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ABSTRACT 

Methane (CH4) is the second most important greenhouse gas with a radiative forcing of 

0.97 W/m2 including both direct and indirect effects and a global warming potential of 28 

over a 100-year time horizon. Unlike CO2 whose rate of growth in the atmosphere has 

remained positive and increased in recent decades, the behavior of atmospheric methane is 

considerably more complex and is much less understood on account of the spatiotemporal 

variability of its emissions which include biogenic (e.g., wetlands, ruminants, rice 

agriculture), thermogenic (fossil fuels), and pyrogenic (i.e., biomass burning) sources. 

After sustained growth during most of the 20th century, the CH4 growth rate declined to 

fall from ~15 ppb/year during the 1980s to ~6 ppb/year in the 1990s to near-zero and even 

negative values in the early 2000s. With some surprise however, the growth rate rebounded 

in 2007 and annual increase in globally-averaged atmospheric methane abundance has been 

7.86 ppb/year on average during the past 14 years from 2007 to 2020. During this same 

period the 13CH4/
12CH4 ratio of atmospheric CH4 also declined suggesting the post-2006 

CH4 growth was caused by an increase in 13CH4-depleted biogenic emissions. Recent 

papers have attributed this growth to increasing emissions from wetlands, rice agriculture, 

and ruminants. This work provides an additional insight into the recent behavior of 

atmospheric methane by performing a global three-dimensional Bayesian inversion of 

atmospheric CH4 and 13CH4/
12CH4 ratios over the period 1983-2015 using NOAA Global 

Monitoring Laboratory (GML) CH4 measurements obtained from surface observation sites 

located worldwide and the GEOS-Chem chemical transport model (CTM) at a horizontal 

grid resolution of 2⁰ × 2.5⁰. The use of the 3-D model allowed us to exploit spatial patterns 



ii 
 

in the global CH4 and 13CH4/
12CH4 fields that provide additional constraints on the retrieval 

of the time-dependent CH4 fluxes from 10 different methane sources such as Gas and oil, 

coal, livestock, waste, rice agriculture, biomass burning from C3 and C4 vegetation, and 

wetlands separated into 3 latitudinal zones (90⁰N-30⁰N, 30⁰N-0⁰, 0⁰-90⁰S) in order to reduce 

aggregation error and to account for isotopic measurements that indicate northern high 

latitude wetlands are isotopically depleted in 13CH4 relative to tropical wetlands. Spatially 

re-gridded monthly varying prior emission fields were constructed from several sources 

and also included sinks such as reaction with OH, stratospheric loss and soil sink at the 

same spatial resolution. In this work, one year of monthly varying three-dimensional OH 

field was used in GEOS-Chem where CH4 loss due to reaction to OH was calculated at 

every grid cell for each timestep. GEOS-Chem used NASA Global Modeling and 

Assimilation Office (GMAO) data product GEOS-5 meteorological fields available for 

years 2004 to 2010 and these 6 years of meteorological variables were recycled for the 

entire inversion time. This work follows up on previous CH4 inversion where a 4⁰ × 5⁰ 

horizontal grid was used for GEOS-Chem to retrieve fluxes from 1984 to 2009 with 

GLOBALVIEW methane measurement data. A set of sensitivity tests were conducted to 

assess the impact of discontinuity in the data coverage over the entire time of inversion for 

different observation sites on the methane flux trends. 

At a higher resolution more information is extracted from the observations due to improved 

model skill and a smaller number of stations aggregated within model grid cells. This 

increases the weights of the measurements relative to the a priori fluxes in the inversion 

producing stronger observational constraints on the optimized fluxes. This work assesses 
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the contribution of spatial heterogeneities in the observed CH4 record to the retrieval of 

global CH4 fluxes and provides a new look into the causes of more than a decade-long 

growth in atmospheric methane. The comparison between the results of optimized methane 

emissions from this current inversion work (2⁰ × 2.5⁰) and previously done inversion work 

(4⁰ × 5⁰) up through the end of 2008 revealed some prominent differences in the emission 

anomalies plots of the individual source categories of gas and oil, coal, livestock, and waste 

and in the aggregated source categories of fossil fuels, wetlands and all biogenic. 

The model simulated concentrations using the a posteriori emission estimates match 

remarkably well for both the long-term trend and magnitude of the observed NOAA 

concentrations as well as the seasonal cycle of the measurements, except a few small 

discrepancies. The inversion analysis indicates that the total averaged global methane 

emission over years 1983 to 2015 is estimated to be 530±50 Tg/year, over the decade of 

2006-2015 is 543±44 Tg/year which is ~20 Tg/year more than that during previous decade, 

over years 2006 to 2010 it is estimated to be 539±44 Tg/year, whereas over years 2011 to 

2015, it is estimated to be 547±45 Tg/year. The global methane emissions over years of 

1983 to 2015 from all biogenic sources of both natural and anthropogenic origin account 

for ~73% of the total global CH4 emissions. Anthro-biogenic sources contribute about 39% 

of the total global CH4 emissions, whereas natural wetlands contribute about 34.5% of the 

total CH4 emissions. Emissions from fossil fuels sector constitute about 18.5% of the total 

global CH4 emissions and biomass burning about 8.3% of the total global CH4 emissions. 

The averaged emission estimate of emissions from all biogenic sources (both natural and 

anthropogenic) shows an increase of about ~25 Tg/year during 2006-2015 than that during 
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1994-2005, whereas the anthro-biogenic sources show highest increase in averaged 

emission estimate of about ~43 Tg/year during 2006-2015 than that during 1994-2005. The 

results of this study conclude that the major contribution of emissions from all biogenic 

sources both natural and anthropogenic as well as minor contribution from biomass burning 

may have caused the increase in global methane levels since post-2006. It is revealed that 

the emissions from individual source categories of livestock, wastes, coal, northern high 

latitude wetlands and biomass burning of C3 vegetations had increased during 2006-2015. 

Although a persistent increase in total methane levels was observed until the end of the 

study period, a shift in relative contributions from the emissions of individual source 

categories may have occurred since 2011 onwards. With the decline in emissions from 

anthro-biogenic sources of livestock and rice, northern tropical wetlands, fossil fuel source 

of coal and biomass burning of C4 vegetations, the increase in global methane levels since 

2011 until the end of the study period may possibly be due to the contribution of increased 

emissions from sources of wastes, natural wetlands (southern hemisphere and northern 

high latitudes), fossil fuel source of gas and oil, and biomass burning of C3 vegetations 

globally.  

The sensitivity test inversion scenarios for all of the source categories maintained the same 

trends of methane emissions throughout the study period as base case inversion scenarios 

discussed above but, in some cases, with a significantly wider range in the mean values of 

the emissions. Emissions from sources like fossil fuels, livestock, and wastes are more 

sensitive to the variation in network densities of observational sites with continuous data 

coverage. 
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CHAPTER 1 

Introduction 
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1.1.  Atmospheric Methane 

 

Methane (CH4) is the most abundant organic trace gas in the atmosphere and the most 

abundant greenhouse gas in the troposphere after water vapor and carbon dioxide (CO2). 

Atmospheric methane is also the second most radiatively important anthropogenic 

greenhouse gas after carbon dioxide. Methane only makes up 0.00018% (1.8 parts per 

million by volume) of the atmosphere, though it traps a significant amount of heat, helping 

the planet remain warm and habitable. A balance between production of methane on the 

surface and its destruction in the atmosphere results in the amount of methane in the 

atmosphere. Methane forms from the decomposition of organic matter in oxygen-poor 

environments, such as marshes, rice paddies, or the digestive systems of cattle. It also 

comes from the production of fossil fuels including oil, natural gas, coal, and the 

combustion (burning) of carbon-based biofuels. According to the Fifth Assessment Report 

of the Intergovernmental Panel on Climate Change (IPCC, AR5, 2013), globally averaged 

surface CH4 concentrations have risen from 722 ± 25 ppb in 1750 to 1803 ± 2 ppb by 2011. 

Over that time scale the rise has been predominantly due to changes in anthropogenic-

related CH4. Using the formula from Myhre et al. (1998), the radiative forcing (RF) for 

CH4 from direct effect since 1750 to 2011 is 0.48 ± 0.05 W/m2 out of 2.83 W/m2 by well 

mixed greenhouse gases, with an uncertainty dominated by the radiative transfer 

calculation (Figure 1.1). Including indirect effects of CH4 emissions roughly doubles its 

effective radiative forcing to 0.97 Wm–2. The increase of RF by 0.01 Wm–2 since 2007 is 

due to the 29 ppb increase in the CH4 mixing ratio. This is much larger than the 11 ppb 

increase between 2001 and 2007 and has been driven by increases in net natural and 
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anthropogenic emissions, but the relative contributions of the sources are not well 

quantified. CH4 concentrations do vary with latitude and decrease above the tropopause; 

however, this variation contributes only 2% to the uncertainty in RF (Freckleton et al., 

1998). Its global warming potential based on 100 years’ time scale is 28 that means it traps 

28 times more heat per unit mass than carbon dioxide, but based on 20 years’ time horizon 

is 84, illustrating the potential of large changes in the burden of CH4 to influence climate 

on shorter time scales (Myhre et al., 1998; Gunnar et al., 2013). 

 

 

Figure 1.1: Bar chart for RF (hatched) and ERF (solid) for the period 1750–2011. Uncertainties (5 to 95% 

confidence range) are given for RF (dotted lines) and ERF (solid lines) [IPCC, AR5, 2013]. In the Fifth 

Assessment Report (AR5) of the IPCC (2013), the term radiative forcing (RF, also called stratospherically 

adjusted RF, as distinct from instantaneous RF) was defined as the change in net irradiance at the tropopause 

after allowing for stratospheric temperatures to readjust to radiative equilibrium, while holding surface and 

tropospheric temperatures and state variables such as water vapor and cloud cover fixed at the unperturbed 

values. Effective Radiative Forcing (ERF) is the change in net downward radiative flux at the top of the 

atmosphere (TOA) after allowing for atmospheric temperatures, water vapor, and clouds to adjust, but with 

surface temperature or a portion of surface conditions unchanged. 

https://en.wikipedia.org/wiki/Carbon_dioxide
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The effects of CH4 on climate and atmospheric chemistry are the reason for concern over 

its high growth rate. Both on a molecule and a mass basis, additional methane is much 

more effective as a greenhouse gas than additional CO2. Methane is also the most abundant 

reactive trace gas in the troposphere and its reactivity is important to both tropospheric and 

stratospheric chemistry. The oxidation of CH4 by hydroxyl (OH) in the troposphere leads 

to the formation of formaldehyde (CH2O), carbon monoxide (CO), and ozone (O3), in the 

presence of sufficiently high levels of nitrogen oxides (NOx). Methane is removed from 

the atmosphere in major amount (about 90%) by the reaction with hydroxyl radical (OH) 

in the troposphere and stratosphere making the atmospheric methane budget extremely 

sensitive to OH changes, minor reactions with atomic chlorine in the marine boundary layer 

and with electronically excited oxygen atoms (O(1D)) in the stratosphere, and a minor but 

significant removal through oxidation by methanotrophic bacteria in soils (Denman et al., 

2007).  

 

Methane has a relatively short atmospheric lifetime of 8 to 11 years compared to other 

greenhouse gases, hence reductions in its emissions could have benefits on climate 

immediately, making methane an important target for efforts in mitigating climate change 

(Dlugokencky et al., 2011). After a decade long period of decreasing growth rate, 

atmospheric methane concentrations have risen in recent years raising concerns to its long-

term stability. Despite much study, the factors responsible for this instability remain 

unclear. Large uncertainties still afflict the estimates of the relative contribution of the 

different methane sources and sinks to the atmospheric methane levels due in part to their 

variable nature. Measurements of only CH4 mole fractions provide insufficient information 
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to determine definite causes of the recent rise, therefore, isotopic measurements are useful 

as a direct means to put powerful constraints that can help to identify specific source 

contributions. Thus, a reliable quantitative comprehension of the global CH4 budget is 

necessary to predict future contributions of atmospheric methane to global warming and to 

develop effective and sensible emission strategies for its mitigation.  

 

1.2. Distribution and Trend of Atmospheric Methane 

 

1.2.1. Atmospheric methane record in ancient past  

 

Ice cores with their entrapped air inclusions provide the most direct, detailed, and complete 

measured records of past changes in atmospheric trace-gas composition and descriptions 

of past climate change that are extremely valuable for comparison with modern 

observations. The air bubbles from ice cores revealed continuous record of atmospheric 

concentration of methane over the past thousands of years which are associated with 

climate fluctuations (e.g., Legrand et al., 1988; Chappellaz et al., 1990; Etheridge et al., 

1992, 1998; Jouzel et al., 1993; Nakazawa et al., 1993; Raynaud et al., 1993; Blunier et al., 

1995, 1998; Brook et al., 1996). The ice core results point to changes in sources of methane 

and show that methane has probably contributed, like carbon dioxide, to glacial-interglacial 

temperature changes (Chappellaz et al., 1990). The Vostok ice core (East Antarctica) 

covering the last 160,000 years included CO2 and CH4 greenhouse gas records, which are 

closely tied to Antarctic temperature variations over the last full glacial/interglacial climate 
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cycle (Lorius et al., 1985; Barnola et al., 1987; Jouzel et al., 1987; Chappellaz et al., 1990). 

The drilling of ice cores from Greenland and Antarctica allowed the extension of the record 

of atmospheric CH4, CO2 and temperature back to 420,000 years BP (Petit et al., 1999), 

covering four glacial-interglacial cycles. The atmospheric burdens of these two important 

greenhouse gases seem to have been unprecedented during the past 420,000 years with 

CH4 records showing glacial-interglacial transitions rose from 320-350 ppbv up to a 

maximum of 650-780 ppbv (Petit et al., 1999). This atmospheric methane concentration 

had been less than half of the current level in the time period of 420,000 years before 

industrial era (Petit et al., 1999), included the period of the last glacial maximum in which 

CH4 increased and decreased in phase with atmospheric temperature records at onset and 

end of these glacial periods (Chappellaz et al., 1993). However, results from several ice 

core studies supported that wetlands in response to changing climate caused the majority 

of CH4 increases with rise in emissions from low-latitude, followed by higher latitude 

(Chappellaz et al., 1993a,b; Thompson et al., 1993; Blunier et al., 1995; Brook et al., 1996). 

Chappellaz et al. (1993) estimated the wetland area distribution with associated CH4 

emission for the Last Glacial Maximum (LGM, 18 kyr BP, kiloyear Before Present) and 

the Pre-Industrial Holocene (PIH, 9000-200 years BP). The estimates from wetland source 

combined with that of other biogenic sources and sink, yielded total source strengths of 

120 and 180 Tg CH4/yr for LGM and PIH, respectively, which were consistent with source 

estimates inferred from a photochemical model and pointed to wetland CH4 source change 

as a major driving factor for increase in atmospheric CH4 from LGM to PIH (Chappellaz 

et al., 1993). 
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During ice ages, decrease in sea level due to growing ice sheets might have caused 

destabilization of methane clathrates (defined as lattice structured chemical compounds in 

which large amounts of methane are trapped within a crystal of water in the form of solid 

deposits found under the sediments of the ocean floor) contained in sediments on 

continental shelves which in turn could lead to abrupt large-scale releases of CH4 into the 

atmosphere capable of inducing a global temperature increase of up to 1-2oC over a few 

decades that might have initiated the glacial termination (Thorpe et al., 1996; Dickens et 

al., 1997). The fractionation of nitrogen and argon isotopes at the end of the Younger Dryas 

cold interval, recorded in Greenland ice, demonstrated abrupt warming coinciding with the 

onset of a prominent rise in atmospheric methane concentration, indicated that the climate 

change was synchronous (within a few decades) over a region of at least hemispheric 

extent, but however, it was clear from the phase data that the majority of CH4 increase was 

0-30 years after the warming, thus eliminating the causal role of CH4 in glacial-interglacial 

climate change, instead methane seemed to have responded to the changing climate 

(Severinghaus et al., 1998). 

 

CH4 concentrations from ice core data of Greenland and that of Antarctica over the period 

of Holocene to the late pre-industrial era, are compared which showed a hemispherical 

gradient of 24-58±10 ppbv (north polar to south polar) with larger difference during 

warmer climates and also indicated consistently larger emissions in the Northern 

Hemisphere (NH), with contrasting influences of emissions from anthropogenic sources 

and tropical wetlands acting to balance out the gradient (Nakazawa et al., 1993; Chappellaz 

et al., 1997; Etheridge et al., 1998). Several inventory studies estimated that the total natural 
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source of CH4 was 190 Tg CH4 yr-1 during the Late Pre-Industrial Holocene (LPIH) 

allowing for a soil sink of 10 Tg yr-1 (Chappellaz et al., 1993) and anthropogenic sources 

grew with estimates ranging from 7 to more than 55 Tg CH4 yr-1 in the centuries leading to 

industrial period (Kammen and Marino, 1993; Subak, 1994). Natural emissions 

(predominantly wetlands), anthropogenic emissions and reaction with OH mainly 

contributed to the LPIH CH4 variability with small contribution from methane exchange 

with the ocean (Etheridge et al., 1998). Atmospheric CO2 levels changed almost in phase 

with CH4 records during the Little Ice Age (LIA) and the Medieval Warm Period (MWP) 

(Etheridge et al., 1996, 1998).  

 

1.2.2. Atmospheric Methane Concentrations since Pre-Industrial Time  

 

Pre-industrial methane levels were investigated by several ice core studies for over last 

1000 years with variation in degrees of uncertainty in air age resolution and precision in 

CH4 measurement, and later in this century, observations were made from firn air and 

ground-based monitoring stations since 1978. First studies were published in the early 

1980s clearly documenting increased levels of methane mixing ratio in the atmosphere 

(Rasmussen and Khalil, 1981; Fraser et al., 1981; Blake et al., 1982). The amount of 

methane in the atmosphere has been observed to be growing since over past 200 years, 

from the modern direct measurements and from the analysis of air inclusions in polar ice 

(Craig and Chou, 1982; Etheridge et al., 1992; Matsueda et al., 1996; Rasmussen and 

Khalil, 1984; Stauffer et al., 1985; Steele et al., 1992). This growth is mainly attributed to 
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increased human population with increased anthropogenic CH4 sources during the 

agricultural period and later during the industrial period. During Preindustrial times, about 

75% of the CH4 was emitted from wetlands (Chappellaz et al., 1993), about 60% of these 

emissions were from the northern hemisphere (NH) and about 20% from high northern 

latitudes (Harriss et al., 1993). Predominantly higher methane levels were found during 

1050-1250 A.D. (Etheridge et al., 1998), when temperatures of most parts of the world 

were higher as considered to be Medieval Warm Period, though there is debate on the 

existence of such generalized patterns of climate into such periods as Little Ice Age (LIA) 

and Medieval Warm Period (MWP) with evidence for (Keigwin, 1996; Thompson et al., 

1995) and against (Hughes and Diaz, 1994) the notion. Growth in human population with 

more anthropogenic activities may also account for increased methane emissions before 

LIA such as from 1250 to 1550 A.D. (Etheridge et al., 1998). The global CH4 levels were 

measured between about 675 and 850 ppb before 1800 A.D. and lower values during 1450-

1660 A.D. which was suggested due to climatic forcings of the CH4 sources (Khalil and 

Rasmussen, 1989). Methane levels rose immediately after 1750 A.D. with unprecedented 

amount, probably due to the combined effects of the emissions from the natural CH4 

sources got recovered to their pre-LIA state, and the start of major anthropogenic emissions 

(Etheridge et al., 1998). From 1000 to 1800 A.D. the global mean methane mixing ratio 

was around 695 ppb and varied about 40 ppb, simultaneously varied with climate and 

interpolar (N-S) differences varied between 24 and 58 ppb, furthermore, high methane 

growth rates were marked in the industrial period from 1945 to 1990, peaking at about 17 

ppb/yr in 1981 (Etheridge et al., 1998). An average total methane source of 250 Tg/yr was 

calculated for 1000-1800 A.D., reaching near stabilization at about 560 Tg/yr in the 1980s 
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and 1990s (Etheridge et al., 1998).  

 

The global average methane mixing ratio rose to almost 1800 ppb since the onset of the 

industrialization, reaching a level unknown in the last 650,000 years (Spahni et al., 2005). 

Direct measurements of CH4 in the atmosphere began in 1978 (Blake et al., 1982) and 

global coverage was reached after 1983. Surface-based observations from four networks: 

National Oceanic and Atmospheric Administration (NOAA); Advanced Global 

Atmospheric Gases Experiment (AGAGE); Commonwealth Scientific and Industrial 

Research Organization (CSIRO); and University of California Irvine (UCI) show consist-

ent changes in the global growth rate of annual CH4 concentrations since 1980.  

 

Most (70%) of the atmospheric CH4 increase in the industrial era can be explained 

assuming the anthropogenic sources increased with the same rate as for growth of human 

population (Khalil and Rasmussen, 1985; Quay et al., 1988). CH4 concentrations were 

increasing at almost 1% per year in the late 1970s and early 1980s (Blake and Rowland, 

1988). Khalil and Rasmussen (1987, 1994a) did a top-down model analysis and found a 

good agreement between increasing population, agricultural emissions, and the observed 

rise in methane emissions over the past 200 years. Several studies based on simulations 

showed a decline in OH sink from pre-industrial times to 20th century with depletion of 

OH averaged around 10-30%, depending on the models used (Khalil & Rasmussen, 1985; 

Crutzen & Zimmerman, 1991; Thompson, 1992; Crutzen & Bruhl, 1993; Khalil & 

Rasmussen, 1994; Osborn & Wigley, 1994; Crutzen, 1995; Brasseur et al., 1998; Lelieveld 

et al., 1998; Wang et al., 1998). 
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Some studies (such as Prinn et al., 2001; Bousquet et al., 2005) estimated the temporal 

variations of OH concentrations in the atmosphere from 1978 to 2000 calculated using 

methyl chloroform as an indicator of OH trends which showed global OH trend as positive 

until about 1988 and then became increasingly negative after that year. One model study 

plotted temporal changes for both OH concentration and CH4 emissions simultaneously 

from 1981 to 2000 (Khalil et al., 2007) and mentioned that changing lifetime of the 

changing CH4 source was reflected in the observed pattern of emissions which is 

proportional to the change in OH since reaction with OH radicals control the lifetime of 

methane. Meanwhile, some model studies mentioned the global annual methane sources 

remained nearly constant from 1988 to 1997 with assumption of constant OH concentration 

and constant atmospheric lifetime of methane but captured the general decrease in the CH4 

growth rate observed during that time and the anomalous inter-annual fluctuations in 

methane growth rate during 1992-1993 after the eruption of Mt. Pinatubo in 1991 and 

during 1997-1998 due to contribution from wetland and boreal biomass burning emissions 

(Dlugokencky et al., 1994, 1998, 2001; Wang et al., 2004). 

 

However, another study proposed that the globally averaged atmospheric methane 

abundance increased from 1625 ppbv during 1984 to around 1751 ppbv during 1999 and 

remained nearly constant through 2002 determined from an extensive network of surface 

air sampling sites (Dlugokencky et al., 2003). Notably, global atmospheric CH4 burden has 

increased by a factor of 2.5 from its pre-industrial value, proportionately far greater than 

the parallel increase in CO2, it is driven mostly by increased anthropogenic emissions from 
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fossil fuels, industries, agriculture including biomass burning and waste, but changes in 

CH4 lifetime and meteorological feedbacks may also have played a role (Dlugokencky et 

al., 2011). The global anthropogenic CH4 emissions were estimated to increase by 32 Tg 

since 1990, especially after 1999 as in EDGAR4 (2009) inventory (Bousquet et al., 2011). 

The atmospheric CH4 level was generally stabilized from 1999 to 2006 averaged at around 

1773±3 ppb (Kirschke et al., 2013). During the last decade, surprisingly the atmospheric 

CH4 levels had resumed growth significantly since 2006 (Rigby et al., 2008; Dlugokencky 

et al., 2009; Bousquet et al., 2011; Kirschke et al., 2013; Schaefer et al., 2016; Nisbet et 

al., 2016). The globally averaged CH4 dry air mole fraction in 2009 was 1794 ppb based 

on the US NOAA measurements (Dlugokencky et al., 2011) and reached 1799±2 ppb in 

2010 (Kirschke et al., 2013). The renewed growth in atmospheric CH4 concentration has 

persisted for 9 years and pace of the present methane rise is roughly 60 ppb in 9 years since 

the start of 2007 (Nisbet et al., 2016). Although, the factors responsible for the observed 

stabilization of atmospheric methane levels remain vague in the early 2000s, and the 

renewed rise after 2006, some conclusions were drawn with uncertainties in emission 

trends such as observed stabilization of methane levels between 1999 and 2006 was 

explained with decreasing-to-stable fossil fuel emissions, combined with stable-to-

increasing microbial emissions and rise after 2006 was due to contributions both from 

natural wetlands and fossil fuel emissions (Kirschke et al., 2013). Most recent studies agree 

with the fact that this new increase is basically due to emissions from biogenic methane 

sources (detailed discussion in section 1.3.3.), such as may be due to climatic feedback 

caused thawing of Arctic permafrost and CH4 hydrates (Dlugokencky et al., 2011), tropical 

wetlands (Bousquet et al., 2011; Nisbet et al., 2016), or agricultural emissions (Schaefer et 



 

13 
 

al., 2016), or may also be due to increase in fossil fuel emissions (Rice et al., 2016). Figure 

1.2 presents the current globally averaged atmospheric methane record with measurement 

of 1888.5 ppb as in March 2021 [Reference: Ed Dlugokencky, NOAA/ ESRL 

(www.esrl.noaa.gov/gmd/ccgg/trends_ch4/)] which is approximately ~110 ppb increase 

than the methane mole fraction in the start of 2007. 

 

 
 

Figure 1.2: Globally averaged monthly mean atmospheric methane abundance record since 1983 [Ed 

Dlugokencky, NOAA/GML (gml.noaa.gov/ccgg/trends_ch4/)]. The red line and diamonds are globally 

averaged monthly mean values centered on the middle of each month. The black line and squares show the 

long-term trend where the average seasonal cycle has been removed. 
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1.3. Methane Growth Rates  

 

1.3.1. Causes of Methane Growth Rate Changes during Past Decades  

 

The methane growth rate averaged around 20 ppbv/year during the decade of 1970 (Blake 

and Rowland, 1988). The growth rate began to slow in the 1980s (Steele et al., 1992) and 

in the late 1992 and early 1993 there was a period of net decrease in the globally averaged 

CH4 levels (Dlugokencky et al., 1998). However, the growth rate of atmospheric methane 

had decreased from 14 ppbv/yr (0.9%/year) in 1984 to near zero during 1999-2000 

(Dlugokencky et al., 2003). The growth and decline in globally averaged annual 

atmospheric methane over past decades can be seen in Figure 1.3 which shows the plot 

summarizing the annual global increases in atmospheric methane based on globally 

averaged marine surface data since 1984 to 2021 [Ed Dlugokencky, NOAA/GML 

(gml.noaa.gov/ccgg/trends_ch4/)]. The annual increase in atmospheric CH4 in a given year 

is the increase in its abundance (mole fraction) from January 1 in that year to January 1 of 

the next year, after the seasonal cycle has been removed, which represents the sum of all 

CH4 added to, and removed from, the atmosphere during the year by human activities and 

natural processes [Ed Dlugokencky, NOAA/GML (gml.noaa.gov/ccgg/trends_ch4/)]. 

There was also report of a significant decrease in the difference between northern and 

southern polar zonal annual averages of CH4 from 1991 to 1992 (Dlugokencky et al., 2003). 

Using a 3-D transport model, it was shown that this change is consistent with a decrease in 

CH4 emissions of about 10 Tg CH4 from north of 50ºN in the early 1990s which might had 

accelerated the global methane budget towards steady state (Dlugokencky et al., 2003). 
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This long term slowdown was likely tied to a change in the imbalance between methane 

sources and sinks, i.e., either increase in methane removal or decrease in methane 

emissions. Despite many theories, it remained unclear the causes of this change. Khalil and 

Rasmussen (1993 and 1994 a, b) reasoned for slowdown in 1980s as the methane emissions 

from anthropogenic sources like from agricultural activities, livestock and coal mining had 

leveled off in the 1980s and were not likely to contribute to the increase in atmospheric 

methane. Several other reasons had been suggested including reductions in natural gas 

release (Dlugokencky et al., 1994a), decrease in δ13C enriched sources such as biomass 

burning in Southern Hemisphere or fossil fuel use in Northern Hemisphere (Lowe et al., 

1994, 1997; Gupta et al., 1996) and wetland CH4 production (Dlugokencky et al., 1994a), 

and increased CH4 loss rates (Bekki et al., 1994). Methyl chloroform measurements 

inferred observed trends in the seasonal cycle of methane, and global OH concentrations 

which did not support a significant change in OH over the past decades (Dlugokencky et 

al., 1997; Prinn et al., 1995). Similarly, from the isotopic analysis over that time the growth 

rate of δ13C was inconsistent with a substantial increase in the CH4 sink (Etheridge et al., 

1998). In contrast, Karlsdottir and Isaksen (2000) estimated the tropospheric OH had 

increased by about 7% or 0.43%/year from 1980 to 1996, which could have reduced the 

atmospheric lifetime of CH4, but implied methane increased overall at a rate of 0.67%/year 

during that time when combined with observed record (Wuebbles and Hayhoe, 2002). 

Although the exact cause of this long-term decline in the global methane rate was 

unresolved, Dlugokencky et al. (1998) suggested that observation was in fact an approach 

to steady state, as CH4 net emissions and sinks were nearly constant over the past two 

decades. Li et al. (2002) mentioned that the switch of irrigation system from continuous 
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flooding to mid-season drainage of rice paddies was widely implemented in China during 

the 1980s which was intended to conserve water and increase yields, but as an ancillary 

benefit, this led to significant reduction in methane emissions from rice cultivation. 

Suggestions from some studies involved decreasing natural emissions from wetlands might 

have occurred because of wet deposition of sulfates from acid rain (van Bodegom et al., 

2001; Gauci et al., 2002). On the other hand, Khalil et al. (2007) noted that for methane 

long-term periodic cycles or events existed and influenced the observed concentrations and 

trends much more than any systematic increase or decrease of sources and sinks. Moreover, 

if the sources had increased in the past there was no environmental consequences such as 

increased global warming, due to the balance of sources and sinks as the extra amounts of 

CH4 put into the atmosphere would be the same amounts that would have to be taken out 

by the increased OH to be consistent with the observed concentrations of methane during 

the last two decades, hence the concentrations behaved exactly as if the sources and sinks 

had been constant (Khalil et al., 2007). The apparent stabilization of methane growth rate 

in 1990s was reasoned as the decrease in CH4 emissions due to the collapse of former 

USSR economy (Dlugokencky et al., 2003), also EDGAR4 (2009) showed a decrease in 

anthropogenic CH4 emissions from continental Europe, but showed a contributing increase 

in tropical and East Asian CH4 emissions (Bousquet et al., 2011). The low growth rate in 

late 1990s/early 2000s was attributed to effect of increasing anthropogenic emissions and 

decreasing natural wetland emissions consistent with the fact that drier conditions prevailed 

in various regions during that time in the Northern Hemisphere (Bousquet et al., 2006). 

This noteworthy slowdown of methane growth rate was not continuous but was 

superimposed with large inter-annual fluctuations and few short-term anomalies which are 
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discussed in section 1.3.2. Measurements of CH4 growth rate jumped back up to 8-12 

ppbv/yr in 1997 and 1998 and then again fell to near zero in 2000 (Dlugokencky et al., 

2003), also seen in Figure 1.3. The methane growth rate decreased further (even negative 

as seen in Figure 1.3) during 2000-2001 (Simpson et al., 2002; Dlugokencky et al., 2003), 

then a small increase in 2002 with growth rate of ~2 to 7 ppb/year was observed 

(Dlugokencky et al., 2003). From 1999 to 2006, the globally averaged CH4 was relatively 

constant (Rigby et al., 2008; Dlugokencky et al., 2011) with very low and even negative 

(during 2004-2005) growth rates also seen in Figure 1.3, whereas EDGAR4.1 (2009) 

inventory showed anthropogenic CH4 emissions trended a small increase of 6 Tg/year 

during 1999-2005. A renewed increase in global CH4 growth rate of almost 10 ppb in late 

2007 was observed (Rigby et al., 2008), also seen in Figure 1.3. This rise was confirmed 

by all other related studies, the cause of which was inferred differently by different studies 

(discussed in detail in section 1.3.3.) such as a -4%±14% decrease in OH from 2006 to 

2007 (Rigby et al., 2008), large scale CH4 emissions due to rapid warming and thawing of 

Arctic permafrost and CH4 hydrates (Dlugokencky et al., 2011), dominant emissions from 

tropical wetlands (Bousquet et al., 2011). 
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Figure 1.3: Plot summarizing the annual global increases in atmospheric methane based on globally 

averaged marine surface data since 1984 [Reference: Ed Dlugokencky, NOAA/GML 

(gml.noaa.gov/ccgg/trends_ch4/)]. The annual increase in atmospheric CH4 in a given year is the increase 

in its abundance (mole fraction) from January 1 in that year to January 1 of the next year, after the seasonal 

cycle has been removed.  

 

1.3.2. Causes of Anomalies in Methane Growth Rates as suggested by 

Previous Studies 

 

The much discussed causes of the fluctuations involve anomalies observed between 1991 

and 1993, between 1997 and 1998 and relatively smaller fluctuation between 2002 and 

2004. During the period 1991 – 1993, the growth rate of CH4 increased sharply after the 

eruption of Mt. Pinatubo in June in 1991 followed by a sudden drop in 1992 to 
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exceptionally low values, even less than zero and then a partial recovery during 1993 

(Dlugokencky et al., 1994). Average growth rate in 1992 was about 1.8 ppbv/yr in the 

Northern Hemisphere, and 7.7 ppbv/yr in the Southern Hemisphere (Dlugokencky et al., 

1994a, b, 1998). Many studies have suggested the eruption of Mt. Pinatubo in Philippines 

in June 1991 had important impacts on methane sources and sinks linked with this 

anomalous behavior. Dlugokencky et al. (1996) calculated ultraviolet actinic flux in the 

wavelength region 290–310 nm which was attenuated by ~12% immediately after the 

eruption due to absorption by SO2 using a radiative transfer model, and showed that the 

ultraviolet flux was perturbed for up to one year because of scattering by sulphate aerosols. 

The production of main sink of CH4 i.e., OH radical decreased which depends strongly on 

the photolysis of ozone by solar ultraviolet radiation, therefore attributed to the increased 

CH4 growth rates just after the eruption. A period of net decrease in globally averaged 

methane levels was observed in late 1992 and early 1993. Some studies proposed the reason 

for short-term CH4 drop as increase in tropospheric OH through mechanisms such as El 

Niño-induced increasing tropospheric water vapor, an important source of OH (Khalil & 

Rasmussen, 1993), or aerosol-induced stratospheric ozone depletion, causing an increase 

in tropospheric UV radiation and a subsequent rise in OH formation may also help explain 

the decrease in global growth rate (Bekki et al., 1994). Increased stratospheric temperatures 

following the Pinatubo eruption may have enhanced mixing of stratospheric air, resulting 

in low CH4 levels, had also been proposed (Schauffler & Daniel, 1994). Discussed as 

possible contributors to the brief but abrupt slowing are occurrences of colder and dryer 

conditions in the aftermath of the eruption causing reductions in emissions from sources 

like tropical biomass burning due to 1991-1992 droughts in southern Africa, or decrease in 
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wetland emissions, or also lowered emissions from Northern Hemisphere fossil fuel 

sources after economic breakdown of the Former Soviet Union (Lowe et al., 1994, 1997; 

Dlugokencky et al., 1994b, 2001; Law & Nisbet, 1996; Hogan & Harriss, 1994; Walter et 

al., 2001). Observational and modeling studies constrain these theories to match the 

observed drop by comparing source strengths, mixing ratios, and isotopic abundances. 

Instead of role of atmospheric chemistry or changes in wetland emissions, a decrease in 

δ13C-enriched sources such as biomass burning in the Southern Hemisphere or fossil fuel 

use in the Northern Hemisphere was supported when regional mixing ratios were compared 

with δ13C isotopic measurements (Lowe et al., 1994, 1997; Gupta et al., 1996). However, 

Quay et al. (1999) could not distinguish the possible impacts of changes in biogenic 

sources, fossil sources, and OH concentration by using isotopic measurements from six 

sites which were not precise enough to explain for observed slowdown in CH4 growth rate 

experienced in 1992.  

 

The growth rate of methane increased sharply during 1997-1998 to regain its level as in 

pre-1980, but quickly fell again. The strongest record-high El-Niño event was considered 

coincident with this anomaly. In El Nino events like during 1997, the response of emissions 

to temperature and the lag in wetland drying may in part accounted for methane growth. 

The increase in the growth rate of CH4 was also attributed by competing theories such as 

widespread dryness causing extensive wild fires in boreal and tropical regions (Langenfelds 

et al., 2002; van der Werf et al., 2004; Bousquet et al., 2006), or large abnormal peat fires 

in Indonesia released huge amount of CH4 from smoldering combustion (Page et al., 2002; 

Simmonds et al., 2005), or anomalously large emissions from wetlands (Dlugokencky et 
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al., 2001, 2003; Mikaloff Fletcher et al., 2004a, b), since anthropogenic emissions show 

gradual change with time, these abrupt year-to-year fluctuations were more likely to be 

influenced by natural emissions such as from wetlands and biomass burning (Bousquet et 

al., 2006; Chen and Prinn, 2006). However, it was found that the northern region wetland 

emissions decreased in 1997, followed by an increase in southern region wetland emissions 

in 1998 (Bousquet et al., 2006) consistent with dryer and wetter climatic conditions. A 

larger decrease was observed in OH concentrations during this time may be due to possible 

large emissions of carbon monoxide (Butler et al., 2005) and other reactive carbon 

compounds emitted from fires (Manning et al., 2005) could have contributed to growth in 

CH4 at a faster rate (Bousquet et al., 2006). Furthermore, another study calculated the 

difference in CH4 emissions and sinks which had increased by ~25 Tg/year (6.3±0.7 ppb 

in 1997 and 12.4±0.7 ppb in 1998), out of average total CH4 emissions of 550 Tg/year, also 

suggested similar causes as increased tropical biomass burning may had affected the CH4 

sink by changing [OH] and also warm, wet conditions might had triggered more emissions 

from wetland regions in high northern latitudes and tropics (Dlugokencky et al., 2009).     

 

The relatively smaller fluctuation in methane growth rate during 2002-2004 was also 

considered as the consequence of increase in biomass burning emissions in the Boreal and 

temperate North America, boreal and central Asia and Australia higher than their respective 

average emissions, also large emitting regions of Africa, South America and Equatorial 

Asia showed their respective approximate-average emissions during 2002-2003 (van der 

Werf et al., 2006). These emissions might be related to climate events such as 2002-2003 

dry period prevailed over northern mid latitudes (Simmonds et al., 2005; Bousquet et al., 



 

22 
 

2006). Despite the small fluctuation, the low mean of atmospheric CH4 growth rate 

persisted during 2000-2003 because of the balance of increasing anthropogenic CH4 

emissions such as from fossil fuels, recovered to the early 1990s level and the significant 

drop in northern region wetland emissions and a decrease in OH sink in the tropics with 

more CH4 removal in 2003 (Bousquet et al., 2006). 

 

1.3.3. Causes of Increase in Methane Growth Rate since 2007 as mentioned 

by Previous Studies  

 

Methane concentrations had begun to increase again since 2007 (Rigby et al., 2008), with 

global increase of 8.0±0.6 ppb in 2007 and 4.4±0.6 ppb in 2008 (Dlugokencky et al., 2009). 

The largest zonally averaged CH4 increase of 13.7±1.3 ppb was observed in polar northern 

latitudes in 2007, in addition, the zonally averaged Southern Hemisphere CH4 increase was 

9.2±0.3 ppb which was more than that of 7.3±1.3 ppb for Northern Hemisphere in 2007, 

whereas the largest increase of 8.1±1.6 ppb was observed at low northern latitudes in 2008 

(Dlugokencky et al., 2009). Several studies concluded that one main cause of increasing 

CH4 levels in 2007 is a surge in natural wetland emissions in response to abnormally high 

temperatures in northern high latitudes, and increased rainfall over tropical wetlands during 

2008-2009 and 2010-2011 (Dlugokencky et al., 2009, 2011; Bousquet et al., 2011; Bloom 

et al., 2010). The higher temperatures at polar northern latitudes during 2007 might had 

enhanced the increase in emissions from northern wetlands, but resumed low CH4 growth 

rate with increase of 0.5±0.8 ppb in 2008 depicted that the Arctic had not reached the point 
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of sustained increase of CH4 emissions from melting permafrost and CH4 hydrates during 

2007-2008 (Dlugokencky et al., 2009). Furthermore, two La Niña events in 2007 and 2008 

might be responsible for positive anomalies in precipitation in Indonesia and eastern 

Amazon which might possibly had driven increased emissions from tropical wetlands and 

simultaneously interhemispheric transport during ENSO cool phase might had increased 

CH4 growth rate in mid to high southern latitudes during 2007 (Dlugokencky et al., 2009). 

The average atmospheric CH4 increase each year, i.e., growth rate, based on measurement 

network, showed a persistent change in emissions from Arctic wetlands of about 3 Tg year–

1 (Dlugokencky et al., 2011). Bousquet et al. (2011) investigated the distribution of sources 

and sinks for the 2006-2008 periods by using two atmospheric inversions and a process-

based model of methane emissions by natural wetland ecosystems. They concluded that 

the main contributor to the global emission anomalies was a positive anomaly of tropical 

emissions (60–80%) for both inversions, with a share dominantly attributed to natural 

wetlands (2/3), and a significant contribution from high latitudes (25%) in 2007. Kirschke 

et al. (2013) showed that a rise in natural wetland emissions and fossil fuel emissions 

probably accounted for the renewed increase in global methane levels after 2006, although 

the relative contribution of these two sources remained uncertain. Miller et al. (2013) 

combined comprehensive atmospheric data, diverse datasets from the EDGAR inventory, 

and an inverse modeling framework to get source sectors information and to derive 

spatially resolved CH4 emissions. They had estimated a mean annual US anthropogenic 

CH4 budget for 2007 and 2008 of 33.4 ± 1.4 TgCy−1 or 7-8% of the total global CH4 source, 

which was a factor of 1.5 and 1.7 larger than EPA and EDGAR v4.2, respectively. They 

concluded that methane emissions from the animal husbandry (approximately twice) and 
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fossil fuel industries (4.9 ± 2.6 times) had larger greenhouse gas impacts than indicated by 

existing inventories, therefore, more accurate and verified emission estimates were 

required from across North America for assessing CH4 sources to implement policies in 

regulating emissions and managing energy resources. Although the study of Miller et al. 

(2013) had estimated methane emissions in the USA only, but considering human and 

livestock population density and fossil fuel production and usage across demographic 

regions in the US, the estimates in their study reflected significant proportion of emission 

trend during 2007-2008 when compared globally. Instead, Schaefer et al. (2016) using both 

CH4 mole fraction and δ13C-CH4 isotopic data, concluded that the isotopic evidence 

demonstrated the emissions of thermogenic methane (e.g., fossil fuels and biomass 

burning) were not the dominant cause of the post 2007 growth, instead an increase in 

biogenic emissions probably from agricultural sources rather than from wetlands located 

outside the arctic caused the rise. 

 

Nisbet et al. (2016) showed in most latitudinal zones of the earth, atmospheric methane 

mole fractions had increased sustainably since 2007, with local short-term deviations from 

the overall spatial pattern of growth. Rapid growth was measured in the Northern 

hemisphere in the Arctic and boreal zone during autumn of 2007, then dominantly been 

driven in the north and south of the equator in 2008 and in the southern tropics in 2010-

2011. Moreover, there was an exceptional global methane increase in 2014 at all latitudes, 

especially in the equatorial belt was accompanied by a continuation of the recent isotopic 

pattern. Nisbet et al. (2016) mentioned the globally averaged mole fraction of the 

atmospheric methane increased by 5.7±1.2 ppb/year from 2007 to 2013. A measure of the 
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δ13C-CH4 had shifted to more negative values since 2007. In 2014, the methane growth 

was extreme with value of 12.5±0.4 ppb. The isotopic evidence suggested that the methane 

rise was dominated by increases in biogenic emissions particularly in the tropics from 

expansion of tropical wetlands with strongly positive rainfall anomalies or emission from 

increased agricultural sources such as ruminants and rice paddies, might be due to their 

responses to meteorological changes. Rice et al. (2016) mentioned their inversion resulted 

in an increase in fugitive fossil fuel emissions since 1984 with most of its growth after year 

2000. This result is consistent with some bottom-up emission inventories but not with 

recent estimates based on atmospheric ethane such as Aydin et al. (2011), Simpson et al. 

(2012). The inversions estimated a decrease in emissions from biomass burning explaining 

the fall of ethane abundance (Rice et al., 2016).  

 

1.4.  Methods Involved in Quantifying Atmospheric Methane 

 

1.4.1. General Methods to Quantify Atmospheric Trace Gases  

 

Mathematical methods are used to introduce biogeochemical observations which include 

measurements of concentrations of trace gases and their isotopic compositions into the 

modeling framework. When some information is given on the values of set of parameters, 

using a theoretical relationship the information of the values of some measurable quantities 

are obtained, then a direct or forward problem is solved, whereas, when some information 

is given on the values of some measurable quantities, using a theoretical relationship the 
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information of the values of set of parameters are obtained, then an inverse problem is 

solved (Tarantola and Valette, 1982). The values of the parameters are data and values of 

observable quantities are unknowns for a direct problem whereas, the data are the results 

of some measurements, and the unknowns are the values of the parameters for an inverse 

problem (Tarantola and Valette, 1982). Some of the most common mathematical tools used 

to estimate the global methane emissions are flux measurement extrapolation from regional 

to global scale, process modeling and inverse modeling. First two methods which are 

bottom-up approaches suffer from extrapolation error and process model error, 

respectively. Inverse modeling is the top-down approach where observations of 

atmospheric mixing ratios constrain the trace gas surface flux estimates to explain vaguely 

understood sources and sinks. Inverse modeling uses observed concentrations, chemical 

transport model, spatial distributions of sources and a set of priori estimates to determine 

optimal combination of unknown fluxes (flux refers to the different atmospheric exchange 

process for both sources and sinks) that match with the observational data and to help 

understand the source processes. General atmospheric chemical transport models are run 

in forward mode to compare these observations with simulation results and then 

discrepancies between simulation and observations lead to surface gas flux modification 

with reverse approach. In this approach to the problem of the large-scale sources and sinks, 

atmospheric observations constrain the surface fluxes needed to explain them. Inverse 

modeling consists of the quantification of large-scale spatial and temporal variations of 

sources and sinks of atmospheric trace gases like carbon dioxide, methane, and nitrous 

oxide. 
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The inverse modeling approach mentioned by Tarantola and Valette (1982), was originally 

applied in Geophysics to localize earthquake centers, however, in atmospheric science, it 

is first used by Enting (1993) and Enting et al. (1993) to study the atmospheric CO2 cycle 

(Hein et al., 1997). Other estimates on atmospheric budgets for CO2 and CH4 interpreted 

the space-time distributions of concentrations in terms of space-time distributions of 

sources and sinks using atmospheric transport modeling (Keeling et al., 1989b; Tans et al., 

1990a; Fung et al., 1991; Sarmiento and Sundquist, 1992). Inversions using 3D transport 

model are based on synthesis approach (Keeling et al., 1989b; Tans et al., 1990a; Fung et 

al., 1991) which involved seeking linear combination of source and sink processes such 

that the corresponding linear combination of the calculated responses matched the 

observations where the solution is stabilized by the spatial distributions of source 

components used as constraints. Other earlier synthesis inversions are done for global 

carbon cycle modeling (Enting and Pearman, 1987), for atmospheric CO2 budget modeling 

(Enting et al., 1993, 1995), a Bayesian analysis was done where the estimation is stabilized 

by additional constraints in the form of independent prior estimates of source strengths. 

There are several studies which used inverse methods to quantify the global-scale sources 

of different trace gases such as for CO2 by Keeling et al. (1989b), Enting and Mansbridge 

(1989), Tans et al. (1990a), Enting et al. (1995), Rayner et al. (1996), Law and Simmonds 

(1996), Fan et al. (1998), Kaminski et al. (1999b), Gurney et al. (2002); for CFCs by Brown 

(1993), Hartley and Prinn (1993), Plumb and Zheng (1996), Mulquiney and Norton (1998), 

Mulquiney et al. (1998); for CO by Bergamaschi et al. (2000b), Kasibhatla et al. (2002). 

However, in most of the studies, the fluxes are aggregated into few large regions, which 

has disadvantage of leading to significant biases in the estimated emissions caused by 
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nonhomogeneous sampling by the measurement network, thus, to efficiently compute a 

large number of sensitivities and to reduce the bias, an adjoint model approach was used 

by Kaminski et al. (1999a) for computation of the Jacobian matrix representing 3D 

atmospheric transport model. 

 

1.4.2. Previous Inverse Modeling Studies on Quantifying Atmospheric 

Methane   

 

Many researchers did several works by means of inverse modeling technique to estimate 

global CH4 emissions and sinks, e.g., Brown (1993, 1995), Hein and Heimann (1994), Hein 

et al. (1997), Wang et al. (2004), Houweling et al. (1999), Mikaloff Fletcher et al. (2004a, 

b), Bergamaschi et al. (2005), Chen and Prinn (2006), Bousquet et al. (2006), Meirink et 

al. (2008b), Wecht et al. (2012). Brown (1993, 1995) performed their calculation with a 

2D transport model, thereby ignoring longitudinal variability in CH4 sources, sinks and 

atmospheric observations and also did not use any prior information on  location or 

seasonality of the sources, thus reducing efficiency of atmospheric observations to deduce 

the emissions. The difficulty of spatial overlapping associated with using atmospheric CH4 

observations which provide information on spatial distribution of total CH4 flux and source 

processes, was addressed with two inversion approaches. One approach used an inverse 

model which determined spatial distribution of CH4 flux required to match the observations 

without differentiating the fluxes with source processes (Houweling et al., 1999), however, 

this process reduced uncertainty in the total CH4 flux in Northern Hemisphere, but provided 
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limited knowledge on the physical processes responsible for the differences in inversion 

estimates and process-based estimates (Fletcher et al., 2004). Another approach used 

inverse models to estimate the total global CH4 fluxes for separate source processes based 

on the spatial distribution of sources (Hein et al., 1997; Bergamaschi et al., 2000a, 2001) 

and for separate sources across large spatial regions (Chen, 2004). The estimates from these 

processes reduced source estimates compared to priors in source processes with larger 

footprints in NH and increased estimates with larger footprints in SH (Fletcher et al., 2004). 

Including observations of isotopic ratios in CH4 inversions not only adds a new constraint 

to the underdetermined inverse problem, but it also improves partitioning of the flux 

estimates between source processes with similar spatial and temporal patterns but different 

isotopic signatures. Hein et al. (1997) reduced the uncertainties associated with source 

estimates using station observations of CH4 mixing ratios and 13C/12C isotopic ratio in 

atmospheric CH4 from three stations to further constrain the inversion and optimize the 

isotopic signatures of sources, however, only stations from NH were used and 

interhemispheric gradient was not included in their study (Fletcher et al., 2004). Previous 

inverse studies had limited use of isotopic ratios of CH4 such as Bergamaschi et al. (2000a) 

used NOAA/CMDL observations data to estimate the magnitude of CH4 sources and used 

isotopic data from two stations in SH and one station in NH to optimize estimate for each 

source process. Fletcher et al. (2004) presented first time-dependent inverse estimates of 

CH4 constrained by both observations of GLOBALVIEW-CH4 data product from NOAA 

(2001) and isotopic ratios from six NOAA/CMDL stations from 1998-1999 and prior 

estimates of the sources and sinks from IPCC (2001) report, which employed a time-

dependent assimilation and source retrieval technique based on methods mentioned by 
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Bruhwiler et al. (2000). Fletcher et al. (2004) mentioned that their estimates were sensitive 

to inaccuracies in model transport and assumed isotopic signature of the sources. Their 

method of aggregating of sources into spatially diffused large regions also introduced 

source of bias known as ‘aggregation error’ (Kaminski et al., 1999a) since the sampling 

network was sparse, inaccuracies remained with unrepresented variability in the spatial 

pattern of the regions and imposed limitation to the understanding of source processes from 

the inverse estimates. In real world situation, the spatial distributions of many source 

processes may vary with regional temperature anomalies and other physical processes, 

meanwhile, grouping the sources in linear combination of spatial regions and considering 

the spatial pattern of emissions for each source as perfect with little or no interannual 

variations, eliminates the possibility of accurate diagnosis of changes in CH4 fluxes at 

regional scale by using the observations (Fletcher et al., 2004). One important limitation in 

the inversion work of Fletcher et al. (2004) was the increased temporal noise in their 

inversion estimates since their basis functions reflected only one month of model transport. 

Errors in their flux estimates for a given month step were propagated to the next time step 

which meant an overestimate in the flux from one region in a given month could have led 

to an underestimate in the flux from that region or neighboring region in a later month, 

since no mechanism was included for the flux estimates from previous months to be 

adjusted based on the observations of the current month. Some of the observation sites such 

as those sampling marine air, were weakly weighted in most of the inversions because these 

data are influenced strongly by local sources, small-scale transport effects and other factors 

which are not represented effectively in a coarse resolution model such as 3D tracer 

transport model used by Fletcher et al. (2004) had a spatial grid resolution of 7.8⁰ latitude 
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by 10⁰ longitude by nine vertical levels. The species of interest, model to be used for the 

inversion, sub-grid scale effects for sensitive sites, all of these determine the location of 

optimal observing sites, thus the network design algorithm in the inversion should have a 

balance between emission sensitivities and model errors and spatial resolution in 

determining the optimal observing sites (Chen and Prinn, 2006). Chen and Prinn (2006) 

addressed some of these issues by conducting an inverse modeling study incorporating 13 

high frequency CH4 observation sites [methane mole fractions measured insitu 24 to 36 

times per day, e.g. Prinn et al. (2000)] and 79 low frequency CH4 observation sites [air 

samples collected and mole fraction measurement done in later date, e.g. NOAA Carbon 

Monitoring and Diagnostics Laboratory (CMDL), 2001b] and interannual transport in 

atmospheric transport model, both critical to determine the CH4 emissions in higher space 

and time resolution, and adapted the Kalman filter solution of interannually varying 

monthly fluxes. Their study optimally estimated methane emissions from regional seven 

seasonal and two aseasonal sources with their uncertainties from 1996 to 2001 at monthly 

time resolution and used the Model for Atmospheric Transport and Chemistry (MATCH) 

driven by National Center for Environmental Prediction (NCEP) analyzed observed 

meteorology at a higher horizontal resolution of ~1.8⁰ × 1.8⁰ which accounted for impact 

of synoptic and interannually varying transport on methane observations. The mismatch 

error or representation error arises due to coarse resolution of the model, when an 

observation made from a single point in space must be considered as representative of a 

large volume of air for the entire grid cell in the model. This error increases significantly 

over regions near large emitting continental sites due to local influences which is difficult 

to be resolved at the model resolution. Chen and Prinn (2006) assumed that the spatial 
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variability within a single grid cell can be related to the variability among the surrounding 

grid cells and estimated this error at each site using standard deviation of CH4 mole fraction 

at the nine model grid cells which contain and surround each observing site. However, their 

deduced interannual emissions were affected more by the errors in the short-term changes 

in the spatial flux patterns and affected less by large-scale transport biases. Another 

simplification in their inversion was assumption of constant emissions from aseasonal 

sources such as animals, waste and energy emissions which can also change from year to 

year. Furthermore, using annually repeating OH field in their work involved another 

potential model error. Most of the works so far have used almost same set of observations 

to constrain methane fluxes which often disagree significantly with the estimates. For 

example, the variation of global emission due to biomass burning varied more than twice 

[~ 88 Tg/year calculated by Fletcher et al. (2004), whereas Levine et al. (2000) estimated 

~52 Tg/year and IPCC (2001) reported biomass burning emission ~ 23-55 Tg/year 

globally] in different research works, similar comments were also true for methane 

emission calculation from rice paddies [Chen and Prinn (2006) calculated ~112 Tg/year 

globally, whereas Sass (1994) estimated global rice emissions between 25 and 54 Tg/year 

and Cao et al. (1996a) estimated global flux of 53 Tg/year] for different works. This 

significant difference in the final estimates illustrates that large uncertainties imposed by 

the choice of various settings are needed in the inversion process, or chemical transport 

model to deal with severe ill-conditioning of the inverse problem. Therefore, it is essential 

to study the estimated fluxes along with reliable quantification of their associated 

uncertainties. Röger (2013) performed an inverse modeling study, published in Rice et al. 

(2016), to optimize the methane emissions from ten source categories using a fixed-lag 
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Kalman smoother method based on descriptions in Bruhwiler et al. (2005) and Chen and 

Prinn (2006). They have calculated monthly mean CH4 mixing ratios spanning 1984-2009 

from the NOAA Earth System Research Laboratory (NOAA-ESRL) data product 

GLOBALVIEW-CH4 (2009) by applying cubic spline fits to weekly records (221 locations 

and 24 ship sites) and sampling at daily frequency. They mapped the observation sites at 

the horizontal grid resolution of 4⁰ × 5⁰ and calculated the response functions by integrating 

the GLOBALVIEW data product with Goddard Earth Observation System 3D Chemical 

atmospheric transport model (GEOS-Chem). They constructed the spatially-gridded 

monthly varying prior emissions from several sources and included sinks due to reaction 

with OH, soil uptake and stratospheric loss. Isotopic signatures of methane were introduced 

to their model as independent tracers to constrain and interpret temporal changes in CH4 

budget, which were obtained from several observational networks including Oregon Health 

and Science University (OHSU) and Portland State University (PSU) archived air 

measurements, White et al. (2015) at the Institute of Arctic and Alpine Research 

(INSTAAR), Quay et al. (1999), Tyler et al. (2007). They imposed interval constraints on 

the estimated fluxes based on the projection operator method by Simon and Chia (2002) 

and Tang and Zhuang (2011) which forced the values of the fluxes to remain positive and 

ensured the intra-annual variations of the fluxes from the aseasonal sources remain small, 

to avoid ill-conditioning of the inverse problem. They have repeated one year of monthly 

varying OH fields for the base inversion simulation but also conducted a sensitivity test 

with imposing inter-annual variability by globally scaling OH fields to match the annually 

varying OH concentrations derived by Prinn et al. (2005) to years after 2003 fixed at mean 
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OH concentrations, which resulted in increased interannual variability of wetland 

emissions from the tropics and little impact from wetlands at higher latitudes.  

 

The atmospheric ethane abundance was also investigated by previous studies (Aydin et al., 

2011; Simpson et al., 2012; Rice et al., 2016) which is co-emitted with methane and used 

along with methane observations to provide additional constraint on the methane sources 

such as fossil fuels, since there is large overlap between isotopic methane signatures from 

fossil methane sources and non-fossil methane sources. Much of this overlap exists because 

all fossil fuel sources are not strictly thermogenic in origin, with more than 20% of world’s 

natural gas reserves occur due to microbial activity (Rice and Claypool, 1981; Martini et 

al., 1996; Curtis 2002), which makes it difficult to draw quantitative conclusions on the 

methane sources with only atmospheric measurements of δ13CH4 at global scales (Turner 

et al., 2017).  

 

Turner et al. (2017) presented a simple two-dimensional box model to investigate the cause 

of methane stabilization and renewed growth, the model simulated annual hemispheric 

concentrations of 12CH4, 
13CH4, methyl chloroform and OH. They have used atmospheric 

observations of methane, δ13CH4 and methyl chloroform from NOAA/ESRL, Global 

Atmospheric Gases Experiment (GAGE)/ Advanced GAGE (AGAGE) networks and 

several other sources, to constrain annual hemispheric emissions of methane, isotopic 

composition of the emissions, methyl chloroform emissions and OH abundance in a 

nonlinear, stochastic, Bayesian inversion in which they concluded the renewed growth of 

methane is caused likely due to decline in the OH sink.  



 

35 
 

1.4.3. Improvements in this Inverse Modeling Study  

 

NOAA/ESRL GLOBALVIEW-CH4 data measurements were collected by 12 laboratories, 

which had been smoothed, interpolated, and extrapolated to provide continuous record of 

CH4 concentrations from 1984 at weekly time resolution. When there was limited 

measurement with incomplete data record, then the existing observations were extended 

based on the site climatology and observations from remote marine boundary sites at 

similar latitudes. The GLOBALVIEW data extension and integration processes are 

described in more details provided by Masarie and Tans (1995). Two extension methods 

were used in their study, one used deseasonalized long-term trend from a single site as a 

reference to individual site climatologies, referred as benchmark trend method, another 

method utilized measurements from many sites at similar latitudes, constructed a reference 

to the climatologies, referred as latitude reference method. Thus, the observations from 

contributing measurement sites that had been selected for conditions with sampled air 

expected as representative of large well-mixed air parcels, were fitted to a smoothed curve 

and the smoothed values were extracted from the curve sampled at regular weekly 

intervals. However, using these smoothed values in the inversion process introduces 

additional uncertainty for the seasonal sources (such as biomass burning) which are 

regionally more localized which may affect the air less near a distant observation site. 

Furthermore, these smoothed values also cannot determine the accurate magnitude of 

emission anomalies, interannual variability and seasonality of the sources (such as 

wetlands) in locations with high variance. Unfortunately, GLOBALVIEW CH4 data also 

lacked widespread network coverage in the Southern Hemisphere with very few 
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measurement sites in South America, Africa, and Australia, which would provide less 

constraints on the inversion estimates with much less information and introduce substantial 

bias in the final optimized estimates from the Southern Hemisphere sources. NOAA/ESRL 

Global Monitoring Laboratory provided raw data with much better network coverage 

globally and increased time resolution with measurement frequency 2 times or more a day 

per week including uncertainties reported with each measurement. Here we present an 

inverse modeling study to estimate optimized emissions of methane from ten different 

source categories using NOAA/ESRL Global Monitoring Laboratory (GML) ‘event’ level 

data files for CH4 and δ13CH4 measurements spanning from 1980 to 2015. Initial steps 

included accumulation of the data and processing of the original raw data of methane 

mixing ratios along with their associated uncertainties to calculate weighted monthly 

averaged mixing ratios of CH4 and δ13CH4 at the end of each month from sampling cubic 

spline fits of the weighted monthly averaged mixing ratios at mid of each month which 

were calculated from weighted daily averaged mixing ratios of methane (more detailed 

description of the methods are presented in Chapter 4 of this thesis). We mapped the 

observation sites on a horizontal grid resolution of 2⁰ latitude by 2.5⁰ longitude to integrate 

with 3D global atmospheric chemical transport model GEOS-Chem. Spatially re-gridded 

monthly varying prior emission fields were constructed from several sources and also 

included sinks such as reaction with OH, stratospheric loss and soil sink at the same spatial 

resolution. In this work, one year of monthly varying three-dimensional OH field was used 

in GEOS-Chem where CH4 loss due to reaction to OH was calculated at every grid cell for 

each timestep. GEOS-Chem used NASA Global Modeling and Assimilation Office 

(GMAO) data product GEOS-5 meteorological fields available for years 2004 to 2010 and 
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these 6 years of meteorological variables were recycled for the entire inversion time, since, 

one year of repeated meteorology has no significant impact on the results according to the 

sensitivity test done by Röger (2013). Isotopic δ13CH4 was used as an independent tracer 

in the inversion to improve constraining the source estimates with the source signatures 

taken from previous works done by OHSU-PSU archived air measurements, White et al., 

(2015) at INSTAAR, Quay et al. (1999), Tyler et al. (2007). We have implemented 

sequential estimation of methane fluxes from observational data sets from different time 

steps by using fixed-lag Kalman smoother technique based on the methods described by 

Bruhwiler et al. (2005) and Chen and Prinn (2006). The method employed assumption of 

emission occurring at a time step becomes spatially well mixed and achieves a constant 

value after a lag time difference between emission time and observation time which was 

almost 6 months with GEOS-Chem chemical transport model. We have taken this lag time 

as 11 months and followed covariance propagation scheme with forwarding covariance of 

fully optimized fluxes into fluxes being estimated for current time step by including 1 

month of correlations of fluxes and helped to constrain the current estimates of fluxes with 

measurements from subsequent time steps. To avoid ill-conditioning of the inverse 

problem, we imposed interval constraints using projection operator method mentioned by 

Simon and Chia (2002) and iterative approach by Tang and Zhuang (2011) to keep the 

optimized flux estimates in active set within physically sensible regions with values 

positive and intra-annual variations of aseasonal sources to remain small. This inverse 

modeling study gives insight into the understanding of spatial and temporal attribution of 

methane sources in the global methane budget for more than 30 years. Using spatial grid 

resolution as high as computationally feasible i.e., 2⁰ × 2.5⁰ in this study, which had 
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decreased the errors caused due to aggregation of fluxes over large regions, improved the 

uncertainty estimates and led to more realistic posterior estimates. We also performed a 

series of sensitivity tests where the number of observation stations were changed in the 

inversions based on availability of continuous measurement record lengths. Although there 

was loss of information with reduced number measurement sites, but these test scenarios 

were included in the ensemble of fluxes from each source categories to determine the bias 

in the retrieved fluxes due to variable number of observation sites with continuous 

measurement records. 

 

1.5. Main objectives of the study 

 

The main objectives of the current study are as follows: 

• To better understand the changing budget of atmospheric CH4  over more than three 

decades. 

• To perform a time-dependent retrieval i.e., inverse modeling of CH4 fluxes 

spanning nearly 35 years using global surface and isotopic CH4 measurements. 

• To extend previous inversion study to year 2016 using the recent surface flask data 

from National Oceanic and Atmospheric Administration (NOAA) Global 

Monitoring Laboratory (GML) CH4 measurements and available δ13C-CH4 data. 

• To implement higher grid resolution version of chemical transport model GEOS-

Chem (2⁰ × 2.5⁰ grid resolution). 
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• To mention the difference in the global flux estimates by inversions done using 

NOAA original raw data and using the GLOBALVIEW CH4 data product. 

• To determine the causes of increased methane levels in the atmosphere from 2006 

onwards. 

• To understand the recent trends in the global methane emissions.  

 

1.6. Significance of this study 

 

This work primarily focuses on inverse modeling studies of methane emissions and 

developing essential computer programs to perform the modeling work at Portland State 

University (PSU). In this thesis, we provide an insight into the recent behavior of the 

atmospheric methane by performing a global three-dimensional Bayesian inversion of 

surface CH4 and 13CH4/
12CH4 ratios over the years 1980 - 2015 using NOAA Global 

Monitoring Laboratory (GML) CH4 measurements and the GEOS-Chem chemical 

transport model (CTM) at a grid resolution of 2⁰ × 2.5⁰. Here, a priori information is used 

on the magnitude of the source processes under investigation to regularize the inverse 

problem and impose interval constraints on the estimates to ensure physically sensible 

results. In this way, we derived time-dependent methane emissions consistent with 

atmospheric observations for this interesting time period, when the growth rate of CH4 

began a two-decade long decline and then with some surprise, rebounded in 2007 for 

reasons that are not well understood. The use of 3D model allowed us to exploit spatial 

patterns in the global CH4 and 13CH4/
12CH4 fields that provide additional constraints on the 
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retrieval of the time-dependent CH4 fluxes. This work followed up on our previous CH4 

inversion where the GLOBALVIEW CH4 data product was used at a 4⁰ × 5⁰ horizontal 

grid for GEOS-Chem to retrieve fluxes from 1985 to 2009, but this work used NOAA GML 

original raw data extending up to 2016 and at a higher horizontal grid resolution of 2⁰ × 

2.5⁰. At higher resolution more information is extracted from the observations due to 

improved model skill and a smaller number of stations aggregated within model grid cells. 

One of the main motivations in working with higher resolution is to reduce the model-data 

mismatch errors and increase the weights on the information from the observations. 

 

1.7. Chapters Included 

 

Chapter 1 is introduction including the factual description of methane, its role in the 

atmosphere as a greenhouse gas, distribution and trend of measurements of atmospheric 

methane over time, its growth rate over last decades, causes of growth rate anomalies as 

suggested by previous studies, and possible causes of increase in its growth rate since 2007 

as mentioned by previous studies. Methods involved in quantifying atmospheric methane, 

previous inversion studies, improvements made in our study, main objectives of the study, 

significance and chapters included in this thesis are also included.  

 

Chapter 2 focuses on importance of quantifying atmospheric methane, physical and 

chemical properties of methane, its lifetime, average mixing ratio, radiation absorption 

spectra, as a potential greenhouse gas, global warming potential. Sources those introduce 
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methane to the atmosphere, sinks those remove it from the atmosphere and its isotopes are 

also discussed in this chapter. 

 

In Chapter 3, the physical and mathematical frameworks of inverse modeling are presented. 

The principles of Bayesian estimation and the advantages of the applied Kalman smoothing 

technique are being described. Furthermore, there are discussion on the incorporation of 

isotope data and how to impose interval constraints to guarantee physically sensible results.  

 

Chapter 4 aims to clarify some of the so far abstractly discussed concepts by describing the 

implementation and setup for our inverse modeling study in more details. Description of 

the input data of a priori emission estimates from various methane sources and sinks are 

given, then the employed chemical transport model GEOS-Chem and its representation of 

source and sink processes are presented, next the processing of observational records are 

mentioned that are used to constrain the inversion estimates, and finally, the structure of 

the developed computer programs, and the performed sensitivity tests are discussed.  

 

The results of our inverse modeling work of the changing methane budget are then 

presented and discussed in Chapter 5. Comparison of the fits between modeled 

concentrations and observed concentrations using a posteriori and a priori emission 

estimates are presented, deseasonalized emission anomalies for each source categories and 

aggregated categories are shown, annual seasonal cycles of estimates from seasonally 

varying sources are also presented and compared the results from this study with 4⁰ × 5⁰ 

resolution model results up to 2008-2009 and also with other most recent studies. Finally, 
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the possible causes as revealed from our results for the post 2006 rise in global methane 

levels are inferred. 

 

In Chapter 6, the overall procedure and results of this work are summarized, some 

conclusions are drawn based on the results and some perspectives for future improvements 

are provided.  
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CHAPTER 2 

Physical and Chemical Importance of Methane in the Atmosphere 
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2.1. Methane in the Atmosphere 

 

About 3.5 billion years ago, in the Earth’s earlier history, the abundance of methane in the 

atmosphere was much higher at about 1,000 times more than the present level. The earliest 

methane (CH4) and carbon dioxide (CO2) was released into the atmosphere by volcanic 

activity. During this time, it is believed that the Earth's earliest life had appeared. Pavlov 

et al. (2003) mentioned that these first, ancient methanogenic bacteria made their metabolic 

living by catalyzing the reaction: CO2 + 4H2 → CH4 + 2H2O, i.e., converted hydrogen and 

carbon dioxide into methane and water. Oxygen did not become a major content in the 

atmosphere until photosynthetic organisms evolved later in the Earth's history. In the 

absence of oxygen, methane stayed in the atmosphere longer and at higher concentrations 

than it does today (Pavlov et al., 2003). Methane is generally produced by microorganisms 

decomposing organic matter in anaerobic conditions and can be emitted from under the 

soil in waterlogged conditions biologically, or is produced naturally from terrestrial and 

marine seepages, mud volcanoes and hydrates (frozen mix of methane gas and ice formed 

under certain temperature and pressure) under the sea floor geologically, or from 

incomplete combustion of organic matter such as biomass burning, on the earth’s surface 

and it is carried into the atmosphere by rising air in the tropics and is known as atmospheric 

methane. Figure 2.1 shows the global map displaying the distribution of atmospheric 

methane (in parts per billion by volume) near the surface of the earth based on the EDGAR 

and other methane emissions inventories and calculated by the atmospheric chemical 

transport model GEOS-Chem at horizontal grid resolution of 2⁰ × 2.5⁰ (latitude × 
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longitude) using GEOS5 meteorological variables. This map is displaying the methane 

mixing ratio on January 01, 1990, at time 00:00 GMT on the earth surface with the 

concentration of methane higher near the source regions throughout the globe.  

 

 

Figure 2.1: The global map displaying the distribution of atmospheric methane (in parts per billion by 

volume) near the surface of the earth. It shows methane mixing ratio on January 01, 1990, at time 00:00 

GMT on the earth surface with the concentration of methane higher near the source regions throughout the 

globe.  
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2.2. Importance of Methane in the Atmosphere 

 

2.2.1. General Properties of Methane 

 

Structure: 

  

Methane, the smallest hydrocarbon, is an uncolored and non-smelling gas. It has a 

symmetrical nonpolar structure, where the carbon atom is bonded to four hydrogen atoms 

in a perfectly tetrahedral arrangement (Figure 2.2). 

 

 
 

Figure 2.2: CH4 molecule with four hydrogen atoms bonded to one central carbon atom shown in (a) 

tetrahedral structure and (b) structure with bond angle (Source: Encyclopaedia Britannica, Inc.). 
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Average Mixing Ratio: 

 

According to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC, AR5, 2013), global methane levels had risen to 1803 parts per billion (ppb) 

by 2011, an increase by a factor of 2.5 since pre-industrial times, from 722 ppb in 1750, 

the highest value in at least 800,000 years. The surface mixing ratio of CH4 has increased 

by 150% since pre-industrial times (IPCC, AR5, 2013). The recent average global methane 

mixing ratio for the month of March 2021 is 1888.5 ppb as measured by the Global 

Monitoring Laboratory (GML) of the Earth System Research Laboratory (ESRL), National 

Oceanic and Atmospheric Administration (NOAA). 

 

Lifetime and Seasonal Variation: 

 

Most of the methane emissions occur in the Northern Hemisphere since all main sources 

(both natural and anthropogenic) are located on the land masses. Moreover, Northern 

Hemisphere has more land masses and thus more human population. Methane has a 

lifetime of 8 to 11 years, inter-hemispheric exchange time of approximately 1 year, intra-

hemispheric mixing time of about 2 months and zonal mixing time of about 2 weeks which 

allows it to disperse globally. Thus, a latitudinal gradient and a seasonal cycle can be 

observed in methane mixing ratio (Figure 2.3). This variation is mainly due to the seasonal 

variation of methane’s main sink OH radical and seasonality of emissions from sources 

like rice and wetlands. 
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Figure 2.3: Spatio-temporal distribution of atmospheric methane in the marine boundary layer from 2005 to 

2014 showing the seasonal variations and the difference between northern and southern hemispheres [Ed 

Dlugokencky, NOAA ESRL GML, 2016]. 

 

 

2.2.2. Methane as a Greenhouse Gas 

 

Methane (CH4) is an important trace gas in the earth’s atmosphere. Although it only makes 

up 0.00018% (1.8 parts per million mixing ratio) of the atmosphere, it traps a significant 

amount of heat which helps earth to remain warm and habitable. Methane contributes to 

the greenhouse effect of the earth directly as well as indirectly as it also contributes to the 
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formation of other greenhouse gases (such as ozone) which have their own relative 

contributions to the greenhouse effect.  

 

Radiation Absorption Spectra of Methane: 

 

The solar energy in form of short wavelength electromagnetic radiation is transmitted from 

the sun to the earth. The earth loses energy by emitting long-wave electromagnetic 

radiation back to space at wavelengths determined by its temperature. Some of this 

terrestrial radiation escapes into the space and some is absorbed by the various gases in the 

atmosphere and radiated back to the Earth, resulting in the warming of the surface known 

as the greenhouse effect. Among these gases, carbon dioxide, water vapor, and ozone are 

the major absorbers and carbon monoxide, nitrous oxide, methane, and nitric oxide are 

relatively minor absorbers.  
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Figure 2.4: The fraction of radiation absorbed by methane while radiating back from the surface of the earth 

to the top of the atmosphere as a function of wavelength. Absorption peaks of CH4 are indicated at wavelength  

λ = 3.3 µm and 7.7 µm [Reference: Data from NIST Standard Reference Database 69: NIST Chemistry Web 

Book. https://webbook.nist.gov/chemistry]. 

 

 

Methane absorbs radiation strongly at about λ = 3.3 µm and λ = 7.7 µm which are in the 

infra-red region (Figure 2.4). Methane molecules in the atmosphere absorb the infra-red 

radiation at these two wavelength regions and radiate it back to the earth surface, thus 

making methane a greenhouse gas in the earth’s atmosphere. A low transmission value 

associated with a specific range of wavelengths, represents absorption bands.  

 

Radiative Forcing:  

 

According to IPCC AR5 (2013), the radiative forcing (RF) is conceptualized as the net 

change in the energy balance of the Earth system due to an imposed perturbation. It is 

expressed in watts per square meter averaged over a particular time and quantifies the net 

imbalance of energy that occurs with imposed change taking place. The instantaneous RF 

is the instantaneous change in net radiative flux (shortwave and longwave, in W/m2) and 
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is defined in terms of flux changes at the top of the atmosphere (TOA) or at the 

climatological tropopause. In both IPCC Third Assessment Report (TAR) and Fourth 

Assessment Report (AR4), the term radiative forcing was defined as the change in net 

irradiance at the tropopause after stratospheric temperatures are allowed to readjust to 

radiative equilibrium, while surface and tropospheric temperatures and state variables such 

as water vapor and cloud cover are held fixed at the unperturbed values (except for the 

impact of aerosols on cloud albedo). Instantaneous RF or RF is not an accurate indicator 

of temperature response for all forcing agents, however including rapid tropospheric 

adjustments has the potential to characterize for drivers in the troposphere, for example, 

allowing quantification of forcing due to aerosol-induced changes in clouds. A forcing that 

accounted for rapid adjustments is termed as effective radiative forcing (ERF). 

Conceptually, ERF is the change in net TOA downward radiative flux after allowing for 

atmospheric temperatures, water vapor and clouds to adjust, but with global mean surface 

temperature or a portion of surface conditions unchanged. As mentioned in AR5, for well 

mixed greenhouse gases (WMGHG), the ERF best estimate is same as the RF, which has 

a value of 0.97 (0.74 to 1.20) Wm-2 for CH4. The indirect effect of several emitted 

compounds and changes in components involved in atmospheric chemistry lead to larger 

RF than the RF of the compound directly. Emission of methane leads to production of 

ozone, stratospheric water vapor, CO2 and importantly affects its own lifetime in the 

atmosphere. The RF contribution from emission of CH4 is 0.97 Wm-2 which is almost twice 

as large as that from change in concentration of CH4 in the atmosphere from 1750 to 2011 

i.e., 0.48 (0.43 to 0.53) ± 0.05 Wm-2, calculated using the formula from Myhre et al. (1998). 

Furthermore, emissions of CH4 lead to stronger RF via direct CH4 greenhouse effect which 
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is 0.64 Wm-2 than RF from abundance change of CH4 (0.48 Wm-2) because compounds 

such as NOx influence the lifetime of CH4 and reduce the abundance of CH4 in the 

atmosphere. The variation of CH4 concentrations with latitude and decrease above 

tropopause, contributes only 2% to the uncertainty in RF (Freckleton et al., 1998). 

 

Global Warming Potential:  

 

The Global Warming Potential (GWP) provides a relative measure of how much heat 

a greenhouse gas traps in the atmosphere. GWP is defined as the time-integrated Radiative 

Forcing (RF) due to a pulse emission of a given component, relative to a pulse emission of 

an equal mass of CO2 [Figure 2.5 (a)]. It compares the amount of heat trapped by a certain 

mass of the gas to the amount of heat trapped by a similar mass of carbon dioxide. A GWP 

is calculated over a specific time interval, commonly 20, 100, or 500 years. The larger the 

GWP, the more that a given gas warms the Earth compared to CO2 over that time. 

Considering the radiative and chemical contributions of methane, the Global Warming 

Potential of methane is 28 over 100-year time horizon and 84 for 20-year time horizon 

without including climate-carbon feedback and 34 over 100-year time horizon and 86 for 

20-year time horizon with climate-carbon feedback [Jain et al. (2000) and IPCC AR5 

(2013)]. This means that the same mass of emitted methane will be 28 times more efficient 

at trapping heat than that of carbon dioxide over the following 100 years. Thus, 

consequently, atmospheric methane contributes significantly to the human induced 

https://en.wikipedia.org/wiki/Greenhouse_gas
https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Carbon_dioxide
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radiative forcing, despite its atmospheric concentration being 200 times smaller than that 

of CO2.  

 

  Global Temperature Change Potential: 

 

The Global Temperature Change Potential (GTP) is defined as the change in global mean 

surface temperature at a chosen point of time in response to an emission pulse of any gas 

relative to that of CO2 (Shine et al., 2005a). In comparison to GWP which is integrated 

with time, GTP is an end point metric which is based on temperature change for a selected 

year, t, for a component, i, GTP(t)i = AGTP(t)i / AGTP(t)CO2 = ΔT(t)i / ΔT(t)CO2, where 

AGTP is the absolute global temperature change potential giving temperature change per 

unit emission [Figure 2.5 (b)]. Similar to the GWP, the GTP values can also weigh the 

emissions of any gas in the atmosphere to get CO2 equivalents, that means it gives surface 

temperature effects of the emissions relative to that of CO2 for the chosen time horizon 

which affects its metric value contributing to the warming. Like GWP, the GTP 

formulation is also influenced by the background atmosphere and the inclusion of indirect 

effects of the components and feedback in the atmosphere. In contrast to the GWP, the 

GTP includes physical processes by accounting for climate sensitivity and the exchange of 

heat between atmosphere and ocean. The GTP accounts for the slow response of the deep 

ocean, thus prolongs the response of emissions beyond that controlled by the decay time 

of the atmospheric concentration. Hence, the GTP includes both the time scales for 

atmospheric adjustment of the component considered as well as for response of the climate 
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system. The GTP value for CH4 is 67 for 20-year time horizon and 4 for 100-year time 

horizon with no climate-carbon feedback, however, including the feedback, it is 70 for 20-

year period and 11 for 100-year period. Short-lived gases are most sensitive to the choice 

of the time span in metric calculation, with a change of time horizon from 20 to 100 years, 

for CH4 the GWP decreases by a factor of approximately 3 and the GTP by more than a 

factor of 10.  

 
 

Figure 2.5: (a) The Absolute Global Warming Potential (AGWP) is calculated by integrating the RF due to 

emission pulses over a chosen time horizon such as 20 or 100 years (vertical lines). The GWP is the ratio of 

AGWP of component ‘i’ over that for reference gas CO2. The blue hatched field represents the integrated RF 

from a pulse of CO2, while green and red fields represent example gases with 1.5 and 13 years of lifetime, 

respectively. (b) The GTP is based on the temperature response at a selected year after pulse emission of the 

same gases, e.g., 20 or 100 years (vertical lines) [IPCC, AR5, 2013]. 
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2.2.3. Oxidizing Mechanism of Methane  

 

As the atmospheric methane increases with years, it also impacts the chemistry of the 

atmosphere. CH4 as a reduced form of carbon undergoes oxidation involving sequences of 

reactions, and ultimately forms carbon dioxide (CO2) and water (H2O) as follows: 

Initial oxidation of methane produces methyl radical (CH3) which adds O2 to form 

methylperoxy radical (CH3O2), where ‘M’ denotes the third body which carries off the 

excess energy of the reaction. 

 

CH4 + OH → CH3 + H2O 

CH3 + O2 + M → CH3O2 + M 

 

The methylperoxy radical (CH3O2) reacts with hydroperoxyl (HO2) as: 

 

CH3O2 + HO2 → CH3OOH + O2 

 

Methyl hydroperoxide (CH3OOH) either reacts with OH or photolyzes. The CH2OOH 

radical produced then decomposes rapidly to formaldehyde (CH2O) and OH: 

  

CH3OOH + OH → CH2O + OH + H2O 

CH3OOH + OH → CH3O2 + H2O 

CH3OOH + hν → CH3O + OH 
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The methoxy radical (CH3O) produced in previous reaction reacts rapidly with O2: 

  

CH3O + O2 → CH2O + HO2 

 

Formaldehyde produced in last reaction can either react with OH or photolyze: 

 

CH2O + OH → CHO + H2O 

CH2O + hν 
𝑂2
→  CHO + HO2 

CH2O + hν → CO + H2 

 

The CHO radical produced, reacts rapidly with O2 to yield CO and HO2: 

 

CHO + O2 → CO + HO2 

 

CO is then oxidized to CO2 as: 

 

CO + 2O2 → CO2 + O3 

CO + OH 
𝑂2
→  CO2 + HO2 

HO2 + NO → OH + NO2 

NO2 + hν 
𝑂2
→  NO + O3 
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In this overall reaction sequence the C(-IV) atom in CH4 (the lowest oxidation state for 

carbon) is successively oxidized to C(-II) in CH3OOH, C(0) in CH2O, C(+II) in CO, and 

C(+IV) in CO2 (highest oxidation state for carbon). Ozone production takes place by NO2 

photolysis. 

 

By summing all reactions in the mechanism, the following net reaction can be arrived for 

conversion of CH4 to CO2: 

 

net: CH4 + 10O2 → CO2 + H2O + 5O3 + 2OH  

net: CH4 + 3OH + 2O2 → CO2 + 3H2O + HO2 

 

The intermediate products of these sequence of reactions influence the concentrations of 

other gases like ozone (O3), carbon monoxide (CO), water vapor (H2O) and hydroxyl 

radical (OH). More methane in the atmosphere decreases concentration of OH radical. This 

introduces a positive feedback to the greenhouse effect of these gases, since, OH radical 

plays an important role in the removal of many greenhouse gases including as the main 

sink of methane which naturally controls methane levels in the atmosphere. The increase 

in methane level also contributed to the increase in the tropospheric ozone concentration. 

Ozone in the stratosphere protects the earth from harmful ultraviolet radiation, but in the 

troposphere, it acts as a potential greenhouse gas (Shindell et al., 2005), a major component 

of smog and a toxic pollutant deteriorating human health and ecosystem. 
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Thus, the methane concentration affects the radiation budget of the earth’s atmosphere 

directly and indirectly. 

 

2.3. Global Methane Budget 

 

The increase of atmospheric methane abundance by a factor of 2.5 since preindustrial 

times, pronounced the need of implementing sensible emission mitigation strategies 

through policies in regional as well as global level. Effective strategies to reduce methane 

emissions require better quantitative understanding of changes in methane sources and 

sinks both spatially and temporally. Several studies had published their estimates of the 

methane budget during last three decades since the beginning of the systematic 

measurement of atmospheric methane by observational networks around the globe. The 

IPCC AR5 (2013) used multiple atmospheric CH4 inversion models (top-down) and 

process-based models and inventories (bottom-up) to provide a continuous assessment of 

the CH4 budget per decade. The Fifth Assessment Report of IPCC (2013) discussed the 

budgets for the decades of 1980s, 1990s and 2000s and presented them in tabular form 

where uncertainties on emissions and sinks are listed using minimum and maximum of 

each published estimate for each decade. In this table, bottom-up approaches are used to 

attribute decadal budgets to individual processes emitting CH4 and top-down inversions 

provided an atmospheric-based constraint mostly for the total CH4 source per region, and 

the use of additional observations (isotopes) allowed inferring emissions per source type 

(IPCC, AR5, 2013). Estimates of CH4 sinks such as through chemical loss in the 
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atmosphere by tropospheric OH, tropospheric chlorine and stratospheric OH and through 

oxidation in aerated soil, are also mentioned and listed in the table.  

 

The global methane budget for the decade of 2000s is significant since after a decade of 

stable CH4 concentration in the atmosphere since late 1990s, atmospheric measurements 

showed a renewed growth in the CH4 concentration since 2007 and the drivers of this 

renewed growth are still debated. IPCC AR5 (2013) published global CH4 emissions for 

the 2000s of 553 Tg(CH4) yr–1, with a range of 526 to 569 Tg(CH4)/year, based on the 

inversion of atmospheric measurements of CH4 from surface stations. The total loss of 

atmospheric methane is of 550 Tg(CH4) yr–1 with a range of 514 to 560 Tg(CH4) yr–1, 

determining a small imbalance of about 3 Tg(CH4) yr–1, with a small growth rate of 6 

Tg(CH4) yr–1 observed for the 2000s, as reported in the IPCC AR5 (2013). Based on 

bottom-up models and inventories, IPCC AR5 (2013) published that a larger global CH4 

emissions of 678 Tg(CH4) yr–1 are found, mostly because of the still debated upward re-

evaluation of geological (Etiope et al., 2008) and freshwater (Walter et al., 2007; Bastviken 

et al., 2011) emission sources. The report also mentioned that an averaged total loss of 632 

Tg(CH4) yr–1 is found, by an ensemble of atmospheric chemistry models (Lamarque et al., 

2013) leading to an imbalance of about 45 Tg(CH4) yr–1 during the 2000s, as compared to 

the observed mean growth rate of 6 Tg(CH4) yr–1 (Dlugokencky et al., 2011). Top-down 

inversions have constrained OH fields, e.g., from measurement of methyl chloroform 

(MCF), whereas there is no constraint applied to the sum of emissions in the bottom-up 

approach. Thus, top-down inversions are efficient to constrain global CH4 emissions in the 
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global budget, but the mix of sources is not well resolved in the top-down inversions (IPCC, 

AR5, 2013).  

 

AR5 (2013) also reported the contributions of different methane sources to the methane 

budget for all three decades. For the decade of 2000-2009, using bottom up approaches, 

the AR5 (2013) budget (range indicating the expanse of values from different literatures) 

estimated 177 to 284 Tg(CH4) yr-1 for natural wetlands emissions, 187 to 224 Tg(CH4) yr-

1 for agriculture and waste (rice, animals, and waste), 85 to 105 Tg(CH4) yr-1 for fossil fuel 

related emissions, 61 to 200 Tg(CH4) yr-1 for other natural emissions including geological, 

termites and freshwater emissions, and 32 to 39 Tg(CH4) yr-1 for biomass burning and 

biofuel emissions. Meanwhile, for the same decade of 2000-2009, top down inversions 

estimated 142 to 208 Tg(CH4) yr-1 for natural wetlands emissions, 180 to 241 Tg(CH4) yr-

1 for agriculture and waste, 77 to 123 Tg(CH4) yr-1 for fossil fuels emissions, 37 to 65 

Tg(CH4) yr-1 for other natural sources, and 24 to 45 Tg(CH4) yr-1 for biomass burning and 

biofuel emissions. Anthropogenic emissions account for 50% to 65% of the total emissions, 

furthermore, the anthropogenic emissions related to leaks from fossil fuel industry and 

natural geological emissions estimated to amount to 30% of the total CH4 emissions (IPCC, 

AR5, 2013). 

 

Figure 2.6 shows the schematic diagram of the global cycle of CH4 with annual fluxes from 

its various sources and sinks (IPCC, AR5, 2013). 
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Figure 2.6: Schematic diagram of the global cycle of CH4 [IPCC AR5 (2013)]. Numbers represent annual 

fluxes in Tg(CH4) yr–1 estimated for the time 2000–2009 and CH4 reservoirs in Tg (CH4): the atmosphere 

and three geological reservoirs (hydrates on land and in the ocean floor and gas reserves). Black arrows 

denote ‘natural’ fluxes, that is, fluxes that are not directly caused by human activities since 1750, red arrows 

anthropogenic fluxes, and the light brown arrow denotes a combined natural and anthropogenic flux [IPCC, 

AR5, 2013].  

 

2.3.1. Sources of Methane 

 

The methane growth rate results from the balance between emissions and sinks. Methane 

is emitted by various sources both from natural occurrences and anthropogenic influences 
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(Figures 2.6 and 2.7) and released into the atmosphere. Evidence suggests that due to 

various forms of sources, methane emissions are changing over times which are affected 

by many factors such as energy use, distribution of human population, agricultural 

practices, waste management practices and climate. IPCC AR5 (2013) published that 

during the decade of the 2000s, natural sources of CH4 account for 35 to 50% of the decadal 

mean global emissions, whereas anthropogenic CH4 sources are estimated to range 

between 50% (in bottom-up models and inventories) and 65% (in top-down inversions) of 

the global emissions for the 2000s.  

 

 

 
 

 
Figure 2.7: Different sources of methane (Image: U.S. Dept. of Energy Technology Laboratory, National 

Methane Hydrate Program) [Methane: A Scientific Journey from Obscurity to Climate Super-Stardom by 

Gavin Schmidt, September 2004]. 
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Natural and anthropogenic methane emissions around the globe are further categorized 

based on the origin as either biogenic, thermogenic, or pyrogenic as discussed below: 

 

Biogenic Emissions: 

The major source of methane emissions in the atmosphere is of biogenic origin. Biogenic 

sources are identified as emission from natural wetlands, ruminants, waste, landfills, rice 

paddies, fresh waters, termites (Figures 2.6 and 2.7). Biogenic emission of methane occurs 

when methane producing microorganisms, methanogens, produce energy by 

decomposition of organic matter using an anaerobic process called methanogenesis which 

generates methane in warm, moist soils as well as in the digestive tracts of ruminant 

animals. Certain archaea cleave acetate produced during anaerobic fermentation and yield 

methane and carbon dioxide by the process called Acetoclastic methanogenesis. 

H3C-COOH → CH4 + CO2 

Archaea oxidize hydrogen with carbon dioxide to yield methane and water by the process 

called Hydrogenotrophic methanogenesis.   

4H2 + CO2 → CH4 + 2H2O 

These microbial methanogenesis processes take place in anaerobic environments such as 

in natural wetlands and rice paddies, oxygen-poor freshwater reservoirs (such as dams), 

https://en.wikipedia.org/wiki/Acetate
https://en.wikipedia.org/wiki/Oxidize
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digestive systems of ruminants and termites, and organic waste deposits (such as manure, 

sewage, and landfills). 

Another natural source of methane generated by biological community but different from 

traditionally known biogenic pathways, has been identified by some studies which is from 

terrestrial plants in presence of oxygen. Keppler et al. (2006) reported that plants under 

aerobic conditions emit CH4, and thus potentially could involve a large additional methane 

emission and may have important implications for the global methane budget. Later studies 

did not support plant emissions (Dueck et al., 2007; Wang et al., 2008; Nisbet et al., 2009) 

or showed small to negligible emissions in the context of the global CH4 budget (Butenhoff 

and Khalil, 2007; Vigano et al., 2008; Nisbet et al., 2009; Bloom et al., 2010). Rice et al. 

(2010) reported results from a greenhouse mesocosm study that indicate significant 

emissions of anaerobically produced CH4 transmitted to the atmosphere through broadleaf 

riparian tree species grown under flooded conditions and The carbon isotopic composition 

of CH4 emitted was found to be significantly enriched compared with expectations (δ13C 

∼ −54‰) and provided an important isotopic constraint on the global source which 

coincides with the mean of the globally scaled greenhouse‐based estimate. IPCC AR5 

(2013) mentioned about an apparent aerobic CH4 production, which involve (1) adsorption 

and desorption (Kirschbaum and Walcroft, 2008; Nisbet et al., 2009), (2) degradation of 

organic matter under strong ultraviolet (UV) light (Dueck et al., 2007; Nisbet et al., 2009) 

and (3) methane in the groundwater emitted through internal air spaces in tree bodies 

(Terazawa et al., 2007). This source of methane has been largely discredited by researchers 

due to lack of appropriate evidence of the substantial aerobic methane emission by 
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terrestrial vegetation regionally or globally. IPCC AR5 (2013) did not report this source in 

the methane budget table since a significant emission of CH4 by plants under aerobic 

conditions is very unlikely. However, recently it has been discovered that leaf surface 

wax exposed to UV radiation in the presence of oxygen is an aerobic source of methane 

(Bruhn et al., 2014). 

According to the methane budget published in the most recent report of IPCC in AR5  

(2013), the single most dominant CH4 source of the global flux and interannual variability 

is CH4 emissions from wetlands (177 to 284 Tg(CH4) yr–1). Rice paddies emit between 33 

to 40 Tg(CH4) yr–1, ruminant livestock such as cattle, sheep, goats, etc. produce CH4 by 

food fermentation with a total estimate of between 87 and 94 Tg(CH4) yr–1, termites 

produce 2 to 22 Tg(CH4) yr-1, oxygen-deficient freshwater reservoirs emit 8 to 73 Tg(CH4) 

yr–1 and methanogenesis in landfills, livestock manure and waste waters together produces 

a total between 67 and 90 Tg(CH4) yr–1 due to anoxic conditions and a high availability of 

acetate, CO2 and H2 as reported in IPCC AR5 (2013). 

 

Thermogenic Emissions:  

Thermogenic sources emerge from the slow transformation of organic matter into fossil 

fuels on geological time scales (natural gas, coal, oil). Methane is vented from the earth’s 

subsurface into the atmosphere through natural features (such as terrestrial seeps, marine 

seeps, and mud volcanoes), and through anthropogenic activities by the exploitation of 

fossil fuels such as coal, oil, and natural gas. Fossil fuel sources of methane are from coal 

https://en.wikipedia.org/wiki/Epicuticular_wax
https://en.wikipedia.org/wiki/Epicuticular_wax
https://en.wikipedia.org/wiki/UV_radiation
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extraction, crushing and processing, and abandoned mines; oil extraction and gas flaring; 

and especially from natural gas extraction, storage, processing, transmission, distribution, 

and usage.  

As the coal is mined, the methane gas that has been trapped between layers of coal during 

its formation is released. Global and even regional estimates of CH4 emissions from coal 

mines depend on many assumptions regarding the type of coal, the depth of the mine, 

mining practices, the methane content of the coal seam, and whether methane is flared or 

released (Beck et al., 1993; Kirchgessner, 2000; Wuebbles et al., 2002; and references 

therein). 

The primary component of natural gas is methane (over 90%). Methane emitted in the 

atmosphere during different stages such as extraction, processing, storage, transmission 

and distribution of natural gases and other different activities such as production, 

processing, transportation and distribution of crude oil since natural gas is often found 

alongside with petroleum, crude oil. Regional leakage percentages were estimated to range 

from 1% to 15% of total natural gas production, depending on the quality of the pipelines, 

the extraction process, leakage control, the method used to estimate gas losses, and other 

factors (e.g., Mitchell, 1993; Matthews, 1994; Bazhin, 1994; Beck et al., 1993; Wuebbles 

et al., 2002). It has been suggested that trapping of this methane emission from these 

sources (agriculture, energy sectors and landfills) and using it as an energy source may 

provide additional benefits (Wuebbles et al., 2002; Dlugokencky et al., 2011).  
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According to AR5 (2013), using bottom-up approaches, global fossil fuel related fugitive 

methane emission is estimated between 85 and 105 Tg(CH4) yr–1 for the decade of 2000-

2009 (Dentener et al., 2005; EDGAR4 database, 2009; EPA, 2011) and using top-down 

inversions, it is estimated to be 77 to 123 Tg(CH4) yr–1 (Curry, 2007; Pison et al., 2009; 

Bergamaschi et al., 2009; Bousquet et al., 2011; Spahni et al., 2011; Ito and Inatomi, 2012). 

In IPCC AR5 (2013), natural geological sources were estimated between 33 and 75 

Tg(CH4) yr–1. Etiope et al. (2008) provided improved emission estimates from terrestrial 

(13 to 29 Tg(CH4) yr–1) and marine (~20 Tg(CH4) yr–1) seepages, mud volcanoes (6 to 9 

Tg(CH4) yr–1), hydrates (5 to 10 Tg(CH4) yr–1) and geothermal and volcanic areas (3 to 6 

Tg(CH4) yr–1), which represent altogether between 42 and 64 Tg(CH4) yr–1 (IPCC, AR5, 

2013). The warmer Arctic Ocean is leading to rapid loss of sea ice and melting permafrost 

resulting in increased wetland areas, combined with warmer temperatures further 

increasing methane emission, in addition, it also slowly increases methane emission from 

hydrates on shallow Arctic continental shelves where pools of free gas are released when 

overlying layer of impermeable clathrate decays (Dlugokencky et al., 2011). IPCC AR5 

(2013) mentioned potential importance of the natural sources of CH4 emissions from 

thawing permafrost and CH4 hydrates in the northern circumpolar region in the 21st 

century, since they could increase dramatically due to the rapid climate warming of the 

Arctic and the large carbon pools stored there (Tarnocai et al., 2009; Dlugokencky et al., 

2011; Walter Anthony et al., 2012). However, hydrates are estimated to represent only an 

exceedingly small emission, between 2 and 9 Tg(CH4) yr–1 during the decade of 2000-2009 

as mentioned by IPCC AR5 (2013). The supersaturation of dissolved methane at the bottom 

and surface waters in the East Siberian Arctic Shelf with a net sea-air flux of 10.5 
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Tg(CH4)yr–1, similar in magnitude for the entire ocean (Shakhova et al., 2010) and 

ebullition of CH4 from decomposition and thawing of lake sediments in north Siberia with 

an estimated flux of ~4 Tg(CH4) yr–1 demonstrated importance of potential methane release 

in the future (Walter et al., 2006; van Huissteden et al., 2011; IPCC, AR5, 2013). 

 

Pyrogenic Emissions: 

Pyrogenic CH4 is produced by the incomplete combustion of both living and dead organic 

matter in biomass and soil carbon during wildfires, and of biofuels and fossil fuels. When 

combustion is incomplete, large amounts of CH4, and other higher-order hydrocarbons can 

be produced. Methane emissions from biomass burning depend on the stage of combustion 

reached, the carbon content of the biomass, and the amount of biomass burned (Levine et 

al., 2000). Methane emissions from these sources can be either human induced, primarily 

for agricultural purposes and biofuel combustion, or natural occurrence like forest fires. 

Most biomass burning is initiated by humans for agricultural land clearing such as seasonal 

grassland fires that spread from crop waste burning, especially in savannah Africa and for 

land-use change e.g., burning after logging to clear land for eventual agricultural use 

(Dlugokencky et al., 2011).  

Pyrogenic sources of CH4 are assessed to have a small contribution in the global flux for 

the 2000s (32 to 39 Tg(CH4) yr−1) as published in the IPCC AR5 (2013). Similar as the 

emission from wetlands, emission from biomass burning such as from tropical and boreal 

forests (17 to 21 Tg(CH4) yr−1) is also meteorologically driven, but plays smaller role in 
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interannual variability of CH4 growth rate except during intensive fire periods (Langenfelds 

et al., 2002; Simpson et al., 2006). Burning of forests and peatland in Indonesia and 

Malaysia, during the 1997–1998 record strong El Nino, released ~12 Tg(CH4) which 

contributed to the observed growth rate anomaly (Langenfelds et al., 2002; van der Werf 

et al., 2004). IPCC AR5 (2013) also discussed about some smaller fire CH4 emissions 

positive anomalies suggested over the northern mid-latitudes in 2002–2003, over Eastern 

Siberia in 2003 (van der Werf et al., 2010) and Russia in 2010. Moreover, traditional 

biofuel burning is estimated to emit 14 to 17 Tg(CH4) yr–1 (Andreae and Merlet, 2001; 

Yevich and Logan, 2003). 

 

2.3.2. Sinks of Methane 

 

The processes that consume methane from the atmosphere are considered "sinks" of 

atmospheric methane. The most prominent of these processes occur because of methane 

either being destroyed in the atmosphere or broken down in soil. Figure 2.8 shows a pie-

chart demonstrating relative effects of sinks of atmospheric methane. There is a small 

imbalance of about 3 Tg(CH4)yr–1 between rate of atmospheric methane emission from 

sources and loss due to sinks observed for the decade of 2000s (IPCC, AR5, 2013). The 

major sink of atmospheric methane is oxidation by OH radicals (7 to 11 years lifetime) and 

two more minor sinks are soil sinks (160-year lifetime) and stratospheric loss by reaction 

with ·OH, ·Cl and ·O1D in the stratosphere (120 year lifetime), giving a net lifetime of 
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atmospheric CH4 of 8.4 years. A recent estimate of the CH4 lifetime is 9.1 ± 0.9 years 

(Prather et al., 2012). 

 

 

 
 

 
Figure 2.8: Pie-chart showing relative effects of atmospheric methane sinks (Reference website: 

https://commons.wikimedia.org/wiki/File:MethaneSinkPieChart.jpg). 

 

Reaction with Hydroxyl Radicals: 

 

The main primary sink of atmospheric CH4 is its oxidation initiated by OH radicals, a 

chemical reaction that takes place mostly in the troposphere and stratosphere (Ehhalt and 

Heidt, 1973). In the troposphere, this oxidation reaction gets triggered especially in the 

presence of strong sunlight in the tropics and is highly influenced by meteorological 

variation (Dlugokencky et al., 2011). Methane in the atmosphere reacts with hydroxyl (OH) 

radicals to produce ·CH3 radical and water vapor as shown in the chemical reaction: 

 

CH4 + ·OH → ·CH3 + H2O 
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This reaction is the first step of an oxidation chain reaction further producing CO and CO2, 

as described previously in the section 2.2.3 in this chapter. The reaction with hydroxyl 

radical is responsible for removal of CH4 equivalent to about 90% of all surface emissions 

each year and 9% of the total burden of CH4 in the atmosphere, which defines a partial 

atmospheric lifetime with respect to OH for an atmospheric burden of 4800 Tg(CH4) (4700 

to 4900 TgCH4) as computed by Atmospheric Chemistry and Climate Model 

Intercomparison Project (ACCMIP) atmospheric chemistry models in Voulgarakis et al. 

(2013) (IPCC, AR5, 2013).  

 

The photolysis of ozone, produces excited atomic oxygen which reacts with water vapor 

to produce hydroxyl (OH) radicals as shown in the reactions below: 

                                                     

                                                     1

3 2O O +O( D)h⎯⎯→                                         

                                                    1

2O( D) H O 2OH+ →                                                    

           

OH, thus formed from the photodissociation of tropospheric ozone and water vapor, is the 

primary oxidant for most tropospheric pollutants, including carbon monoxide, NOx 

species, and organic compounds (e.g, Crutzen, 1995; Wuebbles et al., 2002). Methane 

being the most abundant organic species in the atmosphere, plays an influential role in 

determining the tropospheric oxidizing capacity, initiating an important series of chemical 

reactions (Wuebbles et al., 2002). The indirect effect of this methane oxidation influences 

the increase of other pollutants. Large amount of methane in the atmosphere means fewer 
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amount of hydroxyl (OH) radicals which create all over low oxidizing power of the 

atmosphere. 

 

Over the past decade, many publications estimated global OH concentrations and 

variations (Prinn et al., 2001; Dentener et al., 2003; Bousquet et al., 2005; Prinn et al., 

2005; Rigby et al., 2008; Montzka et al., 2011). It is almost impossible to measure directly 

global OH concentrations in the atmosphere, because of its noticeably short lifetime and 

low concentration in the atmosphere. To obtain a global mean OH value and time 

variations, Chemical Transport Models (CTMs), Chemistry Climate Models (CCMs) or 

proxy methods must be used. However, most estimates of OH concentration have been 

made through measuring the concentration of a tracer molecule such as methyl chloroform 

[MCF (CH3CCl3)]. MCF emissions are exclusively industrial, relatively well known, and 

main sink is OH radicals, thus can be used to infer the OH concentration with chemical 

transport model. Using CH3CCl3 data from 1978 to 1994 obtained at five ALE/GAGE 

stations around the globe, modeling studies deduced the average globally integrated 

concentration of OH to be 9.7x105 molecules/cm3 (Prinn et al., 1995) and 1.07x106 

molecules/cm3 (Krol et al., 1998). When measurements of MCF tracer are used to 

reconstruct OH, due to oversensitivity to uncertainties on their emissions, atmospheric 

inversion results showed much larger inter-annual variations of OH (5 to 10%) for the 

1980s and the 1990s (Montzka et al., 2011), although reduced variations are inferred after 

1998 by Prinn et al. (2005). The Montreal protocol (1987) and its further amendments led 

to limitations in the MCF emissions and thus reduction of MCF in the atmosphere and 

allowed a consistent estimate of small OH variations between atmospheric inversions 
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(<±5%) and CCMs/CTMs (<±3%) by the decade of 2000s (Voulgarakis et al., 2013; Young 

et al., 2013; IPCC, AR5, 2013). However, IPCC AR5 (2013) mentioned the need to find 

another tracer to reconstruct global OH in the upcoming years, as is imposed by the 

extremely low atmospheric values of MCF (few ppt in 2010). 

 

As published in the IPCC AR5 (2013), a recent extensive analysis by Prather et al. (2012) 

inferred a global chemical loss of 554 ± 56 Tg(CH4)yr–1 due to OH, whereas other CTMs 

and CCMs (Young et al., 2013) estimated a global chemical loss of methane of 604 

Tg(CH4) yr–1 [509 to 764 Tg(CH4) yr–1] for the decade of 2000s. According to IPCC AR5 

(2013), top-down inversions using MCF measurements to infer OH provided a smaller 

chemical loss of 518 Tg(CH4) yr–1 with a narrower range of 510 to 538 Tg(CH4) yr–1 in the 

2000s, without accounting for all sources of uncertainties (Prather et al., 2012). 

 

Removal of CH4 in Stratosphere 

 

Other processes that contribute minor CH4 removal from the troposphere are upward loss 

to the stratosphere. If CH4 is not destroyed in the troposphere, then it moves to the next 

atmospheric layer, will last for approximately 120 years, and eventually gets destroyed. 

The reaction of CH4 occurs with Cl radicals and O(1D) in the stratosphere (Shallcross et 

al., 2007; Neef et al., 2010). This reaction in the stratosphere accounts for about ~3% of 

global CH4 sink (Kirschke et al., 2013). Destruction of CH4 in the stratosphere occurs the 
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same way that it does in the troposphere, methane is oxidized to produce carbon dioxide 

and water vapor. 

 

Reaction with Cl 

 

A small sink of atmospheric CH4 is suspected, but still debated, in the marine boundary 

layer due to a chemical reaction with chlorine (Allan et al., 2007; IPCC, AR5, 2013). 

Reaction with chlorine radicals from sea salt in the marine boundary layer accounts for 

about ~3% of the global CH4 sink (Kirschke et al., 2013). Methane reacts with natural 

chlorine gas in the atmosphere to produce chloromethane and hydrochloric acid (HCl), the 

process is known as free radical halogenations.  

 

CH4 + Cl2 → CH3Cl + HCl 

 

The HCl produced in this reaction leads to catalytic ozone destruction in the stratosphere.  

 

Removal by Methanotrophs in soil 

 

Methanotrophic bacteria that reside within soil use methane as a source of carbon and 

energy in methane oxidation. Reaction of methane with oxygen produces carbon dioxide 

and water. 

 

https://en.wikipedia.org/wiki/Chloromethane
https://en.wikipedia.org/wiki/Hydrochloric_acid
https://en.wikipedia.org/wiki/Ozone
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CH4 + 2O2 → CO2 + 2H2O 

 

Methanotrophic bacteria in aerated soils account for about ~4% of global CH4 sink 

(Kirschke et al., 2013). As published in IPCC AR5 (2013), oxidation in upland soils (with 

oxygen) by methanotrophic bacteria removes about 9 to 47 Tg(CH4) yr–1 (Curry, 2007; 

Dutaur and Verchot, 2007; Spahni et al., 2011; Ito and Inatomi, 2012). 

 

Methanotrophs are also important in the oceans where they can oxidize a significant 

fraction of CH4 emitted from seeps on the seabed into CO2, before methane reaches the 

atmosphere. According to Dlugokencky et al. (2011), in future this may be a major uptake 

of widely dispersed emissions from seabed hydrates, which store methane in the seabed 

both by anaerobic biological methanogenesis in shallow sediment and by geological 

heating at deeper levels.  

                                                      

2.4. Isotopes 

 

The isotopic composition of atmospheric CH4 is determined by chemical and physical 

processes. The rates of the chemical reactions of methane production and removal depends 

on isotopes; hence all sources and sinks exhibit a characteristic fractionation of the methane 

isotopes and thus, valuable information concerning the strength of methane sources and 

sinks, and their contribution to changes in atmospheric methane abundance can be obtained 

from its isotopic composition. Mass spectroscopy is used to measure different isotopes of 
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methane (Stable isotopes 13CH4, CH3D and radioisotope 14CH4). Routine monitoring of 

13CH4 in CH4 in ambient air is presently limited, mainly carried out by the University of 

Colorado, Institute of Arctic and Alpine Research (INSTAAR), for the US NOAA network 

of sites, by the National Institute of Water and Atmospheric Research in New Zealand, by 

the University of Heidelberg in Germany and by Royal Holloway University London 

(RHUL) in the UK. Stable isotope 13CH4 helps separate biogenic emissions from other 

sources. Measurements of the δD stable isotope (CH3D) provide constraints on the 

uncertain OH CH4 sink. Radiocarbon CH4 data (14CH4) helps constrain the uncertain fossil 

part of CH4 emissions, if 14CH4 emissions from nuclear installations can be accurately esti-

mated. In the next following section, only 13CH4  isotope of atmospheric methane is 

discussed, since other isotopes of methane are not included in this work. 

 

13C-CH4: 

 

13C-CH4, the most measured isotope of atmospheric methane, which is generally 

expression of the ratio of 13C to 12C relative to a reference standard. Isotopic ratios are 

conventionally expressed as per mil deviations from a certain standard to emphasize the 

small changes due to source and sink processes. In this thesis, the most prominent isotope 

13CH4 formulated the definition of the carbon isotope signature as: 
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where [13C/12C]PDB = 0.0112372 is the Chicago PeeDee Belemnite (PDB) standard. The 

global average atmospheric δ13C ranges from -47.3‰ to -46.2‰ (Stevens and Rust, 1982; 

Stevens, 1993; Quay et al., 1991, 1999; Tyler et al., 1999). Recently, Levin et al. (2012) 

found the atmospheric mean δ13C−CH4 is close to -47‰ with less depleted values in the 

Southern Hemisphere and an inter-hemispheric difference of approximately 0.3‰ and has 

changed less than 0.05‰ since 1990. 

 

The 13CH4 ratios are used to differentiate between methane from bacterial sources such as 

agriculture and ruminant animals, which are 13C-depleted relative to atmospheric methane, 

and the 13C-enriched methane emitted from non-bacterial sources such as natural gas and 

biomass burning, which is generally 20–30 ‰ higher (Tyler, 1986; Tyler et al., 1987; 

Cicerone and Oremland, 1988; Quay et al., 1988; Stevens and Engelkemeir, 1988; Conny 

and Currie, 1996; and references therein). CH4 formed at high temperatures (combustion) 

is enriched in the heavier isotope and CH4 from biogenic origin is depleted, which means 

thermogenic emission of methane has a larger ratio of 13C/12C sample than that of methane 

produced biogenically. IPCC AR5 (2013) published emissions characterized by ranges in 

its isotopic composition in 13C-CH4 typically as –55 to –70‰ for biogenic, –25 to –45‰ 

for thermogenic, and –13 to –25‰ for pyrogenic. Different photosynthetic pathways in C3 

𝛿13𝐶 − 𝐶𝐻4 =  
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and C4 plants lead to quite different organic carbon isotope signatures, so, when these are 

either burned or digested, the CH4 released has different isotopic signatures. Pyrogenic 

emissions of methane are least depleted depending on the ratio of C3 to C4 plants with a 

range of isotopic signature as δ13C-CH4 = -7 to -27 ‰ (Yamada et al., 2006). Isotopic 

signatures of different categoric sources as published in Dlugokencky et al. (2011) are: 

Wetlands have signatures between −70 and −60‰ at high northern latitudes and between 

−60 and −50‰ in tropical climates. Savannah grassland burning (C4) have δ13C-CH4 of 

−20 to −15‰, whereas boreal forest burning releases CH4 at −30 to −25‰. Similarly, 

ruminants digesting C4 plants give off CH4 at −55 to −50‰, whereas those eating C3 plants 

give off −65 to −60‰ CH4. The natural gas industry produces CH4 of variable isotopic 

signature of -50 to -25‰ depending on the formation temperature of the gas reservoir 

(biogenic or thermogenic).  
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CHAPTER 3 

Physical and Mathematical Concepts 
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In this chapter, the physical and mathematical concepts of inverse modeling are explained 

with its application on understanding the recent trends of global budget of atmospheric 

methane emissions. 

Firstly, to understand the inverse problem, it is stated, discussed and its general solution is 

obtained based on the approach of Bayesian probability theory. Secondly, the uncertainties 

associated with the solution are derived and estimated. Thirdly, reduction of  computational 

demands by implementation of Kalman smoothing technique with sequential stepping 

through observational data is discussed. Fourthly, discussion on incorporating isotopic 

measurements is done. Finally, interval constraints are enforced to ensure results which are 

physically sensible.  

 

Most of the derivations in this chapter have been taken and modified from the published 

literatures such as Houweling et al. (1999), Kasibhatla et al. (2000), Mikaloff Fletcher et 

al. (2004a), Bruhwiler et al. (2005), Tang and Zhuang (2011), and Röger (2013). 

 

3.1. Inverse Modeling 

 

3.1.1. Inverse Problem and its Solution 

 

Solving, by definition, a ‘direct (or forward) problem’ is to obtain information on the values 

of some measurable quantities using a theoretical relationship, when given some 

information on the values of the set of parameters. Whereas, when given some information 
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on the values of some measured quantities, using a theoretical relationship to obtain 

information on the values of the set of parameters, then it is solving an ‘inverse problem.’ 

For a direct problem, the values of the parameters are ‘data,’ and the values of some 

observable quantities are ‘unknowns.’ For an inverse problem, the data are the results of 

some measurements, and the unknowns are the values of parameters. Inverse problem is 

an expanding branch of Mathematics that has found numerous applications. Inverse 

problem theory was essentially developed in geophysics, to deal with largely 

underdetermined problems such as to localize the earthquake centers (Tarantola and 

Valette, 1982a; Hein et al., 1997). The inverse modeling approach was first used in 

atmospheric science by Enting (1993) and Enting et al. (1993) to study atmospheric CO2 

cycle. 

 

Tarantola and Valette (1982a) mentioned about the minimal constraints necessary for the 

formulation of an inverse problem as: 

1. The formulation must be valid for linear as well as for strongly nonlinear problems. 

2. The formulation must be valid for overdetermined as well as for underdetermined 

problems. 

3. The formulation of the problem must be consistent with respect to a change of variables. 

4. The formulation must be general enough to allow for general error distributions in the 

data (which may be not gaussian, asymmetric, multimodal, etc.). 

5. The formulation must be general enough to allow for the formal incorporation of any a 

priori assumption (positivity constraints, smoothness, etc.). 
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6. The formulation must be general enough to incorporate theoretical errors in a natural 

way. 

 

Two problems are called inverse to each other if the formulation of each of them requires 

full or partial knowledge of the other. Inverse problems deal with determining, for a given 

input-output system, an input that produces an observed output, or determining an input 

that produces a desired output (or comes as close to it as possible), often in the presence of 

noise. 

 

Inverse Modeling Approach  

 

Inverse modeling often called the top-down approach, plays an important role in 

quantifying the sources and sinks of various trace gases (Enting, 2002). It compares 

forward model simulations from atmospheric transport models using prior sources and 

sinks with the spatiotemporally discrete observations (Tang and Zhuang, 2011). The prior 

sources and sinks are optimized by minimizing a cost function defined by the distances 

between the forward model simulation and observations (Gurney et al., 2002; Tang and 

Zhuang, 2011). Like upscaling techniques, inverse modeling can be used to estimate 

sources. This method translates measurements of trace gas concentrations to constrain the 

sources by means of an atmospheric transport model. Generally, the number of available 

measurements is a limiting factor in this approach (Houweling et al., 1999). For such an 

inverse problem to have a single solution either the number of emission parameters to be 

estimated must be adjusted according to the available measurements, or different 
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constraints must be introduced (Houweling et al., 1999). It is often required that by 

introducing first guess or a priori information of the sources, the solution gets close to 

existing knowledge (Houweling et al., 1999). The inverse techniques involve comparing 

predictions from atmospheric transport models and measurements of atmospheric carbon 

abundances at observation sites distributed over the regions of interest. The spatial pattern 

of the observed and predicted differences is used to infer the spatial distribution of sources 

and sinks of trace gases by seeking a distribution of fluxes that in a least squares sense 

minimizes the difference between the model predictions and observations, as well as any 

prior information used to constrain the problem (Bruhwiler et al., 2005). 

 

A consistent way of doing this is by adopting a so-called Bayesian approach, in which all 

parameters are expressed as statistical probability distributions. A solution in the form of a 

superposition of all statistical distributions involved can be computed, from which means 

and covariances can be derived. 

 

Until now, several studies have quantified global-scale sources of different trace gases 

using inverse methods, such as CO2 (Keeling et al. 1989b; Enting and Mansbridge, 1989; 

Tans et al., 1990a; Enting, 1993; Enting et al., 1993, 1995; Rayner et al., 1996; Law and 

Simmonds, 1996; Kaminski et al., 1999b; Gurney et al., 2002), CFCs (Brown, 1993; 

Hartley and Prinn, 1993; Plumb and Zheng, 1996; Mulquiney and Norton, 1998; 

Mulquiney et al., 1998), CO (Bergamaschi et al., 2000b; Kasibhatla et al., 2002), CH4 

(Brown, 1993, 1995; Hein and Heimann, 1994; Hein et al., 1997; Houweling et al., 1999; 

Mikaloff Fletcher et al., 2004a, b; Bergamaschi et al., 2005; Chen and Prinn, 2006; 
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Bousquet et al., 2006; Meirink et al., 2008b; Wecht et al., 2012; Rice et al., 2016). Some 

of the previous modeling studies on quantifying different atmospheric trace gases are 

discussed in section 1.3.1 of chapter 1 in this thesis and previous studies with inverse 

modeling approach to quantify atmospheric methane are also discussed in section 1.3.2 of 

Chapter 1 in this thesis. The present work is done implementing an inverse modeling 

technique and some improvements (discussed in section 1.3.3 of chapter 1 in this thesis), 

investigating the extent to which the global magnitude of the various methane sources can 

be constrained by prior emission information, atmospheric observations, and isotopic 

measurements. The mathematical methods adopted in this study for inverse modeling of 

atmospheric methane are being discussed in the following sections. 

 

3.1.2. Inverse Modeling Technique used to quantify Atmospheric Methane 

 

Inverse modeling is a formal approach for estimating the values of the variables driving 

the evolution of a system by taking measurements of the observable manifestations of that 

system and using our physical understanding to relate these observations to the driving 

variables. We call the variables that we wish to estimate the state variables, and assemble 

them into a state vector x. We similarly assemble the observations into an observation 

vector y. Our understanding of the relationship between x and y is described by a physical 

model F, called the forward model: 

 

                                 y = F(x, p) + ɛ                                 (3.1) 
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where p is a parameter vector including all model variables that we do not seek to optimize 

(we call them model parameters), and ε is an error vector including contributions from 

errors in the observations, in the forward model, and in the model parameters. From 

inversion of equation (3.1), we can obtain x given y. In the presence of error (ε ≠ 0), the 

best that we can achieve is a statistical estimate. The optimal solution of x reflecting this 

ensemble of constraints is called a posteriori. The choice of state vector (i.e., which 

variables to include in x vs. in p) is up to us. It depends on what variables we wish to 

optimize, what information is contained in the observations, and what computational costs 

are associated with the inversion. 

 

The inversion method adopted in the present study includes information on the observed 

atmospheric methane mixing ratios and isotope ratios at the monitoring sites in conjunction 

with a priori estimates on the spatial and temporal patterns of fluxes of individual methane 

sources globally and their uncertainties. The prior estimates are only used for the elements 

we wish to optimize i.e., the state vector, not for the observational data. The results of 

solving the inverse problem are a posteriori estimates of methane source magnitudes and 

their a posteriori uncertainties (Tarantola and Valette, 1982a, 1982b; Tarantola, 1987). The 

surface emissions and concentrations are related by a global atmospheric chemical 

transport model (CTM). Mathematically, CTM defines mapping (or function) between 

parameter space which is surface emission fluxes and data space which is concentration. 

The dimensions of these vector spaces depend on the number of fluxes needed to be 
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estimated ‘n’ and the number of available observations ‘m’. For any given CTM, the 

inverse model problem can be represented as: 

 

Hx = yobs − yref + ɛ                                           (3.2) 

= ydiff + ɛ 

 

Equation (3.2) assumes that the spatial distributions of all sources are well known. Here, x 

is a n-element state vector which is to be estimated. yobs is the m-element observation 

vector used to constrain the inversion. yref is the modeled mixing ratios at the times and 

locations of the observations which is obtained by a reference run of CTM using a priori 

emission estimates. The adjustments to the emissions specified in the reference run are 

interpreted as the scaling factors in x. For a set of a priori estimates, x contains the 

difference between estimated emissions and that prior estimates. ydiff represents the 

difference between the observation vector and the modeled mixing ratio vector from the 

reference run. ɛ describes the model-data uncertainty vector in this estimation. This 

uncertainty may arise firstly from errors in yobs measurement including instrument 

calibration error, sampling errors, statistical errors, and secondly from not precisely 

simulating near-field influences on the observations as well as long-range transport errors 

referred to as model-data mismatch error produced by this simplified model with coarse 

spatial resolution. For example, model-data mismatch errors occur when the transport 

model calculates transport for grid boxes several hundred kilometers in extent for 

comparison to what is essentially a point measurement, and small-scale processes that 

dominate the observed signal are not likely to be represented well by the transport model 
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(Bruhwiler et al., 2005). The elements of m x n matrix of response functions H are 

calculated using the atmospheric transport model and quantify the response at each 

measurement site for each time due to emissions originating from each source region at 

each time. In a formal way, the impulse response or Green’s function H is the Jacobian 

matrix which represents the first derivative of the modeled concentrations at the 

observational sites and dates with respect to the elements of x i.e., the coefficients of the 

source components.  

 

Bayesian inverse formalism can be used for non-linear systems only if the equations are 

linearized (Tarantola, 1987) and an iterative procedure is employed. In case of chemical 

sinks of methane, the assumption of linear relation does not hold, since the loss rate of CH4 

is directly proportional to its atmospheric abundance. For OH sink, the loss rate of CH4 is 

calculated as follows: 

 

    4 4OH

d
CH k OH CH

dt
=                            (3.3) 

 

where kOH, the reaction rate constant between the hydroxyl radical and methane is a 

function of temperature. The methane loss rate depends on [OH] concentration and [CH4] 

concentration, while in turn the dependance of [OH] concentration on methane flux made  

[CH4] concentration to cause a nonlinear response to the fluxes at the observational sites. 

A non-linear feedback mechanism is set as the tropospheric methane oxidation influences 

OH mixing ratio. Similar non-linear relations are also associated with Chlorine and O(1D) 



 

88 
 

sinks. When the sink strengths are to be estimated as well, then all these non-linear 

responses must be accounted for in the inversion. Since this work is limited to the 

estimation of the sources, we are not concerned about details regarding sink strengths. 

Bayesian inverse formalism can be applied to the non-linear systems if the equations are  

linearized (Tarantola, 1987) and an iterative procedure is employed (Bousquet et al., 2005). 

An iterative scheme is introduced by Bousquet et al. (2005) to incorporate this issue and 

can be referred for further use. In our setup, we assume a linear relation between methane 

flux and [CH4] concentration, as the feedback of methane concentration on methane 

oxidation due to reaction with OH and other sinks is neglected, thus eliminating non-

linearity. 

 

The process of atmospheric inverse problem represented by equation (3.2) is severely 

hampered by a mathematical characteristic known as ill-conditioning. In the real world, 

loss of details in the information on emissions occur due to dissipative processes during 

atmospheric transport. The estimation process acting in the opposite direction to the real-

world chain of causality, requires an amplification of small-scale details to counter-act this 

attenuation of information. However, this will also amplify errors in the observational 

process and errors in the transport model which can destabilize the inverse problem 

solution due to sensitivity of the estimates on these small errors. This loss of information 

can be quantified in terms of how rapid are the variations which makes the attenuation to 

become severe as the length-scale decreases. Bayesian estimation technique based on an 

independent a priori estimates of the emissions along with the optimal use of available 

information from measurements can stabilize the ill-conditioned inversion solution.  
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In the context of Bayesian estimation, the emission estimates should be as close as possible 

to the a priori information, while also leading to the closest possible agreement between 

modeled and measured concentrations which is the goal of any inversion. The classical 

Bayesian formalism performs optimization by minimizing a quadratic cost function 

between modeled and observed concentrations on one side and prior estimates and 

optimized estimates on other side, each term weighted by variance or covariance matrices. 

 

According to Gaussian statistics, the probability density function (PDF), p, of a vector, 

ydiff, given state vector, x, is  

    

( ) ( )1

diff diff diff

1 1
(y |x) exp x-y x-y

22 | |

T
p H R H

R

− 
= − 

 
                 (3.4) 

 

where, R is m x m error covariance matrix of observations corresponding to the difference 

vector ydiff. Considering the expectation values <ydiff −Hx> = <ɛ> = 0 so that, R, the error 

covariance matrix, is related to ɛ by  

 

( )( )diff diff diff diffy x- y x y x- y x
T

R H H H H=  −  −  −  −    

                                

                                                                                                                                  (3.5) 

 

=    ydiff − 𝐻x  ydiff − 𝐻x 𝑇 =   εεT  
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It is commonly assumed that all measurements are uncorrelated. Likewise, with the 

assumption that x is normally distributed about the vector of a priori values, xapr, its prior 

Probability Density Function (PDF) is given by 

 

( ) ( )1

apr apr

1 1
(x) exp x-x x-x

22 | |

T

p Q
Q

− 
= − 

 
                 (3.6) 

 

where Q is n x n error covariance matrix of deviations of x from xapr. R and Q are 

prescribed as diagonal matrices, the values of which specify the relative confidence in 

observations and information about set of prior fluxes. 

 

It is important to note that the assumption < (ydiff −Hx) > = 0 and < (x-xapr) > = 0 means 

there is no bias imposed by the model-data error or the a priori estimates. In either case, 

this assumption may not be strictly correct always.  

 

According to Bayes theorem, the probability of state vector x given ydiff is given by 

 

diff
diff

diff

(y |x) (x)
(x|y )

(y |x) (x) x

p p
p

p p d
=


                                               (3.7) 

 

Equation (3.7) states that the probability of a vector x given the data ydiff equals the 

probability of ydiff given x times the prior probability of the state vector normalized by the 

total probability of the data for all sources. 
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If the probability density function describing a priori information is Gaussian, then the a 

posteriori density function will also be Gaussian (Tarantola and Valette, 1982).   

 

Incorporating pdfs (3.4) and (3.6) in equation (3.7), the a posteriori density function is 

given by: 

 

                       

                                                                                                                                        (3.8) 

 

In case of large number of parameters, solving non-linear inverse problem depends on 

solving of forward problem a large enough number of times (Tarantola and Valette, 1982b). 

For forward problems with costlier solution where either the computation of probability 

density in the parameter space or calculation of mean values and covariances cannot be 

performed in a reasonable computer time, Tarantola and Valette (1982b) suggested to 

restrict the problem to the search of maximum likelihood point in the parameter space (the 

point at which the density of probability is maximum). This computation becomes easy to 

perform with use of classical methods for particular assumptions about the form of 

probability densities of experimental data and a priori assumptions on parameters, for 

example, with Gaussian assumptions, the search for the maximum likelihood point simply 

becomes a classical least squares problem (Tarantola and Valette, 1982b). By using step 

functions, the a posteriori probability density in the parameter space becomes constant 

𝑝 x ydiff   =  exp  −
1

2
  𝐻x-ydiff  

𝑇𝑅−1 𝐻x-ydiff  +  x-xapr  
𝑇
𝑄−1 x-xapr     
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inside a given bounded domain, while by using linear programming techniques, the 

maximum point of this domain can be reached (Tarantola and Valette, 1982b). The a 

posteriori probability density functions have discontinuities in slope, algorithms searching 

for maximum likelihood point will oscillate around the point of slope discontinuity 

(Tarantola and Valette, 1982b).  

 

To find the maximum likelihood point in the Gaussian distribution in the parameter space, 

the a posteriori probability density function p(x|ydiff) can be maximized by minimizing the 

objective function J(x) which is defined as  

 

( ) ( ) ( ) ( )1 1

apr apr diff diff(x) x-x x-x x-y x-y
T T

J Q H R H− −= +
                  (3.9) 

 

To get the optimal agreement of the model solution, inversion procedure needs to minimize 

the weighted sum of squared deviations. The mathematical solution of this minimization 

problem is given by Tarantola and Valette (1982b). As shown in equation (3.9), now, we 

will try to minimize the squared deviations of the emission estimates and the modeled 

concentrations from the a priori values and the observations in units of squared standard 

deviations. Therefore, the matrices Q and R act as weighting factors for the constraints 

imposed by the priors and the measurements.  

 

 J(x) can be minimized by equating its derivative with respect to x to zero: 

 



 

93 
 

                           

( ) ( )1 1

apr diff

x '

x'-x x'-y 0
x

T TJ
Q H R H− −

= + =


                                (3.10)                       

 

where the x′ indicates the “a posteriori” state vector to be solved which is the aim of this 

inversion model. 

 

From equation (3.10), solving by means of singular vector decomposition, x′ can be 

expressed as                  

               

( )
1

1 1 1

apr diff aprx' x y xT TH R H Q H R H
−

− − − = + + −                    (3.11) 

or  

x′ = xapr + 𝑄𝐻𝑇 𝑄𝐻𝑇 −1[𝐻𝑇𝑅−1𝐻 + 𝑄−1]−1𝐻𝑇𝑅−1 ydiff − 𝐻xapr  

  

or           

x′ = xapr + 𝑄𝐻𝑇[𝐻𝑇𝑅−1𝐻𝑄𝐻𝑇 + 𝑄−1𝑄𝐻𝑇]−1𝐻𝑇𝑅−1 ydiff − 𝐻xapr  

 

or 

x′ = xapr + 𝑄𝐻𝑇[𝐻𝑇 𝑅−1𝐻𝑄𝐻𝑇 + 𝐼 ]−1𝐻𝑇𝑅−1 ydiff − 𝐻xapr  

 

or 

x′ = xapr + 𝑄𝐻𝑇 𝑅−1𝐻𝑄𝐻𝑇 + 𝐼 −1 𝐻𝑇 −1𝐻𝑇𝑅−1 ydiff − 𝐻xapr  
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or 

x′ = xapr + 𝑄𝐻𝑇 𝑅−1𝐻𝑄𝐻𝑇 + 𝐼 −1𝑅−1 ydiff − 𝐻xapr  

 

or 

x′ = xapr + 𝑄𝐻𝑇 𝑅𝑅−1𝐻𝑄𝐻𝑇 + 𝑅 −1 ydiff − 𝐻xapr  

 

or 

                                
( ) ( )

1

apr diff aprx' x y xT TQH R HQH H
−

= + + −
                          (3.12) 

 

The optimal solution of the inverse problem (3.2) is given by equations (3.11) and (3.12).  

 

Note that (3.12) requires the calculation of the inverse of a m × m matrix, while in (3.11) 

a n × n matrix needs to be inverted, where ‘m’ is the number of available observations and 

‘n’ is the number of fluxes to be estimated. For example, if the number of fluxes to be 

estimated is significantly smaller than the number of observations, it is more 

computationally efficient to use the equation (3.11) even though R−1 and Q−1 must be 

calculated. R is generally assumed to be diagonal, and Q is relatively small in dimension 

if the number of source regions is not large. But in our inverse modeling algorithm, we 

have used equation (3.12), since the number of source regions in our study is large with a 

spatial resolution of 2⁰×2.5⁰ or 13104 surface grid cells, considering each cell as a source 

region, and the number of fluxes to be estimated (n) is larger compared to the number of 
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available observations (m), thus calculation of inverse of m × m matrix is more 

computationally efficient. 

 

3.1.3. Uncertainties associated with the solution 

 

It is essential to quantify the uncertainty associated with the state vector x’. The 

uncertainties associated with the model-data error and the a priori values are given by R 

and Q, respectively. Since the objective function is quadratic in x (Equation 3.9), the a 

posteriori probability density is also Gaussian and thus can be written as 

 

𝑝 x  =  
1

√2𝜋 𝑄′ 
exp  −

1

2
 x − x′ 𝑇𝑄′−1 x − x′                                                       

                                                                                                                                     (3.13) 

 

with mean value of x’ and posterior covariance Q’. 

 

The corresponding objective function J(x) can be written as 

 

( ) ( )1(x) x-x' ' x-x'
T

J Q −=
                                                         (3.14) 

 

Taking the second derivative of (3.14) yields 
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2
1

2

(x)
'

x

J
Q −

=
                                                                           (3.15) 

 

Finally, we can see that all these calculations lead to the derived result of Q’ which 

basically shows that the posterior covariance estimate can be found from the inverse of the 

Hessian of the objective function. Applying (3.15) to (3.9) gives 

                                     

                                   ( )
1

1 1' TQ H R H Q
−

− −= +                                                            (3.16) 

By rearranging, 

 

                                   ( )
1

' T TQ Q QH R HQH HQ
−

= − +                                            (3.17) 

 

Here, we have again found two equivalent forms of the solution that require the inversion 

of a n × n or a m × m matrix, respectively. It is clear from equation (3.16) that the diagonal 

elements of Q′ (i.e., the squared standard deviations of the emission estimates), are always 

smaller than those of Q (i.e., the squared standard deviations of the priors), since elements 

of diagonal matrix Q have been weighted by uncertainties in observations i.e., by 

(R+HQHT)R-1. The prior uncertainties are reduced by the inversion using information from 

the observations. The amount of reduction of the uncertainties depends on the modeled 

chemistry and transport information represented by H, and on the uncertainties of priors 

and observations, Q and R. 
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3.2. Kalman Smoother Technique 

 

 3.2.1. Basic Principle 

 

In this section, we discuss the development of the Fixed-Lag Kalman Smoother starting 

with basic consideration of Bayesian estimation.  

 

Let us assume that l months of observations are available from p observation sites, and we 

want to estimate monthly emissions from k different sources, then equation (3.1) becomes  

 

, , 1 .1

1, 1 1, 2 1,1 1 1

2, 2 2, 3 2,1

1,1 1 1

. . .

0 . ,

0 0 . . .

. . . . . . . .

. . . . . . . .

0 0 0 . .

diff
l l l l l l l

diff
l l l l l l l

l l l l l

diff

H H H x y

H H H x y

H H H

H x y

−

− − − − − − −

− − − − −

   
   
   
   

=    
   
   
       

                         (3.18) 

 

where we neglect ɛ.  

 

Each element of the vectors and matrix is itself a vector or matrix. Each xi is a vector of 

length k, each yi
diff is a vector of length p and each Hi,j is a matrix of dimension p × k. The 

vectors xl and yl
diff refer to month ‘l’. The fact that emissions from a month do not impact 

concentrations before that month is reflected, as all elements of the matrix of response 
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functions below the diagonal are zero. The optimal solution of equation (3.18) could be 

obtained in one step by using equations (3.11) and (3.16) or alternatively (3.12) and (3.17).  

 

This approach has been most employed to estimate carbon fluxes in several studies and is 

referred to as the Bayesian synthesis inversion (e.g., Enting et al., 1995; Hein et al., 1997; 

Houweling et al., 1999; Bergamaschi et al., 2005, 2007). For this method, a cost function 

is formulated with two terms; one involves the observations and other involves a prior 

estimate of the fluxes. Hence, the resulting flux estimates are constrained both by the 

observations and a prior guess of the solution. For the case of atmospheric inversions prior 

information is needed since the observational network is generally too sparse to allow 

estimation of fluxes on the scales of interest. More specifically, the problem tends to be 

underdetermined in regions where observations are sparse, and possibly overdetermined in 

regions where there are many observations, depending on the spatial scale of the fluxes to 

be estimated. However, Bayesian synthesis grows very computationally demanding since 

the size of the matrices in the estimation equation gets very large, and since the amount of 

computation involved in generating basis functions becomes prohibitive, even if an adjoint 

transport model is used (Bruhwiler et al., 2005). The size of the large matrix of basis 

functions in Eq. (3.18) grows rapidly as the number of observations and source regions 

increases. For example, 35 years of data from 105 sites and 10 source processes yield a 

total H matrix dimensioned 44100 by 4200, but when considering the model with spatial 

grid resolution of 2⁰×2.5⁰ or 13104 surface grid cells, each grid cell becomes a source 

region, the same example will have a total H matrix dimensioned 44,100 by 5503680. Thus, 

as size of the matrices grows, the computational costs become expensive. Using an adjoint 
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model, the basis functions are calculated by transporting pulses forward from each source 

region or backwards in time from each observation site. The atmospheric inversion 

problem becomes more efficient by using a stepping technique that relies on the 

observational fact that these basis functions get well mixed throughout the troposphere 

until constant values are reached (Bruhwiler et al., 2005). At a particular time in the 

inversion process, the current measurements do not constrain the fluxes very well from 

sufficiently far past years, because the atmospheric mixing leads to smoothing out of the 

spatial gradients over time (Bruhwiler et al., 2005). This is caused by dissipative processes 

in the real world just similar as the ill-conditioning of the inverse problem, and lead to the 

continuous loss of information over time inherent to atmospheric mixing. This fact is 

clearly reflected in the response functions where most of the signal used to distinguish the 

sources from each other occurs within the first 12 months.  

 

These computational demands can be reduced by filtering techniques using sequential 

stepping through observations while remembering only relevant parts of the matrices. In 

this study, the fixed-lag Kalman smoother is used for sequential estimation of the 

atmospheric methane fluxes. This technique is built upon the Kalman Filter, the optimal 

filtering technique originally developed by Kalman (1960) for estimating the state of a 

system given imperfect prior information and observations adapted by Bruhwiler et al. 

(2005) for estimation of atmospheric CO2 fluxes. This technique relies on the fact that most 

of the information about the spatial distribution of sources and sinks is observable within 

a few months to half of a year of emission, after which the spatial structure of sources is 

diluted by transport and cannot significantly constrain flux estimates. Bruhwiler et al. 
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(2005) described this estimation technique that steps through the observations sequentially, 

using only the subset of observations and modeled transport fields that most strongly 

constrain the fluxes at a given time step. The time over which transport information is 

retained is the “fixed-lag”. Estimates of each set of fluxes are sequentially updated multiple 

times, using measurements taken at different times, and the estimates and their 

uncertainties are shown to quickly converge. Final flux estimates are incorporated into the 

background state of trace gas and transported forward in time, and the final flux 

uncertainties and covariances are considered when estimating the covariances of the fluxes 

still being estimated. This technique is referred to as a Kalman smoother because it 

produces estimates of fluxes at a time using observations from that time step as well as 

observations from subsequent times (Bruhwiler et al., 2005).  An approach based on the 

Kalman filter was first applied by Chen and Prinn (2006) in estimation of global methane 

emissions. 

  

3.2.2. Time Stepping 

 

At a given timestep j, only a subset of transport information is kept, and the equation (3.18) 

is effectively reduced to the form: 
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( ) ( )

1

, , 1 ,

.
. . .

.

.

j

j

diff

j j j j j j q j

j q

x

x

H H H y

x

−

− −

−

 
 
 
 

= 
 
 
 
 
                            (3.19) 

 

where j denotes the current time step and q is the number of months of transport information 

kept at each time step, called as the fixed-lag. As seen in Eq. (3.19), the source vector at 

each time step xj will be estimated q times, each time by a different set of observation data 

vector. The H matrix gives the response to pulses emitted a time step at each of the 

observation sites, where Hj,j are pulses emitted from the most recent month, and Hj,j-q are 

responses due to pulses emitted q months in the past. At each subsequent time step from j 

to j+1, a source vector is shifted downward, while the basis functions for each month are 

shifted to the right. A source vector and basis function matrix for a new month are added 

to the right-hand side of Eq. (3.19). Once a source vector has been estimated q times it is 

dropped from the part of the state still being estimated. The last element xj-q exits out of the 

state vector and becomes fully optimized with best estimate x′j-q , and a new element xj+1 

is added at the top. The partly optimized estimates x′j , x′j-1 , ..., x′j−q+1, obtained by using 

equation (3.12), serve as new priors xapr,j, xapr,j−1 , ..., xapr,j−q+1 for the next time step. The 

prior for xj+1 can sensibly be chosen based on estimates from previous time steps, 

independent information, or a combination of both. The shifting of the elements of x is 

referred to as the state-space or forecast equation as used in the Kalman filter terminology 

and is formally represented by  
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                                                    apr j+1x x ' nM= +
                                                     (3.20)        

 

where the matrix M makes the elements of x′ move down and for all sources’ new priors 

for the month j+1 are contained in nj+1 as explicitly mentioned below, 

 

0 . . . 0

1 0 . . 0

0 1 0 . 0

. . . . .

. . . . .

0 . 0 1 0

M

 
 
 
 

=  
 
 
  
           and     

, 1

j+1

0

.
n

.

.

0

apr jx + 
 
 
 

=  
 
 
 
 
  . 

The covariance matrix is shifted by 

 

1' T

jQ MQ M N += +
                         (3.21) 

 

And then gets updated to equation (3.17). Nj+1 contains the covariance matrix Qj+1 of xapr,j+1 

in the top left corner and is zero everywhere else. 

 

The equations (3.12) and (3.17) are known as the state and the covariance update equations 

of the discrete Kalman filter. The Kalman gain matrix may be identified as 

 

( )
1

T TK QH R HQH
−

= +
                  (3.22) 
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The Kalman gain matrix functions as a weighting factor between the a priori values xapr 

and their error covariance matrix Q on one side and new information from the observations 

contained in ydiff on the other. Let us consider the following illustrations: 

 

R → 0: As the error covariance matrix of the measurements R becomes much smaller than 

the matrix HQH T, i.e., R→0, then the Kalman gain matrix approaches its “maximum” 

value K → H−1 (the pseudo-inverse of H, since H is not a square matrix). In this limiting 

case, the state update equation (3.12) yields x′ → H−1 ydiff and the estimated state vector 

depends only on the difference vector and the response functions representing the 

chemistry and available transport information. 

R → ∞: On the other hand, if the measurements are noisy with much larger model-data 

mismatch error and therefore associated with larger uncertainties, i.e., R>>Q then the 

Kalman gain matrix approaches its “minimum” value K → 0. Consequently, x′ → xapr and 

Q′ → Q. The prior estimates are retained, and the observations are de-emphasized in the 

inversion not providing useful constraints on the fluxes being estimated. 

 

The method described up to this point assumed that the inversion is done ‘on-line’ that 

means the transport model is run forward in time with prior flux estimates to produce 

predictions of CH4 abundances which are then compared with observed CH4 at each site,  

the final flux estimates are then incorporated into the background state of CH4 using 

transport information in the form of basis functions and the transport model is run to the  
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next inversion time step. The fixed lag Kalman smoother can also be used ‘off-line’ without 

running the transport model that means the pre-calculated basis functions are used to 

reproduce transport fields over the entire time period and are used to propagate the 

optimized fluxes forward in time, thus updating the background state (Bruhwiler et al., 

2005). In the next section, the method implemented in our study using off-line fixed lag 

Kalman smoother will be discussed based on the technique mentioned by Bruhwiler et al. 

(2005).  

 

 3.2.3. Propagation of Covariance 

 

The Kalman smoother uses only a subset of the available observations to constrain fluxes, 

hence, it is reasonably expected to decrease computing cost only by generating larger 

uncertainties since each estimate is constrained by less data, than the Bayesian synthesis 

inversion, which constrains estimates by measurements from all subsequent times. But this 

was not always the same in the comparison study by Bruhwiler et al. (2005). It was 

noteworthy in Bruhwiler et al. (2005) study that the estimated uncertainty for the Kalman 

smoother was sometimes smaller than that for the Bayesian synthesis inversion, which was 

contradictory since Bayesian synthesis uses all the available data rather than a subset, it 

should have given the lowest uncertainties. In addition, they also found that the Kalman 

smoother uncertainty estimates were often lowest for cases where the basis functions had 

been transported for the least amount of time. Uncertainties estimated using only one 

month of transport were the most questionable, since these estimates falsely appeared to 
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be much less uncertain than the Bayesian estimates. They mentioned the fact that recent 

emissions produced the largest signals at measurement sites and the largest spatial 

gradients may have caused the generally acceptable small increases in estimated 

uncertainty provided that at least several months of transport are used. The length of time 

needed for the basis functions to be transported depends on two opposing factors: one is 

the time taken by the emission pulse from the source region to transport to the observation 

site that constrain the fluxes and other is the time taken for diffusion of pulses by 

atmospheric mixing that flattens the spatial gradient (Bruhwiler et al., 2005). 

 

However, this case was modified by Bruhwiler et al. (2005) as demonstrated in an inversion 

of CO2 fluxes. Bruhwiler et al. explained this unexpected behavior by the fact that the 

Kalman smoother does not consider the covariance between monthly fluxes that are no 

longer being estimated and those are still being estimated. Additionally, once a final 

estimate is made of a set of monthly fluxes, these fluxes are incorporated into the 

background state that is propagated forward in time by using the calculated transport fields 

(Bruhwiler et al., 2005). Kalman smoother treats fluxes that have been fully optimized as 

perfectly well-known quantities, neglecting their associated uncertainties. Bruhwiler et al. 

mentioned that as the time-dependent flux estimates tend to over and undershoot the 

solution at successive time steps, these temporal correlations may lead to  a smaller total 

uncertainty aggregated over time, on the other hand, the incorporation of estimated fluxes 

into the background state without accounting for estimated uncertainty implies a certain 

level of uncertainty underestimation for subsequent time steps. Correlations between 
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online (not yet fully optimized) and offline (fully optimized) state variables are also 

ignored. Bruhwiler et al. (2005) required the propagation of these correlations forward in 

time and thus proposed a technique as the solution to correct these shortcomings. They 

found that with at least six months of basis functions used to recreate  the background state, 

the difference in model predicted concentrations and estimated fluxes are considerably 

small, although, using Kalman smoother in off-line mode causes increased uncertainty, but 

also leads to great savings in computational costs. Thus, inverse problem can be solved off-

line with a subset of basis functions without further use of transport model (Bruhwiler et 

al., 2005).  

 

The offline variables are introduced to the reduced inverse problem, with equation (3.19) 

taking the form as; 

 

                                         

( ) u

diff

v

x
y

x
u vH H

 
= 

                                      (3.23) 

 

where the subscript ‘u’ refers to the part of the state vector still being estimated, and ‘v’ 

refers to the part of the state vector no longer being estimated. More specifically source 

vectors and response function vectors become as follows: 
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 

=  
 
 
 
 
   

and 

 

( )u , , 1 ,H . . .j j j j j j qH H H− −=
, 

( )v , 1 , 2 ,H . . .j j q j j q j j q rH H H− − − − − −=
 

 

where r is the number of months for propagating correlations, Hu is dimensioned the 

number of measurement sites, m, by the number of fluxes to be estimated, n. Hv is transport 

information from some number of time steps further back, for which estimates are no 

longer being made. It is dimensioned as m, by the number of months for which we intend 

to consider correlations times the number of source regions. 

 

Now, the objective function is rewritten as; 

 

( )

( ) ( )

1

apr,u apr,uu u

u v

apr,v apr,vv v

u u1

diff diff

v v

x xx x
x , x

x xx x

x x
y y

x x

T

uu uv

vu vv

T

u v u v

Q Q
J

Q Q

H H R H H

−

−

           
= − −              

           

      
+ − −      

               (3.24) 
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where, xapr,u and xapr,v are defined in similar way as xu and xv. Quu and Qvv are the covariance 

matrices of online and offline state variables, respectively and Quv and Qvu = Quv
T represent 

the covariances between the states still being estimated and those no longer being 

estimated. Now, introducing the matrices Qaa , Qbb , Qab , and Qba defined by 

 

1 1 1

1

1 1

uu uv aa ab

vu vv ba bb

Q Q Q Q
Q

Q Q Q Q

− − −

−

− −

  
= =   
                           (3.25) 

 

Using a matrix partitioning identity, the following equivalent expressions can be found: 

 

( )
1

1 1

aa uu uv vv vuQ Q Q Q Q
−

− −= −
                                      (3.26) 

( ) ( )
1

1 1 1 1
T

ab ba uu uu vv vu uu vvQ Q Q Q Q Q Q Q
−

− − − −= = − −
        (3.27) 

( )
1

1 1

bb vv vu uu uvQ Q Q Q Q
−

− −= −
                                        (3.28) 

 

Taking the derivative of J(xu , xv) with respect to xu and setting it equal to zero gives 

 

( ) ( ) ( )
/

/ 1 1 / 1u v

u apr,u v apr,v u v diff

u

(x ,x )
x x x x x x y 0

x
u

T TT

aa ba u v u

x

J
Q Q H H R H− − −

= − + − + + − =


   

(3.29) 

 

where, the prime term represents the updated a posteriori state vector, given that xv is no 

longer being updated, we set xv = xapr,v  and the second term drops out. 
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The new state update equation is yielded by reorganizing equation (3.29) as: 

 

( )
1

/

u apr,u diff apr,u vx x y x xT T

aa u u aa u u vQ H R H Q H H H
−

 = + + − −       (3.30) 

 

Equation (3.30) looks remarkably similar to the original Kalman filter update equation 

(3.12) with the exception that Qaa replaces Q and Hvxv is subtracted from ydiff. Qaa considers 

any correlations of xv with states still to be estimated (xu). As in equation (3.26), Qaa is the 

correction to the covariance matrix of the states still being estimated (Quu). This correction 

takes the form of correlations between online and offline state variables and is normalized 

by the covariance matrix of the final estimates. The correction is small when the 

correlations are small and the uncertainty of xv is large and it is large when the correlations 

are large and the uncertainty of xv is small. Since the correlation between emission 

estimates is largest for successive time steps and is reduced quickly with the distance in 

time between the estimates, it is to be expected that the benefit of adding additional months, 

i.e., increasing the number of months for which we propagate correlations, decreases. It is 

possible to apply the correction for up to one less than the number of months of states 

which are still being estimated. However, Bruhwiler et al. found a significant impact on 

their results with only the first month of covariance propagation. 

 

An expression for the covariance is found by calculating the inverse of the Hessian of the 

revised objective function by applying equation (3.15) to (3.24) leading to  



 

110 
 

 

11 1 1 1 1 / /2

2 1 1 1 1 / /

(x)

x

T T

u u aa u v ab uu uv

T T

v u ba v v bb vu vv

H R H Q H R H Q Q QJ

H R H Q H R H Q Q Q

−− − − − −

− − − −

   + + 
= =    

 + +          (3.31) 

 

The top left term is the covariance of the part of the state that is still being estimated; the 

cross terms relate to the covariance of the part of the state that is no longer being estimated 

with the part of the state that is still being estimated. These are incorporated into the new 

expression for the covariance. However, we are only interested in Q′uu i.e., a posteriori 

covariance matrix of states still being updated, using the same matrix partitioning identity 

as in equation (3.26), the following is obtained: 

 

( ) ( )( ) ( )
1

1
/ 1 1 1 1 1 1 1 1T T T T

uu u u aa u v ab v v bb v u baQ H R H Q H R H Q H R H Q H R H Q
−

−
− − − − − − − − = + − + + +

    

 (3.32) 

 

As equation (3.32) is compared to equation (3.16), it is found that again Qaa replaces Q and 

a new term describing the correlations between online and offline state variables is 

subtracted. Bruhwiler et al. (2005) have shown that the differences between including 1 

month of correlations and not propagating the covariance is large but including additional 

months has generally a small effect. Although, uncertainties obtained from equation (3.32) 

are always higher than those calculated in a Bayesian synthesis inversion, in agreement 

with the expectation that estimates constrained by less information had larger associated 

uncertainties. Thus, using the revised state update equation (3.30) of the Kalman smoother 
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improved calculations for estimated fluxes significantly and had superior results compared 

to the original update equation (3.12) as described by Bruhwiler et al. (2005). Therefore, 

as recommended by Bruhwiler et al. that the Fixed-Lag Kalman Smoother should also 

include the covariance propagation scheme. 

 

3.3. Isotope Data 

 

As in the original formulation of the inverse problem, any row of equation (3.2) 

corresponding to a specific observation, can be written as 

 

1

n
obs ref

ij i j j

i

H x y y
=

= −
                               (3.33) 

 

where ɛ is neglected. In this section, it is to be noted that Hij, xi, yj
obs, and yj

ref are not 

matrices and vectors, but only single elements. Using the measurements of the isotopic 

composition of methane at the same location and time, equation (3.33) is rewritten in terms 

of isotopic concentrations such as 

 

1

n
src obs obs ref ref

ij i i j j j j

i

H R x R y R y
=

= −
           (3.34) 
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where yj
obs and yj

ref are CH4 mixing ratios and Rj
obs and Rj

ref are the corresponding observed 

and modeled isotopic ratios (e.g., 13CH4/
12CH4). The characteristic                                              

isotopic ratio for each source process is denoted by Ri
src. To match records of isotopic 

signatures, equation (3.34) is divided by an arbitrary constant Rj
const, subtracted equation 

(3.33), multiplied by 1000 and then rearranged to yield 

 

1

n
src obs obs ref ref

ij i i j j j j

i

H x y y  
=

= −
         (3.35) 

 

where δi
src, δj

obs , and δj
ref are defined by 

 

1 1000

src

jsrc

j const

j

R

R


 
= −   
                     (3.36) 

1 1000

obs

jobs

j const

j

R

R


 
= −   
                       (3.37) 

1 1000

ref

jref

j const

j

R

R


 
= −   
                       (3.38) 

 

The definition of the delta notation is referred in Section 2.4. Rj
const is chosen to be equal to 

[13C/12C]PDB or [2H/1H]VSMOW, reported values of δj
obs and δi

src are directly inserted and 

thus, the obtained equations are added to the inversion. Since equation (3.35) only implies 

a linear relationship between the emissions and the product of the CH4 concentrations with 

the isotopic signatures, therefore, an inversion based on equation (3.35) tries to compensate 
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for an underestimate of the concentration by an overestimate of the isotopic signature and 

vice versa. Thus, Rj
const the isotopic ratio calculated in the reference run serves as a better 

choice. Hence, we set Rj
const = Rj

ref , therefore, from equation (3.38), δj
ref = 0 and the last 

term in equation (3.35) vanishes. 

 

* *

1

n
src obs obs

ij i i j j

i

H x y 
=

=
           (3.39) 

 

where δi*
src and δj*

obs are isotopic signatures for each source process and observation 

defined in terms of the reference ratio at the sampling location. δj
*obs is a linear function of 

each xi when equation (3.39) is divided by the constant yj
obs. Thus, isotope observational 

data can be used in the form of equation (3.39) to constrain the inversion.  

 

As an example, when we have measurements of the CH4 mixing ratio (yj
obs) and its isotopic 

signature δ13C − CH4 (δj
obs, relative to [13C/12C]PDB) for a specific time and location 

(identified by j), with estimates of the model-data error (ɛj
y and ɛj

δ) and the mixing ratio 

data has already been reflected in H, R and ydiff. Then, the isotope data can be used by 

following these steps: 

 

1. The isotopic ratio Rj
ref at the measurement time and location is obtained from the 

CTM reference run. 

 

2. δj
obs is converted to δj

*obs by using  
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( )

13

12

* 1000 1000obs obs PDB
j j ref

j

C

C

R
 

 
 
 

= + −

 

 

This conversion equation is obtained by solving (3.37) for Rj
obs and inserting it into itself 

using Rj
const = [13C/12C]PDB and Rj

const = Rj
ref, respectively. 

 

3. δj
*obsyj

obs is written into a new entry at the end of ydiff. 

 

4. All source signatures δi
src are converted to δi

*src by using  

 

( )

13

12

* 1000 1000src src PDB
j j ref

j

C

C

R
 

 
 
 

= + −

 

 

This equation is retrieved from equation (3.36) in the same way as in step 2. 

 

5. H1jδ1
*src , H2jδ2

*src , ..., Hnjδn
*src are written into a new row at the end of H. 

 

6. The error ɛj
*δ on δj

*obs is found by using error propagation:  
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𝜀𝑗
∗𝛿 = 𝜀𝑗

𝛿

 
𝐶13

𝐶12  
𝑃𝐷𝐵

𝑅𝑗
𝑟𝑒𝑓

 

 

7. The error ɛj
*δy on δj

*obsyj
obs is found by using  

 

𝜀𝑗
∗𝛿𝑦

= √(𝛿𝑗
∗𝑜𝑏𝑠𝜀𝑗

𝑦
)
2
+  𝑦𝑗

𝑜𝑏𝑠𝜀𝑗
∗𝛿 

2
 

 

8. The model-data covariance matrix R is extended by a row and a column. (ɛj
*δy)2 is 

written into the bottom right corner of the matrix. It is assumed that the isotope 

measurements are not correlated to any other observation. 

 

Thus, we solve the inverse problem with larger matrices and vectors as described before 

after repeating steps 1-8 for every available isotopic measurement. 

 

3.4. Interval Constraints 

 

The inverse flux estimates are found to have unreasonable values due to the ill-posedness 

of the inverse problem. An exclusively known source process might turn into a sink with 

the estimates of the total source strength becoming negative. Sometimes, estimates for an 

aseasonal process might strongly fluctuate from month-to-month which should not be 

varying much. The estimates are made to lie within a certain range considered as feasible 
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to overcome the problem of such unphysical results. Since the Kalman Smoother only deals 

with linear operators, the method used here to impose interval constraint is based on the 

projection operator method described by Simon and Chia (2002) and Simon (2010) applied 

in an iterative two-step approach described by Tang and Zhuang (2011). 

   

Inequality constraints are dealt as in the mathematical form 

 

Dx ≤ d                         (3.40) 

 

where x is the state vector, D is a known matrix and d is a known vector.  

 

Choosing D and d in equation (3.40) as negative values incorporates inequalities of the 

form Dx ≥ d. In the first step, x, and Q (subscript u is dropped in this section) are obtained 

for the unconstrained inverse problem. In the second step, it is checked whether x lies in 

the feasible region then no further action is required, and if x does not satisfy equation 

(3.40), then a solution is found by minimizing a cost function defined as 

 

( ) ( )1(x) x-x ' ' x-x '
T

J Q −=
        (3.41) 

 

with the condition that x satisfies (3.40). First, the elements of x that violate their respective 

constraints are identified and referred them as the active set. Then, D and d are reduced to 

only those rows representing the violated constraints. The unconstrained solution was 
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projected onto the surface of the feasible region where the violated inequality constraints 

become equality constraints, i.e. 

 

D*x = d*            (3.42) 

 

where D* and d* are the reduced versions of D and d, respectively. Equation (3.42) is of 

similar form as the inverse problem (3.2) without the error term, therefore the optimal 

estimates x and Q are found using the Kalman state and covariance update equations (3.12) 

and (3.17) which yields 

 

x″ = x′ + Q′D*T(D*Q′D*T)-1(d*- D*x′)    (3.43) 

 

and  

 

Q″ = Q′ - Q′D*T(D*Q′D*T)-1D*Q′           (3.44) 

 

Since the elements of x are being fixed that are in the active set on the surface of the feasible 

region, therefore, their posterior variance obtained in this way would be zero. To avoid 

this, noise is added to the inverse matrix in equation (3.44). Adding a covariance matrix to 

the inverse matrix as suggested in equation (3.17), equation (3.44) becomes 

 

Q″= Q′ - Q′D*T(C  + D*Q′D*T)-1D*Q′     (3.45) 
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where C is a diagonal matrix containing the new posterior variances for the state variables 

violating their constraints after the first step. The elements of C are assigned rationally by 

truncating the original Gaussian probability density functions (pdf) of the variables in the 

active set at their boundaries and calculating the covariance of the part of the pdf that lies 

within that viable region. This is illustrated for a state variable xi and considering 

probability density function of the unconstrained flux estimates with mean x′i and two-

sided truncated pdf with feasible region lying between ai and bi. 

The covariance Cii of the truncated pdf enclosed is given by the following equation (3.46) 

which has been derived by Johnson et al. (1994). 

2

2

' ' ' ' ' '

' ' ' ' ' '
' 1

' ' ' '

' ' ' '

i i i i i i i i i i i i

i i i i i i

ii i

i i i i i i i i

i i i i

a x a x b x b x a x b x

C
b x a x b x a x

   
     



   

         − − − − − −
 − −        
         = + −         − − − −  −  −                   

(3.46) 

where the variables in the equation (3.46) are defined as 

' 'i iiQ =
 (3.47) 

21 1
( ) exp

22
z z



 
= − 

  (3.48) 
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1 1
( )

2 2 2

z
z erf

 
 = +  

              (3.49) 

( )2

0

2
( ) exp

z

erf z t dt


= −
         (3.50) 

 

From the above equations, the uncertainty of the estimate can be clearly seen to be reduced 

by the update, i.e., Cii < Q′ii . The pdfs of the state variables not included in the active set 

can also be truncated for an additional uncertainty reduction. However, this may not be 

needed since the Kalman filter assumes untruncated Gaussian pdfs. After updating the 

estimates with one iteration using equations (3.43) and (3.45) it is needed to be checked if 

all variables are within their feasible regions to accommodate the active set, otherwise, the 

above iteration is repeated until all constraints are satisfied. 
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CHAPTER 4 

Methods 
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This chapter includes the methodology involved in the setup and the implementation of 

inverse modeling process in this study. The chapter is organized in the following sequence: 

in the beginning the working methodology flow diagram is presented, then each part of the 

flowchart is described in the sections followed. Sections 4.1 describes input data with 

methane emission sources in sub-section 4.1.1 and sink processes in 4.1.2, and section 4.1.3 

discusses about the observations of methane mixing ratio and isotopic composition, also 

included the procedure of  processing of raw measurement data and calculation of their 

uncertainties. Section 4.2 describes the Chemical Transport Model GEOS-Chem. Next, 

methods involved in inversion process are discussed in section 4.3 describing each of the 

structure of the computer programs developed and their implementation procedures to 

perform the inversion process and finally the overview of the sensitivity tests done is given 

in section 4.4. 

 

Inversion Setup and Implementation 

 

In this work the inverse modeling is performed to estimate the trends of methane budget 

over the last 35 years. Observed and interpolated methane mixing ratios from 106 sites and 

δ13C-CH4 data from 21 sites are used to estimate the monthly source strengths of 10 source 

processes for the time of 1984-2015. Kalman smoother with a fixed lag of 11 months and 

covariance propagation of 1 month are also implemented in this study. The estimates of 

aseasonal source processes is further constrained to vary slowly in time so that all estimates 

are confirmed within a physically realistic range. The robustness of the results is 

determined by sensitivity tests done by varying network densities with availability of data 
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over the span of years. The steps involved in setup and  implementation of the inverse 

modeling process are organized in the flow diagram as seen in Figure 4.1.  

 

 

 

 

Figure 4.1: Working Methodology Flow Diagram 
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4.1. Input Data 

 

4.1.1. Emission Sources 

 

The flux fields in synthesis inversion are represented by a linear combination of a set of 

spatio-temporal patterns (Kaminski et al., 2001). In our work using Goddard Earth 

Observation System - Chemical Transport Model (GEOS-Chem) discussed in section 4.2, 

at every time step, the amount of methane emitted from each surface grid cell is constructed 

by the linear combination of all such patterns. As mentioned by Kaminski et al. (2001), the 

patterns may be contiguous regions because of the source processes (Rayner et al., 1999) 

or regions reflecting some underlying similarity such as the biome classifications (Enting 

et al., 1995) or patterns also may have some prescribed internal structure, reflecting 

external knowledge of fluxes e.g. Fan et al., 1998 used net primary productivity shape the 

terrestrial flux patterns or the patterns also contain temporal structure such as a prescribed 

seasonal cycle or monthly pulse. The solution of the inverse problem involves finding the 

coefficient multiplying each of the patterns (Kaminski et al., 2001) i.e., scaling factors, so 

that the resulting emissions match the observations. Each of these spacetime flux patterns 

are referred to as basis functions. The concentration arising from a given basis function 

subjected to atmospheric transport is referred to as the corresponding response function. 

Response functions are calculated by using a basis function as an input to an atmospheric 

transport model and by sampling the output of the transport model at chosen observation 

locations. The matrix of response functions for the full set of basis functions is represented 

by the Jacobian matrix for the problem and contains all necessary information about 
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atmospheric transport relevant to a particular setup. The structure chosen for the basis 

functions will determine the magnitudes returned by the inversion procedure. Atmospheric 

information about the sources alone cannot distinguish between net source and net sink, 

additional information is provided by choosing the pattern. Thus the a priori choice of basis 

functions plays an important role in inversion procedure. If there is any error within the 

internal structure of the patterns that cannot be resolved by the inversion, then that will 

cause bias in the estimates. The errors from wrongly shaped pattern structures causing 

difference in response functions in regions and inhomogeneous sampling causing bias in 

inversion of larger region towards strongly observed sub-region led to a type of error 

named as ‘aggregation error’ (Kaminski et. al., 2001).  

 

Non-homogeneous sampling by the sparse network leads to biased emission estimates 

(Trampert and Snieder, 1996) and an approach to deal with this was described by Trampert 

and Snieder (1996) which required higher resolution model as they proposed an algorithm 

to compute for extra data error resulted from the uncertainty in the inhomogeneity of fluxes 

within resolved regions, by adjusting weights of the respective data. In this situation, the 

Bayesian approach is preferable as it solves fluxes separately for regions and prevents from 

an over-interpretation of the concentrations collected at sparse networks and stabilizes the 

inversion, mainly by decreasing the size of the regions or by defining the regions such that 

the uncertainty in the flux distribution over each region is minimal. Using an adjoint 

method, Kaminski et al. (1999a) have demonstrated the efficient calculation of a set of 

basis functions at the resolution of their transport model. The Jacobian matrix contained 

concentration responses to the surface fluxes at the measurement sites because of 
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atmospheric transport only. This matrix is efficiently computed using the adjoint version 

of the CTM since the number of measurement stations is small compared with the number 

of surface flux parameters (Kaminski et al., 1999a) with the atmospheric transport acted 

linearly on the concentration and the sources are assumed to be independent of the 

atmospheric methane mixing ratio. The adjoint of the GEOS-Chem model is constructed 

from a combination of manually and automatically derived discrete adjoint algorithms and 

numerical solutions to continuous adjoint equations (Henze et al., 2007). The adjoint model 

is used to calculate the gradient of cost function with respect to a set of model parameters 

and thus optimization of estimates is acquired by minimizing the cost function iteratively. 

 

According to Kaminski et al. (2001), due to the lack of information about the true source 

shape, they used the shape of the a priori source to construct the patterns. Kaminski et al. 

(2001) have carried out a set of atmospheric transport inversions for CO2 using the Jacobian 

matrix of a three-dimensional transport model to solve for the unknown magnitudes of low-

resolution or high-resolution prescribed surface flux patterns, aggregating the fluxes over 

larger regions. By comparing the fluxes to the ones inferred by an inversion on the grid of 

the underlying transport model, they were able to quantify errors due to such aggregation. 

For computational reasons, however, for many potential inversion studies aggregations will 

be unavoidable. Kaminski et al. (2001) reduced the degree of aggregation by moving from 

low to high resolution regions which about halved the error and suggested using a 

resolution as high as computationally feasible. The use of a high-resolution inversion is 

expected to improve the uncertainty estimates and a posteriori estimates are expected to be 

more realistic. Röger (2013) and Rice et al. (2016) optimized methane fluxes over larger 
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regions and to minimize computational demands, they opted for a low-resolution (4⁰×5⁰ 

horizontal grid resolution) inversion. However, in this work, a computationally feasible 

higher resolution (2⁰×2.5⁰ horizontal grid resolution) inversion is opted to optimize the 

scaling factors for 10 source processes monthly. The higher resolution grid allowed us to 

extract more information from the observations due to the improved ability of the model 

to simulate CH4 at each station and the decreased need to aggregate neighboring stations. 

This in turn increased the error reduction between the a priori and posterior emissions 

leading to more accurate estimates of the retrieved fluxes. 

 

Atmospheric observations of 12CH4 give information on only spatial distribution of total 

amount of CH4 emitted from a geographical region, it is difficult to distinguish between 

different source processes represented by similar patterns and spatial overlap. Previous 

works such as Hein et al. (1997), Bergamaschi et al. (2000a), Miller et al. (2002), Mikaloff 

Fletcher (2004a, b), Rice et al. (2016), investigating the trends in atmospheric methane 

have generally used observations of stable carbon isotope ratios in atmospheric methane 

(δ13CH4), in conjunction with methane observations, to provide additional constraints on 

the sources of methane. δ13CH4 has been used to determine the sources governing 

atmospheric methane concentrations since it not only provides unique constraint to the 

underdetermined inverse problem, but also improves partitioning between flux estimates 

from different methane sources and sinks with similar spatial patterns but distinct isotopic 

signatures (Mikaloff Fletcher et al., 2004a). In this inversion study, the emission patterns 

are categorized based on their source processes instead of their geographical location 
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except for wetlands and 13C/12C isotopic ratios of atmospheric CH4 from 21 measurement 

sites were used as additional constraint to the methane budget. 

 

In this study, the spatially-gridded monthly-varying prior emissions fields are constructed 

from several sources. In this study, we have used similar emission fields obtained from the 

similar sources as in the work of Röger (2013) and Rice et al. (2016). For natural emission 

sources of methane including biomass burning emission, the GEOS-Chem base inventories 

have been used and for anthropogenic sources of methane, Emissions Database for Global 

Atmospheric Research release version 4.2. (EDGAR v. 4.2) provided annual emission 

maps from 1970 to 2008 for 16 sectors on a 0.1⁰ × 0.1⁰ grid. Röger (2013) and Rice et al. 

(2016) reprocessed these maps and re-gridded them using 4⁰ x 5⁰ GEOS-Chem horizontal 

grids using an IDL routine provided by Kevin Wecht (former: Atmospheric Chemistry 

Modeling Group at Harvard University) and combined closely related sectors to form 

patterns for the inversion. Similarly, in this work those annual maps are re-gridded using 

2⁰ x 2.5⁰ GEOS-Chem horizontal grids and same combined patterns are used for this 

inversion. Emissions of isotopic tracers 13CH4 are obtained by multiplying the emissions 

by the characteristic isotope ratios of the underlying process. Overall, we represented 

emissions and optimization based on ten large-scale time-dependent spatial patterns, based 

on source category and region. The methane emission source patterns and sinks used in 

this work are also described in detail by Röger (2013) and Rice et al. (2016) and references 

therein. Here, a priori sources and sinks are briefly discussed as used by Röger (2013), Rice 

et al. (2016) and this current study and then the procedures followed in this study to process 
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the emission sources maps (including contributions by 2015 summer REU student late 

David Bryon Lofdahl of Eastern Oregon University) are discussed as follows:  

 

Fossil Fuels: Emissions from fossil fuels are represented by two patterns. First one is the 

combination of EDGAR sectors ’Gas production and distribution’ and ’Oil production and 

refineries’, which is referred to as ‘Gas and Oil’ in Röger (2013), Rice et al. (2016) and 

this work. The second pattern is the combination of emissions from coal mining found in 

the sector ’Fugitive from solid’ with the other energy related sectors ‘Energy 

manufacturing transformation’, ‘Industrial process and product use’, ‘Road transportation’, 

‘Non-road transportation’, and ‘Fossil fuel fires’. This pattern is referred to as ‘Coal’. 

Spatial distributions of fossil fuel emissions remained almost constant throughout the 

whole year, thus, we used same monthly maps for all 12 months for any year. In this work, 

we converted each year’s annual EDGAR 0.1⁰ × 0.1⁰ ascii files containing gas and oil 

emissions data  and coal emissions data into 2⁰ × 2.5⁰ bpch files using IDL routine.  

 

Rice: ‘Agricultural soils’ sector of EDGAR v. 4.2 provides the annual rice emission maps. 

Röger (2013) and Rice et al. (2016) accounted seasonal variations of rice in their model by 

considering average seasonal cycles of every grid cell from the data set provided by 

Matthews and Fung (1987) and by applying in the annual EDGAR emission maps. 

Likewise, we created the maps of monthly fractions of rice emissions in 2⁰ × 2.5⁰ grid 

resolution by modifying the routine and splitting the obtained file into separate monthly 

files and converting the annual EDGAR 0.1⁰ × 0.1⁰ ascii emission data into 2⁰ × 2.5⁰ bpch 
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files of monthly rice emission data. Thus, a monthly varying pattern ‘Rice’ is obtained 

since emissions mainly occur during growing season.  

 

Wetlands: Methane released from wetlands strongly respond to the fluctuations in surface 

temperature and rainfall trends, thus, are calculated at every emission timestep. For 

interannual variations in wetland emissions, the sensitivity of emission rates to warming at 

high northern latitudes and to rainfall changes in the tropics need to be more consistently 

quantified in wetland models (Kirschke et al., 2013). Röger (2013) and Rice et al. (2016) 

applied a scheme in their wok based on  Kaplan (2002) and described by Pickett-Heaps et 

al. (2011), for calculating wetland methane emissions E from every grid cell at every time 

step according to,  

 

exp o S L

o S L

E C C
E WF A

T T
 

 

  −
= +  

−                           (4.1) 

 

where, δ=1, if the presence of wetlands is indicated by GEOS-5 soil moisture and δ=0, if 

not. ‘W’ represents the maximum potential wetland fraction of the grid box by excluding 

lakes, oceans, and frozen areas. ‘F’ is a scaling factor to match estimates for tropical and 

boreal wetlands simultaneously. A = 1.0 exp (3), β = 3 × 10−2 mol CH4/mol C, E0 = 309K, 

T0 = 227K are parameters specifying the dependence on the soil temperature ‘T’ and the 

amount of available respired carbon. The soil temperature is approximated by the GEOS-

5 skin temperature. ‘CS’ and ‘CL’ are soil and litter carbon pools with residence times τS = 

32 year and τL = 2.8 year, obtained from the Lund-Potsdam-Jena (LPJ) global vegetation 
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model. Like the work by Röger (2013) and Rice et al. (2016), we also sampled the monthly 

averaged wetland emission maps for all 6 years of available met-fields (January 2004 to 

January 2010) from GEOS-Chem run and reused them for entire time of inversion but at 

2⁰ × 2.5⁰ grid resolution, since the monthly time step of inversion required fixed patterns 

for every month. We splitted the 2⁰ × 2.5⁰ files of monthly wetland emission into three 

geographical regions to reduce aggregation error and to include the isotopic measurements 

which may account the fact indicating that northern high latitude wetlands are isotopically 

lighter than tropical wetlands. The wetland distribution pattern is divided into three 

latitudinal bands as ‘Wetlands 90N-30N’, ‘Wetlands 30N-0N’, and ‘Wetlands 0S-90S’.  

 

Biomass Burning: Röger (2013) and Rice et al. (2016) mentioned that the monthly maps 

of methane emission from biomass burning based on satellite observations of burned area 

from the Global Fire Emissions Database version 3 (GFED3) described by Giglio et al. 

(2010), are provided by GEOS-Chem since 1997 to 2008. The EDGAR sectors ‘Large 

scale biomass burning’, ‘Residential’, containing emissions from biofuels, and 

‘Agricultural waste burning’ with the average monthly seasonality obtained from the 

GFED3 data were combined for earlier years in their studies. In our work, we used same 

data sources and same procedure to create 2⁰ × 2.5⁰ grid resolution biomass burning 

emission maps. We converted EDGAR 0.1⁰ × 0.1⁰ ascii data files of annual biomass 

burning emission maps into 2⁰ × 2.5⁰ bpch files of annual biomass burning emission maps 

by modifying the IDL routines and similarly created C4 plant distribution map at 2⁰ × 2.5⁰ 

resolution. We created the monthly averaged fractions of emission maps from GFED3 data 
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by running GEOS-Chem at 2⁰ × 2.5⁰ grid resolution from 1997 to 2008. We recompiled 

GEOS-Chem by recycling met data for years 1997 to 2003 since GEOS5 met data was 

available 2004 onwards and by making appropriate modifications to the source codes.  We 

have modified another IDL routine to read the GEOS-Chem output emissions file and used 

it to split them into monthly emission maps of biomass burning. The isotopic signature of 

biomass burning emissions depends on whether vegetation burned had C3 or C4 carbon 

cycle, hence, the biomass burning pattern was split accordingly, using a vegetation map 

generated by Still et al. (2003), called the two resulting patterns as ‘Biomass Burning C3’ 

and ‘Biomass Burning C4’, like the work by Röger (2013) and Rice et al. (2016).  

 

Livestock: Röger (2013) and Rice et al. (2016) combined the EDGAR sectors ‘Enteric 

Fermentation’ and ‘Manure Management’ into a pattern named ‘Livestock’ in their work. 

Likewise, in this study also, we used the same name for the pattern and created the 2⁰ × 

2.5⁰ resolution annual livestock emission maps from EDGAR 0.1⁰ × 0.1⁰ ascii files of 

annual livestock emission maps. 

 

Waste: In addition, the EDGAR sectors ‘Solid waste disposal’, including emissions from 

landfills, and ‘Wastewater’ are combined with natural emissions from termites (termites 

data set by Fung et al., 1991) to form a ‘Waste and Termites’ pattern, sometimes referred 

to as ‘Waste’ for short by Röger (2013) and Rice et al. (2016). We did the same likewise 

by converting the EDGAR 0.1⁰ × 0.1⁰ ascii files of annual waste emission maps into 2⁰ × 
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2.5⁰ resolution bpch files of annual waste emission maps. Both patterns are assumed as 

aseasonal with annual variations. 

 

Biofuel: We converted annual EDGAR 0.1⁰ × 0.1⁰ ascii files of biofuel emissions data into 

2⁰ × 2.5⁰ resolution bpch files of annual biofuel emissions by using IDL routine. 

 

Other Anthropogenic: We converted annual EDGAR 0.1⁰ × 0.1⁰ ascii files of other 

anthropogenic  emissions data into 2⁰ × 2.5⁰ resolution bpch files of annual other 

anthropogenic emissions by using IDL routine. 

 

All the above major sources of methane are accounted in the process. Emissions from 

biofuel were later added to the biomass burning emissions category and other 

anthropogenic emissions were added to coal category and thus final ten patterns were 

formed for output. 

 

In the inversion, a priori estimates include the global emissions from each of these patterns 

at every time step. The independence of inversion source fluxes was evaluated through 

source covariance by Rice et al. (2016). Results of their analysis indicate that correlations 

were weak for all paired sources (|r|<0.15), implying that inversion sources are largely 

independent. Strongest covariance occurred between the two biomass burning source 

categories (C3 and C4, r= –0.14) and northern and southern hemispheric tropical wetland 

emissions (r= –0.12), with all other correlations lower (|r|<0.1). 
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4.1.2. Sinks  

 

Tropospheric OH Sink: One year of monthly varying 3-Dimensional OH fields used in 

the methane simulation is provided by the GEOS-Chem, generated in a full chemistry run 

of the model (Röger, 2013 and Rice et al., 2016). The photochemical sink of CH4 is large 

and difficult to quantify, as the lifetime of OH is noticeably short (~1 sec). Direct 

measurements of atmospheric OH radicals do not have the required accuracy and coverage 

to derive global OH concentrations and consequently the magnitude of the CH4 sink. The 

OH concentration as calculated by inversions based on measurements of tracers such as 

methyl chloroform with known emissions and whose dominant sink is oxidation by OH. 

Methyl Chloroform (1,1,1 trichloroethane, called CH3CCl3 hereafter) can be used to 

constrain OH, because its sources are relatively accurately known, and the hydroxyl radical 

reaction constitutes the most important sink. With full chemistry run of GEOS Chem, 

Röger (2013) and Rice et al. (2016) found that the tropospheric lifetimes of methyl 

chloroform and CH4 are 5 years and 8.5 years, respectively which match well with recent 

estimates and the global mean OH concentration is 10.8 × 105 molec cm-3, which is close 

to the value of 10.9 × 105 molec cm-3 as calculated by Prinn et al. (2005). Similarly, we 

have determined one year of monthly varying 3D tropospheric OH fields for our inversion 

from the GEOS-Chem full chemistry run with given known chemical reactions. CH4 is 

oxidized by OH in the reaction as follows: 

 

CH4 + OH → CH3 + H2O    (4.2) 
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GEOS-Chem model calculated a CH4 loss due to above reaction (ΔCH4
OH

) in every grid cell 

at every chemistry time step such as: 

 

  4

4

CH

OH OHk CH OH t = − 
      (4.3) 

 

where, Δt = 30 minutes i.e., time duration of the chemistry time-step. 

kOH = 2.45 × 10−12 exp (−1775/T) in units cm3 molec-1 s-1 [DeMore et al., 1997], 

i.e., the temperature dependent reaction rate constant calculated from GEOS-5 

temperature T. 

 

Similarly, GEOS-Chem calculated a loss for 13CH4 using equation such as: 

 

 
13

4 13

4

CH
OHOH k CH OH t  = −       (4.4) 

 

with the reaction rate constant as, 
( )13/OH OH OHk k KIE C=

, where the kinetic isotope effect 

(KIE) is given by Cantrell et al. (1990) from laboratory measurements with a value of 

1.0054. We have reused the same OH fields for every year of the simulations, as 

controversies remain in the literatures with the inter-annual variability of OH. To check the 

effect of interannual variability of OH, Röger (2013) and Rice et al. (2016) did a sensitivity 

test where they globally scaled OH fields and matched with annually varying mean OH 

concentrations derived by Prinn et al. (2005) with fixed mean OH concentrations for years 
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after 2003. They found increase in the interannual variability of emissions from wetlands 

in tropics with more negative trend and no significant impact on emissions from wetlands 

in northern high latitudes. 

 

Stratospheric Sink: In addition to approximately 88% of total CH4 loss by tropospheric 

OH (Mikaloff Fletcher et al., 2004a), CH4 is also destroyed by OH, chlorine, and O(1D) in 

the stratosphere. Like the work by Röger (2013) and Rice et al. (2016), loss frequency 

fields derived from a full chemistry simulation of NASA’s Global Modeling Initiative 

(GMI) Stratospheric Model (Schneider et al., 2000 and Wang JS et al., 2004) are used in 

our work to calculate stratospheric sink, which accounts for reactions of methane with OH, 

chlorine, and O(1D). The stratospheric loss (ΔCH4
Strat

) is computed by using the equation 

as:  

 

 4

4

CH

Strat CH LF t = − 
     (4.5) 

 

where LF is the term of loss frequency in s−1. For isotope equation, LF is replaced by 

LF/KIEStrat where KIEStrat is the kinetic isotope effect with a value of 1.0154 given by Rice 

et al. (2003). 

 

Soil Sink: As mentioned by Röger (2013) and Rice et al. (2016), GEOS-Chem considers 

the soil absorption sink as a negative source and at every time step, the spatial distribution 

gridded by Fung et al. (1991) had been used. Similarly, we have used the same spatial 
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distribution in our work with 2⁰ × 2.5⁰ resolution and the soil sink magnitude is varied 

monthly by scaling the sink strength from this distribution (18 Tg yr-1) by the ratio of the 

monthly global surface CH4 burden to January 1990, which was taken as the reference 

month of the distribution. Since the soil sink strength of 18 Tg yr-1 is low compared to 

recent estimates of ~30 Tg yr-1 (IPCC, 2013), so Röger (2013) and Rice et al. (2016) 

conducted a sensitivity test to determine the impact of a larger soil sink which resulted in 

no significant difference. The loss of the isotope tracer, 13CH4 due to soil sink is calculated 

as follows: 

 

  ( )
13

4 4

13

4

13

4

CH CH

Soil Soil

Soil

CH

CH KIE C

  
 = 

    (4.6) 

 

where KIESoil is the kinetic isotope effect with a value of 1.0220 given by Tyler et al. 

(1994). 

 

Marine Chlorine Sink: Marine Chlorine sink has not yet been included in GEOS-Chem 

model due to controversy remaining on the magnitude of the atomic chlorine sink in the 

marine boundary layer (MBL) (Mikaloff Fletcher et al., 2004; Röger, 2013; Rice et al., 

2016). Röger (2013) and  Rice et al. (2016) implemented a sensitivity test in their work for 

simple MBL chlorine sink following the parameter choices proposed by Allan et al. (2007) 

which reported the total strength of MBL Cl sink of about 25 Tg/year, but with smaller 

sink strength of 19 Tg/year, which might have caused from differences in definition of 
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open ocean grid cells between CTMs or by larger prescription of total source of 580 

Tg/year by Allan et al. (2007). The test resulted in decrease in biomass burning emissions 

by 20 Tg/year and increase in isotopically lighter biogenic emissions by 40 Tg/year mainly 

from southern hemisphere wetlands, to balance the isotopic budget (Röger, 2013; Rice et 

al., 2016). In their sensitivity test, the total sink of 503 Tg/year exceeding the total prior 

source of 480 Tg/year, constituted a bias in their a priori estimation. Thus, with exclusion 

of MBL Cl sink from GEOS Chem model, similar to the work of Röger (2013) and  Rice 

et al. (2016), in this inversion work also, all the emission patterns are scaled by a factor of 

1.08 to obtain a better  optimization of the estimates and improve the agreement between 

modeled and observed concentrations. This avoids the spoiling of inversion results from 

the bias which may have constituted in the priors without the MBL chlorine sink. 

 

4.1.3. Observations 

 

Methane Mixing Ratios 

 

Atmospheric Methane Dry Air Mole Fractions are obtained from the National Oceanic and 

Atmospheric Administration, Earth System Research Laboratory (NOAA, ESRL) Global 

Monitoring Laboratory (GML) Carbon Cycle Cooperative Global Air Sampling Network, 

for 1983-2015. The Global Monitoring Division of NOAA’s Earth System Research 

Laboratory has measured methane since 1983 at a globally distributed network of air 

sampling sites (Dlugokencky et al., 1994). Methane is reported as a “dry air mole fraction”, 
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defined as the number of molecules of methane divided by the total number of molecules 

in the sample, after water vapor has been removed. The mole fraction is expressed as nmol 

mol-1, abbreviated “ppb” for parts per billion; 1 ppb indicates that one out of every billion 

molecules in an air sample is CH4. 

 

NOAA released the updated measurements of the surface concentrations of methane from 

110 locations including 24 records from moving ship sites over eastern Pacific Ocean and 

South China Sea and 13 ocean-transect measurements over western Pacific Ocean. A map 

of all these measurement sites is shown in Figure 4.2. There are two different surface flask 

data files for each site. One file contains the monthly averaged CH4 measurements, while 

the other file labeled as “event” contains the original measurements. The monthly averaged 

data are smoothed, interpolated, and extrapolated and do not contain estimates of 

measurement uncertainties which are required for the Bayesian inversion. For these reasons 

we did not use the monthly averaged data. 
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Figure 4.2: A map of atmospheric methane surface flask measurement sites as provided by NOAA ESRL 

GML. Red circles indicate active measurement sites and yellow circles indicate discontinued sites. 

 

 

The event data files can be found in the following web page 

ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/. The “event” files contain all 

measurements made at all sites. Measurements were made roughly weekly at each site. 

Beginning dates varied by site. There was unequal data coverage at many sites with no 

data at all for some sites. It is needed to fill in all missing data in the final data set by 

interpolating and extrapolating data. But for these months an exceedingly high 

uncertainty was assigned which effectively removed the data from the inversion. 
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For every measurement, NOAA collects two flasks of air. All samples were analyzed for 

methane at NOAA ESRL in Boulder, Colorado, by Gas Chromatography with Flame 

Ionization Detection (GC-FID). Prior to 1991 two samples from the same flask were 

analyzed by the GC-FID to determine the repeatability and instrumental uncertainties. 

From 1991 onwards, NOAA took one sample from each flask to determine instrumental 

uncertainties. Therefore, we see that for each day of data, there are two measurements 

provided. First it is needed to average these two daily measurements before calculating the 

monthly averages. 

 

There are also some data that are flagged for various reasons. These data were filtered out 

and not used in the analysis. Flagged data are marked in the QC-Flag column of the data 

files where a three-character field indicates the results of NOAA’s data selection and 

rejection process.  

 

Calculation of Monthly-Average Mixing Ratios and Total 

Uncertainties Associated:  

 

A better way to calculate the monthly-average mixing ratios and associated total 

uncertainties for each month throughout the observation period, requires knowing the daily 

measurements of mixing ratio (for one sample per day) or weighted average of daily 

measurements (for more than one sample per day) and uncertainties for each daily 

measurement to be used as weights. The equation for the weighted average assumes that 

each measurement is drawn from parent distributions with the same population mean. For 
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a specified month, the day to day measurements do not sample the same air mass due to 

random variations in the meteorology. So, even if there were no instrumental uncertainties, 

we still would not expect the measured mixing ratio to be constant throughout the month. 

This makes us think that each daily measurement as being drawn from a different 

population than on another day. However, if the total uncertainties related to the weekly 

measurements in each month are used as weights which include instrumental uncertainties 

from measurement error given in NOAA data files as well as other sources of uncertainties 

such as from calibration error, then the weighted monthly average mixing ratios can be 

calculated. Daily averaged mixing ratio were weighted using the uncertainties on 

individual measurements provided with each mixing ratio data considered as measurement 

errors which can be caused by imperfections in instrumentation, sampling or 

intercalibration. The daily observational uncertainty is given by, 

 

𝜎𝑑𝑎𝑖𝑙𝑦  =  𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡      (4.6) 

 

where, 𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 is the uncertainty from individual measurement error which is 

provided in the NOAA event data files columned as analysis_uncertainty.  

 

We assume that each daily measurement as being an estimator of the monthly average and 

these daily measurements are sampled from a normal distribution with mean equated to the 

monthly average and the statistical uncertainty equaled to standard deviation. Along with 

the monthly averages, it is needed to calculate the total observational uncertainties of the 
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monthly averages. The model-data uncertainties are calculated for every month and 

location which are needed to build the covariance matrix of the observations (called v and 

R in Chapter 3), which determines the relative weighting of the observations in the 

inversion. The total monthly observational uncertainty 𝜎𝑡𝑜𝑡𝑎𝑙_𝑚𝑜𝑛𝑡ℎ𝑙𝑦 is given by, 

 

𝜎𝑡𝑜𝑡𝑎𝑙_𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = √𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
2 + 𝜎𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙

2 + 𝜎𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ
2      (4.7) 

 

where, 𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 is the uncertainty from the monthly sampling or standard error which 

represents the error in the monthly mean due to limited sampling frequency. It is calculated 

by, 

 

𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =
𝜎𝑚𝑜𝑛𝑡ℎ

√𝑁
                          (4.8) 

 

with N is the number of measurements per month that has been used to calculate the 

monthly mean and 𝜎𝑚𝑜𝑛𝑡ℎ  is the standard deviation of the measurements per month. 

 

𝜎𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ is the uncertainty from mismatch error that depends on the resolution of the 

model. As mentioned by Chen and Prinn (2006) and Rice et al. (2016), the mismatch error 

or the representation error describes the difference between an observation made at a single 

point in space and a model-simulated observation representing a large volume of air for an 

entire grid cell. The size of the mismatch error dictates the degree of the point measurement 
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failing to represent the volume of air in the entire grid cell. This difference depends on the 

resolution of the model, and the observational method and location. Most of the methane 

observing sites are chosen to be situated such as to sample large, well-mixed marine 

boundary layer air representing atmospheric methane background mixing ratio, which can 

be more accurately modeled (Chen and Prinn, 2006). Moreover, the mismatch error 

increases significantly due to local influences over continental sites near strong emitting 

regions compared to that near the remote ocean locations, which are not resolved at the 

model resolution (Chen and Prinn, 2006). The model systematically overestimates or 

underestimates the observed mole fractions and thus the mismatch error is difficult to 

quantify and may include bias error. Röger (2013) and Rice et al. (2016) calculated 

mismatch errors for all sites in their work based on the assumption of Chen and Prinn 

(2006) that the variability within a single grid cell is related to the variability among the 

surrounding grid cells and the mismatch error at each site can be estimated by using the 

standard deviation of the CH4 mole fraction as follows: 

 

( )
9 2

1

1

9
mismatch i

i

y y
=

= −
    (4.9) 

 

where the yi s are modeled methane concentrations in the 9 model grid cells contained and 

surrounded each observation site with mean 𝑦̅, which were obtained from a GEOS-Chem 

run over the entire period of inversion. In this work also, the mismatch errors are calculated 

according to equation 4.9 with GEOS Chem run using 2⁰ × 2.5⁰ grid resolution, where the 
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calculated mismatch error at each site varies monthly, consistent with seasonal changes in 

emissions and transport, and is usually largest near emitting grid cells. 

 

The monthly total observational errors or uncertainties of the observational data have 

formed the diagonal elements of initial covariance matrix used in the inversion process. 

 

I wrote a program named ‘monthly_avg_CH42016_SK.pro’ which processes the raw 

NOAA observation data to a form taking uncertainties into account which is input to the 

inversion. Thus, the steps involved in processing the observational data for calculating the 

daily-averaged and consecutively monthly-averaged methane mixing ratios and associated 

total uncertainties and consequently creating concentration data-set to be used in the 

inversion are summarized as follows: 

 

1. All the flagged data were filtered out.  

2. The estimated uncertainties associated with daily measurements 𝜎𝑑𝑎𝑖𝑙𝑦  were 

provided in the analysis_uncertainty column of the data files which were used as 

weights w for the daily measurements. If there were two good daily measurements 

of CH4 mixing ratios xi, then weighted daily average of mixing ratios 𝑥𝑑𝑎𝑖𝑙𝑦 with i 

varies from 1 to n, where n is the number of measurements per day, were calculated 

as below: 

 

𝑥𝑑𝑎𝑖𝑙𝑦 = 
∑ 𝑥𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

          (4.10) 
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where the weight is given by, 

𝑤𝑖 = 
1

𝜎𝑑𝑎𝑖𝑙𝑦
2

𝑖

         (4.11) 

 

The uncertainties of weighted daily averages were also calculated shown as: 

 

𝜎𝑥𝑑𝑎𝑖𝑙𝑦
= 

1

√∑ 𝑤𝑖
𝑛
𝑖=1

        (4.12) 

 

3. The weighted monthly-averaged CH4 mixing ratios 𝑥𝑚𝑜𝑛𝑡ℎ were calculated using 

the weighted daily-averaged mixing ratios 𝑥𝑑𝑎𝑖𝑙𝑦,𝑗 with j varies from 1 to N, where 

N is the number of measurements per month, such as follows: 

 

𝑥𝑚𝑜𝑛𝑡ℎ = 
∑ 𝑥𝑑𝑎𝑖𝑙𝑦,𝑗𝑊𝑗

𝑁
𝑗=1

∑ 𝑊𝑗
𝑁
𝑗=1

        (4.13) 

 

where the weight is given by, 

 

𝑊𝑗 = 
1

𝜎𝑥𝑑𝑎𝑖𝑙𝑦 𝑗

2  (4.14) 
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4. The uncertainties of weighted monthly averages 𝜎𝑥𝑚𝑜𝑛𝑡ℎ
 were calculated as below 

which represented 𝜎𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 for each month in calculation of the total monthly 

observational uncertainty. 

 

𝜎𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙  =  𝜎𝑥𝑚𝑜𝑛𝑡ℎ
= 

1

√∑ 𝑊𝑗
𝑁
𝑗=1

   (4.15) 

 

5. The standard deviations of weighted daily averages for each month represented as 

𝜎𝑚𝑜𝑛𝑡ℎ were calculated which gave the 𝜎𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 using equation 4.8, varying 

monthly. For the months having less than three daily averages, standard deviation 

could not be calculated and average annual standard deviations of daily average 

mixing ratios for that year were used instead. 

 

6. There were some missing months with no available measurements. In the time 

domain, we performed cubic spline with the data set and interpolated values were 

fit to all records. But exceedingly high uncertainty values were assigned to indicate 

those as interpolated average and thus, contributed little information to the 

inversion. 

 

7. The mismatch errors  were calculated for 2⁰ × 2.5⁰ GEOS-Chem grid 

resolution and compared to those calculated for 4⁰ × 5⁰ grid resolution. The 2⁰ × 

2.5⁰ resolution mismatch errors have smaller values on average than those of 4⁰ × 
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5⁰ resolution, which provided proof of more information been pertained on the 

monthly averages. 

 

8. Then finally, the total monthly observational uncertainty 𝜎𝑡𝑜𝑡𝑎𝑙_𝑚𝑜𝑛𝑡ℎ𝑙𝑦 was 

calculated as described above using equation 4.7 considering all the errors. 

 

9. Further processing of the data was necessary to map the observational sites onto 

the 2⁰ × 2.5⁰ GEOS-Chem grids. The sites that lie in the same grid cell, or those 

that are at elevation in the same grid cell as a surface site, were consolidated. If 

there were more than one observational site in a grid cell, then the corresponding 

measurement records were averaged. In addition, if multiple measurements were 

found at different varying altitudes but laid at the same latitude and longitude, all 

records were discarded except for the one closest to the surface, to avoid 

redundancy since data sampled from locations that are situated only at different 

elevations do not provide much additional information on the source configuration. 

 

10. The available NOAA data was preceded by incorporating measurement data from 

1980 to 1983 available from Oregon Graduate Institute (OGI) provided by Dr. 

Aslam Khalil and Dr. Christopher Butenhoff, described in Khalil et al. (2007) and 

thus extended the time span of the inversion to earlier years. This data set refers to 

some of the earliest continuous measurements of atmospheric methane which 

contains monthly mean concentrations from 7 locations situated between 70N to 
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90S. However, this small data set was used as part of a spin-up inversion to derive 

CH4 concentration field for the first time-step of the main inversion but was 

excluded from main inversion because small number of sites do not provide good 

constraints on the fluxes. 

 

Finally, the atmospheric methane concentration data set was created and was made ready 

for input to the inversion process.  

 

Isotopic Composition of Atmospheric Methane  

 

The atmospheric methane isotope data from specific locations can be incorporated into the 

inversion only if respective methane mixing ratio from those same locations are available. 

The measurements of the stable isotopic composition (13C) of atmospheric methane were 

obtained from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network. 

The isotopic analysis was performed at the Stable Isotope Laboratory, CU-INSTAAR, 

using samples of air provided by the NOAA CMDL Carbon Cycle Cooperative Global Air 

Sampling Network. This release contained data for flask samples beginning in 1998 and 

extending through the end of 2015.  Data were given for all sites where at least 18 months 

of data are available through the end of 2015. The subdirectory 'event' contained all 

measurements from flask samples collected at each site except for Montana de Oro, 

California. Monthly values are given only in those months where there are data, and no 

interpolation was made for missing months. The missing records of monthly mean 
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concentrations and sampling frequency errors based on measurements as described by 

Tyler et al. (2007) were provided by Professor Andrew Rice. 

 

In the NOAA event files, isotope data are reported as 'delta' values: the ratio of minor to 

major isotopes relative to a standard, VPDB-CO2. The 'delta' notation is represented as, 

 

delta = [ (13C/12C)sample / (13C/12C)reference - 1 ] × 1000      (4.16) 

 

and is expressed in units of 'permil' (parts per thousand). 

 

All the samples had been analyzed at the Stable Isotope Laboratory at CU-INSTAAR in 

Boulder, Colorado, using either a Micromass Optima or Micromass Isoprime isotope-ratio 

mass spectrometer coupled to methane custom-built trapping system, a gas chromatograph, 

and a combustion furnace. Measurement precision was approximately 0.1 permil for 13C 

(where 'precision' was taken as the standard deviation of three repeated measurements of 

standard air). The isotopic scale for δ13C of CH4 was tied to Stan Tyler's lab at the 

University of California Irvine. 

 

Merging isotope data from different laboratories are necessary to improve spatial and 

temporal data representation for model inversion over the past three decades. Measuring 

stable isotopes in methane with high degree of precision is difficult and only performed by 

a few laboratories worldwide (Levin et al., 2012). Interlaboratory comparisons crucial for 

quality control, become particularly challenging with periods of sample analysis not 
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overlapping (Levin et al., 2012; Monteil et al., 2011). At Portland State University, Dr. 

Doaa Teama and Dr. Andrew Rice measured the carbon and hydrogen isotopic composition 

of methane from archived air sampled at Cape Meares, Oregon from 1978 to 1999 on a 

roughly monthly basis, by using a continuous flow isotope ratio mass spectrometer (Teama, 

2013). These measurements are one of the longest continuous records of isotopic 

composition of methane with high temporal resolution dating back further than any 

available data set (Röger, 2013).  

 

Much information might not be gained from including hydrogen isotope data in the 

inversion process with sparsely available δD-CH4 measurements and wide range estimates 

of the source signatures found in other literatures (Röger, 2013). In this work, we did not 

include the δD-CH4 data and limited our isotopic dataset to δ13C of CH4. 

 

In this work, the records are obtained from 3 separate sources such as the NOAA ESRL 

database based on measurements by White et al. (2015) at the Stable Isotope Laboratory at 

the Institute of Arctic and Alpine Research (SIL INSTAAR), NOAA GMD Carbon Cycle 

Cooperative Global Air Sampling Network ‘event’ data files and Cape Meares data set and 

measurements by Tyler et al. (2007) and Quay et al. (1999) provided by Dr. Andrew Rice. 

13CH4 was introduced to the model as an independent tracer with source signatures drawn 

from previous work by Röger (2013) and Rice et al. (2016). The NOAA ESRL δ13C-CH4 

dataset contained individual measurements with corresponding monthly means for 17 sites 

from 1998 to 2011, 4 records were excluded as those started after 2007, as mentioned by 

Röger (2013) in the inversion work done with 4⁰ × 5⁰ grid resolution. We included the 
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NOAA raw data from ‘event’ files in this work and Dr. Rice provided the records of 

monthly means and sampling frequency errors for the Cape Meares data set which 

contained 4 additional sites and extended back 5 of the NOAA records to earlier years 

(South Pole; Tutuila, American Samoa; Mauna Loa, HI; Cape Grim, Tasmania; Point 

Barrow, AK). Additional δ13C measurements by Quay et al. (1999) at Cheeka Peak, WA, 

and Baring Head, New Zealand, and by Tyler et al. (2007) at Niwot Ridge, CO, and 

Montaña de Oro, CA, were also added. We avoided introducing artificial trends as the 

measurements are brought to same scale since the standards used to calibrate the 

measurements differ among laboratories. Dr. Rice compared overlapping segments of the 

records and did not find any statistically significant offset between data sets (Röger, 2013). 

There are total of 21 measurement sites with records of δ13C-CH4 used in this inversion 

work. The total uncertainties for all available records were calculated using equation (4.6), 

with mismatch error using equation (4.8) where yi s are model calculated δ13C-CH4 

signatures and 𝑦̅ s are corresponding means. The measurement error was taken as 0.08‰ 

as mentioned in supplemental information provided in the NOAA data without any 

correlation.  

 

The isotope data were processed as follows: 

 

1. The program ‘new_datafile.pro’ was used to create ‘gvmm.save’ file which holds 

the 13C/12C model mismatch errors. 
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2. The program ‘prepare_dC13.pro’ was used to create ‘noaa.save’ file which holds 

the NOAA-SIL dC13 data. 

 

3. The program ‘prepare_drew.pro’ was used to create ‘drew.save’ file which contains 

the OGI/Quay dC13 data. 

 

4. ‘Concentration_data.txt’ file contains CH4 mixing ratio data and new isotope data 

from NOAA event files. 

 

5. All of the above files were then used as input to the program ‘Isotopes.pro’ which 

was then compiled and ran at 2⁰ × 2.5⁰ grid resolution. Thus, created the output file 

named as ‘Isotope_data.txt’ which contains the monthly averaged total 13CH4 data 

for 21 sites present in 2x25/ data/ observations directory. 

 

Isotopic methane was included in this study as an independent tracer to constrain the 

inversion modeled source estimates to better distinguish between underlying processes. 

The isotopic δ13C-CH4 ratios of different source categories drawn from previous works are 

shown in table 4.1. The emission estimates are multiplied with corresponding characteristic 

isotopic ratios of source categories to get isotopic emission estimates from respective 

source categories. 
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Table 4.1: Isotopic fractionation signatures of different source categories drawn from previous studies. 

 

 

 

4.2. GEOS-Chem 

 

Goddard Earth Observation System - Chemical Transport Model (GEOS-Chem) is a global 

3-dimensional offline Chemical Transport Model (CTM) of atmospheric composition 

which originated in the atmospheric chemistry group at Harvard University. Bey et al. 

(2001) developed this second generation model by grafting Wang et al. (1998a) modules 

of photochemistry, emissions, and deposition onto the original GEOS CTM developed by 

Allen et al. (1996a, 1996b) and Lin and Rood (1996). Further, it is developed and used 
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by research groups worldwide as a versatile tool for application to a wide range of 

atmospheric composition problems. It utilizes  assimilated meteorological observations 

solving for equations of continuity for a species of interest instead of solving all the 

primitive equations for the atmosphere. The model is driven by input meteorological data 

assimilated by the Goddard Earth Observing System (GEOS) at the NASA Global 

Modeling and Assimilation Office (GMAO) (Bey et al., 2001) which includes fields such 

as winds, surface  pressures, temperatures, specific humidities, wet convective mass fluxes 

and detrainment rates, column cloud fractions, cloud optical depths, precipitation, surface 

albedos, roughness heights, friction velocities, and mixing depths, updated every 6 hours 

or 3 hours with  either instantaneous or averaged values. This study uses the GEOS-Chem 

(Bey et al., 2001) as the atmospheric transport model for CH4 transport simulations. The 

GEOS-Chem model version v9-01-02 

(http://acmg.seas.harvard.edu/geos/doc/archive/man.v9-02/index.html) has been 

employed in the work presented here for simulating transport of CH4. An evolution of 

different versions of GEOS assimilated meteorology data from GEOS-1 to most recent 

GEOS-FP are used in GEOS-Chem simulations. In this study, GMAO data product GEOS-

5 is used in GEOS-Chem simulations which contains meteorological variables for years 

2004 - 2010. For earlier and later years, the available 6 years meteorology data are recycled. 

A sensitivity test performed by Röger (2013) showed no significant impact on inversion 

results by recycling the meteorology data for one year repeatedly.  

 

A CTM numerically solves the continuity equations for mass conservation of chemicals in 

the atmosphere to compute the concentration of some chemical species of interest referred 

http://acmg.seas.harvard.edu/geos/geos_people.html
http://acmg.seas.harvard.edu/geos/doc/archive/man.v9-02/index.html
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to as tracers and their variability in space and time, using meteorological information as 

input. Generally,  CTMs are of two forms – Eulerian CTM with air parcel in fixed frame 

of reference and Lagrangian CTM with air parcel in moving frame of reference. An 

Eulerian CTM, GEOS Chem simulates the concentration of tracers in an array of fixed 

computational cells. It divides the atmosphere into latitude-longitude horizontal grid boxes 

extended in vertical direction and solves continuity equations for each box separately 

involving fluxes, chemical production/loss and deposition occur over time using a 

global/fixed frame of reference. The horizontal grid resolutions and the vertical sigma (σ) 

levels of a model are represented by the total number of grid boxes. The work done by 

Röger (2013), and Rice et al. (2016) used relatively coarser grid of 4⁰ latitude by 5⁰ 

longitude to reduce the computational demands. In this current work, we increased the 

horizontal resolution of the simulation to 2⁰ latitude by 2.5⁰ longitude increasing 

computational demands and accuracy. The vertical dimension is divided into 47 hybrid σ-

levels spanning 80km vertically that extends from 1000 hPa at surface level to 0.01 hPa at 

top level. In this computation, the total number of grid cells involved are 91 x 144 x 47 = 

615888. 

 

The GEOS-Chem accurately represents the fluxes (e.g. advection), chemical 

production/loss, and deposition of every tracer caused due to emissions, transport and 

chemical sinks in each grid box. Advective is computed every 15 minutes based on the 

flux-form semi-Lagrangian method as described by Lin and Rood (1996) and moist 

convective transport is computed using the GEOS convective, entrainment and detrainment 

https://en.wikipedia.org/wiki/Continuity_equation
https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Flux#Transport_phenomena
https://en.wikipedia.org/wiki/Advection
https://en.wikipedia.org/wiki/Deposition_(chemistry)
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mass fluxes as described by Allen et al. (1996a, 1996b) (Bey et al., 2001). In this 

computation, the time-step used is 15 minutes for both emissions and chemistry. Full 

mixing is assumed within the GEOS-diagnosed atmospheric mixing layer  generated by 

surface instability (Bey et al., 2001). The atmospheric CH4 simulation using GEOS-Chem 

was first described by Wang et. al. (2004) which was further developed by Wecht et. al. 

(2012). The CH4 sources and sinks for GEOS-Chem are described with more details in 

Röger (2013), Rice et al. (2016) and references therewithin. In addition to total CH4 

emission, the tagged tracers which are [CH4] emitted from different source processes or 

regions are also included in our computation. Thus, response functions for all source 

categories are computed simultaneously. As reaction with OH constitutes the main sink for 

CH4, calculation of concentrations of other tracers is not required. We prescribed the OH 

concentration fields instead of calculating them which decreased the computational 

demands drastically in this computation. The tracer for 13CH4 is also included as an 

additional constraint in this computation. However, CH3D was also included in the 

previous computation of CH4 fluxes with 4⁰ x 5⁰ resolution, but not included in this study.  

 

This work extensively used the Global Atmospheric Modeling Analysis Package 

(GAMAP) which is the standard software package used for visualization of output 

generated by the GEOS-Chem model. GAMAP program contains a user-friendly, menu-

driven interface also called as GAMAP subroutines independent of the main program 

written in Interactive Data Language (IDL). GAMAP takes advantage of IDL's facilities 

for reading different types of file formats, including netCDF, HDF, and HDF–EOS and 

http://www.as.harvard.edu/chemistry/trop/geos/
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makes extensive use of IDL's powerful plotting features to aid the visualization of the 

GEOS-Chem model output data results. 

 

4.3. Methods involved in Inversion Process 

 

An overview of the methods involving various programs been developed and used to 

perform the inversion process, are discussed in this section. As GEOS-Chem model uses 

FORTRAN 90 programming language, all our program codes are also written in 

FORTRAN 90 to make compatible with GEOS-Chem. The Fortran program inverse.F is 

the main program that runs the inversion process to optimize CH4 emissions over the 

specified run time using NOAA CH4 observational data and 13CH4 data. This program calls 

a number of routines that read in input files needed for the inversion process which includes 

response functions (H-matrix), CH4 concentrations and isotope observations, prior 

emissions and reference run. All these input files are created using some other Fortran 

programs at the grid resolution of 2⁰ × 2.5⁰. The routines call various versions of GEOS-

Chem executables which we created by compiling corresponding versions of GEOS-Chem 

codes at resolution of 2⁰ × 2.5⁰. Array-sizes, paths, filenames, extended time period, and 

other resolution dependent parameters were updated for all programs and procedures for 

inversion were followed. The inputs of inverse.F program include:  

 

• Reference model concentrations (yref): Created using reference.F. 
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• NOAA CH4 and isotope observations which were aggregated to grid resolution of 

2⁰ × 2.5⁰ as mentioned earlier in section 4.1.3.  

• Total uncertainties associated to the observations calculated as mentioned earlier in 

section 4.1.3. 

• Response functions (H-matrix): Created using response.F. 

• Adjusted response functions (Hadj – matrix): Created using response_adj.F.  

• Adjusted response functions for isotopes(H13adj–matrix): Created using 

response_adjIso.F. 

 

The above mentioned programs involved in model runs calculate the matrix of response 

functions H and the reference vector yref.  

 

 4.3.1. Response Functions 

 

The response functions used in this inversion work are briefly described in this section 

which were detailed by Röger (2013). We calculated response functions for the inversion 

using the chemical-transport model GEOS-Chem run at a horizontal grid resolution of 2⁰ 

× 2.5⁰. The elements of H matrix are expressed as the ratio of methane concentrations (y) 

to emissions (x) from sources in the state vector as follows: 

 

𝐻𝑖𝑗𝑡𝑡′ =
𝜕𝑦𝑖𝑡′

𝜕𝑥𝑗𝑡
≃

𝑦𝑖𝑡′−𝑦̃𝑖𝑡′

𝑥𝑗𝑡−𝑥̃𝑗𝑡
               (4.17) 
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where i represents observational site, j represents methane source region, t and t′ represent 

timesteps with t′ ≥ t. yit′  and 𝑦𝑖𝑡′ ̃ respectively denotes the concentration (in ppb) at site i at 

time t′ caused by emissions (in Tg/year) 𝑥𝑗𝑡 and 𝑥𝑗𝑡̃ from source j at time t. The elements 

of H matrix are generated from multiple GEOS-Chem runs for each source of interest 

starting at time t and ending at t′. We get 𝐻𝑖𝑗𝑡𝑡′ = 𝑦𝑖𝑡′ in ppb/(Tg/yr), where no initial 

background concentration field was used, i.e., 𝑦𝑗𝑡′̃ = 0 and the emissions from the pattern 

corresponding to source j was chosen to be 1 Tg/yr during month t i.e., 𝑥𝑗𝑡 =1 Tg/yr and 0 

Tg/yr in every other month i.e., 𝑥𝑗𝑡̃ = 0 Tg/yr. Thus, within these runs, one month pulse of 

methane emission is considered and its dispersion for all subsequent months are calculated 

as the emitted pulse become well mixed in the atmosphere after certain time. This led us to 

run the emission pulses from every month only for up to 6 months and approximate the 

remaining 6 months by using response functions from a full set of computations for the 

same month of the year 1990, similar to the work done by Röger (2013) and Rice et al. 

(2016). This process including the runs distributed over multiple nodes helped us to 

improve efficiency by reducing the computation time significantly. The changes in 

methane concentration with feedback in the sink strength due to impact of hydroxyl radical 

and stratospheric sinks as chemical sinks destroying tracer concentration also got 

considered in the H matrix. With specific settings, appropriate version of GEOS-Chem 

model is run to create bpch output files which are then read in by routine response.F to 

extract response functions for CH4 at all mixing ratio and isotope measurement sites i.e., 

H.bin and HIso.bin, by routine response_adj.F to extract the adjustment response functions 

for CH4 at all mixing ratio and isotope measurement sites i.e., H_adj.bin and H_adjIso.bin, 
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and by routine response_adjIso.F to extract the adjustment response functions for 13CH4 at 

all isotope measurement sites i.e., H_adjIso2_Strat.bin, thus reaction rates have to be 

corrected with respective KIEs for OH and stratospheric sinks in the corresponding GEOS-

Chem run. 

 

Calculation of response functions (H-matrix): 

 

The response functions i.e., H matrix, are calculated offline by using the routine response.F 

with the help of GEOS-Chem model run, which are required later within the process of 

inversion. The code is based on an earlier version of inversion which contained some 

obsolete variables no longer been used and some comments may not be applied any longer. 

The command to compile the code and execute the routine is given in the beginning of the 

routine before ‘implicit none’ statement. The time frame needed for the process has to be 

set with the variables been initialized in the declaration part. The output file has to be stored 

in the directory mentioned in the subroutine ‘write_to_output_file’. The routine is placed 

in the 2x25/routines directory, appropriate version of GEOS-Chem source codes are 

present in gc-code/Code.Response directory and the corresponding GEOS-Chem run 

directory including the script called ‘response.script’ required to execute the routine is 

placed in the gc/GEOS-Chem.Response directory. The following steps are undertaken to 

create the binary files: 

 

1. For this version of work, global_ch4_mod.F present in the directory gc-

code/Code.Response_CB2/GeosCore, was investigated and modified by including 
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lines of codes required for change in grid resolution, changing array sizes, 

allocations for model run time period, paths to the files and other resolution-

dependent codes, saved and then compiled at 2⁰ × 2.5⁰ resolution to create an 

executable named as ‘geos’ in the gc-code/Code.Response/bin directory.  

 

2. As response.F calls geos with arguments ‘1 0 0’, which tells geos to run with all 

emissions of CH4 to be on, to use zero CH4 concentration field in restart file, and 

to not create any new restart file for subsequent months. This set of arguments tells 

input_mod.F which is used to accept command line arguments to geos, to use 

‘input.geos.inversion.4’. So, this file needed to be updated to work with 2⁰ × 2.5⁰ 

version of GEOS-Chem.Response. 

 

3. Before updating ‘input.geos.inversion.4’, the restart file for 2⁰ × 2.5⁰ version has 

to be created. In 2x25/gc/GEOS-Chem.Response_SK/restart directory, a zero CH4 

restart file was created to initialize the GEOS-Chem run using GAMAP routine 

‘MAKE_RESTART.pro’. This had only one tracer for TOT_CH4.  

 

4. All input data files for 2⁰ × 2.5⁰ version of the work are put in data/geos-

chem/GEOS_2x25/EDGAR directory. All emission and sink data files which are 

updated and modified for the current version of work as already mentioned in the 

sections 4.1.1 and 4.1.2 in this chapter, are put in the same directory. 
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5. All meteorological data available up to 2007 are put in data/geos-

chem/GEOS_2x25 directory.  

 

6. In 2x25/gc/GEOS-Chem.Response_SK directory, ‘input.geos.inversion.4’ was 

checked and updated with required changes according to the current version. The 

file was modified to specify the name of the output bpch file which will be created 

and also checked and corrected the options for restart file and specified the path to 

the restart file created in previous step. 

 

7. Next, the routine response.F was investigated and updated with modifications 

required to work with current version.  

 

8. In 2x25/routines directory, response.F should be compiled and executed to create 

‘response’ executable. This executable should then be submitted to the job 

scheduler Sum-Grid Engine (SGE), using the job script ‘response.script’ located in 

GEOS-Chem run directory. This should be done because the response.F calls and 

uses ‘geos’ executable and creates binary punch file ‘Inversion.bpch’ in 2x25 /gc 

/GEOS-Chem.Response_SK /rundirs /response.script_YYMM /output directory 

generated using forward run of GEOS-Chem, which is then be called by response.F 

again to create H.bin and HIso.bin standard response function files for first 6 

months of years from 1979 to 2016. 
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9. The calculation of response functions was spread out to multiple routines, so that 

multiple nodes can be used to reduce the time of computation, since every model 

run for response function is independent of each other. Thus, multiple response.F 

routine and GEOS-Chem.Response run directories were created as required for this 

work, named as response_2.F and GEOS-Chem.Response.2 respectively, and so 

on. Then in each of these routines, required changes for the names and paths were 

done such as correction of executable was done by replacing ‘.response’ with 

‘.response_2’ and so on. 

 

10. Next, to run all the response scripts simultaneously, ‘responsesplit.pro’ was used 

which created separate run scripts for each of response.F versions and 

‘response.pro’ was used to submit all the run scripts to the job scheduler. 

 

11. After the runs were completed, the outputs for each version called as 

‘Inversion.bpch’ were extracted and found in 2x25/ gc/ GEOS-Chem.Response/ 

rundirs/ response_script_YYYYMM/ output directory. These binary punch files 

were then again read into different versions of response.F to create H.bin and 

HIso.bin files. All versions of response.F are present in 2x25/routines/splitresponse 

directory, and all executables are created in 2x25/routines/exec/SK_exec directory. 

All H.bin and HIso.bin files for first 6 months of all years were created in 

2x25/data/response_functions/Standard directory as YYYYMM_YYYYMM2.bin 

files. 
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12. For last 6 months, responsetails_base.F was worked on similar to last step for 12 

months run for the year of 1990. For creating the tails for bin files, multiple versions 

of responsetails_base.F were made named as reponsetails_19901.F and so on in 

2x25/routines/splitresponsetails directory and each version was modified for 

different allocations accordingly. 

 

13. Response tails for 19901-199012, 19902-199101, …, 199012-199112 runs were 

submitted in multiple nodes similar to response standard runs. Thus, 

responsetailsSplit.pro in 2x25/IDL/responseSplit directory was worked on and 

checked with all allocations and then compiled and run in the same directory to 

create separate executables such as responsetails_19901, ..., responsetails_199012 

in 2x25/routines/exec directory. Then in the same directory, these executables were 

run to create separate Inversion.bpch files in each of the output directories in 2x25/ 

gc/ GEOS-Chem.Response/ rundirs/ responsetails.script_YYYYMM/ output and 

all ‘yyyymm_yyyymm2.bin’ files were created in 2x25/ data/ response_functions/ 

Tails directory. 

 

14. While working on both standard and tail runs of response functions, it was checked 

that the correct files for input.geos.inversion.4, diaginfo.dat, tracerinfo.dat, etc. 

exist in the respective run directories. 

 

15. Next, in 2x25/IDL directory, cp_tails.pro was worked on with required 

modifications, compiled and run to attach response tails to standard bin files and 
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create full sets of response functions named as 197901_197901.bin, 

197901_197902.bin, and so on up to 201512_201611.bin files in 2x25/ data/ 

response_functions/ Standard directory. 

 

Calculation of adjusted response functions (Hadj -matrix):  

 

The adjusted response functions i.e., Hadj matrix, are calculated offline by using the routine 

response_adj.F, with the help of GEOS-Chem model run, which are required later within 

the process of inversion. Hadj matrix is used to adjust the reference run concentrations to 

emissions that occurred more than 12 months before the current timestep. The elements of 

Hadj matrix are calculated from GEOS-Chem model run that is initialized with zero CH4 

restart file and a 1 Tg pulse of emission from all sources in the first month and is run from 

01/1979 to 01/2017. This model run essentially simulates how a 1 Tg spike of methane 

emission decays over the entire 38 years of model period and the output of this model run 

is then sampled to get Hadj. An earlier version of inversion code is the basis of this Fortran 

routine which contained some obsolete variables no longer been used and some comments 

may not be applied any longer. The command to compile the code and execute the routine 

are given in the beginning of the routine before ‘implicit none’ statement. The time frame 

needed for the process has to be set with the variables been initialized in the declaration 

part. The output file has to be stored in the directory mentioned near the end of the main 

program. The routine is placed in the 2x25/routines directory, appropriate version of 

GEOS-Chem source codes are present in gc-code/ Code.Response.Adj directory and the 

corresponding GEOS-Chem run directory including the script named ‘geos.script’ required 
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to execute the routine is placed in the gc/ GEOS-Chem.Response.Adj directory. The 

following steps are undertaken to create the binary files:  

 

1. Similar to standard response functions, for adjusted response functions also, 

global_CH4_mod.F present in 2x25/ gc-code/ Code.Response.Adj_SK/ GeosCore 

directory was investigated and modified by including lines of codes required for 

change in grid resolution, different allocations for model run time period, change 

in number of measurement sites, change in paths to the files, etc., saved and 

compiled at 2⁰ × 2.5⁰ grid resolution and created a new executable named ‘geos’ in 

2x25/ gc-code/ Code.Response.Adj_SK/ bin directory. 

 

2. Next, in 2x25/ gc/ GEOS-Chem.Response.Adj_CB directory, 

‘input.geos.inversion.4’ was investigated and changes were made required to work 

with this version of model run, including change in model run time, paths to the 

files, input and output file names, choice of restart file – initialized with zero CH4 

restart file, turning on all emissions from all sources with total of 1 Tg pulse emitted 

in the first month, and with making new restart files with each timestep for the 

entire model run. 

 

3. Next in the same directory, ‘geos.script’ was checked and the correct path to the 

‘geos’ executable was included as mentioned in step 1, saved and submitted to the 

job scheduler. 
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This forward run of GEOS Chem model created ‘Response_Adj_197901-

201701.bpch’ file in 2x25/ gc/ GEOS-Chem.Response.Adj_CB/ output_SK 

directory. 

 

4. Next, in 2x25/ routines directory, ‘response_adj.F’ was investigated and required 

modifications were made to work with current version of model run, including 

change in array sizes, model run time, names and paths for the input and output 

files, number of measurement sites and other resolution-dependent codes. Then 

codes for a subroutine Read_bpch3 were included to open the file outside the main 

do loop to avoid extra run times, saved and compiled. An executable named 

‘response_adj’ was created in 2x25/ gc/ GEOS-Chem.Response.Adj_CB directory, 

which was then executed to create H_adj.bin and H_adjIso.bin files in 2x25/ data/ 

response_functions/ Adj_SK directory. 

 

Calculation of adjusted response functions for isotopes (H13adj -matrix): 

 

The adjusted response functions for isotopes i.e., H13adj matrix, are calculated offline by 

using the routine response_adjIso.F, with the help of GEOS-Chem model run, which are 

required later within the process of inversion. H13adj matrix is also used to adjust the 

reference run concentrations to emissions that occurred more than 12 months before the 

current timestep. Similar to Hadj matrix, the elements of H13adj matrix are also calculated 

from GEOS-Chem model run that is initialized with zero CH4 restart file and a 1 Tg pulse 

of emission from all sources in the first month and is run from 01/1979 to 01/2017. This 



 

168 
 

model run essentially simulates how a 1 Tg spike of isotopic methane emission decays over 

the entire 38 years of model period and the output of this model run is then sampled to get 

H13adj. The only difference with the version of GEOS-Chem generating response_adj 

functions, is that in this version of GEOS-Chem, kinetic isotope effect (KIE) of 13CH4 are 

included for OH and stratospheric sinks. An earlier version of inversion code is the basis 

of this Fortran routine which contained some obsolete variables no longer been used and 

some comments may not be applied any longer. The command to compile the code and 

execute the routine are given in the beginning of the routine before ‘implicit none’ 

statement. The time frame needed for the process has to be set with the variables been 

initialized in the declaration part. The output file has to be stored in the directory mentioned 

near the end of the main program. The routine is placed in the 2x25/routines directory, 

appropriate version of GEOS-Chem source codes are present in gc-code/ 

Code.Response.AdjIso directory and the corresponding GEOS-Chem run directory 

including the script named ‘geos.script’ required to execute the routine is placed in the gc/ 

GEOS-Chem.Response.AdjIso directory. The following steps are undertaken to create the 

binary files:  

 

1. Similar to adjusted response functions, in adjusted response functions for isotopes 

also, global_CH4_mod.F present in 2x25/ gc-code/ Code.Response.AdjIso_SK/ 

GeosCore directory was investigated and modified by including lines of codes 

required for change in grid resolution, different allocations for model run time 

period, change in number of measurement sites, change in paths to the files, 

correction for KIE of 13CH4 are included in the calculation of reaction rates for OH 
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and stratospheric sinks etc., saved and compiled at 2⁰ × 2.5⁰ grid resolution and 

created a new executable named ‘geos’ in 2x25/ gc-code/ 

Code.Response.AdjIso_SK/ bin directory. 

 

2. Next, in 2x25/ gc/ GEOS-Chem.Response.AdjIso_CB directory, 

‘input.geos.inversion.4’ was investigated and changes were made required to work 

with this version of model run, including change in model run time, paths to the 

files, input and output file names, choice of restart file – initialized with zero CH4 

restart file, turning on all emissions from all sources with total of 1 Tg pulse emitted 

in the first month, and with making new restart files with each timestep for the 

entire model run. 

 

3. Next in the same directory, ‘geos.script’ was checked and the correct path to the 

‘geos’ executable was included as mentioned in step 1, saved and submitted to the 

job scheduler. This forward run of GEOS Chem model created 

‘Response_AdjIso_197901-201701.bpch’ file in 2x25/ gc/ GEOS-

Chem.Response.AdjIso_CB/ output_SK directory. 

 

4. Next, in 2x25/ routines directory, ‘response_adjIso.F’ was investigated and 

required modifications were made to work with current version of model run, 

including change in array sizes, model run time, names and paths for the input and 

output files, number of measurement sites and other resolution-dependent codes. 

Then codes for a subroutine Read_bpch3 were included to open the file outside the 
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main do loop to avoid extra run times, saved and compiled. An executable named 

‘response_adjIso’ was created in 2x25/ gc/ GEOS-Chem.Response.AdjIso_CB 

directory, which was then executed to create H_adjIso2_Strat.bin file in 2x25/ data/ 

response_functions/ Adj_SK directory. 

 

Methods used for Comparison between response functions from 4⁰ × 5⁰ 

grid resolution model run and 2⁰ × 2.5⁰ grid resolution model run: 

 

1. A program named ‘plot_H.pro’ was written in 2x25/ IDL directory, which 

compared response functions i.e., H.bin files created in 4⁰ × 5⁰ and 2⁰ × 2.5⁰ grid 

resolution for lag months 0 to 11, using constant observation month of 07/2006 and 

also of 12/1980 for each source, for 20 sites distributed around the world. The plots 

matched very well with red lines representing 4⁰ × 5⁰ H.bin data and blue lines 

representing 2⁰ × 2.5⁰ H.bin data. 

 

2. Another program named ‘plot_H_adj.pro’ was written in 2x25/ IDL directory, 

which compared adjusted response functions i.e., H_adj.bin files created in 4⁰ × 5⁰ 

and 2⁰ × 2.5⁰ grid resolution for lag months, using constant observation month at 

the end of entire model run time for each source, for 20 sites distributed around the 

world. The plots matched very well with red lines representing 4⁰ × 5⁰ H_adj.bin 

data and blue lines representing 2⁰ × 2.5⁰ H_adj.bin data.  
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3. Another program named ‘plot_H_adjIso.pro’ was written in 2x25/ IDL directory, 

which compared adjusted response functions for isotopes i.e., H_adjIso2_Strat.bin 

files created in 4⁰ × 5⁰ and 2⁰ × 2.5⁰ grid resolution, using constant observation 

month at the end of entire model run time for each source, for 20 sites distributed 

around the world. The plots matched very well with red lines representing 4⁰ × 5⁰ 

H_adjIso2_Strat.bin data and blue lines representing 2⁰ × 2.5⁰ H_adjIso2_Strat.bin 

data. 

  

4. Then, I wrote another program named 

‘compare_INVERSION_bpch_timeseries.pro’ in the same directory, which 

compares the plots of INVERSION.bpch timeseries of 7 months, using observation 

month of 07/1980, 07/2006, 01/2013 and 01/2015 for each source, created from 

model run at 4⁰ × 5⁰ (red lines) and 2⁰ × 2.5⁰ (blue lines) grid resolution. The plots 

were consistent and correctly depicted the decay of the emissions for above 

mentioned year’s adjusted response function files. 

 

5. Next, I wrote a program named ‘Total_CH4_ResponseAdjIso_bpch_SK.pro’ in the 

same directory, which plotted the decay of emission of 1 Tg of total CH4 mass over 

the entire model run time in the adjusted response function file for isotopes. The 

plots looked consistent on the decay of methane mass with increasing months, 

starting at 0.8 Tg for CH4_tot and 0.08 Tg for 10 different tracers. 
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 4.3.2. Reference Run 

 

The reference run provides us with model predictions of CH4 and 13CH4 i.e., yref, sampled 

at the same sites and times as the corresponding observations formed yobs. The model 

predictions are then compared with the actual observations and the difference between the 

two is used to update and optimize emissions. These model reference predictions can be 

obtained in two different ways: one approach is online where the model is run parallel to 

the inversion and other is offline approach where the model is run once for the entire time 

period before the inversion. Both these approaches were discussed in detail by Röger 

(2013). In this section, a brief description of the offline approach of the reference run is 

discussed which we have used for our work being much less demanding. During one-time 

model run for entire time period, the mixing ratios and the isotopic signatures for all 

observations are sampled at every time step and we get reference values 𝑦̂ref. To account 

for the difference in estimated and reference emission values, these reference values are 

adjusted during the inversion as expressed by the following equation: 

 

( ) ( ) ( )ref optref

,

y y xadj

iti jti
t j

H= +
                     (4.18) 

 

where i refers to specific observational site, j to specific methane source region and t to a 

specific time step. yref represents the atmospheric abundance of observed methane 

calculated in the grid cells containing the observational sites and 𝑦̂ref refers to the modeled 

methane abundance, obtained from the entire time period reference run, xopt denotes the 
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fully optimized estimates of the source strength for specific source region for a time step 

and 𝐻𝑎𝑑𝑗  is the set of basis functions containing the responses specifying the impact of 

emissions which occurred more than 12 months prior to the observations with transport 

model acting on these emissions. 𝐻𝑎𝑑𝑗 matrices are obtained from conducting GEOS-

Chem run over the entire inversion time period starting with zero concentration fields and 

a combined 1 Tg/yr emission pulse from all sources in the first month, as mentioned by 

Röger (2013) and Rice et al. (2016). The elements of 𝐻𝑎𝑑𝑗 comprises of the adjustments 

in the CH4 concentrations to the reference emissions from each source region at each 

observational site for the first 12 months. In order to calculate the isotopic ratios from the 

reference run, the δ13C-CH4 reference values are corrected by using similar equation 

obtained from formulation of Mikaloff Fletcher et al. (2004) as follows: 

 

( ) ( ) ( ) ( )
1313

13 src

ref optref

,
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   (4.19) 

 

where the vector Rsrc contains the isotopic ratios corresponding to the source signatures 

calculated using following equation: 
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13

src

12
R /1000 1src

PDB

C

C


 
= +   
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where, 𝛿𝑠𝑟𝑐 is the isotopic signature of the specific source process. 𝐻13𝑎𝑑𝑗 comprises of the 

response functions calculated similar as 𝐻𝑎𝑑𝑗 with reaction rates of OH and stratospheric 
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sink using their respective KIEs as mentioned earlier. An error of size of elements in xopt is 

introduced due to the approximation using equations (4.18) and (4.19) to avoid the model 

running along the inversion. 

 

Creating Reference Runs: 

 

Reference runs were created offline with GEOS-Chem model run using the a priori 

emissions data. Later throughout the inversion, the model predictions in the reference run 

were adjusted using fully optimized emissions. The following steps were considered to get 

yref: 

 

1. In 2x25/ gc-code/ Code.Reference.SK/ GeosCore directory, Geos Chem source 

codes such as global_CH4_mod.F, a3_read_mod.F, a6_read_mod.F, 

i6_read_mod.F, tracer_mod.F, input_mod.F, etc. were investigated and updated 

with modifications required to work for current version of model run. There were 

changes in array sizes, paths to different files, other resolution-dependent codes, 

model run time and lines of codes were included as required for adjustments, saved 

and then compiled to work at 2⁰ × 2.5⁰ grid resolution. A new executable ‘geos’ 

was created in 2x25/ gc-code/ Code.Reference.SK/ bin directory. 

 

2. Next in 2x25/ gc/ GEOS-Chem.Reference_CB directory, checked with all the 

existing run directories and then ‘input.geos.inversion.4’ file was investigated and 
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modified according to the changes required to work with this version of model run, 

such as corrected the model run time, output file names and paths, options for restart 

files, emissions of tracers, etc. A new restart file was created for 2⁰ × 2.5⁰ grid 

resolution. The reference run version of restart file for 4⁰ × 5⁰ grid resolution was 

a simple restart file where both hemispheres had been initialized with constant CH4 

and isotopic composition. I wrote a program named 

‘Convert_restart_4x5to2x25.pro’ which converted the restart file made in 4⁰ × 5⁰ 

grid resolution to restart file in 2⁰ × 2.5⁰ grid resolution.  

 

3. Next in the same directory, ‘geos.script’ was modified to include the correct path 

to the ‘geos’ executable, saved and then submitted to the job scheduler to create 

‘Reference_021979-012017.bpch’ file in 2x25/ gc/ GEOS-Chem.Reference_CB/ 

output_SK directory. 

 

4. Reference version of GEOS-Chem is used to create both the reference runs for the 

inversion to calculate ydiff i.e., the difference between the a priori simulated CH4 

and the measured CH4 and also to create a bpch output file that is used to calculate 

the mismatch error of the CH4 observations. There are over 200 sites of CH4 mixing 

ratio measurements worldwide and about 21 locations for isotope measurements. 

These data are input to the inversion process, so these data needed to be placed at 

2⁰ × 2.5⁰ model grid cells. In some cases, more than one observation site lies in the 

same model grid cell, so the observational data set needed to be aggregated in the 



 

176 
 

2⁰ × 2.5⁰ model grid cells and the correct model grid latitude and longitude index 

to be assigned. So, I wrote a program named ‘Check_gridIndices.pro’ which 

checked latitude and longitude coordinates of each observation site and also 

whether grid indices for each site were transformed from latitude and longitude 

coordinates correctly or not.  

 

5. I wrote another program named ‘gv_SK_2016.pro’ present in 2x25/ IDL directory, 

which reads in input text file ‘processed_NOAA_CH4_2016_reduced.txt’ and 

considers  aggregation, mismatch error calculation, uncertainty assignments, 

correcting data from ocean transects and then generates output text file named 

‘NOAA_2016_OceanCorrect.txt’. 

 

6. Then, OGI data for some sites were manually added to the above mentioned output 

text file, removed POCS15 data since the site was situated in the same grid cell as 

SMO which had longer timeseries of data, thus created a text file named 

‘Concentration_data_2016_Correct.txt’ which was then renamed as 

‘Concentration_data.txt’ present in 2x25/ data/ observations directory. 

 

7. The model predicted CH4 concentrations in the grid cells where we have CH4 

observations, were saved to a binary data file. Thus, reference.F needed to know 

the grid cell indices of the CH4 observation sites, which can be provided by 

Concentration text file created earlier in the above step. I wrote a program named 

‘Site_indices.pro’ which reads in ‘Concentration_data.txt’ files for both 4⁰ × 5⁰ and 
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2⁰ × 2.5⁰ grid resolution and creates two output files named 

‘NOAA4x5Site_indices.txt’ and ‘NOAA2x25Site_indices.txt’ printing names and 

corresponding grid indices of all observation sites. 

 

8. The values of all data for a priori emissions were processed and printed in text file 

which was used for reference runs. The ‘apriori_values.pro’ program was used by 

modifying the codes to work for current version, to create the ‘Apriori_SK.txt’ file 

in the 2x25/ data/ priors directory. 

 

9. Next in 2x25/ routines directory, reference.F was investigated and modified 

accordingly as required to work with the current version of work, to include 

resolution dependent codes for 2⁰ × 2.5⁰ version, updated array sizes, paths and 

filenames. The timeframe for the model run was changed to start date as 01/1980 

and end date as 12/2015, since in this work, we have data through 12/2016 and we 

need 12 months of additional data to constrain emissions of 12/2016, thus inversion 

will run until 12/2015. Reference bpch file had data from 02/1979 to 01/2017 and 

Concentration_data.txt had data from 01/1977 to 01/2016, hence timeframes for 

different variables were set accordingly. The codes for reference.F were saved and 

compiled in the same directory and then in the run directory 2x25/ gc/ GEOS-

Chem.Reference_CB, the executable was run or reference.script was submitted to 

the job scheduler to create rRef.bin which wrote out 13C/12C ratio for GEOS-Chem 

to read for delta calculation, Reference_1.bin which wrote out y_ref, 
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Reference_2.1.bin which wrote out y_refIso1 and Reference_2.2.bin which wrote 

out y_refIso2 in the 2x25/ data/ reference_runs/ output_SK directory. 

 

During inversion process, observations of CH4 and 13CH4 are compared with GEOS-Chem 

model simulated CH4 and 13CH4, i.e., yobs and yref and the difference between these two at 

each timestep are used to update the prior ‘best guess’ estimates of CH4 emissions in ten 

different source categories. The GEOS-Chem predictions are stored in reference run files 

which are created as mentioned in the above steps, outside the inversion. As the inversion 

process was run proceeding with each timestep through the model period, it optimizes the 

emissions month by month. The reference concentrations were calculated from offline 

GEOS-Chem model run, so those are not optimized with updated emissions and do not 

reflect the updated optimized emissions. These reference concentrations need to be updated 

or adjusted with the changes made to prior emissions by the inversion. These adjustments 

were made using H_adj and H_adjIso and H13adj matrices which were obtained from 

response functions run within the inversion process. 

 

4.3.3. Main Inversion Process Deriving a posteriori estimates and covariance 

matrix 

 

Here in this section, the steps followed in the calculations in the main inversion program 

are being discussed which are identical to the inversion work done previously with 4⁰x5⁰ 

resolution by Röger (2013). However, all the relevant equations and theoretical concepts 
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have already been discussed in Chapter 3. The main task of this program named ‘inverse.F’ 

was to derive a posteriori estimates of CH4 emission and their covariance matrix from a 

priori emission values, the measurement values from observation sites and previously 

calculated model output. The codes for the main inverse program performed the following 

steps which involved the inversion process: 

 

1. At first, the adjusted response functions H_adj, H_adjIso and H_adjIso2_Strat 

binary files were read in. 

 

2. Then, observations of CH4 were read into y_obs for all sites for entire time period. 

 

3. Then, a priori emissions for all ten sources starting at 02/1979 were read into 

AprioriEmissions. 

 

4. These a priori emissions were scaled by a factor of 1.08 to better match emissions 

required by OH fields. 

 

5. If interval constraints were used, physically realistic lower and upper bounds were 

set. 

 

6. Then, reference run for all sites i.e., y_ref was read in, if using isotopes, reference 

run of 12C concentrations at isotopic sites i.e., y_refIso1 was read in and reference 
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run of 13C concentrations at isotopic sites i.e., y_refIso2 was read in from reference 

run binary files. 

 

7. Next, for last 11 months of year 1979, the state vector 𝐱𝐮
′  and its covariance matrix 

𝑸𝒖𝒖
′  were initialized. Before the first time-step began, the state vector contained the 

adjustments to the priors with all values zero everywhere. During the first 11 

months, the uncertainties of the priors form the diagonal elements of the initial 

covariance matrix which were calculated by multiplying assigned relative 

uncertainties 50% for aseasonal sources and 100% for seasonal sources, with the 

corresponding a priori values. The off-diagonal elements of the covariance matrix 

were zero. These partially optimized values for the first 11 months entered the 

inversion. 

 

8. Time stepping began on 02/1979 as the inversion start date would be 01/1980 and 

end date 12/2015, so the loop would be over all months for which emissions to be 

optimized. The next steps were executed for every time-step and thus, would run in 

a loop in the program. 

 

9. The available NOAA 13C-CH4 data and their uncertainties (SigISO) for current 

observation month were read in and got number of available constraints (NIso) with 

the indices of locations providing the constraints (indarr). 
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10. The a priori emission adjustments and its covariance matrix shift for the current 

time-step were calculated using state space equations (3.20) and (3.21) respectively 

from Chapter 3. The active set of state vector was updated by pushing the elements 

down one month and for the month included recently, the variables were set to zero 

initial adjustments and uncertainties were calculated by total a priori values of the 

month multiplied with the assigned relative uncertainties. The fully optimized 

elements were extracted out from 𝐱𝐮
′  and 𝑸𝒖𝒖

′  forming xv, 𝑄𝑢𝑣, and 𝑄𝑣𝑣. Thus, the 

state vector was stored that fell out of the active set. 

 

11. Using the equations (4.18) and (4.19) from the reference run, the adjustments were 

made for methane concentrations and isotopic signatures. Then, the vector ydiff for 

the current month was obtained by subtracting the reference concentrations from 

the observations as referred in equation (3.2). The reference 13C/12C ratio was 

calculated for current observation month at each of the isotopic sites. 

 

12. As discussed in section 3.3, all 8 steps were performed for this time-step using all 

isotopic data available to constrain the inversion. 

 

13. The response functions H and HIso were read in for all months constrained by the 

current observation month. 
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14. A first estimate of the flux for the current time-step was calculated using the state 

update and covariance update equations (3.30) and (3.32) respectively. The 

inverses were calculated by using singular value decomposition method. Then 

using equation (3.23), the estimate was used to check for predicting whether all 

observations matched well or not. However, when the model was unable to satisfy 

all the constraints at the same time with observations not matching within 3 

standard deviations, then these observations were assigned a large weight in the 

cost function and thus ignored these unmatched measurements to get the best fit 

with matched ones. Therefore, the state and covariance updates were repeated 

without using these unmatched observations.  

 

15. Moreover, an iterative method was used for consistency check as described in 

section 3.4 where interval constraints were imposed to the unphysical estimates and 

were projected to their feasible range. If an estimate suggested a negative source 

strength as lower bound, it was considered as unphysical, similarly as upper bound, 

a posteriori emissions more than 3 times larger than a priori emissions were not 

allowed. 12-months mean flux of every source were determined for four aseasonal 

sources from the 11 unconstrained estimates and xv. The feasible region for the 

fluxes of the sources were defined between 10% larger and 10% smaller than their 

respective annual mean flux. 

 

16. The updated optimized emission estimate for all sources at each timestep and 

updated covariance values, along with other required variables were written out in 
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an output text file named ‘output_SK.txt’. Then the main loop ended. All different 

subroutines were written after the main program which were called within the main 

inversion process as needed for coding. 

The estimates for 2016 are not fully optimized and therefore not evaluated. As mentioned 

by Röger (2013), similarly in this work also, we used singular value decomposition routine 

DGESVD to invert matrices in the inversion process, which is publicly available in 

packages of LAPACK from the Intel Math Kernel FORTRAN library.  

 

Problems during Process runs and Finding their Solutions: 

 

There appeared few problems while running the inverse program to get the final results 

which were addressed by using several intermediate steps and writing several subsidiary 

programs to check the consistency of the values. Some of the works included: 

 

In the 2x25/ routines directory, the program ‘inverse_SK.F’ was investigated and modified 

to include correct allocations required to work for the current version, modified input and 

output paths and filenames, added lines of codes to check different intermediate values 

within the main program and different subroutines. After inverse_SK.F was run, got some 

error messages such as SVD error and got NaN values for noise, Deviations in upper and 

lower truncate boundary values, Covariance ‘C_new’ as NaN, there were larger than 

expected number of interval constraint violations. To fix these issues, I checked with the 

values of matrices multiplications and transposes in different intermediate steps. With 
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interval constraint set to false, ran the program, there were no  NaN values, but with the 

constraint set as on, the problems appeared. So, I checked with the codes for subroutines 

‘truncate_u’ and ‘truncate_l’ and calculated manually the covariance ‘Cii’ for truncated 

probability density function (pdf) enclosed with upper and lower bound variables, found 

error in the codes of calculation of phi, written previously in earlier version. Then I 

modified the codes accordingly and added codes to print out the variances, the NaN issue 

was solved, but then next got C_new value as negative larger than -0.1, checked with 

C_new values with interval constraint on and off. To solve for this issue, checked with 

H.bin files, I wrote the program ‘Plot_H.pro’ to plot the values and compare between H.bin 

files with the response functions for both 2⁰ × 2.5⁰ and 4⁰ × 5⁰ versions, which varied more 

than expected. Then checked with the response function GEOS-Chem source codes, in 

global_CH4_mod.F, added print statements at different intermediate steps to check 

whether CH4 emissions for all different sources at each site for first month is 1Tg/year or 

not, checked with ‘CH4_emis’ and ‘inv_factor’ values. I wrote another program 

‘compare_INVERSION_bpch_timeseries.pro’ to compare the bpch files plotting 

INVERSION.bpch timeseries of 7 months for both 2⁰ × 2.5⁰ and 4⁰ × 5⁰ versions. The 

plots for 4⁰ × 5⁰ version did not look good, problem was with the restart file, ran the codes 

with corrections, made all new bpch files, printed out ‘CH4_Tot’ minimum and maximum 

values and ‘CH4_emis’ values and compared the numeric values and the units for those 

same parameters for 2⁰ × 2.5⁰ version. Then also to check the CH4 loss for both versions, 

I wrote another program ‘Total_CH4_Inversion_bpch.pro’ and compared the values of 

total CH4, CH4 mixing ratio for each source and some other variables. Next in response 
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source code of ‘global_CH4_mod.F’, I checked with values of CH4 decay, CH4_loss, loss 

rate, CH4_strat, AD19 and temporal scaling of soil absorption, where found array error 

which was solved by changing TYPE to INTEGER from REAL8. Then turning 

CH4_DECAY off, checked the CH4 mass for each tracer without CH4 loss due to OH, also 

checked values of different parameters with turning CH4_DECAY on, found average 

tropospheric temperature too high in the routine CH4_AVGTP. The comparison plots for  

Inversion.bpch files for both versions did not look correct. Next, I re-ran all response_adj 

functions after GEOS-Chem run, found NaN value in ‘CHECK_STT (82, 4, 1, 13). Then, 

after doing some more investigations, made some changes such as in 

‘input.geos.inversion.4’, excluded δ13C-CH4 and CH4-D from ‘Tracer Menu’ for making 

H_adj.bin files, set ‘false’ for ‘make new restart file’, ran the model and created new ‘geos’ 

executable. Similar changes were made for H_adjIso.bin files but included the isotopic 

tracers in ‘Tracer Menu’, checked ‘global_CH4_mod.F’ to include KIE values and KRate-

13, ‘Time for Decay’ was made sure to set ‘True’ for later months, but ‘False’ for first 

month, ran the model and created new separate ‘geos’ executable. In both Response_adj.F 

and Response_adjIso.F, array sizes were modified as required for 2⁰ × 2.5⁰ version and 

also Filename is opened outside of Read_bpch3 subroutine to reduce runtime, ran the codes 

and checked with the plots, still plots did not look correct. After conversations with Prof. 

Butenhoff, he checked with the codes and created ‘geos executable for Response_adjIso 

codes, T_avg values looked good within 300 loops, he mentioned not to use DEBUG 

option during GEOS-Chem run which was causing problems by turning off all the 

optimizations within the codes. Then, all the reference runs, standard response functions, 
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adjusted response functions were run with all above mentioned corrections. In GEOS-

Chem source code directory, the codes for ‘global_CH4_mod.F’ were checked, in 

subroutine CH4-DISTRIB (PREVCH4), isotope tracers were included, the model was run 

and created Response_AdjIso_197901-201701.bpch file. Then, I wrote another program 

named ‘Total_CH4_ResponseAdjIso_bpch_SK.pro’ and plotted the decay of emission of 

1 Tg of total CH4 mass over the entire model run time of the adjusted response function 

bpch file for isotopes. The plots looked consistent on the decay of methane mass with 

increasing months, starting at 0.8 Tg for CH4_tot and 0.08 Tg for 10 different tracers. After 

compiling and running ‘Response_adjIso.F’, H_adjIso2_Strat.bin was created, and finally 

checked the comparison plots of the binary files of both versions with ‘Plot_H_adjIso.pro’ 

which looked consistent for all tracers. Similarly, checked the comparison plots of H.bin 

and H_adj.bin files of both versions with ‘Plot_H.pro’ and ‘Plot_H_adj.pro’ respectively, 

which also looked consistent for all tracers.  

 

Finally, in 2x25/ routines directory, checked the codes of ‘inverse_SK.F’, updated and 

modified as required to work with current version, compiled, ‘inverse_SK’ executable was 

run and created output file with optimized methane emissions from 01/1983 to 12/2015, 

named as ‘output_SK.txt’ in 2x25/ data/ inverse_output directory. Next, in 2x25/ IDL 

directory, checked the codes of ‘inversion_read.pro’, updated and modified as required, 

compiled and ran the program. This program read in the output text file and converted it to 

save file, thus, created ‘S1_SK.save’ file in 2x25/ data/ results_SK directory, containing 

the final results of the base inversion. 
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Next, program ‘compare_all_records_SK.pro’ was used to create all ‘.eps’ files which 

plotted the NOAA observation data, a priori emissions and inversion run records of 

optimized a posteriori emissions for all 105 CH4 measurement sites and 21 isotopic 

measurement sites. Next ‘anomalies_eps_S1_SK.pro’ was used to create 

‘Anomalies_S1.eps’ file which showed the plots of anomalies in a priori and a posteriori 

CH4 emissions for standard base inversion and ‘anomalies_fancy.pro’ was used to create 

the plots of anomalies in a priori and a posteriori CH4 emissions for all different sources 

combined in categories as ‘fossil fuels’, ‘Wetlands’, ‘Biomass Burning’, ‘Biogenic’, 

‘Anthro Biogenic’ and ‘Total’. Next, ‘Avg_Seasonal_cycle_eps.pro’ program was used to 

create ‘avg_seasonal_cycle.eps’ file which plotted the a priori and a posteriori seasonal 

average CH4 emissions from seasonally variable sources and also total CH4 emission 

varying seasonally for all years. 

 

4.4. Sensitivity Tests 

 

Sensitivity tests are considered as important tool used to investigate the size of the 

systematic or external errors introduced by biases in the inversion settings and CTM. 

Calculation of the posterior covariance matrix characterizes errors caused by the 

uncertainties in the priors and observations which are referred as internal errors by Peylin 

et al. (2002), since they were calculated with inversion process. Sensitivity tests were 

conducted by repeating the base inversion process several times with one setting being 

altered within a reasonable range each time. The range of these results from this ensemble 
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of inversion scenarios quantify the systematic or external errors caused by different tested 

settings. Throughout the base inversion process, the observational network density and 

consequently network geometry changed with the inhomogeneous data records present in 

the NOAA raw data measurements which may cause bias in the inferred fluxes. In this 

work, sensitivity tests were conducted to assess the impact of this discontinuity of data 

coverage over the entire length of the time period of inversion for particular set of sites on 

the flux trends. Seven different tests were performed where observational network density 

was varied based on the number of years of continuous availability of data. In each test, a 

homogeneous network i.e., network of observation sites with continuous data coverage, 

was created for inversion by removing a particular set of sites having data for less than 

certain number of years each time, such as omitting sites having data less than 3 years, 5 

years, 10 years, 15 years, 20 years, 25 years and 30 years respectively as mentioned below 

in Table 4.2. Thus, the final sensitivity test was performed with homogeneous network 

density by restricting the inversion to use only 18 observational sites with continuous data 

coverage spanning from 1983 to 2016. 

 

At first, the text files were created having number and codenames of sites to be omitted. 

Then I created separate version of inverse program named as ‘inverse_SK_reduced.F’, 

included codes for the network density variation process, modified the paths for input and 

output files, compiled the codes and ran the program to create output text file named as 

‘output_SK_S2a.txt’ which included the first scenario of optimized CH4 emissions by 

excluding a certain number of sites having data for less than 3 years. Likewise, updated the 

codes in ‘inverse_SK_reduced.F’ to create other output text files for each scenario. Then, 
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modified the codes in ‘inversion_read.pro’ accordingly, compiled and ran the program each 

time for each separate scenario to create all separate save files. Next, 

‘anomalies_fancy.pro’ was updated to include these save files and create the final plot of 

different sensitivity test scenarios included with the base inversion scenario. The plot 

showed the ensemble range of emission anomalies for different sources separately as well 

as for combined categories over the entire time period. 

 

I included these 7 sensitivity tests based on network density variation in this thesis for 

completion of my master’s degree. However, we need to explore the sensitivity of these 

results to the choices of numerous model parameters in separate inversion set-ups. Thus, 

some more sensitivity tests need to be done to check the robustness of the inversion results. 
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Table 4.2: Sensitivity Tests done by variation in Observational Network Densities based on number of sites 

omitted from inversion with continuous data coverage available for more than above mentioned number of 

years. 

Number of 

Sensitivity 

Tests 

Sensitivity 

Test 

Scenarios 

Continuous Data 

available for more 

than following 

number of years 

Number of 

observation 

sites omitted 

1 S2a 3 5 

2 S2b 5 9 

3 S2c 10 37 

4 S2d 15 50 

5 S2e 20 54 

6 S2f 25 69 

7 S2g 30 87 
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CHAPTER 5 

Results and Discussion
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In this chapter, the main results of the inversion of methane emissions over more than the 

last three decades are presented as in Section 5.1 and an interpretation of the analysis of 

the results is discussed in Section 5.2.  

 

The results include the comparison of modeled a priori and a posteriori concentrations and 

isotopic signatures with observations in Section 5.1.1, and the interannual variability and 

average seasonal variations of the emission estimates discussed in Sections 5.1.2 and 5.1.3 

respectively. In the Discussion section, 2⁰x2.5⁰ and 4⁰x5⁰ grid resolution model-data 

mismatch errors are compared in section 5.2.1, comparison of optimized methane emission 

anomalies from 2⁰ × 2.5⁰ and 4⁰ × 5⁰ horizontal grid resolution inversions until 2008-2009 

are presented in section 5.2.2. Modeled estimates and trends of emissions from all source 

categories are compared with previous studies in Section 5.2.3 and finally, main possible 

reasons of post 2006 rise in global atmospheric methane levels are discussed in section 

5.2.4. 

 

5.1. Results 

 

5.1.1. Model Inversion Results and their Comparison with Observations 

 

The results reveal that the inversion process improved the fit of the model predictions with 

the observed CH4 concentrations and δ13C data at almost all sites as compared to 

predictions made using the prior flux data. The inversion model results for all 105 CH4 and 
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all 21 δ13C−CH4 observational sites sorted from south to north, are shown in Figure 5.1. 

The list of observed mixing ratios (in ppbv), modeled mixing ratios (in ppbv) averaged 

over entire modeled time period 01/1983 to 12/2015 and total uncertainties in observations 

for all 105 NOAA measurement sites with their corresponding site code, location name, 

latitude, longitude and elevation (in meters) is presented in Table 5.1. 

 

The figure depicts the comparison of processed observations (blue) of CH4 concentration 

from NOAA GML ‘event CH4 data file’ and δ13C of CH4 from PSU, UCI, INSTAAR, and 

UW with modeled values at each observational site. Results are shown for emissions 

inventories source estimates scaled uniformly (as explained near the end of Section 4.3) a 

priori in red and for optimized base-case inversion estimates a posteriori in black over the 

modeled period 1984–2015. The blue shaded areas represent the ± 1σ range of the model-

data error described in Section 4.4. The optimized emissions are the results taken from the 

standard base-case inversion. Without scaling the priors, model predictions using the prior 

emissions were biased high by approximately 60 to 70 ppb for all sites. 

 

It is clearly seen from the figure that at most sites the inversion did a good job fitting both 

the long-term trend and seasonal cycle of the measurements. The inversion derived a 

posteriori estimates matched for both magnitude and trend of the observed concentrations 

and isotopic signatures much better than the prior source strengths. There remained few 

small discrepancies which might have been caused by aggregation error and could be 

solved in a higher resolution inversion and by optimizing for more source categories. The 

sites that were not well matched, e.g., South China Sea (SCS; 4⁰N, 105⁰E and SCS; 22⁰N, 
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115⁰E), Shangdianzi, China (SDZ; 40.0⁰N, 117.5⁰E), Lac La Biche, Alberta, Canada (LLB; 

54⁰N, 112.5⁰W), generally had large model-data errors (total uncertainties in Table 5.1) 

compared to other sites, therefore measurements from these sites were not weighted as 

significantly in the inversion. This may be caused in case when the site is close to a source 

region and is not well represented by the coarse model grid leading to errors (discussed in 

chapter 4). As seen in the figure, for some sites, the inversion could not perfectly match 

the seasonal cycle in the CH4 emissions such as model estimates were lower than the 

observations at Southern Great Plains, Oklahoma, USA (SGP; 36⁰N, 97.5⁰W) and model 

estimates were higher than observations at Tae-ahn Peninsula, South Korea (TAP; 36⁰N, 

125⁰E). The δ13C-CH4 measurements were matched remarkably well by the inversion 

except some small overestimates in the higher latitudes of Northern Hemisphere, as seen 

in the figure for Barrow, Alaska (BRW; 71.3⁰N, 156.6⁰W) and Alert, Canada (ALT; 

82.5⁰N, 62.5⁰W) and small underestimates in the Southern Hemisphere, for Baring Head, 

New Zealand (BHD; 41.4⁰S, 174.9⁰E). Rice et al. (2016) noticed Tae-ahn Peninsula site as 

unusual without a summer dip of CH4 in comparison to many other northern mid-latitude 

sites and attributed this to the location of this site within a grid cell with combined influence 

of upwind isotopically depleted emissions from rice agriculture and natural wetlands as 

discussed by Dlugokencky et al. (1993). This site’s influence on the inversion is reduced 

relative to other sites because of the large model-data mismatch error. 
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      Years 
 

 

Figure 5.1: The inversion model results for all 105 CH4 and all 21 δ13C−CH4 observational sites sorted from 

south to north. This depicts the comparison of processed observations (blue) of CH4 concentration from 

NOAA GMD ‘event CH4 data file’ and δ13C of CH4 from PSU, UCI, INSTAAR, and UW with modeled values 

at each observational site. Results are shown for emissions inventories source estimates scaled uniformly a 

priori in red and for optimized base-case inversion estimates a posteriori in black over the modeled period 

1984–2015. The blue shaded areas represent the ± 1σ range of the model-data error. 
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Table 5.1: List of observed mixing ratios (in ppbv), modeled mixing ratios (in ppbv) and total uncertainties in observations for all 105 NOAA measurement 

sites with their corresponding site code, location name, latitude, longitude and elevation (in meters). 

Site Code 
Location 

Name 
Latitude Longitude 

Elevation 

(meters) 

Observed mix 

ratio (ppbv) 

Modeled mix 

ratio (ppbv) 

Total 

Uncertainties 

in 

Observations 

ABP Arembepe, Bahia, Brazil -12.77 -38.17 1.0 1751.43 1720.47 12.0112 

ALT Alert, Nunavut, Canada 82.45 -62.50 185.0 1845.42 1834.29 7.93945 

AMS Amsterdam Island, France -37.79 77.53 55.0 1624.99 1702.71 7.88537 

AMT Argyle, Maine, USA 45.03 -68.68 53.0 1876.51 1855.80 14.8516 

AOC Atlantic Ocean Cruise 0.00 -25.00 10.00 1760.88 1737.82 11.7218 

ASC Ascension Island, UK -7.96 -14.40 85.0 1716.32 1718.09 4.07834 

ASK Assekrem, Algeria 23.26 5.63 2710.0 1813.68 1782.30 6.69782 

AVI St. Croix, Virgin Islands, USA 17.75 -64.75 3.0 1700.80 1776.79 7.90110 

AZR Terceira Island, Azores, Portugal 38.76 -27.37 19.0 1810.43 1810.09 12.0246 
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BAL Baltic Sea, Poland 55.35 17.22 3.0 1881.46 1881.07 30.7385 

BHD Baring Head Station, New Zealand -41.40 174.87 85.0 1748.45 1711.78 12.5436 

BKT Bukit Kototabang, Indonesia -0.20 100.31 845.0 1829.84 1771.78 26.3394 

BMW Tudor Hill, Bermuda, UK 32.26 -64.87 30.0 1822.91 1807.36 17.2039 

BRW 
Barrow Atmospheric Baseline 

Observatory, USA 
71.32 -156.61 11.0 1846.13 1834.65 10.7847 

BSC Black Sea, Constanta, Romania 44.17 28.66 0.0 1940.71 1901.26 34.7971 

CBA Cold Bay, Alaska, USA 55.21 -162.72 21.3 1833.17 1825.63 5.91210 

CGO Cape Grim, Tasmania, Australia -40.68 144.69 94.0 1708.22 1708.52 9.96606 

CHR Christmas Island, Republic of Kiribati 1.70 -157.15 0.0 1732.75 1728.59 8.68016 

CIB 
Centro de Investigacion de la Baja 

Atmosfera (CIBA), Spain 
41.81 -4.93 845.0 1899.48 1818.28 12.4270 

CMO Cape Meares, Oregon, USA 45.47 -123.96 30.0 1776.19 1816.14 16.9944 
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CPT Cape Point, South Africa -34.35 18.48 230.0 1769.02 1706.78 7.00439 

CRZ Crozet Island, France -46.43 51.84 197.0 1728.36 1703.03 6.16016 

DRP Drake Passage -59.00 -64.69 0.0 1745.93 1702.98 9.94414 

DSI Dongsha Island, Taiwan 20.69 116.73 3.0 1871.48 1807.66 33.4112 

EIC Easter Island, Chile -27.16 -109.42 47.0 1734.42 1701.25 4.26751 

GMI Mariana Islands, Guam 13.38 144.65 0.0 1762.84 1759.34 9.43753 

GOZ Dwejra Point, Gozo, Malta 36.04 14.88 1.0 1828.88 1839.86 15.2862 

HBA Halley Station, Antarctica, UK -75.60 -26.21 30.0 1701.72 1702.85 6.27646 

HPB Hohenpeissenberg, Germany 47.80 11.02 936.0 1921.95 1841.27 20.9232 

HUN Hegyhatsal, Hungary 46.95 16.65 248.0 1917.99 1877.71 26.6978 

ICE Storhofdi, Vestmannaeyjar, Iceland 63.40 -20.28 118.0 1857.23 1835.88 6.59746 
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ITN Grifton, North Carolina, USA 35.36 -77.39 8.0 1853.76 1861.69 26.1154 

IZO Izana, Tenerife, Canary Islands, Spain 28.30 -16.49 2372.9 1811.89 1785.58 8.93626 

KCO Kaashidhoo, Republic of Maldives 4.97 73.47 1.0 1772.23 1763.14 24.3575 

KEY Key Biscayne, Florida, USA 25.66 -80.15 1.0 1797.14 1809.69 24.6543 

KPA Kitt Peak, Arizona, USA 32.00 -112.00 2083.0 1700.12 1785.11 29.8287 

KUM Cape Kumukahi, Hawaii, USA 19.56 -154.88 8.0 1780.81 1781.63 8.43999 

KZD Sary Taukum, Kazakhstan 44.08 76.87 595.0 1877.34 1845.29 14.7908 

KZM Plateau Assy, Kazakhstan 43.25 77.88 2519.0 1842.65 1814.51 11.7095 

LEF Park Falls, Wisconsin, USA 45.94 -90.27 472.0 1873.20 1848.62 14.5368 

LLB Lac La Biche, Alberta, Canada 54.95 -112.46 540.0 1941.34 1832.19 57.4941 

LLN Lulin, Taiwan 23.47 120.87 2862.0 1840.94 1797.39 19.6813 
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LMP Lampedusa, Italy 35.51 12.63 45.0 1877.81 1840.90 11.2236 

MBC 
Mould Bay, Northwest Territories, 

Canada 
76.24 -119.35 30.0 1798.84 1835.32 6.02818 

MCM McMurdo Station, Antarctica, USA -77.83 166.60 11.0 1621.32 1702.86 12.1148 

MEX 
High Altitude Global Climate 

Observation Center, Mexico 
18.98 -97.31 4464.0 1830.33 1762.12 9.54460 

MHD Mace Head, County Galway, Ireland 53.32 -9.89 5.0 1847.74 1840.98 17.4193 

MID Sand Island, Midway, USA 28.21 -177.36 4.6 1804.00 1792.95 9.95521 

MKN Mt. Kenya, Kenya -0.06 37.29 3644.0 1786.47 1748.93 13.2518 

NAT Farol De Mae Luiza Lighthouse, Brazil -5.79 -35.18 50.0 1787.03 1725.03 16.4415 

NMB Gobabeb, Namibia -23.58 15.03 456.0 1747.24 1715.60 12.7202 

NWR Niwot Ridge, Colorado, USA 40.05 -105.58 3523.0 1800.67 1790.51 9.80435 

NZL Kaitorete Spit, New Zealand -43.83 172.63 3.0 1599.91 1703.83 2.71497 
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OPW Olympic Peninsula, Washington, USA 48.30 -124.62 486.0 1756.00 1815.30 14.8446 

OXK Ochsenkopf, Germany 50.03 11.80 1022.0 1920.87 1844.49 20.2667 

PAL 
Pallas-Sammaltunturi, GAW Station, 

Finland 
67.97 24.11 565.0 1891.44 1851.53 11.7673 

PAO Pacific- Atlantic Ocean -30.00 -152.5 10.0 1773.53 1703.52 11.7266 

POC Pacific Ocean Cruise (0N) 0.00 -155.0 0.0 1740.65 1725.24 10.6114 

POC Pacific Ocean Cruise (5N) 5.00 -150.0 0.0 1750.17 1739.76 16.4426 

POC Pacific Ocean Cruise (10N) 10.0 -150.0 0.0 1775.36 1758.86 17.6733 

POC Pacific Ocean Cruise (15N) 15.0 -145.0 0.0 1786.79 1778.39 15.5298 

POC Pacific Ocean Cruise (20N) 20.0 -142.0 0.0 1796.90 1788.76 16.9453 

POC Pacific Ocean Cruise (25N) 25.0 -140.0 0.0 1811.38 1796.33 15.4847 

POC Pacific Ocean Cruise (30N) 30.0 -135.0 0.0 1814.66 1801.68 17.7973 
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POC Pacific Ocean Cruise (35N) 35.0 -137.5 0.0 1803.71 1804.73 18.9575 

POC Pacific Ocean Cruise (40N) 40.0 -135.0 0.0 1784.42 1808.76 17.2250 

POC Pacific Ocean Cruise (45N) 45.0 -130.0 0.0 1794.38 1814.56 17.6244 

POC Pacific Ocean Cruise (5S) -5.0 -160.0 0.0 1734.60 1721.92 9.76386 

POC Pacific Ocean Cruise (10S) -10.0 -160.0 0.0 1730.20 1714.58 8.58279 

POC Pacific Ocean Cruise (20S) -20.0 -175.0 0.0 1719.53 1706.68 8.53313 

POC Pacific Ocean Cruise (25S) -25.0 -170.0 0.0 1718.42 1705.06 9.13451 

POC Pacific Ocean Cruise (30S) -30.0 -175.0 0.0 1718.27 1703.99 9.96132 

POC Pacific Ocean Cruise (35S) -35.0 -180.0 0.0 1710.92 1704.44 9.99928 

PSA Palmer Station, Antarctica, USA -64.77 -64.05 10.0 1702.61 1702.72 4.12632 

PTA Point Arena, California, USA 38.95 -123.74 17.0 1846.77 1858.54 18.3974 
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RPB Ragged Point, Barbados 13.16 -59.43 15.0 1786.51 1774.00 6.46079 

SCS South China Sea (3N) 3.00 105.00 15.0 1759.01 1780.28 64.9477 

SCS South China Sea (6N) 6.00 107.00 15.0 1762.18 1769.47 19.5373 

SCS South China Sea (9N) 9.00 109.00 15.0 1763.52 1784.19 23.6392 

SCS South China Sea (12N) 12.00 111.00 15.0 1774.87 1800.70 22.3732 

SCS South China Sea (15N) 15.00 113.00 15.0 1782.42 1800.67 21.6552 

SCS South China Sea (18N) 18.00 113.50 15.0 1788.47 1814.90 30.8362 

SCS South China Sea (21N) 21.00 114.00 15.0 1802.67 1872.42 65.3227 

SDZ Shangdianzi, China 40.65 117.11 293.0 1951.58 1931.28 58.7823 

SEY Mahe Island, Seychelles -4.68 55.53 2.0 1729.37 1729.56 14.4184 

SGI Bird Island, South Georgia, UK -54.00 -38.05 30.0 1670.02 1703.68 12.7959 
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SGP 
Southern Great Plains, Oklahoma, 

USA 
36.60 -97.48 314.0 1933.73 1834.79 34.6426 

SHM Shemya Island, Alaska, USA 52.71 174.12 23.0 1841.96 1827.55 7.39247 

SMO Tutuila, American Samoa -14.24 -170.56 42.0 1709.85 1710.54 4.92672 

SPO South Pole, Antarctica, USA -89.98 -24.80 2810.0 1702.17 1703.40 3.37086 

STM Ocean Station M, Norway 66.00 2.00 0.0 1820.66 1844.51 7.58497 

SUM Summit, Greenland 72.59 -38.42 3209.5 1856.38 1818.26 4.53202 

SYO Syowa Station, Antarctica, Japan -69.01 39.59 14.0 1714.07 1702.83 9.30828 

TAP Tae-ahn Peninsula, Republic of Korea 36.73 126.13 16.0 1888.73 1893.78 34.2578 

THD Trinidad Head, California, USA 41.05 -124.15 107.0 1862.27 1813.01 8.06771 

TIK 
Hydrometeorological Observatory of 

Tiksi, Russia 
71.59 128.88 19.0 1926.85 1832.29 10.6897 

USH Ushuaia, Argentina -54.84 -68.31 12.0 1735.57 1704.57 8.45644 
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UTA Wendover, Utah, USA 39.90 -113.71 1327.0 1836.51 1798.60 11.1868 

UUM Ulaan Uul, Mongolia 44.45 111.09 1007.0 1858.06 1836.76 11.5237 

WIS 
Weizmann Institute of Science at the 

Arava Institute, Ketura, Israel 
29.96 35.06 151.0 1867.06 1822.09 16.4558 

WKT Moody, Texas, USA 31.31 -97.32 251.0 1887.73 1822.91 39.2672 

WLG 
Mt. Waliguan, Peoples Republic of 

China 
36.28 100.89 3810.0 1834.60 1806.19 11.5788 

WPC Western Pacific Cruise (30S) -30.0 167.5 0.00 1758.33 1704.41 19.2124 

ZEP 
Ny-Alesund, Svalbard, Norway and 

Sweden 
78.90 11.88 474.0 1866.15 1842.69 6.55654 

Montana de 

Oro 
Montana de Oro, California, USA 35.3 -120.9 281.0 1839.20 1834.26 26.4605 
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5.1.2. Interannual Variability in CH4 Emissions from Different Sources 

For all 10 basic source categories namely gas and oil, coal, livestock, waste, biomass 

burning from C3 vegetation and C4 vegetation, rice and wetlands (90N-30N, 30N-0 and 0-

90S), the interannual changes of the optimized methane emissions for time period of 

01/1983 to 12/2015 are shown in Figure 5.2.  
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   Years 

Figure 5.2: Deseasonalized CH4 emission anomalies from 10 separate source categories. Black lines 

indicate the base inversion results. Red lines indicate anomalies in the prior emissions. Shaded colored areas 

represent the variations in the inversion scenarios using different observational network densities. Note: 

2007 onwards recent upward trends are observed in the Wetlands (0-90S) emissions, Livestock and Wastes; 

and downward trends in Biomass Burning, Wetlands (30-0N) and Rice agriculture categories.  

The interannual changes in optimized emissions from aggregated source categories for 
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fossil fuel, wetlands, biomass burning, biogenic, anthro-biogenic and total emissions for 

time period of 01/1983 to 12/2015 are depicted in Figure 5.3.  
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Figure 5.3: Deseasonalized CH4 emission anomalies from aggregated fossil fuels, biomass burning, 

wetlands,  biogenic (including wetlands), anthro-biogenic (rice, livestock and waste) and total emissions. 

Black lines indicate the standard inversion results. Red lines indicate anomalies in the prior emissions. 

Shaded colored areas represent the variation in the observational network density of the inversion scenarios. 

Note: 2007 onwards, recent upward trends in the total methane emissions are dominated by increase in all 

biogenic emissions both from natural and anthropogenic sources. 
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The shaded areas in the plots illustrate the robustness of the anomalies across the sensitivity 

tests. The anomalies are calculated by subtracting the long-term means over the full time 

period of simulation from the deseasonalized i.e., 12 months running mean estimates of the 

emissions. As already mentioned in Section 4.2 that the prior emissions from wetlands used 

a six-year cycle with the limited amount of meteorological data, however, the figures 

demonstrate that this behavior does not seem to influence the final estimates, with the 

inversion results mostly driven by the observations and almost independent of the a priori 

values. 

As seen in Figure 5.2, the results from the inversion analysis indicate that the emission rate 

of all anthropogenic sources (biomass burning not included) increased over the entire study 

period with significant rise of emissions from fugitive fossil fuel i.e., gas and oil until 2001 

and again 2010 onwards and coal until 2006 and again 2011 onwards, ruminant livestock 

from 2000 to 2010 and waste management emissions from 1994 onwards. In Figure 5.3 the 

time-dependent relative contributions of aggregated categories to the total deseasonalized 

emission anomalies are shown. In Figure 5.3, category ‘Fossil’ contains the combined 

emission anomalies from sources ‘gas and oil’ and ‘coal’; category ‘Wetlands’ contains 

the same from sources ‘Wetlands (90N-30N, 30N-0, 0-90S)’; category ‘Biomass Burning’ 

contains the same from ‘Biomass Burning C3 and C4’ sources; category ‘Biogenic’ 

contains the same from sources ‘Livestock’, ‘Waste’, ‘Rice’ and all three zones of 

‘Wetlands’; category ‘Anthro Biogenic’ contains the same from sources ‘Livestock’, 

‘Waste’ and ‘Rice’; and category ‘Total’ contains the same from all sources. It can be 

inferred from Figures 5.2 and 5.3 that the wetlands are the largest contributor to the inter-
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annual variability and growth rate of methane emissions over the inversion time period 

because of the similarities found on the phase patterns of the plots of aggregated wetland, 

all biogenic, and total emissions. Within this variability, the wetland source emissions had 

increased during 1984–2000, but the following decade 2000–2010 experienced a 

significant decrease in emissions from wetland sources (30-0N, 0-90S) and during this 

current decade after 2011 onwards, again an increase is found in wetland CH4 emissions 

from all three zones. The wetland emissions appeared to be the primary cause of 1991-

1993 anomaly in the total aggregated category of emissions, large biomass burning 

emission in 1997 also with elevated wetland emissions in 1998 may have contributed to 

the 1997-1998 anomaly in the total emission category. Although highly variable, rice 

emissions decrease significantly over the entire modeled period 1984–2015. The biomass-

burning emissions show smaller contribution toward interannual variability except the 

large emission during the 1997–1998 anomaly. However, a negative emission trend is 

found from biomass burning over most of the period 1991–2005 and during current decade, 

a little rise can be detected in the figures. However, the derived anomalies from all source 

categories are noted to depend on the assumption of constant OH. Overall increases in 

biomass burning, wetland emissions, biogenic emissions due to rising livestock and waste 

emissions, and the enhanced emissions from fossil fuels cause total methane emissions to 

rise markedly after 2005. 

 

5.1.3. Results of Sensitivity Tests 

 

In this work, sensitivity tests were conducted to assess the impact of discontinuity in the 
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data coverage over the entire time of inversion for different observation sites on the 

methane flux trends. Seven different sensitivity tests were performed where the number of 

observational sites was varied based on the number of years with continuous availability 

of data. The sensitivity test inversion scenarios for all of the source categories maintained 

same trends of methane emissions throughout the study period as base case inversion 

scenarios discussed above but, in some cases, with significantly wider range in the mean 

values of the emissions. It can be observed from Figure 5.3 that aggregated fossil fuels and 

anthro-biogenic sources and from Figure 5.2 that sources of gas and oil, coal, livestock and 

wastes categories are more sensitive to the variation of network densities of observation 

sites with continuous data coverage. Combined fossil fuel (Figure 5.3) and gas and oil 

(Figure 5.2) showed significantly higher range in the mean values of the emission 

anomalies from 2005 onwards, while coal (Figure 5.2) emissions had higher values from 

2010 onwards. The methane emissions from sensitivity tests for livestock showed 

significantly wider range in the mean values with ensemble spread much higher than the 

mean anomaly trendline from beginning of study period until 2000 and much lower from 

2000 until the end of the study period, whereas wastes emissions showed contrasting 

ensemble spread of much lower than the anomaly mean trendline from start year until 2000 

and much higher from 2000 to end year (Figure 5.2). The sensitivity tests for rice showed 

significantly wider range in the mean values of the emissions during few time spans such 

as 1988-1989, 1992-1993, 1994-1996, 2005-2006, 2009-2011 and 2013-2014 (Figure 5.2). 

The sensitivity test emissions from livestock, landfilled wastes and rice cultivation 

aggregated together as anthro-biogenic category showed significantly wider range in the 

mean values of the emissions with higher ensemble spread from the beginning of the study 
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period until 2000 and then trending lower ensemble spread from 2000 until the end of the 

study period (Figure 5.3). Significant wider range in the mean values of the emissions were 

also observed for combined Wetlands since start year until 1994 and then again since 2004 

onwards until end year (Figure 5.3) and also for different geographically separated wetland 

regions (Figure 5.2) such as throughout the study period for Wetlands (30⁰N-0⁰) and since 

2009 onwards for Wetlands (0⁰-90⁰S). Lastly, the sensitivity test scenarios for biomass 

burning showed significant wider range in the mean values of the emissions after 2010 as 

seen in total biomass-burning (Figure 5.3) and biomass-burning from C3 vegetation 

(Figure 5.2).  

 

5.1.4. Global Methane Emission estimates per source category 

 

The inversion modeled estimates of emissions from ten different source categories and 

aggregated categories averaged over the entire time period of 01/1983 to 12/2015 are 

presented in Table 5.2. The a priori and a posteriori emission estimates in Tg/Year are 

obtained from the base standard inversion with errors on optimized estimates from the 

calculated standard deviations and isotopic signatures are presented in per mil for all source 

categories. The ensemble spread shows the range of minimum and maximum estimates of 

emissions in Tg/Year obtained from the results of different sensitivity inversions with 

extrema sensitivity test scenarios presented in parenthesis.  

 

The results of this work reveal that the total averaged global methane emission over years 

of 1983 to 2015 is estimated to be 530±50 Tg/year. The global methane emissions over 
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these years from all biogenic sources of both natural and anthropogenic origin account for 

~73% of the total global CH4 emissions. Anthro-biogenic sources contribute about 39% of 

the total CH4 emissions, whereas natural wetlands contribute about 34.5% of the total CH4 

emissions. Moreover, emissions from combined natural wetlands account for ~47% of the 

total all-biogenic emissions, whereas emissions from anthro-biogenic sources account for 

~53% of the total all-biogenic emissions. The emissions from livestock accounts for ~37%, 

wastes accounts for ~30% and rice accounts for ~33% of the total anthro-biogenic 

emissions. Further, the relative contribution of combined natural wetlands can be attributed 

to the partitioned contributions of emissions from wetlands (90N-30N) of ~22%, from 

wetlands (30N-0) of ~46% and from wetlands (0-90S) of ~32% of the total emissions from 

combined wetlands. Fossil fuels sector contributes about 18.5% of the total global CH4 

emissions, within which ~60% of the contribution is accounted from gas and oil sources 

and ~40% from coal mining. Biomass burning contributes about 8.3% of the total global 

CH4 emissions. However, biomass burning of C3 vegetation contributes ~64% and of C4 

vegetation contributes ~34% of the total biomass burning emissions.  
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Table 5.2: Modeled Global Methane budget and isotopic signatures averaged over time period of 01/1983 to 

12/2015 with a priori and a posteriori emission estimates by source category. The a priori and a posteriori 

values are obtained from the base standard inversion with errors on optimized estimates from the calculated 

standard deviations. The ensemble spread shows the range of minimum and maximum estimates of emissions 

obtained from the results of different sensitivity inversions with extrema sensitivity test scenarios (as in Table 

4.2) presented in parenthesis. 

  

Source 

Category 

a prioiri 

(Tg/year) 

a posteriori 

(Tg/year) 

δ13C-CH4 

(‰) 

Ensemble Spread (Tg/year) 

Min Max 

Fossil Fuels 98±38 98±5  95±6 (S2d) 103±7 (S2g) 

Gas and Oil 
57±31 

 

59±4 

 
-44.00 56±4 (S2e) 63±6 (S2g) 

Coal 
41±23 

 

39±4 

 
-37.30 

39±4 (S2a) 

 
41±4 (S2f) 

Anthro-

Biogenic 
207±82 205±23  194±24 (S2f) 207±24 (S2d) 

Livestock 
104±56 

 

75±6 

 
-62.00 62±5 (S2f) 76±5 (S2a) 

Waste and 

Termites 

66±36 

 

62±7 

 
-55.30 62±7 (S2a) 72±7 (S2d) 

Rice 37±48 
67±22 

 
-63.00 59±24 (S2g) 70±22 (S2e) 

Biomass 

Burning 
32±30 44±17  40±18 (S2g) 44±17 (S2b) 

Biomass 

Burning C3 
23±29 

28±16 

 
-26.50 24±17 (S2g) 29±17 (S2b) 

Biomass 

Burning C4 
9±10 

15±9 

 
-7.40 15±9 (S2f) 15±9 (S2b) 

Wetlands 160±112 183±46  183±46 (S2a) 194±47 (S2f) 

Wetlands 

(90N-30N) 
27±41 40±9 -63.40 39±11 (S2d) 42±12 (S2f) 

Wetlands 

(30N-0) 
53±57 84±35 -58.00 83±35 (S2c) 90±36 (S2f) 

Wetlands 

(0-90S) 
81±87 58±33 -58.00 58±34 (S2g) 62±33 (S2f) 

All 

Biogenic 
368±139 388±51  387±55 (S2g) 391±52 (S2d) 

Total 498±148 530±50  529±52 (S2f) 530±50 (S2b) 
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5.1.5. Global Methane Budget for over Three Decades 

 

The global budget of methane emissions from different source categories for over three 

decades is presented in Table 5.3. The modeled methane emission estimates per source 

category in Tg/year are averaged over entire time period of 01/1983 to 12/2015, then 

separately averaged over time period of 01/1983 to 12/1993, next over time period of 

01/1994 to 12/2005 and then over decade of 01/2006 to 12/2015. For the last decade, the 

global budget of methane emissions per source category are also obtained separately 

averaged over years of 01/2006 to 12/2010 and of 01/2011 to 12/2015. The emission 

estimates in Tg/year are obtained from base standard inversion case with errors obtained 

from the calculated standard deviations. The results in this table reveal the changes in the 

contribution of methane emissions from each source category in decadal scale. The source 

attributions for over three separate decades help us in better understanding the causes 

behind the long-term slowdown of methane growth rate during 1990s to early 2000s,  as 

well as the sudden increase in methane growth rate after 2006 onwards. The total averaged 

global methane emission in the decade of 2006-2015 is estimated to be 543±44 Tg/year 

which is ~20 Tg/year more than that during previous decade, during 2006-2010 it is 

estimated to be 539±44 Tg/year, whereas during 2011-2015, the estimated emission 

reached 547±45 Tg/year. The averaged emission estimate of all biogenic sources (both 

natural and anthropogenic) shows an increase of about ~25 Tg/year during 2006-2015 than 

that during 1994-2005, whereas the anthro-biogenic sources show highest increase in 

averaged emission estimate of about ~43 Tg/year during 2006-2015 than that during 1994-

2005.  
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Table 5.3: Global budget of methane emissions per source category for over entire time period (01/1983-

12/2015), over three separate decades (01/1983-12/1993, 01/1994-12/2005, 01/2006-12/2015) and then over 

separate time periods of 01/2006-12/2010 and 01/2011-12/2015. The averaged emission estimates in Tg/year 

are obtained from base standard inversion with errors obtained from the calculated standard deviations.  

Source 

Category 

Emission Estimates (Tg/year) 

01/1983-

12/2015 

01/1983-

12/1993 

01/1994-

12/2005 

01/2006-

12/2015 

01/2006-

12/2010 

01/2011-

12/2015 

Fossil 

Fuels 
98±5 92±6 104±5 96±5 99±5 93±5 

Gas and 

Oil 

59±4 
53±5 66±3 56±3 53±3 60±4 

Coal 
39±4 

39±4 38±3 40±4 46±4 34±3 

Anthro-

Biogenic 
205±23 203±29 187±19 230±20 225±19 234±20 

Livestock 
75±6 

73±7 63±5 94±5 95±6 94±5 

Waste and 

Termites 

62±7 
49±7 60±6 78±7 71±7 84±7 

Rice 
67±22 

80±28 63±18 58±19 59±18 57±19 

Biomass 

Burning 
44±17 50±21 40±16 42±14 40±13 45±14 

Biomass 

Burning 

C3 

28±16 
34±20 26±15 27±13 24±13 30±13 

Biomass 

Burning 

C4 

15±9 
16±10 15±8 15±6 16±6 15±6 

Wetlands 183±46 180±53 192±42 174±41 174±41 175±41 

Wetlands 

(90N-30N) 
40±9 36±11 40±8 43±8 43±7 44±8 

Wetlands 

(30N-0) 
84±35 81±41 95±32 75±31 78±32 72±30 

Wetlands 

(0-90S) 
58±33 63±38 58±30 56±28 54±28 59±29 

All 

Biogenic 
388±51 383±61 379±46 404±46 400±45 409±46 

Total 530±50 525±60 523±45 543±44 539±44 547±45 
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It can be observed in the table that mainly the source categories of coal, livestock, wastes, 

biomass burning of C3 vegetation and northern high latitude wetlands show increase in 

their averaged emission estimates of ~2 Tg/year, ~31 Tg/year, ~18 Tg/year, ~1 Tg/year 

and ~3 Tg/year respectively, during the decade of 2006-2015 than that during previous 

decade. Some changes in the contribution from different source categories have been 

observed in the table when we consider last decade been divided in separate time periods 

each spanning for 5 years. For fossil fuel sector, averaged emission estimate from source 

of gas and oil increases by ~7 Tg/year during 2011-2015 than during 2006-2010, whereas 

estimate from coal mining decreases by ~12 Tg/year. For anthro-biogenic sector, averaged 

emission estimate from livestock decreases by ~1 Tg/year, rice decreases by ~2 Tg/year 

whereas, estimate from waste increases by ~13 Tg/year during 2011-2015 than during 

2006-2010. For biomass burning sector, averaged CH4 emission estimate from burning of 

C3 vegetation increases by ~6 Tg/year, whereas that of C4 vegetation decreases by ~1 

Tg/year during 2011-2015 than during previous 5 years. For source of natural wetlands, 

averaged emission estimate from wetlands (90N-30N) increases by ~1 Tg/year, from 

wetlands (0-90S) increases by ~5 Tg/year, whereas from northern tropical wetlands 

decreases by ~6 Tg/year during 2011-2015 than during 2006-2010. For aggregated 

categories, the increase in averaged emission estimates during 2011-2015 compared to that 

during previous 5 years, are mainly from sources of all biogenic (~9 Tg/year), anthro-

biogenic (~9 Tg/year), natural wetlands (~1 Tg/year) and biomass burning (~5 Tg/year), 

whereas fossil fuel source shows a decrease of ~6 Tg/year during the same time period. 
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5.1.6. Average Seasonal Cycle 

 

The average seasonal cycles of the seasonally varying sources such as rice cultivation, 

biomass burning from C3 and C4 vegetation, wetlands (90N-30N, 30N-0, 0-90S) and total 

aggregated sources are shown in Figure 5.4. The seasonality of these sources can be 

explained better with consideration of weather patterns existed worldwide, as compared to 

the a priori emissions,  depicting that the model simulated a posteriori emissions are overall 

best representation of the withheld observational data. The optimized emissions show 

larger peaks for sources of rice cultivation, boreal wetlands and Southern Hemispheric 

wetlands in comparison to the priors. However, the error bars indicate substantial year-to-

year variability. It can be noted that the a priori total emissions peak in August whereas a 

posteriori total emissions peak in July and September, driven by combined effects of 

emissions from boreal wetlands, rice cultivation and biomass burning of C3 vegetation. A 

smaller maximum in April is displayed in the a posteriori total emissions, corresponded to 

the driving effect of emissions from Southern Hemispheric wetlands. In contrast to priors, 

Wetlands (30-0N) a posteriori emissions showed two peaks in April and November 

following the highest rainfall seasons in the tropics during March and September due to 

interaction between Inter Tropical Convergence Zone (ITCZ) and Monsoons. Our result is 

consistent with a study by Nisbet et al. (2016) mentioning that wetlands in northern tropics 

get flooded from runoff in the late rainy season from August-September onwards and later 

in river-fed swamps. Wetlands (90N-30N) a posteriori emissions corresponded with priors 

showing larger peak in July consistent with report by Nisbet et al. (2016) that isotopically 

depleted methane emissions occurring from Arctic and boreal wetlands increased during 
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late summer (Fisher et al., 2011; Sriskantharajah et al., 2012). Wetlands (0-90S) emissions 

peaked during March-April just after hot and humid seasons in Southern Hemisphere such 

as Australia, and Southern Amazon basin. This result is consistent with the fact that 

wetlands in southern tropics fill up during February-March onward (Nisbet et al., 2016). It 

also displayed two more secondary smaller peaks during September and November mainly 

driven by north-south migration of tropical rains occurring in Australia, in the Amazon 

basin of northern South America, West Africa, Mexico and the U.S. Southwest. In Figure 

5.4, tropical seasonal wetland emissions occurring few months later (October-November), 

are observed to be distinguishable from dry season biomass burning emissions (August-

September) from same general regions around equatorial belt and tropics which is also 

mentioned by Nisbet et al. (2016). Methane emitted from fires in tropical C4 grasslands 

with δ13C-CH4 values around -20‰ to -10‰ occur in Northern Hemisphere during winter 

(November–February) and in Southern Hemisphere during winter (May–August) 

(unpublished RHUL results, Dlugokencky et al., 2011 and Nisbet et al., 2016). Similar 

conclusions can be drawn from our result in Figure 5.4 that biomass burning emissions 

from C4 vegetation maximized during December-January and from C3 vegetation showed 

a small peak in June and a larger peak in September. The contribution of biomass-burning 

emissions toward interannual variability is minor except during the 1997–1998 anomaly 

and has little impact on meridional distribution of methane (Rice et al., 2016) which is 

consistent in Figure 5.4. The a posteriori methane emission from rice cultivation in the 

figure is observed to drastically increase from May onwards but with longer time period 

spanning until November with larger amplitude than priors maximizing in August which 

corresponds to the highest rainfall monsoonal season in the tropics. This result is also 
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supported by Nisbet et al. (2016) mentioning emissions from rice agriculture and fodder 

growth for ruminants respond to high rainfall, but the impact of year-to-year fluctuations 

in recent years had been smoothed out due to widespread water storage and improved 

irrigation facilities in the seasonal tropics. 

Months  

 
Figure 5.4: Average seasonal cycles of the inversion modeled emission estimates of seasonally varying 

sources. The time series of the estimates were detrended by subtracting 12-month running means and then 

separately averaged for every month of the year. The red line indicates a priori emissions. The black line 

represents the a posteriori emissions from standard base inversion with error bars indicating the standard 

deviation of the detrended estimates. 
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5.2. Discussion 

 

5.2.1. Comparison of Model-Data Mismatch Errors Between 2⁰ × 2.5⁰ and 4⁰ 

× 5⁰ Horizontal Grid Resolution 

 

Optimized emissions are sensitive to model-data mismatch errors (described in Section 

4.4) as seen in the upper left plot of Figure 5.5. In this plot, the optimized C3 vegetation 

biomass burning emissions from 4⁰ × 5⁰ horizontal grid resolution base inversion 

(represented in black) are compared to the emissions from an inversion with reduced 

model-data mismatch errors (represented in green). The large anomaly in emission during 

1997-1998 is significantly smaller for green line which shows the sensitivity of optimized 

emissions to reducing model-data mismatch errors. One of the motivations to do the current 

inversion process in higher resolution is to reduce the model-data mismatch errors and 

increase the weight of the information from the observations. The inversion work presented 

here based on a horizontal 2⁰ × 2.5⁰ grid resolution was conducted in part to reduce model 

data mismatch errors. The comparison of the model-data mismatch errors from all sites 

between 2⁰ × 2.5⁰ and 4⁰ × 5⁰ horizontal grid resolution are shown in upper right plot of 

Figure 5.5. In this plot, each red dot represents the ratio of model-data mismatch error (in 

ppbv) from each of the measurement sites for 2⁰ × 2.5⁰ horizontal grid resolution to that 

for 4⁰ × 5⁰ horizontal grid resolution. It is noted that 2⁰ × 2.5⁰ grid reduces error 

significantly relative to 4⁰ × 5⁰ grid, since almost all of these red dots lie below the 45⁰ 

black line. Horizontal grid resolution of 2⁰ × 2.5⁰ is also preferred as it increases 

information content of observations since model is better able to simulate mixing ratios at 
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monitoring sites (red dots represent NOAA measurement sites) as shown in bottom panels 

of Figure 5.5. The background maps in these two bottom plots show the same region of 

south-east Asia and the colors indicate the range of total methane mixing ratio (in ppbv) as 

simulated by GEOS-Chem model in two different grid resolutions based on the same 

observations on November 1997 at surface level L=1. This higher resolution grid allowed 

us to extract more information from the observations due to improved ability of the model 

to simulate CH4 at each station and decreased need to aggregate neighboring stations, 

leading to more accurate estimates of the retrieved fluxes and improved understanding of 

the driving sources underlying the current variations in the global methane budget.  
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Figure 5.5: Optimized emissions are sensitive to model-data mismatch errors (upper left). 2⁰ × 2.5⁰ grid 

reduces error significantly relative to 4⁰ × 5⁰ (upper right) where each red dot represents the ratio of model-

data mismatch error (in ppbv) from each of the measurement sites for 2⁰ × 2.5⁰ horizontal grid resolution to 

that for 4⁰ × 5⁰ horizontal grid resolution. 2⁰ × 2.5⁰ grid resolution increases information content of 

observations since model is better able to simulate mixing ratios at monitoring sites (bottom panels, red dots 

are NOAA measurement sites). The background maps in these two bottom plots show the same region of 

south-east Asia and the colors indicate the range of total methane mixing ratio (in ppbv) as simulated by 

GEOS-Chem model in two different grid resolutions based on the same  observations on November 1997 at 

surface level L=1. (Reference: Karmakar et al., 2015 at AGU Fall Meeting, 2015, San Francisco CA, 14-18 

December 2015, https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/85278).  

 

 

2°x2.5° 

Optimized C3 biomass burning 

emissions 

Black= base 4⁰x5⁰ inversion 

Red= priors 

Green= 4x5° inversion with reduced model-

data mismatch errors 

4°x5° 
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5.2.2. Comparison of Optimized Methane Emission Anomalies from 

Inversions at 2⁰ × 2.5⁰ and 4⁰ × 5⁰ Horizontal Grid Resolution 

 

One of the main goals of this study was to test how the results of optimized methane 

emissions would change when using the raw measurement data of CH4 from NOAA event 

files in the process of inversion at a higher horizontal grid resolution of 2⁰ × 2.5⁰ rather 

than using much processed GLOBALVIEW data of CH4 at a coarser horizontal grid 

resolution of 4⁰ × 5⁰. The comparison between the results of optimized methane emissions 

from this current inversion work (2⁰ × 2.5⁰) and previously done inversion work (4⁰ × 5⁰) 

up through the end of 2008 is presented in this section. Deseasonalized methane emission 

anomalies of all 10 source categories from 4⁰ × 5⁰ inversion work are shown (upper) and 

same from 2⁰ × 2.5⁰ inversion work are shown (lower) in Figure 5.6. Deseasonalized 

methane emission anomalies of aggregated source categories from both inversion works 

are shown in Figure 5.7. The most prominent differences in the emission anomalies plots 

between the previous and the current inversions until the end of 2008 can be found in the 

individual source categories of gas and oil, coal, livestock and waste (Figure 5.6) and in 

the aggregated source categories of fossil fuels, wetlands and all biogenic (Figure 5.7). 

These differences are discussed as follows:  

 

Fossil Fuels : The 4⁰ × 5⁰ plots of gas and oil emissions are observed to increase 

throughout their entire study period from 1984 to 2008 (Rice et al., 2016), whereas the 

current 2⁰ × 2.5⁰ plots of same indicate a little decrease in late 1980s, followed by increase 

from 1990 until 2000, then after 2001, again a decrease was observed throughout the 
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decade (Figure 5.6). In contrast, 4⁰ × 5⁰ plots of emissions from coal sector are observed 

to decrease in 1980s followed a leveling off in 1990s until 2000, and then a small increase 

in 2000s (Rice et al., 2016), whereas 2⁰ × 2.5⁰ plots of same show an increase until 1986, 

followed by a decrease in late 1980s, followed by a leveling off in 1990s until early 2000s, 

then an increase followed until 2006, and then again, a decrease is observed later in the 

decade (Figure 5.6). The combined category of fugitive fossil fuel CH4 emissions as seen 

in 4⁰ × 5⁰ plots are flat during the period 1984-2000, then increased over next subsequent 

9 years (Rice et al., 2016), whereas the same category emissions as seen in 2⁰ × 2.5⁰ plots 

show some different result with an increase during few years at the beginning of the study 

period, then a small decrease during late 1980s, followed by a long increase during 1989-

2005, then a drop over next subsequent years of the decade (Figure 5.7). The possible 

reasons behind the recent rise of emissions in this sector for 4⁰ × 5⁰ work, suggested by 

Rice et al. (2016) were the increased coal mining in China and increased natural gas 

extraction from the onset of hydraulic fracturing of shale gas as substantiated by other 

studies (Dlugokencky et al., 2011; Howarth et al., 2011) and emission inventories (EDGAR 

4.2, 2011). The possible reasons behind the observed trends for 2⁰ × 2.5⁰ work are detailed 

in section 5.2.3, when compared with other previous studies. The decrease in emission 

during late 2000s in the current 2⁰ × 2.5⁰ study may be caused mainly due to the rising 

economic value of natural gas, emissions linked specifically to the growing natural gas 

industry and the development of cleaner technologies which may have led to sharp 

reductions in the release of light hydrocarbons into the atmosphere, including methane and 

ethane, associated with production and processing of petroleum (Aydin et al., 2011; 

Simpson et al., 2012; Schaefer et al., 2016). 
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Livestock and Waste : The 4⁰ × 5⁰ plots of both livestock and waste CH4 emissions are 

generally considered to have increased over the entire study period of 1984-2009 (Rice et 

al., 2016), whereas the current 2⁰ × 2.5⁰ plot of the livestock emissions are observed to 

decrease from the start of the study period until 2000, followed by an increase throughout 

the next decade with a small dip during 2003-2005 (Figure 5.6) and plot of the waste 

emissions indicates a decrease from beginning of the study period until 1991-1992, and 

then followed a long two decades of increase (Figure 5.6). The possible reasons behind 

these observed trends for 2⁰ × 2.5⁰ work are detailed in section 5.2.3, when compared with 

other previous studies. The main difference is the decrease of emissions from both sectors 

during the beginning of our study period to 2000 for livestock and early 1990s for waste 

which can be attributed to the slowing of increase in livestock numbers during the 1990s 

particularly in developed countries (Tubiello et al., 2013;  Dangal et al., 2017) and observed 

high oxidation rates of CH4 in landfill cover soils (Whalen et al., 1990), and also decline 

in waste generation in North America during 1980s due to economic downturn and in 

Europe during early 1990s attributable to the economic situation in the former USSR 

(Bogner et al., 2003).  

 

Wetlands : The plots of CH4 emission anomalies from wetlands (30⁰N-0⁰ and 0⁰-90⁰S) for 

both 4⁰ × 5⁰ and 2⁰ × 2.5⁰ inversion studies show similar trends for the entire study period 

until 2008-2009 except with much larger range in the values for anomalies in Tg/year for 

2⁰ × 2.5⁰ plots such as during 1984-1986, the fluctuation in emission anomalies observed 

from wetlands (30⁰N-0⁰) for 2⁰ × 2.5⁰ plots ranged from +20 Tg/year to -20 Tg/year, and 
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again during 2002-2008, the fluctuation in same for 2⁰ × 2.5⁰ plots ranged from +30 

Tg/year to -5 Tg/year which are clearly higher than that observed for 4⁰ × 5⁰ plots, during 

1990-1992, the fluctuation in emission anomalies observed from wetlands (0⁰-90⁰S) for 2⁰ 

× 2.5⁰ plots also varied with much higher values from +45 Tg/year to -10Tg/year as 

compared to the same observed for 4⁰ × 5⁰ plots (Figure 5.6). The plots of CH4 emission 

anomalies from wetlands (30⁰N-90⁰N) for 2⁰ × 2.5⁰ study started with a lower value of -

20 Tg/year approximately during 1984-1985 and increased over next few years to a value 

of +15 Tg/year during 1991-1992, and then leveled off with a similar trend as compared to 

that of 4⁰ × 5⁰ plots for the rest of the study period until 2008 (Figure 5.6). The combined 

wetland category for 4⁰ × 5⁰ study (Figure 5.7) inferred a little increase in the trend of 

interannual variations in CH4 emissions during 1984-2000, then the following decade 

during 2000-2009 experienced a decrease in the trend of the emission anomalies (Rice et 

al., 2016). In comparison, the same for this current 2⁰ × 2.5⁰ study (Figure 5.7) showed a 

small increase in the trend at the beginning of the study period, followed by a small 

decrease until 1987 and then a decade long increase including a large drop in 1997 (also 

observed in emission from wetlands in northern hemisphere) followed by a sharp rise in 

1998 (also observed in emission from wetlands in southern hemisphere) and then the trend 

experienced a decrease over next subsequent years from 2000 to 2005 and again followed 

a small  increase from 2005 onwards. The possible reasons behind these observed trends 

for 2⁰ × 2.5⁰ work are detailed in section 5.2.3, when compared with other previous studies. 

The sharp dip in emissions in 1997 from northern hemisphere wetlands and increase in 

emissions in 1998 from southern hemisphere wetlands due to successive regional dryer and 

wetter climate conditions (Uppala et al., 2005) have also been reported by Bousquet et al. 
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(2006). The main reason of increasing CH4 levels from 2005 onwards was a surge in 

emissions from natural wetlands in response to abnormally high temperatures in northern 

high latitudes in summer and autumn of 2007, and increased rainfall during wet seasons 

over Southern Hemisphere tropics under the ITCZ in 2008–2009 (Bousquet et al., 2011; 

Kirschke et al., 2013; Nisbet et al., 2016). 

 

All Biogenic : The plots of CH4 emission anomalies from aggregated category of all 

biogenic which includes sources rice, livestock, waste and wetlands from all zones, for 

both 4⁰ × 5⁰ and 2⁰ × 2.5⁰ inversion studies show similar trends for the entire study period 

until 2008-2009 except with much larger range in the values for anomalies in Tg/year for 

2⁰ × 2.5⁰ plots such as during 1986-1988, the fluctuation in emission anomalies ranged 

from -30 Tg/year to +20 Tg/year for 2⁰ × 2.5⁰ plots and again during 1997-1998, the same 

ranged from -45 Tg/year to +25 Tg/year, which are much higher compared to that for 4⁰ × 

5⁰ plots (Figure 5.7). The trend in the emissions from this category is the result of combined 

effects of emission trends from all natural and anthropogenic biogenic sources. The 

possible reasons behind the observed trends from all separate sources for 2⁰ × 2.5⁰ work 

are detailed in section 5.2.3, when compared with other previous studies. The large 

fluctuation during 1997-1998 is caused due to fluctuations in emissions contributed from 

wetlands as well as from rice which had been affected by climatic conditions prevailed in 

northern and southern hemispheres. In both 4⁰ × 5⁰ plots and 2⁰ × 2.5⁰ plots, the emission 

trend of biogenic category can be noted to be increasing after 2006 until 2008-2009 (Figure 

5.7) which are discussed in detail in section 5.2.3 and 5.2.4. 
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Figure 5.6: Upper figure 

shows deseasonalized 

methane emission anomalies 

for all 10 source categories 

from inversion at 4⁰ × 5⁰ grid 

resolution. The base inversion 

results are shown with the 

heavy dark blue line, and the 

red line indicates the prior 

emissions. The light blue 

shading shows the entire 

range of all 53 sensitivity runs 

in the ensemble. The green 

lines are inversions where the 

fossil fuel emissions were fixed 

according to a scenario by 

Simpson et al. (2012) based on 

measurements of atmospheric 

ethane. The solid green line 

shows the inversion where all 

fossil fuel emissions were 

assigned to the gas + oil 

category and coal emissions 

and all other sources were 

optimized, and in the dashed 

green line inversion, both gas 

+ oil and coal emissions were

fixed based on a 65/35 split of

the fossil fuel emissions (Ref:

Rice et al., 2016).

Lower figure (same as figure 

5.2) shows deseasonalized 

CH4 emission anomalies for 

all 10 separate source 

categories from inversion at 

2⁰ × 2.5⁰ grid resolution. 

Black lines indicate the base 

inversion results. Red lines 

indicate anomalies in the prior 

emissions. Shaded colored 

areas represent the variations 

in the inversion scenarios 

using different observational 

network densities.   
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Figure 5.7: Upper figure shows 

deseasonalized CH4 emission 

anomalies from aggregated fossil 

fuels, biomass burning, wetlands,  

all biogenic (including wetlands) 

and total emissions from 

inversion done at 4⁰ × 5⁰ grid 

resolution. The base inversion 

results are shown with the heavy 

darker colored lines, and the red 

line indicates the prior emissions. 

The light colored shading shows 

the entire range of all 53 

sensitivity runs in the ensemble 

(Ref: Röger, 2013). 

 

Lower figure (same as figure 5.3) 

shows deseasonalized CH4 

emission anomalies from 

aggregated fossil fuels, biomass 

burning, wetlands,  all biogenic 

(including wetlands), anthro-

biogenic (rice, livestock and 

waste) and total emissions from 

inversion done at 2⁰ × 2.5⁰ grid 

resolution. Black lines indicate 

the standard inversion results. 

Red lines indicate anomalies in 

the prior emissions. Shaded 

colored areas represent the 

variation in the observational 

network density of the inversion 

scenarios. 
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5.2.3. Comparison of Inversion Results with Previous Studies    

 

Fossil Fuels: The fugitive fossil fuel methane emission anomalies in Tg/year show four 

distinct regimes in the Figure 5.3 such as: a decrease before 1990, oscillations with a slight 

increasing slope during 1990-2005, then a decrease until 2010, and then again, an increase 

after 2011. At the beginning of the time series in 1980s, combined fugitive fossil fuel CH4 

emission anomalies are observed to increase, followed by a drop during late 1980s to early 

1990s possibly due to collapse in the production at the beginning of the Former Soviet 

Union breakup (Dlugokencky et al., 2003; Röger, 2013; Schaefer et al., 2016). After little 

stabilizing, fossil fuel emissions started increasing again during mid-1990s to until mid-

2000s with higher trend than Emissions Database for Global Atmospheric Research 

(EDGAR) emission inventories as seen in Figure 5.3. The fugitive fossil fuel emissions 

decreased subsequently from 2005 to 2010, then leveled off over 2 years and again showed 

an increase over next subsequent years. The inversion results in Figure 5.2, attribute this 

trend to growth in natural gas and oil sector emissions over the period 1992 to 2000, 

followed by a decrease from 2001 to 2010 and then a slight increase over next following 

years. This trend is contrasted by coal emissions which experienced a decrease during 

1980s, then remained flat during 1990s, then followed a subsequent increase in 2000s until 

2006, then a decrease until 2012 and again with slight increase thereafter. The increase in 

emissions from coal are substantiated by previous studies such as by Ohara et al. (2007), 

Dlugokencky et al. (2011), Kirschke et al. (2013), Rice et al. (2016) and Nisbet et al. (2016) 

that after 2000, coal mining in China had doubled which may have led to the increase in 

methane emissions. However, two studies by Aydin et al. (2011) and Simpson et al. (2012) 
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based on ethane derived from firn air and atmospheric measurements of ethane indicated 

that CH4 emissions from the fossil fuel sector decreased between 1985 and 2000 at a rate 

of −0.4 to −0.8 Tg CH4 yr–1, and attributed such a decline to decreasing fugitive emissions 

(leaks during extraction, treatment and use of fossil fuels) from oil and gas industries, 

which contradicted our results. Alternatively, our results of continued increase in emissions 

from combined fossil fuel sector until 2005 as well as gas and oil sector until early 2000s 

are supported by the studies of Kirschke et al. (2013), Rice et al. (2016) and Nisbet et al. 

(2016) which referred that over decades of 1980s, 1990s and 2000s, with the potential 

intensive exploitation of natural gas from large-scale hydraulic fracturing of shale 

formations performed in the United States and other thermogenic fossil fuel sources in the 

world including South Africa’s coal industry, subequatorial gas fields in South America, 

and widespread large gas fields and coal fields in Asia and Australia, may have led to 

additional CH4 emissions into the atmosphere. As the geographical distributions of shale 

basins and conventional gas and oil fields in the United States overlap, there was evidence 

of yielding significantly larger methane emissions with this production practice than 

conventional gas production as presented in the study by Howarth et al. (2011) based on 

measurements from five wells across the United States, which was arguable without more 

extensive measurements. Considering all these scenarios after 2000, a slower decline or 

stabilization of fossil fuel emissions may have resulted, also referred by Kirschke et al. 

(2013). Although, our results (Figure 5.3) showed the drop of fugitive fossil fuel emissions 

started after 2005 and gas and oil emissions began to decrease after 2000, but these results 

can be speculated in similar manner as Aydin et al. (2011). Their result displayed persistent 

decline in fossil fuel based methane emission during 1980 to 2000 but increase in emissions 
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using EDGAR 4.1 data after 2000, caused mainly due to the rising economic value of 

natural gas, emissions linked specifically to the growing natural gas industry and the 

development of cleaner technologies which may have led to sharp reductions in the release 

of light hydrocarbons into the atmosphere, including methane and ethane, associated with 

production and processing of petroleum (Aydin et al., 2011). Moreover, Simpson et al. 

(2012) argued that the gas and oil methane emissions decreased since 1990s which is not 

supported by our results (Figure 5.2) which showed emissions increased from 1990 to 

2000. But the decreasing estimates of ethane and methane concentrations and emissions 

until 2010 by Simpson et al. (2012) and findings of Schaefer et al. (2016) of decreasing-

to-stable fossil fuel sources until same time period also indicate reduction in annual 

thermogenic CH4 emissions which are corroborated by our result showing decreased fossil 

fuel CH4 emissions during 2005 to 2011 (Figure 5.3). However, the recent increase in 

extraction of natural gas and coal mining worldwide as mentioned earlier may provide 

evidence for the increase in our result from 2011 onwards (Figure 5.2). CH4 with variable 

isotopic signatures produced during natural gas extraction depending on the temperature 

of gas reservoir such as -50‰ for Siberian gas (Dlugokencky et al., 2011) and isotopically 

lighter methane produced from coal fields such as -66.4‰ to -60.8‰ for bituminous coal 

mines in Australia (Zazzeri et al., 2016) caused mitigation efforts to be diminished by 

additional emission of secondary biogenic CH4 from combustion of more depleted 13δC-

CH4 fossil fuel sources (Kirschke et al., 2013; Nisbet et al., 2016). These give a plausible 

explanation of recent increase of isotopically depleted methane emissions from fossil fuels 

consistent with our result. In figures 5.2 and 5.3, the ensemble of sensitivity tests inversion 

scenarios with variation in number of available measurement data sites are shown as shaded 
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area, the fugitive fossil fuel emissions show similar trend as discussed above but with 

significantly wider range in the mean values of the emissions 2005 onwards. 

 

Wetlands: In Figure 5.3, four regimes can be distinguished in combined wetland 

emissions: a decrease in wetland emissions during 1985 to 1987, followed by an increase 

in the trend in the late 1980s with few large fluctuations in 1990s until 2000, then a strong 

decrease was observed in the early 2000s with fluctuations until 2005 and then again 

followed by a small increase during 2005-2010 with more increase 2012 onwards. This 

decrease during 2000s was also mentioned in the findings of Bousquet et al. (2006), 

Kirschke et al. (2013) and Rice et al. (2016) and also agreed well with bottom-up studies 

such as Prigent et al. (2001) that attributed the decrease to the worldwide reduction in 

flooded area, as suggested by satellite observations, causing the decrease in global wetland 

emissions. Hayman et al. (2014) evaluated wetland emission estimates derived using the 

UK community land surface model (JULES) against atmospheric observations of  methane, 

including, total methane columns derived from the SCIAMACHY instrument on board the 

ENVISAT satellite for the period of 1999 to 2007. They found that the annual cycles 

observed in the SCIAMACHY measurements and at many of the surface sites influenced 

by non-wetland sources could not be reproduced in their HadGEM2 runs which suggested 

that the emissions over certain regions were possibly too high and/or emission patterns for 

specific sectors were incorrect. After 2005, the increase in wetland CH4 emissions had also 

been concluded by several other studies such as Bousquet et al. (2011), Kirshcke et al. 

(2013) and Nisbet et al. (2016) that one of the main reason of increasing CH4 levels was a 

surge in natural wetlands in response to abnormally high temperatures in northern high 
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latitudes in summer and autumn of 2007, and increased rainfall during wet seasons over 

Southern Hemisphere tropics under the ITCZ in 2008–2009 and late 2010–2011 and 

subsequent years, including the warmer year of 2014. Some bottom-up studies such as 

Spahni et al. (2011) showed result consistent with this work, indicating upward decadal-

scale trends in global wetland emissions, whereas some top-down estimates such as Rice 

et al. (2016) using ground-based observations favored constant or declining wetland 

emissions over the past few decades.  

 

Methane emissions from wetlands can be clearly distinguished between three separate 

latitudinal zones as shown in Figure 5.2. The spike in the wetland emission in the southern 

hemisphere (0⁰-90⁰S) around 2009-2010 as seen in the Figure 5.2, can be explained as a 

result of remarkably high Amazon flood levels in 2009 also been mentioned in the study 

of Nisbet et al. (2016). The upticks in 2011 and 2012 and the increase after 2013 in CH4 

emissions from southern hemisphere wetlands (Figure 5.2) are also supported by the events 

such as during the La Niña of early 2011 (Boening et al., 2012), many southern tropical 

regions were unusually wet and equatorial Amazon flood levels were high again, Amazon 

flooding also took place in 2012–2014 (Nisbet et al., 2016) and before the onset of the 2014 

El Niño, extreme flood events occurred in the Amazon wetlands of Bolivia (Ovando et al., 

2015). In Figure 5.2, 0°–30°N Northern Hemisphere tropical wetlands showed upward 

emission trend till 2000, then a decade of downward trend and during 2009-2011, a rapid 

decrease in emission was observed. Figure 5.2 reveals the methane growth during 2011-

2014 due to the monsoonal effects on 0°–30°N Northern Hemisphere wetlands, in South 

and East Asia (Nisbet et al., 2014; Patra et al., 2016), also contributed to post-2011 
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combined wetlands methane emission growth seen in Figure 5.3. As seen in the Figure 5.2, 

there is a rise in emission from 30⁰-90⁰N wetlands as well after 2011, also supported by 

several recent studies. In Figure 5.2, the ensemble of our sensitivity tests reveal increase in 

emissions from wetlands in higher latitudes of northern hemisphere in 2007 mainly caused 

due to warmer temperature and higher than normal precipitation (Dlugokencky et al., 

2009), which supported the studies of Bergamaschi et al. (2013) that estimated increase of 

1.2-3.2 Tg CH4 in 2007 and Bruhwiler et al. (2014) that estimated 4.4 Tg CH4 emissions 

higher than 2000-2010 decadal average in 2007. The atmospheric sampling and Keeling 

plot studies (Fisher et al., 2011; Sriskantharajah et al., 2012) showed much depleted δ13C-

CH4 values from Alert, Canada and in Fennoscandia, in autumn 2007 which confirmed the 

presence of methane-rich boreal and Arctic wetland air. Figure 5.2 shows arctic region 

methane emissions decreased in 2008, 2010-2012, which can be related to the study by 

Nisbet et al. (2016) where they mentioned that although Arctic emissions contributed to 

the Arctic methane shift in 2007, they do not seem to have been major contributors since 

then. The 30⁰-90⁰N wetland emission spikes in 2012-2013 and 2014-2015 shown in Figure 

5.2 might be contradictory to the findings of Nisbet et al. (2016) where they mentioned that 

from 2008 to 2013 no major sustained methane growth (no growth in concentration does 

not necessarily imply no growth in emission anomalies were observed) occurred due to fast 

horizontal mixing at high latitudes efficient on the emission zones, but might had agreed 

well with 2014 strong growth of methane (this does not necessarily imply strong growth in 

emission  anomalies) and isotopic shifts in the Arctic that occurred at a similar rate in 

comparison to the global increase record. In Figures 5.2 and 5.3, the ensemble of sensitivity 

test inversion scenarios with variation in number of available measurement data sites are 
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shown as shaded area, the wetland emissions show similar trend as discussed above but 

with significantly wider range in the mean values of the emissions after 2005. 

 

Biomass Burning: Figure 5.3 shows four distinct regions in the combined biomass burning 

emission trend as follows: a slight increasing trend in late 1980s until 1991, then a 

prolonged decrease until 2005 with a large sharp anomaly peak during 1997-1998 and a 

small peak in 2003, then a slight increase until 2012 and over next subsequent years the 

emissions exhibit roughly constant trend. Other recent studies such as Kirschke et al. 

(2013), Nisbet et al. (2016), Rice et al. (2016) also agreed well with the long-term decrease 

of biomass burning emissions over past decades. There is independent evidence in studies 

by Yang et al. (2014) and in spatial pattern for trends in source isotopic signatures by Le 

Quéré et al. (2014) for declines in CH4 emissions from global biomass-burning over the 

past few decades which are consistent with the result of this work, however, Mieville et al. 

(2010) disagreed and inferred increasing trends in this source.  

 

Methane emission trends over the inversion period from biomass-burning of C3 and C4 

vegetations are separately shown in Figure 5.2. For C3 vegetation burning seen in Figure 

5.2 methane emission shows same trend as the total biomass-burning methane emission 

trend as seen in Figure 5.3. For C4 vegetation burning as seen in Figure 5.2, methane 

emission trend shows increase during 1987-88, then shows a decrease until 2005 with 

fluctuations and after 2006 shows an increase later with little decrease and then remaining 

constant over next subsequent years. Similar to the trend as presented in this inversion 

work, global-scale model inversion results presented by Röger (2013) also favored a 



 

 243 

decrease in fire CH4 emissions until 2005 based on the isotopic budget of CH4 resulting 

from enriched δ13C signature. A global decrease in biomass-burning emissions mostly 

located in the tropics also has minimum effect on the meridional distribution of CH4 (Rice 

et al., 2016). When optimized emissions are aggregated over large regions on global scale, 

emissions from biomass burning are the largest in Africa and in tropical South America, 

also been reported by Kirschke et al. (2013) where they compared the bottom-up estimates 

to the top-down estimates and mentioned simulated biomass burning emission areas were 

almost consistent between models over the period 1997–2000, revealing robust large 

emission zones around the thermal equator ( It is the belt encircling the earth, defined by a 

set of locations with highest mean annual temperature at each longitude around the earth) 

in Africa, central South America (Brazil and Bolivia), Indonesia, and to a lesser extent in 

eastern Russia, Laos, and Mexico and in northern Australia and in boreal regions (Canada 

and Siberia) and also mentioned that small fires are often undetected by satellite retrieval 

algorithms used in bottom up estimates. Post 2006 rise in biomass burning emission is also 

supported by study of Bousquet et al. (2011) which mentioned that other sources than 

natural wetlands contributing to the 2007 flux anomaly are biomass burning (+3±5 Tg, 

mostly in South America) and anthropogenic sources (+2±6 Tg) and Worden et al. (2013) 

mentioned that during moderate El Niño event in 2006, methane emissions from 

Indonesian fires could have compensated for an expected decrease in tropical wetland 

methane emissions from reduced rainfall. The pronounced anomaly peak in the 1997-1998 

may have caused by the massive emissions from Indonesian forest fires due to the changing 

land use which made the tropical forest vulnerable to fire during a drought associated with 

that year's El Niño (Nisbet et al., 2016). This major increase is also supported in our 

https://en.wikipedia.org/wiki/El_Ni%C3%B1o
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inversion result plots in record of South China Sea observation site representing a closer 

location to Indonesia. Biomass burning priors obtained from the GFED3 data product, 

which is based on satellite observations of burned area worldwide, also contain a distinctive 

peak in 1997. In 2010, our results (Figure 5.2) show rise in biomass-burning methane which 

was consistent with the findings of Nisbet et al. (2016) where they mentioned in 2010 

Amazonia experienced a major drought and biomass burning and the early 2010 rise in 

methane at Ascension (ASC; 8⁰S, 15⁰W) possibly been driven by biomass burning 

(Crevoisier et al., 2013), were consistent with their observed enrichment of isotopic 

methane during early to mid-2010, both resulted from C4 savanna grassland fires. In the 

years 2012 onwards, we find biomass emission with no further change. Rice et al. (2016) 

mentioned lack of much data from bottom-up fire inventories on the long-term trends in 

CH4 emissions from biomass burning in recent years (Granier et al., 2011) but noted 

evidence of decreasing burned area from fires in recent decades (Giglio, Randerson, van 

der Werf, 2013; Yang et al., 2014) supporting the result from this work. In Figures 5.2 and 

5.3, the ensemble of sensitivity test inversion scenarios with variation in number of 

available measurement data sites are shown as shaded area, the biomass burning emissions 

show almost similar trend as discussed above but after 2010 with significantly wider range 

in the mean values of the emissions seen in total biomass-burning emission and biomass-

burning from C3 vegetation. 

 

Livestock: Figure 5.2 shows three distinct regions in the trend of methane emissions from 

ruminant animals: more than a decade-long decrease from the beginning of our inversion 

study period until 2000, followed by a decade-long increase in the trend with a little dip 
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during 2003-2005 and then after 2010, a sharp decrease followed over next subsequent 

years. The decrease of livestock CH4 emissions during the late 1980s and the decade of 

1990s followed by an increase over the next subsequent decade of 2000s (Figure 5.2) are 

supported by few recent studies such as Tubiello et al., (2013) and Dangal et al., (2017), 

which mentioned slowing of methane emissions from global livestock sector are caused 

due to slowing of increase in livestock numbers during the 1990s particularly in developed 

countries. Thereafter, the prolonged rise in emissions from ruminant animals are also 

generally recognized over the past few decades due to increased populations of livestock 

by inventories such as EDGAR (2011) and United Nations Food and Agriculture 

Organization Statistics Division (U.N. FAOSTAT database, 2016). Increase in livestock 

emissions during last decade 2000-2010, are also supported by inversion results of Rice et 

al. (2016). Methane generating microbes such as methanogens present in the anaerobic 

environments in the digestive tracts of ruminant animals and termites emit methane to the 

atmosphere. Depending on different photosynthetic pathways of C3 and C4 vegetations, 

ruminants digesting C4 plants give off CH4 at −55 to −50‰, whereas those eating C3 plants 

give off −65 to −60‰ CH4 (Dlugokencky et al., 2011). In this current study, although 

livestock CH4 emissions are not separately determined based on the isotopic signatures of 

C3 or C4 vegetation due to enteric fermentation inside digestive tract of ruminants, but to 

find reasons behind this inversion estimated livestock emission-trend over our study period 

and relate with other studies to get more specific information on the increase or decrease 

of livestock CH4 emissions from different geographic regions of the world, we are 

considering the isotopic signatures of C3 and C4 vegetation available as fodder for 

ruminants. Some other studies such as Bousquet et al. (2011), Kirschke et al. (2013), 
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Schaefer et al. (2016), also mentioned the contribution of increased livestock industries 

from Asia and South America in methane emissions in last decade. Kirschke et al. (2013) 

reported about relatively strong contribution of methane emission by termites from Africa 

and tropical South America. Nisbet et al. (2016) argued that tropical agricultural emissions 

from ruminants had indeed increased in highly rainy seasons, but these increases were 

probably mainly in South America and Africa. Though there are very sparse tropical 

ruminant data and lack of studies on the isotopic values of tropical ruminant methane 

emissions in the field, Nisbet et al. (2016) pointed out that grasslands and ruminant fodder 

crops in the tropics are mostly C4 dominated instead of C3 dominated as assumed by 

Schaefer et al. (2016) that ruminants are C3-fed. Nisbet et al. (2016) noted that a large 

number of free-grazing tropical ruminants in savanna grasslands survive on all δ13CCH4-

enriched C4 supplemental fodder such as maize, millet, sorghum crop waste, or sugarcane 

tops and thus, methane emitted from these ruminants is substantially more enriched than -

60‰ C3 value and more likely to have δ13C-CH4 values around -50‰ or less (Dlugokencky 

et al., 2011). After 2010, the decrease in methane emissions from ruminants in our result 

as seen in Figure 5.2 may have occurred due to animal based mitigation strategies taken 

such as reduction in the number of CH4-producing microbes during enteric fermentation in 

ruminants by improving feed quality, feed additives, improving animal productivity and 

their reproductive efficiency (Dlugokencky et al., 2011; Gerber et al., 2013). This decrease 

after 2010 in our result is also consistent with the report presented by Nisbet et al. (2016) 

where they mentioned due to mostly average to poor monsoons in recent years over India, 

the nation with the world’s largest ruminant animal population, cattle populations had 

declined. Figure 5.2 shows the ensemble of sensitivity test inversion scenarios with 
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variation in number of available measurement data sites as shaded area, the methane 

emissions from livestock show almost similar trend as discussed above but with 

significantly wider range in the mean values of the emissions. 

 

Waste: The trend of methane emissions from wastes can be distinguished in three zones 

as observed in Figure 5.2 such as: a long decreasing trend from beginning of our study 

period until 1991-1992, then followed by two decades of increase until 2012 and finally a 

decreasing trend in next subsequent years. The decrease in CH4 emissions from landfilled 

waste during late 1980s and early 1990s (Figure 5.2) can be related to the findings in IPCC 

(1992), where they mentioned slight reduction in the emissions because of observed high 

oxidation rates of CH4 in landfill cover soils (Whalen et al., 1990). In comparison, another 

study by Bogner et al. (2003) where two of their modeled scenarios indicated global CH4 

emission from landfilled solid waste declined in 1980s, then increased until 1991, then a 

drop during 1992-1993 and again increased from 1994 to 1996 which they linked to the 

modeled decline in waste generation in North America during 1980s due to economic 

downturn and a decline in Europe during early 1990s attributable to the economic situation 

in the former USSR. The increase in the global CH4 emissions from solid waste over the 

next decades from mid 1990s to 2012 (Figure 5.2) had also been reported by studies of 

Kirschke et al. (2013), Rice et al. (2016), Schaefer et al. (2016). According to Bogner et al. 

(2003) and EDGAR (2011), there was increase in landfilled solid waste over past decades, 

even as CH4 recovery increased. The decrease of the emission after 2012 as seen in Figure 

5.2, may be due to measures taken to recover and utilize CH4 from anaerobic digestion of 

cattle waste as mentioned by Dlugokencky et al. (2011). Other viable opportunities for CH4 
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emission reductions suggested by Dlugokencky et al. (2011) might have been taken into 

consideration, such as landfill gas with approximately 50% CH4 may have been collected, 

processed and distributed to end-users to produce bioelectricity or heat. Organic matter 

from landfills might have been diverted to composting which further reduced CH4 

emissions and had other environmental benefits including end-product use as a soil 

amendment that improved moisture retention and carbon storage, and reduced use of 

inorganic fertilizer, potentially reduced N2O emissions as suggested by Dlugokencky et al., 

2011. All these measures might have been considered at different locations which may 

have resulted in the decrease of landfill and waste CH4 emissions from 2012 onwards. 

Figure 5.2 shows that the ensemble of sensitivity test inversion scenarios with variation in 

number of available measurement data sites as shaded area, the methane emissions from 

wastes show almost similar trend as discussed above but with significantly wider range in 

the mean values of the emissions. 

 

Rice: In Figure 5.2, the trend of methane emissions from rice agriculture shows two distinct 

regimes such as: an increase from beginning of study period until 1990 and then followed 

by a long-term decrease throughout the rest of the inversion period with large interannual 

fluctuations. These findings may agree with the theories of reduced rice emissions due to 

changes in agricultural and irrigational practices (Li et al., 2002). Several bottom-up 

emission inventories also indicated significant decrease in rice CH4 emissions over the past 

few decades (Khalil et al., 2006; Kai et al., 2010). A decrease in microbial sources in the 

northern hemisphere which attributed to a decrease in rice emission was proposed by Kai 

et al. (2011) as an evidence to the decrease in Inter-Hemispheric Difference (IHD) 
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observed in the isotopic signatures of methane. This was opposed by Levin et al. (2012) 

with no significant change in IHD and proposed constant fossil fuel and microbial 

emissions. According to the EDGAR 4.2 inventory (2011), the rice paddy emissions have 

decreased during the 1980-2000 period and remained stable between 2000 and 2005 

(Kirschke et al., 2013). The anthro-biogenic emissions from aggregated categories of 

agriculture, livestock and waste shown in Figure 5.3, contradicts the comparison study of 

bottom-up and top-down estimates of methane budget listed by Kirschke et al. (2013) 

which showed an increase in agricultural and waste emissions over  three decades for 

bottom-up estimates and an increase in the same emissions during 1980s and 1990s, 

followed by more than a decade long decrease until 2009 as observed for top-down 

estimates. According to Rice et al. (2016), inversion analysis for the period of 1984-2009 

also confirmed the decrease in rice emissions, but with no IHD in isotopic signatures which 

made agreement to the fact that either decrease in rice emission was surpassed by the 

increase in emissions from other microbial sources (waste, landfills and livestock) or the 

IHD in δ13C is insensitive to the changes in rice emissions mainly occurring at the tropics 

(EDGAR 4.2 inventory, 2011). In contrary, Schaefer et al. (2016) used a one-box model 

based on remote sensing data, postulated the hypothesis that the growth in [CH4] after 2006 

had been driven by agricultural emissions in the northern hemisphere, but then commented 

on uncertainty of the evidence. However, Nisbet et al. (2016) argued that the abrupt change 

of growth trend in 2007 matched with the hypothesis of change in natural emissions due to 

meteorological driving factors rather than that from anthropogenic sources such as 

ruminants population and rice cultivated area which would have been slower and more 

gradual. Furthermore, Nisbet et al. (2016) found no evidence of any sharp increase in rice 
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emissions in 2007 and mentioned about fluctuating rice-harvested area in Asia with no 

evidence of any step change in cultivated rice fields in China, world’s largest rice 

producing country and also mentioned that harvested paddy field area was relatively stable 

and had declined from 2006 to 2007 (http://faostat.fao.org). Results from this work concur 

with the findings of most of the above-mentioned studies such as Khalil et al. (2006), Kai 

et al. (2010, 2011), Nisbet et al. (2016) and Rice et al. (2016). The ensemble of sensitivity 

test inversion scenarios with variation in number of available measurement data sites are 

shown as shaded area in Figure 5.2 and 5.3, the methane emissions from rice agriculture 

are shown in Figure 5.2 and emissions from livestock, waste landfills and rice cultivation 

aggregated together as anthro-biogenic category are shown in Figure 5.3. The sensitivity 

tests for rice emissions show almost similar trend as discussed above but with significantly 

wider range in the mean values of the emissions during few time spans such as 1988-1989, 

1992-1993, 1994-1996 and 2005-2006. 

 

5.2.4. Possible Reasons for the Increase of Global Methane Levels in the 

Atmosphere from 2006 onwards 

 

This study was conducted by extending the timeseries until 2016 with the motivation to 

determine the main causes of the sudden rise of atmospheric methane concentrations since 

2006. After multidecadal decline in methane growth rate, the increase in global methane 

levels post 2006 is the result of imbalance of methane in the atmosphere caused due to 

addition of methane as emitted from different sources and removal of methane by different 

sinks. Thus, to know the reasons behind this recent increase and to understand the methane 
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budget of various sources and sinks, this study helped us to quantify the emission estimates 

from different sources of methane and their variability for over almost last four decades. 

The results of this study for all separate source categories throughout the study period are 

already discussed and compared with other recent studies in section 5.2.3, the main driving 

factors of the increase post 2006 as revealed from this study are emphasized in this section 

as follows: 

 

1. The results of this study suggest that the major contribution of emissions from all 

biogenic sources both natural and anthropogenic as well as minor contribution from 

biomass burning may have caused the increase in global methane levels since post-

2006. It is revealed that the emissions from individual source categories of 

livestock, wastes, coal, northern high latitude wetlands and biomass burning of C3 

vegetations had increased during 2006-2015 (Table 5.3). Although a persistent 

increase in total methane levels can be observed until the end of the study period, 

but there may be a shift in contributions from the emissions of individual source 

categories since 2011 onwards. With the decline in emissions from anthro-biogenic 

sources of livestock and rice, from northern tropical wetlands, from fossil fuel 

source of coal and from biomass burning of C4 vegetations since 2011-2012, the 

increase in global methane levels since 2011 until the end of the study period may 

possibly be due to the contribution of increased emissions from sources of wastes, 

natural wetlands (southern hemisphere and northern high latitudes), fossil fuel 

source of gas and oil and biomass burning of C3 vegetations globally (Table 5.3).  
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2. The emissions from all biogenic category showed a positive trend (Figure 5.3) from 

2006 onwards until the end of the study period with the combined effects of 

emissions from all zones of wetlands and from all anthro-biogenic sources. The 

average estimate of emissions from all biogenic sources had increased by ~25 

Tg/year, from anthro-biogenic sources by ~43 Tg/year and from wetlands (90N-

30N) by ~3 Tg/year during 2006-2015 than that during 1994-2005 (Table 5.3). 

Thus, it can be inferred that the increase of global methane emissions during late 

2000s was caused due to increase of emissions from biogenic sources of both 

natural and anthropogenic origin, which is supported by the findings of other 

studies such as Bousquet et al. (2011), Kirschke et al. (2013), Nisbet et al. (2016), 

Schaefer et al. (2016). 

 

3. The livestock and landfilled solid waste categories both showed a continued 

positive emission trends before and after 2006 and then a decrease in livestock 

emission from 2010 onwards and waste emission from 2012 onwards were 

observed (Figure 5.2). The rise in emissions from ruminant animals are also 

generally recognized over the past few decades due to increased populations of 

livestock by inventories such as EDGAR (2011) and United Nations Food and 

Agriculture Organization Statistics Division (U.N. FAOSTAT database, 2016). The 

increase in livestock methane emission until 2010 is also supported by other studies 

by Bousquet et al. (2011), Kirschke et al. (2013), Rice et al. (2016), Schaefer et al. 

(2016), Nisbet et al. (2016). After 2010, the decrease in methane emissions from 

ruminants in our result (Figure 5.2 and Table 5.3) may have occurred due to animal 
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based mitigation strategies taken such as reduction in the number of CH4-producing 

microbes during enteric fermentation in ruminants by improving feed quality, feed 

additives, improving animal productivity and their reproductive efficiency 

(Dlugokencky et al., 2011; Gerber et al., 2013). This recent decrease after 2010 is 

also consistent with the report presented by Nisbet et al. (2016) where they 

mentioned due to mostly average to poor monsoons in recent years over India, cattle 

populations had declined. Furthermore, the increase in the global CH4 emissions 

from solid wastes over two decades until 2012 (Figure 5.2) had also been reported 

by studies of Kirschke et al. (2013), Rice et al. (2016), Schaefer et al. (2016). 

According to Bogner et al. (2003) and EDGAR (2011), there was increase in 

landfilled solid waste over past decades, even as CH4 recovery increased. The trend 

of emissions from wastes after 2012 can be observed slightly negative (Figure 5.2), 

as the averaged emission estimate during 2006-2015 was ~18 Tg/year increase than 

that during 1994-2005 and it was ~13 Tg/year increase during 2011-2015 than that 

during 2006-2010 (Table 5.3). This little difference in averaged estimates may have 

occurred due to mitigation measures taken at various locations throughout the world 

to recover and utilize CH4 from anaerobic digestion of cattle waste and manure 

management, landfill gas with approximately 50% CH4 may have been collected, 

processed and distributed to end-users to produce bioelectricity or heat, organic 

matter from landfills might have been diverted to composting which further reduced 

CH4 emissions and had other environmental benefits including end-product use as 

a soil amendment that improved moisture retention and carbon storage, and reduced 

use of inorganic fertilizer, as mentioned by Dlugokencky et al. (2011).  
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4. The methane emissions from rice agriculture showed a continuous negative trend 

(Figure 5.2) before and after 2006 until end of the study period and also averaged 

estimate decreased by ~5 Tg/year during 2006-2015 than that during 1994-2005 

(Table 5.3). This decrease is also consistent with other previous studies by Khalil 

et al. (2006), Kai et al. (2010, 2011), Nisbet et al. (2016) and Rice et al. (2016). 

Thus, the emission trend of anthro-biogenic category (Figure 5.3) showed the 

combined effects of emission trends of sources of livestock, waste and rice, which 

continued to be positive before and after 2006 but became slightly negative from 

2011 onwards. 

 

5. The combined category of wetlands in Figure 5.3 showed a positive trend in 

emissions during 2005-2006, continued to remain in that same level until 2010, 

then a dip was observed during 2010-2011, and thereafter, again a positive trend 

was observed in the emissions. Wetlands (90⁰N-30⁰N) showed an increase of ~3 

Tg/year from 2006 onwards (Table 5.3), and with a negative trend during 2012-

2013, it continued to rise again 2013 onwards (Figure 5.2) with average emission 

estimate to increase by ~1 Tg/year during 2011-2015 (Table 5.3). These changes 

mainly caused due to warmer temperature and higher than normal precipitation 

(Dlugokencky et al., 2009), which are supported by the studies of δ13C-CH4 values 

by Fisher et al. (2011), Sriskantharajah et al. (2012) and also confirmed by studies 

of Bergamaschi et al. (2013), Bruhwiler et al. (2014), Kirschke et al. (2013) and 

Nisbet et al. (2016). Wetlands (30⁰N-0⁰) showed a slight negative trend from 2006 
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onwards and greater negative trend during 2009-2011 and thereafter a sharp 

positive trend was observed during 2011-2013 (Figure 5.2) and average emission 

estimate had decreased by ~20 Tg/year during 2006-2015 as compared to previous 

decade, but showed a decrease of ~6 Tg/year during 2011-2015 than that during 

2006-2010 (Table 5.3). These changes were due to the monsoonal effects on 

Northern Hemisphere tropical wetlands, in South and East Asia (Nisbet et al., 2014; 

Patra et al., 2016). Wetlands (0⁰-90⁰S) showed a positive trend in methane 

emissions 2006 onwards until 2010, then a negative trend during 2010-2013 with 

small upticks in 2011 and 2012 and again a positive trend was observed from 2014 

onwards (Figure 5.2). The average emission estimate had increased by ~5 Tg/year 

during 2011-2015 than that during 2006-2010 (Table 5.3). The spike in the 

emission around 2009-2010, can be explained as a result of remarkably high 

Amazon flood levels in 2009 also been mentioned in the study of Nisbet et al. 

(2016). The upticks in 2011 and 2012 and the increase thereafter in CH4 emissions 

from southern hemisphere wetlands are also supported by the events such as during 

the La Niña of early 2011 (Boening et al., 2012), many southern tropical regions 

were unusually wet and equatorial Amazon flood levels were high again, Amazon 

flooding also took place in 2012–2014 (Nisbet et al., 2016) and before the onset of 

the 2014 El Niño, extreme flood events occurred in the Amazon wetlands of Bolivia 

(Ovando et al., 2015).  

 

6. The emission trend from aggregated category of fossil fuels (Figure 5.3) became 

negative since 2006 until 2010-2011 and then became slightly positive during next 
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subsequent years until the end of the study period. The averaged emission estimate 

had decreased by ~8 Tg/year during 2006-2015 as compared to previous decade, 

with a decrease of ~6 Tg/year during 2011-2015 than that during 2006-2010 (Table 

5.3). The decrease from 2006 onwards might have caused mainly due to the rising 

economic value of natural gas, emissions linked specifically to the growing natural 

gas industry and the development of cleaner technologies which may have led to 

sharp reductions in the release of light hydrocarbons into the atmosphere, including 

methane and ethane, associated with production and processing of petroleum 

(Aydin et al., 2011). The decreasing estimates of ethane and methane 

concentrations and emissions until 2010 by Simpson et al. (2012) and findings of 

Schaefer et al. (2016) of decreasing-to-stable fossil fuel sources until same time 

period also indicate reduction in annual thermogenic CH4 emissions which are 

corroborated by our result showing decreased fossil fuel CH4 emissions during 

2006 onwards (Figure 5.3 and Table 5.3). However, the increase in extraction and 

processing of natural gas worldwide from the onset of large-scale hydraulic 

fracturing of shale gas, also substantiated by recent studies and emissions 

inventories (EDGAR, 2011; Dlugokencky et al., 2011; Howarth et al., 2011;  Nisbet 

et al., 2016, Rice et al., 2016) may provide evidence for the increase of ~7 Tg/year 

in averaged emission estimate during 2011-2015 than that during 2006-2010 in our 

result (Table 5.3). In contrast, averaged emission estimate from coal mining showed 

an increase of ~2 Tg/year during 2006-2015 as compared to previous decade, but 

followed a decrease of ~12 Tg/year during 2011-2015 than during 2006-2010 

(Table 5.3). CH4 with variable isotopic signatures produced during natural gas 
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extraction depending on the temperature of gas reservoir such as -50‰ for Siberian 

gas (Dlugokencky et al., 2011) and isotopically lighter methane produced from coal 

fields such as -66.4‰ to -60.8‰ for bituminous coal mines in Australia (Zazzeri et 

al., 2016) caused mitigation efforts to be diminished by additional emission of 

secondary biogenic CH4 from combustion of more depleted 13δC-CH4 fossil fuel 

sources (Kirschke et al., 2013; Nisbet et al., 2016). 

 

7. The emission trend from aggregated biomass burning category (Figure 5.3) became 

a slight positive since 2006 until 2012 with a little dip during 2008-2009 and then 

leveled off thereafter. The average emission estimate of aggregated biomass 

burning was observed to increase by ~2 Tg/year during 2006-2015 than that during 

previous decade and increase by ~5 Tg/year during 2011-2015 than that during 

2006-2010 (Table 5.3). These increases are simultaneous with the estimated 

emissions from burning of C3 vegetation with averaged emission showed an 

increase of ~1 Tg/year during 2006-2015 than that during 1994-2005 and an 

increase of ~6 Tg/year during 2011-2015 than that during 2006-2010 (Table 5.3). 

Post 2006 rise in emission is also supported by study of Bousquet et al. (2011) 

which mentioned that other sources than natural wetlands contributing to the 2007 

flux anomaly are biomass burning (+3±5 Tg, mostly in South America) and 

anthropogenic sources (+2±6 Tg) and Worden et al. (2013) which mentioned that 

during moderate El Niño event in 2006, methane emissions occurred from 

Indonesian fires. Our results (Figure 5.2) show positive trend in biomass-burning 

methane from C4 vegetation from 2006 which was consistent with the findings of 
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Nisbet et al. (2016) where they mentioned in 2010 Amazonia experienced a major 

drought and biomass burning and the early 2010 rise in methane at Ascension 

(ASC; 8⁰S, 15⁰W) possibly been driven by biomass burning (Crevoisier et al., 

2013), were consistent with their observed enrichment of isotopic methane during 

early to mid-2010, both resulted from C4 savanna grassland fires. In the subsequent 

years 2012 onwards, we find biomass emission with no further change. Rice et al. 

(2016) mentioned lack of much data from bottom-up fire inventories on the long-

term trends in CH4 emissions from biomass burning in recent years (Granier et al., 

2011) but noted evidence of decreasing burned area from fires in recent decades 

(Giglio, Randerson, van der Werf, 2013; Yang et al., 2014) supporting the results 

of this work. 
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CHAPTER 6 

Summary and Conclusions
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In this chapter, the overall summary of this study is presented in section 6.1, the conclusions 

are presented in section 6.2 and some further improvements needed to better understand 

the methane budget in future are discussed in section 6.3. 

 

6.1. Summary 

 

The behavior of atmospheric methane is considerably more complex than other greenhouse 

gases and is much less understood on account of the spatiotemporal variability of its 

emissions which include biogenic (e.g., wetlands, rice agriculture, ruminants), thermogenic 

(fossil fuels) and pyrogenic (biomass burning) sources. After a sustained growth 

throughout most of the 20th century, the methane growth rate declined from ~15 ppb/yr 

during 1980s to ~6 ppb/yr in the 1990s falling to near zero and even negative values in the 

early 2000s. However, with some surprise, the growth rate rebounded in 2007 and annual 

increase in globally-averaged atmospheric methane abundance has been 7.86 ppb/year on 

average during the past 14 years from 2007 to 2020 [Ed Dlugokencky, NOAA/GML 

(gml.noaa.gov/ccgg/trends_ch4/)]. The driving factors of the slowdown in methane growth 

rate until 2006 are still debated and the post 2006 increase in the growth rate due to 

imbalance of CH4 sources and sinks are not yet understood clearly. Thus, this rise since 

2007 needed assessment of global methane budget for recent years. There are few studies 

which addressed multidecadal variability in atmospheric methane levels, but the relative 

contributions of different sources over decadal timescale are highly uncertain. To 

understand and quantify these spatio-temporal changes in source categories over last three 
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decades, global observations of spatial distribution of CH4 concentrations and isotopic 

composition act as top-down constraint in our atmospheric methane modeling work. 

Therefore, in this thesis, the decadal variations before 2006 and the recent changes post 

2006 in the global methane budget are estimated by atmospheric inverse modeling of global 

methane emissions over a time of more than three decades spanning from 1983 to 2015. 

The global methane optimized source strengths are calculated by inverse modeling of 

atmospheric observations and a priori information on temporal and spatial distribution of 

emissions, with the help of the chemical transport model GEOS-Chem at a horizontal grid 

resolution of 2⁰ × 2.5⁰ for atmospheric transport and exchange processes. The Kalman 

smoothing technique was used to derive time-dependent global methane emissions from 

various source processes with measurements of the atmospheric mixing ratios and carbon 

isotopic composition of methane over past three decades. In addition, inverse model 

sensitivity tests are performed to test the robustness of our results with respect to variation 

in number of measurement sites with different time spans of availability of data. The results 

of this work are found to be consistent with other recent studies and the summary of the 

analysis are pointed out as follows: 

 

➢ The Bayesian inversion using GEOS-Chem produced optimized emission 

estimates, constrained by long-term measurements of methane concentrations at all 

105 observational sites and carbon isotopic signatures at all 21 δ13C−CH4 

observational sites obtained from NOAA Global Monitoring Laboratory (GML) 

“event-level” CH4 measurements. The model simulated concentrations using 

optimized emissions demonstrated much better fit with the NOAA measurements 
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compared to the model simulated concentrations using prior emissions. The a priori 

values are obtained from the EDGAR inventory for anthropogenic emissions, 

GFED3 inventory for biomass burning emissions and from the GEOS-Chem base 

inventories for natural emissions, and uniformly scaled to match the prescribed OH 

sink. The model simulated concentrations using the a posteriori emission estimates 

matched remarkably well for both the long-term trend and magnitude of the 

observed NOAA concentrations as well as the seasonal cycle of the measurements. 

However, a few small discrepancies remain between model and observations 

already discussed in detail in  chapter 5 of this thesis. The interannual difference in 

the CH4 mixing ratios for some sites did not match perfectly. There are some 

overestimates and underestimates in carbon isotopic composition estimates along 

with their seasonal cycle at very few sites. 

 

➢ The inversion analysis indicated as seen in Figure5.3 that the emission rate from 

the anthro-thermogenic sources i.e., combined fossil fuels increased over most of 

the study period from 1990s to 2006 and again after 2012 until end of the study 

period, while anthro-biogenic sources increased rapidly from 2000 until 2011 and 

all biogenic sources increased rapidly from 2005 onwards until the end of the study 

period, whereas pyrogenic source of biomass burning showed a small increase since 

2005 until 2012 and remained almost constant thereafter. The results of this work 

as observed in Table 5.2 revealed that the total averaged global methane emission 

over years 1983 to 2015 is estimated to be 530±50 Tg/year. The global methane 

emissions over years of 1983 to 2015 from all biogenic sources of both natural and 
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anthropogenic origin account for ~73% of the total global CH4 emissions. Anthro 

biogenic sources attribute about 39% of the total CH4 emissions, whereas natural 

wetlands attribute about 34.5% of the total CH4 emissions. Emissions from fossil 

fuels sector constitutes about 18.5% of the total global CH4 emissions and from 

biomass burning about 8.3% of the total global CH4 emissions. 

 

➢ As seen in Figure 5.2, the inversion analysis indicated that there was a significant 

rise in emissions from gas and oil since late 1980s until 2001 and again 2010 

onwards and from coal since 2000s until 2006 and again 2011 onwards (seen in 

sensitivity tests ensemble), from ruminant livestock since 2000 until 2010 and from  

waste management since 1994 onwards, while emissions decreased from rice 

agriculture since 1990 until the end of the study period with much interannual 

variability and biomass burning over most of the period from 1991 to 2005 with 

little increase until 2012 and then remaining almost constant in recent years. 

Furthermore, the emissions from combined wetlands (Figure 5.3) from all over the 

world decreased during early 1980s, followed by an increase from late 1980s to 

2000, then again, a strong decrease until 2005, followed by a small increase with 

remaining almost constant until 2010 and then rapid increase from 2011 onwards 

until the end of the study period. 

 

➢ Global budget of methane emissions per source category for over entire time period 

(01/1983-12/2015), over three separate decades (01/1983-12/1993, 01/1994-

12/2005, 01/2006-12/2015) and then over separate time periods of 01/2006-
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12/2010 and 01/2011-12/2015 are tabulated (Table 5.3). The total averaged global 

methane emission in the decade of 2006-2015 is estimated to be 543±44 Tg/year 

which is ~20 Tg/year more than that during previous decade, during 2006-2010 it 

is estimated to be 539±44 Tg/year, whereas during 2011-2015, the estimated 

emission reached 547±45 Tg/year. The averaged emission estimate of all biogenic 

sources (both natural and anthropogenic) shows an increase of about ~25 Tg/year 

during 2006-2015 than that during 1994-2005, whereas the anthro-biogenic sources 

show highest increase in averaged emission estimate of about ~43 Tg/year during 

2006-2015 than that during 1994-2005. It was observed in the table that mainly the 

source categories of coal, livestock, wastes, biomass burning of C3 vegetation and 

northern high latitude wetlands show increase in their averaged emission estimates 

of ~2 Tg/year, ~31 Tg/year, ~18 Tg/year, ~1 Tg/year and ~3 Tg/year respectively, 

during the decade of 2006-2015 than that during previous decade. 

 

➢ Methane emissions estimated from three geographically separated wetland zones 

based on latitude ranges 90⁰N-30⁰N, 30⁰N-0⁰ and 0⁰-90⁰S give us more detailed 

information about the spatial and temporal distribution of the natural methane 

emissions from wetlands from around the globe. The results from this work showed 

that the emission from southern hemispheric wetlands (0⁰-90⁰S) had no significant 

trend from the beginning of our study period until 2000 with a sudden spike in the 

emissions during 1991-1992, followed by a long-term decrease in emissions until 

2006, then again, an increase until 2010 with a decrease in emissions until 2013 

and then again, a rapid increase in emissions over next subsequent years from 2013 
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onwards. Our result is supported by wetland models comparison study of Melton 

et al. (2013) which suggested the tropical wetland emissions are higher in the 

southern hemisphere. Southern hemisphere wetland methane emissions are 

considered important as Nisbet et al. (2016) mentioned that the National Oceanic 

and Atmospheric Administration (NOAA, USA) Cooperative Global Air Sampling 

Network and Royal Holloway, University of London (RHUL, UK) measurements 

of methane mole fraction and δ13C-CH4 from southern hemisphere polar, tropical 

and equatorial regions record trends of strong and sustained methane growth from 

natural biogenic sources since 2007 onwards with higher yearly rise in 2014 which 

is also corroborated by our results. The northern hemispheric tropical (0⁰-30⁰N) 

wetland emission showed a positive trend until 2000, then a decade of negative 

trend, with a rapid decrease in emissions during 2009-2010 and then significant 

increase in emission during 2011-2014 due to monsoonal effects in South and East 

Asia, and then after 2014 again a negative trend is observed. There is rise in 

emissions from northern higher latitude (30⁰-90⁰N) wetlands from start of the study 

period until 1991, which then showed no significant trend until 2006, a positive 

trend since 2007 onwards exceeding the decadal average, with a rising spike in 

emissions in 2012 followed by a dip in 2013 and again a positive trend since 2014 

onwards until the end of the study period was observed. Our result is consistent 

with several other studies such as Kirschke et al. (2013), Nisbet et al. (2016) which 

also revealed similar trends in methane emissions from boreal and Arctic wetlands 

in response to abnormal high temperatures in 2007.  
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➢ Methane emissions from biomass burning of C3 and C4 vegetations estimated 

separately show different trends. For C3 vegetation burning, methane emissions 

show same trend as that from the total biomass burning emission trend, with a 

slightly positive trend in late 1980s until 1991, then a prolonged decrease in 

emissions until 2005 with a large sharp anomaly peak during 1997-1998 and a small 

peak in 2003, then a slight increase until 2012 with a small dip during 2008-2009 

and during recent years the emissions exhibit roughly constant emissions. Some 

studies suggested that the pronounced anomaly peak in the 1997-1998 may have 

caused by the massive emissions from Indonesian forest fires due to the changing 

land use which made the tropical forest vulnerable to fire during a drought 

associated with that year's El Niño. For C4 vegetation burning, methane emissions 

show a positive trend during 1988-1989, then show a decrease in emissions until 

2005 with fluctuations and again an increase during 2006-2007, later a slight 

negative trend and then remaining almost constant over next subsequent years. 

Within this variability, the emission anomalies for C3 vegetation show more long-

term fluctuations until 2009 than that for C4 vegetation and after that fluctuations 

show significant decrease during years thereafter. Other recent studies also agreed 

well on the long-term decrease of biomass-burning emissions over past decades and 

in most recent years. 

 

➢ It can be inferred from the plots that the wetlands are the largest contributor to the 

interannual variability and growth rate of methane emissions over the entire 

inversion time period as the plot patterns of aggregated wetlands and total 
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emissions are found to be in phase to each other. Within this variability, the 

emissions from wetlands show few long-term changes in anomalies until 2005 and 

after that these decrease through the end of the study period except during 2010-

2012. The biomass burning emissions show smaller contribution towards 

interannual variability except the large emission peak during 1997-1998 anomaly. 

The wetland emissions appear to be the primary cause of 1991-1993 anomaly in 

the total aggregated category of emissions, large biomass burning emission in 1997 

also with elevated wetland emissions in 1998 may have contributed to the 1997-

1998 anomaly in the total emission category. However, the derived emission 

anomalies from all sources depend on the assumption of constant OH. 

 

➢ The average seasonal cycles of seasonally varying sources are also estimated in this 

study. The seasonality of these sources can be explained better with consideration 

of weather patterns existed worldwide, as compared to the a priori emissions,  

depicting that the model simulated a posteriori emissions are overall best 

representation of the withheld observational data of methane concentrations. The 

inversion showed larger maxima peaks for sources of rice cultivation, boreal 

wetlands, and Southern Hemispheric wetlands in comparison to the priors. It can 

be noted in the plots that the a priori total emissions peak in August whereas a 

posteriori total emissions peak in July and September, driven by combined effects 

of emissions from wetlands (90N-30N), rice cultivation and biomass burning of C3 

vegetation. A smaller maximum in April displayed in the a posteriori total 
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emissions, corresponded to the driving effect of emissions from Southern 

Hemispheric wetlands. 

 

➢ This work was motivated to do the inversion process with higher horizontal grid 

resolution of 2⁰ × 2.5⁰ in order to reduce the model data mismatch errors and 

increase the weights of the information content from the measurements relative to 

the a priori fluxes in the inversion producing stronger observational constraints on 

the optimized fluxes. This higher resolution grid allowed us to extract more 

information from the observations due to improved ability of the model to simulate 

CH4 at each monitoring station and decreased need to aggregate neighboring 

stations within model grid cells, leading to more accurate estimates of the retrieved 

time-dependent CH4 fluxes and therefore, improved our understanding of the 

driving sources underlying the current variations in the global methane budget. 

 

➢ As one of the main goals of this study was to test how the results of optimized 

methane emissions would change when using the raw measurement data of CH4 

from NOAA event files in the process of inversion at a higher horizontal grid 

resolution of 2⁰ × 2.5⁰ rather than using much processed GLOBALVIEW data of 

CH4 at a coarser horizontal grid resolution of 4⁰ × 5⁰, the comparison between the 

results of optimized methane emissions from this current inversion work (2⁰ × 2.5⁰) 

and previously done inversion work (4⁰ × 5⁰) up through the end of 2008 was done. 

The most prominent differences in the emission anomalies plots between the two 

until the end of 2008 were found in the individual source categories of gas and oil, 
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coal, livestock and waste (Figure 5.6) and in the aggregated source categories of 

fossil fuels, wetlands and all biogenic (Figure 5.7).  

 

➢ In this work, sensitivity tests were conducted to assess the impact of discontinuity 

in the data coverage over the entire time of inversion for different observation sites 

on the methane flux trends. Seven different sensitivity tests were performed where 

the number of observational sites was varied based on the number of years with 

continuous availability of data. The sensitivity test inversion scenarios for all of the 

source categories maintained same trends of methane emissions throughout the 

study period as base case inversion scenarios discussed above but, in some cases, 

with significantly wider range in the mean values of the emissions. It was observed 

that aggregated sources of fossil fuels and anthro-biogenic sources (Figure 5.3) and 

individual sources of gas and oil, coal, livestock and wastes categories (Figure 5.2)  

are more sensitive to the variation of network densities of observation sites with 

continuous data coverage. 

 

6.2. Inferences 

 

The analysis in this study revealed the spatial and temporal changes in the distribution of 

atmospheric methane emitted from all around the world for more than three decades and 

explained the recent variations in the relative contributions of the emissions from 10 

different source categories vital in the global methane budget. This work with the 

sensitivity tests assessed the contribution of these ten source categories to the spatial 
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heterogeneities in the observed CH4 record and provided a new look into the causes of the 

recent growth in atmospheric methane. The rise of methane since 2007 and the decrease of 

the 13CH4/
12CH4 ratio of atmospheric methane suggests that the post 2006 methane growth 

was caused by an increase in 13CH4-depleted biogenic emissions. Recent published studies 

have attributed this growth to increasing emissions from wetlands, rice agriculture, and 

ruminants. We find that the total averaged global methane emission over years 1983 to 

2015 is estimated to be 530±50 Tg/year, over the decade of 2006-2015 is 543±44 Tg/year 

which is ~20 Tg/year more than that during previous decade, over years 2006 to 2010 it is 

estimated to be 539±44 Tg/year, whereas over years 2011 to 2015, it is estimated to be 

547±45 Tg/year. The global methane emissions over years of 1983 to 2015 from all 

biogenic sources of both natural and anthropogenic origin account for ~73% of the total 

global CH4 emissions. Anthro-biogenic sources contribute about 39% of the total CH4 

emissions, whereas natural wetlands contribute about 34.5% of the total CH4 emissions. 

Emissions from fossil fuels sector constitutes about 18.5% of the total global CH4 

emissions and from biomass burning about 8.3% of the total global CH4 emissions. 

 

 The averaged emission estimate of all biogenic sources (both natural and anthropogenic) 

showed an increase of about ~25 Tg/year during 2006-2015 than that during 1994-2005, 

whereas the anthro-biogenic sources showed highest increase in averaged emission 

estimate of about ~43 Tg/year during 2006-2015 than that during 1994-2005. Mainly the 

source categories of coal, livestock, wastes, biomass burning of C3 vegetation and northern 

high latitude wetlands showed increase in their averaged emission estimates of ~2 Tg/year, 

~31 Tg/year, ~18 Tg/year, ~1 Tg/year and ~3 Tg/year respectively, during the decade of 
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2006-2015 than that during previous decade. The averaged CH4 emission estimate from 

source of gas and oil increases by ~7 Tg/year, estimate from waste increases by ~13 

Tg/year, estimate from burning of C3 vegetation increases by ~6 Tg/year, from wetlands 

(90N-30N) increases by ~1 Tg/year, from wetlands (0-90S) increases by ~5 Tg/year, 

whereas from northern tropical wetlands decreases by ~6 Tg/year and coal mining 

decreases by ~12 Tg/year during 2011-2015 than during 2006-2010. For aggregated 

categories, the increase in averaged emission estimates during 2011-2015 compared to that 

during previous 5 years, are mainly from sources of all biogenic (~9 Tg/year), anthro-

biogenic (~9 Tg/year), natural wetlands (~1 Tg/year) and biomass burning (~5 Tg/year), 

whereas fossil fuel source shows a decrease of ~6 Tg/year. The dominant contributions for 

the interannual variability in the flux anomalies are from wetlands.  

 

Finally, it can be concluded from the results of this study that the major contribution of 

emissions from all biogenic sources both natural and anthropogenic as well as minor 

contribution from biomass burning may have caused the increase in global methane levels 

since post-2006. It is revealed that the emissions from individual source categories of 

livestock, wastes, coal, northern high latitude wetlands and biomass burning of C3 

vegetations had increased during 2006-2015. Although a persistent increase in total 

methane levels was observed until the end of the study period, but a shift in relative 

contributions from the emissions of individual source categories might have occurred since 

2011 onwards. With the decline in emissions from anthro-biogenic sources of livestock 

and rice, from northern tropical wetlands, from fossil fuel source of coal and from biomass 

burning of C4 vegetations since 2011-2012, the increase in global methane levels since 
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2011 until the end of the study period might possibly be due to the contribution of increased 

emissions from sources of wastes, natural wetlands (southern hemisphere and northern 

high latitudes), fossil fuel source of gas and oil and biomass burning of C3 vegetations 

globally.  

  

With a radiative forcing of 0.97 W/m2 including both direct and indirect effects and a global 

warming potential of 28 over a 100-year time horizon, methane (CH4) is considered as the 

second most important greenhouse gas after CO2. The current globally averaged 

atmospheric methane monthly mean mole fraction value in March 2021 is 1888.5 ppb as 

reported by NOAA ESRL GML data [Ed Dlugokencky, NOAA/GML 

(gml.noaa.gov/ccgg/trends_ch4/)] which is already ~110 ppb higher since 2007. As CH4 is 

the first indicator and first responder (Severinghaus and Brook, 1999; Möller et al., 2013; 

Etheridge et al., 1998; Nisbet et al., 2016) to the climate change, this recent unprecedented 

increase of methane might be showing us just the tip of an iceberg, as a forthcoming sign 

of much severe changes in climatic conditions in the near future. The reconfiguration of 

CH4 budget since 2006 with dominated microbial emissions from climate-sensitive natural 

biogenic sources and human induced anthro-biogenic sources of livestock and wastes, 

implies that methane emission is responding to the changes in global temperature and 

precipitation as well as the changes in demand and supply for food and other resources for 

ever-increasing human population around the globe. During last decade since 2011, CH4 

budget might have undergone reconfiguration with dominated emissions from both 

biogenic sources and thermogenic sources. Wetland emissions play a significant role in the 

global methane budget with largest contribution in the global methane flux trend and 
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variability. Thus, wetland CH4 emissions influence climate to change, whereas in turn, 

wetland emissions themselves are sensitive enough to respond to the changes in climate 

and are accounted for past changes in global atmospheric CH4 concentration followed by 

abrupt (Chappellaz et al., 1997; Brook et al., 2000; Huber et al., 2006) and glacial-

interglacial (Loulergue et al., 2008) climate changes (Melton et al., 2013). This positive 

climatic feedback apparently highlighted global wetlands to be considered as a subject of 

great concern to have impact on climate for their potentiality of causing large scale methane 

emissions in future global warming scenarios by the US Climate Change Science Program 

(CCSP, 2008) (Melton et al., 2013). In addition, due to increase in demands of energy 

production, the emissions from fossil fuel sources such as potential intensive exploitation 

of natural gas from shale formations and coal mining from around the world might reduce 

the effects of mitigation efforts and accelerate climate change (Kirschke et al., 2013).  

 

6.3. Future Improvements 

 

Our analysis as well as other studies suggest that improvements in the wetland models are 

needed by implementing better representation of wetlands areal extent, wetland CH4 

emissions in space and time, correlation between wetland area and response of CH4 

emissions with CO2 concentration, global temperatures, and global precipitations, better 

availability of high spatial resolution wetland methane observation datasets and remotely 

sensed inundation datasets, reduction in parameter and structural uncertainties involved in 

all above processes. Improvements in better understanding of wetland hydrology, 
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biogeochemistry, and permafrost dynamics (Melton et al., 2013) and including their 

updated information in earth system and global climate models will be of much help in 

quantifying global wetland CH4 emissions. Knowledge of global, regional, and local 

methane emission estimates (Dlugokencky et al., 2011) along with regular updates are 

required. More evenly distributed surface network measurements of methane 

concentrations and isotopic composition should be integrated with satellite data and ship 

track records with regular updates. Anthropogenic and biogenic emission estimates need 

to be improved in inventories (Kirschke et al., 2013) to deal with renewed increase in 

emissions from new fossil fuel sources such as extraction of natural gases from shale 

formations and wetland emission variations due to fluctuating temperatures in higher 

latitudes and precipitation in tropics. Better uncertainty reduction in all steps from data 

collection to chemistry and transport in bottom-up as well as top-down atmospheric models 

will be helpful. Better knowledge of some tracer gases can help in source attribution such 

as global ethane abundance in atmosphere and methane-to-ethane ratios can resolve to 

distinguish between the sources as in fugitive fossil fuel emissions and biomass burning 

emissions (Simpson et al., 2012; Rice et al., 2016). Comparison of abundance of ammonia 

as a co-emitter along with CH4 can help quantify the impact of livestock and waste 

management CH4 emissions on the recent rise of global methane (Peischl et al., 2018). 

Trends of global OH concentration and methyl chloroform mole fractions present in the 

atmosphere along with hemispheric differences should be regularly monitored and 

updated. Estimated OH interannual variations over time synergized as sink with the 

calculation of methane estimates coupled in the models will provide more accurate and 

promising results with GEOS-Chem running parallel to the inverse model which may 
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increase the computational demands (Röger, 2013). More accurate meteorological data 

over the entire time of modeling with higher spatial grid resolution (Röger, 2013) can 

improve the regional estimates with better precision. Furthermore, we need to explore the 

sensitivity of our results to a number of choices of numerous model parameters in separate 

inversion setups. 

 

In perspective of making global climate change mitigation policies, methane with 

approximately 10 years of atmospheric lifetime which is shorter as compared to that of 

other greenhouse gases, reduction in its emission can serve as immediate effective measure 

against global warming. Moreover, further mitigation efforts in global level should address 

the methane source attribution of fossil fuel emissions, waste and landfill emissions, global 

wetland emissions including emissions from thawing of permafrost and hydrates due to 

Arctic warming. Atmospheric methane already known for its potentiality to exaggerate the 

global climate warming with large positive feedback, poses a threat to future climate 

change and better quantification of global methane budget and its changes with regular 

updates seems to be a challenge; whereas its ability to get destroyed in relative shorter time 

gives the opportunity towards possible mitigation step with reduction in its emissions 

(Kirschke et al., 2013).  

 

Thus, the significance of this modeling work lies with its contribution in meeting the 

challenges of quantifying more than three decades of global methane budget and its 

variations more accurately in both spatial and temporal scale and helping policy makers to 
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accept the opportunity to utilize shorter lifetime of methane in the atmosphere for 

developing effective climate change mitigation policies which are required soon. 
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Table A.1: List of a few* IDL routines used in this work. 

Routine Description 

monthly_avg_CH42016_SK.pro  

Processes the raw NOAA observation data to a form 

taking uncertainties into account which is input to the 

inversion. Includes the steps involved in processing the 

observational data for calculating the daily-averaged and 

consecutively monthly-averaged methane mixing ratios 

and associated total uncertainties and consequently 

creating concentration data-set to be used in the inversion. 

Total_CH4_ResponseAdjIso_bpch_SK.pro  

Generates plots the decay of emission of 1 Tg of total CH4 

mass over the entire model run time in the adjusted 

response function file for isotopes. 

plot_H.pro 

Generates plots comparing response functions i.e., H.bin 

files created in 4⁰ × 5⁰ and 2⁰ × 2.5⁰ grid resolution for lag 

months 0 to 11, using constant observation month of 

07/2006 and also of 12/1980 for each source, for 20 sites 

distributed around the world. 

plot_H_adj.pro 

Generates plots comparing adjusted response functions 

i.e., H_adj.bin files created in 4⁰ × 5⁰ and 2⁰ × 2.5⁰ grid 

resolution for lag months, using constant observation 

month at the end of entire model run time for each source, 

for 20 sites distributed around the world. 

plot_H_adjIso.pro 

Generates plots comparing adjusted response functions for 

isotopes i.e., H_adjIso2_Strat.bin files created in 4⁰ × 5⁰ 
and 2⁰ ×2.5⁰ grid resolution, using constant observation 

month at the end of entire model run time for each source, 

for 20 sites distributed around the world.  

compare_INVERSION_bpch_timeseries.pro 

Compares the plots of INVERSION.bpch timeseries of 7 

months, using observation month of 07/1980, 07/2006, 

01/2013 and 01/2015 for each source, created from model 

run at 4⁰ × 5⁰ (red lines) and 2⁰ × 2.5⁰ (blue lines) grid 

resolution.  

site_indices.pro 

Reads in ‘Concentration_data.txt’ files for both 4⁰ × 5⁰ 

and 2⁰ × 2.5⁰ grid resolution and creates two output files 

named ‘NOAA4x5Site_indices.txt’ and 

‘NOAA2x25Site_indices.txt’ printing names and 

corresponding grid indices of all observation sites. 

Check_gridIndices.pro 

Checks latitude and longitude coordinates of each 

observation site and also whether grid indices for each site 

were transformed from latitude and longitude coordinates 

correctly or not.  

gv_SK_2016.pro 

Reads in input text file 

‘processed_NOAA_CH4_2016_reduced.txt’ and 

considers  aggregation, mismatch error calculation, 

uncertainty assignments, correcting data from ocean 

transects and then generates output text file named 

‘NOAA_2016_OceanCorrect.txt’. 

*Includes only new routines which are coded by me for this work, all other routines also used in previous 

work which are improved by me for this work are not included in this list. 
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