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Abstract 

Snow-water storage is decreasing, while forest fires are increasing in duration, 

size, frequency, and intensity, due to climate change. Most forest fires occur in the 

seasonal snow zone, altering snow mass and energy balance for many years following 

fire. Following forest fires, Surface snow albedo (SSA) decreases, as light absorbing 

particles (LAP), particularly black carbon (BC) produced in forest fires get deposited 

throughout the snowpack, altering snowpack energy balance driving earlier snowmelt in 

burned forests. While SSA decreases, landscape snow albedo (LSA) increases following 

fire, as more of the snow-covered surface becomes visible beneath the burned forest 

canopy, brightening the snow albedo of the broad-scale landscape surface. Altered snow 

albedo has major hydrologic and climatic implications, impacting the environment and 

human life. We used MOD10A1 from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument to acquire daily snow albedo data from January 

1st – April 30th, 2000 – 2019. The daily snow albedo was evaluated before and after fire 

occurrences, across a chrono-sequence of eight burned forests, relative to burn severity, 

years since fire occurrence, and forest density. LSA displayed a persistent increase for at 

least ten years following a fire, with a total increase of 33% across all eight forest fires 

and burn severity classifications over the entire temporal analysis. Two-thirds of that 

increase came the year immediately following the fire. High burn severity LSA observed 

a total increase of 63%, the highest difference for all burn severity classifications for the 

study. Moderate burn severity and unburned forest LSA saw an increase of 53% and 

51%, respectively. When we examined seasonal LSA following a fire, winter experienced 
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higher-than-average values whereas spring experienced lower-than-average values. For 

the post-fire analysis, a generalized additive model (GAM), multivariate linear regression 

models, and linear spline regression models of normalized LSA indicated that following 

the initial increase in LSA due to a forest fire disturbance, LSA remains relatively 

constant, increasing only slightly each year, until approximately six years post-fire, where 

a change in the rate of increase becomes greater, resulting in a delayed brightening effect 

in LSA. Therefore, resulting in a large portion of post-fire snow albedo change (PFSAC) 

to occur between the period of six to ten years post fire. The results indicated that the rate 

of increase in LSA slowed after approximately ten years following a fire, suggesting LSA 

in previously burned forests progress to become like that of an unburned, open meadow.  
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Background 

The Importance of Snow 

 

 Snow is a critical component to human life, especially in the western US. 

Mountain snowpack is like a frozen reservoir in that many communities get a large 

portion of their water from snowpack that lingers at high altitudes well into the warm 

months. Nearly three-quarters of the water in the western US depends on these frozen 

reservoirs (Viviroli et al., 2007; Mankin et al., 2015). They melt and become the water in 

which people drink and use for agriculture, all while feeding reservoirs and generating 

hydroelectricity. Snow accumulates in large quantities throughout the mountainous areas 

of the western US (Barnett et al., 2005). Before humans begin to see direct benefits from 

snowmelt runoff, the snow is aiding in essential processes that cool the planet (Berghuijs 

et al., 2014; Mankin et al., 2015). The extent and albedo of the snow is crucial in these 

cooling processes (Flanner et al., 2011; Derksen and Brown, 2012). Most natural 

surfaces, like soil and forests, absorb approximately 80% or more of incoming solar 

energy, which has a warming effect. Fresh snow is known to have some of the highest 

albedo of any natural substance on Earth, reflecting up to 95% of solar energy in the 

visible wavelength range, which has a significant cooling effect (Jin et al., 2008; Singh et 

al., 2010). With more snow accumulation comes a more stable and insulating snowpack, 

resulting in more effective cooling for a longer duration. However, changes in seasonal 

snowpack, both quality and quantity, are occurring across the western US (Pierce and 

Cayan, 2013; Lettenmaier et al., 2015). Remote sensing provides the means of measuring 

these changes, although it is very difficult to measure how and why these changes are 
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occurring. One connection that has been made in negatively impacting the quality and 

quantity of snow is forest fires. Forest fires are increasing in intensity, size, frequency, 

and season duration across the western US due to climate change (Westerling, 2006; 

Krawchuk et al., 2009; Littell et al., 2009; Jolly et al., 2015). The distribution of forest 

fires and their impact on Earth systems is spatially and temporally diverse (Archibald et 

al., 2013; Whitlock et al., 2010). While the warming climate is a clear driver, 

anthropogenic factors also alter the global patterns of fire frequency and pattern, as fires 

are undoubtedly increasing in all aspects (Krawchuk et al., 2009). In the mountainous 

western US, where most forest fires occur in the seasonal snow zone, we are experiencing 

a reduction in seasonal snowpack volume (Gleason et al., 2016) and associated snow-

water storage, resulting in accelerated snowmelt and earlier springtime snow runoff 

release (Barnett et al., 2005; Stewart et al., 2005; Abatzoglou et al., 2011; Pederson et 

al., 2013; Gleason et al., 2019). 

 While forest fires have been directly linked to reducing seasonal snowpack 

through the deposition of light absorbing impurities (LAP), predominately black carbon 

(BC), which has a direct impact on water supply and availability (Gleason et al., 2013; 

Gleason et al., 2016); it is equally important to understand the impact reducing seasonal 

snowpack has on Earth’s climate system. Earlier snowmelt, and the reduction of snow-

covered area during spring, results in Earth absorbing more solar radiation, therefore 

accelerating climate warming. Many climate predictions take this effect into account; 

however, it is still one of the main uncertainties of the radiation budget in climate models 

(Derksen and Brown, 2012). 
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NASA SnowEx 

 

SnowEx is a program introduced by the NASA Terrestrial Hydrology Program 

(THP). SnowEx was initiated in order to address some of the most critical gaps in snow 

remote sensing and modeling. It focuses on a combination of aerial operations and field 

work in order to acquire data to compare and correct for various types of snow and 

terrain. Scientific goals of SnowEx are to characterize the spatio-temporal variability in 

Earth’s terrestrial snow, to quantify the snow energy and mass balances and to understand 

the role of snow in Earth’s climate, water, and carbon cycles. In addition, an application 

goal of SnowEx is to improve the accuracy and precision of snow accumulation and 

snowmelt estimation for water supply, agriculture, energy, and hazard in order to enhance 

future forecasting. Our work will benefit the studies associated with SnowEx, with hopes 

of improving our understanding of forest fire effects on snow albedo (FFESA).  

Research Questions and Methods 

 

Evaluating FFESA is essential in expanding our understanding of fire 

implications on snow accumulation and melt as well as many climatic processes. With 

the use of remote sensing, we are able to readily acquire spatio-temporal data that may 

help us resolve some uncertainty regarding this issue. In this study, we evaluated daily 

snow albedo before and after fire occurrence across a chrono-sequence of eight burned 

forests, relative to burn severity, years since fire occurrence, and forest density, using the 

MOD10A1 remote sensing data product, obtained from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument. In analyzing the daily snow albedo 

measurements throughout multiple past fires, our main goal was to study the spatio-
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temporal variability associated with FFESA. Additionally, we investigated the rate of 

post-fire snow albedo change (PFSAC) and analyzed these measurements throughout 

four different burn severities. We examined the temporal shifts of landscape snow albedo 

(LSA) for more than a decade and quantified overall change in LSA. These findings 

could be used to better understand snow albedo change over time following a forest fire 

event in burned forested watersheds, as well as improve hydrology and climate models. 
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1. Introduction 

Seasonal Snowpack 

Seasonal snowpack in the western US is a critical factor in the overall 

hydrological cycle, supplying and sustaining human and ecosystem needs. Hydrological 

models show that over half of the total runoff in the western US, and as much as 70% in 

mountainous areas, originates as snowmelt (Li et al., 2017). The seasonal snowpack 

produces more runoff than rainfall and acts as a critical water reservoir, providing much 

of the water used for agriculture, municipal, and industrial uses (Tague and Grant, 2009; 

Mote et al., 2018). In addition, snowmelt has a significant impact on recharging aquifers 

and nourishing the rivers, streams, and tributaries into the following summer and fall 

(Tague and Grant, 2009; Buytaert et al., 2011, Li et al., 2017), providing important 

moisture for soils and vegetation.  

Temperature and precipitation variability associated with climate change have 

always been present, however, research points to a significant anthropogenic factor tied 

to current climate change activities (Houghton et al., 1996). Climate change and rising air 

temperatures have reduced seasonal snowpack, which lead to earlier springtime snowmelt 

(Stewart et al., 2005; Barnett et al., 2005; Abatzoglou et al., 2011; Pederson et al. 2013; 

Gleason et al., 2019), altering downstream runoff and water availability (Barnett et al., 

2005; Barnhart et al., 2016; Gleason et al., 2019), ultimately leading to reduced summer 

soil moisture. The collective decrease in seasonal snowpack and summer soil moisture 

leads to an increase in potential dead fuel (Gergel et al., 2017), increasing the probability 

of seasonal fire risk. Anthropogenic factors and increasing fire risks are not only 
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changing the extent and complexity of forest heterogeneity, but they are also accelerating 

the depletion of seasonal snowpack, which has implications for water use and availability 

for millions of people in the western US, including a potentially significant decrease in 

snow-water storage, intensifying the dry season water scarcity (Li et al., 2017). 

Snow Energy Balance 

The snow energy balance is crucial in understanding the melt potential of a 

snowpack. We can think of this occurring in three main phases (Dingman, 2002): 

1. Warming phase: Where absorbed energy raises the average snowpack temperature 

to a point at which the snowpack becomes isothermal, meaning no vertical 

temperature gradient through the entire snowpack depth, at 0°C.  

2. Ripening phase: Once the snowpack is isothermal, the absorbed energy is then 

used to melt the snow. However, the meltwater is retained in the snowpack in 

pore spaces by surface tension forces. As the pore spaces fill completely, the 

snowpack is said to be “ripe” because it cannot retain any more liquid water.  

3. Output phase: Further absorption of energy produces water output, which then 

moves out of the system as runoff, infiltration, or evaporation. 

The general snow energy balance equation can be expressed as 

Equation (1) 

∆𝑆 = 𝐾𝑛𝑒𝑡 + 𝐿𝑛𝑒𝑡 + 𝐻 + 𝐿𝐸 + 𝑅 + 𝐺 

where ΔS is the change in storage, Knet is the net shortwave radiation flux, Lnet is 

the net longwave radiation flux, H is the turbulent sensible heat flux, LE is the turbulent 
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latent heat flux, R is heat input from rain, and G is the conductive exchange of sensible 

heat with the ground. Due to the scope of this study, we were able to consider R and G 

negligible.  

The snow energy balance in alpine zones is dominated by net radiation during 

snowmelt (Marks and Dozier, 1992). Shortwave snow albedo can highly affect the rate of 

melt during the ablation period because it can decrease from 80-90% down to 50% or less 

(Wiscombe & Warren, 1980). For a typical snowpack, the energy balance can be 

expressed as  

Equation (2) 

𝑀𝑝 =  𝐾𝑛𝑒𝑡 + 𝐿𝑛𝑒𝑡 + 𝐻 + 𝐿𝐸  

where Mp is the potential energy available for melt. In a majority of cases, 

sensible and latent heat tend to be negligible, and cancel one another out (Marks and 

Dozier, 1992). The equation is then left with shortwave and longwave radiation 

controlling snow melt. Shortwave and longwave radiation can be combined to be 

expressed as net radiation, Snet. Net radiation can be expressed as 

Equation (3) 

 𝑆𝑛𝑒𝑡 = 𝑆↓(1 −  𝛼) + 𝑙↓ +  𝑙↑   

S↓ is the incoming shortwave radiation, I↓ and I↑ are incoming and outgoing 

longwave radiation, respectively, and 1 - α is the co-albedo. In a typical unburned forest, 

the magnitude of l↓ is typically smaller than that of l↑ due to most snow existing near the 

melting point and causing its longwave radiation losses to be greater than that of the 

downward radiation from the atmosphere (Bair et al., 2020). However, in cases of an 
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open area or burned forest, longwave radiation may be considered negligible for 

simplicity. Therefore, the melt potential in a burned forest area can be simplified to 

Equation (4) 

𝑀𝑝 =  𝑆↓ (1 −  𝛼) 

This simplified melt potential equation shows the importance of incoming 

shortwave radiation and snow albedo, α, on snow melt (Bair et al., 2020).  

Forest fires occurring in alpine zones damage and cause widespread destruction of 

the forest canopy. An estimated 372% to 443% increase in solar energy is absorbed by 

the snowpack beneath burned forests in post-fire locations (Gleason et al., 2019). In 

addition, increased deposition of black carbon (BC) from burned woody debris (BWD) 

and the charred canopy results in reduced snow albedo (Gleason et al., 2013). These 

changes are collectively referred to as post-fire radiative forcing on snow. By way of 

decreasing canopy cover, forest fires modify the snow energy balance and alter the 

spatio-temporal pattern of snow accumulation and ablation (Burles and Boon, 2011; 

Winkler, 2011). These spatio-temporal patterns of snow accumulation and ablation refer 

to the changing process of snowpack dynamics on a landscape scale and are crucial in 

understanding forest fire effects on snow albedo (FFESA). The landscape-scale measure 

of snow albedo is referred to as landscape snow albedo (LSA). 

Snow Albedo 

Snow albedo is an important factor in controlling shortwave radiation, which is a 

key component in snowpack energy balance. Albedo is the reflectivity or reflected 

proportion of the incoming shortwave solar radiation. Snow cover and its high reflectivity 
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are essential for climate cooling across much of the northern hemisphere. By increasing 

the proportion of shortwave radiation reflected from the Earth’s surface, snow covered 

areas produce a 1.5°C to 4.5°C cooling effect compared to snow-free surfaces (Mote, 

2008; Burakowski et al., 2015). In addition, fresh snow is known to have some of the 

highest albedo of any natural substance on Earth, up to 0.9-0.95, significantly increasing 

the cooling effect (Jin et al., 2008; Singh et al., 2010).  However, fresh snow albedo can 

decrease to 0.2-0.4 within 2 weeks (O’Neill and Gray, 1973). This is due to snowpack 

evolution processes that drive increasing snow grain size, and associated variation in 

snow albedo, which lead to increases in radiation absorbed by the surface (Warren and 

Wiscombe, 1980; Amaral et al., 2017). Snow albedo is highly reflective in the visible 

wavelengths, and just a small decrease can significantly increase the degree of radiation 

absorbed by the snowpack (Dozier et al., 2009; Gleason et al., 2013). Particles in the 

snow, such as BC, brown carbon, and dust, drastically decrease snow albedo, increasing 

the radiative heat forcing on the snowpack, and lead to accelerated snow melt (Painter et 

al. 2007; Painter et al., 2012; Skiles et al., 2012; Gleason et al., 2013). Along with 

impurities darkening snow albedo, several other factors play into snow albedo decay 

including the grain-shape and grain-size of snow particles, the solar zenith angle, surface 

roughness and the thickness of the overall snow layer (Grenfell et al., 1994; Curry et al., 

1996; Wang & Zeng, 2010). Outside of impurities in the snow, the grain-size of snow 

particles has the most impact on controlling snow albedo decay (Wang & Zeng, 2010). 

Over the timeframe of days-to-weeks, as snow ages, snow albedo decreases exponentially 

with the rate of decrease dependent on impurities, such as BC (Warren and Wiscombe, 

1980) and BWD (Gleason et al., 2013), deposited throughout the snowpack. Impurities 
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lead to an increase in snow grain-size due to the constant melting and refreezing 

processes that occur throughout the snowpack. These processes increase the presence of 

ice in the snowpack, which then cause an increase in the path length that solar radiation 

must travel between scattering opportunities, hence reducing snow albedo (Warren, 

1982). While the presence of new snow drives the increase in snow albedo, the 

mechanisms that drive daily snow albedo decay and snow grain-size are much more 

complex and difficult to predict (Hall and Qu, 2006). 

Increases in forest fire intensity, size, frequency, and season duration due to 

climate change (Krawchuk et al., 2009; Littell et al., 2009; Jolly et al., 2015) has also 

played a significant role in reducing overall seasonal snowpack volume (Gleason et al., 

2016). Within the last several decades, there has been a noticeable increase in forest fires 

across the western US (Westerling, 2006; Krawchuk et al., 2009; Littell et al., 2009; Jolly 

et al., 2015), particularly during early snow melt years. Forest fires leave behind charred 

forests which stand blackened for decades following forest fire occurrence. Burned 

forests deposit BC, a light absorbing particle (LAP), along with BWD, which both act to 

darken snowpack and dramatically reduce snow albedo (Warren and Wiscombe, 1980). 

BC and BWD deposited into the snowpack throughout the winter, concentrates on the 

surface during snowmelt, and reduces snow albedo. LAP in the snowpack significantly 

accelerate snow albedo feedbacks in burned forests. Paired with the subsequent increase 

in shortwave radiation absorbed by the snowpack results in accelerated snowmelt and 

earlier snow disappearance dates (SDD; Gleason and Nolin, 2016), an effect that persists 

for many years following a forest fire occurrence (Gleason et al., 2019).  
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While snow albedo is important in climate cooling, it is also important in large-

scale hydrological processes. Immediately following forest fires, surface snow albedo 

(SSA) dramatically darkens, but over the following ten to fifteen years may “recover” to 

near pre-fire concentrations of snow impurities and associated SSA (Gleason et al., 

2019). Earlier snow disappearance drastically alters watershed hydrological processes, 

contributing to seasonal drought and the increased probability of future forest fires. 

When thinking about the effects of snow albedo, it is important to distinguish 

between LSA and SSA. LSA has a larger effect on climate cooling and is important in 

dealing with climatic changes, while SSA has a larger effect on snow accumulation and 

ablation processes and is important in dealing with snowpack changes. LSA incorporates 

the effects of SSA but is also highly dependent on landcover and forest density, while 

SSA is more dependent on subsurface snowpack interactions and snow grain-size. Both 

LSA and SSA are significantly affected by forest fires, however, it is expected to see an 

increase in LSA and a decrease in SSA following a forest fire event. 

A positive feedback loop circulates around climate change including accelerated 

snowmelt, increasing seasonal drought, rising air temperatures, and increasing forest 

fires. LSA and SSA are critical pieces to this feedback loop, both influencing the increase 

of snow grain-size and effecting the overall rate of snowmelt (Bair et al., 2020). This 

feedback process amplifies land surface-atmosphere radiative response, resulting in 

measurable hydrological changes (Ueyama et al., 2014; Gleason et al., 2016). 

Quantifying the spatio-temporal effects of FFESA will assist in understanding the 

hydrologic and climatic implications of this feedback loop and how the future water 
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vulnerability and availability will be impacted, especially under a warming climate (Nolin 

and Daly, 2006; Barnett et al., 2008; Westerling et al., 2011).  

Hydrologic and Climatic Implications 

While the connection between forest fires and declining snowpack in the Western 

US is well-recognized, forest fire effects on snow accumulation, ablation, snowpack 

energy balance, and the resulting hydrologic and climatic implications are not as well-

known (Coop et al., 2020). Even though albedo is critical in influencing climate 

predictions, it is still one of the main uncertainties of the radiation budget in climate 

models. In pine dominated forests, seasonality of land surface albedo is large. Land 

surface albedo can vary between 7-80% depending on the season. Especially in the 

seasonal snow zone, where the snow-cover plays an important role in annual albedo 

averages. Forest species, density, and understory vegetation also play a large role in 

annual albedo averages. Additionally, the effect of canopy shadowing darkening snow 

surfaces has been measured to be as relevant as the effect of snow in the canopy structure 

(Webster and Jonas, 2018). In areas dominated by coniferous forests, positive climate 

forcing (warming) during the winter plays an important role in overall climate 

fluctuations. As large fires increase in forested areas, landcover becomes modified, 

leading to significant changes in snow properties. Forest fires clearly influence the 

climate through the release of initial aerosol and gas emissions and subsequent surface 

albedo feedbacks (Bowman et al., 2009; Flanner et al., 2011; McGuire et al., 2006; 

Randerson et al., 2006). The factors affecting vegetation regeneration after a forest fire 

event are very complex (Randerson et al., 2006) and the long-term effects of fire on 
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radiative forcing and climate continue to be heavily studied. In many high severity fires, 

forested areas are not able to recover to their pre-fire conditions, remaining a 

heterogeneous mix of shrubland (Coppoletta et al., 2016). This alters the fire risk of the 

areas, in that high severity burns are more likely in the less-fire tolerant conditions. This 

pattern of high severity fires leading to future high severity re-burns has been seen in 

multiple areas across the Western US (Collins et al., 2009; Harvey et al., 2016).  

Some evaluations indicate that LSA changes following a forest fire, due to 

increased snow exposure, may be significant enough to neutralize the initial carbon 

release caused by the fire, and thus may not necessarily accelerate climate warming to a 

significant degree (Bala et al., 2007; Randerson et al., 2006). Pre-fire landcover type is 

important in limiting LSA of an area based on the presence or absence of canopy cover 

and forest density (Burakowski et al., 2015). Forest tree canopies shield highly reflective 

snow surfaces, lowering overall surface albedo when snow is present, resulting in 

positive climate forcing relative to non-forested lands covered with snow (Bonan, 2008; 

Burakowski et al., 2015). By way of significantly burning tree canopies and changing 

ecosystem structure, forest fires drastically increase snow surface exposure in the winter 

and spring months, leading to an increase in LSA. The exposed snow surfaces become 

susceptible to direct shortwave radiation, making snow albedo even more crucial in its 

effect on overall climate cooling.  
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Remote Sensing of Snow Albedo 

Remote sensing satellite imagery analysis is essential in improving the 

understanding of FFESA and the potential effect these forest fires have on downstream 

water resource availability and overall forest heterogeneity. Past snow remote sensing 

efforts do not consider the forest density and forest density disturbances in post-fire areas. 

This is an important issue because regions with significant snow-cover coincide with 

widespread burned forests. As seasonal snowpack continues to decline, it may also be 

more vulnerable as a result of increasing forest fires. In the Western US, change in SDD 

suggests that forest fire impacts the snow-dominated hydrology consistently for at least 

ten years following fire (Gleason et al., 2019). This can be explained in majority by the 

constant deposition of BC on the snowpack as well as the continuous decrease in canopy 

cover due to initial fire-induced tree mortality and delayed tree mortality in years 

following fire. Fire-induced tree mortality and delayed tree mortality are complex issues 

caused by direct and indirect factors that cannot be represented by simple linear models 

(Hood et al., 2018). Factors such as past disturbance, stress, bark beetles, fungi, 

competition, season, and soil type all have different levels of impact on the issue of tree 

mortality (Hood and Bentz, 2007; Youngblood et al., 2009; Fettig et al., 2010; Das et 

al., 2011), therefore making delayed tree mortality even more challenging to predict 

(Eidenshink et al., 2007). Patterns of fire-induced tree mortality and post-fire vegetation 

re-development effect the chance of forest regeneration and growth (Davis et al., 2018; 

Coop et al., 2020). These changes then effect future fire probability (Archibald et 

al., 2018).  

https://iopscience.iop.org/article/10.1088/1748-9326/aae934/meta#erlaae934bib53
https://iopscience.iop.org/article/10.1088/1748-9326/aae934/meta#erlaae934bib135
https://iopscience.iop.org/article/10.1088/1748-9326/aae934/meta#erlaae934bib40
https://iopscience.iop.org/article/10.1088/1748-9326/aae934/meta#erlaae934bib31
https://iopscience.iop.org/article/10.1088/1748-9326/aae934/meta#erlaae934bib36
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Recent advances in remote-sensing science have allowed for a more widespread 

investigation of some of the questions involving FFESA. One of those critical advances, 

the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, was launched 

aboard the Terra Satellite in December of 1999. The data from the Terra satellite became 

available starting late February of 2000. Additionally, a second MODIS instrument was 

launched aboard the Aqua satellite in May of 2002. MODIS has 36 bands with spatial 

resolution ranging from 250 m to 1-km. Many remote sensing products are derived from 

MODIS satellite imagery. Snow-cover and albedo products have been a large emphasis 

of these data products (Hall and Riggs, 2002), as snowfall and snowmelt events can 

happen rapidly, significantly changing the snow cover and albedo. Due to its daily 

temporal scale, MODIS provides an essential and effective means to monitor spatio-

temporal changes in snow albedo over large areas (Klein and Stroeve, 2017). 

Additionally, MODIS snow albedo products enhanced data acquisition and quality, with 

the ability to recognize and differentiate most snow and clouds (Hall and Riggs, 2002). 

The snow albedo snow-mapping algorithm was applied to provide global daily snow 

albedo for snow-covered areas. The current datasets acquiring snow cover and albedo 

specific measurements include MOD10A1 and MYD10A1. Additionally, related datasets 

provided by MODIS are currently collecting snow cover, including MOD10A1F, 

MYD10A1F, MYD10A2, MOD10A2, and multiple others. The temporal scale of these 

data ranges from 5 minutes to 1 month while the spatial scale is consistent at 500 m (0.05 

Deg). More so, there are data being collected using white-sky and black-sky albedo that 

can also be utilized for snow albedo acquisition. This now provides daily spatial data 

spanning back over two-decades anywhere on Earth (Hall et al., 2021).  
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Project Objectives 

Few studies have evaluated the magnitude of the spatio-temporal variability of the 

effects forest fires have on snow albedo relative to year-since-fire or burn severity. This 

paper examines the patterns and outcomes by observing MODIS daily snow albedo 

within specified forest fires and burn severities over temporal scales to analyze these 

effects. The analysis performed was utilized to better understand pre-fire vs. post-fire 

changes in LSA as well as the effect of delayed tree mortality in years following fire 

events. The post-fire snow albedo change (PFSAC) was analyzed to quantify changes in 

forest canopy cover in addition to snow albedo throughout multiple burn severities. It is 

essential to quantify these effects on snow albedo to understand the long-term and 

spatially distributed implications forest fires have on watershed snow hydrology as well 

as water resource availability. Specifically, we chose to focus on the following research 

questions: 

1. What is the temporal effect of individual forest fires relative to burn severity on 

LSA? 

2. What is the temporal variability relative to burn severity in the rate of PFSAC 

following a fire occurrence? 

3. How do varying burn severity classifications effect post-fire snow albedo and 

forest density change and recovery periods?  

4. Is there a common temporal period between different burn severity forests where 

LSA begins the recovery phase of returning to that of an unburned forest? 

5. What are the hydrologic and climatic implications of PFSAC? 
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The following hypotheses were tested based on our research questions and previous 

findings regarding FFESA: 

• Hypothesis 1: While pre-fire LSA in high burn, moderate burn, and unburned 

forest will show no significant difference; post-fire high burn and moderate burn 

severity areas will have a significantly higher LSA than unburned forest areas due 

to landcover change and tree mortality. 

• Hypothesis 2: The immediate rate of PFSAC (1 year following a fire) in high 

burn and moderate burn severity areas will be significantly greater than that of 

unburned forest and open areas due to landcover change and initial fire-induced 

tree mortality.   

• Hypothesis 3: The rate of PFSAC will persist in burned areas for at least ten 

years following a fire occurrence (Gleason et al., 2019) due primarily to patterns 

of delayed tree mortality before showing signs of darkening due to forest 

regeneration and regrowth. 

• Hypothesis 4: Post-fire LSA in burned areas will show similarities to that of open 

areas before recovering to that of an unburned forest at least ten to fifteen years 

after a fire occurrence. 

A theoretical illustration is used to represent some of the hypotheses mentioned 

(Figure 1). The focus of this study falls on the immediate and persistent FFESA due to 

the availability of data. It is unsure whether enough temporal data is available to 

significantly test our final hypothesis. However, quantifying the immediate and persistent 
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FFESA will provide significant information that will improve modeling and predictions 

for future use. 

The subsequent sections focus on the study area of the project; present the in-depth 

remote sensing and statistical methods applied; present the key findings with regression 

models; and conclude with a thorough discussion and conclusion based on our findings.   

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Hypothesized results of FFESA for each burn severity classification including pre-fire 

conditions, initial post-fire increase in LSA, and post-fire snow albedo recovery. The focus of the study is 

on the immediate and persistent FFESA. 
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2. Study Area 

We examined post-fire snow albedo change in a chronosequence of eight burned 

forests in the seasonal snow zone of western Wyoming burned from 2000 to 2018 from 

low to high severity. The study area extends around Jackson, Wyoming and across the 

Triple Divide, the headwaters of three major river systems, the Colorado, Columbia, and 

Missouri Rivers. The elevation of Jackson Hole Airport is 1,966 m. Cold season lasts for 

approximately 3.6 months, from November 19 to March 6, with average daily high 

temperatures below 35°F. January 27 is recorded as the coldest day of the year, with an 

average low of 6°F and high of 25°F (Jackson Hole Airport).  

This area is vital because it supplies much of the western US with readily 

available water and is essential for the continuous water sustainability. While as little as 

37% of the entire precipitation in the western US falls as snow (Li et al., 2017), across 

this mountainous region, approximately 60-80% of precipitation falls as snow (Serreze et 

al., 1999). The area is comprised of pine-dominated forests, predominately Lodgepole 

Pine (Pinus contorta) and Whitebark Pine (Pinus albicaulis), with history of regular and 

frequent forest fires across the season snow zone. The headwaters of these river systems 

begin high in the Rocky Mountains, where snow accounts for a large portion of the 

overall water accumulation that flows downstream into the Pacific Ocean, Gulf of 

California, and Gulf of Mexico.  

 

 



20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

 

Boulder Fire 

Cliff Creek Fire 

Bull Fire 

Green Knoll Fire 

Horsethief Canyon Fire 

Purdy Fire 

Lava Mountain Fire 
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Figure 2. Fire site locations within the study area in western Wyoming with watershed boundary 

lines throughout the area. Top left: Western US with the study area focused on in the black box 

with the Columbia, Colorado, and Missouri River Basins labeled. 
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The chronosequence of burned forests of progressing ages provide a study area 

with varying temporal features of post-fire impacts on LSA while reducing the spatial 

variability due to a relatively common forest structure and composition. The eight fires 

evaluated in this study occurred between 2000 and 2018 in and near the Hoback River 

Basin, and contain continuous and mixed patches of unburned, low, moderate, and high 

burn severity areas (Table 1). 

Table 1. Names and characteristics of the eight fire sites involved in the study of forest fire effects              

on snow albedo. 

Fire Name Ignition 

Date 

Burned 

Area (km2) 

Elevation 

(m) 

Major River 

System 

Average 

Burn 

Severity 

Boulder 7/31/2000 15.2 2240 Columbia Moderate 

Green Knoll 7/22/2001 15.3 2144 Columbia Moderate 

Purdy 8/4/2006 72.2 2804 Columbia/Missouri Moderate 

Bull 7/23/2010 22.2 2164 Columbia Moderate 

Horsethief 

Canyon 

9/8/2012 11.3 2286 Columbia Low 

Lava 

Mountain 

7/11/2016 59.3 2432 Missouri Moderate 

Cliff Creek 7/17/2016 146.2 2225 Columbia Moderate 

Roosevelt 9/15/2018 248.9 2438 Columbia/Colorado Moderate 
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3. Methods 

Our approach used a combination of remote sensing, downscaling, and statistical 

analysis to evaluate pre- vs. post-fire variability in LSA across a chronosequence of 

mixed severity burned forests in western Wyoming. Broadly, we evaluated LSA across 

temporal scales relative to burn severity, forest density, and years since fire. To isolate 

forest fire effects on snow albedo and omit interannual variability of snow accumulation 

and melt patterns, we normalized data from within the burn perimeter with data from the 

buffered area outside the burn perimeter. The 5-km buffer zones surrounding each fire 

perimeter were created as the spatial control variables. MODIS data products were the 

primary source for daily snow albedo as well as annual forest density to assess the spatio-

temporal variability throughout the different fire locations. The data obtained from the 

MODIS products were evaluated on multiple spatio-temporal scales to develop a better 

understanding of FFESA. A list of the remote sensing products utilized during these 

analyses, as well as some of their features, is shown in Table 2.  

Remote Sensing Data 

A combination of multiple remote sensing tools were used to obtain and evaluate 

the necessary data for this study. Daily snow albedo and annual forest density data were 

acquired from Moderate Resolution Imaging Spectroradiometer (MODIS) datasets, forest 

fire areas and severity data were acquired from Monitoring Trends in Burn Severity 

(MTBS), and landcover data were acquired from National Land Cover Database (NLCD) 

records (Table 2). The forest fire areas, burn severities, and landcover classifications 

were used to create the burn severity classifications evaluated throughout the analysis: 
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whole fire area, high burn severity, moderate burn severity, unburned forest, and open 

area. These areas were categorized as the burn severity classifications through the 

entirety of the analysis.   

Table 2. Relevant remote sensing products used during this study. 

Quantity Data Source Spatial 

Resolution 

Features 

Burn Area 

& Severity 

Relative normalized 

difference burn ratio 

(RnDBR) from MTBS 

(Eidenshink et al., 2007) 

30 m MTBS forest fire area and 

severity derived from post-fire 

changes to forest landscape 

(2000-2018) 

Snow 

Albedo 

National Snow & Ice Data 

Center - MOD10A1  

500 m MODIS/Terra daily, gridded 

snow cover and snow albedo 

(2000 – 2019) 

Forest 

Density 

Land Processes Distributed 

Active Archive Center (LP 

DAAC) – MOD44B  

250 m MODIS/Terra yearly 

vegetation continuous fields 

(2000 – 2019) 

Landcover 

Class 

National Land Cover Data Set 

(NLCD) 

30 m NLCD 2001, 2008, 2011, 

2016 used to classify 

landcover conditions 

 

Daily snow albedo was derived from the satellite images from MODIS 

MOD10A1 dataset; the MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, 

Version 6. The data set contains daily, gridded snow cover and albedo derived from 

radiance data acquired by the MODIS instrument on board the Terra satellite (Hall and 

Riggs, 2016). The product output provided spatial pixels with values of 0 through 100 

that represented snow albedo. MOD10A1 data was obtained on two 500 x 500 m spatial 

tiles that included all eight wildfire locations from January 1st to April 30th of each year. 

Data acquisition began on February 24, 2000 (the start of MOD10A1 data retrieval) and 
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ended on April 30th, 2019. We restricted data acquisition to these dates in order to 

evaluate predominately snow-covered winter and spring days. It was important to obtain 

data throughout these months because winter is driven by snow accumulation and spring 

is driven by snow ablation (Mott et al., 2018). The seasonal snow albedo is significantly 

different from winter to spring due to radiative heat forcing on snow (Keevallik and 

Tooming, 1996; Wang et al., 2015). 

Forest density was derived from the satellite images from the MODIS MOD44B 

dataset; the MODIS/Terra Vegetation Continuous Fields (VCF) Yearly L3 Global 250 m 

SIN Grid, Version 6. The data set contains a global representation of surface vegetation 

cover as degrees of three ground cover components: percent tree cover, percent non-tree 

cover, and percent non-vegetated (bare). The VCF product provided a continuous and 

quantitative depiction of land surface cover with improved spatial features. MOD44B 

data was used to evaluate pre-fire vs. post-fire forest density. The data was obtained for 

the same spatial tiles as daily snow albedo. However, the spatial resolution of the data 

collected was 250 x 250 m.  

Forest fire area and burn severity data were collected from the MTBS database. 

This data was used to identify initial burn severity classifications within each burn area. 

These data were obtained through the 30-meter spatial resolution differenced Normalized 

Burn Ratio (dNBR) and Relativized differenced Normalized Burn Ratio (RdNBR) in 

MTBS. Each forest fire area and severity polygon were transformed to match the 

sinusoidal CRS of the MOD10A1 dataset. High and moderate burn severity areas were 

the primary areas of interest for evaluating the effects of forest fires on snow albedo since 
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it was expected that these areas would see the greatest amount of post-fire LSA change. 

Therefore, areas classified as low burn severity by MTBS were combined with unburned 

forest areas into one burn severity classification. The NLCD landcover classifications 

were used to differentiate unburned forest and open areas. Excluding bodies of water and 

perennial ice and snow cover, each landcover classification was categorized as either 

forest or open area. All areas classified as deciduous, mixed, and coniferous forests were 

categorized as forest and all areas classified as developed, barren, shrubland, herbaceous, 

planted/cultivated, and wetland were categorized as open area (Appendix A; Figure 10). 

Burned areas were not differentiated by forest or open when classifying post-fire data. 

In addition to the four burn severity classifications used to evaluate FFESA, 

buffer areas outside of the burn perimeter were identified to account for interannual 

variability and adjust for normal year-to-year fluctuations in snow accumulation and melt 

patterns. The buffer areas were constructed using the NLCD landcover data to categorize 

the land as either a forest buffer area or open buffer area. The buffer areas were classified 

exactly as the burned area; areas classified as deciduous, mixed, and coniferous forests 

were categorized as buffer forest and all areas classified as developed, barren, shrubland, 

herbaceous, planted/cultivated, and wetland were categorized as buffer open area. 
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MODIS Downscale 

MODIS at a 500 m and 250 m spatial resolution is too coarse relative to the 

spatial complexity and variability to evaluate the influence of burn severity on snow 

albedo following forest fire. In order to reduce the large uncertainties persistent with 

MODIS snow albedo data primarily due to the course spatial resolution and mixed pixels, 

we downscaled the broad scale snow albedo and forest density data using the 30 m burn 

severity data. To improve accuracy assessment of each MODIS pixel and the issue of 

mixed pixel uncertainty, we applied the weighted average of the 4-pixel neighboring 

values (Klein et al., 2003; Liang et al., 2008; Lindsay et al., 2015). The discrepancies, in 

areas of complex landcover patchiness, provide many issues and substantial uncertainty 

even after being transformed via downscaling methods (Chen, J. et al., 2019). 

We used a method of resampling as the base procedure in performing an effective 

downscale of the MODIS data. The resampling evaluation we performed blended the 

spatial resolution of the Landsat data with the temporal frequency of the MODIS data to 

improve the spatio-temporal dynamics of our study. The MOD10A1 and MOD44B 

datasets were resampled via bilinear interpolation from the Landsat burn severity 

classifications using the values of the four nearest cell centers to determine the value of 

the resampled MOD10A1 and MOD44B datasets. We performed this procedure on every 

daily snow albedo and annual forest density measurement within each forest fire area and 

burn severity classification. 
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Snow Albedo 

Figure 3. Example of the downscaling process complete for every daily snow albedo measurement and 

annual forest density measurement. The MODIS data was resampled, then cropped to fit the fire area, then 

evaluated for each burn severity classification. 
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Statistical Analysis 

We collected statistical measurements including average daily snow albedo value, 

maximum snow albedo, minimum snow albedo, standard deviation, and cell coverage 

percent was collected for each MOD10A1 measurement acquired. We chose to only 

evaluate measurements with greater than fifty percent cell coverage to ensure the 

corresponding cells were occupied with a majority of the presumed burn severity 

classification. In total, we evaluated 36,349 MODIS snow albedo measurements spread 

between eight fires and twelve burn severity classifications; 20,176 pre-fire 

measurements and 16,173 post-fire measurements. This included the buffer areas, if the 

buffer areas were excluded to only include measurements within the burn area, there was 

a total of 24,605 measurements spread between eight fires and eight burn severity 

classifications; 13,674 pre-fire measurements and 10,931 post-fire measurements.  We 

used normalized LSA to omit the year-to-year weather fluctuations throughout the study 

area. We defined normalized LSA as the difference of the pre-fire buffer area LSA and 

the post-fire measurements. In order to keep the data consistent with pre-fire landscape 

conditions, we used the buffer forest area to normalize the high severity, moderate 

severity, and unburned forest areas, while the buffer open area was used to normalized 

the open area within the burn area. 

We collected similar statistical measurements for the annual forest density data 

including, average forest density percent, maximum forest density percent, minimum 

forest density percent, standard deviation, and cell coverage percent. We acquired data 

for the same burn severity classifications as the daily snow albedo. The only difference in 
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data collection for forest density was that it was done at an annual scale. Therefore, we 

evaluated twenty annual measurements of percent forest density for each burn severity 

classification within the forest fire area. There was a total of 160 forest density 

measurements taken in eight forest fire areas for a total of 1,280 forest density 

measurements for the entire analysis. 

We evaluated the data with a combination of parametric and non-parametric 

approaches. We used Wilcoxon (Wilcox) rank-sum tests and one-way analysis of 

variance (ANOVA) tests to evaluate significant values for each fire, burn severity, and 

years post fire. Wilcox tests were used to determine significant differences among pre- 

and post-fire LSA and forest density measurements for each individual fire area as well 

as all combined. We used ANOVA tests to determine significant differences among burn 

severity classifications and years post fire for both LSA and forest density. In order to 

evaluate the results of the ANOVA tests, we used the post-hoc Tukey’s honestly 

significant difference (HSD) tests to observe each comparison separately. Percent 

differences were calculated for all significant post-fire LSA measurements. A 

Generalized Additive Model (GAM) was developed for normalized LSA based on years 

post fire, forest density, and burn severity classification. The GAM was used to model the 

non-linear smooth functions of years post fire and forest density in order to capture the 

non-linearities throughout the data. The parametric coefficients are presented just as they 

would be in linear modeling. However, the smooth functions are presented in effective 

degrees of freedom, which represent the complexity of the smooth function. Multivariate 

linear regression models were used to quantify normalized LSA as a function of years 
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post fire and forest density, relative to burn severity classification. Additionally, spline 

regression models were used to illustrate the significant segments of post-fire snow 

albedo change (PFSAC) where rates of increasing LSA significantly changed. The 

splines package in R was used for evaluating the different segments and representing 

them with a linear relationship. Since we were able to test the data for significant 

differences in PFSAC, manual knots were used at the years post fire that were found to 

be critical. The knots were placed at six years post fire and ten years post fire, which gave 

the linear spline regression three separate segments. To ensure each model’s accuracy, 

the functions were partitioned with a 75-25 split, such that 75% of the data was used to 

train the models and 25% of the data was used to test each model. ArcGIS Pro 2.7.0 and 

R Studio software version 1.2.5 (RStudio Team 2019) were used for all data analysis 

throughout the entirety of the study. Statistical relationships were tested with a 

significance level of 0.05. 
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4. Results 

Annual Landscape Snow Albedo 

In order to evaluate immediate and long-term shifts and temporal variability in 

post-fire LSA we investigated both daily and annual pre- and post-fire LSA (Figure 4). 

As expected, we observed an immediate increase in LSA (p = 1.95 x 10-8, mean increase 

= 6.6, sd=12.8) the first winter following fire relative to pre-fire LSA.. Across all eight 

fires, LSA brightened by 33%, and ranged from 8-39% increase following forest fire 

(Table 3; p < 2 x 10-16, mean increase = 10.1, sd = 11.9), with approximately two-thirds 

of that total increase coming in the first winter after the fire event. The normalized pre- 

vs. post-fire LSA relative to burn severity for each individual fire (Appendix B; Figure 

11) shows the overall increase observed in post-fire burn severity classifications.  LSA 

continued to brighten for at least ten years post fire, across all fire events (Figure 6a), 

with the linear regression equation of LSA as a function of years post fire expressed in 

the bottom right of the plot. The increase in post-fire LSA relative to individual burned 

area (Appendix C; Figure 12) displayed the consistencies throughout each fire event. The 

observed decrease in post-fire forest density in burned forest areas was used to assist in 

explaining the increase in post-fire LSA. The decrease in forest density through each 

individual fire (Appendix D; Figure 13) displayed the drastic change from pre-fire forest 

density and post-fire forest density.  

When winter and spring LSA were separated, we observed overall darker LSA in 

spring (Figure 5; averages marked by large circles). This was expected as well, due to 

warmer temperatures and normal melt patterns in the springtime. However, the difference 
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between winter and spring LSA increased relative to each burn severity in post-fire 

measurements. While winter LSA showed a strong persistent increase in post-fire LSA 

(Figure 6b), spring LSA measurements were much darker and did not experience the 

same rate of increase (Figure 6c), suggesting a heightened effect due to past forest fires 

during the springtime snowmelt phase. 
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Figure 4. Pre-fire and post-fire LSA separated by high burn (black), moderate burn (gray), unburned 

forest (green), open area (blue), buffer forest (light green), and buffer open (light blue). The larger squares 

represent the pre-fire and post-fire averages. 

Figure 5. Winter & Spring pre-fire and post-fire LSA separated by high burn (black), moderate burn 

(gray), unburned forest (green), and open area (blue). The large squares and circles represent the pre-fire 

and post-fire Winter and Spring mean LSA, respectively. 
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Table 3. Pre-fire and post-fire LSA statistics for all eight fires separately including the mean difference and 

percent increase for each fire. *** = p < 0.001 

 
 PRE-

FIRE 

COUNT 

PRE-

FIRE 

MEAN 

PRE-

FIRE SD 

POST-

FIRE 

COUNT 

POST-

FIRE 

MEAN 

POST-

FIRE SD 

MEAN 

DIFF 

% 

INCREASE 

BOULDER 

(2000) 
99 36.83 9.21 4594 54.50 16.14 17.67*** 39% 

GREEN 

KNOLL (2001) 
341 30.94 9.39 3742 44.28 13.18 13.34*** 35% 

PURDY (2006) 1629 33.24 9.72 2986 43.96 10.85 10.72*** 28% 

BULL (2010) 2498 37.64 11.99 1881 45.71 12.52 8.07*** 19% 

HORSETHIEF 

CANYON 

(2012) 

2779 41.82 12.67 1405 45.49 12.95 3.67*** 8.4% 

CLIFF CREEK 

(2016) 
4141 40.84 12.83 610 47.92 12.39 7.08*** 16% 

LAVA 

MOUNTAIN 

(2016) 

3949 31.85 9.69 698 45.16 10.06 13.31*** 35% 

ROOSEVELT 

(2018) 
4740 43.16 13.86 257 50.33 12.74 7.17*** 15% 
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c) b) 

a) 

𝑦 = 41.5 + 1.1𝑥 

𝑦 = 44.8 + 1.3𝑥 𝑦 = 36.8 + 0.9𝑥 

Figure 6. a) Post-fire annual LSA. b) Post-fire annual Winter LSA. c) Post-fire annual Spring LSA. Each 

boxplot represents the whole fire area. The linear regression line for each plot is presented in the bottom 

right of the plot. 
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As expected, high burn severity and moderate burn severity classifications 

experienced highest difference in pre-fire vs. post-fire normalized LSA, undergoing a 

44% and 36% increase, respectively (Table 4; p < 2 x 10-16). Unexpectedly, unburned 

forest and open area classifications also experienced a high difference in pre-fire vs. post-

fire normalized LSA, undergoing a 32% and 22% increase, respectively (Table 4; p < 2 x 

10-16). The data produced near-identical post-fire LSA results for high burn, moderate 

burn, and unburned forest classifications. 

Table 4. Results from the daily normalized LSA Tukey HSD test based on the piecewise comparisons of 

burn severity classification in post-fire comparisons and pre- vs. post-fire comparisons. *** = p < 0.001. 

POST-FIRE 

COMPARISONS 

PERCENT 

INCREASE 

PRE- VS. POST-FIRE 

COMPARISONS 

PERCENT 

INCREASE 

OPEN-UNBURNED 8.7%*** HIGH 44%*** 

OPEN-HIGH 8.4%*** MODERATE 36%*** 

OPEN-MODERATE 8.1%*** UNBURNED 32%*** 

UNBURNED-HIGH 0.3% OPEN 22%*** 

MODERATE-HIGH 0.4%   

UNBURNED-MODERATE 0.7%   

 

Annual Post-fire Snow Albedo Change 

Annual LSA clearly displays a persisting increase for more than ten years 

following a fire, however, the rate of increase became progressively larger from years 6-

10, which was most likely caused by delayed tree mortality and loss of dead branches. 

We took the five-year averages of PFSAC, separated by burn severity classification 

(Table 5; Figure 7) and calculated the rate of change for each stage of PFSAC. The five-

year averages of PFSAC, separated by burn severity classification, for each individual 

fire (Appendix E; Figure 14) show the non-linearities in five-year periods. After the 
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initial increase in LSA following a fire, LSA does not show a noteworthy difference until 

seven years post-fire (p = 0.0055) ranging from 11-19% increase by each burn severity 

classification. Years five and ten post-fire show a slightly greater increase in normalized 

LSA (p = 0.00019) ranging from 12-17% increase by each burn severity. The difference 

between years ten and fifteen post-fire signifiy stabalization in normalized LSA, ranging 

from -0.6-3% change by each burn severity classification. This stabalization is 

representative of the LSA throughout the burned area becoming similar to that of a pre-

fire open area approximately ten years following a fire event.   

Table 5. Percentage PFSAC increase relative to each burn severity. 

 PRE/1YR 

POST 

1YR/5YR 

POST 

1YR/7YR 

POST 

5YR/10YR 

POST 

10YR/15YR 

POST 

PRE/15YR 

POST 

HIGH BURN 28% 9.6% 19% 17% 3.1% 63% 

MODERATE 

BURN 

23% 7.9% 17% 16% 2.6% 53% 

UNBURNED 

FOREST 

19% 7.2% 15% 16% 0.9% 51% 

OPEN AREA 15% 3.2% 11% 12% -0.6% 38% 
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Figure 7. Normalized LSA results for post-fire snow albedo change. High burn (black), moderate burn 

(gray), and unburned forest (green) were normalized by taking the differenced LSA of the buffer forest 

area. Open area (blue) was normalized by taking the differenced LSA of the buffer open area. 

 

 

Generalized Additive Model 

We used smooth functions to represent the rate of PFSAC with a Generalized 

Additive Model (GAM) to capture normalized LSA as a function of years post fire (edf = 

6.2, p < 2 x 10-16), forest density (edf = 2.9, p = 6.65 x 10-07), and burn severity 

classification (Figure 9). The GAM deviance explained 69.4% of the data, with a GCV of 

23.582. We were able to interpret the normalized LSA visually from the GAM, however, 

due to it being a non-parametric analysis, we were not able to draw specific slopes from 
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the predictors. We used the GAM to further observe and understand the relationship 

between the two predictor models (years post fire and forest density) with normalized 

LSA. Additionally, we used the GAM to assist in identifying the breaks in the PFSAC in 

order to evaluate the relationships with multivariate and linear spline regression models. 

Years post fire and normalized LSA was represented as a polynomial to the 6.23-degree, 

while forest density and normalized LSA was represented as a polynomial to the 2.93-

degree.    

 

Figure 8. GAM representation of smooth functions (years post fire and forest density) as predictor 

variables with normalized LSA as the response variable. 

 
 
 
 
 
 
 
 
 
 
 
 

Years Post Fire 
Forest Density (%) 

GAM #1 GAM #2 
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Multivariate Linear and Spline Regression Analysis 

 In order to quantify the rate of PFSAC, we developed a multivariate regression 

model of post-fire normalized LSA as a function of years post fire (p < 2 x 10-16), forest 

density (p = 1.08 x 10-08), and burn severity classification. The overall RMSE of the 

model was 4.90 (Table 6; p < 2 x 10-16, R2 = 0.6755).  

Table 6. Results of the multivariate linear regression model for the rate of PFSAC as a function of years 

post fire and forest density, relative to each burn severity. *** = p < 0.001. 

 COEFFICIENT STD ERROR 

YEARS POST FIRE 1.0*** 0.06 

FOREST DENSITY -0.4*** 0.07 

BURN SEVERITY CLASSIFICATION 

(REFERENCE = HIGH BURN SEVERITY) 

12.2*** 1.7 

MODERATE BURN SEVERITY 0.2 0.8 

UNBURNED FOREST 0.7 0.9 

OPEN AREA -10.1*** 0.8 

R-SQUARED 0.6755  

RESIDUAL STD ERROR 4.955  

DEGREES OF FREEDOM 282  

 

From here, we were able to quantify the multivariate regression model with an 

equation including all variables as: 

Equation (5) 

𝑦 = 12.2 + 1𝑥 − 0.4𝑓 + 0.2𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 + 0.7𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑 − 10.1𝑜𝑝𝑒𝑛 

Where y is the normalized LSA, x is years post fire, and f is forest density. Years 

post fire and forest density represent continuous data, whereas the burn severity 

classifications are categorical, in that they are represented as a 1 or 0 depending on if we 

measured for that specific severity. 
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While the multivariate linear regression model provided a strong foundation in 

quantifying the rate of PFSAC, explaining 67.55% of the variation with a residual 

standard error of 4.955, normalized LSA was not completely linear with respect to years 

post fire or forest density. In order to quantify normalized LSA while considering the 

stepwise non-linearity of the relationship, linear spline regression models were developed 

to measure the rate of PFSAC as a function of years post fire relative to burn severity 

classification (Table 7; Figure 10).   

 

Table 7. Results of the linear spline regression models for normalized LSA as a function of years post fire. 

* = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

Equation (6) 

 MODEL EQUATION RESIDUAL 

STD 

ERROR 

DF F-

STATISTIC 

P-

VALUE 

R-

SQUARED 

WHOLE 

FIRE AREA 

= 1.96 + 0.66𝑥∗ + 1.96(𝑥
− 6)∗∗– 2.74(𝑥 − 10)∗∗∗ 

6.387 260 60.21 < 2.2 x 

10-16 

0.4031 

HIGH BURN 

SEVERITY 

= 3.66 + 0.69𝑥 + 2.17(𝑥
− 6)∗– 2.90(𝑥 − 10)∗ 

4.989 62 29.58 3.85 x 10-

12 

0.5688 

MODERATE 

BURN 

SEVERITY 

= 4.18∗ + 0.66𝑥 + 2.07(𝑥
− 6)∗– 2.84(𝑥 − 10)∗ 

4.742 62 29.6 5.32 x 10-

12 

0.569 

UNBURNED 

FOREST 

= 4.51∗ + 0.61𝑥 + 1.66(𝑥
− 6)– 2.23(𝑥 − 10) 

6.008 62 13.84 < 5.16 x 

10-7 

0.3721 

OPEN AREA = −4.53∗ + 0.68𝑥 + 1.92(𝑥
− 6)∗– 2.99(𝑥 − 10)∗ 

5.062 62 22.24 6.78 x 10-

10 

0.495 

 

Where the response variable is normalized LSA. The independent variable, years 

post fire, is represented by x. The separated variables in the linear spline regression 
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models represent the breaks at years six and ten post fire. The first variable (x) is used for 

calculating the normalized LSA for any year post fire. The second variable (x – 6) is only 

used when years post fire is greater than or equal to six. The third variable (x – 10) is 

only used when years post fire is greater than or equal to ten. This model signifies that for 

the total area effected by forest fire within this study, 40.31% of the variation in 

normalized LSA can be described by years post fire alone. 

The results of each spline regression model describing the measured PFSAC vs. 

years post fire for all burn severity classifications are in Table 5. All 5 equations were 

found to be highly significant (p-value < 2.2 x 10-16 – 5.16 x 10-7), explaining between 

37.2 – 56.9% of the variation in PFLSA with years post fire. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Linear spline regression representation with two knots (three segments) to show the 

multiple levels of PFSAC relative to high burn (black), moderate burn (gray), unburned forest 

(green), open area (blue) and combined for whole fire area (red). 
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5. Discussion 

Quantifying Post-fire Landscape Snow Albedo 

In all eight forest fire occurrences, MOD10A1 observed an immediate increase in 

post-fire LSA, initially brightening by 21% the first year following a fire, ranging from 

15-28% relative to burn severity, and continued to increase for at least ten years 

following fire. These results were expected, as a decrease in forest density, due to initial 

and delayed tree mortality, caused an increase in exposure of the snow surfaces and direct 

shortwave radiation to reach the snowpack surface. Forest density and shortwave 

radiation were clear leading factors in post-fire LSA (Gleason et al., 2013; Zhuosen 

Wang et al., 2016). With the presence of LAP (predominately BC) deposited throughout 

the snowpack, past research suggested significant accelerated snowmelt and earlier SDD 

throughout forest fire areas (Gleason et al., 2019). Snow albedo decay has been measured 

to represent the increased radiative forcing on snow in burned forests (Gleason et al., 

2016) immediately following fire occurrence, but the spatio-temporal variability of this 

process is still not well represented in hydrologic and climatic models.   

We used a generalized additive model to further analyze the relationship between 

the two predictor models (years post fire and forest density) with normalized LSA. We 

used the GAM to assist in identifying the breaks in the PFSAC in order to evaluate the 

relationships with multivariate and linear spline regression models. Some of the 

complexities in measuring post-fire LSA were captured in the GAM. Although these 

relationships were not linear, the multivariate linear regression models we produced 
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provided a measure of quantifying normalized LSA for post-fire burned areas as well as 

post-fire open areas. Due to these linear models being normalized, the model for burned 

areas, which included high burn, moderate burn, and unburned forest, showed the highest 

difference in initial change. This was expected for the high and moderate burn severity 

areas, but not for the unburned areas. The model for open area showed a smaller initial 

increase in normalized LSA, which was expected, as there should not have any 

significant landcover change in the open areas. However, it is almost certain that BC, 

brown carbon, and soil were transferred from burned areas and deposited in open areas 

due to natural weather variations. Although we were unable to successful detect levels of 

LAP in the MOD10A1 data, this would have had an effect on SSA, therefore potentially 

affecting post-fire LSA measurements. 

We found that years post fire had a greater influence on increasing post-fire LSA 

than forest density had on decreasing post-fire LSA for at least ten years following a fire. 

It is clear forest density has an increased rate of influence once tree regeneration begins 

to singificant occur. In all eight fires, forest density was at its lowest approximately 

fifteen years following a fire before showing inidications of increasing in high burn, 

moderate burn, and unburned areas. As we past ten years following a fire, the linear 

regression models began losing accuracy, as LSA flattened out, possibly shifting to more 

of a recovery phase. For this reason, we quantified normalized LSA with a linear spline 

regression model, broken into three segments. While this model used years post fire as its 

sole predictor variable, there are visible breaks where the rate of PFSAC is significant. 

We used statistical tests to ensure the significance of the years at which we put the breaks 
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into the model. Not including the significant change coming from the initial fire 

disturbance, year seven post-fire and year eleven post-fire provided singificant shifts in 

the normalized LSA measurements. We put the breaks at years six and ten post-fire, one 

year prior to both significant measurements, to measure the linear relationships within 

each segment (Figure 10). While the spline regression models provided strong results for 

the rate of PFSAC, years post fire, relative to burn severity classification, was used as the 

sole independent variable. These models provided more benefit for accurately predicting 

normalized LSA after ten years following a fire.  

Post-fire Snow Albedo Temporal Variation 

We acquired LSA measurements from MOD10A1 across a four-month period 

each year, in which the difference between pre-fire and post-fire LSA increases with time 

during the first ten years following a fire. We found an apparent connection between LSA 

and forest density. As mentioned, both MOD10A1 and MOD44B datasets observed a 

distinct shift following a fire occurrence. There is an increase in annual LSA immediately 

following the fire occurrence that persists for at least ten years before indication of 

leveling out. In addition, there is an immediate decrease in annual forest density that 

persists for approximately ten to twelve years before showing indications of leveling off, 

with possible signs of significant regeneration occurring fifteen years following a fire. 

This pattern of increasing LSA was likely influenced by delayed tree mortality and the 

continued loss of branches and standing dead boles (Bond-Lamberty and Gower, 2008) in 

the years following a fire. While signs of regeneration were visible in the MOD44B data 

approximately fifteen years following a fire, there may have been a delayed response of 
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decreasing post-fire LSA back to pre-fire conditions due to MOD44B measuring on an 

annual temporal scale. Vegetation regeneration and regrowth most likely was most 

prevalent and visible in the late spring- and summertime. Past studies with MODIS 

products (Randerson et al., 2006; Jin, Randerson, Goulden, et al., 2012) suggest that the 

difference between pre-fire and post-fire spring- and summertime surface albedo 

increases with time during the first five to eight years following a fire. In snow 

dominated, mountainous areas, late-spring snow-cover may influence the appearance of 

vegetation recovery. 

There was an observed period approximately between seven and ten years post 

fire (Figure 4) where the LSA in high burn, moderate burn, and unburned forest areas 

becomes brighter than the LSA in the buffer open area. This was unexpected, as the 

buffer open area was predicted to represent the brightest areas of measured LSA. 

However, when the buffer areas were constructed from the NLCD dataset, there were 

multiple landcover identifications classified as open area that might have made it 

significantly darker than an open meadow in the wilderness. For example, developed 

areas, which are typically impervious and dark surfaces, and shrublands, which were 

described as areas of two classes, one of which being shrubs no higher than three meters 

tall. Both landcover types were classified as buffer open areas in the study, while they 

have a probability to darken the LSA more than an open meadow. For this reason, it was 

possible for the LSA in the burned perimeter to appear brighter in the measured data than 

that of the buffer open area.  
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Post-fire Snow Albedo Spatial Variation 

When examining the individual forest fires, it was important for us to 

acknowledge the dynamics of pre-fire conditions as a function of landscape and 

ecological variability. While the forested areas were dominated by similar pinetree 

vegetation, there were many factors that made the results variable from fire to fire. 

Elevation and varying topography and aspect are important drivers that alter snow 

processes, including snow albedo. Landscape types were recorded in pre- and post-fire 

conditions, however elevation, topography, and aspect were not included in the analysis 

of MOD10A1 snow albedo. 

 Landscape dynamics following a forest fire event strongly effect LSA. The 

spatial heterogeneity caused by forest fires introduces new complexities influencing snow 

accumulation and ablation in burned forests. Throughout this study, we found the 

variability of daily post-fire LSA measurements increased when compared to that of the 

daily pre-fire LSA. The spatial scale of MOD10A1 made it difficult to differentiate the 

burn severity classifications in this matter. Therefore, we were not able to statistically 

differentiate between the post-fire LSA of high burn, moderate burn, and unburned forest 

areas. A contributing factor in this may have been the incorporation of low burned areas 

into our unburned classification, although low burned areas likely produce little forest 

damage, mostly affecting understory. However, MOD10A1 was able to capture the 

increased effect forest fires have on springtime snowmelt vs. winter accumulation. This 

suggests that, while forest fires may effect snow accumulation patterns, the largest effect 
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they have may be present in springtime albedo due to presence of BC, resulting in 

acclerated SDD, as found by Gleason et al., 2019.    

At the large spatial resolution presented by the MOD10A1 pixels, there are key 

snow-forest processes that are occurring at the sub-pixel resolution that influenced the 

results of LSA that we most likely were not able to account for. This was the main 

purpose of downscaling the MODIS resolution. Pre-fire forest conditions are generally 

understood to be more homogenous, in that forested areas are dominated by vegetation 

and open area are more dominated by shrubland or grassland. However, the landscape 

mosaic becomes much more patchy and heterogenous following a forest fire, making it 

morey difficult to classify a single pixel with one solid burn severity classification. For 

instance, MODIS pixels assigned to a high burn severity designation most likely also 

contain patches of low or moderate burn severity, therefore, the snow albedo calculated 

from coarse spatial resolution MODIS pixels over high burn severity area is 

underrepresented and lower than it typically would be when determined by the finer 

spatial resolution of an instrument like Landsat-8 (Wang et al., 2016). 

In addition, the unburned forest and open area displayed the least amount of 

change in normalized LSA (Figure 4), although it is important to note there was still an 

increase in normalized LSA following a fire event. While this was an unexpected 

observation, it suggests the level of uncertainty that went into this analysis, as it is 

expected that little or no change should occur to normalized LSA in unburned forest and 

open areas pre-fire vs. post-fire. This uncertainty is present due to multiple theories. Most 

likely, due to the idea that the decrease in forest density allows for more of the snow 
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surface to be assessed by the coarse-grained MODIS satellite imagery, the entire burned 

area image would appear brighter. Another very likely possibility is due to coupling 

present between the different burn severity classifications, which also stems from the 

spatial resolution of MOD10A1. This provided an efficient technique in detecting any 

uncertainty of the spatio-temporal effect of forest fires on snow albedo. 

Landscape and Climate Effects on Snow Albedo 

 In the Western US, forest fire activity is likely to continue an increasing trajectory 

in association with climate change throughout this century (Kitzberger et al., 2017; 

Abatzoglou et al., 2019). Furthermore, in many areas throughout the seasonal snow zone, 

post-fire climate conditions are likely to become increasingly unfavorable to tree 

regeneration, even if seed sources are nearby (Liang et al., 2017; Kemp et al., 2019; Coop 

et al., 2020), having an exceedingly significant effect on overall seasonal snowpack. 

While these expected changes in fire and climate conditions have a large effect on snow 

patterns, there is a lot of uncertainty of the spatio-temporal effects they will pose on snow 

accumulation and ablation. 

 High severity burned areas are less likely to see complete forest regeneration, 

with a conversion to non-forest landscape probable (Kemp et al., 2019; Coop et al., 

2020). Studies have suggested the increase in LSA following a forest fire, may be 

significant enough to neutralize the initial carbon release caused by the fire, and thus may 

not necessarily accelerate climate warming to a significant degree (Bala et al., 2007; 

Randerson et al., 2006), there are negative hydrologic implications of a forested area 

being converted to a non-forested area. While we were able to successfully quantify the 
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spatio-temporal relationship between LSA and years post fire with forest density, there 

are complex measures influencing recovery after ten years following a fire. Post-fire 

landscape heterogeneity continues to increase with delayed tree mortality and 

regeneration rates, and it is unclear as to when, or if, LSA in a burned forest returns to the 

levels of pre-fire conditions. However, we need to acknowledge the uncertainties that 

come with the ability to effectively predict where, when, and how widespread post-fire 

forest conversions may be in the future. While most global climate models agree that 

temperatures will continue to rise this century, predicted changes in precipitation are 

variable (Knutti and Sedláček, 2013; Coop et al., 2020). This is likely to include 

continued uncertainties in predictions of future fire and forest regeneration models. 

However, any potential increases in precipitation are likely to be inadequate to balance 

out the effect of rising temperatures on fire activity (Flannigan et al., 2016) and declines 

in seasonal snowpack (Harpold and Molotch, 2015).  

The largest changes in LSA values were found in the high and moderate severity 

areas, suggesting greater landscape changes played a critical role in the resulting LSA 

measurements. In addition, the pre-fire LSA values from the high (mean = 30.8, sd = 2.1) 

and moderate (mean = 33.5, sd = 1.9) burn severity areas had average LSA measurements 

lower than that of the unburned forest (mean = 35.1, sd = 1.9) area (Figure 4). We 

expected that all three of these burn severity classification areas would have reported 

very similar pre-fire LSA, however, they were statistically significantly different. This 

suggests that the areas that burned most heavily in all eight fires were areas of slightly 

higher dense forests. The examination of forest density measurements from MOD44B 

javascript:;
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clearly show areas classified as high burn severity (mean = 40.3, sd = 1.6) had the 

greatest percentage of forest density, whereas moderate burn severity (mean = 35.4, sd = 

1.6) areas were slightly less covered, followed by areas of unburned forest (mean = 32.5, 

sd = 1.9) with less coverage. This signifies the importance of locating high density forests 

when examinating for burn probabilities. Song & Lee, 2016 found that tree density of 

0.45 represent a critical value for high burn severity probability. According to the 

MOD44B measurements in this study, the pre-fire averages in high burn severity areas 

fall closest to this critical threshold. In addition, the more dense the pre-fire forest is, the 

greater chance of larger changes in landcover after a forest fire occurrence, which 

influences burn severity classifications as well. 

Project Uncertainties  

While this study successfully reported multiple regression analysis of post-fire LSA and 

PFSAC for each burn severity classification, there are multiple errors and uncertainties to 

be acknowledged. MOD10A1, along with other remote sensing products, have limitations 

that are well-known within forest canopies and terrain shadows. Snow albedo detection in 

mountainous environments, like our study site, from remote sensing-based imagery can 

contain relatively large errors when measured in areas with steep slopes (Malmros et al., 

2018). The snow-cover and snow albedo measurements within the MODIS products 

considers these limitations with its built-in snow-mapping algorithms, however, it is 

difficult to accurately correct for these errors without ground-based measurements. These 

methods are able to use the ratio of visible to near-infrared reflectance for the desired 

substance and work relatively well. However, the daily MODIS snow albedo product 
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(Hall, Salomonson, & Riggs, 2006) does not apply the same corrections that the MODIS 

bidirectional reflectance distribution function (BRDF) albedo products or white-sky and 

black-sky albedo products apply. This becomes primarily important in its assumption that 

forested areas are Lambertian reflectors, therefore having no BRDF corrections applied. 

This assumption does not identify the importance of forest density and canopy structure 

and does not account for shadows cast on neighboring vegetation, forest edge effects, or 

in forest gaps, which significantly changes the surface albedo, especially in snow-covered 

forests (Burakowski et al., 2015). Forest canopies are a reason for such great limitation 

because the snow beneath heavily dense canopies cannot be detected. While MODIS 

primarily uses the normalized difference snow index (NDSI) to accurately report snow 

albedo vs. land albedo, canopy cover and forest density play a critical role in darkening 

the apparent snow albedo in forested areas. This is an issue within the scope of this study 

because, while MOD44B forest density measurements change drastically in burned forest 

areas over space and time, it is difficult to determine the snow properties preceding the 

fire event without reasonable uncertainty. Without knowledge of these snow properties 

before the fire, it is difficult to compare these with the snow properties after the fire. 

While burned forests do not hold the same challenges as forest canopy cover and forest 

density, there is increased spatio-temporal variability in the snow cover and snow albedo 

(Gleason et al., 2016). Both fire area and burn severity show significant post-fire spatial 

heterogeneity at the landscape-level compared to pre-fire conditions. This adds more 

complexities in measuring both LSA and SSA. While the input of increased shortwave 

radiation and overall change in longwave radiation are driving forces in the radiative 

forcing on snow, the variability in SSA is highly affected by BWD and BC. MODIS Dust 
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Radiative Forcing in Snow (MODDRFS) was developed (Painter et al., 2012) in order to 

capture and model snow reflectance data with LAP present in the snow cover. While this 

model has been proven to work with dust specific LAP (Painter et al., 2012), there has 

not been much work done in burned forest areas to validate it with BC. While BC was not 

detectable at the landscape scale with MOD10A1, it is presumed in this study that its 

presence highly effects the snow accumulation and ablation throughout the burned area 

(Gleason et al., 2013; Gleason et al., 2019).  

Additionally, there is uncertainty present when classifying the landcover and 

creating the buffer areas in this study. The 5 km buffer area surrounding the fire 

perimeter was calculated immediately outside the fire perimeter. This provides room for 

some potential mixing of buffer area pixel measurements within the fire perimeter 

boundary. While the buffer area was calculated from Landsat NLCD 30 m spatial 

resolution imagery, identical to that of MTBS fire area and burn severity imagery, the 

MODIS coupling issues might have been influenced by pixels within the fire areas. This 

would not highly influence the outcome, yet it would add another level of uncertainty 

when measuring LSA for the buffer areas. Identifying the various landcover types as 

“forest” or “open” areas may have also introduced some error into the buffer area 

measurements. While it was important to remove bodies of water from the data, I did not 

remove anything else. This allowed for large variability in the two classifications of the 

buffer area. For example, areas categorized as developed and shrubland in the NLCD 

data were classified as open areas, although shrubland was described as anything up to 3 

m in height. Additionally, the deciduous and coniferous forest types differ on their 
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overall effect on snow albedo, as deciduous trees lose their leaves and go dormant, 

leaving many more gaps than coniferous trees.    

With the advances in remote sensing comes levels of uncertainty and error, MODIS data 

products are no exception. Studies have been done to compare the results of different 

MODIS products and have found MOD10A1 can be used to effectively characterize 

snow albedo trends (Wang et al., 2016; Malmros et al., 2018; Calleja et al., 2019). 

Throughout this project, there were noticeable levels of uncertainty within the data that 

we could not account for. Even after downscaling, it was apparent that there was some 

coupling present between the different burn severity classifications. This coupling error is 

likely due to “mixels”, meaning a mixture of multiple burn severity classifications within 

one downscaled MODIS pixel. Wang et al. (2016) found that the albedo can range from 

0.1 to 0.7 or higher within a single MODIS gridded pixel, especially if the grid has varied 

landcover types. When multiple burn severity classifications occupied the same MODIS 

gridded pixel, more error and uncertainty was present. After we completed the 

downscaling process, the MODIS spatial resolution was still taking landscape-level 

measurements, with plenty of error left unresolved. This may explain the similarities we 

found between the post-fire high burn, moderate burn, and unburned forest areas, as we 

could not completely differentiate the three classifications. The coupling effect could also 

be emphasized by low burned severity areas being incorporated into the unburned forest 

area. This would have an influence on separating FFESA based on burn severity 

classification as well. To minimize the uncertainty even more, the data was filtered to 

only include days where 50% or more of the cell coverage was unblemished. This was 
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done to ensure the classified cells were filled with at least the majority of the assumed 

burn severity class. However, it was not possible to remove all uncertainty and coupling 

within the data before performing the analysis.  
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6. Conclusions 

We used a generalized additive model, multivariate linear regression models, and 

linear spline regression models to draw conclusions on MOD10A1-based LSA 

measurements as it relates to years since fire and forest density throughout a mix of 

varied burn severity classifications. Snow albedo forcing is spatially and temporally 

heterogeneous and depends on a variety of factors related to time since fire, fire severity, 

land cover, vegetation type, soils, topography, and seasonal variation. While we did not 

account for all these factors, it is important to understand some of the unexplained 

variation in the results. Forest fires have a significant effect on LSA and the non-linear 

rate of PFSAC by significantly decreasing forest density and increasing the direct 

exposure of the snowpack to incoming shortwave radiation. The PFSAC analysis 

suggests the rate of increasing LSA is most significant for the period between five and 

ten years following a fire event, before which the PFSAC is negligible possibly due to the 

transition between initial tree mortality and delayed tree mortality. After ten years post 

fire, the burned areas began a transition to the recovery phase, in which the rate of 

PFSAC becomes insignificant, signifying the stabilization of LSA after a forest fire, 

becoming more like that of an open area. This indicates that the first decade of PFSAC is 

dominated by persistent brightening due to the decrease in forest density and delayed tree 

mortality, most of which occurs after five years post fire event, before stabilizing and 

eventually beginning the process of darkening due to forest regeneration and regrowth. A 

process of continued monitoring of MODIS daily snow albedo is important in evaluating 

the recovery process. 
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While this research study is not able to accurately measure the darkening effect of 

BC and BWD with MOD10A1, past research has shown that LAP a profound effect on 

snow albedo and ablation (Gleason et al., 2013). The analysis of LSA in the study was 

performed as an assessment to quantify PFSAC on a widespread scale for changes in 

watershed snow accumulation and ablation. Most global climate models agree that 

temperatures will continue to rise, causing seasonal snowpack will continue to decrease, 

resulting in earlier snowmelt and lower annual landscape albedo. As climate change 

persists, forest fires will continue to increase in intensity, size, frequency, and duration, 

impacting the environment and human life. In reference to the western US, the increase in 

forest fires and rising temperatures will continue to deplete seasonal snowpack, making 

water availability an increasing issue. It is important to recognize the spatio-temporal 

effect fires have on snowpack and water resources across the western US. Quantifying 

this effect will improve models where snow albedo is a critical part of estimating 

accumulation and ablation processes, while assessing water accessibility and 

vulnerability. 

Future Steps 

Satellite imagery analysis, both fine and coarse resolution, is essential in large-

scale investigations involving snow albedo and snow melt. Climate Normal is 

traditionally measured as the average over a 30-year period. Snow albedo data will need 

to continue to be monitored and studied from MODIS in order to gain reliable climate 

normal estimations. The continuous improvements made to satellite technology allows 

deeper investigations into questions that have yet to be answered. While MODIS is set to 
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expire here in the short term, the Visible Infrared Imaging Radiometer Suite (VIIRS) 

carries the capacity to replace it. Launched in 2011, VIIRS captures the same phenomena 

that MODIS currently tracks, acquiring visible and infrared imagery and radiometric 

measurements of Earth’s atmosphere, land, and oceans. While this will continue to 

improve the temporal aspect of satellite imagery, it will also improve the spatial aspect, 

as VIIRS has slightly better spatial resolution, capturing snow cover and snow albedo 

data at 375-meter spatial resolution (Riggs et al., 2017). Work continues to be done in 

order to improve the representation of snow albedo in burned forest areas for applications 

in snow and land surface models. Changes in snow albedo and land cover in pine 

dominated forests persist for long periods of time following a fire. Long-term, fine-spatial 

resolution datasets are necessary to examine the post-fire vegetation characteristics and 

determine accurate snow albedo recovery. A key in doing this successfully is to better 

understand FFESA by integrating proper algorithms into these models to improve the 

predictions based on the impacts of topography, soil type and burn severity on the overall 

energy balance. Additionally, the use of airborne Lidar data, which provides high quality 

mapping of canopy density and height, would also substantially benefit the understanding 

of post-fire energy balance. 

This study will assist in building spatio-temporal algorithms for the use in various 

burn severity areas. Doing further studies with more fine-grained remote sensing tools is 

necessary to ensure some of the uncertainty in this study. More work will need to be done 

in improving the representation of snow albedo decay on a daily scale for varying burn 

severities. While fresh snowfall drastically increases snow albedo, the deposition of LAP 

and the presence of BWD in burned forest areas is hypothesized to have a large effect on 
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snow albedo decay for years following fire. This effect would, in theory, cause a rapid 

increase in snow albedo decay, leading to increased radiative forcing on snow, ultimately 

leading to accelerated snowmelt in burned forest areas. While accelerated snowmelt and 

earlier SDD in burned forest areas across the Western US has already been confirmed, 

there is still a need for improved snow albedo decay algorithms that become part of large-

scale hydrologic and climate models. In addition, continued work to obtain ground-based 

measurements is needed to confirm satellite-based imagery. Developing a hybrid-remote 

sensing modeling method for characterizing snow properties in burned forest areas, along 

with improving snow albedo decay algorithms in burned forest areas, will greatly 

improve the accuracy and precision in future land surface modeling applications. This 

will provide a vital pathway to characterizing, mapping, and modeling snow albedo and 

FFESA on a global scale, furthering our understanding of the spatio-temporal variability 

of post-fire impacts on hydrology, and integrating the appropriate variables and remote 

sensing data into hydrology models. This will drive development of accurate, real-time 

information of forest fire effects to water resource vulnerability and availability for land 

managers and policy makers. 
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Appendices 

Appendix A – NLCD Fire Maps 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. NLCD site maps for each individual fire. Areas within each burn perimeter were classified as 

either forest (green) or open (brown). 
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Appendix B – Normalized Pre-fire vs. Post-fire LSA 
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Figure 11. Pre-fire and post-fire normalized LSA for each fire, 

relative to burn severity. a) Boulder Fire b) Bull Fire c) Cliff 

Creek Fire d) Green Knoll Fire e) Horsethief Canyon Fire f) 

Lava Mountain Fire g) Purdy Fire h) Roosevelt Fire 

Figure 11. Pre-fire and post-fire normalized LSA for each fire, relative to burn severity. a) Boulder Fire b) 

Bull Fire c) Cliff Creek Fire d) Green Knoll Fire e) Horsethief Canyon Fire f) Lava Mountain Fire g) 

Purdy Fire h) Roosevelt Fire 
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Appendix C – Post-fire Landscape Snow Albedo 
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Figure 12. Post-fire landscape snow albedo separated by each 

fire. a) Boulder Fire b) Bull Fire  c) Cliff Creek Fire d) Green 

Knoll Fire e) Horsethief Canyon Fire f) Lava Mountain Fire g) 

Purdy Fire h) Roosevelt Firea)                                                                    

b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  e)                                                                     f) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   g)                                                                  h)      

 

                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   g)                                                                  h)      

 

  e)                                                                     f) 

 

Figure 12. Post-fire landscape snow albedo separated by each fire. a) Boulder Fire b) Bull Fire  c) Cliff 

Creek Fire d) Green Knoll Fire e) Horsethief Canyon Fire f) Lava Mountain Fire g) Purdy Fire h) 

Roosevelt Fire 
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Appendix D – Post-fire Forest Density 
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Figure 13. Post-fire forest density measurements separated by 

fire. a) Boulder Fire b) Bull Fire  c) Cliff Creek Fire d) Green 

Knoll Fire e) Horsethief Canyon Fire f) Lava Mountain Fire g) 

Purdy Fire h) Roosevelt Fire 

 



74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 e)                                                                    f) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 g)                                                                    h)      

 

                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 g)                                                                    h)      

 

 e)                                                                    f) 

 

 

 

Figure 13. Post-fire forest density measurements separated by fire. a) Boulder Fire b) Bull Fire c) Cliff 

Creek Fire d) Green Knoll Fire e) Horsethief Canyon Fire f) Lava Mountain Fire g) Purdy Fire h) 

Roosevelt Fire 
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Appendix E – Post-fire Snow Albedo Change 
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Figure 14. Post-fire normalized landscape snow albedo per 5-

year subsets in order to observe the rate of PFSAC relative to 

each burn severity for each fire. a) Boulder Fire b) Bull Fire  c) 

Cliff Creek Fire d) Green Knoll Fire e) Horsethief Canyon Fire 

f) Lava Mountain Fire g) Purdy Fire h) Roosevelt Fire 

 

Figure 14. Post-fire normalized landscape snow albedo per 5-year subsets in order to observe the rate of 

PFSAC relative to each burn severity for each fire. a) Boulder Fire b) Bull Fire c) Cliff Creek Fire d) Green 

Knoll Fire e) Horsethief Canyon Fire f) Lava Mountain Fire g) Purdy Fire h) Roosevelt Fire 
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