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Abstract

A quantum computer can perform exponentially faster than its classical counterpart.

It works on the principle of superposition. But due to the decoherence effect, the

superposition of a quantum state gets destroyed by the interaction with the environ-

ment. It is a real challenge to completely isolate a quantum system to make it free

of decoherence. This problem can be circumvented by the use of topological quan-

tum phases of matter. These phases have quasiparticles excitations called anyons.

The anyons are charge-flux composites and show exotic fractional statistics. When

the order of exchange matters, then the anyons are called non-Abelian anyons. Majo-

rana fermions in topological superconductors and quasiparticles in some quantum Hall

states are non-Abelian anyons. Such topological phases of matter have a ground state

degeneracy. The fusion of two or more non-Abelian anyons can result in a superposi-

tion of several anyons. The topological quantum gates are implemented by braiding

and fusion of the non-Abelian anyons. The fault-tolerance is achieved through the

topological degrees of freedom of anyons. Such degrees of freedom are non-local, hence

inaccessible to the local perturbations. In this dissertation, we provide a comprehen-

sive review of the fundamentals of logic design in topological quantum computing.

The braid group and knot invariants in the skein theory are discussed. The physical

insight behind the braiding is explained by the geometric phases and the gauge trans-

formation. The mathematical models for the fusion and braiding are presented in

terms of the category theory and the quantum deformation of the recoupling theory.

The topological phases of matter are described by the topology of band structure.

The wave function of quasiparticles in the quantum Hall effect and the theory of
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Majorana fermions in topological superconductors are also discussed. The dynam-

ics of the charge-flux composites and their Hilbert space are expressed through the

Chern-Simons theory and the two-dimensional topological quantum field theory. The

Ising and Fibonacci anyonic models for binary gates are briefly given. Ternary logic

gates are more compact than their binary counterparts and naturally arise in a type

of anyonic model called the metaplectic anyons. We reduced the quantum cost of

the existing ternary quantum arithmetic gates and proposed that these gates can be

implemented with the metaplectic anyons.
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Chapter 1

Introduction

Two of the greatest revolutions of the twentieth century were the discovery of quantum

mechanics and the invention of computers. At the end of the twentieth century, these

two fields merged and a new field of quantum information was born. The quantum

information science ends Moore’s law, according to which the computing power would

double every eighteen months. This law governed silicon chip-based computers, for

which the density of chips can be increased. Such computers obey the laws of classical

mechanics. But we cannot reduce the physical size of chips infinitely. At the atomic

level, particles behave according to the laws of quantum mechanics rather than the

laws of classical mechanics.

In 1982, Richard Feynman pointed out that there is a fundamental limit with

the ability of classical computers to efficiently simulate a quantum system [1]. He

showed that some problems can be solved exponentially faster on a quantum computer

using exponentially large-sized Hilbert space than they could be solved on a classical

computer. David Deutsch showed that classical computers cannot efficiently simulate

a quantum computer [2]. Hence, a quantum computer is important for two reasons;

it can perform faster, and it can answer questions about nature.

The building blocks of a classical computer are bits. These bits are based on

classical logic that has values of either 0 or 1. Operations on these bits are performed
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by a series of gates. These gates change their values and answer the operations. The

classical circuits are composed in space from gates connected by wires. But quantum

computers are based on quantum logic, which has values in the superposition of 0

and 1. The quantum gates manipulate the quantum superposition and give outputs

with some probability. A ternary quantum gate is a three-valued logic design, based

on the superposition of 0, 1, and 2.

Many methods of encryption on a classical computer are based on difficulty in

finding the prime factors of a large number. Peter Shor [3] invented an algorithm

to find the prime factors of a number on a quantum computer with an exponential

speed up. This algorithm created widespread interest in quantum computers. Many

other quantum algorithms have already been proposed. Grover’s search algorithm for

an unstructured search [4, 5] offers a quadratic speed up compared with a classical

counterpart. These algorithms are implemented on a particular model of quantum

computation.

Building a quantum computer is a great challenge due to its susceptibility to errors.

The quantum superposition is destroyed due to its interaction with the environment.

This process is called decoherence. Moreover, we cannot measure the state and look

for errors. In doing so we would kill the superposition. Errors can also be in the

phase of a state. There are quantum error correction codes [6–9], but a quantum

system needs to be completely isolated from the environment. In 1997, Alexei Kitaev

proposed a model for the fault-tolerant quantum computation [10]. Information is

encoded in some non-local degrees of freedom of particles, hence inaccessible to local

perturbations [11–13]. This is done using the systems which are topological in nature.

The topology is a study of spaces that are continuously deformable to each other.

Such spaces are called manifolds. A manifold is a space that is Euclidean flat space
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locally when a small patch is taken, but it has some non-Euclidean structure globally.

To compare two spaces, some properties of the spaces are computed. These properties

remain invariant under the continuous deformation of one space to the other. Such

properties are called topological invariants. We will discuss topology in Chapter 3.

The topological nature of particles can be studied through their exchange statis-

tics. Let ψ(ri, rj) be the wave function of two particles at positions ri and rj. In

three dimensions, when two particles exchange their places, the wave function gets

multiplied with a phase factor. That is,

ψ(ri, rj) = eiθψ(rj, ri), (1.1)

where the values θ = 0, 2π correspond to the exchange of bosons and θ = π cor-

responds to the exchange of fermions. The phase acquired by the wave function

is +1 for bosons and −1 for fermions. Bosons are integral spin particles and obey

Bose-Einstein statistics, whereas fermions are half-integer spin particles and obey

Fermi-Dirac statistics. A double exchange of these particles is equivalent to no ex-

change. If the particles are distinguishable, then their statistics is described by the

permutation group SN . A group is a mathematical structure to study symmetries.

The permutation group is used to study the exchange symmetry. See Appendix A for

the definition of a group.

Jon Magne Leinaas in 1977 [14] suggested that in a two-dimensional space, another

statistic may occur, called fractional statistics. For this new kind of statistics, θ has an

arbitrary value between 0 and π. Bosons and fermions do not obey fractional statistics

even in two-dimensional space. Wilczek [15, 16] proposed a model for the realization

of the fractional statistics. He also named these particles as anyons (neither boson

nor fermion but any on) [16].
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An anyon is not an elementary particle, but a collective phenomenon or a local

disturbance in two-dimensional topological materials in a high magnetic field and at a

very low temperature. A large number of elementary particles behave in a coordinated

way to make quasiparticles. These particles can exist only inside a material, not

in free space. Magnetic fluxes are attached to quasiparticles and make charge-flux

composites. These quasiparticles obey fractional statistics. The quasiparticles will be

discussed in Chapters 5 and 6. The Chern-Simons gauge theory is used as an effective

field theory to describe these materials. Quasiparticles have a topological charge which

is a topological quantum number and is a generalization of the conventional charge.

It is a topological invariant and changes on topological phase transition. We will

discuss the topological invariants in Chapter 3 and the topological phase transition

in Chapter 6.

The anyons are quasiparticles in quantum Hall states [17–19] and as Majorana

fermions in topological superconductors [20]. Anyons are detected in laboratory [21–

26], and more recently [24,25]. The measurement of an anyon is done by interference

as described in [12,27].

The fundamental difference between 2D and 3D is the difference in the topology

of spacetime. The motion of particles makes knots and links in spacetime. Two paths

are topologically equivalent if one can be deformed to the other. In two dimensions,

in general, we cannot transform one path to the other without cutting, as shown

in Fig. 1.1. All smoothly deformable trajectories are in the same equivalence class.

Fermions and bosons do not obey the fractional statistics even in 2D, but the change

in the wave function of the system in two-dimensional topological materials, when two

quasiparticles are exchanged, is independent of the distance and speed of exchange.

In contrast, the evolution may depend on some global characteristic of the path.
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Therefore, the statistics of anyons are topological. Instead of the permutation group,

the double exchange of anyons is not equal to the identity. The exchange statistics

of anyons is described by a braid group in (2 + 1)-dimensional spacetime. The braid

group is defined in Chapter 3. When the order of composition of two elements of a

group does not matter then the group is Abelian, otherwise, it is non-Abelian.

C1 C2 C1

C2

Fig. 1.1. Two closed paths C1 and C2 are topologically distinct in two dimensions, but they
can be deformed to each other in three dimensions.

One of the properties of the topological phases of matter is the existence of ground

state degeneracy. The degenerate ground states have a large energy gap to the excited

states. The degeneracy depends on the topology of the two-dimensional system and

the types of anyons present. The ground state is unique for trivial topology. For

Abelian anyons, the braid operators commute and the ground state is unique, but

for non-Abelian anyons, the braiding corresponds to the evolution of the system in

the degenerate ground state. The change of the system from one ground state to

the other is studied using the Berry phase [28] as described in Chapter 4. Let g

be degenerate states ψa with a = 1, 2, ..., g of particles at positions x1, x2, ..., xn.

Exchanging particles 1 and 2 may not just change the phase but may rotate it into a

different state ψb. Braiding of 1 and 2 and that of 2 and 3 are given as

ψa →Mabψb, ψa → Nabψb, (1.2)

where Mab and Nab are g× g dimensional unitary matrices. For Abelian anyons, the
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θ in Eq. 1.1 is arbitrary and clockwise and anticlockwise exchanges commute. Which

means that even the clockwise and anticlockwise exchanges may not be the same,

but if we exchange particles clockwise then anticlockwise, it will be the same as if

we perform anticlockwise exchange first then clockwise. In contrast, Mab and Nab in

Eq. 1.2 do not commute in general, that is MabNab −NabMab 6= 0 and particles obey

non-Abelian statistics.

Since the unitary evolution only depends on the topology of the path, wiggles of

the path would not affect the outcome. No local perturbation can split the degeneracy,

hence the system is decoherence-free. The topological nature of anyons is the source of

the fault tolerance in a quantum computer. A topological quantum computer is based

on three steps; the creation of anyon-antianyon pairs from the vacuum, braiding, and

fusion [12,29]. Anyons can be combined by bringing them close to each other. This is

called fusion. The fusion is an inverse of the creation of the particles. The fusion of

an anyon with its antiparticle gives the total topological charge zero, but the fusion

of an anyon with another different type of anyon or antianyon may give the third

particle or a superposition of a collection of several particles. The resultant types of

particles depend on the fusion rules. The topological charge of an anyon is assigned

with respect to its fusion with other particles to get a vacuum. There might not be

a unique way to combine anyons. Different ways of the fusion of multiple anyons to

get an outcome are called the fusion channels. These fusion channels provide the

basis states of the Hilbert space for quantum gates. The dimension of the Hilbert

space is equal to the degeneracy of the ground state. The transformation between

different fusion channels is given by F -matrices. The internal degrees of freedom of

the anyons are changed by braiding and can put the system in another ground state.

The phases acquired by anyons during the braiding are computed through R-matrices.
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A quantum superposition of states can be created by a suitable combination of F and

R matrices.

From the path integral point of view, the anyon’s trajectories make knots whose

invariants are the probability amplitudes from an initial to a final configuration of the

system of anyons. The orientations of knots correspond to the direction of particle

trajectories, and the twist in a ribbon knot corresponds to the topological spin. The

topological spin is the phase due to the rotation of a topological charge around its

magnetic flux attached to it. To specify the braiding statistics, we need the data such

as; particle species, fusion rules, F-matrices, R-matrices, and topological spin. The

mathematical model for such data is the category theory and the quantum deformation

of the recoupling theory of angular momenta.

The ternary logic gates and circuits, or the ones that consist of a combination

of binary and ternary, are more compact than their binary counterparts [30]. There

are some non-Abelian anyons for which the ternary structures naturally arise. Such

anyons are called metaplectic anyons discussed in Chapter 11. The F and R matrices

are computed using the recoupling theory in Chapter 10. In this dissertation, we

proposed improved ternary arithmetic circuit designs that can be implemented with

the metaplectic anyons.

This dissertation is organized as follows. In Chapter 2, we will discuss the basics

of binary and ternary logic gates in quantum computing. Chapter 3 is on the pre-

liminaries of knot theory and the braid group. Anyons’ motion in spacetime makes

braids, and the outcomes of the braids are obtained through geometric and topo-

logical phases. The geometric phases are discussed in Chapter 4. One of the most

popular physical systems for topological quantum computation is the quantum Hall

effect. The existence of anyons as quasiparticles is described by Chern-Simons the-
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ory. The quantum Hall effect and topological materials are explained in Chapter 5

and 6, whereas the Chern-Simons theory is given in Chapter 7. This chapter also

includes the two-dimensional topological quantum field theory, which describes the

Hilbert space of the anyon on a two-dimensional topological manifold. The knot

invariant is also obtained using the partition function of the Chern-Simons theory

on a topological manifold. The concept of quantum dimensions, topological spin,

F-matrices, R-matrices, and the Hilbert space can alternatively be described by the

category theory as explained in Chapter 8. The unitary modular category and the

quantum group, are also used as the mathematical models for the topological orders

and topological quantum computing.

The elementary binary logic gates design in topological quantum computing is

given in Chapter 9. It will provide a prototype theoretical model for topological

quantum computing. The ternary gates are formed as the quantum deformation,

also called q-analog, of the F and R matrices in the recoupling theory. The quantum

deformation and the recoupling theory are discussed in Chapter 10. The ternary logic

gates are designed using the fusion and braiding of the metaplectic anyons. These

anyons are the ones with quantum dimensions equal to the square root of integers.

The metaplectic anyon and ternary logic design, using the recoupling theory, are

discussed in Chapter 11. In this chapter, we also presented our designs of the ternary

adder, ternary subtractor, and ternary multiplier, and their implementation with the

braiding and fusion of metaplectic anyon.

The preliminaries from the abstract algebra and topology are given in Appendices

A and B. The quantum group is a deformation of the Hopf algebra. The knot in-

variant is calculated using the quantum group method and topological quantum field

theory in Appendix C. Some topics from quantum field theory are used in the main
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dissertation, like the concept of fields, second quantization, path integral, and gauge

theory. Appendix D is the basics of quantum field theory.

For this dissertation, basic textbook knowledge of the fundamentals of quantum

mechanics and condensed matter physics is assumed. We are following the convention

that the time direction is always upward unless otherwise stated.
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Chapter 2

Quantum Computing

In quantum mechanics, a system is described by a state vector or a wave function

that is written in the Dirac notation as

|ψ〉 = a1 |1〉+ a2 |2〉+ ...+ an |n〉 =
n∑
i=1

ai |i〉 , (2.1)

where ai’s are complex numbers. The state vector |ψ〉 represents a system in a

superposition of the eigenstates |i〉 of the system with probability amplitudes ai. On

measurement, the system will be found in an eigenstate |i〉 with a probability |ai|2.

The state vector is assumed to be normalized, such that
∑

i |ai|
2 = 1.

The |ψ〉 is a vector in a Hilbert space and is written as a linear combination of the

basis vectors |i〉. The Hilbert space is defined in Appendix A. For each ket |i〉, there

is a dual vector bra 〈i| in the Hilbert space. The purpose of this dual vector is to find

the linear dependence of two states by computing the projections. The projections

are found by inner product or orthonormality condition as 〈i|j〉 = δij, where δij = 1

when i = j and δij = 0 when i 6= j. Also, 〈i|ψ〉 = ai and 〈ψ|ψ〉 = 1. The inner

product works the same way as a dot product in vector analysis. Another product,

known as the outer product, is written as |i〉 〈i|, such that it obeys the completeness

relation
∑n

i=1 |i〉 〈i| = I. The outer product |i〉 〈i| is an operator called a projection
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operator or a projector. Since |i〉 〈i|j〉 = 〈i|j〉 |i〉, a projector projects |j〉 along |i〉.

The length of the projection is 〈i|j〉.

The physical quantities or dynamical variables like position, momentum, and en-

ergy are called observables. There is an operator corresponding to each physical

quantity. The values of observables we obtain on measurement are called eigenvalues.

Mathematically, the eigenvalues λi are obtained by the action of the operator on the

eigenstate as

A |i〉 = λi |i〉 . (2.2)

A system in an eigenstate has a definite value of a physical quantity. But in general,

a system is in a state |ψ〉 which is a superposition of the eigenstates. In this case, the

eigenvalues are probabilistic or expected values in measurement on the system. The

expectation value of an operator A is written as

〈A〉 = 〈ψ|A |ψ〉 =
∑
i

λi|ai|2. (2.3)

This equation tells that the probability of getting a particular eigenvalue λi on a

measurement is |〈i|ψ〉|2 = |ai|2. The measurement process collapses the state vector to

one of the eigenstates. Since, the eigenvalues λi must be real, 〈ψ|A |ψ〉 = (〈ψ|A |ψ〉)∗.

It implies that A = A†, and A is a self-adjoint or a Hermitian operator. The adjoint

operator A† is obtained by taking the transpose and complex conjugate of the matrix

A. Therefore, the operation A |i〉 is equivalent to the operation 〈i|A†, where 〈i| is the

adjoint of |i〉. According to the Heisenberg uncertainty principle, complementary or

conjugate variables cannot be measured simultaneously with an absolute certainty.

It is closely linked with the wave-particle duality. The commutator quantifies the
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uncertainty and is written for two operators A and B as

[A,B] = AB −BA. (2.4)

The outcomes are affected by the order in which we are observing A and B. We will

later see that the operators can be written as square matrices, and the state vectors

and eigenvectors can be written as column matrices. From this point of view, the

operators are linear transformations on the Hilbert space.

The time evolution of a state is represented by the unitary time evolution operator

U(t) such that U−1 = U † and U(t)U †(t) = U †(t)U(t) = I. The unitary operator is

written as U(t) = exp(−iHt), where H is the Hamiltonian operator. When the initial

state |ψi〉 evolves unitarily to the final state |ψf〉, it is written as

|ψf〉 = U(t) |ψi〉 . (2.5)

A quantum computation model involves three steps; initialization, unitary evolution,

and measurement [31]. The initial state is an input state and the final state is an

output state [32] of a quantum gate. The evolution operator U(t) corresponds to a

quantum gate. The readout is a measurement in certain bases that gives a classical

result. For basic study on quantum computing, see the books [33–35], and for technical

details, see [32,36].

2.1 Binary Quantum Gates

A classical bit has a value 0 or 1. A qubit is a superposition of 0 and 1, written as

|ψ〉 = α |0〉+ β |1〉 . (2.6)
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A qubit can be written in a matrix form as

|ψ〉 = α

1

0

+ β

0

1

 =

α
β

 , (2.7)

where α and β are complex numbers. The sum of their squares is one, |α|2 + |β|2 = 1,

which means that the sum of probabilities is equal to one. A qubit can be made by

any two-level quantum mechanical system. For example, a spin-half particle can be in

a superposition state of spin-up state |0〉 and spin down spin state |1〉, a photon can

be in a superposition of two polarization states, or an atom can be in a superposition

of the ground state and the excited state. The states |0〉 and |1〉 are the eigenvectors

of a system. These eigenvectors |0〉 and |1〉 provide the bases for a qubit state. These

bases are orthonormal, that is 〈i|j〉 = δij, where i, j = {0, 1}. When |i〉 is a column

vector, 〈i| is a row vector. The superposition allows us to do many calculations in

parallel. For n qubits, a state is written as a 2n-dimensional vector in a Hilbert space

H and the qubits can be entangled.

The purpose of quantum gates and circuits is to get the required output with

maximum probability. Mathematically, a gate is represented by a matrix that must be

unitary. The matrix elements correspond to the probabilities of getting the respective

basis state. Two matrices do not commute in general. Some elementary gates are

represented by symbols I,X, Y, Z. These are called Pauli matrices in physics and

denoted as σI , σx, σy, σz. These matrices have the effect of rotating the qubit about

the z-axis by an angle θ.

I =

1 0

0 1

 , X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 , (2.8)
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where X is the NOT gate, Z is the phase gate and Y is the phase and NOT gate

together, that is Y = iXZ. These matrices have properties that X2 = Y 2 = Z2 = I

and XY = iZ, Y Z = iX, ZX = iY . The superposition is created by the Hadamard

gate,

H |ψ〉 =
1√
2

1 1

1 −1


α
β

 =
1√
2

α + β

α− β

 . (2.9)

The implementation of these gates is shown in Fig. 2.1 (a) and (b). Another example

α |0〉+ β |1〉 X β |0〉+ α |1〉

α |0〉+ β |1〉 Y −iβ |0〉+ iα |1〉

α |0〉+ β |1〉 Z α |0〉 − β |1〉

(a)

|0〉 H |0〉+|1〉√
2

|1〉 H |0〉−|1〉√
2

(b)

Fig. 2.1. The implementation of (a) Pauli gates, (b) Hadamard gate.

of one-qubit gates is phase gate that can be written as

P (φ) =

1 0

0 eiφ

 . (2.10)

Applying on the state ket |ψ〉, we get

P |ψ〉 = |0〉+ eiφ |1〉 =

 α

eiφβ

 . (2.11)

When φ = π we have the Pauli matrix Z, that is P (π) = Z. Other examples of phase
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gates are S and T gates written as

S = P (π/2) =

1 0

0 i

 , T = eiπ/8

e−iπ/8 0

0 eiπ/8

 =

1 0

0 eiπ/4

 . (2.12)

We can see T 2 = S. T is also known as π/8 gate.

The one-qubit state can be represented by the Bloch sphere as shown in Fig. 2.2.

The general state on the Bloch sphere is given by [32]

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 =

 cos θ
2

eiφ sin θ
2

 , where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. (2.13)

The operators that rotate the state on the Bloch sphere can be written as

Rx(θ) ≡ e−i
θ
2
X = cos

θ

2
I + i sin

θ

2
X =

 cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2

 ,

Ry(θ) ≡ e−i
θ
2
Y = cos

θ

2
I + i sin

θ

2
Y =

cos θ
2
− sin θ

2

sin θ
2

cos θ
2

 ,

Rz(θ) ≡ e−i
θ
2
Z = cos

θ

2
I + i sin

θ

2
Z =

e−i θ2 0

0 ei
θ
2

 . (2.14)

These three rotations on a Bloch sphere are combined into a general rotation as

Rn̂(θ) = exp

(
−iθ

2
n̂ · ~σ

)
= cos

θ

2
I − i sin

θ

2

(
nxX + nyY + nzZ

)
, (2.15)

where n̂ is a unit vector in three dimensions and ~σ is the three-component vector of

Pauli matrices. Rn̂(θ) is the effect of rotation on the state around the unit vector n̂.
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|1〉

|0〉

1√
2
[|0〉+ i |1〉]

1√
2
[|0〉 − i |1〉]

1√
2
[|0〉 − |1〉]

1√
2
[|0〉+ |1〉]

θ

φ

|ψ〉

Fig. 2.2. One-qubit states on a Bloch sphere.

Let there exist real numbers α, β, γ and δ such that a general unitary operation on

a qubit [32] can be written as

U = eiαRz(β)Ry(γ)Rz(δ) =

ei(α−β/2−δ/2) cos γ
2
−ei(α−β/2+δ/2) sin γ

2

ei(α+β/2−δ/2) sin γ
2

ei(α+β/2+δ/2) cos γ
2

 . (2.16)

The Bloch sphere representation is limited to a single qubit state only.

Two-qubit states can be separable or inseparable. The separable states are writ-

ten for independent composite systems, whereas the inseparable states are entangled

state. The separable state, also called product state, can be factorized into two

separate states and written as the tensor product of the two states as

|ψ〉 = |φ1〉 ⊗ |φ2〉 =
(
α1 |0〉+ β1 |1〉

)
⊗
(
α2 |0〉+ β2 |1〉

)
=α1α2 |0〉 |0〉+ α1β2 |0〉 |1〉+ β1α2 |1〉 |0〉+ β1β2 |1〉 |2〉

=α |00〉+ β |01〉+ γ |10〉+ δ |11〉 , (2.17)

where |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The tensor product notation ⊗ means that we

multiply each term of the first vector to each term of the second vector. The dimension
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of the Hilbert space of the product state is a product of the dimensions of the two

systems, that is H = H1 ⊗H2. Since the gates are operators and we write them as

matrices, the tensor product of two operators is expressed in such a way that multiply

each entry of the first matrix to all entries of the second matrix. As an example, let

us consider two matrices A and B as

A =

a1 a2

a3 a4

 , B =

b1 b2

b3 b4

 .

The tensor product of A and B is given as

A⊗B =


a1

b1 b2

b3 b4

 a2

b1 b2

b3 b4


a3

b1 b2

b3 b4

 a4

b1 b2

b3 b4




=



a1b1 a1b2 a2b1 a2b2

a1b3 a1b4 a2b3 a2b4

a3b1 a3b2 a4b1 a4b2

a3b3 a3b4 a4b3 a4b4


. (2.18)

When A |a〉 = α |a〉 and B |b〉 = β |b〉 then the following rules are defined for the

tensor product

(A⊗B)(|a〉 ⊗ |b〉) = A |a〉 ⊗B |b〉 ,

(|a〉+ |b〉)⊗ |c〉 = |a〉 ⊗ |c〉+ |b〉 ⊗ |c〉 ,

|a〉 ⊗ (|b〉+ |c〉) = |a〉 ⊗ |b〉+ |a〉 ⊗ |c〉 . (2.19)

We also have the notations |a〉⊗ |b〉 ≡ |a〉 |b〉 ≡ |ab〉. If |a〉 and |b〉 are column vectors

of two elements each, then |ab〉 is a column vector of four elements. Corresponding

operators A and B would become a four by four matrix A⊗B. It can be generalized

to n-dimensional Hilbert space. The number of states is increased exponentially with
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the increase of the number of qubits.

A typical example of a two-qubit gate is the controlled-NOT or CNOT gate shown

in Fig. 2.3 (a). This gate flips the second qubit when the first qubit state is |1〉. The

first qubit is called control qubit and the second qubit is called target qubit. This gate

is a classical analog of exclusive-OR gate based on exclusive-OR logic represented by

⊕. The symbol ⊕ is defined such that the output state |x⊕ y〉 will give a value 0

when both inputs are either zero or 1, but the output value will be 1 when one of the

inputs is 1. A two-qubit state

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 (2.20)

is changed by the operation of CNOT gate as

CNOT |ψ〉 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





α

β

γ

δ


=



α

β

δ

γ


= α |00〉+ β |01〉+ δ |10〉+ γ |11〉 . (2.21)

The second qubit remains the same when the first qubit is |0〉, whereas X gate is

applied to the target qubit when the control state is |1〉. But in general, there can be

any one-qubit gate at the place of X as shown in Fig. 2.3 (b). In that case, we can
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write the controlled-U (CU) gate as

CU =



1 0 0 0

0 1 0 0

0 0 u1 u2

0 0 u3 u4


. (2.22)

|a〉

|b〉

|a〉

|a⊕ b〉

(a)

U

(b)

×
×

|a〉

|b〉

|b〉

|a〉

(c) (d)

Fig. 2.3. (a) CNOT gate (b) Controlled-U gate and (c) SWAP gate (d) Physical realization
of SWAP gate.

Another two-qubit gate is a SWAP gate that swaps the states of input qubits.

The SWAP gate and its physical realization are shown in Fig. 2.3 (c) and (d). It can

also be written in matrix notation as

SWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (2.23)

The computation cannot be performed by a single qubit only. A system should

consist of several qubits and should have the capability to entangle these qubits. One

qubit is a superposition of two basis states, but when there is a quantum correlation

among two systems, then we say that these systems are entangled. The entangled

state is non-separable and cannot mathematically be factorized into two separate
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superposition states. The Bell’s state

∣∣Ψ+
〉

= α00 |00〉+ α11 |11〉 , (2.24)

with |α00|2 + |α11|2 = 1, is an example of the entangled state. It is non-local, that

is, the information of only one qubit is not accessible locally when two states are far

apart. Classically, the first qubit can be in state |0〉 or |1〉, so can be the second qubit.

Therefore, there are four possibilities of values on measurement. But an entangled

state like this Bell’s state would give |00〉 or |11〉 with the probabilities |α00|2 and

|α11|2. On measurement, if the first qubit collapse to the state |0〉 (|1〉) then the

second qubit is forced to collapse to |0〉 (|1〉). The state is maximally entangled when

|α00|2 = |α11|2 = 1
2
. The entangled state is created in a process that can be shown as

in Fig. 2.4.

|0〉

|0〉

H
|Ψ+〉

Fig. 2.4. The entanglement generating gate.

Toffoli and Fredkin gates shown in Fig. 2.5 are examples of three-qubit gates.

Toffoli gate, also known as controlled-controlled-NOT or CCNOT, consists of two

control qubits and one target qubit. When the first and second qubits will be in state

|1〉, then the NOT gate X will be applied to the third gate, but nothing will happen in

all other cases. For the Fredkin gate, a SWAP gate is applied on the second and third

qubit when the first one is in state |1〉, nothing will happen otherwise. Therefore,

this gate is also known as the controlled-SWAP gate.

Gates are drawn from left to right in a diagram but mathematically they appear
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in order from right to left. For example, the gate in Fig. 2.4 is written as

∣∣Ψ+
〉

= CNOT (H ⊗ I) |00〉 . (2.25)

|a〉

|b〉

|c〉

|a〉

|b〉

|ab⊕ c〉

×
×

|a〉

|b〉

|c〉

|a〉

|c〉

|b〉

Fig. 2.5. (a) Toffoli and (b) Fredkin gates.

The set of elementary gates used to perform all kinds of computations is called

the universal set of gates [37]. There are several universal sets of gates. Hadamard,

π/8, and a CNOT gate can make one of the sets of universal quantum gates [32]. The

number of gates used to implement a circuit is called quantum cost of the circuit.

Quantum algorithms are used to solve a particular problem. The most popular quan-

tum algorithms are Shor’s factoring algorithm [38] and Grover search algorithm [39].

The former is an exponential speedup over classical factoring algorithm, and the latter

is a quadratic speedup.

The gates and circuits in quantum computing are made reversible. The reversible

circuits are the ones with the same number of outputs as the number of inputs, and

there is also a one-to-one correspondence between input and output states. Landauer

[40] proved that the minimum energy dissipation for the processing of information is

KT ln 2. Bennett et al. [41] proposed that the energy dissipation can be avoided if

the information processing is made reversible.

The conditions necessary for constructing a quantum computer are known as Di-

Vincenzo’ criteria [31]. Five requirements for quantum computations are scalability
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of the physical system, ability to initialize the qubits in a particular basis state, long

decoherence time, universal set of gates, and measurement capability. Two more con-

ditions are added for quantum communication, which are the ability to interconvert

stationary and flying qubits, and the ability to transmit the qubits between two lo-

cations. Some physical systems used to construct a quantum computer are: ion trap,

neutral atoms trapped in an optical lattice, superconductors, quantum dots, nitrogen

vacancy centers in diamond, optical, and topological.

2.2 Ternary Quantum Gates

In quantum technologies, hybrid circuits are sometimes employed, which are a combi-

nation of binary and multivalued circuits. Such gates and corresponding circuits may

be advantageous in some ways, such as the reduction in inputs and outputs, reduction

in the quantum cost, and the complexity of interconnects. Ternary logic is the most

popular multi-value logic. The basic unit of information for multivalued logic is called

a qudit and that of ternary logic is called a qutrit. Khan and Perkowski [42] showed

that the ternary logic needs fewer gates comparing with its respective binary system.

A binary quantum system requires n2 = log2N qubits for a Hilbert space of dimen-

sions N . On the other hand, an m-valued quantum system requires nm = logmN

qudits, we have

nm = logmN =
log2N

log2m
=

n2

log2m
. (2.26)

Therefore, an m-valued quantum system requires 1/ log2m times the memory of its

binary counterpart. Hence, a logarithmic reduction in the number of qudits for an

m-valued logic. It is also shown in [42] that m = 3 is the most favorable choice.

Haghparast et al. [30] proved that the ternary is 37% more compact than binary.
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Therefore, by using ternary logic gates, we can reduce the cost of circuits and make

them more efficient.

In ternary quantum logic, the state |0〉, |1〉 and |2〉 are computational bases. A

state can be in a superposition of these three basis states, and is written as

φ = α |0〉+ β |1〉+ γ |2〉 , (2.27)

with α, β and γ being complex numbers such that |α|2 + |β|2 + |γ|2 = 1. The state

vector |ψ〉 is a three-dimensional column vector

|ψ〉 =


α

β

γ

 = α


1

0

0

+ β


0

1

0

+ γ


0

0

1

 . (2.28)

The elementary gates for ternary logic are 3 × 3 unitary matrices [42–46]. The

qutrit gates and their symbols are shown in Fig. 2.6, where Z3(+1) shifts the qutrit

state by 1 and Z3(+2) gate shifts the qutrit state by 2. Z3(01), Z3(12) and Z3(02)

permute the states |0〉 and |1〉, |1〉 and |2〉, and |0〉 and |2〉 respectively [42,46].

+10 0 1
1 0 0
0 1 0


+20 1 0

0 0 1
1 0 0


010 1 0

1 0 0
0 0 1


121 0 0

0 0 1
0 1 0


020 0 1

0 1 0
1 0 0


Fig. 2.6. Quantum one-qutrit gates.

Analogous to the Hadamard in binary, there is a Chrestenson transform that
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creates a superposition state from the bases states and is written as [47,48]

CH =
1√
3


1 1 1

1 ω ω∗

1 ω∗ ω

 , (2.29)

where ω = exp(2πi/3). The ω is a cube root of unity, that means that it is equal to

unity if we raise it to the cubic power.

A two-qutrit state is written as

|ψ〉 = |φ1〉 ⊗ |φ2〉 =
(
α1 |0〉+ β1 |1〉+ γ1 |2〉

)
⊗
(
α2 |0〉+ β2 |1〉+ γ2 |2〉

)
=α1α2 |00〉+ α1β2 |01〉+ α1γ2 |02〉+ β1α2 |10〉+ β1β2 |11〉+ β1γ2 |12〉+

γ1α2 |20〉+ γ1β2 |21〉+ γ1γ2 |22〉 . (2.30)

The two-qutrit gates analogous to CNOT gate in Fig. 2.3 is such that the U is

applied when the controlling qutrit is at |2〉 otherwise the second qutrit does not

change. Here, U is one of the five one-qutrit gates in Fig. 2.6. The Toffoli gate

is implemented in such a way that U is applied on the third qutrit when both the

controlling qutrit at |2〉. The one-qutrit gates are called shift gates and the two-qutrit

gates are referred to as Muthukrishnan-Stroud (MS) gates [49]. The shift gates and

MS gates have quantum cost unity [50,51]. We will further discuss ternary gates and

circuits in Chapter 11.

The physical realization of ternary logic was suggested by Ref. [49] for an ion-trap

quantum computer, by Ref. [52, 53] for a Josephson junction, by Ref. [54] for cold

atoms, and by Ref. [55] for entangled photons. Some circuit architectures are better

described by the multi-valued logic. In certain systems containing the non-Abelian
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anyons, called metaplectic anyons, qutrits naturally appear. We will discuss ternary

gates with metaplectic anyons in Chapter 11.

2.3 Computational Complexity

Is a quantum computer more powerful than a classical computer? The answer is in

the computational complexity theory. To discuss the computational complexity, we

will first talk about the questions such as: what is computable? And which problems

are solvable and how efficiently? In 1936, Alan Turing proposed a thought machine

to answer these questions [56]. A classical computer is based on a Turing machine

model, so we will use these two interchangeably. Turing showed that there exists a

universal Turing machine that can simulate any problem that is solvable on any other

hardware. This machine can truly capture the algorithmic process. Alonzo Church

simultaneously arrived at a similar result [57].

The classical Church-Turing thesis can be stated as, Any computation process or

algorithm that can be devised by a mathematician can be effectively implemented on

a Turing machine.

After the invention of the transistor, several other models were suggested. So for

the comparison of the models, efficiency became an important factor. The Church-

Turing thesis was modified and strengthened with the word efficient. According to the

strong Church-Turing thesis : Any computation that can be performed by any physical

machine can be simulated efficiently by a Turing machine.

The Church-Turing thesis and the strong Church-Turing thesis were stated for

the deterministic Turing machine. Later, some algorithms were devised for which a

solution could be found with some bounded probability [58]. One of the examples is

the Solovay-Strassen algorithm, which appeared in 1977 [59] for finding whether an
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integer is a prime or not. It did not answer with certainty but with some probability.

These kinds of algorithms could not be efficiently implemented on a deterministic

Turing machine. A probabilistic Turing machine can make a random choice at each

step. The modified strong Church-Turing thesis states that: Any computation that

can be performed by any physical machine can be simulated efficiently by a probabilistic

Turing machine.

Since nature is quantum mechanical, another challenge to the strong Church-

Turing thesis came from quantum theory. Quantum theory is not based on probabil-

ities, but on probability amplitudes, so complex numbers are used. And in addition,

there is a measurement problem in quantum theory. The quantum Turing machine

should have circuits that preserve the inner product. The quantum circuit model is

equivalent to the quantum Turing machine [58].

In 1985, David Deutsch [2] proposed a model of the Turing machine that is based

on the laws of quantum theory. Now the strong Church-Turing thesis can be stated

as: A quantum Turing machine can efficiently simulate any realistic model of compu-

tation.

Now the question of what is computable is answered regarding what is computable

on a Turing machine. There is a problem of uncomputability or undecidability called

the halting problem. On a computer, an algorithm runs for several steps and gives out

an answer, yes or no. For simple programs, we know that a computer will halt after

some number of steps or run forever. But for some complex algorithms, it is not easy

to know if it will halt. Alan Turing proved that it is impossible to have an algorithm

that can tell if an arbitrary algorithm will eventually halt. It is related to Gödel’s two

incompleteness theorems, according to which a formal axiomatic system cannot be

complete and consistent at the same time. In every formal system, some statements
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cannot be proved or disproved by using the same system. The undecidability brought

great philosophical consequences to the field of computing [60,61].

Apart from the halting problem, to classify the difficulty of solving different prob-

lems on a Turing machine, the idea of complexity classes is introduced. These classes

share some common features when one talks about the resources of time and space

needed to solve a problem. The resource of time is related to the number of steps

needed for an algorithm to solve a problem.

The complexity class P is the set of problems that can be solved on a classical

computer in polynomial time, whereas when the solution of a problem can be checked

on the classical computer, then the problem is in the complexity class NP. For exam-

ple, there is no fast way to solve the problem of finding factors of a large number, so

it is not in the class P. But if someone gave the factors, then it can easily be checked

if it is the right solution. Therefore, the factor finding problem is in the class NP.

The P is a subset of the NP. Whether P = NP is an open problem. It is one of the

million-dollar problems of Clay Mathematics Institute.

When a problem needs small space resources but no limit on time, then it falls

into the complexity class of PSPACE. Another class is BPP when the problem can

be solved in polynomial time if a bounded probability of error is allowed. The BQP

is defined as the set of problems that can be solved on quantum computers with some

bounded probability of error is allowed [62]. This complexity class lies somewhere

between the classes P and PSPACE [32]. It implies [63] that

P ⊆ BPP ⊆ BQP ⊆ PSPACE, and P ⊆ NP ⊆ PSPACE. (2.31)

This is shown in the Fig. 2.7. There are many more complexity classes, see [33, 62].

So far, there is no proof that the containments in Eq. 2.31 are strict, but it is widely
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believed that P6=NP, NP 6=PSPACE, and BPP 6=BQP [63]. It is a non-trivial

problem to prove that the quantum computer is more powerful than the classical

computer, despite evidences in the favor of this proposition [32].

PBPP

BQP

NPPSPACE

Fig. 2.7. Complexity classes [63].

To analyze the cost of an algorithm with the increase of the input size, three

notations are used in computer science. When two functions f(n) and g(n) are

defined on non-negative integers, we say f(n) is in the class of functions O(g(n)) or

f(n) in O(g(n)) if there are positive integers c and N such that for all values of n ≥ N ,

f(n) ≤ cg(n). That is g(n) is an upper bound on f(n) up to a constant factor for

large n. O is useful for worse case scenario or upper bound of the resources consumed

by an algorithm. Ω notation is used for a lower bound on resources. A function f(n)

is Ω(g(n)) if there are positive integers c and N such that for all values of n ≥ N ,

f(n) ≥ cg(n). We say that f(n) is Θ(g(n)) if it is both O(g(n)) and Ω(g(n)). As an

example, let 24n+ 4[log n] + 8 be gates required to perform a task. For large n, only

the first term is important. The function 2n is in the class O(2n2) since 2n ≤ 2n2 for

large n.

The calculations show that there is a significant speedup in solving problems on

a quantum computer. Peter Shor [3] invented an algorithm to find prime factors of

a number on the quantum computer in O((logN)3) steps. The same problem on a
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classical computer takes is O(N1/3) steps. Therefore, it is an exponential speed-up

solving the prime factors finding a problem on a quantum computer. Simon’s period

finding problem falls into BQP class [58] and the Grover search algorithm has a

quadratic speedup comparing with the classical search. See [32, 63] for a detailed

analysis of the complexity of different quantum computing algorithms.
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Chapter 3

Topology and Knot Theory

The knot theory is of fundamental importance in topological quantum computing.

Topological quantum gates are made up of knots, links, and braids. The integral

along the worldlines of quasiparticles in topological materials gives knot invariants.

The geometric phases are associated with such invariants. The knot theory is studied

as a branch of topology.

3.1 Topology

The equivalence of two spaces in Euclidean geometry is shown by comparing their

lengths and angles, but angles and lengths are irrelevant in topology. Instead, imagine

that the spaces are made up of a stretchable and moldable material so that we can

continuously deform one space to the other without tearing. For example, a sphere

cannot be turned into a torus without tearing a hole, so they are topologically dif-

ferent. A hole or a handle in a topological space is called a genus. From this point

of view, a disk is equivalent to a rectangle or a square but different from an annu-

lus. A curve and a straight line are equivalent shapes, but both are different from

a closed curve. A closed curve is equivalent to a circle. A torus is equivalent to a

coffee cup as each has one hole in it, and we can smoothly deform one into the other.

Some examples of topological spaces are shown in Fig. 3.1. For further knowledge
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on topology, see Appendix B. Topology is the study of properties that are preserved

= = 6= =

= = 6=

=

6=

Fig. 3.1. Equivalence of topological spaces.

under continuous deformation in such a way that the dimension of the diagram should

not change. The continuous deformation is called homeomorphism. The topological

properties that characterize the equivalence of two shapes under homeomorphism are

called topological invariants. These invariants can be numbers, or certain properties

of the topological spaces like connectedness, compactness, homotopy group, homology

group, or cohomology group [64–68]. A genus is a topological invariant, but in some

cases, it is not a very useful one.

The first homotopy group provides an intuition for anyonic statistics and braids.

Consider two regions X1 and X2 in Euclidean space as shown in Fig. 3.2. Imagine

that any loop in X2 can be shrunk to a point, but when there is a hole as in X1,

a loop cannot be shrunk to a point. From the Fig. 3.2, α1 can be deformed to β1,

and γ1 can be deformed to δ1, but the loops α1 and β1 cannot be deformed to γ1 and

β1. When two loops can be continuously deformed to each other then they are in the

same equivalence class or a homotopic class [66]. Spaces are distinguished by working
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Fig. 3.2. In the region X1, the loops β1 and α1 can be deformed to each other but they
cannot be deformed to δ1 or γ1. In the region X2, both the loops can be shrunk to identity.

with equivalent classes rather than loops. This suggests that the holes are determined

by using these equivalence classes. The group structure on these equivalence classes

is called the first homotopy group or a fundamental group represented by π1(X). See

Appendix A for the formal definition of a group. The group axioms of a homotopy

group are described below. The composition of two group elements corresponds to

two loops that start at the same point and are combined to make the third one. In

Fig. 3.2, γ1 and β1 loops are combined to make γ̃ that can be written as γ̃ = γ1 β1.

This loop first goes along the β1 then along the γ1. The inverse β−1
1 is given by a

loop that goes in the opposite direction. The identity loop is the one that stays at

some point all the time. The loop ε = β1 β
−1
1 is not an identity but homotopic to the

identity [66]. When these loops are physically made by the motion of particles on a

two-dimensional space then they make braids in the third dimension which is time.

3.2 Knot Invariants

A knot is a closed loop embedded in the three-dimensional space. A link is a disjoint

union of more than one loop. A knot diagram is a projection of a knot into the plane

R2 such that the points are segments and double points are under-crossings and over-
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crossings. A circle is an unknot or a trivial link. The simplest non-trivial link is a

Hopf link. For example, the trefoil, figure 8 knot, and Hopf link are shown in Fig.

3.3. For further study on knots, see [69–71].

Fig. 3.3. Trefoil knot, figure 8 knot, and the Hopf link.

Two knot diagrams are equivalent if we can bend, stretch and smoothly deform

one to the other without cutting. In knot theory, the equivalence of two knots is

called ambient isotopy. Other than stretching and bending, a simple way of showing

that two knots are isotopic to each other is by a finite number of the Reidemeister

moves shown in Fig. 3.4. These moves are always permitted but not always sufficient

to show the isotopy of two knots. When a knot is modified by applying these moves

on a small portion of the diagram while keeping the rest of the diagram fixed, we get

the formulas called Skein Relations.

The knot invariants are a set of rules that give the same output for two equivalent

knots. That is, these invariants should not change under an ambient isotopy. There-

fore, different knots are distinguished by their knot invariants. The knot invariants

have their merits and limitations. The knot polynomials are among several knot in-

variants assigned to knots and relatively easy to calculate. The Jones polynomial [72]

is of particular interest to us because of its connection to physics. This connection

was first explored by Edward Witten in 1989 in his seminal paper [73]. Physically,

the trajectories of anyons in spacetime make knots. The knot invariants of trajecto-

ries are calculated by the path integral approach to the Chern-Simons theory. The

present form of Jones polynomial is due to Kauffman who formulated it in a simpler
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= =

(a)

= =

(b)

=

(c)

Fig. 3.4. Reidemeister moves: (a) The move I is undoing a twist in the strand, (b) the move
II separates two unbraided strands, and (c) the move III slides a strand under a crossing.

way [69].

3.2.1 Kauffman Bracket

The Kauffman bracket is a polynomial invariant of unoriented link. The normalized

version of Kauffman bracket yields the Jones polynomial when framing of a knot or

a link is also considered. A Kaufman bracket 〈L〉 of a knot or a link L assigns to

each crossing a number that is either A or B as in diagrammatic Eq. 3.1. The values

of variables A and B are to be computed in present section. This Kauffman skein

relation is used recursively until we get a resulting link diagram to have no crossings.

Thus it consists of a finite set of unlinks or circles [69, 74]. The Kauffman skein

relation is written as

= A +B
. (3.1)

Here the variables A and B are assigned according to the convention such that when

the first strand goes over the second while going in upward direction, we call it a

positive crossing or an overcrossing,. In contrast, when the first strand goes below

the second while going in upward direction, we call it a negative crossing or an

undercrossing. The variables A and B on the right hand side will exchange their

places comparing with the case of overcrossing. Now we will look for the invariance
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of Kauffman bracket under the Reidemeister moves. The Kauffman bracket is not

an invariant under the Reidemeister move I. We will see later that it is an invariant

when one considers a strand not as a string but as a ribbon or frame. First, we will

discuss the invariance of Kauffman bracket under the moves II and III. For the move

II, we can write an equation as

= A +B

= A

[
B +A

]
+B

[
A +B

]

= AB +A2 +BAd +B2

= AB +(A2 +B2 +BAd)
, (3.2)

where the d is a real number assigned to an unknot or a circle. For the Reidemeister

move II, only the first term in Eq. 3.2 must survive. Therefore, we must have the

following conditions

AB = 1, A2 +B(Ad+B) = 0. (3.3)

From the first condition in Eq. 3.3, we have B = A−1. The second condition would

become

A2 +B(Ad+B) = A2 + A−1(Ad+ A−1) = A2 + d+ A−2,

⇒ d = −(A2 + A−2). (3.4)
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From this last relation we can get another relation which will be useful later

Ad+B = −A(A2 + A−2) + A−1 = −A3. (3.5)

The Kauffman bracket is invariant under the Reidemeister move III as shown in Eq.

3.6,

= A +B = A +B =
. (3.6)

The invariance of Kauffman bracket under the Reidemesister move I is shown in Eq.

3.7,

= A +B = Ad +B

= (Ad+B) = −A3

. (3.7)

In the last line of Eq. 3.7, Eq. 3.5 is used. The Kauffman bracket polynomial is

based on the skein relations which are written as

〈L〉 = A〈LA〉+ A−1〈LB〉

〈L ∪O〉 = d〈L〉 = −(A2 + A−2)〈L〉

〈O〉 = 1 (3.8)

where L is a link and O refers to an unknot or a trivial link. The first relation is the

same as 3.1, the second relation tells that if a knot or a link is a union of a knot and

an unknot then the resultant knot would be d times that knot. The third relation
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implies that an isolated unknot is assigned a value of 1.

As we can see, the Kauffman bracket is not an invariant under the Reidemeister

move I. When two knot diagrams are the same under only Reidemeister moves II,

and III then the diagrams are called regular isotopic but not ambient isotopic. The

smoothing out of the twist gives a factor of −A3. This factor will be compensated for

by taking a twist in a framed or ribbon strand as in Fig. 3.5. A ribbon strand has

some width rather than a line. Hence a ribbon is related to a string with a factor −A3

multiplied. In quantum theory, it is related to the phase accumulated by a particle

with a spin when it does a 2π rotation.

→ = −A3

Fig. 3.5. Straightening a loop in a ribbon gives a twist factor.

3.2.2 Jones Polynomial

The Kauffman bracket is not an invariant under all the Reidemeister moves. We need

to account for the twist factor or the self linking. This twist is also called a writhe.

Now we will also assign an orientation to the knot diagrams. If w+ is an overcrossing

and w− is an undercrossing for an oriented knot or link, then the writhe is given by

w(L) = w+ − w−. We can construct a quantity as

VL(A) = (−A3)−w(L)〈L〉. (3.9)
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This is called Jones polynomial. It is an invariant under all three Reidemeister moves.

Two knots are equivalent if they have the same value of the Jones polynomial. A twist

that contributes a factor (−A−3) would get canceled with (−A3)w(L). With the change

of variable t1/2 = A−2, the Jones polynomial agrees with the original form in Jones’

paper [72]. The Jones polynomial is an invariant under orientation change. The skein

relations for Jones polynomial can be written as

−t−1V (L+) + (t1/2 − t1/2)V (L0) + tV (L−) = 0, (3.10)

where L0, L−, L+ are shown in Fig. 3.6. The writhe is +1 for L+, −1 for L−, and

L+ = , L0 = , L− =

Fig. 3.6. Skein relations for Jones polynomial

0 for L0. The Jones polynomial is an invariant for a knot’s mirror image when t is

replaced by t−1. The Jones polynomial for a Hopf link is V (Hopf) = −t5/2− t1/2. The

polynomial invariant for the knot in Fig. 3.7 is given as follows. Since L+ and L− are

isotopic to an unknot, we have V (L+) = V (L−) = 1, that is the unknot is assigned

the value of the Jones polynomial as 1. Therefore,

−t−1V (L+)+(t1/2 − t1/2)V (L0) + tV (L−) = 0 (3.11)

V (L0) =
t−1 − t

t1/2 − t−1/2
. (3.12)

The knot invariants are calculated in terms of topological quantum field theory

(TQFT) and quantum group in Appendix C. The TQFT is discussed in Chapter

7 and the quantum group is defined in Appendix C.
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Fig. 3.7. Skein relations for unlinked circles.

3.3 Braid Group

The trajectories of N particles from their initial position at a time ti to the final

position at a time tf are in one-to-one correspondence with the elements of the braid

group BN . The time direction is taken vertically upward. The trajectories of particles

are equivalence classes of all those trajectories which can be continuously deformed

into each other. Assume that the particle number is fixed, which is the same as saying

that there are no loops inside the braids. We will discuss in Chapter 7 that the loops

correspond to the creation and annihilation of particles.

Let the braiding of the first and the second strand be represented by σ1 and

braiding of the second and the third strands be represented by σ2 and so on. The

braid group generators are shown in Fig. 3.8. (a) is the identity element of the braid

group. It consists of all straight strands. As shown in (b), the clockwise exchange

of strands i and i + 1 is represented by the generator σi, whereas counterclockwise

exchange is represented by the inverse σ−1
i . The group composition of two braids is

given by stacking the strands on top of each other. For a non-Abelian group, the

multiplication is noncommutative, and the order of stacking matters in this case.

This is because of the degeneracy of the ground state, as discussed in Chapter 4. The

braid group generators also satisfy two conditions shown in Fig. 3.8 (c) and (d).

σiσj = σjσi for |i− j| > 1, (3.13)

σiσi+1σi = σi+1σiσi+1. (3.14)
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The second relation is the famous Yang-Baxter equation.

...

(a) Identity (b) σi and σ−1
i

=

(c) σiσj = σjσi for |i− j| > 1

=

(d) σiσi+1σi = σi+1σiσi+1

Fig. 3.8. The braid group; generators and their properties.

3.3.1 Matrix Representation of the Braid Group

The generators of a braid group above can be written in the matrix representation as

follows. Suppose, σi represents a positive crossing when two stands are going upward

in such a way that the first strand is at the top and the second strand is at the

bottom. The σ−1
i represents a negative crossing when the second strand is at the top

and the first is at the bottom while going upward. See [75] for further details.

To find the braid matrices, first consider the case of a two-strand braid group B2.

For positive crossing, that is σ, we assigned a value ψ12 = t and ψ21 = b. Similarly,

for negative crossing, that is σ−1, we assign ψ−1
21 = t−1 and ψ−1

12 = b−1. When there is

no strand connecting the upper and lower points, the corresponding values are zero.

Therefore, ψ11 = ψ−1
22 = 0 and ψ−1

11 = ψ−1
22 = 0. We can write the σ matrices as

σ1 =

0 t

b 0

 , σ−1
1 =

 0 b−1

t−1 0

 . (3.15)
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For a braid in Bn, we would have n × n matrix representation. B2 and its inverse

are shown in Fig. 3.9 (a). To check whether these are the inverse of each other,

compose σ with σ−1. Since we get σ1σ
−1
1 = I2, the braid gives an identity which is

also the Reidemeister move I as shown in Fig. 3.9 (b). We can extend the procedure

(a)

=

(b)

Fig. 3.9. (a) The generator σ1 and σ−1 of the braid B2, (b) the composition of σ and σ−1.

for writing the braid matrices to the case of B3. On similar lines, we can write the σ

and σ−1 matrices for three strands shown in Fig. 3.10.

σ1 =


0 t 0

b 0 0

0 0 1

 , σ2 =


1 0 0

0 0 t

0 b 0

 ,

σ−1
1 =


0 b−1 0

t−1 0 0

0 0 1

 , σ−1
2 =


1 0 0

0 0 b−1

0 t−1 0

 . (3.16)

It is easy to check that σ1σ
−1
1 = σ2σ

−1
2 = I3. The Yang-Baxter equation from the

Fig. 3.8 is given by

σ1σ2σ1 = σ2σ1σ2 =


0 0 t2

0 bt 0

b2 0 0

 . (3.17)
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(a) (b) (c) (d)

Fig. 3.10. The generators σ1, σ
−1
1 , σ2, σ

−1
2 in B3

3.3.2 Knot and Physics

A knot or a link can be obtained from a braid by the closure. There are two types

of closures. The trace closure is identifying the top ends of the strands to their

corresponding bottom ends by keeping track of each strand. So that each colored

strand at the top is connected to the same color at the bottom. Whereas the plat

closure is to identify each strand at the top to the adjacent end at the bottom without

knowing the paths in the middle. That is, to identify the rightmost strand at the top

to the rightmost at the bottom without bothering about its color. These two types of

closure are shown in Fig. 3.11 (a) and (b). Physically, the strands are paths of moving

particles in a time direction that is taken upward. A closure corresponds to taking the

trace of multi-particle input and output states. The braiding causes the change in the

phase of the wave function. These phases are geometric phases discussed in Chapter

4. If we get the same phase for the motion of an anyon clockwise and anticlockwise

around the other anyon then the braid group is an Abelian or commutative, otherwise

it is a non-Abelian group.

The amplitude of the process in quantum physics is related to the Kauffman

bracket. For example, a Hopf link in Fig. 3.11 (a) is corresponding to the creation

of two pairs of particles and antiparticles in a (2 + 1)-dimensional spacetime, their

braiding, and then fusion. The particles may or may not be fused to the vacuum.

It will have some probability amplitude associated with the fusion. This probability
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(a) (b)

Fig. 3.11. The trace closure and plat closure.

amplitude corresponds to taking the trace of a braid. The quantum amplitude for

these processes does not depend on the geometry, speed of evolution, or the distance

between particles, but depends only on the topology of the worldlines. The same

quantum amplitude occurs when two paths have the same topology. That is, the

quantum amplitude is a knot invariant, we will see that in Chapter 7. Edward Witten

made the connection between the knot theory and quantum physics [73]. He won the

field medal for this work with Vaughn Jones in 1990.
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Chapter 4

Geometric Phases in Quantum Physics

Anyons are charge-flux composites that arise in a highly correlated system, such as

the quantum Hall state. The interaction between these charges and fluxes is through

braiding. Topological quantum gates are implemented by braiding anyons on a two-

dimensional manifold. The quantum gates are the unitary operators that change a

system from one state to the other, as explained in Chapter 2. The state-space of a

topological quantum gate is the ground state degeneracy of the system. This braiding

and the ground state degeneracy can be understood through geometric phases [76],

such as Aharonov-Bohm phase [77] and Berry phase [28].

4.1 A Charged Particle in a Magnetic Field

Classically, the motion of a nonrelativistic charge particle in a magnetic field is de-

scribed by the Lorentz equation given as

mẍi = q
(
E + (v×B

)
). (4.1)
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The electric field E and the magnetic field B can be written in terms of vector

potential A = (Ax, Ay, Az) and scalar potential φ(x) as

E = − ∂

∂t
A−∇φ, B = ∇×A. (4.2)

In quantum mechanics, the momentum p is used instead of v and its status is raised

to an operator p = −i~∇. The Schrödinger’s equation for a charged particle moving

in an electromagnetic field can be written as

i~
∂ψ(x)

∂t
=
[ 1

2m

(
p− qA

)2
+ qφ

]
ψ(x). (4.3)

Let ψ0(x) be an eigenstate of the Hamiltonian when there is no vector potential. The

wave function of the particle in the presence of vector potential is related to ψ0 as

ψ(x) = exp

(
i
q

~

ˆ
A · dx

)
ψ0(x). (4.4)

The wave function in a magnetic field will get a phase φ = q
~

´
A · dx other than

the dynamical phase. A dynamical phase is the one that a wave function gets during

the time evolution. The momentum operator (p − qA) appears as a combination of

p = −i~∇ and the vector potential A.

4.1.1 Gauge Transformation

Let us transform the vector potential as

A→ A
′
= A+∇Λ, φ→ φ′ = φ− ∂Λ

∂t
, (4.5)
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where Λ is a scalar function. The transformation in Eq. 4.5 is called gauge transfor-

mation. Now the Schrödinger equation will be written in terms of A′, ψ′, and φ′. The

wave function in Eq. 4.4 can be written as

ψ(x)→ ψ′(x) = exp

(
i
q

~

ˆ
A′ · dx

)
ψ0(x)

= exp
(
i
q

~
Λ(x)

)
ψ(x). (4.6)

As a result of the gauge transformation, the wave function gets an additional phase

of exp
(
i q~Λ(x)

)
. The fields E and B will remain invariant under this transforma-

tion. The physical quantities are modulus squared, so the complex phases do not

appear. This gauge transformation is local as Λ(x) is a function of x. The global

gauge transformation is not as significant. It is independent of the position and is

corresponding to the transformation of the whole system. The gauge transformation

should be thought of as a phase transformation rather than some scale transformation

as the name implies.

Quantum field theory of the electromagnetic field is the Abelian gauge field. Yang

and Mills in 1954 pointed out that this phase function Λ(x) can be a matrix instead

of just a number. Since matrices are non-commutative in general, this phase trans-

formation is non-Abelian. The Yang-Mills field is a non-Abelian gauge field. The

Chern-Simons theory, which is the effective field theory for the topological phases,

also used to compute the knot polynomial, is a type of non-Abelian gauge field in two

dimensions. The gauge theory is discussed in Appendix D.
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4.1.2 Aharonov-Bohm Effect

In 1959, Yakir Aharonov and David Bohm [77] suggested that in quantum mechanics,

the vector potential is not just a mathematical artifact, but it leads to detectable

results. The effect of vector potential can be observed in a region where B = 0 but

A 6= 0. They proposed an experiment shown in Fig. 4.1. Suppose an infinitely long

solenoid having a current through it produces a magnetic field along the z-axis. Since

according to the right-hand rule the magnetic field is along the axis of the solenoid

and zero outside, it can be taken as a tube of magnetic flux. The electron beam from

the source S is separated into two parts as shown in Fig. 4.1. The two parts of the

beam combined at the screen make an interference pattern. The phase we get with

the wave function of a charged particle in a magnetic field is given in the Eq. 4.4.

The phase acquired by the evolution of the wave function around a loop C can be

derived as

φ =
q

~

˛
A · dr =

q

~

ˆ
S

∇×A · ds =
q

~

ˆ
S

B · ds =
q

~
Φ, (4.7)

where dr is a segment of the loop C and S is the surface enclosed by C, ds is the

surface area element, and Φ is the total flux through S. This phase is gauge invariant,

i.e. it is independent of the choice of A provided that it gives the same B. This phase

is topological, as it does not depend on the shape of the path around the flux. Also,

it remains invariant under the deformation of the surface that makes Φ fixed. The

two paths in Fig. 4.1 are facing different relative vector potentials, hence interference

fringes are modulated by the magnetic flux in the coil which is affected by the change

of the electric current through the coil. Therefore, the choice of potentials instead of

fields is not merely a convenience but a necessity. The electromagnetic field needs to
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be described in terms of an abstract four-dimensional vector Aµ = (A, φ).

Φ

Fig. 4.1. Aharonov-Bohm Effect: switching on and off the flux in the flux tube, causes a
shift in the interference fringes.

4.1.3 Anyon and Aharonov-Bohm Effect

An anyon is a quasiparticle having fractional charge and fractional statistics. We can

think of these particles as a composite of charge q and flux Φ. These composites

arise in two-dimensional physical systems [16, 17]. We will explain the formation of

these composites in Chapters 5 and 7. Let us exchange two anyons in a 2-dimensional

space. The movement of anyons around each other in the (2+1)-dimensional space, is

described by the braid group, see Chapter 3. The charge 1 going around the flux of 2

gets the Aharanov-Bohm phase eiqΦ. At the same time, the flux of 1 going around the

charge of 2 and gets the phase eiqΦ, as in Fig. 4.2. Therefore, the system gets a total

phase e2iqΦ. This phase depends on the number of times one charge circulates the

other, but it does not depend on the shape of the path, provided that the adiabaticity

condition is satisfied. The adiabaticity condition dictates that the charges must be

moved slowly enough so that the system is not perturbed drastically from the ground

state. The number of times a charge circulates another charge is called the winding

number. The phase will be written as eimqΦ when the winding number is m. The

statistical angle φ = qΦ on an exchange corresponds to the phase shift of their wave
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function. The 2π rotation of an anyon around itself gives a phase of eiqΦ due to the

charge ring around it. The spin-statistics theorem [78] says that if s is the effective

spin of an anyon taken counterclockwise, we get a phase ei2πs. Thus, we have a non-

trivial spin s = qΦ
2π

[29]. The topological spin or a twist of an anyon is the rotation

of the charge around its own flux. The phase due to the topological spin and the

phase due to the braiding are related to each other. We will discuss that again later

in Chapters 7, 8 and Appendix C.

Φ Φ

q1 q2

C

Fig. 4.2. Anyons moving around each other acquire Aharanov-Bohm phase.

4.2 Berry Phase

The Aharanov-Bohm phase is a special case of the geometric phases when underlying

geometry is changed by the magnetic field in an abstract way [79]. A more general

geometric phase, acquired by a wave function during the evolution in parametric

space, is called the Berry phase. As an example, consider a spin-1/2 particle in

a magnetic field that is oriented in a particular direction. By slowly varying the

magnetic field orientation and bringing it back to the initial value, the system will

come back to the initial state up to an overall phase with the wave function of the

particle [29].

Let us compute the geometric phase in quantum mechanics for a general situation

described by two variables r and R(t). Let r describe a fast motion and R(t) be a
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variable that describes a slow motion. The slow variable describes a parameter that

varies slowly with time and modulates the fast variable. For example, the motion of

electrons of the atoms in a diatomic molecule is described by the fast variable r and

the vibratory motion of atoms is described by a slower variable R(t). We suppose

that the system returns to the original state after completing a loop in parametric

space. The adiabaticity condition should be satisfied, which means that the motion

of the system in the parametric space should be slow enough so that the system does

not go to the excited state. The Schrödinger equation with state vector ψ(t) can be

written as

i~
∂

∂t
|ψ(t)〉 = H(R(t)) |ψ(t)〉 . (4.8)

Let |n,R〉 be an eigenstate of the Hamiltonian that has energy eigenvalue as En(R).

As the R(t) is slowly varying, at an instant of time t we can take |n,R(t)〉 as a basis

vector, therefore we can write

H(R(t)) |n,R(t)〉 = En(R(t)) |n,R(t)〉 . (4.9)

The solution of Schrödinger equation is given by

|ψ(t)〉 = eiγn(t) exp
[
− i

~

ˆ t

0

dt
′
En(R(t

′
))
]
|n,R(t)〉 . (4.10)

The phase in brackets is the dynamical phase that depends on time, whereas γn(t) is

the Berry phase that depends on the geometry of parametric space. In 1984, Berry

pointed out that γn(t) has deep physical meaning and cannot be ignored [28]. Consider

a situation when the slow variable R(t) returns to the starting point (R(t) = R(T ))
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at a time t = T after completing a turn in the parametric space in a closed path C.

If we put the solution 4.10 in the Schrödinger equation, take derivative, and cancel

then exponentials on both sides, and then apply 〈n,R(t′)|, we get

γn(C) = i

ˆ t

0

dt′ 〈n,R(t′)| d
dt′
|n,R(t′)〉 = i

˛
C

dR · 〈n,R| ∇R |n,R〉 . (4.11)

One of the examples of the Berry phase is the evolution of a system from one ground

state to the other in topological materials. The degeneracy corresponds to the para-

metric space R(t). This idea is used in topological quantum computation in Chapter

9. In addition to the quantum computation, the Berry phase is also used to classify

the topological materials, as discussed in Chapter 6. The quantum analog of the

geometric phase in polarization optics was discussed by Pancharatnam in 1956 [80].

The non-adiabatic generalization of the Berry phase was proposed by Aharonov-

Anandan [81].

The topological aspect of the Berry phase is holonomy on a fiber bundle. The

holonomy is a failure of parallel transport around some manifold [71, 76] as shown in

Fig. 4.3 (a). A conic manifold is drawn because a cylinder is a trivial bundle, so

the geometric phase may not appear. A fiber bundle is a topological space that is a

product space locally, but globally it may have a different structure than the product

space. See Appendix B for the concept of the fiber bundle and parallel transport.

The parallel transport is moving a vector on a manifold such that the direction of

the vector keeps pointing in the same direction. In a plane or a flat space, the initial

direction and the final direction would coincide. But in a curved space, the initial

and the final directions are different in general. This can be visualized if we bring the

vector back after making a complete loop and match it with the initial direction, as

shown in Fig. 4.3 (b). If we start from the North Pole, parallel transporting the blue
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and red arrows while keeping the direction pointing in one direction, when we come

back to the North Pole, the final direction of the vector is different when comparing

with the starting one.

Two vectors at two different positions at the manifold belong to different tangent

spaces, so they are not related. To compare the two vectors, a covariant derivative

is taken. It involves an extra term with the flat space derivative. The failure of the

covariant derivatives along two different paths gives the curvature. In our case, we are

not moving a vector in a physical space but in a space where vector potential and the

magnetic field strength play the role of connection and curvature respectively. This

is explained in terms of the gauge theory on fiber bundle in Appendix D.

(a) (b)

Fig. 4.3. (a) Parallel transport on curved space. (b) Geometric phase is the holonomy on a
fiber bundle [79].

4.2.1 Anyons on a Torus

The system may have multiple types of anyons categorized according to their topo-

logical charge. As we discussed in 1, anyons are charge-flux composite found in

topological materials. When two anyons are brought close to each other, their fusion

may result in another anyon or a superposition of several anyons. These two anyons

may annihilate to vacuum if they are antiparticles to each other. The ground state
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somehow knows what types of anyons can be created. Let there be two paths C1

and C2 on a torus along meridian and longitude, as shown in Fig. 4.4. Let T1 and

T2 be operators correspond to the creation of anyon-antianyon pair from the vacuum

and carrying around meridian and longitude respectively. T−1
2 T−1

1 T2T1 is two parti-

cles created, braided around each other and then re-annihilated. Since the operators

T1 and T2 are implemented with some time-dependent Hamiltonian [12], they are

unitary. These two operators do not commute with each other, we have

T2T1 = e−2iθT1T2. (4.12)

Therefore, the system has ground state degeneracy. As T1 is unitary, its eigenvalues

must have a unit modulus, that is, they are just complex numbers. The operation of

T1 on a state α can be written as

T1 |α〉 = eiα |α〉 . (4.13)

where α is the space of possible ground states. T2 |α〉 must also be a ground state

since T2 commutes with H. Therefore, we can write

T1(T2 |α〉) = e2iθeiα(T2 |α〉). (4.14)

Let us call this new ground state |α + 2θ〉 = T2 |α〉. On similar lines, we can generate

more ground states. Consider a system where anyons have a statistical phase θ =

πp/m, where p and m are relatively prime so that p/m is an irreducible fraction. The
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ground states can be written as

|α〉 , |α + 2πp/m〉 , |α + 4πp/m〉 , ..., |α + 2π(m− 1)/m〉 . (4.15)

The phase α + 2π = α so that we are back to the original state. Now we have

m independent ground states. Since anyons have the statistical angle θ = πp/m,

the charge-flux composite will get (q,Φ) = (πp/m, 1). When there is a fusion of n

elementary anyons then we have |n〉 = (q = nπp/m,Φ = n) = (nπp/m, n). When

there arem anyons, we have |m〉 = (πp,m). Now if we braid |n〉 = (nπp/m, n) around

one of these |m〉 = (πp/m), we obtain a net phase of 2πp which is equivalent to no

phase at all. Hence, the cluster of m elementary anyons is equivalent to a vacuum.

In this way, we have m species of anyon and m different ground states on torus [12].

The subspace used to implement the topological gates depends on a particular model

of anyons and also on the number of anyons present.

In the case of an annulus instead of a torus, the T1 operator corresponds to a

particle moving along a circular loop and T2 to the particle moving from the inside

edge to the outside edge. The degeneracy is 2. On similar bases, the degeneracy

for the higher genus space is mg, where g is genus. The genus is a handle in a

topological space. The integral along the path followed by a particle gives a phase

accumulated by the particle. It is an example of the Wilson line operator. We can

also explain the degeneracy using punctures on a topological surface, as discussed in

Chapter 7. The above discussion is related to the gauge invariance and the coupling

constant in Chern-Simons field theory [12] and the number of anyons in the fractional

quantum Hall effect as discussed in Chapter 5,. The total charge and flux of a fusion

of two particles must be zero: that is, we should get the vacuum. Therefore, the

antianyon must have charge −q and phase Φ. The phase of an anyon moving clockwise
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C1
C2

Fig. 4.4. Two non-trivial paths on a torus.

around another anyon is the same as an antianyon moving clockwise around another

antianyon. However, the phase of an anyon around an antianyon is −2φ. The fusion

of a particle with its antiparticle gives the vacuum, but when two particles are pushed

together, we get a charge 2q and flux 2Φ. Now, the phase of exchanging these two

particles is φ = 4qΦ/~.
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Chapter 5

Quantum Hall Effect

The physical systems for topological quantum computation are particles called non-

Abelian anyons [12, 27]. The non-Abelian anyons are found as quasiparticles in frac-

tional quantum Hall effect [17], and as Majorana fermions in topological supercon-

ductors [82]. The fractional quantum Hall effect and topological superconductors are

examples of the non-Abelian states of matter that are explained by topology. In

this chapter, we will discuss the quantum Hall effect. The topological aspect of the

quantum Hall effect and Majorana fermions in topological superconductors will be

discussed in the next Chapter 6.

5.1 Classical Hall Effect

The Hall effect was discovered in 1879 by Edwin Hall, about eighteen years before

the discovery of the electron. Let a magnetic field B be applied along the z-direction

to a metal conductor as shown in Fig. 5.1 (a). The conventional current under the

influence of the electric field is along the x-direction whereas the electrons move in

the -x-direction. Under the influence of the magnetic field B, electrons move in the

y-direction due to the Lorentz force F = q(E+v×B). As a result, the positive and

negative charges are accumulated on the opposite sides of the metal sheet. There is

a net electric field between two edges and a potential difference called Hall voltage.
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In a steady-state, the Hall voltage and the Hall conductance are given by

VH =
IB

ned
, ρ =

B

en
, (5.1)

where I, e, n, d respectively are the current, electron charge, electron density, and the

thickness of the material. In classical Hall effect, the Hall voltage increases linearly

with the magnetic field whereas the longitudinal voltage remains constant as shown

in diagram 5.1 (b).

(a)

ρxy

ρxx

B

(b)

Fig. 5.1. (a) The experimental configuration for the Hall effect [83] (b) Resistivity as a
function of magnetic field.

Fig. 5.2. Resistivity as a function of magnetic field in the quantum Hall effect [84].
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5.2 Integer Quantum Hall Effect

Almost a century later, the quantum Hall effect was discovered in 1980 by Klaus von

Klitzing et al. [85]. Electrons are bound to move on a two-dimensional surface of the

50 nm thin layer metal-oxide-semiconductor-field-effect transistor (MOSFET). After

lowering the temperature to ∼ 4K, the transversal resistivity is measured in a very

strong magnetic field (∼ 10T ) along the z-direction [86]. The plateaus appear in

the transverse Hall conductivity with simultaneous disappearance of the longitudinal

conductivity with the magnetic field as shown in Fig. 5.2. The Nobel Prize was

awarded to Klaus von Klitzing in 1985 for the discovery of the quantum Hall effect.

5.2.1 Two-Dimensional Electrons in a Magnetic Field

The motion of an electron in a magnetic field was first studied by Landau [87]. The

quantum mechanical wave function for a two-dimensional electron in the presence

of a magnetic field can be derived as follows [17, 88]. The spin gets polarized by

the magnetic field, so we can consider a spinless electron in the x, y plane. Let

the magnetic field be applied perpendicular to the plane in the z-direction. The

wave function is periodic in the y-direction with a length Ly and extended in the

x-direction with a length Lx. We will explain the effect of impurities later, but for

the moment, let us ignore the disorders. It will simplify the discussion without the

loss of generality. The Hamiltonian for a charge particle in a magnetic field is

H =

(
p− eA

)2

2m
, (5.2)

where A is the vector potential. For the Schrödinger equation for an electron in a

two-dimensional surface, we can choose the Landau gauge that is written as Ax =
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−Bx̂ŷ, Ay = 0, B = ∇×A = Bẑ, so that we have

1

2m

(
p2
x + (py + eBx)2

)
ψ = Eψ, (5.3)

where px = −i~ ∂
∂x

and py = −i~ ∂
∂y
. Let us introduce the magnetic length l ≡

(~/eB)1/2, that is the minimum radius allowed by the uncertainty principle for an

electron moving in a magnetic field. We also choose ψ(x, y) = eikyxφky(x) because the

Hamiltonian is translationally invariant in the y-direction. Therefore, we can write

{
p2
x

2m
+

1

2
mω2

c (kyl
2 + x)2

}
φky(x) = Eφky(x), (5.4)

where ωc = eB/m is the cyclotron frequency. φ satisfies the harmonic oscillator

equation with the potential shifted by x = −kyl2, that is a Gaussian wave packet

located at x = −kyl2. The states are extended in the x direction but confined in the

y-direction. The eigenvalue of energy is given by

En = (n+
1

2
)~ωc. (5.5)

The energy En corresponds to the quantized eigenstates known as the Landau levels.

This situation is shown in Fig. 5.3.

For the periodic wave function in the y-direction, we have ky = 2π
Ly
. Since the x

ranges over Lx, so that kx ranges over Lx/l2. It implies that the number of states in

the lowest Landau level is

Nφ =
LxLy
2πl2

=
ABe

h
=
AB

Φ0

, (5.6)

where A is the area of the sample A = LxLy and Φ0 = h/e is the magnetic flux
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quantum. The number of states in a Landau level is equal to the number of flux

quanta incidents on the plane. So we have a massive degeneracy, as an electron can

move in a circular path around magnetic flux at many places on the two-dimensional

sheet. The number of filled Landau levels is given by n = νeB/~ [12, 88]. This ν is

called filling fraction. It is a ratio of the number of electrons to the number of flux

quanta present in the system, that is, Ne = νNφ, where Nφ = Φ/Φ0.

In the case that the filled Landau levels are an integer number, then the chemical

potential lies somewhere between filled levels and empty levels. The chemical potential

is the energy required to insert one more electron into the system. Now we need energy

for the excitation of an electron from an occupied level to an empty level, we say that

the system is incompressible and the excitations are gapped. At this value of the

integer filling fraction, the Hall resistivity and conductivity are quantized as

σxy = ν
e2

h
, ρxy =

1

ν

h

e2
, (5.7)

whereas the longitudinal resistance is zero. When there are disorders in the sample,

the degeneracy is lifted, that is the degenerate levels split in energy, and we have

bands. The value of ν in these experiments is highly accurate (up to one part in six

million [89]) that makes the QHE one of the most accurate methods for the resistance

measurement [90].

Fig. 5.3. Two-dimensional electrons move in circular paths around the magnetic flux tubes
make the Landau levels.
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5.2.2 Explanation of Integer Quantum Hall Effect

To explain the quantum Hall effect, Laughlin proposed a thought experiment [91].

The Laughlin’s argument was later refined by Halperin [92]. Consider the system

where a disorder is only in the bulk (material other than the boundary) of the annulus,

but free of disorder in the outside regions. The eigenstate in the lowest Landau level

is characterized by angular momentum m

φm ∼ zme−|z|/4l
2

(5.8)

where z = x + iy is the representation of the position in complex coordinates. The

wave function is localized in the region of disorders (impurities). When the flux is

changed, the wave function moves outwards in a circle. When the flux is changed

by an integral number of quantum flux φ0, angular momentum is changed by an

integer from m to the next eigenstate with m + 1. While the wave function goes

outward radially, it can get pushed into the disordered region. But one electron will

be taken out from the disordered region, so the flux only affects the extended states

wrapped around the annulus, as in Fig. 5.4 (a). The presence of disorder only affects

the number of extended states in the way that there are fewer states than could be

without the disorder. By the gauge invariance, the system is back to itself up to a

geometric phase [90]. The gauge transformation is hinted at the topological nature

of the quantum Hall effect [90]. The deformation of the sample does not change the

Hall conductivity, so it is a topological invariant [17]. This is discussed in the next

Chapter 6.

Halperin further explained the integer quantum Hall effect using the semiclassical

approach and the band diagram [89]. In the Landau levels, there are many inde-
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pendent states with the same energy, and each of these states has a corresponding

wave function. The electrons move in the cyclotron motion at various places in the

sample. The number of these states depends on the strength of the magnetic field.

The stronger the magnetic field, the tighter the orbits are and more orbits can fit

without overlapping. The quantum Hall effect is observed only in two dimensions,

because the motion in the third dimension, in the direction of the magnetic field, can

add any amount of energy to the energy of Landau levels, and hence gaps are filled

up.

The impurities are responsible for the formation of plateaus and vanishing of the

longitudinal resistance at the plateaus. In the presence of an impurity, independent

states in a given Landau level are no longer equal in energy, that is, the degeneracy

is lifted. They form bands. The electrons moving in circular orbits around disorders

are in the localized states. Whereas the extended states are responsible for the cur-

rent flowing through the sample. When the magnetic field is increased, more states

get pushed into the localized regions. Therefore, the longitudinal resistance keeps on

increasing. When vacancies in the localized states become exhausted, then the lon-

gitudinal resistance becomes zero, until the magnetic field is at a value that the next

Landau level starts filling. At this stage, the Hall resistance stays constant. With

increasing the strength of the magnetic field, the Fermi energy level keeps on moving

from band to band, as shown in Fig. 5.4 (b). Electrons scatter to a new Landau

level when the magnetic field reaches a value such that the Fermi level overlaps with

the Landau level. The ratio of Hall resistances at two plateaus is a ratio of integers

because for any given Hall voltage the current is proportional to the number of occu-

pied sub-bands of the extended states. An integral number of sub-bands is filled at

the plateau.
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As electrons try to move in a circular path in the magnetic field and the applied

electric field pushes them towards the right, they follow the cycloid motion. The drift

velocity towards the right is directly proportional to the strength of the electric field

and inversely proportional to the strength of the magnetic field. As the magnetic

field is increased, more electrons deflect towards edges, hence the Hall voltage must

be increased. There is a movement of charges along the edges, but the bulk remains

an insulator. The bulk of the quantum Hall system is gapped, but the energy gap

is reduced at the edges, hence there are excitations at the edges as shown in Fig.

5.5 (a) and (b). The edge states are topologically protected, which means when

we deform the sample, the resistance remains the same. This happens unless the

topology of the sample remains the same. The current at the edges of the QHE has

chiral symmetry, that is, the edge modes are moving in one direction on one side and

the other on the other side. The chiral symmetry is broken in topological insulators.

The quantum Hall states are called the topologically ordered phases, whereas the

topological insulators are the symmetry protected topological phases [93, 94]. For a

discussion on how topology can explain the topological materials, see Chapter 6.

E

Φ

J

(a)

E

B = 0

Increasing B

Density of states

EF

Landau levels

(b)

Fig. 5.4. (a) Laughlin’s argument: the adiabatic increase of the flux creates electric field E
and causes current flow J in the radial direction. (b) Oscillations of density of states at the
Fermi level.
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(a)

EF

x

E

Edge states
ν = 0

ν = 1

ν = 2

(b)

Fig. 5.5. Edge modes: (a) the material remains an insulator in the bulk but there is a flow
of current on the edges, (b) the Fermi level in the bulk is lower than that on the edges.

5.3 Fractional Quantum Hall Effect

The integer quantum Hall effect is observed in an impure sample, and no interaction

among electrons is considered. In 1982 Dan Tsui and Horst Stormer [95] discovered

plateaus in quantum Hall conductivity at the filling fraction ν = p/q. Hence, the Hall

resistance is

RH =
h

e2

p

q
, (5.9)

where p and q are integers. Tsui et al. used a more pure interface of GaAs-GaAlAs

heterojunction with a stronger magnetic field and a lower temperature. They observed

that the plateaus in ρxy appear at fractional filling factor at ν = 1
3
, 2

3
, etc. Later on

plateaus at filling factors 4
3
, 5

3
, 2

5
, 4

5
, 2

7
, etc were also observed. The fractional quantum

Hall effect is a counterintuitive phenomenon, creating particles with a charge smaller

than the charge of an individual electron without splitting the electron. For the

FQHE, the mutual Coulomb interactions are taken into account, which would make

the gapless excitations of the ground state impossible. Electrons are moving around
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the magnetic flux and also around each other and at the same time avoiding each

other due to the Coulomb repulsion [96]. Therefore, we have to consider many-body

wave functions for N electrons with a strong correlation among them and obeying

the Fermi statistics. The theory of fractional quantum Hall effect was proposed by

Bob Laughlin. Dan Tsui, Horst Stormer, and Bob Laughlin were awarded the Nobel

Prize for FQHE in 1998.

5.3.1 Quasiparticles

The fractional filling factor corresponds to the partially filled Landau levels. The

quasiparticle excitations above the ground state are possible. A bump with a positive

charge due to the perturbation in the uniform density is a quasihole. These are

the flux-charge composites. Attachment of flux to the charges is also explained by

Chern-Simons theory in Chapter 7.

The formation of the quasiparticle is explained as follows [86]. Classically, 2D

electrons are like charged billiard balls on a table, but quantum mechanically, they

are smeared out on the two-dimensional plane. There is a uniform probability of

finding electrons here and there in 2D and the material behaves like a featureless

liquid. Their motion among electrons is still correlated. The perpendicular magnetic

field creates tiny whirlpools in the liquid called vortices. These are not elementary

particles but quasiparticles. The vortices are formed by the flux quantum attached

to the charge in such a way that the charge is displaced away from the center. Each

electron is at the center of the vortex and part of the pool at the same time. The

correlation of their mutual positions is energetically beneficial. It is also to satisfy

the Pauli exclusion principle. There is one flux quantum per electron for IQHE.

The vortices can be characterized by flux quanta attached. At a stronger magnetic
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field, there are more fluxes per electron and push more electrons away to reduce the

Coulomb energy. The quasiparticles cause current while moving through the material.

Another way to imagine the vortices is as new entities called composite particles.

In this picture, the flux is considered as a shield to the other particles leads to the

removal of mutual interaction from the problem [86]. This changes the character

from fermion to boson and back. In this way, they can condense to the liquid [36].

When a composite particle encircling the other composite particle, the wave function

is multiplied by −1 and an odd number of times. An extra twist is created due to flux.

Therefore, an odd number of flux and electron make a composite boson and an even

number of fluxes make a composite fermion. Three fluxed are attached per electron

for 1/3 fractional Hall state. It is a composite boson. They move in apparently zero

magnetic fields and condensed into a new ground state [86].

5.3.2 Laughlin’s Wave Function

Laughlin [97] proposed a trial wave function for the filling fraction 1/3, which was

later generalized to the filling fraction with odd denominators. Let two particles’

unnormalized wave function in the lowest Landau level be written as

Ψ ∼ (z1 + z2)M(z1 − z2)me−(|z1|2+|z2|2)/4l2B , (5.10)

where m is the relative momentum of particles and M is the angular momentum of

the center of mass. The many-particle wave funciton would look like

Ψ(z1, ..., zn) = f(z1, ..., zN)e−
∑N
i=1 |zi|

2/4l2B . (5.11)
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The wave function must be antisymmetric, as the particles are fermions. The Laugh-

lin’s proposal for the form of the trial function is

Ψm =
N∏
i<j

(zi − zj)m exp

(
−

N∑
j=1

z∗j zj

)
. (5.12)

The most probable position of a particle is at (z,...zN) with the probability given as

|Ψ(z1, ..., zN)|2. The number of flux quanta Nφ = mNe corresponding to the filling

fraction ν = Ne/Nφ = 1/m. The case of m = 3 is shown in Fig. 5.6. The wave

function is symmetric corresponds to even m whereas it is antisymmetric in case

that m is odd. The wave function is the eigenstate of angular momentum. There

are N pairings, so the maximum exponent that a single coordinate can have is Nm.

Each pairing has angular momentum m. The maximum exponent is equal to the

flux quanta. The fractional charge is also explained by the gauge invariance. By the

Laughlin argument in Fig. 5.4, each insertion of flux φ0 pumps a charge e∗ = e/3

from the inner boundary of the annulus to the outer. The Fermi level is located at a

1/3 filled band.

The wave function describing a quasihole at a position w is written as

Ψm =
N∏
k=1

(zk − w)m
N∏
i<j

(zi − zj)m exp

(
−

N∑
j=1

z∗j zj

)
. (5.13)

The quasihole is a lack of electron density at the position w. For M quasiholes, we

can write

Ψm =
M∏
l=1

N∏
k=1

(zk − wl)m
N∏
i<j

(zi − zj)m exp

(
−

N∑
j=1

z∗j zj

)
. (5.14)

Now w is just a parameter, otherwise, if it is a dynamical variable then the wave
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function is just the original wave function with an extra electron at position w. A

single quasihole has a charge of +e/m, hence m holes act like a deficit of one electron.

The quasiparticle excitations are emergent anyons. These anyons have a charge e/m

and a statistical angle θ = π/m for a filling fraction ν = 1/m [12,98]. The calculations

show that these anyons are Abelian [99]. Even number denominator quantum Hall

states cannot be described by the Laughlin wave function.

n = 1/3

Fig. 5.6. Quasiparticles as flux-charge composites when three fluxes are attached to each
charge.

5.3.3 Hierarchy Theory of Composite Fermion

The Laughlin’s wave function approach can explain quantum Hall states with the

filling fraction ν = 1/m with m odd integer. After the discovery of the Laughlin

state with ν = 1/3, there were many other states discovered with filling fractions

ν = 2/3, 2/7, 3/5, ..., etc. The hierarchical model was presented by Haldane [100] and

Halperin [101] to account for the filling fraction ν = p/q. They wrote the Laughlin’s

wave function in a slightly different form as

φ(w1, ..., wM) =
∏
α<β

(wα − wβ)1/m+p, (5.15)
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where p is an even integer. The corresponding quasiparticles condense into the Laugh-

lin’s wave function with the filling fraction

ν =
1

m± 1/p
, (5.16)

where ± is for whether quasiparticles condense or quasiholes. Any odd denominator

can be obtained by repeating the procedure so that we can write

ν =
1

m+ α1

p1+
α2

... ...
+αn
pn

, (5.17)

with m = 1, 3, 5, ..., αi = ±1, and pi = 2, 4, 6, .... The state with filling fraction

ν = [m, p1, ..., pn] occurs only if its parent state ν = [m, p1, ..., pn−1] also occurs. The

Laughlin state ν = 1/3 is a ground state and a parent state of quaisparticles that

are excited and condensed into higher order fractions of a daughter state with filling

factor ν = 2/5. There can be further daughter states and this process is repeated.

This approach [102] can also be used to explain the quantum Hall states with

even denominator filling factors. The FQHE with the filling factor ν = 1/m under

the magnetic field B is equivalent to the IQHE of the composite fermions in a reduced

magnetic field B∗ = 1/mB. Assume a general filling fraction written as

ν =
n

2pn± 1
, (5.18)

where p and n are integers. Let ρ be the electron number density, and we take the

effective magnetic field as B∗ = B − 2pρφ0, then the filling fraction of composite
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fermions is ν∗ = ρφ0

B∗
. So ν and ν∗ are related as

ν =
ν∗

2pν∗ ± 1
. (5.19)

Hence the condition for IQHE for composite fermions is ν∗ = n.

5.4 Non-Abelian Quantum Hall States

The discussion above can only explain the odd denominator filling fraction states, but

the even denominator filling fraction states were also observed. The filling fraction

with ν = 5/2 state was first discovered in 1987 [103]. The state at a filling factor 1/2

is not like others. There are two times as many vortices as charges. That makes them

composite fermions (CFs), so do not condense to the lowest energy state. The behavior

of the system is changed. They fill up the lowest-lying states, similar to electrons fill

at B = 0. The magnetic field is used up making the composite fermions, so these

quasiparticles move effectively in a zero field. Their mass arises from the interaction

instead of the property of the individual electron. There is no corresponding plateau,

instead the Hall line is featureless. The odd denominator states are Bose-condensed,

but 1/2 state is a Fermi sea. The composite fermions generate their own Landau

levels, that is IQHE of CFs [86].

5.4.1 Moore-Read State ν = 5/2

This state can be thought of as two filled Landau levels for both spins up and spin

down electron, that is 5/2 = 2 + 1/2. Two filled levels are inert, therefore it should

behave like 1/2, but it does not. This state belongs to the first excited Landau level.

Hansson et al. [104] proposed a wave function for the Moore-Read Pfaffian state

[18], also expressed the composite fermion Jain state [102]. See also series of papers
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on this [105–108]. The wave function of the Moore-Read state with an even number

of particles with the filling fraction ν = 1/m

Ψ = Pf(
1

zi − zj
)
∏
i<j

(zi − zj)m
N∏
i=1

e−|zi|
2/(4l2), (5.20)

where Pf is a Pfaffian which has properties that for any antisymmetric matrix Mij,

the determinant is zero when N is odd but non-zero when N is even. When N is

even, its determinant is written in terms of the object called Pfaffian,

det(M) = Pf(M)2. (5.21)

The partition of N into N/2 pairs gives

Pf(M) = A[M12M34...MN−1,N ], (5.22)

where A means antisymmetrise the argument. Therefore, we have

Pf(M) =
1

2N/2(N/2)!
Σσsign(σ)

N/2∏
k=1

Mσ(2k−1),σ(2k), (5.23)

where sign(σ) is the signature of σ and sum is over σ ∈ SN symmetric group. For

example, for four particles

Pf(
1

zi − zj
) =

1

z1 − z2

1

z3 − z4

+
1

z1 − z3

1

z4 − z2

+
1

z1 − z4

1

z2 − z3

. (5.24)

The number of terms grows rapidly with N . This wave function is for a boson when

m is odd and fermion when m is even. For m = 1, the wave function does not vanish

when a pair of particles coincide, since the zero of (z1 − z2) is compensated by the
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Pfaffian. For p = 1 we would have the smallest quasihole. Now the wave function

becomes

Ψqh(w) =
[ N∏
i=1

(zi − w)
]
Ψm
MR. (5.25)

The resulting charge for this object is e∗ = eν = e/m. These quasiholes are non-

Abelian anyons. The explicit calculation for four anyons was done by Nayak and

Wilczek in [109]. They found that the dimension of the Hilbert space of 2n anyons

is 2n−1, which implies there are 2n−1 possible ground states for 2n quasiholes. The

Moore-Read state corresponds to the spin-polarized p-wave Cooper pairing in the

BCS theory of superconductors for a fixed number of composite fermions [110]. The

quasiparticles in topological superconductors are Majorana fermions. We will discuss

p-wave topological superconductors and Majorana fermion in the next Chapter 6. If

the quasiparticles are moved around each other, the state of the whole system changes

in a way that depends only on the topology of the exchange. If we move one of the

quasiholes around the others in a closed path, this quasihole would get a geometric

phase. This is an example of the non-Abelian Berry phase [111]. It occurs in the

second Landau level in the presence of Coulomb repulsion.

For the Laughlin’s state, there is only a unique ground state and the quasiparticles

are Abelian anyons. The non-Abelian anyons in the Moore-Read state can be fused to

more than one outcome. There are many ways to rearrange the electron in partially

filled Landau levels, hence the system is degenerate. Degeneracy of the ground state

characterizes different phases of the quantum Hall system. It is a topological invariant

and does not change under a small perturbation [112].

An extension of Moore-Read quantum Hall state is proposed by Read and Rezayi

[19] at a filling fraction of ν = 12/5. Moore and Read observed [18] that the confor-
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mal blocks of certain correlation functions in conformal field theories (CFT) can be

directly interpreted as the wave functions of electrons in the lowest Landau level. For

brief introduction to conformal field theory, See [113–115] and for somewhat detailed

version of the theory, see [116–120]. For an experimental setup to observe anyons and

the evidence for their existence see [23–26]. There are non-Abelian states other than

the quantum Hall effect [121].

5.5 Detection of Non-Abelian Anyons

BS1

BS2M2

M1

φ

Fig. 5.7. Mach-Zehnder interferometer.

The non-Abelian anyons are detected by using the Mach-Zehnder interferometer

shown in Fig. 5.7. Let a photon be incident at the beam splitter BS1. There is an

equal probability of reflection and transmission. M1 and M2 are reflectors. The two

paths are combined at the second beam splitter BS2. In case the two paths are of

equal length, the photon transmitted at the first beam splitter will also be transmitted

at the second beam splitter. If we want to control the probability of reflection and

transmission at the second beam splitter BS2, we need to change the length of one of

the paths. That can be done by inserting a phase delay φ through inserting a glass

plate. By tuning the phase delay φ, the interference pattern at the outputs can be

varied.
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Fig. 5.8. Detection of non-Abelian anyons on a quantum Hall bar [12].

Since the braiding changes the ground state and fusion channels, the Mach-

Zehnder interferometer is used to detect the non-Abelian anyons on a quantum Hall

bar [12, 122–124] shown in Fig. 5.8. In our case, instead of the incident photon, a

test anyon is introduced. The constrictions in gray color in the Fig. are electrodes

that play the role of the beam splitters. The phase is inserted by the existence of

the anyons. This phase is the Aharonov-Bohm phase. An inserted anyon will change

the interference at two output states. The two paths of a test anyon are made to

interfere. The longitudinal resistivity σxx is measured. The relative phase φ can be

changed either by changing the magnetic field or area through S. By braiding the

test anyons, the final ground state is different when the anyon is non-Abelian. The

tunneling probability amplitudes t1 and t2 are controlled by the voltages between the

top and the bottom edges at two electrodes. The result will be different when there

is a non-Abelian anyon present. The interference can be written as

GL ∝ |t1|2 + |t2|2 + 2Re(t∗1t2e
iφ). (5.26)

This is an example of the measurement based on interference. For projective mea-

surement, the topological charge of an anyon is measured by fusion with another
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anyon.

Fig. 5.9. Physical implementation of the NOT gate on a quantum Hall bar [124].

Now let there be two quasiholes at locations 1 and 2 as in Fig. 5.9. The tunneling

amplitudes t1 and t2 are changed by changing the voltages at M,N and P,Q. The

relative phase depends on the state of the qubit. The longitudinal resistance can

be written as σxx = |t1 ± it2|2, where the plus sign is for state the |0〉 and minus

for the state |1〉. The measurement will project the state on one of the eigenstates.

The tunneling between the edges is used to flip the state. As a braiding of non-

Abelian anyons changes the ground state, the tunneling at constrictions A and B will

transform the state from |0〉 to |1〉. The change of the conductivity is a sign of a

non-Abelian quantum Hall state.
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Chapter 6

Topological Materials

One of the goals of condensed matter physics is to predict the properties of many-

body systems. The physical prediction cannot be tested by solving the Schrödinger’s

equation for a large number of particles. The correlation among observable properties

is obtained by using the effective field theories containing degrees of freedom at low-

energy excitations. Another theme of condensed matter physics is to characterize

the systems at the phase transition and classify the different states of matter. A

phase of matter is the one in which many-body systems are assembled and arranged

in some particular way, which gives the matter some distinct properties. In this

chapter, we will discuss how topology explains the topological states of matter, such

as topological insulators and topological superconductors. The Majorana fermions

in topological superconductors are non-Abelian anyons used to perform topological

quantum computation.

6.1 Landau Theory of Symmetry Breaking

Two states of the many-body systems are in different phases when they manifest

different symmetries. The symmetry is described by group theory. The new phase

would have a new symmetric group which is a subgroup of the original one. As an

example, on lowering the temperature, liquid crystallizes and continuous translation
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symmetry is broken to discrete translation symmetry. The spontaneous symmetry

breaking theory also provides information about the low-energy excitations in the

ordered phase. This theory can distinguish the continuous and discrete symmetry

and the global and local symmetries. The symmetry-breaking theory demands that

the two phases are not continuously connected and have different symmetries.

The classification of phases is based on macroscopic properties governed by the

conservation laws and the broken symmetries. In a given phase, the physical prop-

erties are the function of some parameters that change smoothly, like temperature,

coupling constant, or magnetic field. The phase transition is signaled by discontinu-

ities in the functional dependence of these parameters. These parameters are called

the order parameters. For example, the phase transition for magnetic material, from

paramagnetic to ferromagnetic, is characterized by the magnetization in a specific

direction. The system was rotationally invariant before the phase transition. But

after the phase transition, spins point in a specific direction and so the rotational

symmetry is broken. Here, the magnetization is the order parameter. It is non-zero

in a low symmetric ferromagnetic phase and vanishes for the paramagnetic phase.

The theory that describes the phase transition based on the order parameter is called

the Landau theory of symmetry breaking [125].

The critical exponents describe the behavior of a system near a critical point.

These exponents give information about the behavior of the thermodynamic quanti-

ties at the phase transition. The critical exponents depend on the order parameters,

symmetry of interactions, and spatial dimensions. When the critical exponents, de-

scribing the phase transition, are the same for different physical systems, these sys-

tems are in the same universality class. The length scale on which the fluctuations

of order parameters are correlated is known as correlation length.
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The Mermin-Wagner theorem states that the symmetry of a system cannot be

broken in dimensions d ≤ 2. But there are other mechanisms for the phase transi-

tion like a low-energy distortion of the order parameter called a topological defect,

dislocations in periodic crystals, or vortices in superfluid liquid. These distortions

cannot be eliminated by the change of the order parameter. In this case, the two

phases may have the same symmetries. The transition between the two phases is a

change of topological properties. The topological material exists at a very low tem-

perature. The phase transition by symmetry breaking is topologically trivial. For

more on topology in condensed matter, see [126].

6.2 Topology of Band Structure

In the early 1980s, the fractional quantum Hall effect [95] opened a new paradigm in

condensed matter physics. The study of the quantum Hall phase revealed that the

classification based on the theory of symmetry breaking is not complete. Despite be-

ing separate phases, the different FQH phases have the same symmetry. These phases

are characterized by topological properties and the phase transition is called topolog-

ical phase transition. This kind of phase transition does not break any symmetry but

changes the topology. The topological spaces are characterized by topological invari-

ants. These invariants are some properties of manifolds that remain the same for the

equivalent manifolds. See Appendix B for an introduction to topological spaces and

topological invariants.

An atom has various discrete energy levels called atomic orbitals. When more than

one atom join and make molecules, their atomic orbitals split into different molecular

energy levels. In solids, there are a large number of atoms arranged in such a way

that each atom can influence other neighboring atoms. Their energy levels split into
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a large number of different discrete energy levels. These energy levels are close to

each other and make the energy bands. The topmost empty or partially filled band

is called conduction band and the completely occupied band below the conduction

band is called valence band. The conduction and valence bands are close to each

other in metals, but there is a large energy gap between the two in insulators. These

are also called trivial insulators to differentiate from the topological insulators. The

energy gap is small for semiconductors. The highest occupied state or the energy of

the electron with the highest energy is called a Fermi level. The Fermi level has a

fifty percent probability of being occupied at equilibrium. A semimetal is the one for

which the valence and conduction bands touch each other at some points. There is

no well-defined Fermi surface in semimetals [127]. The Fermi surface is the highest

occupied state in the reciprocal space. When the state in the bands is arranged in

momentum space, then it is called the reciprocal space.

In the integral quantum Hall effect (IQHE), electrons have a cyclotron motion

in the magnetic field. In the presence of an impurity, the energy levels split into

sub-bands called Landau levels, as we discussed in the last chapter. The energy

gap between the Nth filled energy band and the (N + 1)th empty band makes the

bulk an insulator. When we increase the magnetic field, the degeneracy of Landau

levels increases, and the Landau levels pass through the Fermi level as shown in Fig.

5.4. There is an oscillation of the density of states at the Fermi level, that causes the

oscillation in the electronic properties of the material, such as the electrical resistance.

Electrons at edges drift towards the right, causing a current flow. There is a finite

resistance, unlike the trivial insulators.

Now we will discuss the topology of the Brillouin zone that is a unit cell in the

momentum space or reciprocal space [128]. See Ref. [129] for detailed discussion on
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topological and geometrical aspects of band theory. When the atoms are arranged in

a periodic lattice, the pattern of the first Brillouin zone is repeated. Therefore, only

the first Brillouin zone is usually studied.

According to Bloch’s theorem, the solutions of Schrödinger equation in a system

of periodic potential V (k) = V (k+a), are in the plane wave form, and there exist

energy eigenstates |un(k)〉 such that

H |ψn(k)〉 = Ek |ψn(k)〉 , |ψn(k)〉 = eik·r |un(k)〉 , (6.1)

where |un(k)〉 = |un(k+a)〉 and k values are inside the Brillouin zone (BZ) and n

are the labels for different bands. The eigenfunctions |un(k)〉 are the Bloch states.

The Fermi energy EF lies between the empty conduction and the filled valence band.

The ground state of many body systems is determined by the filled Bloch states. The

reduced Schrödinger equation in the band insulator is

H(k) |un(k)〉 = En(k) |un(k)〉 , (6.2)

where H(k) = e−ik·rHe−ik·r and En(k) are eigenvalues. The magnetic unit cell satisfy

periodic boundary conditions, which corresponds to the topology of a torus. Two

Bloch states in the same band, but different k, do not have to be orthogonal. The

eigenvectors of H(k) and H(k′) now may have a non-zero overlap.

The quantized value of the Hall conductivity is explained by the concept of the

fiber bundle in topology. This is just like the gauge transformation. The change of

wave function of an electron by some phase, corresponding to the transformation of

the vector potential as A→ A+∇φ and the magnetic flux F = ∇×A. In terms of

the fiber bundle, the vector potential corresponds to the connection, and the strength
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of the magnetic field is the curvature. The fiber bundle, connection, and curvature

will be discussed in Appendix B. Using the same idea, we can have the Berry phase

and Berry curvature as we did in Chapter 4.

The bands n collectively form the band structure. There is a phase ambiguity in

the Bloch wave function. The Bloch wave function can be transformed as

|un(k)〉 → eiφ(k) |un(k)〉 . (6.3)

Corresponding to this phase change, there will be a connection and curvature, anal-

ogous to the vector potential and the field strength in electromagnetism. The Berry

connection and Berry curvature on the Brillouin zone are written as

An(k) = i 〈un(k)| ∇k |un(k)〉 , F n(k) = ∇k ×An(k). (6.4)

The Gauss-Bonnet theorem relates the geometry and topology by the relation

ˆ
M

KdA = 2πχ, (6.5)

where χ = 2(1 − g) is the Euler characteristic, and g is the genus, A is an area of

a region in M , and K is the Gaussian curvature given as K = k1k2, with k1 is a

curvature while going in one direction and k2 is for the other direction. A flat surface

has the Gaussian curvature zero. A saddle has the Gaussian curvature negative, as

one of the k1 or k2 is negative. A sphere has a positive Gaussian curvature. A torus

has the negative curvature on some points and positive on some other points.

In 1982, Thouless, Kohmoto, Nightingale, den Nijs [130] made a theoretical dis-

covery that the filling fraction ν is a topological invariant now known as the TKNN
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invariant. The integration of field strength over the whole BZ defines the topological

invariant called the Chern number and is written as

νn =
1

2π

ˆ
BZ

dkxdkyF
(n)
xy (k). (6.6)

This is the Chern number of the nth band. The total Chern number of the occupied

bands ν =
∑

n νn. This is the same number as in the quantum Hall resistivity

σxy =
e2

h
ν. (6.7)

This integer ν is called the first Chern number and is a topological invariant. This

topological invariant characterizes IQH. Hence, the Hall conductance is an integral

multiple of e2/h. The time-reversal symmetry, Fxy(−k) = −Fxy(−k), leads to the

negative sign with the Chern number. Therefore, the time reversal symmetry is

broken in the quantum Hall state. The line integral of An(k) along a closed path

C in the momentum space is the Berry phase exp
(¸

C
dk ·An(k)

)
. This is a gauge

invariant but not a topological invariant [131].

The edge states, at the interface of the quantum Hall state and the vacuum or

trivial insulator, are the consequence of the topological classification of the gapped

states. The gap must be closed to change the ν at the boundary. The number of

edge channels is determined by the bulk-boundary correspondence, as described in

the previous Chapter. The number of edge modes intersecting the Fermi energy is

related to the change in bulk topological invariant ν across the interface. The N filled

Landau levels have N number of edge channels at the interface [127].
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6.2.1 Topological Insulators and Semimetals

The symmetry of the Hamiltonian is important in determining the role of the topol-

ogy of the occupied bands. Without imposing symmetry, any deformation of the

Hamiltonian is possible as long as the gap is not closed [131]. Kramer’s theorem

states that all eigenstates of a T invariant Hamiltonian of the spin-1/2 system have a

twofold degeneracy. The time reversal operator obeys T 2 = −1 and 〈T u|T v〉 = 〈u|v〉.

Therefore, 〈u|T u〉 = 0, that means they are orthogonal. |u〉 and T |u〉 have the same

energy, so there is a degeneracy. The Bloch Hamiltonian is given by

T H(k)T = H(−k). (6.8)

Now |un(k)〉 and T |un(k)〉 are the eigenstates of H(k) and H(−k), and the phase

ambiguity can be written as

|un(k)〉 = eiφn(k)T |un(k)〉 . (6.9)

The quantum spin Hall (QSH) states, also called topological insulators (TIs), have

the time-reversal symmetry due to a large spin-orbit coupling. Spin-orbit coupling is

the relativistic effect when the spin of moving charges interacts with its motion. In

atoms, it leads to a shift in the energy of two orbits having opposite spins. It is a kind

of Zeeman splitting due to the motion in a magnetic field in the electron’s frame of

reference and the magnetic moment of the electron due to its spin in the electric field

of the nucleus. Its correction is a fine structure and is detectable in spectral lines in

fine structure.

An analogous effect in a bulk crystal is called Rashba effect also known as Bychkov-

Rashba effect [132]. Moving charges create a magnetic field. In the absence of the
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external magnetic field, there is some kind of fictitious effective magnetic field acting

in the upward direction on the up spins and in the downward direction on the down

spins. This magnetic field is due to the motion of electrons moving in an electric field.

When electron motion is along the x-axis, they feel a magnetic field along the y-axis.

This field is called the Rashba field written as

HR = α(σ× p) · ẑ, (6.10)

where α is the Rashba coupling, σ is the Pauli matrix-vector and p is the momentum.

This equation is a two-dimensional version of the Dirac Hamiltonian. The Rashba

field bends the trajectory of an electron. The direction of distortion depends on the

direction of angular momentum. This effect is used to get the terms in the model

Hamiltonian [133]. The momenta are locked to the perpendicular spin to preserve

the time-reversal symmetry. The upward and downward spins move in the opposite

direction. The total charge flow is zero as left moving and right moving charges are

equal, but there is a spin current. As there is no dissipation of energy by these two

channels, this spin current can be a useful application in integrated circuit technology.

The related field of study is called spintronics.

The QSH state is realized as the superposition of the two systems. These kinds

of materials cannot be characterized by the TKNN invariant, because there are equal

and opposite invariants for the two channels, so ν = 0. Kane Mele [134] model

introduced a Z2 invariant, that has the value 0 or 1. The edge states are explained

by the bulk-boundary correspondence. There are gapped energy states in the bulk,

but gapless at states at the edges. At the interface with the trivial insulators, the

topological invariant changes. The energy gap closes and the surface states appear.

The topology changes from the non-trivial to the trivial at the interface, as shown in
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Fig. 6.1 (a) and (c). In 3D topological insulators, there are surface states, as in Fig.

6.1 (b), described by four Z2 topological invariants [127].

There are relatively recent discoveries of the materials known as Dirac semimet-

als and Weyl semimetals, realized in graphene and 3D topological materials. Dirac

semimetal exists at the phase transition from trivial insulators to topological insula-

tors. The bulk gap can be tuned by chemical doping or external pressure. At the

critical point, the valence band and the bulk conduction band touch at a special

point in the momentum space called the Dirac node [135]. The Dirac node is shown

in Fig. 6.1 (d). These materials are classified as topological if the node points are

topologically protected due to the bulk band structure [136]. As the electrons can

easily be excited from the valence band to the conduction band at the Dirac point,

these materials are good absorbers of light and have high electron mobility. Just like

graphene, these are 3D topological materials and the surface states in these materials

behave like metals. The charge carrier concentration is three orders of magnitude

less than that in the metals. The dynamics of the charge carriers are governed by

the Dirac-type equation, with c and p in the Dirac equation are replaced by VF and

k. But there are two differences from the three-dimensional relativistic fermions; the

velocity is two orders of magnitude less than the speed of light, and these materials

have charge carriers constrained to two dimensions [127]. See Appendix D for Dirac

equation and Dirac and Weyl massive fermions. These semimetals host Dirac and

Weyl massless fermions.

6.2.2 Classification of Topological Materials

Topological states of matter include integer and fractional quantum Hall states, spin

liquids, topological insulators, and topological superconductors. These are charac-
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Fig. 6.1. Edge state (a) and (b), and band diagrams (c) and (d), for 2D and 3D topological
insulators [136].

terized by the topological invariant, which is calculated from the ground state wave

function.

The topological materials have common characteristics such as ground state de-

generacy, energy gap separating the ground state from the excited state in the bulk,

and edge modes at the surface or boundary. The edge modes are robust against per-

turbations. If one phase can be deformed to the other without closing the energy gap,

then those materials are in the same equivalent class. The idea is to change the Hamil-

tonian adiabatically so that the system remains in the ground state. The collapse of

the gap signals the topological quantum phase transition. Different equivalence classes

have different topologies.

There are several models to characterize topological materials. The two well-

known categories are based on long-range entanglement and short-range entangle-
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ment. The first one is known as the topological order. The quantum Hall state falls

in this category. These kinds of phases have fractional statistics, and edge modes

have chiral symmetry. The chiral symmetry means that the edge current flows only

in one direction on one side and in the opposite direction on the other side. These

phases are described by the effective field theory, which is topological quantum field

theory. There are strongly interacting fermionic or bosonic systems. The IQHE is a

state of free fermions of topological order characterized by the Chern number. The

FQHE consists of fractional excitation and has braiding statistics. String-net conden-

sation for 2 + 1D topological order is also in this category [137]. These have gapped

edges and are classified by unitary modular fusion categories. The group theory is

the mathematical foundation of symmetry and symmetry breaking, the modular cat-

egory is the foundation of the topological order. See Chapter 8 on category theory.

Topological order is used in topological quantum computing. See [94, 96] for a brief

introduction to the topological order.

The second category is the one with short-range entanglement. The quantum spin

Hall effect is the model for such phases [134]. These are also called symmetry-protected

topological (SPT) states [93]. Topological insulators and superconductors [138] fall

in this category [20]. These are robust against perturbations that respect the time-

reversal symmetry and U(1) symmetry, whereas the topological orders are robust

against any kind of perturbation. The edge modes are flowing in the absence of a

magnetic field. These edge modes break the chiral symmetry, that is, the same edge

can have modes in both directions. The topological insulators are both insulators

and conductors, insulators in the bulk and conductors at the edges. These edges

are one-dimensional for a two-dimensional material and are two-dimensional surface

states for a three-dimensional topological insulator.
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For further details on the classification of the topological phases of matter, see

[94,133] and review articles [127,138–141]

6.3 Superconductivity

Non-Abelian anyons are the physical systems needed for topological quantum com-

putation. These anyons exist as quasiparticles in fractional quantum Hall effect and

Majorana fermions in topological superconductors. The conventional superconductors

are known as s-wave superconductors. Here, s stands for spin-singlet state, analogous

to atomic configuration. The Cooper pairs are formed by two electrons with opposite

spins and opposite momenta. The p-wave superconductors are spin-triplet supercon-

ductors and are known as unconventional superconductors or chiral superconductors.

These materials show topological properties. Read and Green [110] theoretically pro-

posed that the anyons in p-wave superconductors correspond to the quasiparticle in

non-Abelian quantum Hall states [18]. See [142–144] for a brief discourse on the

Majorana fermions and their use in topological quantum computation.

Superconductivity was discovered by Heike Kamerlingh Onnes in 1911. Such ma-

terials are explained by Bardeen-Cooper-Schrieffer’s (BCS) theory of superconduc-

tivity [145]. Superconducting materials show zero resistance and expel the magnetic

field. Below a critical temperature Tc, the material shows superconducting behavior.

The Cooper pairs are formed below the critical temperature. In such pairs, electrons

have equal and opposite momenta and opposite spin, so they are not restricted by

the Pauli exclusion principle. The pairs make a bosonic state and the material con-

denses to the superconducting phase. The thermal energy of the pair is less than their

binding energy, so the paired state is stable. High-temperature superconductivity at

temperature 90 K was discovered in 1986 by George Bednorz and Alex Muller [146].
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Recently, in 2020, the first room-temperature superconductor is found at a very high-

pressure [147]. See [148] for a brief introduction to superconductivity and [149] for

the basic derivation of BCS theory. For further study of the field, see the books by

Tinkham, M [150], Steven M. Girvin [151] and G. E. Volovik [152].

A rough pictorial view of the Cooper pairs is shown in Fig. 6.2 (a). A moving elec-

tron deforms the lattice formed by the positive ions. The lattice remains deformed for

some time after the passing electron due to the large mass of the nucleus. The other

passing electron effectively gets attracted to this deformation. These two electrons

remain connected during their motion in the lattice. The attraction must be greater

than the Coulomb repulsion. The bandgap in superconductors is due to the electron-

electron interactions. It is the energy required to break the pairs and make separate

electrons. When temperature increases, the gap decreases and becomes zero at the

transition temperature. In the field-theoretic approach, two electrons approach each

other, exchange phonon, and then scattered as shown in Fig. 6.2 (b). The interaction

between two electrons is attractive when the frequency of phonon is below Debye

frequency ωD. The Cooper pairs cannot be formed at high temperatures because

the lattice is not formed due to the thermal vibrations. High–temperature supercon-

ductors cannot be explained by the BCS theory, since that mainly deals with the

lattice deformation. The superconductivity can be similar to superfluidity in which

the viscosity of the liquid becomes zero below some critical temperature [152].

According to the Landau-Ginsberg theory of symmetry breaking, superconduc-

tivity is the second-order phase transition in which the order parameter is different

for the ordered and disordered states. The value is changed at the critical temper-

ature [150]. Landau-Ginsberg’s theory is a macroscopic theory, whereas the BCS

theory is a microscopic theory when the interaction between electrons is attractive in
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Fig. 6.2. (a) The atomic lattice is deformed by the existence of one electron so that the
other electron is attracted to the deformed lattice.

the presence of the Fermi sea.

The resistance is due to an interaction of electrons with the lattice. This in-

teraction is caused by lattice vibrations and defects or impurities. Resistance of a

superconducting material drops to zero at the critical temperature Tc. Below the

critical temperature, the lattice is perfectly periodic, hence zero resistance.

The supercurrent in the bulk creates its own magnetic field, which opposes the

applied one. Therefore, the applied field does not penetrate the material. This is

called Meissner effect. Due to this effect, superconducting material can levitate in

a magnetic field. This effect was surmised long before BCS in 1935 by London.

The material shows perfect diamagnetism which is different from the conventional

diamagnetism by the surface current. The applied field decay exponentially inside

the material at penetration depth. The penetration depth is temperature-dependent.

There are two types of materials distinguished by their response to the external

magnetic field. Type-I superconductors are the ones for which the superconductivity

is lost when the magnetic field is increased up to a critical value. In contrast, the

type-II superconductors have two critical values of the field. By the increase of field

to some critical value, the field penetrates the material in discrete threads and the
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material remains superconducting. The threads of the magnetic field are tubes of flux

quantum and make vortices called Abrikosov vortices. Further increase of the field

to another critical value, the superconductivity is lost, and the material becomes a

normal material [150].

When two or more superconductors are connected by some non-superconducting

or insulating materials, the supercurrent flow across the junction even without any

applied voltage. This effect is known as Josephson effect. It is due to the tunneling

of the Cooper pairs. The quantum mechanical circuits such as superconducting qubit

and SQUID are based on the Josephson effect. Another effect on the junction is

proximity effect. When a superconductor is brought into contact with a normal metal,

the Cooper pairs at the boundary are not destroyed abruptly but carried over to the

normal metal, where they decohere by scattering events. Depending on the materials

and their quality, the Cooper pairs can persist up to hundreds of microns inside the

normal metal. A related concept is when electrons from the normal metal enter into

a superconductor, at the superconductor-normal metal contact, two electrons can

enter into the superconductor and make a Cooper pair. A single electron transfer

is forbidden due to the energy gap, but when one electron is transferred from the

normal metal to the superconductor, a hole is reflected in the normal materials. This

effect is called the Andreev reflection [150]. It is important in our discussion for the

realization of Majorana fermions.

6.3.1 BCS Theory of Superconductivity

As discussed in [149,153,154], consider a pair of electrons in a metal with one electron

has momentum k and spin up whereas the other has momentum -k with spin down

at T = 0. Let the two electrons be coupled by the effective attractive interaction
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and make the Cooper pairs. These pairs interact in the filled Fermi sea and have

less energy than without pairing. More such pairs reduce energy further and the new

state of matter is formed [145].

For theoretical description of the superconducting state, the method of second

quantization is used. The second quantization is discussed in Appendix D. The wave

function of non-interacting N -particles system is written as φi(ri, si), i = 1, 2..., N

where ri are positions of particles and si are spins. In second quantization, particle

number n1, n2... are the state variables. Let a number operator be written as n̂i = ĉ†i ĉi,

where ĉ†i is the creation operator and ĉi is the annihilation operator for the state i.

The eigenvalues of the number operator are the particle numbers. It obeys anti-

commutation relation for fermion,

{
ci, c

†
j

}
= cic

†
j + c†jci = δij. (6.11)

Let |0〉 be the uncorrelated vacuum state. The wave function of BCS theory at T = 0

ground state is written as a product of pair states as

Ψ =
∏
k

(uk + vkc
†
k↑c
†
−k↓) |0〉 , (6.12)

where c†k↑c
†
−k↓ is a creation operator for the superconducting pair state, vk probability

amplitude that pair state is occupied, and uk is probability amplitude for the state to

be unoccupied. We have |uk|2 + |vk|2 = 1, that means the total probability for a state

at k must be equal to 1. When (k ↑,−k ↓) be occupied state and (k ↑′ ,−k ↓′) is the

unoccupied state initially. Here k
′
and k differ by some momentum q. The probability

of the system being in initial state is ukvk′ . Let the first state gets unoccupied and

the second gets occupied, then probability that this happens is u∗kv∗k′vkuk′ . The Eq.
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6.12 is a state with a superposition of different number of particles.

Now the Cooper pair Hamiltonian Ĥ for the interacting electron system, corre-

sponding to the wave function in Eq. 6.12 can be written as

Ĥ |Ψ〉 = ECP |Ψ〉 , (6.13)

where Ĥ = Ĥ0 + V̂int with Ĥ0 =
∑

kσ ξkĉ
†
kσ ĉkσ. So that we have

Ĥ =
∑
kσ

ξkĉ
†
kσ ĉkσ +

∑
kk′

Vkk′ ĉ
†
k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑, (6.14)

with ξk = ε(k) − µ = ~2k2/2m − µ is the kinetic energy of an electron with respect

to the chemical potential µ. The chemical potential is the change of the energy of

the system due to the change in particle number. σ is a spin index that can be ↑

or ↓. The mean-field approximation is to take the average of the interactions on a

one body make many-body problem to one-body problem. By using the mean-field

approximation, we have ∆k = −
∑

k′ Vkk′〈ĉ−k′↓ĉk′↑〉. Now we can write the BCS

Hamiltonian in the form

ĤMF
BĉS =

∑
kσ

ξkĉ
†
kσ ĉkσ +

∑
kk′

[∆kĉ
†
k↑ĉ
†
−k↓ + ∆∗kĉ−k′↓ĉk′↑], (6.15)

where ∆ is the Cooper pair energy gap. It is the energy needed to break the Cooper

pairs into single electrons. Therefore, the ∆ is binding energy of the Cooper pairs. It

can serve as a complex order-parameter for the theory of superconductivity.
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6.4 Topological Superconductors and Majorana Fermion

There are examples when some particles were predicted first but discovered later.

Majorana fermion is one such example. Majorana in 1937 [155] proposed a solution

to the Dirac equation which predicts an antiparticle that is identical to its own par-

ticle, that is, it has charge-conjugation and particle-hole symmetry. Since ψ and ψ∗

satisfy the Dirac equation, as we discussed in Appendix D, therefore, ψ = ψ∗ can

be imposed without any contradiction. Dirac’s equation involving imaginary solu-

tion. Majorana’s solutions to the Dirac equation are real numbers. Therefore, the

self-conjugated Dirac particle is the Majorana particle [156]. There are proposals for

a particle to be a Majorana particle. See a discussion in ref [156]. The emergent

particles in condensed matter systems can support Majorana fermions [156]. These

particles are not elementary particles and cannot move at the speed of light and do

not obey the Lorentz invariance of the Dirac equation. Therefore, these are distinct

from the original proposal by Majorana. These particles obey two conditions to be

the Majorana particles; they obey the Dirac equation, and they are their own an-

tiparticles. These two conditions are met in topological superconductors. They are

found at the boundaries of the topological superconductors and the spin-liquids.

The Cooper pairs in the conventional superconductors have an even parity spin-

singlet state, with S = 0 and l = 0. Such materials are called s-wave superconductors.

These are antisymmetric in spin wave function but symmetric in angular momentum.

An extension of this theory is proposed for spin-triplet pairing S = 1 and l = 1.

Now, the spin wave function is symmetric, but the Pauli exclusion principle forces the

parity of angular momentum to be odd. Reversing the motion flips the orbital angular

momentum to break time-reversal symmetry. Such materials are called the p-wave

superconductors. In two dimensions, these are known as px ± ipy superconductors.
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These materials are ferromagnetic like where momentum circulates. These are also

known as chiral superconductors. Such superconductors host topological phases with

Majorana excitations at their boundaries and the defects.

The Hamiltonian 6.15 can be diagonalized by using the Bogoliubov transforma-

tion in which the fermionic operators are written as a linear combination of electron

creation and annihilation operators

γ̂k′↑ = u∗kĉk′↑ + vkĉ
†
-k′↓

γ̂-k′↓ = ukĉ
†
-k′↓ − v

∗
kĉk′↑, (6.16)

with uk = 1
2
(1 + ξk/Ek), vk = 1

2
(1 − ξk/Ek), and ukvk = ∆k/(2Ek), where Ek =√

ξ2
k + |∆k|2 is the quasiparticles excitation energy [157]. The s-wave pairing implies

that ∆−k = ∆k, u−k = uk, and v−k = vk. Now BCS Hamiltonian becomes

ĤMF
BC =

∑
kσ

Ekγ̂
†
k′σγ̂k′σ + const. (6.17)

The γ̂† and γ̂ are creation and annihilation operators for quasiparticles. The quasi-

particle operators γ̂ satisfy the relation γ̂†E = ˆγ−E. At E = 0, γ̂†0 = γ̂0. This is

the definition of Majorana fermion. These operators are a combination of electrons

and holes. At the Fermi surface |uk| ≈ |vk|, the quasiparticles are a superposition

of holes and electrons. Deep inside the Fermi sea, the Bogoliubov quasiparticles are

hole-like with |uk| ≈ 0 and |vk| ≈ 1, whereas above the EF with |uk| ≈ 1 and |vk| ≈ 0

the quasiparticle are particle-like. The system is in strong pairing regime when the

Cooper pair of bounded electron formed over a length ζ, whereas the weak pairing

regime is when the Cooper pair size is infinite in real space [158].

Using the fermion anticommutation relation, the first term in the BCS Hamilto-
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nian can be written as 1
2

∑
kσ[ξkĉ

†
kσ ĉkσ−ξ−kĉkσ ĉ

†
kσ+ξk] and ∆kĉ

†
k↑ĉ
†
−k↓ = 1

2
[∆kĉ

†
k↑ĉ
†
−k↓−

∆kĉ
†
−k↓ĉ

†
k↑]. Similar relations can be written for the complex conjugate terms. Intro-

ducing the four-component spinor Ψ† = (ĉ†k↑, ĉ
†
k↓, ĉ−k↑, ĉ−k↓). In this Nambu spinor

representation we have

ĤBCS =
1

2

∑
k

Ψ†kHBdG(k)Ψk + const., (6.18)

where HBdG is the Bogoliubov-de Gennes Hamiltonian. It is a 4 × 4 matrix with

eigenvalues Ek = ±
√
ξ2
k + |∆k|2. This Hamiltonian has particle-hole symmetry, that

means changing particle to antiparticle and vice versa would not affect the equation.

That hints at a 2-fold degeneracy.

To find the topological invariant for the chiral superconductors, writing the Hamil-

tonian in a two-dimensional representation as

Ĥ =
1

2

∑
k

Ψ†kHBdG(k)Ψk, (6.19)

HBdG(k) =

Hk ∆k

∆†k −H∗k

 Ψ =

uk
vk

 . (6.20)

The const. is ignored. Hk = k2

2m
− µ is a single-particle Hamiltonian, whereas the

diagonal terms are pairing interactions. The component uk, vk of the wave function

are particle and hole-like wave funciton. ∆k = ψ(k) = ψ(k) for spin-singlet and

∆k = dz(k) = −dz(−k) for spin-triplet. We have ∆k = ∆′k(kx + iky), where ∆′ is
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taken real. In the basis of Pauli matrices σ = (σ1, σ2, σ3) we can write

Hk = σ · dk, dk = [∆′kx,−∆′ky,
k2

2m
− µ]. (6.21)

It resembles the spin Hamiltonian of ferromagnetism, with magnetization represented

by the vector dk. The Chern number is written as

C =
1

4π

ˆ
nk · (

∂nk
∂kx

× ∂nk
∂ky

)dkxdky, nk =
dk
|dk|

. (6.22)

The Chern number |C| is the number of times the vector nk sweeps the unit sphere

as k covers the momentum space.

Fig. 6.3. Topological superconductor with Chern number C = ±1 and the conventional
superconductor with Chern number C = 0 [159].

6.4.1 Kitaev’s Toy Model

To realize the spinless p-wave superconductor, Kitaev proposed a 1D toy model [82].

H = − t
2

N−1∑
j=0

(c†jcj+1 + c†j+1cj)−
∆

2

N−1∑
j=0

(c†jc
†
j+1 + cj+1cj)− µ

N∑
j=0

c†jcj, (6.23)

where t is nearest-neighbor hopping strength, ∆ is p-wave pairing amplitude, and µ is

the chemical potential. The chemical potential couples Majorana at the same lattice

site, whereas ∆ and t couple two Majorana on nearest sites. Fermion operators and
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Majorana operators obey the following relations

cj =
1

2
(γBj + iγA,j ), c†j =

1

2
(γBj − iγAj ), (6.24)

{
γA, γB

}
= δAB, γ† = γ, γ2 = 1, (6.25)

{ci, cj} =
{
c†i , c

†
j

}
= 0,

{
ci, c

†
j

}
= δij. (6.26)

When the strength of pairing equals the hopping strength, we get

H = −∆
i

2

N−1∑
j=0

γBj γ
A
j+1 + µ

i

2

N∑
j=0

γBj γ
A
j+1. (6.27)

For ∆ = t = 0 and µ < 0, only the chemical potential term remains. The coupling be-

tween neighboring sites is less than the coupling between the same site. All Majorana

fermions are paired as shown in Fig. 6.4 (top). It is a trivial phase, we have

H = µ
i

2

N∑
j=0

γBj γ
A
j . (6.28)

For µ = 0 and t = ∆, we have

H = − i
2

∆
N−1∑
j=0

γBj γ
A
j+1. (6.29)

This is the case in Fig. 6.4 (bottom). There are Majorana fermions at adjacent sites.

By adjusting the ∆ and µ, we can have the phase transition between the trivial and

topological superconductors. In terms of the fermion operators, the Hamiltonian is
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given as

H = ∆
N−1∑
x=1

(c†xcx −
1

2
), (6.30)

zero-energy mode at each end. These can be used as a qubit.

Trivial

Topological

Fig. 6.4. When Majorana fermions are paired at the same site, we get the trivial phase.
But by tuning the pairing potential and the chemical potential, Majorana fermions can be
paired at adjacent sites to get the topological phase.

6.4.2 Semiconductor Heterostructure

The p-wave superconductors are a theoretical construct. They are rare in nature.

Fu and Kane proposed that they can be created with the combination of s-wave

superconductors and topological insulators [160]. Later, a combination of s-wave

superconductors with semiconductors was also proposed [161, 162]. For further de-

tails on materials such as topological insulators, topological superconductors, and

heterostructures, and their detection techniques, see the reviews [159,163].

The idea is to put a nanowire of material, with a large spin-orbit coupling such

as InAs or InSb, in contact with the s-wave superconductor and apply the external

magnetic field to the semiconductor. The strong spin-orbit coupling locks the spin-up

and spin-down modes with orbital momentum. The external magnetic field will cause

the Zeeman splitting and try to align both the modes to one direction and make the

spinless configuration as shown in Fig. 6.5 (a). The bandgap is introduced by the

Zeeman splitting, as shown in Fig. 6.5 (b). When this material is proximatized with

the s-wave superconductors, due to the Andreev reflection, the electron tunnel to the
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superconductor, and a hole is reflected at the boundary. This makes an electron-hole

pair at the boundary of the nanowire. For a suitable value of the chemical potential,

superconducting gap, and magnetic field, the system turned to the Kitaev chain.

Majorana zero modes appear when the chemical potential is within the Zeeman gap,

as represented by the dashed line in Fig. 6.5. See [158] for details. The evidence for

Majorana fermion is detected [164]. The Hamiltonian for the nanowire can be written

as

H = Hwire +H∆, (6.31)

where H∆ is associated with the spin-singlet pairing entering from the s-wave super-

conductor due to the proximity effect. The Hwire and H∆ can be written as

Hwire =

ˆ
dxψ†

(
− ~2∂2

x

2m
− µ− i~αê.σ∂x −

gµBBz

2
σz
)
ψ, (6.32)

H∆ =

ˆ
dx(|∆|eiφψ↓xψ↑x + h.c.), (6.33)

where ψ† adds an electron with the chemical potential µ and effective mass m, α is

the spin-orbit coupling strength and σ = (σx, σy, σz) is the vector of Pauli matrices,

and ê is a unit vector in (x, y) plane along which the spin-orbit coupling is favored.

The last term corresponds to the Zeeman coupling due to the magnetic field Bz. The

eigenvalues of the Hamiltonian is now given by

ε±(k) =
k

2m
− µ±

√
(αk)2 +Bz. (6.34)

When Bz = ∆ = 0 there is no spinless regime. This is shown as red and blue curves
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in Fig. 6.5. For nonzero Bz, there is a bandgap as shown by black lines. For nonzero

∆, the material becomes p-wave in the lower band, with k and −k. The realization

of the topological phase requires that |∆| < gµB|Bz|/2 and Bz >
√

∆2 + µ2. The

gap vanish when Bz =
√

∆2 + µ2. Below this Bz there is no spinless state. The

edges of these systems support Majorana modes, since time-reversal symmetry is

broken by the Zeeman term. The Majorana modes obey particle-hole symmetry, since

quasiparticle at E and quasihole at energy −E are equal. Therefore, at zero energy

there is degeneracy and zero energy is needed to switch from one state to another.

Hence, these are also known as Majorana zero mode (MZMs). The degeneracy leads

to non-Abelian statistics. More general no-Abelian anyons can be obtained by the

proximity of superconductors and quantum Hall states, see [165–169].

(a)
(b)

Fig. 6.5. (a) A semiconductor nanowire is combined with the s-wave superconductor. A
magnetic field is applied along the nanowire that caused the Zeeman splitting. (b) Blue and
red curves correspond to the sub-bands in the presence of the Rashba spin-orbit coupling, and
black curves are Zeeman gapped states obtained after the application of external magnetic
field [163].

6.5 Majorana Fermion and Topological Quantum Computation

Suppose a zero-mode γ is localized in a vortex core. A single zero-mode γ cannot

define the creation and annihilation operator. The zero mode is self conjugate, so it
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satisfies one condition of Majorana fermion

γ† = γ (6.35)

But if γ† is a creation operator and γ is an annihilation operator, but they are both

equal, there is a contradiction. Therefore, γ† cannot be considered as a creation

operator. This difficulty is resolved by considering a pair of vortices. Let γ1 and γ2

be Majorana modes for vortices 1 and 2 that obey anticommutation relation {γi, γj} =

2δij. The fermion creation and annihilation operators c† and c can be written in terms

of the Majorana operators as

c† =
γ1 + iγ2

2
, c =

γ1 − iγ2

2
. (6.36)

These operators satisfy the relation

{
c†, c

}
= 1. (6.37)

The separated vortices are necessary for the creation and annihilation operators,

which leads to a non-local correlation between the vortices and results in drastic

changes to statistics [110,170]. The degeneracy leads to non-Abelian statistics.

On exchanging two bosons or fermions, the final state remains the same as the

initial state. But in general, the final state wave function in 2D p-wave supercon-

ductors is different from the initial state due to the existence of Majorana zero mode

particles. Therefore, the Majorana particles can be used as a physical system for

topological quantum computation.

For a particle γ to be a Majorana fermion, it must satisfy the properties as γ is
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γ1 γ2

γ1

γ2 γ2

γ1

γ2 γ1

Fig. 6.6. Schematics for the braiding of two Majorana fermion [171]. The Majorana particles
as red spheres at the edges of 1D nanowire on conventional superconductor.

γ1 γ2 γ3 γ4 γ1 γ2

γ3

γ4 γ1 γ2

γ3

γ4

γ1

γ3

γ2 γ4

Fig. 6.7. Braiding of more than two Majorana fermions [172].

fermionic, γ2 = 1, [H, γ] = 0. The second condition implies that the corresponding

operator is self-adjoint, and the third condition implies that it is a zero mode. They

come in pairs, so for 2n isolated vortices, there is a 2n-fold degeneracy. As the

γ operators are real, exchanging them will change their signs. The fermion parity

must be conserved, which implies that γ1 and γ2 must pick opposite signs, that is,

γ1 → −γ2, γ2 → γ1. This transformation is generated by the unitary operator

U = eiθe
π
4
γ1γ2 . (6.38)

This is braiding of Ising anyons for θ = π/8, and we have U = exp
(
−iπ

4
γ1γ2

)
=
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Fig. 6.8. Majorana braiding of the same pair does not change the ground state, whereas the
braiding of a Majorana from one pair with the one from other pair change the state.

(1 + γ1γ2)/
√

2 [144,170]. The braiding of two and more than two Majorana particles

on T-junction [171, 172] are shown in Fig. 6.6 and in Fig. 6.7. The braiding of two

Majorana fermions does not change the ground state, but only get an Abelian phase

with their wave function. Whereas, a braiding of a particle from one pair to that of

from the other pair may put the system in another ground state. This is shown in

Fig. 6.8. The fusion and braiding matrices of Ising anyons are discussed in Chapter

9. In the Ising model, there are three particles I, σ, ψ. Here the σ is a Majorana

fermion, whereas the ψ is an electron.
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Chapter 7

Topological Quantum Field Theories

Quantum field theory can be used to describe the quasiparticles in condensed mat-

ter physics. The topological phases are defined as the materials whose low energy

effective field theory is the topological quantum field theory (TQFT). The TQFT

has observable properties, such as the correlation function, that are invariant un-

der the smooth deformation of spacetime manifold in which is the system lives [12].

Low-energy means that the energy of our system should be low enough that the gap

between the ground state and excited state should not be filled. A quantum field is

an entity in spacetime that can show a wavelike behavior whose amplitude can be a

scalar, a vector, a complex number, or a tensor.

Energy and mass are interconvertible according to the relativity theory. At high

energies, particles can be created and destroyed. Quantum field theory is formu-

lated by combining special relativity with quantum mechanics, and therefore ac-

counts for the creation and annihilation of particles. In relativity, time is dealt with

equal footings as a space dimension, therefore, we use four spacetime coordinates

(t,x) = (t, x, y, z) = (x0, x1, x2, x3), three space and one time. The observable quan-

tities are defined as the four-vectors. For example, xµ = (t,x), pµ = (E,p), Aµ =

(φ,A), jµ = (ρ, j), and ∂µ ≡ ∂/∂xµ = (∂/∂t,∇), where the boldface letters mean

the three space components. The dynamics of the fields are studied by using the
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Lagrangian formulation. The quantum field is obtained by quantization of a classical

field. The theory related to this quantization is called the quantum field theory. The

classical fields are promoted to the field operators whose application on the vacuum

corresponds to the creation of particles at a particular spacetime point. All the parti-

cles are excitations in their corresponding fields. The basics of quantum field theory

are given in Appendix D, see [173,174] for further knowledge.

There are two ways to formulate a quantum field theory; canonical quantization,

and Feynman path integrals. We will only talk about the path integral approach in

this chapter. For second quantization, see Appendix D. In the path integral approach,

we compute the amplitude of having a final configuration of a field such that an initial

configuration of the field is given. This probability amplitude is called the partition

function of the theory. See Appendix D for the derivation of the partition function.

The fundamental formula in quantum field theory is given by

Z[A] =

ˆ
dAeiS(A)/~ =

ˆ
dAei

´
d4xL(A), (7.1)

where S is the action given as S =
´
dtL =

´
dtdxL and L and L are the Lagrangian

and Lagrangian density. The Euler-Lagrange equation gives the equation of motion,

which is found by minimizing the action with respect to the functional. A functional

is a function of a function. Here the action is a function of the field, which is a

function of spacetime. A quantum particle follows all possible paths between two

points. A phase is associated with each path. The integral is a weighted sum of the

contributions from all the paths.

The action of a charge particle in an electromagnetic field is written as [29]

S[A] =
1

2

ˆ
d4x(E2 +B2 +A · J + A0ρ), (7.2)
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where E,B,A and ρ are the electric field, magnetic field, vector potential and charge

density. We used the notation x = (t,x) = (x0, x1, x2, x3) and A = (A0,A). The

equations of motion are Maxwell’s equations that give the interaction between charge

particles and the electromagnetic field. The Maxwell’s equations are written as

∇ ·E = ρ, ∇×B − ∂tE = J ,

∇ ·B = 0, ∇×E − ∂tB = 0. (7.3)

If we transform the vector potential as A→ A′ = A+∇λ, A0 → A′0 = A0 +∂tλ, the

action and E and B will remain invariant. This transformation is called the gauge

transformation. Now let our system be confined to three spacetime dimensions, that

is, two spatial and one time dimension. The coordinates and the field can be written

as x = (t,x) = (x0, x1, x2) and A = (A0,A) = (A0, A1, A2). Now the action in

(2 + 1)-dimensions is given by

S[A] =
1

2

ˆ
d4x(E2 +B2 +A · J + A0ρ+

k

2π
εµνρaµ∂νaρ), (7.4)

The indices µ, ν, ρ take the values from 0 to 3. ε is the Levi-Civita symbol. It is zero

when more than one index are equal, 1 when the indices are in a cyclic permutation,

and -1 otherwise. The last term can be written simply as k
2π

´
aDa. This term

is independent of the coordinate reparameterization and the gauge transformation,

hence this action is topological in nature. Its topological nature will be apparent

later. The Euler-Lagrange equation of motion for the action in Eq. 7.4 will involve

the potential a, all other terms decay exponentially at larger distances [29].
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7.1 Abelian Chern-Simons Theory

The Chern-Simons theory [175] is an effective field theory that describes the low-

energy degrees of freedom in topological materials. It is a gauge theory valid for

energies much smaller than the energy gap between the ground state and the excited

state. When a system is confined to two dimensions, the path integrals involve the

action and the Lagrangian is independent of the metric. The metric is related to

distances in space. In topology, the distances are irrelevant. The Chern-Simons

action is written as

SCS =
k

4π
εµνρaµ∂νaρ, (7.5)

where aµ is a U(1) gauge field and k is a constant called the level of the theory. It

is the coupling constant of the Chern-Simons field. Let us have a coordinate trans-

formation of aµ(x) as aµ(x) = ∂xµ

∂x′ν
aν(x

′). Under this transformation, the line integral
´
dxµaµ =

´
dxµ ∂x

µ

∂x′ν
aν(x

′) will remain invariant. Hence, the action is independent of

the spacetime metric.

In the presence of the external electromagnetic field and the quasiparticles we

have

S = SCS −
k

2π
kεµνρaµ∂νaρ + aµJµ. (7.6)

In QFT, the equation of motion is calculated by using the relation Jµ = ∂L/∂Aµ =

δSCS [a]
δai

. Therefore, we can have

Jµ =
1

2π
εµνρ∂νaρ. (7.7)
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Integrating out the aµ field, we can get a conductance from this current as

σxx = 0, σxy =
1

k
e2/h. (7.8)

This is the quantum Hall conductance. Comparing with the Maxwell’s theory, the

counterpart for four-vector charge density is Jµ = (ρ,J), magnetic field b = ∂2a1 −

∂1a2, and electric field ei = ∂0ai − ∂ia0, we have

ρ =
k

2π
b, J i =

k

2π
εijej. (7.9)

The charge from these equations can be obtained as

Q = k

ˆ
d2xb. (7.10)

It implies that the charge of the source field is proportional to the flux of gauge field

aµ. Hence, the Chern-Simons theory ties aµ flux to the charge of the source field.

The contribution of eiSCS is the Aharanov-Bohm phase. The attachment of the flux

to the charge causes a change in the statistics, which becomes fractional now. The

Aharanov-Bohm phase of a moving charge around another causes a phase of eiqΦ,

where q is the charge and Φ is the flux. For the Chern-Simons theory, the charge is

given by q = kΦ. For this charge, the Aharanov-Bohm phase would be e−i
q2

k . For the

rotation of 2π, the phase should be equal to e2ηπ, therefore we have

2πη = −q
2

k
, (7.11)

where η = − q2

2πk
is not necessarily an integer, hence we have fractional statistics.

The Chern-Simons theory gives the Hall conductance of ν filled Landau levels if we
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identify the Chern-Simons level as k = e2ν/~. Therefore, the Chern-Simons theory

explains the quantum Hall effect, see Chapter 5. The Abelian Chern-Simons term

implements the Abelian anyonic statistics. The Chern-Simons field has no dynamics

and no local degrees of freedom.

7.2 Non-Abelian Chern-Simons Theory

By promoting the aµ to the vector of matrices, the field aµ takes the values in the

Lie algebra which are non-commutative in general. The Lie algebra will be dis-

cussed in Appendix A. The generators in the fundamental representation of SU(2)

are iσx, iσy, iσz. The Lie algebra gauge field is

aµ(x) = akµ(x)σk
i

2
, (7.12)

where i/2 is a convention. For aµ being a matrix-valued quantity, the Chern-Simons

action is

SCS =
~k
4π

ˆ
M

d3xεαβγTr

[
aα∂βaγ −

2i

3
aαaβaγ

]
. (7.13)

The second term appears because of the non-commutativity of aµ. This term is zero

in the case of Abelian aµ. When the gauge group is SU(2) at the level k, we call such

theory a SU(2)k theory. By the same reasoning as given for the Abelian case, this

action is independent of the spacetime metric. Topological nature is also apparent

when the action is written in differential geometric form, as in the Ref. [73].

In the case of a non-Abelian gauge field, the gauge transformation is

aµ → UaµU
−1 − i~

q
U∂µU

−1, (7.14)
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where U : M → G is a function on the manifold M . It has values in a group G. The

Chern-Simons theory is not invariant under the gauge transformation. The winding

number m classifies the gauge transformation as

SCS → SCS + 2πkm. (7.15)

It implies that the non-Abelian Chern-Simons theory is parameterized by the coupling

constant that can only have integer values. The integer, winding number, counts how

many times the gauge transformation covers the group G as x covers the manifold

M . The Chern-Simons action is invariant under a small gauge transformation, that is

whenm = 0. It is not invariant under a large gauge transformation whenm 6= 0. On a

manifold, the Chern-Simons action is invariant up to a surface term. It is not invariant

under the gauge transformation that does not vanish on the boundary. So there is

a bulk-boundary correspondence. For example, on the torus, m = 0 corresponds to

the contractible loops which do not wind around the longitude or meridian. However,

eiSCS is an invariant when k is an integer. A small perturbation to the Hamiltonian

cannot change the value of k. There are gapless edge modes whose dynamics can be

determined from the properties of the bulk.

The Chern-Simon theory is an example of topological quantum field theories [73].

The bulk-boundary correspondence is analogous to the conformal field theory (CFT)

and topological field theory (TQFT) correspondence [176, 177]. Let the boundary of

a 3-manifold has punctures and the Wilson lines start and end on these punctures. A

Hilbert space is associated with each boundary. A state is given by the Chern-Simons

functional integral. The properties of these associated Hilbert spaces are also given

by the conformal blocks of the SU(2)k Wess-Zumino-Witten conformal field theory

on the boundary with punctures [178]. In other words, the topological field theory in
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the bulk has a correspondence with the conformal field theory on the boundary [73].

7.3 Knot Invariant and Chern-Simons Theory

The quantity of our interest in this section is the Wilson loop operator. The expecta-

tion value of this operator gives the probability amplitude of the creation of particles

from the vacuum at one spacetime point, traveling, and then annihilation at another

spacetime point. This is the path integral approach in quantum field theory as we

discussed in Appendix D, except that the path integral in Chern-Simon theory de-

pends on the topology of the path. We can take the trace of the gauge group in any

representation. The field aµ is a matrix, hence aµ(x) and aµ(x
′
) do not commute.

Thus, if we choose k as an integer, then the functional integral becomes

Z(M) =

ˆ
M

Daµ(x)eiSCS/~. (7.16)

The Z(M) is a manifold invariant, that is a smooth deformation would not change

its value. The Z[M ] depends only on the topology of 4-manifold, see the Section 7.4.

Physically, the knots are the path integrals along trajectories of particles. To

compute a knot invariant from the Chern-Simons theory, let each particle be defined in

some representation of a group. The representation of a group is defined in Appendix

A. Different representations correspond to different particle types. A quantity called

Wilson loop operator is defined as

W = Tr
[
P exp

(
i
q

~

˛
L

dlµaµ

)]
, (7.17)

where P is the path ordering operator, analogous to the time ordering in quantum

mechanics. The quantity inside the integral is called the holonomy. The trace of
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the holonomy is the Wilson loop [71]. The holonomy is the mismatch of a ‘parallel

transported’ vector along a loop in some curved space with the original vector. The

holonomy is related to the geometric phases we discussed in Chapter 4.

The insertion of the Wilson loop operator inside the path integral gives the knot

invariant of a link L. See [73] for further explanation. The link is to be thought of

as embedded inside three manifold S3. Similar to the path integral formulation in

Chapter D, a link invariant of two links L1 and L2 is written as

Knot Invariant = 〈W (L)〉 =
Z(S3, L1, L2)

Z(S3)
=

´
S3 Daµ(x)WL1WL2e

iSCS/~´
S3 Daµ(x)eiSCS/~

. (7.18)

The expectation value of a loop inside S3 for an unknot is given by [73]

〈W (L)〉 =
ZCS(S3;C)

ZCS(S3)
= dimqαi. (7.19)

This quantity is a single loop, as we saw in the skein relations of the Kauffman bracket

in Chapter 3. On the right-hand side, we have the quantum dimension of the particle.

This number is defined in the context of the Hilbert space in Chapter 9. When C is a

link that is a disjoint union of the knot components C1, ..., Cm, then the Wilson loop

is written as a product of the Wilson loops for each component.

W (L) = W (C1, ..., Cm) =
m∏
j=1

W (Cj) (7.20)

The knot invariant would be the Jones polynomial when the framing is also considered.

If w(L) is writhe in a link, then the link invariant in U(1) representation can be written

as 〈L〉 = eiπw(L)/k. The writhe is defined in Chapter 3 in the context of knot theory.

In Appendix C, SU(N) representation and framing are considered to calculate the
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knot invariant.

Let us calculate the Wilson loop around two different cyclic paths L1, L2 on torus

along the longitude and meridian as

Wj = exp

(
iq/~

˛
Li

~dl · ~a
)

= eiqwi/~. (7.21)

This is the non-Abelian analog of the Aharanov-Bohm effect. The gauge transforma-

tion would shift the gauge field and the wi. The phase will also shift correspondingly,

so that for an integral k we will get the same phase wi as for zero shift of the gauge

field. This reminds us of the effect of the flux change in the quantum Hall effect,

see Fig. 5.4. As we know, eAeB = eBeAe[A,B]. This holds when [A,B] is a number.

Therefore, we have

W1W2 = eiθW2W1, (7.22)

where the θ is a statistical angle of the theory. This result is similar to the one we

discussed in Chapter 4 on geometric phase and anyons. The operators W correspond

to the T operators, which create particles, move them around the two loops, and fuse

them later. We saw in Section 4.2.1 that the degeneracy of the ground state is related

to the genus and the number of types of particles. Eq. 7.22 is also related to the

quantum group symmetry in Chern-Simons theory [179, 180]. When the framing is

also considered, the knot invariant for a manifold M is calculated in Appendix C on

the same lines as derived in the seminal paper by Edward Witten [73].



115

7.4 Two-Dimensional Topological Quantum Field Theory

Consider the path integral on a closed 3-manifold M . A manifold is a surface locally

looking like Euclidean space, but globally it may have a complicated structure. The

fundamental formula in quantum field theory, as written in Eq. 7.1 is given by

Z(M) =

ˆ A|Σ2=A2

A|Σ1=A1

DA exp(iS[A]/~), (7.23)

where S is the action, and Z(M) is called the partition function. It is the probability

amplitude of getting a final configuration of the field given an initial configuration.

The link invariant Z(M) calculated in terms of the Chern-Simons theory is often not

well-defined. Therefore, the link invariant in the case of a two-dimensional topological

quantum field theory (TQFT) can be advantageous where the links are labeled by

particle types. The TQFT is a set of rules which gives output as a complex number

such that input is given as a labeled link embedded in a 3-manifold. In this way,

the Hilbert space can be defined on a topological manifold. The TQFT is a field

theory that depends on the topological properties, not on the geometric properties.

It implies that the TQFT gives us Z(M) which is independent of the metric [181],

therefore it is a topological invariant.

7.4.1 Atiyah’s Definition of TQFT

First, we will consider a spacetime manifold without particles. It is still non-trivial.

Particles, and their motion around, will be added to this manifold later on. Here we

have a (d+1) dimensional manifoldM is considered and Σ is a d-dimensional oriented

slice of the manifold M . This definition can be generalized to any dimension. In our

case, we will consider d = 2 and Σ slice can be considered as a space of dimensions d
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at some fixed time. Atiyah’s definition of d-dimensional TQFT [182] consists of the

following axioms.

Axiom 1: A vector space V (Σ) is associated with a d-dimensional space Σ, which

depends only on the topology of Σ. Sometimes this V is also called H for Hilbert

space. For example, when Σ is a torus, then due to degenerate ground states, we have

a non-trivial Hilbert space V (Σ). As the degeneracy depends on the particle type,

space V (Σ) also depends on the particle type.

Axiom 2: The Hilbert space of two disjoint Hilbert spaces of Σ1 and Σ2 is the

tensor product of the spaces of each Σ

V (Σ1 ∪ Σ2) = V (Σ1)⊗ V (Σ2) (7.24)

This implies V (∅) = C so ∅ ∪ Σ = Σ and C⊗ V (Σ) = V (Σ).

Axiom 3: If the manifold M is a (d + 1)-dimensional manifold with boundary

∂M = Σ , then associated with this manifold is a particular element of the vector

space V (Σ) given by

Z(M) ∈ V (∂M) (7.25)

This association depends only on the topology of the manifold. Here ∂M can be

thought of as a time slice of the system at some fixed time, and V (∂M) some possible

Hilbert space of the ground state. The interior of the rest of the manifold, other than

a boundary, is the spacetime history of the system. Z(M) is a wave function that

is picked out by this spacetime history. For a closed manifold, we have ∂M = ∅, so

Z(M) ∈ C.

Axiom 4: Reversing the orientation of the surface Σ gives a dual vector space
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V ∗, that is, bras turn into kets.

V (Σ∗) = V ∗(Σ) (7.26)

7.4.2 Cobordism

As we discussed in Appendix B, a topological surface can be imagined as the gluing

of smaller manifolds. This is called surgery in topology. In TQFT, the knot invariant

of a manifold can be computed from the knot invariant of the smaller pieces. We

need to study how to glue the pieces to make the manifold, or equivalently, how to

break the manifold into pieces.

We are taking the time direction upward. Let the in-boundary at an initial time be

called Σ1, and at a later time we have Σ2, the out-boundary. The evolution between

these two surfaces is a manifold, say M . We can see that when Σ is 2-dimensional,

then M is 3-dimensional. This can be extended to any number of dimensions when

Σ is a d − 1-dimensional manifold and M is a d-dimensional manifold, but we will

only discuss the case of a two-dimensional Σ. If the disjoint union of Σ1 and Σ2 is

the boundary of a manifold M , that is ∂M = Σ1 ∪ Σ2, then we say that M is a

cobordism between Σ1 and Σ2, and Σ1 and Σ2 are cobordant, as shown in Fig. 7.1.

In abstract algebra, an interval between two points a and b is given as I = [a, b].

Correspondingly, the interval between the initial time and the final time we call I so

that the cobordism can be written asM = Σ×I. The algebra used for the cobordism

is called Frobenius algebra [183].

The composition of a cobordismM and a cobordismM ′ correspond to the passage

of time followed by another passage of time. This is equivalent to the total passage of

time given by the cobordism MM
′ . No effect occurs on the state if topology does not
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M

Σ2

Σ1

Fig. 7.1. Cobordism, ∂M = Σ∗1 ∪ Σ1

change with time. This means TQFT has no local degrees of freedom. Z is unitary

means that the time evolution operators for a process and its time reversal process

are complex conjugates of each other. In other words, the time evolution is unitary

if topology does not change. In Chapter 8, we will discuss that TQFT is a functor

from the category of manifolds to the category of vector spaces, where the particle

are objects in a category and the cobordisms are morphisms.

7.4.3 Hilbert Space on a Two-Manifold

Let us have a two-dimensional manifold as a disc Σ. This manifold is topologically

equivalent to a sphere with one hole. Let time be in the upward direction. When there

are no holes on the two-dimensional manifold Σ, the spacetime history will make a

cylindrical manifold M whose boundary is Σ. In Fig. 7.2, we have holes or punctures

on a two-dimensional boundary Σ of a manifold M . In this section, puncture, hole

or punctured hole are used interchangeably. When we move these punctures around

each other, the trajectories or worldlines of the punctures will make braids in (2 + 1)-

dimensional spacetime, and the spacetime history will have a nontrivial topology as

shown in Fig. 7.3. Imagine an orientation is assigned to each punctured (not shown

in Figs.) so that the punctures with one type of orientation make a vector space and

the punctures with opposite orientation make a dual vector space.

Now we will identify the physical picture of TQFT with the anyonic model. Here
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Σ
b

ā

a
b̄

Fig. 7.2. Time slice of a manifold with particles.

the boundary ∂M = Σ can be thought of as a slice of the system at an instant of time,

and V (∂M) as a possible Hilbert space of the ground state. In Fig. 7.3, worldlines

correspond to creation, fusion, and braiding. It is the evolution of the system that

changes the system from one ground state to the other in general. Sky-blue strands

correspond to the creation of particle-antiparticle pairs, the green strand represents

the fusion of particles to the vacuum. The orange loop corresponds to the creation

and fusion of a particle-antiparticle pair. We can also observe that the state at Σ and

the state at Σ′ look similar locally, but globally they are different in general. We also

see that a manifold can be a composition of two separate pieces, or we can cut the

manifold at some particular instant of time. The identification of the in-boundary to

the out-boundary is given by taking the trace. This identification will make knots and

links of the worldlines. The opposite orientations of the punctured holes correspond

to the directed trajectories of particles and antiparticles. In quantum field theory, a

trajectory of an antiparticle is in the backward time direction comparing with that of

a particle. When a particle is its own antiparticle, the corresponding vector space and

dual vector space are equal, therefore we do not need directed trajectories. The twist

of a puncture corresponds to the topological spin obtained when an anyon rotates

around its own magnetic flux.

Let us have two punctures on a Riemann sphere which is a complex manifold. The

gluing axiom of topological quantum field theory [182] states that we can glue the

two punctures when they have opposing orientations. If we imagine one puncture as

a particle, then the other hole must be considered as an antiparticle. It is explained
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Σ′ = ∂(M ∪M ′)

Σ = ∂M

M ′

M

b
ā

a
b̄

Fig. 7.3. Worldlines of particles in the manifold.

in 4 that the ground state degeneracy for an m number of particles on a torus is mg,

where g is a genus. A genus is a handle in a manifold. From Fig. 7.4, we get a

genus-one torus T 2 when we glue the two opposing particles together. Therefore, the

dimension of Hilbert space on a torus is equal to the number of particles types. This

idea can be generalized to n punctures and higher genus torus, written as n-torus

or T n. Any Riemann surface can be formed by the composition of three punctured

Riemann spheres, which is also called pants [12, 184] shown in Fig. 7.1. If two of

them are fused, a two-punctured sphere will result. Since the opposite orientations

of punctures in TQFT are the opposite charges in anyonic models, two punctures on

a sphere with labels a and ā should have the same topological charge to fuse into

the vacuum. The fusion of two particles requires that for k charges, there are k + 1

different possible allowed boundary conditions. These charges can be identified as

j = 0, 1/2, ..., k/2 and the corresponding anyonic model is SU(2)k model with k + 1

quasiparticles [12, 185].
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a ā

Fig. 7.4. Punctures on tori equivalent to the types of particles present
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Chapter 8

Category Theory

So far, we have looked at things from the geometric point of view. Category theory

is the algebraic approach for the computation of F -symbols and R-symbols used in

Chapter 9 and 11. Anyons are simple objects in the categories whose trajectories are

modeled by the morphisms of certain unitary modular categories (UMC). UMC is

considered as a computing system and morphisms are circuits for computation [186].

8.1 Category and Functor

A category C consists of two elements: objects and morphisms (or arrows), such that

• Each morphism f is assigned with a pair of objects (U, V ) in which case U is

called the domain (or source) of f whereas V is called the codomain (or target)

of the morphism f . This is written as f : U → V .

• There is a rule that if there are morphisms f : U → V and g : V → W , then

their composition is g ◦ f : U → W , that is, the codomain of f is equal to the

domain of g.

• This composition must be associative (f ◦ g) ◦ h = f ◦ (g ◦ h).

• Finally, there exists an identity morphism id ◦ f = f = f ◦ id for each object.
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The category theory is pictorially shown in Fig. 8.1 (a). One typical example of a

category is the Set for which the objects are sets and the morphisms are functions

f : X → Y which are composed ordinarily. But in general, objects are taken merely

as labels that may not have substructures. There are categories in which objects

are sets and morphisms are functions preserving the structure of the objects. One

such example is the Grp in which case the objects are groups and the morphisms are

group homomorphisms. When these objects are Abelian groups, then the category is

represented as Ab. The Vect categories are the ones for which the objects are vector

spaces and the morphisms are linear maps. The Hilb is the category with objects

that are the Hilbert spaces and the morphisms are linear maps.

A mapping from one category to the other is called a functor. A functor F : C → D

from a category C to a category D is a rule such that

• To each object U of C, there is associated an object V of D and each morphism

f : a → b in C, there is associated a corresponding morphism F (f) : F (a) →

F (b) in D.

• The association must preserve the composition and the units, that is, F (fg) =

F (f)F (g) and F (1a) = 1F (a), where 1a is a unit object in C and 1F (a) is a unit

object in D.

A functor can be depicted as in Fig. 8.1. The products of categories are defined in

the same way as the Cartesian product C × D. The objects in this case are (a, b)

where a ∈ C and b ∈ D and maps are (f, f2) when f1 ∈ C and f2 ∈ D. For further

knowledge on category theory, see [181,184,187–189].
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U

V

W

Xf−1 idX
f

(a)

f g

g ◦ f F (g ◦ f) = F (g) ◦ F (f)

F

F (f) F (g)

(b)

Fig. 8.1. (a) A category theory, (b) a functor F .

8.2 Monoidal or Tensor Categories

Amonoid is a setX with some binary operation defined on it. Groups, rings, modules,

and algebra are examples of monoids. A monoid X can be expressed as follows. For

A,B ∈ X and (A,B) ∈ X × X, a product A ◦ B is defined in the way that

A ◦ (B ◦ C) = (A ◦ B) ◦ C. For all A ∈ X, there is a unit element for which

1 ◦ A = A ◦ 1 = A. A monoid is also armed with two operations, µ : X × X →

X, η : 1→ X.

A process of defining a similar binary operation on a category is called the cat-

egorification. In a category theory, numbers are replaced with vectors of dimension

n, and equality is replaced with isomorphism. The bifunctors ⊕ and ⊗ are the cate-

gorifications of + and × of a ring. The ring is defined in Appendix A. A monoidal

category is a category with the following additional data:

• A bifunctor ⊗ : C × C → C.
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• Associativity isomorphism of the functor

αUVW : (U ⊗ V )⊗W → U ⊗ (V ⊗W ).

• Unit object λv : 1⊗ V → V, ρV : V ⊗ 1→ V .

The tensor or monoidal category is called strict if U ⊗ (V ⊗W ) = (U ⊗ V )⊗W

and 1⊗ U = U ⊗ 1 = U . For a strict category, we can write tensor products without

bothering with parenthesis. The opposite category Cop is obtained by reversing the

arrows.

The monoidal categories can be understood by drawing graphs as in Fig. 8.2.

The morphisms f are represented by a rectangle, whereas the source object and the

target objects are represented by arrows. In Fig. 8.2 (a), morphism f is from the

object U to V . The Fig. 8.2 (b) is the identity morphism, which is equivalent to

doing nothing to the object. In (c), we have the composition of two morphisms, that

is, if f : U → V and g : V → W then f ◦ g : U → W . In (d), the tensor product of

two morphisms is shown, that is, f ⊗ g : U1 ⊗ U2 → V1 ⊗ V2, where f : U1 → V1 and

g : U2 → V2.

8.2.1 Deformation of Diagrams and Duality

The further generalization to the arbitrary category can be done by introducing the

duals of the vector spaces. This duality would help to examine the diagrams which

are equivalent under the deformation by keeping their endpoints fixed. Let there be

an object V ∗ in C for each object V in C. There are two morphisms called right duals

eV : V ∗ ⊗ V → 1 iV : I → V ⊗ V ∗. (8.1)
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The right duals are shown graphically in Fig. 8.3 (a). The structure is called duality

when there are the following two composites

V = 1⊗ V iV ⊗idV−−−−→ V ⊗ V ∗ ⊗ V id⊗eV−−−→ V ⊗ 1 = V, (8.2)

V ∗ = V ∗ ⊗ 1
idV ∗⊗iV−−−−−→ V ∗ ⊗ V ⊗ V ∗ eV ⊗idV ∗−−−−−→ 1⊗ V ∗ = V ∗. (8.3)

When ei is a basis for V then ei is its dual basis. Duals can be incorporated in the

diagrams by representing the duals as arrows pointing down, whereas usual arrows

are pointing up. For example, f : V ∗ → W is shown in Fig. 8.4. By using the duality,

we can see that the graphical calculus remains invariant under deformation. Duals of

morphisms can also be defined. If f : U → V then its dual is f ∗ : U∗ → V ∗.

Suppose f : V → V and an object V is in a monoidal category C. The trace

Tr f ∈ C is defined as in Fig. 8.5 (a). The dimension of V is given by the trace of

the identity, that is, dimV = Tr idV shown in Fig. 8.5 (b). The trace and dimension

should behave like those in Vect

(a) Tr(f ⊗ g) = Tr f Tr g (b) Tr(f ∗) = Tr f,

(c) dim(V ⊗W ) = dimV dimW (d) dimV ∗ = dimV. (8.4)

8.2.2 Braided Tensor Category

The discussion above is sufficient for a planar deformation. For the three-dimensional

deformation, we have to introduce the concept of braiding. Two types of crossings in

braiding, ‘under’ and ‘over’, cannot be deformed into each other. For every pair of

objects in the monoidal category (C,⊗, 1), a natural isomorphism is assigned
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f

V

U

(a)

idV

V

V

=

V

V

(b)

f ◦ g

W

U

=

g

f

W

V

U

(c)

f ⊗ g

V1 ⊗ V2

U1 ⊗ U2

= f ⊗ g

V1

U1

V2

U2

= f

V1

U1

g

V2

U2

(d)

Fig. 8.2. Graphical calculus for the morphisms in a category theory. (a) f : U → V , (b)
idV : V → V , (c) composition of f : U → V and g : V → W is f ◦ g : U → W , (d) tensor
product of f : U1 → V1 and g : U2 → V2 is f ⊗ g : U1 ⊗ U2 → V1 ⊗ V2

(a) (b)

Fig. 8.3. (a) Right dual: eV : V ∗ × V → I, iV : I → V × V ∗, (b) left dual e′V : V ⊗∗ V →
I, i′V : I →∗ V ⊗ V .

(a)

f

(b)

=

(c)

=

(d)

Fig. 8.4. Pictorial representation of morphisms containing duals; (a) idV ∗ , (b) f : V ∗ →W ,
(c) (idV ⊗ eV )(iV ⊗ idV ) = idV , (d) (eV ⊗ idV ∗)(idV ∗ ⊗ iV ) = id∗V .
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f

(a) (b)

Fig. 8.5. Trace of the morphisms: (a) Tr f , (b) Tr idV .

σV,W : V ⊗W → W ⊗ V , such that for any three objects U, V,W in C we have

σU,V⊗W = (idV ⊗ σU,W )(σU,V ⊗ idW ),

σU⊗V,W = (σU,W ⊗ idV )(idU ⊗ σV,W ). (8.5)

The natural isomorphism means that it does not matter whether the braiding is done

before or after the maps. The braiding is graphically shown in Fig. 8.6 (a).

To see how σ−1
V,W is really the inverse of σV,W , we will compose σV,W with its inverse,

and the result must be the identity. This is shown in Fig. 8.6 (b). The result is the

second Reidemeister move we discussed in the Chapter on knot theory 3. σV,W has

to satisfy the following relation which is famously called the Yang-Baxter equation,

(idW ⊗ σU,V ) ◦ (σU,W ⊗ idV ) ◦ (idU ⊗ σV,W )

= (σW,V ⊗ idU) ◦ (idV ⊗ σU,W ) ◦ (σU,V ⊗ idW ). (8.6)

This is also the third Reidemeister move. It is shown graphically in Fig. 8.6 (c).

A braided tensor category is called a symmetric tensor category when σ satisfies

σW,V σV,W = idV⊗W . i.e. σV⊗W = σ−1
W⊗V . For a symmetric category, it does not

matter whether strands are crossing above or below one another.

The data (C,⊗,1, α, λ, ρ) constitute a tensor category iff they satisfy the two
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axioms; the triangle axiom and the pentagon axiom. The data (C,⊗,1, α, λ, ρ, σ)

constitute a braided tensor category iff they satisfy the three axioms; the triangle

axiom, the pentagon axiom and the hexagon axiom shown in Fig. 8.7. These identities

are also discussed in Chapter 9 with reference to braiding and fusion of anyons.

V W

σV,W

V W

σ−1
V,W

(a)

=

V W

W V

V W

V W

V W

=

V W

W V

(b)

=

U V W

W V U

U V W

W V U

(c)

Fig. 8.6. The braiding in a braided tensor category.

8.2.3 Ribbon Category

The first Reidemeister move is to straighten out the twist in a strand, as shown in

Fig. 8.8 (a). The Reidemeister moves 1, 2, and 3 are for unframed tangles. To show

the relation between duality and braiding, we need two more arrows, as given by

e
′

V : V ⊗∗ V → 1, i
′

V : 1→∗ V ⊗ V. (8.7)

These are called the left duals and are shown graphically in Fig. 8.3 (b). These

identities are used to swap the inputs of iV and eV . To get rid of the twist, a natural
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(V1 ⊗ 1)⊗ V2

V1 ⊗ V2

V1 ⊗ (1⊗ V2)
α

id⊗ λ ρ⊗ id

(a)

((V1 ⊗ V2)⊗ V3)⊗ V4

(V1 ⊗ (V2 ⊗ V3))⊗ V4

(V1 ⊗ ((V2 ⊗ V3)⊗ V4) V1 ⊗ (V2 ⊗ (V3 ⊗ V4))

((V1 ⊗ V2)⊗ V3)⊗ V4

α1,2,3 ⊗ id4

α1,23,4

id1 ⊗ α2,3,4

α1,2,34

α12,3,4

(b)

(V1 ⊗ V2)⊗ V3

V1 ⊗ (V2 ⊗ V2) (V2 ⊗ V3)⊗ V1

V2 ⊗ (V3 ⊗ V1)

(V2 ⊗ V1)⊗ V3 V2 ⊗ (V1 ⊗ V3)

α1,2,3

σ1,2

α2,3,1

σ1,2 ⊗ id3

α2,1,3

id2 ⊗ σ1,3

(c)

Fig. 8.7. (a) Triangle Identity, (b) pentagon identity, and (c) hexagon identity

family of isomorphisms is introduced θV : V −→ V , such that
θV⊗W = σW,V σV,W (θV θW ),

(θV ⊗ idV ∗)iV = (idV ⊗ θV ∗)iV ,

θ1 = id,

θV ∗ = (θV )∗. (8.8)
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The first of these relations is shown in Fig. 8.8 (c). The θ is the actual 2π twist in a

ribbon. For a balanced category, we can write ∗V = V ∗, which means the left, and

the right duals are equal.

Now we will introduce the ribbon category (C,⊗, 1, σ, θ) which is a braided monoidal

category with a compatible twist. A ribbon category is a rigid, balanced, and braided

tensor category. By compensating for the twist, the ribbon diagrams remain invari-

ant under 3d isotopy. Two ribbon diagrams are isotopic when they are topologically

deformable into each other.

V

V

=

V

V

6=

V

V

(a)

θ

V

V

= θθ

V

V

(b)

θ

V

V

W

W

= θ

W

W

θ

V

V

(c)

Fig. 8.8. Representation of a twist in a ribbon category.

8.3 Semisimple Ribbon Categories

Suppose an object U of a category does not contain nontrivial subobjects, then the

object is called simple. An Abelian category is semisimple if any object in C is

isomorphic to the direct sum of simple objects Vi [187].

V =
⊕
i∈I

NiVi, Vi ⊗ Vj '
⊕
k∈ΠC

Nk
i,jVk. (8.9)
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These formulas are called the fusion rules, and Nk
ij is called the fusion coefficient.

These are positive integers and are given by

Nk
i,j = dim(HomC(Vk, Vi ⊗ Vj)) = dim(Hom(1, Vi ⊗ Vj ⊗ Vk)), (8.10)

Nk
ij = Nk

ji = N j∗

ik∗ = Nk∗

i∗j∗ , N
0
ij = δij8 . (8.11)

We also have

θV = θiidVi , dimVi = di, θ0 = 1, θi = θi∗ ,

d0 = 1, di = di∗ , didj =
∑
k

Nk
ijdk. (8.12)

The fusion matrix Ni of V is defined as (Ni)k,j = Nk
i,j with the non-negative entries.

The largest eigenvalue is called Frobenus-Perron dimension of C.

A fusion category is a semisimple rigid category with a unit object [190], a finite-

dimensional morphism, and a finite number of simple objects. The braided fusion

category with a ribbon structure is called a ribbon fusion, or a premodular category.

A premodular category is a modular category if the S-matrix of C is defined as follows

Sij = Tr
(
σVj ,Vi ◦ σVi,Vj

)
for i, j ∈ ΠC, (8.13)

Sij : Vj ⊗ Vj → Vi ⊗ V ∗i . (8.14)

The S-matrix is the basis change between the components of the links. This S-matrix

is a topological analogue of the S-matrix in the scattering theory we will discuss in
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the Appendix D. A modular category is a semisimple ribbon category if the matrix

S is invertible and C has only a finite number of isomorphism classes of objects. The

S-matrix is an invariant of a Hopf link colored by a and b, which are the entries of

the S-matrix. A single loop can be thought of as a loop linking vacuum, which give

Sa0 = S0a. For the normalization, we take the loop of vacuum linking vacuum S00, so

da =
Sa0

S00

. (8.15)

The total quantum dimension is a number D =
√∑

a∈ΠC
d2
a. It is an invariant of the

category and is called the quantum order. The columns of the S-matrix can be seen

to be simultaneous eigenvectors for the fusion matrix so that S diagonalizes all Na

simultaneously. This leads to Verlinde formula [191].

N c
ab =

∑
x

SaxSbxScx
S1x

. (8.16)

See [73,192] for the proof of the Verlinde formula. By the Verlinde formula, S matrix

contains the information about the braiding as well as the fusion.

Let, V c
ab be Hom(a ⊗ b, c), the Hilbert space that is assigned to a surface when

there are three objects. When there are four simple objects in a semisimple category,

the F-matrix can be written as

F abc
d : Hom((a⊗ b)⊗ c, d)→ Hom(a⊗ (b⊗ c), d) (8.17)

8.3.1 Modular Transformation

The S-matrix is the change of basis between the two links shown in Fig. 8.9. This

transformation is called the modular transformation. The topological twist θa is
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encoded in a diagonal matrix T = (δabθa). Sab is an invariant of the Hopf link of two

charges colored by a and b. The S and T are called the modular data of the category.

The S and T matrices define a projective representation of a modular group or

mapping class group (MCG). The mapping class group on a torus is SL(2,Z), the

special linear group on Z. The Lie algebra and special linear groups are discussed

in the Appendix A. The mapping class group is obtained from the deformation of

spaces. Taking an example of a torus, which is the identification of a sheet at two

opposite edges. The modular transformation of the torus is cutting the torus, putting

one twist, called the Dehn twist, and then joining again. A torus remains invariant

under non-trivial transformation of the modular group.

A torus is made up of a lattice in the form of a parallelogram in complex plane

with two opposite sides identified. The parallelogram is generated by two complex

numbers w1 and w2. Modular parameter τ = w1/w2 ∈ H, where H = {z ∈ C|z > 0}

is the complex upper half plane. We can denote the lattice as L(w1, w2). Let another

torus denoted by a lattice L(u1, u2) with the modular parameter τ = u1/u2. The two

tori are equal if their modular parameters coincide, that is when they are related by

the modular transformation asw1

w2

 =

a b

c d


u1

u2

 , where

a b

c d

 ∈ PSL(2,Z). (8.18)

See [193] for detailed discussion. The most general modular transformation has the

form

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z; ad− bc = 1. (8.19)

This is also known as global conformal transformation or Möbious transformation
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[120]. The modular transformation has generators S : τ → − 1
τ
and T : τ → τ + 1.

The matrices S and T obey S2 = 1, (ST )3 = 1. These matrices represent the rescaling

of coordinates, where S represents the inversion in the unit circle followed by reflection

around the imaginary axis, and T represents a unit translation. The projective special

linear group PSL(2,Z) is a quotient group SL(2,Z)/Z2, see Appendix A for the

definition of the quotient group. PSL(2,Z) is a group of 2 × 2 matrices with integer

coefficients and unit determinant. Some authors write the modular matrix as a bigger

group SL(2,Z) instead of PSL(2,Z). The quotient Z2 is due to the fact that the above

transformation is unaffected by taking a, b, c, d negative.

The modular transformation is an alternative to the fusion coefficients N c
ab. This

transformation encodes the braiding statistics and fusion rule of anyons [12]. A braid

is a special case of MCG when there are n punctures. The non-Abelian Berry phase

is obtained from the transformations T and S on a torus. A ground state subspace

form a unitary representation of MCG [194]. For example, let there be charges in an

Ising anyon model given as |1〉m , |σ〉m , |ψ〉m. In this case, the S matrix would be 3

by 3, and the effect of its application would be to change the basis to a new basis

|1〉l , |σ〉l , |ψ〉l. The S matrix is a change of basis, so this matrix should be unitary.

The topological spin or a twist factor θa = e2πiha is a twist when an anyon is rotated

by 2π, where ha is a scaling dimension or conformal dimension. See Fig. 8.10. It is

an integer for bosons and gives a spin factor identity. It is a half-integer for fermions

that would give the spin factor as −1. For vacuum, h0 = 0. The exchange of two

particles without twisting is governed by the braid group for anyons. In general, the

left over right exchange is not equal to the right over the left exchange. The product

of two left over right exchanges is called monodromy. It returns the excitations to

their original position but results in a nontrivial effect on the state of the system.
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This effect is given by the ribbon equation pictorially shown in Fig. 8.11,

eiθ
c
ab =

e2πihc

e2πihae2πihb
. (8.20)

This is the same as the full twist of fusion products combined with the full twist

of charges in the opposite direction. The effect of monodromy introduces the phase

factor

θc
θaθb

= e2πi(hc−ha−hb) = [Rab
c ]2. (8.21)

This is shown in Fig. 8.11. This relation is used to derive the entries of the R-matrix

for Fibonacci and Ising anyons. The trace of monodromy on a and b gives Sab.

The classification of topological phases of matter is actually the classification of

modular categories [195, 196]. For example, the Fibonacci and Ising categories given

below are the phases of matter in which Fibonacci and Ising anyons are present [197].

These two types of anyonic models are the most widely used in topological quantum

computing. We will discuss these types of anyons in Chapter 9.

sij =

i j

Fig. 8.9. Modular transformation between two colored links

Fibonacci Modular Tensor Category

Anyon types: 1, τ

Fusion rules: τ 2 = 1 + τ

Quantum dimensions: d1 = 1, dτ = φ
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a

= θa =

a a

(a)
a

= θ∗a =

a a

(b)

Fig. 8.10. Removing a twist is equivalent to adding a phase (a) θa = e2πiha and (b) θ∗a =
e−2πiha .

=

Fig. 8.11. Braid-twist correspondence.

Twists: θ1 = 1, θτ = e4iπ/5

Braiding: Rττ
1 = e−4iπ/5, Rττ

τ = e3iπ/5

S-matrix: S = 1√
2+φ

1 φ

φ 1


F-matrices: F τττ

τ =

 φ−1 φ−1/2

φ−1/2 −φ−1


Ising Modular Tensor Category

Anyon types: 1, σ, ψ

Fusion rules: σ2 = 1 + ψ, σψ = ψσ = σ, ψ2 = 1

Quantum dimensions: d1 = 1, dσ =
√

2, dψ = 1

Twists: θ1 = 1, θσ = eiπ/8, θψ = −1
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Braiding: Rσσ
1 = e−iπ/8, Rψψ

1 = −1, Rψσ
σ = −i, Rσσ

ψ = e3iπ/8

S-matrix: S = 1
2


1

√
2 1

√
2 0 −

√
2

1 −
√

2 1


F-matrices: F σσσ

σ = 1
2

1 1

1 −1

 , Fψσψ
σ = (−1), F σψσ

ψ = (−1)

8.4 Category Theory and Topological Quantum Computation

There are three steps to implement quantum computation: the creation of anyons

from the vacuum, braiding these anyons by moving them around, and measuring the

anyon type of the pair of neighboring particles. In category theory, the first step is

the implementation of Hom(1, X⊗n) and the third step is Hom(X⊗n,1). After the

braiding, neighboring anyons may have a different total charge besides vacuum. The

computing result is a probability distribution on anyon types obtained by repeating

the same process polynomially many times. Usually, the probability of neighboring

pairs of anyons returning to vacuum is taken as the computing answer, which approx-

imates some topological invariant of links obtained from the braiding process [186].

A group of particles in the configuration space makes a quantum state in the

Hilbert space. The objects in a category correspond to particles, and dual objects

correspond to antiparticles. The twist is a topological spin of an anyon. A loop is a

trace of a worldline and gives the dimension of a particle. If an object X has dX = 1,

then it is an Abelian anyon, whereas the object is a non-Abelian anyon when the

dimension dX > 1. The decompositions are called the fusion rules. The comparison

of the anyon model to the category theory is given in [186,198].
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8.5 Categorical Aspect of TQFT

The functorial view of the quantum field theory is a mapping from geometry to

algebra. More specifically, from a geometric and dynamical structure of spacetime to

the algebraic structure of observables and states. The TQFT is a symmetric monoidal

functor, can be written as [181]

Z = nCob→ Vect, (8.22)

where nCob is a category whose objects are closed n − 1-dimensional manifold Σ

and whose morphisms M : Σ1 → Σ2 are cobordism, that is, n-dimensional man-

ifolds having an input boundary Σ1 and an output boundary Σ2. The concept

of cobordism is explained in Chapter 7. Physically, that Z is a functor means

Z(MM
′
) = Z(M)Z(M

′
), and when Z is monoidal means that the two non-interacting

systems have a state-space which is the tensor product of the states of individual sys-

tems. Z is a symmetric functor when we are dealing with a bosonic statistic.
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Chapter 9

Topological Quantum Computation

Topological quantum computing is a fault-tolerant quantum computing, proposed by

Alexei Kitaev [10], manifested by manipulating quantum information using anyons.

A quantum computation model involves three main steps; initialization, unitary evo-

lution, and measurement [31]. In quantum theory, the time evolution of a state is

represented by the unitary time evolution operator U(t). When the initial state |ψi〉

evolves unitarily to the final state, it is written as |ψf〉 = U(t) |ψi〉. The initial state

is an input and the final state is an output of a quantum gate, and the readout is

a measurement in a certain basis to get a classical result [32]. See Chapter 2 for

further details. The gate operation U(t) is equivalent to the rotation of states in the

Hilbert space. Analogous to conventional quantum computing, topological quantum

computing has three steps; the creation of pairs of anyons from the vacuum, their

braiding, and their fusion. The result of fusion corresponds to the measurement, and

the braiding corresponds to the unitary transformation Ψf = (Braid)Ψi. The braids

cause rotation within degenerate N-particles space. The change of state by braiding

can be explained by geometric phases. The braid group and the geometric phase are

discussed in Chapters 3 and 4. To see how topological quantum computing is a fault-

tolerant quantum computing, let two spacetime histories |1〉 and |2〉 in Fig. 9.2 have

time reversed states 〈1| and 〈2|. By the Kauffman bracket we have 〈1|1〉 = 〈2|2〉 = d2,
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〈2|1〉 = d. The number d is assigned to a loop as we discussed in context of the Kauff-

man bracket in Chapter 3. So |1〉 and |2〉 are distinct states as long as |d| 6= 1 [199].

The states |1〉 and |2〉 locally look the same, but the outcomes of their fusion with

|1〉 or |2〉 are different. Therefore, disturbing one of the particles would not affect the

outcome if the topology of a spacetime trajectory is not changed. The state |1〉 can

also be interpreted as the creation of two pairs of anyons and the state 〈1| as a fusion

of the two pairs of anyons.

For a basic introduction on topological quantum computation, see [29, 200]. The

topological gates with Ising anyons, using the Kauffman version of the recoupling

theory [201], are proposed by [202]. For the implementation of gates with Ising

anyons in the quantum Hall phase, see [203,204] and for gates with Fibonacci anyons,

see [205].

T
im

e

Measure

Braid

Initialize

Fig. 9.1. Creation of anyon pairs, braiding them by dragging around each other, then fusing
them and getting the result of fusion [199]

9.1 Hilbert Space

The types of anyons are categorized by quantum numbers attached to them called

the topological charges. When the charges are created from the vacuum, their total

charge must be zero. Therefore, the value of the topological charge is assigned with
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〈1|

|1〉

〈2|

|2〉

〈1|1〉 = = d2

〈1|2〉 = = d

Fig. 9.2. States of spacetime histories [199].

respect to its fusion with other anyons. The topological charge zero is assigned to

the vacuum. The vacuum is also called a trivial charge. For example, in Ising anyon

model, there are three charges {1, σ, ψ}. In some anyonic models, the vacuum is

represented by 0 or I. The 1 represents a vacuum, or a trivial particle, whereas the

σ and ψ are nontrivial particles. Since the anyons are created from the vacuum, to
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conserve the total charge, they must be fused to vacuum. The number of ways these

anyons are fused to vacuum is called the fusion channels or fusion trees. The number

of the fusion channels is equal to the ground state degeneracy of the system. The

fusion space is a shared property of a collection of non-Abelian anyons regardless of

where they are located. Therefore, local perturbations do not affect the degeneracy

of the system. In Chapter 7, we identified the anyons on a two-dimensional manifold

as the punctures or holes on a sphere.

Let several anyons be created from the vacuum, and let us consider a subtree

consisting of two anyons a and b. A fusion tree diagram is equivalent to the anyons’

creation tree if the time direction is reversed. When these anyons are Abelian, they

fused to only one outcome and the dimension of Hilbert space for two anyons is

one. But when the particles a and b are non-Abelian, there is more than one fusion

outcome, that is a×b =
∑

cN
c
ab. Their Hilbert space is denoted as V c

ab. The dimension

of Hilbert space is given as N c
ab = dim(V c

ab). The numbers N c
ab are also called the

fusion rules. These fusion rules appear in conformal field theory and category theory

in the form as φa × φb =
∑

cN
c
abφc. The fusion rules put some restrictions on what

types of anyons a particular anyonic model can have. As the fusion of two non-

Abelian anyons can result in several anyons, in general, N c
ab could have more values

than one. Most of the anyonic models are built by considering only the two fusion

outcomes; vacuum or another anyon, that is N c
ab = 0, 1. When the fusion of a and b

gives the topological charge c then N c
ab = 1, but when a and b cannot be fused to c

then N c
ab = 0.

The dimension of Hilbert space increases with the number of anyons, analogous

to the addition of spins 1/2 ⊗ 1/2 = 0 ⊕ 1. This analogy is not exact, because the

anyons are not elementary particles, but they have internal degrees of freedom. The
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dimension of Hilbert space of N particles of type a is roughly ∼ dNa , where d is the

dimension of Hilbert space of one anyon and is called the quantum dimension. It is a

measure of how much the Hilbert space is increased by adding this anyon. Therefore,

it is an asymptotic degeneracy per particle. It needs not to be an integer. The

quantum dimension of vacuum is one. In terms of knot theory, the d is a number

assigned to a loop. For the process a× b =
∑

cN
c
abc, the quantum dimension can be

defined to satisfy dadb =
∑

cN
c
abdc.

a b c

d

i =
∑

j(F
d
acb)

i
j

a b c

d

j

i

a b

= Ri
ab

i

a b

Fig. 9.3. F and R moves.

Let there be a situation when the fusion outcome of three non-Abelian anyons

a, b, c is d. (It can be a subtree of another fusion tree in which d can be fused with

another anyon and the outcome is vacuum or some other anyons). There are more

different fusion channels than one. For example, a can be fused to b first, then

their outcome i is fused with c to get d. Or b can be fused to c first, then their

fusion outcome j can be fused with a to get d. The fusion channels i and j make

two sets of basis. The transformation between these bases i and j is given by F -

symbols or F -moves. As for the non-Abelian anyons, i and j occur in more ways

than one, the F -moves between different i’s and j’s will be a matrix called the F -

matrix shown in Fig. 9.3 (a). The vector space for these anyons can be written as

V d
abc =

⊕
i V

i
ab ⊗ V d

ic =
⊕

j V
j
bc ⊗ V d

ja. The fusion diagrams which can be continuously

deformed into each other are equivalent and represent the same state. For a diagram

of n anyons shown in Fig. 9.4, the dimension of Hilbert space can be written in terms
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of the fusion rules as N e1
a1a2

N e2
e1a3

...Nan
en−3an−1

.

a

b

i

c

d

(a)

a1

a2

e1

a3

e2

an−2

en−3

an−1

an

(b)

Fig. 9.4. Fusion space of anyons [29] for (a) four anyons, and (b) n anyons.

Now let us braid two anyons a and b by exchanging their places. Abelian anyons

get a complex phase that depends on the types of anyons and on whether the exchange

is clockwise or counterclockwise. But it does not depend on the order of exchange.

Therefore, for a Abelian anyon we have the R-move given as Rab = eiθab . But for

non-Abelian anyons, the R-move is a matrix Ri
ab = eiθ

i
ab and it depends on the order

of the exchange [20]. Topologically equivalent braids have the same outcomes. The

braid matrix is shown in Fig. 9.3 (b).

The fusion channel of a pair of anyons cannot be changed by R-move only. In

other words, the system would not evolve from one ground state to the other by

exchanging the two anyons of the same pair. To change their fusion channel, we need

to braid b and c. For this braiding, we have to transform i bases to the j bases by an

F -move. Therefore, having only two anyons is not enough for making a topological

qubit. To see the effect of the exchange of b and c in the basis i, first an F -matrix

is applied to change the basis from i to j, then an R matrix is applied, and then an

F−1-matrix is applied to change the basis back to i. This process is shown in Fig.

9.5 and can be written as

Bab = F d
acb

−1
RabF

d
acb. (9.1)

The matrix B creates the superposition of the fusion channels, with a distinct phase
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factor for different fusion channels.

a

c

i

b

d
=
∑

j(F
d
abc)

i
j a

c

j

b

d
=
∑

j R
j
bc(F

d
abc)

i
j a

c

j

b

d

=
∑

j(F
d−1

abc )ijR
j
bc(F

d
abc)

i
j a

c

i

b

d

Fig. 9.5. Braiding for the superposition of the two fusion channels.

F and R have to satisfy some consistency conditions, which restrict the multi-

plicity of possible models to finitely many. Such conditions are called pentagon and

Hexagon equations [188] due to their geometric interpretation. These conditions are

also studied algebraically in Chapter 8 on category theory. In the Fig. 9.6, the fusion

process of four anyons 1, 2, 3, 4 is written as

(F 5
12c)

d

a(F
5
a34)

c

b =
∑
e

(F d
234)

c

e(F
5
1e4)

d

b(F
b
123)

e

a. (9.2)

By the addition of braiding R-matrices, we get the relation pictorially shown in Fig.

9.7

∑
b

(F 4
231)

c

bR
4
1b(F

4
123)

b

a = Rc
13(F 4

213)
c

aR
a
12. (9.3)

The twist factor or spin factor of an anyon is a phase corresponding to the rotation

of a charge around its own magnetic flux. It can be thought of as a twist in a framed

ribbon, as discussed in Chapter 3. This factor is written as θa = e2πiha when an anyon

is rotated by 2π, where ha is the topological spin of an anyon a. It is an integer for
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bosons and gives spin factor identity. It is a half-integer for fermions that would give

the spin factor −1. Its value is between 0 and 1 for an anyon. For vacuum, h0 = 0.

The twist factor is also discussed in Chapter 8 and is shown in Fig. 8.10. Through the

ribbon equation, the spin factor can also be used to derive the entries of an R-matrix

for a particular anyonic model. For example, when two anyons a and b are fused to c,

the spin factor is given by the ribbon equation pictorially shown in Fig. 8.11 [29,206]

[Rc
ab]

2 =
θc
θaθb

=
e2πihc

e2πihae2πihb
= e2πi(hc−ha−hb). (9.4)

This is interpreted as the full twist of fusion product c combined with the full twist

of the charges a and b in the opposite direction, and is equal to the double exchange

of the a and b.

1 2 3 4

5

a
b

1 2 3 4

5

a c

1 2 3 4

5
d
c

1 2 3 4

5

e
b

1 2 3 4

5

e
d

(F 5
a34)cb (F 5

12c)
d
a

(F b
123)ea

(F 5
1e4)db

(F d
234)ce

Fig. 9.6. The pentagon identity.
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1 2 3

a

4
1 2 3

a

4

1 2 3

c

4

1 2 3

c

4

1 2 3

b

4

1 2 3

b

4

(F 4
123)ba

Ra
12

R4
1b

(F 4
213)ca

(F 4
231)cb

Rc
13

Fig. 9.7. The hexagon identity.

9.2 Topological Qubit

Now we will summarize what we discussed in the last section and build a qubit

from this discussion. A pair of non-Abelian anyons cannot be used directly as a

qubit, because the two states belong to different topological charge sectors |ab; i1〉

and |ab; i2〉, and cannot be superposed by braiding. Let three anyons a, b and c be

fused to d. The first two are fused to i, then their outcome is fused with the third

gives d. We can write the two different fusion channels as the two states of our qubit

as

|i〉 = |a, b→ i〉 |i, c→ d〉 , (9.5)

where the tensor product symbol is omitted. Alternatively, when the last two anyons

b and c are fused to j, the j is fused with c to make d. i and j are two sets of bases.

This is shown in the Fig. 9.3. A qubit can also be formed as

|j〉 = |b, c→ j〉 |j, a→ d〉 . (9.6)



149

The change of basis is performed by using the F -matrices as

|i〉 =
∑
j

(F d
abc)

i
j |j〉 . (9.7)

The (F d
abc)

i
j are the matrix elements of F d

abc summed over j. F and R matrices

are obtained for a particular anyon model from the solution of the pentagon and

hexagon Eqs. (9.2) and (9.3) [29]. Ising and Fibonacci anyons are the most popular

systems to make the topological quantum computing logic gates. These anyons are

found as quasiparticles in non-Abelian fractional quantum Hall effect and topological

superconductors.

A possible error in topological quantum computation is due to the braiding or

fusion with some unattended anyon in the system. This error can be avoided by

carefully accounting for the charges participating in the encoding. Another type of

error could be due to the energy of the system, such that the gap between the ground

state and the excited state gets filled. This error can be minimized by keeping the

system at a very low temperature. The measurement of outcome is either interference

or the projective measurement as discussed in Section 5.5, see also [12, 123].

9.2.1 Example 1: Fibonacci Anyon

The simplest non-Abelian anyon model consists of only two particles 1 and τ [198,

207,208]. The fusion rules for this anyon model are

τ × τ = 1 + τ (9.8)
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The basis states can be written as

|0〉 = |τ, τ → 1〉 , |1〉 = |τ, τ → τ〉 (9.9)

The dimension is the different number of ways the fusion of all anyons can result in

topological charge 1 or τ . In the fusion outcome of two τ we get 1 with probability

p0 = 1/φ2 and τ with probability p1 = φ/φ2 = 1/φ [208]. The dimension grows as the

Fibonacci series, in which the next number is a sum of the last two numbers. The

quantum dimension dτ = φ = (1 +
√

5)/2 is the golden mean.

τ × τ × τ = 1 + 2τ

τ × τ × τ × τ = 2 · 1 + 3 · τ

τ × τ × τ × τ × τ = 3 · 1 + 5 · τ

As we discussed above, no amount of braiding can change one qubit state to the

other. Therefore, we need more than two τ particles for the qubit. Also, topological

quantum computation has no tensor product structure. That means, if three τ anyons

are used to make a qubit then the six anyons have only the five dimensional fusion

space. Therefore, only a subspace is used to encode a qubit. Three Fibonacci anyons

are required for the qubit and the fusion of four particles results in the vacuum [20]. F

and R matrices for this model are obtained by consistency conditions, as in Ref. [29]

are given as

[F τ
ττ1]ττ =

 1
φ

1√
φ

1√
φ
− 1
φ

 (9.10)
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Rττ =

R1
ττ 0

0 Rτ
ττ

 =

e4πi/5 0

0 −e3πi/5

 (9.11)

Quantum computing with Fibonacci anyons is done as follows. The fusion of two τ

particles gives either 1 or τ . These two orthogonal states are represented as |(•, •)1〉

and |(•, •)τ 〉. The addition of the third τ particle to the state |(•, •)1〉 gives τ and

is denoted as |((•, •)1, •)τ 〉 ≡ |0〉. But when the third particle is added to the state

|(•, •)1〉, we get either 1 or τ . These states are represented as |((•, •)τ , •)τ 〉 ≡ |1〉 and

|((•, •)τ , •)1〉 ≡ |N〉, here |N〉 stands for the non-computational state. The amplitude

in this state is considered as the leakage error [12,205]. The states |((•, •)1, •)τ 〉 ≡ |0〉

and |((•, •)τ , •)τ 〉 ≡ |1〉 are the basis states for a qubit and which are interchanged

by an F matrix (9.10). The braiding of these particles is represented by an R matrix

(9.11). These basis states and the fusion of Fibonacci anyons is shown in Fig.9.8. The

set of gates required to build any kind of circuit is called the universal quantum gate

set. The Fibonacci anyonic model is the universal for quantum computing. These

kinds of anyons are proposed to be found in the Read-Rezayi state ν = 12/5 which

is a very fragile state, so other anyon models are also under consideration [12].

τ

τ

i

τ

τ

(a)

τ

τ

e1

τ

e2

τ

en−3

τ

τ

(b)

Fig. 9.8. (a) Two orthogonal qubit states, i would be either 1 or τ . (b) The fusion space for
n Fibonacci anyons.
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|0〉 = |((•, •)1, •)τ 〉 = • • •
1 τ

=

ττ τ

τ

1

|1〉 = |((•, •)τ , •)τ 〉 = • • •
τ τ

=

ττ τ

τ

τ

|N〉 = |((•, •)τ , •)1〉 = • • •
τ 1

=

ττ τ

1

τ

Fig. 9.9. Orthogonal states of three Fibonacci particles [12]

9.2.2 Example 2: Ising Anyon

This model has three anyons 1, σ and ψ. The fusion rules for these anyons are;

σ× σ = 1 + ψ, ψ× ψ = 1, ψ× σ = σ (9.12)

Two basis states can be written as

|0〉 = |σ, σ → 1〉 , |1〉 = |σ, σ → ψ〉 (9.13)

Since two fusions belong to different topological charge sectors, at least three anyons

are needed that can fuse to σ in two different ways. For every added σ the dimension

of fusion space doubles, hence for 2N anyons the dimension is 2N−1. This model is

non-universal, so non-topological schemes are also devised in addition to topological
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computation. The F and R matrices for this model [20] are,

F σ
σσσ =

1√
2

1 1

1 −1

 , Rσσ = e−iπ/8

1 0

0 i

 , (9.14)

where R1
σσ = e−iπ/8 and Rψ

σσ = ei3π/8. The topological charges are labeled as 0, 1/2, 1

corresponds to 1, σ, ψ. The total charge of two particles with charges 1/2 is either 1

or 0. The total charge is 0 when both particles have charges 1, but the total charge

is 1/2 when one particle has charge 1 and other has 1/2. The quantum dimensions,

d1 = dψ = 1 and dσ =
√

2, for these anyons are computed in Ref. [29] using the fusion

rules.

Let us consider four particles of charge 1/2 with a total charge of 0. The first two

are fused either to 0 or 1. In case it is zero, then the total of the third and fourth

must be zero. If the total of first and second is 1 then the total of third and fourth

must be equal to 1. In this way, we have two states of four 1/2 quasiparticles. There

are 2n−1 states for 2n particles [12, 109]. When particles of the same pair, say i, are

braided, only the phase is changed, but when a particle of pair i is braided with the

particle of other pair j, a NOT gate is applied [12]. Taking both particles of i around

both particles in j then the basis state is multiplied by +1 if j has a charge 0, but

it gets multiplied by −1 if it has a charge 1. Six σ anyons are required for two-qubit

encoding. See Ref. [12, 20] for the implementation of CNOT and phase gates. The

Ising anyon model is implemented by using the quantum Hall state ν = 5/2 and

Majorana particle in topological superconductors, see Chapters 5 and 6.
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Chapter 10

Recoupling Theory

The fusion of quasiparticles is similar to the recoupling theory of addition of angular

momentum in quantum mechanics [209–211]. Ternary logic gates are designed using

the q-deformed version of the recoupling theory. Therefore, for the intuition, we

will discuss the quantum deformation and the recoupling of angular momenta and

then discuss the quantum deformation of recoupling theory [212–214]. The quantum

deformed quantities are also called q-analogs.

10.1 Quantum Deformation

In classical mechanics, states on phase space make a manifold represented by say

(q, p). Physical quantities are observables that are the functions of (q, p). The Abelian

algebra formed for these observables and associated geometry is commutative. In

quantum mechanics, due to the Heisenberg uncertainty principle, there is no arbitrary

precision of the quantities. Algebra is non-commutative and classical mechanics is

the limiting case when Planck constant h → 0. Therefore, quantum mechanics is a

kind of deformation of classical mechanics. In quantum mechanics, the commuting

classical observables are replaced with the noncommuting Hermitian operators. Hence

we can say that we deform classical algebra and the deformation parameter is h. The
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noncommutativity of the variables X and Y in the deformed space is written as

XY = qY X, (10.1)

where q is a complex number in general. It is called the deformation parameter. Let q

be a number different from 1, and h be a number different from 0. If we take x = qx0

or x = x0 + h we can have the classical values when h → 0 or q → 1. These two

are related as q = eh [215]. For q → 1, we would get back the classical commuting

variables. Let us choose q = eiθ. Consider an example when the operators Tα and

Gθ/α are acting on a function ψ(x) of real variable x, such that

Tαψ(x) = ψ(x+ α), Gθ/αψ(x) = eiθx/αψ(x). (10.2)

When we apply both Tα and Gθ/α operators, we get

TαGθ/αψ(x) = eiθ(x+α)ψ(x+ α) = eiθGθ/αTαψ(x). (10.3)

With the fixed value of variables θ and α, Tα and Gθ/α become noncommuting vari-

ables that can be written as

TαGθ/α = eiθGθ/αTα. (10.4)

The q-analogs of an algebra is discussed in Appendix C. See also [215].

10.1.1 q-Analogs

An anyon or a pair of anyons interacts through braiding in the plane deformed by

the existence of the fields of the other anyons in an abstract way. This braiding
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interaction may cause the twist factor that is related to the topological spin of an

anyon and involves the parameter q. Algebraically, we can think of q as a small

perturbation of the usual mathematical objects. The q can be generic or a root of

unity. The root of unity is defined as when a complex number q is raised to some

power n so that it equals 1 for that power, then we say that this complex number

is nth root of unity. Now the q-analog quantities give the corresponding classical

quantities for the limiting case when q → 1. For n ∈ Z we define what is called a

q-integer

[n]q =
qn − q−n

q − q−1
, (10.5)

which is the Laurent polynomial equal to n ∈ Z for q → 1. It is done by taking

the limit q → 1 and applying L’Hospital’s rule. The q-analog of natural numbers

is as follows, [0]q = 0, [1]q = 1, [2]q = q2−q−2

q−q−1 , and so on. In some areas, we take

[n]q = 1−qn
1−q . In that case the q-analog of natural numbers [0]q = 0, [1]q = 1, [2]q =

1 + q, [3]q = 1 + q + q2. We can get q-factorial [n]! that can be written as

[n]! = [n]![n− 1]!...[1]! (10.6)

=
qn − q−n

q − q−1
· q

n−1 − q−(n−1)

q − q−1
...
q2 − q−2

q − q−1
· 1 (10.7)

= 1 · (1 + q)(1 + q + q2)...(1 + q + ...+ qn−1). (10.8)

10.2 Recoupling of Angular Momenta

We will briefly present the quantum theory of angular momentum to get the idea

of the SU(2)k anyonic model will be discussed in the next section. This model is

the quantum deformation of recoupling theory. For more detailed study, see [209–
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211]. Let us consider two systems with angular momentum operators J1 and J2 with

eigenvalues j1 and j2. These two systems may be the orbital angular momentum of

two different particles or they may be the spin and orbital angular momentum of a

single particle. The z-components of the angular momenta Jz have allowed eigenvalues

−j1 ≤ m1 ≤ +j1 with 2j1 + 1 values, and −j2 ≤ m2 ≤ +j2 with 2j2 + 1 states. The

combined system is written as j1 ⊗ j2.

It is like the vector spaces V1 and V2, with dimensions 2j2 + 1 each, are combined

as V1⊗V2 with dimensions (2j1 + 1)(2j2 + 1). The total angular momentum operator

is acting on V1 ⊗ V2. This operator constitutes SU(2) Lie algebra. Two quantum

numbers are needed to specify an individual system and four quantum numbers to

specify the combined system. For the whole system

J2 = (J1 + J2)2, Jz = J1z + J2z. (10.9)

These operators are applied to states as

J2 |j,m〉 = j(j + 1) |j,m〉

Jz |j,m〉 = m |j,m〉

J± |j,m〉 =
√

(j ∓m)(j ±m+ 1) |j,m± 1〉 (10.10)

where J+ = Jx + iJy and J− = Jx − iJy. The uncoupled states |j1j2m1m2〉 are

the eigenstates of operators {J2
1 , J1z, J

2
2 , J2z} and the coupled state |j1j2jm〉 are the

eigenstate of operators {J2
1 , J

2
2 , J

2, J2
z }. The coupling of j1 and j2 is the construction of

eigenfunctions of J2 and Jz We will write the total angular momentum basis |j1j2; jm〉

in terms of tensor product basis |j1m1〉 |j2m2〉. That is done by expressing the coupled
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state in terms of the uncoupled state.

|(j1j2)jm〉 =

j1∑
m1=−j1

j2∑
m2=−j2

|j1m1〉 |j2m2〉 〈j1m1j2m2|jm〉

=
∑

j1j2m1m2

Cjj1j2
mm1m2

|j1m1〉 |j2m2〉 . (10.11)

where j = |j1 − j2|, ..., |j1 + j2|, m = −j, ..., j. The coefficients Cjj1j2
mm1m2

∑
j1j2m1m2

Cjj1j2
mm1m2

= 〈j1m1; j2m2|j1j2; jm〉 = 〈j1m1; j2m2|jm〉 (10.12)

are called Clebsch-Gordon coefficients (CGC). These are non-zero only when m =

m1 +m2 and |j1 − j2| ≤ j ≤ j1 + j2.

The total angular momentum can have value j = j1 + j2, j1 + j2 − 1, ..., |j1 − j2|.

Any of the numbers j1, j2, j can have values that are greater than or equal to the

difference of the other two and less than or equal to the sum of the other two. This

condition is called triangle condition and is represented by ∆(j1j2j). We can also

write the total angular momentum basis in terms of the product basis by using the

Wigner’s 3j-symbols. In that case, the coefficients are called Wigner coefficients. The

Wigner 3j-symbol is zero unless the triangle condition is satisfied. The CGC are

related to the 3j-symbols as

〈j1m1; j2m2|j1j2; jm〉 = (−1)−j1+j2−m
√

2j + 1

 j1 j2 j

m1 m2 −m

 . (10.13)

On similar lines, we can couple three angular momenta J1, J2, J3 whose total angular
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momentum J = J1 + J2 + J3. There are two coupling schemes as

(J1 + J2) + J3 = J12 + J3 = J J1 + (J2 + J3) = J1 + J23 = J. (10.14)

The total coupling may be done by first coupling j1 and j2 to j12 and then j12 and j3

to J

|(j1j2)j12j3; jm〉 =

j12∑
m12=−j12

j3∑
m3=−j3

|(j1j2); j12m12〉 |j3m3〉 〈j12j3;m12m3|j12j3; jm〉 .

(10.15)

Alternatively, we can first combine j2 and j3 to get j23 and next j23 can be combined

with j1 to make J

|j1((j2j3)j23); jm〉 =

j1∑
m1=−j1

j23∑
m23=−j23

|j1m1〉 |j2j3; j23m23〉 〈j1j23;m1m23|j1j23; jm〉 .

(10.16)

These two coupling schemes are shown in Fig. 10.1 (a). The coupling scheme re-

sults in a complete orthonormal bases for the (2j1 + 1)(2j2 + 1)(2j3 + 1)-dimensional

space spanned by |j1,m1〉 |j2,m2〉 |j3,m3〉, m1 = −j1, ..., j1,m2 = −j2, ..., j2; m3 =

−j3, ..., j3.

The angular momenta in two coupling schemes are related by a unitary transfor-

mation. The matrix elements of this unitary transformation are known as recoupling

coefficients. These coefficients are independent of m and so we have

|((j1j2)j12j3)jm〉 =
∑
j23

|(j1(j2j3)j23)jm〉 〈(j1(j2j3)j23)j|((j1j2)j12j3)j〉 . (10.17)
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These coefficients can be written in terms of Wigner 6j-symbols,

〈(j1(j2j3)j23)j|((j1j2)j12j3)j〉 = (−1)j1+j2+j3+j
√

(2j12 + 1)(2j23 + 1)

j1 j2 j12

j3 j j23

 .

(10.18)

The 6j-symbols have a symmetry that permutation of columns or rows leaves it in-

variant. Similar to the 3j-symbols, 6j-symbols are not matrices. The Racah coeffi-

cients [216] are related to the recoupling coefficients as

W (j1j2j3J ; j12j23) =
〈(j1(j2j3)j23)j|((j1j2)j12j3)j〉√

(2J12 + 1)(2J23 + 1)
. (10.19)

Therefore, the Racah coefficients are related to the Wigner 6j-symbols by

j1 j2 j12

j3 j j23

 = (−1)j1+j2+j3+jW (j1j2j3j; j12j23) (10.20)

If a ≡ j1, b ≡ j2, c ≡ j3, d ≡ j, e ≡ j12, f ≡ j23, we have the triangle condition as

∆(abc) =

√
(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)
. (10.21)

The right hand side is zero unless the triangle condition is satisfied. This condition

is satisfied by each side of the quadrilateral in Fig. 10.1 (b). The Racah coefficient is

a product of four of these factors

W (abcd; ef) = ∆(abe)∆(cde)∆(acf)∆(bdf)ω(abcd; ef), (10.22)
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where

ω(abcd; ef) =
∑
z

(−1)z+β1(z + 1)!

(z − α1)!(z − α2)!(z − α3)!(z − α4)!(β1 − z)!(β2 − z)!(β3 − z)!
,

α1 = a + b + e, α2 = c + d + e, α3 = a + c + f α4 = b + d + f β1 = a + b + c +

d, β2 = a + d + e + f, β3 = b + c + e + f . The sum over z is finite over the range

max(α1, α2, α3, α4) ≤ z ≤ min(β1, β2, β3) See [209,217,218] for detailed derivation of

the above equation and coupling and recoupling of angular momenta.

j1 j2 j3

j

j12

j1 j2 j3

j

j23

(a)

j3

j1

j12j2

jj23

(b)

Fig. 10.1. (a) Recoupling of three angular momenta, (b) the triangle condition.

10.3 SU(2)k Anyon Model

The F-symbols in topological quantum computation can be computed using the

SU(2)k model [123] and Temperley-Lieb recoupling theory [201] also called the JKk

anyon model [219]. Where the k is called the level of the theory. It is the coupling

constant of Chern-Simons theory and is related to the number of particles present

as we discussed in Chapter 9. These theories are the quantum analog of theory of

addition of angular momentum. The SU(2)k is the q-deformed version of SU(2) with

q = exp(i2π/k + 2), for q at the root of unity. The detailed derivation of the param-

eter q in this form is given in [73]. The anyon’s fusion amplitudes would be written

as the recoupling coefficients. The F -symbols and R-symbols are obtained by using
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these two models at level k = 4 gave identical values. For F and R symbols in the

JK4 model, see [219]. In our work, we will use the SU(2)4 model. The topological

data for this model are given as

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
, C = {0, 1/2, ..., k/2} , j1 × j2 =

min j1+j2,k−j1−j2∑
j=|j1−j2|

, (10.23)

[F j1,j2,j3
j ]j12,j23 = (−1)j1+j2+j3+j

√
[2j12 + 1]q[2j23 + 1]q

j1 j2 j12

j3 j j23


q

, (10.24)

where j1 j2 j12

j3 j j23

 = ∆(j1, j2, j3)∆(j12, j3, j)∆(j2, j3, j23)∆(j1, j23, j)

×
∑
z

(−1)z[z + 1]q!

[z − j1 − j2 − j12]q![z − j12 − j3 − j]q![z − j2 − j3 − j23]q![z − j1 − j23 − j]q!

× 1

[j1 + j2 + j3 + j − z]q![j1 + j12 + j3 + j23 − z]q![j2 + j12 + j + j23 − z]q!
,

(10.25)

∆(j1, j2, j3) =

√
[−j1 + j2 + j3]q![j1 − j2 + j3]q![j1 + j2 − j3]q!

[j1 + j2 + j3 + 1]q!
, [n]q! ≡

n∏
m=1

[m]q,

Rj1,j2
j = (−1)j−j1−j2q

1
2

[j(j+1)−j1(j1+1)−j2(j2+1)],
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dj = [2j + 1]q =
sin
[ (2j+1)π

k+2

]
sin
(

π
k+2

) , D =

√
k+2

2

sin
(

π
k+2

) ,

θj = qj(j+1) = ei2π
j(j+1)
k+2 , Sj1j2 =

√
2

k + 2
sin
[(2j1 + 1)(2j2 + 1)π

k + 2

]
.

The data in SU(2)k theory are used to compute the [F j1,j2,j3
j ]j12,j23 and Rj1j2

j ma-

trices [220]. For SU(2)4, the charges are 0, 1, 2, 3, 4, and the fusion rules are

0 × 0 = 0, 0 × 1 = 1, 0 × 2 = 2, 0 × 3 = 3, 0 × 4 = 4,

1 × 1 = 0 + 2, 1 × 2 = 1 + 3, 1 × 3 = 2 + 4, 1 × 4 = 3,

2 × 2 = 0 + 2 + 4, 2 × 3 = 1 + 3, 2 × 4 = 2,

3 × 3 = 0 + 2, 3 × 4 = 1, 4 × 4 = 0

The F and R symbols are calculated using these fusion rules and from the F and

R matrices, the σ matrices are obtained in the next Chapter 11 [219, 220]. The F

and R symbols for SU(2)k anyonic model are given as

[F abc
d ]ef = 1 when any of the a, b, c, d is zero,

F 114
4 = F 123

4 = F 124
3 = F 132

4 = F 133
3 = F 134

2 = F 141
4 = F 142

3 = F 143
2 = F 144

1 = F 213
4 =

F 214
3 = F 222

4 = F 224
2 = F 231

4 = F 234
1 = F 241

3 = F 242
2 = F 243

1 = F 312
4 = F 313

3 = F 314
2 =

F 321
4 = F 324

1 = F 331
3 = F 331

1 = F 334
4 = F 341

2 = F 342
1 = F 343

4 = F 344
3 = F 411

4 = F 412
3 =

F 413
2 = F 414

1 = F 421
3 = F 422

2 = F 423
1 = F 431

2 = F 432
1 = F 433

4 = F 434
3 = F 441

1 = F 443
3 =

−1,
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F 111
1 = F 131

3 = F 313
1 = F 333

3 =

− 1√
3

√
2
3√

2
3

1√
3

 ,

F 112
2 = F 122

1 = F 122
3 = F 132

2 = F 211
2 = F 213

2 = F 221
1 = F 221

3 = F 223
1 = F 231

2 = F 312
2 =

F 322
1 =

− 1√
2

√
1
2√

1
2

1√
2

 ,

F 113
3 = F 133

1 = F 311
3 = F 331

1 =

− 2√
3

√
1
3√

1
3

2√
3

 ,

F 121
2 = F 212

1 =

−1
2

√
3

2
√

3
2

1
2

 ,

F 123
2 = F 212

3 = F 232
1 = F 321

2 =

−
√

2
3

1
2

1
2

√
2

3

 ,

F 223
3 = F 233

2 = F 322
3 = F 332

2 =

 1√
2
−
√

1
2

−
√

1
2
−
√

1
2

 ,

F 232
3 = F 323

2 =

 1
2
−
√

3
2

−
√

3
2
−1

2

 ,

F 222
2 =


1
2
− 1√

2
1
2

− 1√
2

0 1√
2

1
2

1√
2

1
2

 ,

R00
0 = R01

1 = R02
2 = R03

3 = R04
4 = R10

1 = R20
2 = R30

3 = R40
4 = R44

0 = 1, R11
0 = e3iπ/4,

R11
2 = eiπ/12, R12

1 = R21
1 = R22

2 = R23
3 = R32

3 = e2iπ/3,

R12
3 = R21

3 = eiπ/6, R13
2 = R31

2 = e7iπ/12, R13
4 = R31

4 = eiπ/4, R14
3 = R41

3 = i,

R22
0 = e−2iπ/3,

R22
4 = eiπ/3, R23

1 = R32
1 = e−5iπ/6, R24

2 = R42
2 = −1, R33

0 = e−iπ/4, R33
2 = e−11iπ/12,

R34
1 = R43

1 = −i.
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Chapter 11

Ternary Logic Design with Metaplectic Anyons

Quantum computation is performed with metaplectic anyons which are simple objects

in weakly integral categories. The term metaplectic is for a braid group that is in the

metaplectic representation. These representations are the symplectic analog of spinor

representation. [220,221].

The metaplectic anyons can be studied from the category theory. Anyons are

simple objects in a unitary modular category. See Chapter 8 for the introduction to

category theory and the use of category theory in topological quantum computation.

A category is integral when the quantum dimension or Frobenius-Perron dimension

of a simple object is an integer, whereas a category is called weakly integral if the

squares of the quantum dimensions of all the simple objects are integer. Weakly inte-

gral categories are a class of metaplectic categories [196, 222]. There are five anyons{
1, Z,X,X

′
, Y
}
in the theory of metaplectic anyons with fusion rules, quantum di-
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mensions, and topological twists given as

X ⊗X = 1 + Y,

Y ⊗ Y = 1 + Z + Y,

X ⊗ Z = X ′,

X ⊗X ′ = Z + Y, (11.1)

d1 = dZ = 1, dX = dX′ =
√

3, dY = 2, (11.2)

θ0 = θ4 = 1, θ1 = θ3 = eiπ/4, θ2 = ei2π/3. (11.3)

There is a non-Abelian boson quasiparticle Z. These theories also have a fun-

damental particle X. This particle is also a non-Abelian. It is a vortex for the Z

boson. This X particle is fused with another X particle to give Yi or vacuum, where

i = 1, 2, ..., r and r = (m − 1)/2. These non-Abelian particles Yi have the quantum

dimension 2. When X and Z are fused, the result is the particle X ′ [222, 223]. A

collection of N quasiparticles X at a fixed position has an nN -dimensional degenerate

subspace with nN ∼ mN/2. The proposed metaplectic anyon systems are the quantum

Hall effect and Majorana zero modes [165–169].

11.1 One-Qutrit Braiding Gates

Let us consider four X anyons. The first two of the four are fused to c12 and the last

two are fused to c34 as shown in Fig. 11.1 (a). With the constraint c14 = Y , we get
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three fusion trees [220,221]

(c12, c34) ∈ {−(Y Y ), (1Y ), (Y 1)} . (11.4)

These are corresponding to the three states of qutrit |0〉 , |1〉 , |2〉. The minus sign is

just to make the algebra nicer later. Let σ1 be a braid matrix for the first two particles,

and σ2 corresponds to a braid of the second with the third, and σ3 is a braid matrix

for the third and fourth as shown in Fig. 11.2 and 11.3. The associated Hilbert

space is represented by V εεεε
y , for ε = X. Under the basis {− |Y Y 〉 , |1Y 〉 , |Y 1〉}, the

generators of the braid group B4 for the representation V εεεε
y are

σ1 = γ


1 0 0

0 ω 0

0 0 1

 , σ3 = γ


1 0 0

0 1 0

0 0 ω

 , (11.5)

σ2 =
γ3

√
3


1 ω ω

ω 1 ω

ω ω 1

 = γ


1
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+
√

3i
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−1
2

+
√

3i
6
−1

2
+
√

3i
6
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2

+
√

3i
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1
2

+
√

3i
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−1
2

+
√

3i
6

−1
2

+
√

3i
6
−1

2
+
√

3i
6

1
2

+
√

3i
6

 , (11.6)
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where ω = e2πi/3 and γ = eπi/12. Ignoring the γ in front, let us define [220] p = σ1σ2σ1,

q = σ2σ3σ2,

p2 = −


0 1 0

1 0 0

0 0 1

 , q2 = −


0 0 1

0 1 0

1 0 0

 , −(q2pq2)2 =


1 0 0

0 0 1

0 1 0

 ,

(q2pq2)2Z∗((q2pq2)2)∗ =


0 0 1

1 0 0

0 1 0

 , (q2pq2)2Z((q2pq2)2)∗ =


0 1 0

0 0 1

1 0 0

 .

(11.7)

These gates correspond to one-qutrit gates Z3(+1), Z3(+2), Z3(01), Z3(12), Z3(02)

in conventional quantum computing discussed in Chapter 2. The phase gate Z =

σ1σ
−1
3 = σ1σ

2
3 and the ternary Hadamard gate H = q2pq2 can be written in matrix

form as

Z =


1 0 0

0 ω 0

0 0 ω2

 , H =
1√
3i


1 1 1

1 ω ω2

1 ω2 ω

 . (11.8)

11.2 Two-Qutrit Braiding Gates

The two-qutrit model would consist of eight X anyons with the final fusion out-

come Y as shown in 11.1 (b). The braid matrices for two qutrits are written as

σ1, σ2, σ3, σ4, σ5, σ6, σ7. Let us define

s1 = σ2σ1σ3σ1, s2 = σ4σ3σ5σ5, s3 = σ6σ5σ7σ6. (11.9)
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Fig. 11.1. (a) One-qutrit gate (b) Two-qutrit gate [221].
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yi
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xi yi
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Fig. 11.2. One-qutrit braid matrices (a) σ1 and (b) σ3.

From these matrices, we can calculate a matrix

Λ(Z) = s−1
1 s2

2s1s
−1
3 s2

2s3. (11.10)

The two-qutrit encoding is obtained when restricting the vector space V εεεεεεεε
y to

nine dimensional subspace V εεεε
y ⊗ V εεεε

y ⊂ V εεεεεεεε
y with c14 = c58 = Y . This nine-

dimensional restriction of the Λ(Z) is the Controlled-Z gate (CZ). The SUM gate is

a generalization of the CNOT gate [220,221]. It is related to CZ as

SUM = (I ⊗H)CZ(I ⊗H−1). (11.11)

This SUM gate will be combined with the topological charge measurement to build

arithmetic circuits in the next section.
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Fig. 11.3. One-qutrit braid matrix σ2 [220].

11.3 Ternary Arithmetic Circuits

The most important challenge in circuit design is reducing the number of gates.

The more the gates, the harder it is to implement the circuit. The MS gates in

conventional quantum computing are designed by keeping the controlling value 2.

Since, in topological quantum computation, any anyon can be braided to another

anyon at any stage of the implementation, we can have a controlling value of 0, 1, 2.

Therefore, we can create a more general methodology of designing topological circuits

presented here. We redesigned the qutrit arithmetic circuits that can be implemented

with one-qutrit and two-qutrit gates made by metaplectic anyons [224] described in
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Fig. 11.4. Two-qutrit braid matrices.

the last section. The universal set of gates cannot be made by braiding alone, it is to

be combined with the topological charge measurement [220].

The measurement can be projective or based on interference [12, 220], explained

in Section 5.5. Let the measurement M1 = {Π1,Π
′
1} correspond to the topological

charge measurement of the first pair of anyons spanned by |1Y 〉 and its orthogonal

complements |−Y Y 〉 , |Y 1〉. The topological charge of the first pair of anyons is

found by this measurement. If it is 1 or Y then the second pair is still in a coherent

superposition of 1 and Y . This measurement allows us to find whether an anyon is

trivial or not. To implement the measurement gates, the process is repeated many

times until we get the required result. The braiding supplemented with the projective
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measurement provides the universal set of gates for anyonic quantum computation

[220].

The gates that can be obtained by braiding alone are the Clifford gates, whereas

the non-Clifford gates cannot be implemented by braiding alone. In this work, we have

the Clifford gate SUM that can be implemented by braiding alone, whereas Cc(X)

is a non-Clifford gate that is implemented by the measurement of the topological

charge. As in Chapter 2, one-qutrit ternary gates are represented as Z3(+1), Z3(+2),

Z3(01), Z3(12), and Z3(02), where the first two are increment gates and the last

three are permutation gates. The non-Clifford gate, that is Cc(X), applies X when

the controlling value is c = 0, 1, 2, where X can be a permutation or increment gate.

The gates Cc(X) are 9 × 9 matrices can be written as diag(I3, I3, X) for control |2〉,

diag(I3, X, I3) for control |1〉, and diag(X, I3, I3) for control |0〉, where I3 is 3 × 3

identity matrix.

As discussed in previous section, the Clifford gate SUM = (I ⊗H)CZ(I ⊗H−1)

in Eq. 11.11 is a generalization of the CNOT gate. It can also be written as SUM =

|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ X + |2〉 〈2| ⊗ X2. Here, X is an increment gate Z3(+1) or

Z3(+2). The two-qutrit 9× 9 matrix for the SUM is written as diag(I3, X,X
2). Let

us call this gate SUM1. But if we use CZ−1 in Eq. 11.11, we get the matrix form as

diag(I3, X
2, X). Let us represent this form as SUM2. The braiding implementation

of SUM1 and SUM2 is equivalent. The SUM1 and SUM2 are used for designing

the two-qutrit braiding gates Z3(+1) and Z3(+2). These gates are shown in Fig.

11.5 and their matrices are shown in Eq. 11.12. We can also note that the matrix

diag(I3, X
2, X) is the square of the matrix diag(I3, X,X

2).

In Fig. 11.5, the non-Clifford gates are represented by the filled circles at the

controlling values with c = 0, 1, 2, whereas for the SUM gates, the hollow circles
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are drawn at the controlling values. The gates presented so far are discussed in the

literature, see [220, 221, 224]. From now on, we propose our research work based on

the gates already discussed. In our circuit design, we try to reduce the gate counts

when compared with the similar gate in the literature, and also our approach is to

put in more braiding gates and fewer measurement gates. The increment gates will

be represented by +1 and +2 and the permutation gates will be represented by 01,

12, and 02. A circuit is read from left to right but when it is written as matrices it is

read from right to left, the same as the matrix multiplication.

SUM1

+1

SUM2

+2
Cc(X)

X

c

Fig. 11.5. The graphical representation of two-qutrit ternary gates [224].

SUM1 =



1 0 0

0 1 0

0 0 1

0 0 1

1 0 0

0 1 0

0 1 0

0 0 1

1 0 0



, SUM2 =



1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

1 0 0

0 0 1

1 0 0

0 1 0


(11.12)

Two qutrits can be swapped by the SWAP gate, as discussed in Chapter 2. This
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gate can be formed by braiding alone [221] with the use of the permutation gates.

One of the realizations of the SWAP gate is obtained by using the gate Z3(12) [221]

and can be written as

SWAP = (Z3(12)⊗ I)SUM1,2SUM2,1SUM2,1SUM1,2, (11.13)

where SUMj,k is a two-qutrit SUM gate applied to kth qutrit when jth qutrit is the

control qutrit.

11.3.1 Ternary Adder

The adder circuit is the most important arithmetic circuit used in almost all circuits,

especially in algorithms such as Grover, Shor, and HHL algorithms. Binary adder

circuits are proposed by Ref. [225–227] and their ternary counterparts are given in

Ref. [42,51,228]. The adder circuit of Ref. [30] consists of 14 MS and shift gates and

the circuit from Ref. [229] obtained using the genetic algorithm, has 13 MS and shift

gates. An output that remains unused and thrown out is called the garbage output.

Most of these designs used the Toffoli gate for their implementation, but the Toffoli

gate cannot be built by braiding alone [220]. We are following the design in Ref. [50]

for the half adder and full adder. We proposed a similar circuit with fewer gates and

implementable with the braiding of metaplectic anyons. The constant inputs and the

garbage outputs are the same for our designs as in the existing designs.

When we add two one-digit numbers, then we get the half adder, whereas the full

adder circuit adds three one-digit numbers. The third digit can be a carry from the

previous half adder. The truth table for a half adder is shown in Table 11.1 and the

circuit realization is shown in Fig. 11.6. Let us discuss the cases when there is a

nonzero carry. For example, the case when the input A has value 1 and input B has
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value 2. For the first gate, the control value is 2 and the target value is 1. The target

qutrit A would be changed from 1 to 0 by SUM2, and the second gate would not be

applied. At the third gate, the control value is 2 and so the target value will change

from 0 to 1. Now consider the case when A is 2 and B is 1. The second gate will be

applied and the B would change from 1 to 2, therefore the control value at the third

gate will be 2. In this case, we would have a carry at the third line. The third gate

would give the sum cout a value of 1. The garbage bits at the end of the computation

will be ignored.

The full adder adds three qutrits A, B, C as shown in Fig. 11.7. The truth table

for the ternary full adder is given in Table 11.2. The sum S0 of A and B is obtained

using the half adder. The garbage qutrit g1 is obtained, which is ignored. A qutrit

C is created as an input to the second half adder. Then the sum S0 is added to the

third input C using the half adder to get the output S. The input C can be a carry

from the previous sum of two qutrits. The garbage output g2 is ignored.

The addition of two-qutrit numbers and its circuit realization are shown in Fig.

11.8 (a), (b) and Fig. 11.9. A half adder and a full adder can be used, which is

equivalent to three half adders. The first qutrit A0 of A0B0 is added by the first half

adder and the first digit of the sum S0 and g1 are obtained. Their carry c0 is to be

added with the sum of the second qutrits A1 and B1, whereas g2 is ignored. This c0

corresponds to the input C of the full adder. The addition of A1 +B1 + c0 gives the

second digits of the output as S1 and a carry cout. The SWAP gate in Eq. 11.13

is used to exchange the qutrits S and c0, and the garbage qutrits are thrown out.

Sine the SWAP gate has a cost of 5 MS gates, the total 20 MS gates are used to

implement the two-qutrit adder circuit. The adder circuits can be implemented with

the braiding alone.
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Table 11.1: Truth table of the ternary half adder.

A B S cout

0 0 0 0
0 1 1 0
0 2 2 0
1 0 1 0
1 1 2 0
1 2 0 1
2 0 2 0
2 1 0 1
2 2 1 1

A

B

0

+2

+1

+1

+2

+1 S

g

cout

Fig. 11.6. Ternary half adder circuit realization.
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0

+2

+1

+1

+2

+1

g1

S0

C

+2

+1

+1

+2

+1 S

g2

cout

Fig. 11.7. Ternary full adder circuit realization using two half adders.

11.3.2 Ternary Subtractor

A ternary subtractor gives an output as a difference between two inputs. Our circuit

realization takes two inputs A and B and one ancilla. The difference between two

inputs and the borrow is obtained at the output. The half subtractor truth table is

shown in Table 11.3 and the circuit realization is shown in Fig. 11.10. Let us discuss

the case when A = 1, B = 2. Since the controlling, value needs to be at 1, but we have

B = 2, the first MS gate would not be applied. For the second gate, the controlling
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Table 11.2: Truth table for ternary full adder.

A B C S cout

0 0 0 0 0
0 0 1 1 0
0 0 2 2 0
0 1 0 1 0
0 1 1 2 0
0 1 2 0 1
0 2 0 2 0
0 2 1 0 1
0 2 2 1 1
1 0 0 1 0
1 0 1 2 0
1 0 2 0 1
1 1 0 2 0
1 1 1 0 1
1 1 2 1 1
1 2 0 0 1
1 2 1 1 1
1 2 2 2 1
2 0 0 2 0
2 0 1 0 1
2 0 2 1 1
2 1 0 0 1
2 1 1 1 1
2 1 2 2 1
2 2 0 1 1
2 2 1 2 1
2 2 2 2 2

value is 2, therefore the MS permutation gate would be applied and the target value

B would change from 1 to 2. The gate for the carry is applied because the controlling

value is 2. The fourth gate changes B from 2 to 1, so the last gate would remain

inactive. Therefore, at the output, we get a difference D = 2 and the borrow bout = 1

When taking the difference of two numbers and a borrow is needed, then have a

full subtractor. It has three inputs A, B, and C, where C is the borrow-in. The truth

table for full subtractor is shown in Table 11.4 and the circuit realization is shown in
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Fig. 11.8. Ternary two-qutrit (a) addition and (b) circuit realization.
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Fig. 11.9. Ternary two-qutrit adder circuit is implemented by using three half adders.

Fig. 11.11. This kind of subtractor is presented by Asma et al. [51]. Our design of

the subtractor circuits involves only the braiding gates.
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+1
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D
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Fig. 11.10. Ternary half subtractor circuit realization.
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Table 11.3: Truth table for ternary half subtractor.

A B D bout

0 0 0 0
0 1 2 1
0 2 1 1
1 0 1 0
1 1 0 0
1 2 2 1
2 0 2 0
2 1 1 0
2 2 0 0

C

B

A

0

+2

+1

+1

+2

+1 +2

+1

+1

+2

+1

C

B

D

bout

Fig. 11.11. Ternary full subtractor circuit realization.

11.3.3 Ternary Multiplier

In a two-qutrit multiplier A0B0×A1B1, each digit of the first number is multiplied by

each digit of the second number. Then all the partial products are added in the way

shown in Fig. 11.12. Therefore, we need ternary partial product generation (TPPG)

circuits and adder circuits for the two-qutrit multiplier. This kind of multiplier is

discussed in Ref. [230]. The outputs of the two numbers are P0, P1, P2, and P3 and
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Table 11.4: Truth table for ternary full subtractor.

A B C D bout

0 0 0 0 0
0 0 1 2 1
0 0 2 1 1
0 1 0 2 1
0 1 1 1 1
0 1 2 0 1
0 2 0 1 1
0 2 1 0 1
0 2 2 2 2
1 0 0 1 0
1 0 1 0 0
1 0 2 2 1
1 1 0 0 0
1 1 1 2 1
1 1 2 1 1
1 2 0 2 1
1 2 1 1 1
1 2 2 0 1
2 0 0 2 0
2 0 1 1 0
2 0 2 0 0
2 1 0 1 0
2 1 1 0 0
2 1 2 2 1
2 2 0 0 0
2 2 1 2 1
2 2 2 1 1

the carry is cout.

P0 = A0B0

P1 = cp0 + A1B0 + A0B1

P2 = c0 + cp1 + cp2 + A1B1

P3 = c2 + c1 + cp3 (11.14)
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The carries produced by addition are represented as ci, whereas the cpi are the carries

we get as a result of one-digit multiplication. The first digit of multiplication is

P0 = A0B0 and its carry is represented by cp0. To compute P1, P2, P3 and cout, adder

circuits are needed. As each of the digits A0, B0, A1, B1 can have values 0, 1, 2, not

all the partial products produce carries in multiplication. We do not need extra

input lines and gates corresponding to the carries, and therefore it is cheaper to

implement the circuit without full adders. Instead, we are using the adder blocks as

in Panahi [230]. The one-digit TPPG circuit is shown in Fig. 11.13 and the truth

table is shown in Fig. 11.5. The carry-out appears only when both the input values

are at value 2 in the one-digit multiplication. The existing realization in Ref. [230]

has 13 gates, but we designed it with 9 gates. We removed shift gates, and also we

have one gate fewer for computing the carry. Along with the braiding gates, one

measurement gate Cc(X) is also needed for its topological implementation.

A1 A0

× B1 B0

c0

c2 cp1 cp0

c1 cp2 A1B0 A0B0

+ cp3 A1B1 A0B1 0
cout P3 P2 P1 P0

Fig. 11.12. Two-qutrit multiplication.

A

B

0

0

+2

+2

+2

+1

+1

1

12 +1

+1

+2

A

B

P

cp

Fig. 11.13. Circuit design of the TPPG component.
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Table 11.5: Truth table for a two-qutrit partial product.

A B P cp

0 0 0 0
1 0 0 0
2 0 0 0
0 1 0 0
1 1 1 0
2 1 2 0
0 2 0 0
1 2 2 0
2 2 1 1

From the Fig. 11.12, we have P1 = cp0 + A1B0 + A0B1. Adder block 1 adds the

partial products A1B0, A0B1 and the carry cp0 of the partial products. As we can see

from the truth table 11.5 of the partial product, the carry in the first partial product

is never 2. The input values can be 0, 1 and 2 but carry is only 0 or 1. That is,

the cp0, cp1, cp2, and cp3 are 1 and the carry is only for the case when inputs are

at values 2. The truth table for the adder block 1 is shown in Table 11.6, and the

implementation is shown in Fig. 11.14. The input lines with label 0 are ancilla lines,

and g are the garbage outputs. Adder block 2 adds three qutrits A1B1, cp1 and cp2

to get P2. The sum of these three qutrits will be added to c0 using block 4. The first

input has values 0, 1, 2, but the second and third inputs have values 0, 1. The partial

product A1B1 is added to the two input carry numbers, which have values 0, 1. The

truth table and implementation of block 2 is shown in Table 11.7 and Fig. 11.15.

Adder block 3 adds qutrits c1, c2 and cp3 to get P3. The truth table is shown in Table

11.8 and the implementation is shown in Fig. 11.16. All the inputs have values 0 or

1. The output carry appears only when all the inputs have values 1. Adder block

4 is used to add the sum of adder block 2 and c0. The half adder is used for its

implementation. The output carry is only for one of the cases. The input carry cin is
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either 0 or 1 and input A = 0, 1, 2. The truth table of block 4 is shown in Table 11.9

and its implementation is shown in Fig. 11.17. The TPPG gate is implemented with

8 braiding gates and one topological charge measurement gate, whereas the adder

blocks can be designed with braiding alone.

Table 11.6: Truth table for ternary adder block 1.

A B cin Sum cout

0 0 0 0 0
1 0 0 1 0
2 0 0 2 0
0 1 0 1 0
1 1 0 2 0
2 1 0 0 1
0 2 0 2 0
1 2 0 0 1
2 2 0 1 1
0 0 1 1 0
1 0 1 2 0
2 0 1 0 1
0 1 1 2 0
1 1 1 0 1
2 1 1 1 1
0 2 1 0 1
1 2 1 1 1
2 2 1 2 1

A

B

cin

0

+2

+1

+1

+2

+1

+1

+1

+2

+1 Sum

g0

g1

cout

Fig. 11.14. Implementation for the ternary block 1.

Now we will combine the TPPG circuits and the adder blocks to get a full two-

digit multiplier circuit. From the two-digit qutrit multiplication in Fig. 11.12, the

first digits of two numbers give the first partial product and first multiplication digit
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Table 11.7: Truth table for ternary adder block 2.

A B cin Sum cout

0 0 0 0 0
1 0 0 1 0
2 0 0 2 0
0 1 0 1 0
1 1 0 2 0
2 1 0 0 1
0 0 1 1 0
1 0 1 2 0
2 0 1 0 1
0 1 1 2 0
1 1 1 0 1
2 1 1 1 1

A

B

cin

0

+1

+1

+2

+1

+1

+1

+2

+1 Sum

g0

g1

cout

Fig. 11.15. Implementation of block 2.

Table 11.8: Truth table for ternary adder block 3.

A B cin Sum cout

0 0 0 0 0
1 0 0 1 0
0 1 0 1 0
1 1 0 2 0
0 0 1 1 0
1 0 1 2 0
0 1 1 2 0
1 1 1 0 1

P0. The second multiplication digit is the addition of partial products A0B1 and A1B0

and added to the carry from the first partial product. These partial products also

create the carries. The carries from these partial products and the carries of additions
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A

B

cin

0

+1

+1

+1

+2

+1 Sum

g0

g1

cout

Fig. 11.16. Implementation of ternary adder block 3.

Table 11.9: Truth table for ternary adder block 4.

A cin Sum cout

0 0 0 0
1 0 1 0
2 0 2 0
0 1 1 0
1 1 2 0
2 1 0 1

A

cin

0

+1

+1

+2

+1 Sum

g0

cout

Fig. 11.17. Implementation of block 4.

are added to the partial product A1B1. These give the third digit of multiplication.

The additions generate two carry digits.

The full two-digit qutrit multiplication circuit is shown in Fig. 11.18. When the

line goes on the top of a block, then it is non-interacting, but when a line goes below

the block, then it is given to that block as the input line. In the Fig., the upper

TPPG at stage 1 gives a partial product P0 = A0B0 and the carry cp0. The lower

TPPG at the stage 1 computes A1B1, and we have the carry cp3. At stage 2, the

first TPPG computes partial product A1B0 and produces the carry cp1, whereas the
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second TPPG computes A0B1 and produces the carry cp2. Inputs of the first TPPG

are B0 and A1 and two ancillae, whereas the inputs of the second TPPG are A0 and

B1. The stages 3, 4 and 5 consist of adder blocks. As we can see in Fig. 11.12, we

need to add cp0, A0B1 and A1B0 to get P1 and the carry c0. This is done by block1

at stage 3. At this stage, the adder block 2 adds cp1, A1B1 and cp2. The output of

this block is s1 and the carry is c1. At stage 4, the sum s1 is added to c0 by using the

block 4 and the output P2 is obtained. The block 4 has a carry c2. At stage 5, cp3,

c1 and c2 are added using the block 3 to get an output qutrit P3 and the carry cout.

11.4 Discussion

The main factors in designing the reversible circuits are the total quantum cost, total

hardware complexity, number of shift gates, number of MS gates, and delay time.

The total quantum cost refers to the number of ternary shift gates required to realize

the circuit. The total hardware complexity is the complexity of the circuit in which

ε denotes a ternary one-qutrit shift gate and γ denotes a two-qutrit MS gate. The

number of constant inputs and the number of unutilized garbage outputs is also one

of the factors sometimes taken into consideration. The delay time indicated by ∆ is

the logical depth of the circuit. It is 1 for the shift gates and MS gates. Shift gates

and MS gates have quantum cost unity [50,51].

In the Tables below, we compared the cost of our circuit realizations with that

of similar circuits existing in the literature. In Table 11.10, the constant inputs and

garbage outputs of our circuit are the same as that in Ref. [50], but the present

realization has smaller delay time, hardware complexity, and the quantum cost. For

the half adder, our circuit design has one MS gate fewer than that in literature, but for

the full adder, we have 4 fewer gates. Our designed two-qutrit adder is implemented
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Fig. 11.18. Ternary two-qutrit multiplier is implemented using the adder blocks and TPPG
circuits. The measurement is done at the end after the stage 5.

with 15 SUM gates and one SWAP gate. Since the SWAP gate has 5 gates, the

total cost for a two-qutrit adder is 20. In Table 11.11 we compared the cost of our

circuit realization for the subtractor circuit with the existing realization in Ref. [51].

In Ref. [51], the quantum cost of the half subtractor and full subtractor are 7 and 14

respectively. We removed the shift gates, so this realization has a cost of 2 gates fewer

for the half subtractor, whereas the cost is 10 for the full subtractor. This realization
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can be implemented with braiding gates SUM1, SUM2 and SWAP .

For the two-qutrit multiplier circuits, we compared the cost separately for the

TPPG, adder blocks, and the full multiplier circuit. We have the same number of

constant inputs and garbage outputs, but fewer MS gate counts and therefore is

smaller delay time, hardware complexity, and quantum cost. In Table 11.12 and

11.13, the cost analysis for the TPPG circuit and the full multiplier circuit is given,

and it is compared with the cost of the existing realization in Ref. [230]. Shift gates are

also removed from the adder blocks used in two-qutrit multiplier. In Table 11.14, the

quantum costs of our adder, subtractor, TPPG, adder blocks, and two-digit multiplier

are given. Our TPPG circuit realization has a quantum cost of 9 compared with 13

of the existing design. We have fewer shift gates and gates for the implementation of

carry, therefore an improvement over the existing realization. The quantum cost of

the full two-qutrit multiplier is 62 when compared to the existing design [230] which

has a quantum cost of 85. Our main goal is the implementation of these circuits

by using the gates SUM , SWAP , and Cc(X). The SUM and SWAP gates are

obtained by the braiding of metaplectic anyons, whereas the Cc(X) is obtained by

the topological charge measurement of the metaplectic anyons.

Table 11.10: Cost analysis of the ternary adder circuit.

Half adder Full adder Two-qutrit adder
Existing [50] This work Existing [50] This work This work

Constant inputs 1 1 1 1 2
Garbage outputs 1 1 2 2 3
Delay time 6∆ 5∆ 12∆ 10∆ 20∆
Hardware complexity 5γ + 2ε 5γ 10γ + 2ε 10γ 20γ
Quantum cost 6 5 14 10 20
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Table 11.11: Cost analysis of the ternary subtractor circuit.

Half subtractor Full subtractor
Existing [51] This work Existing [51] This work

Constant inputs 1 1 1 1
Garbage outputs 1 1 2 2
Delay time 7∆ 5∆ 13∆ 10∆
Hardware complexity 5γ + 2ε 5γ 10γ + 4ε 10γ
Quantum cost 7 5 14 10

Table 11.12: The cost analysis of the TPPG circuit.

TPPG
Existing [230] This work

Constant inputs 2 2
Garbage outputs 2 2
Delay time 13∆ 9∆
Hardware complexity 9γ + 4ε 9γ
Quantum cost 13 9

Table 11.13: Cost analysis of proposed circuit for ternary multiplier.

Ternary Multiplier
Existing [230] This work

Constant inputs 12 12
Garbage outputs 11 11
Delay time 85∆ 62∆
Hardware complexity 62γ + 23ε 62γ
Quantum cost 85 62

Table 11.14: Quantum cost comparison for the proposed ternary multiplier circuit.

Quantum Cost
Existing This work

Half adder 6 5
Full adder 14 10
Half subtractor 7 5
Full subtractor 14 10
TPPG 13 9
Block 1 11 9
Block 2 10 8
Block 3 7 5
Block 4 5 4
Multiplier 85 62
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Chapter 12

Conclusion

Topological quantum computing is a promising candidate for fault-tolerant quantum

computing. The main focus of this dissertation was to find the ternary arithmetic

circuit implementation in topological quantum computation, and the fundamentals

on which topological quantum computation is based. It is also explained how to build

fault-tolerant gates by using the ideas based on quantum topology and braiding of

anyons.

Topological quantum computation is a wide field of research. The areas of topol-

ogy and knot theory, topological phases of matter, quantum field theory, and quantum

computing are merged in this field. The modular categories and the quantum group

are the algebraic mathematical models for the topological phases of matter. To make

this dissertation self-contained, we discussed all of these areas and made their con-

nections with quantum computing.

First, we discussed the quantum binary and ternary logic design in conventional

quantum computing and how the quantum computer can work better in terms of com-

plexity. Topology and knot theory as a mathematical background were presented.

The physical insight, behind the knots and braids, is explained through the geo-

metric phases in quantum physics. These phases also explain the existence of the

degenerate state in the topological phases of matter and the evolution of the system
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in these states. There are several proposals for the physical systems for topological

quantum computation. Among these, the non-Abelian anyons in the quantum Hall

effect and Majorana fermions in topological superconductors are the most popular.

We discussed the quantum Hall effect in detail and its similarities and differences to

the other topological materials like the topological insulator. Superconductivity and

the appearance of Majorana fermions in topological superconductors were explained.

The Chern-Simons theory is used as an effective field theory to explain the charge-flux

composites as the non-Abelian anyons in such systems and their connection to knots

and braids. The fusion and braiding matrices, topological spin, and Hilbert space are

discussed in terms of topological quantum field theory and category theory.

Both binary and ternary logic gates design are presented. Theoretical models

for a binary logic design are based on the Fibonacci and Ising anyons. For ternary

logic design, metaplectic anyons are used. The basic ternary logic gates are repro-

duced. The topological data for metaplectic anyons are obtained by the quantum

deformation of recoupling theory. The metaplectic anyons are defined in terms of the

category theory that also provides their topological data. The fusion matrices F and

braiding matrices R are discussed in category theory and quantum deformation of

the recoupling theory.

Our arithmetic circuits are based on a combination of Clifford gates and non-

Clifford gates. The quantum cost of the implementations of the ternary adder, ternary

subtractor, and ternary multiplier circuits is smaller than the existing realization. We

proposed the implementation of the arithmetic circuits by using the topological charge

measurement gates Cc(X) and the braiding gates SUM and SWAP . We modified

the existing realizations to have more controlled increment gates than the controlled

permutation gates so that these circuits can be realized by braiding.
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Appendix A

Abstract Algebra

A.1 Group

The group theory is indispensable in physics for the study of symmetry. But group
representation theory is of direct use in quantum physics and other branches of
physics.

A set G is a group when it fulfills the following axioms:

• Closure: For any two elements A and B of G, their composition A ◦ B is also
in G. Here, ◦ is addition or multiplication.

• Associativity: The composition of any three elements A,B,C ∈ G, is associa-
tive. That is, A ◦ (B ◦ C) = (A ◦B) ◦ C

• Identity: There exist an identity element I ∈ G, such that, for any element A
∈ G, I ◦ A = A ◦ I = A. The identity element is 0 for a group under addition,
and 1 for a group under multiplication.

• Inverse: For any element A ∈ G, there exist a unique element A−1 ∈ G such
that A ◦A−1 = A−1 ◦A = I. The additive inverse is the negative of an element,
whereas the multiplicative inverse is the reciprocal of an element of the group.

The matrix groups are of particular interest in physics. The set of all matrices
form a group under addition. The null matrix is the additive identity. The additive
inverse of a matrix A is −A. The group is non-commutative when the order of the
composition matters, that is, when A ◦B 6= B ◦A. The commutative group is called
an Abelian group, whereas the non-commutative group is called the non-Abelian
group. Matrices form a non-Abelian group under multiplication, as the matrix
multiplication is not commutative in general.

An ordered pair is a pair of objects in which one element of the pair is designated
as the first entry and the other element is designated as the second entry. It is denoted
as (a, b). The order of entries matters in the ordered pair, that is (a, b) 6= (b, a). The
Cartesian product of two sets is denoted as A×B = {(a, b)|a ∈ A and b ∈ B}. It
is the set of all possible ordered pairs such that the first entry is from the set A and
the second entry is from the set B.
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The number of elements of a group is called the order of the group. A group with
a finite number of elements is called a finite group and the group with an infinite
number of elements is called an infinite group. The infinite group may be discrete
if the number of elements is enumerably infinite, or continuous if the number of
elements is non-enumerably infinite. The set of integers is a discrete infinite group,
whereas the set of real numbers is a continuous infinite group. The Lie group is a
continuous group.

Two elements A and B of a set are equivalent if there is some kind of equivalence
relation between them. The equivalence relation is written as A ∼ B, and it should
have three properties; reflexive, symmetric, and transitive. The reflexive property
means that any element is equivalent to itself, A ∼ A. The symmetric property
implies, if A is equivalent to B then B is also equivalent to A. That is, A ∼ B ⇒
B ∼ A. The transitive property tells that if A is equivalent to B and B is equivalent
to C then A is equivalent to C. That is, if A ∼ B and B ∼ C then A ∼ C. All
those elements which have the common property can be put into one class called the
equivalence class. A set can be partitioned into the set of equivalence classes that
are disjoint, and their union is the parent set. One of the examples of the equivalence
classes is the conjugacy class. Two elements A and B of a group are said to be
in the same conjugacy class if they are related as C−1AC = B, where C is also an
element of the group.

Homomorphism is a structure preserving mapping from one set to another. Let
f be a mapping from a set A to a set B represented as f : A → B. Let us consider
an element a of the set A. An element b of B is obtained by mapping the element a
to the element b in B. That is

b = f(a), where a ∈ A and b ∈ B.

Therefore, b = Imf is the image of f from A in B. A mapping is onto or surjective
when each element in the image is mapped from at least one element in the domain.
The mapping is called one-to-one or injective when exactly one element in the
domain is mapped to some element in the image. A mapping is onto and one-to-one
or bijective when exactly one element in the domain is mapped to exactly one element
in the image. The bijective mapping is reversible. The group homomorphism is a
mapping from one group to another which respects the composition law. The same
set of axioms and the rules of composition hold in the image as in the domain. It can
be written as

f(a1a2) = f(a1)f(a2).

A.1.1 Subgroups

The subset H of a group G is called a subgroup of G if the elements of H also fulfill
the same composition axioms as G. Any group has two trivial subgroups, the identity
and the group itself. If a group has no other subgroups other than itself and the
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identity element, then it is called a simple group.
Consider a group G of the order n and its subgroup H = (e, h1, h2, ...hm) of order

m. Let us take an element x of G and take its composition with the elements of H
denoted by xh, such that

xh = (xe, xh1, xh2, ..., xhm).

Here xh is x ◦ h, but we omit ◦ to avoid cluttering. The xh should be assumed as a
composition of x and h and this composition can be addition or multiplication. Now
if x is also an element of H then the xh must be the H itself because the composition
of x with h would be just a rearrangement of the elements of h. Then we can write
xh = H. On the other hand, if x is not in H then the elements xh do not belong to
H. But this set xh of course belongs to G. In this case, we say that the xh and H
are disjoint sets and written as H ∩ (xh) = ∅.

We can similarly compose x and h as hx = (ex, h1x, h2x, ..., hmx). The set xh is
called a left coset and hx called a right coset of H in G with respect to x. The
subgroup H of a group G is called a normal subgroup or an invariant subgroup
of G if left and right cosets of a subgroup G are the same. More specifically, every
element of xh is equal to some element of hx, such that

xhi = hjx =⇒ x−1hjx = hi,

From the above expression, we can see that hi and hj are in the same conjugacy class.
H is a normal subgroup if the subgroup H consists of complete conjugacy classes of
the group G. If H is a normal subgroup of G, the set of all distinct cosets of H in
G is called a quotient group or the factor group of G with respect to H. It is
denoted as

K = G/H.

If the order of G is n and the order of H is m then the order of K is n/m. The
quotient group is the group of equivalence classes of G with respect to H. It is the
set of cosets and this set is also a group.

A.1.2 Representation of a Group

A group homomorphism from the group elements to the matrices which obey the same
group composition rules as the group itself is called the representation of the group.
Let a groupG = {e, a, b, c, ...} be a finite group, and letD = {D(e), D(a), D(b), D(c), ...}
be a collection of nonsingular matrices having the property

D(ab) = D(a)D(b),

then the collection of matrices is called representation of the group. For example,
if the group composition is ab = c, then D(a)D(b) = D(c). As ea = ae = a, the
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representation implies that D(e)D(b) = D(a)D(e) = D(a). The representation for
the expression a−1a = e should be D(a−1a) = D(a−1)(a) = D(e) = e, which implies
D(a−1) = [D(a)]−1 The dimension of the representation is the dimension of space on
which it acts.

Two representations D1(a) and D2(a) are equivalent if there exist a non-singular
matrix S such that D1(a) and D2(a) are related as

D1(a) = S−1D2(a)S.

This kind of transformation is called a similarity transformation. If the action
of a representation D(a) on a vector in a subspace results in the elements of the
same subspace, then the subspace is called an invariant subspace, otherwise, it
is irreducible. A representation is reducible if it has an invariant subspace. A
completely reducible representation can be written as a matrix in block diagonal
form, which can also be written as a direct sum of the subrepresentation. If all the
elements can be represented by distinct matrices, then the representation is called a
faithful representation.

A.2 Ring, Field, Vector Space and Module

A set A is called a ring if it fulfills the following axioms.

• A is an additive Abelian group.

• A is associative:
a× (b× c) = (a× b) × c.

• Distributive law holds, That is, for a, b, c ∈ A,

a× (b+ c) = a× b+ a× c,

and
(b+ c) × a = b× a+ c× a.

When a set is a group under both the operations of multiplication and addition and
also holds the distributive law, then it is called a field. The set of real numbers R
and the set of complex numbers C are examples of fields.

A vector space V over the field is a set on which two operations, addition and
multiplication, are defined. The elements of a vector space are usually called vectors
and the field are called scalars. Let u, v and w be vectors in a vector space V and a
and b be scalars in a field K, then a vector space would hold the following axioms

1. u + v = v + u

2. (u + v) + w = u + (v + w)
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3. There exist the zero vector 0, such that u + 0 = u

4. There exist the inverse vector −u such that u + (−u) = 0

5. a(u + v) = au + av

6. (a+ b)u = au + bu

7. (ab)u = a(bu)

8. There exist a unit element such that 1u = u.

The set of vectors {vi} are linearly independent if for some number xi it is true
that x1v1 + x2v2 + ... + xkvk = 0 only when xi = 0, otherwise, the set of vectors are
linearly dependent. A vector space has the basis vectors in terms of which any other
vector is written uniquely, e.g.

v = v1e1 + v2e2 + ...+ viei,

where vi ∈ K are the components of a vector v with respect to {ei}. The number of
basis is the dimension of the vector space. A vector space over the ring is called a
module. A vector space equipped with the bilinear product is called an algebra. A
bilinear product is the one by which we combine two vector spaces and get the third
one when this product is linear. A tensor product u⊗ v ∈ U ⊗ V , when u ∈ U and
v ∈ V , is a product when each element of the first vector space is multiplied with
all the elements of the second vector space. A mapping of a vector space to itself is
called the endomorphism. If this endomorphism is reversible then it is called the
automorphism.

There is a dual vector space that fulfills the axioms of the vector space, and when
taking the inner product with the vectors in vector space we get numbers. This also
means that the inner product of a basis vector with its dual gives identity. We can
say that a dual vector space is a linear functional from a vector space to the real
numbers. A vector space equipped with an inner product is called a Hilbert space.

A.3 Lie Group and Lie Algebra

The Lie group is a continuous group which is also a differentiable manifold. It has a
smooth structure and so the differential calculus can be performed on it. The group
multiplication and inverses can be taken on the manifold, therefore the Lie group
provides a natural framework for a continuous symmetry in physics. Any closed
subgroup of the GL(n,C), n × n matrices with entries in C, is a Lie group. The
special linear group SL(n,R) or SL(n,C) consists of n× n matrices with the entries
in R or C and all matrices having a determinant one. The unitary groups and special
unitary groups, U(n) and SU(n), also have n× n matrices with the property that
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U−1 = U∗ and determinant one in case of SU(n). The orthogonal groups O(n) and
the special orthogonal groups SO(n), consist of n× n matrices with RT = R−1 and
det(R) = 1 in case of SO(n).

Let us suppose a group G whose elements g(α) depend on some parameter α. Here
we consider that this dependence is smooth and continuous. That is, if two group
elements are close together, the corresponding values of the parameter are also close.
Let the identity be an element for α = 0, that is, g(α)|0 = e then we have D(α)|0 = 1.

As the dα is infinitesimally small, in the neighborhood of the identity, taking only
the first term in the Taylor expansion of D(α) we have

D(dα) = 1 + idαaXa + ..., (A.1)

where Xa are called the generators of the group and written as

Xa ≡ −i
∂

∂αa
D(α)|α=0, (A.2)

where a = 1, ..., N . For the representation to be unitary, Xa would be Hermitian
operators. Parameterizing the group by going away from the identity, we get another
group element D(dα) = 1 + idαaXa. For a finite α, we define the representation of
the group element

D(dα) = lim
k→∞

(1 + iαaXa/k)k = eiαaXa . (A.3)

This is called the exponential parameterization. Thus, we can write the group elements
in terms of the generators. These generators form a vector space. The one parameter
group is of the form U(λ) = eiλαaXa . The group multiplication is U(λ1)U(λ2) =
U(λ1 + λ2). As we know that eiαaXaeiβaXa 6= ei(αa+βa)Xa , but for the representation of
the group, the product of two exponentials should be another exponential as

eiαaXaeiβaXa = eiδaXa . (A.4)

We will find out what makes this equation to be true by equating the powers on both
sides of the equation. We will do this by taking logarithm on both sides. Therefore,
we have

iδaXa = ln (eiαaXaeiβaXa). (A.5)
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Now expanding the exponentials in parentheses,

eiαaXaeiβaXa = [1 + iαaXa −
1

2
(αaXa)

2 + ...]

[1 + iβbXb −
1

2
(βbXb)

2 + ...]

= 1 + iαaXa + iβbXb − αaXaβbXb

− 1

2
(αaXa)

2 − 1

2
(βaXa)

2 + .... (A.6)

Rewriting the Eq. A.5 in the form as

iδaXa = ln (1 + eiαaXaeiβaXa − 1), (A.7)

where we added and subtracted 1. The advantage of writing like this is that we can
expand this as a series of ln (1 +K), where K is eiαaXaeiβaXa − 1. Now using Eqs.
A.6 in A.7 we get

iδaXa = ln (1 +K)

= K − 1

2
K2 + ...

= iαaXa + iβbXb − αaXaβbXb −
1

2
(αaXa)

2

− 1

2
(βaXa)

2 +
1

2
(αaXa + βbXb) + ...

= iαaXa + iβbXb −
1

2
[αaXa, βbXb] + .... (A.8)

⇒ [αaXa, βbXb] = −2i(δc − αc − βc)Xc + ... ≡ iγcXc. (A.9)

The Lie algebra is obtained by taking an infinitesimal transformation of the Lie group.
Lie groups are manifolds that have tangent spaces at the identity elements of the
group. The elements of the tangent spaces give the Lie algebra.

Definition: A Lie algebra g consists of a vector space g equipped with a product
[., .] : g⊗ g→ g, that satisfies the following

• The anti-symmetry relation

[X, Y ] = −[Y,X] (A.10)
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• Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, (A.11)
for all X, Y ∈ g (A.12)

.

The product in a Lie algebra is denoted by square brackets and is called the Lie
bracket. The matrices are not algebra under multiplication. Lie algebra is an algebra
made by Lie bracket. sln(K) is the Lie algebra consisting of a vector space of n× n
matrices over K that have trace zero and Lie bracket given by [A,B] = A.B − B.A.
sl2 is a vector space over C with the X, Y,H with the Lie bracket given as

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H (A.13)

Conventionally, capital letters are written for the names of the Lie groups, and
small curvy letters are used for the Lie algebras. The Lie algebra sl(2) over a complex
field C consists of 2 × 2 matrices. Bases of this algebra are chosen as

X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
, I =

[
1 0
0 1

]
(A.14)

We can see that

[X, Y ] = H, [Y,X] = −H, (A.15)
[X,H] = −2X, [H,X] = 2X, (A.16)
[Y,H] = 2Y, [H,Y ] = −2Y, (A.17)
[X, I] = [I,X] = [Y, I] = [I, Y ] = [I,H] = [H, I] = 0. (A.18)

X, Y,H have the property that their trace is zero. The matrices {X, Y,H} make the
bases of subspace sl(2) of gl(2).

The Lie bracket is not associative. Universal enveloping algebras U(sl2) are in-
troduced to recover the associativity. U(sl2) is generated by the same elements as
sl2, but the difference is that the elements like H2X are also included in this alge-
bra. The quantum group is the q-analog of unital associative universal enveloping
algebra. We used the universal enveloping algebra in Appendix C for computing the
knot invariant.
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Appendix B

Topology and Differential Geometry

B.1 Topology

In Euclidean geometry, we take the distances between the points and the angles
between lines for describing and comparing spaces. But in topology, the distances
and angles have no significance, but some other properties that remain invariant
under continuous deformation of the spaces. Think of the spaces as made up of
some rubber material that can be smoothly transformed from one shape to the other.
Squeezing, pulling, or twisting would not change topology unless we tear it apart.
The two shapes in Fig. B.1 are considered the same in topology because one can be
continuously transformed to the other. Tearing the hole apart or making a new hole
would change the topology. A circle has the same topology as any closed curve. More
examples are given in Chapter 3.

Fig. B.1. A doughnut is homeomorphic to a coffee cup.

B.2 Topological Spaces

An open interval in R is written as (a, b) which means that the a and b are not
included, but all real numbers between them are included in the interval. A closed
interval is written as [a, b], means that a, b and all numbers between them are
included. In a Euclidean space Rn, all points p ∈ Rn are included, except the
boundary, which is called an open ball. The union of open sets is open, and the
intersection of open sets is open. The empty set ∅ and universal set X = Rn are open
and closed at the same time.
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Let X be a set and T is a collection of subsets of X that satisfies the following
requirements:

• The ∅ and X are in T ,

• The union of sets of T are in T ,

• The intersection of sets from T are in T ,

then T is called a topology on the set X. The ordered pair (X,T ) is called a
topological space and the elements (sets) of T are open sets. The elements of a
subset B of T that is, B ⊂ T , are called the basis of the topological space if all open
subsets of T can be expressed as unions of the elements of the B.

A map from X to Y is continuous if the inverse image of the Y in X is open.
Consider a point x ∈ X. An open set N is a neighborhood of a point x if N is
subset of X and x belongs to an open subset of N . Let a topological space X be a
family of open subsets F whose union is X then the F is called an open cover of
X. F ′ is a subcover of F if ∪F ′ = X. A subspace is bounded if the open cover has
a finite number of subcovers. A compact topological space is closed and bounded.
The corresponding surface is not extended to infinity, and also the boundary points
are all included. x is an interior point of the X if there is ε > 0 such that the ball
B(x) around x ∈ X has the property that B(x) ⊂ X. y is an exterior point of X if
there is ε > 0 such that the ball B(y) has the property that B(y) ∩X = ∅. z is the
boundary point of X if there is ε > 0 such that the ball B(x) intersects both X and
Xc. The connectedness is a property of a space when it is all in one piece. If we
can connect all the piece by a path, the space is called path connected.

A metric on a set X is a map d : X ×X → R tha satisfies the three conditions:

• d(x, y) = d(y, x),

• d(x, y) ≥ 0 zero for x = y,

• d(x, y) = d(x, z) + d(z, y),

where x, y, z ∈ X. The X or sometime (x, d) is called a metric space. As an
example, let be an open set U in Rn and x ∈ U and all the points sufficiently close
to x also be in U . Let us define a continuous function on a topological space. A
function is continuous if it sends nearby points to nearby points. More specifically,
if a function (also called a map) f : X1 → X2, and (X1, T1) and (X2, T2) are two
topological spaces, and if any open subset O2 ⊂ X2 the inverse image f−1(O2) ⊂ X1

is an open subset of X1, then f is said to be continuous. A function which is a
bijection, that is, a one-to-one correspondence between X1 and X2 then the function
is called the homeomorphism. The homeomorphism is a map f : X → Y which
is onto, one-to-one and has a continuous inverse. Homeomorphic spaces are in the
same equivalence class. If f is a homeomorphism then f−1 is too.
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B.3 Topological Invariants

The distances and angles are irrelevant in topology. How to characterize the equiv-
alence classes? The idea is to find the properties that do not change under homeo-
morphism and uniquely specify the equivalence classes. These properties are called
topological invariants. Different invariants have their advantages and limitations. The
invariants can be numbers, or certain properties of the topological spaces like con-
nectedness, compactness, homotopy group, homology group, or cohomology group.
Fundamental group and knot invariants are already discussed in Chapter 3.

Homeomorphism is the study of shapes that can be continuously transformed
from one to another. Topology is changed when there is discontinuity, like tearing
apart or welding. The continuous deformation should be done in such a way that
the dimension of the diagram should not be changed. A circle is a one-dimensional
object S1 called 1-sphere, a boundary of a ball or a hollow cube is a 2-sphere S2, and
a torus is T 2 = S1 × S1.

The genus is the handle in a space. In the famous coffee cup and doughnut
example, both have one handle, so they are homeomorphic, but if we tear apart the
handle then the two spaces are topologically not the same anymore, see B.1. So a
genus is also a topological invariant but not strong enough. The Euler number is
another topological invariant calculated using the formula

V − E + F = 2− 2g, (B.1)

where g is the genus, V , E, and F are the number of vertices, edges, and faces of a
topological space. These are obtained by the triangulation of the space. The idea is to
imagine the space as consists of simplicial complexes. A point is a 0-simplex, a closed
interval is a 1-simplex, a triangle is a 2-simplex, and a tetrahedron is a 3-simplex. A
topological space can be obtained by gluing several simplices along with their faces.
See [64] for the discussion on triangulation.

A very important theorem, known as the Gauss-Bonnet theorem, relates the ge-
ometry and topology

ˆ
M

KdA = 2πχ, (B.2)

where χ = 2(1−g) is the Euler characteristic, and g is the genus, A is area of a region
in M . K is the Gaussian curvature given as K = k1k2. Where k1 is a curvature when
going in one direction and k2 is for the other direction. A flat surface has Gaussian
curvature zero. A saddle has Gaussian curvature negative, as one of the k1 or k2

is negative. The sphere has positive Gaussian curvature. A torus has a negative
curvature on some points and a positive on some other points.
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B.4 Manifolds

A manifold is a topological space that is Euclidean space locally. The neighborhood of
each point of the manifold is homeomorphic to the Euclidean space, but globally it can
have the structure that is not homeomorphic to the Euclidean space Zn. It is obtained
by patching together the open sets of Rn. Each patch looks like Rn. The manifold is
locally homeomorphic to open subsets of Rn. If we take a small area around a point
on some surface or a shape, this area is tangent to the surface. For example, a sphere
x2 + y2 + z2 = r looks like a flat surface or a plane in R2 if we consider only a small
patch of it. The sphere is a 2-dimensional manifold and is called 2-sphere. Based on
the classification of manifold, different types of topology are studied, such as point-set
topology, algebraic topology, differential topology, geometric topology, combinatorics
topology, general topology.

A differentiable or differential manifold is a manifold that locally looks like
a linear space, and hence calculus can be done on it. A diffeomorphism is a smooth
invertible map from one differentiable manifold to the other. We can divide a manifold
into patches. A transition map is a coordinate transformation between these patches.
The collection of all the patches is called the atlas. We can define a tangent vector on
every point of the differentiable manifold. The collection of all the tangent vectors is
called the tangent bundle. Similarly, we can have a cotangent bundle that consists
of the collection of all the dual vectors on the differential manifold.

A product space is the Cartesian product X × Y of topological spaces. In Fig.
B.2 (a), a rectangular sheet is a product space of two intervals or lines, the cylinder is
the product space of a circle and an interval, and the torus has the product topology
of two circles. A topological space that locally has the product topology, but globally
it may have a different structure, is called a fiber bundle. A cylindrical hoop and
the Möbius strip look the same locally but are different globally. Fiber bundles are
very important concepts in topology and quantum physics, we will discuss them in
the next section.

Topology can be understood through the study of surfaces. Surfaces can be iden-
tified and glued together to get diverse topological shapes. For example, we can think
of a cylinder made up of a sheet wrapped in a way that opposite sides are identified.
The cylinder can further be identified on two ends so that we get a torus. The torus
has one hole in it, so it is a genus-one surface, as in Fig. B.2 (a).

If we make one twist of the sheet before identifying, then we get a Möbius band
shown in Fig. B.3. This is topologically not the same as a cylindrical shape because
of the orientability. Let us take a vector on the cylinder pointing in some specific
direction. If we move it around in a full cycle, then the arrow would point in the same
direction after the full cycle. But on Möbius strip, we get a direction opposite to that
of the original one. Furthermore, there are two circles on each end of the cylinder,
but the whole Möbius strip is only one circle, and there is no inner or outer side
on the Möbius trip. A cylinder is orientable but a Möbious band is not orientable.
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The orientability is also a topological invariant, but it has limitations. Topological
surfaces can also be understood through gluing the smaller surfaces. This is called
the surgery. For example, a torus shape can be obtained by gluing a cylinder to the
sphere, as in Fig. B.2 (b).

(a) (b)

Fig. B.2. (a) A rectangular sheet wrapped to get a cylinder which further can be bent and
make torus. (b) An example of surgery; a torus is the result of gluing a cylinder to a sphere.

Fig. B.3. Möbius strip is obtained by wrapping sheet of paper after giving it one twist.

B.5 Fiber Bundle

A fiber bundle is a topological space T which is a product space locally, but not
necessarily be a product space globally. It is a way to take a product of spaces. A
fiber bundle which is a product space, both locally and globally, is called the trivial
bundle. The fiber bundle is a general term, some specific sorts of bundles are vector
bundles, tangent bundles, principal bundles.

The following data are included in a fiber bundle:

i A topological space E called the total space.

ii A topological space X called the base space, and projection π : E → X of E on
X.

iii A topological space F called the fiber
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iv A group G of homomorphism of fiber F

v A set of open coordinate neighbourhood Uα covering of X which reflect the local
triviality of the bundle E.

φα : π−1(Uα)→ Uα × F, (B.3)

where φ−1
α is such that πφ−1

α (x, f) = x, with x ∈ Uα, f ∈ F .

A cylinder is a trivial fiber bundle, it is a product space both locally and globally. It
is written as T = L× S1, where L is a line segment and S1 is a circle, as shown in
Fig. B.4 (a). But a Möbious strip is a product space or a trivial bundle only locally
and looks like a cylinder if we see the small rectangular segment of a Möbius strip
shown in Fig. B.4 (b), but globally the two spaces are different.

Let the total space E be a Möbious strip whose base space X is a circle S1, the
fiber bundle F on the base space are line segments. Fiber on a point x of S1 is π−1(x)
as shown in Fig. B.4 by red lines on the total space. The action of the projection
π is shown by dotted lines. Let a patch be the open set Uα of X and its projection
π−1(Uα), then homeomorphism φα untwist the π−1(Uα) into the product Uα × F .
This is called the trivialization. This map is the transition function and is a
homeomorphism of F . The set of all these homeomorphisms for the choices of Uα, φφ
form a group which is called structure group of the fiber on the fiber bundle E. If
we move an arrow on the two spaces, it will get rotated on Möbious strip but will stay
in the same direction on the cylinder. The trivialization would let us see the amount
of rotation.

A section is a map of a segment of base space into the total space. The section
is written as σα : Uα → π−1(Uα). A fiber bundle is trivial if a single section can be
obtained for the whole fiber bundle. The section introduces a local coordinate system
for the portion of the total space above the coordinate patch Uα by designating a
definite element in each fiber as the identity element.

Let, we are studying the tangent spaces at different points on a manifold. The
tangent space on the total space can have a horizontal and vertical component. The
structure group acts only on the vertical component. This is the difference between
the ordinary Cartesian product space and the fiber. If we compare the tangent space
at the total space with that on the base space, the rule of moving up or down on a
vertical subspace is provided by the connection. Formally, the connection maps the
tangent spaces Tx(X) over the base space X to the tangent spaces Tθ(E) in the total
space E over a point θ in the fiber ψ(x) above x. Thus, the connection is a rule that
splits the tangent space at each point θ into vertical and horizontal subspaces [231].
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L

S1

(a)

π

π−1(Uα)

F = π−1(x)

φα

x

X = S1

Uα

(b)

Fig. B.4. A cylinder is a trivial fiber bundle but Möbious strip is not.

B.6 Parallel Transport, Connection, and Curvature

Let us differentiate a vector field on a manifold. If we are working in the Cartesian
coordinates, then we do not need to take the derivative of the unit vectors because they
will remain the same in magnitude and direction. However, if our problem involves
the curvilinear (non-orthonormal) coordinates, we need to compensate for the change
of the bases vectors from point to point. Therefore, things get a bit complicated when
working on curved spaces, non-Euclidean or Riemannian geometry.

To take the derivative on curved spaces, we need to compare a vector at one
point with the one at a nearby point. But the tangent spaces at two different points
are not related due to length and direction change at different locations. To take a
derivative in this case, we will first discuss a concept called the parallel transport
of a vector. The parallel transport is moving a vector on a manifold in such a way
that the direction of the vector stays constant. It is for the observer who is moving
the vector. In a flat space, the parallel transport will not change the direction of the
vector at the final point, comparing with the one at the starting point. The shortest
path on a curved space is called the geodesic, which is a straight line in a flat space.

The covariant derivative will help us to differentiate the vector field on a curved
space. Let the derivative of a vector in a curved space be written as

∂µA = ∂µ(Aµeµ) = [∂µA
µ + Aµ∂µ]eµ. (B.4)

The summation convention is assumed. The second term is zero in a flat space. The
quantity in the bracket is the covariant derivative. It is a compensation for the
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change in basis vector along with the motion. The covariant derivative is zero for a
parallel transported vector, similar as the ordinary derivative is zero for a straight
line parallel to the horizontal axis.

When we parallel transport a tangent vector along the geodesic, the twist of the
tangent space around the geodesics is called the torsion. The change of direction of
a tangent vector to left-right or up-down is due to curvature. The curvature is how
much a line deviated from the straight line and a plane deviated from the flat surface.
Therefore, the curvature is the non-commutativity of the covariant derivative.

F (v, w) = DvDw −DwDv, (B.5)

where Dwv is the covariant derivative of v in the direction w. The curvature is
provided by the connection. The connection is explained in the section on fiber
bundle. The connection is flat connection for vanishing curvature. The holonomy
is the twist of a vector moving in a loop on a curved space. In general relativity, the
second term involves the Christoffel symbols. Its failure to be zero is the Riemann
curvature tensor. Ricci tensor is the contribution from the curved space to an area
or a volume from point to point on curved spacetime. This contribution is added to
the flat derivative.

Now on the fiber bundle, the total space may not be flat, so at a point on the
total space above the base point, the tangent space may not be parallel to the tangent
space at the base space. In U(1) gauge theory, the second term is due to the gauge
transformation at every point. To compensate for this contribution, we need to change
the connection. In this context, the connection is the vector potential, the curvature
is the field strengths, and holonomy is the geometric phase. The Berry phase, Berry
connection, and Berry curvature are calculated on the same idea in momentum space
on the Brillouin zone.

B.7 Tensors

A tensor is an algebraic object used to describe the physical quantities. The ten-
sor can be thought of as a multidimensional array of numbers. A scalar is a zero-
dimensional array. It has only one component, the magnitude. A scalar is called a
rank-0 tensor. Its components can be written as 30 = 1. The rank-1 tensor is a vec-
tor. It has a one-dimensional array. A vector has three components, magnitude and
direction in each dimension. Its components are given as 31 = 3. The rank-2 tensor
is a two-dimensional array, looks like matrices. The rank-2 tensor has 3× 3 = 32 = 9
components. The rank-3 tensor is a three-dimensional array, looks like a cube, and
has components 33 = 27. In relativity, we use space and time on equal footings.
Therefore, instead of 3, we need 4-component tensors corresponds to t, x, y, z, one-
time, and three space coordinates. Tensors are the generalization of the vectors for
which every possible combination of the product of the basis vectors are taken as its
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components. The vectors are invariant, but the components are not invariant. If a
tensor (a vector, for example) represents a length in the n-dimensional space, then the
length remains the same if we change our coordinate system. A tensor is an object
that is invariant under the change of coordinates and has components that change
especially and predictably.

Let us multiply two vectors U and V terms by term that can be written as UV ,

UV = µ11ii+ µ12ij + µ13ik + µ21ji+ .... (B.6)

It is not a dot product or a cross product. If the vectors U and V have three compo-
nents each, then UV is 3 × 3 array given by

µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

Einstein’s summation convention is used in above equations. Let us have the
sum as

∑3
i AiB

i = A1B
1 + A2B

2 + A3B
3. In the Einstein’s summation convention,

this sum is written as AiBi. That is, when an index is repeated, then the summation
is assumed on that index. A vector would be written as V = V aea. So we can write
the general tensor

T = T lmn...abc... w
awbwc...elemen.... (B.7)

Taking the example of a vector in two dimensions,

ds2 = dr · dr =
∂r

∂yi
dyi +

∂r

∂yj
dyj

= ei · ejdyidyj

= gijdy
idyj. (B.8)

The gij is called a metric tensor.
We can represent a vector on a coordinate basis. When we use the longer unit

vectors then the components decrease in lengths and when we use the shorter unit
vectors then the components increase accordingly. Such components which transform
oppositely to the unit vectors are called the contravariant components of the vectors.
We can define the components in another way. Take the projections of the vector on
a coordinate basis. These projections are the components described by the length of
its dot products with each of the basis vectors. In this case, if we increase the length
of the basis vector, the dot products also increase and vice versa. These components
are covariant components of a vector. The covariant vectors are sometimes called
the covectors. The covariant components are written with subscript, whereas the
superscripts are written with the contravariant components. A general tensor is the
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collection of vectors and covectors combined using the tensor product.
An example of the contravariant basis and covaraint basis is as below

e1 = ∂r/∂u, e2 = ∂r/∂v, e3 = ∂r/∂w e1 = ∇u, e2 = ∇v, e3 = ∇w. (B.9)

Now, let us consider the transformation between the basis (x1, x2, x3) → (y1, y2, y3).
The contravariant tensor will transform as

T i(y1, ..., yN) =
∂yi

∂xj
T j(xi, ..., xN), (B.10)

whereas the covariant transforms according to rules

Ti(y
1, ..., yN) =

∂xj

∂yi
Tj(x

i, ..., xN). (B.11)

The contravariant and contravariant transformation properties are related to the push
forward and pull back maps in differential geometry.

An example of rank-2 tensor is energy-momentum tensor that can be written in
the form of 4 × 4 matrix as

T µν =


T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 , (B.12)

where zero index is for the time component of a particle’s momentum and the in-
dices 1, 2, 3 are for three spatial components. It can be explained as follows. T µν

is a momentum component µ flows in the direction of the component ν. The time
component of the momentum is energy, so the first row is the energy of the particle.
So T 00 is energy density, and T 0k with k = 1, 2, 3 are the energy flux. The first
column T k0 with k = 1.2, 3, excluding T 00, is the momentum at constant time so it is
the momentum density. The remaining 9 components are the spatial momentum in
the spatial direction, that is momentum flux. Three diagonal components are called
pressure and other off-diagonal components are called shear stress.

The electromagnetic field tensor can be written as

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 . (B.13)

Since electric and magnetic fields can be written in terms of the four-components
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vector potential, the EM tensor can be calculated using the relation

Fµν = ∂µAν − ∂νAµ (B.14)

where A is a spacetime vector potential with A0 as a scalar potential and A with
three spatial components is a usual vector potential.
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Appendix C

Link Invariants from TQFT and Quantum Group

C.1 Link Invariant from TQFT

Let a 3-manifold M be a connected sum of two submanifolds M1 and M2. They are
connected along the boundary S2 as shown in Fig. C.1 (a) [73]. When there is no knot
in this manifold, the Feynman path integral or partition function on this manifold is
given by

Z(M)

Z(S3)
=
Z(M1)

Z(S3)
.
Z(M2)

Z(S3)
. (C.1)

If the two submanifolds are copies of S3 and have a knot in them, then the ratio
of partition functions in the above equation becomes a knot invariant, which is the
Jones polynomial. The knot invariants are multiplicative when taking the sum of
knots. A physical Hilbert space can be associated with S2, the common boundary
of M1 and M2. Let Feynman path integral on M1 determines a vector χ in H, and
a dual vector space H ′. M2 is dual to M1 with the opposite boundary orientation.
The path integral on M2 gives a vector ψ ∈ H ′. The partition function of M can be
written as

Z(M) = 〈χ|ψ〉 .

S2 separates S3 into two three-balls, BL and BR. The path integrals on BL and BR

give the vectors v and v′,
Z(S3) = 〈v|v′〉 .

As the H is one-dimensional, v is a multiple of χ, similarly v′ is a multiple of ψ. A
fact from algebra is

〈χ|ψ〉 . 〈v|v′〉 = 〈χ|v′〉 . 〈v|ψ〉 .

On the right side, the two factor are actually partition functions Z(M1) and Z(M2).
When there are links in the S3, with S unlinked and unknotted circles Ci, with each
circle there is associated representation Ri. The partition function with collection of
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the Wilson lines is Z(S3;C1, ..., Cs), so we have

Z(S3;C1, ..., Cs)

Z(S3)
=

s∏
k=1

Z(S3;Ck)

Z(S3)
.

The normalized expectation value of a link L is 〈L〉 = Z(S3;L)/Z(S3) then for any
collection of the unknotted and unlinked Wilson lines shown in Fig. C.1 (b),

〈C1, ...Cs〉 =
∏
k

〈Ck〉.

M1 M2

(a)

C1

C2
C3

(b)

Fig. C.1. (a) The manifold M is connected sum of M1 and M2 joined at the boundary S2,
(b) Unknotted Wilson links in a three-manifold [73].

Let there be a link L on the manifold M . The components of the knots have
associated representation of some group G. Let Z(L) be the partition function of the
knot, and the Wilson lines are in a gauge group G = SU(N). And let us cut M into
two pieces, MR and ML for more study. Here, the physical Hilbert spaces HR and
HL are two-dimensional. The Feynman path integrals on MR and ML give |ψ〉 ∈ HR

and |χ〉 ∈ HL. The vector spaces HR and HL are dual to each other, hence

Z(L) = 〈χ|ψ〉 . (C.2)

In two dimensions, there is a linear relation among vectors. Let there be two other
vectors in HR, we can write their relation as

α |ψ〉+ β |ψ1〉+ γ |ψ2〉 = 0, (C.3)

where the weights α, β, γ are complex numbers add up to zero. LetX1, X2 be the same
manifolds as MR, but with different braids. Connecting the points on the boundary
we get

α 〈χ|ψ〉+ β 〈χ|ψ1〉+ γ 〈χ|ψ2〉 = 0. (C.4)
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ML

MR

X1 X2

Fig. C.2. A link C in a general three-manifold [73].

These two manifolds are the same from outside but are different from inside as in Fig.
C.2. Gluing X1 and X2 is the same as gluing MR and ML, but the link L is replaced
by L1 and L2. The expectation value would be given as

αZ(L) + βZ(L1) + γZ(L2) = 0. (C.5)

The knot projection has p crossings, where p = 0 for unknot. If β = 0 then
the number of crossings reduced giving a new link expectation value. Now, one
could at each crossing, replace an overcrossing by an under crossing, that is, pass
the two strands through each other with a factor of −γ/α. In this case, it is then
possible to untie all knots. The skein relations in Fig. C.3 are used to untie the
knot. The first and the third diagrams have one unknotted circle, the second has two
circles. The partition function Z(S3, C) for unlinked and unknotted circles in SU(N)
representation is now written as

(α + γ)Z(S3, C) + βZ(S3, C) = 0,

〈C〉 = −α + γ

β
. (C.6)

For a knot invariant which includes the self linking number, we need to pick a framing.
The partition function with the insertion of the Wilson loop WR(C), in a representa-
tion R, is not a well-defined holonomy operator. This operator transforms under the
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change of framing. The mapping class group of the boundary act naturally on HR.
The diffeomorphism is performed before gluing. The Dehn twist is as twisting the S3

by one full twist before gluing. It would look like the same picture, but the framing
is shifted. The diffeomorphism picked is the Dehn twist acts on HR, causes a phase
of e2πihR . This factor is multiplied when straightening a twist in an oriented strand,
where hR is the conformal dimension or conformal weight. It is the topological spin
of a particle in R representation. The hR is integer then the phase factor e2πihR is
identity, and when hR is half-integer then the phase e2πihR is −1. For vacuum, hR is
zero. For the anyons, it can have an arbitrary value. The diffeomorphism of S2 in Fig.
C.4 is the half-monodromy, depends on the framing. The monodromy is the phase
accumulated when one coordinate of a wave function moved around the other. The
total phase a wave function can get, on the exchange of two particles, is the Berry
phase plus the monodromy.

α + β + γ = 0

α + β + γ = 0

Fig. C.3. Skein relations for a knot

The values of α, β, γ depend on the framing of knots. Here some knowledge of
the conformal field theory (CFT) will be used, see [73] for further detail. Let HR be
the conformal weight of the conformal primary field, transforming as R. The primary
fields can be thought of as the quasiparticles on the two-dimensional surface. Let Ei
be the irreducible representations of SU(N) appearing in the decomposition of R⊗R,
and let hEi be conformal weights of the corresponding primary fields. Let braid B in

Fig. C.4. Half-monodromy operation on S2 [73].
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CFT be such that |ψ1〉 = B |ψ〉 and |ψ2〉 = B2 |ψ〉, then eighenvalues of the B are

λi = ± exp(iπ(2hR − hEi)), (C.7)

where +,− for whether Ei appearing symmetrically or anti-symmetrically in R⊗R.
If R is N-dimensional representation of SU(N) [73] then

λ1 = exp

(
iπ(−N + 1)

N(N + k)

)
, λ2 = − exp

(
iπ(N + 1)

N(N + k)

)
, (C.8)

hR =
N2 − 1

2N(N + k)
, hE1 =

N2 +N − 2

N(N + k)
, hE2 =

N2 −N − 2

N(N + k)
.

It is the same framing as in Fig. C.4, but when glued left and right, then we do not
have canonical framing for each link. In order to agree with the knot theory literature,
multiply β by exp(−2πihR) and γ by exp(−4πihR), we have

α = − exp

(
2πi

N(N + k)

)
, (C.9)

β = − exp

(
iπ(2−N −N2)

N(N + k)

)
+ exp

(
iπ(2 +N −N2)

N(N + k)

)
, (C.10)

γ = exp

(
2π(1−N)

N(N + k)

)
. (C.11)

Let q = exp
(

2πi
N+k

)
and common factor exp

(
iπ(N2−2)
N(N+k)

)
can be taken out we get

−qN/2L+ + (q1/2 − q−1/2)L0 + q−N/2L− = 0. (C.12)

Compare this relation with that found in Chapter 3 for q = t. Here Li is used instead
of Z(Li) and is shown pictorially in Fig. C.5. Therefore, using the Eq. C.6, we obtain
the relation for the unknotted Wilson line on S3

〈C〉 =
qN/2 − q−N/2

q1/2 − q−1/2
. (C.13)

This is the invariant of an unknotted Wilson line in S3 [232]. The Kauffman bracket
of a link is evaluated, taking A = q1/4. Compare this result with the knot invariant
calculated using the Hopf algebra discussed in the next section.

Now we will write the partition function in terms of the S-matrix. The partition
function of a Wilson line in S3 is given as [232]

〈 〉 =
ZL1,0

ZS3

=
S10

S00

, 〈Hopf〉 =
ZL1,1

ZS3

=
S11

S00

, (C.14)
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−qN/2 + (q1/2 − q−1/2) + q−N/2 = 0

Fig. C.5. Skein relations for Wilson lines in S3 in defining n-dimensional representation of
SU(N).

where S00 is the expectation value of the vacuum when no link is present, and S10 is
the expectation value of one link. The expectation value of a Hopf link is S11. Sa,b
are the matrix elements of the S-matrix correspond to the modular transformation.
See the section on modular transformation in Chapter 8.

C.2 Link Invariant from Quantum Group

In quantum mechanics, the commuting classical observables are replaced with the
noncommuting Hermitian operators, hence we can say that we deform a classical
algebra and the deformation parameter is the Planck constant h. The noncommuta-
tivity of the variables X and Y in the deformed space is written as

XY = qY X, (C.15)

where q is a complex number in general. It is called the deformation parameter. Let q
be a number different from 1 and h is a number different from 0. If we take x = qx0 or
x = x0 + h we can have classical values when h→ 0 or q → 1. These two are related
by q = eh [215]. For q → 1, we would get back the classical commuting variables.
The quantum group is q-analog of the Hopf algebra.

C.2.1 Quantum Deformation of an Algebra

To describe the quantum deformation of an algebra [215], let us consider a classical
two-dimensional vector space with elements x, y. In matrix form(

x
y

)
,

where x, y are real and commute with each other. Their partial derivatives satisfy
the differential calculus, so

xy = yx, =⇒ [x, y] = 0,

and
[∂/∂x, ∂/∂y] = 0, [∂/∂x, y] = 0,
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[∂/∂y, x] = 0, [∂/∂x, x] = 1, [∂/∂y, y] = 1,

where the commutator is defined as [A,B] = AB − BA. The linear transformation
of the vector is given by (

x
′

y
′

)
= M

(
x
y

)
=

(
a b
c d

)(
x
y

)
. (C.16)

The entries of theM are real and satisfy ad−bc = detM = 1. This transformation is
an element of the group SL(2, R). The partial derivatives in new coordinates would
satisfy the same relations(

∂/∂x
′

∂/∂y
′

)
= M̃−1

(
∂/∂x
∂/∂y

)
=

(
d −c
−b a

)(
∂/∂x
∂/∂y

)
, (C.17)

where M̃ is a transpose of M . The noncommutativity of the variables X and Y in
the deformed space is written as

XY = qY X. (C.18)

For the deformation parameter q → 1, we would get back the classical commuting
variables. The differential calculus on the quantum plane have the following relations

XY = qY X,
∂

∂X

∂

∂X
= q−1 ∂

∂Y

∂

∂X
, (C.19)

∂

∂X
Y = qY

∂

∂X
,

∂

∂Y
X = qX

∂

∂Y
, (C.20)

∂

∂X
X − q2X

∂

∂X
= 1 + (q2 − 1)Y

∂

∂Y
, (C.21)

∂

∂Y
Y − q2Y

∂

∂Y
= 1. (C.22)

The differential calculus on the quantum plane is covariant under the transformations(
X
′

Y
′

)
= T

(
X
X

)
=

(
A B
C D

)(
X
Y

)
, (C.23)

(
∂
∂X′
∂
∂Y ′

)
= T̃−1

(
∂
∂X
∂
∂Y

)
=

(
D −qC

−q−1B A

)(
∂
∂X
∂
∂Y

)
, (C.24)
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A,B,C,D commute with X, Y . Now we have

AB = qBA, CD = qDC,AC = qCA, BD = qDB,

BC = CB, AD −DA = (q − q−1)BC,

AD − qBC = det(T )q = 1, (C.25)

T−1 =

(
D −q−1B
−qC A

)
, TT−1 = I. (C.26)

Let T1 =

(
A1 B1

C1 D1

)
, T2 =

(
A2 B2

C2 D2

)
,

T1, T2 should satisfy conditions in above equation

∆12(T ) = T1 ⊗ T2 =

(
A1 B1

C1 D1

)
⊗
(
A2 B2

C2 D2

)
=

(
A1 ⊗ A2 +B1 ⊗ C2 A1 ⊗B2 +B1 ⊗D2

C1 ⊗ A2 +D1 ⊗ C2 C1 ⊗B2 +D1 ⊗D2

)
=

(
∆12(A) ∆12(B)
∆12(C) ∆12(D)

)
.

(C.27)

The product ∆ is called coproduct or comultiplication. The matrix T corresponds
to the fundamental, irreducible representation of SLq(2). It can be generalized to a
higher dimensional algebra.

C.2.2 Hopf Algebra

The Hopf algebra not only has unit and bilinear product, but also counit and coprod-
uct. Therefore, it can accommodate the creation and annihilation of particles. The
quasitriangular Hopf algebra is called the quantum group. The knot invariant can be
computed by it [233–235]. Quantum groups have asserted their influence in such areas
as category theory, representation theory, topology, combinatorics, non-commutative
geometry, symplectic geometry, and knot theory to name a few. For detailed discus-
sion on Hopf algebra and quantum group, see [236–238]. Before defining the Hopf
algebra, we have to define bialgebra and coalgebra. The arrows below are maps from
left to right. These arrows can also be interpreted as the morphisms in the categories
of quantum group [236].

If R is a ring and A is algebra (A, µ, η) over R, A is a module together with the
morphisms

µ : A⊗ A A, η : R A,

such that A has
associativity
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A⊗ A⊗ A A⊗ A A,
µ⊗1

1⊗µ

µ

identity

A A ⊗ A A.
η ⊗ 1

1⊗ η
µ

1

C is a coalgebra (C,∆, ε) over ring R together with the module morphism
∆ : C C ⊗ C, ε : C R

such that
C C ⊗ C C ⊗ C ⊗ C,∆ ∆⊗1

1⊗∆

C C ⊗ C C,∆

1⊗ ε
ε⊗ 1

1

where ∆ is comultiplication and ε is counit. Let R be a commutative ring, the
R-module B is bialgebra (B, µ, η,∆, ε) with algebra and coalgebra structures

µ : B ⊗B B, η : R B,

∆ : B B ⊗B, ε : B R.

R-Hopf algebra is an R-bialgebra H together with R-module morphism

S : H → H

called the antipode satisfies the following diagram

H H ⊗ H H ⊗ H H,∆ S ⊗ 1

1⊗ S
µ

Rε η

which is µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆ = η ◦ ε. An antipode plays a similar
role as the inverse in a group. The Hopf algebra can naturally be extended to braided
monoidal categories where (H,µ, η) is a monoid. Let H be an object in category C,
the Hopf algebra is a sextuple (H,µ, η,∆, ε, S), where µ, η,∆, ε, S are respectively the
multiplication, unit, comultiplication, counit, and antipode. ∆ maps a strand to a
union of two strands, S takes the strand to the same strand with opposite orientation
with additional curves at its ends, and the ε removes a strand. The antipode can be
realized as in the Fig. C.6.

The Hopf algebra H is quasitriangular Hopf algebra if there exist an element
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S

Fig. C.6. Antipode

R ∈ H ⊗H, such that it has the properties

∆op(x) = τH,H ◦∆(x) = R∆(x)R−1 for all x ∈ H,
(∆⊗ idA)(R) = R13R23,

(idA)⊗∆)(R) = R13R12, (C.28)

where R12 = R⊗ I, R23 = I ⊗R, and R13 = (τA,A ⊗ idA)(I ⊗R).
The R matrix is called the universal R-matrix. It should also satisfy the Yang-Baxter
equation

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R). (C.29)

The second and the third properties in Eq. C.28 implies that the braiding of two
particles around the third and then fusing is the same as fusing the two particles then
braid around the third as in Fig. C.7.

=

(a)

=

(b)

Fig. C.7. The second and third relations for quasitriangular Hopf algebra (a) (∆⊗idA)(R) =
R13R23, (b) (idA)⊗∆)(R) = R13R12

If the R-matrix exists, the braiding is defined in terms of the R-matrix as

σV,W (v ⊗ w) = τV,W (R(v ⊗ w)),

where τV,W (v ⊗ w) = w ⊗ v is a flip map or permutation. A ribbon Hopf algebra
(A,m,∆, u, ε, S,R, v) is a quasitriangular Hopf algebra which possesses an invertible
element ν commonly known as the ribbon element, such that the following hold:

v2 = S(u)u, S(v) = v, ε(v) = 1,

∆(v) = (v ⊗ v)(R21R12)−1, (C.30)
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where u = m(S ⊗ id)(R21). u exist for any quasitriangular Hopf algebra, and uS(u)
must satisfy

(ε⊗ idA)(R) = (idA ⊗ ε)(R). (C.31)

Moreover, if it has an antipode then R−1 = (S ⊗ idA)(R). The action of ribbon
algebra on Hilbert space is a rotation by 2π in clockwise direction. If the bialgebra
has the following properties

(∆⊗ idA)∆ = (idA ⊗∆)∆,

∆op = ∆, (C.32)

where ∆op = τA,A∆. The first property is called coassociativity as in Fig. C.8, whereas
the second is called cocommutativity. We also have (ε⊗ idA)∆ = (idA ⊗ ε)∆ = idA,
which is the same as F-symbol

=

Fig. C.8. (∆⊗ idA)∆ = (idA ⊗∆)∆

Now we turn our attention to the quantum group. The quantum group is not a
group but a Hopf algebra. The term quantum group is reserved for the Hopf algebra,
which is neither commutative nor non-cocommutative. We have a modular Hopf al-
gebra when there are finitely many irreducible representations, including the trivial
one. Uq(g) is a modular Hopf algebra when q is a root of unity. When qn = 1 then
we say that the q is the nth root of unity. The quantum group is a ribbon Hopf
algebra, which has the additional property that the framed link invariant can be con-
structed from it. The R-matrix is derived using the two-dimensional representation of
Uq(sl2) at a root of unity, where Uq(sl2) is the quantum deformation of the universal
enveloping Lie algebra U(sl2). The generators of U(sl2) are written as

[X,H] = 2X, [Y,H] = 2Y, [X, Y ] = H. (C.33)

Deforming the U(sl2) to get Uq(sl2), we get

[X,H] = 2X, [Y,H] = 2Y, [X, Y ] =
qH − q−H

q − q−1
. (C.34)

The right-hand side is equal to H when q → 1. These operators can be visualized
comparing with the raising and lowering operators in the theory of angular momen-
tum. See Fig. C.9.
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X :
Y :

1

[n]

[2]

[n− 1]

...
[n− 1]

[2]

[n]

[1]

H : qn qn−2 q−n+2 q−n

Fig. C.9. The operators in Lie algebra sl2

The Hopf algebra structure on Uq(sl2) is defined as

∆(H) = 1⊗H +H ⊗ 1,

∆(X) = X ⊗ qH/2 + q−H/4 ⊗X,
∆(Y ) = Y ⊗ qH/2 + q−H/4 ⊗ Y,
∆(1) = 1⊗ 1,

ε(1) = 1, ε(H) = 0, ε(X) = 0, ε(Y ) = 0,

S(1) = 1, S(H) = −H, S(X) = −q−1/4X, S(Y ) = −q1/4Y. (C.35)

The representation of the algebra is ρ(A) : U(g)→ End(V ). Now 1, 2 and 3 dimen-
sional representations of Uq(sl2) are the as follows

X = Y = 0, H = 1,

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
q 0
0 q−1

)
,

X =

0 [2] 0
0 0 [1]
0 0 0

 , Y =

 0 0 0
[1] 0 0
0 [2] 0

 , K =

q 0 0
0 1 0
0 0 q−1

 . (C.36)

C.2.3 Link Invariant

In order to get the link invariant from the quantum group, we will first drive the
R-matrix for a vector space, then take that vector space in the representation of the
quantum group. For more technical discussion, see [233, 234]. For the 2-dimensional
vector space with a basis R(ei ⊗ ej) =

∑
Rkl
ijek ⊗ el, due to the property of the

conservation of charge, we have
∑
Rkl
ij = 0 unless i + j = k + l. The R-matrix with

respect to the basis {e0 ⊗ e0, e0 ⊗ e1, e1 ⊗ e0, e1 ⊗ e1} of V ⊗ V can be written in the
form

R =


a 0 0 0
0 b c 0
0 d e 0
0 0 0 f

 . (C.37)
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Since R⊗ idV and idV ⊗R preserve the four subspaces of V ⊗ V ⊗ V spanned by the
basis {e0 ⊗ e0 ⊗ e0}, {e0 ⊗ e0 ⊗ e1, e0 ⊗ e1 ⊗ e0, e1 ⊗ e0 ⊗ e0},
{e0 ⊗ e1 ⊗ e1, e1 ⊗ e0 ⊗ e1, e1 ⊗ e1 ⊗ e0}, {e1 ⊗ e1 ⊗ e1}, V ⊗ V ⊗ V is the direct sum
of four subspaces,

R⊗ idV = (a)⊕

a 0 0
0 b c
0 d e

⊕
b c 0
d e 0
0 0 f

⊕ (f), (C.38)

idV ⊗R = (a)⊕

b c 0
d e 0
0 0 a

⊕
f 0 0

0 b c
0 d e

⊕ (f). (C.39)

To get the Yang-Baxter equation,

(R⊗ idV )(idV ⊗R)(R⊗ idV ) =

(a3)⊕

a2b abc ac2

abd b2e+ acd bce+ ace
ad2 bde+ ade cde+ ae2

⊕
b2f + bcd bcf + bce c2f
bdf + bde cdf + be2 cef
d2f def ef 2

⊕ (f 3),

(C.40)

(idV ⊗R)(R⊗ idV )(idV ⊗R) =

(a3)⊕

ab2 + bcd abc+ bce ac2

abd+ bde acd+ be2 ace
ad2 ade a2e

⊕
bf 2 bcf c2f
bdf b2e+ cdf bce+ cef
d2f bde+ def cde+ e2f

⊕ (f 3).

(C.41)

The R-matrix should satisfy the Yang-Baxter equation, therefore we can equate the
elements of the above two equations

b(cd+ ab− a2) = 0, b(cd+ bf − f 2) = 0,

e(cd+ ae− a2) = 0, e(cd+ ef − f 2) = 0,

bce = 0, bde = 0, be(b− e) = 0. (C.42)



251

Let us take b = 0, e 6= 0 a2−ae = cd = f 2−ef , hence e = a− cd
a
, (a−f)(a+f−e) = 0.

For a− f = 0, we obtain the following R matrix for Jones polynomial

R =


a 0 0 0
0 0 c 0
0 d a− cd/a 0
0 0 0 a

 . (C.43)

After some normalization, it can be written in somewhat nicer form

R =


t1/2 0 0 0
0 0 t 0
0 t t1/2 − t3/2 0
0 0 0 t1/2

 ∈ End(V ⊗ V ). (C.44)

The trace of a braid gives an invariant of a link. The isotopy invariance demands that
the trace should be invariant under all three Reidemeister moves, and so trace2(R±) =
1. But the computation shows that this equality does not hold. Therefore, consider
the following modification [233]. Let us consider a map

h =

(
t−1/2 0

0 t1/2

)
∈ End(V ). (C.45)

Now trace(h⊗n.ψn(b)) is invariant under all the three Reidemeister moves, where
ψn(b) is the representation of the braid. Charge conjugation property is given by
R · (h⊗ h) = (h⊗ h) · R. Now the Skein relation for Jones polynomial (see Chapter
3), we talked about in the knot theory, can be written as

t−1R− tR−1 = t−1


t1/2 0 0 0
0 0 t 0
0 t t1/2 − t3/2 0
0 0 0 t1/2



− t


t−1/2 0 0 0

0 t−1/2 − t−3/2 t−1 0
0 t−1 0 0
0 0 0 t−1/2

 = (t−1/2 − t1/2)idV . (C.46)

Here R,R−1 and idV stand for positive crossing, negative crossing and parallel strand
respectively. Analogously, the Kauffman bracket as an operator invariant can be
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written as

R =


A 0 0 0
0 0 A−1 0
0 A−1 A− A−3 0
0 0 0 A

 , (C.47)

n =
[
0 A −A−1 0

]
∈ Hom(V ⊗ V → C), u =


0
−A
A−1

0

 ∈ Hom(C→ V ⊗ V ),

(C.48)

and

A

[ ]
+A−1

[ ]
(C.49)

= A(idV⊗V ) + A−1(n · u) = A


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ A−1


0 0 0 0
0 −A2 1 0
0 1 −A2 0
0 0 0 0

 (C.50)

= R =
(C.51)

[ ]
= n · u = −A2 − A−2.

(C.52)

When we have strands on the representation of quantum group then we will take the
q-deformed R-matrix and operators correspond to positive and negative crossings are
given by

Q(L+) =


q1/2 0 0 0
0 0 q−1/2 0
0 q−1/2 q1/2 − q−3/2 0
0 0 0 q1/2

 , (C.53)
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Q(L−) = [Q(L+)]−1 =


q−1/2 0 0 0

0 q1/2 − q−3/2 q1/2 0
0 q1/2 0 0
0 0 0 q−1/2

 . (C.54)

The skein relation for Jones polynomial now becomes

q1/2


q1/2 0 0 0
0 0 q−1/2 0
0 q−1/2 q1/2 − q−3/2 0
0 0 0 q1/2



− q−1/2


q−1/2 0 0 0

0 q1/2 − q−3/2 q1/2 0
0 q1/2 0 0
0 0 0 q−1/2

 = (q − q−1)I. (C.55)

It can be written as

q1/2Q(L+)− q−1/2Q(L−) = (q − q−1)Q(L0). (C.56)

The skein diagrams in the representation of quantum group are given in Fig. C.10.
The elementary tangle diagrams in Fig. C.11 would become the oriented tangle
diagrams as in Fig. C.12. In the case of the ribbon Hopf algebra, the basic units of
the tangle diagrams can be drawn yet in another way, as in Fig. C.13.
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= −q − q−1

(a)

q −q−1

= (q − q−1)

(b)

= q1/2

+ q−1/2

(c)

= −q3/2

(d)

Fig. C.10. Skein relations in quantum group representation

Fig. C.11. The elementary tangle diagrams

Fig. C.12. The elementary oriented tangle diagrams
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(a) eV (b) iV (c) e′V (d) i′V

(e) σV,W (f) σV,W (g) idV (h) idV ∗ (i) θV

Fig. C.13. The oriented ribbon elementary tangle diagrams.
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Appendix D

Quantum Field Theory

D.1 Introduction

Quantum field theory is the most successful theory in physics and is widely used in
the philosophy of science. Three of the four forces of nature are unified using the
quantum field theory (QFT), therefore it is synonymous to the standard model of
fundamental particles and their interactions. Classical mechanics is used to studying
objects of large sizes at low speeds. Special relativity deals with the objects at a
speed comparable to the speed of light. Quantum mechanics is the physics of very
small objects. The quantum field theory becomes the theory of very small objects
and at very high speeds or energies. The quasiparticles in condensed matter physics
are not elementary particles, but their theory can be built similarly as the quantum
field theory is formulated. The quasiparticles excitations are the amplitudes of some
kind of quantum probability liquid in some material.

Fields are some entities that permeate the spacetime and have wavelike oscilla-
tions whose amplitude could be a scalar, a vector, a complex number, or a tensor.
The classical electromagnetic fields are continuous objects, but quantum mechanics
gives the concept of the photon. How to reconcile the two? The missing link is the
quantum field. The classical field theory, quantum mechanics, and special relativity
are combined in QFT. The special relativity theory describes the motion of particles
at velocities comparable to the speed of light. The Schrödinger equation can be used
to deal with several particles, but the types and number of particles must be fixed.
According to Einstein’s mass-energy equation E = mc2, mass can be created from
energy. Therefore, at high enough energy, particle number is not fixed but differ-
ent types of particles and antiparticles are created and destroyed. Non-relativistic
quantum mechanics cannot handle these facts.

To merge relativity and quantum mechanics, an attempt was made in an equation
known as the Klein-Gordon equation. Schrödinger derived this equation before his
famous equation, but he rejected it because it gave the wrong fine structure of the
hydrogen atom. Also, it gave the negative probabilities and allows negative energy
states. These problems are resolved and made compatible with special relativity by
considering φ as a field instead of describing a relativistic single-particle wave function.
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Paul Dirac also derived an equation for the relativistic massive particle by making use
of the relation E2 = m2c4 + p2c2 from the relativity into the Schrödinger equation.
There is no negative probability, but this equation gave negative energy states. It
allows particles creation and annihilation. For example, an electron-positron pair can
be annihilated to photons, or a photon can create a particle-antiparticle pair. Later
we will see that by using the concept of field, the negative energy states are interpreted
as the antiparticles or particles moving backward in time. But the concept of time is
different in quantum mechanics than in relativity.

Quantum mechanics deals differently with space and time. Space is an operator,
but time is a parameter. But in the relativity theory, time and space are taken at
equal footings. Hence, it is impossible to combine relativity with quantum mechanics.
We need to make either time as an operator or make the position as a parameter. If
we make time an operator, then things would get complicated because there is more
than one notion of time. The one is the proper time that moves with the frame. The
other notion of time is the coordinate on the clock in the stationary frame, which is
then promoted to an operator. A more convenient approach is demoting the position
coordinate to the parameter, which is a label of an operator. This operator is called
the quantum field operator. These field operators are obtained by quantization of the
classical fields.

The classical field theory is based on the Lagrangian formalism. To formulate the
QFT, we start with the classical fields and then quantize them. This procedure is
called the second quantization. In quantum mechanics, the solutions to the relevant
wave equations are states or particles. In QFT, the solutions are field operators that
create or destroy states or particles. These operators are analogous to the creation and
annihilation operators in a simple harmonic oscillator. Every fundamental particle has
a corresponding field whose excitation is that particle. The quantized field concept
enables us to write a many-body system in terms of a single object in space-time with
the infinite degrees of freedom so-called field oscillators. The field corresponding to
the field operators are called free fields without interactions.

The interaction involves the product of operators that create and annihilate the
virtual particles which mediate the forces. The scattering amplitudes in the inter-
actions can intuitively be represented by the Feynman diagrams. There can be con-
tributions from the creation and annihilation of particles at an intermediate stage of
the process. These contributions sometimes give diverging amplitudes. The method
used to remove these contributions is called the renormalization. Not all QFTs are
renormalizable.

As in relativity, time is dealt on equal footings as space dimension, therefore we
use four spacetime coordinates (t,x) = (t, x, y, z) = (x0, x1, x2, x3), three space and
one time. The observables quantities are defined as the four-vectors. For example,
x = (t,x), pµ = (E,p), Aµ = (φ,A), jµ = (ρ, j), and ∂µ ≡ ∂/∂xµ = (∂/∂t,∇),
where the boldface letter means the three space components.

We are dealing with the relativistic object, it is convenient if we use units such
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that the most frequently used universal constants of nature ~ and c are unity, so they
would not appear in the equations. Such units are called the natural units. Take
c = 1 and ~ = 1 then derive other units from these. These two constants are also
taken as dimensionless with similar reasoning. Using these units, mass turns out to
have the same unit as energy and momentum.

In the following sections, we present the basics of QFT without going into the
tedious details of solving integrals. The canonical quantization and interactions are
explained only for the case of the scalar fields. The section on the Lagrangian is needed
for all the sections. The section on interactions is based on canonical quantization, but
independent of the path integral and gauge theory. For basic knowledge on quantum
field theory, see [173, 174, 239, 240], for more detailed foundation, see [241–243], and
for conceptual understanding, see [231,244–246]

D.2 Lagrangian

Classically, the motion of a particle of mass m under the influence of force F is
described by Newton’s law given by

F = mẍ, (D.1)

where x can be found by integrating this equation. This equation is not quantum-
friendly. The alternate approach is due to Joseph-Louis Lagrange and William Rowan
Hamilton. Total energy, which is the sum of kinetic and potential energies, remains
the same, but potential and kinetic energies may vary during the motion. We will
calculate how kinetic energy and potential energy vary along the trajectory. Kinetic
and potential energies are written as

T̄ =
1

τ

ˆ τ

0

1

2
m[ẋ(t)]2dt, V̄ =

1

τ

ˆ τ

0

1

2
V [x(t)]dt. (D.2)

We will treat average kinetic energy and average potential energy as a functional,
which depends on the function x(t). Any function f(x) returns a value when we put
some value of x. A functional F [f(x)] returns some value when we put a function
into it. The derivative of a function is written as df

dx
and the corresponding functional

derivative is written as δF
δf(x)

.
Now we will see how average kinetic energy and average potential energy changes

during the trajectory. Taking the derivatives of the functional T̄ and V̄ we get

δT̄ [x]

δx(t)
= −mẍ

τ
,

δV̄ [x]

δx(t)
=
V
′
[x(t)]

τ
. (D.3)
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Since the force F = −dV
dt
, the Eq. D.1 would become mẍ = −dV

dt
, which implies

δT̄ [x]

δx(t)
=
δV̄ [x]

δx(t)
, =⇒ δ

δx(t)
(T̄ [x]− V̄ [x]) = 0. (D.4)

This shows that the classical trajectory is the one for which the difference of kinetic
and potential energies is stationary. If we deviate from the classical trajectory, then
both average KE and PE increase by the same amount. The difference of kinetic
energy (KE) and potential energy (PE) is Lagrangian L = T −V , and the integral of
the Lagrangian is called action. It has the dimensions of energy×time, (Joule-second),
the same units as ~ has. The action S can be written as

S =

ˆ τ

0

Ldt =

ˆ τ

0

(T − V )dt = τ(T̄ [x]− V̄ [x]), (D.5)

using the Eq D.4 we get

δS

δx(t)
= 0. (D.6)

This is known as the principle of least action. It states that, the action is stationary
for the trajectory followed by the particle. Lagrangian L can be written as a function
of position x(t) and velocity ẋ(t) then the variation of S with position and velocity
can be written as

δS

δx(t)
=

ˆ
du
[ δL

δx(u)

δx(u)

δx(t)
+

δL

δẋ(u)

δẋ(u)

δx(t)

]
=

ˆ
du
[ δL

δx(u)
δ(x− t) +

δL

δẋ(u)

d

dt
δ(u− t)

]
=

δL

δx(t)
+
[
δ(x− t) δL

δẋ(u)

]tf
ti
−
ˆ
duδ(u− t) d

dt

δL

δẋ(u)

=
δL

δx(t)
− d

dt

δL

δẋ(u)
.

By using Eq. D.6 we get the Euler-Lagrange equation as below

δL

δx(t)
− d

dt

δL

δẋ(u)
= 0. (D.7)

In QFT, in terms of the four spacetime dimensions, the Lagrangian density L is
used that can be written as L =

´
dxL. In terms of the Lagrangian density, the

action S is written as S =
´
dtL =

´
dtdxL. Let the Lagrangian density L depends
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on a function φ(x) (we will take it as a field later) of a point x in spacetime.

S =

ˆ
d4xL(φ, ∂µφ) (D.8)

Here we are using four-vector notation, µ = 0, 1, 2, 3, and x = (t,x) = (x0, x1, x2, x3).
A four-vector version of the Euler-Lagrange equation for this function would be

δS

δφ
= 0,

∂L
∂φ
− ∂µ

( ∂L
∂(∂µφ)

)
= 0. (D.9)

This equation is used to study the dynamics of the fields in quantum field theory.

D.2.1 Continuum Mechanics

The Hamiltonian is related to the energy of the system. It is conserved when the
Lagrangian does not change with time. As the Lagrangian is a function of generalized
coordinate and velocity, L = L(q, q̇), we have

dL

dt
=
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i. (D.10)

The summation is assumed on the index i. Using the Euler Lagrange equation in the
above equation, we get

dL

dt
=

d

dt

(∂L
∂qi

)
q̇i +

∂L

∂q̇i
q̈i =

d

dt

(∂L
∂q̇i

q̇i

)
,⇒ d

dt
(piq̇i − L) = 0, (D.11)

where pi = ∂L
∂q̇i

. Defining the Hamiltonian as

H = piq̇i − L, where
dH

dt
= 0. (D.12)

Now we will talk about another important concept Poisson bracket that is given by

{A,B} =
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
. (D.13)

The rate of change of a function F (qi, pi) can be written as

dF

dt
=
∂F

∂t
+
∂F

∂qi
q̇i +

∂F

∂pi
ṗi

=
∂F

∂t
+
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi
=
∂F

∂t
+ {F,H} . (D.14)
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Thus, if the function F itself does not depend on time, then

dF

dt
= {F,H} . (D.15)

It implies that if {F,H} = 0 then F is a constant of motion. There is a connection
between the conservation laws with the Poisson bracket of Hamiltonian and F being
zero. In quantum mechanics, the Poisons bracket is replaced by a commutator. The
rate of change of expectation value of an operator F̂ is

d〈F̂ 〉
dt

=
1

i~
〈[F̂ , Ĥ]〉. (D.16)

Poisson brackets from classical and the commutator in quantum mechanics are related
as

{F,H} → 1

i~
〈[F̂ , Ĥ]〉. (D.17)

By using Eq. D.12, we have

δH = piδq̇i + δpiq̇i −
∂L

∂qi
δqi −

∂L

∂q̇i
δq̇i. (D.18)

Since pi = ∂L
∂q̇i

, first term would cancel with last term, so that

δH = δpiq̇i −
∂L

∂qi
δqi. (D.19)

Since H is the function of qi and pi, we can also write

δH =
∂H

∂qi
δqi +

∂H

∂pi
δpi. (D.20)

From the last two equations, ∂H
∂qi

= − ∂L
∂qi

. But from taking derivative of pi = ∂L
∂q̇i

we get

ṗi = d
dt

(
∂L
∂q̇i

)
. Using the Euler-Lagrange equation here we get ṗi = − ∂L

∂qi
. Comparing

Eqs. D.19 and D.20 we get

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
. (D.21)

These equations are called Hamilton’s equations of motion.
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D.3 Symmetry

Symmetry is one of the most important concepts in physics, described by group theory.
When a system looks the same before and after some kind of transformation, then we
say that the system has symmetry. Symmetry can be global or local. Global symmetry
is the one possessed by the entire system as a whole and applied to every point. But
when a system transforms differently for different points on it, then the system has
a local symmetry. The gauge symmetry is internal. The spacetime does not involve
internal symmetry. The global symmetry in quantum physics means something that
cannot be measured. The local symmetry preserves causality, as the charge cannot
be disappeared at one place and reappear at another place. It should travel from the
former point to the latter. The conservation laws are related to symmetries by the
Lagrangian formalism. There is a transformation corresponding to every symmetry.
For example, an invariance under the unitary transformation U(1) means that by
changing φ(x)→ φ′(x) = e−iθφ(x) does not change the action. Therefore, symmetry
leaves the equation of motion invariant. The translation, rotation, time, etc. are
examples of continuous symmetries. The Lagrangian is a scalar. It is unaffected by
the Lorentz transformation that ensures that the action is invariant. By using the
Euler-Lagrange equation

∂L

∂xµ
− d

dt

( ∂L
∂ẋµ

)
= 0,

we get pµ = ∂L/∂ẋµ and ṗµ = ∂L/∂xµ. If the Lagrangian L does not depend on co-
ordinates xµ, that is, when the Lagrangian is invariant with respect to the translation
of components of the spacetime, then ∂L/∂xµ = 0 and pµ remains constant. We say
that the momentum is a conserved quantity in this case. The Hamiltonian is a con-
served quantity when the Lagrangian does not depend on time, and the energy of the
system remains constant. When symmetry is broken, new phases appear. The new
phase is described by a smaller group, comparing with that of the unbroken phase.
The spontaneous symmetry breaking is a process in which a symmetric state ends up
in an asymmetric state.

D.3.1 Noether Theorem

Symmetry and the conserved quantities are related according to Noether’s theorem.
When something looks the same after rotation, then angular momentum is conserved.
When something looks the same after some time translation, then energy is conserved.
If there is invariance under the translation, then the linear momentum is conserved.
The electric charge has the same value in all inertial frames, hence it is a Lorentz
invariant. There is some kind of operators corresponding to the conserved quantities.

Let our spacetime coordinates change as xµ → xµ+aµ. Under this transformation
the field and the Lagrangian change as φ→ φ(x+a) = φ(x)+δφ(x), and L = L+δL.
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We want δL = 0. Since,

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ) (D.22)

= ∂µ

(
∂L

∂[∂µφ]

)
δφ+

∂L
∂(∂µφ)

∂µ(δφ) = ∂µ

(
∂L

∂[∂µφ]
δφ

)
, (D.23)

where the Euler-Lagrange equation is used for the first term, suppose the change in
a field is not changing the Lagrangian, this leads to the result

∂µ

(
∂L

∂[∂µφ]
δφ

)
= 0, =⇒ ∂µJ

µ = 0, (D.24)

where J is called the conserved current and Q is called the conserved charge written
as

Jµ =
∂L

∂[∂µφ]
δφ, =⇒ Q =

ˆ
d3xJ0. (D.25)

These are the conserved quantities in a transformation. The energy-momentum tensor
is a special case of the Noether theorem when the conserved charges are energy
and momentum. The time component T 0

0 is the Hamiltonian density, which is the
conservation of energy ∂0T

0
0 = 0. It is the energy density. The momentum density

T 0
i , i are three spatial components. The energy-momentum tensor is discussed in the

Appendix B.

D.3.2 Discrete Symmetry

The symmetry of the continuously varying parameters, like translation and rotation,
are called continuous symmetry. The parity, charge, and time-reversal symmetries
are of fundamental importance in QFT. These are called discrete symmetries. When
a system is having symmetry, it means that the laws of nature are the same in the
system transformed by the symmetry transformation.

If ψ(x) is a solution to the Schrödinger equation, so is the ψ(−x) with the same
eigenvalue. They are related as ψ(x) = αψ(−x). We say that the wave function
has the parity symmetry. The system has an even parity when α = 1 such that
ψ(−x) = ψ(x), and an odd parity when α = −1 such that ψ(−x) = −ψ(x). It
is the reflection around the y-axis. The parity operator P is defined as P 2 = I,
Pψ(x) = ±ψ(x). The spin-1/2 particle like quarks and electrons have positive parity,
whereas the spin-1/2 antiparticles have negative parity. The parity is conserved in
the electromagnetic and strong interactions but violated in the weak interaction.
The violation of parity means the mirror image universe does not behave the same
way as our universe. The charge conjugation operator C changes a particle into an
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antiparticle and vice versa. As C2 |ψ〉 = C
∣∣ψ̄〉 = ψ, so its eigenvalues are ±1. It

is not conserved in weak interactions. The system has the time reversal symmetry
when it remains the same while changing |ψ〉 to |ψ′〉, that is, the system evolves time
flowing in the negative direction. For time-reversal symmetry, linear and angular
momentum change the sign.

After the discovery of parity violation in 1960, scientists hoped that the CP will be
preserved for the weak interactions. If the mirror symmetry is violated, then matter
is also needed to be changed into antimatter. But CP violation was also observed
for the weak interaction in 1964 in the K-meson decay. It means the antimatter
universe is not the same as this universe. The CP violation might explain why there
is more matter in the universe than antimatter. The CPT theorem says that when
C,P , and T are taken together, the laws of nature remain invariant. The universe
would be indistinguishable if parity is reversed, change particle to antiparticle and
take momentum in the reverse direction. If one of the symmetries is violated, then
the others are violated too.

D.4 Dirac Equation

In Schrd̈inger equation, there is a second-order space derivative on the left side and
the first-order time derivative on the right side,

∂tψ(t,x) = − 1

2m
∇2ψ(t,x). (D.26)

The natural units are used ~ = c = 1. Relativity deals with space and time as
a whole. In the relativity theory, we have the relation E2 = m2c4 + p2c2, which
becomes E2 = m2 + p2 in the natural units. Putting the operator equivalent of this
relation in Schrd̈inger equation, we get the Klein-Gordon equation,

(∂2 +m2)ψ(x) = 0. (D.27)

The Klein-Gordon equation describes the motion of spin-0 fields, but it had the
problems of negative energy and negative probability. The concept of quantum fields
removed these problems, as we already discussed.

The Dirac equation describes the motion of a relativistic Fermi particle. Dirac
wanted to make both the time and space derivative operators first order. Let us
take the square root of the operator in Klein-Gordon equation as ∂2 +m2 = (

√
∂2 +

im)(
√
∂2 − im). But the square root of an operator is meaningless. Dirac defined

four vector γµ with the properties γ0 = 1, γ1 = −1, γ2 = −1, γ3 = −1, and
they anticommute {γµ, γν} = γµγν + γµγν = 0. Now we can write (∂2 + m2) =
((γµ∂µ)2 + m2) = (γµ∂µ + im)(γµ∂µ − im). If we take the factor with the plus sign
and treat it as an operator as (γµ∂µ + im)ψ(x) = 0, we get the Dirac equation from
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this as

(iγµ∂µ −m)ψ(x) = 0. (D.28)

Summation convention is assumed according to which there is a summation on µ =
0, 1, 2, 3. The γµ = (γ0, γ1, γ2, γ3) = (γ0,γ) is a four-vector. Its components are
four by four covariant matrices, and the ψ(x) of the Dirac equation must have the
four-components wave function. Since E2

p = (p2 +m2), the Dirac equation admits the
negative energy solutions. The matrices γµ are not unique, but one way of writing
these matrices is as follows

γ0 =

(
0 I
I 0

)
, γ =

(
0 σi
−σi 0

)
, (D.29)

where σi are three Pauli matrices. The four-component wave function ψ(x) =

(
ψL(x)
ψR(x)

)
is called Dirac Spinors. ψR and ψL are positive and negative frequency solutions of
the Dirac equation. These two-component objects are called the Weyl spinors. The
positive frequency solution describes Fermi particles and negative frequency solution
are describes Fermi antiparticles. Feynman’s interpretation of the negative energy
solution is that these are particles moving backward in time. These solutions can also
be written as [173]

u(p)e−ip·x =

(
uL(p)
uR(p)

)
e−ip·x, v(p)eip·x =

(
vL(p)
vR(p)

)
eip·x. (D.30)

When a particle’s spin is in the same direction as its direction of motion, we say that
it has a positive helicity, otherwise, the particle has a negative helicity. ψL and ψR
are the eigenstates of the helicity operator, with eigenvalues +1 and −1 respectively.
The right-handed particles have positive helicity and the left-handed have negative
helicity. But for the left-handed antiparticles, the helicity is positive and right-handed
antiparticles have negative helicity. The system also has a property called chirality
when the system is not equal to its mirror image. It is a property described with
respect to the inertial frames of reference. The parity operator corresponds to the
symmetry transformation between these two states. The four components in Dirac
equations are because the Dirac particles have the same properties with parity re-
versed. The chirality and helicity are in general different, but they are the same for a
massless particle. The discovery of antiparticles predicted by the Dirac equation was
a success story of merging relativity with quantum mechanics. The antiparticles in
the Dirac equation have the same mass and spin, but have the opposite charge.

The Dirac equation is the Euler-Lagrange equation of the Lagrangian L = ψ̄(iγµ∂µ−
m)ψ(x), where ψ̄ = ψ†γ0. We are not going into the details of the canonical quanti-
zation of the Dirac field.
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D.5 Second Quantization

The dynamical variables from classical mechanics are promoted to operators in quan-
tum mechanics. This is the first quantization. The dynamical variables are quantized
to operators which act on the wave function. As the wave functions are obtained in
first quantization, and we are quantizing it again, hence the name second quantiza-
tion. The first quantization is associated with particles and the second quantization
is associated with the fields. The classical particles are total values, whereas the clas-
sical fields are density values. As we already saw in one of the previous sections, the
Poisson bracket from classical mechanics is promoted to the commutator in quantum
mechanics. Analogously, in the second quantization, we will promote classical fields
values to the commutators of fields and their conjugate values.

Here we will consider the steps to second quantize the fields [173], and later we
will interpret it to make sense of it. Let us take an example of the massive free scalar
field. The Euler-Lagrange equation for this Lagrangian leads to the Klein-Gordon
equation (∂2 +m2)φ = 0.

Step I: First write the Lagrangian density for the field as

L =
1

2
[∂µφ(x)]2 − 1

2
m2[φ(x)]2 =

1

2
[(∂0φ)2 − (∇φ)2 −m2φ2]. (D.31)

The Hamiltonian density can be written as

H = Π0(x)∂0φ(x)− L
= ∂0φ(x)∂0φ(x)− L

=
1

2
[(∂0φ(x))2 + (∇φ)2 +m2(φ(x))2]. (D.32)

Step II: At the second step, momentum density is written as

Πµ(x) =
∂L

∂(∂µφ(x))
= ∂µφ(x). (D.33)

The time component of the momentum density is Π0(x) = π(x) = ∂0φ(x).
Step III: Next step is turning the fields into operator-valued fields, by taking φ(x)

to φ̂(x) and Π0(x) to Π̂0(x). As [x̂, p̂] is the single particle commutator in quantum
mechanics, by the same analogy, we can define the equal-time commutator for the
field operators,

[ ˆφ(t,x), ˆΠ0(t,y)] = iδ(3)(x− y). (D.34)

The operators at different time commute,

[ ˆφ(x), ˆφ(x)] = [ ˆΠ0(x), ˆΠ0(x)] = 0. (D.35)
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Step IV: There is an analogy between quanta in oscillators and particles in mo-
mentum space. We will expand the field in terms of these creation and annihilation
operators. The field operators is written as

φ̂(x) =

ˆ
d3p

(2π)3/2

1

(2Ep)1/2
(âpe

ip·x + â†e−ip·x). (D.36)

This expansion is sometimes called the mode expansion. Here, the creation and an-
nihilation operators have the relation [â.â†] = δ(3)(x− y), and Ep =

√
p2 +m2. The

choice of the normalizing factor is to make the integral Lorentz-invariant [173].

Interpretation

Now we will discuss what does it all means. The first quantization says that particles
behave like waves described by the Schrödinger equation. The first quantization
promotes the Poisson bracket to the commutator{

xi, pj
}

= δij 1st quantization−−−−−−−−−−−−→ [xi, pj] = i~δij.

The quantization of classical theory of fields to quantum theory of field is the second
quantization

{φr(x, t), πs(y, t)} = δrsδ(x− y) 2nd quantization−−−−−−−−−−−−→ [φr(x, t), πs(y, t)] = i~δrsδ(x− y).

This implies that the wave function is imagined as a field, and we are quantizing
this field to get the operators. This wave function is quantized to the field operators.
As canonical variables are used, hence both quantizations are also called canonical
quantizations. The dynamics of fields are studied by the Lagrangian formulation, in
which the generalized coordinate is replaced by the field.

We can look at the fields as a time-dependent mapping from each point x to φ(x, t)
so, it has an infinite number of degrees of freedom. This mapping is a real number in
the case of a classical field and an operator in the case of a quantum field. The fields
are something different from matter and energy. The momentum can be ascribed to
them even in the absence of matter.

The wave function in quantum mechanics maps the position to the probability of
finding a particle at position x. For QFT, analogous to positions are classical fields
φ(x), and analogous to the wave function, we have wave functional ψ[φ(x)]. It maps
functions to the numbers. Now |ψ[φ(x)]|2 is interpreted as the probability that we
will find ψ(x) when measured. The quantum mechanical superposition of particle
states is analogous to a superposition of classical field configurations.

The Hamiltonian density is the sum of kinetic and potential energies of the field.
Kinetic energy is given by the term that corresponds to the change in configuration
space in time and potential energy term reflecting the energy cost for spatial changes
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in the field and is related with the mass term. The commutation relation in quantum
mechanics has objects with three degrees of freedom. The field operators create and
destroy particles at each spacetime point, therefore the commutation relation in QFT
has infinite degrees of freedom. Each degree of freedom is with 4-tuple spacetime.

For a simple harmonic oscillator

|n1...nN〉 =
1√

n1!...nN !
(a†)n1 ...(a†)N |0...0〉 . (D.37)

In a similar way, the field operators are applied on the Hilbert space built on the
vacuum. Vacuum is a state with zero particle. There is a harmonic oscillator at every
spacetime point. The quantum wave function is acted upon by operators, whereas
the field operators itself act on the state of space. Analogous to the zero-point energy
in a simple harmonic oscillator, we can write the energy of the vacuum as

Ĥ =
1

2

ˆ
d3pEp(ââ

†
p + â†pâ), =⇒ E =

ˆ
Ep(â

†
pâ+

1

2
δ3(0)). (D.38)

The second term integral gives infinity contribution to the total vacuum energy, which
is nonsensical. To avoid this infinity, we need normal ordering of the operators in the
Hamiltonian above. The normal ordering is arranging all the creation operators to
the left. It will give us the difference of energy between the configurations instead of
the total energy.

So what is QFT?

It is all about choosing a suitable Lagrangian that includes the free field terms and the
interaction terms. This field is quantized by second quantization and the interaction
is calculated by the S-matrix discussed in the next section. The simplest Lagrangian
is the mass-less scalar field. The spin-0 fields are scalar fields, spin-1/2 are spinors,
spin-1 are vector and spin-2 fields are tensor fields. Real fields are charge-less, but the
complex fields are charged. With the increase of the parameters of the field, the form
of Lagrangian and solutions change. On similar lines, more terms are added to the
Lagrangian. The Lagrangian of the grand unified theory (GUI) or the standard model
has the terms of fields and their interaction terms related to the three interactions
QED, QCD, and weak interaction. The fourth interaction, quantum gravity, is not
yet unified with the other three forces. The interactions involve the exchange of some
virtual particles. This exchange may change the properties of the particle involved in
the interaction. So we call the interacting particle before the exchange of the virtual
particles as the incoming particles, and after the exchange of the virtual particles as
the outgoing particles.

We have negative and positive solutions in the mode expansion. As we will discuss
at the end of this section, the solution e−ip.x is a plane wave corresponds to the
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incoming particles. It is annihilated in the system. In relativity, E2 = p2c2 + m2c4,
which is equal to E2 = p2 + m2 in natural units ~ = c = 1. Therefore, Ep =

±
√
p2 +m2 and we cannot just ignore the negative energy solution. The mode

expansion includes this negative energy solution as

φ̂(x) =
∑
p

positive Ep mode +
∑
p

negative Ep mode. (D.39)

According to the Feynman interpretation of the negative energy states, these are
outgoing antiparticles. These outgoing antiparticles are created and have a factor
eip.x.

φ̂(x) =
∑
p

incoming positive energy Ep particle annihilated+∑
p

outgoing positive energy Ep antiparticle created. (D.40)

Now the mode expansion can be written as

φ̂(x) =

ˆ
d3p

(2π)3/2

1

(2Ep)1/2
(âpe

ip·x + b̂†e−ip·x). (D.41)

Here â and â† annihilate and create particles, whereas b̂ and b̂† annihilate and create
antiparticles. When the spin is zero, then particles are their own antiparticles.

The integrals related to the incoming, outgoing and the propagation of the virtual
particles, are computed here. These integrals will be useful in the next section. Since
â† |0〉 = |p〉, we have

φ̂(x) |0〉 =

ˆ
d3p

(2π)3/2(2Ep)1/2
eip·x |p〉 . (D.42)

This is an outgoing superposition of states. The relativistic normalized state can be
written as 〈q| = (2π)3/2(2Ep)

1/2 〈q|. It implies that

(2π)3/2(2Ep)
1/2 〈q| ˆφ(x) |0〉 =

ˆ
d3peip·x 〈q|p〉 =

ˆ
d3xeip·xδ(3)(q− p) = eiq·x.

(D.43)

Similarly, we can calculate for the incoming states as e−iq·x. The virtual particle is
represented by the Feynman propagator and is given by

〈0|T [φ(x)φ(y)] |0〉 = ∆(x− y) = lim
ε→0

ˆ
d4k

(2π)4

e−ik·(x−y)

k2 −m2 + iε
. (D.44)
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where T is for time ordering. It is computed using the contour integral. See [240]
or [173] for detailed calculation.

D.6 Interactions

By canonical quantization, quantum field theory is exactly solvable only for free
particles. For the interactions, some approximate methods, like perturbation theory,
are used. Particles are created and destroyed in the interactions. Free particles are
fired on each other, they interact for a short time, then they go far apart. This
interaction is described by the S-matrix.

The Hamiltonian can be written as the sum of free part and interaction part
Ĥ = Ĥ0+Ĥ

′ . The free part of the Hamiltonian describes non-interacting particles. In
the Heisenberg picture, state-vectors are independent of time, and in the Schrödinger’s
picture, states evolve with time, but operators are independent of time. Whereas, in
interaction picture, both the operators and states evolve with time. The operators
evolve by the free part of the Hamiltonian ˆφI(t) = eiĤ0φ̂e−iĤ0t, but states evolve
according to the interaction part of the Hamiltonian as i ∂

∂t
|ψ(t)〉I = ĤI(t) |ψ(t)〉I ,

where ĤI(t) = eiĤ0Ĥ ′e−iĤ0 . When particles are far apart at the start and at the end,
then the interaction part Ĥ ′ is zero. When ĤI = 0 then we have the Heisenberg
picture, and we have free part Ĥ0. States at the start and at the end are represented
as |φ〉 = |φI(±∞)〉. These states are the eigenstates of Ĥ0. The free part allows
particles from vacuum |0〉 by using creation and annihilation operators. This vacuum
is the vacuum of Ĥ0. It is called free, non-interacting, or bare vacuum. When the
particles interact, ĤI is nonzero and states evolve. Operators also evolve with time
according to Ĥ0. We will use the operator φ̂(x) and its expansion in terms of creation
and annihilation operators.

Let, we have two particles in a momentum state |ψ〉 = |p2p1〉. This is the state
when two particles are far apart (t → −∞). We call this ’in’ state and write as
|ψ〉 = |p1p2〉in. After the interaction, two particles again get apart at t → ∞ then
we will call this state ’out’ state |q2q1〉out. The amplitude of scattering with particles
starting at state |p2p1〉in and ending at state |q2q1〉out is given by

A =out 〈q1q2| Ŝ |p2p1〉in . (D.45)

Now we will go behind the Ŝ-operator. At t = 0 we will write the free part of operators
and states

〈φ| Ŝ |ψ〉 =out 〈φ|ψ〉in = 〈φI(0)|ψI(0)〉 . (D.46)

Let ÛI(t2, t1) be the time evolution operator in the interaction picture, then

〈φ| Ŝ |ψ〉 = 〈φI(∞)| ÛI(∞,−∞) |ψI(−∞)〉 = 〈φ| ÛI(∞,−∞) |ψ〉 . (D.47)
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The interaction Hamiltonian at different times may not commute. So we need to
define time-ordered product written as T [Â1(t1)Â2(t2)...Ân(tn)]. Time ordering keep
operators on the right which are earlier in time and keeps operator on the left which
are later in time. It is not an operator, but just to tell how we should arrange the
strings. Time ordering makes things in time ordering commute. It is analogours to
the normal ordering 〈0|N [ÂB̂Ĉ...Ẑ] |0〉 which places the creation operators to the left
and the annihilation operators to the right. As the unitary operator can be written
in terms of the Hamiltonian as

ÛI(t2, t1) = T
[
e−i

´ t2
t1
dtĤI(t)

]
. (D.48)

Now Ŝ-operator in the limit of t → ∞ after replacing Hamiltonian with the Hamil-
tonian density can be written as

Ŝ = T
[
e−i

´∞
−∞ dx4ĤI(t)

]
. (D.49)

This integral cannot be easily done. A more useful form is when we expand the
exponential

Ŝ = T
[
1− i

ˆ
d4zĤI(z) +

(−1)2

2!

ˆ
d4yd4wĤI(y)ĤI(w) + ...

]
. (D.50)

This is called Dyson expansion. This expansion is valid when ĤI(x) is small. We
integrate over different spacetime for each term.

D.6.1 Wick’s Theorem

When vacuum expectation value (VEV) of the operators is evaluated, we encounter
a kind of correlator 〈0|T [ÂB̂Ĉ...Ẑ] |0〉. This is the time-ordered operator product,
and it is difficult to calculate comparing with the normal ordered products. Wick’s
theorem is a way to relate the time ordering with the normal ordering to evaluate
it easily. The mode expansion of a field operator φ̂ has two parts: creation and
annihilation. Let us call those parts briefly as φ̂+ and φ̂−. We have 〈0| φ̂+ = 0 and
φ̂− |0〉 = 0. Let us compute the product of two field operators Â and B̂ as

ÂB̂ = (Â+ + Â−)(B̂+ + B̂−) = Â+B̂+ + Â−B̂− + Â+B̂− + Â−B̂,.

N [ÂB̂] = Â+B̂+ + Â−B̂− + Â+B̂− + B̂+Â−.

We can see that only the last term of the above equations is different. So we can
write

ÂB̂ −N [ÂB̂] = Â−B̂+ − B̂+Â− = [Â−, B̂+].
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Since

T [Â(x)B̂(y)] =

{
Â(x)B̂(y) x0 > y0

B̂(y)Â(x) x0 < y0

is the Feynman propagator 〈0|T [φ(x)φ(y)] |0〉 = ∆(x−y) as in Eq. D.44, we can also
write time ordering for the fields Â and B̂ with respect to spacetime coordinates x0

and y0 as

T [Â(x)B̂(y)]−N [ÂB̂] =

{
[Â−(x), B̂+(y)] x0 > y0

[B̂−(y), Â+(x)] x0 < y0
.

The normal ordered products have VEV zero, we can write

〈0|T [Â(x)B̂(y)] |0〉 =

{
〈0| [Â−(x), B̂+(y)] |0〉 x0 > y0

〈0| [B̂−(y), Â+(x)] |0〉 x0 < y0
.

Define the Wick contraction as

ÂB̂ = T [ÂB̂]−N [ÂB̂]. (D.51)

This Wick’s contraction is a c-number and have the value

T [ÂB̂] = N [ÂB̂ + ÂB̂] = N [ÂB̂] + ÂB̂. (D.52)

When generalized to many operators yield Wick theorem,

T [ÂB̂...Ẑ] = N [ÂB̂...Ẑ + all contractions of ÂB̂...Ẑ]. (D.53)

When applied only to free field we get

〈0| φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4) |0〉 = ∆(x1 − x3)∆(x3 − x4) + ∆(x1 − x3)∆(x2 − x4)

+ ∆(x1 − x4)∆(x2 − x3). (D.54)

The time ordering is equal to the normal ordering plus contraction. The contraction
is a commutator or propagator of VEV.

D.6.2 Feynman Diagrams

The scattering process can be shown pictorially by Feynman diagrams. These dia-
grams are not only more intuitive, but we can also solve the scattering problem using
Feynman rules without going into complicated mathematics. Suppose time is in the
upward direction. Each term in the perturbation expansion of the S-matrix is repre-
sented by a diagram. Particles are represented by arrows in the direction of time, as
in Fig. D.1 (a), and antiparticles are represented by arrows in the downward direc-
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tion, as in Fig. D.1 (b). Antiparticles are equivalent to particles moving backward in
time. The filled circles correspond to the scattering of particles.

By convention for interaction diagrams, ψ is represented as a line with an arrow
toward the vertex of the interaction, whereas ψ† represented by an arrow going out
of the vertex. g is called coupling constant gives the strength of interaction. In Fig.
D.1 (c), a particle-antiparticle pair creation at time t = t0 and Fig. D.1 (d) is the
annihilation of particles and antiparticles. In Fig. D.1 (e), a particle-antiparticle pair
is created at t = t2 and the antiparticle is annihilated with the incoming particle.
The net result is moving the particle from an initial to final position in spacetime.
The source term is represented by the diagram as in Fig. D.1 (f). The Figs. D.1 (g),
(h), and (i) are two-particle interactions in electromagnetic, weak, and strong force
respectively. When taking the time in upward direction, two particles coming close
to each other, interact and exchange some virtual particles then scattered off. We
can equally interpret it as; a pair of a particle and an antiparticle came close, fused
to make a gauge particle, and then at another spacetime point, the pair is created
back.

(a) (b)

t = t0

(c)

t = t1

(d)

t = t3

t = t2

(e)

J φ(z)

(f)

(g) (h) (i)

φ̂φ̂

âqφ̂

φ̂â†

(j)

ââ†

(k)

φ̂φ̂

φ̂φ̂

(l)

φ φ

φ φ

−iλ

(m)

Fig. D.1. Feynman diagrams.
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The Example of φ4 Theory

The full procedure for calculating the S-matrix for φ4 theory is as follows. The
Lagrangian density is written as

L =
1

2
[∂µφ(x)]2 − m2

2
φ(x)2 − λ

4!
φ(x)4. (D.55)

The first two terms together make a free part and give rise to a free Hamiltonian.
The interaction part is given by L = − λ

4!
φ(x)4 and ĤI = λ

4!
φ(x)4. We work in

interaction picture when we talk about Ŝ-operator. The field operators evolved by
free Hamiltonian but state evolve via interaction Hamiltonian. We will find S-matrix
by the following steps.

Step I: The element of S-matrix to be calculated is written as the vacuum expec-
tation value of free vacuum |0〉 and the Wick’s theorem is used to make it simple. The
amplitude of the in-state in momentum state p and the out-state with momentum q
is given by

A = 〈q| Ŝ |p〉 = (2π)3(2Eq)
1/2(2Ep)

1/2 〈0| âqŜâ†p |0〉 . (D.56)

Step II: Expanding the Ŝ-operator using the Dyson’s expansion, we have

Ŝ = T
[

exp
(
− i
ˆ
d4zĤI(z)

)]
= T

[
1− i

ˆ
d4zĤI(z) +

(−i)2

2

ˆ
d4yd4wĤI(y)ĤI(w) + ...

]
= T

[
1− iλ

4!

ˆ
d4zφ̂(z)4 +

(−i)2

2!

( λ
4!

)2
ˆ
d4yd4wφ̂(y)4φ̂(w)4 + ...

]
(D.57)

Step III: Now Ŝ-matrix element are written as

A = 〈q| Ŝ |p〉

= (2π)3(2Eq)
1/2)(2Ep)

1/2)T
[
〈0| âqâ†p |0〉+

(−iλ
4!

) ˆ
d4z 〈0| âqφ̂(z)4â†p |0〉

+
(−i)2

2!

( λ
4!

)2
ˆ
d4yd4w 〈0| âqφ̂(y)4φ̂(w)4â†p + ...

]
(D.58)

Above equation can be written as A = A(0) +A(1) +A(2) + ..., where A(n) proportional
to λn

Step IV: Consider A(1), the first order term.
As 〈0| âqφ̂(x)4â†p |0〉 ≡ 〈0| âqφ̂(z)φ̂(z)φ̂(z)φ̂(z)â†p |0〉, we can have contractions by using
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Wick’s theorem.

〈0| âq φ̂(z)φ̂(z) φ̂(z)φ̂(z) â†p |0〉 = 〈0| âqâ†p |0〉 〈0|T φ̂(z)φ̂(z) |0〉 〈0|T φ̂(z)φ̂(z) |0〉
(D.59)

There are three ways of contraction to get this term, and there are twelve ways to
contract â-operators and φ̂ operators. For example

〈0| âqφ̂(z) φ̂(z)φ̂(z) φ̂(z)â†p |0〉 = 〈0| âqφ̂(z) |0〉 〈0|T φ̂(z)φ̂(z) |0〉 〈0| φ̂(z)â†p |0〉 (D.60)

Now A(1) would be written as

A(1) =
(−iλ

4!

) ˆ
d4z
[
3 〈0| âqâ†p |0〉 〈0|T φ̂(z)φ̂(z) |0〉 〈0|T φ̂(z)φ̂(z) |0〉

+12 〈0| âqφ̂(z) |0〉 〈0|T φ̂(z)φ̂(z) |0〉 〈0| φ̂(z)â†p |0〉
]

(D.61)

Some remarks about this equation are as follows. The contraction between the field

operators is a free propagator φ̂(y)φ̂(z) = 〈0|T φ̂(y)φ̂(z) |0〉 = ∆(y − z). The Eq.
D.44 will be used for this. The contraction between the creation operator and the

field is given by φ̂(z)â†p = 〈0| φ̂(z)â†p |0〉 is calculated by using D.43. The factor e−ip·z
corresponds to the incoming particle. Similarly, the factor results from the contraction

âq ˆφ(x) give eip·x corresponds to the outgoing particle. The contraction âqâ† gives the
delta function δ(3)(q − p).

Step V: Feynman diagrams represent amplitudes in the expansion of the S-
matrix. The number of interactions is the same as the order of expansion. The
interaction vertices are drawn in the diagram for the interactions. The legs of the
diagrams are uncontracted field operators. These legs are joined with each other or
to the external particles by Wick’s contraction.

Rules for Feynman diagrams for φ4 theory in position space.

• Draw interaction vertices. Each vertex has a contribution −iλ.

• Connect incoming line to one of the legs which corresponds to the contraction
ˆφ(x)â†p. Each incoming line gives the contribution e−ip·x.

• The field-field contraction ˆφ(x)φ̂(y) gives the propagators, which are drawn as
lines linking the points. These are internal to the diagrams and can be thought
of as virtual particles. Each line gives a propagator ∆(x− y).
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• The outgoing lines are drawn as the contraction âqφ̂(x). Each outgoing line
gives the contribution eip·x.

The position of vertices is integrated over all spacetime. The diagrams related to
the Feynman rules are given in Fig. D.1 (j), (k), (l), (m). Each term is divided
by some factor D to get the right answer. The factor D is the number of ways
of arranging the propagators and vertices through contraction to get a particular
diagram. Sometimes it is easier to do the calculations in momentum space, the
Feynman rules are defined for momentum space in that case. We draw the diagram
and write the equation related to the diagram. From the diagrams, we know the
contraction and interactions, but we do not need to go through all the expansion.
The amplitude A =out 〈q|p〉in = 〈q| Ŝ |p〉 is written as the sum of diagrams, with each
diagram as an integral. The incoming lines are particles entering the process, and
the outgoing lines are particles leaving the process. The internal lines represent the
virtual particles exchange. They appear not to be connected to anything. The vacuum
diagrams have no external lines and are not connected to the incoming or outgoing
particles, hence they don’t affect transition probabilities. Self-energy diagrams are
the ones to describe how interactions affect the amplitudes of single particles.

Renormalization

When there are loop diagrams on the internal lines, the propagator integral diverges.
These loop diagrams are self-energy diagrams. For these diagrams, there can be an
infinite number of ways the particle’s momentum is split into several particles. The
process of removing these infinities is called renormalization. The idea of renormal-
ization is as follows. The limit of integration is taken to some large but a finite
momentum Λ. The interactions change particles to a dressed particle which behave
differently than the bare particles. We need to take some kind of pragmatic measure
by shifting masses m and coupling constants λ in the perturbation expansion of the
theory to some physical parameters mP and λP . It is done by adding some counter-
terms to the Lagrangian. These terms correspond to our ignorance below the cut-off
scale 1/Λ and cancel the dependence on the scale Λ. When these counter-terms can be
found then the theory is called renormalizable, otherwise it is non-renormalizable. We
can think of this process as we were using the wrong parameters before, but now we
are using the real-life or physical parameters that nature gave us. For renormalizable
theories, some terms can cancel all infinities, but an infinite number of counterterms
are needed for non-renormalizable theories. This procedure for solving the problem
of divergent amplitudes is questionable, but it is very successful.

D.7 Path Integral

In contrast to classical mechanics, the particles’ motion is described by the wave
function in quantum mechanics. A quantum particle traversed all possible paths
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between the two points, and each path has some phase associated with it. The paths
of different phases interfere destructively, hence cancel out. The stationary paths
correspond to the constructive interference. This approach leads to the Feynman
path integral formalism of the quantum mechanics discussed in this section.

The state vector and the time evolution of a wave function in quantum mechanics
is written as

|ψ(x, t)〉 = 〈x|ψ, t〉 = 〈x, t|ψ〉 , |φ(x, t)〉 = Û |φ(x)〉 = eiĤt |φ(x)〉 , |x, t〉 = eiĤt |x〉 .
(D.62)

Since the projectors and inner products in quantum mechanics are written as
ˆ
dx′ |x′〉 〈x′| = 1, 〈x|x′〉 = δ(x− x′), (D.63)

therefore by inserting the projectors in state vector we get

〈x|ψ〉 =

ˆ
dx′ 〈x|x′〉 〈x′|ψ〉 . (D.64)

The wave function of the particle at position xf and at time tf can be written in
terms of the wave function ψ(xi, ti) at an earlier position xi and ti,

ψ(xf , tf ) =

ˆ
dxi 〈xf , tf |xi, ti〉 〈xi, ti|ψ〉 (D.65)

=

ˆ
dxi 〈xf , tf |xi, ti〉ψ(xi, ti). (D.66)

The integral is for the sum of all different paths a particle can take from the initial
to the final position, as shown in Fig. D.2. The quantity 〈xf , tf |xi, ti〉 is called the
propagator, or the correlation function. It is the probability amplitude when ψ(xf , tf )
is decomposed in terms of ψ(xi, ti). If we know the initial position of the particle,
that is the ψ(xi, ti) is delta function, then the probability of finding the particle at
later time tf at position xf is

P = |〈xf , tf |x0, t0〉|2. (D.67)

Now let us divide the path from the initial position to the final position into two
parts. Let the particle went from the position xi at time ti to the position x1 at time
t1 and then in the next step it traveled to xf at tf . It can be written as

〈xf , tf |xi, ti〉 =

ˆ
dx1 〈xf , tf |x1, t1〉 〈x1, t1|xi, ti〉 . (D.68)

We can further divide the path from the initial position to the final position into n
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equal steps so that

〈xn, tn|x0, t0〉 =

ˆ
dx1...dxn−1 〈xn, tn|xn−1, tn−1〉 ... 〈x1, t1|x0, t0〉 . (D.69)

All steps are multiplied to get the whole path. Using the Eq. D.62, we get

〈xf , tf |xi, ti〉 = 〈xf | Û(ti, tf ) |xi〉 = 〈xf | e−iĤ(tf−ti) |xi〉 . (D.70)

Again we can divide the time into small steps ∆t and write the unitary time evolution
operator for each step as Û(tf , ti) = Û(tf , t1)Û(t1, ti) = e−iĤ(tf−t1)e−iĤ(t1−ti). The
propagator now becomes

〈xn, tn|x0, t0〉 =

ˆ
d[x] 〈xf | (e−iH(∆t))n |xi〉 , (D.71)

〈xn, tn|x0, t0〉 =

ˆ
dx1...dxn−1 〈xn| e−iĤ(tn−tn−1) |xn−1〉 ... 〈x1| e−iĤ(t1−t0) |x0〉 (D.72)

=

ˆ
dx1...dxn−1 〈xn| e−iĤ(∆t) |xn−1〉 ... 〈x1| e−iĤ(∆t) |x0〉 . (D.73)

After inserting the Hamiltonian Ĥ = p̂2

2m
+ V̂ (x), we reach at the relation

〈xn, tn|x0, t0〉 =

ˆ
D[x] exp

[
i

ˆ tn

t0

L(x, ẋ)dt

]
=

ˆ
D[x]eiS[x]/~, (D.74)

where L = mẋ
2
− V (q) and D[x] = dx1...dxn. In this last equation, the Gaussian

integral is used after applying the operators. For the detail of this integral, see
[173,247].

The last equation is the path integral formulation of quantum mechanics. The left-
hand side can also be written as 〈xn, tn|x0, t0〉 = 〈xn| Û(tn−t0) |x0〉 = 〈xn| e−iĤ∆t |x0〉.
Single-particle quantum mechanics is not enough for a multiparticle state, so we use
fields φ(x) in place of dynamical variable x. Now the integral is over the spacetime.
By promoting the position x to the field φ(x) and the Lagrangian to the Lagrangian
density, we get

〈φ2| e−iH∆t |φ1〉 =

ˆ
D[φ] exp

[
i

ˆ tn

t0

L(φ, φ̇)d4x

]
=

ˆ
D[φ]eiS[φ]/~. (D.75)

When we have φ1 = φ2 = φ, the vacuum field in the above equation, then it is
vacuum to vacuum transition amplitude. We can find the energy of the ground
state in this scenario. Let us disturb the vacuum for something exciting. It would
lead to generating functional. It is conventional to represent this amplitude by Z[J ].
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This Z[J ] goes with the names; partition function, generating functional, path integral
with source, and state sum. Finding generating functional Z[J ] which has the Green’s
function information in it, we start with no particle and end with no particle in the
presence of the source. The generating functional is written in terms of the functional
integral as

Z[J ] =

ˆ
D[φ(x)]ei

´
d4x
(
L[φ(x)]+J(x)φ(x)

)
=

ˆ
D[φ(x)]eiS[φ]+

´
d4xJ(x)φ(x). (D.76)

We can split the Lagrangian into the free part and the interaction part, L = L0 +LI .
The free part is solvable by canonical quantization, but the interaction part isn’t
solvable by canonical quantization. By taking the functional derivative with respect
to J , we get

1

Z[0]

δZ[J ]

δJ(x1)J=0

=
1

Z[0]

ˆ
d[φ]φ(x1)e−iS[φ]. (D.77)

Analogous to the statistical mechanics, this integral is the expectation value of φ,
that is 〈φ(x1)〉. Similarly,

1

Z[0]

δ2Z[J ]

δJ(x1)δJ(x2)

∣∣∣∣∣
J=0

=
1

Z[0]

ˆ
d[φ]φ(x1)φ(x2)e−iS[φ] = 〈φ(x1)φ(x2)〉. (D.78)

This is called two-point function,

〈0|φ(x1)φ(x2) |0〉 =

´
Dφφ(x)φ(y)ei

´
d4xL0[φ]´

Dφei
´
d4xL0[φ]

. (D.79)

On the similar lines, the n-point correlation function is given by

〈φ(x1)φ(x2)...φ(xn)〉 =

´
D[φ]φ(x)φ(x2)...φ(xn)ei

´
d4xL0[φ]´

Dφei
´
d4xL0[φ]

. (D.80)

The Feynman path integral in quantum field theory has an interpretation that
is not identical to that of quantum mechanics. The correlation function, also called
the transition amplitude, in quantum field theory is the probability of having a final
field configuration such that the initial configuration is known. Many processes can
occur between the initial state and the outcome. Each distinct history describes a
state at any given time, and is a distinct path through the configuration space. Each
path has an associated probability amplitude. The probability that a system is in
a given configuration is the sum over amplitudes of each path connecting the initial
and final configurations. Therefore, the interactions and Feynman diagrams can also
be studied by path integral approach, but it is a difficult one comparing with the
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Fig. D.2. A quantum particle travels all possible paths between two points.

S-matrix approach.

D.8 Gauge Theory

When we have identical observables for different configurations of the field, we say that
there is an internal vagueness. This inherent vagueness is intrinsic. It is sometimes
called internal symmetry, but it is not a symmetry, instead, it is our inability to find
a unique description [173]. Choosing one particular description is the choice of gauge.
For example, the choice of zero potential is arbitrary. In quantum mechanics, the zero
of the phase is arbitrary. The transformation from one choice to the other is called
the gauge transformation, and the underlying invariance is called gauge invariance.

Let the magnetic vector potential be transformed as A→ A +∇χ, where χ is a
scalar function. Both of the choices of vector potentials give the same magnetic field
B. A(x) is chosen with function χ(x) which may vary with the position, so it needs
to distinguish between global and local gauge transformation. Let us see the effect of
gauge transformation on the complex scalar field. The Lagrangian for the field can
be written as

L = (∂µψ)†(∂µψ)−m2ψ†ψ (D.81)

This field has U(1) symmetry. That is, if we replace ψ(x)→ ψ(x)eiα, the Lagrangian
and the equation of motion do not change. It is a global gauge transformation because
it changes the field by the same amount at every point. Let the phase of the field
changed differently at different points in spacetime, which would lead to different
transformations at different points and can be written as

ψ(x)→ ψ(x)eiα(x). (D.82)

Here, α(x) depends on the position in spacetime. How can we make the theory
invariant under this local phase change? For the local gauge transformation, the
second term in Eq. D.81 will remain the same, but the derivative term would be
changed, because now we have to take the derivative of α(x) too. Consider the first
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term,

∂µψ(x)→ ∂µ(ψ(x)eiα(x))

= eiα(x)∂µψ(x) + ψ(x)eiα(x)i∂µα(x)

= eiα(x)[∂µ + i∂µα(x)]ψ(x), (D.83)

and

∂µψ†(x)→ eiα(x)[∂µ − i∂µα(x)]ψ†(x). (D.84)

Multiplying these two equations, the first term in the Lagrangian would become

(∂µψ†)(∂µψ)→
[
e−iα[∂µ − i∂µα]ψ†

][
eiα[∂µ + i∂µα]ψ

]
= (∂µψ†)(∂µψ) + i(∂µψ†)(∂µα)ψ − i(∂µα)ψ†(∂µψ) + (∂µα)(∂µα)ψψ†,

(D.85)

where x is omitted in the last equation to avoid cluttering. Due to α(x) dependence
on x, the theory is not invariant under local transformation U(1). To restore the local
symmetry, introduce another field Aµ which varies from point to point in spacetime
to cancel the extra terms and make the theory invariant. Theoretically, it is done by
introducing another derivative called covariant derivative which is written as

Dµ = ∂µ + iqAµ(x) (D.86)

If the new field Aµ transforms in such a way as

Aµ → Aµ −
1

q
∂µα(x) (D.87)

then the U(1) symmetry can be restored. Here, q is known as the coupling constant
of the field. It tells how strongly a field interacts with other fields. Now, the first
term of the Lagrangian density in the Eq. D.81 would become

Dµψ = (∂µ + iqAµ)ψ → (∂µψ)eiα(x) + i(∂µα)ψ + iqAµψe
iα − i(∂α)ψ

= Dµ(ψeiα). (D.88)

Therefore, if we write the Lagrangian density with the covariant derivative then it
would be invariant under the local gauge transformation

L = (Dµψ)†(Dµψ)−m2ψ†ψ (D.89)
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In short, the theory is locally invariant if

ψ(x)→ ψ(x)eiα(x), and Aµ(x)→ Aµ(x)− 1

q
∂µα(x). (D.90)

The gauge field Aµ is introduced to make the theory invariant with respect to lo-
cal transformation. The gauge field has its dynamics. The above discussion is for
the Abelian gauge theory. Electromagnetism is an Abelian gauge theory where the
gauge field is vector potential. Yang-Mills theory is an example of non-Abelian gauge
theory where the gauge field has matrix-valued SU(2) symmetry. Weak and strong
interactions are described by the theories based on non-Abelian gauge theories. The
spontaneous symmetry breaking of the gauge symmetry leads to the Higgs mecha-
nism. It plays a role in unified theories of weak and electromagnetic interactions by
the extension to SU(2)×U(1) proposed by Salam, Weinberg, and Glashow [248]. We
will not discuss the quantization of the gauge fields here.

D.8.1 Topology and Gauge Theory

The gauge theories can intuitively be described by the concept of fiber bundle in
topology. For the basic understanding of the product spaces and fiber bundle, see the
related section in Appendix B and the Fig. B.4, and [65, 71, 249] for more in-depth
discussion.

A fiber bundle is a product space locally if we take a small portion of the space,
but globally it may have a complicated structure. If the space is a product space
both locally and globally, then it is a trivial bundle. A cylinder is a trivial bundle,
but a Möbious strip is a non-trivial bundle. To illustrate the fiber bundle, take the
following examples. Suppose we want to study the motion of a vector on a spacetime.
The spacetime manifold is called the base space M and the bundle of all the vectors
on these manifolds together make total space D. The base space and the total space
together make a fiber bundle. All those points make one fiber ψ(x) which are in the
total space at the specific point x of the base manifold. The structure group G acts on
the element of fiber and gives another element of the same fiber. The projection map
π maps a point of fiber to a point of the base space, and a section is an inverse map
of a portion of the base space to the total space. The rule for going from one fiber
on a particular point of a base space to the nearby fiber on the base space is called
connection A. The connection map the tangent spaces over the base space to the
tangent spaces in the total space. When each fiber is the structure group itself, then
the fiber bundle is called the principal fiber bundle. When typical fibers are vector
spaces, then we have vector bundles.

To describe the gauge theory on a fiber bundle, consider the example of the inter-
action of a photon with an electron. This is the U(1) gauge theory. The photon is a
gauge field or simply the vector potential. We will call it the interaction field. It will
be represented by the principal fiber bundle (D,M,G, π). Let the matter field be an
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associated vector bundle (P,M,G, πD). We will call it the dynamic field. The matter
field is coupled to the interaction field at every point. The structure group becomes
a local symmetry group or a gauge group in gauge theory. The vector bundle and
principal bundle share the base space and local symmetry group.

As shown in D.3, a fiber ψ(x) in the vector bundle has a point of the matter field.
The wave function of the matter field is represented by a section of the vector bundle.
Let θ(x) and θ(x′) be phases in the fiber. The actual phase at a point ψ(x) depends
on its coupling with the potential of the interaction field. The vector potential is
represented by connections over the fiber φ(x) in the principal fiber bundle. The two
fibers φ(x) and ψ(x) share the base point x. This is the idea of point interaction. M
is usually called spacetime, and it constitutes the parameter space of the field theory.

Let a time-like curve γ in M picks out some spatio-temporal segment of the
dynamical system. The internal states of the dynamical system are represented by
the total space on the bundle. The spatio-temporal change occurs when moving from
one point to another in the total space. How are they related? Suppose a section in
the total space above γ, maps γ into γ̂ in total space of principal fiber bundle. The
total change of system along γ is given by the partial derivative ∂̂µ of the section γ̂.
The connection on the principal bundle is given, the derivative is decomposed into
two parts

∂̂µ = ∇µ + A∗µ, (D.91)

where ∇µ is a covariant derivative of γ̂. This is the horizontal lift of the partial
derivative ∂µ of γ. It is the measure of the change due to spatio-temporal variation
by tracking the directional derivative of γ inM . The difference between derivatives∇µ

and ∂̂µ is called the fundamental vector A∗µ, which determines the dynamical variation
of the system. It is related to the interaction potential Aµ. A∗µ determines a point θ(x)
in the vector bundle uniquely. Since θ(x) is the phase of matter field, the interaction
field and matter field are coupled at the point x. By picking a different section γ̂′ we
get different fundamental vector A∗

′

µ and different phase θ′(x). Different sections are
transformed into each other by the symmetry group G. The local symmetry group
transforms γ̂ and θ simultaneously, so that the interaction potential and the phase of
matter field transformed simultaneously, leaving the dynamical system invariant.

Compare the fundamental vector and potential at x and x′ . The presence of the
matter field and variation in its phases induces a variation in the potentials, hence
the values of the connection also vary. That leads to nonzero curvature, which is an
exterior derivative of the connection. The physical curvature in the principal fiber
bundle is the intensity of the interaction field [231].
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Fig. D.3. Interaction dynamics of the gauge fields on a fiber bundle. The base space M is
spacetime, the matter field is D in gray color and the gauge field is P in white color. This
diagram is taken directly from the Ref. [231].

D.9 Standard Model of Particle Physics

Quantum field theory is synonymous with the standard model that describes the
fundamental particles and their interactions. There are three types of interactions
in the standard model; electromagnetic interaction, weak interaction, and strong
interaction. These interactions are mediated by the gauge bosons with integral spin
equal to 1. Gauge bosons are quanta of fields. The number of gauge bosons is equal
to the number of generators of the unitary group to describe the symmetry of the
field. These forces are of different ranges.

The electromagnetic force is described by the field theory called electrodynamics.
Its symmetry group is the U(1) gauge group. The quanta are chargeless and massless
photons with two polarization states. The weak force has SU(2) symmetry group
with three massive generators; W+,W−, Z. Two of them are charged and one is
neutral. The strong force is responsible for the binding of nucleons. It is an interaction
between quarks and has the gauge group SU(3). It has eight quanta called gluons.
These particles are massless and carry a color charge. The field theory for strong
force is called quantum chromodynamics.

Particles that makeup matter are spin-1/2 particles. The matter particles are
divided into two groups; leptons and quarks. Each one of these groups comes in three
families. Leptons are charged particles with charge −1 that interact via weak and
electromagnetic forces and have different masses. They include e, µ−, τ−. Tau τ and
muon µ are unstable and decay into electron and neutrino. Each of these leptons has
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their corresponding neutrinos νe, νµ, ντ which are neutral particles. Neutrinos interact
only through weak interactions. Each lepton has antilepton with a charge of +1 and
mass equal to lepton. Positron, antimuaon, and antitau respectively are e+, µ+, τ+.
There are neutral antineutrinos too. Antiparticles have the same properties as parti-
cles, but the charge is opposite.

Other than the charge, leptons carry a quantum number called lepton number. It
has value; +1 for particles and neutrinos, −1 for antiparticle and antineutrino, and
zero for particles that are not leptons. The lepton number explains why there are
antineutrinos in beta decay of neutron n = p + e + ν̄e. Neutrons and protons have
lepton number zero Therefore, on the right side, the lepton number must be zero.
And neutrino involved in this decay should be antineutrino with lepton number −1
to get canceled with electron with lepton number 1.

Neutrons and protons are made of fundamental particles called quarks. They
carry the labels called color. Quarks have three colors; red, blue, and green. Their
antiparticles have colors antired, antiblue, antigreen. They are combined in such a
way that their total color must be white. In addition, quarks have six types of flavors;
up, down, strange, charmed, top, bottom. Like leptons, there are three families of
quarks (u, d), (s, c), (t, b). If one family member has a charge of +2/3, the other has
−1/3. There is an antiparticle for each quark. The bound state of quarks is called
hadrons. Hadrons are of two types; baryons and mesons. A baryon consists of three
quarks or three antiquarks, whereas a meson consists of one quark and one antiquark.
For example, protons and neutrons are baryons, and π0, π+, π− are mesons.

Masses of particles are calculated by putting a Higgs field in the Lagrangian. The
quanta of the Higgs field is chargeless, spin-0 Higgs boson. The Higgs field fills all the
space. Larger masses have more interactions with this field, and massless particles do
not interact.

The electroweak theory is the unification of electromagnetic force and weak force.
The grand unification schemes unify all the three forces. That means that at high
enough energy, these forces would be merged into one single force. One of the schemes
for GUTs is supersymmetry, which proposes a symmetry between bosons and fermions.
There is a boson that exists for each fermion with the same mass. These particles
are called superpartners. The difference in the present masses could be due to the
breaking of the supersymmetry. There is no experimental evidence for superpartners
yet. String theory is another unification scheme, according to which the fundamental
particles are not pointlike, but extended strings. The quanta of the gravitational field
are spin-2 graviton, which naturally arises in string theory.
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