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Abstract

This dissertation analyzes the global dynamics of 1-dimensional agent

arrays with nearest neighbor linear couplings. The equations of motion

are second order linear ODE’s with constant coefficients. The novel part

of this research is that the couplings are different for each agent. We

allow the forces to depend on the relative position and relative velocity

(damping terms) of the agents, and the coupling magnitudes differ for

each agent. Further, we do not assume that the forces are “Newtonian”

(i.e., the force due to A on B equals minus the force of B on A) as this

assumption does not apply to certain situations, such as traffic modeling.

For example, driver A reacting to driver B does not imply the opposite

reaction in driver B.

There are no known analytical means to solve these systems, even

though they are linear. Relatively little is known about them. To estimate

system behavior for large times we find an approximation for eigenvalues

that are near the origin. The derivation of the estimate uses (generalized)

periodic boundary conditions. We also present some stability conditions.

Finally, we compare our estimate to simulated flocks.

i



Acknowledgments

I’d like to thank Prof. Veerman for all his help and Digimarc for their

ongoing support. Professors Daescu, Leung, Caughman and Wakeland all

made helpful suggestions. I’m also grateful to Gillian Nance — proof-

reader and grammarian extraordinaire.

Finally, thanks to Serge Preston, who convinced me to return to Math-

ematics research. He was a great Mathematician, a good friend, and a

tremendous inspiration.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Sequences of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Graph Laplacians . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Reading this Document . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Simple Coupled Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Three Coupled Agents On A Circle . . . . . . . . . . . . . . . . . . . 17

1.4 A Sequence of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Sequence of Identical Agents . . . . . . . . . . . . . . . . . . . . . . . 31

1.5.1 Nearest Neighbor Interaction . . . . . . . . . . . . . . . . . . 33

1.5.2 Next-Nearest Neighbor Interaction . . . . . . . . . . . . . . . 33

1.6 Sequence of Three Agent Types . . . . . . . . . . . . . . . . . . . . . 34

2 Sequences with Distinct Weights . . . . . . . . . . . . . . . . . . . . . 38

2.1 Distinct Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Linear Nearest Neighbor Systems . . . . . . . . . . . . . . . . . . . . 39

2.3 Characteristic Polynomial Expansion . . . . . . . . . . . . . . . . . . 48

2.4 Expansion Coefficients Near the Origin . . . . . . . . . . . . . . . . . 50

2.5 Characteristic Polynomial Near 0 . . . . . . . . . . . . . . . . . . . . 57

2.5.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5.2 Other Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.3 Immediate Consequences . . . . . . . . . . . . . . . . . . . . . 66

2.5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 75

2.7 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

iii



Appendix A General Formulas . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix B Routh Hurwitz Stability . . . . . . . . . . . . . . . . . . . 101

B.1 Routh–Hurwitz Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.2 Routh–Hurwitz Examples . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix C Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.1 Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.2 Shift Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.3 Circulant Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.4 Eigenvalues of Circulant Matrices . . . . . . . . . . . . . . . . . . . . 112

C.5 Almost Circulant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix D Coordinate Transform . . . . . . . . . . . . . . . . . . . . . 117

Appendix E Identical Agent Calculation in Cantos . . . . . . . . . . . 119

Appendix F Two Distinct Phase Velocities . . . . . . . . . . . . . . . . 121

Appendix G Sound Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix H PDE Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

iv



List of Figures

1 Two Agent Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Three Agent Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Sequence of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Sequence With Three Agent Types . . . . . . . . . . . . . . . . . . . 34

5 Sequence With q sub-sequences with p Agent Types . . . . . . . . . . 39

6 Plot showing eigenvalues of flock with p = 4. The matrix M0(ν)

has 2p = 8 eigenvalues shown by the X’s. The green lines are the

eigenvalues for Mϕ as ϕ changes. The plots only contain half of the

allowable values, so the curves are clear. Notice there are two curves

of different curvatures emanating from the origin. . . . . . . . . . . . 67

7 Plots showing flock behavior with various measurements indicated.

The green vertical arrow shows the time T1. The yellow and red ar-

rows show max and min separations respectively. In this example, the

longest yellow arrow is A1. The red arrow is A2 and the smaller yellow

arrow is A3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 In this plot M has periodic boundary conditions. The approximation

for the eigenvalues is quite close near the origin and both loci are clearly

visible. Eigenvalues far from the origin are not well approximated by

the second order curves of Theorem 2.5.1. . . . . . . . . . . . . . . . 85

9 In this plot we compare the eigenvalues of M to the two second order

approximations. This is the same system as Figure 8 exceptM satisfies

“constant velocity” boundary conditions. In this case, the (c1,−, c2,−)

locus is missing from M. . . . . . . . . . . . . . . . . . . . . . . . . 86

10 This plot is a deeper magnification of the system in Figure 9 and so

M satisfies “constant velocity” boundary conditions. . . . . . . . . . 87

11 The system in this figure is the same as in Figure 9 except that βv < 0.

In this case the eigenvalues ofM are offset to the right of the estimation

locus. The result is that several of the eigenvalues are negative and

the system is unstable. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

12 Example comparing eigenvalues of M to the two estimate loci. The

system shown in this figure satisfies periodic boundary condition. . . 89

13 These plots show the eigenvalues of the system in Figure 12 except that

M has “constant velocity” boundary condition. The locus determined

by (c1,+, c2,+) does not appear in the actual eigenvalues of M. . . . . 89

v



14 This system is the same as in Figure 12 except that M has “constant

velocity” boundary conditions. These plots show the flock behavior for

M. The plot on the left is stable and the plot on the right is not. The

plot on the right shows the same system except βv → βv. In this case

the flock is unstable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

15 These plots show the flock behavior when M has periodic boundary

conditions. A single delta function is applied, and the system is left

to “ring”. These plots only show the last 20 elements in the flock tail.

The system in Figure 8 is stable and the system in Figure 12 is unstable. 91

16 Plots comparing computed vs predicted T1 for two sets of parameters. 92

17 Plots comparing computed |c1,+/c1,−| estimates to the measured values

|A2/A1|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

18 Simulation of truck convoy with 400 agents. . . . . . . . . . . . . . . 95

vi



1 SEQUENCES OF AGENTS

1.1 Introduction

In this dissertation we study the dynamics of a one-dimensional array of agents that

interact with each other. This system could be a model for a physical process or

agents equipped with engines. The agents can apply forces that depend on distances

or differences in velocity. This means that the equations of motion of our system do

not have to be Hamiltonian or even Newtonian (i.e., the force due to A on B equals

the minus the force of B on A).

The dynamics of a one-dimensional lattice of coupled agents is a model for many

physical systems and so has a long history. If all the agents are identical then connect-

ing nearest neighbors with Hooke’s Law results in a simple model of one-dimensional

crystals [1]. In this case, if one assumes periodic boundary conditions, then the eigen-

vectors of the system are the Discrete Fourier Transform basis functions. In the 1950’s

this nearest neighbor crystal model was extended to include agents of different mass

[9].

In the 1950’s, simplified “microscopic” traffic models appeared with agents cou-

pled with a force dependent on spatial differences and an added force that is a function

of the difference of agent velocities [7] (see [17] for a survey of traffic models). The

velocity-dependent force term originated as an empirical law and will play an impor-

tant part in our discussion. The basic idea is that an automobile agent attempts to

follow a leader by attempting to keep his own velocity close to the velocity of his

neighbors. Since this pioneering work, the subject of cooperative control has ma-

tured considerably [21, 25]. Recent technological advances make automated traffic

platoons possible so there has been renewed interest in one-dimensional lattice dy-

namics. There are several works on both single [18, 19] and double integrator systems
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[22, 15, 18]. The results for both single and double integrator systems with nearest

neighbor interactions are summarized in [19].

In the one-dimensional traffic platoon, one would like to know whether is it pos-

sible, or even reasonable, to have a long platoon consisting of N agents. If we form

a caravan of trucks, do we need to break the caravan into separate small chunks or

can we form a single caravan of, perhaps, over a thousand trucks? There is a large

volume of literature on this topic, but almost all the literature addresses this question

by citing an unrealistic case wherein all cars are identical or distributed in some other

highly improbable way. Each agent is distinct and may have a unique mass. We can

force the forward and backward couplings to have a specific ratio, but it is difficult

and certainly impracticable to insist that the force magnitudes are identical for all

agents. The entire Section 2 is devoted to this specific problem. Constraints are

placed on the ratios of the forward and backward couplings but the weights g
(α)
x , g

(α)
v

are chosen randomly from a distribution.

More specifically, in this work, we shall analyze a one-dimensional lattice of agents

with linear nearest neighbor couplings determined by the distance and the velocity

difference between neighbors. We will assume equations of motion where the force

on an agent is linear in position and velocity differences (double integrator system).

We shall not assume that the forces are “Newtonian” (i.e., the force due to A on B

equals the minus the force of B on A).

In previous work [5, 6] it was shown that if the agents are identical and the system

has periodic boundary conditions, then the equations of motion are solvable. This

system has equations of motion given by the ODE,

d

dt

z
ż

 =

 0 I

−gxLx −gvLv


z
ż

 , (1)
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where z is the position vector, Lx,Lv are row-sum zero circulant tri-diagonal matrices

and gx, gv are scales for the two matrices. We add negative signs so that the stability

conditions have positive gx and gv. Since the matrices are circulant, gxLx and gvLv

commute. This is instrumental in finding solutions and deriving the conditions of

stability. If the forces are extended to include next-nearest neighbor terms, then

assuming periodic boundary conditions, the equations of motion are, also, given by

equation (1). As in the nearest neighbor case, Lx and Lv are row-sum zero circulant

matrices, but this time, they have 5 non-zero diagonals. The solutions are more

complicated, as are the conditions of stability, [16]. For both systems, the matrices

Lx and Lv commute. In both these cases, the characteristic polynomial has a double

root at 0, which corresponds to the stable configuration where all agents are moving

at a constant velocity. The asymptotic behavior of the system may be found by

expanding the discrete zero locus around this point. On stable systems, roots near

the origin dominate the long-term behavior of the system, as other roots have larger

negative real components, and so decay faster. Expanding the characteristic equation

near the origin yields an approximation to the signal velocity and a dispersion term.

However, in this work, we do not assume that the agents are identical. Instead,

we introduce a repeating sequence of p distinct agents duplicating this string and use

an extension of periodic boundary conditions, first described in [3]. In particular, let

A0, · · · , Ap−1 be p agent types organized in a one-dimensional lattice,

Ap−1 ↔ Ap−2 ↔ · · · ↔ A1 ↔ A0.

We then repeat this p−sequence q times to get a total of N = pq agents. In the

general form for this system, the matrices Lx and Lv, do not commute. The case

for p = 2 and p = 3 is analyzed in [3] for both nearest neighbor and next nearest

3



neighbor interactions. Since Lx and Lv, do not commute the system is considerably

more difficult to analyze, but some conditions necessary for stability are derived.

In this dissertation, we present a variety of tools to analyze this general system.

The goal is first to understand the periodic case and then to use these results to shed

light on the general system of N agents traveling on the real line. To pursue the

dynamics of a general system we start with the system in equation (1), where Lx and

Lv are the circulant matrices with −1 on the diagonal. The matrix Lx is assumed to

have 1/2 on the sub and super diagonals. The matrix Lv is assumed to have fixed

values ρx,+ on the super-diagonal and ρx,− on the sub-diagonal. This is the system

in [6] except that we extend this by scaling each row by a distinct value, which is the

same as taking distinct weights g
(α)
x and g

(α)
v . In this case equation (1) becomes

d

dt

z
ż

 =

 0 I

−GxLx −GvLv


z
ż

 , (2)

where Gx and Gv are diagonal matrices with positive real values. Again, we note

that GxLx and GvLv do not commute, so this system is more difficult to analyze. In

Section 2.5 we analyze the dynamics by expanding the characteristic polynomial root

locus around the double root at 0. As in the problems above, the asymptotic behavior

of the system is given by roots near the double root at 0. Expansion around 0 results

in expressions for the signal velocity and a dispersion term, given in Theorem (2.5.1).

The expansion, used in Section 2.5, requires an extension of the periodic boundary

condition first found in [5] and [3]. We take the p distinct agents and repeat them q

times. This guarantees that the discrete locus is well approximated by a continuous

curve as q gets large, and this allows us to use a Taylor expansion. In the simulations

in section 2.8 we will set q = 1 and show that the results apply well to the general
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case of N = p distinct agents.

The stability of this general system is complicated. If the system is stable, then all

the eigenvalues of the linear operator must have eigenvalues in the left half complex

plane (e.g. the real part cannot be positive). This is called “Hurwitz Stability” and

is captured in the following definition.

Definition 1.1.1. Given a linear dynamical system that is governed by a matrix M.

The system is called Hurwitz stable if all the eigenvalues of M lie in the open left half

complex plane except for a possible double eigenvalue at the complex origin.

In Section 2.7 we discuss and derive some necessary conditions for stability. If one

adds additional constraints one can derive more general stability conditions.

1.1.1 Graph Laplacians

The Laplacians in the one-dimensional problem are circulant in the periodic case

and almost circulant for other boundary conditions. This simplified structure is a

result of the simplified configuration where agents are on either R1 or S1 and agents

interact with their k-nearest neighbors. A more general system assigns agents to a

node of a graph and interactions are determined by the graph edges. For details on

Graph Theory, see [8, 13]. The Laplacian on a graph is a model for disease [23], agent

dynamics [24, 27], diffusion and Markov Chains [14, 8]. In these applications, the

equations of motion have some variant of the following linear system,

dxk
dt

= −
∑
j

Lkjxj, (3)

where Lkj is the graph Laplacian. The graph Laplacian is a row-sum zero matrix.

It’s a generalization of the discrete Laplacian. For a function f : R → R the discrete
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derivative is

f ′(x) =
1

∆
(f(x+∆/2)− f(x−∆/2)) .

The second derivative is

f ′′(x) =
1

∆
(f ′(x+∆/2)− f ′(x−∆/2)) =

1

∆2
(f(x+∆)− 2f(x) + f(x−∆))

In the discrete case we set ∆ = 1 and get the row-sum zero pattern,

f ′′
i = [1,−2, 1] [fi+1, fi, fi−1]

T .

In [28] the structure of the Laplacian is related to the structure of the underlying

directed graph. In a directed graph, an edge is an ordered pair of nodes (i, j), which

we denote i → j. To every edge (i, j) we assign a positive weight wji. To construct

the Laplacian, we first construct the combinatorial adjacency matrix Qji where the

value Qji is the edge weight for the edge j → i. We divide each non-zero row of Qij

by the sum of the weights in that row and get the normalized adjacency matrix, S.

The Laplacian is L = E − S where E is the identity on non-zero rows or zero on

zero sum rows. This Laplacian is row-sum zero and is the graph equivalent to the

Riemannian manifold Laplacian. As in the Riemannian case the Laplacian reflects

the underlying geometry.

Given a vertex i in a directed graph, the “reachable set” of i is the set of vertices,

R(i), with j ∈ R(i) if there are a series of directed edges from i to j. A “reach” is a

maximal reachable set. A “cabal” is a collection of vertices for which the reachable

set of the vertex is the entire reach. These features of the graph are all reflected in the

Laplacian. Assume that the graph has N vertices. The matrix L is singular N ×N

matrix. The vector 1N = [1, 1, · · · , 1] is in the kernel. More generally, one can show
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that the dimension of the kernel of L is the number of reaches of the underlying graph

(see [28]). One can also show that the eigenvalues of L are all located on the right

half plane.

The dynamics on the graph determine the flow of functions f : V → R, where V

is the set of N vertices. The basic linear differential equations have two forms,

dpk
dt

= −
N∑
j=1

Lkjpj, (4)

dpk
dt

= −
N∑
j=1

pjLjk, (5)

where pk(t) is the value at vertex k. The dynamical system described by equation (4)

is called consensus and the system described by equation (5) is diffusion. By choosing

−Lkj we guarantee that the eigenvalues are all in the negative half plane.

One property of the diffusion equation in equation (5) is

d

dt

(
N∑
k=1

pk

)
= −

N∑
j,k=1

pjLjk = 0,

since Ljk is row-sum zero. The property is a variant of the conservation of mass.

Next, setup a point mass with pk = 1, but all other pj = 0. Equation (5) is

dpk
dt

= −
N∑
j=1

pjLjk = −Lkk ≤ 0,

so that the point mass will decrease in time. The only case where pk does not decrease

in time is when the node k has no incoming vertices, so that Qkj = 0 for all j. This

means the kth row of Lkj is zero and k is a singleton Cabal. In all other cases the

7



“mass” decreases at k. If there is a vertex k → i, then Qik > 0, so

dpi
dt

= −
N∑
j=1

pjLji = −Lkj > 0.

If the edge k → i exists, then the value pi increases. If k is a singleton Cabal, then

there are no such edges, and the system is static. In general, the mass diffuses from

node k to i and continues to flow opposite to the edge direction until the mass reaches

the Cabal. The zero eigenstates of this system consist of equal weights among the

Cabal elements.

Let’s look at how a point mass behaves under the consensus equation (4). As

before, we set pk = 1 and all other pj = 0. The evolution of pk is given by

dpk
dt

= −
N∑
j=1

Lkjpj = −Lkk ≤ 0.

Again, the mass decreases unless k has no incoming edges, in which case the derivative

is zero. If there is an edge k → i, then

dpi
dt

= −
N∑
j=1

Lijpj = −Lik > 0.

In this case pi increases, even if k is a singleton Cabal. The “consensus” flows from

the Cabal down the edges throughout the entire reach.

The graph in the problem presented in this document is either a cyclic or a line

graph and consists of a single reach. The graph structure is simple and does not help

understand the dynamical system. Further, our system is second order and so it is

not explicitly covered in any of the above references.

8



1.1.2 Reading this Document

The new research in this document pertains to the system described in Section 2.2.

One of the main results is Theorem 2.5. We explore the consequences of this result

in Section 2.8.

To introduce basic concepts, Sections 1.2 and 1.3 describe the one-dimensional two

and three agent systems. These sections are independent of the rest of the document.

Section 1.4 contains a description of the general one-dimensional N -agent system and

introduces notation that is used in the remaining sections of the document. Sections

1.5 and 1.6 describe one-dimensional systems that make additional assumptions on

the parameters. These sections are not required for Section 2.

Section 2 contains a description of one-dimensional systems with unique weights

and is the essence of the thesis. Section 2.1 describes the basic strategy of fixing

forward and backward interaction ratios, and varying the agent interaction weights.

Section 2.2 describes one of the basic strategies of combining q copies of a sequence

of p-agents with random weights. As q → ∞, the eigenvalues become a continuous

curve. In Sections 2.3, 2.4 and 2.5, we analyze this curve near the origin. We assume

that stable systems are determined by the eigenvalues near the origin, as all other

eigenvalues have large negative real parts and so decay more quickly. In Section 2.7,

we make a few comments on stability. We close with Section 2.8, which is a collection

of simulations that compare the results with various experiments.

1.1.3 Tools

All simulations were written in Matlab and run on Windows 10 with

MATLAB Version: 9.7.0.1190202 (R2019b).

Some computations where done with SAGE,
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SageMath version 9.0, Release Date: 2020-01-01

Using Python 3.7.3.

1.2 Simple Coupled Oscillator

In this section we describe a simple example of two agents. We introduce the notation

that is used in the remainder of this dissertation.

Given two agents, A0 and A1, that lie on R1, we apply forces so that A0 and A1

keep a fixed distance ∆ > 0 between them. If x0 is the location of A0, and x1 the

location of A1, the forces will try to enforce the condition,

x1 +∆ = x0. (6)

Notice that the stable configuration has x1 < x0. We apply linear forces that depend

on x and dx
dt
. The force is the sum of two terms. The first is a generalization of

Hooke’s Law. The second term is a dispersion term that acts like a friction term in

this simple example. If F0, F1 are the forces applied to A0 and A1, respectively, then

we define

F0 = −K (x0 − (x1 +∆))−B

(
dx0
dt

− dx1
dt

)
(7)

F1 = −K ((x1 +∆)− x0)−B

(
dx1
dt

− dx0
dt

)
. (8)

The equations of motion are simpler with the coordinate transformation,

zk = xk + k∆, k = 0, 1. (9)
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Using Newton’s Law and the coordinate transformation, we get the equations

d2z0
dt2

= −K
m

(z0 − z1)−
B

m

(
dz0
dt

− dz1
dt

)
d2z1
dt2

= −K
m

(z1 − z0)−
B

m

(
dz1
dt

− dz0
dt

)
.

We write this in vector form using

z =

z0
z1

 ż =

dz0
dt

dz1
dt

 . (10)

We can write the equations of motion in matrix form as

z
ż

 = M

z
ż

 , (11)

where

M =

 02 I2

−Lx −Lv

 .

We denote by 0k the k × k zero matrix and Ik is the k × k identity matrix, and

Lx =

 K
m

−K
m

−K
m

K
m

 (12)

Lv =

 B
m

−B
m

−B
m

B
m

 . (13)

The 4 × 4 matrix M has the form described in Proposition C.1.1. The eigenvalues

11



and corresponding eigenvectors are found by solving

(
ν2 + νLv + Lx

)
v = 0. (14)

In this simple example the commutator vanishes, [Lx,Lv] = 0. This means that

Lx and Lv preserve each other’s eigenspaces. In this case they both have two unique

eigenvectors given by

12 =

1

1

 u− =

 1

−1

 .

12 has eigenvalue 0. Plug this into equation (14) to get

(
ν2 + νLv + Lx

)
12 = ν212 = 0.

This means ν = 0 is an eigenvalue with multiplicity 2. The kernel of the matrix M

of equation (11) is the span of the two four-dimensional vectors,

12

0


 0

12

 .

Notice that the second vector is not an eigenvector, but is in the kernel of M2, so

is in the 0 eigenspace. This two-dimensional eigenspace corresponds to the solution

where

� zk = a, for a fixed a. This means xk = a− k∆.

� żk = b for a fixed b.
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The second eigenvector u− satisfies

(
ν2 + νLv + Lx

)
u− = ν2 + ν

2B

m
+

2K

m
= 0. (15)

By Proposition B.2.1 the roots are stable if and only if B > 0 and K > 0. We can

write down the eigenvalues,

ν = −B
m

±
√

(B/m)2 − 2(K/m) = −B
m

± i
√

2(K/m)− (B/m)2.

If we ignore the trivial solution corresponding to the 0 eigenvalue, we get the general

solution,

Z(t) =c0u− exp

(
−B
m
t

)
exp

(
it
√

2(K/m)− (B/m)2
)

+ c1u− exp

(
−B
m
t

)
exp

(
−it
√
2(K/m)− (B/m)2

)

where c0 and c1 are constants that depend on the initial conditions. The system has

distinct regions. When B2 > 2Km, then the system is damped and does not oscillate.

If B2 < 2Km, then the system oscillates as it damps. But the system damps if B > 0.

The starting amplitude is related to the constants c0, c1. The phase of the motion

is also determined by the constants c0, c1. The eigenvector u− has the two agents

moving completely out of phase. For example, let c0 = c1 = cb
2

and assume that

B2 < 2Km. Use equation 9 to revert to coordinates xk and we get the solution,

x0(t)
x1(t)

 = cb

 1

−1

 exp

(
−B
m
t

)
cos
(
t
√
2(K/m)− (B/m)2

)
+

 0

−∆

. (16)

This is just a damped oscillator. But if we tweak the parameters, we can get other
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solutions.

1.2.1 Generalizations

The coupling in equation (11) is not Hamiltonian because of the dispersion term

controlled by the constant B. But if B = 0 then the system is just a coupled

oscillator and the equations of motion are derivable from a Lagrangian. However, we

shall consider system where the forces F0 and F1 are not equal and opposite. To do

this we make the coefficients K and B depend on the agent number. Equations (7)

and (8) become

F0 = −K(0) (x0 − (x1 +∆))−B(0)

(
dx0
dt

− dx1
dt

)
(17)

F1 = −K(1) ((x1 +∆)− x0)−B(1)

(
dx1
dt

− dx0
dt

)
. (18)

We write the Laplacians as

Lx =

 g0x −g0x

−g1x g1x

 where g(α)x =
K(α)

m
(19)

Lv =

 g0v −g0v

−g1v g1v

 where g(α)v =
B(α)

m
. (20)

The Laplacian matrices Lx and Lv are still row-sum zero so the 0 eigenvalue solution

still exists. The non-zero solution is more interesting. The characteristic polynomial
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is given by

P2(ν) = det

ν2 + g
(0)
v ν + g

(0)
x −

(
g
(0)
v ν + g

(0)
x

)
−
(
g
(1)
v ν + g

(1)
x

) (
ν2 + g

(1)
v ν + g

(1)
x

)
 (21)

= ν2
(
ν2 + (g(0)v + g(1)v )ν + (g(0)x + g(1)x )

)
.

We have the double root at ν = 0 because the Laplacians Lx and Lv are both row-sum

zero. The remaining polynomial is Hurwitz stable if and only if

Tx = Tr(Lx) = g(0)x + g(1)x > 0 (22)

Tv = Tr(Lv) = g(0)v + g(1)v > 0 (23)

where we have defined the two traces Tx and Tv. In any case the additional eigenvalues,

are given by

ν =
−Tv ±

√
T 2
v − 4Tx

2
=

−Tv ± i
√

4Tx − T 2
v

2
. (24)

The stability conditions in equations (22) and (23) do not require that all g
(α)
x and

g
(α)
v are positive. For example, we have the following:

Example 1.2.1. Define a system using the following:

g(0)x = 4 g(1)x = −1

g(0)v = 2 g(1)v = −1

With this choice of parameters Lx and Lv do not commute. The eigenvalues of the

system follow from equation (24),

ν = −0.5± 1.66i.
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The eigenvector corresponding to the eigenvalues are most easily computed as the

kernel of equation (21) with the eigenvalue substituted. The eigenvector corresponding

to the non-zero eigenvalue is

u+ =

 1

0.35

 .

Take ∆ = 1 and c1 = c2 = 1/2 to get the following solution,

x0(t)
x1(t)

 =

 1

0.35

 exp (−0.5t) cos (1.66t) +

 0

−∆

 . (25)

Figure 1: Two Agent Plot

The trajectories of x0(t) and x1(t) are shown in figure 1. The line in red shows

the distance ∆ from x0, which is the stable distance. Agent 0 (in blue) has a larger

weight and so reacts faster. Agent 1 (in green) has a negative weight, so pushes
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away from the stable distance, but the magnitudes g
(1)
x and g

(1)
v are smaller than the

corresponding magnitudes in agent 0, so the forces are less. The two agents move with

the same phase, which is quite unlike the standard coupled oscillator. We emphasize,

again, that the system is not Hamiltonian, and the forces are not Newtonian.

1.3 Three Coupled Agents On A Circle

We generalize the previous section to include three agents. We have to distinguish

between the system with periodic boundary conditions and the system on R1. The

relationship between periodic boundary conditions and the system on a line is subtle.

In this section we illustrate the periodic system and present it in a manner similar to

systems with a larger number of agents. We only sketch the ideas that are illustrative

of later concepts.

The three agents on a ring attempt to keep a distance ∆ between them, where

∆ is a fixed constant and the circumference is 3∆. The system is stable and has no

interacting forces when

xk = x0 −∆k, k = 0, 1, 2.

Periodic boundary conditions mean that

xk + 3∆ = xk.

The dynamical equations for the system with periodic boundary conditions have the

form

m(k)d
2xk
dt2

=− µ
(k)
x,−1 (xk − xk−1 +∆)− µ

(k)
x,1 (xk − xk+1 −∆)

− µ
(k)
v,−1

(
dxk
dt

− dxk−1

dt

)
− µ

(k)
v,1

(
dxk
dt

− dxk+1

dt

)
(26)

17



where k = 0, 1, 2. Since we assume periodic boundary conditions, all index arithmetic

is mod (3). This means, for example, that k+3 = k. The superscriptm(k) above the

couplings indicate the agent type. This will be more useful when we discuss systems

of N agents drawn p agent classes. All agents from a particular agent class have

identical couplings.

We change variables using

zk(t) = xk(t) + ∆k. (27)

The equations become

d2zk
dt2

=−
µ
(k)
x,−1

m(k)
(zk − zk−1)−

µ
(k)
x,1

m(k)
(zk − zk+1)

−
µ
(k)
v,−1

m(k)

(
dzk
dt

− dzk−1

dt

)
−
µ
(k)
v,1

m(k)

(
dzk
dt

− dzk+1

dt

)
. (28)

We introduce a new notation that we will use in the remainder of this dissertation.

We write these equations in the following form,

d2zk
dt2

=− g(k)x

(
zk + ρ

(k)
x,1zk+1 + ρ

(k)
x,−1zk−1

)
− g(k)v

(
żk + ρ

(k)
v,1żk+1 + ρ

(k)
v,−1żk−1

)

where

g(k)x =
µ
(k)
x,1 + µ

(k)
x,−1

m(k)
(29)

g(k)x ρx,1 = −
µ
(k)
x,1

m(k)
g(k)x ρx,−1 = −

µ
(k)
x,−1

m(k)
(30)

g(k)v =
µ
(k)
v,1 + µ

(k)
v,−1

m(k)
(31)

g(k)v ρv,1 = −
µ
(k)
v,1

m(k)
g(k)v ρv,−1 = −

µ
(k)
v,−1

m(k)
. (32)
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The constants ρ
(α)
x,k and ρ

(α)
v,k satisfy

1 +
∑
k

ρ
(α)
x,k = 0 (33)

1 +
∑
k

ρ
(α)
v,k = 0. (34)

This notation is easily generalization and is consistent with the graph theoretic for-

mulation of this and related problems. These linear equation can be expressed in

matrix form where

z = (z0, z1, z2)
T ż = (ż0, ż1, ż2)

T

Lx =


g
(0)
x g

(0)
x ρ

(0)
x,1 g

(0)
x ρ

(0)
x,−1

g
(1)
x ρ

(1)
x,−1 g

(1)
x g

(1)
x ρ

(1)
x,1

g
(2)
x ρ

(2)
x,1 g

(2)
x ρ

(2)
x,−1 g

(2)
x



Lv =


g
(0)
v g

(0)
v ρ

(0)
v,1 g

(0)
v ρ

(0)
v,−1

g
(1)
v ρ

(1)
v,−1 g

(1)
v g

(1)
v ρ

(1)
v,−1

g
(2)
v ρ

(2)
v,1 g

(2)
v ρ

(2)
v,−1 g

(2)
v

 .

In matrix form our ODE has the form

d

dt

z
ż

 = M

z
ż

 (35)

where the matrix M is

M =

 03 I3

−Lx −Lv

 .

We denote by 0k the k × k zero matrix and Ik is the k × k identity matrix. This
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system has a 3× 2 = 6 degree characteristic polynomial given by Proposition C.1.1,

P (ν) = det

(
ν2 + νLv + Lx

)
= 0 (36)

= det


ν2 + νg

(0)
v + g

(0)
x

(
νg

(0)
v ρ

(0)
v,1 + g

(0)
x ρ

(0)
x,1

) (
νg

(0)
v ρ

(0)
v,−1 + g

(0)
x ρ

(0)
x,−1

)
(
νg

(1)
v ρ

(1)
v,−1 + g

(1)
x ρ

(1)
x,−1

)
ν2 + νg

(1)
v + g

(1)
x

(
νg

(1)
v ρ

(1)
v,1 + g

(1)
x ρ

(1)
x,1

)
(
νg

(2)
v ρ

(2)
v,1 + g

(2)
x ρ

(2)
x,1

) (
νg

(2)
v ρ

(2)
v,−1 + g

(2)
x ρ

(2)
x,−1

)
ν2 + νg

(2)
v + g

(2)
x

.

But the matrices Lx and Lv have row-sums zero so there is a double root at the

origin. The characteristic polynomial is ν2 times a fourth degree polynomial. The

full polynomial is too complicated to write down but one can write down the first two

terms. The following proposition is quite general and only depends on the general

form of M.

Proposition 1.3.1. The polynomial in equation (36) is a sixth degree and the first

two terms are given by

ν6 +
(
g(0)v + g(1)v + g(2)v

)
ν5.

Proof. The two highest order terms of the characteristic polynomial P (ν) are given

by

ν6 − Tr(M)ν5 = ν6 − Tr(−Lv)ν
5 = ν6 + Tr(Lv)ν

5

where M is the matrix defined in equation 35.

Corollary 1.3.2. If the system is Hurwitz stable then Tr(Lv) > 0.

Proof. This follows from Proposition B.0.1.

This condition also appeared in the two-agent case in equation (23). The condition

in equation (22) is not as straightforward. The characteristic polynomial P (ν) is too

complicated to write down so we will make some additional assumptions. We will
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assume that ρ
(α)
x,±1 and ρ

(α)
v,±1 are all independent of α. We introduce the parameters

βx and βv,

β(α)
x = ρ

(α)
x,1 − ρ

(α)
x,−1 ⇒ ρ

(α)
x,1 = −1− β

(α)
x

2
and ρ

(α)
x,−1 = −1 + β

(α)
x

2
, (37)

β(α)
v = ρ

(α)
v,1 − ρ

(α)
v,−1 ⇒ ρ

(α)
v,1 = −1− β

(α)
v

2
and ρ

(α)
v,−1 = −1 + β

(α)
v

2
. (38)

Since β
(α)
x and β

(α)
x are independent of α, we denote them by βx, βv.

Remark 1.3.3. The assumption that the ρ
(α)
x,v,±1 are independent of α is a natural

assumption for robotic agents. The agents cannot change their overall weight nor can

they change the internal engine that applies the forces. However, they can control the

ratio of forward and backward pull. Every agent in a group can fix this ratio to a

specific value even though the actual forces are dependent on the actual agent.

With this assumption we have the following:

Proposition 1.3.4. The term in the characteristic polynomial with lowest degree has

the form

3 + β2
x

4

(
g(0)x g(1)x + g(1)x g(2)x + g(2)x g(0)x

)
ν2.

Proof. This is a direct computation. We shall compute a similar quantity in a more

general setting.

Corollary 1.3.5. If the system is Hurwitz stable then

g(0)x g(1)x + g(1)x g(2)x + g(2)x g(0)x > 0.

Proof. This follows from Proposition B.0.1 and Proposition 1.3.4.

This is the equivalent to (22) in the two agent case.
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Example 1.3.6. To demonstrate the odd behavior of negative weights we take a con-

crete example with,

g
(0)
x = 4.0 g

(1)
x = −4.0 g

(2)
x = 4.0

g
(0)
v = 1.0 g

(1)
v = −0.5 g

(2)
v = 0.5

ρx,1 = −0.25 ρx,−1 = −0.75

ρv,1 = −0.25 ρv,−1 = −0.75

Figure 2: Three Agent Plot

The trajectory for the eigenvalue −0.57+2.40i and eigenvector [1.000.23,−0.66]T

is shown in figure 2. The weights g
(1)
x and g

(1)
v are both negative so this agent is

repulsed by both of its neighbors. But the system is still stable.

Notice that agents 0 and 2 are both attractive. These two agents have phase
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difference of π, as typical for coupled oscillators. Agent 1 is in phase with agent 0.

1.4 A Sequence of Agents

In this section we present a general framework for a sequence of agents in a one-

dimensional space. There is very little known about the general system. In subse-

quent sections we shall make a series of assumptions to study specific cases.

ConsiderN agents moving along either R1 or S1. We label the agents, A0, A1, · · ·AN−1

as shown in figure 3. We label their x−coordinates by x0, x1, · · · , xN−1. The system

we shall study consists of N agents on either S1 or R1 that attempt to keep a distance

∆ between neighbors so that the stable configuration is,

xk = x0 − k∆ for k = 1, 2, · · · , N − 1.

A0A1A2AN−1 . . .

Figure 3: Sequence of Agents

We assume a force that depends on the spatial separation with a interaction force

similar to Hooke’s law. We also have a velocity dependent term that depends on the

differences of the velocities. The equations of motion have the form,

ẍ
(k)
k = −g(k)x

∑
j∈N(xk)

ρ
(k)
x,j (xk+j − xk − (j − k)∆)− g(k)v

∑
j∈N(xk)

ρ
(k)
v,j (ẋk+j − ẋk) (39)

where N(xk) are all the agents that interact with agent k. If displayed on a graph, the

agents are the vertices, the edges indicate an interaction term such that N(xk) is the
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set of neighbors of the vertex k. We shall assume that the N agents consist of agents

chosen from q different species. All agents from the same species have identical forces

with their neighbors. We will label the species with an index α, so the equations of

motion, which is restatement of equation (39), is

ẍ
(α)
k = −g(α)x

∑
j∈N(xk)

ρ
(α)
x,j (xk+j − xk − (j − k)∆)− g(α)v

∑
j∈N(xk)

ρ
(α)
v,j (ẋk+j − ẋk) (40)

In the case where each agent is unique then we just have α = k and we revert to

equation (39).

The constants that control the dynamics are the following.

� ρ(α)x,j is coupling constant for the force on k applied by k+ j computed from the

difference of the two position coordinates. The superscript (α) indicates that

the constant is the same for all agents of species α. In our current example,

each agent is its own species, but we shall restrict this in subsequent examples.

� ρ(α)v,j is coupling constant for the force on k applied by k+ j computed from the

difference of the two velocities.

� g(α)x is the overall scale of the spatial forces. By adding this scale, we can insist

that
∑

j∈N(xk)

ρ
(α)
x,j = −1.

� g(α)v is the overall scale of the velocity forces. By adding this scale we can insist

that
∑

j∈N(xk)

ρ
(α)
v,j = −1.

We can simplify equation (40) with the change of variables,

z
(α)
k = x

(α)
k − k∆. (41)
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With this change of variables equation (39) becomes,

z̈
(α)
k = −g(α)x

∑
j∈N(xk)

ρ
(α)
x,j z

(α+j)
k+j − g(α)v

∑
j∈N(xk)

ρ
(α)
v,j ż

(α+j)
k+j (42)

where the constants ρ
(α)
x,0 = ρ

(α)
v,0 = 1 so that we are consistent with the normalization of

ρ
(α)
x,j and ρ

(α)
v,j . The constant ρ

(α)
x,j and ρ

(α)
x,j control the relative strength of the neighbor

interactions and the values g
(α)
x , g

(α)
v control the overall interaction strength.

This is a linear ODE that has the matrix form,

d

dt

z
ż

 =

 0N IN

−GxLx −GvLv


z
ż

 = M

z
ż

 (43)

where 0N is the N ×N zero matrix, IN is the N ×N identity matrix,

z =

(
z0 z1 · · · zN−1

)T
ż =

(
ż0 ż1 · · · żN−1

)T
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Lx =



1 ρ
(0)
x,1 ρ

(0)
x,2 · · · ρ

(0)
x,−1

ρ
(1)
x,−1 1 ρ

(1)
x,1 · · · ρ

(1)
x,−2

...
. . . . . . . . .

...

ρ
(N−2)
x,2 ρ

(N−2)
x,3 ρ

(N−2)
x,4 · · · ρ

(N−2)
x,1

ρ
(N−1)
x,1 ρ

(N−1)
x,2 ρ

(N−1)
x,3 · · · 1


(44)

Lv =



1 ρ
(0)
v,1 ρ

(0)
v,2 · · · ρ

(0)
v,−1

ρ
(1)
v,−1 1 ρ

(1)
v,1 · · · ρ

(1)
v,−2

...
. . . . . . . . .

...

ρ
(N−2)
v,2 ρ

(N−2)
v,3 ρ

(N−2)
v,4 · · · ρ

(N−2)
v,1

ρ
(N−1)
v,1 ρ

(N−1)
v,2 ρ

(N−1)
v,3 · · · 1


. (45)

Gx =



g
(0)
x 0 0 · · · 0

0 g
(1)
x 0 · · · 0

...
...

. . . . . .
...

0 0 0 · · · g
(N−1)
x


, Gv =



g
(0)
v 0 0 · · · 0

0 g
(1)
v 0 · · · 0

...
...

. . . . . .
...

0 0 0 · · · g
(N−1)
v


The matrix M has the special form given in Proposition C.1.1. The eigenvectors

of the matrix M have the form, [u, νu]T where u ∈ RN and ν is an eigenvalue of M.

The eigenvalue ν is a root of the 2N polynomial,

P (ν) = det

(
ν2 + νGvLv +GxLx

)
. (46)

The following proposition follows immediately from the above,

Proposition 1.4.1. If Lv and Lx are row-sum zero then the following polynomial
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vanishes identically,

R(ν) = det

(
νGvLv +GxLx

)
= 0. (47)

Proof. Let 1N ∈ RN be the vector 1N = (1, 1, 1, · · · , 1)T . It satisfies

Lv1N = Lx1N = 0.

It follows immediately that,

1N ∈ ker(νGvLv +GxLx) ̸= ∅.

From this it follows that the determinant in equation (47) vanishes.

Corollary 1.4.2. The characteristic polynomial P (ν), in equation (46), has a double

root at 0.

Proof. When computing the terms in P (ν) you must have a ν2 in the term or the

term comes from R(ν). This means that the constant and linear terms of the poly-

nomial P (ν) are the constant and linear terms of the polynomial R(ν) which vanish

identically.

Remark 1.4.3. The 0 eigenvalue corresponds to a two-dimension eigenspace but

there is only one 0 eigenvalue.

 0N IN

−GxLx −GvLv


2αI

βI

 =

 0N IN

−GxLx −GvLv


βI

0

 =

0

0


This eigenspace corresponds to the linear solution,

zk(t) = αt+ β.
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Since the polynomial in equation (47) vanishes identically the ν2 term of the

characteristic equation (46) must contain exactly one ν2 from the INν diagonal terms

and all the other terms from the constant terms of (46). We shall use this repeatedly

in the subsequent chapters. To see how this works we introduce the following 1st

degree polynomials,

ψ
(α)
0 (ν) =

(
νg(α)v + g(α)x

)
(48)

ψ
(α)
j (ν) =

(
g(α)v ρ

(α)
j,v ν + g(α)x ρ

(α)
j,x

)
(49)

The characteristic polynomial in equation (46) becomes,

P (ν) = det



ν2 + ψ
(0)
0 (ν) ψ

(0)
1 (ν) ψ

(0)
2 (ν) · · · ψ

(0)
N−1(ν)

ψ
(1)
−1(ν) ν2 + ψ

(1)
0 (ν) ψ

(1)
1 (ν) · · · ψ

(1)
N−2(ν)

ψ
(2)
−2(ν) ψ

(2)
−1(ν) ν2 + ψ

(2)
0 (ν) · · · ψ

(2)
N−3(ν)

...
...

... · · · ...

ψ
(N−1)
1 (ν) ψ

(N−1)
2 (ν) ψ

(N−1)
3 (ν) · · · ν2 + ψ

(N−1)
0 (ν)


(50)

where all index arithmetic is mod (N). This means, for example, that we identify

ρ
(N+1)
−1 = ρ

(1)
N−1. we know, by Corollary 1.4.2 that P (ν) has a double root at ν =

0. Writing down the complete polynomial P (ν) is, at this point, more than we

can manage but we can make a few statements that we summarize in the following

proposition.

Proposition 1.4.4. Write the characteristic polynomial in equation (50) as,

P (ν) = ν2N + a2N−1ν
2N−1 + a2N−2ν

2N−2 + · · ·+ a2ν
2 + a1ν + a0.
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We have,

a1 = a0 = 0 (51)

a2N−1 = g(0)v + g(1)v + · · ·+ g(N−1)
v (52)

a2 =
N−1∑
k=0

(
g(k+1)
x g(k+2)

x · · · g(k+N−1)
x

)

× det



1 ρ
(k+1)
x,1 ρ

(k+1)
x,2 · · · ρ

(k+1)
x,N−2

ρ
(k+2)
x,−1 1 ρ

(k+2)
x,1 · · · ρ

(k+2)
x,N−3

ρ
(k+3)
x,−2 ρ

(k+3)
x,−1 1 · · · ρ

(k+3)
x,N−4

...
...

... · · · ...

ρ
(k−1)
x,−(N−2) ρ

(k−1)
x,−(N−3) ρ

(k−1)
x,−(N−4) · · · 1


(53)

Proof. The characteristic polynomial has degree 2N . Using Corollary 1.4.2, both a1

and a0 vanish. To get a term with ν2N−1 we must get ν2 terms from N −1 rows. The

remaining row must contain a ν term to get ν2N−2+1 = ν2N−1. This means the aN−1

term is the ν2N−1 term of the polynomial,

ν2N−2
(
ψ

(0)
0 (ν) + ψ

(1)
0 (ν) + · · ·+ ψ

(N−1)
0 (ν)

)
.

Equation (52) follows. To compute the term a2 we notice that the ν2 coefficient of

R(ν) ( equation (47) ) vanishes. The ν2 terms in P (ν) must contain a row with ν2

and all remaining rows in det contain just constants. For each for k we get a ν2

term from the diagonal element and an (N − 1)× (N − 1) determinant of constants.

Formula 53 follows.

Corollary 1.4.5. If the polynomial in Proposition 1.4.4 is Hurwitz stable then the
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following condition must be true.

g(0)v + g(1)v + · · ·+ g(N−1)
v > 0.

Proof. This follows immediately from Proposition 1.4.4 and Theorem B.0.1.

Corollary 1.4.6. Assume that ρ
(α)
x,k is independent of α for all k and that ρx,k ≤ 0

for all k. With these assumptions, if the polynomial in Proposition 1.4.4 is Hurwitz

stable then the following condition must be true.

N−1∑
k=0

(
g(k+1)
x g(k+2)

x · · · g(k+N−1)
x

)
> 0.

Proof. In equation (53), each term has a factor,



1 ρ
(k+1)
x,1 ρ

(k+1)
x,2 · · · ρ

(k+1)
x,N−2

ρ
(k+2)
x,−1 1 ρ

(k+2)
x,1 · · · ρ

(k+2)
x,N−3

ρ
(k+3)
x,−2 ρ

(k+3)
x,−1 1 · · · ρ

(k+3)
x,N−4

...
...

... · · · ...

ρ
(k−1)
x,−(N−2) ρ

(k−1)
x,−(N−3) ρ

(k−1)
x,−(N−4) · · · 1


.

This matrix (N − 1) × (N − 1) is independent of k. By Gershgorin’s theorem each

eigenvalue is contained in one of the N − 1 Gershgorin disks that are centered at 1

and have radius given by,

|ρx,1|+ |ρx,2|+ · · ·+ |ρx,N−1|,
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where exactly one of the ρx,k is removed. Since all the ρx,k ≤ 0 we have,

|ρx,1|+ |ρx,2|+ · · ·+ |ρx,N−1| = |ρx,1 + ρx,2 + · · ·+ ρx,N−1| ≤ 1,

since 1 + ρx,1 + ρx,2 + · · · + ρx,N−1 = 0. This means that the det factor in a2 is

independent of k and is positive. The Proposition now follows from Theorem B.0.1.

1.5 Sequence of Identical Agents

Equation (43) is not easily solved without additional assumptions. In this section

we will assume that all the agents are identical so that g
(α)
x , g

(α)
v , ρ

(α)
x,j and ρ

(α)
v,j are all

independent of α. With these assumptions the equation (43) takes on a simpler form

with,

Gx = gxIN ⇒ GxLx = gxLx,

Gv = gvIN ⇒ GxLx = gvLv,

We will, also, assume that the system have periodic boundary conditions so the

Laplacian’s Lx and Lv are circulant matrices. In Proposition C.3.4 we see that all

circulant matrices commute. This means that the characteristic polynomial has the

form,

det
∣∣ν2 + νgvLv + gxLx

∣∣ = 0. (54)

If all the agents are identical then the eigenvalues of the linear system are solvable.

Construct the matrix M,

M = ν2 + νgvLv + gxLx. (55)
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By Theorem C.4.4 we know the circulant matrices have a set or orthogonal eigenvec-

tors given by w(ωmN ) for m = 0, 1, · · ·N − 1. By Proposition C.1.1 the eigenvectors of

M have the form,  v

νv

 , where
(
ν2 + νLv + Lx

)
v = 0.

For each w(ωmN ) we get two eigenvalues of M as,

(
ν2 + νLv + Lx

)
w(ωmN ) =

(
ν2 + νλv,m + λx,m

)
w(ωmN ), (56)

where,

λx,m = gx

N−1∑
k=0

ρx,k exp

(
2πi

N
mk

)
(57)

λv,m = gv

N−1∑
k=0

ρv,k exp

(
2πi

N
mk

)
(58)

For each m there are 2 solutions of the quadratic,

ν2 + νλv,m + λx,m = 0. (59)

Each of these solutions correspond to an eigenvector of M of the form,

 w(ωmN )

νw(ωmN )

 .

Equation (59) determines the Hurwitz stability of the system (see Definition 1.1.1).

Since λv,m and λv,m are complex we use Proposition B.2.3 to derive the stability

conditions. In the general circulant case there are 2N + 2 system parameters which
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make the problem difficult. We turn to a few specific cases that are solved in the

literature.

1.5.1 Nearest Neighbor Interaction

If we restrict identical car system to nearest neighbor interactions then we have con-

stants ρx,±1, ρv,±1, gx and gv for a total of 6 parameters. In this case the system is

solvable for asymptotically large N .

The Hurwitz stability of the system is described in the following theorem.

Theorem 1.5.1. The system described in Section 1.5 with nearest neighbor interac-

tions is stable for large N if and only if the following conditions are satisfied,

� gx > 0 and gv > 0,

� ρx,1 = ρx,−1 = −1/2.

Proof. See [6] Theorem 1.

For this system there are functions that approximate the trajectories asymptoti-

cally for large N . This is summarized in Theorem 2 of [6].

1.5.2 Next-Nearest Neighbor Interaction

We can include next-nearest neighbor interactions in the identical car case. This in-

troduces a significant complexity and makes both the Hurwitz stability and dynamics

less tractable. The next-nearest neighbor case starts with the system in Section 1.5

and then sets all ρx,j and ρv,j to zero except the following,

gx, gv, ρx,±1, ρx,±2, ρv,±1, ρv,±2.
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This system is described in detail in [16]. Both the stability and dynamics are too

complicated to discuss here. The stability is discussed in Remark 4.1 in [16]. There

are numerous conditions that must be satisfied to insure stability.

Remark 1.5.2. Although the stability conditions are numerous and complicated, they

are still useful. A practical system should have system constants that are Hurwitz

stable in a reasonable neighborhood. This will guarantee Hurwitz stability even as the

system parameters change, as they might under different conditions and wear and

tear on the agents themselves. As discussed in the introduction, Hurwitz stability is

necessary but not sufficient for reasonable dynamics.

1.6 Sequence of Three Agent Types

This section contains a brief discussion of a sequence of agents with three different

agent types. The agent types are alternated as in figure 4. The sequence White −

Green − Red is repeated q times and the number of agents is N = 3q. This system

is described in [3, 2]. We give a brief summary of this work, focusing on the portions

that are relevant to Section 2. Baldivieso [3] discusses both nearest neighbor and

next nearest neighbor interactions. For the sake of simplicity, we restrict ourselves to

nearest neighbor interactions.

A0A1A2A3A4A5AN−1 . . .

Figure 4: Sequence With Three Agent Types

The equations of motion start with equation (40) where α = 0, 1, 2. Agents z
(α)
3k+α
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all are type α. Equation (42) splits up into equations,

z̈
(α)
3k+α =− g(α)x

(
z
(α)
3k+α + ρ

(α)
x,1z

(α+1)
3k+α+1 + ρ

(α)
x,−1z

(α−1)
3k+α−1

)
− g(α)v

(
ż
(α)
3k+α + ρ

(α)
v,1 ż

(α+1)
3k+α+1 + ρ

(α)
v,−1ż

(α−1)
3k+α−1

)

where α = 0, 1, 2 and the index arithmetic on z3k+α+1 is mod (3). The equations of

motion of equation (43) have an easier form if we reorder the coordinates zαk . Group

all the α together and the 2N × 2N matrix M splits up into q × q sub-blocks with

the

M̃ =



0q 0q 0q Iq 0q 0q

0q 0q 0q 0q Iq 0q

0q 0q 0q 0q 0q Iq

g
(0)
x Iq g

(0)
x ρ

(0)
x,1Iq g

(0)
x ρ

(0)
x,−1P+ g

(0)
v Iq g

(0)
v ρ

(0)
v,1Iq g

(0)
v ρ

(0)
v,−1P+

g
(1)
x ρ

(1)
x,−1Iq g

(1)
x Iq g

(1)
x ρ

(1)
x,1Iq g

(1)
v ρ

(1)
v,−1Iq g

(1)
v Iq g

(1)
v ρ

(1)
v,1Iq

g
(2)
x ρ

(1)
x,1P− g

(2)
x ρ

(2)
x,−1Iq g

(2)
x Iq g

(1)
v ρ

(1)
v,1P− g

(1)
v ρ

(1)
v,−1Iq g

(1)
v Iq


(60)

The matrices 0q, Iq,P+ and P− are all q × q circulant matrices. By Proposi-

tion C.3.4 all circulant matrices commute and w(ωmq ) with m = 0, 1, · · · , q − 1 are

eigenvectors, defined in equation (158). One can show that the eigenvectors have the

form,

v =



ϵ0w(ω
m
q )

ϵ1w(ω
m
q )

ϵ2w(ω
m
q )

ϵ3w(ω
m
q )

ϵ4w(ω
m
q )

ϵ5w(ω
m
q )


=



ϵ0

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5


⊗ w(ωmq ).
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This is an eigenvector if



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

g
(0)
x g

(0)
x ρ

(0)
x,1 g

(0)
x ρ

(0)
x,−1ω

−m
q g

(0)
v g

(0)
v ρ

(0)
v,1 g

(0)
v ρ

(0)
v,−1ω

−m
q

g
(1)
x ρ

(1)
x,−1 g

(1)
x g

(1)
x ρ

(1)
x,1 g

(1)
v ρ

(1)
v,−1 g

(1)
v g

(1)
v ρ

(1)
v,1

g
(2)
x ρ

(1)
x,1ω

m
q g

(2)
x ρ

(2)
x,−1 g

(2)
x g

(1)
v ρ

(1)
v,1ω

m
q g

(1)
v ρ

(1)
v,−1 g

(1)
v





ϵ0

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5


= 0.

Here we used Proposition C.4.6. Using Proposition C.1.1, the eigenvalues are deter-

mined by ϵ0, ϵ1, ϵ2 where,


ν2 + g

(0)
v ν + g

(0)
x g

(0)
v ρ

(0)
v,1ν + g

(0)
x ρ

(0)
x,1

(
g
(0)
v ρ

(0)
v,−1ν + g

(0)
x ρ

(0)
x,−1

)
ω−m
q

g
(1)
v ρ

(1)
v,−1ν + g

(1)
x ρ

(1)
x,−1 ν2 + g

(1)
v ν + g

(1)
x g

(1)
v ρ

(1)
v,1ν + g

(1)
x ρ

(1)
x,1(

g
(2)
v ρ

(2)
v,1ν + g

(2)
x ρ

(2)
x,1

)
ωmq g

(2)
v ρ

(2)
v,−1ν + g

(2)
x ρ

(2)
x,−1 ν2 + g

(2)
v ν + g

(2)
x



ϵ0

ϵ1

ϵ2

 = 0. (61)

Use equations (48) and (49) to write this in the form,


ν2 + ψ

(0)
0 (ν) ψ

(0)
1 (ν) ψ

(0)
−1(ν)ω

−m
q

ψ
(1)
−1(ν) ν2 + ψ

(1)
0 (ν) ψ

(1)
1 (ν)

ψ
(2)
1 (ν)ωmq ψ

(2)
−1(ν) ν2 + ψ

(2)
0 (ν)



ϵ0

ϵ1

ϵ2

 = 0. (62)

The stability of system in equation (62) is not obvious. Some necessary conditions

are derived in [3]. Section 2 extends this work by ascertaining some necessary stability

conditions for the case of p agent classes duplicated q times. If q is large then we can

take approximate the q values using,

ωmq = exp

(
2πi

q
m

)
≈ 1 +

2πi

q
m,
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for small m. We define ϕ(m) = 2π
q
m and this approximation is just,

eiϕ ≈ 1 + iϕ.

This is the same as approximating ϕ for values near to 0. This approximation works

as long as the discrete locus of important eigenvalues is near to the double eigenvalue

at 0. It is possible for the locus to sweep around a curve and cross the imaginary axis

for a large m. However, if we consider stable systems where the locus of eigenvalues

does not approach the imaginary axis, except at the origin, then this approximation

will allow us to approximate both stability and the dynamics of the system.
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2 SEQUENCES WITH DISTINCT WEIGHTS

2.1 Distinct Weights

Section 2 is our main investigation into one-dimensional lattices of distinct agents.

To make the problem tractable we add some assumptions. We assume that ρ
(α)
x,± and

ρ
(α)
v,± are the same for all agents, but each agent has distinct weights g

(α)
x , g

(α)
v . The

physical justification for this assumption is clear. Given a convoy of agents, one can

adjust the ratios of the forward to backward x-couplings by changing ρ
(α)
x,+ and ρ

(α)
x,−.

But if the agents are all distinct it will be impossible to match g
(α)
x in any meaningful

way. This same logic also applies ρv,+ and ρv,−. To further simplify the problem, we

add the assumption that the forward and backward x-couplings are identical.

Assumptions 2.1.1. We assume the following,

� ρ(α)v,+ and ρ
(α)
v,− are independent of α.

� ρ(α)x,+ = ρ
(α)
x,− = −1

2
for all α.

The weights g
(α)
x and g

(α)
v can be unique for each agent. With these assumptions

GxLx andGvLv of equation (2) are no longer symmetric and they no longer commute.

They both are still row-sum zero. These facts are important to what follows.

When we compute the eigenvalues of the equations of motion, the eigenvalues with

large negative real parts are transient, as they decay quickly. Thus, it is important to

understand the eigenvalues near the complex axis. We know there is an eigenvalue of

multiplicity 2 at the origin and we will study the eigenvalues near this point. In the

simulations, we show that, indeed, these eigenvalues determine much of the large-scale

structure of the agent system.

Solving for the eigenvalues of this general system is difficult, but we have a method

to solve for eigenvalues near the origin. In Section 1.6 and [3] there are methods to
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solve systems with three distinct agent types laid out in sequence. We extend this

to a sequence of p agent types. To do this, we set up a one-dimensional lattice of p

distinct agents that satisfies the assumptions 2.1, and duplicates this system q times.

This repeated system is determined by the eigenvalues of a p× p matrix but there is

a quantity exp (ϕi) in the matrix where ϕ = 2πmk/q (see Corollary 2.2.7). If we fix

m and let q → ∞ then ϕ becomes a continuous parameter. The eigenvalues become

segments of smooth curves. This allows us to expand around the origin and deduce

first and second order dynamics (see Theorem 2.5.1).

Throughout this entire computation, we assume periodic boundary conditions. In

Section 2.8 we run some simulations to test whether general one-dimensional system

satisfy these equations. In the simulations we do not duplicate the p agent sequence

q times, but, instead, test the p sequence directly.

2.2 Linear Nearest Neighbor Systems

In this section, we derive some properties of the eigenvalues of the general nearest

neighbor system. This discussion follows [20].

We start with a system of p unique agents as described in Section 1.4. Next, form

a sequence of pq agents by duplicating the p-sequence q times so that N = pq. This

N -sequence contains q copies of the original p sequence. If we set p = 3 then we get

the system of Section 1.6. This was first described in [3] and there is a more detailed

discussion in [2]. The schematic for this is given in Figure 5.

A0A1Ap−1 . . .ApAp+1A2p−1 . . .A2p . . .A2p+1AN−1
. . .

Figure 5: Sequence With q sub-sequences with p Agent Types

Each of the p agent types has unique interaction coefficients, so there are q

agents that all have identical interaction coefficients. The N = pq agents lie on a
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1−dimensional manifold and interact only with their two adjacent neighbors. The

agent coordinate for the kth agent is given by xk, where k = 0, 1, · · ·N−1. The agent

forces are designed to keep a distance ∆ between agents. This system is a specific

case of the systems described in Section 1.4. The specific version of equation (39) is

given by

ẍ
(α)
k =− g(α)x

∑
j∈N(xk)

ρ
(α)
x,j

(
x
(αj)
j − x

(α)
k − (j − k)∆

)
− g(α)v

∑
j∈N(xk)

ρ
(α)
v,j

(
ẋ
(αj)
j − ẋ

(α)
k

)
(63)

We introduced the variable α to indicate agent type. In our case α = k mod (p).

This means, for example, g
(α)
x = g

(α+p)
x . All the α arithmetic in equation (63) is

mod (p).

As in Section 1.4, we change coordinates to zk, given by

zk = xk − k∆ (64)

With these assumptions the agents satisfy the following equations of motion:

d2z
(α)
k

dt2
=− g(α)x

(
z
(α)
k + ρ

(α)
x,1z

(α+1)
k+1 + ρ

(α)
x,−1z

(α−1)
k−1

)
− g(α)v

(
ż
(α)
k + ρ

(α)
v,1 ż

(α+1)
k+1 + ρ

(α)
v,−1ż

(α−1)
k−1

)
(65)

We assume periodic boundary conditions and discuss other boundary conditions

below. With this assumption, the last car interacts with the first car in the agent

sequence. This is the case when the arithmetic in α is mod (p). In any case, the
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system has the familiar matrix form of equations (35) or, more generally, (43):

d

dt

z
ż

 = M

z
ż

 =

 03 I3

−Lx −Lv


z
ż

 (66)

Using Proposition C.1.1, the eigenvalues are the roots of the 2N degree charac-

teristic polynomial,

det

(
ν2IN + νLv + Lx

)
= 0. (67)

The rows in equations (66) are in k order. Depending on the boundary conditions,

the matrix M is tri-diagonal, except possibly row 0 and row N−1. If we have periodic

boundary conditions, then there are additional terms on the extreme upper right and

lower left of M.

We re-order the rows so all α values are adjacent. In other words, we re-order so

that the basis is in the following order:

k =0, p, 2p, · · · , (q − 1)p, 1, 1 + p, 1 + 2p, · · · , 1 + (q − 1)p,

· · · , (p− 1), (p− 1) + p, · · · , (p− 1) + (q − 1)p (68)

where (p− 1) + (q − 1)p = N − 1. This is captured by the index mapping function,

σ(k +mq) = m+ kp, (69)

where m = 0, · · · , p − 1 and k = 0, · · · , q − 1. We describe this ordering in more

precise language in Appendix D. With this ordering, the (pq)×(pq) matrix M breaks

up into p× p sub-blocks. Each of these sub-blocks is a q× q matrix. To illustrate the
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transformation, look at the first two rows of Lx,

g
(0)
x g

(0)
x ρ

(0)
x,1 0 · · · 0 g

(0)
x ρ

(0)
x,−1

g
(1)
x ρ

(1)
x,−1 g

(1)
x g

(1)
x ρ

(1)
x,1 · · · 0 0

With the new re-ordering, the N ×N matrix Lx becomes,

Lx =



g
(0)
x Iq g

(0)
x ρ

(0)
x,1Iq 0q · · · 0q g

(0)
x ρ

(0)
x,−1P+

g
(1)
x ρ

(1)
x,−1Iq g

(1)
x Iq g

(1)
x ρ

(1)
x,1Iq · · · 0q 0q

0q g
(2)
x ρ

(2)
x,−1Iq g

(2)
x Iq · · · 0q 0q

...
...

...
. . .

...
...

0q 0q 0q · · · g
(p−2)
x Iq g

(p−2)
x ρ

(p−2)
x,1 Iq

g
(p−1)
x ρ

(p−1)
x,1 P− 0q 0q · · · g

(p−1)
x ρ

(p−1)
x,−1 Iq g

(p−1)
x Iq


, (70)

where P+ and P− are defined in Definition C.2.1, and P+,P−,0q and Iq are all q× q

matrices. The matrix Lv is identical except that the x is replaced by v.

To simplify the notation, we introduce the following 1st degree polynomials

ψ
(α)
0 (ν) =

(
g(α)v ν + g(α)x

)
(71)

ψ
(α)
1 (ν) = g(α)v ρ

(α)
v,1ν + g(α)x ρ

(α)
x,1 (72)

ψ
(α)
−1 (ν) = g(α)v ρ

(α)
v,−1ν + g(α)x ρ

(α)
x,−1. (73)

For all α and any ν, we have

ψ
(α)
−1 (ν) + ψ

(α)
0 (ν) + ψ

(α)
1 (ν) = 0. (74)

Theorem 2.2.1. For the periodic system described above, the eigenvectors of the

2N × 2N matrix in equation (66), with eigenvalue ν, are given by the 2N = 2pq
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vectors,

u(m, k) =

 vm ⊗ em,k

ν (vm ⊗ em,k)

 =



em,k

ωmq em,k

ω2m
q em,k
...

ω
(q−1)m
q em,k

νem,k

νωmq em,k

νω2m
q em,k
...

νω
(q−1)m
q em,k



, (75)

for k = 0, 1, · · · 2p− 1, m ∈ {0, · · · , q − 1} and where vm = w(ωmq ) and

em,k =

(
e0m,k e1m,k e2m,k · · · ep−1

m,k

)T
.

For each m we set ϕ = 2π
q
m and take the determinant of the matrix Mϕ(ν) in equa-

tion (77). There are 2p solutions in ν which are the eigenvalues. For each of these

eigenvalues ν, the em,k satisfy

em,k ∈ ker (Mϕ(ν)) , (76)

where

Mϕ(ν) =



ν2 + ψ
(0)
0 (ν) ψ

(0)
1 (ν) 0 · · · ψ

(0)
−1(ν)e

−iϕ

ψ
(1)
−1(ν) ν2 + ψ

(1)
0 (ν) ψ

(1)
1 (ν) · · · 0

...
...

...
. . .

...

ψ
(p−1)
1 (ν)eiϕ 0 0 · · · ν2 + ψ

(p−1)
0 (ν)


. (77)
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Proof. In section C.4 we show that the vectors vm = w(ωmq ) form an orthogonal basis

of eigen-vectors, for m = 0, 1, · · · , q − 1, for all circulant matrices. These q vectors

diagonalize all the q × q matrices, P+,P−,0q and Iq.

Apply M, with the reordered Lx and Lv, to the following 2N vector,



e0vm

e1vm
...

ep−1vm

νe0vm

νe1vm
...

νep−1vm



=

 e⊗ vm

ν (e⊗ vm)

 .

By Proposition C.1.1, this vector is an eigenvector if it satisfies

(
ν2 + νLv + Lx

)
(e⊗ vm) = 0. (78)

By Proposition C.4.6, we have

(
νg(α)v + g(α)x

)
P+vm =

(
νg(α)v + g(α)x

)
ω−m
q vm =

(
νg(α)v + g(α)x

)
e−iϕvm(

νg(α)v + g(α)x

)
P−vm =

(
νg(α)v + g(α)x

)
ωmq vm =

(
νg(α)v + g(α)x

)
eiϕvm

where ϕ = 2π
q
m. With these facts, equation (78) becomes p × p matrix condition

equation (77) for ek.

We have eigenvectors but we must restore the original index order with the inverse
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to equation (69),

σ−1(m+ kp) = k +mq.

With this we get the eigenvectors

u(m, k) =

 vm ⊗ em,k

ν (vm ⊗ em,k)

 =



em,k

ωmq em,k

ω2m
q em,k
...

ω
(p−1)m
q em,k

νem,k

νωmq em,k

νω2m
q em,k
...

νω
(p−1)m
q em,k



.

Remark 2.2.2. The procedure outlined above ignores the case where Mϕ(ν) has de-

generate eigenvalues. At this point, this is not a problem, as we are mostly interested

in the eigenvalues, especially eigenvalues close to the origin. We already know that the

origin is a degenerate eigenvalue and we will get two eigenvalue loci emanating from

this point. We return to the degeneracy of the eigenvalues when we discuss solutions

in Section 2.6.
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Corollary 2.2.3. The eigenvalues of the system are the roots to the polynomial,

Pϕ(ν) = det



ν2 + ψ
(0)
0 (ν) ψ

(0)
1 (ν) 0 · · · ψ

(0)
−1(ν)e

−iϕ

ψ
(1)
−1(ν) ν2 + ψ

(1)
0 (ν) ψ

(1)
1 (ν) · · · 0

...
...

...
. . .

...

ψ
(p−1)
1 (ν)eiϕ 0 0 · · · ν2 + ψ

(p−1)
0 (ν)


. (79)

For each value of ϕ = 2πi
q
m, m = 0, · · · q − 1, there are 2p roots.

Proposition 2.2.4. When ϕ = 0 (e.g., m = 0), the constant and linear terms for

the polynomial P0(ν) both vanish.

Proof. Neither the linear nor constant terms of the polynomial have ν2 as a factor.

Set ϕ = 0 and remove the terms with ν2 as a factor. The resulting polynomial shares

linear and constant terms with the following polynomial,

det



ψ
(0)
0 (ν) ψ

(0)
1 (ν) 0 · · · ψ

(0)
−1(ν)

ψ
(1)
−1(ν) ψ

(1)
0 (ν) ψ

(1)
1 (ν) · · · 0

...
...

...
. . .

...

ψ
(p−1)
1 (ν) 0 0 · · · ψ

(p−1)
0 (ν)


Every row in this matrix sums to zero, by equation (74). This means that the vector,

consisting of all 1’s, is an eigenvector with eigenvalue 0, and so the determinant

vanishes for all ν. The constant and linear terms are contained in this reduced

polynomial and so must vanish.

Remark 2.2.5. The proof of Proposition 2.2.4 says that the second order term of

the polynomial P0(ν) must contain exactly one of the diagonal ν2 terms. The third

order term of P0(ν) must also contain exactly one of ν2 terms. These facts will be

used below.
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Proposition 2.2.6. The polynomial Pϕ(ν) of Corollary 2.2.3 satisfies

Pϕ(ν) = s(ν) + (−1)prϕ(ν),

where all the ϕ dependence is in the polynomial

rϕ(ν) = (1−eiϕ)
(
ψ

(0)
1 (ν)ψ

(1)
1 (ν) · · ·ψ(p−1)

1 (ν)
)
+(1−e−iϕ)

(
ψ

(0)
−1(ν)ψ

(1)
−1(ν) · · ·ψ

(p−1)
−1 (ν)

)
,

and s(ν) has zero constant and linear terms.

Proof. The only terms of the expansion of equation (79) that depend on ϕ contain

either ψ
(0)
−1(ν)e

−iϕ or ψ
(p−1)
1 (ν)eiϕ, but not both. The determinant is a sum over

permutations σ of terms sgn(σ)M0σ0 · · ·Mp−1σp−1. The only non-zero permutations

have σ(k) ∈ {k − 1, k, k + 1}MOD(p). The permutations that contain the term

ψ
(0)
−1(ν)e

−iϕ but not ψ
(p−1)
1 (ν)eiϕ must have σ(0) = p− 1. The matrix is tri-diagonal,

so the value σ(p−1) ∈ {0, p−1, p−2} for all σ. But in this case we know σ(p−1) ̸= p−1

and, by assumption, σ(p−1) ̸= 0 (or the term would contain the eiϕ term). Therefore,

σ(p−1) = p−2. By a similar logic, σ(p−2) ∈ {p−3, p−2, p−1} but σ(p−2) ̸= p−2 and

σ(p−2) ̸= p−1. So we get σ(p−2) = p−3. Proceed in this way to get the permutation

σ = (0, p− 1, p− 2, · · · 1), which has sgn(σ) = (−1)p−1. This corresponds to the term

−(−1)pe−iϕψ
(0)
−1(ν) · · ·ψ

(p−1)
−1 (ν).

The term that contains ψ
(p−1)
1 (ν)eiϕ but not ψ

(0)
−1(ν)e

−iϕ is computed in a similar way,

and seen to be

−(−1)peiϕψ
(0)
1 (ν) · · ·ψ(p−1)

1 (ν).

We define rϕ so that r0(ν) = 0. From Proposition 2.2.4 it follows immediately
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that the constant and linear terms of s(ν) both vanish.

Corollary 2.2.7. The polynomial Pϕ(ν) satisfies

dkPϕ
dϕk

∣∣∣∣
ϕ=0

=(−1)p+1ik
(
ψ

(0)
1 (ν)ψ

(1)
1 (ν) · · ·ψ(p−1)

1 (ν)
)

+ (−1)p+1(−i)k
(
ψ

(0)
−1(ν)ψ

(1)
−1(ν) · · ·ψ

(p−1)
−1 (ν)

)

Proof. Since s(ν) does not depend on ϕ, this follows immediately from Proposition

2.2.6.

2.3 Characteristic Polynomial Expansion

The roots of the characteristic polynomial of the general system, described in Section

2.2, are given by the roots of a series of p degree polynomials Pϕ(ν) as described

in Corollary 2.2.3. When ϕ = 0, the characteristic polynomial P0(ν) has a root

of multiplicity 2 at ν = 0. In this section start with Assumptions (2.1.1), so that

ρ
(α)
x,1 = ρ

(α)
x,−1. We will not assume that Gx and Gv commute. In the simulations, we

will let gαx and gαv be independent random variables.

If the system is stable, then roots of the characteristic polynomial all have non-

positive real parts. Stable roots with large negative real parts decay quickly so that a

stable system is dominated by roots that lie near the imaginary axis. In our system,

roots near the origin will dominate the dynamics. Therefore, we will expand around

the zero at ϕ = 0, ν = 0 to approximate the system dynamics. The details of the

expansion are outlined in this section.

We expand Pϕ(ν) around ϕ = 0, ν = 0. If q is large enough, we can approximate

the system by using a continuous variable for ϕ. With this approximation, each of

the roots at ϕ = 0, ν = 0 form continuous zero loci as ϕ varies. These two eigenvalue
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approximations are continuous maps,

γ : I → C, (80)

where I = (−ϵ,+ϵ) is some neighborhood of 0. These curves satisfy

Pϕ(γ(ϕ)) = 0. (81)

The coefficients of the characteristic polynomial are analytic functions of the real

parameter ϕ; a polynomial is an analytic function as well. Expand everything in a

Taylor series and use the resulting equations to deduce conditions on the coefficients.

Assume that γ(0) = 0 and write the expansion,

γ(ϕ) = γ′(0)ϕ+
1

2
γ′′(0)ϕ2 + · · · . (82)

Since the coefficients of the polynomial pϕ(ν) are real analytic functions of ϕ, we can

expand each of them in a Taylor series. The result is an expansion of the form

Pϕ(ν) = (a00 + a01ϕ+ · · · ) + (a10 + a11ϕ+ · · · ) ν

+ (a20 + a21ϕ+ · · · ) ν2 + · · · (83)

where the coefficients a0k, a1k, · · · , arise as the coefficients of the kth derivative of

pϕ(ν) with respect to ϕ

1

k!

dkPϕ
dϕk

∣∣∣∣
ϕ=0

= a0k + a1kν + a2kν
2 + · · · . (84)

Theorem 2.3.1. Assume that when ϕ = 0, P0(ν) has a double root at ν = 0, so that
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a00 = a10 = 0. In this case the second order expansion of the zero locus, near the

point ϕ = 0, ν = 0, gives the coefficients

γ′(0) =
−a11 ±

√
a211 − 4a02a20)

2a20
, (85)

γ′′(0) = −2
(a30(γ

′(0))3 + a21(γ
′(0))2 + a12γ

′(0) + a03)

2a20γ′(0) + a11
(86)

Proof. The equation Pϕ(γ(ϕ)) = 0 expands to a power series in ϕ. Set ν = γ(ϕ) and

expand using equation (82). Plug this value of ν into the polynomial of equation (83).

Equation (81) says that this expansion in ϕ vanishes identically. When you solve for

the derivatives γ(m)(0) in terms of ajk, you get equations (85) and (86). This is a

straightforward calculation that can be verified using algebraic manipulation software,

such as SAGE.

Notice that there are two solutions to γ′(0). The double root at the origin splits

into two distinct curves, so that there are two distinct values, γ+(0) and γ−(0).

In the next section, we find the coefficients ajk which are required for our ex-

pansion. The reader may find it more digestible to jump to Section 2.5 and refer to

Section 2.4 as needed.

2.4 Expansion Coefficients Near the Origin

In this section we compute all the coefficients, aij, required for the polynomial ex-

pansion around the origin, as stated in equations 85 and 86. This section has some

specialized and complicated computations which can be skipped on the first reading.

The main results are contained in Propositions 2.4.1 and 2.4.2.
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The polynomial Pϕ(ν) has analytic coefficients so that we can expand the coeffi-

cients in a power series. The result is an expansion of the form,

Pϕ(ν) = (a00 + a01ϕ+ · · · ) + (a10 + a11ϕ+ · · · ) ν

+ (a20 + a21ϕ+ · · · ) ν2 + · · · , (87)

where the coefficients a0k, a1k, · · · , arise as the coefficients of the kth derivative of

pϕ(ν) with respect to ϕ,

1

k!

dkPϕ
dϕk

∣∣∣∣
ϕ=0

= a0k + a1kν + a2kν
2 + · · · . (88)

Using Proposition 2.2.6 we can now take derivative with respect to ϕ and the term

s(ν) vanishes. We get

dkPϕ
dϕk

∣∣∣∣
ϕ=0

= −(i)k(−1)p
(
ψ

(0)
1 (ν)ψ

(1)
1 (ν) · · ·ψ(p−1)

1 (ν)

+(−1)kψ
(0)
−1(ν)ψ

(1)
−1(ν) · · ·ψ

(p−1)
−1 (ν)

)
(89)

Define βv by

ρv,1 = −1− βv
2

⇒ ρv,−1 = −1 + βv
2

. (90)

In our case βv ∈ [−1,+1]. From this we get

βv = ρv,1 − ρv,−1 = 1 + 2ρv,1 = − (1 + 2ρv,−1) (91)
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With this definition and the assumption ρx,1 = ρx,−1 = −1
2
, we have,

ψ
(α)
1 (ν) = −1

2

(
g(α)x + g(α)v (1− βv)ν

)
(92)

ψ
(α)
−1 (ν) = −1

2

(
g(α)x + g(α)v (1 + βv)ν

)
(93)

Now we have

ψ
(0)
±1(ν)ψ

(1)
±1(ν) · · ·ψ

(p−1)
±1 (ν)

= (−1)p(1/2)p(g(0)x + g(0)v (1± βv)ν) · · · (g(p−1)
x + g(p−1)

v (1± βv)ν)

= (−1)p(1/2)p
p−1∏
j=0

g(j)x

(
1 +

p−1∑
k=0

g
(k)
v

g
(k)
x

(1± βv)ν

+

p−1∑
0=k1<k2

g
(k1)
v g

(k2)
v

g
(k1)
x g

(k2)
x

(1± βv)
2ν2 + · · ·

)

= (−1)p(1/2)p

(
p−1∏
j=0

g(j)x

)(
1 +

p−1∑
k=0

g
(k)
v

g
(k)
x

(1± βv)ν

+
1

2

p−1∑
k1,k2
k1 ̸=k2

g
(k1)
v g

(k2)
v

g
(k1)
x g

(k2)
x

(1± βv)
2ν2 + · · ·


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Proposition 2.4.1. The first derivative gives us

a01 = 0, (94)

a11 =
i

2p−1

(
p−1∏
j=0

g(j)x

)(
p−1∑
k=0

g
(k)
v

g
(k)
x

)
βv

=
2ip

2p

(
p−1∏
j=0

g(j)x

)
Avg

(
g
(k)
v

g
(k)
x

)
βv, (95)

a21 =
2i

2p

(
p−1∏
j=0

g(j)x

) p−1∑
k1,k2
k1 ̸=k2

g
(k1)
v g

(k2)
v

g
(k1)
x g

(k2)
x

 βv

=
2i

2p

(
p−1∏
j=0

g(j)x

)(
p−1∑
k1=0

g
(k1)
v

g
(k1)
x

p−1∑
k2=0

g
(k2)
v

g
(k2)
x

−
p−1∑
k=0

g
(k)
v g

(k)
v

g
(k)
x g

(k)
x

)
βv

=
ip2

2p−1

(
p−1∏
j=0

g(j)x

)(
Avg

(
g
(k1)
v

g
(k1)
x

)
Avg

(
g
(k2)
v

g
(k2)
x

)
− 1

p
Avg

(
g
(k)
v g

(k)
v

g
(k)
x g

(k)
x

))
βv (96)

The second derivative gives us

a02 =
1

2p

(
p−1∏
j=0

g(j)x

)
, (97)

a12 =
1

2p

(
p−1∏
j=0

g(j)x

)
p−1∑
k=0

g
(k)
v

g
(k)
x

=
1

2p

(
p−1∏
j=0

g(j)x

)
pAvg

(
g
(k)
v

g
(k)
x

)
(98)

The third derivative gives us

a03 = 0. (99)
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Proof. Using equation (89) with k = 1 gives

dPϕ
dϕ

∣∣∣∣
ϕ=0

=− i(−1)p
(
ψ

(0)
1 (ν) · · ·ψ(p−1)

1 (ν)− ψ
(0)
−1(ν) · · ·ψ

(p−1)
−1 (ν)

)
=− i(1/2)p

(
p−1∏
j=0

g(j)x

)(
(1− βv − 1− βv)ν

p−1∑
k=0

g
(k)
v

g
(k)
x

+
(
(1− βv)

2 − (1 + βv)
2
)
ν2

1

2

p−1∑
k1,k2
k1 ̸=k2

g
(k1)
v g

(k2)
v

g
(k1)
x g

(k2)
x

+ · · ·



=i(1/2)p−1

(
p−1∏
j=0

g(j)x

)νβv p−1∑
k=0

g
(k)
v

g
(k)
x

+ ν2βv

p−1∑
k1,k2
k1 ̸=k2

g
(k1)
v g

(k2)
v

g
(k1)
x g

(k2)
x

+ · · ·


The formulas for a01, a11, a21 all follow from equation (88). The second derivative is

1

2

d2Pϕ
dϕ2

∣∣∣∣
ϕ=0

= (−1)p(1/2)
(
ψ

(0)
1 (ν) · · ·ψ(p−1)

1 (ν) + ψ
(0)
−1(ν) · · ·ψ

(p−1)
−1 (ν)

)
= (1/2)p+1

(
p−1∏
j=0

g(j)x

)(
2 +

p−1∑
k=0

g
(k)
v

g
(k)
x

(1− βv + 1 + βv) + · · ·

)

The formulas for a02, a12, a22 all follow from equation (88). The third derivative is

1

3!

d3Pϕ
dϕ3

∣∣∣∣
ϕ=0

= i(1/6)(−1)p
(
ψ

(0)
1 (ν) · · ·ψ(p−1)

1 (ν)− ψ
(0)
−1(ν) · · ·ψ

(p−1)
−1 (ν)

)
= i(1/6)

1

2p

(
p−1∏
j=0

g(j)x

)(
0 + ν

p−1∑
k=0

g
(k)
v

g
(k)
x

(1− βv − 1− βv) + · · ·

)

The formula for a03 follows from equation (88).
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Proposition 2.4.2. The coefficients a00, a10, a20, a30 are given by

a00 = 0, (100)

a10 = 0, (101)

a20 =
p

2p−1

p−1∏
j=0

g(j)x

(
p−1∑
k=0

1

g
(k)
x

)
=

2p2

2p

(
p−1∏
j=0

g(j)x

)
Avg

(
1

g
(k)
x

)
(102)

a30 =
2p

2p

(
p−1∏
j=0

g(j)x

)((
p−1∑
k=0

1

g
(k)
x

)(
p−1∑
j=0

g
(j)
v

g
(j)
x

)
−

p−1∑
k=0

g
(k)
v

g
(k)
x g

(k)
x

)

+
2βv
2p

(
p−1∏
j=0

g(j)x

)(
p−1∑
k=0

p−1∑
j=1

g
(k+j)
v

g
(k)
x g

(k+j)
x

(p− 2j)

)
. (103)

Proof. The coefficients are determined by the polynomial Pϕ(ν) with ϕ = 0. By

Proposition 2.2.6,

P0(ν) = s(ν) + (−1)pr0(ν) = s(ν).

The polynomial s(ν) has zero constant and linear terms by Proposition 2.2.6, so

a00, a10 are both zero.

The derivations of a20 and a30 both rely on Remark 2.2.5. To compute a20 you

gather the second order terms, ν2. When computing the determinant P0(ν) you must

have exactly one ν2 factor from the diagonal terms. None of the remaining terms

depend on ν. The derivation for a20 follows in a similar way to a30. We present the

details for a30 and leave a20 to the reader.

The polynomial ν3 coefficient must include exactly one ν2 from a diagonal element.

The contribution from the ν2 term in the(k, k) diagonal element is computed using

the co-factor of this element. If we use arithmetic mod (p), then the co-factor has

rows and columns with the index values

k + 1, k + 2, · · · , k + (p− 1) mod (p).

55



Using Proposition C.5.1, the ν3 term is the ν3 term in the following polynomial:

ν2
(
ψ

(k+1)
−1 (ν) · · ·ψ(k+p−2)

−1 (ν)ψ
(k+p−1)
−1 (ν) + ψ

(k+1)
−1 (ν) · · ·ψ(k+p−2)

−1 (ν)ψ
(k+p−1)
1 (ν) + · · ·

+ψ
(k+1)
−1 (ν)ψ

(k+2)
1 (ν) · · ·ψ(k+p−1)

1 (ν) + ψ
(k+1)
1 (ν)ψ

(k+2)
1 (ν) · · ·ψ(k+p−1)

1 (ν)
)
. (104)

Each summand contains p−1 factors in the product. We write out all the contribu-

tions to ν3 by writing the first summand on the first row, followed by the contribution

of the second summand on the second row until we get to the p’th row. The result is

the ν3 term,

ν3(−1)p−1

(−2)p−2

(
p−1∏
j=0

g(j)x

)
(

g
(k+1)
v

g
(k)
x g

(k+1)
x

ρv,−1 +
g
(k+2)
v

g
(k)
x g

(k+2)
x

ρv,−1 + · · ·+ g
(k+p−1)
v

g
(k)
x g

(k+p−1)
x

ρv,−1

+
g
(k+1)
v

g
(k)
x g

(k+1)
x

ρv,−1 +
g
(k+2)
v

g
(k)
x g

(k+2)
x

ρv,−1 + · · ·+ g
(k+p−1)
v

g
(k)
x g

(k+p−1)
x

ρv,1

+
g
(k+1)
v

g
(k)
x g

(k+1)
x

ρv,−1 +
g
(k+2)
v

g
(k)
x g

(k+2)
x

ρv,−1 + · · ·+ g
(k+p−1)
v

g
(k)
x g

(k+p−1)
x

ρv,1

+ · · ·

+
g
(k+1)
v

g
(k)
x g

(k+1)
x

ρv,−1 +
g
(k+2)
v

g
(k)
x g

(k+2)
x

ρv,1 + · · ·+ g
(k+p−1)
v

g
(k)
x g

(k+p−1)
x

ρv,1

+
g
(k+1)
v

g
(k)
x g

(k+1)
x

ρv,1 +
g
(k+2)
v

g
(k)
x g

(k+2)
x

ρv,1 + · · ·+ g
(k+p−1)
v

g
(k)
x g

(k+p−1)
x

ρv,1

)
.

For each j = 1, 2, · · · , p − 1, we add up the terms with g
(k+j)
v

g
(k)
x g

(k+j)
x

. These are the

vertical columns in the previous equation. Some of the terms have factor ρv,1 and
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some have ρv,−1. The ν
3 term then becomes

ν3(−1)p−1

(−2)p−2

(
p−1∏
j=0

g(j)x

)
p−1∑
j=1

g
(k+j)
v

g
(k)
x g

(k+j)
x

(ρv,−1(p− j) + ρv,1j)

=
ν3

2p−1

(
p−1∏
j=0

g(j)x

)
p−1∑
j=1

g
(k+j)
v

g
(k)
x g

(k+j)
x

((1 + βv)(p− j) + (1− βv)j)

=
ν3

2p−1

(
p−1∏
j=0

g(j)x

)
p−1∑
j=1

g
(k+j)
v

g
(k)
x g

(k+j)
x

(p+ (p− 2j)βv).

To get the coefficient a30 we sum over k,

a30 =
1

2p−1

(
p−1∏
j=0

g(j)x

)
p−1∑
k=0

p−1∑
j=1

g
(k+j)
v

g
(k)
x g

(k+j)
x

(p+ βv(p− 2j))

=
1

2p−1

(
p−1∏
j=0

g(j)x

)(
p−1∑
k=0

p−1∑
j=0

g
(k+j)
v

g
(k)
x g

(k+j)
x

(p+ βv(p− 2j))−
p−1∑
k=0

g
(k)
v

g
(k)
x g

(k)
x

(p+ βvp)

)

=
1

2p−1

(
p−1∏
j=0

g(j)x

)(
p−1∑
k=0

p−1∑
m=0

g
(m)
v

g
(k)
x g

(m)
x

(p+ βv(p− 2(m− k)))

−p(1 + βv)

p−1∑
k=0

g
(k)
v

g
(k)
x g

(k)
x

)
.

The coefficient a30 is the sum over all k,

a30 =
2

2p

(
p−1∏
j=0

g(j)x

)
p−1∑
k=0

p−1∑
j=0
j ̸=k

g
(j)
v

g
(k)
x g

(j)
x

(p+ βv(p− 2j)).

2.5 Characteristic Polynomial Near 0

The characteristic equation of the system is given in Corollary 2.2.3. Although the

parameter ϕ = 2π
q
m is discrete, we approximate it as a real parameter. The Taylor
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expansion of this equation in the variable ϕ, described in Section 2.3, results in an

approximation for the roots that lie near the double root at ν = 0. The main result

is given in Theorem 2.5.1. See Section 2.4 for a detailed derivation of the coefficients

needed in the expansion.

Theorem 2.5.1. With the assumptions described at the start of Section 2.2 the char-

acteristic polynomial Pϕ(ν) has a double zero when ϕ = 0. As N → ∞, the set of zeros

near the origin approach two curves γ that pass through the origin. The derivatives

of γ are given by

γ′±(0) =
i

p
c1,± (105)

γ′′±(0) = − 2

p2
c2,± , (106)

where the constants c1,± and c2,± are given by

c1,± =
−βv Avg

(
g
(k)
v

g
(k)
x

)
±
√

2Avg
(

1

g
(k)
x

)
+ β2

v Avg
(
g
(k)
v

g
(k)
x

)2
2Avg

(
1

g
(k)
x

) (107)

c2,± =±
(
2FV 3β4

v + 2AMV 2β3
v − 2CV 3β3

v + 3FMV β2
v

−M2V 2βv + 2AM2βv − 3MVCβv
)
/4M3ΓR

+
(
−2FV 2β3

v − 2MVAβ2
v + 2V 2Cβ2

v − FMβv

+M2V + CM
)
/4M3, (108)
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and where we’ve defined the following,

M = Avg

(
1

g
(k)
x

)
V = Avg

(
g
(k)
v

g
(k)
x

)
(109)

R = Avg

(
g
(k)
v

g
(k)
x g

(k)
x

)
S = Avg

(
g
(k)
v g

(k)
v

g
(k)
x g

(k)
x

)
(110)

F =
1

p2

p−1∑
k=0

p−1∑
j=1

g
(k+j)
v

g
(k)
x g

(k+j)
x

(p− 2j) (111)

C = R−MV A = S − V 2. (112)

This means that the zero loci, near the double root, is approximated by the two

curves (see equation (82))

γ+(ϕ) = ic1,+

(
ϕ

p

)
− c2,+

(
ϕ

p

)2

+ · · · (113)

γ−(ϕ) = ic1,−

(
ϕ

p

)
− c2,−

(
ϕ

p

)2

+ · · · .

These are parabolic approximations to the two continuous eigenvalue loci emanating

from the origin.

Proof. To find γ′±(0) we start with equation (85). This equation has the ± but we

leave this off and identify the ± curves at the end of the proof. Use Proposition 2.4.2
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equation (102) and Proposition 2.4.1 equations (97) and (95). We get

γ′±(0) =
−a11 ±

√
a211 − 4a02a20)

2a20
,

=

− 2i
2p

(∏p−1
j=0 g

(j)
x

)(p−1∑
k=0

g
(k)
v

g
(k)
x

)
βv

4p2

2p

(∏p−1
j=0 g

(j)
x

)
Avg

(
1

g
(k)
x

)

±
i

(∏p−1
j=0 g

(j)
x

)
2p

√
4β2

vp
2Avg

(
g
(k)
v

g
(k)
x

)2
+ 8p2Avg

(
1

g
(k)
x

)
4p2

2p

(∏p−1
j=0 g

(j)
x

)
Avg

(
1

g
(k)
x

)

=i
−Avg

(
g
(k)
v

g
(k)
x

)
βv ±

√
2Avg

(
1

g
(k)
x

)
+ β2

v Avg
(
g
(k)
v

g
(k)
x

)2
2pAvg

(
1

g
(k)
x

) .

Equation (107) follows.

To find γ′′(0), start with Theorem 2.3.1. Set

γ′′(0) = −2
Ñp

D̃p

,

where

D̃p = 2a20γ
′(0) + a11 =

(
−a11 ±

√
a211 − 4a02a20

)
+ a11

= ±
√
a211 − 4a02a20

= ±2ip

2p

(
p−1∏
j=0

g(j)x

)√√√√2Avg

(
1

g
(k)
x

)
+ β2

v Avg

(
g
(k)
v

g
(k)
x

)2

= ±2ipPx

√√√√2Avg

(
1

g
(k)
x

)
+ β2

v Avg

(
g
(k)
v

g
(k)
x

)2

,
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where we have defined the constant

Px =
1

2p

(
p−1∏
j=0

g(j)x

)
. (114)

Except for the sign, this is the product of the forward coupling constants.

The numerator is given by

Ñp =
(
a30(γ

′(0))3 + a21(γ
′(0))2 + a12γ

′(0) + a03
)

(115)

The required aij are the following,

a30 = Pxp
2 (2pMV − 2R + 2βvF )

a21 = Pxip
(
2pV 2 − 2S

)
βv

a12 = PxpV

a03 = 0.

Each of these coefficients has a factor of Px. which will cancel the factor appearing

in D̃p. In equation (115) there are factors of γ′(0)k. Set

γ′(0) =
iΓN
2Mp

, (116)

where

ΓN = −βvV + s
√
2M + β2

vV
2. (117)
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The numerator has the form

Ñp =
(
a30(γ

′(0))3 + a21(γ
′(0))2 + a12γ

′(0) + a03
)

=
iPx

p(2M)3
(
−(2pMV − 2R + 2Fβv)Γ

3
N

−2M(2pV 2 − 2V2)βvΓ
2
N + (2M)2(pV )ΓN

)
The factor iPx cancels in numerator and denominator. We move the (2M)3 to

the denominator. We re-write the γ′′(0) as

γ′′(0) =
−Np

Dp

,

where

Np =(−2pMV + 2R− 2Fβv)Γ
3
N + 2M(−2pV 2 + 2V2)βvΓ

2
N

+ (2M)2(pV )ΓN (118)

Dp =± 2(2M)3p2
√
2M + β2V 2. (119)

With these definitions we have

γ′′(0) = −2
Np

Dp

. (120)

We insert the expression of equation (118) into SAGE to perform the manipulation

(see PolyNumerExpand.sage listing). The result is

Nexp =

8*F*V^3*betav^4 + 8*M*S*V^2*betav^3

- 8*R*V^3*betav^3 + 12*F*M*V*betav^2
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+ 8*M^2*S*betav - 12*M*R*V*betav

- 8*sqrt(V^2*betav^2 + 2*M)*F*V^2*betav^3

- 8*sqrt(V^2*betav^2 + 2*M)*M*S*V*betav^2

+ 8*sqrt(V^2*betav^2 + 2*M)*R*V^2*betav^2

- 4*sqrt(V^2*betav^2 + 2*M)*F*M*betav

+ 4*sqrt(V^2*betav^2 + 2*M)*M*R

There is an implicit ± in front of every sqrt statement. Denote the radical portion of

γ′(0) by ΓR so that

ΓR =
√

2M + V 2β2
v . (121)

Assemble the results. There is a factor of 4 and another factor of 2 that cancel from

the numerator and denominator. We get

γ′′(0) =− 2
Np

Dp

=− 1

p22M3ΓR

(
±
(
2FV 3β4

v + 2MV 2Sβ3
v − 2V 3Rβ3

v

+3FMV β2
v + 2M2Sβv − 3MVRβv

)
+
(
−2FV 2β3

v − 2MV Sβ2
v + 2V 2Rβ2

v − FMβv +MR
)
ΓR
)

We have

c2,± =
1

4M3ΓR

(
±
(
2FV 3β4

v + 2MV 2Sβ3
v − 2V 3Rβ3

v

+3FMV β2
v + 2M2Sβv − 3MVRβv

)
+
(
−2FV 2β3

v − 2MV Sβ2
v + 2V 2Rβ2

v − FMβv +MR
)
ΓR
)
. (122)

The solution c2,+ corresponds to c1,+ and c2,− corresponds to c1,−, so there are
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two parabolic approximations at the origin.

Finally, we can replace R and S with the variables C and A to get,

c2,± =
1

4M3ΓR

(
±
(
2FV 3β4

v + 2AMV 2β3
v − 2CV 3β3

v

+3FMV β2
v −M2V 2βv + 2AM2βv − 3MVCβv

)
+
(
−2FV 2β3

v − 2MVAβ2
v + 2V 2Cβ2

v − FMβv +M2V + CM
)
ΓR
)
.

Remark 2.5.2. In the theorem, we have averages over k and averages over α. Be-

cause of the system setup, these two averages are the same. The average over α is the

average over the p agent types and the average over k is the average over all N = pq

agents. However, this is just a collection of q copies of the p agents and so these two

averages are the same. This means that

Avg

(
1

g
(k)
x

)
= Avg

(
1

g
(α)
x

)
....

Only F must be taken over the smaller population of p elements so that the filter can

be applied correctly.

Remark 2.5.3. The value c1,+ is the velocity in the positive x-axis direction. In the

second Cantos paper [5] the value c1,+ is in the direction of increasing agents which

is the negative of the meaning in this work.

Corollary 2.5.4. Assume we have the system described in Theorem 2.5.1. If βv = 0
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then we have

c1,± = ±
√√√√ 1

2Avg
(

1

g
(k)
x

) (123)

c2,± = ±M
2V + CM

4M3
= ±

Avg
(

g
(k)
v

g
(k)
x g

(k)
x

)
(
2Avg

(
1

g
(k)
x

))2 . (124)

Corollary 2.5.4 is the main result in [20].

2.5.1 Random Variables

The averages in equation (109) are the expectation values of the two discrete random

variables

M =
1

g
(α)
x

(125)

V =
g
(α)
v

g
(α)
x

, (126)

where α = 0, 1, · · · p− 1. In terms of these two random variables we have

M = E [M] V = E [V]

R = E [MV] S = E
[
V2
]
,

where E [.] denotes the expectation value. More natural than R is the covariance,

C = E [(M− E[M]) (V− E[V])] = R−MV. (127)
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More natural than S is the variance of V,

A = E
[
(V− E[V])2

]
= S − V 2. (128)

2.5.2 Other Eigenvalues

The expansion of Theorem 2.5.1 assumes a smooth eigenvalue locus around the origin.

This approximation means that N must be large. These are not the only eigenvalues

of the system. Theorem 2.2.1 outlines the method to find all the eigenvalues. For

each m = 0, · · · , q − 1, we set ϕ = 2π
q
m and then construct Mϕ(ν). The determinant

of this has 2p roots which are the 2p eigenvalues corresponding to this m.

By Proposition 2.2.4, if ϕ = 0 then M0(ν) has 2p roots and a double root at the

origin. Figure 6 contains a plot of the 2p = 8 roots of M0(ν) indicated by the large X.

To count the 8 roots, you must count the double root at the origin twice. As we vary

m, and so ϕ, the roots move along a smooth curve. The result is a series of eigenvalue

loci that emanate from the 8 eigenvalues of M0(ν). The two curves emanating from

the origin are the two curves that we approximate in this section. One of the curves

corresponds to the two parameters c1,+, c2,+ and the second curve corresponds to the

two parameters c1,−, c2,−. Both of these curves go through the origin.

To estimate the long-term behavior of the system, we can ignore eigenvalues with

large negative real part. The eigenvectors with these eigenvalues will decay rapidly so

they have little impact on large time results. The curves emanating from the origin

are the most important determinant for large time behavior.

2.5.3 Immediate Consequences

The formulations for c1,± and c2,± lead to a few immediate consequences.
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Figure 6: Plot showing eigenvalues of flock with p = 4. The matrix M0(ν) has
2p = 8 eigenvalues shown by the X’s. The green lines are the eigenvalues for Mϕ as ϕ
changes. The plots only contain half of the allowable values, so the curves are clear.
Notice there are two curves of different curvatures emanating from the origin.

Corollary 2.5.5. For the values c1,+ and c1,− in Theorem 2.5.1 we have

c1,+ ≥ 0

c1,− ≤ 0.

Proof. We know that 2Avg
(

1

g
(α)
x

)
> 0. This means that

∣∣∣∣∣βv Avg
(

1

g
(α)
x

)∣∣∣∣∣ <
√√√√2Avg

(
1

g
(α)
x

)
+ β2

v Avg

(
g
(α)
v

g
(α)
x

)2

.
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The results follow.

Corollary 2.5.6. For the values c1,+ and c1,− in Theorem 2.5.1 we have

βv = 0 ⇒ |c1,+| = |c1,−|

βv > 0 ⇒ |c1,+| < |c1,−|

βv < 0 ⇒ |c1,+| > |c1,−|.

Proof. As we stated in Corollary 2.5.5,

∣∣∣∣∣βv Avg
(

1

g
(α)
x

)∣∣∣∣∣ <
√√√√2Avg

(
1

g
(α)
x

)
+ β2

v Avg

(
g
(α)
v

g
(α)
x

)2

.

The results follow.

Corollary 2.5.7. Denote the βv dependence by c1,±(βv). For the values c1,+ and c1,−

in Theorem 2.5.1 we have

c1,+(−βv) = −c1,−(βv).

This means the two solutions of c1,+, c1,− at βv are the negatives of the solutions

c1,−, c1,+ at −βv.

68



Proof.

c1,+(−β) =
βv Avg

(
g
(k)
v

g
(k)
x

)
+

√
2Avg

(
1

g
(k)
x

)
+ β2

v Avg
(
g
(k)
v

g
(k)
x

)2
2Avg

(
1

g
(k)
x

)

= −

−βv Avg
(
g
(k)
v

g
(k)
x

)
−
√

2Avg
(

1

g
(k)
x

)
+ β2

v Avg
(
g
(k)
v

g
(k)
x

)2
2Avg

(
1

g
(k)
x

)


= −c1,−(βv).

Similar statements for the values c2,± require an additional condition.

Corollary 2.5.8. Denote the βv dependence by c2,±(βv). If βvF = 0 then we have,

c2,+(−βv) = c2,−(βv).

Proof. The denominator of both c2,+ and c2,− are independent of βv and F . Set

βvF = 0 and compute,

c2,+(−βv) =
1

4M3ΓR

((
2AMV 2(−βv)3 − 2CV 3(−βv)3

−M2V 2(−βv) + 2AM2(−βv)− 3MVC(−βv)
)

+
(
−2MVA(−βv)2 + 2V 2C(−βv)2 +M2V + CM

)
ΓR
)

= c2,−(βv).

Remark 2.5.9. For every βv there are two distinct second order eigenvalue approx-

imations given by c1,+(βv), c2,+(βv) and c1,−(βv), c2,−(βv). These two second order
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approximations are shown in Figure 6. The Corollaries above show that when F is

small, the two curves for βv are the same two curves for −βv except that the curve

determined by c1,+(βv), c2,+(βv) is c1,−(−βv), c2,−(−βv).

2.5.4 Conclusions

Theorem 2.5.1 gives a prediction for the eigenvalues near the origin when the matrix

M has periodic boundary conditions. We will see, in Section 2.8, that this requirement

is subtle and somewhat problematic. However, despite shortcomings, the theorem is

quite useful for predicting several features of large-scale flock behavior.

Theorem 2.5.1 was proved by chaining q sub-sequences together to get a sequence

of length N = pq. What is surprising is that Theorem 2.5.1 works well even when

q = 1. In simulations, Theorem 2.5.1 seems to work well even when the p agents

follow some pattern, like a ramp. This seems contradictory, but one can understand

this heuristically. If the p agents are chosen at random, then the dynamics of the p

random agents duplicated q times should be close to the dynamics of N = pq random

agents. Indeed, this issue seems less important than the issue of boundary conditions.

We shall discuss these issues further in Section 2.8.

2.6 Solutions

We can use Theorem 2.5.1 to construct some practical systems. Let’s review our

assumptions.

Assumptions 2.6.1. The linear nearest neighbor system described in Section 2.2 is

called realistic x−symmetric if it satisfies the following axioms:

1. ρ
(α)
x,+ = ρ

(α)
x,− = −1

2
, for all α,

2. ρ
(α)
v,+, ρ

(α)
v,− ≤ 0 and both quantities are independent of α,
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3. g
α)
x > 0 for all α,

4. g
α)
v > 0 for all α,

5. The system is stable and all of the eigenvalues that are close to the imaginary

axis are close to the locus described in Theorem 2.5.1.

The values g
α)
x and g

α)
v might be different for each of the p distinct agents. As-

sumption 2.6.1 item 1 is required for stability, as seen in Theorem 2.7.1. Assumption

2.6.1 items 2, 3 and 4 are related to stability, although we’ve seen in Sections 1.2.1

and 1.3, that they are not necessary for stability.

Assumption 2.6.1 item 5 is the most problematic. We must assume that all eigen-

values other than those described by Theorem 2.5.1 have large negative real parts,

so that they decay quickly. We can construct unstable systems that violate this as-

sumption, but these systems are of little practical use. Assumption 2.6.1 item 5 is

further justified by the simulations in Section 2.8. With this assumption the disper-

sion relation becomes tractable.

To put together a solution with initial conditions that satisfies the assumptions

2.6.1, we assemble a solution out of the eigenvectors listed in Theorem 2.2.1. Start

by setting m to an integer in the range 0, · · · , q − 1. With this m, construct the

matrixMϕ(ν) of equation (77), where ϕ = 2π
q
m. For each m, we solve for the 2p roots

of det (Mϕ(ν)). For each root νmn, we construct an element of the kernel of Mϕ(ν),

which we denote by em,n.

The result is an eigenvector of the form

u(m,n) =

 vm ⊗ em,n

νmn (vm ⊗ em,n)

 ,
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where νmn is the eigenvalue corresponding to the eigenvector u(m,n) and vm is an

N -vector with coordinates ωmjq (see Section C.4 ). We are looking for a solution of

the form

zk(t) =

q−1∑
m=0

2p−1∑
n=0

amn exp (tνmn) (vm ⊗ em,n)k,

where amn are real numbers that depend on the initial conditions. If the system is

known at t = 0 then the initial conditions are given by

zk(0) =

q−1∑
m=0

2p−1∑
n=0

amn(vm ⊗ em,n), (129)

żk(0) =

q−1∑
m=0

2p−1∑
n=0

amnνmn(vm ⊗ em,n). (130)

Equation (130) is the bottom half of the eigenvector. These two equations give 2pq

equations to determine the N = 2pq coefficients amn.

The term corresponding to a fixed m and n is

amn exp (tνmn) (vm ⊗ em,n)k = amn



em,n

ωmq em,n

ω2m
q em,n
...

ω
(q−1)m
q em,n


exp (tνmn) .

With Assumptions 2.6.1 we can use the eigenvalue formula of Theorem 2.5.1. The
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states corresponding to these eigenvalues have the form,



e0

...

ep−1

ωmq e
0

...

ωmq e
p−1

...

ω
(q−1)m
q e0

...

ω
(q−1)m
q ep−1



exp

(
itc1

(
ϕ

p

))
exp

(
−tc2

(
ϕ

p

)2
)

(131)

If we ignore the c2,± damping term, the flock pattern given by this eigenvector ad-

vances (−p) agents (e.g., p agents to the left) in time δ, where δ satisfies,

ekωnmq exp

(
i(t0 + δ)c1

(
ϕ

p

))
= ω(n−1)m

q ek exp

(
it0c1

(
ϕ

p

))
⇒ exp

(
iδc1

(
ϕ

p

))
= ω−m

q = exp

(
−2πi

q
m

)
⇒ exp

(
2πi

N
c1δm

)
= exp

(
−2πi

N
pm

)

when k and n are fixed. So if we ignore the c2,± term, the flock pattern repeats at a

time δ when the following holds for some integer j.

(−c1)δm = pm+ jN

⇒δ =
p

−c1
+
jN

c1m
.
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The repeat time in this direction has c1 < 0 and the pattern first repeats when j = 0

so that

δ1 =
p

−c1
=

p

|c1|
.

During this interval the pattern has moved −p agents. The phase velocity, in agents

per unit time, is given by,

|c1| =
p

δ1
. (132)

This is the phase velocity for this eigenstate. All the eigenvectors approximated

by Theorem 2.5.1 are determined by the first two terms of the two curves in equation

(113). This means that all the eigenstates have phase velocity either c1,+ or c1,−. By

Corollary 2.5.5 the phase velocities point in opposite directions.

We would normally expect the term

u(m,n) exp

(
itc1

ϕ

p

)
= u(m,n) exp

(
2πi

N
mc1t

)

to repeat whenever t → t + δ where δ = N
c1
. But the flock eigenvector in equation

(131) repeats far more frequently. To understand this, recall that a pure wave has a

factor

exp (i(kx− ωt)) = exp
(
2πi(

x

λ
− ft)

)
.

A system with no dispersion has fλ = c1 for all wavelengths (e.g., k and ω are

linearly related). If we ignore the c2 term, our system satisfies this for multiples of a

wavelength equal to p agents. We assume that p is small relative to N and that we

can assume this relationship holds for all multiples of a wavelength of 1 agent. We

add this as an assumption.

Assumptions 2.6.2. We assume that the details of flock behavior in small times can
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be ignored and the phase velocity of the flock for the eigenvector u(m,n) is c1.

If the flock contains all identical agents, then you can show that this approximation

is valid and you can get an explicit bound on the error [5]. In our case, we must add

this as an assumption.

Using this, we expect that for large times, all flock eigenvectors have phase velocity

c1,+ or c1,−. This means that the trajectory for agent k will have the form

zk(t) = f+

(
t+

k

c1,+

)
+ f−

(
t+

k

c1,−

)
. (133)

In this expression, the velocity c1,+ moves towards the positive x−axis, which is the

negative agent number, and the velocity c1,− moves in the negative x−axis, which is

the positive index number. To this equation, we also have to add the damping term

controlled by c2,±.

Another feature of our system is that there are two distinct phase velocities that

are opposite in direction but have different magnitudes.

Remark 2.6.3. In short times the wave can change shape, but it re-assembles itself

after moving through exactly p agents so that it looks like the original packet. The

only change in the waveform is the attenuation of the damping term c2,±.

2.6.1 Boundary Conditions

In this section we describe a typical boundary condition and derive some additional

conditions. In Section 2.2 we placed agent 0 at the origin and spaced the other

agents sequentially along the negative axis so that agent N−1 had the most negative

coordinate. We consider a system that starts at rest at t < −ϵ. As t > −ϵ, agent 0

accelerates until it reaches a velocity v0. The other agents follow agent 0 as it moves
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along the positive x-axis at velocity v0. To define precise boundary conditions, we

start with a simple definition.

Definition 2.6.4. A smooth velocity ramp is a function ψϵ(t) that has the following

properties,

� ψϵ is smooth,

� ψϵ(t) = 0 when t < −ϵ,

� dψϵ

dt
= 1 when t > ϵ.

The function ψϵ models a smooth transition from zero velocity to v0. Now we

proceed to describe the boundary conditions.

Definition 2.6.5. A one-dimensional array of agents satisfies the regular boundary

condition if the tail agent is disconnected from agent 0 and zN−1 satisfies

d2zN−1

dt2
= −g(p−1)

x γx (zN−1 − zN−2)− g(p−1)
v γv (żN−1 − żN−2) ,

where γx and γv satisfy

γx = γv = 1.

In the simulations we often use the following definition.

Definition 2.6.6. A one-dimensional flock satisfies the constant velocity boundary

conditions if it satisfies the ‘regular boundary conditions’ of Definition 2.6.5 and,

agent 0 moves to the right according to

x0(t) = z0(t) = ψϵ(t)v0

where v0 is a constant.
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One method to solve for this boundary condition is to solve for the agents,

yk(t) =
d2zk
dt2

.

Because the ODE is linear, we know that yk(t) satisfies the same ODE as the zk(t),

but it has different boundary conditions. In particular, the value y0(t) satisfies

y0(t) =
d2ψϵ
dt2

= p(t)v0. (134)

The properties of p(t) are summarized in the following Proposition.

Proposition 2.6.7. If p(t) = d2ψϵ

dt2
then we have

� p is smooth,

� p(t) = 0 when t < −ϵ,

� p(t) = 0 when t > ϵ,

�
∞∫

−∞
p(s)ds = 1.

Proof. These follow immediately from Definition 2.6.4.

If the system is stable, then for the conditions at the tail, we shall use ‘open tail’

boundary condition that is defined as follows.

Definition 2.6.8. An agent sequence {yk} satisfies open tail conditions if,

∂yk
∂k

∣∣∣∣
k=N−1

= 0.

See Remark 2.6.11 for the acoustic analog to the open tail condition defined in

Definition 2.6.8.
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By solving for the trajectory yN(t) one can integrate twice to get zN−1(t). We

characterize the flock by measuring the distance d(t) = z0(t) − zN−1(t). As agent 0

moves to the right the distance d(t) grows. It reaches its first maximum at T1 and the

maximum is given by A1 = d(T1). At T2 the distance d(t) reaches a local minimum

given by A2 = d(T2). We proceed through k0 extremal points.

Using a heuristic argument we can prove the following Theorem which we use to

predict some large scale flock behavior. This behavior is tested in the simulations of

Section 2.8.

Theorem 2.6.9. Assume that the system zk(t) is stable and satisfies the ‘regular’

boundary conditions and that also satisfy the “constant velocity boundary conditions”

of Definition 2.6.6. Also assume that

zk(t) = f+

(
t+

k

c1,+

)
+ f−

(
t+

k

c1,−

)
.

For large N there is a fixed K0 so that the trajectory of the last agent zN(t) can be

approximated by the following properties.

� Tk =
(N−1)
−c1,− + (k − 1)

(
(N−1)
c1,+

− (N−1)
c1,−

)
for k = 1, · · ·K0,

� Ak =
(
c1,+
c1,−

)k−1
(N−1)v0
c1,−

for k = 1, · · ·K0,

where Tk is the time to the kth extremal distance z0 − zN and Ak is the difference

zN−1(Tk)−z0(Tk). When converting back to xk this will be the distance from the stable

point.

Proof. See Appendix F for further discussion. The proof follows the lines in Cantos

[5].
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Remark 2.6.10. Theorem 2.6.9 gives a prediction of system stability for systems

with the constant velocity boundary conditions. The formula for Ak implies that

∣∣∣∣Ak+1

Ak

∣∣∣∣ = ∣∣∣∣c1,+c1,−

∣∣∣∣ .
If the ratio is less than 1 we expect a stable system and if the ratio is greater than 1

then we expect an unstable system.

The utility of predicting stability using Theorem 2.6.9 and Remark 2.6.10 will

become clear in the simulations in Section 2.8. See, in particular, Figure 17.

Remark 2.6.11. The equations of motion for longitudinal sound waves is a PDE

system that is analogous to our system. This PDE system is described in Appendices

G and H. In acoustics, standing waves in an organ pipe are derived assuming certain

boundary conditions. If D(x, t) is the displacement of a disk of air in the pipe oriented

along the x-axis, then

Ps = ∆P = −B∂D
∂x

where P (x, t) is the pressure. This is described in detail in equation (188). At the

closed end of the pipe the displacement is zero, so D(xc, t) = 0. At the open end of

the pipe the change in pressure vanishes so we have

∂D

∂x

∣∣∣∣
xo

= 0.

The ‘open’ boundary conditions of Definition 2.6.8 are the same as the open end of

an organ pipe.

The constant velocity boundary conditions of Definition 2.6.6 state that the ve-

locity of agent 0 does not change. In the acoustics analog this condition means the

displacement velocity does not change. The only way this can happen in the acoustics
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case is when D = 0. The acoustic wave has a preferred reference frame of the ambient

air and the equations of motion determine the motion of the over-pressure Ps and the

displacement D. In the agent case the entire caravan can move at a constant velocity

and still obey the equations of motion.

2.7 Stability

From this we can prove a necessary condition for stability.

Theorem 2.7.1. If, for a general (linear) nearest neighbor system,

∏
i

ρ
(i)
x,1 −

∏
i

ρ
(i)
x,−1 ̸= 0

the system is unstable in one sense or another.

Proof. By [3] (specifically, see Appendix in [3]), the constant term of
dPϕ

dϕ

∣∣∣
ϕ=0

must

vanish. By Corollary 2.2.7 the derivative of the constant term is,

(−1)p+1i
(
ρ
(0)
x,1ρ

(1)
x,1(ν) · · · ρ

(p−1)
x,1 − ρ

(0)
x,−1ρ

(1)
x,−1 · · · ρ

(p−1)
x,−1

)

The ρ
(α)
x,1 , ρ

(α)
x,−1 are all real so the theorem follows.

In this general case it is difficult to come up with sufficient conditions for stability.

If we simplify the problem a bit there is more that can be said.

One nice feature of the symmetric case is that one can prove stability in a restric-

tive sense using the following fact.

Proposition 2.7.2. If M is a diagonalizable matrix with eigenvalues in the left half

complex plane and G is a positive definite matrix then GM has eigenvalues in the

left half complex plane.
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Proof. Variants of this Proposition are known. We include the proof for completeness.

If G is a positive definite matrix then there is a non-singular square root G1/2. For

any vector X there is a Y with X = G1/2Y . So, for any X we have,

⟨GMY,Y⟩ = ⟨G1/2G1/2MY,Y⟩ = ⟨G1/2MY,G1/2Y⟩

= ⟨G1/2MG−1/2G1/2Y,G1/2Y⟩

= ⟨G1/2MG−1/2X,X⟩.

The eigenvalues of G1/2MG−1/2 are the same as M. So, for any Y we have,

ℜ (⟨GMY,Y⟩) ≤ 0.

Corollary 2.7.3. Let Lx and Lv be two circulant N × N Laplacians matrices and

assume that following matrix has all roots in the left half complex plane,

 0 I

−Lx −Lv

 , (135)

Let Gx = Gv = G be a diagonal positive matrix. Then the roots of the characteristic

polynomial of,  0 I

−GLx −GLv

 , (136)

all lie in the left half complex plane. There is a double root at 0. If the matrix in

equation (135) has all non-zero eigenvalues in the open left complex plane, then the

same is true for (136).
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Proof. Stability follows from the following,

 0 I

−GLx −GLv

 =

I 0

0 G


 0 I

−Lx −Lv


By Proposition 2.7.2 the roots of the characteristic polynomial of this matrix lie in

the negative half complex plane.

Lx and Lv are both row-sum zero so the vectors [1N , 0]
T and [0, 1N ]

T span a

2-dimensional eigenspace corresponding to the eigenvalue 0, where 1N is the N -

dimensional vector consisting of all 1’s.

Remark 2.7.4. With the assumptions in Corollary 2.7.3 we have,

[GxLx,GvLv] = [GLx,GLv] = 0.

This commutator no longer vanishes when Gx ̸= Gv.

For the nearest neighbor system, described in Section 2.2, there are a few more

things one can say. For example, we have the following.

Proposition 2.7.5. If the nearest neighbor, described in Section 2.2, has ρx,1 < 0

and ρx,−1 < 0 and if this system is stable then the following conditions must hold.

� g(0)v + g
(1)
v + · · ·+ g

(N−1)
v > 0,

�
N−1∑
k=0

(
g
(k+1)
x g

(k+2)
x · · · g(k+N−1)

x

)
> 0,

where the superscript arithmetic is mod (N).
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Proof. This is a special case of Proposition 1.4.4. The determinant,

det



1 ρx,1 0 · · · 0

ρx,−1 1 ρx,1 · · · 0

0 ρx,−1 1 · · · 0

...
...

... · · · ...

0 0 0 · · · 1


is independent of k. By Proposition C.5.1 this determinant is

(−ρx,−1)
N−1 + (−ρx,1)(−ρx,−1)

N−2 + · · ·+ (−ρx,1)N−2(−ρx,−1) + (−ρx,1)N−2.

Since ρx,1, ρx,−1 ≤ 0 this term is strictly positive. The Proposition follows.

2.8 Simulations

To illustrate flock behavior, it is useful to plot agent differences. Plot time on the

y-axis and plot agent k at x−coordinate xk − x0, for k = 0, 1, · · · , N − 1. The

initial state has xk placed along the negative x−axis, so these differences are usually

negative. Two examples of these plots are given in Figure 7 where each agent is

shaded a different color, so the flock structure is more apparent. Agent 0 is moving

to the right, but we are plotting x0−x0 = 0 so the trajectory is along the y-axis. The

trajectory for agent N − 1 moves to the left as the difference xN−1 − x0 grows more

negative. The first yellow arrow shows the point where xN−1−x0 is the most negative.

This is A1 described in Theorem 2.6.9. The signal has now reached agent N − 1 and

it starts to move toward agent 0. The distance |xN−1 − x0| reaches a minimum at

A2 and the distance then starts to grow again. This distance is indicated by the red

arrow.
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(a) Plot showing flock behavior with var-
ious measurements indicated

(b) Flock with a different set of parame-
ters. This flock is damped more quickly.

Figure 7: Plots showing flock behavior with various measurements indicated. The
green vertical arrow shows the time T1. The yellow and red arrows show max and
min separations respectively. In this example, the longest yellow arrow is A1. The red
arrow is A2 and the smaller yellow arrow is A3.

The notation g
(α)
x ∈ [a, b] indicates that the g

(α)
x are selected from a uniform

distribution on [a, b]. In most of the examples we use the uniform distribution as it

is easy to analyze and has strict bounds on the values of the random variables.

Remark 2.8.1. There is a bit of legerdemain in the simulations. When we set up the

problem in Section 2.2 we assumed q copies of p unique agents. The approximation

assumed that q is large. In the simulations we just take N unique agents. In a sense,

we are setting q = 1. But the results of the simulations are close to the predictions.

A long distribution of N agents, chosen from a single distribution, could be divided

arbitrarily into q groups of p. We would expect the dynamics of this system to be very

close to the case where p = N
q
unique agents were duplicated q times. This is probably

true for large N . However, the example in Figure 18 has two distributions and the fit

there is excellent as well. The exact domain of applicability of the theory is not yet

known.

Next, we inspect the eigenvalues for a particular system. Theorem 2.5.1 gives a
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pair of second order approximations to the eigenvalues of M. In Figure 8 we compare

these second order approximations, shown in red, to the actual eigenvalues of the

matrix M, shown as blue stars. The two second order curves have different markers

but are both in red. The matrix M in Figure 8 has periodic boundary conditions.

The second order approximation is a close fit near the origin, which is the region that

captures the large scale flock behavior. The system is stable, as in Definition 1.1.1,

as the eigenvalues are all in the negative half complex plane and the estimates of

Theorem 2.5.1 predict this.

(a) Plot showing eigenvalues of M and
the two second order approximations.

(b) This is a magnification of the plot on
the left.

Figure 8: In this plot M has periodic boundary conditions. The approximation
for the eigenvalues is quite close near the origin and both loci are clearly visible.
Eigenvalues far from the origin are not well approximated by the second order curves
of Theorem 2.5.1.

In Figure 9 we compare the approximation to the same system except with “con-

stant velocity” boundary conditions, defined in 2.6.6. In this case the (c1,+, c2,+)

approximation is quite good but the locus for the (c1,−, c2,−) approximation is not

apparent in the scatter plot of the actual eigenvalues.

Unfortunately, the actual eigenvalues of M, with constant velocity boundary con-

ditions, do not precisely match the predicted locus at the origin. Figure 10 shows the
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(a) Plot showing eigenvalues of M and
the two second order approximations.

(b) This is a magnification of the plot on
the left.

Figure 9: In this plot we compare the eigenvalues of M to the two second order
approximations. This is the same system as Figure 8 except M satisfies “constant
velocity” boundary conditions. In this case, the (c1,−, c2,−) locus is missing from M.

eigenvalues for M are magnified around the origin. Note that Laplacians with this

boundary condition are row-sum zero so the origin is still an eigenvalue. The actual

Eigenvalue locus of M is offset slightly to the left of the predicted locus. Figure 10b

shows the results of the full simulation of this constant velocity system. The system

is stable, which is is consistent with the stability of the eigenvalues.

Figure 11 is a plot of the same system as Figure 10 except that we have changed

βv,

βv → −βv.

In this case the locus of eigenvalues of M are slightly to the right of the second

order approximation. Consistent with this, the flock is unstable, as shown in the

simulation in Figure 11b. Notice, also, that the two second order approximations

(c1,+, c2,+) and (c1,−, c2,−) have switched places, as we expect from Remark 2.5.9 (in

this example F = 0.09). So the estimates of Theorem 2.5.1 predict stability and we

observe instability. The “constant velocity” boundary conditions introduce instability
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(a) Plot showing eigenvalues of M and
the two second order approximations.
The eigenvalues of M are slightly offset to
the left compared with the estimate. The
eigenvalues are all stable.

(b) Plot showing the actual flock behav-
ior for M with constant velocity boundary
conditions. The trajectory appears stable,
which is consistent with the eigenvalues
shown on the left.

Figure 10: This plot is a deeper magnification of the system in Figure 9 and so M
satisfies “constant velocity” boundary conditions.

for βv = −0.30.
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(a) Plot showing eigenvalues of M and
second order approximation. There are
several eigenvalues of M that are in the
right have complex plane, so the system
is not stable.

(b) Plot showing the actual flock behav-
ior for M with constant velocity boundary
conditions. The trajectory appears unsta-
ble, which is consistent with the eigenval-
ues shown on the left.

Figure 11: The system in this figure is the same as in Figure 9 except that βv < 0.
In this case the eigenvalues of M are offset to the right of the estimation locus. The
result is that several of the eigenvalues are negative and the system is unstable.

Figure 12 shows the eigenvalues for a system with a different set of parameters.

The periodic system is unstable as several of the eigenvalues are in the right-hand

plane. It appears that the theoretic locus in the right half plane does not reflect actual

eigenvalues of M. However, in Figure 12b we see that there is a small bend into the

positive half plane. It could be that our second order approximation is correct and

that higher order terms are required to pick up the trajectory when it curves back

into the negative half complex plane.

Figure 13 shows the eigenvalues for the same system except that M has “constant

velocity” boundary conditions. In this case the eigenvalues are all stable and the

curve with the unstable eigenvalues is absent.

Figure 14 shows the flock behavior of the system in Figure 13. Figure 14a shows
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(a) Plot showing eigenvalues of M and
second order approximation. The system
satisfies periodic boundary conditions and
is not stable.

(b) This is a magnification of the plot
on the left. The actual eigenvalues of M
bend into the positive complex half-plane
before they proceed into the negative half
plane.

Figure 12: Example comparing eigenvalues of M to the two estimate loci. The
system shown in this figure satisfies periodic boundary condition.

(a) Plot showing eigenvalues of M and
second order approximation. This system
satisfies periodic boundary conditions and
is not stable.

(b) This is a magnification of the plot on
the left.

Figure 13: These plots show the eigenvalues of the system in Figure 12 except that
M has “constant velocity” boundary condition. The locus determined by (c1,+, c2,+)
does not appear in the actual eigenvalues of M.
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that the flock is stable, which agrees with the eigenvalue plots of the “constant ve-

locity” system. In Figure 14b we show the flock behavior for the same system except

that βv → −βv. As we saw in our first example, the system is now unstable. In this

case F = 0.06, so the periodic system for −βv should just swap the two eigenvalue

loci. But, as in our first example, the stability of the “constant velocity” system is

not predicted by our second order estimate.

(a) Plot showing the flock behavior
with constant velocity boundary condi-
tions with βv ≥ 0.

(b) Plot showing the flock behavior
with constant velocity boundary condi-
tions with βv ≤ 0.

Figure 14: This system is the same as in Figure 12 except that M has “constant
velocity” boundary conditions. These plots show the flock behavior for M. The plot
on the left is stable and the plot on the right is not. The plot on the right shows the
same system except βv → βv. In this case the flock is unstable.

Figure 15 shows the flock behavior for the systems with periodic boundary condi-

tions. To test stability, we set the initial position of agent 0 to a large value and then

let the system develop with periodic boundary conditions. We examine the ‘ringing’

of the system and look for instabilities. Figure 15a shows the flock dynamics corre-

sponding to the system in Figure 12. This system appears stable, consistent with the

eigenvalue plot. Figure 15b shows the flock dynamics corresponding to the system in

Figure 12. This later system had unstable eigenvalues that are predicted by Theorem
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2.5.1 and observed in the figure. These simulations show that the second order predic-

tions in Theorem 2.5.1 do correctly predict the behavior of the periodic system, but

that the periodic system does not behave in the same way as the “constant velocity”

system.

(a) Plot showing the flock behavior with
periodic boundary conditions. This is the
same system as Figure 8.

(b) Plot showing the flock behavior with
periodic boundary conditions. This is the
same system as Figure 12.

Figure 15: These plots show the flock behavior when M has periodic boundary con-
ditions. A single delta function is applied, and the system is left to “ring”. These
plots only show the last 20 elements in the flock tail. The system in Figure 8 is stable
and the system in Figure 12 is unstable.
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The approximation of Theorem 2.5.1 should predict the large-scale flock behavior.

With the constant velocity initial conditions described in Section 2.6, the time T1 that

it takes the system to reach the point of greatest distance A1 is predicted by Theorem

2.6.9. In Figure 16 we plot the predicted and measured values of T1 for different values

of βv. The two plots in the figure show this comparison for two distinct choices of the

parameters.

(a) Plot showing predicted T1 vs com-
puted

(b) Plot showing predicted T1 vs com-
puted

Figure 16: Plots comparing computed vs predicted T1 for two sets of parameters.

In a well-behaved system, the amplitudes will decrease as t→ ∞. Using Theorem

2.6.9, the ratio of adjacent amplitudes is given by

A2/A1 =
c1,+
c1,−

. (137)

Notice that the ratio is negative, consistent with the change in polarity of A2 and A1.

In Figure 17, we plot the measured values A2/A1 for various βv and compare it to the

values estimates c1,+/c1,−. The agreement for βv ≥ 0 is good. As stated in Remark

2.6.10, this is an indicator for stability in the constant velocity case.

We conclude with the realistic system discussed in the introduction. With this
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(a) Plot showing predicted |A2/A1| vs
computed

(b) Plot showing predicted |A2/A1| vs
computed

Figure 17: Plots comparing computed |c1,+/c1,−| estimates to the measured values
|A2/A1|.

example we demonstrate that the tools presented in this dissertation can be used to

analyze more complicated and realistic problems. We make some rough estimates

in this next section. An automotive engineer could refine these numbers with more

realistic estimates. We model a convoy of N trucks traveling on the highway. The

convoy attempts to keep a fixed spacing between trucks and the trucks are all different.

As the convoy travels, lighter cars might, inadvertently, enter the convoy creating a

1-dimensional convoy with very different agents. To use our model, we must estimate

the agent weights gkx and g
k
v . The weights for agent k are force coupling divided by the

mass of the agent. The mass of an 18-wheel truck is somewhere between 14 and 40

thousand kilograms and the coupling force is determined by the torque of the engine.

To make things simpler we shall assume the force divided by the mass produces a

given acceleration and we can estimate this acceleration. For example, a truck can

accelerate from 0 to 60 mph = 26.8 m/sec in 1 to 5 minutes. So, we take our truck
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weights gkx in the range,

gkx ∈ [26.8/60, 26.8/300], when k is a truck.

We insert cars into the convoy by randomly replacing 10% of the agents with lighter

cars. Cars, typically, have higher power to mass and so have larger weights. We take

a collection of cars that accelerate from 0 to 60 in a range of 6 to 20 seconds, so that

for car agents,

gkx ∈ [26.8/6, 26.8/20], k is a car.

To guarantee stability we take Gv = αGx where α = 10.0. Increasing α, as we’ve

seen, will increase the damping. U.S. 18-wheel trucks are typically around 23 meters

long. The convoy attempts to keep a bumper-to-bumper distance of 2 × 23 = 46

meters between the agents.

The simulation results are shown in figure 18. The convoy of 400 starts with a

bumper-to-bumper spacing of 46 meters. Add to this the length of the truck and

the stable convoy has an approximate length of 46(N − 1) + 23N , which is just over

27 km long. The first truck suddenly increases its speed 10 meters/second, and it

takes 1095 seconds for the signal to reach the last truck. The time duration is long

because the weights are small (e.g., the trucks accelerate slowly). The distance from

the leader to the tail lengthens to 37.5 km = 94 m/truck before the tail starts to

catch up. This is a bumper-to-bumper distance of 94− 23 = 71 m. The damping is

not critical, the tail overshoots the optimal distance, and the entire convoy shrinks to

18 km = 45 m/truck before expanding again. This is a bumper-to-bumper distance

of 45− 23 = 22 m. This simulation assumed ρv,1 = ρv,−1.
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Figure 18: Simulation of truck convoy with 400 agents.

2.9 Conclusions

In our research we studied one-dimensional flocks with linear nearest-neighbor cou-

plings, where each agent has its own coupling weights. Systems with varying couplings

have not been covered adequately in the literature, despite the fact that agent depen-

dent couplings are an essential part of any real-world system. A realistic flock will

have agents of different masses and with different propulsion systems. For example,

a convoy of traffic may contain a combination of cars, SUVs, and trucks that have

different weights and engines. Letting each agent have a unique coupling weight com-

plicates the system quite substantially and very little is known about these systems,

even in the one-dimensional linear nearest-neighbor case.

Our system has an eigenvalue at 0 with multiplicity 2. In Theorem 2.5.1, we

derived a pair of discrete quadratics, each with vertex at the origin, that approximate
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the eigenvalues near the origin. Derivation of this Theorem requires some of the

Laplacian properties described in Section 1.1.1. The result of the theorem is an

estimate for the eigenvalues of the system near the origin. If the system is stable,

then all the eigenvalues, except the origin, are in the open left half complex plane

and eigenvalues with large negative real part will decay quickly in time. If we assume

that all eigenvalues near the imaginary axis are near the origin, then Theorem 2.5.1

should approximate all the eigenvalues necessary to describe the flock behavior at

large times.

To test Theorem 2.5.1, we ran a variety of Matlab simulations. Figures 8 and

12 demonstrate that the quadratics approximate the eigenvalues near the origin with

reasonable accuracy for systems with periodic boundary conditions. Figure 15 shows

that this second-order approximation predicts stability for the periodic system. How-

ever, for systems with “constant velocity” initial conditions, the situation is not so

simple. Figures 11 and 14 show examples where the stability of the “constant veloc-

ity” system is different from the periodic system.

However, when the “constant velocity” system is stable, the large-scale flock be-

havior is determined by the eigenvalues that are close to the origin. In this case,

Theorem 2.5.1 predicts flock behavior at large times reasonably well. Figures 16 and

17 show that some of the features of the flock are captured quite accurately by the

second order predictions. Indeed, the successive amplitude ratio A2/A1, described

by Theorem 2.6.9, is a decent indicator of the stability of the “constant velocity”

system. But how this relates to the eigenvalues is still a bit of a mystery. Why do the

eigenvalues shift when we move to “constant velocity” boundary conditions? When

βv ≥ 0, the eigenvalues shift to the left and so become more stable. When βv ≤ 0, the

eigenvalues seem to shift to the right and the system becomes unstable. This is con-

sistent with Theorem 2.6.9 but it is not captured by our quadratic approximations.
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The reasons for this are not yet known.

2.9.1 Future Work

Our results provide a step towards a more complete understanding of the one-dimensional

linear nearest-neighbor system. For this to be generally useful to the engineering com-

munity, we need a better understanding of how different boundary conditions relate

to the stability of the system. One unresolved mystery in the “constant velocity”

case is how the stability prediction of Theorem 2.5.1 relates to stability prediction

of the amplitude ratios of Theorem 2.6.9. More generally, how do boundary condi-

tions affect stabilty. We described some stability conditions in Section 2.7, but these

conditions do not capture the specifics of any boundary conditions.

Another possible area of research is the general problem of systems on a graph

with second order time derivatives. In Section 1.1.1 we outlined some of the issues

for first order Laplacians on a general graph. It would be interesting to know if there

is some equivalent to the approximation of Theorem 2.5.1 in the case of second order

systems on a graph.
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Appendix A GENERAL FORMULAS

In the signal processing literature, the following shorthand is often used.

ωN = exp

(
2πj

N

)
(138)

Proposition A.0.1.

N−1∑
k=0

ωmkN =

 N when m = 0

0 when m ̸= 0

 (139)

N−1∑
k=1

cos

(
2π

N
mk

)
= −1 when m ̸= 0, (140)

N−1∑
k=1

sin

(
2π

N
mk

)
= 0 when m ̸= 0. (141)

Proof.

N−1∑
k=0

ωmkN =
N−1∑
k=0

exp

(
2πi

N
mk

)
=

1− exp
(
2πi
N
mN

)
1− exp

(
2πi
N
m
) = 0.

Setting the real (e.g., cos) and imaginary (sin) parts to zero results in the formulas.
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Appendix B ROUTH HURWITZ STABILITY

We shall not prove the Routh-Hurwitz stability criteria, but we will describe the

recipe. For a complete proof see [4]. We do prove the following condition that is a

condition necessary for stability.

Theorem B.0.1. If p(z) is degree n real stable polynomial and has lead coefficient

an > 0, then all the other coefficients ak are positive.

Proof. Let −r,−α+ iβ,−α− iβ be 3 stable roots of p(z), where r, α, β ∈ R. and r, α

are positive. All stable roots have one of these forms. The polynomial has a factor,

(z + r)(z + α− iβ)(z + α + iβ) = (z + r)(z2 + 2αz + α2 + β2).

This cubic has positive coefficients. p(z) is a product of terms similar to these (mul-

tiplied by an). If α, r > 0 then none of the ak are zero.

B.1 Routh–Hurwitz Recipe

The Routh-Hurwitz criteria determines how many roots lie in the right half plane.

We start with a polynomial of the form,

p(t) = anz
n + an−1z

n−1 + · · ·+ a0, (142)

where a0 ̸= 0 and an > 0.

We write out the table for n = 5 in order to demonstrate how the 0’s percolate

through the table however we keep the indexes general to help with the general case.

The Routh-Hurwitz criteria is specified in the following theorem.

Theorem B.1.1. None of the roots of the polynomial in equation (142) lie in the
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tn an an−2 an−4 = a1 0
tn−1 an−1 an−3 an−5 = a0 0
tn−2 b1 b2 0 0
tn−3 c1 c2 0 0
tn−4 d1 0 0 0
tn−5 e1 0 0 0

Table 1: Routh-Hurwitz table

right half plane if and only if all the coefficients ai are positive and all the coefficients

in the first column vanish.

The following criteria must be handled by special cases

� All rows in the Routh matrix must not be identically zero.

� The elements in the first column must not vanish.

The coefficients are defined by,

b1 =
(an−1an−2 − anan−3)

an−1

b2 =
(an−1an−4 − anan−5)

an−1

b3 = 0.

The coefficients of ck are derived from pk and bk,

c1 =
(b1pn−3 − pn−1b2)

b1

c2 =
(b1pn−5 − pn−1b3)

b1

c3 = 0.
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The coefficients of dk are derived from bk and ck,

d1 =
(c1b2 − b1c2)

c1

d2 = 0.

The coefficients of ek are derived from ck and dk,

e1 =
1

d1
(d1c2 − c1d2)

e2 = 0.

B.2 Routh–Hurwitz Examples

In this section we apply Routh-Hurwitz to various polynomials used in the main text.

Proposition B.2.1. Given the quadratic with a1, a0 ∈ R,

p2(z) = z2 + a1z + a0. (143)

The quadratic polynomial is Routh-Hurwitz stable (e.g., has roots in the right half

complex plane) if and only if a1 and a0 are positive.

Proof. The proposition follows directly from the expression of the solutions. One can,

also, use Routh-Hurwitz where the table is given by, The Routh-Hurwitz condition is

z2 1 a0
z1 a1 0
z0 b1 = a0 0

Table 2: Routh-Hurwitz table for quadratic

a1 > 0 and a2 > 0.
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Proposition B.2.2.

p4(z) = a4z
4 + a3z

3 + a2z
2 + a1z + a0 (144)

where a0 − a4 are real constants and a4 > 0. The polynomial has roots in the left half

plane if and only if

ak ≥ 0 (145)

a2a3 − a1a4 ≥ 0 (146)

a1a2a3 − a21a4 − a23a0 ≥ 0 (147)

If conditions (147) and (145) are true then (146) must be true.

Proof. We know that ak ≥ 0 for all k. The Routh-Hurwitz table is the following,

z4 a4 a2 a0 0
z3 a3 a1 0 0
z2 b1 b2 0 0
z1 c1 0 0 0
z0 d1 0 0 0

Table 3: Routh-Hurwitz table

where we have,

b1 =
1

a3
(a3a2 − a4a1) ,

b2 =
1

a3
(a3a0) = a0,

c1 =
1

b1
(b1a1 − b2a3) =

1

b1
(b1a1 − a0a3)

d1 =
1

c1
(c1b2) = b2.
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The only unique conditions are b1 ≥ 0 and c1 ≥ 0. The first is equivalent to,

0 ≤ a3b1 = a2a3 − a1a3.

The second is equivalent to

0 ≤b1a3c1 = (a3b1a1 − b2a
2
3)

= a2a3a1 − a1a4a1 − a0a
2
3

If all the roots are stable and if condition 147 is true then we have,

a1 (a2a3 − a1a4) ≥ a23a0 ≥ 0,

Since a1, a0 ≥ 0 we have,

a2a3 − a1a4 ≥ 0.

But this is just condition 146.

Proposition B.2.3.

pc2(z) = z2 + w1z + w0 (148)

where w0, w1 are complex constants. The polynomial is Hurwitz stable if and only if,

ℜ(w1) > 0, (149)

2ℜ(w0) + |w1|2 > 0, (150)

ℜ(w0w
∗
1) > 0, (151)

ℜ(w0)ℜ(w1)
2 + ℜ(w1)ℑ(w0)ℑ(w1)−ℑ(w0)

2 > 0 (152)
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There is one additional Routh-Hurwitz constraint that is implied by the above

equations, as in equation (146),

ℜ(w0)ℜ(w1) + ℜ(w1)
3 + ℜ(w1)ℑ(w1)

2 −ℑ(w0)ℑ(w1) > 0. (153)

Proof. We construct a real polynomial of order z4.

pR4(z) =
(
z2 + w1z + w0

) (
z2 + w∗

1z + w∗
0

)
= z4 + (w1 + w∗

1) z
3 +

(
w0 + w∗

0 + |w1|2
)
z2 + (w1w

∗
0 + w∗

1w0) z + |w0|2

= z4 + 2ℜ(w1)z
3 +

(
2ℜ(w0) + |w1|2

)
z2 + 2ℜ(w1w

∗
0)z + |w0|2

The stability conditions of equation (145) are just,

ℜ(w1) > 0

2ℜ(w0) + |w1|2 > 0

ℜ(w1w
∗
0) > 0

106



The condition of equation (147) is,

0 ≤a1a2a3 − a21a4 − a23a0

=2ℜ(w1w
∗
0)
(
2ℜ(w0) + |w1|2

)
2ℜ(w1)− 4ℜ(w∗

0w1)
2 − 4ℜ(w1)

2|w0|2

=8ℜ(w0)ℜ(w1)(ℜ(w0)ℜ(w1) + ℑ(w0)ℑ(w1))

+ 4ℜ(w1)(ℜ(w1)
2 + ℑ(w1)

2)(ℜ(w0)ℜ(w1) + ℑ(w0)ℑ(w1))

− 4(ℜ(w0)ℜ(w1) + ℑ(w0)ℑ(w1))
2 − 4(ℜ(w0)

2 + ℑ(w0)
2)ℜ(w1)

2

=(ℑ(w1)ℑ(w1) + ℜ(w1)ℜ(w1))

×
(
ℜ(w0)ℜ(w1)

2 + ℜ(w1)ℑ(w0)ℑ(w1)−ℑ(w0)
2
)

Since w1 ̸= 0, equation (152) follows.
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Appendix C MATRICES

In this section we discuss a few properties of matrices that are required in the main

text. In this section we will let V be an N dimensional vector space with basis

e0, e1, · · · eN−1. The matrices are linear operators on V .

C.1 Special Matrices

The following matrix is typical for second order linear ODE systems.

Proposition C.1.1. Let A and B be N ×N matrices and IN be the identity matrix.

The eigenvectors of the matrix M ,

M =

0 IN

A B

 are vectors of the form,

 v
λv

 .
where λ is the corresponding eigenvalue and v is an N-vector that satisfies,

(
λ2IN − λB−A

)
v = 0. (154)

Conversely, if λ and v satisfy equation (154) then

[
v λv

]T
is an eigenvector M with

eigenvalue λ.

Proof. If

[
v w

]T
is an eigenvector with eigenvalue λ then we have,

0 IN

A B


v
w

 = λ

v
w

 =

 w

(Av +Bw)

 ⇒ w = λv.

From this we also get, (
λ2IN − λB−A

)
v = 0.
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C.2 Shift Operator

Let V be an N dimensional vector space with basis e0, e1, · · · eN−1.

Definition C.2.1. The positive shift operator is defined by,

P+(ek) = ek+1 for k = 0, · · ·N − 2

P+(eN−1) = e0

The negative shift operator is defined by,

P−(ek+1) = ek for k = 0, · · ·N − 2

P−(e0) = eN−1

Proposition C.2.2. The operators P+ and P− are invertible and

� P−1
+ = P−,

� PN−1
− = P+ and PN−1

+ = P−,

� PN
+ = PN

− = IN ,

� [P+,P−] = 0.

Proof. These all follow directly from Definition C.2.1.
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In the standard basis the shift operators are given by the N ×N matrices,

P+ =



0 0 0 · · · 0 1

1 0 0 · · · 0 0

...
...

... · · · ...
...

0 0 0 · · · 0 0

0 0 0 · · · 1 0


,P− =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

... · · · ...
...

0 0 0 · · · 0 1

1 0 0 · · · 0 0


(155)

C.3 Circulant Matrices

Circulant matrices arise in many sequence ODE’s where periodic boundary condition

are used. In several of our examples the Laplacian is a circulant matrix.

Definition C.3.1. Let v be a vector in an N-dimensional vector space. A circulant

matrix is a matrix formed from v as follows,

Cv =



vT

(P+v)
T

(P 2
+v)

T

...

(PN−1
+ v)T


=



v0 v1 v2 · · · vN−1

vN−1 v0 v1 · · · vN−2

vN−2 vN−1 v0 · · · vN−3

...
...

... · · · ...

v1 v2 v3 · · · v0


The matrices P+ and P− are circulant matrices with,

CeN−1
= P+

Ce2 = P−
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Any circulant matrix Cv is the sum of powers of P+,

Cv =
N−1∑
k=0

vkPk
− (156)

Proposition C.3.2. The circulant matrices form an N dimensional vector subspace

of GL(V ). This means that for any vectors v, w and scalar a we have,

Cv+w = Cv +Cw

Cav = aCv.

Proof. This follows immediately from Definition C.3.1.

Proposition C.3.3. The N×N dimensional circulant matrices form an N-dimensional

sub-algebra of GL(V ) where the product obeys the formula,

CvCw = Cv∗w.

Proof. We shall use MOD(N) arithmetic in the index calculations that follow.

CvCw =
N−1∑
k=0

N−1∑
m=0

vkPk
−w

mPm
−

=
N−1∑
m=0

N−1∑
l=0

vl−mwmPl
−

=
N−1∑
l=0

(v ∗ w)lPl
− = Cv∗w

where l = k +m.

Proposition C.3.4. Any two N ×N circulant matrices commute.
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Proof.

[C(v),C(w)] =
N−1∑
k,j=0

[
vjPj

−, w
kPk

−
]
=

N−1∑
k,j=0

vjwk
[
Pj

−,P
k
−
]
= 0.

C.4 Eigenvalues of Circulant Matrices

Let C(v) be the N × N circulant matrix determined by the N−vector v. As in

equation (138) we define,

ωN = exp

(
2πi

N

)
(157)

Define the N vectors, for each of u = 0, 1, · · ·N − 1, by

w(ωmN ) =



1

ωmN

ω2m
N

...

ω
(N−1)m
N


(158)

These will constitute an orthogonal set of eigenvectors for any circulant matrix.

The spectra of circulant matrices are related to the Discrete Fourier Transform,

which we define next.

Definition C.4.1. Let vk be an N-vector in an N-dimensional vector space V . The

Discrete Fourier Transform (DFT) of vk is the N-vector, D {v}, where

D {v}m =
1√
N

N−1∑
k=0

vkω−km
N
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The mapping v → D {v} is a linear map. A short computation proves the follow-

ing.

Proposition C.4.2. The inverse of the Discrete Fourier Transform is D−1 {v},

D−1 {v}m =
1√
N

N−1∑
k=0

vkωkmN

The DFT is the discrete version of the Fourier Transform and is vital to the study

of discrete signals. The relationship to circulant matrices is given by the following.

Proposition C.4.3. The vector w(ωmN ) is an eigenvector of C(v). The eigenvalue of

C(v) corresponding to w(ωmN ) are given by,

√
ND−1 {v} [u] =

N−1∑
k=0

vk exp

(
2πi

N
mk

)
.

The vectors w(ωmN ), for m = 0, · · · , N − 1 form a complete set of eigenvectors.

Proof.

C(v)w(ωmN ) =



N−1∑
k=0

vkωmkN

N−1∑
k=0

vk−1ωmkN

...
N−1∑
k=0

vk−(N−1)ωmkN


=



N−1∑
k=0

vkωmkN

N−1∑
k=0

vkω
m(k+1)
N

...
N−1∑
k=0

vkω
m(k+(N−1))
N


=



1
N−1∑
k=0

vkωmkN

ωuN
N−1∑
k=0

vkωmkN

...

ω
u(N−1)
N

N−1∑
k=0

vkωmkN


=

(
N−1∑
k=0

vkωmkN

)
w(ωmN ).

where all arithmetic is mod (N).

Theorem C.4.4. Let C(v) be a circulant matrix. The vectors 1√
N
w(ωmN ) for m =

0, 1, · · ·N − 1 form N orthonormal eigenvectors of C(v). The eigenvalue of w(ωmN )
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is,
N−1∑
k=0

vk exp

(
2πi

N
mk

)
.

Proof. Using Proposition C.4.3 we only need to show the vectors w(ωmN ) are orthonor-

mal. We compute the inner product,

⟨w(ωuN), w(ωvN)⟩ =
N−1∑
k=0

ωukN ω
−vk
N =

N−1∑
k=0

ω
(u−v)k
N =

 N when m = 0

0 when m ̸= 0


This follows from Proposition 139.

Remark C.4.5. If C(v) is a circulant matrix that is tri-diagonal then v has the form,

v =
[
v0, v1, 0, · · · , 0, vN−1

]
The eigenvalues of this matrix are given by Proposition C.4.3, and we denote them

by λk,

λk =
N−1∑
j=0

vjωkjN = vN−1ω−k
N + v0 + v1ωkN

Using Euler’s Formula,

λk = v0 +
(
v1 + vN−1

)
cos

(
2π

N
k

)
+ i
(
v1 − vN−1

)
sin

(
2π

N
k

)
(159)

If the matrix C(v) is also row-sum zero then we have,

v−1 + v0 + v−1 = 0.
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In this case the eigenvalues are given by,

λk = v0
(
1− cos

(
2π

N
k

))
+ i
(
v1 − vN−1

)
sin

(
2π

N
k

)
. (160)

If v0 < 0 then this entire series of eigenvalues lies in the left half complex plane.

This means that the eigenvalues of the matrix C(v) are stable.

The following follows immediately from the definitions.

Proposition C.4.6.

P+w(ω
m
N ) = ω−m

N w(ωmN ) (161)

P−w(ω
m
N ) = ωmNw(ω

m
N ) (162)

C.5 Almost Circulant

In this section we state a prove a Proposition that appears in [20].

Proposition C.5.1. Let Dn be the determinant,

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(c1 + d1) −c1 0 0 · · · 0 0

−d2 (d2 + c2) −c2 0 · · · 0 0

0 −d3 (d3 + c3) −c3 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · (dn−1 + cn−1) −cn−1

0 0 0 0 · · · −dn (dn + cn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
then the determinant is given by,

Dn = (d1 · · · dn) + (d1 · · · dn−1cn) + · · ·+ (d1c2 · · · cn−1cn) + (c1 · · · cn).
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Proof. We proceed by induction and use the general form for determinants of tri-

diagonal matrices. The formula is easily derived from the definition of the determinant

and has the form,

Dn(1, n) = (c1 + d1)Dn−1(2, n)− c1d2Dn−2(3, n), (163)

where Dn−1(k1, k2) is the determinant of the k2 − k1 + 1 square matrix with row and

column indices between k1 and k2 inclusive. The cases n = 3 and n = 4 are easily

computed directly. The case for general n can be proved by induction using equation

(163).
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Appendix D COORDINATE TRANSFORM

Let V be a vector space of dimension N . Define the set of index values,

N = {0, 1, · · · , N − 1}

Let σ ∈ SN be a permutation of the index values N . For each permutation there is

a natural representation as a linear transform Sσ : V → V defined by,

Sσ



v0

v1

v2

...

vN−1


=



vσ0

vσ1

vσ2

...

vσ(N−1)


.

This is the standard permutation representation. This satisfies, Sσρ = SσSρ. We only

need the special case of this,

S−1
σ = Sσ−1 .

Our interest is a one specific permutation when N = pq, that is given by

σ(k +mq) = m+ kp, (164)

where k = 0, 1, · · · , (q − 1) and m = 1, 2, · · · , (p− 1). Apply this permutation to the

natural index order and we get

[σ0, σ1, σ2, · · ·σ(N − 1)] = [0, p, 2p, · · · , N − 1],

which is the same as the ordering in equation (68). If v is a q−vector and w a p−vector
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then the tensor product can be written as a N = pq vector as,

v ⊗ w =
[
v0w0, v0w1, · · · v0wp−1, v1w0, v1w1, . . . , vq−1wp−1

]T
We have,

Sσ(v ⊗ w) = w ⊗ v.

Proposition D.0.1. If A is q × q and B is p × p then the permutation in equation

(164) has the property that,

Sσ(A⊗B)Sσ−1 = B ⊗ A.

Proof. For any p−vector w and q−vector v then we have,

(Sσ(A⊗B)Sσ−1) (w ⊗ v) = Sσ(A⊗B)Sσ−1 (Sσ(v ⊗ w)) = Sσ(Av ⊗Bw)

= (B ⊗ A) (w ⊗ v)
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Appendix E IDENTICAL AGENT CALCULATION IN CANTOS

Section 1.5 contains a review of an N identical agents with nearest neighbor inter-

actions, as described in Cantos [5, 6]. In this section we compare our results to this

previous work. Cantos defines the following,

Ix,k = −gx
∑
j∈N

ρx,jj
k = −gx

(
ρx,+ + ρx,−(−1)k

)
, (165)

Iv,k = −gx
∑
j∈N

ρx,jj
k = −gx

(
ρx,+ + ρx,−(−1)k

)
, (166)

Cantos also defines,

a =
I2v,1
4

+
Ix,2
2

=
g2vβ

2
v

4
+

−gx(−1)

2
=
g2x
4

(
β2
v

g2v
g2x

+ 2
1

gx

)

Comparing this to equation (121) we get,

√
a = ±gx

2
ΓR. (167)

According to Proposition 4 in [6] the first order term in the polynomial expansion

is given by,

iϕ

(
Iv,1
2

± a1/2
)

=
1

2(1/gx)

(
−βv

gv
gx

±

√
β2
v

g2v
g2x

+ 2
1

gx

)
(168)

This is the same form as equation (107). Note that in equation (107) we have,

ϕ

p
=

2πm

qp
=

2πm

N
,
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which is the meaning of ϕ in Cantos. The second order term in Cantos is

−ϕ2−Iv,2
4

−± 1

2a1/2

(
Iv,1Iv,2

4
+
Ix,3
6

)
= −ϕ2

(
gv
4

± 1

gxΓR

(
−g2vβv

4

))
= −ϕ2 1

4(1/gx)

(
gv/gx ±

1

ΓR

(
−(gv/gx)

2βv
))

To compare this to Theorem 2.5.1 notice that when the agents are identical, we

have,

M =
1

gx
V =

gv
gx

(169)

C = A = F = 0. (170)

With this notation the second order term in Cantos is,

−ϕ2 1

4M

(
V ± −V 2βv

ΓR

)
(171)

We see the results in Section 2.5 agree with Cantos when equations (169) and

(170) are used.

Remark E.0.1. Given a one-dimensional nearest neighbor system one can compute

M and V . Now use the values,

gx =
1

M
gv =

V

M

Using these values, you can use the results in Cantos to approximate the solutions. If

the variances of the distributions g
(α)
x and g

(α)
v are not too large this will give a rough

approximation to the large-scale system dynamics.
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Appendix F TWO DISTINCT PHASE VELOCITIES

In this section we will assume that a one-dimensional flock has two phase velocities

with opposite signs, and derive some consequences. In this section the values c+ and

c− correspond to the values c1,+ and c1,−. They are shortened for convenience. In

Assumptions F.0.1 we specify the system and then derive some system properties.

Assumptions F.0.1. Assume we have a one dimensional flock with equations of

motion that are linear second order ordinary differential equations. Assume that all

eigenvectors have one of two phase velocities, given by c+ and c− and assume that c+

and c− are two real numbers that satisfy,

c+ > 0

c− < 0.

This means that a general solution for a particular agent has the form,

zk(t) = f+

(
t+

k

c+

)
+ f−

(
t+

k

c−

)
. (172)

We assume that zk satisfies the constant velocity boundary conditions of Definition

2.6.6. We define a system yk that obeys the same ODE and satisfies

yk(t) =
d2zk
dt2

. (173)

From this we can prove the following.

Proposition F.0.2. Assume the system satisfies the assumptions described in F.0.1.

Let yk(t) satisfy the following boundary conditions,

1. Agent 0 satisfies y0(t) = p(t) (see equation (134)).
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2. Agent N − 1 satisfies ∂yk
∂k

∣∣
k=N−1

= 0 (see Definition 2.6.8).

The agents satisfy,

yj(t) =p

(
t+

j

c−

)
+

∞∑
k=1

(
c+
c−

)k (
p

(
t+

j

c−
− kP

)
v0 − p

(
t+

j

c+
− kP

)
v0

)
(174)

where we have defined

P = (N − 1)

(
1

c+
− 1

c−

)
(175)

Proof. We apply the boundary conditions to

yk(t) = f+(t+ k/c+) + f−(t+ k/c−) (176)

Condition 1 in Proposition F.0.2 is

y0(t) = f+(t) + f−(t) = p(t)v0. (177)

We are assuming that f+ and f− are differentiable so condition 2 Proposition F.0.2 is

∂yk
∂k

∣∣∣∣
N−1

=
1

c+
f ′
+(t+ (N − 1)/c+) +

1

c−
f ′
−(t+ (N − 1)/c−) = 0.

We can integrate this equation and re-arrange terms to get the condition

f+(s) = −
(
c+
c−

)
f−(s− (N − 1)(1/c+ − 1/c−)) = −

(
c+
c−

)
f−(s− P ). (178)
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Insert this into equation (177) to get the recursive relationship

f−(t) = p(t)v0 − f+(t) = p(t)v0 +

(
c+
c−

)
f−(s− P ). (179)

The function p(t)v0 has compact support (see Proposition 2.6.7) so after a finite

number of steps we get

f−(t) =
∞∑
k=0

(
c+
c−

)k
p (t− kP ) v0 (180)

By equation (177) we get

f+(t) = p(t)v0 − f−(t) = −
∞∑
k=1

(
c+
c−

)k
p (t− kP ) v0 (181)

Insert equations (180) and (181) into equation (176) to get

yj(t) = −
∞∑
k=1

(
c+
c−

)k
p

(
t+

j

c+
− kP

)
v0 +

∞∑
k=0

(
c+
c−

)k
p

(
t+

j

c−
− kP

)
v0

= p

(
t+

j

c−

)
v0 +

∞∑
k=1

(
c+
c−

)k (
p

(
t+

j

c−
− kP

)
v0 − p

(
t+

j

c+
− kP

)
v0

)

Equation (174) follows from this.

Corollary F.0.3. With the system of Proposition F.0.2 we have following trajectory

for the tail agent N − 1,

yN−1(t) =

(
c− − c+
c−

) ∞∑
k=0

(
c+
c−

)k
p

(
t+

(N − 1)

c−
− kP

)
v0
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Proof. Set j = N in equation (174) to get

yN−1(t) =p

(
t+

(N − 1)

c−

)
v0

+
∞∑
k=1

(
c+
c−

)k (
p

(
t+

N − 1

c−
− kP

)
− p

(
t+

N − 1

c+
− kP

))
v0

Use the following,

p

(
t+

(N − 1)

c−

)
v0 −

∞∑
k=1

(
c+
c−

)k (
p

(
t+

(N − 1)

c+
− kP

)
v0

)
=p

(
t+

N − 1

c−

)
v0 −

(
c+
c−

)
p

(
t+

(N − 1)

c−

)
v0

−
(
c+
c−

) ∞∑
k=1

(
c+
c−

)k (
p

(
t+

(N − 1)

c−
− kP

)
v0

)

We combine both sums using

1 +

(
c+
c−

)
=
c− + c+
c−

.

The result follows.

Remark F.0.4. The signs are a bit confusing. Corollary F.0.3 says that yN(t) is

zero until,

t+
(N − 1)

c−
= t− (N − 1)

|c−|

is with ϵ of 0, so t ≈ N−1
|c−| . At this point yN starts moving to the right as,

c− − c+
c−

=
−|c−| − |c+|

−|c−|
=

|c−|+ |c+|
|c−|

> 0.

From this we can prove the following

Theorem F.0.5. Assume that the system zk(t) is stable and satisfies the ‘regular’
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boundary conditions that also satisfies the “constant velocity boundary conditions” of

Definition 2.6.6. Also assume also that

zk(t) = f+

(
t+

k

c1,+

)
+ f−

(
t+

k

c1,−

)
.

For large N and some constant K0 the trajectory of the last agent zN(t) can be ap-

proximated by the following properties.

� Tk =
(N−1)
−c− + (k − 1)

(
(N−1)
c+

− (N−1)
c−

)
for k = 1, · · ·K0,

� Ak =
(
c+
c−

)k−1
(N−1)v0

c−
for k = 1, · · ·K0,

where Tk is the time to the kth extremal distance z0 − zN and Ak is the difference

zN−1(Tk)−z0(Tk). When converting back to xk this will be the distance from the stable

point.

Proof. The system zk satisfies,

yk(t) =
d2zk
dt

=
dżk
dt
.

We integrate the formula for yN(t) in Corollary F.0.3. From Proposition 2.6.7 we know

that p(t) has support in [−ϵ, ϵ] so the velocity żN(t) only changes in neighborhoods

of the times

Tk = −(N − 1)

c−
+ kP =

(N − 1)

|c−|
+ kP.

In the neighborhood of Tk the velocity changes by

∆ż =

Tk+ϵ∫
Tk−ϵ

yN(t)dt =

(
c− − c+
c−

)(
c+
c−

)k−1

v0.

For the time t < T1 − ϵ, agent N − 1 is not moving and agent y0 is moving with
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velocity v0. So after T1 the distance is very close to,

A1 = −T1v0 =
(N − 1)v0

c−
.

After time T1 + ϵ agent N − 1 has velocity

−v0 +
(
c− − c+
c−

)
v0 = −

(
c+
c−

)
> 0.

This proceeds for P time and we get

A2 = A1 +

(
−c+
c−

)
Pv0 =

(
c+
c−

)
(N − 1)

c−
v0,

which is now positive. The result now follows from induction. The induction to find

the velocity uk between Tk + ϵ and Tk+1 − ϵ is

uk = −
(
c+
c−

)k−1

v0 +

(
c− − c+
c−

)(
c+
c−

)k−1

v0 = −
(
c+
c−

)k
v0.

The induction step for the value Ak is

Ak+1 = Ak + uk (Tk+1 − Tk) =

(
c+
c−

)k−1(
1

c−
− c+
c−

(
1

c+
− 1

c−

))
(N − 1)v0.
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Appendix G SOUND WAVES

In this section we derive the PDE for a sound wave in a pipe with constant cross-

section. This section follows the ideas in [10] which covers the case of small perturba-

tions of both density and pressure. See [11] for details of the more general case. The

pipe is assumed to have a constant area A, and the result is a 1−dimensional PDE.

In this section we ignore viscosity, even though this is important for the system

in Sections 2.5 and H. A sound wave is an increase in density and pressure over

the ambient atmosphere. Let P0 and ρ0 be the ambient pressure and air density

respectively. A sound wave produces a very small increase to pressure and density

given by,

P = P0 + Ps (182)

ρ = ρ0 + ρs. (183)

We assume that P is a function of ρ near the point ρ0 so that P0 = λ(ρ0). For

small over-pressures ρs we have,

P (ρ) = λ(ρ) = λ(ρ0 + ρs) = λ(ρ0) + λ′(ρ0)ρs

= P0 + Ps.

This means that the over-pressure is given by

Ps = λ′(ρ0)ρs. (184)
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Let D(x, t) be the distance the air at x is offset due to the sound wave. Conser-

vation of mass means that the air in [x, x+∆x]× A is the same as in

[x+D(x, t), x+∆x+D(x+∆x, t)]× A.

To get the mass we must multiply by the density and we get the conversation of mass.

ρ0 (x+∆x− x)A = ρ0∆xA

= (ρ0 + ρs) (x+∆x+D(x+∆x, t)− x−D(x, t))A

= (ρ0 + ρs)

(
∆x+D(x, t) +

∂D

∂x
∆x−D(x, t)

)
A

= (ρ0 + ρs)

(
∆x+

∂D

∂x
∆x

)
A

From this we get the following conservation of mass equation,

ρs = −(ρ0 + ρs)
∂D

∂x
= −ρ0

∂D

∂x
. (185)

This last equation follows because, for a sound wave,

ρs <<< ρ0.

We use Newton’s Laws and write down the equations of motion for a slice of air.

The air in the region [x, x+∆x]×A is the volume of a thin slice of air in the sound

pipe that moves to [x+D(x, t), x+∆x+D(x+∆x, t)]× A. The total force on the

air slice is the pressure difference times the area A. So Newton’s Law is

(P (x)− P (x+∆x))A = ρ0∆xA
∂2D

∂t2
(186)
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Now we expand, using Taylor Series,

P (x)− P (x)− ∂P

∂x
∆xA = −∂Ps

∂x
∆xA = ρ0∆xA

∂2D

∂t2

So Newton’s Law is just,

∂Ps
∂x

= −ρ0
∂2D

∂t2
(187)

We use the equation of state in equation (184), conservation of mass in (185)

and Newton’s Law’s in (187) to derive our PDE. First substitute equation (184) into

equation (185) to get,

Ps = ρsλ
′(ρ0) = −ρ0λ′(ρ0)

∂D

∂x
. (188)

We start with equation (187) and use equation (188) to get

ρ0
∂2D

∂t2
= ρ0λ

′(ρ0)
∂2D

∂x2
.

We write this as,

1

λ′(ρ0)

∂2D

∂t2
− ∂2D

∂x2
= 0. (189)

This is a wave equation with the speed of sound given by

v2s = λ′(ρ0). (190)
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Appendix H PDE ANALOG

In this section we present a heuristic argument that connects our discrete agent system

to a PDE that has the form in equation (197). We start with the basic agent ODE,

d2zk
dt2

=− gx,N (zk + ρx,1zk+1 + ρx,−1zk−1)

− gv,N (żk + ρv,1żk+1 + ρv,−1żk−1) (191)

We restrict out discussions to systems where the constants gx,N , gv,N , ρx,±, ρv,± are

all independent of the agent. The N agents attempt to keep a spacing of ∆. What

happens as N → ∞. We have added a subscript N to the constants gx, gv, as these

values will scale as N → ∞.

We want the agents to be spread over a compact interval of length L so as ∆ → 0

we have

N∆ = L. (192)

You could consider systems that are spread over an infinite length, but we shall not

do so. As N grows the number of agents per unit length, grows. As a result, the total

mass of the system grows. We’d like keep the total mass of the system constant as

we take the limit. If mN is the mass of each agent in the N -agent system, then this

requirement is

NmN = µL⇒ mN =
µL

N
= µ∆,

where µ is the mass per unit length of the system. Equation (191) does not have

an explicit mass. Instead it has the factors gx,N and gv,N . If we write the harmonic

oscillator in the form of equation (191) then we would set gv,N = 0 and gx,N = Kh

ma
,

where Kh is “Hooke’s Constant”. Let’s take sound as the analogous system in the
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continuous domain. In this case the system “stiffness” is just Young’s modulus. If Y

is Young’s modulus we have

Y =
F

(∆L/L)

where F is the force applied to stretch or compress the system from L to L + ∆L.

We relate this to the Hooke’s constant of each agent as follows,

Y =
F

(∆L/L)
=
kHL∆L/N

∆L
= kH∆.

Young’s modulus will remain constant as we take the limit so, as the spacing gets

smaller, we require a smaller agent displacement to achieve the same force. This

means Hooke’s constant must increase. We put all this together and gx should scale

as

gx,N =
kH
mN

=
1

∆2

Y

µ
(193)

and the values Y
µ
is a constant. A similar argument applies to gv and we shall just

write

gv,N =
1

∆2

Yv
µ

(194)

The basic computation turning the agent equation into a PDE approximation is

the following

zk + ρx,1zk+1 + ρx,−1zk−1 = zk −
1

2
zk+1 −

1

2
zk−1 +

(
ρx,1 +

1

2

)
zk+1 +

(
ρx,−1 +

1

2

)
zk−1

= −∆

2

(
zk+1 − zk

∆
− zk − zk−1

∆

)
+
βv
2
(zk+1 − zk−1)

= −∆2

2

(
zk+1−zk

∆
− zk−zk−1

∆

∆

)
+
βv∆

2

(
zk+1 − zk−1

∆

)
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We want to take a limit as N → ∞ and ∆ → 0. This term approaches,

−∆2

2

∂2u

∂x2
+
βx∆

2

∂u

∂x
(195)

The terms in ż are handled in an identical way except that the terms become

−∆2

2

∂3u

∂x2∂t
+
βv∆

2

∂2u

∂x∂t
(196)

To formulate the PDE we start with equation (191) and use our difference formu-

las. As N → ∞ we get

utt =
gx,N∆

2

2
uxx +

gx,N∆
2

2
uxxt +

βx∆

2
ux +

βv∆

2
uxt

=
Y

2µ
uxx +

Yv
2µ
uxxt +

βx∆

2
ux +

βv∆

2
uxt

The scaling of the βx, βv terms is not as obvious. We will ignore this difficulty and

write the PDE as,

utt =
Gx

2
uxx +

Gv

2
uxxt +Bxux +Bvuxt, (197)

where Gx, Gv, Bx, Bv are all constants.

If we set Bx = Bv = 0 then we get

utt =
Gx

2
uxx +

Gv

2
uxxt. (198)

This is the equation of sound in a viscous fluid. Section G derives the basic equations

of motion for the non-viscous case. There is some literature on the viscous case [12, 26]

but we shall not discuss the physics any further. We shall also, not go into the solution
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details except to point out one specific solution. Assume that

u(x, t) = ei(kx−ωt).

Plug this into equation (198) and we get the dispersion relation

(−iω)2u =
Gx

2
(ik)2u+

Gv

2
(ik)2(−iω)u

⇒ω2 + i
Gv

2
k2ω − Gx

2
k2 = 0.

⇒ω =
−iGvk

2

4
± k

√
Gx

2
−
(
Gvk

4

)2

We write out solution as

u(x, t) = exp

(
−Gvk

2

4
t

)
exp (i(kx± ωi(k)t)) , where (199)

ωi(k) = k

√
Gx

2
−
(
Gvk

4

)2

(200)

Equations (199) and (200) are analogous to the solutions in Corollary 2.5.4. The

equations in this section assumed that gx and gv are independent of agent which

means that Gx and Gv are just constants. This means that we have

Avg

(
1

g
(k)
x

)
=

1

gx
⇒ c1,± = ±

√
gx
2
,

Avg

(
g
(k)
v

g
(k)
x g

(k)
x

)
=
gv
g2x
.⇒ c2,± =

gv
4
.

The continuous solution makes the association

k → ϕ

p
=

2π

pq
m =

2π

N
m.
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The solution of equations (199) and (200) correspond to the solutions of Corollary

2.5.4 except, there is an extra term of the form −
(
Gvk
4

)2
in equation (200). Although

this is not in our quadratic approximation, it may be in the higher order solutions of

[6, 5].

The more general problem, dealt with in Theorem 2.5.1, would require that Gx

and Gv depend on x. The solution to this more complicated PDE is beyond the scope

of this research.
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