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Abstract 

 

Remote sensing technologies are being applied to a variety of uses because of the 

increase in access to various products (digital sensors, UAVs, software) and its ability to 

model relatively large areas in a short amount of time. While these new technologies are 

beginning to be adopted, validation of their merit in floodplain terrain mapping is 

lacking. The main goal of this study is to evaluate the vertical accuracy of  digital 

elevation models (DEMs) generated with UAV-based LiDAR and Structure from Motion 

(SfM), also known as photographic LiDAR or PhoDAR. Airborne (manned aircraft) 

LiDAR has been applied to river research in several applications and is common in many 

fields such as mining, archeology and surveying. SfM has been used to create digital 

surface models (DSMs) and DEMs of river systems and their associated riparian areas. 

Given the foundational difference between LiDAR and SfM technologies, the effects of 

vegetation on the floodplain landscape required a systematic evaluation to determine 

which techniques are appropriate for floodplain terrain mapping. We collected remotely 

sensed data from UAV LiDAR and SfM methods at four field sites located within the 

interior Columbia Basin and analyzed the resulting point clouds and DEMs to determine 

their vertical accuracy by comparing their elevations with ground surveyed data 

(checkpoints) throughout the study areas. Both LiDAR and SfM point clouds were 

filtered and the remaining ground points were compared to surveyed elevations both in 

their raw form and interpolated DEMs to assess their vertical accuracy. The results show 

that in vegetated ground cover, LiDAR point clouds were able to produce higher 
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accuracy returns and a resulting higher accuracy DEM than SfM results. In non-vegetated 

areas, the accuracies between SfM and LiDAR returns are closer but still show higher 

accuracy from LiDAR point clouds. Ground filtering is shown to be a limitation on DEM 

vertical accuracy because of the inclusion of non-ground points in the filtering process. 

This limitation impacts the vertical accuracy of both LiDAR and SfM interpolated DEMs 

in floodplain habitats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Acknowledgements 

 

I would like to acknowledge and thank the people who helped me complete this 

project. First, thanks to my advisor, Geoffrey Duh, for his help with planning data 

collection and analysis. His tireless support and guidance helped me throughout this 

entire process. Thanks to my committee members, Martin Lafrenz and David Banis, for 

their feedback and contributions. Thank you to Andrés Holz for his help in planning this 

project and providing feedback. Thank you to the people who helped with data collection 

and processing: Derek Arterburn for his help collecting ground data, Kai Ross for his 

help with processing and R expertise, and Chris Clark for his help and support flying and 

driving around in the scorching heat as well as getting this project started. Chris, I could 

not have done this without you. Lastly, thank you to Allyson Will for her help and 

support throughout this entire process, you have helped me tremendously.  

 

 

 

 

 

 

 

 

 



iv 

 

Table of Contents 

 

Abstract ............................................................................................................................ i 

Acknowledgements ........................................................................................................ iii 

List of Tables ................................................................................................................. vi 

List of Figures ............................................................................................................... vii 

Introduction ..................................................................................................................... 1 

Study Areas ..................................................................................................................... 8 

2.1 Site Locations........................................................................................................ 8 

Data Collection ............................................................................................................. 14 

3.1 Post Processing Kinematic (PPK) Data Collection ............................................ 14 

3.2 SfM and LiDAR Collection ................................................................................ 17 

3.3 LiDAR Sensor Specifications ............................................................................. 18 

3.4 SfM Camera Specifications ................................................................................ 18 

3.5 Flight Planning .................................................................................................... 19 

Processing ..................................................................................................................... 20 

4.1 GNSS Point Processing....................................................................................... 20 

4.2 SfM Processing ................................................................................................... 20 

4.3 Generating The LiDAR Point Cloud .................................................................. 23 

4.4 Point Cloud Filtering........................................................................................... 23 

4.5 DEM Processing ................................................................................................. 26 

4.6 Reference Data .................................................................................................... 27 

4.7 Vertical Accuracy Assessment ........................................................................... 29 

Results ........................................................................................................................... 32 

5.1 Data Summary .................................................................................................... 32 

5.2 General Geometric Characteristics of Neighboring Point Returns Compared to 

Checkpoints............................................................................................................... 33 

5.3 Nearest Points and Vertically Closest Neighboring Point .................................. 33 

5.4 Vertically Closest Point Results.......................................................................... 38 

5.4.1 Vertically Closest Point Accuracy by Vegetation Category ............................ 39 

5.5 DEM Vertical Accuracy ..................................................................................... 42 



v 

 

5.5.1 DEM Vertical Accuracy by Vegetation Category ........................................... 44 

Discussion ..................................................................................................................... 48 

6.1 Processing Parameters ........................................................................................ 48 

6.2 Vegetation height and vertical accuracy ............................................................. 51 

6.3 Thinning Point Clouds and DEM results ............................................................ 60 

6.3 Further Study ...................................................................................................... 67 

Conclusion .................................................................................................................... 69 

References ..................................................................................................................... 72 

Appendix A: RMSE results from Aigsoft Metashape processing. ............................... 75 

Appendix B: RMSE results from LiDAR processing. .................................................. 75 

Appendix C: DEM absolute accuracy average all categories and thinning grid size 

(meters). ........................................................................................................................ 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

List of Tables 

 

Table 1. Parameter settings chosen for CSF ground filtering algorithm. ......................... 26 

Table 2. Checkpoint Totals by Category .......................................................................... 28 

Table 3. Summary of file sizes and number of photos taken at each site. ....................... 32 

Table 4. Point Cloud densities (points per square meter). ............................................... 32 

Table 5. Summary of the closest 30 points to each checkpoint in centimeters. ............... 33 

Table 6. Point Cloud Bias by Category (meters). ............................................................ 38 

Table 7. Point Cloud RMSE by Category (Meters). ........................................................ 41 

Table 8. Point Cloud RMSE at 95% Confidence Interval (Meters). ................................ 41 

Table 9. Mean bias by category. Bare earth is the only category where the DEMs are 

underestimating height. ..................................................................................................... 43 

Table 10. DEM RMSE (meters). ...................................................................................... 46 

Table 11. DEM RMSE at 95% Confidence Interval (meters). ......................................... 46 

Table 12. RMSE for DEMs Thinned at .25 and .5 Meters (meters). ............................... 64 

 

 

 

 

 

  

 

 

 

 



vii 

 

 

List of Figures 

 

Figure 1. Overall Site Locations. ....................................................................................... 8 

Figure 2. Middle Fork John Day Site 1. ........................................................................... 10 

Figure 3. Middle Fork John Day Site 2. ........................................................................... 11 

Figure 4. Catherine Creek Site 1. ..................................................................................... 11 

Figure 5. Catherine Creek Site 2. ..................................................................................... 12 

Figure 6. PPK Data collection - Rover and Base Station. ................................................ 16 

Figure 7. GCP marker. The diameter of the marker is 30 cm. ......................................... 17 

Figure 8. UAV Mounted with LiDAR and SfM Camera sensors. The camera and LiDAR 

sensor are both mounted to a fixed bracket. ..................................................................... 18 

Figure 9. Flight Plan for Middle Fork John Day Site 2. .................................................. 19 

Figure 10. Full Point Cloud for MFJD Site 2. ................................................................. 25 

Figure 11. Filtered Point Cloud for MFJD Site 2. ........................................................... 26 

Figure 12. Distance from the checkpoint to the closest point used. SfM average distance 

is heavily impacted by gaps in the point clouds caused by the presence of vegetation. ... 34 

Figure 13. Average of the 30 closest points absolute vertical error compared to the 

reference data. As shown, outliers in the SfM are negatively impacting the average 

vertical accuracy. Average vertical errors for LiDAR and SfM are .123 and .163 meters, 

respectively. ...................................................................................................................... 35 

Figure 14. Standard deviation of 30 closest points. ......................................................... 35 

Figure 15. Range of 30 closest point and the vertically closest point for each vegetation 

class used in analysis. LiDAR has a greater range because of its ability to penetrate 

vegetation. The SfM range is lower overall but has less accuracy. .................................. 37 

Figure 16. Absolute Vertical Error for all Categories. ..................................................... 39 

Figure 17. Relative vertical error by category. ................................................................ 40 

Figure 18. DEM error for all vegetation categories. Similar patterns are shown between 

both techniques, with vegetation 1-5 meters having the largest vertical error. ................ 44 

Figure 19. DEM relative vertical error by category (meters). ......................................... 45 

Figure 20. SfM DEM of Difference showing the difference in processing parameters 

from the CSF algorithm on DEM results. The figure shows cloth resolution of .2 minus 



viii 

 

the cloth resolution of .1. The higher values show that the cloth resolution of .1 includes 

more vegetation in the ground points and is resulting in a DEM with higher values in the 

vegetation. ......................................................................................................................... 49 

Figure 21. LiDAR DoD showing the difference in processing parameters of the CSF 

algorithm on DEM results. The figure shows the cloth resolution of .2 minus the cloth 

resolution of .1. ................................................................................................................. 50 

Figure 22. CC Site 2. For the vertically closest point analysis, the point shown has the 

highest LiDAR error (.34m) and 5th highest SfM error (.54m). ...................................... 52 

Figure 23. MFJD Site 2. For DEM results, the point has the highest error for both 

LiDAR (.57m) and SfM (.87m). ....................................................................................... 53 

Figure 24. DEM of Difference (DoD) at MFJD site 1. The DoD (SfM – LiDAR) shows 

the SfM DEM has higher elevation values at the locations of trees because of the 

misclassification. ............................................................................................................... 55 

Figure 25. Cross Section Showing the same area at MFJD Site 1. Plotted cross section 

showing the SfM DEM including more vegetation points as ground points compared to 

LiDAR............................................................................................................................... 56 

Figure 26. 2D and 3D view of vegetation being included in SfM ground points at a 

checkpoint location for site MFJD Site 1. ........................................................................ 58 

Figure 27. 2D and 3D view of vegetation being included in LiDAR ground points at a 

checkpoint location for site MFJD Site 1. ........................................................................ 59 

Figure 28. DEM absolute error by category and thinning resolution. ............................. 61 

Figure 29. DEM absolute accuracy by category and resolution. Overall, the number of 

outliers are decreased with thinning. ................................................................................ 61 

Figure 30. LIDAR DEM Scatter plot comparison. The scatter plots are arranged from 

lowest to highest vertical error for the unthinned point clouds for each category. ........... 62 

Figure 31. SFM DEM Scatter plot comparison. The scatter plots are arranged from 

lowest to highest vertical error for the unthinned point clouds for each category. ........... 63 

Figure 32. Cross section from MFJD Site 1 highlighting the effect of point cloud 

thinning and on DEM results. ........................................................................................... 66 

 

 

 

 



1 

 

Chapter 1  

Introduction  

 Remote sensing of river systems and their associated floodplains has been of 

interest for several years because of the ability to assess relatively large areas with fine-

scale detail. Several techniques, both ground-based (total stations, terrestrial laser 

scanning) and remotely sensed (manned aircraft), have previously been investigated and 

the potential benefits of each are well documented (Bangen et al. 2014, Fonstad et al. 

2013). Recently, the expansion of unmanned aerial vehicles/systems (UAV/UAS) has led 

to an increase in interest for applying remote sensing to a multitude of fields, with 

floodplain monitoring among them. The expansion and interest in UAVs has been 

increasing at an even greater rate since the adoption of commercial flight regulations 

from the Federal Aviation Administration in 2016 that simplified the process of 

commerical UAV flight. At the same time these remote sensing systems have been 

evolving and are now relatively widespread in their adoption. We are currently at the 

confluence of relative ease to obtain commercial UAV licenses and remote sensing 

systems that are becoming widely available. While remote sensing is increasing in 

popularity, validation of its accuracy in a variety of landscapes and ecosystems has not 

been completed. My research focuses on the vertical accuracy of both UAV- Light 

detection and ranging (LiDAR) and UAV-Structure from Motion with Multi View Stereo 

(SfM-MVS) throughout several floodplain restoration projects within the interior 

Columbia Basin. 
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Floodplains and their associated river systems are commonly studied for 

restoration and environmental monitoring in general. River and floodplain restoration 

projects are completed on a global scale and have become increasingly common in North 

America. Floodplain restoration is undertaken for the need to store water during periods 

of high flows to alleviate flooding as well as provide habitat to species such as salmon 

and steelhead. This project was completed in conjunction with a larger floodplain 

monitoring protocol implemented throughout the Columbia River Basin by Bonneville 

Power Administration that has previously relied on ground-based surveys to monitor 

river and floodplain restoration projects. The Action Effectiveness Monitoring (AEM) 

Program was developed to address the need for restoration project-level monitoring to 

quantify its effectiveness (Bonneville Power Administration 2014). 

Digital Elevation Models (DEMs) of floodplains are utilized in several manners. 

Prior to restoration implementation, pre-restoration conditions are mapped to assess 

baseline conditions. Commonly, after restoration is completed, DEMs are created to 

compare topographic changes from the restoration efforts. This technique, creating DEMs 

of Difference (DODs) to assess changes in topography is utilized in restoration 

monitoring and geosciences in general (Westoby et al. 2012). 

Typically, ground based surveys of floodplains are completed using survey 

equipment such as total stations to collect topographic information and create DEMs of 

the project areas. In recent years, with the remote sensing technologies becoming more 

common, there has been an interest in utilizing remote sensing to complete or accompany 

the traditional ground-based surveys (Bangen et al. 2014). Floodplains are particularly 
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difficult to survey via ground-based methods because of their size and complex 

topography. Current floodplain monitoring via ground-based surveys includes 

topographic point collection within the stream channel. This analysis and 

recommendations focus on the non-wetted area because of the inability of LiDAR and 

SfM to accurately capture the submerged bed surface. Previous literature has combined 

remotely sensed DEMs and in-stream ground-based topographic points with success 

(Roni et al. 2020). As such, this analysis focuses on remotely sensed DEMs and assumes 

in-stream points would still be collected and merged with remotely sensed DEMs. 

Floodplains provide a unique ecosystem to test the accuracy of derived DEMs. 

The ground cover is typically vegetated with some areas, mainly exposed gravel bars, 

being clear from vegetation. Having a variety of ground cover allows for us to analyze 

the vertical accuracy associated with several ground cover types. The study areas 

encompass differing floodplain types, from floodplains featuring little tree cover with 

dense ground vegetation and open, unobstructed stream banks to others featuring mature 

tree cover, dense ground vegetation and relatively steep banks along some of the study 

area. The variety of vegetation cover and land characteristics help this study by allowing 

for accuracy analysis in differing ecosystem types. Similarly, the complexity of the study 

areas push the boundaries of both collection methods. Dense vegetation and complex 

topography throughout all the study areas are testing the limits of both methods. By 

analyzing the vertical accuracy of point clouds and their associated DEMs, we can see 

where the limitations are for each acquisition type and further the knowledge of when a 

particular system will likely meet the needs of practitioners.  
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LiDAR is an active sensor that emits laser pulses and when combined with a 

global navigation satellite system (GNSS) receiver and Inertial Navigation System (INS) 

returns a georeferenced point cloud of the earth's surface. LiDAR technology has been 

well described in existing literature and I will not be including a detailed overview of its 

description. For further descriptions of the technology readers are referred to the ASPRS 

Manual of Airborne Topographic Lidar (Renslow 2012). Much of the existing literature 

on LiDAR has been focused on manned aircraft (Hodgson and Bresnahan 2004). While 

the technology and processing are the same as UAV-LIDAR, the resulting point clouds 

slightly differ. Because UAVs are limited in altitude and flying speed, the point clouds 

are typically much denser than those obtained from manned aircraft (Kucharcyzk 2017). 

This typically leads to more pulses reaching the ground surface and thus, a more accurate 

estimation of the earth’s surface. LiDAR has been widely adopted for earth surface 

modeling because of the ability of its pulses to penetrate through vegetation and collect 

ground surface returns. The ability to collect multiple returns allows LiDAR data to 

produce models of digital terrains both above surface features (i.e., digital surface model 

or DSM) and the bare earth surface (DEM).  

Structure from Motion with Multi View Stereo (referred from hereon as SfM) is a 

form of photogrammetry that reconstructs three dimensional objects from overlapping 

imagery. Much of the interest in SfM derived DEMs comes from the low-cost of 

acquisition and ease of processing (Carrivick et al. 2019). SfM was originally designed 

for 3D reconstruction of objects from random, overlapping photographs. The technology 

has since been applied to landform reconstructions because of its ability to create 3D 
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models with nothing more than an off-the-shelf camera. In a broad sense, SfM builds 3D 

models by looking for matching features in overlapping imagery in a similar process to 

traditional photogrammetry. For a full review of the technologies and process I refer 

readers to Snavely et al. (2006). Once processed, SfM returns a point cloud with similar 

attributes to LiDAR. Given the similarity in the point cloud representation, SfM is also 

known as photographic LiDAR or PhoDAR. However, since SfM is based on optical 

images and does not have the “canopy-penetration” capability, its digital terrain model 

only captures the elevation above surface features (i.e., DSM). Because of the inability of 

SfM-MVS point clouds to penetrate vegetation, above ground features are included and 

thus, their representations are a DSM. With the exclusion of above ground features 

through filtering of the point clouds to approximate the earth’s ground surface, the 

models can be referred to as a DTM or DEM; I will be using the term DEM to refer to the 

ground representation for both LiDAR and SfM results in this analysis.  

Whether to utilize UAV-LiDAR or SfM has been examined in the literature 

(Simpson 2018, Kucharczyk 2017). The strengths and limitations are well known for both 

techniques as well. The main benefit of LiDAR is the ability to collect ground returns in 

vegetated areas. SfM cannot return ground elevations in vegetated areas because the point 

clouds are built upon the spectral information that is returned in the photos. It is generally 

accepted that SfM is limited by vegetation and cannot accurately return ground elevations 

in vegetated areas. Previous studies are conflicted on the accuracy of SfM DEMs in river 

systems but the accuracy is dependent on the collection methods as well as ground cover 

(Dietrich 2016, Rusnak et al. 2018). However, it is not known what the limit of 
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vegetation density and height is and when SfM can be utilized to reasonably model the 

earth’s surface. The unknown limitation is part of the focus of this research, as well as the 

accuracy of the derived DEMs when compared to LiDAR DEMs of the same study areas. 

Prior to the UAV-LiDAR and SfM point clouds being processed into DEMs, 

ground points must be extracted from the entire cloud. This process has been explored in 

previous literature and can be completed using several different, although mostly similar, 

algorithms (Tan et al. 2018, Yilmaz et al. 2021). Some of these algorithms are within 

closed-source software, such as ArcGIS (ESRI 2020) and ENVI (L3 Harris Geospatial 

2021), as well as open-source software packages, such as MCC (Evans and Hudak 2007) 

and CSF (Zhang et al. 2016). Previous literature has examined the results of various 

ground filtering (the removal of non-ground points) algorithms on DEM accuracy and 

found varying results depending on terrain type and collection type (Yilmaz et al. 2018, 

Zeybek 2019, Klapste et al. 2020). Yilmaz et al. (2018) and Zeybek (2019) found the 

CSF algorithm to provide the highest accuracy DEMs compared to other commercial and 

open-source filtering algorithms while Klaptse et al. (2020) found the CSF algorithm 

provided the lowest accuracy results. Determining the ground points is an important step 

in the creation of DEMs and DTMs but is somewhat overlooked by common practitioners 

and is a key step in model accuracy. Some ground-filtering algorithms have little or no 

room for altering parameters while others, CSF in particular, allow the user to adjust 

parameters and affect which points are determined to be ground points. This step is 

subjective in nature and is difficult to perfect, especially in heavily vegetated or sloping 

terrain. Over a continuous study area, the algorithm is tasked with deciding which point 
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returns are vegetation and which are ground returns and can be mixed up because steep 

slopes or banks can mimic the appearance of vegetation and vice-versa, with vegetation 

appearing to the algorithm as ground features. Ground filtering algorithms were built for 

classifying LiDAR point clouds, and the differences in characteristics between SfM and 

LiDAR point clouds can further add to the processing issues inherent within filtering. 

Recently, Klapste et al. (2020) examined the effects of different filtering algorithms and 

their parameters on SfM and LiDAR point clouds and found that LiDAR point clouds 

exhibited more consistent results than SfM. The effects of ground filtering parameters 

and point cloud densities are examined in our discussion and provide opportunities for 

future research.  

The specific goals of this project are to: 1) assess the vertical accuracy of UAV-

LiDAR and SfM point clouds in the context of floodplains 2) assess the vertical accuracy 

of UAV-LiDAR and SfM derived DEMs and 3) give recommendations to future 

practitioners about each technique.  
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Chapter 2 

Study Areas 

 2.1 Site Locations  

 

Figure 1. Overall Site Locations. 
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The selected sites range in characteristics from what can be considered likely to 

be successful for both techniques to sites that challenge both techniques. In all, four sites 

were used in this analysis, two sites on the Middle Fork John Day River in Northeast 

Oregon (MFJD 1 and 2, figures 2 and 3) and two sites on Catherine Creek, a tributary to 

the Grande Ronde River in Northeast Oregon (CC 1 and 2, figures 4 and 5).The sites 

were located within the interior Columbia Basin (east of the Cascade crest) with four 

separate locations on two different rivers with stream length ranging from 360-930 

meters (Figure 1). Sites were paired as a treatment and control for the floodplain 

restoration monitoring project and are therefore meant to be closely matched at each 

pairing for consistent environments (gradient, vegetation coverage, stream channel width, 

etc.). The treatment locations featured additional in-stream large wood structures and 

floodplain reconnection such as newly created side channels.  

2.2 Site Characteristics 
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Figure 2. Middle Fork John Day Site 1. 
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Figure 3. Middle Fork John Day Site 2. 

 

Figure 4. Catherine Creek Site 1. 
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Figure 5. Catherine Creek Site 2. 

 

The four independent sites can be grouped together into two overarching 

categories because of the similarities between the sites at each grouping. Area 1, the 

Middle Fork John Day, has minimal conifer (Ponderosa Pine, Pinus Ponderosa) tree 

cover (no trees over 5m in height at both locations) with no deciduous trees present. The 

sites feature a broad valley with an unconfined channel except for the upstream end of 

MFJD 1 where the channel is confined against the road prism along the north bank for 

approximately 40 meters. The ground cover features dense grasses that are grazed by 

livestock but had minimal livestock grazing signs present at the time of data collection. 

Exposed gravel bars and dry side channels are also featured at the site as a minimal 
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percentage of overall ground cover. The overall gradient is very low and the stream 

channel features a series of pool and non-turbulent habitat types.  

Area 2, Catherine Creek, includes a mix of conifer (Ponderosa Pine, Pinus 

Ponderosa) and deciduous (Cottonwood, Populus Trichocarpa) trees mainly in the 

riparian corridor, with Ponderosa also along the upland reaches on the margin of the site 

extent. The sites feature a broad valley along the north bank with the channel 

intermittently confined against the hillslope along the south bank at both reaches. The 

north bank features little slope topography while the south bank has a relatively steep 

slope. Site 2 features a variety of ground cover types, with grasses dominating the overall 

ground cover. Exposed gravel bars and dry side channels are also featured at these 

locations. CC 2 features no known cattle grazing while CC 1, which is on private land, 

features livestock grazing on both cultivated land and upland dryland habitats. The 

ground cover at CC 1 features a combination of classes, with recently mowed planted 

cover crops, upland sage steppe with intermittent shrubs and grasses among exposed 

earth and livestock fenced areas with livestock present at the time of data collection.  

 

 

 

 

 



14 

 

 

Chapter 3 

Data Collection 

3.1 Post Processing Kinematic (PPK) Data Collection 

The initial data collection began with a post processing kinematic (PPK) global 

navigation satellite system (GNSS) survey for checkpoint and ground control point 

(GCP) collection. The data colleced at the check points were for vertical accuracy 

analysis and the GCPs for geo-referencing the images that were used in SfM. There were 

several individuals involved in the data collect efforts. They are Derek Arterburn and 

Christopher Clark. The PPK equipment used were two Trimble R10 GNSS units, one to 

log as a base station on an autonomous point location (base) and another to collect the 

checkpoint and GCP locations (rover) (Figures 6 and 7). A minimum of 10 GCP’s were 

placed throughout each study area with relatively large spacing between each and away 

from the edge of the study area in order to minimize errors. Data was collected and post-

processed after sending the base station information to National Geodetic Survey’s 

Online Positioning User Service (OPUS) and correcting the rover point data (National 

Geodetic Survey 2020). There are several ways to collect and process checkpoint and 

GCP locations; we relied on the Post-Processed Kinematic (PPK) technique for two main 

reasons. First, our site locations were out of cell phone service range so we could not rely 

on the Continually Operating Reference Stations (CORS) network to act as a base station 

and instantaneously correct our survey points. Second, because of the remote nature of 

the survey locations, known monuments were not within the signal range from the base to 
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rover. Because of this, we set up the base station on an autonomous point and post-

processed both the base station and rover point locations to increase the accuracy and 

precision of the survey. The workflow to setup the PPK collection is as follows:   

1) set up the PPK base station and log points on the static unit. Standard 

practice has the base station collecting points for 30 minutes prior to 

topographic point collection. The base station is set to log at 1Hz and 

collect a point every 15 seconds.  

2) After 30 minutes, the base station has logged enough location information 

to accurately proceed. 

3) Rovers are set to collect point location (UTM NAD83 Zone 11N) as well 

as attributes about the point (vegetation characteristics), with the following 

information collected at each checkpoint: 

a) Land Cover (Yes/No) 

b) Vegetation Less Than 1 Meter (Yes/No) – if Yes – Vegetation 

Type 

c) Vegetation Between 1-5 Meters (Yes/No) – if Yes – Vegetation 

Type 

d) Vegetation Greater Than 5 Meters (Yes/No) – if Yes – Vegetation 

Type 
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Figure 6. PPK Data collection - Rover and Base Station. 
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Figure 7. GCP marker. The diameter of the marker is 30 cm. 

3.2 SfM and LiDAR Collection 

SfM and LiDAR data were collected simultaneously on the same UAV flight and 

processed separately in two distinct pipelines. The camera was mounted to the rear of the 

LiDAR unit with a fixed mounting bracket that forced the camera to strictly record 

imagery at a nadir angle (Figure 8). Flights were conducted immediately following the 

collection of PPK topopgraphic points in late August and early September of 2019. To 

begin each survey, the INS must start alignment in a steady state on the ground with no 

movement for a minimum of five minutes. After the initial alignment, the flights began 

with an out and back straight-line flight away from the operator for approximately 50 

meters then a series of figure eight turns were completed to further align the INS. The 

INS alignment data was sent to the laptop via the LAN network so the survey technician 

can assess the quality of INS alignment prior to data collection. Once the INS was 

aligned and uncertainties in the location data were minimal the operator is ready to fly to 

the first survey waypoint. The survey technician then triggered the camera via the LAN 

connection to begin collecting data. Once the flight was completed the survey technician 

then triggered the camera and LiDAR sensor to stop recording and the final INS 

alignment procedures were completed. After a five-minute wait time to finalize the INS 

alignment, imagery and initial LiDAR data were then taken off the camera’s SD card and 

stored on an external hard drive.   
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Figure 8. UAV Mounted with LiDAR and SfM Camera sensors. The camera and LiDAR 

sensor are both mounted to a fixed bracket. 

3.3 LiDAR Sensor Specifications 

A Velodyne VLP-16 LiDAR sensor (a dual return, 16 laser sensors with a 

maximum range of 150 m) customized by Phoenix LiDAR was affixed to the DJI m600 

for LiDAR flights. When maintaining a flight altitude of 50 m and a speed of 8 m/s, this 

sensor is reported to return a point density of approximately 225 points per square meter.  

3.4 SfM Camera Specifications 

  Photos were captured with a Sony A6000 digital camera in RAW 14-bit format. 

This camera has a full frame sensor (CMPS APS-C [23.5 x 15.6 mm]) and a 16mm Prime 

f/2.8 lens. Settings were placed on auto for shutter speed and ISO. The camera was 
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mounted to the LiDAR unit with a fixed bracket that forced the camera to strictly record 

imagery at a nadir angle.  

3.5 Flight Planning 

I used Phoenix LiDAR’s flight planner software to create and download flight 

plans (Phoenix LiDAR 2020). The flight plan kml files were then uploaded into Litchi, a 

flight application that is used for DJI aircraft (Litchi 2020). Flight speed was set at 8 m/s 

and overlap was set at 80% side and front to prevent any gaps in imagery or point clouds. 

Figure 9 shows the flight lines at MFJD Site 2. 

 

Figure 9. Flight Plan for Middle Fork John Day Site 2. 
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Chapter 4 

Processing 

4.1 GNSS Point Processing 

GNSS points were collected at GCP and checkpoint locations throughout each 

site. After collection the point files were processed in Trimble Business Center (TBC) 

using the base station .to2 file to correct the rover point locations (Trimble 2020). As 

discussed previously, the point locations were processed as PPK because of limitations at 

our site locations. Base files were corrected using OPUS then imported into TBC to apply 

corrections to the collected points. The coordinate system is set as NAD83(2011) UTM 

Zone 11N and the vertical datum is NAVD88 (Geoid 12B). Computed vertical precision 

from TBC is reported at the 95% confidence level with the average precision of .025 m 

and a standard deviation of .012 m. 

4.2 SfM Processing 

I performed SfM processing using Agisoft Metashape Version 1.5.5 (2020). 

Photos were collected in ARW format, Sony’s RAW image format. Metashape does not 

support uploading images in RAW format, and only accepts JPEG or TIFF formatted 

pictures. The Sony a6000 captures raw images in 14 bit, meaning there are 2 to the 14th 

power tone combinations (16384). RAW images were converted to JPEG using Sony’s 



21 

 

imaging edge software with the highest quality (lowest compression) setting before 

processing in Metashape.  

Once images were converted to JPEG, they were imported into Metashape to 

begin processing. After importing, I followed the recommendations from Agisoft to 

produce the highest quality point clouds and orthomosaics. The following is a step-by-

step process to produce georeferenced point clouds and orthomosaics: 

1) Remove photos that will not be included in the model. These are photos that are 

collected before and after we reached our survey flight lines and typically included 

several photos at each site.  

2) Estimate image quality for each individual image. The image quality is calculated 

based on the sharpness of the image at its most focused location. Images with a quality 

below .5 are recommended to be disabled if the remaining images still cover the entire 

site.  

3) Generate masks. These are only required for objects that I would not want to be 

included in our model and they can include livestock grazing in the site or vehicles that 

drove through the site while collecting data. Masks were generated manually and few 

were required throughout the study areas.  

4) Align photos. Settings vary based on processing time, the highest setting uses the 

original photo size, medium setting downscales the image by a factor of 4 and low 

downscales by a factor of 16. The following settings were used: High, key point limit of 

40,000, tie point limit of 4,000, adaptive camera model fitting: Yes. 
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5) Import ground control points (GCP’s). GCP locations are imported into Metashape in 

.csv format with the same coordinate system as the project settings (NAD83, UTM). The 

.csv contains columns for the GCP ID number, easting, northing and elevation.  

6) Locate GCP targets in images. Images that contain the GCP targets (Figure 7) are 

selected and the correct GCP number is selected from the list of imported coordinates. 

Once a GCP has been selected in two images, they are then added to all the images that 

contain that location. The GCP location is then verified for all photos and adjusted if 

necessary.  

7) Optimize camera alignment. During georeferencing the model is linearly transformed 

and possible non-linear deformations can be removed by optimizing the point cloud and 

camera parameters from the known GCP locations.  

8) Build a dense point cloud. Similar to step 4, settings vary based on processing time. 

The difference is that the Ultra High setting uses the original photos and High downscales 

by a factor of 4. Agisoft does not recommend using Ultra High for larger projects such as 

ours because of the demand on the computer's RAM. Depth filtering is adjustable, with 

mild depth filtering leaving the most detail and moderate leaving some but aggressive 

removing much of the model’s detail. The following settings were used: Quality: 

Medium, depth filtering: mild.  

9) Build orthomosaic and generate point cloud DSM. Resolutions of the orthomosaic 

were approximately 2.5 cm. 
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4.3 Generating The LiDAR Point Cloud 

Corrected base station files, trajectory files and associated raw lidar files were 

uploaded to Phoenix LiDARMill software to process the raw LiDAR data (Phoenix 

LiDAR 2020). The exact details of processing within LiDARMill are proprietary, the 

basic formula takes the raw files, adjusts locations based on boresighting between the 

sensor and INS then interpolates a 3D position based on the coordinate system being 

used. After processing, a georeferenced point cloud is exported.   

4.4 Point Cloud Filtering 

After the point clouds are processed, filtering the point clouds to include only 

ground points is required. Several variations of this processing technique exist in both 

open and closed source forms. In order to produce an elevation model that ignores above 

ground vegetation and objects, the points that encompass the above ground features need 

to be removed and the ground-surface below the objects interpolated. Studies have shown 

that filtering algorithms differ in their selection of ground points, with some producing 

higher accuracy results in flat vs. sloped terrain or vegetated vs. non-vegetated (Yilmaz et 

al. 2018, Klapste et al. 2020). I tested the Boise State Lab (BCAL) filtering plugin for 

ENVI LiDAR (L3 Harris Geospatial 2021) and the RCSF filter within the lidR R package 

(Roussel et al. 2020). After testing multiple filtering techniques, I selected the lidR CSF 

filter because of its speed in processing, adjustable parameters and open-source format. 

The cloth simulation filter is an implementation of the CSF algorithm developed by 

Zhang et al. (2016) and uses the author’s original source code. I direct the reader to 
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Zhang et al. (2016) for a full review of the CSF filtering algorithm. This step is subjective 

in nature because of the parameter selection that is inherent in the processing workflow; it 

is likely that individual study areas would require different parameter settings for ideal 

classification. The parameters that can be adjusted to manipulate the ground points are: 

Slope (true or false, if true and steep slopes exist in the data, post processing is needed), 

rigidness (rigidness of the cloth, default is 1), class threshold (the distance of the cloth to 

classify a point into ground and non-ground, default is .5m), cloth resolution (distance 

between particles in the cloth, usually set to the average distance of the points in the point 

cloud, default is .5m), iterations (maximum iterations for simulating cloth, default is 

500), time step (time step when simulating the cloth under gravity, default is .65). 

 Testing the parameters available in the CSF filter is an important step in 

processing and a sensitivity analysis was performed to determine the ideal settings for our 

study areas. For this, I adjusted the class threshold and cloth resolution setting in 

increments of .1, as well as adjusting the slope and rigidness parameters. After the 

sensitivity analysis was performed, I chose the parameters that are listed in table 1. 

Klapste et al. (2020) performed a similar analysis on SfM point clouds using a variety of 

ground filtering algorithms, including CSF, and found that the cloth resolution parameter 

adjustments had the greatest impact on classification. This is similar to our findings, with 

cloth resolution deviations from our chosen setting (.2) negatively impacting DEM 

vertical accuracy to a greater degree than other setting adjustments.  
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Figure 10. Full Point Cloud for MFJD Site 2. 
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Figure 11. Filtered Point Cloud for MFJD Site 2. 

Table 1. Parameter settings chosen for CSF ground filtering algorithm. 

Parameter Setting 

Slope False 

Rigidness 1 

Class Threshold .5 

Cloth Resolution .2 

Iterations 500 

Time Step .65 

 

I decided on mainly default parameters except for the cloth resolution because of 

the high density of the point clouds being processed. The parameters were unchanged 

between sites to minimize processing bias. The elevations of the points clouds would not 

change with parameter adjustments because the filtering does not change the returned 

value of the point clouds, it only removes points that are deemed as non-ground returns. 

Figures 10 and 11 illustrate the effect of point cloud filtering. Figure 10 is the original 

unfiltered LiDAR point cloud from MFJD Site 2. Figure 11 is the filtered LiDAR point 

cloud using CSF with the tested parameters. 

4.5 DEM Processing 

DEM processing was performed using the LiDR R package. I chose the k-nearest 

neighbor with inverse distance weighting (KNNIDW) interpolation method to generate a 

DEM surface from the filtered point cloud. KNNIDW interpolation is faster than other 

more complex interpolation methods such as kriging. The settings chosen were default 



27 

 

settings, with the number of nearest k-neighbors equal to 10 and the power for inverse 

distance weighting equal to 2. The resulting DEMs have a 0.25 meter resolution.  

4.6 Reference Data 

At each checkpoint collected throughout the study areas land cover attributes 

within the immediate vicinity (1 meter horizontally or vertically above the ground 

surface) of the checkpoint were recorded. The land cover and vegetation categories were 

divided into four discrete groups: Bare earth, vegetation less than 1 meter, vegetation 

between 1-5 meters and vegetation greater than 5 meters.  The analysis was broken into 

the four land cover categories to test the differences in vertical accuracy between bare 

earth locations and the vegetated categories. I chose the three vegetation height categories 

to test whether vertical accuracy is being impacted depending on the characteristics of the 

vegetation itself. First, to see the influence of grasses on vertical accuracy, I chose the 

vegetation category of less than 1 meter. Next, to see the influence of shrubs and shorter 

trees, both deciduous and coniferous, I chose the category of vegetation between 1-5 

meters. Lastly, to see the influence of mature tree cover on vertical accuracy, I chose the 

category of vegetation greater than 5 meters. These categories are not site-specific and 

could apply to most vegetated sites where remotely sensed UAV data is collected.  

The vertical accuracy of the processed datasets were compared to our reference 

data, checkpoints, taken throughout each study area. ASPRS has published guidelines for 

vertical accuracy assessment such as number of checkpoints, distribution, and locations 

(ASPRS 2015). I followed these guidelines wherever possible but were somewhat limited 

by the existing ground conditions. Bare earth points, with no vegetation present within 1-
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meter surrounding the checkpoint, were difficult to find at most sites and were not 

present at all at one site (MFJD 1). Their distribution was limited to areas immediately 

adjacent to the stream channel and mostly consisting of gravel bars. Therefore, the spatial 

distribution and total number of bare earth points was limited but still allowed for 

analysis. Similarly, two of the four study areas contained no vegetation greater than 5 

meters in height so the number of associated checkpoints is lower than other vegetation 

categories. Table 2 shows the breakdown of points for each category of data collected.  

Table 2. Checkpoint Totals by Category 

Point Type MFJD  

Site 1 

MFJD 

Site 2 

CC  

Site 1 

CC 

Site 2 

Total 

Bare Earth 0 26 3 7 36 

Vegetation Less Than 1 Meter 21 13 16 23 73 

Vegetation 1-5 Meters 4 15 3 7 29 

Vegetation Greater Than 5 Meters 0 0 20 9 29 
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4.7 Vertical Accuracy Assessment 

I chose to solely analyze the vertical accuracy of the point clouds and DEMs and 

not horizontal accuracy for two reasons. First, because of the data collection methods 

utilizing PPK GNSS survey equipment, the horizontal accuracy of point clouds and 

resulting DEMs is already known and shown in Appendices A and B. Likewise, the 

vertical accuracy of the point clouds after ground filtering is unknown and directly 

impacts the DEM vertical elevations.  

The vertical accuracy assessment was performed in two categories: point cloud 

vertically closest point assessment and DEM assessment. Point cloud terrain data 

captures the native resolution of the data collection methods, whereas DEM, which 

contains modified elevation data due to the spatial interpolation process, is a more 

commonly used terrain model in spatial analysis. To account for the possible 

misalignment of the geo-referenced data and the inclusion of unfiltered surface features 

(i.e., above ground vegetation and objects), the vertically closest point assessment used a 

5 meter buffer around each checkpoint where the closest 30 points from the respective 

filtered point clouds were extracted into a shapefile and used for analysis. The closest 30 

points elevations were then compared to the checkpoint elevation and the point with the 

smallest absolute value elevation difference, that is, the vertically closest point, provides 

the observed elevation value. The horizontal distance from the checkpoint to the said 

point was calculated for each checkpoint. I expected that the distance varied depending 

on the site and method, because of the ability of LiDAR to penetrate vegetation more 
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easily than SfM, the distances for the LiDAR results were smaller than the SfM distances. 

The checkpoints with denser and taller vegetation have larger distance values than points 

associated with less dense and shorter vegetation. This is apparent when looking at the 

vertically closest point for checkpoints associated with vegetation greater than 5 meters, 

with the average distance being 14.2 centimeters vs. 26.8 centimeters for LiDAR and 

SfM, respectively. The increased distance associated with SfM is a shortcoming of the 

approach because of the inability to penetrate vegetation and is pronounced when large, 

dense tree cover is present.  

The reason to perform the vertical accuracy assessment on both the point cloud 

data and interpolated DEM is to look at the ground-filtered point cloud prior to DEM 

creation, even though DEMs are the more commonly used terrain representation than 

point clouds. DEM processing relies on several adjustable parameters that can alter the 

elevations that are within the model and therefore impact the elevation. The ground-

filtered point clouds are not altered in elevation from the original returns, they have only 

filtered out the points deemed as vegetation or non-ground points. By analyzing the point 

cloud return elevations prior to DEM creation, I can assess their accuracy without the 

influence of DEM parameters on elevations. Likewise, I chose to analyze the vertically 

closest point return instead of the absolute closest point return from the respective clouds 

because of the known inclusion of erroneous above-ground points in the filtered points 

clouds.  

For initial analysis, I examined the 30 closest point returns to get a sense of the 

overall differences between each collection method. I looked at the average elevation of 
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the 30 closest points compared to the checkpoint elevations. Also, I examined the 

standard deviation of the elevations for the 30 closest points and the range of those 

elevation values.  

To analyze the vertical accuracy of the point cloud returns and the resulting 

DEMs I first took the extracted vertically closest point return shapefiles at each 

checkpoint location and calculated summary statistics such as mean, median, standard 

deviation, range and root mean square error (RMSE) for the vertical differences between 

the observed (checkpoint) and predicted (point cloud) elevations. I chose to analyze the 

results using RMSE because it is a common approach suggested for analysis by ASPRS 

as well as being utilized in exising literature. RMSE is commonly used to analyze 

remotely sensed data that is interpolated or compared to existing known values. After 

creating DEMs from the filtered point clouds, the DEM elevations were then compared to 

the checkpoint elevations with the same summary statistics.  
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Chapter 5 

Results 

5.1 Data Summary 

Table 3 summarizes the data file sizes and number of photos taken at each 

respective site. CC 2, by far our largest site, featured more than twice as many photos as 

the other site locations. Table 4 shows the point densities both before and after filtering at 

each site location. After filtering, the point densities are very high, with the lowest 

density at 149 points per m2 and the highest at 279 points per m2. 

Table 3. Summary of file sizes and number of photos taken at each site. 

Site LiDAR File Size (GB) SfM File Size (GB) # of photos 

MFJD1 1.1 .84 291 

MFJD2 1.2 .78 327 

CC1 1.7 1.8 494 

CC2 3.8 2.8 1092 

 

Table 4. Point Cloud densities (points per square meter). 

Site LiDAR Full LiDAR Ground  SfM Full SfM Ground 

MFJD1 186  181  282  269  

MFJD2 150  149  210  208  

CC1 205  152  395  236  

CC2 261  221  357  279  
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5.2 General Geometric Characteristics of Neighboring Point Returns Compared to 

Checkpoints 

Table 5 is a summary of the 30 closest points from each checkpoint for each 

method. As shown, the average distance to both the closest point and the vertically 

closest point are lower for LiDAR when compared to SfM. The standard deviation and 

range are lower for SfM when compared to LiDAR. These results are as expected 

because of the nature of both collection methods. Because of the ability of LiDAR to 

penetrate vegetation, it is expected that the distance to checkpoints would be less than 

SfM. With SfM point clouds being interpolated from imagery and their points not 

penetrating vegetation, the surfaces are smoother than LiDAR and therefore, their range 

and standard deviation are lower.  

Table 5. Summary of the closest 30 points to each checkpoint in centimeters. 

Method Average 

Distance to 

Closest Point 

Average 

Distance to 

Vertically 

Closest Point 

Average  

Vertical 

Standard 

Deviation 

Average 

Vertical  

Range 

LiDAR 3.8 14.0 7.0 11.5 

SfM 5.6 15.2 2.6 8.8 

5.3 Nearest Points and Vertically Closest Neighboring Point 

The average distance from the checkpoint to the vertically closest point for the 

LiDAR point cloud is 14.0 cm and the distance from the checkpoint to the minimum 

absolute difference SfM point cloud is 15.2 cm. The maximum distance from the 

checkpoint to the minimum absolute difference is 66.14 cm for the LiDAR and 2.28 

meters for the SfM. That SfM distance is from a heavily vegetated area with deciduous 
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vegetation overhead that created a large gap between the checkpoint location and the 

ground filtered point. This same point for the LiDAR point cloud had a distance of 50.9 

cm from the checkpoint, which is an outlier for the LiDAR point distances (Figure 12).  

 

Figure 12. Distance from the checkpoint to the closest point used. SfM average distance 

is heavily impacted by gaps in the point clouds caused by the presence of vegetation. 
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Figure 13. Average of the 30 closest points absolute vertical error compared to the 

reference data. As shown, outliers in the SfM are negatively impacting the average 

vertical accuracy. Average vertical errors for LiDAR and SfM are .123 and .163 meters, 

respectively. 

 

Figure 14. Standard deviation of 30 closest points. 

 

Similar to the distance to checkpoint, the standard deviation for SfM is impacted 

by outliers from gaps in the point clouds caused by the presence of vegetation (Figure 

14). Overall, the SfM standard deviation is lower because of the inherent nature of SfM 

point clouds being modeled from imagery. In comparison, LiDAR point returns exhibit a 

much larger range because of their discrete returns and a larger standard deviation is 

expected. The ranges of the 30 closest point for each method by category are highlighted 

below (Figure 15). As discussed previously, the ranges for LiDAR are expected to be 

greater because of the ability to penetrate vegetation. However, despite the ranges for 

LiDAR being greater their averages are closer to the observed checkpoint elevations. 
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Figure 15. Range of 30 closest point and the vertically closest point for each vegetation 

class used in analysis. LiDAR has a greater range because of its ability to penetrate 

vegetation. The SfM range is lower overall but has less accuracy. Figure 15 Continues on 

the next page. 
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Figure 15 (continued). Range of 30 closest point and the vertically closest point for each 

vegetation class used in analysis. LiDAR has a greater range because of its ability to 

penetrate vegetation. The SfM range is lower overall but has less accuracy. 
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5.4 Vertically Closest Point Results 

First, I examined the overall absolute vertical error, that is the observed 

(checkpoint elevation) minus the predicted (point return elevation) and the results show 

that the average is much lower for LiDAR compared to SfM (.026 meters vs .126 meters, 

respectively). Next, I looked at the overall bias of each method. The values represent the 

overall trend, either underestimating or overestimating the observed elevations, based on 

method. LiDAR is overall underestimating elevations at the checkpoints to a much less 

degree than SfM (-.021 meters vs -.105 meters, respectively). Table 6 breaks down the 

bias by category and shows the differences in bias based on the land cover category. For 

all categories except SfM bare earth, the point returns are underestimating the checkpoint 

elevations. Lastly, I analyzed the standard deviation of the vertically closest points when 

compared to the checkpoint elevations. The deviation is larger with SfM (.16m) 

compared to LiDAR (.05m) and is mostly caused by outliers impacting the SfM results.  

 

Table 6. Point Cloud Bias by Category (meters). 

Method Bare Earth Veg <1m Veg 1-5m Veg >5m 

LiDAR -0.0017 -0.0249 -0.0309 -0.0244 

SfM 0.0245 -0.104 -0.2593 -0.1155 
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5.4.1 Vertically Closest Point Accuracy by Vegetation Category 

 

Figure 16. Absolute Vertical Error for all Categories. 

 

As shown in Figure 16, vegetation has a large impact on the vertical accuracy of 

both SfM and LiDAR point clouds. The highest error is associated with the category of 

vegetation between 1-5 meters. Both SfM and LiDAR follow similar patterns, with 

vegetation greater than 5 meters having a similar impact on vertical accuracy as 

vegetation less than 1 meter. These results are expected because of the known influence 

of vegetation on vertical accuracy. However, the increased error associated with 

vegetation between 1-5 meters for SfM was not expected compared to the other vegetated 

categories. This effect is examined further in section 6 and is likely associated with the 

ground filtering algorithm.  
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Figure 17. Relative vertical error by category (meters). 
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As shown in Figure 17, relative error varies by vegetation category but overall, 

the point clouds are underestimating the elevation (observed - predicted). Bare earth 

points are the exception, with SfM overestimating the elevation. This is potentially due to 

the variable terrain conditions at the site locations where a checkpoint elevation could be 

slightly higher than the surrounding ground elevations.  

Tables 7 and 8 show the root mean square error (RMSE) for each category. The 

RMSE computed at the 95% confidence interval is recommended for analysis by ASPRS 

(ASPRS 2015) and RMSE results again highlight the influence of vegetation between 1-5 

meters on SfM, while not showing the same influence on LiDAR.  

Table 7. Point Cloud RMSE by Category (Meters). 

 Bare Earth Veg <1 Veg 1-5 Veg >5 

LiDAR .0155 .0664 .0534 .0483 

SfM .0962 .1651 .3098 .1789 

 

Table 8. Point Cloud RMSE at 95% Confidence Interval (Meters). 

 Bare Earth Veg <1 Veg 1-5 Veg >5 

LiDAR .0304 .1302 .1046 .0947 

SfM .1885 .3236 .6072 .3507 
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5.5 DEM Vertical Accuracy 

The DEM analysis follows the same methods as the vertically closest points 

analysis and highlights the impact of ground filtering on DEM vertical accuracy. Overall 

errors are higher than the vertically closest points, which is expected, but are somewhat 

higher than expected. This increased error is likely influenced by the inclusion of non-

ground points in the filtering and is further examined in section 6. The overall vertical 

error for LiDAR is lower than SfM, as expected, however the error difference is smaller 

than the vertically closest point results. This is likely explained by the greater range in 

elevation values from filtered LiDAR returns when compared to SfM. Because the 

ground filtering algorithm is having difficulty in classifying ground points, and is 

including some vegetation returns in the results, the larger range in elevation values for 

LiDAR points are impacting the DEM vertical accuracy to a larger degree than the SfM 

DEMs. The overall average vertical error is still lower for LiDAR compared to SfM, with 

the average being .12 meters vs .163 meters respectively. Looking at overall mean bias, 

LiDAR is closer to the observed elevations (-.08m) compared to SfM (-.13m). Table 10 

breaks down the mean bias by land cover category. Overall, SfM is underestimating 

elevation values to a greater degree than LiDAR. However, as table 9 shows, LiDAR and 

SfM are both overestimating elevation values for bare earth points. Overall standard 

deviation of DEM vertical error associated with each method shows results that are 

similar to the vertically closest point analysis. LiDAR DEM standard deviation is .13m 

and SfM DEM standard deviation is .19m. These results highlight the impact of outliers 

on SfM that are caused by vegetation limiting its ability to accurately capture the ground 

elevation. 
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Table 9. Mean bias by category. Bare earth is the only category where the DEMs are 

underestimating height. 

 Bare Earth Veg < 1m Veg 1-5m Veg >5m 

LiDAR .022 -.087 -.166 -.124 

SFM .028 -.124 -.338 -.153 
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5.5.1 DEM Vertical Accuracy by Vegetation Category 

 

Figure 18. DEM error for all vegetation categories. Similar patterns are shown between 

both techniques, with vegetation 1-5 meters having the largest vertical error. 

 

Figure 18 is highlighting the pronounced influence of vegetation between 1-5 

meters on both LiDAR and SfM. As discussed previously and further examined in section 

6, the ground filtering algorithm has difficulties differentiating between vegetation and 

ground points when there is vegetation in that height range. While the bare earth results 

for both LiDAR and SfM are very similar, vegetation between 1-5 meters is heavily 

impacting SfM vertical accuracy.  

 

 

 

 



45 

 

 

 

  

  

 

Figure 19. DEM relative vertical error by category (meters). See Appendix C for the 

numbers of DEM absolute accuracy of all categories. 
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Figure 19 shows the relative vertical error for each category and highlights how 

both techniques are underestimating the ground surface elevation when vegetation is 

present but overestimating the ground surface elevation at bare earth locations. Similarly, 

Figure 19 also shows the influence of outliers on SfM when compared to LiDAR.  

Tables 10 and 11 below show the root mean square error (RMSE) for each 

category and the RMSE computed at the 95% confidence interval. The analysis 

highlights the influence of outliers on each method and further shows the influence of 

vegetation between 1-5 meters. The RMSE results show the oversized impact of 

vegetation between 1-5 meters on both SfM and LiDAR.  

Table 10. DEM RMSE (meters). 

 Bare Earth Veg <1m Veg 1-5m Veg >5m 

LiDAR .0922 .153 .212 .1610 

SfM .1135 .188 .398 .2249 

 

Table 11. DEM RMSE at 95% Confidence Interval (meters). 

 Bare Earth Veg <1m Veg 1-5m Veg >5m 

LiDAR .1808 .3013 .4173 .3156 

SfM .2224 .3704 .7806 .4409 
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While the RMSE results show that overall LiDAR has higher accuracy results, the 

limitations of the ground filtering algorithm are apparent. The DEM vertical accuracies 

are more similar between SfM and LiDAR when compared to the accuracies of the 

vertically closest point analysis. This result is showing that despite the higher accuracy of 

the initial LiDAR point clouds, the inclusion of non-ground points after filtering are 

impacting the DEM vertical accuracy and therefore increasing the error of the DEM 

results. 
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Chapter 6 

Discussion 

6.1 Processing Parameters 

As discussed in section 4.4, adjusting the processing parameters for ground 

filtering has an effect on vertical accuracy of the interpolated DEM surfaces. Based on 

our sensitivity analysis, cloth resolution had the greatest impact on filtering results, this 

result is similar to the findings from Klaptse et al. (2020). Figures 20 and 21 show the 

effects of cloth resolution changes on DEM outputs. While there are differences 

throughout the study areas, in the vast majority of cells, the DEM results remain 

consistent despite variations in the processing parameters. The Figures (20 and 21) 

compare the adjusted cloth resolution of .1 to the chosen resolution of .2. This adjusted 

cloth resolution is including more vegetation as ground points for both LiDAR and SfM 

and as a result, the DEM elevations are higher in the vegetated areas shown.  
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Figure 20. SfM DEM of Difference showing the difference in processing parameters 

from the CSF algorithm on DEM results. The figure shows cloth resolution of .2 minus 

the cloth resolution of .1. The higher values show that the cloth resolution of .1 includes 

more vegetation in the ground points and is resulting in a DEM with higher values in the 

vegetation. 
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Figure 21. LiDAR DoD showing the difference in processing parameters of the CSF 

algorithm on DEM results. The figure shows the cloth resolution of .2 minus the cloth 

resolution of .1. 

 

Examining the filtered point clouds and resulting DEMs it is clear that smaller 

vegetation features can confuse the algorithm and make it difficult to determine 

differences between vegetation features and microtopography of actual ground features. 

Adjusting the filtering parameters can either direct the DEM towards including some 

vegetation or excluding some microtopography. There is a tradeoff between including 

microtopography within the site and eliminating vegetation. LiDAR helps eliminate most 

of these issues because of its ability to reach ground, or closer to ground features, within 

vegetation. The ground, or closer to ground, points allow the filtering algorithm to 
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exclude most vegetation points while simultaneously including microtopography within 

the site.  

6.2 Vegetation height and vertical accuracy 

Vegetation has a clear impact on the vertical accuracy of both LiDAR point clouds and 

SfM point clouds with a larger influence on the SfM point clouds than LiDAR. The 

results clearly show that the LiDAR point clouds return raw vertical values closer to the 

checkpoint vertical values in varied ground cover. In certain instances, such as bare earth 

areas, SfM and LiDAR point clouds have similar vertical errors compared to the 

checkpoints. Overall, vegetation has a negative impact on vertical accuracy on both 

LiDAR and SfM datasets with varying influence depending on vegetation height.  
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Figure 22. CC Site 2. For the vertically closest point analysis, the point shown has the 

highest LiDAR error (.34m) and 5th highest SfM error (.54m). 
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Figure 23. MFJD Site 2. For DEM results, the point has the highest error for both 

LiDAR (.57m) and SfM (.87m).  

 

As shown in figure 22, dense grasses impact vertical accuracy of LiDAR to a 

large degree. The point displayed in Figure 22 is in the vegetation less than 1 meter 

category. This point has the third highest error for LiDAR DEM checkpoints. It is likely 

that no LiDAR returns are penetrating the grasses to reach the ground surface and are 

instead returning values from the grass itself. Therefore, ground filtering likely has little 

effect on this type of point.  

Figure 23 shows the highest SfM point error and is likely caused by a 

combination of the limitations of SfM point cloud generation and filtering. The point 

features vegetation between 1-5 meters, which is shown to be the most difficult to 
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categorize the ground vs. non-ground points. This same point features the highest error 

for both the SfM and LiDAR DEMs (.87m and .57m, respectively). This result is 

expected for the SfM DEM but unexpected for the LiDAR DEM because of the low point 

cloud vertical error (.004m). However, when looking at the thinned point clouds 

mentioned later in this discussion, thinning of the point cloud shows a large improvement 

in the DEM accuracy.  

Vegetation greater than 5 meters and less than 1 meter has less of an impact on 

vertical accuracy for SfM point clouds than vegetation between 1-5 meters. This is at 

least partially explained by the ground filtering algorithm, which is classifying some 

vegetation points in the 0-5 meter range as ground points but removing points that are 

above that threshold. Viewing the DEM outputs after ground filtering in Figure 24, it is 

clear that more vegetation points in the SfM point clouds are being classified as ground 

points erroneously compared to LiDAR. The same conclusions can be drawn from Figure 

25, which shows a cross-section of the DEM elevations through a row of trees and the 

increase in elevations at the trees for both techniques.  
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Figure 24. DEM of Difference (DoD) at MFJD site 1. The DoD (SfM – LiDAR) shows 

the SfM DEM has higher elevation values at the locations of trees because of the 

misclassification. 
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Figure 25. Cross Section Showing the same area at MFJD Site 1. Plotted cross section 

showing the SfM DEM including more vegetation points as ground points compared to 

LiDAR. 

Checkpoints associated with vegetation between 1-5 meters having the largest 

vertical error is related to the issues previously discussed about ground filtering. Since 

these points have vegetation that is further from the actual ground surface, and have some 

points included in the ground classification, their error values should be higher than 

vegetation less than 1 meter. It is likely that the filtering algorithm is reaching its limit of 

classifiying groud points when vegetation somewhere in the 1-5 meter height range is 

present, which can potentially explain why vegetation greater than 5 meters has less of an 

effect on vertical accuracy compared to shorter vegetation. This effect is clear when 

viewing the point clouds at a fine scale. Figure 26 and 27 highlight the inclusion of 

vegetation as ground points for both SfM and LiDAR, with the effect pronounced further 

in the SfM point clouds. The figures show how point cloud returns that are approximately 

1-2 meters above the ground surface are being included in the filtered returns as ground 

points. This effect is impacting results in the vegetation 1-5 meter category and likely 

explains why the category has the highest error values.  
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Figure 26. 2D and 3D view of vegetation being included in SfM ground points at a 

checkpoint location for site MFJD Site 1. 
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Figure 27. 2D and 3D view of vegetation being included in LiDAR ground points at a 

checkpoint location for site MFJD Site 1. 

The ring of no data near the checkpoint shows that the upper portion of the 

vegetation associated with the checkpoint is being removed from the ground 

classification, while the edges of the vegetation are still included. These erroneous 

ground points are causing the vertical error to be increased. Figure 27 highlights the less 

pronounced effect with LiDAR. This effect is emphasized in the DEM RMSE results 

when compared to the vertically closest point results. If filtering was more accurate in 

capturing just ground points, the results between the two analyses should be closer. 

However, looking at the LiDAR average vertical error by category for both types of 

analysis, it is clear that the inclusion of erroneous points are greatly impacting the DEM 

results. For LiDAR RMSE results in the vegetation between 1-5 meters, the vertically 

closest point average is .1046 meters while the DEM average error is .212 meters.  

The effect of vegetation on vertical values becomes even clearer when viewing 

the checkpoints associated with the highest error values. For SfM, the 11 highest error 

points are from vegetated points and only 1 of the 23 highest error points is a bare earth 

point. For LiDAR, the 15 highest error points are associated with vegetation and only 1 

of the 29 highest error points is a bare earth point.  

The results show that low-lying, dense vegetation has a greater impact on SfM 

vertical accuracy when compared to LiDAR. Higher vegetation, both mature deciduous 

and coniferous trees, have less of an impact on SfM vertical accuracy than vegetation 

between 1-5 meters in height. This suggests that study areas that encompass ecosystems 
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with little understory could be good candidates for SfM DEMs and the added expense of 

LiDAR may not be necessary. For sites with dense understory vegetation, typically 

grasses and shrubs, SfM is not ideal and LiDAR should be the default system choice.  

6.3 Thinning Point Clouds and DEM results 

Because of the erroneous inclusion of non-ground points in the ground filtered 

point cloud I completed further analysis to determine the effects of further filtering on 

DEM results. After point clouds are filtered for ground vs. non-ground points, the 

resulting ground points are then thinned using two different grid sizes (.25 and .5 meters) 

with the ArcGIS thin LAS tool. The thinning algorithm allows the user to choose the 

points included in the thinned point cloud such as average height of the points within the 

grid size or, as I chose, the lowest point elevation with the grid. Yilmaz et al. (2021) 

analyzed the effects of point density on DEM accuracy using SfM point clouds and found 

that optimum results were achieved with lower-density point clouds. Results below show 

the differences in DEM results for each category. Figures 28 and 29 show the increase in 

overall vertical accuracy with thinning for both SfM and LiDAR and the decrease in the 

number of outliers. 
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Figure 28. DEM absolute error by category and thinning resolution. 

 

Figure 29. DEM absolute accuracy by category and resolution. Overall, the number of 

outliers are decreased with thinning. 
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Figure 30. LIDAR DEM Scatter plot comparison. The scatter plots are arranged from 

lowest to highest vertical error for the unthinned point clouds for each category. 

 

When looking at the LiDAR bare earth DEM values in Figure 28, it is clear that 

thinning the point clouds largely introduces more error. This is likely due to the DEM 

interpolating values from fewer overall points and is also from the thinning method, 

which includes only the lowest values in each grid of the chosen size. Figures 30 and 31 

show the scatter plot of points by category arranged from the lowest to highest error for 

the original DEM values. The trends show the overall increase in accuracy with thinning.  
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Figure 31. SFM DEM Scatter plot comparison. The scatter plots are arranged from 

lowest to highest vertical error for the unthinned point clouds for each category. 
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Table 12. RMSE for DEMs Thinned at .25 and .5 Meters (meters). 

Method Overall Bare Earth Veg <1m Veg 1-5m Veg >5m 

LiDAR 

.25m Thinned 

.109 .115 .098 .143 .086 

LiDAR 

.5m Thinned 

.109 .138 .110 .083 .081 

SfM 

.25m Thinned 

.213 .116 .181 .322 .242 

SfM 

.5m Thinned 

.203 .115 .170 .252 .292 

 

 

Table 12 shows the varying impact on DEM results and the differences in 

thinning on LiDAR and SfM DEM results. For LiDAR, the thinned point clouds had an 

overall decrease in vertical error with the .5 meter thinning having the lowest overall 

RMSE (.109 meters). The same is true for SfM results, with .5 meter thinning having the 

lowest overall RMSE (.203 meters). When broken into land cover categories, the results 

show differences in the vertical error. LiDAR bare earth checkpoints show a steady 

increase in vertical error with thinning, while SfM stays fairly consistent. For vegetation 

less than 1 meter, thinning at .25 meters decreased the vertical error for both LiDAR and 

SfM. Vegetation between 1-5 meters had a significant decrease in vertical error with 
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thinning for both LiDAR and SfM. For vegetation greater than 5 meters, LiDAR had a 

significant decrease in vertical error with thinning while SfM vertical error increased 

slightly.  

The inclusion of microtopography in the DEMs while simultaneously removing 

vegetation returns that are being classified as ground is a tradeoff and difficult to 

completely remedy. While thinning clearly decreases the vertical error at the checkpoints, 

it is also removing some microtopography from the model and is smoothing the results. 

This evidence of smoothing and the resulting DEM removing microtopography is clear 

when looking at the bare earth points for LiDAR. The thinned point clouds have 

eliminated points that more accurately model the surface and therefore increase the 

vertical error. While in vegetated areas, the thinned points clouds increase accuracy by 

eliminating the points that are erroneously included in the ground classification. Finding 

the balance between inclusion of microtopography and exclusion of vegetation is difficult 

and could be further investigated by further adjusting the thinning grid sizes. A semi-

automated approach that masks flat areas from thinning could yield a good compromise 

between leaving microtopography and eliminating vegetation being included in ground 

points.  
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Figure 32. Cross section from MFJD Site 1 highlighting the effect of point cloud 

thinning and on DEM results.  

Figure 32 highlights the smoothing effect on DEMs from point cloud thinning. 

The unthinned point cloud is including some erroneously classified points, while the 

thinned point clouds are ignoring some features that should likely be included in the 

ground classification. 

The results presented in the thinning analysis show that the .5 meter grid size 

thinned point clouds provide the lowest overall error. While the previous discussion on 

inclusion of microtopography could be further examined, the results should be viewed in 

the context of comparison with existing methods. Existing methods using ground-based 

surveys rely heavily on interpolation for DEM creation because of the spacing between 

each topographic point collected. Previous ground-based surveys have a range of point 
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density depending on site complexity but typically range from .1 points per m2 to .4 

points per m2 (Rosgen et al. 2018). In comparison, thinned point clouds would still have 

much higher point density to interpolate DEMs compared to ground-based surveys and 

the user can assume that the microtopography inclusion is likely higher. With ground 

filtered points thinned at the .5 meter grid size, point densities at our study sites range 

from 3.1-3.4 points per m2. While these densities are much less than the unthinned point 

clouds, their densities are still much greater than existing ground-based methods and can 

provide the user with much higher detail for DEM analysis. With RMSE values for 

LiDAR and SfM point clouds thinned at .5 meter grid size averaging .11 meters and .20 

meters respectively, both techniques could be considered useful depending on the 

application. Because of the decrease in RMSE with point cloud thinning, it would be a 

recommended step for DEM processing in vegetated floodplain terrain for both LiDAR 

and SfM in the future.  

6.3 Further Study 

This study has provided insight into the strengths and weaknesses of both UAV 

LiDAR and SfM point cloud accuracy in vegetated study areas. One area that could be 

further studied is the inclusion of oblique imagery added to SfM acquisition. Our 

platform featured a nadir camera without the possibility of including oblique imagery 

because of the fixed mounting platform of the camera. Oblique imagery has been shown 

to increase ground point returns (Nesbit et al. 2019) and would likely increase the number 

of ground points included in the final point cloud by reducing data gaps below 

vegetation.  
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What became apparent during analysis is the need for development of ground 

filtering algorithms specifically designed for SfM point cloud processing. The extreme 

density of SfM point clouds can limit processing speeds as well as complicate the 

algorithms determining ground vs. non-ground points. Binning algorithms to reduce the 

total number of points in a point cloud can help alleviate the processing issues but do not 

address the filtering of point clouds into ground vs. non-ground points.  

It is clear that filtering is a major limitation for SfM and LiDAR DEM vertical 

accuracy. This is apparent when comparing the accuracy of the initial point cloud vertical 

accuracy and DEM vertical accuracy. The erroneous inclusion of non-ground points is 

difficult to remedy and will likely be addressed in future research. There are several 

directions this analysis can take, one being thinning of point clouds prior to filtering, 

which may alleviate some of the erroneous non-ground points being included in the 

ground classification. Another is further testing of thinning grid sizes and the effect on 

DEM results. Ground filtering algorithms are continually being developed and with the 

expansion and interest in UAV topographic mapping it is likely that they will be 

improved.  
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Chapter 7 

Conclusion 

The specific goals of my research were to: 1) assess the vertical accuracy of 

UAV-LiDAR and SfM point clouds in the context of floodplains 2) assess the vertical 

accuracy of UAV-LiDAR and SfM derived DEMs and 3) give recommendations to future 

practitioners about each technique.  

Overall, this study has shown the strengths and weaknesses of UAV-LiDAR and 

SfM in the context of floodplains. LiDAR was shown to provide more accurate overall 

point cloud elevations and resulting DEMs. In bare earth locations, SfM and LiDAR 

provide similar DEM accuracy as expected. In vegetated areas, LiDAR provides higher 

accuracy results compared to SfM. Both techniques show varying accuracy depending on 

vegetation height. Vegetation within the 1-5 meter range above the ground surface is 

contributing the largest source of error in vertical accuracy. Vegetation less than 1 meter 

and greater than 5 meters has less of an impact on vertical accuracy compared to 

vegetation between 1-5 meters but still contribute to overall error. The difficulty of these 

sites for both methods should be not understated and all four sites are inherently 

challenging to both techniques. LiDAR and SfM are both known to be impacted by dense 

vegetation, which all the study sites feature, and overall the results from both techniques 

show relatively high accuracy compared to their acquistion cost.  

Ground filtering was shown to not accurately represent the ground surface and is 

instead including some vegetation points in the filtered results. This result is highlighted 

by the difference in the vertically closest point results and the DEM results, with an 
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increased emphasis on LiDAR. While the LiDAR point clouds are providing returns that 

are overall fairly accurate, the inclusion of erroneous vegetation results in the filtered 

point clouds are causing the DEM vertical accuracy to decrease. Thinning of the point 

clouds prior to DEM creation is shown to increase vertical accuracy, with the caveat 

being that microtopography is somewhat removed from the DEM. Depending on the 

needs of a specific use, a practitioner can err on the side of vegetation and 

microtopography inclusion or vice versa.  

For overall effort and time, the two techniques discussed have similar 

requirements with SfM needing slightly more processing and field-based steps. SfM with 

ground control points requires both setting and measuring GCP’s throughout each study 

area and then processing the imagery with GCP’s to acquire a georeferenced point cloud. 

LiDAR requires more equipment, with an onboard GNSS receiver and INS whereas for 

SfM the camera and GCP’s negate the need for either. In terms of cost, SfM is much less 

expensive and could be completed with equipment costing less than one thousand dollars. 

In comparison, UAV-LiDAR sensors cost roughly one thousand dollars a day to rent and 

can be purchased for several ten of thousands of dollars. The increased cost associated 

with LiDAR can be prohibitve to some practictioners.   

Based on our analysis, LiDAR is the recommended sensor in typical floodplain 

habitats. Because floodplains typically feature vegetation within all height classes 

presented in our analysis, SfM is not recommended. However, it is conceivable that 

certain ecosystems may contain vegetation that is advantageous for SfM such as sparse 

mature trees and little to no vegetation within 1-5 meters in height. As such, the 
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individual practitioner should use their knowledge of a specific ecosystem to determine if 

SfM is applicable for their needs. Likewise, the higher error associated with SfM could 

be acceptable for many projects and can still be considered a useable method available at 

a much lower cost than LiDAR systems. SfM should not be entirely discredited and the 

results show that while LiDAR produces overall higher accuracy DEMs, SfM is 

producing quality results at a much lower cost. With the high level of interest in utilizing 

UAVs for topographic mapping and the evolving nature of ground filtering algorithms 

improving their classification it is likely that both techniques will improve in accuracy 

and usefulness in the near future. 
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Appendix A: RMSE results from Aigsoft Metashape processing. 

Site RMSE X 

(CM) 

RMSE Y 

(CM) 

RMSE Z 

(CM) 

RMSE Total 

(CM) 

MFJD Site 1 1.73 1.31 .31 2.19 

MFJD Site 2 1.39 1.71 .78 2.34 

CC Site 1 1.16 1.21 .36 1.72 

CC Site 2 1.12 1.12 .95 1.85 

 

Appendix B: RMSE results from LiDAR processing. 

Site RMSE X 

(CM) 

RMSE Y 

(CM) 

RMSE Z 

(CM) 

RMSE Total 

(CM) 

MFJD Site 1 1.4 .7 1.0 1.1 

MFJD Site 2 .8 1.1 .5 1.5 

CC Site 1 1.0 2.1 .6 1.6 

CC Site 2 1.1 2.1 .6 1.5 

 

Appendix C: DEM absolute accuracy average all categories and thinning grid size 

(meters). 

Method Overall Bare Earth Veg. < 1m Veg. 1-5m Veg. > 5m 

LIDAR  .12 .078 .114 .176 .133 

LIDAR .25m .087 .105 .077 .111 .063 

LIDAR .5m .091 .131 .093 .063 .063 

SFM .164 .075 .14 .338 .16 

SFM .25m .154 .078 .133 .281 .173 

SFM .5m .145 .074 .126 .227 .2 
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