90 72.73 100.00 88.00 57.89 68.09 80.43 62.50 71.43 33.33 16.67 70.26 0.660

3.0m #10 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 11 0 0 2 0 4 0 3 0 0 0 20 55.00

Deodar Cedar 0 7 1 1 0 0 0 0 0 0 2 11 63.64

Eucalyptus 0 0 7 0 0 0 0 0 0 1 0 8 87.50

Gray Pine 0 1 0 22 0 0 0 0 0 0 0 23 95.65

Incense Cedar 0 0 0 0 10 0 3 0 0 1 0 14 71.43

Live Oak 3 0 0 0 0 34 0 1 2 0 0 40 85.00

Ponderosa Pine 0 1 0 0 3 0 34 0 0 2 0 40 85.00

Valley Oak 2 0 0 0 0 0 0 11 8 0 0 21 52.38

Black Oak 1 0 0 1 0 2 0 4 23 0 0 31 74.19

Other Deciduous 0 0 0 0 1 1 4 0 0 3 1 10 30.00

Other Conifer 0 0 0 0 0 0 3 0 0 1 5 9 55.56

Count 17 9 8 26 14 41 44 19 33 8 8 Accuracy Kappa

User's 64.71 77.78 87.50 84.62 71.43 82.93 77.27 57.89 69.70 37.50 62.50 73.57 0.699
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F. Confusion matrix for individual classification runs of 5.0m images. 
5.0m #1 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 12 0 0 1 0 4 0 2 0 0 0 19 63.16 
Deodar Cedar 0 3 0 2 1 3 1 0 0 0 0 10 30.00 
Eucalyptus 0 0 6 0 0 0 0 0 1 0 0 7 85.71 
Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00 
Incense Cedar 0 0 0 0 5 0 6 1 0 1 2 15 33.33 
Live Oak 3 0 0 0 0 27 0 0 5 0 0 35 77.14 
Ponderosa Pine 0 1 0 1 1 0 33 1 0 2 1 40 82.50 
Valley Oak 3 0 0 1 0 0 0 12 6 0 0 22 54.55 
Black Oak 3 0 0 0 0 6 0 2 19 0 0 30 63.33 
Other Deciduous 0 0 1 0 0 3 2 0 1 3 0 10 30.00 
Other Conifer 0 0 0 0 4 0 3 0 1 0 1 9 11.11 
Count 21 4 7 26 11 43 45 18 33 6 4 Accuracy Kappa 
User's 57.14 75.00 85.71 80.77 45.45 62.79 73.33 66.67 57.58 50.00 25.00 65.14 0.601 

 

5.0m #2 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 13 1 0 0 0 1 0 4 0 0 0 19 68.42 
Deodar Cedar 1 4 1 1 1 1 0 0 0 0 1 10 40.00 
Eucalyptus 0 0 4 0 0 0 1 0 1 0 0 6 66.67 
Gray Pine 0 3 0 20 0 0 0 0 0 0 0 23 86.96 
Incense Cedar 0 1 0 0 5 0 8 0 0 1 0 15 33.33 
Live Oak 4 0 1 1 0 26 2 0 3 1 0 38 68.42 
Ponderosa Pine 1 0 0 0 1 2 30 0 1 2 0 37 81.08 
Valley Oak 4 0 0 0 0 1 1 10 5 0 0 21 47.62 
Black Oak 3 1 0 0 0 3 0 7 19 0 0 33 57.58 
Other Deciduous 0 1 0 0 1 1 3 0 2 1 0 9 11.11 
Other Conifer 1 0 0 1 3 0 2 0 0 0 3 10 30.00 
Count 27 11 6 23 11 35 47 21 31 5 4 Accuracy Kappa 
User's 48.15 36.36 66.67 86.96 45.45 74.29 63.83 47.62 61.29 20.00 75.00 61.09 0.557 

 

5.0m #3 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 12 0 0 0 0 3 0 4 1 0 0 20 60.00 
Deodar Cedar 0 5 0 3 0 0 0 0 0 1 0 9 55.56 
Eucalyptus 0 0 6 0 0 0 0 0 0 0 0 6 100.00 
Gray Pine 0 0 0 21 0 2 0 0 0 0 0 23 91.30 
Incense Cedar 0 1 0 0 5 0 6 0 1 0 1 14 35.71 
Live Oak 0 0 0 0 0 34 0 1 1 1 0 37 91.89 
Ponderosa Pine 0 0 1 1 2 3 29 1 1 0 0 38 76.32 
Valley Oak 2 0 0 0 0 2 1 10 6 0 0 21 47.62 
Black Oak 1 0 0 0 0 7 0 3 18 1 0 30 60.00 
Other Deciduous 0 0 0 0 0 1 0 0 3 5 0 9 55.56 
Other Conifer 0 1 0 0 1 0 3 0 0 2 3 10 30.00 
Count 15 7 7 25 8 52 39 19 31 10 4 Accuracy Kappa 
User's 80.00 71.43 85.71 84.00 62.50 65.38 74.36 52.63 58.06 50.00 75.00 68.20 0.636 

 

5.0m #4 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 13 0 0 0 0 5 0 3 0 0 0 21 61.90 
Deodar Cedar 0 2 0 2 1 1 2 0 0 1 0 9 22.22 
Eucalyptus 0 0 6 0 1 0 0 0 0 0 0 7 85.71 
Gray Pine 0 2 0 20 0 0 0 0 0 0 0 22 90.91 
Incense Cedar 0 0 0 0 6 0 6 1 0 0 1 14 42.86 
Live Oak 2 2 0 1 0 25 0 3 2 2 0 37 67.57 
Ponderosa Pine 0 1 1 1 0 2 31 0 0 1 0 37 83.78 
Valley Oak 2 0 0 0 0 3 0 12 3 1 0 21 57.14 
Black Oak 1 0 0 0 0 7 0 3 18 1 0 30 60.00 
Other Deciduous 0 0 0 0 0 2 7 0 0 4 0 13 30.77 
Other Conifer 1 0 2 1 1 0 2 0 0 0 3 10 30.00 
Count 19 7 9 25 9 45 48 22 23 10 4 Accuracy Kappa 
User's 68.42 28.57 66.67 80.00 66.67 55.56 64.58 54.55 78.26 40.00 75.00 63.35 0.583 

 

5.0m #5 BO DC E GP IC LO PP VO BO OD OC Count Producer's 
Blue Oak 12 0 0 1 0 3 0 0 2 0 0 18 66.67 
Deodar Cedar 0 4 0 0 0 3 1 0 0 1 0 9 44.44 
Eucalyptus 0 0 5 0 0 3 0 0 0 0 0 8 62.50 
Gray Pine 0 1 0 18 0 2 0 0 0 0 0 21 85.71 
Incense Cedar 0 3 0 0 5 0 5 0 0 0 2 15 33.33 
Live Oak 1 0 0 0 0 28 0 1 6 1 0 37 75.68 
Ponderosa Pine 0 1 0 3 2 2 30 1 0 0 1 40 75.00 
Valley Oak 5 0 0 0 0 3 0 10 3 0 0 21 47.62 
Black Oak 0 0 0 0 0 4 0 6 20 0 0 30 66.67 
Other Deciduous 0 0 0 0 0 5 5 0 1 1 0 12 8.33 
Other Conifer 1 1 0 2 1 0 3 0 0 0 2 10 20.00 
Count 19 10 5 24 8 53 44 18 32 3 5 Accuracy Kappa 
User's 63.16 40.00 100.00 75.00 62.50 52.83 68.18 55.56 62.50 33.33 40.00 61.09 0.554 
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5.0m #6 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 1 0 3 0 2 0 0 0 19 68.42

Deodar Cedar 0 4 1 0 0 2 0 0 0 0 1 8 50.00

Eucalyptus 0 0 6 0 0 0 0 0 0 0 0 6 100.00

Gray Pine 0 1 0 21 0 0 0 0 0 0 0 22 95.45

Incense Cedar 0 1 0 1 5 0 8 0 0 0 0 15 33.33

Live Oak 5 0 1 0 0 27 0 1 4 1 0 39 69.23

Ponderosa Pine 0 0 0 2 2 0 34 1 0 1 0 40 85.00

Valley Oak 2 0 0 0 0 0 0 13 6 0 0 21 61.90

Black Oak 1 0 0 0 0 3 0 5 19 1 0 29 65.52

Other Deciduous 0 0 0 0 2 3 1 0 2 3 0 11 27.27

Other Conifer 1 0 0 1 1 0 3 0 0 0 3 9 33.33

Count 22 6 8 26 10 38 46 22 31 6 4 Accuracy Kappa

User's 59.09 66.67 75.00 80.77 50.00 71.05 73.91 59.09 61.29 50.00 75.00 67.58 0.629

5.0m #7 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 10 0 0 0 0 3 0 4 0 0 0 17 58.82

Deodar Cedar 0 4 0 0 0 3 0 0 0 1 0 8 50.00

Eucalyptus 0 0 6 0 0 0 1 0 0 0 0 7 85.71

Gray Pine 0 1 0 21 0 0 0 0 0 0 0 22 95.45

Incense Cedar 0 0 0 1 6 0 7 0 0 0 0 14 42.86

Live Oak 1 0 0 0 0 25 1 2 5 1 0 35 71.43

Ponderosa Pine 0 0 0 1 1 0 34 0 0 1 0 37 91.89

Valley Oak 3 0 0 0 0 2 0 13 3 0 1 22 59.09

Black Oak 3 0 0 0 0 8 0 5 15 0 0 31 48.39

Other Deciduous 0 0 0 0 1 3 5 0 0 1 0 10 10.00

Other Conifer 0 1 0 1 1 0 3 0 0 0 4 10 40.00

Count 17 6 6 24 9 44 51 24 23 4 5 Accuracy Kappa

User's 58.82 66.67 100.00 87.50 66.67 56.82 66.67 54.17 65.22 25.00 80.00 65.26 0.602

5.0m #8 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 12 1 0 0 0 3 0 3 2 0 0 21 57.14

Deodar Cedar 1 1 0 2 0 2 0 0 0 0 1 7 14.29

Eucalyptus 0 0 6 0 0 1 1 0 0 0 0 8 75.00

Gray Pine 0 3 0 17 0 0 0 0 0 0 0 20 85.00

Incense Cedar 0 0 0 0 3 1 6 1 0 0 4 15 20.00

Live Oak 3 0 0 0 0 24 1 2 5 1 0 36 66.67

Ponderosa Pine 1 0 0 2 4 0 29 0 0 1 1 38 76.32

Valley Oak 2 0 0 0 0 1 1 11 5 1 0 21 52.38

Black Oak 0 1 0 0 0 4 3 1 21 0 0 30 70.00

Other Deciduous 0 1 0 0 0 2 3 0 0 4 1 11 36.36

Other Conifer 1 0 0 2 1 1 1 0 0 0 3 9 33.33

Count 20 7 6 23 8 39 45 18 33 7 10 Accuracy Kappa

User's 60.00 14.29 100.00 73.91 37.50 61.54 64.44 61.11 63.64 57.14 30.00 60.65 0.551

5.0m #9 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 11 1 0 0 0 4 0 3 0 0 0 19 57.89

Deodar Cedar 1 4 1 0 0 1 0 0 0 1 0 8 50.00

Eucalyptus 0 0 4 0 0 1 0 0 1 0 1 7 57.14

Gray Pine 0 0 0 21 0 0 0 0 0 0 0 21 100.00

Incense Cedar 0 0 0 0 6 0 7 0 0 0 1 14 42.86

Live Oak 6 0 0 0 0 24 0 2 4 1 0 37 64.86

Ponderosa Pine 1 0 0 1 2 1 35 0 0 2 0 42 83.33

Valley Oak 3 0 0 0 0 1 1 11 5 0 0 21 52.38

Black Oak 1 0 0 0 0 6 1 2 21 0 0 31 67.74

Other Deciduous 0 0 1 0 1 2 3 0 1 2 1 11 18.18

Other Conifer 0 1 0 1 2 0 4 0 0 0 2 10 20.00

Count 23 6 6 23 11 40 51 18 32 6 5 Accuracy Kappa

User's 47.83 66.67 66.67 91.30 54.55 60.00 68.63 61.11 65.63 33.33 40.00 63.80 0.585

5.0m #10 BO DC E GP IC LO PP VO BO OD OC Count Producer's

Blue Oak 13 0 0 1 0 4 0 1 0 0 0 19 68.42

Deodar Cedar 0 3 0 3 0 1 1 0 0 0 1 9 33.33

Eucalyptus 0 0 5 0 0 1 1 0 0 0 0 7 71.43

Gray Pine 0 0 0 21 0 1 0 0 0 0 0 22 95.45

Incense Cedar 0 1 0 0 6 0 3 1 1 0 0 12 50.00

Live Oak 3 1 0 0 0 27 0 3 4 1 0 39 69.23

Ponderosa Pine 0 0 0 0 1 0 32 1 0 2 1 37 86.49

Valley Oak 1 0 0 0 0 2 0 14 4 0 0 21 66.67

Black Oak 1 0 0 1 0 3 0 5 19 0 0 29 65.52

Other Deciduous 0 2 0 0 0 2 2 1 1 3 0 11 27.27

Other Conifer 0 0 0 0 3 0 2 1 0 0 4 10 40.00

Count 18 7 5 26 10 41 41 27 29 6 6 Accuracy Kappa

User's 72.22 42.86 100.00 80.77 60.00 65.85 78.05 51.85 65.52 50.00 66.67 68.06 0.635
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