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Abstract

The recent shift towards remote education has presented new challenges for instructors
with respect to teaching evaluation. Students in traditional classrooms send signals
to instructors which provide feedback for the effectiveness of a given lecture. Virtual
learning environments lack some of these communication channels and require new
ways of collecting feedback. This work presents a suite of analysis tools for the
virtual instructor. Given the transcript and video files for a Zoom meeting, this
tool summarizes student sentiment and speaking characteristics. Sentiment scores
are derived using state of the art Natural Language Processing (NLP) models. The
video file is used to extract interesting features about the lecture content, such as
the number of slides, pace of slide changes, and number of words per slide. All
metrics were experimentally tested with data from four Zoom meetings, each of which
included ground-truth annotations for the slide changes. Transcript-based metrics
were validated by comparing to the output produced by Meeting Measures, the project
this tool is based on.

A time series outlier detection model was developed for the purpose of identifying
slide changes during a presentation. Initially, a percentile-based model performed well
on the annotated videos when the optimal threshold was known. However, the process
of finding this threshold turned out to be non-trivial for videos without annotations.

A Kalman filter model was then tested to alleviate the need for an optimization



step. Ultimately, the percentile-based model was replaced by an HMM-based (Hidden
Markov Model) model because of its ability to generalize. When tested on annotated
videos, the HMM-based detector performed within a reasonable tolerance of the
optimal percentile-based model. Furthermore, for each slide detected an open source
Optical Character Recognition (OCR) framework was used to extract text content for
computing word counts.

This tool outputs a dashboard containing a set of visualizations for the instructor.
These are intended to both identify pain points in the lecture as well as provide a
bird’s-eye view of general class interaction characteristics. The broader impact goal of
this work is to increase remote teaching effectiveness by helping instructors optimize

education delivery throughout the academic year.
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Introduction

1.1 Motivation

Education delivery has fundamentally changed since the Coronavirus disease (COVID-
19) triggered a global pandemic in early 2020. School closures world-wide have forced
teachers to conform to a purely remote model of instruction. Though many software
programs such as Blackboard and ClassDojo exist to facilitate distance learning, they
were ultimately designed for traditional classroom environments [I]. Enter Zoom,
a web conferencing program adopted by many schools and universities to provide
remote learning environments during the pandemic. Consequently, this shift to remote
teaching comes with its own set of challenges for the instructor.

In traditional classrooms, teachers can visually gauge students to determine the
general level of engagement. These signals can then be used in real time to make
adjustments or ask students directly for feedback. Furthermore, it is usually not
possible for students to do other things during a lecture, which keeps distractions low
and guarantees some baseline level of attention. Conversely, remote environments
provide no such guarantee on attention as students have the ability to do chores, a
home workout, or play console games during lecture. In addition, remote teachers are

less likely to receive quality, real-time signals from students due to the difficulty of



visually scanning the classroom, especially when many cameras are turned off while
many students are participating. Furthermore, these challenges amplify proportionally
to the size of the classroom. This lack of feedback makes it particularly burdensome
for a teacher to evaluate the effectiveness of a given lecture and is therefore the focus

of this work.

1.2 Related Work
1.2.1 Meeting Measures

Washington University researcher Andrew Knight developed Meeting Measures, an
R-based tool used to derive metrics from Zoom meetings [2), 3]. The tool produces a
number of relevant visualizations, each summarizing a particular metric of interest for
the Zoom session. The first version derived transcript-based metrics, which help gauge
student interaction by analyzing speech frequency and sentiment. Later versions have
expanded to video-based metrics, which take student nonverbal communication into
account. At the time of this writing, he has used the tool to administer more than
100 meetings through his Websiteﬂ (Fig. .

When Andrew started Meeting Measures in mid-2020, he had three primary

research objectives in mind with respect to virtual meetings [2]:
1. Capture people’s behavior in an unobtrusive manner;
2. Provide feedback to attendees on their presence and contributions; and

3. Recommend ways individuals can improve both leadership and engagement.

LCurrently restricted to those who have a “wustl.edu” email address



Do you regularly make contributions throughout the discussion? The chart below shows how much you contributed during
5 minute windows throughout the duration of the meeting. Asking questions or making relevant comments regularly will
help your teammates see you as interested, invested, and engaged in the conversation.

Il Person4 [l Person3 [ Demo User [l Person 1 [l Person 6
Il Person 2

|

i -

5 10 15 20 25 30 35 40 45 50 55
Meeting Time (in Minutes)

How much of the available speaking time during a meeting  When you speak, how long is your vocal contribution (i.e.,
do you own? This graph shows how much you spoke during an utterance), on average? This graph shows how your

the meeting compared to others. In general, effective average utterance length compares to others in this
discussions are characterized by roughly balanced speaking meeting. In general, it aids group process if your
time across members. contributions are concise and to the point. This ensures that

everyone has a chance to share perspectives and ideas.

@ Person 4
@ Person 3
® Demo User

10
&
@ Person 1 g
@ Porson 6 5
@ Person 2 ; I
0 —_—
Person 4 Person 3 Person 1
Demo User Person 2 Person 6

How positive or negative is the emotional tone of your vocal contributions? The graph below depicts how much of your
contributions are positive, negative, or neutral in their emotional tone. In general, you want your positive contributions to
outweigh your negative contributions over the course of the conversation. Note that the total may not add up to 100%
because some utterances may be classified as having mixed sentiment, which is not displayed.

Bl Positive 10 Neutral [l Negative

Person + IS 10
Person 3 I
Demo User I M
Person 1 N I
Person & NN 1000000
Person 2 I 1000

0 20 40 60 80 100 120

Figure 1.1: A sample dashboard from an early version of Meeting Measures. This set of metrics are
derived from the Zoom transcript file. Source: [2]
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Individuals who are not affiliated with Washington University can still make use of
these tools as they have been open-sourced and made available in an R package called
zoomGroupStats [3]. The package is well documented, describing in detail how to
optimize Zoom settings for data collection and also how to prepare the Zoom files for
further processing. Once the data has been adequately prepared, one can follow the
guide in the documentation to calculate all available metrics, which result in various
datasets that can be used for downstream analysis.

Early versions of zoomGroupStats focused on extracting useful metrics from the
Zoom transcripts and chats. Users can build datasets at various levels of granularity.
For example, the transcript dataset contains information about each utterance, such
as its length (speak time), which is also provided in a summary dataset containing
the aggregate speaking time of each individual in the meeting. In addition, there are
lexicon-based and machine learning models available for adding sentiment scores to
each utterance. The machine learning option requires the user to have a properly
configured Amazon Web Services (AWS) accoumﬂ We used zoomGroupStats to
validate and compare our transcript metrics, which is further discussed in [3.1.1]

Recent versions of zoomGroupStats added video analysis capabilities, which also
require the user to have an AWS account. Zoom provides a few different recording
options for generating video files of the meeting in question. Though it is possible to
download multiple video files, the user can only choose one to process. Since video
processing is computationally expensive, zoomGroupStats will sample the frames
every 60 seconds and save them to disk. The frames are then submitted to AWS

Rekognitionf| for face detection and analysis. For each face it detects, Rekognition

Zhttps://aws.amazon.com/
3https://aws.amazon.com/rekognition/
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returns interesting features such as a gender prediction, whether the eyes are open or

not, and an emotion prediction.

1.2.2 Sentiment Analysis

Sentiment Analysis (SA) is a Natural Language Understanding (NLU) task, a subtopic
in the field of Natural Language Processing (NLP). At its core, the SA task is a
classification problem that maps input text to a sentiment category, such as positive
or negative. In this context, the terms “sentiment” and “emotion” are not equivalent.
The former is usually binary in nature, while the latter allows for more nuance. For
example, the “positive” sentiment category could reflect many different emotional
states such as happy, loving, content, or excited.

Traditional sentiment models are built by extracting features from text examples,
then training a classifier for the task at hand. Modern sentiment models utilize
Transformer-based architectures [4], which yield much better performance. These
models work by learning numerical word representations by mapping each word in
a vocabulary to a low-dimensional dense vector. The resulting word vectors act as
input features to the downstream classifier. One such model, BERT [5], has been
foundational to many of the recent advances in NLP, including the models evaluated
in this thesis.

Language models such as BERT are designed to learn specific tasks with the goal
of capturing the underlying structure of the training corpus. In BERT’s case, it was

trained for the following two tasks:
» Masked Language Modeling (MLM) and

« Next Sentence Prediction (NSP).
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Figure 1.2: The pre-training phase for BERT simultaneously learns the MLM and NSP tasks. The
fine-tuning phase adapts the model for specific tasks and corpora. Source: [5]

MLM refers to the task of first presenting a model with a sequence of words (or
tokens) where some percentage of them are masked. Then the model learns to predict
these masked words. The NSP task presents the model with a sentence, then learns
to predict the next sentence in the corpus. BERT was able to learn these two tasks
together by structuring the input as a pair of consecutive sentences (see Figure
[5].

It is important to note that any given language model learns the characteristics
of the corpora it is trained on. In the case of BERT, the training corpus consisted
of a collection of books (800 million words) [6] as well as a dump of the English
Wikipedia (2,500 million words). Therefore, care must be taken when designing a text
classification model that utilizes a pre-trained model. For example, models trained on
a Twitter corpus will learn much different language characteristics due to the informal
nature of Twitter posts. The most common way to address this concern is to fine-tune
the pre-trained model’s weights using the corpus of interest (Figure . This is

easily accomplished by adding an additional output layer to the model whose weights



will be adjusted for the corpus and/or task at hand. If more accuracy is desired, the
weights for additional layers beyond the output layer can be adjusted, which is akin
to retraining the model with the new corpus. However this may be unfeasible given

hardware and time constraints.

1.2.3 Kalman Filter

The Kalman filter (KF) is an estimation technique developed in the 1960’s [7] that is
useful for predicting the true state of a process, given noisy measurements. In practice,
the KF framework interprets a dataset by assuming each datapoint is a measurement
from some process of interest, where the true nature of the process is unknown. It
then predicts the next state of the process, along with some uncertainty, and uses the
predictions to estimate the next observation. The KF is composed of a dynamic model
(Eq. for governing the transition between states, and a measurement model (Eq.

that relates the state of the process to the observation [9, [10]:

T = A.Z‘k_l + W1, Wi—1 ™~ N(O, Q) (11)

2 = Hxp + vy, V ~ N(O, R) (12)

Equation models the current state of the process x;, where the w,_; term
reflects the assumption that the dynamics of the process includes some Gaussian noise
with covariance matrix (). It should be noted that in most texts, there is an optional
control term in Equation [I.1] which is not required for this introduction. Equation
reflects the assumption that the current observed measurement z; is dependent
on xy, which similarly has a Gaussian noise component v, with covariance matrix R.

The estimation procedure follows a predictor-corrector pattern to iteratively improve



predictions [I0]. That is, given an initial state xy and an uncertainty estimate Py,
the KF will first recursively predict the next set of values then correct those values
when the measurement arrives. As a result, the KF is a member of the general class
of Bayesian Filtering methods [8].

The prediction step is defined by the following equations:

T, = AT (1.3)
P, = AP, AT +Q (1.4)
Note the superscript “-” in the predictions above, which denote that these pre-

dictions represent priors for our estimate. Then in our correction step, information
is used from the measurement z; to derive the posterior (final) estimates & and F.

The equations for the correction step are as follows:

Ky,=P, H' (HP, H" + R)™* (1.5)
Tk :Sf,;—l—Kk(Zk—HZIA?];) (16)
P, = (I — K H)P; (1.7)

The quantity K above is referred to as the Kalman gain and takes on the range
[0, 1]. Tt represents the proportion of uncertainty in the previous estimate Z_1, relative
to the uncertainty in the measurement z,. We can see that K is needed for the two
updates and (1.7). The quantity (z;, — HZ; ) from (1.6) can be interpreted as the
residual between the estimate of the measurement HZ, and the true measurement zj.
Intuitively, the state update will include more of this residual if K is closer to 1. This

follows from the fact that K will be largest when the uncertainty from the previous
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Figure 1.3: Intuition for the high Kalman gain case using an aircraft tracking example. We can see
that the previous estimate (orange) has high uncertainty and is therefore far from the actual location
of the plane. In this case, the measurement is more accurate (green). Thus a high value of K will
cause the current estimate (blue) to move closer to the measurement. Source: [11]
estimate is high relative to the measurement uncertainty. Therefore, the new estimate
will be adjusted closer to the measurement (Fig. [1.3)). Conversely, a smaller value of
K implies more uncertainty in the measurement relative to the uncertainty from the
previous estimate (Fig. [1.4)). Finally, the update to the uncertainty of the estimate P
will decrease at every time step . The magnitude of K will determine how much
P decreases since a smaller K implies less uncertainty in the estimate.

This thesis utilizes the Kalman filter for time series analysis, specifically outlier
detection. In that case, each data point in the timeseries represents one of the noisy
measurements (z;). The Kalman filter will estimate the true process (), which has

a smoothing effect on the data (Fig. [L.5). For each estimate, there is some measure of

uncertainty (P) in the form of a confidence interval band. Therefore, any data point
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Figure 1.4: Intuition for the low Kalman gain case using an aircraft tracking example. We can see
that the previous estimate (orange) has low uncertainty and is close to the actual location of the
plane. In this case, the measurement is less accurate with high uncertainty (green). Thus a low value
of K will ensure the current estimate (blue) stays close to the previous measurement. Source: [I1]

that falls outside of this band could be considered an outlier.

1.2.4 Hidden Markov Models (HMM)

The Hidden Markov Model (HMM) is a generative probabilistic model that produces
a sequence of observations, given some other sequence of hidden states which are
“hidden” because they are not directly observed. This property makes HMMs useful
for modeling the latent space of a particular system or phenomenon. We can describe

an HMM with the following components [12]:

o Sequence of T observations X = xixox3--- 21

o Set of N hidden states Z = {21, 22,23, - , 2N}

10



25
e data *
201 smoothed ,
. ;(-'~~- 7’
15 { === 67% confidence e 0 ~\_,_t\‘ ° . ",/
—— predicted ¢
10 A £ - o
54 s S8 T e TR =l - ==
o_
_5 -
-
~ e B o
-10 4 \\...._“,——~~._0\_'_‘/ o
~15 4 o * o

Figure 1.5: A figure taken from the simdkalman documentation. A timeseries is smoothed with a
Kalman filter, which includes a confidence interval band around the estimates. The blue data points
are the noisy measurements (z;) and the red line is the estimate of the true process (£). Data
points outside of the confidence interval bands (Py) are candidates for outliers. Source: [9]

o Transition probability matrix A = {a;; |0 <i,j < N}

» Sequence of T emission probabilities P(x;|z;), expressing the probability that

observation x; was generated from state z;

o A vector of initial probability distributions @ = my, w9, - - - , Ty, Where m; is the

probability that the HMM will start at state z;

Systems modeled by HMMs assume that at each time step ¢, an observation x; is
drawn from some probability distribution conditioned on the active hidden state z;.
As the name suggests, HMMs satisfy the Markov property, where the hidden state
at each time step is dependent only on the previous hidden state and a;; represents
the probability of transitioning from state z; to z;. Furthermore, observations depend
only on the hidden states that produce them and are therefore independent of the
other observations.

Lawrence Rabiner’s popular 1989 tutorial defines three fundamental problems for

which HMMs are useful for solving [13] 12} [14]:

11



1. Estimate the optimal sequence of hidden states, given the observations and

model parameters (Decoding)

2. Calculate the model likelihood, given the observations and model parameters

(Likelihood)

3. Estimate the model parameters, given only the observations (Learning)

For this work, an HMM was used with respect to the first and third problems
above. We first fit a model to the observations (learning), which was then used to
estimate the optimal state sequence (decoding) for the purpose of flagging outlier

observations.

1.2.5 Optical Character Recognition (OCR)

Optical Character Recognition (OCR) is a computer vision task with the objective of
extracting text from images. It has a wide range of applications such as converting
pdf documents to machine readable text, traffic sign recognition [I5], and developing
CAPTCHA-defeating systems [16]. In general, OCR systems work by first preprocess-
ing an image, then detecting blocks of text, and finally by extracting the characters
from each block. Advancements in machine learning have led to improvements in
OCR engines, as many of them now incorporate deep neural network models. Due to
the vast array of images in the real world, OCR performance can vary from image to
image. For example, images of license plates or traffic signs will look much different
than that of a grocery receipt. As a result, many models achieve performance gains

by tailoring to a specific input type.

12



1.3

Contributions

The primary contributions of this thesis build upon Meeting Measures in the following

ways (see section [1.2.1]):

Ported the base transcript functionality from zoomGroupStats to Python and

added video analysis tools.
Implemented plotting tools for visualizing transcript and video metrics.

Evaluated four open source sentiment models from Hugging Face for the tran-

script toolset.

Curated a data set of four Zoom meetings, including ground-truth annotations

for slide changes.

Implemented the following transcript metrics: Average Utterance Length, Propor-

tion of Speaking Time, Speaking Pace Over Time, and Sentiment of Language.

Implemented a multi-core video processing class for comparing consecutive pairs

of frames.

Evaluated the following outlier detection methods for univariate time series data:

percentile, rolling standard deviation, Kalman filter, and HMM.

Developed an HMM-based model for detecting slide changes in a video presenta-

tion.

Implemented the following video metrics: Slide Count, Pace of Slide Change,
and Words per Slide.

13



» Provided a self-contained tool that utilizes open source models, therefore elimi-

nating dependence on public cloud services.

o Publicly hosted and documented the tool on Github for interested parties to

use.

1.4 Document Overview

This chapter motivated the thesis by highlighting the education challenges that have
manifested in light of the COVID-19 pandemic. Some background was then provided
for the Meeting Measures project, the field of sentiment analysis, the Kalman filter,
Hidden Markov models, and Optical Character Recognition technologies. Finally, the
contributions of this work were outlined. The rest of this document is laid out in the
following manner. The next chapter will describe the implementation details for the
tools developed and used in this analysis. Chapter |3| presents the results on a dataset
of four Zoom videos. Finally, in Chapter [l we summarize this thesis and discuss some

of the ways this tool can be improved and built upon in the future.

14



Implementation

This chapter focuses on key implementation details during the development of the
Zoom analysis tool set. Section describes the type of data available for download
from Zoom, then defines the metrics that this tool will derive for the user. Sections
discusses the datasets that are created from Zoom transcripts as well as video

processing details that created the slide change dataset.

2.1 Overview

Zoom allows users to download various components of a given meeting. There are
options for saving files locally or to the cloud, with the latter option providing more
features. At the time of this writing, users can save the video, chat content, audio,
audio transcript, and poll results. Also available for download is meeting metadata
and the participant list. In order to derive video metrics, the teacher must also provide
the presentation start and stop times for the video file. For the majority of metrics
presented in this document, only the audio transcript and video files are required. As

a result, the bulk of this section will focus on describing these metrics.
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00:00:00.299 --> 00:00:00.930
Jack Cannon: Here we go.

2
00:00:09.690 —-> 00:00:10.290
Jack Cannon: One second.

3
00:00:13.320 --> 00:00:16.350
Jack Cannon: When I did my presentation, the other day.

4
00:00:17.789 ——> 00:00:20.280
Jack Cannon: I got to hit the share button.

Figure 2.1: The first four utterances of a WebVTT transcript file.

2.1.1 Transcript Metrics

The Zoom transcript is formatted as a WebVTT{[| file where each entry represents an
utterance that includes the speaker’s name and utterance start/stop times (Figure

2.1). This data is first parsed then used to derive the following set of metrics:

« Proportion of Speaking Time per person (PST)
» Average Utterance Length per person (AUL)

Speaking Pace over Time (SPT)

« Non-participant List (NPL)P

 Sentiment of Language (SL)

SL is different from the other metrics as it requires a sentiment model to quantify a
speaker’s general sentiment over the course of a meeting. Meeting Measures currently

offers both lexicon-based and machine learning sentiment models for this task [3].

https://w3c.github.io/webvtt/
2Requires the participant list file in addition to the transcript
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However, the machine learning option relies on the cloud sentiment scoring service
AWS Comprehend®] As a result, this thesis derives SL by utilizing the freely available

state of the art NLP models at Hugging Facef]

2.1.2 Video Metrics

The video metrics are intended to provide insight about the lecture content by detecting

and inspecting slides in the Zoom video file. These metrics are as follows:

« Slide Count (SC)
» Pace of Slide Change (PSC)

« Words per Slide (WPS)

Slide change detection was accomplished by defining a distance metric (cosine
distance) for each pair of consecutive frames. We assume that frames belonging to the
same slide will have a small distance, while distances for frames belonging to different
slides will be significantly larger. Given this time series of consecutive frame distances,
an HMM-based outlier detector predicts the slide changes. On the slide inspection
front, an open source OCR frameworkE] was used to extract text from each slide to

compute WPS.

2.2 Transcript Processing

Transcript files were parsed into a tabular format where each row represented an

utterance in a given meeting. Additional metrics were then added to aid downstream

3https://aws.amazon.com/comprehend/
‘https://huggingface.co/
Shttps://pypi.org/project/pytesseract/
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meeting_id id start stop speak_time speaker text num_words window window_time sentiment

83512718053 1 00:00:00.299 00:00:00.930 0.631 Jack Cannon Here we go. 300 0.631 POSITIVE
83512718053 2 00:00:09.690 00:00:10.290 0.600 Jack Cannon One second. 300 0.600 NEGATIVE

83512718053 3 00:00:13.320 00:00:16.350 3.030 Jack Cannon When | did my presentation, the other day. 300 3.030 POSITIVE

83512718053 4 00:00:17.789 00:00:20.280 249 Jack Cannon 1 got to hit the share button. 300 2491 POSITIVE

Figure 2.2: The first four utterances from in parsed form. Additional metrics were then added
to complete the dataset for further analysis.

analysis (Figure [2.2]). See Appendix [B| for an example of a complete transcript file.

The resulting transcript dataset contains the following fields:

o Meeting ID: The unique meeting identifier containing the utterance.

o ID: A unique utterance identifier for a given meeting ID.

o Start: The utterance start time.

e Stop: The utterance stop time.

e Speak Time: The duration of the utterance.

o Speaker: The speaker of the utterance.

o Text: The text of the utterance.

« Word Count: The word count of the utterance.

e Window: The time window containing the utterance expressed in seconds.

e Window Time: The amount of time the utterance occurred in the window. This

will only differ from Speak Time when the utterance spans multiple windows.

« Sentiment: The sentiment label assigned to the utterance.

18



2.2.1 Sentiment Modeling

Sentiment scores were assigned to each utterance in the dataset by using a pre-trained
sentiment model. There are hundreds of models to choose from, each of which is trained
for a specific language task and domain. For example, FiInBERT [17] is a variation of
BERT that was fine-tuned on a corpus of financial news articles for the purpose of
financial sentiment classification. We selected four popular text classification models
from Hugging Face and evaluated them on some sample sentences (Figure . Two
of the models were more consistent than the others, one of these was selected for
this analysis. We chose the Typeformﬂ model (orange bar) because it had a “neutral”
category, whereas the other candidate model (green bar) only supported “positive”

and “negative” categories. Since the model outputs three scores for a given input, the

sentiment with the highest score was chosen to represent the utterance in question.

2.3 Video Processing

Video metrics require frame-by-frame processing as frame similarity scores are a key
component of the slide change detector. It was inefficient to do this sequentially, so
we extended the FileVideoStream class from the imutils [I8] package to perform the
task in a parallel mannerﬂ In order to reduce the impact of noise from the speaker’s
camera, a mask was applied to each frame before calculating the similarity (Figure
. The raw similarity scores where then preprocessed into a time series of slide
change signals (Figure [2.5).

It is worth noting that video processing is computationally expensive and will result

in a long runtime on most laptops. While running this tool on a server with many

Shttps://huggingface.co/typeform
"https://stackoverflow.com/questions/61531731/multi-process-video-processing

19


https://huggingface.co/typeform
https://stackoverflow.com/questions/61531731/multi-process-video-processing

Hello! How are you?

1.0
0.8
© 0.6
]
o
7]
0.4
o e = B |
NEGATIVE NEUTRAL POSITIVE
| hate you!
1.0
0.8
© 0.6
]
O
7]
0.4
n B
0.0 — — model
NEGATIVE NEUTRAL POSITIVE mmm  facebook/bart-large-mnli
mmm  typeform/distilbert-base-uncased-mnli
| love YOU! mmm distilbert-base-uncased-finetuned-sst-2-english
10 mmm  ProsusAl/ffinbert
0.8
© 0.6
]
O
7]
0.4
0.2
. m — B I
NEGATIVE NEUTRAL POSITIVE
This class sucks
1.0
0.8
© 0.6
]
o
7]
0.4
02 I
0.0 — L | — |

NEGATIVE NEUTRAL POSITIVE

Figure 2.3: Comparison of sentiment models for four example sentences. The scores for each
sentiment category can be interpreted as probabilities and will therefore sum to 1. Of the four models,
FinBERT (red) was fine-tuned for a specific purpose, which may explain why it was so confused even
when applied to extremely polarized test sentences.
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Figure 2.4: Masking the speaker’s camera in the top-right corner to remove unwanted
noise.
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Figure 2.5: Preprocessing the frame similarity scores. Raw scores for each pair of

consecutive frames (a) are first aggregated at the second-level by taking the maximum
value for that second (b). The results are differenced to obtain signals for large
changes in similarities (c). Each upward spike is followed by an immediate (irrelevant)
downward spike. Therefore, the differenced scores are truncated to the range [0, 1] (d).
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cores will help, sufficiently long videos will cause a delay on the first run. Subsequent
runs will not experience this problem should the user need to regenerate the dashboard

for a given meeting.

2.4 Summary

This chapter introduced the idea that Zoom data can be collected for analysis and
why it might be beneficial to do so. Transcripts can contain useful information about
the speaking patterns of meeting participants. From this, we can derive metrics such
as the proportion of time each attendee speaks as well as the length of their average
utterance. Videos can be used to analyze slide content for instructors giving lectures.
For example, we can calculate the amount of time the presenter spends on each slide,
which could help them identify pain points in their lecture style. The next chapter

will take a deep dive into the results of applying these tools on some sample data.
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Results

This chapter presents the results for all the metrics defined in Chapter [2] We begin in
Section by running one of the datasets through Meeting Measures, then using the
results to validate the Python version of the transcript metrics. Section describes
the process of developing the slide change detector, where sections discuss
the importance of the similarity metric which is then utilized during the evaluation of
various models for outlier detection. Finally, in section [3.3| we apply the slide change

detector to four sample videos and evaluate the results.

3.1 Transcript Metrics
3.1.1 Comparison to Meeting Measures

One of the initial tasks for this project was to reproduce the Meeting Measures
transcripts metrics from Fig. [L.1]- we essentially started to build a Python version of
zoomGroupStats. A natural follow-up task was to validate our datasets by comparing
them to those produced by zoomGroupStats. We first prepared data from one of our
meetings (meeting ID 83512718053 ) according to the guide in [3]. After running the
transcript functions, output datasets were saved and plotted next to plots generated

with the Python datasets.
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Figure 3.1: Comparison to zoomGroupStats for the AUL metric.

The Python datasets were successfully validated as they were very close to the
zoomGroupStats data (some values were identical). For the AUL and PST metrics,
there is no noticeable difference between the two datasets. This follows from the
fact that both datasets calculated median utterance lengths of 8.25 seconds and 1.92
seconds for the two speakers in the transcript (Fig. [3.1)). For speaking proportion,
both datasets calculated values of 96% and 4% for the respective speakers (Fig. .
As a result, the plots for these two metrics look identical to the zoomGroupStats
version. The SPT comparison showed a very slight deviation for some of the windows
with a mean difference of 0.41 seconds (Fig. , however this did not warrant concern

with respect to the validation.
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Figure 3.2: Comparison to zoomGroupStats for the PST metric.

Finally, we compared the results for the SL metric (Fig. , which was the only
occurrence of a significant difference in datasets. Here, the discrepancy is wholly due
to the choice of sentiment model, with two main observations to note. First, AWS
Comprehend returns a “mixed” category, which is not included in the analysis (see Fig.
. We followed this convention to maintain consistency with Andrew’s process,
which he describes in the “Sentiment of Language” caption in Fig. The second
observation to note is how the AWS model tends toward neutrality. The speech in

meeting 83512718053 was generally neutral throughout, therefore the AWS model
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Figure 3.3: Comparison to zoomGroupStats for the SPT metric. Some small differences can be
noticed for the 1500 - 2400 windows.

more accurately reflected the true sentiment. This result is not particularly surprising
as this model is a commercial service which is maintained by a team of researchers.
However, many users may consider the predictions from the Typeform model good
enough for their purposes. In addition, many other Hugging Face models can be
experimented with should a better result be desired. Furthermore, these discrepancies
may not matter to users most concerned with negativity in their meetings, as the
two models differ least in that category. Finally, these sentiment models can be more
thoroughly evaluated with some example videos where the sentiment is well known,

such as when students are extremely negative.
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Figure 3.4: Comparison to zoomGroupStats for the SL metric. AWS Comprehend was better able
to predict the true sentiment of meeting ID 83512718053 as it was a primarily neutral presentation.
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3.2 Slide Change Detector

The slide detection task is an instance of the outlier detection problem. We're looking
for characteristics of a video presentation that indicate drastic changes between two
frames. However, before that can happen, it is important to define a rule for what
constitutes a slide change. Some presentations progress by adding small changes to
the slides instead of making each slide completely unique. For example, many speakers
will address a number of bullets on a particular slide by starting with a blank slide,
then adding the bullets as they talk. In this case, a slide change technically occurs
each time a bullet is added to the screen. From a practical perspective, this may
not be meaningful enough for those interested in capturing major changes in the
presentation material. In this case, we would want to set some minimum threshold on
the amount of change between two frames in order to identify relevant slide changes.

Additionally, the teacher may want to exclude sequences of rapid slide changes,
such as quickly navigating to a previous slide in order to address a student’s question.
This kind of action could result in several slide changes in as many seconds, which
would be irrelevant for most purposes. In this work, we do not take these nuances
into account and instead start with a baseline set of annotations that flag every slide
change. Future work may focus on fine-tuning the methods presented in this section
to handle situations similar to the aforementioned examples. We experiment with four
types of outlier detectors: percentile-based, rolling standard deviation, Kalman filter,
and HMM-based. The rest of this section will describe the methods used to develop a

model suitable for identifying slide changes in any video.
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Figure 3.5: [?>-norms diffs for the frames of a sample video act as signals for the slide change
detector. The vertical black lines are ground truth slide change annotations.

3.2.1 Similarity Metric

For this problem, we need enough pixels to change between any given pair of frames
such that a strong enough signal is generated. One natural measure for this objective
is to take a pixel-wise difference then aggregate it into a single metric. We therefore
started by calculating a vector of pixel differences followed by taking the [2>-norm to
represent our initial similarity measure (Figure . In this case, it is a dissimilarity
measure since a higher value indicates that two frames are dissimilar to each other.

It is clear from that there are no concrete slide change signals. Further
investigation of the frame differences revealed high levels of distortion in the videos
(Figure , . This distortion is not detectable by the naked eye, it instead amounts
to small pixel translations. Due to the pixel-wise nature of our [?>-norm measure, these
translations produced significant amounts of false signals. As a result, we ended up
exploring other candidates for similarity measures.

One such metric, cosine similarity, works by measuring the cosine of the angle

between two vectors in an n-dimensional space and is normalized to the range [0, 1].
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Figure 3.6: Two consecutive frames displaying the same slide and a heatmap representing their
pixel-wise differences. For frames without distortion, we would expect to see slight changes resulting
from movements in the speaker’s camera.
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Figure 3.7: Two consecutive frames displaying the same slide, where the second frame is distorted.
Though the frames are visibly identical, their pixel-wise differences are significant and will therefore
confuse models based on pixel diffs.
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Figure 3.8: The first improvement to our signals from Fig. comes by way of monitoring the
change in cosine distance between frames. Comparing vector representations of frames proved to be
a significantly more powerful measure of similarity.

As a result, vectors with similar values in slightly different dimensions will still be
similar with respect to their cosine similarity. In other words, identical images will
be recognized as such even when one is slightly distorted. Since we want to measure
dissimilarity for our frames, we subtract it from 1 to arrive at the cosine distance.
Implementing this measure greatly improved our signals, aligning more closely to the
ground truth annotations (Figure [3.8]).

Though the cosine distance helped greatly, there were still too many false signals
in the data. For the Zoom videos used in this work, the speaker’s camera is displayed
in the upper right-hand corner of the frame. Small movements from the speaker’s
mouth and head during a presentation may cause extra noise to clutter our signal.
Furthermore, in a session where conversations happen often will result in the camera
changing many times in a short period of time. This scenario would likely occur often
when students ask questions that lead to dialogue with the instructor, which would
produce even more noise.

This assumption was confirmed by masking the region of the frame that is generally
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Figure 3.9: A final improvement to the signals from which are input to the slide change detector.
For some meetings, movement from the speaker’s camera will produce false signals. As a result, it is
necessary to mask that portion of the frame.
occupied by the speaker. That is, the pixel values were set to 0, thus removing their
influence from the cosine distance calculations (Figure [3.9)). We found that a fixed

proportion of the pixels from the x and y axes selected a region that generalized to all

of our test videos, which removed the remaining noise was from the dataset .

3.2.2 Percentile-based Model

A percentile-based outlier detector makes predictions based on some prespecified
percentile threshold. For any timeseries of interest, this threshold is found by choosing
a percentile ¢, then computing the value corresponding to the g-th percentileE]. Next,
any datapoint in the timeseries greater than or equal to this ¢-th percentile value is
flagged as an outlier. For example, a percentile of ¢ = 50 would flag any datapoint
greater than or equal to the median, since the median of a dataset is the 50-th
percentile. This of course leads to the problem of finding the percentile threshold

that minimizes the prediction error. Unsurprisingly, each of our test videos required

"https://numpy.org/doc/stable/reference/generated/numpy.percentile.html

34


https://numpy.org/doc/stable/reference/generated/numpy.percentile.html

different thresholds for optimal performance (Figure . We use the F1 score for
evaluation since it takes both precision and recall into account, which is desirable for
unbalanced classification problems such as this one (Figure [3.10).

There are two interesting observations from Figure [3.11 First, the optimal
thresholds are extremely sensitive such that small changes in either direction will
result in a sizable decrease to the F1 score. Figure [3.12] demonstrates the differences
in accuracy resulting from a £ 1% change in the threshold. This property makes any
attempt to generalize threshold selection especially difficult (e.g., using the mean).
Second, some videos require the frames to be masked in order to perform well. For
example, the video with meeting ID 170127 consists of a few long dialogues with
students while answering questions. As a result, the camera transitioned enough to
render the model worthless.

These experiments show that percentile-based models perform well when an optimal
threshold is known before hand. However, the choice of threshold value does not allow
room for error. Since the task of finding an optimal threshold is non-trivial for a new
video without ground truth annotations, percentile-based models are infeasible for
this use case. Therefore, another technique is needed, which we’ll benchmark against

these optimal percentile-based models.

3.2.3 Rolling Standard Deviation Model

The percentile-based model is a good baseline from which to compare results from
further experiments. Since that model relies on global statistics to make predictions,
it seems natural to investigate methods that make predictions based on local statistics.
One way to accomplish this is to track the rolling mean and standard deviation over

some number of periods in the past. Then when the difference in cosine distance
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Figure 3.10: F1 scores for the four test videos, each evaluated at their optimal threshold for both
masked (blue) and unmasked cases (orange). During the presentation for meeting 170127, students
asked questions on more than one occasion, which resulted in frequent changes to the camera portion
of the frame while holding the slide constant. Furthermore, this particular presentation had incidents
where the instructor rapidly cycled through slides to revisit prior slides.

deviates from the mean by a certain magnitude, we predict a slide change at that
time step.

There are two parameters of interest for this model: window length (w) and
number of standard deviations from the mean (s). Immediately we see that one choice
of parameters will have a different impact on predictions for different videos (Fig.
3.13). Similar to the percentile model, the optimal choice of parameters is not known
beforehand and must therefore be optimized. For example, if we increase the window
length to 20, the number of standard deviations from the mean must almost double in

order to get visually similar results (Fig. [3.14]). This fact was discovered by trial and

error, an approach that does not scale well. In addition, the predictions are extremely
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Figure 3.11: F1 scores for each of the four test videos, by percentile threshold. The models perform
well when the optimal threshold is known and the camera is masked (solid line). However, these
models are sensitive to changes in the threshold such that a small move in either direction would
result in a significant performance decrease.
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Percentile-based model predictions for the optimal, high, and low cases (Meeting ID

83512718053). Ground truth annotations are represented by the black vertical lines and predictions

.
.

Figure 3.12

represented by red circles. A higher threshold results in more false negatives while a lower threshold

results in more false positives. Here we see the impact resulting from a small deviation in percentile.
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Figure 3.13: Rolling standard deviation model predictions for all four videos (w = 10 and
s = 2.84). The standard deviation band is denoted by the green line, which is noticeable
only during a spike in the difference in cosine distance. The variation in the data is tight
enough between spikes to cause false positives. Meeting 170127 (b) has significant amounts
of false positives. 39



sensitive to parameter changes. It is standard for s to be require precision to the
one-thousandth decimal place and beyond, much like the percentile model (Fig. [3.11)).

This model suffers the same drawbacks as the percentile model and essentially
behaves like a “rolling percentile” model, where local statistics cause the same problems
as the global statistics. First, the parameters must be optimized before the model can
make useful predictions for a given time series, which is not desirable due to the lack
of generalization. Second, predictions based on standard deviation thresholds do not
perform well when the data has extremely low variation (Fig. . As a result, any
threshold-based method needs to produce a band that stays low enough to trigger a
prediction without being influenced by areas of low variation. Therefore, we move on

to experiment with filtering/smoothing methods with this objective in mind.

3.2.4 Kalman Filter Model

The Kalman filter is a common tool for time series outlier detection and comes with
the added benefit of dynamic prediction. That is, it can adjust its prediction with
each new data point it receives. For this experiment, we made use of the tsmoothieﬂ
Python package. We started by exploring the impact from two parameters: the noise
level of the process (pn) and the number of standard deviations used to calculate
the band (nsig). We can see that the initial parameter values (pn = 0.5, nsig = 2)
produce a band that hovers at a more favorable distance for our purposes (Fig. [3.16)).
A nice feature of this Kalman band is the spiking that occurs with spikes in the
underlying, which will ensure that a signal must be sufficiently large to warrant a
prediction. However, the hovering distance clearly varies with the meeting. While the

prediction threshold looks reasonable, it is too high for some of the signals in meetings

Zhttps://github.com/cerlymarco/tsmoothie
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Figure 3.14: Rolling standard deviation model predictions for all four videos (w = 20 and
s = 4.22). The standard deviation band is denoted by the green line, which is noticeable
only during a spike in the difference in cosine distance. The variation in the data is tight
enough between spikes to cause false positives - this is most noticeable for meeting 220120
(c¢) where there are 3 mispredictions in the second quarter of the dataset.
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Figure 3.15: An enlarged section of the meeting 170127 time series from Fig. [3.14] (w = 20,
s = 4.22). Low variance data will cause mispredictions even with very high values of s. We can see
there are six false positives in the center portion of the figure. The green band is not noticeable at
> 4 standard deviations from the mean, which indicates the variance of the data during this interval
is too low for a rolling standard deviation rule to be feasible.

220120 and 83512718053.

Since we know that these time series are generally of low variation, we reduce nsig
to 1 and inspect the results (Fig. . We hold pn constant because this data is not
particularly noisy, therefore the primary driver of the predictions is the distance from
the threshold to the data. There is a noticeable decrease in the hovering distance of
the Kalman band, which was consistently favorable for each meeting. These results
are encouraging, which leads one to be curious on how low the band can get before
mispredictions start to occur. For this dataset, that threshold corresponds to an nsig
value of 0.03.

Given prior domain knowledge of Zoom frame similarities, we can make an informed
decision on how to set pn and nsig. As previously mentioned, this data is not noisy
relative to the number of data points. In fact, we can look at this problem as one of
trying to detect the noise when it does occur. As a result, the standard value of pn
will work for our purposes. In order to set nsig, we want to pick up as many signals

as possible without producing false positives. We know the variation of the data is
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Figure 3.16: Initial Kalman filter predictions for the four meetings (pn = 0.5, nsig = 2).
The prediction threshold is denoted by the black line tracking the cosine distance diffs.
Unlike the rolling standard deviation case, the Kalman filter produces a band that hovers
away from the data. 43
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Figure 3.17: Initial Kalman filter predictions for the four meetings (pn = 0.5, nsig = 1).
The prediction threshold tightens without adding false positives. We can see here that even
with a low value of nsig, the Kalman filter still maintains a consistent buffer above the data,
even in areas of low variance. To see this more clearly, compare meeting 220120 in this
figure (¢) with the same meeting in Fig. [3.14
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Figure 3.18: Kalman filter predictions for an enlarged section of meeting 83512718053. We can

use prior domain knowledge to reason about the amount of variation in the data when setting nsig.
In this case, it was possible to significantly decrease nsig such that very small signals are detected

without paying the cost of mispredictions.
very low, so we can safely decrease the value of nsig significantly (Fig. [3.18]).

The Kalman filter model was much more powerful than the percentile model, its F'1
score differed by an average of 0.005 across the four test videos. This is primarily due
to the fact that the Kalman prediction threshold hovered far enough away from our
low-variation data such that most signals were detected without sacrificing accuracy.
In addition, we only needed to focus on optimizing one parameter (for this domain),
which generalized well to the other videos. However, we still needed to optimize a

parameter, which could vary for different videos. In our case, the same parameter
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State U o?

Normal | 0.0000453564 | 0.0000051734
Outlier | 0.1850038205 | 0.0109287335

Table 3.1: HMM state distribution parameters learned for meeting 83512718053.

value worked for all four of the videos. It is not clear if this would hold for a dataset of
100 videos. We also relied on some prior domain knowledge to complete the task. As
a result, we will want to explore models that can learn the important characteristics

of the data without prior knowledge or feedback from other time series.

3.2.5 HMM-based Model

Given the insights learned from [3.2.2] and [3.2.4] HMMs are a great choice for the

next model. They require no prior knowledge, only that the user have some idea of
how many hidden states to model. For the time series outlier detection task, we're
only worried about two states: the normal state of affairs and the unusual state of
affairs. HMMs have been used for this exact task in the past [19] and are efficient at
learning hidden state distributions out of the box. The experiments that follow use
the hmmlearnﬁ implementation with default parameterﬁ and two hidden states.
The HMM takes a different approach to outlier detection. For the models discussed
thus far, the general strategy was essentially to identify datapoints that deviate enough
from some main distribution. In the case of the HMM, it assumes each group follows
a Gaussian distribution, then learns these distributions for the number of groups
it is told to find. This approach is convenient for learning outlier distributions for
any given time series and is therefore more generalizable. It is possible to build

HMMs with other assumptions on the distributions (eg, exponential). For outlier

3https://github.com/hmmlearn/hmmlearn
‘https://hmmlearn.readthedocs.io/en/latest/api.html#hmmlearn.hmm.GaussianHMM
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Figure 3.19: HMM state assignments for meeting 83512718053, where the outlier datapoints are
assigned to state 1 (orange). Lines take on the color of the datapoint they are connecting to, which
produces the orange spikes. The density plot on the right shows the distributions learned from each
state, where the orange dotted line denotes the mean of the outlier distribution. Note the x-axis of
the density plot. It has a true upper bound of > 5000, therefore needing to zoom in on the range [0,
25] so the outlier distribution can be clearly seen. This follows from the extreme low variance of the
blue distribution.

detection, we simply identify the distribution representing the outliers (Fig. [3.19
Table 3.1). Mispredictions occur for datapoints that lie on the boundary between two
distributions.

We can see from Figure that the HMM does not perform as well as the
percentile-based model, with mispredictions occurring for very small signals. Starting
at the approximate 31 minute mark, the speaker presented a series of slides where
talking points were added incrementally while highlighting results in a table. We
can see this more clearly in Figure In this case, the only changes in content
came from highlighting a different part of the table and adding a bullet point to the
talking points. Since the bulk of the content remained constant (title, background, and
table), the cosine distance between the respective frames was not large enough for the

HMM to detect. This may be improved by fine-tuning the model’s parameters such

that the distribution belonging to the “normal” hidden state has an extremely small
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Figure 3.20: Optimal percentile-based predictions vs. HMM-based predictions. The HMM struggles
to detect very small signals. See the time interval at approximately 31:00 to 34:00.
variance (even smaller than it already does), which might allow the HMM to place
smaller signals in the outlier distribution. While the task of investigating potential
improvements is beyond the scope of this thesis, it will make for interesting work in
the future.

Though the HMM does not match the performance of the percentile or Kalman
models, its F1 scores are within 10% in all cases (Figure [3.22). This deviation is not
so unfavorable when considering the ease of use and generalization afforded by HMM.

In addition, when compared to the Kalman filter, the HMM is able to handle the
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Figure 3.21: An example slide change that was missed by the HMM. In (a), we can
see the speaker highlighting results while displaying talking points in the right half of
the slide. Then in (b), the highlighting changed and a new bullet point added. Since
most of the content remained constant between these two slides, the cosine distance
between their respective frames was not large enough to be classified as a slide change.
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unmasked videos with consistency while having the potential to improve if slide change
definitions are modified. For example, consider the scenario in Figure where
adding a bullet to a slide produces a very small signal. If the slide change definition
were to disallow small changes to slides, which would be favorable for instructors
who do not prefer to present content in an incremental fashion, then the HMM’s
performance would improve. Now that we have a working slide change detector, we

can proceed to derive the video metrics.

3.3 Video Metrics
3.3.1 Slide Count (SC) and Pace of Slide Change (PSC)

Slide counts are derived by simply counting the number of slide change predictions.
Since the PSC derivation depends on slide detection, the following results are sufficient
for demonstrating both SC and PSC. In Figure we can see mispredictions
consistent with those discussed in section [3.2.5] The masked video has legitimate
signals, that also happen to be very small and therefore go undetected. The unmasked

video has large and noisy signals, which are erroneously picked up by the HMM (see

Fig. [3.23)).
3.3.2 Words per Slide (WPS)

Before WPS can be calculated, the target frames need to be identified and extracted
from the video. The alternative would be to run OCR on each frame of the video, then
deduplicate. This latter procedure would be extremely inefficient, time consuming,
and therefore unpractical for this use case. As a result, we mapped the timestamp of

each slide change, or predicted slide change, to the relevant frame number. In theory,
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Figure 3.22: F1 scores for the optimal percentile-based model (green), the HMM-based model (red),
and the Kalman filter model (purple). The HMM performs within 10% of the percentile-based model
in all cases, which makes the generality gained from the HMM worth the performance cost.
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Figure 3.23: HMM predictions for the masked and unmasked cases. This view clarifies why the
PSC mispredictions are occurring in Fig. In the masked case (a), we can see that small slide
change signals are not picked up around the 31:00 mark, which results in an under-counting of the
slides (Fig. [3.24a)). Conversely, the unmasked case (b) produces extra predictions in the first half of
the presentation as a result of the noisy signals produced by the camera. This causes the PSC metric

to inflate the slide count (Fig. [3.24b).
this should return a set of unique frames, each representing a different slide.

We started by mapping each frame to its respective timestamp, based on the
frame rate of the video, then selected the relevant seconds based on the slide change
predictions. Given this set of seconds, we extracted the frame number that had the
highest cosine distance value. This process is not entirely error-free since a slide

change occurs at the frame-level, while a human annotator is only able to flag it at
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Figure 3.24: HMM predictions for the PSC metric (meeting 83512718053). For the masked case
(a), the model missed the small signals towards the second half of the presentation (see Fig. [3.20b)).
Conversely, for the unmasked case (b), many of the additional noisy signals were picked up by the
model, which led to extra slide predictions.

the second-level (Figure [3.25). We can see in m that the duplicate slides are a
result of the slide change happening close to the beginning of a second. Conversely,
slide change predictions made by the model will not introduce this type of error since

signals at the frame-level are aggregated to the true second where they occur (see Fig.

2.5).
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Slide 36

Results: Factuality

Slide 37

Results: Factuality

Results: Factuality

Figure 3.25: A subset of the sequence of frames extracted during the OCR, process. In this case, a
slight discrepancy in the annotation mapped the 38th slide change to the wrong frame number.
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Figure 3.26: A two second period where the seconds are differentiated by the shaded areas. Human
annotations will most likely introduce error when the slide change occurs near the transition between
seconds. This particular scenario created the duplicate in The annotation flagged the slide
change as occurring in the period shaded in red, whereas the actual slide change happened in the
green area.

Tesseract can be configured in many different ways - there are currently fourteenﬂ
different page segmentation settings depending on the use case (Figure [3.27). We
use the default settings for our purposes, which automatically segments the incoming
image. This presents another opportunity for fine-tuning as the default setting may
not be appropriate for the task at hand since some presentations may have different
text than others.

To calculate WPS, text is extracted from each slide, then tokenized to retain
alphanumeric characters. A simple count of the resulting token sequence is the final
representation of WPS. We can see from Figure that the same misprediction

patterns occur with respect to the HMM. In addition, it is clear from meeting

83512718053 that the latter half of the presentation was significantly different from
the first half (3.28al).

Shttps://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
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3 teams, 3 deliverables

¢ Presentation: Put together a mini lecture (~3@min) in
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¢ Getting started tutorial: Write a "Getting started,"
"First steps,” "Step-by-Step" tutorial for the materials
you studied.
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(c) PSM 6

Figure 3.27: OCR applied to a sample slide with two different settings. By default,
Tesseract attempts to find the block of text withing the image (b), whereas the PSM 6
setting assumes the entire image is composed of a single uniform block of text (c).
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Figure 3.28: HMM predictions for the WPS metric (masked case). The variation between predicted
and true values is consistent with the HMM behavior in Fig. For both meetings, the HMM

underestimated the true slide count. The masked videos have some legitimate signals that are very
small, which are not picked up by the model.
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3.4 Summary

This chapter evaluated the newly developed Zoom meeting metrics on real Zoom data.
First, transcript metrics were compared to those generated by Meeting Measures, thus
acting as a validation step. Next, the process of developing a model for detecting slides
was outlined in detail, including the challenges encountered along the way. Finally,
the HMM ended up being the preferred model for the slide change detector due to
the way it generalizes while providing consistent performance. Though it wasn’t the
top performing model, it was able to stay within 10% of the other F1 scores without
requiring any hyperparameter tuning. The model was then applied to our dataset
of four videos, where mispredictions occurred when slides changed slightly - such as

when a bullet point is added to an existing slide.
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4

Conclusion

This work introduced a Python framework for analyzing Zoom meetings for the purpose
of improving education delivery. Meeting Measures [2], an R-based tool started in 2020,
acted as the baseline for this thesis to build upon. The relevant metrics fall into either
the transcript or video categories. The transcript metrics measure the proportion of
speaking time per person, the average utterance length per person, speaking pace
over time, non-participants, and general sentiment of language. Sentiment scores were
derived using open source, pre-trained models from Hugging Face. For validation
purposes, our transcript was run through zoomGroupStats [3], the R package powering
Meeting Measures. The resulting transcript dataset was successfully validated against
the dataset produced by the Python tool.

Video metrics expanded the functionality of the tool beyond what could be learned
from transcripts alone. The metrics derived from Zoom videos were slide counts,
pace of slide changes, and words per slide. A slide change detector was developed
to accomplish these tasks, where four different models were evaluated. Videos were
first processed to compute the L2-norm for consecutive frames in order to identify
slide change signals. However, slight distortions in many of the frames produced large

quantities of false signals. As a result, the cosine distance was used, which mitigated
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issues caused by the distortion. Further denoising steps where taken by masking the
camera from each frame.

Four different models were then evaluated with respect to their F'1 score on a test
dataset of four videos. First, a percentile-based model was developed and ultimately
performed well. However, the model needed to be optimized for each dataset, which
is not ideal in practice. Next, we experimented with a rolling standard deviation
model. This option was quickly abandoned as the standard deviation threshold was
ineffective for segments of the frame data with extremely low variation. We then built
a model based on the Kalman filter, which performed well while being easier to tune.
However, this model still required some level of optimization. Finally, we implemented
an HMM-based model for its ability to generalize. The HMM did not perform as
well as the optimized percentile-based model. It did however score within 10% of the
percentile model in all cases. As a result, the HMM was selected to derive the final
version of the video metrics.

The final task for developing video metrics was to extract the text from each slide to
compute word counts. For this, the open source OCR engine Tesseract was used. We
initially noticed some error with the frame extraction procedure. Further investigation
revealed the source of the error to be the human annotator. An additional source
of error was introduced by the HMM, as it fails to detect slides when the signal is
low. Improving model performance is something that could be improved upon in the

future.
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4.1 Future Work

As larger segments of society transition to remote work and school, it will remain
important to have the ability to gather feedback from meeting participants. As a
result, this project is something that can continue to be built upon. Better slide
detection methods can be explored based on the rules set by the user. For example,
frame signals can be amplified for users interested in counting minor changes to slides,
such as adding a bullet. This will result in less misses for a model like the HMM.
Conversely, frame signals can be further smoothed such that smaller signals are not
picked up. In this case, the user would only want to count slide changes when the
entire slide changes, instead of just a small portion. Other rules can be set by the
user to exclude rapid slide changes in a particular time frame (e.g., no more than 2
slide changes per 10 seconds).

It would also be helpful to experiment with improving the slide detection models
such as the HMM or Kalman filter. Additionally, there are deep learning models that
might make good candidates, such as the autoencoder. The OCR engine has many
options that could be experimented with. It may be the case that certain settings will
work better than others, which could improve the results of the slide content analysis.

There are more metrics of interest that can be derived from this data. It would be
interesting to formulate a signature for each slide in a presentation for the purpose
of tracking the number of times a slide has been revisited. This could help the
teacher identify moments in the presentation where students may not have absorbed
a concept, thus needing to revisit the same slide multiple times. Student interaction,
as determined by the transcript, could be correlated with the slide content to discover

patterns responsible for student disengagement. Finally, more intensive video analysis
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can be done with some of the other video files available for download. For example,
the gallery view can be used to determine how many students have their cameras on
to gauge the general level of interest. For those that do have their camera on, models

can be developed to detect emotion and other nonverbal cues.
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Appendix A

Zoom Analysis Code Repository

All code related to the Zoom analysis tools developed for this thesis is publicly
available through Github under the MIT open source license at: https://github|

com/cannonja/zoom-analysis-tool
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WEBVIT

1
00:00:00.299

Jack Cannon:

2
00:00:09.690

Jack Cannon:

3
00:00:13.320

Jack Cannon:

4
00:00:17.789

Jack Cannon:

)
00:00:22.080

Jack Cannon:

Appendix B

Sample Transcript

—> 00:00:00.930

Here we go.

—> 00:00:10.290

One second.

—> 00:00:16.350

When I did my presentation, the other day.

—> 00:00:20.280

I got to hit the share button.

—> 00:00:24.990

it 's like you click share and then your monitors come up.

67



6
00:00:25.380 —> 00:00:27.120

Jack Cannon: And you sleep like order is.

7
00:00:27.450 —> 00:00:27.780

JoAnna Langberg: yeah.

8
00:00:28.170 —> 00:00:31.500
Jack Cannon: And I expect it to automatically work because that's what

it does for teams.

9
00:00:32.790 —> 00:00:34.950

Jack Cannon: Talking they had to interrupt me and go.

10
00:00:35.010 —> 00:00:36.480

JoAnna Langberg: Like whoa whoa whoa.

11
00:00:39.870 —> 00:00:44.700

Jack Cannon: What I need to do is hide floating meeting controls okay.

12
00:00:48.180 —> 00:00:49.170

Jack Cannon: Okay.
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13
00:00:52.740 —> 00:00:58.350
Jack Cannon: Okay, so first thing I want to go over some background

stuff with you real quick, before I start.

14
00:00:59.400 —> 00:01:02.070

Jack Cannon: So remember how I told you this.

15
00:01:03.480 —> 00:01:11.610
Jack Cannon: I mean, I think I briefly mentioned it , that there's these

things that are language models so a lot of what i'm doing now is.

16
00:01:12.330 —> 00:01:19.530
Jack Cannon: is basically we learn all about language models and how

they work and how you can use them for lots of different tasks but.

17

00:01:19.860 —> 00:01:32.520

Jack Cannon: Basically , at a high level what a language model does is
you can ignore this stuff just know that we're given a set of words,

the goal is to.

18
00:01:33.120 —> 00:01:45.990
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Jack Cannon: predict what the next word is so it's like the students
open there and then you have like this distribution of outcomes
laptops books in this case books, has the highest probability , so

this model would predict books in the next word.

19
00:01:46.830 —> 00:01:53.070
Jack Cannon: And that's that's basically what language models do and

that 's kind of like a simplification of it but.

20

00:01:54.420 —> 00:02:04.980

Jack Cannon: You can use these to do all kinds of other language
oriented tasks such as turning words into numbers to do useful

things with them does that make sense.

21
00:02:06.630 —> 00:02:07.110

Jack Cannon: Okay.

22
00:02:08.670 —> 00:02:10.590

JoAnna Langberg: it's like I don't complete your texting.

23
00:02:11.040 —> 00:02:12.000

Basically .

24
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00:02:14.790 —> 00:02:15.810

Jack Cannon: So then here's a.

25
00:02:17.010 —> 00:02:23.040
Jack Cannon: So there's this model called BERT, which is what i'm going

!

to talk about and they use a lot of sesame street names there's a

bird there's an elmo.

26
00:02:24.960 —> 00:02:26.220

Jack Cannon: yeah it's pretty funny.

27

00:02:27.930 —> 00:02:45.240

Jack Cannon: So the way they train this BERT model is they trained it on
what's called this mask language modeling tasks, where you give the
model, a sentence, but you kind of like mask out a few words and

its task is to predict what words would fill this in.

28
00:02:47.700 —> 00:02:55.650
Jack Cannon: So then, so that's one thing that it does and and the other

thing that does is next sentence prediction, so you put in a word.

29
00:02:56.190 —> 00:03:07.770
Jack Cannon: And then it outputs whether or I guess you put in two

senses sentence sentence, a sense be in that tells you if sentence
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be is the next sentence from a sentence a.

30
00:03:08.760

Jack Cannon:

—> 00:03:16.920

So this super sophisticated model bird was trained using

those methods so it's it's they use the ton of data, Google did it.

31
00:03:18.330

Jack Cannon:

32
00:03:20.280

Jack Cannon:

33
00:03:21.540
Jack Cannon:

basically

34
00:03:31.620
Jack Cannon:

are .

35
00:03:36.720

Jack Cannon:

—> 00:03:20.280

And then you can use this model to do a bunch of.

—> 00:03:21.030

cool stuff.

—> 00:03:30.960
Which is what i'll get into but, but the gist is is that's

what it does there's another type of model called a GP CT.

—> 00:03:36.330

Where so so one other side is that a language model like

—> 00:03:45.150

The ones that are trained with this way, using the mask

things , those are mainly used for like understanding text so if you
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have a task, and you want to understand what it's saying.

36

00:03:45.600 —> 00:03:55.950

Jack Cannon: or draw any inferences based on what the Texas same use
this type of model, but then, if you want to have a Bot that's going

to kind of like generate text and, like.

37

00:03:56.400 —> 00:04:06.990

Jack Cannon: generate sentences or take a question in generating answer
the question that's another type of model that's not this one, so

those are those are kind of the two main tasks for this.

38
00:04:09.510 —> 00:04:12.420

Jack Cannon: So, as far as turning words into numbers.

39

00:04:15.090 —> 00:04:22.800

Jack Cannon: You can use this model to do that and so there's all these
different pictures like so it's like once you take a word and you

turn it into a number, then you can graph it.

40
00:04:23.400 —> 00:04:29.940
Jack Cannon: And so what you see here is things like relationships

between words and how if words are similar.

73



41
00:04:30.630 —> 00:04:36.330
Jack Cannon: linguistically than they should be similar numbers, they

should be similar in whatever space you projected as to.

42

00:04:37.110 —> 00:04:47.220

Jack Cannon: So this one they're just kind of showing you like you have
body parts that are all clustered together close to each other, so I

would imagine this has like arm leg, you know head.

43

00:04:47.640 —> 00:04:59.730

Jack Cannon: Like those words are all real close together these cities
are all real close together and that's that's what should happen he'
s, since these are similar words, they should be close together when

he turned him into numbers to does that make sense.

44
00:05:02.130 —> 00:05:05.460

Jack Cannon: And you can do really cool things with these like you can.

45

00:05:07.200 —> 00:05:22.440

Jack Cannon: Make analogies like, for example, you can do an analogy,
you can tell the computer king is the Queen man is to and leave it
blank and it 'll give you the word woman because that's just the

relationship with these words i'll have.
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46

00:05:24.240 —> 00:05:30.180

Jack Cannon: So there's all kinds of cool things and then there's other
there's Another thing I think is pretty funny so check this out over

time .

47

00:05:30.660 —> 00:05:44.790

Jack Cannon: So someone did this over time, like so in the 1900s they
did a bunch of they did a word vectors for for 1900s and then you
see Okay, this is what gay looks like in 1900 daft flaunting

tasteful sweet cheerful.

48

00:05:45.930 —> 00:05:54.360

Jack Cannon: Then in the 1950s it 's closer to follow up some witty and
bright and then you go into 1900s now gay is more of like a

sexuality type of a thing.

49

00:05:54.870 —> 00:06:03.630

Jack Cannon: So you can kind of see how it more throughout time and how
you can see, you use these language models to look at these things

same with like you know broadcast awful.

50
00:06:06.300 —> 00:06:07.440

Jack Cannon: To understand why I was like.
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51
00:06:08.550 —> 00:06:09.240

Jack Cannon: What now.

52
00:06:09.390 —> 00:06:11.280

JoAnna Langberg: You understand why awful majestic.

593
00:06:12.750 —> 00:06:15.990

Jack Cannon: pitches had it it's like Oh, like a different.

o4
00:06:16.260 —> 00:06:16.560

JoAnna Langberg: it's like.

55
00:06:18.300 —> 00:06:21.480

JoAnna Langberg: yeah you're falling off and now it 's like.

56

00:06:24.780 —> 00:06:31.830

Jack Cannon: So that's kind of like the just you have language models
and then you use language models to do things and a lot of the main

task is getting.

o7
00:06:32.130 —> 00:06:44.100
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Jack Cannon: is to represent words as numbers in the most effective way,
the better, you can do this, the better your models are going to be
able to do things like predict what the next sentences, you know

understand sentences that people are saying.

58

00:06:44.430 —> 00:06:53.730

Jack Cannon: read a sentence and be able to tell if, like there's
negative emotion or positive emotion stuff like that all those tasks

are dependent on how good you can put words into.

59

00:06:54.540 —> 00:07:07.170

Jack Cannon: embedding as they're called and then one final thing i'll
say about this is, you can do this with words, but you can also do
the senses, you can project entire sentences down into a space like

this and you can project entire documents down so you can.

60

00:07:08.460 —> 00:07:22.860

Jack Cannon: The sky's the limit, of course, the longer the document is,
the harder it is but there's actually been some pretty good results
doing this, so sentences they're real similar to each other

linguistically should be putting each other down here, so the same.

61
00:07:23.010 —> 00:07:23.460

Jack Cannon: same thing.

7



62
00:07:24.420 —> 00:07:26.430

Jack Cannon: Okay that's all the background work.

63
00:07:28.770 —> 00:07:31.020

JoAnna Langberg: i'm an expert I got the lighting fixed.

64
00:07:33.870 —> 00:07:35.160

Jack Cannon: Oh, you did how'd you do that.

65

00:07:35.430 —> 00:07:42.360

JoAnna Langberg: I moved it down because there's a window behind me, so
it was taking the bright light of the window is the focus instead of

my pale face.

66

00:07:45.930 —> 00:07:54.780

Jack Cannon: Okay, so so now what i'll do is i'll present this research
paper this class is a been a lot of research paper reading which I

really like.

67

00:07:55.680 —> 00:08:04.800

Jack Cannon: So I think my Professor knows that i'm into like social
science applications so she I think she gave me this paper on

purpose, which I thought was pretty cool her to do.
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68

00:08:06.570 —> 00:08:20.010

Jack Cannon: So with That said, I shall present what was written versus
who read it news media profile and using text analysis and social

media contracts by Bali at all 2020 prison by jack in was truly.

69

00:08:21.930 —> 00:08:30.660

Jack Cannon: So the motivation for this project is that social media has
led to this trust crisis where traditional media are no longer

information gatekeepers.

70

00:08:31.890 —> 00:08:40.140

Jack Cannon: Anybody who has an audience can broadcast whatever content
they want to their audience and no one's really in control of that

anymore like they used to be.

71

00:08:42.990 —> 00:08:52.170

Jack Cannon: And, as a result of that you have fact checkers fact
checking organizations who have kind of risen up to address this

challenge , so you have.

72
00:08:52.890 —> 00:08:59.460
Jack Cannon: Sites like snopes politico fact etc so that's kind of what

they do and they do it manually.
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73

00:09:00.120 —> 00:09:08.850

Jack Cannon: Which kind of takes a long time, as you would suggest, as
you as you would think, and this is problematic because past

research research has shown that.

74
00:09:09.540 —> 00:09:13.380
Jack Cannon: viral claims are usually shared within 10 minutes they've

been posted.

75

00:09:13.920 —> 00:09:22.770

Jack Cannon: And then, when something is fake news that spread six times
faster than real news would and I guess, not only that, but it

reaches far more people as well.

76

00:09:23.550 —> 00:09:34.620

Jack Cannon: So to address this challenge this leads to our research
question which is, is it possible to build a real time fact checking

system and that's kind of what the authors are looking at here.

7

00:09:35.550 —> 00:09:44.460

Jack Cannon: So some of the assumptions that they're making is they want
to profile the medium and not the content and in this context

medium is just a news organization.
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78

00:09:45.540 —> 00:09:53.460

Jack Cannon: So they use that word throughout the paper and that's what
it means in this context, so when they say profile the medium they'

re basically saying that.

79
00:09:53.850 —> 00:10:03.690
Jack Cannon: They don't really have to worry about analyzing an article

or content it's just whoever put publish that content if they.

80

00:10:04.260 —> 00:10:14.310

Jack Cannon: have published a lot of faker bias content in the past they
're more likely do it in the future so we'll go ahead and flag that

content based on who's publishing it not the content itself.

81
00:10:15.270 —> 00:10:22.710
Jack Cannon: And then the last assumption they make is that bias bias in

factuality have both linguistic and social components to it.

82
00:10:23.370 —> 00:10:28.440
Jack Cannon: So that kind of leads to these three pillars of their

system which is.

83
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00:10:28.860 —> 00:10:39.000

Jack Cannon: They want to look at what was written, which is not just
the article is that the medium rights, but all the content they
produce so Twitter post YouTube video stuff like that in addition

articles .

84

00:10:39.570 —> 00:10:57.360

Jack Cannon: The second one is who read it , which is focusing on their
audience the assumption is that if if your audience is is biased one
way then you're probably bias to, and the third assumption is what
was written about them, so what does Wikipedia right about the

particular news organization.

85

00:10:59.250 —> 00:11:06.120

Jack Cannon: So with that said here's their system and i'm going to step
into more of these i'm going to step into these, one by one, but

basically you can kind of.

86

00:11:06.360 —> 00:11:14.220

Jack Cannon: Tell them basic, just as they have this web scraper that
for every news organization they collect articles YouTube videos

Twitter profiles.

87
00:11:14.730 —> 00:11:23.430
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Jack Cannon: They hit the Facebook marketing API and they get their
Wikipedia page they extract a bunch of features a bunch of

characteristics , out of it.

88

00:11:23.970 —> 00:11:35.790

Jack Cannon: And then they train a model to predict whether or not they
are biased, or whether the stuff they they printed they put out as

true or untrue and mixed stuff like that.

89
00:11:37.950 —> 00:11:43.740
Jack Cannon: So let's start with the first one and we'll talk about this

, what was written to there and we'll start with the articles.

90

00:11:43.950 —> 00:11:55.440

Jack Cannon: So the first thing they did they do is they extract these
linguistic features, so they went and collected a bunch of articles
for each news medium extracted bunch of the list of features and

they use this news landscape tool kit.

91

00:11:56.190 —> 00:12:11.010

Jack Cannon: From a previous paper and it 's not really important to
understand or digest everything that's in here, but just know that
there's just a bunch of different linguistic features like point of

speech or part of speech features linguistic stuff emotion.
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92
00:12:12.240 —> 00:12:19.020
Jack Cannon: features bias and subject to be features, so they kind of

utilize this tool to extract all of these things for each article.

93

00:12:19.470 —> 00:12:31.140

Jack Cannon: And even though this is at the article level the way they
roll this up to the news media level was they just average all of

these together to get a representation for for the news media.

94

00:12:33.180 —> 00:12:41.670

Jack Cannon: And then, then they use embedded features which is, which
is what we just talked about before the presentation started, and
that is, they use this BERT model.

95

00:12:42.210 —> 00:12:46.470

Jack Cannon: And what they did was they find to network model using.

96

00:12:47.490 —> 00:12:58.170

Jack Cannon: An external data set of articles , because they don't want
to bias their own work by by fine tinea model on the data set that

they 're trying to infer on and what they did was they fine tune Burt

97
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00:12:59.520 —> 00:13:14.790

Jack Cannon: To be more specific to their tasks so remember how I said,
it is a mass language tasks and the next sentence prediction tasks
well the task they're interested in is doing a bias prediction tests
, so they kind of fine tune, or to be a bias predictor instead of a

mess language model.

98
00:13:16.470 —> 00:13:18.420

Jack Cannon: And they encoded the articles.

99

00:13:19.470 —> 00:13:30.480

Jack Cannon: Using this fine tune model and they they basically took all
the articles and projected them down into that mathematical space

that that we looked at and they did that but yes.

100

00:13:30.870 —> 00:13:43.770

JoAnna Langberg: So when it was tuned to figure out bias did it look at
specific words or was it just because the medium is this or that

that 's how they that's how I figured it out.

101
00:13:44.640 —> 00:13:49.950
Jack Cannon: So they had a and i'll talk a little bit about the data set

after this but they had a data set that.

102
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00:13:50.820 —> 00:14:04.590

Jack Cannon: For each article it had a label on whether it was biased or
factual so they train the model by giving it the article and then
giving it the label and they basically tried to teach the model, how

to recognize bias and sexuality.

103
00:14:06.480 —> 00:14:06.630

Jack Cannon: Is.

104
00:14:07.020 —> 00:14:07.890

JoAnna Langberg: going to that later.

105
00:14:08.370 —> 00:14:11.430

Jack Cannon: yeah yeah i'll go into that a little bit later um.

106
00:14:12.540 —> 00:14:13.230

Jack Cannon: So.

107
00:14:13.710 —> 00:14:20.070
Jack Cannon: Also, what they did was one of the limitations in this

model is you can only put the five, the first 510 words into it.

108
00:14:21.600 —> 00:14:26.190
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Jack Cannon: So, if your article on in most of these articles are going

to be a lot longer than 510 so.

109
00:14:27.450 —> 00:14:35.160
Jack Cannon: There could be some limitations there but usually it's a

best practice, you can you put the first 510 words into the model.

110
00:14:35.700 —> 00:14:42.810
Jack Cannon: And then you average the word vectors for each of those

words to get the the actual decoding for the entire article.

111
00:14:43.800 —> 00:14:50.190
Jack Cannon: And there's a quick aside on that that i'll mention about

these first 510 words some previous work has shown that.

112
00:14:50.880 —> 00:14:55.620
Jack Cannon: Comparing two data sets one of them's an imdb data set of

movie reviews.

113

00:14:55.950 —> 00:15:03.510

Jack Cannon: And the other ones are Reuters data set, and I think this
warders one is news headlines, it might be news articles, but I

think it's news headlines.
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114

00:15:03.840 —> 00:15:11.430

Jack Cannon: But they're trying to show is that this maximum sequence
length is the amount of words that you put into the model before you

cut it off.

115
00:15:12.030 —> 00:15:19.170
Jack Cannon: And what they tried this shows that well in the Reuters

data, so if you cut down that maximum sequence length , then.

116
00:15:19.860 —> 00:15:24.900
Jack Cannon: Then what this is on the y axis is the performance of the

model how accurate, it was basically.

117

00:15:25.470 —> 00:15:35.640

Jack Cannon: It doesn't suffer very much it suffers a little bit you
know, and these are the blue and the orange are two different models

so both models didn't suffer very much from here to here.

118

00:15:36.060 —> 00:15:45.150

Jack Cannon: But from here to here they had a little bit of a dip but
not very much whereas on the imdb data set if you reduce the amount

of see.

119
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00:15:45.540 —> 00:16:04.260

Jack Cannon: sequence length, it takes quite a hit like this is like six
points from here to here and then like another six let's see 54 to
50, so this is like four points, and this is like six points, so the
authors of this previous paper thought that these imdb our reviews

are pretty long.

120

00:16:05.310 —> 00:16:14.970

Jack Cannon: That on average there and much longer than the than the
documents that were in this Reuters data set so this personalization

was much more severe that's just an aside on that.

121

00:16:16.560 —> 00:16:32.340

Jack Cannon: Then, the last thing they did was they calculated these
posterior probability vectors for each news article and the way they
did that was They ran our their articles through this bird model,

the same way they did in the previous step with articles.

122

00:16:33.690 —> 00:16:51.540

Jack Cannon: But instead they converted the output of that to a
probability , so in this case in this example, there are three bias
labels and three factuality labels which i'll go into later , but
essentially the bias is like left bias Center bias right bias and

the functionality is.

123
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00:16:53.820 —> 00:17:00.060
Jack Cannon: it's like high factuality mixture and low factuality or

something like that.

124
00:17:00.900 —> 00:17:01.530

JoAnna Langberg: or something.

125

00:17:02.010 —> 00:17:11.910

Jack Cannon: yeah basically so this probability the way you did you to
you if you put an article in and you got these vectors out the way

you interpret that is is that it's most likely a high bias.

126
00:17:12.090 —> 00:17:16.590
Jack Cannon: or i'm sorry a writing bias, because this the right leaning

part has the highest.

127

00:17:16.650 —> 00:17:33.990

Jack Cannon: Has the highest number, and that that they're most likely a
factual because the biggest number here is in the factual slot so
that 's basically what they did so they combine the linguistic
features , the embedded features in these prediction vectors and that

'"s how they included the articles.

128
00:17:35.730 —> 00:17:42.630
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Jack Cannon: Secondly, now we move on to YouTube videos they did the

same thing with the linguistic features they extracted them.

129

00:17:43.470 —> 00:17:58.050

Jack Cannon: From the news sites title description caption and tags from
the video, and then they also embedded those features by running
the description in the title through that Burt model and embed that

in encoded that.

130

00:17:59.970 —> 00:18:11.460

Jack Cannon: This last part I thought was really interesting , they also
took the audio from these YouTube videos and they process the speech
or the audio and they extracted a bunch of these acoustic features

they call them low level descriptors.

131

00:18:11.790 —> 00:18:24.300

Jack Cannon: From a previous research paper they implemented this open
smile toolkit So these are a bunch of acoustic features loudness
single energy pitch you know blah blah blah stuff like that so, then
they .

132

00:18:24.960 —> 00:18:31.710

Jack Cannon: They thought that this would be good, because these
features have been shown to be useful for like a motion detection

and speech I guess that.
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133
00:18:31.890 —> 00:18:35.010
Jack Cannon: kind of makes sense because our did you did you have a

question .

134

00:18:36.300 —> 00:18:47.010

JoAnna Langberg: or a comment as well , like that makes sense because,
like a lot of times you'll have a news anchor and they're all very
monotone you're like on today that it ended up whenever you have

like a.

135

00:18:47.610 —> 00:18:53.370

JoAnna Langberg: tea spill kind of a YouTube video it's always like then
this happened, blah blah blah it's like very.

136
00:18:54.120 —> 00:18:54.330

Jack Cannon: yeah.

137
00:18:54.360 —> 00:18:55.410

JoAnna Langberg: all over the place.

138
00:18:55.860 —> 00:19:00.720
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Jack Cannon: yep exactly like a lot of times they're more snarky you

know so.

139
00:19:01.860 —> 00:19:03.810

Jack Cannon: An angry quite free.

140
00:19:04.050 —> 00:19:05.490

JoAnna Langberg: More emotional yeah.

141
00:19:05.520 —> 00:19:06.240

For sure.

142

00:19:09.000 —> 00:19:18.600

Jack Cannon: Okay, so those were the is so the final part about that
first pillar of what was written what kind of content they produced

they went and got their Twitter profiles.

143

00:19:19.110 —> 00:19:31.350

Jack Cannon: And what they did with these Twitter profiles was the
encoded these with s Burt instead of birth, an expert stands for
sentence Burt it's a variation of birth it's kind of more designed

for embedding sentences for the most part.

144
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00:19:31.800 —> 00:19:36.120
Jack Cannon: And they they kind of they had two reasons for using this

and that is that.

145
00:19:36.930 —> 00:19:38.820

Jack Cannon: The Twitter profiles that they scraped.

146

00:19:39.120 —> 00:19:46.980

Jack Cannon: They didn't really have enough data to fine tune Burke,
because with these machine learning models, you really need a lot of
data that's kind of what makes them powerful because the more data,

you have the better.

147
00:19:47.310 —> 00:19:50.070

Jack Cannon: So they didn't really have enough data to fine tune it .

148

00:19:50.370 —> 00:20:03.600

Jack Cannon: So, and then the second thing was that Twitter profiles
kind of kind of more they look more like sentences than they do
documents or articles , so they use the sentence model, specifically

for for encoding Twitter profile descriptions.

149
00:20:04.140 —> 00:20:15.150
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Jack Cannon: And the other thing they did was they they got metadata
such as well, they calculated statistics from these Twitter profiles
like are they verified , you know what geographical region number of

followers so on and so forth.

150
00:20:15.720 —> 00:20:20.760
Jack Cannon: And then, for any news medium that didn't have a Twitter

profile , they just got all zeros everything was zero now.

151
00:20:22.020 —> 00:20:25.980

JoAnna Langberg: But it include like emojis or was it just words.

152

00:20:26.370 —> 00:20:42.960

Jack Cannon: um I don't know I mean they basically I don't think it
included a mo geez I think they they did like six or seven of them,
and it was just number of followers maybe number of retweets or
something like that, but emojis might have been an interesting thing

to capture for sure.

153
00:20:46.620 —> 00:20:49.290

Jack Cannon: That we move on to the second pillar, about making.

154
00:20:50.970 —> 00:21:03.270
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Jack Cannon: inferences about the audience and the key idea is that your
audience is indicative of your political leanings so maybe this
will , this will help give more information about predicting whether

or not a medium is biased in our factual.

155
00:21:04.320 —> 00:21:04.830

Jack Cannon: So.

156

00:21:06.360 —> 00:21:16.200

Jack Cannon: What they did was for each news proof news medium they went
and found 5000 Twitter followers for each one and they went, and

they got all their profiles.

157

00:21:16.560 —> 00:21:33.360

Jack Cannon: And they embedded their profile descriptions with expert
the same way that they did in the previous slide with the the other
Twitter data and then for all 5000 in coatings than the average

those together to get a single embedding for the entire medium.

158
00:21:35.010 —> 00:21:43.830
Jack Cannon: Now, the second part was interesting I never heard this

before , but there's a Facebook marketing API and.

159
00:21:45.030 —> 00:21:56.070
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Jack Cannon: So it's not a surprise that Facebook knows everything about

us and they have a profile for all all everybody everybody who's a

Facebook user has a profile they've put together profile.

160

00:21:56.580 —> 00:22:09.900

Jack Cannon: And they've absolutely profiled which side of the political
spectrum you're on,

so what they did was given a particular ID for

news medium they call it interest ID I guess

it 's because.

161
00:22:10.680 —> 00:22:15.390

Jack Cannon: You can pick things as your things that you're

interested
in on Facebook, so if.

162

00:22:16.080 —> 00:22:26.430

Jack Cannon: For example, if you have an

if you have the ID for fox news
, you can query the Facebook marketing API and you can get all the
users who are

interested in fox news.

163
00:22:26.880 —> 00:22:32.160
Jack Cannon: So,

not only do you get the users,

but then you get where
Facebook thinks they are in the political spectrum.

164

00:22:32.640 —> 00:22:37.890
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Jack Cannon: So they bring back about seven buckets and It ranges from

very liberal are very conservative.

165

00:22:38.550 —> 00:22:48.330

Jack Cannon: So once they've done that, for each news media once they've
received the results of this query and they have this set of users

and their political spectrums their political orientation.

166

00:22:48.690 —> 00:23:03.660

Jack Cannon: They extract the distribution of the political orientation
from the audience, so you can kind of tell in general, where the
audience is on the on the spectrum and that that was the feature for

this Facebook interest ID.

167
00:23:05.850 —> 00:23:11.490
Jack Cannon: So it 's not called out on the paper for looking at audience

is more YouTube stuff.

168

00:23:11.850 —> 00:23:22.050

Jack Cannon: So it's not displayed in the system diagram but they
extracted a bunch of general audience interaction stats just number

of likes number of views dislikes comments number of comments, etc.

169

00:23:22.620 —> 00:23:28.530
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Jack Cannon: And then they average those out as well to get the news

level representation.

170
00:23:29.310 —> 00:23:31.770

Jack Cannon: So we go to the final part what was written about him.

171

00:23:32.130 —> 00:23:43.800

Jack Cannon: And this was just for each news medium they got their
Wikipedia page and they encoded the Wikipedia page the exact same
way they did with the news articles , so they use the fine tune Burt

model and encourage them that way.

172
00:23:44.220 —> 00:23:50.520
Jack Cannon: And the so for mediums that didn't have a Wikipedia page,

they just got it got it out same with the Twitter.

173
00:23:52.080 —> 00:23:53.310

Jack Cannon: So that yes.

174
00:23:54.150 —> 00:24:02.880
JoAnna Langberg: See not we already mentioned that they also go to like

that news media's website or was it just a Wikipedia page.

175
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00:24:03.240 —> 00:24:04.650

Jack Cannon: Just the Wikipedia page.

176

00:24:05.940 —> 00:24:22.230

Jack Cannon: yeah so so that's a good question so they the, the purpose
of the Wikipedia was to see what's written about them on Wikipedia
and to see what the medium thinks about themselves, they use their
Twitter profiles and then their YouTube channel descriptions for

that .

177

00:24:23.850 —> 00:24:31.680

Jack Cannon: yeah but I probably what you're thinking is that well , what
does the websites description say about who they are, and what your

values are yeah exactly.

178

00:24:34.320 —> 00:24:39.930

Jack Cannon: um so this kind of goes back to the question you had
previously about what data they were using and how they were using

it.
179
00:24:40.410 —> 00:24:46.980

Jack Cannon: So there's this website it 's a media bias fact check

website and what they do is they have about.

180
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00:24:47.460 —> 00:24:57.960
Jack Cannon: Right now, I checked the other day, and it was like 3100
news organizations that they've profiled on their website and what

they do is for each news organization.

181

00:24:58.320 —> 00:25:09.450

Jack Cannon: They give them a bias ranking and affection quality ranking
and there's actually more book it's in this right here like on the

political bias, they give them I think it 's.

182
00:25:10.740 —> 00:25:20.520
Jack Cannon: Left left Center Center right Center in right, I think, is

what they do, but the authors looked at a lot of those like.

183
00:25:21.450 —> 00:25:26.340
Jack Cannon: In between buckets and thought that they might have been a

little ill defined so they dropped them.

184

00:25:26.820 —> 00:25:39.720

Jack Cannon: And then, they also chose the merge the categories like
left Center and left , they just put them into the Left bucket so
they kind of made some executive decision on what they did with the

labels there, and on the factuality.

185
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00:25:41.880 —> 00:25:51.930
Jack Cannon: I think these three were always there low mixed in high so

it 's like mixed is like sometimes they factual sometimes they're not

186

00:25:53.670 —> 00:26:04.770

Jack Cannon: What it was all said and done, they they ended up with 864
news mediums and you can kind of tell by eyeballing this that they'

re not representative Lee.

187

00:26:05.400 —> 00:26:16.350

Jack Cannon: they're, not even the representative between the buckets so
it's it's an those are in balance classes, as we say in machine

learning so that that come that's going to come into play later.

188
00:26:16.920 —> 00:26:22.650
Jack Cannon: The other interesting thing is a these data sources and I

just went over Wikipedia pages Twitter blah blah blah.

189

00:26:23.640 —> 00:26:33.060

Jack Cannon: These were the this was the percent complete this they were
able to get for these news mediums so it's like of all the news

mediums of these 864 news mediums they only.

190
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00:26:33.720 —> 00:26:45.810
Jack Cannon: Only half of them had YouTube pages only 60% of them had a
Facebook interest ID so on and so forth, so this was kind of

incomplete here only 60% of them had a Wikipedia page.

191
00:26:46.350 —> 00:26:51.210
JoAnna Langberg: So that's what that means so it's like 50% of them had

a YouTube page or 15 or like.

192
00:26:52.080 —> 00:26:59.010
JoAnna Langberg: Out of total the total numbers like 50% completed like

they had all the information in their YouTube page.

193
00:26:59.550 —> 00:27:02.970
Jack Cannon: Oh no it's 50% of them had a YouTube page.

194
00:27:03.360 —> 00:27:07.440
JoAnna Langberg: Okay, so it's like percentage of the total number of

mediums .
195
00:27:07.800 —> 00:27:10.020

JoAnna Langberg: Yes, okay yeah.

196
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00:27:12.660 —> 00:27:14.820

Jack Cannon: So the experimental setup was they.

197

00:27:14.970 —> 00:27:25.290

Jack Cannon: extracted all these features that we just went over in
detail and given those features they trained a model to predict

whether or not that particular news medium.

198

00:27:25.920 —> 00:27:34.320

Jack Cannon: They you know to test the first task is how by a star they
give a bias prediction, the second task is, you know how effectual

are they.

199

00:27:34.950 —> 00:27:48.150

Jack Cannon: Give a prediction for that so they did a appalachian study
which i'1l go over in the next few slides but all that is is you

train a bunch of components to your system individually .

200

00:27:48.570 —> 00:27:58.440

Jack Cannon: So you can see the contribution that each part of the
system has and because they did that ended up with like 60 models so

they they trained, a lot of models.

201
00:27:59.040 —> 00:28:06.540
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Jack Cannon: And the the model that they chose to use the the the
classes that class of model, the type of model was asked me to

support vector machine.

202

00:28:07.350 —> 00:28:15.630

Jack Cannon: And the way they did it was they did a five fold cross
validation procedure and tune their hyper parameters on the grid

search that don't really worry too much about that.

203

00:28:17.010 —> 00:28:32.460

Jack Cannon: And they evaluated the models using this macro F1 score,
which is kind of an average of how many correct so it's like of the

different classes, the computer team, like, for example, um.

204
00:28:34.350 —> 00:28:41.820
Jack Cannon: But you know left by a Center bias right bias, how many of

the right biased truly right bias ones, did you get right.

205
00:28:43.740 —> 00:28:47.370

Jack Cannon: versus how many of the.

206
00:28:49.020 —> 00:28:52.470
Jack Cannon: Of all the errors so it's hard to explain just basically

like .
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207
00:28:54.870 —> 00:29:10.920

Jack Cannon: How precise were you and then of the things that you got

wrong where you more wrong on certain classes and you were on other
classes , so this just kind of averages up that's what this macro
point score is your kind of gives a full representation on how well
the model performed.

208
00:29:11.670 —> 00:29:27.060

Jack Cannon: And the reason why you want to use F1 score is because the

classes were in balance, like I showed on the left , look last slide

if there were the exact same number in each category, then you could

just use a straight up accuracy percent correct ,

and that would be
it.

209

00:29:30.120 —> 00:29:39.540

Jack Cannon: So we'll start with the results with the bias prediction ,
so this is, this is what I meant by aberration study each row is a
model .

210
00:29:40.080 —> 00:29:54.180

Jack Cannon: That got trained with a certain set of features and then

the performance was evaluated on that set of features, so you have

you know the articles YouTube videos, then you have all of those

things combined.
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211

00:29:54.570 —> 00:30:03.120

Jack Cannon: Various combinations of them so on so forth, and this I
just learned what an aberration study was when I was reading this

paper and it comes from.

212

00:30:04.080 —> 00:30:12.450

Jack Cannon: I think neuroscience where when researchers were trying to
understand how the brain works, they knew that there were like

different subsystems of the brain.

213

00:30:12.750 —> 00:30:20.160

Jack Cannon: So what they would do is they would like remove one
subsystem and see how that impacts, the brain like they would do

that on the animals basically.

214

00:30:20.700 —> 00:30:33.810

Jack Cannon: and see how the brain performed when it was missing this
particular subsection and they would do all kinds of combinations on
that to try to get a picture on how the brain works which I kind of

cringe a little bit when I when I read that.

215
00:30:34.530 —> 00:30:35.460

JoAnna Langberg: The call.
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216
00:30:35.550 —> 00:30:36.780

Jack Cannon: yeah yeah.

217

00:30:38.490 —> 00:30:48.030

Jack Cannon: So I guess the the the best model in this bias prediction
is all the features from a, which was the what was written all the

features from the.

218
00:30:48.300 —> 00:30:50.040

Jack Cannon: And with a PDF features.

219
00:30:50.130 —> 00:30:50.910

Jack Cannon: All together.

220
00:30:51.930 —> 00:30:56.910
Jack Cannon: It turns out that that got this 85% accuracy type of a

score.

221

00:30:58.860 —> 00:31:11.970

Jack Cannon: But there are some interesting things to look at like when
when they took the features of just taking the articles and encoding

them with Burt just doing that got them like 79% so that actually
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performed pretty good.

222

00:31:14.160 —> 00:31:25.200

Jack Cannon: um, whereas the best model here in this a section was all
of the features combined together got you at 1% So if you really

cared about doing the extra work.

223

00:31:25.860 —> 00:31:36.870

Jack Cannon: You could bump your accuracy from 79 to 81 but really the
takeaway from this is that the advert representations, with just the
articles are good enough you didn't even need to mess with YouTube

or Twitter.

224
00:31:39.210 —> 00:31:41.310

Jack Cannon: The Twitter followers were more important.

225

00:31:42.870 —> 00:31:54.690

Jack Cannon: than the news mediums own bio which that kind of confirms
the hypothesis that you know the bias of your audience will be

indicative of your bias.

226
00:31:57.210 —> 00:31:59.070
Jack Cannon: And YouTube helped a little bit.
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227

00:32:00.450 —> 00:32:12.540

Jack Cannon: When it came to analyzing the audience stuff YouTube helped
, but Facebook actually hurt hurt it so Facebook turned out not to

really be an important predictor here.

228

00:32:13.350 —> 00:32:22.770

Jack Cannon: except for the fact that you know I think they thought that
your Facebook audience could be more politically diverse than you

would think.

229

00:32:23.280 —> 00:32:35.910

Jack Cannon: So that may not be the best signal for whether or not your
bias just by looking at the the distribution of your Facebook
audience that's kind of what they thought and then Wikipedia just

straight up just perform poorly 64%.

230

00:32:37.830 —> 00:32:49.560

Jack Cannon: And, in general, the poor coverage is kind of where I
mentioned the last slide in general, like the Wikipedia the YouTube
Twitter like they weren't able to collect data for all of the news

medium, so if.

231
00:32:50.100 —> 00:33:01.290
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Jack Cannon: In theory, I guess, if they were able to do that maybe
maybe some of these results will be a little bit better, but right
now that's probably that could be what what is making these these

predictions so bad.

232

00:33:03.870 —> 00:33:15.210

Jack Cannon: So now, if you look at the factuality prediction, you can
tell right off the BAT like i'll go back to this slide like you know
you have some pretty high number 7981 and then the best model was
like 84.

233

00:33:15.630 —> 00:33:32.970

Jack Cannon: But then, if you look at factuality The numbers are a lot
lower like 60 4067 their best model got 67 and that was a
combination of the a and the sea features so Wikipedia plus what was

written .

234
00:33:35.400 —> 00:33:40.860
Jack Cannon: In the same is true as as in the last task is up here like

the.

235

00:33:41.640 —> 00:33:57.720

Jack Cannon: representations from the articles were enough like he didn'
t really need to do very much else, adding the rest of the the data

only bumped you from 61.46 61.5 so it's like not even worth wasting
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your time going through YouTube videos and Twitter profiles and so

on and so forth.

236

00:33:59.550 —> 00:34:18.090

Jack Cannon: And here for the Twitter, the results were reversed from
the last one in the last one, the Twitter followers give you a
higher score, but in this one, the the Twitter profile of the medium
itself gives you a higher score so for factuality This gave a

better signal than the followers did.

237
00:34:19.470 —> 00:34:20.640

Jack Cannon: And that was because.

238

00:34:22.410 —> 00:34:29.610

Jack Cannon: yeah you know I mentioned that the results were pretty bad
in this factuality tasks and the authors kind of hit the nail on the
head.

239

00:34:30.330 —> 00:34:40.710

Jack Cannon: When they are kind of analyzing this and basically was just
like look if you're going to predict facts well, you need to have

some sort of external data source or knowledge base like.

240
00:34:41.310 —> 00:34:45.060
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Jack Cannon: You can't analyze the linguistic structures of sentences or

241

00:34:45.600 —> 00:34:57.750

Jack Cannon: The content of your audience like in order to actually know
if something's true you actually have to go verify at the source
that it's true and that's a hard thing to do so that's kind of why

they made this claim and I actually agree with that.

242

00:34:58.920 —> 00:35:09.630

Jack Cannon: So the conclusion after all is said and done, the thing
that was most important is what they actually write the content they

produced, and specifically the articles that they write.

243

00:35:10.650 —> 00:35:23.040

Jack Cannon: But if you add context from social media, it will help a
little bit, but not much, and again if they weren't able to collect
more complete data and get more social media context, maybe that

would help.

244

00:35:24.600 —> 00:35:32.190

Jack Cannon: So the strengths, I thought that they did some very
creative feature engineering like specifically with extracting the

audio features from YouTube.
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245

00:35:32.610 —> 00:35:47.700

Jack Cannon: That was pretty cool system diagram I thought was easy to
understand , they seem to do a very thorough analysis of their
results , and they were not shy about you know admitting what the

limitations of their of their system was.

246
00:35:49.500 —> 00:35:56.940
Jack Cannon: And so now i'm going to give some of my thoughts about this

i'm not going to call out any weaknesses, because.

247

00:35:57.450 —> 00:36:07.200

Jack Cannon: This is more of like a subjective thing, and since they're
applying their system to social sciences, a lot of the key

assumptions they make are subjective so, for example.

248

00:36:07.860 —> 00:36:14.850

Jack Cannon: I don't think you should use bias as a feature for
factuality prediction, not only is factually prediction hard in

general but.

249

00:36:15.870 —> 00:36:24.690

Jack Cannon: Just because someone's biased politically doesn't mean that
they 're giving you wrong information, so I don't really like that

they use that as a signal.
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250
00:36:25.830 —> 00:36:29.730
Jack Cannon: book and that's because biases isn't necessarily bad for

that reason.

251

00:36:30.660 —> 00:36:37.650

Jack Cannon: But bias is bad when you have a news media that says they'
re balanced but they're really not balanced that's that's when I

think bias is a problem.

252

00:36:38.220 —> 00:36:49.950

Jack Cannon: And they're basically blind to the public that point
because it 's not like we have the time to be researching all these
super complicated topics that's kind of what journalists are

supposed to do so if they're not doing it right from that's wrong.

253

00:36:53.310 —> 00:37:03.210

Jack Cannon: They kind of made an assumption at the beginning of the
paper they thought that the trust crisis was caused by social media
and all the you know information that's been flooded into the public

sphere.

254
00:37:03.510 —> 00:37:14.370
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Jack Cannon: Such that you know traditional media can't protect us from
it anymore, and that that's the trust crisis, and I think that the
the traditional media is part of the problem themselves so you can

see.

255
00:37:15.900 —> 00:37:19.710

Jack Cannon: You know this came out last week just a study.

256

00:37:20.220 —> 00:37:32.400

Jack Cannon: And there's a lot of studies that are similar to this to
happen over time how people feel about traditional media, but they
were kind of saying, trust is kind of an all time low, you know only

46% of people trust with the traditional media says.

257

00:37:34.170 —> 00:37:48.540

Jack Cannon: And furthermore fact checkers that are these fact checking
websites no political fact they are just journalists themselves so
they are, they are the traditional media so it 's kind of like the

circular circular thing, where you have.

258

00:37:49.110 —> 00:38:01.980

Jack Cannon: problematic traditional media, then you have them trying to
regulate themselves so if they're biased, then that bias is going

to recycle itself in these quote unquote facts that are being

checked .
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259
00:38:04.020 —> 00:38:06.780

Jack Cannon: over here on the left hand side or on the right hand side.

260

00:38:07.380 —> 00:38:19.140

Jack Cannon: I took this order I took this graph from Article that came
out last year and this guy basically went and he did a word search
on this lexis nexis database and this just has pretty much every

news article.

261

00:38:19.500 —> 00:38:29.520

Jack Cannon: They they have been collecting every news article since the
early 1900s so you can do keyword searches, so he did a keyword

search on like.

262

00:38:30.330 —> 00:38:38.040

Jack Cannon: a bunch like 70 polarizing terms, and you can see, the
trend and how many times, this shows up in a lot of these news

articles .

263

00:38:38.340 —> 00:38:55.260

Jack Cannon: And it's like right around here like 2009 2010 you start to
see this spike and all the charts look like this with these

polarizing terms they all look like this, where there's the spike in
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2010 and you have to ask yourself well this seems to confirm the

theory that.

264

00:38:56.970 —> 00:39:08.040

Jack Cannon: Part of this explosion social media took audiences away
from these traditional media of everybody who used to just watch CNN

all the time or read the Washington Post every day.

265

00:39:08.310 —> 00:39:15.240

Jack Cannon: Now they don't really have that have to do that anymore,
because they have other sources of information so in order to get

these people back.

266

00:39:15.750 —> 00:39:26.730

Jack Cannon: You kind of have to resort to extreme measures and that's
kind of what the theory is about why this is happening I block this
out just because it's a polarizing term and i'm not trying to do

that, to the class.

267

00:39:28.470 —> 00:39:40.620

Jack Cannon: So I guess what i'll say, the last thing i'll say is a good
fact checking system should remove the human component completely
so if someone could somehow design a system that is able to query a

database of.
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268

00:39:42.330 —> 00:39:52.380

Jack Cannon: source database, such as economic data if a system can
retrieve that data automatically That would be good, but just

looking at what in fact checker say is really good.

269

00:39:53.970 —> 00:40:03.780

Jack Cannon: And then, this also presents kind of ethical issue, so this
made me cringe this came across my feed on Sunday, and it was the

glue alphabet seo.

270

00:40:04.440 —> 00:40:10.770

Jack Cannon: You know, fighting information is cool at the heart of
everything , Google does and in the article , they were talking about

how .

271

00:40:11.340 —> 00:40:23.250

Jack Cannon: it's a major part of what their goal is, as far as what the
search algorithm does, and of course YouTube is part of Google, so

that is kind of baked in all this, and he said right now, they have.

272

00:40:23.670 —> 00:40:31.530

Jack Cannon: A large human component to do this, but they also have a
large Ai component to doing that so systems like this are going to

be used for.

119



273

00:40:32.640 —> 00:40:40.500

Jack Cannon: flagging things that are misinformation, if you will, so it
's an ethical issue because you kind of got to ask yourself the

question .

274
00:40:42.060 —> 00:40:43.890

Jack Cannon: First off should something be.

275

00:40:45.450 —> 00:40:53.700

Jack Cannon: Trying to label, something is misinformation and what are
they going to do when they and then, if you can do that, why would

you want to do that.

276
00:40:54.000 —> 00:41:00.120
Jack Cannon: And that kind of beds That begs the question of you know,

is something misinformation or as an information that you just don't

like .

277
00:41:01.020 —> 00:41:08.490
Jack Cannon: Or is something hate speech, or is it just speak the speech

that you hate, so this kind of can lead to censorship.

278
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00:41:08.940 —>
Jack Cannon: And

00:41:22.890

that 's something we definitely want to be careful of

when we're when we're looking at these types of things, so thank you

very much for your time i'll leave you with a nice quote with from

a pillar of classical liberalism and thank you for your time and do

you have any questions.

279
00:41:46.260 —>

JoAnna Langberg:

280
00:41:52.920 —>

JoAnna Langberg:

281
00:41:58.440 —>
Jack Cannon: All

282
00:42:01.980 —>

Jack Cannon: lot

283
00:42:04.860 —>

Jack Cannon: For

284
00:42:09.420 —>

00:41:47.730

that 's what I would say at the end of.

00:41:54.600

It was hot.

00:41:59.010

right .

00:42:03.330

of material.

00:42:06.210

this next data set.

00:42:10.890
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Jack Cannon: So i'm going to stop sharing.

285
00:42:13.530 —> 00:42:14.400

JoAnna Langberg: or stop recording.

286

00:42:14.970 —> 00:42:17.610

Jack Cannon: Start recording it was just testing you.
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