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Abstract

The recent shift towards remote education has presented new challenges for instructors

with respect to teaching evaluation. Students in traditional classrooms send signals

to instructors which provide feedback for the effectiveness of a given lecture. Virtual

learning environments lack some of these communication channels and require new

ways of collecting feedback. This work presents a suite of analysis tools for the

virtual instructor. Given the transcript and video files for a Zoom meeting, this

tool summarizes student sentiment and speaking characteristics. Sentiment scores

are derived using state of the art Natural Language Processing (NLP) models. The

video file is used to extract interesting features about the lecture content, such as

the number of slides, pace of slide changes, and number of words per slide. All

metrics were experimentally tested with data from four Zoom meetings, each of which

included ground-truth annotations for the slide changes. Transcript-based metrics

were validated by comparing to the output produced by Meeting Measures, the project

this tool is based on.

A time series outlier detection model was developed for the purpose of identifying

slide changes during a presentation. Initially, a percentile-based model performed well

on the annotated videos when the optimal threshold was known. However, the process

of finding this threshold turned out to be non-trivial for videos without annotations.

A Kalman filter model was then tested to alleviate the need for an optimization
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step. Ultimately, the percentile-based model was replaced by an HMM-based (Hidden

Markov Model) model because of its ability to generalize. When tested on annotated

videos, the HMM-based detector performed within a reasonable tolerance of the

optimal percentile-based model. Furthermore, for each slide detected an open source

Optical Character Recognition (OCR) framework was used to extract text content for

computing word counts.

This tool outputs a dashboard containing a set of visualizations for the instructor.

These are intended to both identify pain points in the lecture as well as provide a

bird’s-eye view of general class interaction characteristics. The broader impact goal of

this work is to increase remote teaching effectiveness by helping instructors optimize

education delivery throughout the academic year.
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1

Introduction

1.1 Motivation

Education delivery has fundamentally changed since the Coronavirus disease (COVID-

19) triggered a global pandemic in early 2020. School closures world-wide have forced

teachers to conform to a purely remote model of instruction. Though many software

programs such as Blackboard and ClassDojo exist to facilitate distance learning, they

were ultimately designed for traditional classroom environments [1]. Enter Zoom,

a web conferencing program adopted by many schools and universities to provide

remote learning environments during the pandemic. Consequently, this shift to remote

teaching comes with its own set of challenges for the instructor.

In traditional classrooms, teachers can visually gauge students to determine the

general level of engagement. These signals can then be used in real time to make

adjustments or ask students directly for feedback. Furthermore, it is usually not

possible for students to do other things during a lecture, which keeps distractions low

and guarantees some baseline level of attention. Conversely, remote environments

provide no such guarantee on attention as students have the ability to do chores, a

home workout, or play console games during lecture. In addition, remote teachers are

less likely to receive quality, real-time signals from students due to the difficulty of
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visually scanning the classroom, especially when many cameras are turned off while

many students are participating. Furthermore, these challenges amplify proportionally

to the size of the classroom. This lack of feedback makes it particularly burdensome

for a teacher to evaluate the effectiveness of a given lecture and is therefore the focus

of this work.

1.2 Related Work

1.2.1 Meeting Measures

Washington University researcher Andrew Knight developed Meeting Measures, an

R-based tool used to derive metrics from Zoom meetings [2, 3]. The tool produces a

number of relevant visualizations, each summarizing a particular metric of interest for

the Zoom session. The first version derived transcript-based metrics, which help gauge

student interaction by analyzing speech frequency and sentiment. Later versions have

expanded to video-based metrics, which take student nonverbal communication into

account. At the time of this writing, he has used the tool to administer more than

100 meetings through his website1 (Fig. 1.1).

When Andrew started Meeting Measures in mid-2020, he had three primary

research objectives in mind with respect to virtual meetings [2]:

1. Capture people’s behavior in an unobtrusive manner;

2. Provide feedback to attendees on their presence and contributions; and

3. Recommend ways individuals can improve both leadership and engagement.
1Currently restricted to those who have a “wustl.edu” email address
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Figure 1.1: A sample dashboard from an early version of Meeting Measures. This set of metrics are
derived from the Zoom transcript file. Source: [2]
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Individuals who are not affiliated with Washington University can still make use of

these tools as they have been open-sourced and made available in an R package called

zoomGroupStats [3]. The package is well documented, describing in detail how to

optimize Zoom settings for data collection and also how to prepare the Zoom files for

further processing. Once the data has been adequately prepared, one can follow the

guide in the documentation to calculate all available metrics, which result in various

datasets that can be used for downstream analysis.

Early versions of zoomGroupStats focused on extracting useful metrics from the

Zoom transcripts and chats. Users can build datasets at various levels of granularity.

For example, the transcript dataset contains information about each utterance, such

as its length (speak time), which is also provided in a summary dataset containing

the aggregate speaking time of each individual in the meeting. In addition, there are

lexicon-based and machine learning models available for adding sentiment scores to

each utterance. The machine learning option requires the user to have a properly

configured Amazon Web Services (AWS) account2. We used zoomGroupStats to

validate and compare our transcript metrics, which is further discussed in 3.1.1.

Recent versions of zoomGroupStats added video analysis capabilities, which also

require the user to have an AWS account. Zoom provides a few different recording

options for generating video files of the meeting in question. Though it is possible to

download multiple video files, the user can only choose one to process. Since video

processing is computationally expensive, zoomGroupStats will sample the frames

every 60 seconds and save them to disk. The frames are then submitted to AWS

Rekognition3 for face detection and analysis. For each face it detects, Rekognition
2https://aws.amazon.com/
3https://aws.amazon.com/rekognition/
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returns interesting features such as a gender prediction, whether the eyes are open or

not, and an emotion prediction.

1.2.2 Sentiment Analysis

Sentiment Analysis (SA) is a Natural Language Understanding (NLU) task, a subtopic

in the field of Natural Language Processing (NLP). At its core, the SA task is a

classification problem that maps input text to a sentiment category, such as positive

or negative. In this context, the terms “sentiment” and “emotion” are not equivalent.

The former is usually binary in nature, while the latter allows for more nuance. For

example, the “positive” sentiment category could reflect many different emotional

states such as happy, loving, content, or excited.

Traditional sentiment models are built by extracting features from text examples,

then training a classifier for the task at hand. Modern sentiment models utilize

Transformer-based architectures [4], which yield much better performance. These

models work by learning numerical word representations by mapping each word in

a vocabulary to a low-dimensional dense vector. The resulting word vectors act as

input features to the downstream classifier. One such model, BERT [5], has been

foundational to many of the recent advances in NLP, including the models evaluated

in this thesis.

Language models such as BERT are designed to learn specific tasks with the goal

of capturing the underlying structure of the training corpus. In BERT’s case, it was

trained for the following two tasks:

• Masked Language Modeling (MLM) and

• Next Sentence Prediction (NSP).

5



Figure 1.2: The pre-training phase for BERT simultaneously learns the MLM and NSP tasks. The
fine-tuning phase adapts the model for specific tasks and corpora. Source: [5]

MLM refers to the task of first presenting a model with a sequence of words (or

tokens) where some percentage of them are masked. Then the model learns to predict

these masked words. The NSP task presents the model with a sentence, then learns

to predict the next sentence in the corpus. BERT was able to learn these two tasks

together by structuring the input as a pair of consecutive sentences (see Figure 1.2)

[5].

It is important to note that any given language model learns the characteristics

of the corpora it is trained on. In the case of BERT, the training corpus consisted

of a collection of books (800 million words) [6] as well as a dump of the English

Wikipedia (2,500 million words). Therefore, care must be taken when designing a text

classification model that utilizes a pre-trained model. For example, models trained on

a Twitter corpus will learn much different language characteristics due to the informal

nature of Twitter posts. The most common way to address this concern is to fine-tune

the pre-trained model’s weights using the corpus of interest (Figure 1.2). This is

easily accomplished by adding an additional output layer to the model whose weights
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will be adjusted for the corpus and/or task at hand. If more accuracy is desired, the

weights for additional layers beyond the output layer can be adjusted, which is akin

to retraining the model with the new corpus. However this may be unfeasible given

hardware and time constraints.

1.2.3 Kalman Filter

The Kalman filter (KF) is an estimation technique developed in the 1960’s [7] that is

useful for predicting the true state of a process, given noisy measurements. In practice,

the KF framework interprets a dataset by assuming each datapoint is a measurement

from some process of interest, where the true nature of the process is unknown. It

then predicts the next state of the process, along with some uncertainty, and uses the

predictions to estimate the next observation. The KF is composed of a dynamic model

(Eq. 1.1) for governing the transition between states, and a measurement model (Eq.

1.2) that relates the state of the process to the observation [9, 10]:

xk = Axk−1 + wk−1, wk−1 ∼ N(0, Q) (1.1)

zk = Hxk + vk, vk ∼ N(0, R) (1.2)

Equation 1.1 models the current state of the process xk, where the wk−1 term

reflects the assumption that the dynamics of the process includes some Gaussian noise

with covariance matrix Q. It should be noted that in most texts, there is an optional

control term in Equation 1.1 which is not required for this introduction. Equation

1.2 reflects the assumption that the current observed measurement zk is dependent

on xk, which similarly has a Gaussian noise component vk with covariance matrix R.

The estimation procedure follows a predictor-corrector pattern to iteratively improve
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predictions [10]. That is, given an initial state x0 and an uncertainty estimate P0,

the KF will first recursively predict the next set of values then correct those values

when the measurement arrives. As a result, the KF is a member of the general class

of Bayesian Filtering methods [8].

The prediction step is defined by the following equations:

x̂−
k = Ax̂k−1 (1.3)

P −
k = APk−1A

T + Q (1.4)

Note the superscript “-” in the predictions above, which denote that these pre-

dictions represent priors for our estimate. Then in our correction step, information

is used from the measurement zk to derive the posterior (final) estimates x̂k and Pk.

The equations for the correction step are as follows:

Kk = P −
k HT (HPk−1H

T + R)−1 (1.5)

x̂k = x̂−
k + Kk(zk − Hx̂−

k ) (1.6)

Pk = (I − KkH)P −
k (1.7)

The quantity K above is referred to as the Kalman gain and takes on the range

[0, 1]. It represents the proportion of uncertainty in the previous estimate x̂k−1, relative

to the uncertainty in the measurement zk. We can see that K is needed for the two

updates (1.6) and (1.7). The quantity (zk − Hx̂−
k ) from (1.6) can be interpreted as the

residual between the estimate of the measurement Hx̂−
k and the true measurement zk.

Intuitively, the state update will include more of this residual if K is closer to 1. This

follows from the fact that K will be largest when the uncertainty from the previous

8



Figure 1.3: Intuition for the high Kalman gain case using an aircraft tracking example. We can see
that the previous estimate (orange) has high uncertainty and is therefore far from the actual location
of the plane. In this case, the measurement is more accurate (green). Thus a high value of K will
cause the current estimate (blue) to move closer to the measurement. Source: [11]

estimate is high relative to the measurement uncertainty. Therefore, the new estimate

will be adjusted closer to the measurement (Fig. 1.3). Conversely, a smaller value of

K implies more uncertainty in the measurement relative to the uncertainty from the

previous estimate (Fig. 1.4). Finally, the update to the uncertainty of the estimate P

will decrease at every time step (1.7). The magnitude of K will determine how much

P decreases since a smaller K implies less uncertainty in the estimate.

This thesis utilizes the Kalman filter for time series analysis, specifically outlier

detection. In that case, each data point in the timeseries represents one of the noisy

measurements (zk). The Kalman filter will estimate the true process (x̂k), which has

a smoothing effect on the data (Fig. 1.5). For each estimate, there is some measure of

uncertainty (Pk) in the form of a confidence interval band. Therefore, any data point

9



Figure 1.4: Intuition for the low Kalman gain case using an aircraft tracking example. We can see
that the previous estimate (orange) has low uncertainty and is close to the actual location of the
plane. In this case, the measurement is less accurate with high uncertainty (green). Thus a low value
of K will ensure the current estimate (blue) stays close to the previous measurement. Source: [11]

that falls outside of this band could be considered an outlier.

1.2.4 Hidden Markov Models (HMM)

The Hidden Markov Model (HMM) is a generative probabilistic model that produces

a sequence of observations, given some other sequence of hidden states which are

“hidden” because they are not directly observed. This property makes HMMs useful

for modeling the latent space of a particular system or phenomenon. We can describe

an HMM with the following components [12]:

• Sequence of T observations X = x1x2x3 · · · xT

• Set of N hidden states Z = {z1, z2, z3, · · · , zN}

10



Figure 1.5: A figure taken from the simdkalman documentation. A timeseries is smoothed with a
Kalman filter, which includes a confidence interval band around the estimates. The blue data points
are the noisy measurements (zk) and the red line is the estimate of the true process (x̂k). Data
points outside of the confidence interval bands (Pk) are candidates for outliers. Source: [9]

• Transition probability matrix A = {aij | 0 < i, j ≤ N}

• Sequence of T emission probabilities P (xt|zi), expressing the probability that

observation xt was generated from state zi

• A vector of initial probability distributions π = π1, π2, · · · , πN , where πi is the

probability that the HMM will start at state zi

Systems modeled by HMMs assume that at each time step t, an observation xt is

drawn from some probability distribution conditioned on the active hidden state zi.

As the name suggests, HMMs satisfy the Markov property, where the hidden state

at each time step is dependent only on the previous hidden state and aij represents

the probability of transitioning from state zi to zj. Furthermore, observations depend

only on the hidden states that produce them and are therefore independent of the

other observations.

Lawrence Rabiner’s popular 1989 tutorial defines three fundamental problems for

which HMMs are useful for solving [13, 12, 14]:

11



1. Estimate the optimal sequence of hidden states, given the observations and

model parameters (Decoding)

2. Calculate the model likelihood, given the observations and model parameters

(Likelihood)

3. Estimate the model parameters, given only the observations (Learning)

For this work, an HMM was used with respect to the first and third problems

above. We first fit a model to the observations (learning), which was then used to

estimate the optimal state sequence (decoding) for the purpose of flagging outlier

observations.

1.2.5 Optical Character Recognition (OCR)

Optical Character Recognition (OCR) is a computer vision task with the objective of

extracting text from images. It has a wide range of applications such as converting

pdf documents to machine readable text, traffic sign recognition [15], and developing

CAPTCHA-defeating systems [16]. In general, OCR systems work by first preprocess-

ing an image, then detecting blocks of text, and finally by extracting the characters

from each block. Advancements in machine learning have led to improvements in

OCR engines, as many of them now incorporate deep neural network models. Due to

the vast array of images in the real world, OCR performance can vary from image to

image. For example, images of license plates or traffic signs will look much different

than that of a grocery receipt. As a result, many models achieve performance gains

by tailoring to a specific input type.
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1.3 Contributions

The primary contributions of this thesis build upon Meeting Measures in the following

ways (see section 1.2.1):

• Ported the base transcript functionality from zoomGroupStats to Python and

added video analysis tools.

• Implemented plotting tools for visualizing transcript and video metrics.

• Evaluated four open source sentiment models from Hugging Face for the tran-

script toolset.

• Curated a data set of four Zoom meetings, including ground-truth annotations

for slide changes.

• Implemented the following transcript metrics: Average Utterance Length, Propor-

tion of Speaking Time, Speaking Pace Over Time, and Sentiment of Language.

• Implemented a multi-core video processing class for comparing consecutive pairs

of frames.

• Evaluated the following outlier detection methods for univariate time series data:

percentile, rolling standard deviation, Kalman filter, and HMM.

• Developed an HMM-based model for detecting slide changes in a video presenta-

tion.

• Implemented the following video metrics: Slide Count, Pace of Slide Change,

and Words per Slide.

13



• Provided a self-contained tool that utilizes open source models, therefore elimi-

nating dependence on public cloud services.

• Publicly hosted and documented the tool on Github for interested parties to

use.

1.4 Document Overview

This chapter motivated the thesis by highlighting the education challenges that have

manifested in light of the COVID-19 pandemic. Some background was then provided

for the Meeting Measures project, the field of sentiment analysis, the Kalman filter,

Hidden Markov models, and Optical Character Recognition technologies. Finally, the

contributions of this work were outlined. The rest of this document is laid out in the

following manner. The next chapter will describe the implementation details for the

tools developed and used in this analysis. Chapter 3 presents the results on a dataset

of four Zoom videos. Finally, in Chapter 4 we summarize this thesis and discuss some

of the ways this tool can be improved and built upon in the future.
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2

Implementation

This chapter focuses on key implementation details during the development of the

Zoom analysis tool set. Section 2.1 describes the type of data available for download

from Zoom, then defines the metrics that this tool will derive for the user. Sections

2.2-2.3 discusses the datasets that are created from Zoom transcripts as well as video

processing details that created the slide change dataset.

2.1 Overview

Zoom allows users to download various components of a given meeting. There are

options for saving files locally or to the cloud, with the latter option providing more

features. At the time of this writing, users can save the video, chat content, audio,

audio transcript, and poll results. Also available for download is meeting metadata

and the participant list. In order to derive video metrics, the teacher must also provide

the presentation start and stop times for the video file. For the majority of metrics

presented in this document, only the audio transcript and video files are required. As

a result, the bulk of this section will focus on describing these metrics.

15



Figure 2.1: The first four utterances of a WebVTT transcript file.

2.1.1 Transcript Metrics

The Zoom transcript is formatted as a WebVTT1 file where each entry represents an

utterance that includes the speaker’s name and utterance start/stop times (Figure

2.1). This data is first parsed then used to derive the following set of metrics:

• Proportion of Speaking Time per person (PST)

• Average Utterance Length per person (AUL)

• Speaking Pace over Time (SPT)

• Non-participant List (NPL)2

• Sentiment of Language (SL)

SL is different from the other metrics as it requires a sentiment model to quantify a

speaker’s general sentiment over the course of a meeting. Meeting Measures currently

offers both lexicon-based and machine learning sentiment models for this task [3].
1https://w3c.github.io/webvtt/
2Requires the participant list file in addition to the transcript
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However, the machine learning option relies on the cloud sentiment scoring service

AWS Comprehend3. As a result, this thesis derives SL by utilizing the freely available

state of the art NLP models at Hugging Face4.

2.1.2 Video Metrics

The video metrics are intended to provide insight about the lecture content by detecting

and inspecting slides in the Zoom video file. These metrics are as follows:

• Slide Count (SC)

• Pace of Slide Change (PSC)

• Words per Slide (WPS)

Slide change detection was accomplished by defining a distance metric (cosine

distance) for each pair of consecutive frames. We assume that frames belonging to the

same slide will have a small distance, while distances for frames belonging to different

slides will be significantly larger. Given this time series of consecutive frame distances,

an HMM-based outlier detector predicts the slide changes. On the slide inspection

front, an open source OCR framework5 was used to extract text from each slide to

compute WPS.

2.2 Transcript Processing

Transcript files were parsed into a tabular format where each row represented an

utterance in a given meeting. Additional metrics were then added to aid downstream
3https://aws.amazon.com/comprehend/
4https://huggingface.co/
5https://pypi.org/project/pytesseract/
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Figure 2.2: The first four utterances from 2.1 in parsed form. Additional metrics were then added
to complete the dataset for further analysis.

analysis (Figure 2.2). See Appendix B for an example of a complete transcript file.

The resulting transcript dataset contains the following fields:

• Meeting ID: The unique meeting identifier containing the utterance.

• ID: A unique utterance identifier for a given meeting ID.

• Start: The utterance start time.

• Stop: The utterance stop time.

• Speak Time: The duration of the utterance.

• Speaker: The speaker of the utterance.

• Text: The text of the utterance.

• Word Count: The word count of the utterance.

• Window: The time window containing the utterance expressed in seconds.

• Window Time: The amount of time the utterance occurred in the window. This

will only differ from Speak Time when the utterance spans multiple windows.

• Sentiment: The sentiment label assigned to the utterance.
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2.2.1 Sentiment Modeling

Sentiment scores were assigned to each utterance in the dataset by using a pre-trained

sentiment model. There are hundreds of models to choose from, each of which is trained

for a specific language task and domain. For example, FinBERT [17] is a variation of

BERT that was fine-tuned on a corpus of financial news articles for the purpose of

financial sentiment classification. We selected four popular text classification models

from Hugging Face and evaluated them on some sample sentences (Figure 2.3). Two

of the models were more consistent than the others, one of these was selected for

this analysis. We chose the Typeform6 model (orange bar) because it had a “neutral”

category, whereas the other candidate model (green bar) only supported “positive”

and “negative” categories. Since the model outputs three scores for a given input, the

sentiment with the highest score was chosen to represent the utterance in question.

2.3 Video Processing

Video metrics require frame-by-frame processing as frame similarity scores are a key

component of the slide change detector. It was inefficient to do this sequentially, so

we extended the FileVideoStream class from the imutils [18] package to perform the

task in a parallel manner7. In order to reduce the impact of noise from the speaker’s

camera, a mask was applied to each frame before calculating the similarity (Figure

2.4). The raw similarity scores where then preprocessed into a time series of slide

change signals (Figure 2.5).

It is worth noting that video processing is computationally expensive and will result

in a long runtime on most laptops. While running this tool on a server with many
6https://huggingface.co/typeform
7https://stackoverflow.com/questions/61531731/multi-process-video-processing
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Figure 2.3: Comparison of sentiment models for four example sentences. The scores for each
sentiment category can be interpreted as probabilities and will therefore sum to 1. Of the four models,
FinBERT (red) was fine-tuned for a specific purpose, which may explain why it was so confused even
when applied to extremely polarized test sentences.
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(a) Original Frame

(b) Masked Frame

Figure 2.4: Masking the speaker’s camera in the top-right corner to remove unwanted
noise.
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Figure 2.5: Preprocessing the frame similarity scores. Raw scores for each pair of
consecutive frames (a) are first aggregated at the second-level by taking the maximum
value for that second (b). The results are differenced to obtain signals for large
changes in similarities (c). Each upward spike is followed by an immediate (irrelevant)
downward spike. Therefore, the differenced scores are truncated to the range [0, 1] (d).
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cores will help, sufficiently long videos will cause a delay on the first run. Subsequent

runs will not experience this problem should the user need to regenerate the dashboard

for a given meeting.

2.4 Summary

This chapter introduced the idea that Zoom data can be collected for analysis and

why it might be beneficial to do so. Transcripts can contain useful information about

the speaking patterns of meeting participants. From this, we can derive metrics such

as the proportion of time each attendee speaks as well as the length of their average

utterance. Videos can be used to analyze slide content for instructors giving lectures.

For example, we can calculate the amount of time the presenter spends on each slide,

which could help them identify pain points in their lecture style. The next chapter

will take a deep dive into the results of applying these tools on some sample data.
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3

Results

This chapter presents the results for all the metrics defined in Chapter 2. We begin in

Section 3.1 by running one of the datasets through Meeting Measures, then using the

results to validate the Python version of the transcript metrics. Section 3.2 describes

the process of developing the slide change detector, where sections 3.2.1-3.2.5 discuss

the importance of the similarity metric which is then utilized during the evaluation of

various models for outlier detection. Finally, in section 3.3 we apply the slide change

detector to four sample videos and evaluate the results.

3.1 Transcript Metrics

3.1.1 Comparison to Meeting Measures

One of the initial tasks for this project was to reproduce the Meeting Measures

transcripts metrics from Fig. 1.1 - we essentially started to build a Python version of

zoomGroupStats. A natural follow-up task was to validate our datasets by comparing

them to those produced by zoomGroupStats. We first prepared data from one of our

meetings (meeting ID 83512718053 ) according to the guide in [3]. After running the

transcript functions, output datasets were saved and plotted next to plots generated

with the Python datasets.
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Figure 3.1: Comparison to zoomGroupStats for the AUL metric.

The Python datasets were successfully validated as they were very close to the

zoomGroupStats data (some values were identical). For the AUL and PST metrics,

there is no noticeable difference between the two datasets. This follows from the

fact that both datasets calculated median utterance lengths of 8.25 seconds and 1.92

seconds for the two speakers in the transcript (Fig. 3.1). For speaking proportion,

both datasets calculated values of 96% and 4% for the respective speakers (Fig. 3.2).

As a result, the plots for these two metrics look identical to the zoomGroupStats

version. The SPT comparison showed a very slight deviation for some of the windows

with a mean difference of 0.41 seconds (Fig. 3.3), however this did not warrant concern

with respect to the validation.
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Figure 3.2: Comparison to zoomGroupStats for the PST metric.

Finally, we compared the results for the SL metric (Fig. 3.4), which was the only

occurrence of a significant difference in datasets. Here, the discrepancy is wholly due

to the choice of sentiment model, with two main observations to note. First, AWS

Comprehend returns a “mixed” category, which is not included in the analysis (see Fig.

3.4a). We followed this convention to maintain consistency with Andrew’s process,

which he describes in the “Sentiment of Language” caption in Fig. 1.1. The second

observation to note is how the AWS model tends toward neutrality. The speech in

meeting 83512718053 was generally neutral throughout, therefore the AWS model
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Figure 3.3: Comparison to zoomGroupStats for the SPT metric. Some small differences can be
noticed for the 1500 - 2400 windows.

more accurately reflected the true sentiment. This result is not particularly surprising

as this model is a commercial service which is maintained by a team of researchers.

However, many users may consider the predictions from the Typeform model good

enough for their purposes. In addition, many other Hugging Face models can be

experimented with should a better result be desired. Furthermore, these discrepancies

may not matter to users most concerned with negativity in their meetings, as the

two models differ least in that category. Finally, these sentiment models can be more

thoroughly evaluated with some example videos where the sentiment is well known,

such as when students are extremely negative.
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Figure 3.4: Comparison to zoomGroupStats for the SL metric. AWS Comprehend was better able
to predict the true sentiment of meeting ID 83512718053 as it was a primarily neutral presentation.
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3.2 Slide Change Detector

The slide detection task is an instance of the outlier detection problem. We’re looking

for characteristics of a video presentation that indicate drastic changes between two

frames. However, before that can happen, it is important to define a rule for what

constitutes a slide change. Some presentations progress by adding small changes to

the slides instead of making each slide completely unique. For example, many speakers

will address a number of bullets on a particular slide by starting with a blank slide,

then adding the bullets as they talk. In this case, a slide change technically occurs

each time a bullet is added to the screen. From a practical perspective, this may

not be meaningful enough for those interested in capturing major changes in the

presentation material. In this case, we would want to set some minimum threshold on

the amount of change between two frames in order to identify relevant slide changes.

Additionally, the teacher may want to exclude sequences of rapid slide changes,

such as quickly navigating to a previous slide in order to address a student’s question.

This kind of action could result in several slide changes in as many seconds, which

would be irrelevant for most purposes. In this work, we do not take these nuances

into account and instead start with a baseline set of annotations that flag every slide

change. Future work may focus on fine-tuning the methods presented in this section

to handle situations similar to the aforementioned examples. We experiment with four

types of outlier detectors: percentile-based, rolling standard deviation, Kalman filter,

and HMM-based. The rest of this section will describe the methods used to develop a

model suitable for identifying slide changes in any video.
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Figure 3.5: l2-norms diffs for the frames of a sample video act as signals for the slide change
detector. The vertical black lines are ground truth slide change annotations.

3.2.1 Similarity Metric

For this problem, we need enough pixels to change between any given pair of frames

such that a strong enough signal is generated. One natural measure for this objective

is to take a pixel-wise difference then aggregate it into a single metric. We therefore

started by calculating a vector of pixel differences followed by taking the l2-norm to

represent our initial similarity measure (Figure 3.5). In this case, it is a dissimilarity

measure since a higher value indicates that two frames are dissimilar to each other.

It is clear from 3.5 that there are no concrete slide change signals. Further

investigation of the frame differences revealed high levels of distortion in the videos

(Figure 3.6, 3.7). This distortion is not detectable by the naked eye, it instead amounts

to small pixel translations. Due to the pixel-wise nature of our l2-norm measure, these

translations produced significant amounts of false signals. As a result, we ended up

exploring other candidates for similarity measures.

One such metric, cosine similarity, works by measuring the cosine of the angle

between two vectors in an n-dimensional space and is normalized to the range [0, 1].
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(a) Frame 1

(b) Frame 2

(c) Frame Diff

Figure 3.6: Two consecutive frames displaying the same slide and a heatmap representing their
pixel-wise differences. For frames without distortion, we would expect to see slight changes resulting
from movements in the speaker’s camera.

31



(a) Frame 1

(b) Frame 2

(c) Frame Diff

Figure 3.7: Two consecutive frames displaying the same slide, where the second frame is distorted.
Though the frames are visibly identical, their pixel-wise differences are significant and will therefore
confuse models based on pixel diffs.
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Figure 3.8: The first improvement to our signals from Fig. 3.5 comes by way of monitoring the
change in cosine distance between frames. Comparing vector representations of frames proved to be
a significantly more powerful measure of similarity.

As a result, vectors with similar values in slightly different dimensions will still be

similar with respect to their cosine similarity. In other words, identical images will

be recognized as such even when one is slightly distorted. Since we want to measure

dissimilarity for our frames, we subtract it from 1 to arrive at the cosine distance.

Implementing this measure greatly improved our signals, aligning more closely to the

ground truth annotations (Figure 3.8).

Though the cosine distance helped greatly, there were still too many false signals

in the data. For the Zoom videos used in this work, the speaker’s camera is displayed

in the upper right-hand corner of the frame. Small movements from the speaker’s

mouth and head during a presentation may cause extra noise to clutter our signal.

Furthermore, in a session where conversations happen often will result in the camera

changing many times in a short period of time. This scenario would likely occur often

when students ask questions that lead to dialogue with the instructor, which would

produce even more noise.

This assumption was confirmed by masking the region of the frame that is generally
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Figure 3.9: A final improvement to the signals from 3.8, which are input to the slide change detector.
For some meetings, movement from the speaker’s camera will produce false signals. As a result, it is
necessary to mask that portion of the frame.

occupied by the speaker. That is, the pixel values were set to 0, thus removing their

influence from the cosine distance calculations (Figure 3.9). We found that a fixed

proportion of the pixels from the x and y axes selected a region that generalized to all

of our test videos, which removed the remaining noise was from the dataset .

3.2.2 Percentile-based Model

A percentile-based outlier detector makes predictions based on some prespecified

percentile threshold. For any timeseries of interest, this threshold is found by choosing

a percentile q, then computing the value corresponding to the q-th percentile1. Next,

any datapoint in the timeseries greater than or equal to this q-th percentile value is

flagged as an outlier. For example, a percentile of q = 50 would flag any datapoint

greater than or equal to the median, since the median of a dataset is the 50-th

percentile. This of course leads to the problem of finding the percentile threshold

that minimizes the prediction error. Unsurprisingly, each of our test videos required
1https://numpy.org/doc/stable/reference/generated/numpy.percentile.html
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different thresholds for optimal performance (Figure 3.11). We use the F1 score for

evaluation since it takes both precision and recall into account, which is desirable for

unbalanced classification problems such as this one (Figure 3.10).

There are two interesting observations from Figure 3.11. First, the optimal

thresholds are extremely sensitive such that small changes in either direction will

result in a sizable decrease to the F1 score. Figure 3.12 demonstrates the differences

in accuracy resulting from a ± 1% change in the threshold. This property makes any

attempt to generalize threshold selection especially difficult (e.g., using the mean).

Second, some videos require the frames to be masked in order to perform well. For

example, the video with meeting ID 170127 consists of a few long dialogues with

students while answering questions. As a result, the camera transitioned enough to

render the model worthless.

These experiments show that percentile-based models perform well when an optimal

threshold is known before hand. However, the choice of threshold value does not allow

room for error. Since the task of finding an optimal threshold is non-trivial for a new

video without ground truth annotations, percentile-based models are infeasible for

this use case. Therefore, another technique is needed, which we’ll benchmark against

these optimal percentile-based models.

3.2.3 Rolling Standard Deviation Model

The percentile-based model is a good baseline from which to compare results from

further experiments. Since that model relies on global statistics to make predictions,

it seems natural to investigate methods that make predictions based on local statistics.

One way to accomplish this is to track the rolling mean and standard deviation over

some number of periods in the past. Then when the difference in cosine distance
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Figure 3.10: F1 scores for the four test videos, each evaluated at their optimal threshold for both
masked (blue) and unmasked cases (orange). During the presentation for meeting 170127, students
asked questions on more than one occasion, which resulted in frequent changes to the camera portion
of the frame while holding the slide constant. Furthermore, this particular presentation had incidents
where the instructor rapidly cycled through slides to revisit prior slides.

deviates from the mean by a certain magnitude, we predict a slide change at that

time step.

There are two parameters of interest for this model: window length (w) and

number of standard deviations from the mean (s). Immediately we see that one choice

of parameters will have a different impact on predictions for different videos (Fig.

3.13). Similar to the percentile model, the optimal choice of parameters is not known

beforehand and must therefore be optimized. For example, if we increase the window

length to 20, the number of standard deviations from the mean must almost double in

order to get visually similar results (Fig. 3.14). This fact was discovered by trial and

error, an approach that does not scale well. In addition, the predictions are extremely
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Figure 3.11: F1 scores for each of the four test videos, by percentile threshold. The models perform
well when the optimal threshold is known and the camera is masked (solid line). However, these
models are sensitive to changes in the threshold such that a small move in either direction would
result in a significant performance decrease.

37



0:07:00

0:08:00

0:09:00

0:10:00

0:11:00

0:12:00

0:13:00

0:14:00

0:15:00

0:16:00

0:17:00

0:18:00

0:19:00

0:20:00

0:21:00

0:22:00

0:23:00

0:24:00

0:25:00

0:26:00

0:27:00

0:28:00

0:29:00

0:30:00

0:31:00

0:32:00

0:33:00

0:34:00

0:35:00

0:36:00

0:37:00

0:38:00

0:39:00

0:40:00

0:41:00

0:42:00

Elapsed Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
C

os
in

e 
D

is
ta

nc
e 

(d
iff

)

(a) Optimal threshold
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(b) High threshold (+1%)
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(c) Low threshold (-1%)

Figure 3.12: Percentile-based model predictions for the optimal, high, and low cases (Meeting ID
83512718053). Ground truth annotations are represented by the black vertical lines and predictions
represented by red circles. A higher threshold results in more false negatives while a lower threshold
results in more false positives. Here we see the impact resulting from a small deviation in percentile.
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Figure 3.13: Rolling standard deviation model predictions for all four videos (w = 10 and
s = 2.84). The standard deviation band is denoted by the green line, which is noticeable
only during a spike in the difference in cosine distance. The variation in the data is tight
enough between spikes to cause false positives. Meeting 170127 (b) has significant amounts
of false positives. 39



sensitive to parameter changes. It is standard for s to be require precision to the

one-thousandth decimal place and beyond, much like the percentile model (Fig. 3.11).

This model suffers the same drawbacks as the percentile model and essentially

behaves like a “rolling percentile” model, where local statistics cause the same problems

as the global statistics. First, the parameters must be optimized before the model can

make useful predictions for a given time series, which is not desirable due to the lack

of generalization. Second, predictions based on standard deviation thresholds do not

perform well when the data has extremely low variation (Fig. 3.15). As a result, any

threshold-based method needs to produce a band that stays low enough to trigger a

prediction without being influenced by areas of low variation. Therefore, we move on

to experiment with filtering/smoothing methods with this objective in mind.

3.2.4 Kalman Filter Model

The Kalman filter is a common tool for time series outlier detection and comes with

the added benefit of dynamic prediction. That is, it can adjust its prediction with

each new data point it receives. For this experiment, we made use of the tsmoothie2

Python package. We started by exploring the impact from two parameters: the noise

level of the process (pn) and the number of standard deviations used to calculate

the band (nsig). We can see that the initial parameter values (pn = 0.5, nsig = 2)

produce a band that hovers at a more favorable distance for our purposes (Fig. 3.16).

A nice feature of this Kalman band is the spiking that occurs with spikes in the

underlying, which will ensure that a signal must be sufficiently large to warrant a

prediction. However, the hovering distance clearly varies with the meeting. While the

prediction threshold looks reasonable, it is too high for some of the signals in meetings
2https://github.com/cerlymarco/tsmoothie

40

https://github.com/cerlymarco/tsmoothie


Elapsed Time

0

0.05

0.1

0.15

0.2

0.25

C
os

in
e 

di
st

an
ce

 (
di

ff)

Meeting 160320

(a)

Elapsed Time

0

0.1

0.2

0.3

0.4

C
os

in
e 

di
st

an
ce

 (
di

ff)

Meeting 170127

(b)

Elapsed Time

0

0.1

0.2

0.3

0.4

C
os

in
e 

di
st

an
ce

 (
di

ff)

Meeting 220120

(c)

Elapsed Time

0

0.1

0.2

0.3

0.4

0.5

C
os

in
e 

di
st

an
ce

 (
di

ff)

Meeting 83512718053

(d)

Figure 3.14: Rolling standard deviation model predictions for all four videos (w = 20 and
s = 4.22). The standard deviation band is denoted by the green line, which is noticeable
only during a spike in the difference in cosine distance. The variation in the data is tight
enough between spikes to cause false positives - this is most noticeable for meeting 220120
(c) where there are 3 mispredictions in the second quarter of the dataset.
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Figure 3.15: An enlarged section of the meeting 170127 time series from Fig. 3.14 (w = 20,
s = 4.22). Low variance data will cause mispredictions even with very high values of s. We can see
there are six false positives in the center portion of the figure. The green band is not noticeable at
> 4 standard deviations from the mean, which indicates the variance of the data during this interval
is too low for a rolling standard deviation rule to be feasible.

220120 and 83512718053.

Since we know that these time series are generally of low variation, we reduce nsig

to 1 and inspect the results (Fig. 3.17). We hold pn constant because this data is not

particularly noisy, therefore the primary driver of the predictions is the distance from

the threshold to the data. There is a noticeable decrease in the hovering distance of

the Kalman band, which was consistently favorable for each meeting. These results

are encouraging, which leads one to be curious on how low the band can get before

mispredictions start to occur. For this dataset, that threshold corresponds to an nsig

value of 0.03.

Given prior domain knowledge of Zoom frame similarities, we can make an informed

decision on how to set pn and nsig. As previously mentioned, this data is not noisy

relative to the number of data points. In fact, we can look at this problem as one of

trying to detect the noise when it does occur. As a result, the standard value of pn

will work for our purposes. In order to set nsig, we want to pick up as many signals

as possible without producing false positives. We know the variation of the data is
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Figure 3.16: Initial Kalman filter predictions for the four meetings (pn = 0.5, nsig = 2).
The prediction threshold is denoted by the black line tracking the cosine distance diffs.
Unlike the rolling standard deviation case, the Kalman filter produces a band that hovers
away from the data. 43
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Figure 3.17: Initial Kalman filter predictions for the four meetings (pn = 0.5, nsig = 1).
The prediction threshold tightens without adding false positives. We can see here that even
with a low value of nsig, the Kalman filter still maintains a consistent buffer above the data,
even in areas of low variance. To see this more clearly, compare meeting 220120 in this
figure (c) with the same meeting in Fig. 3.14.
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Figure 3.18: Kalman filter predictions for an enlarged section of meeting 83512718053. We can
use prior domain knowledge to reason about the amount of variation in the data when setting nsig.
In this case, it was possible to significantly decrease nsig such that very small signals are detected
without paying the cost of mispredictions.

very low, so we can safely decrease the value of nsig significantly (Fig. 3.18).

The Kalman filter model was much more powerful than the percentile model, its F1

score differed by an average of 0.005 across the four test videos. This is primarily due

to the fact that the Kalman prediction threshold hovered far enough away from our

low-variation data such that most signals were detected without sacrificing accuracy.

In addition, we only needed to focus on optimizing one parameter (for this domain),

which generalized well to the other videos. However, we still needed to optimize a

parameter, which could vary for different videos. In our case, the same parameter
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State µ σ2

Normal 0.0000453564 0.0000051734
Outlier 0.1850038205 0.0109287335

Table 3.1: HMM state distribution parameters learned for meeting 83512718053.

value worked for all four of the videos. It is not clear if this would hold for a dataset of

100 videos. We also relied on some prior domain knowledge to complete the task. As

a result, we will want to explore models that can learn the important characteristics

of the data without prior knowledge or feedback from other time series.

3.2.5 HMM-based Model

Given the insights learned from 3.2.2 and 3.2.4, HMMs are a great choice for the

next model. They require no prior knowledge, only that the user have some idea of

how many hidden states to model. For the time series outlier detection task, we’re

only worried about two states: the normal state of affairs and the unusual state of

affairs. HMMs have been used for this exact task in the past [19] and are efficient at

learning hidden state distributions out of the box. The experiments that follow use

the hmmlearn3 implementation with default parameters4 and two hidden states.

The HMM takes a different approach to outlier detection. For the models discussed

thus far, the general strategy was essentially to identify datapoints that deviate enough

from some main distribution. In the case of the HMM, it assumes each group follows

a Gaussian distribution, then learns these distributions for the number of groups

it is told to find. This approach is convenient for learning outlier distributions for

any given time series and is therefore more generalizable. It is possible to build

HMMs with other assumptions on the distributions (eg, exponential). For outlier
3https://github.com/hmmlearn/hmmlearn
4https://hmmlearn.readthedocs.io/en/latest/api.html#hmmlearn.hmm.GaussianHMM
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Figure 3.19: HMM state assignments for meeting 83512718053, where the outlier datapoints are
assigned to state 1 (orange). Lines take on the color of the datapoint they are connecting to, which
produces the orange spikes. The density plot on the right shows the distributions learned from each
state, where the orange dotted line denotes the mean of the outlier distribution. Note the x-axis of
the density plot. It has a true upper bound of > 5000, therefore needing to zoom in on the range [0,
25] so the outlier distribution can be clearly seen. This follows from the extreme low variance of the
blue distribution.

detection, we simply identify the distribution representing the outliers (Fig. 3.19,

Table 3.1). Mispredictions occur for datapoints that lie on the boundary between two

distributions.

We can see from Figure 3.20 that the HMM does not perform as well as the

percentile-based model, with mispredictions occurring for very small signals. Starting

at the approximate 31 minute mark, the speaker presented a series of slides where

talking points were added incrementally while highlighting results in a table. We

can see this more clearly in Figure 3.21. In this case, the only changes in content

came from highlighting a different part of the table and adding a bullet point to the

talking points. Since the bulk of the content remained constant (title, background, and

table), the cosine distance between the respective frames was not large enough for the

HMM to detect. This may be improved by fine-tuning the model’s parameters such

that the distribution belonging to the “normal” hidden state has an extremely small
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(a) Optimal percentile-based predictions
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(b) HMM-based predictions

Figure 3.20: Optimal percentile-based predictions vs. HMM-based predictions. The HMM struggles
to detect very small signals. See the time interval at approximately 31:00 to 34:00.

variance (even smaller than it already does), which might allow the HMM to place

smaller signals in the outlier distribution. While the task of investigating potential

improvements is beyond the scope of this thesis, it will make for interesting work in

the future.

Though the HMM does not match the performance of the percentile or Kalman

models, its F1 scores are within 10% in all cases (Figure 3.22). This deviation is not

so unfavorable when considering the ease of use and generalization afforded by HMM.

In addition, when compared to the Kalman filter, the HMM is able to handle the
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(a) Slide 29

(b) Slide 30

Figure 3.21: An example slide change that was missed by the HMM. In (a), we can
see the speaker highlighting results while displaying talking points in the right half of
the slide. Then in (b), the highlighting changed and a new bullet point added. Since
most of the content remained constant between these two slides, the cosine distance
between their respective frames was not large enough to be classified as a slide change.
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unmasked videos with consistency while having the potential to improve if slide change

definitions are modified. For example, consider the scenario in Figure 3.21 where

adding a bullet to a slide produces a very small signal. If the slide change definition

were to disallow small changes to slides, which would be favorable for instructors

who do not prefer to present content in an incremental fashion, then the HMM’s

performance would improve. Now that we have a working slide change detector, we

can proceed to derive the video metrics.

3.3 Video Metrics

3.3.1 Slide Count (SC) and Pace of Slide Change (PSC)

Slide counts are derived by simply counting the number of slide change predictions.

Since the PSC derivation depends on slide detection, the following results are sufficient

for demonstrating both SC and PSC. In Figure 3.24, we can see mispredictions

consistent with those discussed in section 3.2.5. The masked video has legitimate

signals, that also happen to be very small and therefore go undetected. The unmasked

video has large and noisy signals, which are erroneously picked up by the HMM (see

Fig. 3.23).

3.3.2 Words per Slide (WPS)

Before WPS can be calculated, the target frames need to be identified and extracted

from the video. The alternative would be to run OCR on each frame of the video, then

deduplicate. This latter procedure would be extremely inefficient, time consuming,

and therefore unpractical for this use case. As a result, we mapped the timestamp of

each slide change, or predicted slide change, to the relevant frame number. In theory,
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Figure 3.22: F1 scores for the optimal percentile-based model (green), the HMM-based model (red),
and the Kalman filter model (purple). The HMM performs within 10% of the percentile-based model
in all cases, which makes the generality gained from the HMM worth the performance cost.
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(b) Unmasked

Figure 3.23: HMM predictions for the masked and unmasked cases. This view clarifies why the
PSC mispredictions are occurring in Fig. 3.24. In the masked case (a), we can see that small slide
change signals are not picked up around the 31:00 mark, which results in an under-counting of the
slides (Fig. 3.24a). Conversely, the unmasked case (b) produces extra predictions in the first half of
the presentation as a result of the noisy signals produced by the camera. This causes the PSC metric
to inflate the slide count (Fig. 3.24b).

this should return a set of unique frames, each representing a different slide.

We started by mapping each frame to its respective timestamp, based on the

frame rate of the video, then selected the relevant seconds based on the slide change

predictions. Given this set of seconds, we extracted the frame number that had the

highest cosine distance value. This process is not entirely error-free since a slide

change occurs at the frame-level, while a human annotator is only able to flag it at
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Figure 3.24: HMM predictions for the PSC metric (meeting 83512718053). For the masked case
(a), the model missed the small signals towards the second half of the presentation (see Fig. 3.20b).
Conversely, for the unmasked case (b), many of the additional noisy signals were picked up by the
model, which led to extra slide predictions.

the second-level (Figure 3.25). We can see in 3.26 that the duplicate slides are a

result of the slide change happening close to the beginning of a second. Conversely,

slide change predictions made by the model will not introduce this type of error since

signals at the frame-level are aggregated to the true second where they occur (see Fig.

2.5).
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Figure 3.25: A subset of the sequence of frames extracted during the OCR process. In this case, a
slight discrepancy in the annotation mapped the 38th slide change to the wrong frame number.

54



50930 50940 50950 50960 50970

Frame #

0.000e+0

1.000e−3

2.000e−3

3.000e−3

4.000e−3

5.000e−3

C
os

in
e 

D
is

ta
nc

e 
(d

iff
)

annotated

actual

Figure 3.26: A two second period where the seconds are differentiated by the shaded areas. Human
annotations will most likely introduce error when the slide change occurs near the transition between
seconds. This particular scenario created the duplicate in 3.25. The annotation flagged the slide
change as occurring in the period shaded in red, whereas the actual slide change happened in the
green area.

Tesseract can be configured in many different ways - there are currently fourteen5

different page segmentation settings depending on the use case (Figure 3.27). We

use the default settings for our purposes, which automatically segments the incoming

image. This presents another opportunity for fine-tuning as the default setting may

not be appropriate for the task at hand since some presentations may have different

text than others.

To calculate WPS, text is extracted from each slide, then tokenized to retain

alphanumeric characters. A simple count of the resulting token sequence is the final

representation of WPS. We can see from Figure 3.28 that the same misprediction

patterns occur with respect to the HMM. In addition, it is clear from meeting

83512718053 that the latter half of the presentation was significantly different from

the first half (3.28a).
5https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
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(a) Sample slide

(b) Default

(c) PSM 6

Figure 3.27: OCR applied to a sample slide with two different settings. By default,
Tesseract attempts to find the block of text withing the image (b), whereas the PSM 6
setting assumes the entire image is composed of a single uniform block of text (c).
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Figure 3.28: HMM predictions for the WPS metric (masked case). The variation between predicted
and true values is consistent with the HMM behavior in Fig. 3.24a. For both meetings, the HMM
underestimated the true slide count. The masked videos have some legitimate signals that are very
small, which are not picked up by the model.
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3.4 Summary

This chapter evaluated the newly developed Zoom meeting metrics on real Zoom data.

First, transcript metrics were compared to those generated by Meeting Measures, thus

acting as a validation step. Next, the process of developing a model for detecting slides

was outlined in detail, including the challenges encountered along the way. Finally,

the HMM ended up being the preferred model for the slide change detector due to

the way it generalizes while providing consistent performance. Though it wasn’t the

top performing model, it was able to stay within 10% of the other F1 scores without

requiring any hyperparameter tuning. The model was then applied to our dataset

of four videos, where mispredictions occurred when slides changed slightly - such as

when a bullet point is added to an existing slide.
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4

Conclusion

This work introduced a Python framework for analyzing Zoom meetings for the purpose

of improving education delivery. Meeting Measures [2], an R-based tool started in 2020,

acted as the baseline for this thesis to build upon. The relevant metrics fall into either

the transcript or video categories. The transcript metrics measure the proportion of

speaking time per person, the average utterance length per person, speaking pace

over time, non-participants, and general sentiment of language. Sentiment scores were

derived using open source, pre-trained models from Hugging Face. For validation

purposes, our transcript was run through zoomGroupStats [3], the R package powering

Meeting Measures. The resulting transcript dataset was successfully validated against

the dataset produced by the Python tool.

Video metrics expanded the functionality of the tool beyond what could be learned

from transcripts alone. The metrics derived from Zoom videos were slide counts,

pace of slide changes, and words per slide. A slide change detector was developed

to accomplish these tasks, where four different models were evaluated. Videos were

first processed to compute the L2-norm for consecutive frames in order to identify

slide change signals. However, slight distortions in many of the frames produced large

quantities of false signals. As a result, the cosine distance was used, which mitigated
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issues caused by the distortion. Further denoising steps where taken by masking the

camera from each frame.

Four different models were then evaluated with respect to their F1 score on a test

dataset of four videos. First, a percentile-based model was developed and ultimately

performed well. However, the model needed to be optimized for each dataset, which

is not ideal in practice. Next, we experimented with a rolling standard deviation

model. This option was quickly abandoned as the standard deviation threshold was

ineffective for segments of the frame data with extremely low variation. We then built

a model based on the Kalman filter, which performed well while being easier to tune.

However, this model still required some level of optimization. Finally, we implemented

an HMM-based model for its ability to generalize. The HMM did not perform as

well as the optimized percentile-based model. It did however score within 10% of the

percentile model in all cases. As a result, the HMM was selected to derive the final

version of the video metrics.

The final task for developing video metrics was to extract the text from each slide to

compute word counts. For this, the open source OCR engine Tesseract was used. We

initially noticed some error with the frame extraction procedure. Further investigation

revealed the source of the error to be the human annotator. An additional source

of error was introduced by the HMM, as it fails to detect slides when the signal is

low. Improving model performance is something that could be improved upon in the

future.
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4.1 Future Work

As larger segments of society transition to remote work and school, it will remain

important to have the ability to gather feedback from meeting participants. As a

result, this project is something that can continue to be built upon. Better slide

detection methods can be explored based on the rules set by the user. For example,

frame signals can be amplified for users interested in counting minor changes to slides,

such as adding a bullet. This will result in less misses for a model like the HMM.

Conversely, frame signals can be further smoothed such that smaller signals are not

picked up. In this case, the user would only want to count slide changes when the

entire slide changes, instead of just a small portion. Other rules can be set by the

user to exclude rapid slide changes in a particular time frame (e.g., no more than 2

slide changes per 10 seconds).

It would also be helpful to experiment with improving the slide detection models

such as the HMM or Kalman filter. Additionally, there are deep learning models that

might make good candidates, such as the autoencoder. The OCR engine has many

options that could be experimented with. It may be the case that certain settings will

work better than others, which could improve the results of the slide content analysis.

There are more metrics of interest that can be derived from this data. It would be

interesting to formulate a signature for each slide in a presentation for the purpose

of tracking the number of times a slide has been revisited. This could help the

teacher identify moments in the presentation where students may not have absorbed

a concept, thus needing to revisit the same slide multiple times. Student interaction,

as determined by the transcript, could be correlated with the slide content to discover

patterns responsible for student disengagement. Finally, more intensive video analysis
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can be done with some of the other video files available for download. For example,

the gallery view can be used to determine how many students have their cameras on

to gauge the general level of interest. For those that do have their camera on, models

can be developed to detect emotion and other nonverbal cues.
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Appendix A

Zoom Analysis Code Repository

All code related to the Zoom analysis tools developed for this thesis is publicly

available through Github under the MIT open source license at: https://github.

com/cannonja/zoom-analysis-tool
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Appendix B

Sample Transcript

WEBVTT

1

0 0 : 0 0 : 0 0 . 2 9 9 −−> 0 0 : 0 0 : 0 0 . 9 3 0

Jack Cannon : Here we go .

2

0 0 : 0 0 : 0 9 . 6 9 0 −−> 0 0 : 0 0 : 1 0 . 2 9 0

Jack Cannon : One second .

3

0 0 : 0 0 : 1 3 . 3 2 0 −−> 0 0 : 0 0 : 1 6 . 3 5 0

Jack Cannon : When I did my pre sentat i on , the other day .

4

0 0 : 0 0 : 1 7 . 7 8 9 −−> 0 0 : 0 0 : 2 0 . 2 8 0

Jack Cannon : I got to h i t the share button .

5

0 0 : 0 0 : 2 2 . 0 8 0 −−> 0 0 : 0 0 : 2 4 . 9 9 0

Jack Cannon : i t ' s l i k e you c l i c k share and then your monitors come up .
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6

0 0 : 0 0 : 2 5 . 3 8 0 −−> 0 0 : 0 0 : 2 7 . 1 2 0

Jack Cannon : And you s l e e p l i k e order i s .

7

0 0 : 0 0 : 2 7 . 4 5 0 −−> 0 0 : 0 0 : 2 7 . 7 8 0

JoAnna Langberg : yeah .

8

0 0 : 0 0 : 2 8 . 1 7 0 −−> 0 0 : 0 0 : 3 1 . 5 0 0

Jack Cannon : And I expect i t to automat i ca l l y work because that ' s what

i t does f o r teams .

9

0 0 : 0 0 : 3 2 . 7 9 0 −−> 0 0 : 0 0 : 3 4 . 9 5 0

Jack Cannon : Talking they had to i n t e r r u p t me and go .

10

0 0 : 0 0 : 3 5 . 0 1 0 −−> 0 0 : 0 0 : 3 6 . 4 8 0

JoAnna Langberg : Like whoa whoa whoa .

11

0 0 : 0 0 : 3 9 . 8 7 0 −−> 0 0 : 0 0 : 4 4 . 7 0 0

Jack Cannon : What I need to do i s h ide f l o a t i n g meeting c o n t r o l s okay .

12

0 0 : 0 0 : 4 8 . 1 8 0 −−> 0 0 : 0 0 : 4 9 . 1 7 0

Jack Cannon : Okay .
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13

0 0 : 0 0 : 5 2 . 7 4 0 −−> 0 0 : 0 0 : 5 8 . 3 5 0

Jack Cannon : Okay , so f i r s t th ing I want to go over some background

s t u f f with you r e a l quick , b e f o r e I s t a r t .

14

0 0 : 0 0 : 5 9 . 4 0 0 −−> 0 0 : 0 1 : 0 2 . 0 7 0

Jack Cannon : So remember how I to ld you t h i s .

15

0 0 : 0 1 : 0 3 . 4 8 0 −−> 0 0 : 0 1 : 1 1 . 6 1 0

Jack Cannon : I mean , I th ink I b r i e f l y mentioned i t , that there ' s these

th ing s that are language models so a l o t o f what i 'm doing now i s .

16

0 0 : 0 1 : 1 2 . 3 3 0 −−> 0 0 : 0 1 : 1 9 . 5 3 0

Jack Cannon : i s b a s i c a l l y we l e a rn a l l about language models and how

they work and how you can use them f o r l o t s o f d i f f e r e n t ta sk s but .

17

0 0 : 0 1 : 1 9 . 8 6 0 −−> 0 0 : 0 1 : 3 2 . 5 2 0

Jack Cannon : Bas i ca l l y , at a high l e v e l what a language model does i s

you can ignore t h i s s t u f f j u s t know that we ' re g iven a s e t o f words ,

the goa l i s to .

18

0 0 : 0 1 : 3 3 . 1 2 0 −−> 0 0 : 0 1 : 4 5 . 9 9 0
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Jack Cannon : p r e d i c t what the next word i s so i t ' s l i k e the s tudents

open there and then you have l i k e t h i s d i s t r i b u t i o n o f outcomes

laptops books in t h i s case books , has the h i ghe s t p robab i l i t y , so

t h i s model would p r e d i c t books in the next word .

19

0 0 : 0 1 : 4 6 . 8 3 0 −−> 0 0 : 0 1 : 5 3 . 0 7 0

Jack Cannon : And that ' s that ' s b a s i c a l l y what language models do and

that ' s kind o f l i k e a s i m p l i f i c a t i o n o f i t but .

20

0 0 : 0 1 : 5 4 . 4 2 0 −−> 0 0 : 0 2 : 0 4 . 9 8 0

Jack Cannon : You can use these to do a l l k inds o f other language

o r i en t ed ta sk s such as turn ing words in to numbers to do u s e f u l

th ing s with them does that make sense .

21

0 0 : 0 2 : 0 6 . 6 3 0 −−> 0 0 : 0 2 : 0 7 . 1 1 0

Jack Cannon : Okay .

22

0 0 : 0 2 : 0 8 . 6 7 0 −−> 0 0 : 0 2 : 1 0 . 5 9 0

JoAnna Langberg : i t ' s l i k e I don ' t complete your t ex t i ng .

23

0 0 : 0 2 : 1 1 . 0 4 0 −−> 0 0 : 0 2 : 1 2 . 0 0 0

B a s i c a l l y .

24
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0 0 : 0 2 : 1 4 . 7 9 0 −−> 0 0 : 0 2 : 1 5 . 8 1 0

Jack Cannon : So then here ' s a .

25

0 0 : 0 2 : 1 7 . 0 1 0 −−> 0 0 : 0 2 : 2 3 . 0 4 0

Jack Cannon : So there ' s t h i s model c a l l e d BERT, which i s what i 'm going

to t a l k about and they use a l o t o f sesame s t r e e t names there ' s a

b i rd there ' s an elmo .

26

0 0 : 0 2 : 2 4 . 9 6 0 −−> 0 0 : 0 2 : 2 6 . 2 2 0

Jack Cannon : yeah i t ' s pre t ty funny .

27

0 0 : 0 2 : 2 7 . 9 3 0 −−> 0 0 : 0 2 : 4 5 . 2 4 0

Jack Cannon : So the way they t r a i n t h i s BERT model i s they t ra ined i t on

what ' s c a l l e d t h i s mask language modeling tasks , where you g ive the

model , a sentence , but you kind o f l i k e mask out a few words and

i t s task i s to p r e d i c t what words would f i l l t h i s in .

28

0 0 : 0 2 : 4 7 . 7 0 0 −−> 0 0 : 0 2 : 5 5 . 6 5 0

Jack Cannon : So then , so that ' s one th ing that i t does and and the other

th ing that does i s next sentence pred i c t i on , so you put in a word .

29

0 0 : 0 2 : 5 6 . 1 9 0 −−> 0 0 : 0 3 : 0 7 . 7 7 0

Jack Cannon : And then i t outputs whether or I guess you put in two

s en s e s sentence sentence , a sense be in that t e l l s you i f s entence
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be i s the next sentence from a sentence a .

30

0 0 : 0 3 : 0 8 . 7 6 0 −−> 0 0 : 0 3 : 1 6 . 9 2 0

Jack Cannon : So t h i s super s o p h i s t i c a t e d model b i rd was t ra in ed us ing

those methods so i t ' s i t ' s they use the ton o f data , Google did i t .

31

0 0 : 0 3 : 1 8 . 3 3 0 −−> 0 0 : 0 3 : 2 0 . 2 8 0

Jack Cannon : And then you can use t h i s model to do a bunch o f .

32

0 0 : 0 3 : 2 0 . 2 8 0 −−> 0 0 : 0 3 : 2 1 . 0 3 0

Jack Cannon : coo l s t u f f .

33

0 0 : 0 3 : 2 1 . 5 4 0 −−> 0 0 : 0 3 : 3 0 . 9 6 0

Jack Cannon : Which i s what i ' l l get i n to but , but the g i s t i s i s that ' s

b a s i c a l l y what i t does there ' s another type o f model c a l l e d a GP CT.

34

0 0 : 0 3 : 3 1 . 6 2 0 −−> 0 0 : 0 3 : 3 6 . 3 3 0

Jack Cannon : Where so so one other s i d e i s that a language model l i k e

are .

35

0 0 : 0 3 : 3 6 . 7 2 0 −−> 0 0 : 0 3 : 4 5 . 1 5 0

Jack Cannon : The ones that are t r a ined with t h i s way , us ing the mask

things , those are mainly used f o r l i k e understanding text so i f you
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have a task , and you want to understand what i t ' s say ing .

36

0 0 : 0 3 : 4 5 . 6 0 0 −−> 0 0 : 0 3 : 5 5 . 9 5 0

Jack Cannon : or draw any i n f e r e n c e s based on what the Texas same use

t h i s type o f model , but then , i f you want to have a Bot that ' s going

to kind o f l i k e generate t ext and , l i k e .

37

0 0 : 0 3 : 5 6 . 4 0 0 −−> 0 0 : 0 4 : 0 6 . 9 9 0

Jack Cannon : generate s en t ence s or take a ques t i on in gene ra t ing answer

the ques t i on that ' s another type o f model that ' s not t h i s one , so

those are those are kind o f the two main ta sk s f o r t h i s .

38

0 0 : 0 4 : 0 9 . 5 1 0 −−> 0 0 : 0 4 : 1 2 . 4 2 0

Jack Cannon : So , as f a r as turn ing words in to numbers .

39

0 0 : 0 4 : 1 5 . 0 9 0 −−> 0 0 : 0 4 : 2 2 . 8 0 0

Jack Cannon : You can use t h i s model to do that and so there ' s a l l the se

d i f f e r e n t p i c t u r e s l i k e so i t ' s l i k e once you take a word and you

turn i t i n to a number , then you can graph i t .

40

0 0 : 0 4 : 2 3 . 4 0 0 −−> 0 0 : 0 4 : 2 9 . 9 4 0

Jack Cannon : And so what you see here i s th ing s l i k e r e l a t i o n s h i p s

between words and how i f words are s i m i l a r .
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41

0 0 : 0 4 : 3 0 . 6 3 0 −−> 0 0 : 0 4 : 3 6 . 3 3 0

Jack Cannon : l i n g u i s t i c a l l y than they should be s i m i l a r numbers , they

should be s i m i l a r in whatever space you pro j e c t ed as to .

42

0 0 : 0 4 : 3 7 . 1 1 0 −−> 0 0 : 0 4 : 4 7 . 2 2 0

Jack Cannon : So t h i s one they ' re j u s t kind o f showing you l i k e you have

body par t s that are a l l c l u s t e r e d toge the r c l o s e to each other , so I

would imagine t h i s has l i k e arm leg , you know head .

43

0 0 : 0 4 : 4 7 . 6 4 0 −−> 0 0 : 0 4 : 5 9 . 7 3 0

Jack Cannon : Like those words are a l l r e a l c l o s e toge the r the se c i t i e s

are a l l r e a l c l o s e toge the r and that ' s that ' s what should happen he '

s , s i n c e the se are s i m i l a r words , they should be c l o s e toge the r when

he turned him in to numbers to does that make sense .

44

0 0 : 0 5 : 0 2 . 1 3 0 −−> 0 0 : 0 5 : 0 5 . 4 6 0

Jack Cannon : And you can do r e a l l y coo l th ing s with these l i k e you can .

45

0 0 : 0 5 : 0 7 . 2 0 0 −−> 0 0 : 0 5 : 2 2 . 4 4 0

Jack Cannon : Make a n a l o g i e s l i k e , f o r example , you can do an analogy ,

you can t e l l the computer king i s the Queen man i s to and l eave i t

blank and i t ' l l g i ve you the word woman because that ' s j u s t the

r e l a t i o n s h i p with these words i ' l l have .
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46

0 0 : 0 5 : 2 4 . 2 4 0 −−> 0 0 : 0 5 : 3 0 . 1 8 0

Jack Cannon : So there ' s a l l k inds o f coo l th ing s and then there ' s other

there ' s Another th ing I th ink i s pre t ty funny so check t h i s out over

time .

47

0 0 : 0 5 : 3 0 . 6 6 0 −−> 0 0 : 0 5 : 4 4 . 7 9 0

Jack Cannon : So someone did t h i s over time , l i k e so in the 1900 s they

did a bunch o f they did a word vec to r s f o r f o r 1900 s and then you

see Okay , t h i s i s what gay looks l i k e in 1900 da f t f l a u n t i n g

t a s t e f u l sweet c h e e r f u l .

48

0 0 : 0 5 : 4 5 . 9 3 0 −−> 0 0 : 0 5 : 5 4 . 3 6 0

Jack Cannon : Then in the 1950 s i t ' s c l o s e r to f o l l o w up some witty and

br i gh t and then you go in to 1900 s now gay i s more o f l i k e a

s e x u a l i t y type o f a th ing .

49

0 0 : 0 5 : 5 4 . 8 7 0 −−> 0 0 : 0 6 : 0 3 . 6 3 0

Jack Cannon : So you can kind o f s ee how i t more throughout time and how

you can see , you use these language models to look at the se th ing s

same with l i k e you know broadcast awful .

50

0 0 : 0 6 : 0 6 . 3 0 0 −−> 0 0 : 0 6 : 0 7 . 4 4 0

Jack Cannon : To understand why I was l i k e .
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51

0 0 : 0 6 : 0 8 . 5 5 0 −−> 0 0 : 0 6 : 0 9 . 2 4 0

Jack Cannon : What now .

52

0 0 : 0 6 : 0 9 . 3 9 0 −−> 0 0 : 0 6 : 1 1 . 2 8 0

JoAnna Langberg : You understand why awful ma j e s t i c .

53

0 0 : 0 6 : 1 2 . 7 5 0 −−> 0 0 : 0 6 : 1 5 . 9 9 0

Jack Cannon : p i t c h e s had i t i t ' s l i k e Oh, l i k e a d i f f e r e n t .

54

0 0 : 0 6 : 1 6 . 2 6 0 −−> 0 0 : 0 6 : 1 6 . 5 6 0

JoAnna Langberg : i t ' s l i k e .

55

0 0 : 0 6 : 1 8 . 3 0 0 −−> 0 0 : 0 6 : 2 1 . 4 8 0

JoAnna Langberg : yeah you ' re f a l l i n g o f f and now i t ' s l i k e .

56

0 0 : 0 6 : 2 4 . 7 8 0 −−> 0 0 : 0 6 : 3 1 . 8 3 0

Jack Cannon : So that ' s kind o f l i k e the j u s t you have language models

and then you use language models to do th ing s and a l o t o f the main

task i s g e t t i n g .

57

0 0 : 0 6 : 3 2 . 1 3 0 −−> 0 0 : 0 6 : 4 4 . 1 0 0
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Jack Cannon : i s to r ep r e s en t words as numbers in the most e f f e c t i v e way ,

the bette r , you can do th i s , the b e t t e r your models are going to be

ab le to do th ings l i k e p r e d i c t what the next sentences , you know

understand sent ence s that people are say ing .

58

0 0 : 0 6 : 4 4 . 4 3 0 −−> 0 0 : 0 6 : 5 3 . 7 3 0

Jack Cannon : read a sentence and be ab le to t e l l i f , l i k e there ' s

negat ive emotion or p o s i t i v e emotion s t u f f l i k e that a l l those ta sk s

are dependent on how good you can put words in to .

59

0 0 : 0 6 : 5 4 . 5 4 0 −−> 0 0 : 0 7 : 0 7 . 1 7 0

Jack Cannon : embedding as they ' re c a l l e d and then one f i n a l th ing i ' l l

say about t h i s i s , you can do t h i s with words , but you can a l s o do

the senses , you can p r o j e c t e n t i r e s en t ence s down in to a space l i k e

t h i s and you can p r o j e c t e n t i r e documents down so you can .

60

0 0 : 0 7 : 0 8 . 4 6 0 −−> 0 0 : 0 7 : 2 2 . 8 6 0

Jack Cannon : The sky ' s the l im i t , o f course , the l onge r the document i s ,

the harder i t i s but there ' s a c t u a l l y been some pre t ty good r e s u l t s

doing th i s , so s en t ence s they ' re r e a l s i m i l a r to each other

l i n g u i s t i c a l l y should be putt ing each other down here , so the same .

61

0 0 : 0 7 : 2 3 . 0 1 0 −−> 0 0 : 0 7 : 2 3 . 4 6 0

Jack Cannon : same th ing .
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62

0 0 : 0 7 : 2 4 . 4 2 0 −−> 0 0 : 0 7 : 2 6 . 4 3 0

Jack Cannon : Okay that ' s a l l the background work .

63

0 0 : 0 7 : 2 8 . 7 7 0 −−> 0 0 : 0 7 : 3 1 . 0 2 0

JoAnna Langberg : i 'm an expert I got the l i g h t i n g f i x e d .

64

0 0 : 0 7 : 3 3 . 8 7 0 −−> 0 0 : 0 7 : 3 5 . 1 6 0

Jack Cannon : Oh, you did how ' d you do that .

65

0 0 : 0 7 : 3 5 . 4 3 0 −−> 0 0 : 0 7 : 4 2 . 3 6 0

JoAnna Langberg : I moved i t down because there ' s a window behind me, so

i t was tak ing the br i ght l i g h t o f the window i s the f o cus in s t ead o f

my pa le f a c e .

66

0 0 : 0 7 : 4 5 . 9 3 0 −−> 0 0 : 0 7 : 5 4 . 7 8 0

Jack Cannon : Okay , so so now what i ' l l do i s i ' l l p r e sent t h i s r e s ea r ch

paper t h i s c l a s s i s a been a l o t o f r e s ea r ch paper read ing which I

r e a l l y l i k e .

67

0 0 : 0 7 : 5 5 . 6 8 0 −−> 0 0 : 0 8 : 0 4 . 8 0 0

Jack Cannon : So I th ink my Pro f e s s o r knows that i 'm into l i k e s o c i a l

s c i e n c e a p p l i c a t i o n s so she I th ink she gave me t h i s paper on

purpose , which I thought was pre t ty coo l her to do .
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68

0 0 : 0 8 : 0 6 . 5 7 0 −−> 0 0 : 0 8 : 2 0 . 0 1 0

Jack Cannon : So with That sa id , I s h a l l p re sent what was wr i t t en ver sus

who read i t news media p r o f i l e and us ing text a n a l y s i s and s o c i a l

media con t r a c t s by Ba l i at a l l 2020 pr i son by jack in was t r u l y .

69

0 0 : 0 8 : 2 1 . 9 3 0 −−> 0 0 : 0 8 : 3 0 . 6 6 0

Jack Cannon : So the motivat ion f o r t h i s p r o j e c t i s that s o c i a l media has

l ed to t h i s t r u s t c r i s i s where t r a d i t i o n a l media are no longe r

in fo rmat ion gatekeepe r s .

70

0 0 : 0 8 : 3 1 . 8 9 0 −−> 0 0 : 0 8 : 4 0 . 1 4 0

Jack Cannon : Anybody who has an audience can broadcast whatever content

they want to t h e i r audience and no one ' s r e a l l y in c o n t r o l o f that

anymore l i k e they used to be .

71

0 0 : 0 8 : 4 2 . 9 9 0 −−> 0 0 : 0 8 : 5 2 . 1 7 0

Jack Cannon : And , as a r e s u l t o f that you have f a c t checker s f a c t

check ing o r g a n i z a t i o n s who have kind o f r i s e n up to address t h i s

cha l l enge , so you have .

72

0 0 : 0 8 : 5 2 . 8 9 0 −−> 0 0 : 0 8 : 5 9 . 4 6 0

Jack Cannon : S i t e s l i k e snopes p o l i t i c o f a c t e t c so that ' s kind o f what

they do and they do i t manually .
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73

0 0 : 0 9 : 0 0 . 1 2 0 −−> 0 0 : 0 9 : 0 8 . 8 5 0

Jack Cannon : Which kind o f takes a long time , as you would suggest , as

you as you would think , and t h i s i s prob lemat ic because past

r e s ea r ch r e s ea r ch has shown that .

74

0 0 : 0 9 : 0 9 . 5 4 0 −−> 0 0 : 0 9 : 1 3 . 3 8 0

Jack Cannon : v i r a l c la ims are u sua l l y shared with in 10 minutes they ' ve

been posted .

75

0 0 : 0 9 : 1 3 . 9 2 0 −−> 0 0 : 0 9 : 2 2 . 7 7 0

Jack Cannon : And then , when something i s fake news that spread s i x t imes

f a s t e r than r e a l news would and I guess , not only that , but i t

r eaches f a r more people as we l l .

76

0 0 : 0 9 : 2 3 . 5 5 0 −−> 0 0 : 0 9 : 3 4 . 6 2 0

Jack Cannon : So to address t h i s cha l l eng e t h i s l e ad s to our r e s ea r ch

ques t i on which i s , i s i t p o s s i b l e to bu i ld a r e a l time f a c t check ing

system and that ' s kind o f what the authors are l ook ing at here .

77

0 0 : 0 9 : 3 5 . 5 5 0 −−> 0 0 : 0 9 : 4 4 . 4 6 0

Jack Cannon : So some o f the assumptions that they ' re making i s they want

to p r o f i l e the medium and not the content and in t h i s context

medium i s j u s t a news o rgan i z a t i on .
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78

0 0 : 0 9 : 4 5 . 5 4 0 −−> 0 0 : 0 9 : 5 3 . 4 6 0

Jack Cannon : So they use that word throughout the paper and that ' s what

i t means in t h i s context , so when they say p r o f i l e the medium they '

re b a s i c a l l y say ing that .

79

0 0 : 0 9 : 5 3 . 8 5 0 −−> 0 0 : 1 0 : 0 3 . 6 9 0

Jack Cannon : They don ' t r e a l l y have to worry about ana lyz ing an a r t i c l e

or content i t ' s j u s t whoever put pub l i sh that content i f they .

80

0 0 : 1 0 : 0 4 . 2 6 0 −−> 0 0 : 1 0 : 1 4 . 3 1 0

Jack Cannon : have publ i shed a l o t o f f ak e r b i a s content in the past they

' re more l i k e l y do i t in the fu tu r e so we ' l l go ahead and f l a g that

content based on who ' s pub l i sh ing i t not the content i t s e l f .

81

0 0 : 1 0 : 1 5 . 2 7 0 −−> 0 0 : 1 0 : 2 2 . 7 1 0

Jack Cannon : And then the l a s t assumption they make i s that b i a s b i a s in

f a c t u a l i t y have both l i n g u i s t i c and s o c i a l components to i t .

82

0 0 : 1 0 : 2 3 . 3 7 0 −−> 0 0 : 1 0 : 2 8 . 4 4 0

Jack Cannon : So that kind o f l e ad s to these three p i l l a r s o f t h e i r

system which i s .

83
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0 0 : 1 0 : 2 8 . 8 6 0 −−> 0 0 : 1 0 : 3 9 . 0 0 0

Jack Cannon : They want to look at what was written , which i s not j u s t

the a r t i c l e i s that the medium r i gh t s , but a l l the content they

produce so Twitter post YouTube video s t u f f l i k e that in add i t i on

a r t i c l e s .

84

0 0 : 1 0 : 3 9 . 5 7 0 −−> 0 0 : 1 0 : 5 7 . 3 6 0

Jack Cannon : The second one i s who read i t , which i s f o c u s i n g on t h e i r

audience the assumption i s that i f i f your audience i s i s b ia sed one

way then you ' re probably b i a s to , and the th i rd assumption i s what

was wr i t t en about them , so what does Wikipedia r i g h t about the

p a r t i c u l a r news o rgan i z a t i on .

85

0 0 : 1 0 : 5 9 . 2 5 0 −−> 0 0 : 1 1 : 0 6 . 1 2 0

Jack Cannon : So with that sa id here ' s t h e i r system and i 'm going to s tep

in to more o f the se i 'm going to step in to these , one by one , but

b a s i c a l l y you can kind o f .

86

0 0 : 1 1 : 0 6 . 3 6 0 −−> 0 0 : 1 1 : 1 4 . 2 2 0

Jack Cannon : Te l l them bas ic , j u s t as they have t h i s web sc rape r that

f o r every news o rgan i z a t i on they c o l l e c t a r t i c l e s YouTube v ideos

Twitter p r o f i l e s .

87

0 0 : 1 1 : 1 4 . 7 3 0 −−> 0 0 : 1 1 : 2 3 . 4 3 0
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Jack Cannon : They h i t the Facebook marketing API and they get t h e i r

Wikipedia page they ex t r a c t a bunch o f f e a t u r e s a bunch o f

c h a r a c t e r i s t i c s , out o f i t .

88

0 0 : 1 1 : 2 3 . 9 7 0 −−> 0 0 : 1 1 : 3 5 . 7 9 0

Jack Cannon : And then they t r a i n a model to p r e d i c t whether or not they

are biased , or whether the s t u f f they they pr in ted they put out as

t rue or untrue and mixed s t u f f l i k e that .

89

0 0 : 1 1 : 3 7 . 9 5 0 −−> 0 0 : 1 1 : 4 3 . 7 4 0

Jack Cannon : So l e t ' s s t a r t with the f i r s t one and we ' l l t a l k about th i s

, what was wr i t t en to there and we ' l l s t a r t with the a r t i c l e s .

90

0 0 : 1 1 : 4 3 . 9 5 0 −−> 0 0 : 1 1 : 5 5 . 4 4 0

Jack Cannon : So the f i r s t th ing they did they do i s they ex t r a c t the se

l i n g u i s t i c f e a tu r e s , so they went and c o l l e c t e d a bunch o f a r t i c l e s

f o r each news medium ext rac t ed bunch o f the l i s t o f f e a t u r e s and

they use t h i s news landscape t o o l k i t .

91

0 0 : 1 1 : 5 6 . 1 9 0 −−> 0 0 : 1 2 : 1 1 . 0 1 0

Jack Cannon : From a prev ious paper and i t ' s not r e a l l y important to

understand or d i g e s t everyth ing that ' s in here , but j u s t know that

there ' s j u s t a bunch o f d i f f e r e n t l i n g u i s t i c f e a t u r e s l i k e po int o f

speech or part o f speech f e a t u r e s l i n g u i s t i c s t u f f emotion .
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92

0 0 : 1 2 : 1 2 . 2 4 0 −−> 0 0 : 1 2 : 1 9 . 0 2 0

Jack Cannon : f e a t u r e s b i a s and sub j e c t to be f ea tu r e s , so they kind o f

u t i l i z e t h i s t o o l to ex t r a c t a l l o f the se th ing s f o r each a r t i c l e .

93

0 0 : 1 2 : 1 9 . 4 7 0 −−> 0 0 : 1 2 : 3 1 . 1 4 0

Jack Cannon : And even though t h i s i s at the a r t i c l e l e v e l the way they

r o l l t h i s up to the news media l e v e l was they j u s t average a l l o f

the se toge the r to get a r e p r e s e n t a t i o n f o r f o r the news media .

94

0 0 : 1 2 : 3 3 . 1 8 0 −−> 0 0 : 1 2 : 4 1 . 6 7 0

Jack Cannon : And then , then they use embedded f e a t u r e s which i s , which

i s what we j u s t ta lked about be f o r e the p r e s en ta t i on s tar ted , and

that i s , they use t h i s BERT model .

95

0 0 : 1 2 : 4 2 . 2 1 0 −−> 0 0 : 1 2 : 4 6 . 4 7 0

Jack Cannon : And what they did was they f i n d to network model us ing .

96

0 0 : 1 2 : 4 7 . 4 9 0 −−> 0 0 : 1 2 : 5 8 . 1 7 0

Jack Cannon : An e x t e r n a l data s e t o f a r t i c l e s , because they don ' t want

to b i a s t h e i r own work by by f i n e t i n ea model on the data s e t that

they ' re t ry ing to i n f e r on and what they did was they f i n e tune Burt

.

97

84



0 0 : 1 2 : 5 9 . 5 2 0 −−> 0 0 : 1 3 : 1 4 . 7 9 0

Jack Cannon : To be more s p e c i f i c to t h e i r ta sk s so remember how I said ,

i t i s a mass language ta sk s and the next sentence p r e d i c t i o n ta sk s

we l l the task they ' re i n t e r e s t e d in i s doing a b ia s p r e d i c t i o n t e s t s

, so they kind o f f i n e tune , or to be a b ia s p r e d i c t o r in s t ead o f a

mess language model .

98

0 0 : 1 3 : 1 6 . 4 7 0 −−> 0 0 : 1 3 : 1 8 . 4 2 0

Jack Cannon : And they encoded the a r t i c l e s .

99

0 0 : 1 3 : 1 9 . 4 7 0 −−> 0 0 : 1 3 : 3 0 . 4 8 0

Jack Cannon : Using t h i s f i n e tune model and they they b a s i c a l l y took a l l

the a r t i c l e s and pro j e c t ed them down in to that mathematical space

that that we looked at and they did that but yes .

100

0 0 : 1 3 : 3 0 . 8 7 0 −−> 0 0 : 1 3 : 4 3 . 7 7 0

JoAnna Langberg : So when i t was tuned to f i g u r e out b i a s did i t look at

s p e c i f i c words or was i t j u s t because the medium i s t h i s or that

that ' s how they that ' s how I f i g u r e d i t out .

101

0 0 : 1 3 : 4 4 . 6 4 0 −−> 0 0 : 1 3 : 4 9 . 9 5 0

Jack Cannon : So they had a and i ' l l t a l k a l i t t l e b i t about the data s e t

a f t e r t h i s but they had a data s e t that .

102
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0 0 : 1 3 : 5 0 . 8 2 0 −−> 0 0 : 1 4 : 0 4 . 5 9 0

Jack Cannon : For each a r t i c l e i t had a l a b e l on whether i t was b iased or

f a c t u a l so they t r a i n the model by g iv ing i t the a r t i c l e and then

g iv ing i t the l a b e l and they b a s i c a l l y t r i e d to teach the model , how

to r e cogn i z e b i a s and s e x u a l i t y .

103

0 0 : 1 4 : 0 6 . 4 8 0 −−> 0 0 : 1 4 : 0 6 . 6 3 0

Jack Cannon : I s .

104

0 0 : 1 4 : 0 7 . 0 2 0 −−> 0 0 : 1 4 : 0 7 . 8 9 0

JoAnna Langberg : going to that l a t e r .

105

0 0 : 1 4 : 0 8 . 3 7 0 −−> 0 0 : 1 4 : 1 1 . 4 3 0

Jack Cannon : yeah yeah i ' l l go in to that a l i t t l e b i t l a t e r um.

106

0 0 : 1 4 : 1 2 . 5 4 0 −−> 0 0 : 1 4 : 1 3 . 2 3 0

Jack Cannon : So .

107

0 0 : 1 4 : 1 3 . 7 1 0 −−> 0 0 : 1 4 : 2 0 . 0 7 0

Jack Cannon : Also , what they did was one o f the l i m i t a t i o n s in t h i s

model i s you can only put the f i v e , the f i r s t 510 words in to i t .

108

0 0 : 1 4 : 2 1 . 6 0 0 −−> 0 0 : 1 4 : 2 6 . 1 9 0

86



Jack Cannon : So , i f your a r t i c l e on in most o f the se a r t i c l e s are going

to be a l o t l onge r than 510 so .

109

0 0 : 1 4 : 2 7 . 4 5 0 −−> 0 0 : 1 4 : 3 5 . 1 6 0

Jack Cannon : There could be some l i m i t a t i o n s the re but u sua l l y i t ' s a

best p rac t i c e , you can you put the f i r s t 510 words in to the model .

110

0 0 : 1 4 : 3 5 . 7 0 0 −−> 0 0 : 1 4 : 4 2 . 8 1 0

Jack Cannon : And then you average the word vec t o r s f o r each o f those

words to get the the ac tua l decoding f o r the e n t i r e a r t i c l e .

111

0 0 : 1 4 : 4 3 . 8 0 0 −−> 0 0 : 1 4 : 5 0 . 1 9 0

Jack Cannon : And there ' s a quick a s i d e on that that i ' l l mention about

these f i r s t 510 words some prev ious work has shown that .

112

0 0 : 1 4 : 5 0 . 8 8 0 −−> 0 0 : 1 4 : 5 5 . 6 2 0

Jack Cannon : Comparing two data s e t s one o f them ' s an imdb data s e t o f

movie rev i ews .

113

0 0 : 1 4 : 5 5 . 9 5 0 −−> 0 0 : 1 5 : 0 3 . 5 1 0

Jack Cannon : And the other ones are Reuters data set , and I th ink t h i s

warders one i s news head l ines , i t might be news a r t i c l e s , but I

th ink i t ' s news head l i n e s .
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114

0 0 : 1 5 : 0 3 . 8 4 0 −−> 0 0 : 1 5 : 1 1 . 4 3 0

Jack Cannon : But they ' re t ry ing to show i s that t h i s maximum sequence

l ength i s the amount o f words that you put in to the model be f o r e you

cut i t o f f .

115

0 0 : 1 5 : 1 2 . 0 3 0 −−> 0 0 : 1 5 : 1 9 . 1 7 0

Jack Cannon : And what they t r i e d t h i s shows that we l l in the Reuters

data , so i f you cut down that maximum sequence length , then .

116

0 0 : 1 5 : 1 9 . 8 6 0 −−> 0 0 : 1 5 : 2 4 . 9 0 0

Jack Cannon : Then what t h i s i s on the y ax i s i s the performance o f the

model how accurate , i t was b a s i c a l l y .

117

0 0 : 1 5 : 2 5 . 4 7 0 −−> 0 0 : 1 5 : 3 5 . 6 4 0

Jack Cannon : I t doesn ' t s u f f e r very much i t s u f f e r s a l i t t l e b i t you

know , and these are the blue and the orange are two d i f f e r e n t models

so both models didn ' t s u f f e r very much from here to here .

118

0 0 : 1 5 : 3 6 . 0 6 0 −−> 0 0 : 1 5 : 4 5 . 1 5 0

Jack Cannon : But from here to here they had a l i t t l e b i t o f a dip but

not very much whereas on the imdb data s e t i f you reduce the amount

o f s ee .

119
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0 0 : 1 5 : 4 5 . 5 4 0 −−> 0 0 : 1 6 : 0 4 . 2 6 0

Jack Cannon : sequence length , i t takes qu i t e a h i t l i k e t h i s i s l i k e s i x

po in t s from here to here and then l i k e another s i x l e t ' s s ee 54 to

50 , so t h i s i s l i k e four points , and t h i s i s l i k e s i x points , so the

authors o f t h i s prev ious paper thought that these imdb our rev i ews

are pre t ty long .

120

0 0 : 1 6 : 0 5 . 3 1 0 −−> 0 0 : 1 6 : 1 4 . 9 7 0

Jack Cannon : That on average the re and much longe r than the than the

documents that were in t h i s Reuters data s e t so t h i s p e r s o n a l i z a t i o n

was much more s eve r e that ' s j u s t an a s i d e on that .

121

0 0 : 1 6 : 1 6 . 5 6 0 −−> 0 0 : 1 6 : 3 2 . 3 4 0

Jack Cannon : Then , the l a s t th ing they did was they c a l c u l a t e d these

p o s t e r i o r p r o b a b i l i t y ve c t o r s f o r each news a r t i c l e and the way they

did that was They ran our t h e i r a r t i c l e s through t h i s b i rd model ,

the same way they did in the prev ious s tep with a r t i c l e s .

122

0 0 : 1 6 : 3 3 . 6 9 0 −−> 0 0 : 1 6 : 5 1 . 5 4 0

Jack Cannon : But in s t ead they converted the output o f that to a

p robab i l i t y , so in t h i s case in t h i s example , the re are three b i a s

l a b e l s and three f a c t u a l i t y l a b e l s which i ' l l go in to l a t e r , but

e s s e n t i a l l y the b ia s i s l i k e l e f t b i a s Center b i a s r i g h t b i a s and

the f u n c t i o n a l i t y i s .

123
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0 0 : 1 6 : 5 3 . 8 2 0 −−> 0 0 : 1 7 : 0 0 . 0 6 0

Jack Cannon : i t ' s l i k e high f a c t u a l i t y mixture and low f a c t u a l i t y or

something l i k e that .

124

0 0 : 1 7 : 0 0 . 9 0 0 −−> 0 0 : 1 7 : 0 1 . 5 3 0

JoAnna Langberg : or something .

125

0 0 : 1 7 : 0 2 . 0 1 0 −−> 0 0 : 1 7 : 1 1 . 9 1 0

Jack Cannon : yeah b a s i c a l l y so t h i s p r o b a b i l i t y the way you did you to

you i f you put an a r t i c l e in and you got these ve c t o r s out the way

you i n t e r p r e t that i s i s that i t ' s most l i k e l y a high b ia s .

126

0 0 : 1 7 : 1 2 . 0 9 0 −−> 0 0 : 1 7 : 1 6 . 5 9 0

Jack Cannon : or i 'm sor ry a wr i t i ng bias , because t h i s the r i g h t l e an ing

part has the h i ghe s t .

127

0 0 : 1 7 : 1 6 . 6 5 0 −−> 0 0 : 1 7 : 3 3 . 9 9 0

Jack Cannon : Has the h i ghe s t number , and that that they ' re most l i k e l y a

f a c t u a l because the b i g g e s t number here i s in the f a c t u a l s l o t so

that ' s b a s i c a l l y what they did so they combine the l i n g u i s t i c

f e a tu r e s , the embedded f e a t u r e s in these p r e d i c t i o n ve c t o r s and that

' s how they inc luded the a r t i c l e s .

128

0 0 : 1 7 : 3 5 . 7 3 0 −−> 0 0 : 1 7 : 4 2 . 6 3 0
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Jack Cannon : Secondly , now we move on to YouTube v ideos they did the

same th ing with the l i n g u i s t i c f e a t u r e s they ext rac t ed them .

129

0 0 : 1 7 : 4 3 . 4 7 0 −−> 0 0 : 1 7 : 5 8 . 0 5 0

Jack Cannon : From the news s i t e s t i t l e d e s c r i p t i o n capt ion and tags from

the video , and then they a l s o embedded those f e a t u r e s by running

the d e s c r i p t i o n in the t i t l e through that Burt model and embed that

in encoded that .

130

0 0 : 1 7 : 5 9 . 9 7 0 −−> 0 0 : 1 8 : 1 1 . 4 6 0

Jack Cannon : This l a s t part I thought was r e a l l y i n t e r e s t i n g , they a l s o

took the audio from these YouTube v ideos and they proce s s the speech

or the audio and they ext rac t ed a bunch o f the se a c o u s t i c f e a t u r e s

they c a l l them low l e v e l d e s c r i p t o r s .

131

0 0 : 1 8 : 1 1 . 7 9 0 −−> 0 0 : 1 8 : 2 4 . 3 0 0

Jack Cannon : From a prev ious r e s ea r ch paper they implemented t h i s open

smi l e t o o l k i t So these are a bunch o f a c o u s t i c f e a t u r e s loudness

s i n g l e energy p i t ch you know blah blah blah s t u f f l i k e that so , then

they .

132

0 0 : 1 8 : 2 4 . 9 6 0 −−> 0 0 : 1 8 : 3 1 . 7 1 0

Jack Cannon : They thought that t h i s would be good , because these

f e a t u r e s have been shown to be u s e f u l f o r l i k e a motion de t e c t i on

and speech I guess that .
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133

0 0 : 1 8 : 3 1 . 8 9 0 −−> 0 0 : 1 8 : 3 5 . 0 1 0

Jack Cannon : kind o f makes sense because our did you did you have a

ques t i on .

134

0 0 : 1 8 : 3 6 . 3 0 0 −−> 0 0 : 1 8 : 4 7 . 0 1 0

JoAnna Langberg : or a comment as wel l , l i k e that makes sense because ,

l i k e a l o t o f t imes you ' l l have a news anchor and they ' re a l l very

monotone you ' re l i k e on today that i t ended up whenever you have

l i k e a .

135

0 0 : 1 8 : 4 7 . 6 1 0 −−> 0 0 : 1 8 : 5 3 . 3 7 0

JoAnna Langberg : tea s p i l l kind o f a YouTube video i t ' s always l i k e then

t h i s happened , blah blah blah i t ' s l i k e very .

136

0 0 : 1 8 : 5 4 . 1 2 0 −−> 0 0 : 1 8 : 5 4 . 3 3 0

Jack Cannon : yeah .

137

0 0 : 1 8 : 5 4 . 3 6 0 −−> 0 0 : 1 8 : 5 5 . 4 1 0

JoAnna Langberg : a l l over the p lace .

138

0 0 : 1 8 : 5 5 . 8 6 0 −−> 0 0 : 1 9 : 0 0 . 7 2 0
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Jack Cannon : yep exac t l y l i k e a l o t o f t imes they ' re more snarky you

know so .

139

0 0 : 1 9 : 0 1 . 8 6 0 −−> 0 0 : 1 9 : 0 3 . 8 1 0

Jack Cannon : An angry qu i t e f r e e .

140

0 0 : 1 9 : 0 4 . 0 5 0 −−> 0 0 : 1 9 : 0 5 . 4 9 0

JoAnna Langberg : More emotional yeah .

141

0 0 : 1 9 : 0 5 . 5 2 0 −−> 0 0 : 1 9 : 0 6 . 2 4 0

For sure .

142

0 0 : 1 9 : 0 9 . 0 0 0 −−> 0 0 : 1 9 : 1 8 . 6 0 0

Jack Cannon : Okay , so those were the i s so the f i n a l part about that

f i r s t p i l l a r o f what was wr i t t en what kind o f content they produced

they went and got t h e i r Twitter p r o f i l e s .

143

0 0 : 1 9 : 1 9 . 1 1 0 −−> 0 0 : 1 9 : 3 1 . 3 5 0

Jack Cannon : And what they did with these Twitter p r o f i l e s was the

encoded these with s Burt in s t ead o f b i r th , an expert stands f o r

sentence Burt i t ' s a v a r i a t i o n o f b i r th i t ' s kind o f more des igned

f o r embedding sentence s f o r the most part .

144
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0 0 : 1 9 : 3 1 . 8 0 0 −−> 0 0 : 1 9 : 3 6 . 1 2 0

Jack Cannon : And they they kind o f they had two reasons f o r us ing t h i s

and that i s that .

145

0 0 : 1 9 : 3 6 . 9 3 0 −−> 0 0 : 1 9 : 3 8 . 8 2 0

Jack Cannon : The Twitter p r o f i l e s that they scraped .

146

0 0 : 1 9 : 3 9 . 1 2 0 −−> 0 0 : 1 9 : 4 6 . 9 8 0

Jack Cannon : They didn ' t r e a l l y have enough data to f i n e tune Burke ,

because with these machine l e a r n i n g models , you r e a l l y need a l o t o f

data that ' s kind o f what makes them power fu l because the more data ,

you have the b e t t e r .

147

0 0 : 1 9 : 4 7 . 3 1 0 −−> 0 0 : 1 9 : 5 0 . 0 7 0

Jack Cannon : So they didn ' t r e a l l y have enough data to f i n e tune i t .

148

0 0 : 1 9 : 5 0 . 3 7 0 −−> 0 0 : 2 0 : 0 3 . 6 0 0

Jack Cannon : So , and then the second th ing was that Twitter p r o f i l e s

kind o f kind o f more they look more l i k e s en t ence s than they do

documents or a r t i c l e s , so they use the sentence model , s p e c i f i c a l l y

f o r f o r encoding Twitter p r o f i l e d e s c r i p t i o n s .

149

0 0 : 2 0 : 0 4 . 1 4 0 −−> 0 0 : 2 0 : 1 5 . 1 5 0
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Jack Cannon : And the other th ing they did was they they got metadata

such as wel l , they c a l c u l a t e d s t a t i s t i c s from these Twitter p r o f i l e s

l i k e are they v e r i f i e d , you know what geog raph i ca l r eg i on number o f

f o l l o w e r s so on and so f o r t h .

150

0 0 : 2 0 : 1 5 . 7 2 0 −−> 0 0 : 2 0 : 2 0 . 7 6 0

Jack Cannon : And then , f o r any news medium that didn ' t have a Twitter

p r o f i l e , they j u s t got a l l z e r o s everyth ing was zero now .

151

0 0 : 2 0 : 2 2 . 0 2 0 −−> 0 0 : 2 0 : 2 5 . 9 8 0

JoAnna Langberg : But i t i n c lude l i k e emoj i s or was i t j u s t words .

152

0 0 : 2 0 : 2 6 . 3 7 0 −−> 0 0 : 2 0 : 4 2 . 9 6 0

Jack Cannon : um I don ' t know I mean they b a s i c a l l y I don ' t th ink i t

inc luded a mo geez I th ink they they did l i k e s i x or seven o f them ,

and i t was j u s t number o f f o l l o w e r s maybe number o f r e twee t s or

something l i k e that , but emoj i s might have been an i n t e r e s t i n g th ing

to capture f o r sure .

153

0 0 : 2 0 : 4 6 . 6 2 0 −−> 0 0 : 2 0 : 4 9 . 2 9 0

Jack Cannon : That we move on to the second p i l l a r , about making .

154

0 0 : 2 0 : 5 0 . 9 7 0 −−> 0 0 : 2 1 : 0 3 . 2 7 0
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Jack Cannon : i n f e r e n c e s about the audience and the key idea i s that your

audience i s i n d i c a t i v e o f your p o l i t i c a l l e a n i n g s so maybe t h i s

w i l l , t h i s w i l l he lp g ive more in fo rmat ion about p r e d i c t i n g whether

or not a medium i s b iased in our f a c t u a l .

155

0 0 : 2 1 : 0 4 . 3 2 0 −−> 0 0 : 2 1 : 0 4 . 8 3 0

Jack Cannon : So .

156

0 0 : 2 1 : 0 6 . 3 6 0 −−> 0 0 : 2 1 : 1 6 . 2 0 0

Jack Cannon : What they did was f o r each news proo f news medium they went

and found 5000 Twitter f o l l o w e r s f o r each one and they went , and

they got a l l t h e i r p r o f i l e s .

157

0 0 : 2 1 : 1 6 . 5 6 0 −−> 0 0 : 2 1 : 3 3 . 3 6 0

Jack Cannon : And they embedded t h e i r p r o f i l e d e s c r i p t i o n s with expert

the same way that they did in the prev ious s l i d e with the the other

Twitter data and then f o r a l l 5000 in coa t ing s than the average

those toge the r to get a s i n g l e embedding f o r the e n t i r e medium .

158

0 0 : 2 1 : 3 5 . 0 1 0 −−> 0 0 : 2 1 : 4 3 . 8 3 0

Jack Cannon : Now, the second part was i n t e r e s t i n g I never heard t h i s

be fore , but there ' s a Facebook marketing API and .

159

0 0 : 2 1 : 4 5 . 0 3 0 −−> 0 0 : 2 1 : 5 6 . 0 7 0

96



Jack Cannon : So i t ' s not a s u r p r i s e that Facebook knows everyth ing about

us and they have a p r o f i l e f o r a l l a l l everybody everybody who ' s a

Facebook user has a p r o f i l e they ' ve put toge the r p r o f i l e .

160

0 0 : 2 1 : 5 6 . 5 8 0 −−> 0 0 : 2 2 : 0 9 . 9 0 0

Jack Cannon : And they ' ve a b s o l u t e l y p r o f i l e d which s i d e o f the p o l i t i c a l

spectrum you ' re on , so what they did was g iven a p a r t i c u l a r ID f o r

news medium they c a l l i t i n t e r e s t ID I guess i t ' s because .

161

0 0 : 2 2 : 1 0 . 6 8 0 −−> 0 0 : 2 2 : 1 5 . 3 9 0

Jack Cannon : You can pick th ing s as your th ing s that you ' re i n t e r e s t e d

in on Facebook , so i f .

162

0 0 : 2 2 : 1 6 . 0 8 0 −−> 0 0 : 2 2 : 2 6 . 4 3 0

Jack Cannon : For example , i f you have an i f you have the ID f o r fox news

, you can query the Facebook marketing API and you can get a l l the

u s e r s who are i n t e r e s t e d in fox news .

163

0 0 : 2 2 : 2 6 . 8 8 0 −−> 0 0 : 2 2 : 3 2 . 1 6 0

Jack Cannon : So , not only do you get the users , but then you get where

Facebook th inks they are in the p o l i t i c a l spectrum .

164

0 0 : 2 2 : 3 2 . 6 4 0 −−> 0 0 : 2 2 : 3 7 . 8 9 0
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Jack Cannon : So they br ing back about seven buckets and I t ranges from

very l i b e r a l are very con s e rva t i v e .

165

0 0 : 2 2 : 3 8 . 5 5 0 −−> 0 0 : 2 2 : 4 8 . 3 3 0

Jack Cannon : So once they ' ve done that , f o r each news media once they ' ve

r e c e i v e d the r e s u l t s o f t h i s query and they have t h i s s e t o f u s e r s

and t h e i r p o l i t i c a l spectrums t h e i r p o l i t i c a l o r i e n t a t i o n .

166

0 0 : 2 2 : 4 8 . 6 9 0 −−> 0 0 : 2 3 : 0 3 . 6 6 0

Jack Cannon : They ex t r a c t the d i s t r i b u t i o n o f the p o l i t i c a l o r i e n t a t i o n

from the audience , so you can kind o f t e l l in genera l , where the

audience i s on the on the spectrum and that that was the f e a t u r e f o r

t h i s Facebook i n t e r e s t ID .

167

0 0 : 2 3 : 0 5 . 8 5 0 −−> 0 0 : 2 3 : 1 1 . 4 9 0

Jack Cannon : So i t ' s not c a l l e d out on the paper f o r l ook ing at audience

i s more YouTube s t u f f .

168

0 0 : 2 3 : 1 1 . 8 5 0 −−> 0 0 : 2 3 : 2 2 . 0 5 0

Jack Cannon : So i t ' s not d i sp layed in the system diagram but they

ext rac t ed a bunch o f g ene ra l audience i n t e r a c t i o n s t a t s j u s t number

o f l i k e s number o f views d i s l i k e s comments number o f comments , e t c .

169

0 0 : 2 3 : 2 2 . 6 2 0 −−> 0 0 : 2 3 : 2 8 . 5 3 0
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Jack Cannon : And then they average those out as we l l to get the news

l e v e l r e p r e s e n t a t i o n .

170

0 0 : 2 3 : 2 9 . 3 1 0 −−> 0 0 : 2 3 : 3 1 . 7 7 0

Jack Cannon : So we go to the f i n a l part what was wr i t t en about him .

171

0 0 : 2 3 : 3 2 . 1 3 0 −−> 0 0 : 2 3 : 4 3 . 8 0 0

Jack Cannon : And t h i s was j u s t f o r each news medium they got t h e i r

Wikipedia page and they encoded the Wikipedia page the exact same

way they did with the news a r t i c l e s , so they use the f i n e tune Burt

model and encourage them that way .

172

0 0 : 2 3 : 4 4 . 2 2 0 −−> 0 0 : 2 3 : 5 0 . 5 2 0

Jack Cannon : And the so f o r mediums that didn ' t have a Wikipedia page ,

they j u s t got i t got i t out same with the Twitter .

173

0 0 : 2 3 : 5 2 . 0 8 0 −−> 0 0 : 2 3 : 5 3 . 3 1 0

Jack Cannon : So that yes .

174

0 0 : 2 3 : 5 4 . 1 5 0 −−> 0 0 : 2 4 : 0 2 . 8 8 0

JoAnna Langberg : See not we a l ready mentioned that they a l s o go to l i k e

that news media ' s webs i te or was i t j u s t a Wikipedia page .

175
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0 0 : 2 4 : 0 3 . 2 4 0 −−> 0 0 : 2 4 : 0 4 . 6 5 0

Jack Cannon : Just the Wikipedia page .

176

0 0 : 2 4 : 0 5 . 9 4 0 −−> 0 0 : 2 4 : 2 2 . 2 3 0

Jack Cannon : yeah so so that ' s a good ques t i on so they the , the purpose

o f the Wikipedia was to see what ' s wr i t t en about them on Wikipedia

and to see what the medium th inks about themselves , they use t h e i r

Twitter p r o f i l e s and then t h e i r YouTube channel d e s c r i p t i o n s f o r

that .

177

0 0 : 2 4 : 2 3 . 8 5 0 −−> 0 0 : 2 4 : 3 1 . 6 8 0

Jack Cannon : yeah but I probably what you ' re th ink ing i s that wel l , what

does the webs i t e s d e s c r i p t i o n say about who they are , and what your

va lue s are yeah exac t l y .

178

0 0 : 2 4 : 3 4 . 3 2 0 −−> 0 0 : 2 4 : 3 9 . 9 3 0

Jack Cannon : um so t h i s kind o f goes back to the ques t i on you had

p r e v i o u s l y about what data they were us ing and how they were us ing

i t .

179

0 0 : 2 4 : 4 0 . 4 1 0 −−> 0 0 : 2 4 : 4 6 . 9 8 0

Jack Cannon : So there ' s t h i s webs i te i t ' s a media b i a s f a c t check

webs i te and what they do i s they have about .

180
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0 0 : 2 4 : 4 7 . 4 6 0 −−> 0 0 : 2 4 : 5 7 . 9 6 0

Jack Cannon : Right now , I checked the other day , and i t was l i k e 3100

news o r g a n i z a t i o n s that they ' ve p r o f i l e d on t h e i r webs i te and what

they do i s f o r each news o rgan i z a t i on .

181

0 0 : 2 4 : 5 8 . 3 2 0 −−> 0 0 : 2 5 : 0 9 . 4 5 0

Jack Cannon : They g ive them a b ia s ranking and a f f e c t i o n q u a l i t y ranking

and there ' s a c t u a l l y more book i t ' s in t h i s r i g h t here l i k e on the

p o l i t i c a l b ias , they g ive them I think i t ' s .

182

0 0 : 2 5 : 1 0 . 7 4 0 −−> 0 0 : 2 5 : 2 0 . 5 2 0

Jack Cannon : Le f t l e f t Center Center r i g h t Center in r ight , I think , i s

what they do , but the authors looked at a l o t o f those l i k e .

183

0 0 : 2 5 : 2 1 . 4 5 0 −−> 0 0 : 2 5 : 2 6 . 3 4 0

Jack Cannon : In between buckets and thought that they might have been a

l i t t l e i l l d e f i n ed so they dropped them .

184

0 0 : 2 5 : 2 6 . 8 2 0 −−> 0 0 : 2 5 : 3 9 . 7 2 0

Jack Cannon : And then , they a l s o chose the merge the c a t e g o r i e s l i k e

l e f t Center and l e f t , they j u s t put them in to the Le f t bucket so

they kind o f made some execut i v e d e c i s i o n on what they did with the

l a b e l s there , and on the f a c t u a l i t y .

185
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0 0 : 2 5 : 4 1 . 8 8 0 −−> 0 0 : 2 5 : 5 1 . 9 3 0

Jack Cannon : I th ink these three were always the re low mixed in high so

i t ' s l i k e mixed i s l i k e sometimes they f a c t u a l sometimes they ' re not

.

186

0 0 : 2 5 : 5 3 . 6 7 0 −−> 0 0 : 2 6 : 0 4 . 7 7 0

Jack Cannon : What i t was a l l s a id and done , they they ended up with 864

news mediums and you can kind o f t e l l by e y e b a l l i n g t h i s that they '

re not r e p r e s e n t a t i v e Lee .

187

0 0 : 2 6 : 0 5 . 4 0 0 −−> 0 0 : 2 6 : 1 6 . 3 5 0

Jack Cannon : they ' re , not even the r e p r e s e n t a t i v e between the buckets so

i t ' s i t ' s an those are in balance c l a s s e s , as we say in machine

l e a r n i n g so that that come that ' s going to come in to play l a t e r .

188

0 0 : 2 6 : 1 6 . 9 2 0 −−> 0 0 : 2 6 : 2 2 . 6 5 0

Jack Cannon : The other i n t e r e s t i n g th ing i s a these data sourc e s and I

j u s t went over Wikipedia pages Twitter blah blah blah .

189

0 0 : 2 6 : 2 3 . 6 4 0 −−> 0 0 : 2 6 : 3 3 . 0 6 0

Jack Cannon : These were the t h i s was the percent complete t h i s they were

ab le to get f o r the se news mediums so i t ' s l i k e o f a l l the news

mediums o f these 864 news mediums they only .

190
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0 0 : 2 6 : 3 3 . 7 2 0 −−> 0 0 : 2 6 : 4 5 . 8 1 0

Jack Cannon : Only h a l f o f them had YouTube pages only 60% of them had a

Facebook i n t e r e s t ID so on and so for th , so t h i s was kind o f

incomplete here only 60% of them had a Wikipedia page .

191

0 0 : 2 6 : 4 6 . 3 5 0 −−> 0 0 : 2 6 : 5 1 . 2 1 0

JoAnna Langberg : So that ' s what that means so i t ' s l i k e 50% of them had

a YouTube page or 15 or l i k e .

192

0 0 : 2 6 : 5 2 . 0 8 0 −−> 0 0 : 2 6 : 5 9 . 0 1 0

JoAnna Langberg : Out o f t o t a l the t o t a l numbers l i k e 50% completed l i k e

they had a l l the in fo rmat ion in t h e i r YouTube page .

193

0 0 : 2 6 : 5 9 . 5 5 0 −−> 0 0 : 2 7 : 0 2 . 9 7 0

Jack Cannon : Oh no i t ' s 50% of them had a YouTube page .

194

0 0 : 2 7 : 0 3 . 3 6 0 −−> 0 0 : 2 7 : 0 7 . 4 4 0

JoAnna Langberg : Okay , so i t ' s l i k e percentage o f the t o t a l number o f

mediums .

195

0 0 : 2 7 : 0 7 . 8 0 0 −−> 0 0 : 2 7 : 1 0 . 0 2 0

JoAnna Langberg : Yes , okay yeah .

196
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0 0 : 2 7 : 1 2 . 6 6 0 −−> 0 0 : 2 7 : 1 4 . 8 2 0

Jack Cannon : So the exper imenta l setup was they .

197

0 0 : 2 7 : 1 4 . 9 7 0 −−> 0 0 : 2 7 : 2 5 . 2 9 0

Jack Cannon : ex t rac t ed a l l the se f e a t u r e s that we j u s t went over in

d e t a i l and given those f e a t u r e s they t ra in ed a model to p r e d i c t

whether or not that p a r t i c u l a r news medium .

198

0 0 : 2 7 : 2 5 . 9 2 0 −−> 0 0 : 2 7 : 3 4 . 3 2 0

Jack Cannon : They you know to t e s t the f i r s t task i s how by a s t a r they

g ive a b ia s p r ed i c t i on , the second task i s , you know how e f f e c t u a l

are they .

199

0 0 : 2 7 : 3 4 . 9 5 0 −−> 0 0 : 2 7 : 4 8 . 1 5 0

Jack Cannon : Give a p r e d i c t i o n f o r that so they did a appalachian study

which i ' l l go over in the next few s l i d e s but a l l that i s i s you

t r a i n a bunch o f components to your system i n d i v i d u a l l y .

200

0 0 : 2 7 : 4 8 . 5 7 0 −−> 0 0 : 2 7 : 5 8 . 4 4 0

Jack Cannon : So you can see the con t r i bu t i on that each part o f the

system has and because they did that ended up with l i k e 60 models so

they they tra ined , a l o t o f models .

201

0 0 : 2 7 : 5 9 . 0 4 0 −−> 0 0 : 2 8 : 0 6 . 5 4 0

104



Jack Cannon : And the the model that they chose to use the the the

c l a s s e s that c l a s s o f model , the type o f model was asked me to

support vec to r machine .

202

0 0 : 2 8 : 0 7 . 3 5 0 −−> 0 0 : 2 8 : 1 5 . 6 3 0

Jack Cannon : And the way they did i t was they did a f i v e f o l d c r o s s

v a l i d a t i o n procedure and tune t h e i r hyper parameters on the g r id

search that don ' t r e a l l y worry too much about that .

203

0 0 : 2 8 : 1 7 . 0 1 0 −−> 0 0 : 2 8 : 3 2 . 4 6 0

Jack Cannon : And they eva luated the models us ing t h i s macro F1 score ,

which i s kind o f an average o f how many c o r r e c t so i t ' s l i k e o f the

d i f f e r e n t c l a s s e s , the computer team , l i k e , f o r example , um.

204

0 0 : 2 8 : 3 4 . 3 5 0 −−> 0 0 : 2 8 : 4 1 . 8 2 0

Jack Cannon : But you know l e f t by a Center b i a s r i g h t bias , how many o f

the r i g h t b iased t r u l y r i g h t b i a s ones , did you get r i g h t .

205

0 0 : 2 8 : 4 3 . 7 4 0 −−> 0 0 : 2 8 : 4 7 . 3 7 0

Jack Cannon : ver sus how many o f the .

206

0 0 : 2 8 : 4 9 . 0 2 0 −−> 0 0 : 2 8 : 5 2 . 4 7 0

Jack Cannon : Of a l l the e r r o r s so i t ' s hard to exp la in j u s t b a s i c a l l y

l i k e .
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207

0 0 : 2 8 : 5 4 . 8 7 0 −−> 0 0 : 2 9 : 1 0 . 9 2 0

Jack Cannon : How p r e c i s e were you and then o f the th ing s that you got

wrong where you more wrong on c e r t a i n c l a s s e s and you were on other

c l a s s e s , so t h i s j u s t kind o f averages up that ' s what t h i s macro

po int s co r e i s your kind o f g i v e s a f u l l r e p r e s e n t a t i o n on how we l l

the model performed .

208

0 0 : 2 9 : 1 1 . 6 7 0 −−> 0 0 : 2 9 : 2 7 . 0 6 0

Jack Cannon : And the reason why you want to use F1 s co r e i s because the

c l a s s e s were in balance , l i k e I showed on the l e f t , look l a s t s l i d e

i f the re were the exact same number in each category , then you could

j u s t use a s t r a i g h t up accuracy percent co r r e c t , and that would be

i t .

209

0 0 : 2 9 : 3 0 . 1 2 0 −−> 0 0 : 2 9 : 3 9 . 5 4 0

Jack Cannon : So we ' l l s t a r t with the r e s u l t s with the b i a s p r ed i c t i on ,

so t h i s i s , t h i s i s what I meant by abe r ra t i on study each row i s a

model .

210

0 0 : 2 9 : 4 0 . 0 8 0 −−> 0 0 : 2 9 : 5 4 . 1 8 0

Jack Cannon : That got t r a ined with a c e r t a i n s e t o f f e a t u r e s and then

the performance was eva luated on that s e t o f f e a tu r e s , so you have

you know the a r t i c l e s YouTube videos , then you have a l l o f those

th ing s combined .
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211

0 0 : 2 9 : 5 4 . 5 7 0 −−> 0 0 : 3 0 : 0 3 . 1 2 0

Jack Cannon : Various combinat ions o f them so on so for th , and t h i s I

j u s t l ea rned what an abe r ra t i on study was when I was read ing t h i s

paper and i t comes from .

212

0 0 : 3 0 : 0 4 . 0 8 0 −−> 0 0 : 3 0 : 1 2 . 4 5 0

Jack Cannon : I th ink neuro s c i ence where when r e s e a r c h e r s were t ry ing to

understand how the bra in works , they knew that the re were l i k e

d i f f e r e n t subsystems o f the bra in .

213

0 0 : 3 0 : 1 2 . 7 5 0 −−> 0 0 : 3 0 : 2 0 . 1 6 0

Jack Cannon : So what they would do i s they would l i k e remove one

subsystem and see how that impacts , the bra in l i k e they would do

that on the animals b a s i c a l l y .

214

0 0 : 3 0 : 2 0 . 7 0 0 −−> 0 0 : 3 0 : 3 3 . 8 1 0

Jack Cannon : and see how the bra in performed when i t was miss ing t h i s

p a r t i c u l a r subse c t i on and they would do a l l k inds o f combinat ions on

that to t ry to get a p i c t u r e on how the bra in works which I kind o f

c r i ng e a l i t t l e b i t when I when I read that .

215

0 0 : 3 0 : 3 4 . 5 3 0 −−> 0 0 : 3 0 : 3 5 . 4 6 0

JoAnna Langberg : The c a l l .
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216

0 0 : 3 0 : 3 5 . 5 5 0 −−> 0 0 : 3 0 : 3 6 . 7 8 0

Jack Cannon : yeah yeah .

217

0 0 : 3 0 : 3 8 . 4 9 0 −−> 0 0 : 3 0 : 4 8 . 0 3 0

Jack Cannon : So I guess the the the best model in t h i s b i a s p r e d i c t i o n

i s a l l the f e a t u r e s from a , which was the what was wr i t t en a l l the

f e a t u r e s from the .

218

0 0 : 3 0 : 4 8 . 3 0 0 −−> 0 0 : 3 0 : 5 0 . 0 4 0

Jack Cannon : And with a PDF f e a t u r e s .

219

0 0 : 3 0 : 5 0 . 1 3 0 −−> 0 0 : 3 0 : 5 0 . 9 1 0

Jack Cannon : Al l t oge the r .

220

0 0 : 3 0 : 5 1 . 9 3 0 −−> 0 0 : 3 0 : 5 6 . 9 1 0

Jack Cannon : I t turns out that that got t h i s 85% accuracy type o f a

s co r e .

221

0 0 : 3 0 : 5 8 . 8 6 0 −−> 0 0 : 3 1 : 1 1 . 9 7 0

Jack Cannon : But there are some i n t e r e s t i n g th ing s to look at l i k e when

when they took the f e a t u r e s o f j u s t tak ing the a r t i c l e s and encoding

them with Burt j u s t doing that got them l i k e 79% so that a c t u a l l y
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performed pre t ty good .

222

0 0 : 3 1 : 1 4 . 1 6 0 −−> 0 0 : 3 1 : 2 5 . 2 0 0

Jack Cannon : um, whereas the best model here in t h i s a s e c t i o n was a l l

o f the f e a t u r e s combined toge the r got you at 1% So i f you r e a l l y

cared about doing the extra work .

223

0 0 : 3 1 : 2 5 . 8 6 0 −−> 0 0 : 3 1 : 3 6 . 8 7 0

Jack Cannon : You could bump your accuracy from 79 to 81 but r e a l l y the

takeaway from t h i s i s that the advert r ep r e s en ta t i on s , with j u s t the

a r t i c l e s are good enough you didn ' t even need to mess with YouTube

or Twitter .

224

0 0 : 3 1 : 3 9 . 2 1 0 −−> 0 0 : 3 1 : 4 1 . 3 1 0

Jack Cannon : The Twitter f o l l o w e r s were more important .

225

0 0 : 3 1 : 4 2 . 8 7 0 −−> 0 0 : 3 1 : 5 4 . 6 9 0

Jack Cannon : than the news mediums own bio which that kind o f conf i rms

the hypothes i s that you know the b i a s o f your audience w i l l be

i n d i c a t i v e o f your b i a s .

226

0 0 : 3 1 : 5 7 . 2 1 0 −−> 0 0 : 3 1 : 5 9 . 0 7 0

Jack Cannon : And YouTube helped a l i t t l e b i t .
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227

0 0 : 3 2 : 0 0 . 4 5 0 −−> 0 0 : 3 2 : 1 2 . 5 4 0

Jack Cannon : When i t came to ana lyz ing the audience s t u f f YouTube helped

, but Facebook a c t u a l l y hurt hurt i t so Facebook turned out not to

r e a l l y be an important p r e d i c t o r here .

228

0 0 : 3 2 : 1 3 . 3 5 0 −−> 0 0 : 3 2 : 2 2 . 7 7 0

Jack Cannon : except f o r the f a c t that you know I think they thought that

your Facebook audience could be more p o l i t i c a l l y d i v e r s e than you

would think .

229

0 0 : 3 2 : 2 3 . 2 8 0 −−> 0 0 : 3 2 : 3 5 . 9 1 0

Jack Cannon : So that may not be the best s i g n a l f o r whether or not your

b i a s j u s t by look ing at the the d i s t r i b u t i o n o f your Facebook

audience that ' s kind o f what they thought and then Wikipedia j u s t

s t r a i g h t up j u s t perform poor ly 64%.

230

0 0 : 3 2 : 3 7 . 8 3 0 −−> 0 0 : 3 2 : 4 9 . 5 6 0

Jack Cannon : And , in genera l , the poor coverage i s kind o f where I

mentioned the l a s t s l i d e in genera l , l i k e the Wikipedia the YouTube

Twitter l i k e they weren ' t ab le to c o l l e c t data f o r a l l o f the news

medium , so i f .

231

0 0 : 3 2 : 5 0 . 1 0 0 −−> 0 0 : 3 3 : 0 1 . 2 9 0
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Jack Cannon : In theory , I guess , i f they were ab le to do that maybe

maybe some o f the se r e s u l t s w i l l be a l i t t l e b i t bet te r , but r i g h t

now that ' s probably that could be what what i s making these the se

p r e d i c t i o n s so bad .

232

0 0 : 3 3 : 0 3 . 8 7 0 −−> 0 0 : 3 3 : 1 5 . 2 1 0

Jack Cannon : So now , i f you look at the f a c t u a l i t y p r ed i c t i on , you can

t e l l r i g h t o f f the BAT l i k e i ' l l go back to t h i s s l i d e l i k e you know

you have some pre t ty high number 7981 and then the best model was

l i k e 84 .

233

0 0 : 3 3 : 1 5 . 6 3 0 −−> 0 0 : 3 3 : 3 2 . 9 7 0

Jack Cannon : But then , i f you look at f a c t u a l i t y The numbers are a l o t

lower l i k e 60 4067 t h e i r bes t model got 67 and that was a

combination o f the a and the sea f e a t u r e s so Wikipedia p lus what was

wr i t t en .

234

0 0 : 3 3 : 3 5 . 4 0 0 −−> 0 0 : 3 3 : 4 0 . 8 6 0

Jack Cannon : In the same i s t rue as as in the l a s t task i s up here l i k e

the .

235

0 0 : 3 3 : 4 1 . 6 4 0 −−> 0 0 : 3 3 : 5 7 . 7 2 0

Jack Cannon : r e p r e s e n t a t i o n s from the a r t i c l e s were enough l i k e he didn '

t r e a l l y need to do very much e l s e , adding the r e s t o f the the data

only bumped you from 61.46 61 .5 so i t ' s l i k e not even worth wast ing
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your time going through YouTube v ideos and Twitter p r o f i l e s and so

on and so f o r t h .

236

0 0 : 3 3 : 5 9 . 5 5 0 −−> 0 0 : 3 4 : 1 8 . 0 9 0

Jack Cannon : And here f o r the Twitter , the r e s u l t s were r eve r s ed from

the l a s t one in the l a s t one , the Twitter f o l l o w e r s g ive you a

h igher score , but in t h i s one , the the Twitter p r o f i l e o f the medium

i t s e l f g i v e s you a h igher s co r e so f o r f a c t u a l i t y This gave a

b e t t e r s i g n a l than the f o l l o w e r s did .

237

0 0 : 3 4 : 1 9 . 4 7 0 −−> 0 0 : 3 4 : 2 0 . 6 4 0

Jack Cannon : And that was because .

238

0 0 : 3 4 : 2 2 . 4 1 0 −−> 0 0 : 3 4 : 2 9 . 6 1 0

Jack Cannon : yeah you know I mentioned that the r e s u l t s were pre t ty bad

in t h i s f a c t u a l i t y ta sk s and the authors kind o f h i t the n a i l on the

head .

239

0 0 : 3 4 : 3 0 . 3 3 0 −−> 0 0 : 3 4 : 4 0 . 7 1 0

Jack Cannon : When they are kind o f ana lyz ing t h i s and b a s i c a l l y was j u s t

l i k e look i f you ' re going to p r e d i c t f a c t s wel l , you need to have

some s o r t o f e x t e r n a l data source or knowledge base l i k e .

240

0 0 : 3 4 : 4 1 . 3 1 0 −−> 0 0 : 3 4 : 4 5 . 0 6 0
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Jack Cannon : You can ' t ana lyze the l i n g u i s t i c s t r u c t u r e s o f s en t ence s or

.

241

0 0 : 3 4 : 4 5 . 6 0 0 −−> 0 0 : 3 4 : 5 7 . 7 5 0

Jack Cannon : The content o f your audience l i k e in order to a c t u a l l y know

i f something ' s t rue you a c t u a l l y have to go v e r i f y at the source

that i t ' s t rue and that ' s a hard th ing to do so that ' s kind o f why

they made t h i s c la im and I a c t u a l l y agree with that .

242

0 0 : 3 4 : 5 8 . 9 2 0 −−> 0 0 : 3 5 : 0 9 . 6 3 0

Jack Cannon : So the conc lu s i on a f t e r a l l i s s a id and done , the th ing

that was most important i s what they a c t u a l l y wr i t e the content they

produced , and s p e c i f i c a l l y the a r t i c l e s that they wr i t e .

243

0 0 : 3 5 : 1 0 . 6 5 0 −−> 0 0 : 3 5 : 2 3 . 0 4 0

Jack Cannon : But i f you add context from s o c i a l media , i t w i l l he lp a

l i t t l e b i t , but not much , and again i f they weren ' t ab le to c o l l e c t

more complete data and get more s o c i a l media context , maybe that

would help .

244

0 0 : 3 5 : 2 4 . 6 0 0 −−> 0 0 : 3 5 : 3 2 . 1 9 0

Jack Cannon : So the s t rengths , I thought that they did some very

c r e a t i v e f e a t u r e eng in e e r i ng l i k e s p e c i f i c a l l y with e x t r a c t i n g the

audio f e a t u r e s from YouTube .
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245

0 0 : 3 5 : 3 2 . 6 1 0 −−> 0 0 : 3 5 : 4 7 . 7 0 0

Jack Cannon : That was pre t ty coo l system diagram I thought was easy to

understand , they seem to do a very thorough a n a l y s i s o f t h e i r

r e s u l t s , and they were not shy about you know admitt ing what the

l i m i t a t i o n s o f t h e i r o f t h e i r system was .

246

0 0 : 3 5 : 4 9 . 5 0 0 −−> 0 0 : 3 5 : 5 6 . 9 4 0

Jack Cannon : And so now i 'm going to g ive some o f my thoughts about t h i s

i 'm not going to c a l l out any weaknesses , because .

247

0 0 : 3 5 : 5 7 . 4 5 0 −−> 0 0 : 3 6 : 0 7 . 2 0 0

Jack Cannon : This i s more o f l i k e a s u b j e c t i v e thing , and s i n c e they ' re

apply ing t h e i r system to s o c i a l s c i en c e s , a l o t o f the key

assumptions they make are s u b j e c t i v e so , f o r example .

248

0 0 : 3 6 : 0 7 . 8 6 0 −−> 0 0 : 3 6 : 1 4 . 8 5 0

Jack Cannon : I don ' t th ink you should use b i a s as a f e a t u r e f o r

f a c t u a l i t y p r ed i c t i on , not only i s f a c t u a l l y p r e d i c t i o n hard in

gene ra l but .

249

0 0 : 3 6 : 1 5 . 8 7 0 −−> 0 0 : 3 6 : 2 4 . 6 9 0

Jack Cannon : Just because someone ' s b ia sed p o l i t i c a l l y doesn ' t mean that

they ' re g i v ing you wrong informat ion , so I don ' t r e a l l y l i k e that

they use that as a s i g n a l .
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250

0 0 : 3 6 : 2 5 . 8 3 0 −−> 0 0 : 3 6 : 2 9 . 7 3 0

Jack Cannon : book and that ' s because b i a s e s i sn ' t n e c e s s a r i l y bad f o r

that reason .

251

0 0 : 3 6 : 3 0 . 6 6 0 −−> 0 0 : 3 6 : 3 7 . 6 5 0

Jack Cannon : But b i a s i s bad when you have a news media that says they '

re balanced but they ' re r e a l l y not balanced that ' s that ' s when I

th ink b ia s i s a problem .

252

0 0 : 3 6 : 3 8 . 2 2 0 −−> 0 0 : 3 6 : 4 9 . 9 5 0

Jack Cannon : And they ' re b a s i c a l l y b l ind to the pub l i c that po int

because i t ' s not l i k e we have the time to be r e s e a r c h i n g a l l the se

super compl icated t o p i c s that ' s kind o f what j o u r n a l i s t s are

supposed to do so i f they ' re not doing i t r i g h t from that ' s wrong .

253

0 0 : 3 6 : 5 3 . 3 1 0 −−> 0 0 : 3 7 : 0 3 . 2 1 0

Jack Cannon : They kind o f made an assumption at the beg inning o f the

paper they thought that the t r u s t c r i s i s was caused by s o c i a l media

and a l l the you know in format ion that ' s been f l ooded in to the pub l i c

sphere .

254

0 0 : 3 7 : 0 3 . 5 1 0 −−> 0 0 : 3 7 : 1 4 . 3 7 0
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Jack Cannon : Such that you know t r a d i t i o n a l media can ' t p ro t e c t us from

i t anymore , and that that ' s the t r u s t c r i s i s , and I th ink that the

the t r a d i t i o n a l media i s part o f the problem themse lves so you can

see .

255

0 0 : 3 7 : 1 5 . 9 0 0 −−> 0 0 : 3 7 : 1 9 . 7 1 0

Jack Cannon : You know t h i s came out l a s t week j u s t a study .

256

0 0 : 3 7 : 2 0 . 2 2 0 −−> 0 0 : 3 7 : 3 2 . 4 0 0

Jack Cannon : And there ' s a l o t o f s t u d i e s that are s i m i l a r to t h i s to

happen over time how people f e e l about t r a d i t i o n a l media , but they

were kind o f saying , t r u s t i s kind o f an a l l time low , you know only

46% of people t r u s t with the t r a d i t i o n a l media says .

257

0 0 : 3 7 : 3 4 . 1 7 0 −−> 0 0 : 3 7 : 4 8 . 5 4 0

Jack Cannon : And furthermore f a c t checker s that are the se f a c t check ing

webs i t e s no p o l i t i c a l f a c t they are j u s t j o u r n a l i s t s themse lves so

they are , they are the t r a d i t i o n a l media so i t ' s kind o f l i k e the

c i r c u l a r c i r c u l a r thing , where you have .

258

0 0 : 3 7 : 4 9 . 1 1 0 −−> 0 0 : 3 8 : 0 1 . 9 8 0

Jack Cannon : prob lemat ic t r a d i t i o n a l media , then you have them t ry ing to

r e g u l a t e themse lves so i f they ' re biased , then that b i a s i s going

to r e c y c l e i t s e l f in the se quote unquote f a c t s that are being

checked .
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259

0 0 : 3 8 : 0 4 . 0 2 0 −−> 0 0 : 3 8 : 0 6 . 7 8 0

Jack Cannon : over here on the l e f t hand s i d e or on the r i g h t hand s i d e .

260

0 0 : 3 8 : 0 7 . 3 8 0 −−> 0 0 : 3 8 : 1 9 . 1 4 0

Jack Cannon : I took t h i s order I took t h i s graph from A r t i c l e that came

out l a s t year and t h i s guy b a s i c a l l y went and he did a word search

on t h i s l e x i s nex i s database and t h i s j u s t has pre t ty much every

news a r t i c l e .

261

0 0 : 3 8 : 1 9 . 5 0 0 −−> 0 0 : 3 8 : 2 9 . 5 2 0

Jack Cannon : They they have been c o l l e c t i n g every news a r t i c l e s i n c e the

e a r l y 1900 s so you can do keyword searches , so he did a keyword

search on l i k e .

262

0 0 : 3 8 : 3 0 . 3 3 0 −−> 0 0 : 3 8 : 3 8 . 0 4 0

Jack Cannon : a bunch l i k e 70 p o l a r i z i n g terms , and you can see , the

trend and how many times , t h i s shows up in a l o t o f the se news

a r t i c l e s .

263

0 0 : 3 8 : 3 8 . 3 4 0 −−> 0 0 : 3 8 : 5 5 . 2 6 0

Jack Cannon : And i t ' s l i k e r i g h t around here l i k e 2009 2010 you s t a r t to

see t h i s sp ike and a l l the char t s look l i k e t h i s with these

p o l a r i z i n g terms they a l l look l i k e th i s , where there ' s the sp ike in
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2010 and you have to ask y o u r s e l f we l l t h i s seems to conf i rm the

theory that .

264

0 0 : 3 8 : 5 6 . 9 7 0 −−> 0 0 : 3 9 : 0 8 . 0 4 0

Jack Cannon : Part o f t h i s exp l o s i on s o c i a l media took audiences away

from these t r a d i t i o n a l media o f everybody who used to j u s t watch CNN

a l l the time or read the Washington Post every day .

265

0 0 : 3 9 : 0 8 . 3 1 0 −−> 0 0 : 3 9 : 1 5 . 2 4 0

Jack Cannon : Now they don ' t r e a l l y have that have to do that anymore ,

because they have other sour c e s o f in fo rmat ion so in order to get

the se people back .

266

0 0 : 3 9 : 1 5 . 7 5 0 −−> 0 0 : 3 9 : 2 6 . 7 3 0

Jack Cannon : You kind o f have to r e s o r t to extreme measures and that ' s

kind o f what the theory i s about why t h i s i s happening I b lock t h i s

out j u s t because i t ' s a p o l a r i z i n g term and i 'm not t ry ing to do

that , to the c l a s s .

267

0 0 : 3 9 : 2 8 . 4 7 0 −−> 0 0 : 3 9 : 4 0 . 6 2 0

Jack Cannon : So I guess what i ' l l say , the l a s t th ing i ' l l say i s a good

f a c t check ing system should remove the human component complete ly

so i f someone could somehow des ign a system that i s ab le to query a

database o f .
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268

0 0 : 3 9 : 4 2 . 3 3 0 −−> 0 0 : 3 9 : 5 2 . 3 8 0

Jack Cannon : source database , such as economic data i f a system can

r e t r i e v e that data automat i ca l l y That would be good , but j u s t

l ook ing at what in f a c t checker say i s r e a l l y good .

269

0 0 : 3 9 : 5 3 . 9 7 0 −−> 0 0 : 4 0 : 0 3 . 7 8 0

Jack Cannon : And then , t h i s a l s o p r e s en t s kind o f e t h i c a l i s sue , so t h i s

made me c r i n g e t h i s came ac ro s s my feed on Sunday , and i t was the

g lue a lphabet seo .

270

0 0 : 4 0 : 0 4 . 4 4 0 −−> 0 0 : 4 0 : 1 0 . 7 7 0

Jack Cannon : You know , f i g h t i n g in fo rmat ion i s coo l at the heart o f

everything , Google does and in the a r t i c l e , they were t a l k i n g about

how .

271

0 0 : 4 0 : 1 1 . 3 4 0 −−> 0 0 : 4 0 : 2 3 . 2 5 0

Jack Cannon : i t ' s a major part o f what t h e i r goa l i s , as f a r as what the

search a lgor i thm does , and o f course YouTube i s part o f Google , so

that i s kind o f baked in a l l th i s , and he sa id r i g h t now , they have .

272

0 0 : 4 0 : 2 3 . 6 7 0 −−> 0 0 : 4 0 : 3 1 . 5 3 0

Jack Cannon : A l a r g e human component to do th i s , but they a l s o have a

l a r g e Ai component to doing that so systems l i k e t h i s are going to

be used f o r .
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273

0 0 : 4 0 : 3 2 . 6 4 0 −−> 0 0 : 4 0 : 4 0 . 5 0 0

Jack Cannon : f l a g g i n g th ing s that are mis information , i f you w i l l , so i t

' s an e t h i c a l i s s u e because you kind o f got to ask y o u r s e l f the

ques t i on .

274

0 0 : 4 0 : 4 2 . 0 6 0 −−> 0 0 : 4 0 : 4 3 . 8 9 0

Jack Cannon : F i r s t o f f should something be .

275

0 0 : 4 0 : 4 5 . 4 5 0 −−> 0 0 : 4 0 : 5 3 . 7 0 0

Jack Cannon : Trying to l abe l , something i s mis in format ion and what are

they going to do when they and then , i f you can do that , why would

you want to do that .

276

0 0 : 4 0 : 5 4 . 0 0 0 −−> 0 0 : 4 1 : 0 0 . 1 2 0

Jack Cannon : And that kind o f beds That begs the ques t i on o f you know ,

i s something mis in format ion or as an in fo rmat ion that you j u s t don ' t

l i k e .

277

0 0 : 4 1 : 0 1 . 0 2 0 −−> 0 0 : 4 1 : 0 8 . 4 9 0

Jack Cannon : Or i s something hate speech , or i s i t j u s t speak the speech

that you hate , so t h i s kind o f can lead to cen so r sh ip .

278
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0 0 : 4 1 : 0 8 . 9 4 0 −−> 0 0 : 4 1 : 2 2 . 8 9 0

Jack Cannon : And that ' s something we d e f i n i t e l y want to be c a r e f u l o f

when we ' re when we ' re l ook ing at these types o f th ings , so thank you

very much f o r your time i ' l l l e ave you with a n i c e quote with from

a p i l l a r o f c l a s s i c a l l i b e r a l i s m and thank you f o r your time and do

you have any que s t i on s .

279

0 0 : 4 1 : 4 6 . 2 6 0 −−> 0 0 : 4 1 : 4 7 . 7 3 0

JoAnna Langberg : that ' s what I would say at the end o f .

280

0 0 : 4 1 : 5 2 . 9 2 0 −−> 0 0 : 4 1 : 5 4 . 6 0 0

JoAnna Langberg : I t was hot .

281

0 0 : 4 1 : 5 8 . 4 4 0 −−> 0 0 : 4 1 : 5 9 . 0 1 0

Jack Cannon : Al l r i g h t .

282

0 0 : 4 2 : 0 1 . 9 8 0 −−> 0 0 : 4 2 : 0 3 . 3 3 0

Jack Cannon : l o t o f mate r i a l .

283

0 0 : 4 2 : 0 4 . 8 6 0 −−> 0 0 : 4 2 : 0 6 . 2 1 0

Jack Cannon : For t h i s next data s e t .

284

0 0 : 4 2 : 0 9 . 4 2 0 −−> 0 0 : 4 2 : 1 0 . 8 9 0

121



Jack Cannon : So i 'm going to stop shar ing .

285

0 0 : 4 2 : 1 3 . 5 3 0 −−> 0 0 : 4 2 : 1 4 . 4 0 0

JoAnna Langberg : or stop r e co rd ing .

286

0 0 : 4 2 : 1 4 . 9 7 0 −−> 0 0 : 4 2 : 1 7 . 6 1 0

Jack Cannon : Sta r t r e co rd ing i t was j u s t t e s t i n g you .
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