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Abstract

In this work, the finite element method and the FEAST eigensolver are used to ex-

plore applications in fiber optics. The present interest is in computing eigenfunctions

u and propagation constants β satisfing the Helmholtz equation Δu + k2n2u = β2u.

Here, k is the freespace wavenumber and n is a spatially varying coefficient func-

tion representing the refractive index of the underlying medium. Such a problem

arises when attempting to compute confinement losses in optical fibers that guide

laser light. In practice, this requires the computation of functions u referred to as

guided modes and leaky modes. For guided modes, the location of the corresponding

propagation constants in the complex plane is known in the optics literature, making

the FEAST algorithm an ideal candidate to tackle this problem. In practice, one

solves the Helmholtz equation by prescribing zero Dirichlet boundary conditions on

a bounded, circular domain representing the fiber cross-section. In this work, we

compute numerical solutions to this problem using the FEAST algorithm with the

Discontinuous Petrov-Galerkin method for the underlying discretization. To compute

leaky modes, we must find complex-valued propagation constants β with correspond-

ing outgoing functions u. To compute such quantities, we employ a Perfectly Matched

Layer (PML) to force exponential decay of the solutions, rendering the problem com-

putationally tractable on a bounded domain. A frequency-dependent approach is

taken for the PML: This transforms the weak formulation of the Helmholtz prob-

lem into a polynomial eigenvalue problem, thus motivating our the adaptation of the

FEAST algorithm to solve such eigenvalue problems. We verify the results of our

algorithm by finding leaky modes and propagation constants of a step-index fiber,

where one can compare against known analytic solutions. Our algorithm is then

applied to the task of computing confinement losses of a microstructure fiber, where

lossy modes are expected. Confinement losses are computed from the imaginary parts
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of the corresponding propagation constants, and quantify the loss of power as light

travels through an optical fiber. Our numerical results show that in practice, there is

a large preasymptotic regime prior to convergence of confinement losses, suggesting

that confinement losses reported in the literature could be matched in this regime.

In addition, we show that our computed confinement losses remain stable as the

strength of the decay in the PML region and the PML region’s size are varied. Our

results also show that computed confinement losses are extremely sensitive to minor

perturbations in fiber geometry.
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Chapter 1

Introduction

1.1 Motivating Problem

In this work, we are interested in finding the propagation constants β and outgoing

solutions (or modes) u satisfying the following partial differential equation.

Δu+ k2n2u = β2u (1.1)

This particular form of the Helmholtz equation arises in applications of fiber op-

tics [43], and as we see in the next section, is derived from Maxwell’s equations under

the assumption that such a medium is guiding laser light. We omit the treatment

of boundary conditions for the moment, as this problem is typically solved on all of

R
2 [43] before applying numerical methods and solving this problem computationally.

One such medium we will explore is that of a step-index fiber. A step-index fiber

is composed of a circular core region doped with a rare earth metal such as ytterbium

(Yb) or Thulium (Tm) [44, 49]. This core region is surrounded by an outer, annu-

lar cladding region that is several times thicker than the core region. Such optical

fibers can be several kilometers long [43], and as we will see later in this work, have

1



diameters on the length scale of hundreds of micrometers (μm).

Figure 1.1: Step-Index Fiber Cross-Section

R0

Rfin

n1

n0

Figure 1.1: A cross-section of a step-index fiber.

For problem (1.1), the index of refraction is given by

n(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
n1, x2 + y2 ≤ R2

0

n0, x2 + y2 > R2
0

. (1.2)

with n1 > n0 > 0 identically constant and satisfying, for our purposes, n2
1 − n2

0 � 1.

In addition, k = 2π/λ is the freespace wave number, λ is the operating wavelength

in meters, n = n(x, y) is the index of refraction of the optical fiber along any cross-

section orthogonal to the direction of propagation, and β is the propagation constant

of light through the optical fiber [43]. The radii R0 and Rfin are the core and cladding

radii, sometimes denoted rcore and rclad, respectively. For step-index fibers, there are

a finite number of guided modes u and propagation constants β ∈ C satisfying (1.1).

For guided modes in an ideal step-index fiber we consider, the desired real-valued

propagation constants β satisfy [43]

2



kn0 < β < kn1.

The number of propagation constants in this interval depends on several parameters,

including the indices of refraction n0 and n1 of the cladding and core regions, the

core radius, and the wavenumber k; indeed, a well-known estimate for the number of

corresponding guided modes of a step-index fiber we consider is given by 1
2
V 2, with

V = R0k
√
n2
1 − n2

0 [43].

Our goal in this work is to harness tools such as the finite element method and

the FEAST eigensolver to find the propagation constants β and the corresponding

eigenfunctions u. For hermitian problems, we have obtained results using FEAST

with the Discontinuous Petrov Galerkin (DPG) method, including an application to

finding guided modes of an ytterbium-doped optical fiber [24]. Later in this disser-

tation, we provide numerical results from applying a nonlinear eigensolver used to

handle the task of computing modes for a hollow-core microstructure fiber considered

in works such as [29, 50]. A rough sketch of the geometry of such a fiber is given

in Figure 1.2 [29, 50], and further details of this geometry can be found in our other

work [27].

The geometric parameters for the microstructure fiber are as follows [29]:

Rcore - the radius of the core region (μm)

Rto - the outer radius of the hollow capillary tubes (μm)

Rti - the inner radius of the hollow capillary tubes (μm)

t - the thickness the hollow capillary tubes (μm)

3



Figure 1.2: Microstructure Fiber Cross-Section

Rto

Rti

d
t

Rcore

R0

Figure 1.2: A cross-section of a microstructure fiber with six hollow capillaries.

d - the azimuthal separation between two capillary tubes (μm)

R0 - the radial distance after which the outgoing medium is homogeneous

To get an intuition for the solutions we wish to compute, we will take a look at

deriving the scalar equation (1.1) from Maxwell’s Equations. This derivation will

form the basis of comparison for the algorithm we develop based on the work of [46].

1.2 Derivation from Maxwell’s Equations

We begin with a high-level overview of the problem we wish to solve, starting from

Maxwell’s Equations. We derive the problem we wish to solve under the assumption of

working within an optical medium through which laser light is propagated, specifically

an optical fiber with a cylindrical (outer) geometry. Such a derivation can be found

in various works [42,43,52]. We briefly explore the details of such a derivation in this

section to motivate the problem we wish to solve. In full, Maxwell’s equations are

given by [52]
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∇× E = −μ0
∂H

∂t
− μ0

∂M

∂t
(1.3a)

∇×H = ε0
∂E

∂t
+

∂P

∂t
+ j (1.3b)

∇ · (ε0E) = −∇ ·P+ ρ (1.3c)

∇ · (μ0H) = −∇ · (μ0M) (1.3d)

Where E =

[
Ex Ey Ez

]T
and H =

[
Hx Hy Hz

]T
are the electric and magnetic

fields, P and M are the polarization and magnetic densities, ρ is the free space charge

density, j is the current density, ε0 is the vacuum permittivity, and μ0 is the vacuum

permeability [52]. For optical fibers, we can make an immediate simplification of

Maxwell’s equations: We assume a negligable magnetic density M, as well as no free

charge density, or current density, so Maxwell’s equations reduce to

∇× E = −μ0
∂H

∂t

∇×H =
∂D

∂t

∇ ·D = 0

∇ ·B = 0

where D := ε0E+P is the electric charge displacement and B := μ0H is the magnetic

5



induction vector [42, 52]. Thus, Maxwell’s equations can be written as

∇× E = −μ0
∂H

∂t

∇×H =
∂D

∂t

A further simplification allows us to write P = ε0χE, for which we can then replace

D by ε0E + ε0χE = ε0εE, where ε := 1 + χ and where χ is the scalar electric

susceptibility [52]. Then we have

∇× E = −μ0
∂H

∂t
(1.4a)

∇×H = ε0ε
∂E

∂t
(1.4b)

We then proceed by eliminating H. Taking the curl of the Equation (1.4a) yields

∇× (∇× E) = −μ0
∂(∇×H)

∂t
,

and then substution of the expression for ∇×H yields

∇× (∇× E) = −μ0ε0ε
∂2E

∂t2

Next, we apply the identity

∇× (∇× E) = ∇(∇ · E)−∇2E.

By neglecting the term ∇(∇ · E) (under the assumption of a homogenous medium),

6



we obtain

−∇2E− μ0ε0ε
∂2E

∂t2
= 0.

where Δ2 is the vector laplacian, i.e. the laplacian applied to each component of E.

Denoting c0 := (ε0μ0)
−1/2 to be the vacuum speed of light, we have that

−∇2E =
ε

c20

∂2E

∂t2
. (1.5)

While this certainly holds in a homogeneous medium, we will be dealing with applica-

tions in which ε (and hence the refractive index of our medium) is non-homogenous.

Furthermore, we will assume that that that the solutions to the wave equation above

are time-harmonic and propagate in the z-direction of our coordinate system. Hence,

we assume an Ansatz of the form [42,43]:

E = E0(x, y)e
i(βz−ωt) (1.6)

for the electric field R, where we write E =

[
Ex Ey Ez

]T
as before; a similar

expression is taken for the magnetic field H [42]. Here, we have that the components

Ex, Ey, Ez depend spatially on the coordinates x and y only. Furthermore, the Ansatz

(1.6) assumes that our field propagates along the z-axis of our coordinate system, and

that our solution is time-harmonic. In doing so, we have that for each component

Ei and Hi of the electric and magnetic fields (i = x, y, z), the following holds from

expanding out (1.4) (and similarly in [42]):

7



∂Ez

∂y
− iβEy = iωμ0Hx (1.7a)

−∂Ez

∂x
+ iβEx = iωμ0Hy (1.7b)

∂Ey

∂x
− ∂Ex

∂y
= iωμ0Hz (1.7c)

∂Hz

∂y
− iβHy = −iωε0εEx (1.7d)

−∂Hz

∂x
+ iβHx = −iωε0εEy (1.7e)

∂Hy

∂x
− ∂Hx

∂y
= −iωε0εEz (1.7f)

Next, our goal is to write the longitudinal components Ez and Hz in terms of the

corresponding components Ex, Ey, Hx, Hy. Our goal is to show that the longitudinal

component Ez of the electric field E satisfies the Helmholtz problem we stated in the

previous section. To this end, we just need a careful combination of the equations in

(1.7). We begin by showing that the Ez component of the electric field E satisfies a

Helmholtz equation used to solve for guided and leaky modes. To this end, we first

begin by finding expressions for Hx, Hy, and then substitute them into (1.7f) to obtain

the desired result. First, observe that Equations (1.7e) and (1.7a) can be written as

iωμ0Hx =
∂Ez

∂y
− iβEy (1.8a)

iβHx =
∂Hz

∂x
− iωε0εEy (1.8b)

Multiplying Equation (1.8a) by −iωε0ε, Equation (1.8b) by iβ, and then adding

followed by division of κ2 := ω2μ0ε0ε− β2 [42] yields

8



Hx =
i

κ2

(
β
∂Hz

∂x
− ωε0ε

∂Ez

∂y

)
. (1.9)

Similarly, we consider Equation (1.7b) and (1.7d).

iωμ0Hy = −
∂Ez

∂x
+ iβEx (1.10a)

iβHy =
∂Hz

∂y
+ iωε0εEx (1.10b)

Multiplying Equation (1.10a) by −iωε0ε, Equation (1.10b) by iβ, and then adding

followed by division of κ2 yields

Hy =
i

κ2

(
β
∂Hz

∂y
+ ωε0ε

∂Ez

∂x

)
. (1.11)

Substitution and of Equations (1.9) and (1.11) into the left-hand-side of Equation

(1.7f) yields

∂Hy

∂x
− ∂Hx

∂y
=

i

κ2

(
β
∂2Hz

∂x∂y
+ ωε0ε

∂2Ez

∂x2

)
− i

κ2

(
β
∂2Hz

∂y∂x
− ωε0ε

∂2Ez

∂y2

)

=
iωε0ε

κ2

(
∂2Ez

∂x2
+

∂2Ez

∂y2

)
.

Equating this result with the right-hand-side of Equation (1.7f) yields

9



∂2Ez

∂x2
+

∂2Ez

∂y2
= κ2Ez,

where we have taken the initiative to divide out boths sides of Equation (1.7f) by the

common factor of iωε0ε. Writing κ2 as

κ2 = ω2μ0ε0ε− β2

=
ω2

c20
ε− β2

= k2n2 − β2

where k = ω/c0 = 2π/λ and n =
√
ε [52]1. Hence, the Ez component of the electric

field E satisfies

∂2Ez

∂x2
+

∂2Ez

∂y2
+ k2n2Ez = β2Ez.

A similar derivation shows that theHz component of the magnetic fieldH satisfies the

same differential equation. In the next section, we will tackle semi-analytic solutions

of this problem for functions representing the Ez component of the electric field E for

guided modes. A similar analysis will hold for leaky modes.

1It should be noted that in other works, such as Marcuse’s Light Transmission Optics, the re-
fractive index n of a dielectric material is defined to be n =

√
εi/ε0, where εi is the permittivity of

medium with which we are working and ε0 is the vacuum permittivity (see, for example, [42, Chapter
1, 6]).
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1.2.1 Guided Modes of a Step-Index Optical Fiber

In the previous section, we stepped through a derivation of the wave equation satisfied

by the desired electric field solution to Maxwell’s equations. In addition, we assumed

a time-harmonic solution, a simplification allowing one instead solve a PDE in xy-

coordinates. Since the present interest is to find solutions to (1.1) for step-index

fibers, our next step is to find guided mode solutions and propagation constants β

satisfying (1.1). In polar coordinates, we have

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
− β2u+ k2n2u = 0, (1.12)

Note that in Cartesian coordinates, the above would appear as the familiar differential

equation Δu+k2n2u = β2u. Using separation of variables by taking a solution of the

form u(r, θ) = R(r)T (θ), we obtain

R′′T +
1

r
R′T +

1

r2
RT ′′ + κ2u = 0,

with κ2 = k2n2 − β2. We denote κ1 := k2n2
1 − β2 and κ2

0 := k2n2
0 − β2. Collecting

functions of like variables on either side, we have

r2
R′′

R
+ r

R′

R
+ r2κ2 = −T ′′

T
.

Each side is a function of just the variable r or t, so both sides must agree on the

same constant, which we denote by 2 as in [52]. Then we have immediately that

T ′′ + 2T = 0,
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which has two linearly independent solutions T (θ) = e±i�θ for  a non-negative integer.

This forces our azimuthal solution T to be 2π periodic, which in turn yields the desired

continuity we need in our solutions. Next, we split the differential equation for R(r)

into one part corresponding to the core region and another part corresponding to the

cladding region, respectively. Before splitting, recall that

r2
R′′

R
+ r

R′

R
+ r2κ2 = 2.

Upon multiplying by R and moving all terms to the left-hand-side, we have

r2R′′ + rR′ + r2
(
κ2
1 −

2

r2

)
R = 0, r ≤ R0

r2R′′ + rR′ − r2
(
κ2
0 +

2

r2

)
R = 0, r > R0

The above differential equations have general solutions consisting of Bessel functions

J�(κ1r), Y�(κ1r) and modified Bessel functions I�(κ0r), K�(κ0r), respectively [52]. For

guided modes, we seek solutions that are bounded in the core region and decay

exponentially in the cladding. For the purposes of computing a semianalytic solution,

we have tacitly assumed that the cladding region extends infinitely outward from the

center of the fiber cross-section as in [43]. In anticipation of the task of numericall

solving such a problem, we discuss the enforcement of boundary conditions later in

this dissertation. In the present discussion, the radial solution over the core and the

cladding regions simplifies to

R(r) =

⎧⎪⎪⎨
⎪⎪⎩
AJ�(κ1r), r ≤ R0

BK�(κ0r), r > R0

.

Since we desire a unique solution, we need to close this problem with conditions at the
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interface of the core and cladding regions. Specifically, the solution u and its normal

derivative should be continuous at the interface of the core and cladding regions [52].

In practice, this amounts to enforcing

AJ�(κ1R0) = BK�(κ0R0)

Aκ1J
′
�(κ1R0) = Bκ0K

′
�(κ0R0)

or

AJ�(κ1R0) − BK�(κ0R0) = 0

Aκ1J
′
�(κ1R0) − Bκ0K

′
�(κ0R0) = 0.

,

This system of equations in the unknowns A and B has nontrivial solutions when the

determinant of the matrix corresponding to the above linear system is zero, i.e. when

κ0J�(κ1R0)K
′
�(κ0R0)− κ1K�(κ0R0)J

′
�(κ1R0) = 0.

Next, we use the Bessel function identities [1, 52]

J ′
�(x) = (−/x)J�(x) + J�−1(x)

K ′
�(x) = (−/x)K�(x)−K�−1(x),

so at r = R0, we have

κ0R0J�(κ1R0)((−/(κ0R0))K�(κ0R0)−K�−1(κ0R0))−

κ1R0K�(κ0R0)((−/(κ1R0))J�(κ1R0) + J�−1(κ1R0)) = 0.

Simplifying yields
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−κ1K�(κ0R0)J�−1(κ1R0)− κ0J�(κ1R0)K�−1(κ0R0) = 0. (1.13)

Upon moving κ0J�(κ1R0)K�−1(κ0R0) to the right-hand-side of (1.13) and dividing

both sides by κ1J�(κ1R0)K�−1(κ0R0), we obtain

−K�(κ0R0)J�−1(κ1R0)

J�(κ1R0)K�−1(κ0R0)
=

κ0

κ1

, (1.14)

or what Reider [52] refers to as the mode condition for cylindrical step-index waveg-

uides. The above equation is used to determine the propagation constants β contained

within the constants κ0 and κ1 [52]. In practice, either Equation (1.13) or Equation

(1.14) can be solved numerically to determine the corresponding propagation consant

β; one such package for doing so in the Python programming language is the cxroots

package [48].

The next step is to determine the radial solution R for the guided modes. Under

the assumption that the mode condition (1.14) is satisfied, we pick A = K�(κ0R0)

and B = J�(κ1R0). Then the solution to 1.12 is given by

u(r, θ) =

⎧⎪⎪⎨
⎪⎪⎩
K�(κ0R0)J�(κ1r), r ≤ R0

J�(κ1R0)K�(κ0r), r > R0

. (1.15)

The solution (1.15) to (1.12) will be used to verify the our theoretical error estimates

in Chapter 4, where we compute guided modes and (scaled) propagation constants
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using the FEAST algorithm. Similarly, a leaky mode solution will be used for the

verification of our polynomial eigensolver in Chapter 6.

1.2.2 Leaky Modes of a Step-Index Fiber

In addition to computing guided modes, we wish to compute leaky modes u with

corresponding propagation constants β ∈ C solbingg problem (1.1). Leaky modes,

which are also known as resonances or quasi-normal modes [25, 43, 46], are outgoing

solutions that together with a corresponding propagation constant β satisfy (1.1). In

this section, we will go one step further to make the problem computationall tractable,

beginning with a non-dimensionalization of problem (1.1).

Since computing leaky modes requires the computation of complex-valued propa-

gation constants, we will opt to use a perfectly matched layer (PML) to transform

the modes we seek to compute into a non-selfadjoint problem from which complex

propagation constants can be computed. In addition, the PML forces exponential

decay of the modes we compute, and this helps make the problem suitable for solving

on a finite-sized computational domain. We address this topic in further detail in

Chapters 2 and 5. Here, we focus on rescaling the partial differential equation (1.1)

and define certain quantities used later in this work.

Rescaling the model problem

One of the first challenges to address is that of scaling. The dimensions of optical

fibers are measured in micrometers (μm), where 1 μm = 10−6 meters (m). In contrast,

propagation constants β are several orders of magnitude larger. Consequently, we will

choose a characteristic length scale L > 0 by which we nondimensionalize, in the hope

that the quantities analogous to the propagation constant we compute are potentially
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of the order O(1). Let x = (x1, x2)
T ∈ R

2 denote our coordinates with dimensions in

the physical space of the fiber. Then define x̂ := x/L, i.e.

x̂i = xi/L, i = 1, 2 (1.16)

Then for û(x̂) = u(Lx̂1, Lx̂2), we have Δ = L−2Δ̂, where Δ̂ := ∂/∂x̂2
1 + ∂/∂x̂2

2 is the

nondimensional analogue of the Laplacian Δ. After transforming to dimensionless

coordinates, multiplying through by L2, and subtracting L2β2û from both sides, we

have

Δ̂û+ (L2k2n̂(x̂)2 − L2β2)û = 0 (1.17)

where n̂(x̂) = n(Lx̂) is the index of refraction in dimensionless coordinates. Next, we

define the quantities

Z2 = L2(k2n2
0 − β2), (1.18a)

X2 = L2(k2n2
1 − β2), (1.18b)

V (x̂1, x̂2) = L2k2(n2
0 − n̂2). (1.18c)

In Chapters 5 and 6, we use this nondimensionalization to find leaky modes of step-

index and microstructure fibers. The quantity Z, for our polynomial eigensolver, is

the eigenvalue we seek to compute, as it contains the propagation β. The quantity

X arises when we split our nondimensionalized problem into the respective core and

cladding regions. Putting everything together by subtracting L2(k2n2
0 − β2)û from
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both sides of (1.17) and letting r̂ := ||x̂||, we obtain

−Δ̂û+ V 2û = Z2û, x̂ ∈ R
2 (1.19a)

û is outgoing as r̂ →∞ (1.19b)

Consequently, the radial distance R0 from the center of the physical fiber is also

rescaled, namely R̂0 := R0/L. In addition, define r̂ = r/L, where r =
√

x2
1 + x2

2.

Note also that for r̂ > R̂0, (1.19) reduces to

−Δ̂û = Z2û, x̂ ∈ R
2 (1.20a)

û is outgoing as r̂ →∞ (1.20b)

Under circumstances in which Z is real-valued, we would normally enforce the Som-

merfeld Radiation condition

lim
r̂→∞

√
r̂

(
∂û

∂r̂
− iZû

)
= 0 (1.21)

to seek outgoing solutions [27]. In practice, however, the non-dimensional quantities

Z we wish to compute have positive real part and negative imaginary part, so we

cannot directly enforce the Sommerfeld condition. Since the general solution in the

outgoing region r̂ > R̂0, however, can be expressed using Hankel functions of the first

kind, namely [27]
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û(r̂, θ) =
∞∑

�=−∞
c�H

(1)
� (Zr̂)ei�θ, r̂ > R̂0 (1.22)

we prescribe that û is outgoing and thus require that û has the form (1.22) provided

we use the analytic continuation of the Hankel functions from the real line into the

complex plane.

Returning to the scenario of a step-index fiber, we choose L = R0 for our charac-

teristic length scale. Hence, we have that the function V satisfies

V (r̂) =

⎧⎪⎪⎨
⎪⎪⎩
−V 2

1 , r̂ ≤ 1

0, r̂ > 1,

(1.23)

and where V 2
1 := L2(k2n2

1 − n2
0) = X2 − Z2. To compute analytic solutions to (1.19)

corresponding to this particular construction of V , we repeat a similar process of

ensuring continuity and smoothness where the material properties of the fiber change

[27]. Separating the non-dimensional PDE into the corresponding nondimensional

core and cladding regions, our goal is to find functons û and corresponding Z ∈ C

satisfying

Δ̂û+X2û = 0, r̂ ≤ 1 (1.24)

Δ̂û+ Z2û = 0, r̂ > 1 (1.25)

�û� = �∂û/∂r̂� = 0, r̂ = 1. (1.26)

Here, X2 := V 2
1 +Z2, and �·� denotes the jump of a function defined at the interface
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of the core and cladding regions r̂ = 1. In this case, we are enforcing continuity of

the solution û and its normal derivative. Assuming a separation of variables solution

as done for (1.12), but now for

∂2û

∂r̂2
+

1

r̂

∂û

∂r̂
+

1

r̂2
∂2û

∂θ2
+X2û = 0 (1.27a)

in the core region r̂ ≤ 1 and

∂2û

∂r̂2
+

1

r̂

∂û

∂r̂
+

1

r̂2
∂2û

∂θ2
+ Z2û = 0 (1.27b)

in the cladding region r̂ > 1. Using separation of variables as in the case of guided

modes, our solution û(r̂, θ) can be expressed as

û(r̂, θ) =

⎧⎪⎪⎨
⎪⎪⎩
AJ�(Xr̂)ei�θ, r̂ ≤ 1

BH
(1)
� (Zr̂)ei�θ, r̂ > 1

(1.28)

Note that, in contrast to the analytic solution for guided modes of a step-index fiber,

we have chosen the solution in the region r̂ > 1 to be the Hankel function of the first

kind. In matrix-vector notation, we can express the interface conditions at r̂ = 1 by

T

⎡
⎢⎣A
B

⎤
⎥⎦, T =

⎡
⎢⎣ J�(X) −H(1)

� (Z)

XJ ′
�(X) −Z(H(1)

� )′(Z)

⎤
⎥⎦ (1.29)

We can find nontrivial solutions to (1.29) provided that we can find a root Z satisfying
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f(Z) = 0, where f is defined by

f(Z) = det(T )

= −ZJ�(X)(H
(1)
� )′(Z) +XJ ′

�(X)H
(1)
� (Z)

= −ZJ�
(√

V 2
1 + Z2

)
(H

(1)
� )′(Z) +

(√
V 2
1 + Z2

)
J ′
�

(√
V 2
1 + Z2

)
H

(1)
� (Z)

(1.30)

Using the Bessel function identities [1]

J ′
�(z) =



z
J�(z)− J�+1(z) (1.31a)

(H
(1)
� )′(z) =



z
H

(1)
� (z)−H

(1)
�+1(z) (1.31b)

we can simplify the second line of (1.30) to obtain an expression that involves no

derivatives of Bessel or Hankel functions:

f(Z) = −ZJ�(X)(H
(1)
� )′(Z) +XJ ′

�(X)H
(1)
� (Z)

= −ZJ�(X)

[


Z
H

(1)
� (Z)−H

(1)
�+1(Z)

]
+XH

(1)
� (Z)

[


X
J�(X)− J�+1(X)

]

= −J�(X)H
(1)
� (Z) + ZJ�(X)H

(1)
�+1(Z) + J�(X)H

(1)
� (Z)−XJ�+1(X)H

(1)
� (Z)

= ZJ�(X)H
(1)
�+1(Z)−XJ�+1(X)H

(1)
� (Z)

= ZJ�

(√
V 2
1 + Z2

)
H

(1)
�+1(Z)−

(√
V 2
1 + Z2

)
J�+1

(√
V 2
1 + Z2

)
H

(1)
� (Z)

(1.32)
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In practice, the value of Z solving f(Z) = 0 for a fixed positive integer  is computed

numerically using an appropriate root solver, and multiple values of Z may correspond

to a given value of . Assuming such a root exists, we set A = H
(1)
� (Z) and B = J�(X),

where X =
√
V 2
1 + Z2. This yields the analytic solution

û(r̂, θ) =

⎧⎪⎪⎨
⎪⎪⎩
H

(1)
� (Z�)J�(X�r̂)e

i�θ, r̂ ≤ 1

J�(X�)H
(1)
� (Z�r̂)e

i�θ, r̂ > 1

(1.33)

In non-dimensional coordinates, the solution we wish to compute is given by

u(r, θ) =

⎧⎪⎪⎨
⎪⎪⎩
H

(1)
� (R0κ0)J�(κ1r)e

i�θ, r ≤ R0

J�(R0κ1)H
(1)
� (κ0r)e

i�θ, r > R0.

(1.34)

In Chapter 6, we use (1.33) to verify our numerical results when computing leaky

modes of a step-index fiber.

1.2.3 Confinement Losses in Step-Index and Microstructure Fibers

Up to this point, we have shown that the Helmholtz problem has analytic solutions,

and serves as a means of verifying the correctness of our work later in this dissertation.

Solving this problem, however, serves as just one step in a larger endeavor, which is

to push the limits of our numerical discretizations to compute confinement losses in

optical fibers. Many works are interested in understanding the different mechanisms

by which optical fibers exhibit confinement loss, or loss of power, when guiding laser

light. Loss of power can occur due to physical stresses such as bending [57], or due

to the structures of the fibers themselves [29, 38, 50]. The model we have derived
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thus far applies to step-index and microstructure fibers with no perturbations to

the ideal geometries we have presented. Optical fibers, however, can have physical

deviations from their intended geometries, and this leads to confinement losses in

the power of laser light propagating through such fibers. Works such as [42, 43]

explore perturbations to ideal geometries of various waveguides as a first step to

showing how losses can occur. In this work, computing confinement losses requires

that we are able to compute as many digits of precision of the imaginary part of

the propagation constant β as possible. In the literature, confinement losses are

computed, for example, via the formula [8, 11, 15,39,56, 60]

CL =
20

log 10
k	(neff ) =

20

log 10
	(β), (1.35)

where 	(β) is the imaginary part of β, neff = β/k is the effective index [60], and the

units of confinement loss (CL) are in decibels per meter (dB/m). It should be noted

that in other works [29], the confinement loss is reported up to a sign change in the

imaginary part of β.

1.3 The Thesis at a Glance

The remainder of the thesis will be organized as follows. In Chapter 2, we discuss the

foundational numerical methods for solving our problem of interest. We divide this

into three sections: The classifical finite element method (FEM), the Discontinuous

Petrov Galerkin (DPG) method, and Perfectly Matched Layers (PML).

In Chapter 3, we introduce the FEAST eigensolver, a state-of-the art tool we use

and extend in this work. Starting from the context of subspace iteration, we use this
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to talk about the FEAST algorithm, its applications, and the relevant theory needed

to solidify the utility of the algorithm. We also take this time to discuss advances in

the FEAST algorithm, as well as brief comparison to other contour-integral methods.

In Chapter 4, we go into further detail on the application of the DPG method to

solving linear, self-adjoint eigenvalue problems. In this chapter, we discuss some of

the theoretical results as they relate to error propagation and error estimates for

eigenspaces and eigenvalues.

Chapter 5 discusses the results of another paper which has recently appeared in the

journal Wave Motion. This chapter also introduces the nonlinear eigenvalue problem,

including how it arises in the context of the motivating problem we wish to solve.

Our algorithm and theoretical results are presented that show the correctness of our

approach.

In Chapter 6, we discuss numerical verification of the algorithm discussed in chapter

5, as well as numerical results for the microstructure fiber problem in which we are in-

terested. This section covers several experimental results to test our algorithm when

finding leaky modes of microstructure fibers, as well as the stability of our results

with changing parameters that directly affect our application of PML.

We conclude in Chapter 7 with a brief discussion of our results, as well as goals

for future research.

23



Chapter 2

Numerical Methods for Partial Differential Equations

2.1 Introduction

In this chapter, we briefly discuss two methods used for solving elliptic partial dif-

ferential equations employed in this thesis: The classical finite element method, and

the discontinuous Petrov Galerkin method. In each section, we give a brief overview

of relevant theory for source problems, as well as a brief look at eigenvalue prob-

lems within the classical finite element method. The focus on source problems is

needed since the eigenvalue problems we seek to solve in fiber optics are done using

the FEAST eigensolver [51], for which the work of computing eigenvalues and eigen-

vectors boils down to performing several linear system solves. In addition, we will

also look at how Perfectly matched layers (PML) are used to make computational

problems tractable for numerical computation.

2.2 Classical FEM

2.2.1 An Example Problem

Let Ω ⊂ R
2 be a bounded, polygonal domain. Suppose I wish to solve the following

problem: Find a function u : Ω→ R satisfying
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−Δu = f, x ∈ Ω (2.1)

u
∣∣∣
∂Ω

= 0 (2.2)

where f is square integrable on Ω, i.e. f ∈ L2(Ω). To solve this problem in a

variational setting, we use the tools of integration by parts to cast this problem into

its weak form. Take any v ∈ H1
0 (Ω), the space of functions v for which v is square

integrable, its first (weak) derivatives are square integrable, and whose boundary

trace is zero. We multiply v ∈ H1
0 (Ω) to both sides of the PDE in (2.1) and integrate

by parts over Ω to obtain

∫
Ω

−Δuvdx =

∫
Ω

∇u · ∇vdx−
∫
∂Ω

v∇u · ndA

=

∫
Ω

∇u · ∇vdx

and

∫
Ω

fvdx

on the right-hand-side. Defining a(u, v) =
∫
Ω
u′v′dx and l(v) =

∫
Ω
fvdx for u, v ∈

H1
0 (Ω), we seek to find a weak solution u ∈ V = H1

0 (Ω) satisfying

a(u, v) = l(v) for all v ∈ V . (2.3)
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To show that such a variational problem has a unique solution u, we turn to tools

from functional analysis, as well as the Poincaré inequality from partial differential

equations. Indeed, to solve 2.3, we need to show that a(·, ·) forms an inner product

on V . It certainly follows that a is linear in one of its arguments when the other is

fixed, as this follows from the linearity of the gradient operator ∇ and the integral.

Furthermore, for any u ∈ V , we have that |∇u|2 ≥ 0, and hence a(u, u) ≥ 0. To show

that a(u, u) = 0 precisely when u = 0, we need the Poincaré inequality, which states

that for u ∈ V

||u||L2(Ω) ≤ C|u|H1(Ω) = C(a(u, u))1/2

for some constant C > 0 [4, 45].1 To this end, suppose that u ∈ V is arbitrary and

that a(u, u) = 0. By the Poincaré inequality, we have that

0 = a(u, u) ≥ C−2||u||2L2(Ω),

which holds precisely when u = 0. Hence, a is an inner product for H1
0 (Ω), and

we denote the norm induced by the inner product a(·, ·) by ||u||a =
√

a(u, u). It

remains to verify that l(v) is a bounded linear form for all v ∈ V . This follows from

an application of the Cauchy-Schwarz inequality [4, 45] and the Poincaré inequality.

|l(v)| =
∣∣∣∣
∫
Ω

fvdx

∣∣∣∣ ≤
(∫

Ω

|f |2dx
)1/2(∫

Ω

|v|2dx
)1/2

≤ CP ||f ||L2(Ω)|v|H1(Ω).

Then by the Riesz representation theorem [4, 10, 45] we know there exists a unique

u ∈ V such that (2.3) holds.

1Sometimes, this is stated with the constant C on the left-hand-side, i.e. C||u||L2(Ω) ≤ |u|H1(Ω).
See, for example, [24] with cP used for the constant in the Poincaré inequality instead of C.
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The Finite-Dimensional Setting

For convenience, let V = H1
0 (Ω). In the finite-dimensional setting, we wish to find an

approximation to u ∈ V in some closed, finite-dimensional space Vh ⊂ V . In practice,

we typically choose the Lagrange finite element space, i.e. we set

Vh =
{
v ∈ V : v

∣∣∣
K
∈ Pp(K)∀K ∈ Th

}
.

Then the goal is to find uh ∈ Vh satisfying

a(uh, vh) = l(vh) ∀vh ∈ Vh (2.4)

The analogous problem (2.3) was shown to be well-posed, and we can go a step further

here by showing that the error u− uh satisfies a best-approximation-error. We begin

by observing that (2.3) holds for all v ∈ V , so it certainly holds for all vh ∈ Vh.

Subtracting (2.4) from (2.3), we see that

a(u− uh, vh) = 0 ∀vh ∈ Vh (2.5)

a condition known as Galerkin orthogonality [4][ 2.5, Proposition 2.5.9]. Next, ob-

serve that for any w ∈ Vh, we have that

||u− uh||2a = a(u− uh, u− uh)

= a(u− uh, u− w + w − uh)

= a(u− uh, u− w) + a(u− uh, w − uh)
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= a(u− uh, u− w)

≤ |u− uh|H1(Ω)|u− w|H1(Ω)

= ||u− uh||a||u− w||a.

Dividing through by ||u− uh||a, we have that

||u− uh||a ≤ ||u− w||a ∀w ∈ Vh,

hence

||u− uh||a ≤ inf
w∈Vh

||u− w||a.

On the other hand, we certainly have that infw∈Vh
||u−w||a ≤ ||u− uh||a, and hence

||u− uh||a = inf
w∈Vh

||u− w||a.

Since Vh is a closed subspace of V , the element realizing the infimum is contained in

Vh, and so we have the error in the norm || · ||a is optimal, i.e.

||u− uh||a = min
w∈Vh

||u− w||a. (2.6)

Now suppose we wish to compute an approximate weak solution to (2.1) in the setting
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of (2.4). Suppose that dim(Vh) = n. If β = {ϕj}nj=1 is the basis of Vh, then we can

substitute the representation of uh in β into (2.4). Letting vh = ϕi for 1 ≤ i ≤ n, we

have

a

(
n∑

j=1

cjϕj, ϕi

)
= l(ϕi) (2.7)

or

n∑
j=1

cj

∫
Ω

∇ϕj · ∇ϕidx =

∫
Ω

fϕidx. (2.8)

Defining A ∈ R
n×n by Aij =

∫
Ω
∇ϕj · ∇ϕidx and �fi =

∫
Ω
fϕidx, we have

A�u = �f ∀v ∈ Vh (2.9)

where �c =

[
c1 c2 . . . cn

]
. At this stage, a wealth of numerical methods can be

used to solve this problem to obtain the coefficients in �c [64, 65].

2.3 Eigenvalue Problems in the Variational Setting

The types of eigenvalue problems in which we are interested in the finite element

method can be summarized starting from the departure point of the following model

problem, analogous to the problems (1.1) and (2.1): Find a function u and scalar λ

satisfying
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−Δu = λu, x ∈ Ω (2.10)

u
∣∣∣
∂Ω

= 0 (2.11)

This is a common problem to probe in the broad umbrella of partial differential

equations. Indeed, when Ω, say, is the unit square (0, 1)2 ⊂ R
2, the eigenfunctions

and eigevalues are well-known and readily computed by techniques such as separation

of variables: For the integer indices m,n ≥ 1, we have [45]

λm,n = π2(m2 + n2), um,n(x) = sin(mπx1) sin(nπx2).

This is often a problem that is often used for stress-testing numerical algorithms for

computing eigenvalues and eigenvectors, especially in the finite-element community

(see, for example, [23]). In practice, we tackle problems like (2.10) using the same

techniques as in section 2.2.1. As before, we convert a problem such as (2.10) to weak

form by taking a v ∈ V , multiplying it to the PDE in (2.10), and integrating by parts

to obtain

∫
Ω

∇u · ∇vdx = λ

∫
Ω

uvdx. (2.12)

The goal, in this case, is to find (λ, u) satisfing (2.12) for all v ∈ V . Defining b(u, v) =∫
Ω
uvdx for u, v ∈ V , we seek to find u satisfying a(u, v) = λb(u, v) for all v ∈ V . In

the finite-dimensional setting of Vh, we seek to find uh and λh satisfying
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a(uh, vh)dx = λhb(uh, vh) ∀vh ∈ Vh (2.13)

As in the case for the source problem (2.4), we substitute the representation of uh

in the basis of Vh and let vh = ϕi for 1 ≤ i ≤ n to now obtain the generalized

eigenproblem

A�c = λhB�c (2.14)

where A and �c are defined as they were for the source problem (2.4), and Bij =∫
Ω
ϕjϕidx for 1 ≤ i, j,≤ n. The matrix B is often referred to as the mass matrix [41].

As we see later in this work, the matrices A and B will be used as ingredients to

the FEAST algorithm, which in practice requires solutions to source problems of the

form (z +Δ)u = f for some z ∈ C and functions u and f . Further details of such a

problem can be found in [23,24].

2.4 The Discontinuous Petrov Galerkin Method

2.4.1 Definitions

Before proceeding, we require some definitions in what follows. First, let X, Y be

Hilbert spaces with inner products (·, ·)X and (·, ·)Y . In the case that X and Y are

spaces over the field of complex numbers, we say b : X × Y → C is a sesquilinear

form if, for u, w ∈ X, v, y ∈ Y , and scalars α, β ∈ C, b satisfies the following [35]:
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b(αu+ βw, v) = αb(u, v) + βb(w, v) (2.15a)

b(u, αv + βy) = ᾱb(u, v) + β̄b(u, y), (2.15b)

In the case that X and Y are Hilbert spaces of the real numbers R, then the second

propery (2.15b) holds without conjugation of α and β, and b is called a bilinear form.

Furthermore, we denote the spaces of conjugate linear functionals from X to C and

those from Y to C by X∗ and Y ∗, respectively [35].

2.4.2 Abstract Framework

In this section, we summarize three components needed to show the well-posedness

of a source problem using the DPG method. The goal here is to show that under

the right conditions, that one has a solution to the variational problem of finding a

solution u ∈ X satisfying

b(u, v) = l(v) (2.16)

for all v ∈ Y , where X, Y are Hilbert spaces. Similar to the previous section, b :

X × Y → C is a sesquilinear form, and l : Y ∗ → C is a conjugate linear functional.

The purpose of this cursory review is to connect abstract results for the DPG method

to the solution of a source problem. This is particularly important in Chapter 4, as the

application of the FEAST algorithm requires the solution of several linear systems at

a time. In practice, this means solving a variational formulation of a source problem,

which we require to be well-posed.
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Relevant Theory

To begin, suppose as in the previous section we wish to find u ∈ X satisfying (2.16).

To do so, we need to ensure certain properties of the form b, which we summarize

here. Further discussions of these topics can be found in several works [21, 24]. We

use the remainder of this chapter to cover the relevant theory from [21].

Theorem 1 (Theorem 1, [21]). Suppose X is a Banach space and Y is a reflexive

Banach space. The following three statements are equivalent:

a) For any l ∈ Y ∗, there is a unique x ∈ X satisfying

b(x, y) = l(y) ∀y ∈ Y (2.17)

b) {y ∈ Y : b(z, y) = 0∀z ∈ Z} = {0} and there is a C1 > 0 such that

inf
0 �=z∈X

sup
0 �=y∈Y

|b(z, y)|
||z||X ||y||Y

≥ C1 (2.18)

c) {z ∈ X : b(z, y) = 0∀y ∈ Y } = {0} and there is a C2 > 0 such that

inf
0 �=y∈Y

sup
0 �=z∈X

|b(z, y)|
||y||Y ||z||X

≥ C2 (2.19)

Theorem 2 (Theorem 2, [21]). Suppose X and Y are Hilbert spaces, Xh ⊂ X and

Yh ⊂ Y are finite dimensional subspace, dim(Xh) = dim(Yh), and suppose one of (a),

(b), or (c) of Theorem 1 hold. If, in addition, there exists a constant C3 > 0 such

that
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inf
0 �=zh∈Xh

sup
0 �=yh∈Yh

|b(z, y)|
||zh||X ||yh||Y

≥ C3 (2.20)

then there is a unique xh ∈ Xh satisfying

b(xh, yh) = l(yh) ∀yh ∈ Yh, (2.21)

and

||x− xh||X ≤
C2

C3

inf
zh∈Xh

||x− zh||X (2.22)

where C2 > 0 is any constant for which the inequality |b(x, y)| ≤ C2||x||X ||y||Y
holds for all x ∈ X and y ∈ Y .

The important takeaway is that we have precisely two theorems that state the in-

gredients needed for well-posedness of the infinite and finite-dimensional problems

we wish to solve. The analogous discrete inf-sup condition is also important, and in

fact necessary for when we make the problem of interest computationally tractable

by finding an approximate solution in the finite-dimensional setting. An important

difference between the classical finite element method and what we are setting out to

do here is that the arguments of the form b are not required to be in the same spaces

as is the case for the classical finite element method.

Next, we introduce some necessary machinery to make the construction leading to

the defintion of the Discontinuous Petrov-Galerkin Method. To this end, we call the
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finite-dimensional spaces Xh ⊂ X and Yh ⊂ Y trial and test spaces, respectively [21].

The appeal of the DPG method is that we can pick an ideal combination of these

spaces for solving the problem (2.17), which often is motivated by the task of finding

solutions to partial differential equations. To find an optimal choice of the spaces

Xh and Yh, we define the optimal test space Y opt
h corresponding to the continuous

sesquilinear form b (see [21]) by

Y opt
h = T (Xh),

where T : X → Y is the trial-to-test operator defined by [21]

(Tz, y)Y = b(z, y) ∀y ∈ Y, z ∈ X.

Indeed, for z ∈ X fixed, l(y) = b(z, y) is a bounded, conjugate linear functional from

Y ∗ to C. By the Riesz representation theorem applied to the Hilbert space Y with

the inner product (·, ·)Y [10], there is a unique w ∈ Y such that (w, y)Y = l(y) for

all y ∈ Y . In this case, we define the operator T : X → Y to be Tz = w for the

corresponding fixed z ∈ X.

Next, given a choice of trial space Xh and ideal test space Y opt
h = T (Xh), we de-

fine the ideal Petrov-Galerkin (ideal PG) method as finding an xh ∈ Xh [21]

b(xh, yh) = l(yh) ∀yh ∈ Y opt
h (2.23)

In addition, one can show that the solution xh ∈ Xh to (2.23) satisfies a best approx-

imation error, much in the same manner as problems in classifical finite elements. To
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do so, we need to develop the machinery for this. First, as in [21], denote the Riesz

map RY : Y → Y ∗ by (RY y)(v) = (y, v)Y for all y, v ∈ Y , and B : X → Y ∗ the

operator generated by b, i.e. Bz(y) = b(z, y) for x ∈ X and y ∈ Y . Then it follows

that T = R−1
Y ◦B, which we verify from the definition of T and the Riesz map RY :

RY (Tz)(v) = (Tz, v)Y

= b(z, v)

= Bz(v),

hence RY ◦T = B⇐⇒T = R−1
Y ◦B since the map RY is an isometric isomorphism [21].

In anticipation of the next result, define the energy norm |||z|||X := ||Tz||X [21].

Indeed, we have that ||| · |||X and || · ||X are equivalent, provided we make some

additional assumptions. First, observe that

sup
0 �=z∈X

|b(z, v)|
||v||Y

= sup
0 �=z∈X

|(Tz, v)Y |
||v||Y

= ||Tz||Y .

Then under the assumption that condition (2.19) holds and there exists a C2 > 0 for

which

sup
0 �=z∈X

|b(z, y)|
||z||X

≤ C2||y||Y ∀y ∈ Y

holds (see Assumption 7 in [21]), we have that for z ∈ X,

|||z|||X = ||Tz||Y = sup
0 �=y∈Y

|b(z, y)|
||y||Y

≥ C1||z||X

Likewise, we have that
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|||z|||X = ||Tz||Y = sup
0 �=y∈X

|b(z, y)|
||y||Y

,≤ C2||z||X

hence ||| · |||X and || · ||X are equivalent. We are now ready to present a result

connecting the unique solution of the ideal Petrov-Galerkin method (2.23) to the

best-approximation-error estimate in ||| · |||X .

Theorem 3. (Residual Minimization [21]) Suppose that condition (2.19) holds, there

is a C2 > 0 such that

sup
0 �=z∈X

|b(z, y)|
||z||X

≤ C2||y||Y ∀y ∈ Y,

and that x ∈ X solves (2.17). Then the following are equivalent statements:

i) xh ∈ Xh is the unique solution of the ideal PG method (2.23).

ii) xh is the best approximation to x from Xh in the following sense:

|||x− xh|||X = inf
zh∈Xh

|||x− zh|||X

iii) xh minimize residual in the following sense:

xh = argminzh∈Xh
||l − Bzh||Y ∗

Proof. Suppose that xh solves (2.17). Since this holds for for any y ∈ Y , it certainly

holds for all yh ∈ Y opt
h . Subtracting (2.17) from (2.23) with y = yh ∈ Y opt

h , we have

that b(x− xh, yh) = 0 for all yh ∈ Y opt
h . Expanding this expression leads to

0 = b(x− xh, yh)
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= b(x− xh, T zh)Y

= b(x− xh, T zh − Txh)Y

= (T (x− xh), T zh − Txh)Y

= (T (x− xh), T zh − Tx+ Tx− Txh)Y

= (T (x− xh), T (zh − x))Y + (T (x− xh), T (x− xh))Y

= −(T (x− xh), T (x− zh))Y + (T (x− xh), T (x− xh))Y

and hence |||x− xh|||2X = (T (x− xh), T (x− xh))Y = (T (x− xh), T (x− zh))Y . Then

then have that

|||x− xh|||2X = (T (x− xh), T (x− zh))Y

≤ ||T (x− xh)||Y ||T (x− zh)||Y

= |||x− xh|||X |||x− zh|||X

Assuming that |||x− xh|||X �= 0, we divide through, obtaining

|||x− xh|||X ≤ |||x− zh|||X ∀zh ∈ Xh,

and hence

|||x− xh|||X ≤ inf
zh∈Xh

|||x− zh|||X .

Furthermore, the infimum infzh∈Xh
|||x− zh|||X is certainly less than |||x− zh|||X for

an arbitrary zh ∈ Xh, hence ii) follows.
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To show that ii) is equivalent to iii), observe as in [21] that

|||x− xh|||X = inf
zh∈Xh

|||x− zh|||X⇐⇒||T (x− xh)||Y = inf
zh∈Xh

||T (x− zh)||Y

⇐⇒||R−1
Y B(x− xh)||Y = inf

zh∈Xh

||R−1
Y B(x− zh)||Y

⇐⇒||B(x− xh)||Y ∗ = inf
zh∈Xh

||B(x− zh)||Y ∗

⇐⇒||l − Bxh||Y ∗ = inf
zh∈Xh

||l − Bzh||Y ∗

where we recall that l = Bx, hence the result follows.

Let us return to the problem (2.17), for which we assume theorem 1 holds. For an

xh solving (2.23), define l̃ : Y ∗ → C by l̃(y) = l(y)− b(xh, y) (i.e. l̃ = l−Bxh), which

is bounded and continuous since l and b are themselves bounded and continuous.

Hence, there is a unique ε ∈ Y solving

(ε, y)Y = l̃(y) ∀y ∈ Y (2.24)

by the Riesz representation theorem [10]. That ε takes its specific form comes from

directly from (2.24), which immediately implies

RY (ε) = l − Bxh⇐⇒ε = R−1
Y (l − Bxh) ∈ Y.

The error representation function ε appears in several works as an important compo-

nent of the formulation of the DPGmethod and error control (see, for example, [6,24]).
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Its presence is important also in the equivalence between problem (2.23) and a mixed

formulation that explicitly incorporates ε.

Theorem 4. (Equivalence of the ideal Petrov-Galerkin method and a mixed formu-

lation [21])

The following are equivalent statements.

i) xh ∈ Xh solves the ideal Petrov-Galerkin method (2.23).

ii) xh ∈ Xh and ε ∈ Y solve the mixed formulation

(ε, y)Y + b(xh, y) = l(y) ∀y ∈ Y, (2.25a)

b(zh, ε) = 0 ∀zh ∈ Xh. (2.25b)

Proof. We follow [21]. Suppose that i) holds. Previous computations show that

(ε, y)Y + b(xh, y) = l(y) ∀y ∈ Y,

so it remains to verify (2.25b). Indeed, we have by the definition of T that

b(zh, ε) = (Tzh, ε)Y

= (Tzh, R
−1
Y (l − Bxh))Y

= (Tzh, T (x− xh))Y

Note, however, that (Tzh, T (x − xh))Y = (T (x− xh), T zh)Y = b(x− xh, T zh), which

by i) and application of theorem 1 is equal to zero.

Now suppose that ii) holds. To show that this implies i), it suffices to show that
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(ε, y)Y = 0 for all y ∈ Yh. Indeed, we have that

0 = b(zh, ε)

= (Tzh, ε)Y

= (y, ε)Y

where Tzh = y ∈ Yh, and hence b(xh, y) = l(y) for all y ∈ Yh, establishing i).

2.4.3 An Ideal DPG Method

To form an ideal Discontinuous Petrov-Galerkin Method, we go back to the definition

of the space Y in (2.17). To do so, we take Ω ⊂ R
n open, and partition Ω into disjoint

open subsets K called elements; in practice, these elements usually are intervals in

R, triangles in R
2, and tetrahedra in R

3, although other choices are certainly possible

in R
n for n ≥ 2 [4]. Taken as a collection which we denote Ωh, the elements K ∈ Ωh

satisfy ∪K∈Ωh
K = Ω̄. To highlight the discontinuous qualifier of DPG, we let Y (K)

for an arbitrary element K ∈ Ωh denote a Hilbert space with corresponding inner

product (·, ·)Y (K). Then an ideal DPG method is an ideal PG method (2.23) which

uses a Hilbert space Y of the form [21]

Y =
∏

K∈Ωh

Y (K) (2.26)

with the corresponding inner product

(y, v)Y =
∑
K∈Ωh

(y|K , v|K)Y (K) ∀y, v ∈ Y.
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In the definition above, y|K for y ∈ Y refers to the restriction of y to its Y (K)-

component. A common example of such a space Y is H1(Ωh) = {v ∈ L2(Ω) : v|K ∈

H1(K)∀K ∈ Ωh} [21, 24]. Note that continuity of functions in H1(Ωh), for example,

is not specified for elements K1, K2 ∈ Ωh which share a common edge along their

boundaries. This makes apparent the qualifier discontinuous in the DPG method:

Since continuity along elements sharing an edge is not explicitly enforced, there is

certainly no need to require or expect it in general. Another interesting consequence

is that the definition of Y allows the computation of the action of the trial-to-test

operator T to be done locally on each element, and independent of other elements [21].

2.4.4 A Practical DPG Method

In practice, to compute an optimal test space Yh from Xh, we require an application

of the trial-to-test operator T , which means applying an operator that normally acts

on infinite-dimensional spaces. While some worked examples in [21] have closed-form

expressions for T , we cannot expect this to be the case in general. Hence, a practical

approach is needed: We will instead work with an approximation to the ideal test

space by considering, instead of the Hilbert space Y , a finite-dimensional subspace

Y r ⊂ Y , where r is related to the dimension of Y r [21]. To this end, we define a new

trial-to-test operator T r : Xh → Y r by (T rw, y)Y = b(w, y) for all y ∈ Y r. Then a

DPG method for solving (2.17) is given by the following [21]: Find xh ∈ Xh solving

b(xh, yh) = l(yh) ∀yh ∈ Y r
h , (2.27)

where Y r
h = T r(Xh).
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As in the previous section, we can also define a norm that incorporates the trial-to-test

operator T r for the practical DPG method. Indeed, define the norm |||x|||r = ||T rx||Y
for x ∈ Xh [21]. Next, let RY r : Y r → (Y r)∗ denote the Reisz map defined

by RY r(y)(v) = (y, v)Y for all y, v ∈ Y r, and let B : X → Y ∗ be defined by

Bx(y) = b(x, y) as before [21]. Analogous to how we defined T in relation to B

and the Riesz map RY earlier, we have that that T r = R−1
Y r ◦B, which we verify from

the definition of T r and the Riesz map RY r :

RY r(T rz)(v) = (T rz, v)Y

= b(z, v)

= Bz(v),

hence RY r ◦ T r = B, from which T r = R−1
Y r ◦B follows since RY r is an isometric iso-

morphism beteen Y r and (Y r)∗ [21]. With these tools in hand, we have an analogous

best approximation error result and residual minimization result for the practical

DPG method, with ||| · |||X and || · ||Y ∗ replaced by ||| · |||r and || · ||(Y r)∗ when xh ∈ Xh

uniquely solves (2.27) [21, Theorem 37].

Next, we wish to state a result to show that the variational formulation (2.27) is

equivalent to a mixed finite element method that explicitly incorporates an error

estimation term. We give its definition below.

Definition 1. (The Practical DPG Method Error Estimator [21]) Let xh solve (2.17).

The quantity εr = R−1
Y r(l−Bxh) is the error estimator of an xh ∈ Xh, and is the unique

element of Y r satisfying (εr, y)Y = l(y)− b(xh, y).

Let us return to the problem (2.17), for which we assume theorem 1 holds. For an xh
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solving (2.27), define the linear functional l̃ : (Y r)∗ → C by l̃(y) = l(y)− b(xh, y) (i.e.

l̃ = l−Bxh), which is bounded and continuous since l and b are themselves bounded

and continuous. Hence, there is a unique εr ∈ Y r solving

(εr, y)Y = l̃(y) ∀y ∈ Y r. (2.28)

by the Riesz representation theorem [10]. That εr takes its specific form comes from

directly from (2.28), which immediately implies

RY r(εr) = l − Bxh⇐⇒εr = R−1
Y r(l − Bxh) ∈ Y r.

With this result in hand, we can now state the equivalence of (2.27) to a mixed

method incorporating the error estimator εr.

Theorem 5. (Equivalence of the practical DPG method and a mixed formulation

[21])

The following are equivalent statements.

i) xh ∈ Xh solves the DPG method (2.27).

ii) xh ∈ Xh and εr ∈ Y r solve the mixed formulation

(εr, y)Y + b(xh, y) = l(y) ∀y ∈ Y r, (2.29a)

b(zh, ε
r) = 0 ∀zh ∈ Xh. (2.29b)

Proof. Suppose that i) holds. Previous computations show that

(εr, y)Y + b(xh, y) = l(y) ∀y ∈ Y r
h ,
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so it remains to verify (2.29b). Indeed, we have by the definition of T r that

b(zh, ε
r) = (T rzh, ε

r)Y

= (T rzh, R
−1
Y r(l − Bxh))Y

= (T rzh, T
r(x− xh))Y

Note, however, that (T rzh, T
r(x − xh))Y = (T r(x− xh), T rzh)Y = b(x− xh, T rzh),

which by i) and application of theorem 1 is equal to zero.

Now suppose that ii) holds. To show that this implies i), it suffices to show that

(εr, y)Y = 0 for all y ∈ Y r
h . Indeed, we have that

0 = b(zh, ε
r)

= (T rzh, ε
r)Y

= (y, εr)Y

where T rzh = y ∈ Y r
h , and hence b(xh, y) = l(y) for all y ∈ Y r

h .

2.5 Perfectly Matched Layers

Recall that one of our goals is to accurately compute leaky modes and their propaga-

tion constants for problem (1.1). For leaky modes, the desired propagation constants

β are complex-valued, and the imaginary part of the propagation constants are used

to compute confinement losses for step-index and microstructure fibers [27,50]. Con-

sequently, a Perfectly Matched Layer (PML) provides a first step in tackling such
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a problem. One consequence of using PML is that the problem we seek to solve

mathematically is no longer self-adjoint; in the case of a frequency-dependent PML

seen in Chapter 5 and [27,46], the eigenproblem we wish to solve is no longer linear.

As a result, the use of PML in conjuction with pushing the limits of our numerical

discretization motivates the task of accurately computing propagation constants and

leaky modes for problem (1.1). Such an endeavor culminates in the development of

the extension of the FEAST algorithm to solve polynomial eigenvalue problems. As

we see in Chapters 5, this arises from a frequency-dependent formulation of a per-

fectly matched layer as in [46], where the complex coordinate transformation used in

creating the PML is dependent upon the eigenvalue being computed.

The method of Perfectly Matched Layers was originally developed by Berenger for

Maxwell’s equations [2], and many works use perfectly matched layers for solving

problems such as the computation of scattering resonances, fiber bending, thin mem-

brane photonics, and confinement losses of microstructure fibers [25,46,50,57]. Collino

and Monk’s work [9] shows that PML can be thought of as a complex coordinate

transformation for problems posed on unbounded domains. In their treatment of a

time-harmonic scattering problem, for example, they seek to find outgoing solutions

for the magnetic field Ĥ and eigenvalues k2 satisfying ΔĤ+k2Ĥ = 0 in R
2 \Ω, where

Ω ⊂ R
2 is a smooth, bounded domain [9]. To tackle such a problem, the radial dis-

tance ρ from the computational domain Ω is recast as ρ̃ using a complex coordinate

transformation, and solutions as ρ→∞ are represented using Hankel functions. Un-

der the right conditions on the imaginary part of kρ̃, the outgoing solutions become

exponentially decaying solutions as ρ→∞, allowing the truncation of the unbounded

domain to one that is finite in size. At this stage, one could impose zero dirichlet

boundary conditions on this finitely sized domain and apply numerical methods such
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as finite elements to solve the truncated problem.

In Chapter 6, we will compare our implementation of the frequency-dependent PML

to the built in PML that comes with the NGSolve software package, which we use

in conjunction with the standard linear FEAST algorithm. In NGSolve, the PML is

implemented via a complex mesh deformation x̃(x) = x + iαd(x), where d is some

function measuring the distance from the center of our computational domain [59].

The decay strength α > 0 is such that for larger α, the decay of the computed solution

in the PML region is more rapid. Moving forward, we refer to this as the NGSolve

auto PML.
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Chapter 3

The FEAST Algorithm for Eigenproblems

3.1 Introduction

When solving eigenvalue problems, we typically are interested in finding a λ ∈ C and

x ∈ C
n satisfying

Ax = λBx (3.1)

for A,B ∈ C
n×n. Depending on the structure of the matrices A and B, one typically

has a variety of tools at their disposal for solving such problems. In the case we wish to

compute all eigenvalues and eigenvectors for (3.1), we can use algorithms such as the

QZ method, or Krylov methods such as Arnoldi if we wish to compute eigenvalues on

the extreme ends of the spectrum for the matrix pair (A,B) [64,65]. If, however, we

wish to compute a subset of eigenvalues and eigenvectors at an arbitrary location in

the complex plane, the FEAST algorithm allows us to do so with savings in expended

computational resources. This is important for our motivating problem in fiber optics,

as the number of unknowns (and hence the matrix dimensions) needed to compute

propagation constants to high precision is on the order of O(106). To motivate our

discussion of the FEAST algorithm, we briefly discuss two algorithms designed for
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computing eigenvalues and their corresponding eigenspaces: The power iteration and

subspace iteration. While there exists a wealth of information on various iterative

techniques and factorizations for computing eigenvectors and eigenvalues, we focus

on two algorithms here to keep the discussion brief before introducing the FEAST

eigensolver.

3.2 Subspace Iteration

3.2.1 A Motivating Algorithm: Power Iteration

Before taking a deeper look at FEAST, we look first at the concept of subspace

iteration through the lense of a motivating algorithm, the power iteration [54,64,65].

Under certain assumptions, this algorithm finds an approximation to the eigenvector

whose eigenvalue λ of A is is the largest in magnitude of all eigenvalues of A ∈ C
n×n

(see algorithm 1).

Algorithm 1 Power iteration

Matrix A ∈ C
n×n, initial vector v0 ∈ C

n, stopping tolerance ε > 0.

1 for i = 1, 2, . . .
2 y = Avi−1

3 vi = y/||y||
4 if ||vi − vi−1||/||vi|| < ε
5 stop
6 endif
7 endfor

In Algorithm 1, we simply repeat the process of applying A to an initial guess, nor-

malize the iterate y using a norm || · || such as the vector norm || · ||2 or || · ||∞, and

repeat. Assuming the right conditions for the algorithm to terminate, we recover the

approximate eigenvector vi for some i ≥ 1 and corresponding (approximate) eigen-

value λi = v∗iAvi/(v
∗
i vi). Viewed through the lense of subspace iteration, we are
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computing the vector whose span is the subspace span({vi}). The termination of the

algorithm, however, is another matter for discussion, so let us assume for now that

the eigenvalues of A are semisimple. This means for any given eigenvalue λ of A, the

algebraic multiplicity m ≥ 1 of λ is the same as the number m of linearly independent

eigenvectors that span the eigenspace corresponding to λ. In addition, we assume that

the n eigenvalues of A satisfy |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. In the case that |λ1| > |λ2|,

we call λ1 the dominant eigenvalue of A [65]. Then we can expand any initial guess,

say v0 ∈ C, as a linear combination of the eigenvectors x1, x2, . . . , xn ∈ C
n of A [65]:

v0 = c1x1 + c2x2 + . . .+ cnxn.

Upon applying A and normalizing by λ1, we have

v1 =
1

λ1

Av0

= c1
1

λ1

Ax1 + c2
1

λ1

Ax2 + . . .+ cn
1

λ1

Axn

= c1x1 + c2
λ2

λ1

x2 + . . .+ cn
λn

λ1

xn.

Repeating this process j times for j ≥ 1 yields

vj =
1

λ1

Avj−1 = c1x1 + c2

(
λ2

λ1

)j

x2 + . . .+ cn

(
λn

λ1

)j

xn

In order to make our analysis easier, we assume further that λ1 is the dominant

eigenvalue of A, and we show that vj → c1x1 as j → ∞. To this end, we have that

in any vector norm || · || and j ≥ 0,
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||vj − c1x1|| =
∣∣∣∣∣
∣∣∣∣∣c1x1 + c2

(
λ2

λ1

)j

x2 + . . .+ cn

(
λn

λ1

)j

xn − c1x1

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣c2
(
λ2

λ1

)j

x2 + . . .+ cn

(
λn

λ1

)j

xn

∣∣∣∣∣
∣∣∣∣∣

≤ |c2|
∣∣∣∣λ2

λ1

∣∣∣∣
j

||x2||+ |c3|
∣∣∣∣λ3

λ1

∣∣∣∣
j

||x3||+ . . .+ |cn|
∣∣∣∣λn

λ1

∣∣∣∣
j

||xn||

≤ C

∣∣∣∣λ2

λ1

∣∣∣∣
j

where

C =
n∑

j=2

|cj| · ||xj||.

Then as j → ∞, ||vj − c1x1|| → 0. In many applications, however, we often wish to

compute multiple eigenvalues, often from the extreme ends of the spectrum, such as

the largest or smallest eigenvalues, or perhaps somewhere between the extremes. This

last idea is motivated by problems that come directly from the optics literature [43],

but there are further challenges to address. To do so, we turn to subspace iteration.

3.2.2 Subspace Iteration at a Glance

Again, we return to problem (3.1). Our interest is now to compute a subset of eigen-

values λ1, λ2, . . . , λk for k < n. In problems where the matrices A and B are large

and sparse, we often assume k � n, especially as the dimension n grows arbitrarily

large. For larger problems, it becomes infeasible to attempt to compute most or all

of the eigenvalues corresponding to (3.1); indeed, error estimates for eigenvalues grow

as a function of the eigenvalue we are trying to find [41, 6.2, Theorem 6.7].
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Returning to the topic of subspace iteration, our goal is to compute eigenvalues

Λ := {λ1, λ2, . . . , λk} for k < n and corresponding eigenvectors v1, v2, . . . , vk satis-

fying (3.1). In the simplest case, assume that B = I, the n×n identity matrix. Then

the subspace iteration algorithm reads as follows (see, for example, [54]):

Algorithm 2 Subspace iteration

Matrix A ∈ C
n×n, initial vectors v1, v2, . . . , vk ∈ C

n stored as columns in V0 ∈ C
n×k.

1 for i = 1, 2, . . .
2 compute Y = AVi−1

3 orthonormalize Y , set Vi = Y
4 endfor

In detail, the algorithm is as follows: Step 2 applies the matrix A to an initial guess

to the vectors in V0 spanning the desired eigenspace E = {v ∈ C
n : Av = λv forλ ∈

Λ}. Step 3 reorthogonalizes the resulting matrix Y through a technique such as the

QR method [54, 64], and the iteration repeats. The criteria for termination have

been purposely omitted, as this requires a more careful discussion for measuring the

distance between subspaces. Several works address and apply such a concept using

the gap metric between subspaces of a Banach space (see [23,24,35], for example). In

the meantime, we will refer to such a metric as d in the same manner as Watkins [65],

taking its existence for granted to state a meaningful result from the same author

about the convergence of subspace iteration. We state this theorem without proof [65,

Theorem 6.2.3].

Theorem 6 (Convergence of subspace iteration). Let A ∈ F
n×n be semisimple

with linearly independent eigenvectors v1, . . . , vn ∈ F
n and associated eigenvalues

λ1, . . . , λn ∈ F, satisfying |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Suppose λk > λk+1 for some k.

Let Uk = span{v1, . . . , vk} and Vk = span{vk+1, . . . , vn}. Let S be any k-dimensional
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subspace of Fn such that S ∩ Vk = {0}. Then there is a constant C such that

d(AjS,Uk) ≤ C

∣∣∣∣λk+1

λk

∣∣∣∣
j

, j = 0, 1, 2, . . . (3.2)

Thus, AjS → Uk linearly with convergence ratio |λk+1/λk|.

Of note is the expression AjS in the statement of theorem 3.2. For a subset S ⊂ C
n,

the set AS is given by

AS = {Ax : x ∈ S},

and likewise AjS = {Ajx : x ∈ S} for j ≥ 0. In addition, we see that the convergence

rate of the iterates Vi of subspace iteration to the desired eigenspace is dictated by

the ratio between the first eigenvalue that we do not want to the smallest eigenvalue

that we do want. Making this ratio as small as possible is an important task, and

algorithms such as FEAST work to realize this possibility.

In the case that subspace iteration converges, we must also state precisely to what vec-

tors the iterates Vi in Algorithm 2 converge. To begin, letX0 = [x1, x2, . . . , xk] ∈ C
n×k

be the matrix whose columns are initial guesses to the vectors spanning the desired

eigenspace, and let Q = [q1, q2, . . . , qk] ∈ C
n×k be the Schur vectors associated to the

eigenvalues λ1, λ2, . . . , λk. Recall also that for A ∈ C
n×n, the Schur factorization of

A is given by [64]

A = QTQ∗

for an upper triangular matrix T and unitary matrix U . In the case of a matrix A

whose eigenvalues and eigenvectors we wish to find, the eigenvalues of A lie on the
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diagonal of T , and for any eigenvector x of A, the corresponding eigenvectors q of

Tq = λq are related to the eigenvectors x solving Ax = λx by q = Q∗x. Under sim-

ilar conditions as those in theorem 6, Saad shows that the iterates Vi in Algorithm

2 converge column-by-column to the corresponding Schur vectors, each up to multi-

plication by a possibly different complex phase factor eiθ (see [54][Theorem 5.1, 5.1]).

Returning to subspace iteration, orthonormalization can be an expensive process

to perform every iteration. Saad, for example, proposes a modification to algorithm

2 that computes Z = AiterX after some nontrivial number of iterations iter, re-

orthogonalizes, and then repeats this process. Care must be taken to choose iter

appropriately to balance the work done with orthogonalization versus the possibility

that the column vectors of Z become linearly dependent [54]. We can take algorithm

2 a step further by considering Saad’s proposal on subspace iteration with projection,

either by computing a (small) k × k Schur factorization or eigendecomposition to

recover the eigenvalues and update the approximation to the eigenvectors [54].

The primary takeaway from both methods presented here is that we require a strict

separation of the eigenvalues we wish to compute from those we wish to ignore. While

several strategies for computing eigenvalues and eigenvectors exploit this, we often

wish to take this idea one step further by transforming the spectrum we compute,

often to the advantage of hastening convergence of the method. Furthermore, we may

wish to compute some subset of the eigenvalues of our problem of interest that do not

necessarily lie on the extreme ends of the spectrum. To this, we turn to the FEAST

algorithm.
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3.3 The FEAST Algorithm

Suppose one wishes to compute some subset of eigenvalues from the problem (3.1).

Many problems of interest often involve A,B ∈ C
n×n that are large and sparse, often

arising from the discretization of a partial differential equation using, say, finite differ-

ences, finite volumes, or the finite element method. Since the dimenion n of A and B

can be upwards of n = O(106) to accurately compute numerical solutions to a partial

differential equation, it becomes infeasible to attempt to compute every eigenvalue.

Often, the goal is to compute a subset of the eigenvalues (and corresponding eigen-

vectors) of such a problem, up to the algebraic multiplicity of the eigenvalues and

their corresponding geometric multiplicities. To address this, several contour-integral

based methods have risen to the challenge, often addressing differences in structure

of the matrices A and B in (3.1). One such algorithm we address in this section is

the FEAST algorithm developed by Eric Polizzi and others [19, 31, 36,37,51,62].

The idea behind FEAST is to transform the eigenvalues such that the correspond-

ing eigenspace is the dominant eigenspace, all while ignoring unwanted eigenvalues.

This algorithm has been applied to several types of problems, including self-adjoint,

non-self-adjoint, and nonlinear eigenvalue problems [17,18,34,37,51,62]. For non-self-

adjoint problems, FEAST computes the left and right eigenspaces for the generalized

eigenproblem of finding eigenpairs (λ, x) solving Ax = λBx. In addition to find-

ing desired eigenspaces, non-selfadjoint FEAST contains a number of heuristics for

mainting bi-orthogonality of the approximate left and right eigenspaces [37].

The FEAST algorithm has been applied to a number of problems for finding eigenvec-

tors and eigenvalues of dense matrices [51], as well as sparse matrices that discretize
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partial differential equations using classical finite elements and the Discontinuous

Petrov-Galerkin (DPG) Method [23,24]. The latter work has been extended to prob-

lems containing a reaction-diffusion term, an important generalization for finding the

eigenvalues and eigenfunctions corresponding to the propagation constants and leaky

modes of optical fibers. A detailed analysis of the convergence of FEAST using clas-

sical finite elements and the DPG Method can be found in [23,24]. Chapter 4 focuses

on a recently published work [24] that highlights the use of the DPG method within

the FEAST algorithm.

Now recall for subspace iteration that we require a strict separation between the

eigenvalues we wish to compute and those we wish to ignore. The idea behind the

FEAST algorithm is to map the desired eigenvalues to a value much larger than the

eigenvalues we wish to ignore. In essence, this idea is used ensure rapid convergence

of, say, subspace iteration to the desired eigenvalues and corresponding eigenspaces.

The inspiration for this method comes from Cauchy’s integral formula [62]:

f(ξ) =
1

2πi

∮
Γ

1

z − ξ
dz (3.3)

Here, we assume Γ is a simple, closed loop such as a circle of radius γ > 0, and

ξ ∈ C. Letting U ⊂ C be the bounded, open set contained in the interior of Γ and

such that ∂U = Γ, we see that f(ξ) approximates the characteristic function χU(ξ).

In this case, f(ξ) = 1 for ξ ∈ U and f(ξ) = 0 on C \ U , whereas χU(ξ) = 0 for

ξ ∈ C \ U .1 This motivates the definition of the spectral projector [35, 51], the main

computational tool of the FEAST algorithm:

1In the case that ξ ∈ Γ, f(ξ) takes the Cauchy principal value 1/2 (see, for example, [55]).
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S =
1

2πi

∫
Γ

(z − A)−1dz (3.4)

As before, Γ is a simple, closed countour, forming the boundary of an open set U ⊂ C

that contains eigenvalues of the matrix A, and R(z) := (z − A)−1 is the resolvent

operator for the matrix A ∈ C
n×n. It is further assumed that no eigenvalues of A

lie on the contour Γ. In practice, however, S is an infinite-dimensional object, so we

have to approximate S using a quadrature rule. Using Cauchy’s integral formula to

motivate this, we first approximate the contour integral (3.3) by a rational function

rN(ξ) using a suitable N -point quadrature rule for N ≥ 1 specified by weights and

nodes wj, zj for i = 0, 1, . . . , N − 1:

rN(ξ) =
N−1∑
j=0

wj
1

zj − ξ
(3.5)

Typical choices of quadrature rules include Gaussian or trapezoidal quadrature [24],

though other choices are certainly possible. If Γ, for example, is a circle in the complex

plane with radius γ > 0 and center y ∈ C, then the corresponding wieghts wj and

nodes zj for j = 0, 1, . . . , N − 1 for the trapezoid rule are given by [23]

wj =
γ

N
eiθj (3.6a)

zj = y + γeiθj (3.6b)

where θj =
2πj
N

for j = 0, 1, . . . , N −1. In practice, this means approximating S using

a rational function of the matrix A, shown below:
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rN(A) =
N−1∑
j=0

wj(zj − A)−1 (3.7)

In works such as [31, 51, 62], SN = rN(A) is an approximation of S using Gaussian

quadrature, and is also denoted rN(M) for M = B−1A when the matrix B in (3.1) is

invertible. In this case, we have that the approximation to the corresponding integral

S =
1

2πi

∫
C

(z − B−1A)−1dz =
1

2πi

∫
C

(zB − A)−1Bdz (3.8)

is given by

rN(M) =
N−1∑
j=0

wj(zjB − A)−1B. (3.9)

Note that this form of rN is chosen even when B is not invertible. Moving forward, we

provide a summary of the FEAST algorithm below, which can be found in numerous

works such as [31, 51, 62].

First, we have that step 2 of Algorithm 3 applies the approximation SN of the spec-

tral projector S to the current iterate Qi−1. Then steps 3-4 solve a small eigenvalue

problem for which the approximate eigenvalues are computed, and the corresponding

eigenvectors W ∈ C
k×k are used to update the next iterate Qi whose column span is

closer to that of the desired eigenspace. At each iteration, we check for convergence,

and repeat the iterations if stopping criteria for the algorithm have not been met.

To ensure convergence of the FEAST method, we recall an important theorem from
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Algorithm 3 The FEAST Algorithm

Matrix A ∈ C
n×n, initial guess Q0 ∈ C

n×k.

1 for i = 1, 2, . . .
2 compute Y = SNQi−1

3 compute AY = Y ∗AY , BY = Y ∗BY
4 compute W,ΛY ∈ C

k×k solving AYW = BYWΛY for which W ∗BYW = I
5 set Qi = YW , Λ = ΛY

6 if Qi has converged
7 return Qi,Λ
8 endif
9 endfor

[62]. To begin, observe that for an eigenpair (λ, x) of (3.1), the corresponding eigen-

value of rN(B
−1A) (assuming for now that B is invertible) is mapped to rN(λ) [62].

Furthermore, denote the mapped eigenvalues by γj = rN(λj) for i = 1, 2, . . . , k,

and let Qi = span(Qi), the column span of the iterate Qi ∈ C
n×k in Algorithm

3. Furthermore, let eigenvalues λi be ordered such that the mapped eigenvalues

satisfy |γ1| ≥ |γ2| ≥ . . . ≥ |γk| > |γk+1| ≥ . . . ≥ |γn|. Then by [62, 4, Theo-

rem 4.1], then there is a vector sj ∈ Qi satisfying ||xj − sj||B ≤ α|γk+1/γj|i, where

||y||B :=
√
yB∗y. In particular, if P(i) is the B-orthogonal projector onto Qi, then we

have that ||(I−P(k))xj||B ≤ α|γk+1/γj|i [62]. Effectively, this result states that as the

FEAST iterations proceed, we can find a vector in the column span of the iterates

that is arbitrarily close to a desired eigenvector, and approaches such a vector at a

rate |γk+1/γj| � 1.

Moving forward, we will see the efficacy of the the FEAST algorithm as it is applied

to self-adjoint and nonlinear eigenvalue problems in subsequent chapters. While our

exposition here primarily deals with matrices, we will see in the next chapter a means

of tying together discretization errors in the finite element method to the numerical
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accuracy of the FEAST algorithm when applied to solving eigenvalue problems for

partial differential equations.
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Chapter 4

DPG Discretization Errors in FEAST

4.1 Introduction

In this chapter, we visit a more abstract formulation of the problem (1.1). Such a

problem has been tackled in [23] using classical finite elements, and error bounds

bounds for eigenspace and eigenvalue approximations were derived using tools such

as the gap metric for distances between subspaces of Banach spaces [23, 35]. In our

recent work [24], we revisit the work of [23], but with an application of the DPG

method to finding the guided modes and propagation constants of a step-index fiber.

As mentioned in our recent work, the focus is to develop an understanding of the dis-

cretization error when approximating the resolvent operator z �→ R(z) = (z − A)−1

using the DPG discretization, and where A is a differential operator. As we shall see,

the error bounds obtained largely depend on the closeness of unwanted eigenvalues

to the desired eigenvalues computed using the FEAST algorithm.

The problem of interest is to compute portions of the spectrum and correspond-

ing eigenspaces of the unbounded operator A = −Δ − ν in L2(Ω), where Ω ⊂ R
2 is

bounded with Lipschitz boundary, ν ∈ L∞(Ω), and the domain of A is taken to be

H1
0 (Ω). In practice, we will take ν to be piecewise constant, as it will represent the

index of refraction in the applications of interest described later. The domain of Ω
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for practical applications is circular, as the problem domains of interest will be the

cross-sections of optical fibers.

As discussed in chapter 3, the FEAST eigensolver has been applied to several prob-

lems of interest in physics and engineering. As is done in [23,34], the goal is to bring

in more granularity into the error analysis when approximations to the resolvent arise

from a spatial discretization such as the finite element method or the use of spectral

methods. Given the context in which the problem we seek to solve arises, namely

finding the (approximate) eigenspaces of an unbounded differential operator on an

infinite-dimensional space, it is important to understand how the discretization di-

rectly affects the application of the FEAST algorithm. In the following sections, we

will introduce the reader to abstract framework, applications, numerical results, and

relevant theory.

4.2 The Abstract Framework

We summarize the abstract framework of the FEAST algorithm in this section as

given in [23, 27]. We begin by letting A be a linear, closed, selfadjoint operator

A : dom(A)→ H where H is a complex Hilbert space and dom(A) ⊆ H. In addition,

we denote the (real) spectrum of A by Σ(A). Our goal is to approximate a subset

Λ ⊂ Σ(A) and the corresponding eigenspace E. Of note is that the set Λ consists of

a finite set of eigenvalues with finite multiplicity.

The FEAST algorithm uses a rational function
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rN(ξ) = wN +
N−1∑
k=0

wk

zk − ξ
, (4.1)

where the choices of wk, zk ∈ C are chosen by a quadrature rule such as gaussian or

trapezoidal quadrature rules. The motivation for this choice is to compute approxi-

mations to the Dunford-Taylor contour integrals of the form

S =
1

2πi

∮
Γ

R(z)dz (4.2)

where R(z) = (z − A)−1 is the resolvent of the operator A at z ∈ C. In addition, Γ

is a positively-oriented, simple, closed contour that surround the elements of Λ and

excludes Σ(A) \ Λ; this operator S is referred to as the spectral projector onto the

eigenspace E.

To make our endeavour computationally tractable, we define a quadrature approxi-

mation SN to S below.

SN = rN(A) = wN +
N−1∑
k=0

wkR(zk). (4.3)

Since SN is still an infinite-dimensional object (due to the presence of A in R(zk) =

(zk−A)−1), we go one step further with an approximation to SN by Sh
N , where h > 0

is a parameter related to the discretization of (zk−A) for each k = 0, 1, . . . , N −1; in

practice, h is the mesh size of a triangulation of some bounded, finite domain Ω ⊂ R
2.

We define Sh
N by
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Sh
N = wN +

N−1∑
k=0

wkRh(zk), (4.4)

where Rh : H → Vh is a finite-rank approximation of R(z) and Vh is a subspace of a

complex Hilbert space V that is embedded (continuously) in H. As we shall see later,

there is no need to assume that the resolvent approximations yield a self-adjoint Sh
N .

To this end, we create an analogous FEAST algorithm using the approximations Sh
N

to S as follows: Let E
(0)
h ⊂ Vh be an initial approximation to the desired eigenspace

E. Compute the subspace iterates

E
(�)
h = Sh

NE
(�−1)
h ,  = 1, 2, . . . (4.5)

until a desired convergence criterion is met for some  ≥ 0. In the case that A is

selfadjoint and finite-dimensional, say A ∈ C
n×n is hermitian, then the discussion

of a discretization parameter h is moot, as SN can be used directly. While this is

feasible for many applications, our exploration stresses the importance of context.

Since we have to use a discretization to solve a continuous problem, it is important to

measure how that discretization affects the results we obtain, and more importantly,

to measure how close the FEAST approximations to eigenvalues and eigenspaces are

to the desired eigenvalues and eigenspaces to the continuous problem. Since we will

be working with hermitian (differential) operators A, however, we will use similar

assumptions on the separation of Λ from the rest of the spectrum of A we wish to

ignore, namely Σ(A) \ Λ. To begin, fix y, δ, γ ∈ R such that γ, δ > 0. Define the
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inside and outside sets [23, 24]

Iyγ = {x ∈ R
2 : |x− y| ≤ γ} (4.6a)

Oy
δ,γ = {x ∈ R

2 : |x− y| ≥ (1 + δ)γ} (4.6b)

and the quantities [23, 24]

W =
N∑
k=0

|wk| (4.7a)

κ̂ =
supx∈Oy

δ,γ
|rN(x)|

infx∈Iyγ |rN(x)|
(4.7b)

We now introduce important assumptions given in [23,24] in order to introduce rele-

vant results from our work. The first assumption states the desired set of eigenvalues

Λ is contained in the inside set Iyγ , that our chosen quadrature rule is well-behaved

and such that the nodes zk are neither elements of or limit points of the spectrum,

and that our error reduction factor κ̂ is smaller than unity.

Assumption 1. There are y ∈ R, δ > 0, and γ > 0 such that

Λ ⊂ Iyγ , Σ(A) \ Λ ⊂ Oy
δ,γ, (4.8)

and that rN is a rational function of the form (4.4) with the following properties:

zk /∈ Σ(A), W <∞, and κ̂ < 1.

Our next assumption assumes a continuous embeddeding of Hilbert spaces, and that
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the space V in which we seek solutions is an invariant subspace of R(z) for all z ∈ ρ(A),

the resolvent set of A.

Assumption 2. The Hilbert space V is such that E ⊆ V ⊆ H, there is a CV > 0 such

that for all u ∈ V , ||u||H ≤ CV ||u||V , and V is an invariant subspace of R(z) for all z

in the resolvent set of A, i.e., R(z)V ⊆ V .

The next assumption assumes that the error in the discretization of the resolvent R(z)

by Rh(z) goes to zero across all quadrature points zk as we approach the continuous

problem (h→ 0).

Assumption 3. The operators Rh(zk) and R(zk) are bounded in V and satisfy

lim
h→0

maxk=0,...,N−1||Rh(zk)−R(zk)||V = 0. (4.9)

Assumption 4. Assume that Vh is contained in dom(a), where a(·, ·) denotes the

symmetric (possibly unbounded) sesquilinear form associated to the operator A and

dom(a) is the domain of a (see, for example, [35] and [23, 5]).

4.2.1 Consequences of Important Assumptions

To describe some of the consequences of our assumptions, let the desired eigenvalues

consist of the finite set Λ = {λ1, λ2, . . . , λm}, counting multiplicities so that m =

dim(E), the dimension of the desired eigenspace E. The assumptions given in section

4.2 yield some important consequences that one can find in [23]; we go over two of

them here. First, Assumption 1 implies that

sup
x∈Oy

δ,γ

|rN(x)| < inf
x∈Iyγ

|rN(x)|,

and so we can find a simple, closed contour Γ ⊂ C, the interior of which contains the
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mapped eigenvalues μ = rN(λ) for λ ∈ Iyγ and excludes eigenvalues μ = rN(λ) for

λ ∈ Oy
δ,γ.

The consequence of Assumption 3 is that Sh
N converges to SN in norm as h → 0.

Indeed,

||Sh
N − SN ||V =

∣∣∣∣∣
∣∣∣∣∣
N−1∑
k=0

wk(Rh(zk)−R(zk))

∣∣∣∣∣
∣∣∣∣∣
V

≤
N−1∑
k=0

|wk| · ||Rh(zk)−R(zk)||V

≤
(

N−1∑
k=0

|wk|
)

max
k=0,1,...,N−1

||Rh(zk)−R(zk)||V

= W max
k=0,1,...,N−1

||Rh(zk)−R(zk)||V .

By Assumption 1, W < ∞, and so by Assumption 3, ||Sh
N − SN ||V → 0 as h → 0.

Then, for sufficiently small h, we have that [24]

Ph =
1

2πi

∮
Γ

(z − Sh
N)

−1dz

is the spectral projector associated with the contour Γ. Defining Eh to be the range

of Ph, we revisit the feast iterations (4.5). For this problem, we also assume that

E
(0)
h ⊆ Vh is chosen with dimE

(0)
h = dim(PhE

(0)
h ); in practice, this is not a restrictive

assumption, as we often start with more vectors than the dimension of the desired

eigenspace, and some vectors are removed as the iterations proceed.

In practice, FEAST computes a set of eigenvalue approximations and an approxima-

tion to the desired eigenspace E. In order to measure how far apart the approximate
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eigenspace is from the desired eigenspace E, we use the gap metric, which measures

distances between subspaces M and L of a Banach space V [24, 35]. This metric is

defined by

gapV(M,L) = max

[
sup

m∈UV
M

distV(m,L), supl∈UV
L
distV(l,M)

]
, (4.10)

where UV
M (respectively, UV

L ) is the unit ball in M (respectively, L) in the norm || · ||V
and

distV(m,S) = inf
s∈S
||m− s||V

for a subspace S ⊂ V .

Remark 7. Intuitively, the gap between subspaces can be thought of as a gener-

alization of the angle between two vectors, say, in R
2. In that setting, the co-

sine of the angle between two vectors u, v ∈ R
2 satisfies the well-known formula

cos θ = (u · v)/(||u||2||v||2). The angle θ can be interpreted as measuring how “far

apart” the spaces M = span({u}) and L = span({v}) are from each other.

In addition, we need to measure the accuracy of our approximate eigenvalues com-

puted using the FEAST algorithm. To do so, define the set of approximations Λh to

Λ by [24]

Λh = {λh ∈ R : ∃0 �= uh ∈ Eh satisfying a(uh, vh) = λh(uh, vh) for all vh ∈ Eh}.

We measure how far apart Λh and Λ are using the Hausdorff distance, defined by [24]
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dist(Υ1,Υ2) = max

[
sup

μ1∈Υ1

dist(μ1,Υ2), sup
μ2∈Υ2

dist(μ2,Υ1)

]
,

where Υ1,Υ2 ⊂ C and dist(μ,Υ) = infν∈Υ |μ − ν| for any Υ ⊂ C. Next, let CE be

any constant sich that for all e1, e2 ∈ E, we have that |a(e1, e2)| ≤ CE||e1||H||e2||H.

We state the following result from [24], the proof of which can be found in [23].

The important takeaway of this result is that as the FEAST iterations progress,

the approximation error of the FEAST iterates E
(�)
h to the space Eh can be made

arbitrarily small, and similarly for the approximation Eh to the desired eigenspace E.

Theorem 8. Suppose Assumptions 1–3 hold. Then there are constants CN , h0 > 0

such that, for all h < h0,

lim
�→∞

gapV(E
(�)
h , Eh) = 0, (4.11)

lim
h→0

gapV(E,Eh) = 0, (4.12)

gapV(E,Eh) ≤ CNW max
k=0,...,N−1

∣∣∣∣∣∣[R(zk)−Rh(zk)
]∣∣

E

∣∣∣∣∣∣
V
. (4.13)

If, in addition, Assumption 4 holds and ||u||V = |||A|1/2u||H, then there are C1, h1 > 0

such that for all h < h1,

dist(Λ,Λh) ≤ (Λmax)
2gapV(E,Eh)

2 + C1CE gapH(E,Eh)
2, (4.14)

where Λmax = supeh∈Eh
|||A|1/2eh||H/||eh||H satisfies

(Λmax)
2 ≤ [1− gapV(E,Eh)]

−2 CE.
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4.3 Applications of the DPG Discretization

4.3.1 The Dirichlet Operator

As a first step, we look at the eigenvalues of the negative Laplacian −Δ for a zero-

dirichlet eigenvalue problem. To this end, we define

A = −Δ, V = H1
0 (Ω), H = L2(Ω), dom(A) = {ψ ∈ H1

0 (Ω) : Δψ ∈ L2(Ω)}

(4.15)

for a bounded, polyhedral, Lipschitz domain Ω ∈ R
n for n ≥ 2. For Sobolev spaces

X, we use the standard notation || · ||X for norms and | · |X for seminorms. To see that

assumption 2 holds in this context, we revisit the discussion in [23]. We first observe

that the form a(·, ·) arises from integration by parts for the problem of finding λ ∈ C

and a funtion u satisfying

−Δu = λu, u|∂Ω = 0.

Multipling the PDE above by v̄ for v ∈ V and integrating by parts yields

∫
Ω

∇u · ∇v̄dx = λ

∫
Ω

uv̄dx,

and so the form to which A = −Δ is associated is given by

a(u, v) =

∫
Ω

∇u · ∇v̄dx, u, v ∈ V .

By the Poincaré inequality, we have that the norm ||u||V is equivalent to || |A|1/2u||H =

||A1/2u||H = ||∇u||L2(Ω) = |u|H1Ω (further details can be found, for example, in [23,

5]).
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Next, we need to make sure that, in leading up to the application of the resolvent

u = R(z)−1v, that one can solve the operator equation (z −A)u = v. Multiplying by

a test function w ∈ H1
0 (Ω) and integrating by parts yields the problem of finding a

u ∈ V satisfying

b(u, w) = (v, w)H for allw ∈ V , (4.16)

where

b(u, w) = z(u, w)− a(u, w) = z

∫
Ω

uw̄dx−
∫
Ω

∇u · ∇w̄dx

for u, w ∈ V . We begin with an inf-sup and continuity estimate for the form b, with

the assumption that z is in the resolvent set of A.

Lemma 9. (An inf-sup condition for (4.16) [24]) For all v ∈ H1
0 (Ω),

sup
y∈H1

0 (Ω)

|b(v, y)|
|y|H1(Ω)

≥ β(z)−1|v|H1(Ω),

where β(z) = sup{|λ|/|λ− z| : λ ∈ Σ(A)}.

Proof. Following the work of [24], we begin by letting v ∈ H1
0 (Ω), and let w = z̄R(z̄)v,

i.e. let w solve (z̄ − A)w = z̄v. Multiplying both sides by s̄ for s ∈ H1
0 (Ω), we have

that

∫
Ω

(z̄ − A)ws̄dx = z̄

∫
Ω

ws̄dx−
∫
Ω

Aws̄dx = z̄

∫
Ω

ws̄dx− a(w, s) = b(w, s)
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on the left-hand-side and

z̄

∫
Ω

vs̄dx = z̄(v, s)H

on the right-hand side. Taking the complex conjugate of the left and right sides, we

have that

z(s, w)H − a(s, w) = b(s, w) = z(s, v)H

for all s ∈ H1
0 (Ω). Choosing s = v, we have that

b(v, v − w) = b(v, v)− b(v, w)

= b(v, v)− z(v, v)H

= z(v, v)H − a(v, v)− z(v, v)H

= −a(v, v)

= −|v|H1(Ω).

In addition, we have that

v − w = v − z̄R(z̄)v

= (R(z̄)−1 − z̄)R(z̄)v

= (z̄ − A− z̄)R(z̄)v

= −AR(z̄)v.

Using [35, p. 273, Equation (3.17)], we have that ||AR(z)||H = β(z) holds for any z in
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the resolvent set of A. Then since |s|H1(Ω) = ||A1/2s||H for all s ∈ H1
0 (Ω) = dom(a) =

dom(A1/2), and since A1/2 commutes with AR(z) (see the second representation the-

orem in [35, Theorem V2.23]), it follows that

|v − w|H1(Ω) = |AR(z̄)v|H1(Ω)

= ||A1/2AR(z̄)v||H

= ||AR(z̄)A1/2v||H

≤ β(z̄)||A1/2v||H

= β(z̄)|v|H1(Ω)

where β(z̄) = β(z) because the spectrum of A is real. It then follows that

sup
0 �=y∈H1

0 (Ω)

|b(v, y)|
|y|H1(Ω)

≥ |b(v, v − w)|
|v − w|H1(Ω)

≥ |v|H1(Ω)

β(z)|v|H1(Ω)

= β(z)−1,

completing the proof.

4.3.2 The DPG Resolvent Discretization

For the discretization using the discontinuous Petrov-Galerkin method, we assume

that Ω is partitioned by a simplicial conforming mesh Ωh; triangular elements in this

mesh are denoted by K, and the mesh size h is given by h = maxK∈Ωh
diam(K).

Further details on the DPG method can be found in [12–14,21,28,66] along with our

own brief exposition in Chapter 2. Next, define the spaces

H1(Ωh) =
∏

K∈Ωh

H1(K), Q = H(div,Ω)/
∏

K∈Ωh

H0(div, K)
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with corresponding norms

||v||H1(Ωh) =

(∑
K∈Ωh

||v||2H1(K)

)1/2

,

||q||Q = inf

{
||q − q0||H(div,Ωh) : q0 ∈

∏
K∈Ωh

H0(div, K)

}

for v ∈ H1(Ωh) and q ∈ Q. In the definition of the spaceQ,H(div,Ω) is the space of all

vector-valued functions q ∈ L2(Ω)d (d ≥ 2) such that div(q) ∈ L2(Ω). Furthermore,

for each K ∈ Ωh, H0(div, K) refers to the vector-valued functions q ∈ H(div, K) for

which the normal trace of q · n is zero on ∂K [16]. On every K ∈ Ωh, the normal

trace q · n is in H−1/2(∂K) for each K ∈ Ωh, with 〈q · n, v〉∂K denoting the action of

q · n|∂K on the trace v|∂K of v ∈ H1(K). [24]. Next, define the form bh by

bh((u, q), v) =
∑
K∈Ωh

(
z

∫
K

uw̄dx−
∫
K

∇u · ∇w̄dx+ 〈q · n, v̄〉∂K
)

As in the case of classical FEM, we need to pose the solution to our problem using

carefully chosen finite-dimensional subspaces. To this end, we let Vh denote the La-

grange finite element space of V = H1
0 (Ω) whose members are continuous functions

which, when restricted to an arbitrary element K ∈ Ωh, are in the space of polyno-

mials Pp(K) of degree at most p; here, we assume p ≥ 1.

For our additional task of approximating the unknown q, we leverage the Raviart-

Thomas finite element space RTh ⊂ H(div,Ω), defined by

RTh = {q ∈ H(div,Ω) : q ∈ Pp−1(K)n + xPp−1(K)}
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Letting

Qh = {qh ∈ Q : qh|K ∈ Pp−1(K)n + xPp−1(K) +H0(div, K)}

and Yh = {εh ∈ H1(Ωh) : εh|K ∈ Pp+n+1(K)}, we are now read to state the weak

formulation of the equation u = R(z)f for any f ∈ L2(Ω). Specifically, we seek a

(uh, qh) ∈ Vh ×Qh with uh = Rh(z)f and εh ∈ Yh satisfying

(εh, ηh)H1(Ωh) + bh((uh, qh), ηh) =

∫
Ω

f η̄h dx, for all ηh ∈ Yh, (4.17a)

bh((wh, rh), εh) = 0, for all wh ∈ Vh, rh ∈ Qh. (4.17b)

where

(εh, ηh)H1(Ωh) =
∑
K∈Ωh

∫
K

(εhη̄h +∇εh · ∇η̄h) dx.

The next result we present bounds the error between u and uh. We assume for

the next and following results, that z varies in some bounded subset D ⊂ C of the

resolvent set of A. As in [24], we write t1 � t2 whenever there is a positive constant

C satisfying t1 ≤ Ct2 independent of the mesh parameter h = maxK∈Ωh
diamK, but

dependent on other quantities such as the diameter of D and the shape regularity

of the mesh Ωh. In addition, we the quantity β(z) in our estimates to indicate the

deterioration of estimates for z close to the desired portion of the spectrum we wish

to compute.

Lemma 10. (Resolvent error estimate [24]) For all f ∈ L2(Ω),

||R(z)f −Rh(z)f ||V � β(z)

[
inf

wh∈Lh

||u− wh||H1(Ω) + inf
qh∈RTh

||q − qh||H(div,Ω)

]
,
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where u = R(z)f and q = ∇u.

Proof. We follow the proof from [24]. We need to verify the conditions for well-

posedness of the DPG method using the results of [28, Theorem 2.1]. This result

immediately yields our claim, provided that we verify the conditions and assumptions

used within the theorem. The first two conditions require showing that the operator

generated by the form bh(·, ·) is a bijection. For our purposes, we will state a form

of this verification that is dual to the assumptions given for the conditions of the

theorem in [28]. The first condition to verify is

{η ∈ H1(Ωh) : bh((w, r), η) = 0 for all (w, r) ∈ H1
0 (Ω)×Q} = {0}. (4.18a)

The second condition is that there are C1, C2 > 0 such that

C1

[
|w|2H1(Ω) + ||r||2Q

]1/2 ≤ sup
η∈H1(Ωh)

|bh((w, r), η)|
||η||H1(Ωh)

≤ C2

[
|w|2H1(Ω) + ||r||2Q

]1/2
(4.18b)

for all w ∈ H1
0 (Ω) and r ∈ Q. Finally, the third condition is the existence of a bounded

linear operator Πh : H1(Ωh)→ Yh such that

bh((wh, rh), η −Πhη) = 0. (4.18c)

Once these conditions are verified, [28, Theorem 2.1] implies

|u− uh|H1(Ω) ≤
C2||Π||
C1

[
inf

wh∈Lh

|u− wh|H1(Ω) + inf
qh∈RTh

||q − qh||H(÷,Ω)

]
(4.19)
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with u = R(z)f and uh = Rh(z)f . We begin by verifying verifying conditions (4.18a)

and (4.18b) on bh(·, ·) using the properties of the form b(·, ·). Namely, note that

in [7, Lemma 2.2, Theorem 2.3], we have that

||r||Q = sup
v∈H1(Ωh)

|∑K∈Ωh
〈r · n, v〉∂K |

||v||H1(Ωh)

.

This result and [7, Theorem 3.3] together imply that the inf-sup condition we proved

in Lemma 9 implies an inf-sup condition for bh, specifically that the lower equality of

(4.18b) holds for

1

C2
1

= β(z)2 + [β(z)(1 + |z|) + 1]2 .

Combining this with the continuity estimate of bh with C2 = 1 + |z|, we have that

C2/C1 = O(β(z)). Finally, condition (4.18c) follows from the Fortin operator con-

structed in [28, Lemma 3.2] whose norm is a constant bounded independently of z.

Hence the lemma follows from (4.19).

4.3.3 FEAST Iterations with the DPG Discretization

In this section, we provide additional results needed to compute an approximation to

the desired subspace E ⊆ V , and round out the approximation error of approximating

E by Eh, which in turn is an application of Theorem 8. To do so, we require the

following assumption on regularity as specified in [24].

Assumption 5. Suppose there are positive constants Creg and s such that the solution

uf ∈ V of the Dirichlet problem −Δuf = f admits the regularity estimate

||uf ||H1+s(Ω) ≤ Creg||f ||H for any f ∈ V . (4.20)
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Also suppose that

||uf ||H1+sE (Ω) ≤ Creg||f ||H for any f ∈ E. (4.21)

(Since E ⊆ V , (4.20) implies (4.21) with s in place of sE, but in many cases (4.21)

holds with sE larger than s, see for example [45]. This is the reason for additionally

assuming (4.21).)

In the case that Ω is convex, Assumption 5 holds with s = 1 [24]. Otherwise, if

Ω has a maximum interior angle π/α located at a corner for 1/2 < α < 1, then

the same assumption holds for any positive s < α [30]. Proceeding forward, we

introduce another lemma to quantify the error in applying the resolvent using the

DPG discretization.

Lemma 11. (Resolvent discretization errors [24]) Suppose Assumption 5 holds. Then,

||R(z)f −Rh(z)f ||V � β(z)2hmin(p,s,1)||f ||V , for all f ∈ V , (4.22)

||R(z)f −Rh(z)f ||V � β(z)2hmin(p,sE)||f ||V , for all f ∈ E. (4.23)

Proof. Using Lemma 10, we can apply standard finite element error estimates for the

Lagrange and Raviart-Thomas finite spaces [4, 16] with u = R(z)f and uh = Rh(z)f

to obtain

||u− uh||H1(Ω) � β(z)

[
inf

wh∈Lh

||u− wh||H1(Ω) + inf
qh∈RTh

||q − qh||H(div,Ω)

]

� β(z)

[
hr|u|H1+r(Ω) + hr|q|Hr(Ω) + hr|div q|Hr(Ω)

]
(4.24)

for r ≤ p and where q = ∇u. Since u satrisfies b(u, v) = (f, v)H for all v ∈ H1
0 (Ω), we
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have by Lemma 9 that

β(z)−1|u|H1(Ω) ≤ sup
y∈H1

0 (Ω)

|b(u, y)|
|y|H1

0 (Ω)

= sup
y∈H1

0 (Ω)

|(f, y)H|
|y|H1

0 (Ω)

= ||f ||H−1(Ω). (4.25)

By the Poincaré inequality, we have

||u||H ≤ CV |u|V ≤ CVβ(z)||f ||H−1(Ω) ≤ CVβ(z)||f ||H. (4.26)

Applying elliptic regularity to Δu = f − zu, for all r ≤ s and r ≤ 1,

|u|H1+r(Ω) ≤ Creg(||f ||H + |z|||u||H) by (4.20),

� β(z)||f ||H by (4.26), (4.27)

|q|Hr(Ω) = |gradu|Hr(Ω) � β(z)||f ||H, by (4.27), (4.28)

|div q|Hr(Ω) = |f − zu|Hr(Ω)

� |f |Hr(Ω) + |z|β(z)||f ||H by (4.27),

� β(z)||f ||V since r ≤ 1. (4.29)

Bringing results (4.27), (4.28) and (4.29) together and applying them to the last ex-

pression in (4.24) (and using the assumption that ||f ||H ≤ CV ||f ||V , the claim (4.22)

follows.

Next, we seek to show that (4.23) also holds, but now with f ∈ E. Since f may

have higher regularity, the results (4.27) and (4.28) hold now for r ≤ sE. Analo-

gously, we have that |div q|Hr(Ω) ≤ |f |Hr(Ω), so it remains to bound |f |Hr(Ω). To do
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so, we note that −Δf ∈ E, and hence (4.21) implies ||f ||H1+r(Ω) � ||f ||H. Then it

follows that

|div q|Hr(Ω) � β(z)||f ||V for r ≤ sE,

so for f ∈ E, the estimates (4.27), (4.28) and (4.29) hold for all 0 ≤ r ≤ sE. As

before, we apply these results to (4.24), proving (4.23).

Next, we quantify the error when approximating the desired eigenspace E by Eh.

This will round out the analysis of error using the DPG method by quantifying the

error in terms of h, p, and sE from Assumption 5, and can be found in [24].

Theorem 12. Suppose Assumption 1 (on spectral separation) and Assumption 5 (on

elliptic regularity) hold. Then, there are positive constants C0 and h0 such that for

all h < h0, the FEAST iterates E
(�)
h obtained using the DPG approximation of the

resolvent converge to Eh and

gapV(E,Eh) ≤ C0 h
min(p,sE), (4.30)

dist(Λ,Λh) ≤ C0 h
2min(p,sE). (4.31)

Here C0 is independent of h, but may depend on β(zk)
2, W, CN , p, Λ, Creg, and the

shape regularity of the mesh.

Proof. We follow the same proof given in [24], beginning with the application of

Theorem 8. As we have already noted, Assumption 2 holds for the model Dirichlet

problem with the settings in (4.15). Estimate (4.22) of Lemma 11 verifies Assump-

tion 3. Thus, since Assumptions 1–3 hold, we may now apply (4.11) of Theorem 8
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to conclude that gapV(E
(�)
h , Eh) → 0. Moreover, the inequality (4.13) of Theorem 8,

when combined with the rate estimate (4.23) of Lemma 11 at each zk, proves (4.30).

Finally, to prove (4.31), noting that the Vh set to the Lagrange finite element

space Lh satisfies Assumption 4, we appeal to (4.14) of Theorem 8 to

dist(Λ,Λh) � gapV(E,Eh)
2 + gapH(E,Eh)

2. (4.32)

To control the last term, first note that ||e||2V = a(e, e) ≤ CE||e||2H for all e ∈ E.

Moreover, by Assumption 2, distH(e, Eh) ≤ CVdistV(e, Eh). Hence

δHh := sup
0 �=e∈E

distH(e, Eh)

||e||H
� sup

0 �=e∈E

distV(e, Eh)

||e||V
≤ gapV(E,Eh). (4.33)

Note that

gapH(E,Eh) = max

[
δHh , sup

m∈UH
Eh

distH(m,E)

]
.

Now, by the already proved estimate of (4.30), we know that gapV(E,Eh) → 0.

Hence, when h is sufficiently small, gapV(E,Eh) < 1, so dim(Eh) = dim(E) = m.

Taking h even smaller if necessary, δHh < 1 by (4.33), so by [35, Theorem I.6.34], there

is a closed subspace Ẽh ⊆ Eh such that gapH(E, Ẽh) = δHh < 1. But this means that

dim(Ẽh) = dim(E) = dim(Eh), so Ẽh = Eh. Summarizing, for sufficiently small h,

we have

gapH(E,Eh) = δHh � gapV(E,Eh).

Returning to (4.32), we conclude that

dist(Λ,Λh) � gapV(E,Eh)
2,

and the proof is finished using (4.30).
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4.3.4 A Generalization to Additive Perturbations

To extend our analysis for solving problems such as 1.1, we generalize the results

for the Dirichlet operator by considering a perturbation by a function ν : Ω → R in

L∞(Ω). In this case, we wish to state something meaningful about the form

a(u, v) =

∫
Ω

∇u · ∇v̄dx−
∫
Ω

νuvdx (4.34)

for u, v ∈ dom(a) = V = H1
0 (Ω). In this case, the operator A is the unbounded

operator on H = L2(Ω) generated by the form a, for example, via an appropriate

representation theorem [58]. The following lemma shows that in this newer setting,

we still have a well-posed problem. The function d(z) in Lemma 13 is given by

d(z) = 1 +
cz
cP

(|z|+ μ)

where

cz = sup

{ |λ+ μ|1/2
|z − λ| : λ ∈ Σ(A)

}

and cP is the constant arising from the Poincaré inequality. We state the lemma and

its proof below.

Lemma 13 (Generalization of Lemma 9 [24]). Suppose a as in (4.34), b(u, v) =

z(u, v)H − a(u, v), z is in the resolvent set of A, and d(z) is as defined above. Then

for all v ∈ H1
0 (Ω),

sup
y∈H1

0 (Ω)

|b(v, y)|
|y|H1(Ω)

≥ d(z)−1 |v|H1(Ω).
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Proof. Analogous to Lemma 9, we construct a w ∈ H1
0 (Ω). This time, for any v ∈

H1
0 (Ω), we let

w = R(z̄)(z̄v + νv).

This choice of w solves b(s, w) = z(s, v)H + (νs, v)H for all s ∈ H1
0 (Ω). Choosing

s = v as in Lemma 9, we have

b(v, v − w) = b(v, v)− b(v, w)

= b(v, v)− z(v, v)H − (νv, v)H

= z(v, v)H + (νv, v)H − a(v, v)− z(v, v)H − (νv, v)H

= −a(v, v)

= −|v|H1(Ω) (4.35)

Now for any μ > ||ν||L∞(Ω), the form domain dom(a) = H1
0 (Ω) is equal to dom((A+

μ)1/2) by [58, Proposition 10.5], which also states the result

a(u, v) = ((A+ μ)1/2u, (A+ μ)1/2v)H − μ(u, v)H ∀u, v ∈ H1
0 (Ω).

Then it follows that

|w|2H1(Ω) = a(w,w) + (νw,w)H

≤ a(w,w) + μ||w||2H

= ||(A+ μ)1/2w||2H. (4.36)
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Now suppose that z is in the resolvent set of the operator A. Then by the functional

calculus results from [5, Theorem 6.4.1], we have that the the spectrum of the normal

operator (A+ μ)1/2R(z) consists of elements of the form

(λ+ μ)1/2

z − λ

for λ ∈ Σ(A), hence (A+ μ)1/2R(z) is a bounded operator with norm

cz = sup
λ∈ΣA

∣∣∣∣(λ+ μ)1/2

z − λ

∣∣∣∣ .
Then (4.36) implies that

|w|H1(Ω) ≤ ||(A+ μ)1/2R(z̄)(z̄v + νv)||H

≤ cz||(z̄v + νv)||H

≤ (|z|+ μ)cz||v||H

≤ (|z|+ μ)
cz
cP
|v|H1(Ω)

by the Poincaré inequality cP ||v||H ≤ |v|H1(Ω). Then it follows that

|v − w|H1(Ω) ≤ |v|H1(Ω) + |w|H1(Ω)

= |v|H1(Ω) + (|z|+ μ)
cz
cP
|v|H1(Ω)

= d(z)|v|H1(Ω) (4.37)
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with d(z) = 1 + (|z| + μ)
cz
cP

. We then combine the results of (4.35) and (4.37) to

obtain

sup
y∈H1

0Ω

|b(v, y)|
|y|H1(Ω)

≥ |b(v, v − w)|
|v − w|H1(Ω)

≥
|v|2H1(Ω)

d(z)|v|H1(Ω)

= d(z)−1|v|H1(Ω),

completing the proof.

4.4 Numerical Verification

For numerical verification, we look at two examples of solving −Δu = λu with zero

dirichlet boundary conditions on two different domains: The unit square, and an

L-shaped domain. We use these problems to confirm that the use of the DPG dis-

crtetization produces the expected decrease in error based on the theory developed

earlier. The software used for numerically solving our problem with the finite element

method is NGSolve [59], a C++ library with a Python front-end. In conjunction with

our in-house pythonic implementation of FEAST pyeigfeast [26], we use a circular

contour of radius γ > 0, center y ∈ C, and a shift φ > 0 to prevent any quadrature

points from coinciding with an eigenvalue we wish to compute. Analogous to 3.6, we

define the weights and nodes for the (shifted) trapezoidal quadrature by

wj =
γ

N
ei(θj+φ) (4.38a)

zj = y + γei(θj+φ) (4.38b)

for j = 0, 1, . . . , N − 1, with θj = 2πj/N and φ = ±π/N . For our numerical studies,

we use N = 8 equally spaced quadrature points about the circular contour Γ.
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4.4.1 Discretization Errors on the Unit Square

For this verification, we let Ω = (0, 1)2. Our goal is to compute approximations to the

eigenvalues λ solving −Δu = λu with u|∂Ω = 0. In this case, our circular contour Γ

has a radius of γ = 45 and center y = 20. The exact eigenvalues we wish to compute

are Λ = {2π2, 5π2}, for which the first eigenvalue λ1 = 2π2 has multiplicity one, and

λ2 = λ3 = 5π2 has multiplicity two. The corresponding eigenfunctions, which can be

derived using separation of variables, take the form umn(x, y) = sin(mπx) sin(nπy)

for integers m,n ≥ 1.

For the numerical study, we started with an initial mesh size of h = 2−2, and per-

formed five uniform mesh refinements until the mesh size decreased to h = 2−7.

For each mesh size h, we numerically compute the eigenvalues and eigenvectors for

p = 1, 2, 3. To measure convergence of eigenfunctions, we approximated the following

quantities

δ
(1)
i = min

0 �=e∈E
|ei,h − e|H1(Ω) = distH1

0 (Ω)(ei,h, E), (4.39a)

δ
(2)
i = min

0 �=eh∈Eh

|ei − eh|H1(Ω) = distH1
0 (Ω)(ei, Eh). (4.39b)

by

δ
(1)
i,h =distH1

0 (Ω)(ei,h, IhE), (4.40a)

δ
(2)
i,h =distH1

0 (Ω)(Ihei, Eh). (4.40b)

where Ih is a standard interpolant into Vh. To keep matters brief, we plot the be-
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haviour of their sum

dh =
3∑

i=1

2∑
j=1

δ
(j)
i,h (4.41)

for decresing mesh sizes h and polynomial degees p = 1, 2, 3 in figure 4.1 [24]. In

addition, we also plot the Hausdorff distance between the approximate eigenvalues Λh

computed by FEAST and the exact eigenvalues Λ. In agreement with the developed

theory, we see that dh goes to zero as O(hp), and that the error in the eigenvalue

approximations decreases as O(h2p).

Figure 4.1: Unit Square Convergence Results
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Figure 4.1: Convergence results for the unit square.

4.4.2 Convergence Rates on an L-shaped Domain

We explore the same task of computing eigenvalues and eigenfunctions for same par-

tial differential equation and boundary condition in the previous section, but we now
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Table 4.1: L-shaped Domain Errors and Convergence Rates

λ1 λ2 λ3

h ERR NOC ERR NOC ERR NOC
2−2 6.29e-02 — 3.29e-02 — 5.95e-02 —
2−3 2.41e-02 1.39 2.65e-03 3.63 4.05e-03 3.88
2−4 9.48e-03 1.34 2.55e-04 3.38 2.59e-04 3.97
2−5 3.75e-03 1.34 2.99e-05 3.09 1.63e-05 3.99
2−6 1.49e-03 1.34 4.03e-06 2.89 1.02e-06 4.00

Table 4.1: Eigenvalue errors (ERR) and numerical order of convergence (NOC) for
the smallest three eigenvalues on the L-shaped domain.

let Ω = (0, 2)2 \ [1, 2]2. Furthermore, we use a circular contour with a radius of

γ = 15 and center y = 8 with N = 8 equally spaced quadrature points. Our in-

terest is in computing the first three eigenvalues contained within this contour along

with their numerical order of convergence. The corresponding eigenvalues are given

by [24] λ1 ≈ 9.6397238, λ2 ≈ 15.197252, and λ3 = 2π2. We show the results in table

4.1 [24]. The quantity ERR = ERR(h) = |λi,h − λi|, where λi,h is the ith eigenvalue

computed for the given mesh size h > 0. The numerical order of convergence is given

by NOC = NOC(h) = log2

(
ERR(2h)
ERR(h)

)
.

For our convergence studies, we begin with a mesh size of h = 2−2 and perform four

uniform mesh refinements to a final mesh size of h = 2−6. Our study was focused

on observing convergence rates using a polynomial degree p = 2. As we can see, our

convergence rates are affected by the interior corner in our domain: With an interior

angle of α = 3π
2
, so the quantity sE can be chosen satisfying sE < π/α = 2/3. Hence,

we see that the numerical order of convergence corresponding to the smallest eigen-

value is approximately 4/3, which agrees with the rate of O(h2min{sE ,p}) from (4.31)

of theorem 12. Keep in mind that this estimate holds for the entire set of eigenvalues

we are computing, but not necessarily for all individual eigenvalues. Indeed, we see
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that the largest eigenvalue approximately converges at a rate of O(h2p) = O(h4), as

the corresponding eigenfunction is analytic.
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Chapter 5

Polynomial Eigenvalue Problems

5.1 Introduction

Polynomial eigenvalue problems extend the work that we have completed for linear

eigenproblems, and will be the focus of this section. These problems are of inter-

est because they arrive in several different contexts, including systems of differential

equations, engineering, and photonics [25, 32, 40, 63]. One such example comes from

a paper by Nannen and Wess for computing scattering resonances. The non-linear

eigenvalue problem they solve arises from the application of a frequency-dependent

perfectly matched layer [46].

The means by which these problems are solved vary greatly. Algorithms such as

Neumier’s Residual Inverse Iteration tackled problems for semisimple eigenvalues,

though Neumeier also demonstrated his algorithm for eigenvalues with multiplicity

greater than one [47]. A broad survey of numerical methods for nonlinear eigenvalue

problems is explored by Ruhe, including discussion of Neumaier’s algorithm and the

use of Newton-type methods. As Ruhe points out, the challenge when using these

methods is providing a feasible initial guess to the eigenvectors and corresponding

eigenvalues we seek. [53].
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More recent non-linear eigensolvers have taken advantage of contour-integral based

methods: This includes the methods of Beyn and Polizzi, the former relying on the

computation of the first and second moments [3]

A0 =

∫
Γ

P (z)−1dz (5.1a)

A1 =

∫
Γ

zP (z)−1dz (5.1b)

to transform a nonlinear eigenvalue problem into a small, linear eigenproblem. Here,

Γ is a simple, closed contour in C containing the desired eigenvalues. Beyn’s method

effectively probes a singular value decomposition. The requirement of Beyn’s method,

however, is that many quadrature points must be used in order to resolve the com-

puted eigenvalues to the desired accuracy [3]. In Gavin and Polizzi’s work [18], that

the contour integral

Q =

∫
Γ

(X − T (z)−1R(X,Λ))(zI − Λ)−1dz

be used in the effort to solve nonlinear eigenvalue problems. Here T : C → C
n×n

is a matrix-valued function of z, Λ is a diagonal matrix whose diagonal entries are

eigenvalue approximations, and R represents a block residual for the matrix X whose

columns are approximations to the desired eigenvectors [18]. With some carefully

chosen examples, we will see that their choice of contour integral has potential draw-

backs depending on the choice of T (z). First, however, we begin with a discussion on

nonlinear eigenvalue problems.
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5.2 Nonlinear eigenvalue problems

Let T : C → C
n×n be a matrix-valued function. For nonlinear eigenvalue problems,

we seek to find λ ∈ C and x, x̃ ∈ C
n satisfying the following1:

T (λ)x = 0 (5.2a)

T (λ)∗x̃ = 0. (5.2b)

In contrast to linear eigenvalue problems, we have to exercise caution when computing

eigenvalues and eigenvectors for nonlinear problems. In general, one has to be care-

ful about defective eigenvalues. Such eigenvalues have algebraic multiplicity greater

than the geometric multiplicity, or dimension, of the corresponding eigenspace [32].

Another challenge is that of computing eigenvectors. For nonlinear eigenvalue prob-

lems, eigenvectors corresponding to distinct eigenvalues can be linearly dependent.

A further challenge is the presence of infinite eigenvalues, which themselves can be

defective or share the same eigenspace as finite eigenvalues [32].

5.3 Polynomial Eigenproblems

A polynomial eigenproblem is a specific case of a nonlinear eigenproblem for which the

function T : C→ C
n is a polynomial in its argument, and for which the coeffiecients

of the polynomial are matrices in C
n×n, i.e.

1In the case that T , for example, is of the form T (λ) =
∑d

i=0 λ
iAi for some integer d ≥ 1 and

Ai ∈ C
n×n, then [T (λ)]∗ =

∑d
i=0 λ

i
A∗

i . Such functions T are considered in subsequent discussions
on polynomial eigenvalue problems.
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T (z) = A0 + A1z + . . .+ Adz
d, (5.3)

where d ≥ 1 is the degree of the polynomial. For our purposes, we assume that Ad

is nonzero. In addition, we assume that T is regular, meaning that detT (z) is not

identically zero for all z ∈ C for which T is well-defined [32]. As stated in the previous

section, our goal is to find λ ∈ C and x, x̃ ∈ C
n satisfying equations (5.2) where T

now takes the form of (5.3). As with other nonlinear eigenvalue problems, we do have

to grapple with possibly defective or infinite eigenvalues. In this case, we say λ =∞

is an eigenvalue of T if 0 is an eigenvalue of the reversal zdT (z−1) [32,63]. In practice,

we find the infinite eigenvalues of T by finding the 0 eigenvalue of Ad. Consider the

following example of finding the eigenvalues and eigenvectors corresponding to

T (z) = A0 + A1z + A2z
2, z ∈ C (5.4)

where

A0 =

⎡
⎢⎣0 0

1 1

⎤
⎥⎦ (5.5a)

A1 =

⎡
⎢⎣0 1

0 0

⎤
⎥⎦ (5.5b)

A2 =

⎡
⎢⎣1 0

0 0

⎤
⎥⎦ (5.5c)

We begin by computing the eigenvalues of T by solving detT (z) = 0. Indeed, we
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have that

detT (z) =

∣∣∣∣∣∣∣
z2 z

1 1

∣∣∣∣∣∣∣ = z2 − z = z(z − 1).

In this case, we have two finite eigenvalues given by λ = 0, 1. Since detA2 = 0, we

know at once that λ =∞ is also an eigenvalue. To find the eigenvectors, we will find

the corresponding eigenvectors using the first companion linearization [32], which we

discuss later.

5.4 Solving Polynomial Eigenproblems

To solve polynomial eigenvalue problems, we look the technique [20, 63] of lineariza-

tions. The topic of linearizations forms a study in its own right [32,63]; we leave this

as an exploration for the interested reader. For our purposes, we are interested in the

use of the first companion linearization for the matrix pencil A− zB [20,63] given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I
. . .

...

...
...

. . . . . . 0

0 0 · · · 0 I

A0 A1 · · · Ad−2 Ad−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · · · · 0

0 I
. . .

...

...
. . . . . . . . .

...

...
. . . I 0

0 · · · · · · 0 −Ad

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.6)

Our recent work shows that the task of solving the nonlinear eigenvalue problem [24]

where T is a matrix polynomial (5.3) is equivalent to solving for the eigenvalues and

corresponding eigenvectors for the matrix pencil A − zB. To show this equivalence,

we require the following definition [27,32].
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Definition 2 (Jordan Chains). Let T : C → C
n×n and let dlT/dzl denote the lth

derivative of T with respect to z for l > 0. We call x0, x1, . . . , xk ∈ C a right Jordan

chain and x̃0, x̃1, . . . , x̃k ∈ C a left Jordan chain of T if the following set of conditions

is satisfied:

j∑
l=0

1

l!
T (l)(λ)xj−l = 0,

j∑
l=0

1

l!
[T (l)(λ)]∗x̃j−1 = 0, j = 0, 1, . . . , k − 1. (5.7)

Suppose k = 1. Then the above conditions are reduced to

T (λ)x0 = 0, x̃∗
0T (λ) = 0, (5.8)

which are the precise conditions for left and right eigenvectors x0, x̃0 corresponding

to an eigenvalue λ of T (z). For k > 1, these chains of vectors are referred to as right

(respectively left) generalized eigenvectors of T [32]. For our purposes, our interest is

in computing a cluster of eigenvalues Λ ⊂ C. We give the following definition for the

left and right generalized eigenspaces associate to all λ ∈ Λ [27].

Definition 3 (Algebraic eigenspaces of a cluster of eigenvalues Λ.). Let Λ ⊂ C be a

set of eigenvalues of the nonlinear, matrix-valued function T : C→ C
n×n. The right

and left eigenspaces of a set of nonlinear eigenvalues λ ∈ Λ are, respectively, the span

of all right and left nonlinear generalized eigenvectors associated to every λ ∈ Λ.

As noted in [27, 32], these definitions generalize the standard notions for generalized

eigenspaces for linear eigenproblems when T (z) = A−zB for A,B ∈ C
n×n. With these

definitions in hand, we can now tackle the problem of finding a cluster of nonlinear

eigenvalues Λ and the associated left and right eigenspaces.
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5.5 Equivalence of Eigenproblems

To begin our journey into finding the eigenvalues and corresponding left and right

eigenspaces for a nonlinear eigenproblem, we need to use the tools of linearizations

discussed previously. As mentioned before, we will rely on the use of the first com-

panion linearization (5.6) for devising our algorithm. In order to do so, our goal is

to show equivalence between the nonlinear eigenproblem for T a matrix polynomial

and the linear eigenproblem of finding eigenvalues λ and corresponding right and left

eigenvectors X, X̃ ∈ C
nd satisfying

AX = λBX, X̃∗A = λX̃∗B (5.9)

To begin to show this equivalence, let Y ∈ C
nd×m be block partitioned as

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Y0

Y1

...

Yd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.10)

where Yi ∈ C
n×m for i = 0, 1, . . . , d − 1. In addition, we define the operators F, L ∈

C
n×nd by

F =

[
I 0 · · · 0

]
(5.11a)

L =

[
0 0 · · · I

]
(5.11b)
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where I is the n × n identity matrix. These operators extract the first (respectively

last) n rows of a matrix Y with nd rows, and specifically are used to extract the cor-

respinding right and left eigenvectors for the nonlinear eigenproblems we wish to solve.

Moving forward, Goldberg, Lancaster, and Rodman [20] show that a given λ ∈ C

is a nonlinear eigenvalue with multiplicity k of (5.2) for T a matrix polynomial if and

only if λ is a linear eigenvalue of multiplicity k for (5.9), which justifies interest in

pursuing linearizations to solve these types of problems [61,63].

For our purposes, we are interested in connecting the nonlinear (polynomial) eigen-

value problems with the linearization, as well as providing our own implementation

of a FEAST algorithm that takes advantage of the problem structure. As in our own

work [27], we provide the ingredients needed to solve this problem by constructing a

FEAST algorithm for the linearizartion (5.6).

First, define S, S̃ and their corresponding quadrature approximations SN , S̃N by [27]

S =
1

2πi

∮
Γ

(zB −A)−1B dz, S̃ =
1

2πi

∮
Γ

(zB −A)−∗B∗ dz,

SN =
N−1∑
k=0

wk(zkB −A)−1B, S̃N =
N−1∑
k=0

w̄k(zkB −A)−∗B∗.
(5.12)

Where Γ ⊂ C is a simple, closed contour containing the desired cluster of eigenvalues

Λ we wish to compute. Let E0, Ẽ0 ⊂ C
nd be initial guess to the desired right and left

eigenspaces corresponding to the matrix pencil A − zB. The FEAST algorithm, in

practice, generates sequences of right and left subspace approximations E�, Ẽ� by [27]

E� = SNE�−1, Ẽ� = S̃N Ẽ�−1 for  = 1, 2, . . . . (5.13)
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The goal in applying this algorithm is to generate approximations to the desired

right and left eigenspaces E and Ẽ of A− zB and their corresponding eigenvalues Λ

contained in the interior of the contour Γ. As a next step, we show the relationship

between the eigenvalues and eigenvectors of the nonlinear eigenvalue problem we wish

to solve and the linear eigenproblem we tackle with algorithm 4.

Theorem 14. (Relation between eigenspaces [27]) Let E and Ẽ be the right and left

algebraic eigenspaces of the nonlinear eigenvalues of T (z) enclosed in Γ, respectively.

Then

1. E = FE ,

2. Ẽ = LẼ .

When the iterations of the FEAST algorithm converge for  sufficiently large, then

truncation by the operators F and L yields the desired right and left eigenspace

approximartions for the nonlinear eigenproblem we set out to solve. Before giving

a proof of Theorem 14, we provide some needed machinery in the form of a lemma

from [27]. Before proceeding, let N denote a k × k nilpotent matrix

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0
. . .

...

...
...

. . . . . . 0

...
...

. . . 1

0 0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

let I denote the k× k identity matrix, and let J = λI +N be a k× k Jordan matrix.

We are now ready to state and prove the lemma [27] needed for the proof of theorem

14.
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Lemma 15. A sequence v0, v1, . . . vk−1 in C
n is a nontrivial Jordan chain of a non-

linear eigenvalue λ of T (z) in the sense of definition (2), if and only if v0 �= 0 and

V = [v0, v1, . . . vk−1] ∈ C
n×k satisfies

d∑
i=0

AiV J i = 0. (5.14)

Proof. As in [27], define the quantity si� for i,  ≥ 0 by

si� =

(
i



)
λi−�AiV N �

Note that si� = 0 ∈ C
n×k if  > i or  > k − 1, so for convenience, define mik =

min{i, k − 1}. The sum (5.14) can be written by expanding the powers of J :

d∑
i=0

AiV J i =
d∑

i=0

AiV (λI +N)i

=
d∑

i=0

AiV

[(
i

0

)
λiI +

(
i

1

)
λi−1N + . . .+

(
i



)
λi−�N � + . . .+

(
i

i

)
N i

]

=
d∑

i=0

AiV

mik∑
�=0

(
i



)
λi−�N �

=
d∑

i=0

mik∑
�=0

(
i



)
λi−�AiV N �

=
d∑

i=0

mik∑
�=0

si�
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=

(
d∑

i=k

+
k−1∑
i=0

)
mik∑
�=0

si�

=

(
d∑

i=k

mik∑
�=0

+
k−1∑
i=0

mik∑
�=0

)
si�

=

(
d∑

i=k

k−1∑
�=0

+
k−1∑
i=0

i∑
�=0

)
si�

=

(
k−1∑
�=0

d∑
i=k

+
k−1∑
�=0

k−1∑
i=�

)
si�

=
k−1∑
�=0

d∑
i=�

si�. (5.15)

Our next step is to relate the last expression in (5.15) to definition (5.7). For clarity,

we expand out the sums
d∑

i=�

si�, i ≥ 0 up to an arbitrary index . We then have

d∑
i=0

si� =
d∑

i=0

(
i

0

)
λi−0AiV N0

=
d∑

i=0

λiAiV

= P (λ)

[
v0 v1 v2 . . . vk−1

]
, (5.16a)
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d∑
i=1

si� =
d∑

i=1

(
i

1

)
λi−1AiV N1

=
d∑

i=1

1

1!
iλi−1AiV N

=
1

1!
P (1)(λ)

[
0 v0 v1 . . . vk−2

]
, (5.16b)

d∑
i=2

si� =
d∑

i=2

(
i

2

)
λi−2AiV N2

=
d∑

i=2

1

2!
i(i− 1)λi−2AiV N2

=
1

2!
P (2)(λ)

[
0 0 v0 . . . vk−3

]
, (5.16c)

...

and so on, until for i = , we have

d∑
i=�

si� =
d∑

i=�

(
i



)
λi−�AiV N �

=
d∑

i=�

1

!
i(i− 1) · · · (i− + 1)λi−�AiV N �

=
1

!
P (�)(λ)

[
0 . . . 0� v0 . . . vk−�−1

]
, (5.16d)

where 0, . . . , 0� denote  columns of zero vectors. Then the sum (5.15) is really just

the sum

k−1∑
�=0

d∑
i=�

si� =
k−1∑
�=0

1

!
P (�)(λ)

[
0 . . . 0� v0 . . . vk−�−1

]
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=
k−1∑
�=0

1

!

[
0 . . . 0� P (�)(λ)v0 . . . P (�)(λ)vk−�−1

]
(5.17)

but 0 =
d∑

i=0

AiV J i =
k−1∑
�=0

d∑
i=�

si�. Consequently, the jth column of (5.17) is

j∑
�=0

1

!
P (�)(λ)vj−�

for j = 0, 1, . . . , k − 1, which is just a restatement of the conditions that the vectors

v0, v1, . . . , vk−1 form a (right) Jordan chain of a nonlinear eigenvalue λ as stated in

definition 2.

With lemma 15 proven, we move to the proof of Theorem 14, which we closely follow

from [27].

Proof. Suppose that λ is a nonlinear eigenvalue enclosed by the contour Γ. By lemma

15, the vectors v0, v1, . . . , vk−1 ∈ C
n form a right Jordan chain of vectors corresponding

to the nonlinear eigenvalue λ iff equation (5.14) holds. This is equivalent to the last

n equations holding in the nd× nd system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I
. . .

...

...
...

. . . . . . 0

0 0 · · · 0 I

A0 A1 · · · Ad−2 Ad−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V

V J

V J2

...

V Jd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · · · · 0

0 I
. . .

...

...
. . . . . . . . .

...

...
. . . I 0

0 · · · · · · 0 −Ad

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V

V J

V J2

...

V Jd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
J,

(5.18)

where J and V are given here as in lemma 15. For convenience, let
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V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V

V J

V J2

...

V Jd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

nd×k,

and let Vi denote the (i + 1)th column of V for i = 0, 1, . . . , k − 1, so we can write

V =

[
V0 V1 . . . Vk−1

]
. Then (5.18) can be stated succinctly as AV = BVJ .

Written in terms of the columbs of V , we see that

AV0 = λBV0

AV1 = B(V0 + λV1) = BV0 + λBV1

AV2 = B(V1 + λV2) = BV1 + λBV2

...

AVk−1 = B(Vk−2 + λVk−1) = BVk−2 + λBVk−1

which is just a statement that the columns Vi of V form a (right) Jordan chain for

the matrix pencil A − λB. In addition, we have that FVi = vi, which tells us that

Vi forms a Jordan chain for A − λB iff v0, v1, . . . , vk−1 form a Jordan chain for the

nonlinear eigenvalue λ of T .

We repeat the same idea for the second statement in theorem 14, and now start-

ing with the left Jordan chain ṽ0, ṽ1, . . . , ṽk−1 ∈ C
n; for convenience, we let Ṽ =[

ṽ0 ṽ1 . . . ṽk−1

]
∈ C

n×k. Using definition (5.7), this left Jordan chain satisfies
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j∑
�=0

1

!
[T (�)(λ)]∗ṽj−� = 0 for j = 0, 1, . . . , k − 1.

Applying lemma 15 to [T (z)]∗, we have that Ṽ satisfies

d∑
i=0

A∗
i Ṽ J̄ i = 0. (5.19)

Next, let Wd−i := −
∑i−1

j=0 A
∗
d−jṼ J̄ i−1−j for i = 2, . . . , d. We wish to show that (5.19)

holds iff

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 A∗
0

I 0 . . . 0 A∗
1

0
. . . . . .

...
...

...
. . . . . . 0 A∗

d−2

0 . . . 0 I A∗
d−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0

W1

...

Wd−2

Ṽ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · · · · 0

0 I
. . .

...

...
. . . . . . . . .

...

...
. . . I 0

0 · · · · · · 0 −A∗
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0

W1

...

Wd−2

Ṽ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
J̄ , (5.20)

also holds. We begin by using the definition of Wd−i to complete this step, expanding

out the details of Wd−i for i = 2, . . . , d below.

Wd−2 = −
1∑

j=0

A∗
d−jṼ J̄2−1−j

= −(A∗
dṼ J̄ + A∗

d−1Ṽ )

Wd−3 = −
2∑

j=0

A∗
d−jṼ J̄3−1−j

= −(A∗
dṼ J̄2 + A∗

d−1Ṽ J̄1 + A∗
d−2Ṽ )
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...

Wd−i = −
i−1∑
j=0

A∗
d−jṼ J̄ i−1−j

= −(A∗
dṼ J̄ i−1 + A∗

d−1Ṽ J̄ i−2 + . . .+ A∗
d−(i−1)Ṽ )

...

W1 = −
d−2∑
j=0

A∗
d−jṼ J̄d−2−j

= −(A∗
dṼ J̄d−2 + A∗

d−1Ṽ J̄d−3 + . . .+ A∗
2Ṽ )

W0 = −
d−1∑
j=0

A∗
d−jṼ J̄d−1−j

= −(A∗
dṼ J̄d−1 + A∗

d−1Ṽ J̄d−2 + . . .+ A∗
2Ṽ J̄ + A∗

1Ṽ )

By equating the first n rows of the left- and right-hand sides of (5.20), we obtain

A∗
0Ṽ = W0J̄ , which is a restatement of (5.19). For the remaining n(d − 1) rows of

(5.20), we have that

Wd−i−1 + A∗
d−iṼ = Wd−iJ̄ , i = 2, . . . , d− 1.

This tells us that the remaining matrices Wd−i can be obtained through this recur-

rence with the definition of W0 corresponding to i = d as a base case, provided we

take W−1 ≡ 0; another route to this conclusion follows from the definition of the

matrices Wd−i, which satisfy Wd−iJ̄ −Wd−i−1 = A∗
d−iṼ . Consequently, (5.20) holds

precisely when (5.19) holds.

Next, let
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Ṽ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0

W1

...

Wd−2

Ṽ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Writing Ṽ =

[
Ṽ0 Ṽ1 . . . Ṽk−1

]
where Ṽi denotes the ith column of Ṽ , we have by

(5.20) that A∗Ṽ0 = λ̄B∗Ṽ0, as well as

A∗Ṽi = B∗(Ṽi−1 + λ̄Ṽi), i = 1, . . . , k − 1,

which is equivalent to stating that Ṽ∗
0A = JT Ṽ∗

0B and

Ṽ∗
iA = (Ṽ∗

i−1 + λṼ∗
i )B, i = 1, . . . , k − 1.

This tells us that the columns of Ṽ form a left Jordan chain for the matrix pencil

A − zB. Since Ṽ = LṼ , we have that Ṽ is a left Jordan chain corresponding to the

eigenvalue λ of T .

5.6 A FEAST Algorithm for Polynomial Eigenproblems

In this section, we lay the foundation for an efficient implementation of the FEAST al-

gorithm for polynomial eigenvalue problems. Given that linearizations are pursued in

order to find solutions to such problems, one cost we have to think about is implemen-

tation. The practical implementation of FEAST requires that we compute quadrature

approximations to the contour integrals used to form the Riesz projections onto the

desired eigenspaces for the matrix pencil A − zB. In practice, this means having to
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solve several linear systems of the form (zB − A)X = Y and (zB − A)∗X̃ = W for

X̃,X, Y,W ∈ C
nd×m. In doing so directly, we pay a price: With dimensions nd× nd

for the matrices A and B, along with the requirement of FEAST having to perform

several factorizations of the pencil zB − A at different points z ∈ C, such a direct

approach could be prohibitively costly. For the cubic eigenproblem we wish to solve

with n = O(106) and higher, the linearized problem is nine times larger than the

original problem. To get around this constraint, we use the structure of the lineariza-

tion so that the only factorizations explicitly required are those of T (z) at various

quadrature points z. We show how this is done with a theorem from our paper [27].

Theorem 16. (Resolvent application [27]) Suppose T (z) is invertible at some z ∈ C

and consider X, X̃, Y,W ∈ C
nd block partitioned as in (5.10). Then the following

identities hold.

1. The block components of X = (zB −A)−1Y are given by

X0 = T (z)−1

(
−Yd−1 − AdYd−1 +

d∑
i=1

Ai

i−1∑
j=0

zi−1−jYj

)
(5.21a)

Xi = zXi−1 − Yi−1, i = 1, 2, . . . , d− 1. (5.21b)

2. The block components of X̃ = (zB −A)−∗W are given by

X̃d−1 = −T (z)−∗
d−1∑
j=0

z̄jWj, X̃d−2 = −Wd−1 − z̄A∗
dX̃d−1 − A∗

d−1X̃d−1, (5.22a)

X̃i = −Wi+1 + z̄X̃i+1 − A∗
i+1X̃d−1, i = 0, 1, . . . , d− 3. (5.22b)

Proof. We begin with (5.21). We obtain the block components of X by looking at

the structure of (zB −A)X = Y in further detail.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zI −I 0 · · · 0

0 zI −I . . .
...

...
...

. . . . . . 0

0 0 · · · zI −I

−A0 −A1 · · · −Ad−2 −(zAd + Ad−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0

X1

...

Xd−2

Xd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0

Y1

...

Yd−2

Yd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.23)

The first n(d− 1) rows of (5.23) yield the recurrence

zXi−1 −Xi = Yi−1, i = 1, 2, . . . , d, (5.24)

which confirms (5.21b). The last n rows form the sum

−A0X0 − A1X1 − . . .− Ad−2Xd−2 − Ad−1Xd−1 − zAdXd−1 = Yd−1. (5.25)

To confirm (5.21a), we begin by recursively expanding out the definitions of the Xi

terms whos recurrence we confirmed matched the desired identity in this theorem.

Then

X1 = zX0 − Y0

X2 = zX1 − Y1

= z2X0 − zY0 − Y1

X3 = zX2 − Y2
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= z3X0 − z2Y0 − zY1 − Y2

...

Xi = zXi−1 − Yi−1

= ziX0 − zi−1Y0 − zi−2Y1 − . . . zYi−2 − Yi−1

= ziX0 −
i−1∑
j=0

zi−1−jYj

for i = 1, 2, . . . , d− 1. Then it follows that

AiXi = ziAiX0 − Ai

i−1∑
j=0

zi−1−jYj,

and so the left-hand-side of (5.25) can be written as

−
d−1∑
i=0

ziAiX0 +
d−1∑
i=0

Ai

i−1∑
j=0

zi−1−jYj − zdAdX0 + Ad

d−2∑
j=0

zd−1−jYj = −T (z)X0

+
d∑

i=0

Ai

i−1∑
j=0

zi−1−jYj

− AdYd−1

equating this with the right-hand-side of (5.25) yields

−T (z)X0 +
d∑

i=0

Ai

i−1∑
j=0

zi−1−jYj − AdYd−1 = Yd−1.

Upon moving all terms not involving T (z) to the right-hand-side and applying T (z)−1

to both sides, we obtain
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X0 = T (z)−1

(
−Yd−1 − AdYd−1 +

d∑
i=0

Ai

i−1∑
j=0

zi−1−jYj

)
,

which establishes (5.21a). Next, we verify (5.22) by observing the structure of (zB −

A)∗X̃ = W . In this case, we have that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z̄I 0 . . . 0 −A∗
0

−I z̄I . . . 0 −A∗
1

0
. . . . . .

...
...

...
. . . . . . z̄I −A∗

d−2

0 . . . 0 −I −(z̄A∗
d + A∗

d−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̃0

X̃1

...

X̃d−2

X̃d−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W0

W1

...

Wd−2

Wd−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.26)

We begin by establishing that the first n rows of the left- and right-hand-sides of

(5.26) tell us z̄X̃0 − A∗
0X̃d−1 = W0. The next n(d− 2) rows yield the reccurence

−X̃i + z̄X̃i+1 − A∗
i+1X̃d−1 = Wi+1

for i = 0, 1, . . . , d − 3, immediately establishing (5.22b). To tackle the computation

of Xd−1, we list the following three relations we have established through (5.26)

z̄X̃0 − A∗
0Xd−1 = W0 (5.27a)

−X̃i + z̄X̃i+1 − A∗
i+1X̃d−1 = Wi+1, i = 0, . . . , d− 3 (5.27b)

−X̃d−2 − z̄A∗
dX̃d−1 − A∗

d−1X̃d−1 = Wd−1 (5.27c)

To proceed, multiply (5.27b) by z̄i+1 to obtain
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−z̄i+1X̃i + z̄i+2X̃i+1 − z̄i+1A∗
i+1X̃d−1 = z̄i+1Wi+1, i = 0, . . . , d− 3 (5.28)

Next, compute the sum from i = 0 to d− 3 of 5.27b to obtain

d−3∑
i=0

(−z̄i+1X̃i + z̄i+2X̃i+1)−
d−3∑
i=0

z̄i+1A∗
i+1X̃d−1 = −z̄X̃0 + z̄d−1X̃d−2 −

d−3∑
i=0

z̄i+1A∗
i+1X̃d−1

=
d−3∑
i=0

z̄i+1Wi+1 (5.29)

Adding both side of (5.27a) to the last two expressions in (5.29) yields

z̄d−1X̃d−2 −
d−2∑
i=0

z̄iA∗
i X̃d−1 =

d−2∑
i=0

z̄iWi (5.30)

Now multiply (5.27c) by z̄d−1 and add this to (5.30) to obtain

−
d∑

i=0

z̄iA∗
i X̃d−1 =

d−1∑
i=0

z̄iWi (5.31)

This simplifies to

−T (z)∗X̃d−1 =
d−1∑
i=0

z̄iWi,

which establishes the first part of (5.22a). The second part is established by (5.27c).

For polynomial eigenproblems, we give our algorithm for the nonlinear eigensolver we
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created in our recent work [27]. Algorithm 4 is designed under the assumption that

the number of eigenvalues m we wish to compute is far fewer than the dimension n

of the matrices required for the algorithm. This is certainly the case for our applica-

tions, as the matrices we construct to solve the cubic eigenproblem arising from our

optics applications are large and sparse with n = O(106). In addition, we assume

that the computed eigenvalues are semisimple so that we may leverage existing tools

as needed, primarily to avoid stable computations of generalized eigenvectors (i.e.

numerically computing a Jordan decomposition) [27].

Algorithm 4 begins with setup steps for factorizing T at the specified input quadra-

ture nodes zk ∈ C, as well as allocating scratch space. We then compute R = SNY

and R̃ = S̃N Ỹ in steps 7-13 to obtain our updated left and right eigenvector approxi-

mations. At this stage, the scratch matrices R, R̃ are used to probe which eigenvector

approximations may be in the null space of B in steps 16-22. Any vectors found to

be in the null space are then removed, and we then assemble a small m × m (with

m possibly smaller than initially specified) Ritz system in step 23. This small, dense

eigenproblem is then solved in steps 24, from which we extract the eigenvalue ap-

proximations and update the eigenvector approximations in step 25. Users of the

algorithm can specify how often (say, every three iterations) to see if any eigenvalue

approximations lie outside of the contour Γ. If so, the corresponding eigenvector

approximations are removed, and the number of eigenvalues m which we seek to

approximate is reduced. In practice, users may need to address potential issues sur-

rounding the computation of defective eigenvalues; we omit this potential step from

the algorithm for now [27].

One other aspect of the algorithm to touch upon involves the matrix B. It is not
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necessary that B is invertible, and one of our steps in the algorithm checks the kernel

of B to filter out eigenvalues at infinity. This is due to the fact that K = ker(B) is

contained in the zero eigenspace of S and SN . Steps 16-22 are specifically designed to

filter out vectors in the nullspace of B, as the dominant eigenvalues of operators S and

SN are nonzero. Letting K = ker(Ad), we see upon closer inspection that K = LTK.

This is due to the fact that for any X ∈ C
nd that is also in K, it follows that the first

n(d−1) rows of X must be zero, with the last n components of X forming an element

of K. Likewise, we have that for any x ∈ K, the vector X := L′x ∈ K. But any

vector in K is, by definition, an eigenvector corresponding to the eigenvalue λ =∞,

so infinite eigenvalues are filtered out in our algorithm.
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Algorithm 4 Polynomial FEAST Eigensolver for Problem (put ref here)

Input contour Γ, quadrature zk, wk, sparse coefficient matrices A0, . . . , Ad−1, Ad ∈
C

n×n, initial right and left eigenvector iterates given as columns of Y, Ỹ ∈ C
nd×m,

respectively, block partitioned as in (put equation reference here) into Yj, Ỹj ∈ C
n×m,

and tolerance ε > 0.

1 setup
2 Prepare T (zk)

−1 by sparse factorization at each quadrature point zk.
3 repeat

4 Set all entries of workspace R̃, R ∈ C
nd×m to 0.

5 for each zk, k = 0, . . . , N − 1, do:
6 Compute block components of X ∈ C

nd×m:

7 X0 ← T (zk)
−1

d∑
i=1

i−1∑
j=0

zi−1−j
k AiYj,

8 for i = 1, . . . , d− 1 do: Xi ← zkXi−1 − Yi−1.
9 Increment R += wkX.

10 Compute block components of X̃ ∈ C
nd×m:

11 X̃d−1 ← T (zk)
−∗

d−1∑
j=0

z̄jkỸj,

12 X̃d−2 ← −Ỹd−1 − z̄kA
∗
dX̃d−1 − A∗

d−1X̃d−1,

13 for i = d− 3, . . . , 1, 0, do: X̃i ← A∗
i+1X̃d−1 − Ỹi+1 + z̄kX̃i+1.

14 Increment R̃ += w̄kX̃.
15 endfor

16 G← R̃∗BR.

17 Compute biorthogonal V, Ṽ ∈ C
m×m such that Ṽ ∗GV = diag(d1, . . . , dm).

18 Y ← RV , Ỹ ← R̃Ṽ .
19 for  = 1, . . . ,m do:

20 If d� ≈ 0: then remove th columns of Ỹ and Y ,

21 else: rescale th column of Ỹ and Y by |d�|−1/2.
22 endfor

23 Assemble small Ritz system: AY ← Ỹ ∗AY , BY ← Ỹ ∗BY .

24 Compute Ritz values Λ = diag(λ1, . . . , λm) and W, W̃ ∈ C
m×m satisfying

W̃ ∗AYW = Λ, W̃ ∗BYW = I.

25 Y ← YW , Ỹ ← Ỹ W̃ .

26 Periodically check: if λ� falls outside G, remove th columns of Y and Ỹ .
27 until maximal difference of successive Λ iterates is less than ε.

28 output eigenvalue cluster {λ�}, left and right eigenvectors in LỸ and FY .
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Remark 17 (Other algorithms for generalizing FEAST). In our recent paper, specifi-

cally Remark 3, we explored why one might not pursue

S =

∮
C

T (z)−1dz

as a means of generalizing the FEAST algorithm to solve the nonlinear eigenproblem

(5.2). In this instance, C is a simple, closed contour in C. As was done in our

paper [27], we look at an example for which

T (z) = (z2 − 1)I, z ∈ C

with I ∈ C
n×n being the identity matrix. In this case, detT (z) = z2 − 1, hence the

eigenvalues are given by λ = ±1. In this case, the corresponding eigenspace is just

C
n. For z ∈ C that are not eigenvalues of T , we have that

T (z)−1 =
1

z2 − 1
I =

(
A

z − 1
+

B

z + 1

)
I.

Then for a simple closed contour C surrounding both eigenvalues λ = ±1, we have

S =

∮
C

(
1

z2 − 1

)
Idz =

(∮
C

1/2

z − 1
− 1/2

z + 1
dz

)
I = 0 · I = 0 ∈ C

2×2.

by Cauchy’s Integral Formula [55]. In this case, we see that this particular formulation

is not viable for devising an algorithm to find eigenvalues and eigenvectors.

Remark 18 (A remark on Polizzi’s algorithm). In our paper, Remark 5 [27] talks

about how Gavin and Polizzi’s algorithm [18] finds solutions in a different space than

what we were hoping to see, and shows how we perhaps need to treat the solutions

of nonlinear eigenvalues on a case-by-case basis. We provide the details of the same
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example, but with futher granularity.

Let T (z) = A0 + zA1 + z2A2, where

A0 =

⎡
⎢⎣1 0

1 0

⎤
⎥⎦ , A1 =

⎡
⎢⎣0 1

0 0

⎤
⎥⎦ , A2 =

⎡
⎢⎣0 0

0 1

⎤
⎥⎦ .

The eigenpairs of this problem are given by

⎛
⎜⎝0,

⎡
⎢⎣0
1

⎤
⎥⎦
⎞
⎟⎠ ,

⎛
⎜⎝1,

⎡
⎢⎣ 1

−1

⎤
⎥⎦
⎞
⎟⎠ ,

⎛
⎜⎝∞,

⎡
⎢⎣1
0

⎤
⎥⎦
⎞
⎟⎠ .

The last eigenpair comes from finding the zero eigenvalue and corresponding eigen-

vector(s) of the coefficient matrix of z2, i.e. finding a vector x ∈ C
2 satisfying

A2x =

⎡
⎢⎣0 0

0 1

⎤
⎥⎦x = 0.

where 0 ∈ C
2 is the zero vector. Moving ahead, let us take a look at what happens

when a contour surrounds the eigenvalues λ = 0 and λ = 1. Call this contour C, and

let it be parameterized by r(t) = γeit + 1/2 with 0 ≤ t < 2π and γ > 1/2. Next, we

do some book-keeping for this problem. For a fixed �μ =

[
μ1 μ2

]T
with each μi in

the interior of C and each μi not an eigenvalue of T , we have
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(T (z)− T (μi))(z − μi)
−1 =

⎛
⎜⎝
⎡
⎢⎣1 z

1 z2

⎤
⎥⎦−

⎡
⎢⎣1 μi

1 μ2
i

⎤
⎥⎦
⎞
⎟⎠ (z − μi)

−1

=

⎛
⎜⎝
⎡
⎢⎣0 z − μi

0 z2 − μ2
i

⎤
⎥⎦
⎞
⎟⎠ (z − μi)

−1

=

⎡
⎢⎣0 1

0 z + μi

⎤
⎥⎦

Next, we have that

T (z)−1 =
1

z(z − 1)

⎡
⎢⎣ z2 −z

−1 1

⎤
⎥⎦

Before proceeding, here is why we do these computations individually for each μi: One

can show that the contour integral method from Gavin and Polizzi’s nonlinear FEAST

paper, when applied to a block of vectors X :=

[
x1 x2 . . . xm

]
∈ C

n×m with

the corresponding eigenvalue approximations Λ := diag(μ1, μ2, . . . , μm) ∈ C
m×m, is

equivalent to applying their contour integral method to each eigenvector individually

as though one applied the contour integral to a single eigenpair, i.e.

∮
C

(X − T (z)−1R(X,Λ))(zI − Λ)−1dz

where R(X,Λ) (or T (X,Λ) in [18]) is the block residual defined by

R(X,Λ) :=
2∑

i=0

AiXΛi,
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is equivalent to

[
S
(μ1)
2 x1 S

(μ2)
2 x2 . . . S

(μm)
2 xm

]
=

[
S
(μ1)
2 S

(μ2)
2 . . . S

(μm)
2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 . . . 0

0 x2 . . . 0

...

0 . . . 0 xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where

S
(μi)
2 :=

∮
C

(T (z)− T (μi))(z − μi)
−1dz, i = 1, 2, . . . ,m

and 0 is the n× 1 zero vector. Fleshing out the details, we have that

S
(�μ)
2 =

∮
C

(X − T (z)−1R(X,Λ))(zI − Λ)−1dz

=

∮
C

T (z)−1(T (z)X −R(X,Λ))(zI − Λ)−1dz

=

∮
C

P (z)−1

(
T (z)X −

2∑
i=0

AiXΛi

)
(zI − Λ)−1dz

Before integration, notice that the jth column of (T (z)X −∑2
i=0 AiXΛi)(zI − Λ)−1

is just

(
T (z)xj −

2∑
i=0

μi
jAixj

)
(z − μj)

−1 = (T (z)xj − T (μj)xj) (z − μj)
−1

= [(T (z)− T (μj))(z − μj)
−1]xj,
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hence the jth column of S
(�μ)
2 is just

∮
C

T (z)−1(T (z)xj − T (μj)xj)(z − μj)
−1dz = S

(μj)
2 xj.

Proceeding forward, we have that

T (z)−1(T (z)− T (μi))(z − μi)
−1 =

1

z(z − 1)

⎡
⎢⎣ z2 −z

−1 1

⎤
⎥⎦
⎡
⎢⎣0 1

0 z + μi

⎤
⎥⎦

=
1

z(z − 1)

⎡
⎢⎣0 −zμi

0 z + μi − 1

⎤
⎥⎦

=

⎡
⎢⎣0 −μi/(z − 1)

0 1/z + μi/(z
2 − z)

⎤
⎥⎦

A brief partial fraction decomposition yields

1

z2 − z
= −1

z
+

1

z − 1

and hence

1

z
+

μi

z2 − z
=

1

z
− μi

z
+

μi

z − 1
=

1− μi

z
+

μi

z − 1
,

and so
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T (z)−1(T (z)− T (μi))(z − μi)
−1 =

⎡
⎢⎣0 −μi/(z − 1)

0 (1− μi)/z + μi/(z − 1)

⎤
⎥⎦ .

Then

S
(μi)
2 =

∮
C

⎡
⎢⎣0 −μi/(z − 1)

0 (1− μi)/z + μi/(z − 1)

⎤
⎥⎦ dz, i = 1, 2.

The entry-by-entry computations can be done using Cauchy’s integral formula. Since

C surrounds both eigenvalues 0 and 1, and since the matrix entries have either (or

both) eigenvalue(s) as a simple pole, we can split C into two smaller, simple, closed

countours that just surround each eigenvalue, call them C0 and C1. Hence,

S
(μi)
2 =

∮
C0

⎡
⎢⎣0 −μi/(z − 1)

0 (1− μi)/z + μi/(z − 1)

⎤
⎥⎦ dz +

∮
C1

⎡
⎢⎣0 −μi/(z − 1)

0 (1− μi)/z + μi/(z − 1)

⎤
⎥⎦ dz.

This results in the following:

S
(μi)
2 =

⎡
⎢⎣0 0

0 1− μi

⎤
⎥⎦+

⎡
⎢⎣0 −μi

0 μi

⎤
⎥⎦ =

⎡
⎢⎣0 −μi

0 1

⎤
⎥⎦

Bringing everything together, Gavin and Polizzi’s block analogue of their contour

integral can be written as

S
(�μ)
2 =

⎡
⎢⎣0 −μ1 0 −μ2

0 1 0 1

⎤
⎥⎦ .

This yields one of two possibilities, namely μ1 = μ2 or μ1 �= μ2. Since μ1 and μ2

are taken to be arbitrary approximations to the corresponding eigenvalues 0 and 1,

what if they end up being same (i.e. μi = μ ∈ C for i = 1, 2)? In that case, we
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would have that the range of S
(�μ)
2 would then be one-dimensional (namely, the span

of

[
−μ 1

]T
), even though the desired eigenspace is two-dimensional. The rationale

behind this scenario is that numerically computing the desired eigenspace might be

challenging if the eigenvalues are approximated badly enough.

Now suppose that μ1 �= μ2, a more likely scenario given that computations are done

in finite-precision arithmetic. Our goal is to see if we can find vectors x1,x2 in

E = span

⎛
⎜⎝
⎧⎪⎨
⎪⎩
⎡
⎢⎣0
1

⎤
⎥⎦ ,

⎡
⎢⎣ 1

−1

⎤
⎥⎦
⎫⎪⎬
⎪⎭
⎞
⎟⎠ = R

2

such that applying S
(�μ)
2 only lands us in a proper subspace of E. The idea is that,

analogous to linear FEAST, we should be able to give S
(�μ)
2 two linearly independent

vectors, for which the application of S
(�μ)
2 should yield a set of vectors whose span

is E. Indeed, we will go one step further and provide S
(�μ)
2 two linearly independent

vectors in E. In this case, we will choose x1 :=

[
1 0

]T
, x2 :=

[
0 1

]T
, and we let

Y =

⎡
⎢⎣x1 0

0 x2

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 0

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then

S
(�μ)
2 Y =

⎡
⎢⎣0 −μ2

0 1

⎤
⎥⎦ ,

which clearly has a one-dimensional column span, regardless of the value of μ2. A

similar choice of Y , namely
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Y =

⎡
⎢⎣x2 0

0 x1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

0 1

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

shows that

S
(�μ)
2 Y =

⎡
⎢⎣−μ1 0

1 0

⎤
⎥⎦ .

Before we wrap up, we address what happens if we only seek a single eigenpair. By

reusing the details from earlier, we redefine S
(μi)
2 for i = 1, 2 as

S
(μi)
2 =

∮
Ci

⎡
⎢⎣0 −μi/(z − 1)

0 (1− μi)/z + μi/(z − 1)

⎤
⎥⎦ dz, i = 1, 2.

where Ci, i = 0, 1 are simpled, closed contours surrounding the eigenvalues 0 and 1,

respectively, and μi, i = 1, 2 are the respective eigenvalue approximations to 0 and 1.

Then

S
(μ1)
2 =

⎡
⎢⎣0 0

0 1− μ1

⎤
⎥⎦ , S

(μ2)
2 =

⎡
⎢⎣0 −μ2

0 μ2

⎤
⎥⎦ .

While computing individual eigenpairs does not seem to pose an issue in this case,

the idea appears to break down when computing a cluster of eigenpairs. Whether

or not this is related to the eigenspance λ = ∞ being contained in the eigenspace

corresponding to λ = 0, 1 remains to be determined.

122



5.7 Leaky Modes of Optical Fibers

Our application of interest is computing leaky modes of optical fibers. To recall, our

motivation is to find solutions u and propagation constants β ∈ C satisfying (1.1)

with an index of refraction given by (1.2). We will explore the results of these com-

putations for step-index fibers and then for microstructure fibers.

To this end, we are interested in computing leaky modes (also known as resonances

or quasi-normal modes) [25,43,46] which are outgoing solutions that together with a

corresponding propagation constant β satisfy (1.1). Such solutions should satisfy our

motivating problem on all of R2. To make this problem computationally tractable,

we need to solve on a bounded domain, and the circular cross-section of an optical

fiber serves as an ideal candidate.

Since leaky modes can grow arbitrarily large in magnitude as we move further out

from the center of our computational domain, we will use a PML to force exponen-

tial decay of our solutions, doing so in a way that treats the PML as arising from

a complex coordinate transformation [9, 46]. In Chapter 1, we detail the nondimen-

sionalization of problem (1.1) in Section 1.2.2, so we move forward now with the

application of a PML to our problem of interest.

5.7.1 Discretization Based on PML

To make our problem of interest computationally tractable, we need to ensure that

we truncate the original domain (namely R
2) to one of finite size. To help facilitate

this, we need to first transform our problem from one that has solutions growing ar-

bitrarily large in magnitude to one whose solutions decay exponentially. In practice,
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this will allow us to truncate the domain of the problem to a finite size. At this

point, we can apply either Dirichlet or Neumann boundary conditions, and we will

choose the latter approach. This allows one to compute a solution numerically, and

recompute by growing the size of the PML region if the initial computed solution has

not decayed sufficiently in the PML [27].

To begin, we first need to define the transformation needed to create the PML for

our problem. To this end, define x̃ by

x̃ :=
η(r̂)

r̂
x̂, (5.32)

where x̂ is defined by r̂ = ||x̂|| for || · || the vector 2-norm. Furthermore, we have

η(r̂) :=

⎧⎪⎪⎨
⎪⎪⎩
r̂, r̂ ≤ R̂

1 + αi

Z
(r̂ − R̂) + R̂, r̂ > R̂

(5.33)

where α > 0 is the strength of the decay in the PML, Z is defined as in Equation

(1.18a), and where R̂ = R/L is fixed and satisfies R̂ > R̂0. Note that for r̂ < R̂, we

have that x̃ = x̂, and so the problem on the interior domain Ωint := {x̂ ∈ R
2 : ||x̂|| ≤

R̂} remains the same. Thus, we are choosing the PML to begin some fixed distance R̂

into the outer region of our domain where the index of refraction is a fixed constant.

5.7.2 Problem Formulation

Next, we need to revisit the PDE in which we are interested in solving, and convert it

to weak form. To begin, we let V = H1(Ω) be the Sobolev space of square integrable
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functions whose first weak derivatives are also square integrable. Here, we take Ω to be

the bounded computational domain Ω := {x̂ ∈ R
2 : ||x̂|| < R̂fin}, where R̂fin > R̂ is

fixed. As an approximation to the problem we seek to solve on the unbounded domain

R
2, we seek to find an outgoing solution û and corresponding Z ∈ C satisfying

−Δû+ V û = Z2û, x̂ ∈ Ω, (5.34)

where we recall that Z is defined in equation (1.18a). Upon assuming zero Neumann

boundary conditions, multiplying through by a test fuction v ∈ V , and integrating

by parts, we obtain the weak formulation of our same problem: Find a û ∈ V and

Z ∈ C satisfying

∫
Ω

∇̂û · ∇̂v̂dx̂+

∫
Ω

V ûv̂dx̂ = Z2

∫
Ω

ûv̂dx̂ ∀v ∈ V , (5.35)

where ∇̂ := (∂/∂x̂1, ∂/∂x̂2)
T . To transform this problem using PML, let ũ := û ◦ x̃

and define Ωpml := Ω \ Ω̄int. Next, we compute gradient ∇̂ũ in terms of the Jacobian

of the coordinate transformation x̃. To begin, note that in the region Ωint, x̃ = x̂,

and hence

∂x̃i

∂x̂j

= δij,

where δij is the kronecker delta. The reinforces the notion that the problem in Ωint

remains unchanged, and hence ũ = û in this region. In the PML region, however, we

have by the chain rule that ∇̂ũ := ∇̂(û ◦ x̃) can be written componentwise as
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∂ũ

∂x̂1

=
∂ũ

∂x̃1

∂x̃1

∂x̂1

+
∂ũ

∂x̃2

∂x̃2

∂x̂1

∂ũ

∂x̂2

=
∂ũ

∂x̃1

∂x̃1

∂x̂2

+
∂ũ

∂x̃2

∂x̃2

∂x̂2

,

And so it follows that ∇̂ũ = JT ∇̂û. Thus, we can restate the weak formulation of

the PDE as finding a ũ ∈ V and a Z ∈ C satisfying

∫
Ω

∇̂J−T ũ · J−T ∇̂v det(J)dx̂+

∫
Ω

V ũv det(J)dx̂ = Z2

∫
Ω

ũv det(J)dx̂ (5.36)

for all v ∈ V , and where J−T := [J−1]T . In the first integral, we can make the order

of operations clearer by rewriting the dot product of the gradients as

J−T ∇̂ũ · J−T ∇̂v = ∇̂vTJ−1J−T ∇̂ũ = (J−1J−T ∇̂ũ) · ∇̂v

We can then absorb the factor det(J) into the term J−1J−T to obtain

∫
Ω

a(x̂)∇̂ũ · ∇̂vdx̂+

∫
Ω

V ũv det(J)dx̂ = Z2

∫
Ω

ũv det(J)dx̂ (5.37)

where a(x̂) := det(J)J−1J−T . To make matters convenient, define the bilinear forms

a : V × V → C and b : V × V → C by

a(u, v) =

∫
Ω

a(x̂)∇̂u · ∇̂vdx̂+

∫
Ω

V uv det(J)dx̂ (5.38a)
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b(u, v) =

∫
Ω

uv det(J)dx̂ (5.38b)

for u, v ∈ V . We further split the bilinear forms a and b into forms on the interior

subdomain Ωint and PML subdomain Ωpml. In this case, we define the bilinear forms

corresponding to Ωint for u, v ∈ V by

aint(u, v) =

∫
Ωint

∇̂u · ∇̂vdx̂+

∫
Ωint

V uvdx̂ (5.39a)

bint(u, v) =

∫
Ωint

uvdx̂ (5.39b)

and the bilinear forms corresponding to Ωpml for u, v ∈ V by

apml(u, v) =

∫
Ωpml

a(x̂)∇̂u · ∇̂vdx̂+

∫
Ωpml

V uv det(J)dx̂ (5.40a)

bpml(u, v) =

∫
Ωpml

uv det(J)dx̂ (5.40b)

Explicit Computation of the Jacobian

Our next step is to compute an expression for the Jacobian J . To begin, we need a

few shorthand notations for convenience. Define η̇ by

η̇ :=
∂η

∂r̂
=

∂

∂r̂

[
1 + αi

Z
(r̂ − R̂) + R̂

]
=

1 + αi

Z
.

In addition, we have that
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∂r̂

∂x̂i

=
∂

∂x̂i

(√
x̂2
1 + x̂2

2

)
=

x̂i√
x̂2
1 + x̂2

2

=
x̂i

r̂

for i = 1, 2. Then for i, j = 1, 2, we have

∂

∂x̂j

(
η(r̂)

r̂
xi

)
=

η(r̂)

r̂
δij +

∂

∂xj

(
η(r̂)

r̂

)
xi

=
η(r̂)

r̂
δij +

∂η/∂x̂j · r̂ − η · ∂r̂/∂x̂j

r̂2
x̂i

=
η(r̂)

r̂
δij +

η̇ · x̂j/r̂ · r̂ − η · ∂x̂j/r̂

r̂2
x̂i

=
η(r̂)

r̂
δij +

η̇r̂ − η

r̂3
x̂ix̂j.

In terms of matrices and vectors, we can write this expression as

J = aI + bx̂x̂T , (5.41)

where I ∈ R
2×2 is the identity matrix, a = η(r̂)/r̂ and b = (η̇r̂−η)/r̂3; for convenience,

we have temporarily reused the symbols a and b to simplify computations related to

the Jacobian J . If we wish to reference the matrix in the first integrand of (5.37),

we will explicitly state it as a(x̂). Similarly, we will explicitly state the bilinear form

a (respectively b) in reference to (5.38). Next, we compute the determinant of the

Jacobian J :
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det(J) =

∣∣∣∣∣∣∣
a+ bx̂2

1 bx̂1x̂2

bx̂1x̂2 a+ bx̂2
2

∣∣∣∣∣∣∣

= (a+ bx̂2
1)(a+ bx̂2

2)− b2x̂2
1x̂

2
2

= a2 + ab(x̂2
1 + x̂2

2)b
2x̂2

1x̂
2
2 − b2x̂2

1x̂
2
2

= a2 + abr̂2

=
η2

r̂2
+

η(η̇r̂ − η)

r̂4
r̂2

=
η2

r̂2
+

η̇ηr̂ − η2

r̂2

=
η̇η

r̂
.

This will be a useful simplification moving forward.

Inverting the Jacobian

For the inverse of the Jacobian J = aI + bx̂x̂T , we will defer to the well-known

Sherwood-Morrison-Woodbury formula [33] for the inverse of a sum of an invertible

matrix A ∈ C
2×2 and a rank one update uvT for u, v ∈ C

2:

(A+ uvT )−1 = A−1

(
I − 1

1 + vTA−1u
uvTA−1

)
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In our case, we have that A := aI, u := bx̂, and v = x̂. Then we have that

(aI + bx̂x̂T )−1 = a−1I

(
I − 1

1 + (b/a)x̂T Ix̂
(b/a)x̂x̂T

)

= a−1

(
I − b/a

1 + (b/a)r̂2
x̂x̂T

)

= a−1I − b

a2 + abr̂2
x̂x̂T

= a−1I −
(

b

η̇η/r̂

)
x̂x̂T

=
r̂

η
I −

(
η̇r̂ − η

r̂2η̇η

)
x̂x̂T .

Specially chosen Test Functions

To solve this eigenproblem, we use test functions of the form [46]

ṽ(x̂) =

⎧⎪⎪⎨
⎪⎪⎩
v(x̂), x̂ ∈ Ωint

η(r̂)

R̂
v(x̂), x̂ ∈ Ωpml

(5.42)

For our specially chosen test function ṽ, we have that
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∂ṽ

∂x̂i

=
∂

∂x̂i

(
η(r̂)

R̂
v

)

=
∂

∂x̂i

(
η(r̂)

R̂

)
v +

η(r̂)

R̂

∂v

∂x̂i

= η̇
x̂i

r̂R̂
v +

η(r̂)

R̂

∂v

∂x̂i

for i = 1, 2, and hence

∇̂ṽ =
η̇v

r̂R̂
x̂+

η(r̂)

R̂
∇̂v. (5.43)

5.7.3 Simplification of the Weak Formulation in Ωpml

Next, we focus on simplifying the integrals needed to convert (5.37) into the polyno-

mial eigenproblem we seek to solve. For ease of computation, we compute a(x̂)∇̂ũ·∇̂ṽ,

starting with J−T ∇̂ũ. Then

J−T ∇̂ũ =

(
r̂

η
I − η̇r̂ − η

r̂2η̇η
x̂x̂T

)
∇̂ũ

=

(
r̂

η
∇̂ũ

)
−
(
η̇r̂ − η

r̂2η̇η

)
(∇̂ũ · x̂)x̂ (5.44)

and
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det(J)J−1 =
η̇η

r̂

((
r̂

η

)
I −

(
η̇r̂ − η

r̂2η̇η

)
x̂x̂T

)

= η̇I −
(
η̇r̂ − η

r̂3

)
x̂x̂T . (5.45)

Using (5.44) and (5.45), we have

det(J)J−1J−1∇̂ũ =
η̇r̂

η
∇̂ũ−

(
2η̇r̂ − 2η

r̂2η

)
(∇̂ũ · x̂)x̂+

(
(η̇r̂ − η)2

r̂5η̇η

)
r̂2(∇̂ũ · x̂)x̂

=
η̇r̂

η
∇̂ũ−

(
2η̇r̂ − 2η

r̂2η

)
(∇̂ũ · x̂)x̂+

(
(η̇r̂ − η)2

r̂3η̇η

)
(∇̂ũ · x̂)x̂

=
η̇r̂

η
∇̂ũ+

[
−2η̇r̂ − 2η

r̂2η
+

(η̇r̂ − η)2

r̂3η̇η

]
(∇̂ũ · x̂)x̂

=
η̇r̂

η
∇̂ũ+

[−2η̇r̂ + 2η

r̂2η
+

η̇2r̂2 − 2η̇ηr̂ + η2

r̂3η̇η

]
(∇̂ũ · x̂)x̂

=
η̇r̂

η
∇̂ũ+

[−2η̇2r̂2 + 2ηη̇r̂

r̂3η̇η
+

η̇2r̂2 − 2η̇ηr̂ + η2

r̂3η̇η

]
(∇̂ũ · x̂)x̂

=
η̇r̂

η
∇̂ũ+

(
η2 − η̇2r̂2

r̂3η̇η

)
(∇̂ũ · x̂)x̂. (5.46)

Next, we complete the work for computing the first integrand by computing the dot

product with the gradient of a specially chosen test function (5.42). Using (5.43) and
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(5.46), we have

det(J)J−1J−1∇̂ũ · ∇̂ṽ =

(
η̇r̂

η
∇̂ũ+

(
η2 − η̇2r̂2

r̂3η̇η

)
(∇̂ũ · x̂)x̂

)(
η̇v

r̂R̂
x̂+

η

R̂
∇̂v

)

=
η̇2

ηR̂
(∇̂ũ · x̂)v + η̇r̂

R̂
∇̂ũ · ∇̂v +

(
η2 − η̇2r̂2

ηr̂4R̂

)
(∇̂ũ · x̂)r̂2v

+

(
η2 − η̇2r̂2

η̇r̂3R̂

)
(∇̂ũ · x̂)(∇̂v · x̂)

=
η̇2

ηR̂
(∇̂ũ · x̂)v + η̇r̂

R̂
∇̂ũ · ∇̂v +

(
η2 − η̇2r̂2

ηr̂2R̂

)
(∇̂ũ · x̂)v

+

(
η2 − η̇2r̂2

η̇r̂3R̂

)
(∇̂ũ · x̂)(∇̂v · x̂)

=
η̇2r̂2

ηr̂2R̂
(∇̂ũ · x̂)v + η̇r̂

R̂
∇̂ũ · ∇̂v +

(
η2 − η̇2r̂2

ηr̂2R̂

)
(∇̂ũ · x̂)v

+

(
η2 − η̇2r̂2

η̇r̂3R̂

)
(∇̂ũ · x̂)(∇̂v · x̂)

=
η̇r̂

R̂
∇̂ũ · ∇̂v +

(
η2 − η̇2r̂2

η̇r̂3R̂

)
(∇̂ũ · x̂)(∇̂v · x̂)

+
η2

ηr̂2R̂
(∇̂ũ · x̂)v

=
η̇r̂

R̂
∇̂ũ · ∇̂v +

1

R̂

(
η2

η̇r̂3
− η̇

r̂

)
(∇̂ũ · x̂)(∇̂v · x̂)

+
η

r̂2R̂
(∇̂ũ · x̂)v (5.47)

This is the precise expression for the first integrand in the PML region Ωpml as stated
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in [27]. Next, we turn our attention to the integral involving the function V =

V (x̂1, x̂2). With the use of our specially chosen test functions ṽ ∈ V , we have that

∫
Ω

V ũṽ det(J)dx̂ =

∫
Ωint

V ũv · 1dx̂+

∫
Ωpml

0 · ũṽ det(J)dx̂

=

∫
Ωint

V ũvdx̂

This term does not involve any factor of η or η̇, and hence will be associated with

other integrals involving the term Z0. The right-hand side integral corresponding to

the bilinear form b (and using the specially chosen test functions ṽ) can be written as

∫
Ω

ũṽ det(J)dx̂ =

∫
Ωint

ũṽ det(J)dx̂+

∫
Ωpml

ũṽ det(J)dx̂

=

∫
Ωint

ũvdx̂+

∫
Ωpml

ũv
η

R̂

η̇η

r̂
dx̂

=

∫
Ωint

ũvdx̂+

∫
Ωpml

ũv
η̇η2

r̂R̂
dx̂ (5.48)

Our next step is to now expand powers of η and pull out factors of η̇ = (1 + αi)/Z,

as factors and powers of η̇ will correspond to powers of the eigenvalues Z we wish to

compute. We begin with the second integral in (5.48).

134



∫
Ωpml

ũv
η̇η2

r̂R̂
dx̂ =

∫
Ωpml

ũv
η̇[η̇(r̂ − R̂) + R̂]2

r̂R̂
dx̂

=

∫
Ωpml

ũv
η̇[η̇2(r̂ − R̂)2 + 2η̇R̂(r̂ − R̂) + R̂2]

r̂R̂
dx̂

=

∫
Ωpml

ũv
η̇3(r̂ − R̂)2

r̂R̂
dx̂+

∫
Ωpml

ũv
2η̇2R̂(r̂ − R̂)

r̂R̂
dx̂+

∫
Ωpml

ũv
η̇R̂2

r̂R̂
dx̂

=

∫
Ωpml

ũv
η̇3(r̂ − R̂)2

r̂R̂
dx̂+

∫
Ωpml

ũv
2η̇2(r̂ − R̂)

r̂
dx̂+

∫
Ωpml

ũv
η̇R̂

r̂
dx̂

(5.49)

Now recall that the first integral over Ωint in (5.48) and the three integrals in (5.49)

are multiplied by a power of Z2. Then it follows that these integrals can be written

as

Z2

∫
Ωint

ũvdx̂ (5.50a)

Z2η̇3
∫
Ωpml

ũv
(r̂ − R̂)2

r̂R̂
dx̂ = Z−1(1 + αi)3

∫
Ωpml

ũv
(r̂ − R̂)2

r̂R̂
dx̂ (5.50b)

2Z2η̇2
∫
Ωpml

ũv
(r̂ − R̂)

r̂
dx̂ = 2(1 + αi)2

∫
Ωpml

ũv
(r̂ − R̂)

r̂
dx̂ (5.50c)

Z2η̇R̂

∫
Ωpml

ũv
1

r̂
dx̂ = ZR̂(1 + αi)

∫
Ωpml

ũv
1

r̂
dx̂ (5.50d)

Next, we revisit the integrand (5.47) in order to collect like powers of η̇ and expand

out powers of η. To begin, we have that
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∫
Ωpml

η̇r̂

R̂
∇̂ũ · ∇̂vdx̂ =

η̇

R̂

∫
Ωpml

r̂∇̂ũ · ∇̂vdx̂

= Z−1 (1 + αi)

R̂

∫
Ωpml

r̂∇̂ũ · ∇̂vdx̂. (5.51)

To tackle the second integrand, we expand out the term adjacent to the product

(∇̂ũ · x̂)(∇̂v · x̂) and group like powers of η̇.

1

R̂

(
η2

η̇r̂3
− η̇

r̂

)
=

1

R̂

(
[η̇(r̂ − R̂) + R̂]2

η̇r̂3
− η̇

r̂

)

=
1

R̂

(
[η̇2(r̂ − R̂)2 + 2η̇R̂(r̂ − R̂) + R̂2]

η̇r̂3
− η̇

r̂

)

=
1

R̂

(
η̇2(r̂ − R̂)2

η̇r̂3
+

2η̇R̂(r̂ − R̂)

η̇r̂3
+

R̂2

η̇r̂3
− η̇

r̂

)

=
1

R̂

(
η̇(r̂ − R̂)2

r̂3
− η̇

r̂

)
+

2(r̂ − R̂)

r̂3
+

R̂

η̇r̂3

=
η̇

R̂

(
(r̂ − R̂)2

r̂3
− 1

r̂

)
+

2(r̂ − R̂)

r̂3
+

R̂

η̇r̂3
(5.52)

The corresponding integrals written in terms of powers of Z, are
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Z−1(1 + αi)

∫
Ωpml

1

R̂

(
(r̂ − R̂)2

r̂3
− 1

r̂

)
(∇̂ũ · x̂)(∇̂v · x̂)dx̂ (5.53a)

Z0

∫
Ωpml

2(r̂ − R̂)

r̂3
(∇̂ũ · x̂)(∇̂v · x̂)dx̂ (5.53b)

Z
R̂

1 + αi

∫
Ωpml

1

r̂3
(∇̂ũ · x̂)(∇̂v · x̂)dx̂ (5.53c)

The last term of (5.47) can be written as

η

r̂2R̂
(∇̂ũ · x̂)v = η̇

r̂ − R̂

r̂2R̂
(∇̂ũ · x̂)v + R̂

r̂2R̂
(∇̂ũ · x̂)v,

and so the corresponding integrals are

Z−1(1 + αi)

∫
Ωpml

r̂ − R̂

r̂2R̂
(∇̂ũ · x̂)vdx̂ (5.54a)∫

Ωpml

1

r̂2
(∇̂ũ · x̂)vdx̂ (5.54b)

Next, we take the results of (5.50), (5.52), (5.53), and (5.54) to define the following

bilinear forms for w, v ∈ V .

b0(w, v) = (1 + αi)

∫
Ωpml

r̂

R̂
∇̂w · ∇̂v +

1

R̂

(
(r̂ − R̂)2

r̂3
− 1

r̂

)
(∇̂w · x̂)(∇̂v · x̂)dx̂

+ (1 + αi)

∫
Ωpml

r̂ − R̂

r̂2R̂
(∇̂w · x̂)vdx̂− (1 + αi)3

∫
Ωpml

wv
(r̂ − R̂)2

r̂R̂
dx̂ (5.55a)

b1(w, v) =

∫
Ωint

∇̂w · ∇̂v + V wvdx̂

+

∫
Ωpml

2(r̂ − R̂)

r̂3
(∇̂w · x̂)(∇̂v · x̂) + 1

r̂2
(∇̂w · x̂)vdx̂
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− 2(1 + αi)2
∫
Ωpml

wv
(r̂ − R̂)

r̂
dx̂ (5.55b)

b2(w, v) =
R̂

1 + αi

∫
Ωpml

1

r̂3
(∇̂w · x̂)(∇̂v · x̂)dx̂− R̂(1 + αi)

∫
Ωpml

wv
1

r̂
dx̂ (5.55c)

b3(w, v) = −
∫
Ωint

wvdx̂ (5.55d)

The nonlinear eigenvalue problem can be stated as follows: Find a ũ ∈ V and Z ∈ C

such that for all v ∈ V ,

3∑
i=0

Zi−1bi(ũ, v) = 0. (5.56)

Note that we have technically derived a rational eigenproblem with a pole at Z = 0

[32, 61]. Since we are not concerned with Z = 0 as an eigenvalue, we multiply (5.56)

through by Z and obtain

3∑
i=0

Zibi(ũ, v) = 0. (5.57)

To discretize this problem, let Th be a geometrically conforming triangular mesh of

Ω where h > 0 is the mesh size. For a polynomial degree p > 0, let Whp denote the

lagrange finite element space

Whp = {v ∈ V : v|K ∈ Pp ∀K ∈ Th} (5.58)

where Pp is the space of polynomials in the variables x̂1, x̂2 of degree at most p. In

this finite-dimensional setting, we seek to find a ũhp ∈ Whp satisfying
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3∑
i=0

Zibi(ũhp, v) = 0 ∀v ∈ Whp. (5.59)

Denote the basis of Whp by {φj}nj=1, and define the matrices Ai, i = 0, 1, 2, 3 by

[Ai]kl = bi(φl, φk).

letting v = φk for k = 1, 2, . . . , n and substituting the representation of uhp in the

basis of Whp, we obtain

3∑
i=0

Zibi(ũhp, v) =
3∑

i=0

Zibi

(
n∑

j=1

cjφj, φk

)
(5.60)

=
3∑

i=0

Zi

n∑
j=1

bi(φj, φk)cj

=
3∑

i=0

Zi

n∑
j=1

Akjcj

(5.61)

for each k = 1, 2, . . . , n. More concisely, we can state this problem as finding a c ∈ C
n

and Z ∈ C satisfying

P (Z)c = 0 (5.62)

where P (Z) = A0 + ZA1 + Z2A2 + Z3A3.

139



5.7.4 A Complex-Symmetric Weak Formulation

To go one step further, we can derive a cubic eigenproblem that is complex-symmetric

by letting

ũ =

(
η(r̂)

R̂

)1/2

ŭ, v =

(
η(r̂)

R̂

)1/2

v̆.

in Ωpml, with ũ = ŭ and v = v̆ in Ωint. Consequently, we need to compute some quan-

tities involving gradients, dot products, and products of functions in other integrals.

To this end, we begin by computing the gradients of ũ and v:

∇̂ũ = ∇̂
(
η

R̂

)1/2

ŭ+

(
η

R̂

)1/2

∇̂ŭ

=
1

2

(
η

R̂

)−1/2
η̇

r̂R̂
x̂ŭ+

(
η

R̂

)1/2

∇̂ŭ

=

(
η

R̂

)−1/2
η̇ŭ

2r̂R̂
x̂+

(
η

R̂

)1/2

∇̂ŭ (5.63a)

Similarly, we have that

∇̂v =

(
η

R̂

)−1/2
η̇v̆

2r̂R̂
x̂+

(
η

R̂

)1/2

∇̂v̆ (5.63b)

Next, we compute the quantities J−T ∇̂ũ, as the computations for J−T ∇̂v are similar.

Thus, we have
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J−T ∇̂ũ =

(
r̂

η
I − η̇r̂ − η

r̂2η̇η
x̂x̂T

)((
η

R̂

)−1/2
η̇ŭ

2r̂R̂
x̂+

(
η

R̂

)1/2

∇̂ŭ

)

=
r̂

η

(
η

R̂

)−1/2(
η̇ŭ

2r̂R̂

)
x̂+

r̂

η

(
η

R̂

)1/2

∇̂ŭ

−
(
η̇r̂ − η

r̂2η̇η

)(
η

R̂

)−1/2(
η̇ŭ

2r̂R̂

)
r̂2x̂−

(
η̇r̂ − η

r̂2η̇η

)(
η

R̂

)1/2

(∇̂ŭ · x̂)x̂

=
r̂

η

(
η

R̂

)−1/2(
η̇ŭ

2r̂R̂

)
x̂+

r̂

η

(
η

R̂

)1/2

∇̂ŭ

−
(
η̇r̂ − η

η̇η

)(
η

R̂

)−1/2(
η̇ŭ

2r̂R̂

)
x̂−

(
η̇r̂ − η

r̂2η̇η

)(
η

R̂

)1/2

(∇̂ŭ · x̂)x̂

=
r̂

η

(
η

R̂

)−1/2(
η̇ŭ

2r̂R̂

)
x̂−

(
η̇r̂ − η

η̇η

)(
η

R̂

)−1/2(
η̇ŭ

2r̂R̂

)
x̂

+
r̂

η

(
η

R̂

)1/2

∇̂ŭ−
(
η̇r̂ − η

r̂2η̇η

)(
η

R̂

)1/2

(∇̂ŭ · x̂)x̂

=

(
η

R̂

)−1/2(
η̇ŭ

2r̂R̂

)[
η̇r̂

η̇η
−
(
η̇r̂ − η

η̇η

)]
x̂

+

(
η

R̂

)1/2 [
r̂

η
∇̂ŭ−

(
η̇r̂ − η

r̂2η̇η

)
(∇̂ŭ · x̂)x̂

]

=

(
η

R̂

)−1/2(
η̇ŭ

2r̂R̂

)[
η

η̇η

]
x̂

+

(
η

R̂

)1/2 [
r̂

η
∇̂ŭ−

(
η̇r̂ − η

r̂2η̇η

)
(∇̂ŭ · x̂)x̂

]
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=

(
η

R̂

)−1/2(
ŭ

2r̂R̂

)
x̂+

(
η

R̂

)1/2 [
r̂

η
∇̂ŭ−

(
η̇r̂ − η

r̂2η̇η

)
(∇̂ŭ · x̂)x̂

]
(5.64a)

Likewise, J−T ∇̂v is given by

J−T ∇̂v =

(
η

R̂

)−1/2(
v̆

2r̂R̂

)
x̂+

(
η

R̂

)1/2 [
r̂

η
∇̂v̆ −

(
η̇r̂ − η

r̂2η̇η

)
(∇̂v̆ · x̂)x̂

]
. (5.64b)

We compute the product J−T ∇̂ũ · J−T ∇̂v term-by-term. Then

(
η

R̂

)−1/2(
ŭ

2r̂R̂

)
x̂ ·
(
η

R̂

)−1/2(
v̆

2r̂R̂

)
x̂ =

(
η

R̂

)−1(
ŭv̆

4r̂2R̂2

)
x̂ · x̂

=

(
η

R̂

)−1(
ŭv̆

4r̂2R̂2

)
r̂2

=
ŭv̆

4ηR̂
(5.65a)

Next, we dot the first term of (5.64a) with the second term of (5.64b) to obtain

(
ŭ

2r̂R̂

)
x̂ ·
[
r̂

η
∇̂v̆ −

(
η̇r̂ − η

r̂2η̇η

)
(∇̂v̆ · x̂)x̂

]
=

(∇̂v̆ · x̂)ŭ
2ηR̂

−
(

η̇r̂ − η

2r̂3R̂η̇η

)
(∇̂v̆ · x̂)ŭr̂2

=
(∇̂v̆ · x̂)ŭ

2ηR̂
−
(
η̇r̂ − η

2r̂R̂η̇η

)
(∇̂v̆ · x̂)ŭ

=
(∇̂v̆ · x̂)ŭ

2ηR̂

[
1− η̇r̂ − η

η̇r̂

]
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=
(∇̂v̆ · x̂)ŭ

2ηR̂

[
η

η̇r̂

]

=
(∇̂v̆ · x̂)ŭ
2η̇r̂R̂

(5.65b)

Likewise, we dot the second term of (5.64a) with the first term of (5.64b) to obtain

(
v̆

2r̂R̂

)
x̂ ·
[
r̂

η
∇̂ŭ−

(
η̇r̂ − η

r̂2η̇η

)
(∇̂ŭ · x̂)x̂

]
=

(∇̂ŭ · x̂)v̆
2η̇r̂R̂

(5.65c)

Finally, we dot the second term of (5.64a) with the second term of (5.64b) to obtain

η

R̂

[
r̂

η
∇̂ŭ−

(
η̇r̂ − η

r̂2η̇η

)
(∇̂ŭ · x̂)x̂

]
·
[
r̂

η
∇̂v̆ −

(
η̇r̂ − η

r̂2η̇η

)
(∇̂v̆ · x̂)x̂

]
(5.65d)

Computing this dot product term-by-term yields

η

R̂

(
r̂

η
∇̂ŭ

)
·
(
r̂

η
∇̂v̆

)
=

r̂2

R̂η
(∇̂ŭ · ∇̂v̆) (5.66a)

− η

R̂

(
r̂

η
∇̂ŭ

)
·
((

η̇r̂ − η

r̂2η̇η

)
(∇̂v̆ · x̂)x̂

)
= −

(
η̇r̂ − η

r̂R̂η̇η

)
(∇̂ŭ · x̂)(∇̂v̆ · x̂) (5.66b)

− η

R̂

(
r̂

η
∇̂v̆

)
·
((

η̇r̂ − η

r̂2η̇η

)
(∇̂ŭ · x̂)x̂

)
= −

(
η̇r̂ − η

r̂R̂η̇η

)
(∇̂ŭ · x̂)(∇̂v̆ · x̂) (5.66c)
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η

R̂

(
η̇r̂ − η

r̂2η̇η

)2

(∇̂ŭ · x̂)(∇̂ŭ · x̂)x̂ · x̂ =
η

R̂

(
(η̇r̂ − η)2

r̂4η̇2η2

)
r̂2(∇̂ŭ · x̂)(∇̂v̆ · x̂)

=

(
η̇2r̂2 − 2η̇ηr̂ + η2

r̂2R̂η̇2η

)
(∇̂ŭ · x̂)(∇̂v̆ · x̂)

(5.66d)

Combining the coefficients of (∇̂ŭ · x̂)(∇̂v̆ · x̂) in (5.66b), (5.66c), and (5.66d) yield

−2
(
η̇r̂ − η

r̂R̂η̇η

)
+

(
η̇2r̂2 − 2η̇ηr̂ + η2

r̂2R̂η̇2η

)
=

2η − 2η̇r̂

r̂R̂η̇η
+

η̇2r̂2 − 2η̇ηr̂ + η2

r̂2R̂η̇2η

=
2η̇ηr̂ − 2η̇2r̂2

r̂2R̂η̇2η
+

η̇2r̂2 − 2η̇ηr̂ + η2

r̂2R̂η̇2η

=
η2 − η̇2r̂2

r̂2R̂η̇2η

Then (5.65d) can be written as

r̂2

R̂η
(∇̂ŭ · ∇̂v̆) +

η2 − η̇2r̂2

r̂2R̂η̇2η
(∇̂ŭ · x̂)(∇̂v̆ · x̂) = r̂2

R̂η
(∇̂ŭ · ∇̂v̆)

+
1

R̂

(
η2

r̂2η̇2η
− η̇2r̂2

r̂2η̇2η

)
(∇̂ŭ · x̂)(∇̂v̆ · x̂)

=
r̂2

R̂η
(∇̂ŭ · ∇̂v̆)
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+
1

R̂

(
η

r̂2η̇2
− 1

η

)
(∇̂ŭ · x̂)(∇̂v̆ · x̂).

(5.67)

Summing all terms of (5.65) and using the results of (5.67) yields

r̂2

R̂η
(∇̂ŭ · ∇̂v̆) +

1

R̂

(
η

r̂2η̇2
− 1

η

)
(∇̂ŭ · x̂)(∇̂v̆ · x̂) + 1

2η̇r̂R̂

(
(∇̂ŭ · x̂)v̆ + (∇̂v̆ · x̂)ŭ

)

+
ŭv̆

4ηR̂
(5.68)

Multiplying (5.69) through by det(J) = η̇η/r̂ and simplifying the second term yields

η̇r̂

R̂
(∇̂ŭ · ∇̂v̆) +

1

r̂2R̂

(
η2

η̇r̂
− η̇r̂

)
(∇̂ŭ · x̂)(∇̂v̆ · x̂) + η

2r̂2R̂

(
(∇̂ŭ · x̂)v̆ + (∇̂v̆ · x̂)ŭ

)

+
η̇

4r̂R̂
ŭv̆ (5.69)

To this end, we just need to tackle the remaining integrals on the left and right-hand-

sides. To this end, we have that

∫
Ω

V ũv det(J)dx̂ =

∫
Ωint

V ũv · 1dx̂+

∫
Ω

0 · ũv det(J)dx̂

=

∫
Ωint

V ŭv̆dx̂. (5.70)

On the right-hand-side, we have
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∫
Ω

ũv det(J)dx̂ =

∫
Ωint

ŭv̆dx̂+

∫
Ωpml

(
η

R̂

)1/2

ŭ

(
η

R̂

)1/2

v̆
η̇η

r̂
dx̂

=

∫
Ωint

ŭv̆dx̂+

∫
Ωpml

(
η

R̂

)
ŭv̆

η̇η

r̂
dx̂

=

∫
Ωint

ŭv̆dx̂+

∫
Ωpml

ŭv̆
η̇η2

r̂R̂
dx̂

=

∫
Ωint

ŭv̆dx̂+

∫
Ωpml

ŭv̆
η̇[η̇(r̂ − R̂) + R̂]2

r̂R̂
dx̂ (5.71)

The last integral in (5.71) can be split into three terms, which we show below.

∫
Ωpml

ŭv̆
η̇[η̇(r̂ − R̂) + R̂]2

r̂R̂
dx̂ =

∫
Ωpml

ŭv̆
η̇[η̇2(r̂ − R̂)2 + 2η̇R̂(r̂ − R̂) + R̂2]

r̂R̂
dx̂

=

∫
Ωpml

ŭv̆
η̇3(r̂ − R̂)2 + 2η̇2R̂(r̂ − R̂) + η̇R̂2

r̂R̂
dx̂ (5.72)

Next, we split (5.72) into three terms to obtain

∫
Ωpml

ŭv̆
η̇3(r̂ − R̂)2

r̂R̂
dx̂ = Z−3 (1 + αi)3

R̂

∫
Ωpml

ŭv̆
(r̂ − R̂)2

r̂
dx̂ (5.73a)

∫
Ωpml

ŭv̆
2η̇2R̂(r̂ − R̂)

r̂R̂
dx̂ = Z−2(1 + αi)2

∫
Ωpml

ŭv̆
2(r̂ − R̂)

r̂
dx̂ (5.73b)
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∫
Ωpml

ŭv̆
η̇R̂2

r̂R̂
dx̂ = Z−1R̂(1 + αi)

∫
Ωpml

ŭv̆
1

r̂
dx̂ (5.73c)

Since all integrals on the right-hand-side have to be multiplied by a power of Z2,

applying this to the first integral of (5.71) and to the integrals in (5.73) yields

Z2

∫
Ωint

ŭv̆dx̂ (5.74a)

Z−1 (1 + αi)3

R̂

∫
Ωpml

ŭv̆
(r̂ − R̂)2

r̂
dx̂ (5.74b)

(1 + αi)2
∫
Ωpml

ŭv̆
2(r̂ − R̂)

r̂
dx̂ (5.74c)

ZR̂(1 + αi)

∫
Ωpml

ŭv̆
1

r̂
dx̂ (5.74d)

Combining the results of (5.69), (5.70), (5.74), we define the following bilinear forms

bi : V × V → C for i = 0, 1, 2, 3 and w, v ∈ V .

b0(w, v) = (1 + αi)

[∫
Ωpml

r̂

R̂
(∇̂ŭ · ∇̂v̆) +

R̂− 2r̂

r̂3
(∇̂ŭ · x̂)(∇̂v̆ · x̂)dx̂

+

∫
Ωpml

(r̂ − R̂)

2r̂2R̂

(
(∇̂ŭ · x̂)v̆ + (∇̂v̆ · x̂)ŭ

)
+

ŭv̆

4r̂R̂
dx̂

]
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− (1 + αi)3

R̂

∫
Ωpml

ŭv̆
(r̂ − R̂)2

r̂
dx̂ (5.75a)

b1(w, v) =

∫
Ωpml

2(r̂ − R̂)

r̂3
(∇̂ŭ · x̂)(∇̂v̆ · x̂)dx̂

+

∫
Ωpml

1

2r̂2

(
(∇̂ŭ · x̂)v̆ + (∇̂v̆ · x̂)ŭ

)
dx̂

+

∫
Ωint

V ŭv̆dx̂− (1 + αi)2
∫
Ωpml

ŭv̆
2(r̂ − R̂)

r̂
dx̂

b2(w, v) =
R̂

1 + αi

∫
Ωpml

1

r̂3
(∇̂ŭ · x̂)(∇̂v̆ · x̂)dx̂− R̂(1 + αi)

∫
Ωpml

ŭv̆
1

r̂
dx̂ (5.75b)

b3(w, v) = −
∫
Ωint

ŭv̆dx̂ (5.75c)

The complex-symmetric nonlinear eigenvalue problem can be stated as follows: Find

a ŭ ∈ V and Z ∈ C such that for all v̆ ∈ V ,

3∑
i=0

Zi−1bi(ŭ, v̆) = 0. (5.76)

As before, we have technically derived a rational eigenproblem with a pole at Z = 0

[32, 61]. Since we are not concerned with Z = 0 as an eigenvalue, we multiply (5.56)

through by Z and obtain

3∑
i=0

Zibi(ŭ, v̆) = 0. (5.77)

Our next step, as before, is to let Th be a geometrically conforming triangular mesh

of Ω where h > 0 is the mesh size. For a polynomial degree p > 0, let Whp denote the

lagrange finite element space as defined in (5.58). In this finite-dimensional setting,

we seek to find a ŭhp ∈ Whp satisfying
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3∑
i=0

Zibi(ŭhp, v̆) = 0 ∀v̆ ∈ Whp. (5.78)

Denote the basis of Whp by {φj}nj=1, and define the matrices Ai, i = 0, 1, 2, 3 by

[Ai]kl = bi(φl, φk).

letting v̆ = φk for k = 1, 2, . . . , n and substituting the representation of ŭhp in the

basis of Whp, we obtain

3∑
i=0

Zibi(ŭhp, v̆) =
3∑

i=0

Zibi

(
n∑

j=1

cjφj, φk

)
(5.79)

=
3∑

i=0

Zi

n∑
j=1

bi(φj, φk)cj

=
3∑

i=0

Zi

n∑
j=1

Akjcj

(5.80)

for each k = 1, 2, . . . , n. More concisely, we can state this problem as finding a c ∈ C
n

and Z ∈ C satisfying

P (Z)c = 0 (5.81)

where P (Z) = A0 + ZA1 + Z2A2 + Z3A3.
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Chapter 6

Applications to Fiber Optics

6.1 Introduction

In this chapter, we provide numerical results to verify the correctness of finding guided

modes using the DPG discretization, as well as verification of the correctness of Algo-

rithm 4 in Chapter 5 with an application to finding leaky modes of an ytterbium-doped

step-index fiber. In addition, we explore the efficacy of our algorithm when applied

to the task of computing confinement losses, including an experiment that shows

our computed confinement losses remain stable upon varying parameters affecting

the PML. This is followed by showing that there is a nontrivial sensitivity to com-

puted confinement losses arising from perturbations in the geometry of a six-capillary

microstructure fiber. We begin with a verification of our polynomial eigensolver in

computing leaky modes and propagation constants for a step index fiber.

6.2 Step-Index Fiber Guided and Leaky Modes

6.2.1 Guided Mode Verification using the DPG Discretization of the Re-

solvent

In this last section, we look at applying the FEAST algorithm using the DPG dis-

cretization to the task of computing guided modes of a large mode area (LMA) fiber.
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Such fibers usually support multiple guided modes, and the location of the correspond-

ing propagation consants is dictated in the optics literature [43, 52]. In combination

with known solutions of the form (1.15), this serves as an ideal problem to test the

use of the DPG discretization in the FEAST algorithm.

Our computational domain for this problem will correspond to the circular cross-

section similar to 1.1. For such fibers, we have a core radius of rcore > 0 and

outer cladding radius rclad > 0 corresponding to R0 and Rfin, respectively (see figure

1.1). In this case, our computational domain in R
2 is a cross-section of an optical

fiber, whose longitudinal direction (i.e. z-axis) is orthogonal to the circular cross-

section. For the optical fiber whose modes we wish to find, we assume that n(x)

for x = (x1, x2)
T ∈ R

2 is piecewise constant, taking a value of n1(x) ≡ ncore > 0

in the core region {x ∈ R
2 : x2

1 + x2
2 < r2core} and nclad in the cladding region

{x ∈ R
2 : r2core < x2

1 + x2
2 < r2clad}, with nclad < ncore.

The guided modes ϕl(x, y) of the fiber are nontrivial functions satisfying, together

with propagation constants βl ∈ R

Δϕl + k2n2ϕl = β2
l ϕl, (6.1)

where k is the wavenumber of the light propagating through the optical fiber. Since

the guided modes of the fiber decay exponentially outside of the core region, and

because the cladding radius is sufficiently large, we apply a zero-dirichlet boundary

condition at the outer radius rclad, i.e. ϕl = 0 for ||x|| = rclad. Furthermore, the

optics literature directly states that the propagation constants βl satisfy [43, 52]

151



Figure 6.1: Step-Index Fiber Mesh

(a) The mesh with curved elements adja-
cent to the core and cladding boundaries.

(b) Zoomed-in view of the mesh in Fig-
ure 6.1a near the core.

Figure 6.1: The mesh used for computing modes of the ytterbium-doped step-index
fiber.

k2n2
clad < β2

l < k2n2
core,

so up to a scaling, we have a search interval to provide to the FEAST algorithm. To

this end, the parameters for our commercially-available ytterbium-doped fiber [24]

are given by ncore = 1.45097, nclad = 1.44973, rcore = 12.5 × 10−6 m, and rclad =

16rcore = 200 × 10−6 m [24]. Due to the small dimensions of the fiber and the large

magnitude of the propagation constants we wish to compute, we nondimensionalize

the PDE to the disk Ω̂ = {x̂ ∈ R
2 : ||x̂|| < 16} and compute ϕ̂ : Ω̂ → C satisfying

(Δ + r2corek
2n2)ϕ̂l = r2coreβ

2ϕ̂l on Ω̂ and ϕ̂l = 0 on ∂Ω̂.

In figure 6.1 [24], we provide two different views of our computational domain. No-

tice that in both subfigures 6.1a and 6.1b, we use isoparametrically curved elements

on the boundary of the computational domain and at the interface of the core and

cladding regions. This is to minimize error that comes from representing a curved

boundary using otherwise polygonal elements [24]. The modes computed using the
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FEAST algorithm are shown in figure 6.2 [24]. In each subfigure, we capture the

nontrivial behavior of each mode in core region, which we outline with a dashed black

circle. The mode in subfigure 6.2f is what in the physics community as the LP01 or

fundamental mode [52].

To test our implementation of the FEAST algorithm, we perform a convergence study

with a mesh whose mesh size is hc = 1/16 in the core region. The mesh is finer in this

region by design, as the salient features of guided modes are contained within this

region. We perform three mesh refinements, after which we curve the elements whose

boundary is either ∂Ω̂ or the interface of the core and cladding regions. With N = 16

quadrature points, we compute six eigenvalues λ̂h
l and corresponding eigenfunctions

ϕh
l for l = 1, 2, . . . , 6 shown in figure 6.2. The exact eigenvalues, λ̂l = r2coreβ

2, are

given to seven places after the decimal point by

λ̂1 = 2932065.0334243,

λ̂2 = λ̂3 = 2932475.1036310,

λ̂4 = λ̂5 = 2934248.1978369,

λ̂6 = 2935689.8561775.

We then fix the polynomial degree at p = 3, and report the error el = |λ̂ − λ̂h
l |/|λ̂h

l |

for l = 1, 2, . . . , 6 in figure 6.1. While the convergence rates approach order 2p = 6,

they do not match up as closely as we would expect from the examples we have seen

in previous sections. Since we approached error within a few order of magnitudes of

machine precision, no further refinements were performed.
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Table 6.1: Step-Index Fiber Convergence Rates

core h e1 NOC e2 NOC e3 NOC e4 NOC e5 NOC e6 NOC

hc 1.26e-07 – 2.01e-07 – 1.81e-07 – 4.99e-08 – 4.37e-08 – 1.72e-08 –
hc/2 9.42e-09 3.7 1.63e-08 3.6 1.32e-08 3.8 6.46e-09 3.0 4.84e-09 3.2 3.38e-09 2.4
hc/4 1.17e-10 6.3 2.13e-10 6.3 1.80e-10 6.2 7.03e-11 6.5 4.84e-11 6.6 3.64e-11 6.5
hc/8 9.16e-14 10.3 1.33e-12 7.3 3.06e-13 9.2 3.75e-13 7.6 6.87e-13 6.1 6.69e-14 9.1

Table 6.1: Convergence rates for the eigenvalues of the ytterbium-doped step-index
fiber.

Figure 6.2: Guided Mode Intensities

(a) ϕh
1 (b) ϕh

2 (c) ϕh
3

(d) ϕh
4 (e) ϕh

5 (f) ϕh
6

Figure 6.2: A close view of the approximate eigenfunctions ϕh
j computed by FEAST

for the ytterbium-doped fiber. The boundary of the fiber core region is marked by
dashed black circles.
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6.2.2 Leaky Mode Verification using the Polynomial Eigensolver

Revisiting the step-index fiber, we now transition to using Algorithm 4 to compute

leaky modes. We compute a known set of leaky modes for an ytterbuim-doped step-

index fiber with an index of refraction that is piecewise constant and defined as in

(1.2) with a constant refractive index n1 that is slightly higher than the refractive

index n0 in the cladding region. To verify our results, we compare a computed solu-

tion using Algorithm 4 to an analytic solution we derive in a similar fashion to the

analytic solution (1.15) for guided modes in Chapter 1.

Now that we have an exact solution to check against the results of applying Algorithm

4, we test our method on a commercially available step-index fiber (see [24] for further

details). The parameters needed for our simulation include the core radius of the fiber

R0 = 12.5 × 10−6 m, core index n1 = 1.45097, and a cladding index n0 = 1.44973.

Since the operating wavelength of such a fiber is typically 1064 nanometers (nm), we

take λ = 1.064× 10−6 m, and k = 2π/λ m−1 [24].

To solve this problem computationally, we implemented algorithm 4 using the open

source finite element library NGSolve [59], with nondimensional geometric parame-

ters R̂0 = 1, R̂ = 2, and R̂fin = 4 [27]. Parameters for our implementation of FEAST

include specifying circular contour with center y = 1.9 − 0.2i, radius γ = 10−1, an

initial span of m = 5 random vectors, and a PML decay strength of α = 8. The

algorithm is then run until convergence is achieved. Our target eigenvalue from the

analytic solution for  = 3 is given by Z3 ≈ 1.957793− 0.185432i.

For our verification, we let the polynomial degree for the Lagrange finite element space

5.58 vary as p = 2, 3, 4, 5. In Figure 6.3a, we show the desired modes computed with

algorithm 4 using p = 10 and no initial mesh refinement. In the acompanying figure
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Figure 6.3: Leaky Mode Intensities and Convergence Results

(a) Mode intensities
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p = 2
p = 3
p = 4
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(b) Convergence of corresponding eigenvalues

Figure 6.3: Left (6.3a): Intensities of computed step-index leaky modes corresponding

to two eigenvalues in Λhp = {Z(1)
hp , Z

(2)
hp } are shown. The white and dark dashed

curves indicate the core-cladding interface and the start of the PML, respectively.
Right (6.3b): Log-scale plot of the distance between exact and approximate eigenvalue
cluster Λhp for polynomial degrees p = 2, . . . , 5 and uniform mesh refinements.
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6.3b, we see that our eigenvalues are converging at the approximate desired rates

O(h2p) [27] for p = 2, 3, and eventually for polynomial degrees p = 4, 5. Note that

the error does bottom out for p = 5: This corresponds to the computed eigenvalues

becoming closer in accuracy to the target eigenvalue, which is computed to a precision

of O(10−14).

6.3 Computed Modes for the Six-Capillary Microstructure Fiber

Analogous to the guided and leaky modes of step-index fibers, we take a brief look at

the computed modes for a six-capillary microstucture fiber, including the analogous

fundamental mode and some higher-order modes. Pictured in Figure 6.4 (see also

[27]) are the approximate modes computed using our polynomial eigensolver for a

microstructure fiber with operating wavelength 1000 nanometers, and labeled with

their corresponding non-dimensional eigenvalues Z computed using FEAST. These

modes were computed with no initial mesh refinement and polynomial degree p = 20.

In subsequent sections, we will look more closely at confinement loss computations

using the computed propagation constant at different wavelengths for the fundamental

mode pictured in Figure 6.4a.
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Figure 6.4: Computed Mode Intensities of a Microstructure Fiber

(a) 2.186− i 2.1× 10−6 (b) 3.469− i 7.0× 10−5 (c) 3.469− i6.4× 10−5

(d) 4.637− i 2.4× 10−3 (e) 4.637− i 2.2× 10−3 (f) 4.961− i 8.6× 10−4

Figure 6.4: Intensities of computed modes are shown zoomed into a rectangle covering
the hollow core (the region r < Rcore of Figure 1.2, where r = ||x|| for x ∈ R

2), labeled
with their approximate nondimensional Z values for λ = 10−6 m.
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6.4 Confinement Losses for Fixed Geometric Parameters

Figure 6.5: Confinement Loss Convergence Studies

(a) Polynomial eigensolver results.

(b) Linear eigensolver results.

Figure 6.5: Convergence study results for confinement losses at two different wave-
lengths using the polynomial eigensolver (Figure 6.5a) and standard linear FEAST
(Figure 6.5b). Computational results show a large preasymptotic regime before com-
puted losses apear to converge.

This section covers the computation of the cladding losses for the LP01-like (funda-

mental) mode of a six-ring Antiresonent Nodeless Fiber (ANF), analogous to that

in Poletti’s work [50]. Our goal is to find a regime of mesh refinements and polyno-

mial degrees in which the computed confinement losses of this mode stabilize. Recall
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from Chapter 1 that confinement losses are computed using Equation (1.35), i.e.

CL =
20

log(10)
	(β) dB/m, where 	(β) is the imaginary part of the propagation con-

stant β.

For this set of experiments, we perform up to four uniform mesh refinements with

increasing polynomial degree. Simulations were limited to available computational

resources, as a single application of our eigensolver to compute confinement losses for

the fundamental mode consumed well over 150 gigabytes of memory as we pushed

our solver past the preasymptotic regime. From a recently submitted work [27], we

show two simulations in Figure 6.5a at two different vacuum wavelengths of 1000

nm and 1800 nm, respectively. The experiments at the two respective wavelengths

used circular contours with centers near 2.18 and 2.24, respectively. In both experi-

ments, the outgoing medium is taken to be air with an approximate refractive index

of nair = 1.00028. We conducted a similar experiment with standard linear FEAST

using the NGSolve auto PML and shown in Figure 6.5b. In each set of experiments,

the polynomial degree of the underlying finite element discretization is given by p ≥ 2,

and the number of uniform mesh refinements performed on the initial coarse mesh is

given by the integer q ≥ 0.

The results of our experiments are given in Figure 6.5. These experiments stress

the importance of pushing the limits of our discretization to confidently state the

losses we are computing. In the asymptotic regime of both experiments for the linear

and polynomial eigensolvers, confinement losses appear to stabilize near 0.04 dB/m

and 0.0006 dB/m, respectively. Furthermore, the results of Figure 6.5 show the quick-

est path to the asymptotic region is most easily acheived with high p and no initial

mesh refinements, or moderate p and a single uniform mesh refinement. While our
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results in the asymptotic regime do not match the precise results in the optics liter-

ature [50], our hope is that our convergence study provides a baseline to accurately

compute and compare confinement losses in the future. We do, however, see that our

algorithm achieves comparable results with the standard linear FEAST algorithm,

thus giving us confidence in the consistency of our results.

6.5 Variation of Geometric Parameters: Outer PML Thickness

In addition to verifying the convergence towards target confinement loss values, we

are interested in ensuring that our computed confinement losses remain stable as we

vary the decay strength α > 0 in the PML region and the thickness of the PML

region itself. To this end, we fix the polynomial degree for this study at p = 10 and

perform q = 1 uniform mesh refinement. In addition, we fix the wavelength for the

fiber at 1800 nm, and provide FEAST with a center of y = 2.247+ 0i and a radius of

γ = 0.005.

Table 6.2: PML Parameter Variation Results

CL (dB/m)
PML width (μm) Degrees of freedom α = 1 α = 5 α = 10

50 2270641 0.000630 0.000629 0.000629
100 2603121 0.000628 0.000628 0.000629
150 2482041 0.000628 0.000628 0.000628

Table 6.2: Computed confinement losses for varying PML widths and PML parame-
ters α (fixing q = 1 and p = 10).

As we see in Table 6.2, we vary the thickness of the PML region between 50 and 150

micrometers. The strength of the decay in the PML region, measured by α > 0, is also

varied. We see that as our parameters vary, we still maintain the same approximate

mantissa. The exception to this is the case of a 50 micron PML width using a decay

strength of α = 1, where the solution may not have decayed significantly.
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6.6 Displacement of Capillary Tubes and Confinement Losses

The other study we perform is looking at the displacement of capillary tubes and how

this influences the computed losses. For the experiment, we let the position of the

capillaries vary between being embedded into the outer glass jacket of the microstruc-

ture fiber, followed by allowing the capillaries to sit in the interior of the hollow core.

Our FEAST algorithm for polynomial eigenvalue problems was used to compute the

fundamental mode and corresponding propagation constant every 0.1 micrometers,

from which we computed the corresponding confinement loss. The medium in the

PML is taken to be air, the refractive index for which is approximately nair = 1.00028.

When embedding the capillaries into the glass jacket, we let the embedding distance

into the glass jacket vary between 0.01 and 0.42 micrometers. Similarly, we pulled the

capillaries into the hollow core a maximum distance of 0.5 micrometers. Experiments

could not be performed with the capillaries perfectly tangent to the air-cladding inter-

face, as the NGSolve package cannot mesh boundaries that are potentially tangent at

a single point. Hence, the blue and red curves are connected via a black dashed line in

Figure 6.8. For all computed losses, we performed one uniform mesh refinement and

varied the polynomial degrees for our finite element spaces between p = 10, 11, 12, 13.

No significant qualitative differences were observed when plotting the losses across

various values of p, so we show one just plot corresponding to the highest chosen

polynomial degree p = 13 in Figure 6.8. We also show the corresponding real part of

the effective index neff = β/k, denoted �(β/k), in Figure 6.9.

Notice in Figure 6.8 that there are two peaks in the computed losses: One in the

embedded mesh case, and one in the freestanding mesh case. Furthermore, there is a
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Figure 6.6: Embedded and Freestanding Meshes

(a) Embedded Capillaries

(b) Freestanding Capillaries

Figure 6.6: A zoomed-in view of the topmost capillary for the mesh with embedded
capillaries (Figure 6.6a) and freestanding capillaries 6.6b).

significant change in the computed losses as we displace the capillaries: Losses vary

from being O(10−4) to O(1), indicating a nontrivial sensitivity to the displacement

of the capillaries. In Figure 6.9, however, we see that the real part of the effective

index appears to remain constant in the case of the embedded mesh, but decreases as

the capillaries move closer to the center of the hollow core region in the freestanding

case. The corresponding imaginary part of the effective index for the embedded and

freestand meshes, of course, exhibits the same behavior (up to a linear scaling) as the

confinent losses in Figure 6.8, so we omit its plot.
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Figure 6.7: The Fundamental Mode on Two Meshes

(a) Embedded Capillaries

(b) Freestanding Capillaries

Figure 6.7: The computed fundamental mode in the cases of embedded and free-
standing capillaries. Each such mode is computed on a mesh that has been refined
once uniformly, with modes approximated using polynomial degree p = 13. Each
mode corresponds to the maximum confinement losses computed for each mesh type
indicated in Figure 6.6.
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Figure 6.8: Confinement Losses for Various Capillary Displacements

Figure 6.8: Computed losses as the capillary displacement varies. Negative displace-
ments correspond to embedding the capillaries further into the outer cladding layer.
Positive displacements correspond to moving the capillaries closer to the center of the
hollow core.
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Figure 6.9: Fundamental Mode Real Effective Index

Figure 6.9: The real part of the effective index neff = β/k over various capillary
displacements. Negative displacements correspond to embedding the capillaries fur-
ther into the outer cladding layer. Positive displacements correspond to moving the
capillaries closer to the center of the hollow core.
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Chapter 7

Conclusions and Future Work

In this work, we explored the use of the FEAST algorithm as a computational tool

for solving eigenvalue problems in fiber optics. We developed two extensions of the

FEAST algorithm for solving eigenvalue problems through the use of the finite el-

ement method. The first of these extensions was the application of the resolvent

operator through the use of the DPG discretization, through which we connected

errors in the FEAST approximations of eigenvalues and eigenspaces to the discretiza-

tion parameters used in the DPG method. Our second extension was the adaptation

of the FEAST algorithm to solving polynomial eigenvalue problems arising from a

specific formulation of a perfectly matched layer to compute confinement losses in

microstructure fibers. Our adaptation of the FEAST algorithm used the underlying

structure of a linearization to efficiently compute eigenvalues and eigenspaces while

handling large problem sizes.

Our results from Chapter 6 show a large preasymptotic regime when the classical

finite element method is used for our underlying discretization, but reveals a path

to the asymptotic regime by restricting the number of mesh refinements to a low

value while keeping the polynomial degree high. Furthermore, we see that there is

a nontrivial sensitivity in the computed losses as the geometry of the fiber changes,
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specifically due to placement of the glass capillaries. This certainly warrants further

study, as well as a connection to confinement losses that one can see reported in the

optics literature for six-capillary and eight-capillary microstructure fibers [38,50]. Fur-

thermore, our results stress the importance of converged confinement losses, which

we did not see specified explicitly in our review of the optics literature. Such an

endeavor is particularly important to our collaborators at the Air Force Research

Laboratory (AFRL). From a conversation with one of our collaborators at the AFRL

(Jacob Grosek, oral communication, 2021), his and others’ experience with various

mode solvers (i.e. eigensolvers) in conjunction with our own literature search have

revealed inconsistencies in reported confinement losses for similar models of optical

fibers. Most importantly, there has not been a clear indication of convergence studies

performed across various mode solvers to unify reported confinement losses.

Future research from this work comprises many possible directions. One avenue to

explore would be an implementation of our polynomial eigensolver using the DPG

method instead of the classical finite element method, especially since the classical

finite element method demonstrated a large preasymptotic regime in our convergence

studies. A comparison to the linear solvers we have used already with the classical

FEM case would be appropriate here to see if there is any benefit gained from using

this discretization. Similarly, a more fine-grained approach to the experiments shown

in the Appendix would be of interest in order to show which algorithm gives a clearer

picture of the spectrum we wish to see. One addition to this experiment would be to

explore this throught the lense of the complex-symmetric formulation given in Chap-

ter 5.

As seen in Chapter 5, we formulated a polynomial eigenproblem using a frequency-
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dependent PML, where the PML was implemented beginning with a complex coordi-

nate transformation. This led to the problem of finding eigenvalues and eigenspaces

for a polynomial eigenvalue problem. A natural extension for our polynomial solver

would be to look at solvers for rational eigenproblems, as our formulation originally

yielded a matrix with a negative power of the nondimensional eigenvalue Z. Works

such as [61] explore solutions to such problems using rank-revealing factorizations,

and such works could be used as a departure point for extending FEAST further.

Yet another direction to pursue is the development of a distributed memory FEAST

algorithm, such as in [36]. This would allow for convergence studies and other experi-

ments where FEAST pushes the free memory limits on currently available computing

resources. This is especially important in light of our own experimental results, for

which the accurate computation of confinement losses required upwards of millions

of unknowns.
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Appendix: A Comparison of Approximate Spectra

In this section, we include a comparison of the spectra we compute when using our
polynomial eigensolver versus the standard FEAST algorithm applied to the linear
eigenproblem of computing leaky modes for the microstructure fiber in previous sec-
tions. In each case, we wish to illuminate the differences in computed non-dimeniosnal
eigenvalues Z between each approach to gain a qualitivate understanding of their
differences. In Figures 1 and 2, �(Z2) and 	(Z2) corresponding to the real and
imaginary parts of the computed Z2-values, respectively, when using standard linear
FEAST. Likewise, �(Z) and 	(Z) corresponding to the real and imaginary parts of
the computed Z-values, respectively.

In Figures 1 and 2, we computed an approximate picture of the spectrum using
the Lagrange finite element space with polynomial degree p = 5 and one uniform
mesh refinement. In both cases, we fixed the PML strength at α = 5 and started
with spans of fifty random vectors for each circular contour used to compute the ap-
proximate eigenvalues. We chose a coarse relative stopping tolerance of ε = 10−7 for
the computed eigenvalues Z, and a maximum of thirty FEAST iterations. For the
application of standard linear FEAST, whose results are shown in Figure 1, we used
the NGSolve auto PML mentioned in Chapter 2.

Concerning fiber properties, we take the operating operating wavelength of the mi-
crostructure fiber to be λ = 1.8 × 10−6 m, and the medium in the PML to be
that of air. This means that the index of refraction in the PML region is approxi-
mately n0 ≈ 1.00028, and a corresponding index of refraction of Silica glass given by
n1 ≈ 1.43882. The geometric properties of the fiber, including the core radius, inner
and outer radii of the capillaries, capillary thickness, and thickness of Silica layer
outside of the core region are detailed in [27, 4].

For both standard linear FEAST and its extension to polynomial eigenvalue problems,
we used elliptical contours shown in Figures 1a and 2a, with the corresponding com-
puted Z-values in Figures 1c and 2. For the quadrature approximation of the spectral
projector, we used the N -point shifted elliptical trapezoid quadrature rule [22]:

zj = y +
η

2

(
ρei(θj+φ) + ρ−1e−i(θj+φ)

)
(1a)
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Figure 1: Linear Eigensolver Spectrum Results

(a) Contours used by FEAST. (b) Computed eigenvalues in the Z2-plane.

(c) Computed eigenvalues in the Z-plane.

Figure 1: Approximate spectra for the microstructure fiber problem using standard
linear FEAST. Figure 1a shows the contours in the Z2-plane used by FEAST to
compute the eigenvalue approximations. Figure 1b shows the results computed by
FEAST in the Z2-plane. To compare with the results of the polynomial eigensolver,
Figure 1c shows the results of standard linear FEAST in the Z-plane.
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Figure 2: Polynomial Eigensolver Spectrum Results

(a) Contours used by FEAST. (b) Computed eigenvalues in the Z-plane.

Figure 2: Approximate spectra for the microstructure fiber problem using the poly-
nomial eigensolver. The figure on the left includes the contours used to compute
the approximate Ritz values. The figure on the right shows the same window (sans
contours) over which the Ritz values were computed.

wj =
η

2N

(
ρei(θj+φ) − ρ−1e−i(θj+φ)

)
. (1b)

For the quadrature rule (1), zj are the quadrature nodes, wj are the quadrature
weights, θj = 2πj/N for j = 0, 1, . . . , N − 1, and φ = ±π/N is a shift that moves
quadrature points from the real line to prevent a quadrature node from potentially
coinciding with any eigenvalues Z we wish to compute. In addition, ρ > 1 is fixed,
and we set η = 2γ/(ρ + ρ−1). Note that by our choice of η, the semimajor axis
of the ellipse is given by η(ρ + ρ−1)/2 = γ and the semiminor axis is given by
η(ρ − ρ−1)/2 = γ(ρ − ρ−1)/(ρ + ρ−1). Thus, we are in a position to specify the
length of the semiminor axis as a fraction 0 < q̂ < 1 of the length of the semimajor
axis. We can do so by solving γ(ρ − ρ−1)/(ρ + ρ−1) = γq̂ for ρ, given a fixed choice
of γ > 0. Solving for ρ in terms of q̂, we have that ρ =

√
(1 + q̂)/(1− q̂).

When computing the spectrum using the standard FEAST algorithm for linear eigen-
problems, we choose for our contours a semimajor axis of γ = 5 and a semiminor axis
of length 10/3 corresponding to a choice of q̂ = 2/3. The corresponding contours
are show in Figure 1, along with the corresponding non-dimensional eigenvalues Z2

computed using standard linear FEAST. The centers used for the corresponding con-
tours are given in Table 1a. We then obtain a picture of the approximate spectrum
in the complex Z-plane by computing the square roots of the results, thus yielding
the desired figure in Figure 1c. For the extension of FEAST to polynomial eigen-
value problems, we used elliptical contours specified with semimajor axis γ = 1 and
semiminor axis of length 1/6. The centers used in this case are given in Table 1b

In Figures 1c and 2b, the locations for which we typically compute the fundamen-
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tal mode and higher order modes (see, for example, Figure 6.7a, or Figure 6.4 in
the λ = 10−6 m case) are located close to the real-axis in the neighborhood of
{Z ∈ C : �(Z) ∈ [2, 6]}. In both cases, we see that there are numerous other Z-value
close by, indicating that one may need to use tight circular or elliptical contours to
compute a particular mode of interest. In addition, computes Z-values further down
in the fourth quadrant of Figure 1c show two rays that appear to emanate from the
origin when using standard linear FEAST, versus a less structured set of Z-values
in Figure 2b. At this stage, these results give a prelimary look into the difference
in computed eigenvalues when using standard linear FEAST versus the extension of
FEAST to polynomial eigenproblems in Chapter 5. The future goal with such experi-
ments is to see what version of FEAST performs better for such problems, specifically
by determining which algorithm gives a clearer picture of the portion of the spectrum
we wish to compute.

Table 1: Contour Centers for Linear and Polynomial Eigensolvers

NGSolve Auto PML Centers
0.00− 2.50i
0.00− 7.50i
5.00− 0.00i
5.00− 5.00i
5.00− 10.00i
10.00− 0.00i
10.00− 12.50i
15.00− 0.00i
15.00− 7.50i
15.00− 15.00i
20.00− 0.00i
20.00− 12.50i
25.00− 0.00i
25.00− 12.50i

(a) Centers used with standard linear FEAST.

Polynomial FEAST Centers
1.00− 0.00i
1.00− 0.50i
1.00− 0.75i
1.00− 1.00i
1.00− 1.25i
1.00− 1.75i
2.00− 0.00i
2.00− 0.75i
3.00− 0.00i
3.00− 0.75i
3.00− 1.25i
3.00− 1.75i
4.00− 0.00i
5.00− 0.00i
5.00− 0.75i
5.00− 1.25i
5.00− 1.75i

(b) Centers used with polynomial FEAST.

Table 1: Tables for the centers of the contours used for computing the approximate
spectrum in each approach.

178


	Error Propagation and Algorithmic Design of Contour Integral Eigensolvers with Applications to Fiber Optics
	Let us know how access to this document benefits you.
	Recommended Citation

	bquanahparker_dissertation.pdf

