
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

3-10-2022 

Using Intrinsically-Typed Definitional Interpreters to Using Intrinsically-Typed Definitional Interpreters to 

Verify Compiler Optimizations in a Monadic Verify Compiler Optimizations in a Monadic 

Intermediate Language Intermediate Language 

Dani Barrack 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Computer Sciences Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Barrack, Dani, "Using Intrinsically-Typed Definitional Interpreters to Verify Compiler Optimizations in a 
Monadic Intermediate Language" (2022). Dissertations and Theses. Paper 5923. 
https://doi.org/10.15760/etd.7794 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5923&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5923
https://doi.org/10.15760/etd.7794
mailto:pdxscholar@pdx.edu


Using Intrinsically-Typed Definitional Interpreters to Verify Compiler Optimizations

in a Monadic Intermediate Language

by

Dani Barrack

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Computer Science

Thesis Committee:
Mark P. Jones, Chair
Andrew Tolmach

Katherine Casamento

Portland State University
2022



i

Abstract

Compiler optimizations are critical to the efficiency of modern functional programs.

At the same time, optimizations that unintentionally change the semantics of programs

can systematically introduce errors into programs that pass through them. The

question of how to best verify that optimizations and other program transformations

preserve semantics is an important one, given the potential for error introduction.

Dependent types allow us to prove that properties about our programs are correct, as

well as to design data types and interpreters in such a way that they are correct-by-

construction. In this thesis, we explore the use of dependent types and intrinsically-

typed definitional interpreters in progressively larger subsets of Monadic Intermediate

Language (MIL) to verify optimizations used in a compiler back end. In particular, we

prove non-trivial program optimizations using the Agda proof assistant, and illustrate

the benefits and challenges of this style of program verification.
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Chapter 1

Introduction

1.1 Fixing the Therac-25

The Therac-25 was a radiation therapy machine in service from 1982-1987 that,

due to problems in the software design and tools available at the time, resulted in the

deaths of four patients, and left two others with life-altering injuries [Lev95]. The

cause of this error was an intersection of bad design decisions, which included removing

the hardware interlocks that were present on the previous model, and relying instead

on software correctness to prevent catastrophic error. On a programming level, the

designers did not sufficiently separate user input from device operation and used a

very stateful design that did not prevent errors by design.

The Therac machine consisted of an electron gun that could operate in two

different modes: a low-energy mode and a high-energy mode. The low-energy mode

was intended to be used for direct electron-beam therapy, where the output of the

electron gun was fired directly at the patient using magnets to distribute the beam

over a safe area. The high-energy mode was used for X-ray therapy, in which the

extremely high power electron-beam was first aimed at a target, which converted it

to X-rays, which then passed through a metal flattening filter, a collimator used to
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direct the beam, and finally an X-ray ion filter, before reaching the patient. The

energy needed to overcome these multiple layers of material and transmit a sufficient

dose was approximately 100 times higher than it needed to be in direct electron-beam

therapy mode.

These filters and magnets were arranged on a motorized turntable, controlled

by a computer. It should be obvious that, given the difference in energy output, it is

absolutely essential that the flattening filter and target are in between the electron gun

and the patient when in X-ray mode to avoid an over 100 times overdose that would

result from a mismatch between table alignment and power settings. As mentioned

above, hardware interlocks were not present on the device, so no hardware or physical

controls prevented this mismatch from occurring.

If we wanted to fix the Therac-25 today, what tools could we use to solve not

just this problem, but problems like it? In essence, the problem with the machine was

that there was a traversable execution path that skipped around the checks meant

to protect against these configuration mismatches, with fatal consequences. Unlike

in the 1980s, we have more advanced tools to work with today. Instead of a custom

real-time operating system, a modern iteration could use a unikernel model or simply

a small Linux computer to manage console interactions and supply a scheduler, which

were nontrivial causes of the race conditions that led to the Therac software being

so error-prone. In addition, instead of the assembly language that was used in the

Therac software, we have more advanced programming languages that give us the

ability to reason more clearly and explicitly about limiting the set of valid paths in

our programs.

Using a functional language with strong static types, we can imagine a pipeline

that accepts user input and packages it in a “UserInput” type. We can then imagine
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User Input ValidatedSettings ConfirmedSettings j

ValidationError ConfimationError

validate confirm treat

validate confirm

Figure 1.1: Strong types preventing the Therac-25 malfunction

that it passes next through a validation step, where the user input is either determined

to be invalid (in which case an error is thrown), or it is determined to be valid and

translated into a “ValidatedSettings” type. We can further imagine a process where

the validated settings are displayed on a screen, thus eliminating concerns about user

input that is not registered overwriting the actual consistent package of settings, and

where, upon confirmation from the user that the settings are correct, a signal is given

to the turntable to rotate into the proper position and ensure that the beam directing

and transforming apparatus is in place. The program could then confirm that the

actual settings match the hardware detected settings, and wrap this in an additional

“ConfirmedSettings” type. The function that applies the treatment could then, via

strong typing, only accept a ConfirmedSettings value. In doing this, we set up a

composition of functions that separate input from execution via a series of validation

steps, in which skipping a step results in a type error and thus compilation failure.

By using richer types, we can rule that error as impossible in any code that compiles

with this type system.

1.2 Software correctness matters

Software correctness matters. Computers are integrated into almost every critical

system that exists, from nuclear reactors, to power plants, to pacemakers, to vehicle
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control systems. Errors in our programs become errors in the physical world, and

errors in our lives. Some of these errors are obvious, like overdosing one’s patients with

radiation, causing airplane crashes [MPŠ+20], or leaking confidential information to

the world. Others are much less so, such as systematically excluding certain genes from

analysis in biological research [ZEE16], or arbitrarily ruling candidates as undesirable

due to specific word choice or order in applicant tracking systems [Web12].

Software is necessarily extremely complicated. Even the 1993 video game DOOM,

a relatively simple piece of software compared to modern systems, is made up of

over 60,000 lines of source code [Car97]. Conveniently, there is no catastrophic result

if one’s DOOM game crashes1, it seems that this is the exception, not the rule of

software errors. In addition, even 60,000 lines of code is far beyond one developer’s

ability to understand inside and out. And without some systematic guarantees, it

will be very hard to reason about what any non-trivial program actually does. This,

however, implies that there is some standard by which to measure what a program

should do against what it actually does. What tools do we have to reason about

programs in this way?

Ad-hoc testing is a simple approach in which a person manually runs functions

or programs in an interpreter or via a terminal, attempting to judge the correspon-

dence between what is output, and what they think should be output by a correct

program [Bla02, p.94]. If one writes these down and generates an automatic way to

run all of these tests, this becomes unit testing [Ham04, p.13]. The implication here,

however, is that there is an idealized model of the program represented in the mind

of the developer, and against which the program can be tested by picking individual

inputs or sets of inputs manually and seeing if the outputs correspond to what is
1Possibly dependent on one’s definition of catastrophic result.



CHAPTER 1. INTRODUCTION 5

expected. But there are many problems with this: the model may not be consistent

over time, the method of testing against it passes through the programmer, which is

the primary source of error in software development and which is rate limited and

labor-intensive; and this mental model is not assured to be internally consistent. Each

of these factors results in this modeling strategy being insufficient. One can attempt

to write a model system down as a specification, but in effect that is what one is

attempting to do by programming. Even when one can write down a formal model

that can be tested against, how do we know that the model has the properties we

care about, and that it behaves as we expect, and how do we even specify what “we

expect”?

1.3 Properties that should hold

Consider a typical implementation of a stack in a C-like language. The stack

itself is represented by two int values representing the number of members of the

stack and the capacity, followed by a pointer to an array on the heap. We are supplied

with functions that allow pushing an object onto, and popping the top object off

the stack, as well as functions to clone and compare equality between two stacks.

It seems reasonable that there are important properties about this stack and these

operations that should hold. For example, pushing some object onto the stack and

immediately popping it off should leave the stack in its original state. This property

can be represented by stating that the following function, pushPopProperty, should

return true for any stack and any value (where the s1 == s2 compares the two stacks

for equality of contents).
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Figure 1.2: An idealized stack

bool pushPopProperty<T>(Stack<T> s1, T x){

Stack<T> s2 = s1.clone();

push(x,s1);

T y = pop(s1);

return (s1 == s2);

}

Assuming an implementation for which this holds, consider what would happen

if we accessed the memory location of the stack, offset it to access the capacity and

the size, and overwrote them with larger values than they originally contained, as

shown below.

bool pushPopProperty<T>(Stack<T> s1, T x){

Stack<T> s2 = s1.clone();

push(x1,s1);

int* s1_addr = &s1;

s1_addr[1] = 30000;

s1_addr[2] = 30000;
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T y = pop(s);

return (s1 == s2);

}

It seems clear that, in addition to being a security vulnerability (this could allow

one to access memory past the end of the stack) [PLO21], this could cause the property

mentioned previously to fail, as the pushed value would likely not be at precisely the

index we set as the top of the stack. But consider a less deterministic procedure, one

that repeatedly writes a random integer into a thousand random memory locations

between pushing and popping the stack, as shown below. It should be clear that this

property does not always hold in this context, even though this function may return

true the vast majority of the time.

void sideEffect(){

int* adr;

for( int i = 0; i <1000; i++) {

adr = randAddress();

*adr = randInt();

}

}

bool non-DeterministicpushPopProperty<T>(Stack<T> s1, T x){

Stack<T> s2 = s1.clone();

push(x,s);

sideEffect();

T y = pop(s);

return (s1 == s2);
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}

Although these specific examples seem contrived, analogous things often occur

unnoticed. Off by one errors, for example, can write past allocated blocks of memory,

causing data corruption [21c]. Multiple references to the same memory location can

result in unpredictable behavior, where values can be invisibly changed in unnoticed

function calls [ACD+15]. Simply put, this means that, even if one’s data structure

seemingly conforms perfectly to some specification, aliasing and arbitrary memory

access renders the abstraction transparent, and in doing so converts assurances to

suggestions.

There have been attempts to limit features of languages, to render their ab-

stractions opaque. For example, Haskell is a pure language [Mar10], and as such,

all side effects must be explicit and in the context of a specific IO monad2 In safe

Rust, there is the ability to mark variables as immutable, arbitrary memory access

is disallowed [KN19], and the type system enforces a memory ownership mecha-

nism preventing variables from being modified and then accessed in the original

context [JJK+17]. The reason our example stack-related programs above let us pierce

the veil of the abstraction, so to speak, is that they did not give us strong language

guarantees against accessing the memory underlying our data structures or limit the

casting of pointers. Another way of thinking about this, which will become important

later, is that some programming languages allow us to reason explicitly about concepts

like ownership, mutability, and side effects by raising them into the realm of the type

system.
2Except for certain explicitly unsafe functions in the foreign function interface [Mar10], as well

as in the GHC implementation and standard library, such as the dreaded unsafePerformIO which
allows one to extract a “pure” value from an IO value [GHC01b].
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Eventually, regardless of their source language, many programs run on a physical

computer3. Memory locations are written and re-written. Data is loaded into the

processor, mutated, and shuffled back into memory. The computation is inherently

stateful, and the assembly language native to that architecture (with some exceptions

currently in the research space [XH01]) is generally not typed. How is the gap bridged

from these guarantees in the top-level language to a free for all? In the formal study of

type systems for lambda calculus we speak of type erasure [Pie02, p.110]. That is, an

expression in the lambda calculus is type checked to make sure that certain properties

of it hold, specifically that it will evaluate to a value of a specific type at runtime

without a type error. The types are then erased, and the untyped lambda calculus

expression is then evaluated. We know that the untyped expression will evaluate

properly because the type checker guaranteed that the original program will do so and

because it can be proved that erasing the types will not change the runtime behavior

of the expression [Pie02]. In the same way, we have type level structural guarantees

in a safe language like Haskell or Rust that still hold when accurately compiled into a

language without these safety guarantees, such as x86 assembly.

1.4 Pipelines and transformations

It seems obvious, in a strictly deductive sense, that compiling a program written

in a safe language to an unsafe language should maintain the guarantees of the safe

language, if the compiler accurately translates the semantics of the source program

to the target program. This roughly corresponds to the statement that, if program

Pa satisfies a set of run-time properties S, and a program Pb (a program created by
3Many others, for example are meant to run exclusively on our minds.
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compiling Pa), has the same run-time properties as Pa, then program Pb satisfies the

run-time properties S, where Pa represents the safe language program, Pb represents

the unsafe language program, and S represents the language safety properties. What

is less obvious is what happens when a compiler step materially changes the run time

behavior from Pa to language Pb.

For example, consider tail call optimization. Using Haskell as an example, no

mutability means no naive loops (excluding the use of the IO, State, or ST monads),

and thus all of our code must operate by recursion over immutable data structures.

This presents many practical and other efficiency issues. First, unoptimized recursion

pushes a new frame on the stack for each recursive function call. This necessarily limits

how many calls deep a recursive function can go before one runs out of stack space.

Second, even if one does not run out of stack space, one is simply filling the memory

with redundant immutable data. Third, these additional calls take longer than a

loop takes to compare and then jump to the next iteration. Tail call optimization is

a method by which, under very specific circumstances, a recursive function can be

transformed to an imperative function where the recursive calls are transformed to a

structure corresponding to a loop [LS99].

Something to note here is that these mutable data structures are not representable

in Haskell. To optimize in this way, we must translate the source program to a language

that is high-level enough that the context that allows such an optimization is still

present, but low level enough that we lose some of the guarantees that Haskell gives

us about mutability. This is reflected in compiler design, where, typically, some source

language passes through many intermediate language steps. This, in and of itself, is

not any more of a problem than doing a single compilation step in theory when it

comes to correctness. If we have Pa, and a transformation Ta−→b such that Pa and Pb
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have the same run-time semantics, then it follows by the transitive property that, if we

then apply a second semantics preserving function Tb−→c, then the resulting program

Pc has the same run-time semantics as well, and so on.

But what does it mean for two programs to have the same runtime semantics?

Does this require that the programs evaluate to exactly the same value given the same

input, and that the state of the stack and the heap are exactly the same between

the two executions at all times? If so, that would necessarily exclude almost all

optimizations, as these (hopefully) change how efficient the program is in some way. In

the next chapter, we will make this more concrete by describing a particular compiler,

with a particular intermediate language and an associated set of optimizations.

1.5 Contributions and overview

Before going any further, let us prepare to read the rest of the thesis by giving

an overview of our theoretical contributions and a summary of the rest of the thesis,

chapter-by-chapter.

1.5.1 Contributions

The main contributions of this thesis are as follows. We:

• Designed and implemented a series of six intrinsically-typed language definitions

and corresponding intrinsically-typed definitional interpreters of increasingly

sophisticated languages, culminating with an intrinsically-typed formulation of

a significant subset of Monadic Intermediate Language.

• Formalized a collection of program optimizations, including examples of constant

folding, use of algebraic identities, known-constructor conditional elimination,
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and tail call introduction, and proved their correctness by developing approxi-

mately sixty formal proofs encoded in the proof assistant Agda.

• Explored a new paradigm of compiler and optimization correctness where

intrinsically-typed language definitions are used to narrow the domain of the op-

timizations to only type-correct and well-scoped source programs. This approach

contrasts with other established methods, such as those used in CompCert,

whose optimizations are defined over all source programs but whose correctness

is only proven for valid source programs [Ler09].

1.5.2 Overview

We begin this development in Chapter 2, in which we describe the MIL language,

its position and use in the Habit compiler, and example classes of optimizations defined

in the MIL paper. We then describe the relation between optimization and evaluation

that defines what makes an optimization semantic-preserving.

In Chapter 3, we define a simple language and corresponding typechecker and

evaluator in Haskell. We then illustrate a weaknesses in this approach: that it allows

ill-typed expressions to be representable. We then update the language definition to

be intrinsically-typed, which makes only well-typed expressions representable in the

language by embedding the types in the data type definitions of the expressions. We

end this chapter by introducing the ability to use variables, and how they break this

correct-by-construction language design.

Next, in Chapter 4, we explore the Curry-Howard correspondence and how it draws

parallels between types and propositions and programs and proofs. We then go on to

define a simple type-level data type and function, and prove properties over it. Finally,
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we show a path to simpler proofs over our programs by using dependent types, which

allow types to depend on values.

Chapter 5 introduces the Agda proof assistant and shows the advantage of a

natively dependently-typed language by re-proving the propositions we had proved

earlier in the last chapter. We then introduce the concept of a monad, implement

examples of monads, and prove that our implementation of these monads abides by

the monad laws with explicit proofs using dependent types.

In Chapter 6, we re-implement the final interpreter from Chapter 3 in Agda, with

the power of dependent types allowing us to maintain the intrinsically-typed nature

of the interpreter even with variables added. We go on to define two constant-folding

optimizations of increasing complexity and prove that they maintain semantics as

defined in Chapter 2. We then prove the simpler of the two optimizations correct on

an untyped version of the language, implemented in Agda, and draw comparisons

between the untyped and intrinsically-typed proofs of that proposition.

Later, in Chapter 7, we implement a minimal subset of MIL consisting only of Tails,

MIL’s basic unit of computation. We then implement a constant folding optimization

as in Chapter 6, as well as a representation transformation where boolean values and

the conjunction primitive operation are transformed to integers and the multiplication

operation, respectively. We then prove both of these optimizations correct.

In Chapter 8, we update the language defined in Chapter 7 to include code

sequences, the construction related to a basic block in other intermediate languages.

We then define a constant-folding optimization similar to the one featured in the last

chapter. We expand on this by defining an optimization that applies the constant

folding optimization to all the tails in a code sequence, and prove it correct. We

then introduce the concept of a monoid, a binary operation with a unit element, and
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encode this as a record in Agda. We then implement an instance of this record and

implement an optimization that allows optimization of any tail that is a monoid, with

one of the operands being the unit element. We prove this correct and point out that

any proof mapping a tail-optimization across a code sequence would look the same

other than the specific optimization function being applied. We then write higher-level

optimizations that allow us to map any tail optimization across a code sequence and

prove that this map is correct as long as the optimization is correct. Finally, we

prove that any two tail optimizations that are proven correct can be composed while

maintaining correctness.

Chapter 9 extends the language implemented in the last chapter with an output

operation and a monadic evaluator effect: the aggregation of a log, meant to be a

standard out analog. We then implement the right monad law optimization and prove

it correct using the right monad law proof implemented in Chapter 5. We then finish

the chapter with an implementation of substitution, and implement an optimization

based on the left-monad law.

In Chapter 10, we extend the language with block calls, the ability to branch, and

the ability for tails to return lists of values. The introduction of block calls necessitates

an exploration of the totality of Agda, how allowing non-termination can introduce

logical errors, and how we can embed a language that allows non-termination into one

that does not. We then illustrate the capabilities of our language by writing a realistic

program that uses memoization and mutual recursion, and show that executing it

results in the correct output and side-effects. We then implement a function that

re-writes branches with known conditionals as block calls to the appropriate block,

and prove it correct.

Finally, in Chapter 11, we review the techniques used in this thesis and discuss
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other type-system relevant advances, as well as the place of strong types in software

engineering. We then discuss the limitations of this style of program verification and

end on a discussion of the importance of software correctness in a society increasingly

integrated with computers.
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Chapter 2

Habit, MIL, and optimizations

2.1 Habit

Habit is a high-level functional language with ML-inspired semantics and Haskell-

like syntax [21a]. The problems that arise with attempting safe low-level programming

are numerous, for example: preventing buffer overflows, null pointer dereferencing [21a],

and safely manipulating data stored in bit-fields [Dia07]. The designers of Habit aim

to solve some of the problems with safe low-level programming by using an algebraic

data type approach to specifying value and memory layouts on a bit level.

The current Habit compiler is split into two sections: a front end parser and type-

checker called Alb[21b], and a back end called mil-tools[21d]. The full compiler involves

compilation through multiple intermediate languages before finally being compiled to

an executable binary. Specifically, the front end translates from Habit to LambdaCase

(LC), an intermediate language corresponding to the lambda calculus extended with

case constructs; the back end translates from LC to Monadic Intermediate Language

(MIL) and then from MIL to LLVM. As a final step, the generated LLVM can be

translated into assembly, and then to executable object code [JBC18].

Although functional programming has a reputation for inefficiency, modern func-
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tional programming languages tend to run only slightly slower than their imperative

counterparts [Pau96, p.9]. We can narrow this gap and significantly increase the

ability to use functional programming for computationally intensive tasks by using

compiler optimizations on functional programs. The purpose of the MIL step in the

compiler is to exist as an optimization platform so that otherwise inefficient Habit

code can be rewritten into more efficient but equivalent code.

2.2 MIL

The grammar of the MIL language, shown in Figure 2.1 is relatively simple. A

MIL program is a list of definitions. The most important definitions are those that

define a block, a closure, a top level definition, or a data type definition. Each code

block consists of a code sequence, which is a sequence of monadic binds of tails, and

assertions that a variable is a specific constructor, and which terminate either with

a conditional statement, a case construct, or a tail call. The tail can consist of a

return statement, a block call in which a code block is executed with some given

parameters, a primitive operation such as the addition of two words, a data value

allocation, selecting a component out of a constructed value, allocating a closure, or

entering a closure.

Although MIL syntax reads a little like Haskell, it is better thought of as a higher

level assembly code. A revealing design choice in this language is that case constructs

and if statements do not map to additional code sequences in the same block, but

rather terminate the code sequence with a block call. These code sequences are

effectively a series of computations in a row, where changes in control flow are either

calls to other functions or blocks in tails, or branches at the end of a code sequence.
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Figure 2.1: An annotated grammar for MIL
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This reveals the design of blocks to be closer to that of basic blocks than function

definitions in a high level functional language. Like many other intermediate languages,

such as LLVM [22], rather than code blocks or features just being a list of operations

in a row, they have additional type information — as MIL is statically typed — that

gives greater structure and safety to the code. In addition, every block and function

call can return multiple arguments, much like Core-Erlang [CGJ+04], the intermediate

language in the Erlang compiler.

To get a taste of what MIL programs actually look like, let us consider a simple

program in the MIL paper [JBC18]: one that defines List, and implements a length

function that gets the length of the list supplied as a parameter. Defining the list data

type looks much like how we could define a list in Haskell.

data List a = Nil | Cons a (List a)

For the length function itself, where in Haskell we could pattern match on the list

constructor and then evaluate to some expression, in MIL case constructs terminate

the code sequence. This means that in the loop block, the Nil and Cons cases must

be handled in separate blocks, done and step respectively. step does the work of

getting the tail of the list, incrementing the length counter, and calling loop on the

rest of the list, while done acts as an identity. We can glean from this the basic feeling

and syntax of MIL: each pattern match or branch that would be handled as nested

case constructs or recursive expressions in a higher-level functional language is broken

out into separate blocks or flattened to tails, respectively.

length :: forall (a::type) [List a] >>= [Word]
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length[list] = loop[0,list]

loop :: forall (a::type) [Word, List a] >>= [Word]

loop[n,list] =

case list of

Nil -> done[n]

Cons -> step[n,list]

done :: forall (a::type) [a] >>= [a]

done[n] = n

step :: forall (a::type) [Word, List a] >>= [Word]

step[n,list] =

assert list Cons

tail <- Cons 1 list

m <- add((n,1))

loop[m,tail]

2.3 Optimizations and transformations

As much of this thesis revolves around optimizations described in the MIL pa-

per [JBC18], it makes sense that first we should know what those optimizations are!

The rest of this chapter will focus on the optimizations that are mentioned in the

following chapters, so we can worry about correctness then, and the essence of the

optimizations now.
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2.3.1 Monad laws

MIL code sequences correspond to programs executed in a monad, and hence

can be rewritten for the purposes of optimization using the standard monad laws. For

example, in the case that the result of a tail evaluation is bound to some variable which

is returned on the next line, the right monad law specifies that (x ← t ; return x ) =

t, and so the bind followed by the return can be rewritten as just the tail. For example,

consider the following code sequence, where a Fahrenheit value is converted to a

Celsius value. First, we define the types of Fahrenheit and Celsius with a newtype

declaration, meaning that there is a single constructor wrapping some underlying type,

in this case a Word.

newtype Fahrenheit = Fahrenheit Word

newtype Celsius = Celsius Word

Once we have our data types defined, we can define a function toC to do our

temperature conversion. We can see that this block definition extracts the underlying

Word from the Fahrenheit constructor, subtracts it by 32, multiplies it by 5/9, and

wraps the resulting Word in a Celsius constructor. In the original definition of this,

the Celsius value is bound to a variable, c. This creates the bind-then-return pattern

described above, so the code is then optimized to end with the Celsius(cdeg) tail,

rather than a return.
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toC :: [Fahrenheit] >>= [Celsius]

toC [f] =

fdeg <- Fahrenheit 0 f

scon <- return 32

m <- sub((deg,scon))

dcon <- div((5,9))

cdeg <- mul((m,dcon))

c <- Celsius(cdeg)

return c

toC :: [Fahrenheit] >>= [Celsius]

toC [f] =

fdeg <- Fahrenheit 0 f

scon <- return 32

m <- sub((deg,scon))

dcon <- div((5,9))

cdeg <- mul((m,dcon))

Celsius(cdeg)

The left monad law deals with the case that some variable is returned in a tail.

One can substitute the returned value for the bound variable in the rest of the code

sequence. This can be written as x ← return a; c = [a/x]c . Interestingly, this is a

more general form of a traditional optimization called copy propagation [Sco16], as

instead of making a copy of a in x, the code sequence c can be re-written to use a

directly instead of x. This is a very powerful optimization, allowing known values

to be propagated forward through the code sequence. In the toC function described

above, we had defined the adjustment subtracted from the Fahrenheit value as a

constant scon, to avoid having 32 as a magic value. Using the left monad law, we can

delete the bind to scon, and substitute scon for 32 in sub((deg,scon)).
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toC :: [Fahrenheit] >>= [Celsius]

toC [f] =

fdeg <- Fahrenheit 0 f

scon <- return 32

m <- sub((deg,scon))

dcon <- div((5,9))

cdeg <- mul((m,dcon))

Celsius(cdeg)

toC :: [Fahrenheit] >>= [Celsius]

toC [f] =

fdeg <- Fahrenheit 0 f

m <- sub((deg,32))

dcon <- div((5,9))

cdeg <- mul((m,dcon))

Celsius(cdeg)

2.3.2 Constant folding

mil-tools also supports constant folding, that is pre-computing structures with

known values at compile time. For example, add((5,3)) can be rewritten as return 8,

since 3+5 = 8. In the last optimization description, we optimized away the declaration

of scon. Using this constant folding, we can reduce our dcon to the same form. We

can pre-compute the value of div((5,9)) to 0.55556, which can then be substituted

for dcon in a left monad law application.

toC :: [Fahrenheit] >>= [Celsius]

toC [f] =

fdeg <- Fahrenheit 0 f

m <- sub((deg,32))

dcon <- div((5,9))

cdeg <- mul((m,dcon))

Celsius(cdeg)

toC :: [Fahrenheit] >>= [Celsius]

toC [f] =

fdeg <- Fahrenheit 0 f

m <- sub((deg,32))

dcon <- return 0.55556

cdeg <- mul((m,dcon))

Celsius(cdeg)



CHAPTER 2. HABIT, MIL, AND OPTIMIZATIONS 24

toC :: [Fahrenheit] >>= [Celsius]

toC [f] =

fdeg <- Fahrenheit 0 f

m <- sub((deg,32))

cdeg <- mul((m,0.55556))

Celsius(cdeg)

2.3.3 Newtype elimination

Looking at our most recent iteration of the toC function, it might be useful to

point out an additional point of inefficiency. We had added a level of type safety

by using Celsius and Fahrenheit data types, preventing functions that expect one

from being supplied the other, even though they have the same underlying data type.

However, it is important to notice that half of the lines in our most recent iteration

of toC are extracting a value from a Fahrenheit value, and constructing a Celsius

value. This overhead, particularly costly in the constructor case, is unnecessary. We

can re-write our Fahrenheit and Celsius to their underlying data type and eliminate

the constructor and component selection lines.

toC :: [Fahrenheit] >>= [Celsius]

toC [f] =

fdeg <- Fahrenheit 0 f

m <- sub((deg,32))

cdeg <- mul((m,0.55556))

Celsius(cdeg)

toC :: [Word] >>= [Word]

toC [f] =

m <- sub((deg,32))

cdeg <- mul((m,0.55556))

return cdeg
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2.3.4 Using algebraic identities

As shown above, there are sometimes situations where a computation is entirely

known at compile time, but we are not always so lucky. There are certain algebraic

identities, however, that can be resolved at compile time and used to simplify tails.

These allow certain operations partially known at compile time to be resolved to a

known value. For example, if one of the inputs to a Boolean conjunction function

is known to be false at compile time, the entire expression is known to be false, as

there is a known identity ∀x : B, (x ∧ false ≡ false). Thus a tail and((false, x))

can be rewritten to return false, eliminating the need to call the and primitive

operation and allowing for further compile-time optimizations. There are many

such identities, for example multiplying by zero or dividing by one. To illustrate,

consider a common algebra problem in introductory mathematics: squaring a binomial.

Expanding (a + b)2 into a sum of three expressions, 1 ∗ a2 + 2ab + 1 ∗ b2 is a is a

specific case of a general pattern, which can be derived by copying the coefficients

of each expression in order from Pascal’s triangle [Kli72, p.272]. In our function

binomialSquare below, we implement this function without omitting the constant

multiple of 1 on the squared terms, as one would if they directly copied the coefficients

off of Pascal’s triangle. The multiplications by one can be rewritten to returns, using

the identity ∀x : Z, (x ∗ 1) = x.

binomialSquare :: [Word,Word] >>= [Word]

binomialSquare [x,y] =

x2 <- mul((x,x))

y2 <- mul((y,y))

xTimesY <- mul((x,y))
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2xTimesY <- mul((xTimesY,2))

x2c <- mul((x2,1))

y2c <- mul((y2,1))

ones <- add((x2c, y2c))

add((2xTimesY,ones))

binomialSquare :: [Word,Word] >>= [Word]

binomialSquare [x,y] =

x2 <- mul((x,x))

y2 <- mul((y,y))

xTimesY <- mul((x,y))

2xTimesY <- mul((xTimesY,2))

x2c <- return x2

y2c <- return y2

ones <- add((x2c, y2c))

add((2xTimesY,ones))

2.3.5 Known constructors

The mil-tools optimizer has a way to optimize away known constructors in if and

case statements: if the constructor of a value or the value of a conditional is known

at compile time, the case and if statements involving it can be simply rewritten as

block calls to the block pointed to by the known constructor. To illustrate this, let us

consider a modified version of the length function described earlier in this chapter.

In our new version, the done block ends with an unnecessary case construct. We do

not need to pattern match on list, because we already asserted that list is a Nil.
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This means that list has a known constructor at compile time, and therefore the

case construct can be turned into the block call pointed to by the Nil constructor.

length[list] = loop[0,list]

loop[n,list] = case list of

Nil -> done[n, list]

Cons -> step[n,list]

done[n, list] =

assert list Nil

case list of

Cons -> loop[n,list]

Nil -> id[n]

id[n] = n

length[list] = loop[0,list]

loop[n,list] = case list of

Nil -> done[n, list]

Cons -> step[n,list]

done[n, list] =

assert list Nil

id[n]

id[n] = n

2.4 Pipelines of optimizations

In the previous section, we dealt with a relatively small set of optimizations.

For some of them, understanding how they maintain program semantics may seem

obvious, for example in the case of constant folding: one is simply doing the same

computation that would normally be done at run time at compile time. Even the use

of identities to optimize code has a similarly compelling argument: although the tails

are not literally the same expression, they can be shown to always evaluate to the

same value. Arguments this like could be made for some of the listed optimizations,

but note that this argument does not strictly hold for other optimizations described
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in the MIL paper.

Consider what happens when a single constructor type is eliminated. Most of the

time, this should not change what is returned from a computation. But, what if the

original program returned a constructed value that, in the optimized program, is now

returned as a primitive value that the single constructor wrapped? This definitionally

changes the output of the program. It is also clear, at least on the face of it, that this

does not change the behavior of the program in a way that invalidates the optimization.

If we ask ourselves why this is, a more holistic view of program equivalence comes

into view. It is too restrictive to say that the behavior of an optimized program

must exactly match the unoptimized program, but rather that there is a known

correspondence between the two. This can be written as a commutative diagram

as shown in Figure 2.2, showing that the relationship between optimization, some

matching function f on the evaluation of the un-optimized function, and evaluation,

should commute1

Programa Programb

V aluea V alueb

Eval

optimize

f

Eval

Figure 2.2: A commutative diagram illustrating the relation between optimization
and evaluation

Although each of the optimizations discussed in this chapter seems simple, the

power of these operations comes from their working in concert together. Identities

can be used to aggregate known values, which are then computed at compile time.
1In this diagram, V alues are monadic values which encapsulate the side-effects of evaluation.
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These known returns can be substituted through the rest of the code block, which

may admit further optimizations. The strategy of optimizing tails to returns and

then propagating these forward with the left monad law is a powerful one. This

stacking of optimizations can result in vastly more efficient programs that differ in

length and content from the originals. In fact, the MIL paper mentions an example

where a program that initially consisted of 910 lines of MIL code was optimized down

to 140 through repeated optimization passes. This stacking of optimizations can be

represented as an extension of the commutative diagram featured in Fig. 2.2, and is

shown in Fig. 2.3

Pa Pb Pc ... Pn

Va Vb Vc ... Vn

op1

f1

eval eval

op2

f2

eval eval

Figure 2.3: A pipeline of optimizations

Simple optimizations working alone seem intuitively correct. But many things that

may seem intuitively correct are wrong. In addition, combinations of optimizations

can radically transform programs in ways that make the correspondence between

source and optimized programs much less obvious. How can we gain confidence

that these potentially radical changes will not meaningfully change the semantics of

our programs, with a confidence that would result in us comfortably running these

transformed programs on critical systems? In the next chapter, we will discuss what

it means to really know what our programs are doing, and, in turn, work towards

knowing that these optimizations maintain the program semantics we expect.
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Chapter 3

A path to knowing

In our previous chapter, we emphasized that there are nontrivial optimizations

that we must know –with absolute certainty– will not change the semantics of the

programs they are applied to if we are to have confidence in the integrity of our

optimized programs. To answer the question of how we really know that semantics are

maintained through these transformations, let us begin by constructing an interpreter

for a language, and assuring certain things with the type system. That way we can

begin to work towards assurances in our program evaluation.

3.1 A scattered semantics

Consider a simple language operating over integers and booleans, whose gram-

mar, typing rules, and big step semantics are described in Figures 3.1, 3.2, and 3.3

respectively. We can implement this language in Haskell and attempt to match the

formal semantics with an implementation, as shown below. In this paradigm, the

context free grammar corresponds to an algebraic data type Expression describing

expressions; the typing rules correspond to the typechecking function, typeCheck; and

the evaluation corresponds to the behavior of the evaluator function, evaluate.
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〈Expression〉 ::= Num 〈Integer〉
| True
| False
| Plus 〈Expression〉 〈Expression〉

〈Type〉 ::= Int
| Bool

〈Value〉 ::= ValNum 〈Integer〉
| ValTrue
| ValFalse

Figure 3.1: The grammar of our language

T-TrueTrue : Bool T-FalseFalse : Bool T-NumNum x : Int

e1 : Int e2 : Int
T-PlusPlus e1 e2 : Int

Figure 3.2: Language typing rules

E-TrueTrue ⇓ ValTrue E-FalseFalse ⇓ ValFalse E-NumNum x ⇓ ValNum x

e1 ⇓ ValNum x e2 ⇓ ValNum y
E-PlusPlus e1 e2 ⇓ ValNum (x+ y)

Figure 3.3: Big step semantics

data Expression = ExpNum Int
| ExpTrue
| ExpFalse
| ExpPlus Expression Expression

data Ty = TInt | TBool

data Value = ValTrue | ValFalse | ValNum Int
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evaluate :: Expression -> Maybe Value
evaluate (ExpNum i) = Just (ValNum i)
evaluate ExpTrue = Just ValTrue
evaluate ExpFalse = Just ValFalse
evaluate (ExpPlus e1 e2) = do

v1 <- evaluate e1
v2 <- evaluate e2
case (v1 , v2) of

(ValNum a , ValNum b) -> Just (ValNum (a + b))
(_ , _) -> Nothing

However, there is a critical problem with the data types defining the abstract syn-

tax for the expressions. Consider the expression ExpPlus ExpTrue (ExpNum 3). Be-

cause ExpTrue and (ExpNum 3) are both valid expressions, ExpPlus ExpTrue (ExpNum 3)

is also valid expression. It is also clear that this is not a valid expression from the per-

spective of having useful run-time semantics. This means that there exist expressions

whose representations typecheck in the host language, but which fail to evaluate to a

value1 at runtime, as shown below.

*Main> let e = (ExpPlus ExpTrue (ExpNum 3))

*Main> evaluate e

Nothing

*Main>

The possibility for an expression to fail to evaluate to a value is expressed in the

return type of the evaluate function. The Maybe wrapping the Value type represents

that either the evaluation will succeed and evaluate to a Just value, or fail and

evaluate to a Nothing.
1Note that this behavior may be useful when writing interpreters, as it allows one to give detailed

errors rather than just throwing a type error in the host language.
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In addition, the evaluate function evaluates an expression to a value, which

can either be a TInt, or a TBool. This results in an additional problem when one

attempts to use the result of an evaluation in a further calculation, as there is no

assurance as to what kind of value an expression will evaluate to. As such one has to

account for the possibility it will evaluate to a value of a type that is not expected by

whatever operation the resulting value is fed into. Whether through missing cases of

the evaluator, or a catch-all error when such a type mismatch happens, this creates

the possibility of failing to evaluate to a value at runtime.

We can attempt to catch these errors by using a typechecker or type inference

function to determine if these types of errors will happen at runtime, and ideally

describe any type errors present. Such a typechecker can be seen below. By accepting

an Expression as input, type checking it, and then evaluating the expression if

and only if it type checks, we can prevent ill-typed programs from making it to the

evaluator and failing at run time.

typeCheck :: Expression -> Maybe Ty
typeCheck (ExpNum i) = Just TInt
typeCheck ExpTrue = Just TBool
typeCheck ExpFalse = Just TBool
typeCheck (ExpPlus e1 e2) = do

t1 <- typeCheck e1
t2 <- typeCheck e2
case (t1 , t2) of

(TInt , TInt) -> Just TInt
_ -> Nothing

The separation between the AST and the type checking rules means that

expressions that would fail at runtime are expressible in this language. The typechecker

is an active safeguard to prevent these invalid expressions from reaching the evaluator,

but only if we ensure that it is used. Recall that similar engineering safeguards were
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implemented incorrectly on the Therac-25 as discussed in Chapter 1.

We are simply trusting, or should attempt to prove, that all of the typing rules are

encoded in the typechecker, and that the typechecker itself has sufficient coverage to

exclude all ill-typed expressions. In much the same way as the checked or inferred types

are generally erased at runtime, we trust that the evaluator is properly constructed so

that it does not break the typing rules that we expect it to follow at runtime.

For example, if this hypothetical buggy evaluator evaluated ExpTrue to ValNum 1,

this would not be caught by the type of the evaluator, as ValNum 1 is a valid value.

The level of typing used in our data definitions does not allow us to relate the type

of the input expression and the output value, which is the power needed to assure

that errors like this cannot be present in the evaluator. This intertwining of relations,

and the inability to prevent the mentioned errors before runtime raises a question

of whether there might be more elegant way to prevent the evaluation of ill-typed

expressions.

3.2 Wrapping types and structure together

The previous subsection raises the question of whether it is possible to embed

the types in the Expression and Value types in a way that would avoid much of the

distributed responsibility for preventing runtime failures. For example, if we could

parameterize the Expression data definition with a type, then we could enforce that

subexpressions have the proper type. This would eliminate the need for an explicit

runtime typechecker, as this effectively lifts type checking into the host language

implementation’s typechecker.

Conveniently, generalized algebraic data types (GADT), and data kinds [Mag18]



CHAPTER 3. A PATH TO KNOWING 35

in a language like Haskell, allow us to do just this. Consider an updated definition of

the expression type:

data Expression a where

ExpTrue :: Expression TBool

ExpFalse :: Expression TBool

ExpNum :: Int -> Expression TInt

ExpPlus :: Expression TInt -> Expression TInt -> Expression TInt

This change in the data definition has two primary effects; first, it makes the

constructor types explicit; and second, it allows us to parameterize the Expression

type with another type. It even allows us to specify what type each sub-expression

must be parameterized by in the constructor, for example specifying that the two

subexpressions for ExpPlus must be parameterized by TInt, and that the expres-

sion itself has that same type. For example, consider the previous expression

ExpPlus ExpTrue (ExpNum 3) which both fails to evaluate and failed to type check in

the previous interpreter. We could construct that expression in the GHCi REPL with-

out any errors using the old definition. If we try that with this new definition a Haskell

type error is thrown, as the ExpPlus constructor requires that both sub-expressions

be parameterized by TInt, whereas ExpTrue is parameterized by TBool.

*Main> let e = (ExpPlus ExpTrue (ExpNum 3))

<interactive>:1:18: error:

* Couldn't match type 'TBool with 'TInt

...

*Main>
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This is an example of an intrinsically-typed interpreter, where the types of the

expressions and values are embedded in the data definitions themselves [BRT+17].

Type embedding in data definitions has made the sorts of invalid expressions described

above unrepresentable in the new Expression type. In doing this, we no longer need

a typechecker to keep out invalid inputs to the evaluator because we have embedded

the typing rules in the abstract data types themselves. This has taken care of the

correspondence between expressions and types, however the correspondence between

expressions and values that the interpreter captures has not been addressed by this

alone. If we parameterize the Value data definition in the same way, we can then

change the interpreter type so that the input expression, Expression a, and the

returned value type, Value a are parameterized by the same type, which captures

this correspondence.

data Value a where

ValTrue :: Value TBool

ValFalse :: Value TBool

ValNum :: Int -> Value TInt

evaluate :: Expression a -> Value a

evaluate ExpTrue = ValTrue

evaluate ExpFalse = ValTrue

evaluate (ExpNum i) = ValNum i

evaluate (ExpPlus e1 e2) =

case (evaluate e1 , evaluate e2) of

(ValNum x , ValNum y) -> ValNum (x + y)

Whereas before we needed two cases when we evaluated the sub-expressions of
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ExpPlus, one for the case in which they both evaluate to ValNum and the other for

the case in which they evaluate to something else and therefore fail to evaluate, now

there is only one case. This is possible because the updated constructor for ExpPlus

specifies that the type of the sub expressions must be Expression TInt, and the type

of the evaluator specifies that the value returned from evaluating an expression of

that type must be a ValNum, so we only need to check that one case. Whereas earlier

the return value had to be wrapped in a Maybe type in case the evaluation failed, we

have no such requirement for this evaluation function. Rather than having to do any

manual proofs, we have encoded these properties in the type system, so we get them

for free.

3.3 Correct-by-construction programming and intrinsically safe design

One might ask why it is so important that we raise type information into data

type definitions. After all, while it has so far been easy in our Expression example,

this is due to the simplicity of the language, and as we are about to see it gets much

more difficult as the complexity of the language increases. By doing this, we are making

ill-typed expressions, for example ExpPlus (ExpNum 1) ExpTrue, unrepresentable in

the host language. The previous alternative, has been to allow illegal statements to

be constructed, and to have runtime or pre-runtime checks assure that only correct

programs get executed.

There are limits to this however. For example, moving away from language

design and implementation, consider a function that fails catastrophically when a

certain well-typed input is evaluated. The classic example of this is a division function

which takes an integer type, but for which a divide by zero exception be thrown if
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zero is supplied as the denominator —in spite of the fact that calling it with the zero

denominator would typecheck.

A traditional way of dealing with this in functional programming is to use a

safe division function [Hut18], which does not return a Double or an Integer, but

rather returns a Maybe Double or Maybe Integer. That is to say that it builds in

the possibility for failure in the type, rather than leaving the possibility that it fails

implicit. While this is certainly better than the alternative, it simply kicks the can

down the road for the programmer to deal with. It does not prevent someone calling

that function with a zero denominator, it simply makes sure that the failure of that

calculation must be handled. Unfortunately, there are cases where such recovery is

not possible. Imagine a plane calculating real-time flight control information while

landing, or a nuclear reactor calculating the rate at which the control rods are inserted,

for example. These are not cases where throwing an error and re-attempting are

acceptable.

At least on the positive side, a division by zero error is easy to check for. A

function that has the possibility of initiating a side effect of critical importance or

magnitude that cannot be undone — such as the secure deletion of a file, or errors

that fail silently and cause incorrect data to be surreptitiously generated —are not so

easy to simply correct. In these cases we can use special types to prevent these sort of

errors at compile time. For example in the case of a safe division operator, a nonzero

integer type —as used in Habit— for the denominator would prevent the possibility of

getting a division by zero error at compile time. In the case of some more complicated

schemes, we can use a type system to assure that certain operations are only possible

in specific states.

Importantly, these are encoded in the type system, which assures that, if the
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program type checks in the host language, then these properties are guaranteed to

hold. Like the evaluator earlier in the chapter, contrast this with manual checks that

we hope will adequately capture the requirements we need them to. We can think of

these as grounding the logic of the program in a higher logic, that of the language we

are working in. Are there analogs for this sort of safe-by-design construction?

In the related field of electric circuit design, there is a similar design approach,

that of intrinsically safe design [Cro]. The safety of electrical equipment in terms

of ability to generate heat and sparks in a combustive environment is obviously of

high importance, given that one generally does not want unintentional combustion in

such circumstances. One way to mitigate this risk is to use engineering controls, that

is to assure that there is sufficient space and ventilation around the device that an

overheating circuit is unlikely to cause significant damage in the event of a catastrophic

failure. Obviously, this depends on the relevant engineering controls being correctly

implemented, which, like the type checker above or the recovery mechanisms for

bad inputs, may or may not be correctly implemented or sufficiently constraining

to guarantee safe operation. The alternative, intrinsically safe design, attempts to

minimize this risk by limiting the power running through the device in such a way that

insufficient energy will be released to initiate an explosion [Cro]. Rather than amassing

a large amount of energy and attempting to use engineering controls to minimize

damage that will be done if energy is released, we have a design-level guarantee that

the energy necessary to fail catastrophically in this way will not be amassed, further

guaranteeing that these sorts of damaging failures cannot occur.

In the somewhat less related field of chemical engineering, there is a similar

concept called Inherently Safer Design [Hen11]. While historically it was seen as

acceptable to have large amounts and dangerous concentrations of hazardous chemicals
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present at chemical manufacturing plants, the engineering controls that were used to

prevent releases or hazardous reactions were not always adequate to prevent dangerous

releases of toxic chemicals, sometimes with tragic results [Joh05]. Inherently safer

design, however, attempts to minimize the hazardous condition, as opposed to using

engineering controls to contain it. For example, this might mean using less concentrated

reagents, handling them in smaller volumes, or substituting less harmful chemicals or

processes for those traditionally used [Hen11]. It is certainly hard to accidentally leak

chemicals one does not have.

We could continue going through the various fields that have similar concepts,

however this would very quickly turn an already lengthy tangent into a miniature thesis

of its own. The point is, there is a paradigm shift that has occurred in various fields

over the past few decades that involves the acknowledgment that engineering controls

restraining the potential for catastrophic malfunctions are insufficient. Correct-by-

construction design may be the computer science recognition of this paradigm shift,

and the ability to reflect much of the desired computation in types makes our systems

ever safer. Although this is a major positive for stronger type systems, this is not the

only advantage they confer to us, as we will soon see.

3.4 Adding variables

Considering that this language is significantly less powerful than a pocket

calculator, it makes sense that we would want to add some features while maintaining

the containment of type information to the data definitions. Let us consider a new

rule, one that allows us to look up variables in an execution context at run time.

If we attempt to encode these properties in our data type, however, we run
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〈Expression〉 ::= ...
| Var 〈String〉 x : T ∈ Γ T-Var

Γ `Var x : T

Figure 3.4: Grammar and typing rules for ExpVar

into a problem: we need to know what type the variable maps to in context in order

to have the ExpVar be well-typed. This means that our expression needs to carry

along some additional context in which the types of the variables are stored. It seems

reasonable that we could parameterize the expression with an additional variable, one

that represented the typing context of the expression. But, in order to look up the

variable in that context at a type level we would need to be able to execute functions

on our types, and, as such, we need a more powerful type system.

In the standard Haskell type system, once we add the feature of variables, we

are again reliant on some type checking mechanism to relate the contexts, expressions,

evaluations, and values. In the next chapter, let us focus on the correspondence

between logic and types, which will give us the background that we need to understand

proofs of programs, and the type-level computation features that are required to deal

with type contexts.
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Chapter 4

Curry, Howard, and friends1

In the last chapter, we introduced a simple language, as well as its interpreter

and type checker. We then showed how lifting certain properties into the data type

definitions of the language obviates the need for explicit checks of these properties,

and how we can lift the logic of our embedded language into the logic of the host

language using more advanced type constructions such as GADTs. This, however,

brings up an interesting question: does our host language actually have a logic in the

mathematical sense? In this chapter, we will explore this question and the relationship

between types, values, properties, and proofs.

4.1 Types as propositions, programs as proofs

The Curry-Howard correspondence, or Curry-Howard isomorphism as it is some-

times called [nLa21f], refers to a relation between types, programs, propositions, and

proofs. Specifically, it asserts that types correspond to propositions in a certain

logic, and that the values inhabiting each type correspond to proofs of the associated

proposition in that logic. From this, we can draw parallels between logic and type
1These friends are presumably numerous, but are generally considered to include Professor Joachim

Lambek [Bro20].
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theory [How80].

For example, function types can be read as implications, so if we have a function

of type Int -> Int, that means that given an Int in context, we can derive an Int

as a result. This is simultaneously boring in that it is not a very interesting proof, as

well as interesting to notice that there are many such functions that match this type

signature. That is to say, there exist many proofs of that property. In fact, given the

nature of this isomorphism, all type signatures can be mapped into the realm of logic,

and, as such, our programs are actually littered with logical propositions and proofs of

them. With simple types, these proofs are not particularly interesting. However, if we

use more expressive types, for example adding polymorphism, we can start encoding

the basics of propositional logic in our types.

For example, consider the classical inference rule of modus ponens, that, if p implies

q, and p holds, then q holds. We can encode this in a type as (p -> q) -> p -> q

[Bro20, p.4]. The proof of this can be gleaned from function application. If a function

f :: (p -> q), and x :: p are supplied to our function, by applying f to x we

receive a value of type q, as shown below.

modusPonens :: (p -> q) -> p -> q

modusPonens f x = f x

Implications are not the only tools in this logic. The unit type, (), for example,

consists of a single constructor that carries no information, which is isomorphic to the

true value in logic. Much like one can always derive true in propositional logic, we can

always create a unit value. This is represented by the function trueFromAnything

shown below. As a function, it takes some value x of a polymorphic type a, and

returns a unit value represented by ().
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data () = ()

trueFromAnything :: a -> ()
trueFromAnything x = ()

Conversely, there is the uninhabited type, Void. This refers to the type for which

there does not exist a value. Thinking again in logical terms, this is isomorphic

to the canonical proposition for which no proof can exist: false. We can encode a

classic property of logic, the principle of explosion[nLa21d]: given a false proposition,

anything can be derived.

In order to show this we must use the lambda case extension [GHC20a], an optional

extension which allows us to do anonymous case statements. These consist of a list of

semicolon-separated constructors for the input type, with corresponding arrows to the

resulting expressions, as in a normal case statement. For example, the toInt function

below is a lambda-case statement which maps True to 1 and False to 0.

toInt :: Bool -> Int

toInt = \case { True -> 1; False -> 0 }

We can use the empty case alternatives extension [GHC20b] —which allows case

statements over types with no constructors —to prove the principle of explosion. This

encoding makes explicit that, for each constructor of the Void type we must supply

a proof that a is derivable. But as there are no constructors for Void, there are no

proofs to write.

data Void

principleExplosion :: Void -> a

principleExplosion = \case{}
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We can encode other logical connectives as well. For example, if we consider

conjunction, a proposition that two sub-propositions are true, the pair type seems to

be a natural analog of this. If we have some true propositions p and q, in order to

derive the conjunction of them we simply create a pair (p,q) that contains both.

conjInt :: p -> q -> (p,q)

conjInt x y = (x,y)

Using this construction, we can prove propositions that we know hold in logic

in our types. For example, consider the statements that, for all propositions P ,

P → P ∧ True, and P ∧ True→ P . We can encode these in Haskell, and show that

these types are inhabited, and thus proven. In fact the statement “for all propositions

P, P → P ∧ True, and P ∧ True→ P ” can be encoded in the Haskell type system as

well. We can also encode the elimination rules in the same way.

pImpPandTrue :: p -> (p, ())

pImpPandTrue x = (x,())

pandTrueImpP :: (p, ()) -> p

pandTrueImpP (x, ()) = x

combination :: (p -> (p, ()), (p, ()) -> p)

combination = ( \a -> (a, ()) , \(a,b) -> a)

conjElim1 :: (p,q) -> p

conjElim1 (x,y) = x
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conjElim2 :: (p,q) -> q

conjElim2 (x,y) = y

Going beyond this, we can encode disjunctions using a sum type2 rather than a

product type. Sum types must be inhabited by one of the two parameterizing types,

but not both. The correspondence between this and disjunction should be clear; both

allow us to represent one out of two possible types of values. We can encode both of

the introduction rules and their elimination rule in the type system.

data Either a b = Left a | Right b

ptoOr :: p -> Either p q

ptoOr = Left

qtoOr :: q -> Either p q

qtoOr = Right

disjunctionElim :: Either p q -> (p -> r) -> (q -> r) -> r

disjunctionElim (Left p) f g = f p

disjunctionElim (Right q) f g = g q

We can go further and use the representation of conjunction as a pair to encode

the if-and-only-if construct, represented as a pair of arrow types. Specifically, this

would be a pair of proofs that p implies q, and that q implies p.
2This implementation of the Either data type is taken from the Haskell Prelude [GHC01a].
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type p <-> q = ( p -> q , q -> p )

iffIntro :: (p -> q) -> (q -> p) -> (p <-> q)

iffIntro pIq qIp = (pIq , qIp )

iffElim :: p <-> q -> (p -> q , q -> p)

iffElim (pIq, qIp) = (pIq, qIp)

The correspondence between the not operator and type-level logical operations is

much less obvious. The constructive definition of a negation is that if Not p, then,

given a p one can generate a Void value. Phrased more directly, Not p means that p

implies Void. We can encode this in the type system, and use it to prove a DeMorgan’s

law. It should be clear at this point that the type system can be used to encode and

prove propositions in propositional logic.

type Not a = a -> Void

demorgan :: Not (Either p q) <-> (Not p , Not q)

demorgan =

(\ notporq -> (notporq . Left, notporq . Right) ,

\(np , nq) ->

\x -> case x of

(Left p) -> np p

(Right q) -> nq q)
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4.1.1 Proofs beyond propositional logic

Even given that we can prove properties of propositional logic in our type system,

it may be surprising that we can encode arbitrary computations in Haskell’s type

system. In fact, GHC’s type system is Turing complete, and there exist type-level

encodings of the SK calculus [Doc06]. While that is somewhat beyond the scope of

this chapter, we can, for example, do computations with type level natural numbers.

Consider a type level number system based on the Peano axioms [18], in which the

natural numbers are represented by either a zero or the successor of another natural

number3. With this, we can see that we have to define types with no data members,

Z and Suc, which in turn takes another type as a parameter. We can see that the

data type Nat has type *-> *, where * indicates the type of simple types in Haskell,

meaning that it is constructing types from input types. This is a way of allowing a

value to carry a type-level Nat4. There exist two constructors for this, a NatZ, which

can only be parameterized by a Z, representing a zero value. The second constructor

takes some natural number Nat n, and wraps a successor around the n, resulting

in Nat (Suc n), effectively adding one to the input number. This form of unary

numbering allows us to represent numbers with added successors onto zero, for example

representing three as Nat (Suc (Suc (Suc Z))).

data Z

data Suc :: * -> *

data Nat :: * -> * where
3This implementation of the natural numbers, natural number addition, and natural number

equality is based on those used in a programming challenge[Far17], which involved proofs of type
level natural numbers.

4This is an example of a singleton [EW12], a strategy of Haskell-based dependent typing.
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NatZ :: Nat Z

NatS :: Nat n -> Nat (Suc n)

Now that we have defined type-level natural numbers, let us define addition

of type level natural numbers. Type families [Zav21] can be thought of in this case

as functions from types to types, with type instances as matching patterns. As our

representation of natural numbers are types, we can use type families to do calculations

on them and return other type-level natural numbers. We define a type family named

(:+:), which is parameterized by two types, n and m. This is much like how we

parameterized our GADT Expression data type in the last chapter, except that the

inputs here are typed explicitly. We can see the we have two instances — type-level

analogues to function definitions with pattern matching— we need to account for, one

in which n is a Z, in which case the result of Z plus m equals m, representing adding

zero to another number. In the second such instance, where Suc n is added to some

m. This works by recursively pulling Suc constructors off of the Nat on the left hand

side of the :+:, and stacking them onto the result of the recursive :+: call.

type family (:+:) (n :: *) (m :: *) :: *

type instance Z :+: m = m

type instance Suc n :+: m = Suc (n :+: m)

We can then use the kind! command in GHCi, which allows us to see type-level

computations in the REPL, to show that this addition works as we expect, in this

case that 3 + 2 = 5.

*Main> :kind! Suc (Suc (Suc Z)) :+: (Suc (Suc Z))

Suc (Suc (Suc Z)) :+: (Suc (Suc Z)) :: *

= Suc (Suc (Suc (Suc (Suc Z))))
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We are not limited to computing in the land of types: we can also extract values

from the world of types into the world of values by using type classes, traditionally

thought of as vehicles for principled function overloading. For example, we can extract

a runtime number from a type-level number by creating a type class ToValue, which

requires its instances to implement a function toValue :: Natural. We then create

an instance for Z where toValue Z = 0, as well as an instance for ToValue (Suc n)

that adds one to a recursive call on n5. The @n is a visible type application [GHC20c],

where we are explicitly supplying the n from the instance declaration to the recursive

toValue call.

class ToValue n where

toValue :: Natural

instance ToValue Z where

toValue = 0

instance ToValue n => ToValue (Suc n) where

toValue = 1 + toValue @n

As we can clearly see, this allows us to take type-level natural numbers and extract

them into corresponding value-level natural numbers. This use of type checking as

evaluation allows us to calculate values from types at compile time, or in a REPL as

shown below.

*Main> toValue @(Suc (Suc (Suc Z)) :+: (Suc (Suc Z)))

5
5This implementation is based on an article by Alexis King on typeclass metaprogramming [Kin21].
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We can also represent relationships, for example natural number equality, as a

data type :~:.We do this with two axioms: The first axiom is that zero is equal to

zero, represented by the ZeqZ constructor. Note that the constructor enforces that

both the parameters must be Z. The second constructor, CongSuc, a name choice that

will be clear in the next chapter, asserts that, if two natural numbers n and m are

equal, then Suc n is equal to Suc m.

data (:~:) :: * -> * -> * where

ZeqZ :: Z :~: Z

CongSuc :: (n :~: m) -> (Suc n :~: Suc m)

Given that, as established earlier in this chapter, we can write proofs in our types,

and we have an embedding of the natural numbers and their equality relations in our

types, let us prove something about our natural numbers6. Specifically, it is known

that natural number addition follows the commutative property[Lan66, p.6], that is

∀a, b : N, (a+ b) ≡ (b+ a). This is a basic enough property that we take it for granted,

but it may be useful to reflect that this is not true for subtraction or exponentiation7,

so this is not a trivial property. Given that we claim our representation of Nat

corresponds to the natural numbers, this is a property that definitely should hold.

We must begin with some lemmas. The first of these is that of reflexivity, that

all natural numbers are equal to themselves. This can be represented by the refl

function.

refl :: Nat n -> n :~: n
6These proofs are based on my solutions to a programming challenge[Far17], which involved proofs

of type level natural number addition.
7As proof, consider that 2− 4 = −2 6= 2 = 4− 2, and 32 = 9 6= 16 = 23.
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refl NatZ = ZeqZ

refl (NatS n) = CongSuc (refl n)

The type signature can be read as: “For all natural numbers n, n is equal to n”.

Note that the Nat value is used as a carrier of the type-level information to the :~:. In

the case that n is equal to NatZ, we need a way to show that Z :~: Z. Conveniently

we have such a way: our first axiom of equality, ZeqZ. In the other case, where the

supplied Nat is a NatS n, we need some way to show that Suc n :~: Suc n. Our

other axiom of equality could prove this, but it requires a proof that n :~: n as

input. Calling refl on the natural number n return such a proof, and so by combining

our CongSuc axiom and a recursive call to refl our function type checks, and thus

reflexivity is proven over our implementation of the natural numbers.

Consider for a moment what we have done here: we have a base case when n is

a NatZ, that we can prove without assuming anything. The other case, however, only

works because we are able to assume that this property holds for n, and from that

prove that it holds for Suc n. If this sounds like an inductive proof, that’s because it

is! In much the same way that () is analogous to true, Void is analogous to false and

-> is analogous to implication, recursion is analogous to induction.

Another proof, that Z is the right identity over addition 8 can be proved in much the

same way. To prove the base case, all we need to show is that (Z :+: Z) :~: Z, which

can be generated directly generated by our axiom ZeqZ, as (Z :+: Z) reduces to Z.

In our inductive case, we need to show that ((S n) :+: Z) :~: (S n). A recursive

call of plusIdentityR n : (n :+: Z) :~: n , so we can again use CongSuc to wrap

each side in a S, completing our inductive case.
8A zero being a right identity over addition means that ∀n : N, n+ 0 = n
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plusIdentityR :: Nat n -> (n :+: Z) :~: n

plusIdentityR NatZ = ZeqZ

plusIdentityR (NatS n) = CongSuc (plusIdentityR n)

Proving that a Suc can be taken from the right side and pulled out the outside

of the remaining addition is slightly trickier. In the base case we have to prove

that Z :+: (Suc m) :~: Suc (Z :+: m). We can see that Z :+: (Suc m) reduces

to Suc m and Suc (Z :+: m) reduces to Suc m. The proposition we actually need

to prove for the base case is Suc m :~: Suc m, which we can prove by using refl

over m, and then applying CongSuc. Using refl m we can create a proof that

m :~: m, and from this we can use our CongSuc constructor to construct a proof that

Suc m :~: Suc m. The inductive case follows simply by induction as before.

plusSuc :: Nat n -> Nat m -> (n :+: Suc m) :~: Suc (n :+: m)

plusSuc NatZ m = CongSuc (refl m)

plusSuc (NatS n) m = CongSuc (plusSuc n m)

We are not limited to induction on numbers, though! We can also use induction

on the equality relations themselves, as they are defined recursively. For example,

we must use this approach to prove the symmetry of equality: if a = b, then b = a.

The base case requires that we prove Z :~: Z, and thus can be directly solved by

our axiom ZeqZ. The inductive case, where we must prove Suc b :~: Suc a given

Suc a :~: Suc b, can be solved by getting the inductive hypothesis from a recursive

call of type b :~: a, and then adding a Suc to both sides with CongSuc.

symm :: a :~: b -> b :~: a

symm ZeqZ = ZeqZ

symm (CongSuc n) = CongSuc (symm n)
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We can also prove the transitive property, if a = b and b = c, then a = c, in basically

the same way. The base case is actually solved identically, and the inductive case,

which requires that we prove that Suc a :~: Suc c given that Suc a :~: Suc b

and Suc b :~: Suc c, follows by straightforward induction. The recursive call

(trans aEqb bEqc) (recursing on both variables) has type a :~: c, which becomes

Suc a :~: Suc c when CongSuc is applied. This property is proven in the following

definition:

trans :: a :~: b -> b :~: c -> a :~: c

trans ZeqZ ZeqZ = ZeqZ

trans (CongSuc aEqb) (CongSuc bEqc) = CongSuc (trans aEqb bEqc)

With all of these lemmas, we can now begin to prove the property that we had

intended to prove initially: the commutativity of natural number addition. Using

our plusIdentityR lemma, we can prove the base case, that (n :+: Z) :~: n. Our

inductive case requires CongSuc applied to a recursive call

CongSuc (+-comm n m) : Suc (n :+: m) :~: Suc (m :+: n), and

right :: (n :+: Suc m) :~: Suc (n :+: m), in order to prove the required

(n :+: Suc m) :~: Suc (m :+: n). Using the transitive property to stitch these

two proofs together, where a = (n :+: Suc m), b = Suc (m :+: n), and

c = Suc (m :+: n), trans right ih produces such a stitching, completing our

proof.

plusComm :: Nat n -> Nat m -> (n :+: m) :~: (m :+: n)

plusComm n NatZ = plusIdentityR n

plusComm n (NatS m) =
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let

ih = CongSuc (plusComm n m)

right = plusSuc n m

in

trans right ih

To summarize, we have shown that computations can be done at a type level, that

we can prove properties of type-level computations (in fact, the type checker of some

dependently-typed languages are based on proof engines [Bra13]), and that we can

extract values from types. This implies that we could have verified computation occur

on the type level at compilation time and then extract the resulting value at runtime.

Although this is an interesting property, the difficulties of using a type-level language

to implement an interpreter should be obvious, as one presumably wants to run on data

encoded in files and not be required to be translate them into type-level constructs.

Dependent types solve this conundrum by allowing us to construct types based on

values directly, completing this circuit. The interaction between these concepts is

shown in Figure 4.1.

Figure 4.1: Relations between type levels
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This is intended to show that, much like functions can operate over values and

return values, type families can operate over types and return types. We can extract

values from types by using type classes, however, in order to lift values into the type

domain, we must use dependent types, which we have not meaningfully introduced

yet. Without these dependent types, we would be relegated to writing type-level

interpreters if we wanted to prove properties of them using the type system, however

if we had these dependent types we could use dependent typing to lift properties of a

value-level interpreter into the types, and use them prove that these properties hold.

4.2 A map forward

Of course, in keeping with the theme of this thesis so far, we really need to know

what our programs are doing. This includes our compilers and optimization pipelines,

especially given that they have the potential to break any programs that pass through

them if the optimizations are not known to be correct. Although that is intuitively

satisfying, what does it mean to be “known to be correct”? This chapter has focused

on the relation between logic and languages, and, in particular, on how one can use

types to reason about the logic of their programs. Given the existence of dependent

types — where types can depend on values — we can use these dependent types to

prove the properties of our value-level interpreters correct. Importantly, this means

we can also prove properties about the modifications of programs, and in doing so

prove that our optimizations do not change the semantics of programs when evaluated.

In the next chapter, we will work with a more expressive dependently-typed language

to explore this further.
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Chapter 5

A short introduction to Agda

In the last chapter, we worked through examples of type-level programming

and proofs about these programs. We then introduced the idea of dependent types,

where types can depend on values, and thus we can prove properties about values in

our types. In this chapter, let us learn to use dependent types to prove properties

about our programs. Although there are ways to use dependent types in Haskell, and

although they are powerful and used in industry, there are also practical difficulties

that come with their use [CDD+19]. Instead of gradually enabling more and more

exotic Haskell extensions to allow us, for example, to execute context lookups at a

type level, we will now move to a natively dependently typed language, Agda [Nor07]1.

Here, for example, is a simple Agda program that defines a type N, of natural numbers

and a corresponding addition operator:

data N : Set where

zero : N

suc : N → N

_+_ : N → N → N

1In this thesis we are using Agda version 2.6.1.3.
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zero + n = n

(suc m) + n = suc (m + n)

At first glance Agda’s syntax looks quite similar to Haskell’s, with the obvious

differences being unicode symbols: → and N being used in place of -> and Nat

respectively, as well as the single colon being used as the “has type” operator. The

natural number definition above looks much like how we defined data types in our

GADT style in Chapter 3, and the design mirrors the type-level natural numbers in

the last chapter. The addition operator defined above is very similar to how we defined

addition on our type-level natural numbers in the last chapter, except done as a typical

function rather than a type family. This is both because these are somewhat canonical

implementations in this space, and because we want to illustrate the power that Agda

gives us, by contrasting an Agda program with a similar program in type-level Haskell.

To show that two things are equal, we need a way to express equality in Agda.

Rather than a specific set of equality axioms for a single data type, as we had for

our type-level natural numbers, Agda supplies an equality type family, ≡. Simply,

there is one way to show that things are equal, and that is to show that they are

literally the same. The definition of the equality data type is different enough from

standard Haskell that it warrants a detailed explanation. As in our GADT in Haskell,

we define a data type between the data and where keywords. The space between

these two keywords is taken up by three sections from left to right: the name, the

parameters, and the indices. The name of this data type is an operator ≡ surrounded

by underscores, which indicate that it is an infix operator. After that, we have variables

that parameterize the data type: {a}, {A : Set a}, and (x : A). These will be explained

in the next paragraphs.
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data _≡_ {a} {A : Set a} (x : A) : A → Set a where

instance refl : x ≡ x

In the last chapter we alluded to the fact that each value has a type, and

that there is a type of types represented in Haskell by *. It seems reasonable to

ask what type * has, as we are rapidly entering dangerous ground when talking in

terms of self reference in this way2. A check into GHCi shows that the kind of * is *.

Through this we’ve encountered a way to introduce a logical inconsistency via Girard’s

paradox [Hur95], as defining a type in terms of itself allows one to prove false. Agda

avoids this possibility by creating an infinite hierarchy of types, known as universes,

where Set a indicates a type of universe level a. For example, N : Set 0, Set 0 : Set

1, and so on [AAC+21e]. This means that functions which are polymorphic over

any data type may be polymorphic over universe levels, a feature known as universe

polymorphism.

With this in mind, we can go over the parameters of our equality data type,

from right to left. This data type is parameterized by some value x of type A — much

like the type parameterization of our (:+:) data type in the last chapter — where the

previous parameter indicates that A is some Set a, where a is inferred to be a universe

level. The first two parameters — the ones surrounded by curly braces — only exist

to provide a sufficient definition for A. The curly braces indicate that they are implicit

arguments, meaning that they can be omitted in the cases when the type checker can

figure out what values they should be when creating an instance of this data type.

After the :, the A → Set a indicates that the data type must be indexed by a value
2If one wants to delve deeper into the dangers of self-reference, a wonderful book that explores

self-reference in a mathematical context, among other things, is “Gödel, Escher, Bach: an Eternal
Golden Braid” by Douglas Hofstadter.
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of type A, which in turn has type Set a. This means that the universe level of the

equality data type is the same as that of the type over which equality is being shown.

On the next line is the single constructor refl, which indexes that data type with

the input value 3. This illustrates that, like the refl function in the last chapter, in

order for two things to be considered equivalent in this type theory, they must be

identical.

What may be obvious from that definition is that every e ≡ e type is inhabited.

For example, zero ≡ zero is inhabited. We can illustrate this as a declaration with

type annotations specifying the equality we are showing, and with the value refl as the

proof, as in the last chapter. Note that an underscore of a definition refers to the next

implementation with an underscore, and a function definition with an underscore as a

name refers to the previous type declaration. An interesting detail with Agda’s type

checking engine is that types are automatically normalized, so refl successfully type

checks as having type 1 + 2 ≡ 3, because they both normalize to the same value, suc

(suc (suc zero)).

_ : zero ≡ zero

_ = refl

_ : (suc zero + suc (suc zero)) ≡ suc (suc (suc zero))

_ = refl

In our previous chapter, we needed an axiom to derive suc m ≡ suc n given m ≡

n. Normalization is not powerful enough to figure this out automatically, as it depends

on an equality between m and n. It turns out that this is a specific case of a more
3The instance keyword instructs Agda it to use a different kind of constraint solving algorithm,

but does not otherwise change the meaning of the constructor.
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general principle, that of congruence, which means that if m ≡ n, then f m ≡ f n for

all functions f. This property can be captured in Agda using the following definition

from the Agda standard library [AAC+21a]:

cong : ∀ (f : A → B) {x y} → x ≡ y → f x ≡ f y

cong f refl = refl

cong and the trans function encoding the transitive property are conveniently supplied

in the standard library, which allows us to re-prove the propositions we proved in the

last chapter, but this time in a much more convenient manner and with more general

tools.

+-identityr : ∀ (m : N) → m + zero ≡ m

+-identityr zero = refl

+-identityr (suc m) = cong suc (+-identityr m)

+-suc : ∀ (m n : N) → m + suc n ≡ suc (m + n)

+-suc zero n = refl

+-suc (suc m) n = cong suc (+-suc m n)

+-comm : ∀ (m n : N) → m + n ≡ n + m

+-comm m zero = +-identityr m

+-comm m (suc n) = trans (+-suc m n) (cong suc (+-comm m n))

We can see above that we can prove the same properties as we did in the last

chapter, but in a much clearer manner. The strict division between values and types

has been obliterated, and, as such, rather than using type families to create types

from types and type classes to extract values from types, we can just write functions
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from types to types, types to values, values to types, and values to values. It is

easy to default to a pre-type-level programming perspective given this power, where,

paradoxically, the ability to transition between types and values causes one to treat

this more like value-level programming than type-level programming.

A dimension this brings into programming that is not usually thought of is that of

evidence. For example, let us say that we are trying to write a function that takes a

list as an argument and then gives us information about whether or not some value

is in the list. A straightforward way to do this in a typical programming language

would be to recurse through the list, and if a matching value is found, return true,

and if it hits the end of the list, return false. In one sense, this does exactly what it

should: if the value is in the list, the function returns true, otherwise it returns false.

What it has not provided, however, is evidence of anything. We have no indication of

what that boolean really represents, as one can create a boolean simply by returning

“true” or “false”. For the same reason that ≡ does not return a boolean to indicate

equality, but rather a Set whose value contains the evidence of that equality, our list

membership function must return a Set if we want it to prove anything.

The Any data type can be used to provide such evidence of list membership. An

Any type is used to show that there exists some member in a list for which a given

proposition holds. Given some predicate P, an Any data type has two constructors:

the recursively defined there constructor, where the predicate holds over some member

of the tail of the list, and here, where the predicate holds over the current head of the

list. This effectively creates a list bundled with the predicate, and an index of a list

member for which the predicate holds. This works by providing a path back to the

value, as an index, and a proof that the predicate holds over that data member.

For example, consider using ≡ as part of the predicate supplied to the Any type.
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If the predicate that we apply to our list is the equality value parameterized with the

desired number x, if this type checks, we know that x is in the list. This becomes

clearer when illustrated on a concrete list of numbers. Suppose that we have a list

of numbers, (2 :: 7 :: 0 :: 2 :: [] ), and that we want evidence that zero is in the list.

The way we would express this proposition with our Any data type is Any (0 ≡ ) (2 ::

7 :: 0 :: 2 :: [] ). What proof do we have that this is true? there (there (here refl)))

inhabits the above type, by indicating that the member with index 2, 0, is equal to 0.

This shows that the supplied predicate (that the number equals zero) matches the

third member of the list and supplies a proof to that effect, refl.

Any (0 ≡) (2:: 7:: 0:: 2::[])

there (there (here refl))

0≡0

Figure 5.1: An illustration of the Any type using our example list.

5.1 Proofs, monads, and more

The previous section showed that we can prove properties of mathematical

functions correct, much as we had done in Chapter 4. These properties of the natural

numbers are ones that are simple to understand and often discussed in introductory

classes on discrete mathematics, and thus made them useful candidates for us to

introduce earlier in this chapter. Extending these tools to properties of less simple

constructions than the natural numbers, such as simple monads, will help us along on

the path towards proving properties about interpreters.
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In order to proceed, let us consider what monads are, and what is required to

implement them faithfully. In functional programming, a monad is a Set that has two

associated functions which fulfill three laws. The two associated functions are return 4

and bind. return has type a → M a, and can be thought of as a way to inject a value

into a monad. bind, often written as �= as an infix operator, on the other hand, has

type M a → (a → M b) → M b where M is the relevant monad and a and b are types.

This allows updates to a value in the context of a monad. The monad laws, as shown

in Figure 5.2, constrain how �= and return must be implemented in order to be true

monadic operations.

Γ ` m : Monad Right monad law
Γ ` m �= return ≡ m

Γ ` f : a→ Monad b , x : a
Left monad law

Γ ` return a�= f ≡ fa

Associativity
Γ ` (m �= g) �= h ≡ m �= (λ x→ g x �= h)

Figure 5.2: Monad laws

Rather than trying to give nontechnical explanations of what a monad is, let us go

through an example.
4If one is reading Haskell programs, they may see pure used in place of return. pure, from the

applicative typeclass, is equivalent to return from the monad typeclass. There is currently a proposal
to eliminate return from the monad typeclass and use pure instead, as the monad typeclass now
requires a monad to be an applicative [GHC21].
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5.1.1 Writer

A classic example of a monad is the Writer monad [Wad92]5, which consists of

a pair of some value to be returned and a list of values as a log. We could imagine

this being implemented as a debugging log, where important debug information is

aggregated as a program executes.

Writer : (a : Set) → Set

Writer a = a × (List String)

For example, we can imagine an addition function, which would normally have

type Z → Z. We can modify this to return a pair of both the result of the addition

and a description of the function and inputs used. We can see that if we run add’ 5 8,

the result is a (+ 13)6 as the value and a singleton list of “added 5 to 8” as the log.

add’ : Z → Z → Writer Z

add’ x y = (x + y) , ("added " ++s show x ++s " to " ++s show y) :: []

_ : add’ (+ 5) (+ 8) ≡ ((+ 13) , ("added 5 to 8" :: []))

_ = refl

Let us say we want to chain two of these operations together and append the log

of the second function to the result of the first. We can accomplish this by defining an

implementation of �= to compose these functions, that updates the log automatically

without additional programmer input. If we then take the same addition expression

as described above and bind it to another addition function that adds 7 to it, we can

see that the resulting log contains both of the addition steps.
5Sometimes the Writer monad is referred to as the Output monad.
6The + is a constructor for integers in Agda that constructs a positive integer from a supplied

natural number.
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_ : (add’ (+ 5) (+ 8))

�= (λ x → add’ x (+ 7))

≡ ((+ 20) , ("added 5 to 8" :: "added 13 to 7" :: []))

_ = refl

How does this work? Well, we can see that we are given some (a, vs1) : Writer a

and a function of type a → Writer b. We can use the with construct to pattern match

on the Writer resulting from applying f to a, and construct the Writer b by returning

the result of evaluating f to a, b, and appending the log vs1 to vs2. Note that the with

construct allows us to case split on the result of some computation much like a case

expression, except it automatically normalizes in ways that case does not, which can

be useful for leveraging Agda’s unification abilities to ease proving desired properties.

The with construct additionally allows us to case over many different expressions

simultaneously, a feature that we will use a lot in the coming chapters.

_�=_ : ∀ {a b} → Writer a → (a → Writer b) → Writer b

_�=_ (a , vs1) f with f a

...| (b , vs2) = b , vs1 ++ vs2

Finally, we can define our return function, which is much simpler. It injects the

value a into the Writer, in this case by pairing it with an empty log.

return : ∀ {a} → a → Writer a

return = λ a → a , []

_ : return (+ 5) ≡ (+ 5 , [])

_ = refl
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We have implemented functions that are claimed to be legitimate monadic binds

and returns, but we mentioned earlier that, in order for these to be true monadic

operations, bind and return must be related to each other through the monad laws.

How can we prove that our implementation respects these laws?

Proving the left monad law is easy, as Agda’s unification process is advanced enough

to normalize the two expressions involved and determine that they are reflexively

equal.

lML : ∀ {A B C : Set}

→ (a : A)

→ (f : A → Writer B)

→ (return a) �= f ≡ (f a)

lML a f = refl

The right monad law requires that bind and return be related in such a way that

binding some value x to a return evaluates to x. We can take the first step by pattern

matching on x into (x1 , vs), and simply showing that x �= return is reflexively equal

to x with the empty list appended to the vs component. We can then use the right

identity over lists, that is vs ++ [] ≡ vs, which is a member of Agda’s standard library.

This works specifically by generating a proof (++-identityr vs) : vs ++ [] ≡ vs, and

using the congruence property over (λ y → x1 , y), resulting in a proof that has type

x1 ,vs ++ [] ≡ x1 , vs.

rML : ∀ {t} → (x : Writer (DataVal t)) → (x �= return ) ≡ x

rML x =

let ( x1 , vs) = x

in
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begin

(x �= return )

≡〈 refl 〉

x1 , vs ++ []

≡〈 cong (λ y → x1 , y) (++-identityr vs) 〉

x �

If we read through the proof of the right monad law, we can see that after the

let expression, there is an expression consisting of a begin, a series of expressions

separated by ≡〈 ...〉, and which ends with a �. This is an approach to proofs called

equational reasoning, where in trying to prove a ≡ c for some a and c, we set up a

series of transitive property proofs such that we can build a chain of reasoning with

intermediate steps, with ≡〈...〉 requiring a proof of equality between the brackets. For

example, begin a ≡〈 aEqb 〉 b ≡〈 bEqc 〉 c �, where aEqb : a ≡ b and bEqc : b ≡ c,

would have type a ≡ c. With this background, we can walk through the right monad

law proof and see that we start with x �= return, the left hand side of the equality

we are trying to prove. We then show that it is reflexively equal to x1 , vs ++ [], and

then use the congruence property and a standard library proof of the identity to show

equality to x, the right-hand side of the equality we are trying to prove.

This approach is very readable, although somewhat verbose. In fact, cong (λ y

→ x1 , y) (++-identityr vs) has the same type as what we’re trying to prove, which

makes sense given that the only other step in it is reflexive. We also do not need a

let expression to deconstruct the Writer: we can pattern match on it in the function

definition. This more concise approach can be seen below as another proof of the same

property. It is undoubtedly more concise, but is it more understandable? In this case
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it is arguable, but as the proofs get longer and more complex, equational reasoning

is much clearer to read and thus will be used as much as possible in the rest of this

document.

rML’ : ∀ {t} → (x : Writer (DataVal t)) → (x �= return ) ≡ x

rML’ (x1 , vs) = cong (λ y → x1 , y) (++-identityr vs)

In order to prove the associative property for bind, the third monad law, we must

show that binding some (m1 , m2) : Writer a to a function g : a → Writer b, and

binding the result to a function h : a → Writer c results in the same value as binding

g to h in a lambda, which is bound to the initial (m1 , m2) value.

writer-assoc : ∀ {a b c}

→ (m : Writer a)

→ (g : (a → Writer b) )

→ (h : (b → Writer c) )

→ (m �= g) �= h ≡ m �= (λ x → g x �= h)

writer-assoc (m1 , m2) g h =

let

(gm1 , gm2) = g m1

(hgm1 , hgm2) = h gm1

in

begin

((((m1 , m2) �= g) �= h))

≡〈 refl 〉

hgm1 , (m2 ++ gm2) ++ hgm2

≡〈 cong (λ x → hgm1 , x) ( ++-assoc m2 gm2 hgm2) 〉
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hgm1 , m2 ++ (gm2 ++ hgm2)

≡〈 refl 〉

(((m1 , m2) �= (λ x → g x �= h))) �

If we apply g to m1, extracting the result as a pair of the value gm1 and the log

gm2, and then apply h to gm1 and extract the result as a pair (hgm1 , hgm2), we have

exposed the components of the composition. We can show that the Writer resulting

from the bind composition consists of a value equal to hgm1, and a log equal to the

concatenation of the log sections of the writers, (m2 ++ gm2) ++ hgm2. We can then

use the standard library proof that the ++ operator is associative over lists, showing

that (m2 ++ gm2) ++ hgm2 ≡ m2 ++ (gm2 ++ hgm2). We can use our cong function

to turn that into a proof that (hgm1 , (m2 ++ gm2) ++ hgm2) ≡ (hgm1 , m2 ++ (gm2

++ hgm2)). Agda is able to normalize this to (m1 , m2) �= (λ x → g x �= h), which

is the equality we were trying to prove, proving that our implementation holds for the

third law.

5.1.2 Monads in monads in monads in...

We actually already introduced a monad in Chapter 3! Our first evaluator, the one

that was not implemented with with a GADT and therefore had to account for the

case that there was a type error, returned a Maybe Value. The <- arrow is syntactic

sugar for constructing a series of >>= compositions. There are many such cases where

there exists at least one input where the function cannot evaluate to a correct value.

For example, an integer division function fails if a zero is passed into the denominator.

Rather than just throwing a run-time error, this possibility for failure can be encoded

in the type system, and rather than returning an Z, it can return Maybe Z, as our
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evaluator did. The Maybe a type has two constructors, just a , and nothing. The

monadic bind action, rather than aggregating a list, propagates failure forward so that

(nothing �= f) ≡ nothing, but ((just x) �= f )≡ (just f x). The return injects the

value into Maybe a by wrapping in in a just constructor. With these, we can define a

chain of operations that propagate the failure forward if any link in the chain fails.

We can define these operations below.

return : ∀{A} → {a : Set A} → (m : a) → Maybe a

return a = just a

_�=_ : ∀{A B}

→ {b : Set B}

→ {a : Set A}

→ (m : Maybe a)

→ (a → Maybe b)

→ Maybe b

nothing �= f = nothing

just x �= f = f x

As evidence that this is faithfully applied, consider the proofs below that these

follow the monad laws. The proof of the left monad law is reflexive as before, however

the right monad law required us to case over the input Maybe value. The proof of

associativity is also relatively simple, where when casing over the input and the result

of the application of the supplied function f to m, every branch of the proof ending in

a nothing value is reflexive, because they all have the type nothing ≡ nothing, and the

one branch ending in a just value has type just y ≡ just y, and is thus reflexive as well.
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lml : ∀{A B C : Set}

→ (a : A)

→ ( f : A → Maybe B )

→ (return a) �= f ≡ (f a)

lml a f = refl

rml : ∀ {A} → {a : Set A } → (x : Maybe a) → (x �= return) ≡ x

rml nothing = refl

rml (just x) = refl

maybe-assoc : ∀ {A B C} → {a : Set A} → {b : Set B} → {c : Set C}

→ (m : Maybe a)

→ (g : (a → Maybe b) )

→ (h : (b → Maybe c) )

→ (m �= g) �= h ≡ m �= (λ x → g x �= h)

maybe-assoc nothing g h = refl

maybe-assoc (just x) g h with g x

... | nothing = refl

... | just x1 = refl

This is a relatively simple monad though, so proving things about it directly was

not that interesting. Let us take a step forward and nest our monads, so we have a

Maybe, where the parameterizing type is a Writer. This results in a computation that

either returns nothing, or a value with a log7.
7There are better ways of dealing with combined effects than simply nesting them: two examples

are monad transformers [Jon95] and algebraic effects [XL20]. Re-implementing the monad transformer
library would be a thesis on its own, so instead, here they are nested, and the relevant functions
manually implemented.
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Looking at the the bind function, we can see that if we bind a nothing value to

some function, the bind evaluates to a nothing. The interesting case is when a just

value is being bound, in which case the result of the bind depends on the application

of the function f to the value in the Writer a. This is accomplished by using a with

construct. This captures both the ability for the calculation to fail and return nothing,

and the log aggregating capability of the Writer monad.

return : ∀ {t} (a : t) → Maybe (Writer t)

return a = just (a , [])

_»=’_ : ∀ {a b}

→ Maybe (Writer a )

→ (a → Maybe (Writer b))

→ Maybe (Writer b)

nothing »=’ f = nothing

just (a , vs1) »=’ f with f a

...| nothing = nothing

...| just (b , vs2) = just (b , vs1 ++ vs2)

For example, we can define a division function that takes two natural numbers,

and if the denominator is non-zero, it returns a writer with the result of division as the

value and a description of the call in the log. In all other cases, the division function

returns a nothing value.

div : N → N → Maybe (Writer N)

div n zero = nothing

div n (suc m) = just
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(n / (suc m) ,

[ "divided " ++s shown n ++s " by " ++s shown (suc m) ]′′)

For an illustration of a single operation in this monad, if we divide 2 by 4 we get a

just value of 2 as our returned value, and a description of the operation in the log.

If we divide that by zero however, we get a nothing value, as division by zero is not

defined.

_ : div 4 2 ≡ just (2 , [ "divided 4 by 2" ]′′)

_ = refl

_ : div 4 0 ≡ nothing

_ = refl

We can see that if we try and bind the result of this division function to another

division, the failure propagates forward, whereas if we bind together two successful

division operations, we have the correct resulting value and a log of both of the division

steps.

_ : div 4 0 »= (λ x → div 32 x) ≡ nothing

_ = refl

_ : div 4 2 »= (λ x → div 32 x)

≡ just (16 , [ "divided 4 by 2" ,′′ "divided 32 by 2" ]′′ )

_ = refl

In order to prove the right monad law for the MaybeWriter monad, we have to do

a proof by cases over the constructors. In the case that x is nothing, then the equality
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that we are trying to prove is reflexive. In the case that it is a just value, then the

same proof as in the right monad law proof of the Writer can be used if we wrap the

Writer value in a just constructor.

rML : ∀ {a} → (x : Maybe (Writer a )) → (x »= return ) ≡ x

rML nothing = refl

rML (just (x1 , x2)) = cong (λ y → just (x1 , y)) ( ++-identityr x2)

The bind operator in this case has a difference in behavior depending on the result

of the application of the function to the value in the Writer. We can encapsulate this

change in behavior via another proof by cases, but over the result of the function

application of f to a. Whether f a evaluates to a nothing value or a just value, the

proofs are reflexive.

lML : ∀ {A B C : Set}

→ (a : A)

→ (f : A → Maybe (Writer C ))

→ ((return a) »= f ) ≡ (f a)

lML a f with f a

... | nothing = refl

... | just x = refl

In order to prove the final monad law, that of associativity, we first handle the

case where the MaybeWriter is a nothing value, in which case the proof is reflexive. In

the case that it is a just value, we can use a with construct to examine the cases when

the first bound function is applied to the first value, x1. As before, the nothing case

is reflexive, but in the just case we can use a nested with expression to consider the
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cases of the second bound function, h, applied to the result of the previous function

application, y1. Again the nothing case is reflexive, and in the just case we use the

same proof as in the Writer associativity proof, with a just constructor wrapping the

Writer in the cong function.

maybe-writer-assoc : ∀ {a b c}

→ (f : Maybe (Writer a))

→ (g : (a → Maybe (Writer b) ))

→ (h : (b → (Maybe (Writer c) )))

→ (f »= g) »= h ≡ f »= (λ x → g x »= h)

maybe-writer-assoc nothing g h = refl

maybe-writer-assoc (just (x1 , x2)) g h with g x1

... | nothing = refl

... | just (y1 , y2) with h y1

... | nothing = refl

... | just (z1 , z2) = cong (λ a → (just (z1 , a ))) (++-assoc x2 y2 z2)

Hopefully this has given the reader enough of a background in Agda to understand

the following chapters enough to follow along. We have shown how Agda’s notation is

similar to that of Haskell, how dependent types allow one to seamlessly work with

types as data and to prove properties of our programs. What we have not shown is

how we can use these techniques to prove properties of languages, which we will do

next chapter.



CHAPTER 6. SIMPLELANG 77

Chapter 6

SimpleLang

In the last chapter, we used dependent types to prove properties about data types

and functions in our natively dependently typed language, Agda. Recall that our

original motivation for entering the world of more advanced typing was to assure

that variable lookups were well-typed in our Haskell interpreter in Chapter 3. This

required function application on a type level to maintain the well-typed nature of the

interpreter, as we needed to know what type variables had in context, and thus could

not be completed with a non-dependently typed language. Now that we’ve had at

least an introduction to such a language, we return to the previous question.

In this chapter, we explore a simple language embedded in Agda, that has been (ex-

tremely creatively) called SimpleLang1, and it is effectively an Agda re-implementation

of the language from Chapter 3. It is also an example of an intrinsically-typed defini-

tional interpreter. The data types are intrinsically-typed, meaning that the type system

of this language is included in the definition of the abstract data types that define

the language. The interpreter that operates over these data types is a definitional

interpreter, meaning that the semantics of the object language are defined in terms of

a well-known host language, in this case Agda.
1This language is based on the introductory interpreter in the paper “Intrinsically-Typed Defini-

tional Interpreters for Imperative Languages” [BRT+17]
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6.1 Abstract syntax and interpreter

As we can see below, the basic structure of the expression, type, and value data

types has remained the same when compared to our language defined in Chapter

3. The Haskell GADT Expression and Agda Expr have corresponding data types:

ExpNum maps to num, ExpPlus maps to plus, and ExpTrue and ExpFalse map to the

bool constructor. The Value and Val constructors also have a similar correspondence,

of ValNum mapping to numV and ValTrue and ValFalse mapping to boolV. The only

real differences across both types in the Agda translation are that the data types’

parameter and index types are explicit. For example, instead of the value definition

being parameterized by some typeless a, we say that Val is indexed by a Ty and returns

a Set, an alias for Set0. The Expr type is also a Set indexed by a Ty, but this time it is

parameterized by a typing context, Γ. This means that each expression has its own

context in which it can look up the types of variables, as shown in the var case.

data Ty : Set where

int : Ty

bool : Ty

Ctx = List Ty

data Val : Ty → Set where

numV : Z → Val int

boolV : Bool → Val bool

data Expr (Γ : Ctx) : Ty → Set where

num : Z → Expr Γ int

bool : Bool → Expr Γ bool
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var : ∀ {t} → t ∈ Γ → Expr Γ t

plus : Expr Γ int → Expr Γ int → Expr Γ int

The variables in this interpreter do not hold strings representing a variable names,

but rather are Any types, as introduced in the last chapter. This consists of the type

of the variable, t, as well as a proof that t is present in the context Γ, which entails

specifying the index of it. This in turn can be used to look up the value referenced

by the index in the evaluation context at runtime. The ∈ function is a way to create

an Any from a list and a specified member. This ensures that variable lookup is

well-typed because the type that parameterizes the var is guaranteed to be in the

typing context Γ, and has a matching type to the var which is parameterized by the ∈.

This is enforced by the Expr being indexed by t, the same type as in the ∈ expression.

The evaluation rules are similar to the language in Chapter 3, except that we now

define an operator +v, to correspond with the plus constructor, and implement the

evaluation of plus in terms of that. An interesting point to notice is that the expression

and the environment refer to the same type context. That means that the type level

lookups in the abstract data type correspond to variable lookups at evaluation time.

In this small language there is no way to introduce variables, other than passing in an

initial context, so we only need to worry about looking up variables, not extending

the context.

infixl 5 _+v_

_+v_ : Val int → Val int → Val int

numV v1 +v numV v2 = numV (v1 + v2)

eval : ∀ {Γ t} → Expr Γ t → Env Γ → Val t
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eval (num x) env = numV x

eval (bool x) env = boolV x

eval (var x) env = lookup env x

eval (plus e1 e2) env = eval e1 env +v eval e2 env

With great types come great responsibility, and we have unintentionally run across

a complication with GADTs generally by leveraging our types in this manner. Our

typing context is represented by a list of types, and our evaluation environment should

be represented by a list of values, which we index by length from the front. Recall

however that our Val types are indexed by a type, so a list of Vals would actually

require a list of Val t, where the t varies depending on the expression. This kind of

heterogeneous data structure is not representable with a normal list without some

modification.

There is another means by which we can apply a predicate to members of a list,

and that is the All data type. While the Any data type allows us to collect evidence

that some member of a list satisfies a predicate, an All data type allows us to collect a

list of elements that all satisfy a predicate. Recalling that a predicate in Agda is some

function that returns a Set, we can notice that Val is already a predicate: it has type

Ty → Set. We can use this insight to define Env as a function which takes a typing

context Γ as a variable and generates an All type, allowing us to have a list of these

heterogeneously typed Val items where the parameterizing types of Vals are supplied

by Γ.

Env : Ctx → Set

Env Γ = All Val Γ
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6.2 Proofs of programs

Consider a function called simplifyPlus that, given an expression, recursively sim-

plifies plus expressions if both sides are known at compile time. Effectively, this would

be pre-computing the additions at compile time, so we only perform those operations

once rather than each time the program is executed, a form of constant folding.

In the case that the input to simplifyPlus is a plus with two num sub-expressions,

simplifyPlus simply adds the sub-expressions and wraps the result in a num constructor.

In the case that the plus constructor does not have two num sub-expressions, it

recursively calls simplifyPlus on the sub-expressions. In every other case it acts as an

identity.

simplifyPlus : ∀ {Γ t} → Expr Γ t → Expr Γ t

simplifyPlus (plus (num x) (num y)) = (num (x + y))

simplifyPlus (plus e1 e2 ) = plus (simplifyPlus e1) (simplifyPlus e2)

simplifyPlus (num x) = num x

simplifyPlus (var x) = var x

simplifyPlus (bool x) = bool x

How do we know that this does not change the semantics of the execution? It

seems intuitive that adding these at compile time should correspond to adding them

at runtime, but many things are both intuitive and incorrect. In essence, we want to

show that, although simplifyPlus e is not necessarily the same as the expression e, they

always evaluate to the same value if they are in the same context. As dependent types

allow us to run arbitrary functions at a type level, we can encode this relationship

as a type, as shown below. We again proceed with a proof by cases, where each case

corresponds to a constructor of the Expr type. The proofs that this property holds for
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non-recursive cases are reflexive, meaning they are trivially equivalent.

simplPreserves : ∀ {Γ} → {t : Ty} → ( e : Expr Γ t) → (env : Env Γ)

→ eval e env ≡ (eval (simplifyPlus e) env)

simplPreserves (num x) env = refl

simplPreserves (var x) env = refl

simplPreserves (bool x) env = refl

...

This is not true when it comes to evaluating the plus case because, in certain cases,

it does modify the expression if both sides are numbers at compile time. To prove this,

we need a lemma showing that the simplifyPlus function distributes over plus under

evaluation. This turns out to be extremely simple to prove, as shown below, because

if one splits it down to the requisite cases, Agda will then correctly deduce that each

case is reflexive.

simplifyPlusDistributes : ∀ {Γ} → ( e1 e2 : Expr Γ int) → (env : Env Γ)

→ eval (plus (simplifyPlus e1) (simplifyPlus e2)) env

≡ eval (simplifyPlus (plus e1 e2)) env

simplifyPlusDistributes (num x) (num x1) env = refl

simplifyPlusDistributes (num x) (var x1) env = refl

simplifyPlusDistributes (num x) (plus b b1) env = refl

...

With this lemma out of the way we can begin proving the last case of simplePreserves,

that of the plus constructor. To prove this, we need the lemmas which are defined in
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the let block of the function described below. Let us go through them before moving

to the meat of the proof. Because this is a recursive data structure, we have access to

the inductive hypotheses as recursive calls, so we can assume that simplPreserves holds

for the subexpressions of plus, e1 and e2, and thus that eval e1 env ≡ eval (simplifyPlus

e1 env) and eval e2 env ≡ eval (simplifyPlus e2 env). These are assigned to ihL and ihR

respectively. Using congruence, we can show that given ihL, ( eval e1 env) +v eval

e2 env is equal to eval (simplifyPlus e1 env) +v eval e2 env. We can also show that

eval (simplifyPlus e1 env) +v eval e2 env is equal to eval (simplifyPlus e1 env) +v eval

(simplifyPlus e2 env), by using ihR.

simplPreserves (plus e1 e2) env =

let

ihL : eval e1 env ≡ eval (simplifyPlus e1) env

ihL = simplPreserves e1 env

ihR : eval e2 env ≡ eval (simplifyPlus e2) env

ihR = simplPreserves e2 env

addLPlus : (eval e1 env ) +v (eval e2 env)

≡ (eval (simplifyPlus e1) env ) +v (eval e2 env)

addLPlus = cong (λ y → y +v (eval e2 env) ) ihL

addHPlus : (eval (simplifyPlus e1) env ) +v (eval e2 env)

≡ (eval (simplifyPlus e1) env ) +v (eval (simplifyPlus e2) env)

addHPlus = cong (λ y → (eval (simplifyPlus e1) env ) +v y) ihR

...

We can begin our main proof now by starting at the left-hand side of the equality

that we are trying to prove, eval (plus e1 e2) env, and by using a sequence of lemmas
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and reflexive equalities, deriving the corresponding right side: eval (simplifyPlus (plus

e1 e2)) env .

in

begin

eval (plus e1 e2) env

≡〈〉

eval e1 env +v eval e2 env

≡〈 addLPlus 〉

(eval (simplifyPlus e1) env ) +v (eval e2 env)

≡〈 addHPlus 〉

(eval (simplifyPlus e1) env ) +v (eval (simplifyPlus e2) env)

≡〈〉

eval (plus (simplifyPlus e1) (simplifyPlus e2)) env

≡〈 simplifyPlusDistributes e1 e2 env 〉

eval (simplifyPlus (plus e1 e2)) env �

Although proving properties in proof assistants is sometimes considered overly

labor-intensive and pedantic, this proof closely tracked a paper and pencil proof in

terms of steps and difficulty. Many of the things one would have to assume in a paper

and pencil proof —that, for example, all terms are well typed or that all look-ups

succeed —are assured by the type system, so we get them for free. In my opinion this

is the primary benefit of encapsulating as much of the semantics of the language in

its type system as possible, because many properties that we care about are trivially

true if the program is well-typed. In addition, the type-checker gives feedback about

what types things are, what they normalize to, and the goal of the current step, that
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simply are not available with paper and pencil proofs.

The above optimization is relatively trivial, but it is a good model for some other

proofs later in the thesis and was a useful case study in introducing proving properties

of intrinsically-typed interpreters. However, it is not powerful enough to maximally

simplify a series of added numbers known at compile time. Consider the expression

below, and how the simplifyPlus function optimizes it.

_ : ∀ {Γ} → simplifyPlus {Γ}

(plus

(plus (num (+ 3)) (num (+ 2)))

(plus (num (+ 11)) (num (+ 1))))

≡ plus (num (+ 5)) (num (+ 12))

_ = refl

It is obvious that one could add the num 5 and num 12 at compile time, but this

function was not powerful enough to do it. In order to optimize compile-time addition

fully, we need a more complicated optimization function, one that is able to recursively

add from the bottom of the expression abstract syntax tree up.

6.3 A less simple simplifier

The above simplifyPlus function is limited in terms of being able to simplify nested

plus constructors, only simplifying the most nested ones. Optimizing this maximally

would mean calling the optimization function on the two sub-expression of the plus

constructor, and then if both of the sub-expressions simplify to num, evaluating to

their sum wrapped in a num constructor. This algorithm is captured in the below
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definition, and we can also see that it fully simplifies the example expression that our

last algorithm failed to above.

simplifyPlusR : ∀ {Γ t} → Expr Γ t → Expr Γ t

simplifyPlusR (num x) = num x

simplifyPlusR (var x) = var x

simplifyPlusR (bool x) = bool x

simplifyPlusR (plus e1 e2 ) =

case (simplifyPlusR e1) , (simplifyPlusR e2) of λ where

(num x , num y) → num (x + y)

(e1′ , e2′) → plus e1′ e2′

_ : ∀ {Γ} → simplifyPlusR {Γ}

(plus

(plus (num (+ 3)) (num (+ 2)))

(plus (num (+ 11)) (num (+ 1))))

≡ num (+ 17)

_ = refl

Although this seems like a relatively trivial modification, the effort required to

prove its correctness is significantly increased over the simplifyPlus optimization2,

particularly given the case splitting on the result of a recursive call. Importantly, the

property that we were able to use above, that simplifyPlus distributes over the plus

constructor, is not true in the general case, but only if the recursive calls do not both

simplify to numbers.
2Proof repair, the process of automatically fixing proofs broken by changes of implementation, is

a current area of research [Rin21].
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In fact, this is the first lemma that we need to prove, that if either of the sub-

expressions of a plus expression simplify to something other than a num, that simpli-

fyPlusR distributes over the plus. Before we do this, however, we have to tackle two

new concepts: ] and ∃. ] is the Agda encoding of a sum type, of which the Haskell

Either type is an implementation. As such it can hold a value of one of two types.

Haskell’s Left and Right constructors are implemented in Agda as inj1 and inj2.

Up until now, all proofs we have constructed have been of the “for all” variety.

These are referred to as dependent product types, or Π types [nLa21b]. The means by

which one constructs a Π type is by supplying a proposition that one wants to show is

true for all types T , P . Π allows one to lift some value x into the rest of the type,

and defines a dependent type that for all x : T , P (x). For example, if we wanted to

prove that for all pairs of natural numbers, commutativity of addition holds, we could

encode that in a type as Π(m,n):N×N(m + n ≡ n + m). Conveniently Agda manages

the Π types automatically, so we do not have to manually construct them3.

The dual of dependent product types is dependent sum types, or Σ types [nLa21c].

As with Π types, Σ types take as parameters some x : T , and a predicate P : T → Set.

Unlike in Π types, Σ types assert that there exists some value x for which P holds.

So, if one wanted to prove that 57 is a composite number4, they could phrase that

as “there exists a pair of natural numbers such that when you multiply them, they

equal 57”. The encoding of this type would simply be Σ(m,n):N×N(m ∗ n ≡ 57). To

inhabit such a type, one constructs a pair where the first member is the input value

that makes the proposition true, and the second is the proof, as shown in Figure 6.1.

Σ types can be introduced in Agda programs with the ∃ data type.
3The book “The Little Typer” by Daniel P. Friedman and David Thrane Christiansen explores

using dependent types where nothing is really automated in this way.
4This number was chosen because it looks like a prime number at first glance, but is not.
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v : T proof : P (v)

(v, proof) : Σx:T (P (x))

Figure 6.1: Type introduction for Σ types

Now that we understand how to encode existentials and sum-types, we can move

onto our proof of distributivity. We want to prove that if either of the subexpressions

of a plus evaluate to a non-num term, that simplification distributes over the plus

constructor. Phrased more exactly, we can take as input expressions e1 and e2, as well

as a proof that either e1 does not simplify to a num, or e2 does not simplify to a num.

Recalling that a Not a type in our Haskell logical encoding is simply a way of writing

a -> Void, we can see that Agda’s ¬ works in much the same way in the case where

e1 is pattern matched as a num value. We have a function e1¬≡n passed as in input

that if given a proof that there does exist some num v1 that equals e1, generates a

⊥ value. Conveniently we have a value that makes this predicate hold true: x1. We

can then use ⊥-elim, Agda’s version of principleExplosion, to finish the proof in

this case. It may be useful to notice that the only reason we were able to generate ⊥

is because num was not really a valid constructor given a proof that was passed in.

Thus ⊥-elim can be read as a sort of “nothing should be able to get here” indicator.

In fact the rest of the proof (with many reflexive cases omitted) consists of cases that

are either reflexive or use the ⊥-elim technique.

simplRNonNumDistrib : ∀ {Γ} (e1 e2 : Expr Γ int) →

(¬ (∃[ v1 ](simplifyPlusR e1 ≡ num v1)))

]

(¬ (∃[ v2 ](simplifyPlusR e2 ≡ num v2))) →

(simplifyPlusR (plus e1 e2))
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≡ (plus (simplifyPlusR e1 ) (simplifyPlusR e2 ))

simplRNonNumDistrib (num x1) e2 (inj1 e1¬≡n) = ⊥-elim (e1¬≡n (x1 , refl))

simplRNonNumDistrib (var x1) e2 (inj1 x) = refl

simplRNonNumDistrib {Γ} (plus e1 e3) e (inj1 ¬se1≡num)

with simplifyPlusR (plus e1 e3)

... | num x = ⊥-elim (¬se1≡num (x , refl))

... | var _ = refl

... | plus _ _ = refl

...

Now, onto proving our main proof of simplRPreserves’s semantic maintenance. As

before, this property holds reflexively for the non-recursive cases, but the recursive

case requires quite a bit more effort. Importantly, unlike the simplPreserves proof

where we only had to case over the constructors, now we also have to case over the

results of simplifying the recursive expressions in the plus case. This helps capture

that simplifying the plus constructor can result in two different behaviors depending

on the results of the simplifications.

simplRPreserves : ∀ {Γ} → {t : Ty} → ( e : Expr Γ t) → (env : Env Γ)

→ eval e env ≡ (eval (simplifyPlusR e) env)

simplRPreserves (num x) env = refl

simplRPreserves (bool x) env = refl

simplRPreserves (var x) env = refl

...
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In order to prove these, we need a few additional lemmas, first of which are that

the num and numV constructors are injective. In general, a function f is said to be

injective if f x ≡ f y implies that x ≡ y. Although this may seem obvious, not all

functions are injective (for example, the absolute value function is not), and so we

need to prove it for the particular functions that we are interested in here. In addition,

we need to prove that no var can equal a num, and that no plus can equal a num value,

both of which can be proven with an absurd pattern, which indicates that none of the

constructors are valid in this context [AAC+21c].

num-injective : ∀ {x y Γ} → num {Γ} x ≡ num y → x ≡ y

num-injective refl = refl

numV-injective : ∀ {x y} → numV x ≡ numV y → x ≡ y

numV-injective refl = refl

var6≡num : ∀ {Γ x y} → ¬ (var {Γ} x ≡ num y)

var6≡num = λ ()

plus6≡num : ∀ {Γ x x1 y} → ¬ (plus {Γ} x x1 ≡ num y)

plus6≡num = λ ()

Thinking back to the simplification function simplifyPlusR, given a plus constructor

there are two basic behaviors the simplify function can result in. The first of these is

when both of the subexpressions are able to be simplified at compile time to numbers.

In this case, simplifying the plus expression results in a sum of those returned numbers.

We can prove this in a lemma plusSimplifies’, which simply says that if simplifyPlusR of

e1 and e2 both equal some num values, then simplifyPlusR (plus e1 e2) can be simplified
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to a num wrapping the sum of the resulting num values. We can prove this by using

the with construct to case over the result of simplifying e1 and e2, which only results

in one case as we have proofs that both are num values. We can then use the rewrite

construct, which automatically substitutes the left hand side of the equality for the

right on the right hand side of the of the =, to rewrite values e1 and e2 as num _

using the proofs accepted as parameters, after which the proof becomes reflexive.

plusSimplifies’ :

∀ {Γ v1 v2}

(e1 e2 : Expr Γ int)

→ simplifyPlusR e1 ≡ (num v1)

→ simplifyPlusR e2 ≡ (num v2)

→ simplifyPlusR (plus e1 e2) ≡ (num (v1 + v2))

plusSimplifies’ e1 e2 sPRe1≡v1 sPRe2≡v2

with (simplifyPlusR e1) | (simplifyPlusR e2)

... | num _ | num _ rewrite num-injective sPRe1≡v1 | num-injective sPRe2≡v2

= refl

To understand the next section, it is important understand the inspect func-

tion [AAC+21g]. Essentially one can apply inspect’ to a function application, for

example f x, and it evaluates to both the result of the function application and an

explicit proof that the function application equals the returned variable, as shown in

Figure 6.2. So if f a ≡ x, then inspect’ (f a) ≡ x with≡ proof, where proof : (f a) ≡ x.

If we look at the case in our main proof where we are simplifying a plus constructor

with two subexpressions that simplify to numbers, we can use the with construct with

the inspect’ function to get a proof that they simplify to num values, and use a nested
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Figure 6.2: An intuition for how inspect works

with to show that those evaluate to numV values. Once we have these, we can set up

a list of lemmas in our let block that we need in order to prove that the simplifyPlusR

function does not change what the expression evaluates to. The first of these lemmas

simply calls the plusSimplifies’ function defined above. We then have a series of proofs

relating the inductive hypotheses for both of the subexpressions: first that evaluating

the subexpression is equal to evaluating the simplified version of the subexpression in

the same environment (ih1 and ih2), that evaluating the simplified expression equals

the numV value in the with block above (intstep1 and intstep2), and using the transitive

property that evaluating each subexpression is equal to that numV (ih1t and ih2t).

simplRPreserves (plus e1 e2) env

with inspect’ (simplifyPlusR e1) | inspect’ (simplifyPlusR e2)

... | num simpPRe1 with≡ simpPRe1≡ | num simpPRe2 with≡ simpPRe2≡

with inspect’ (eval (num simpPRe1) env) | inspect’

(eval (num simpPRe2) env)

... | numV evSimpRe1 with≡ evSimpRe1≡ | numV evSimpRe2

with≡ evSimpRe2≡

=
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let

simplDistr : simplifyPlusR (plus e1 e2) ≡ num (simpPRe1 + simpPRe2)

simplDistr = plusSimplifies’ e1 e2 simpPRe1≡ simpPRe2≡

ih1 : eval e1 env ≡ eval (simplifyPlusR e1) env

ih1 = simplRPreserves e1 env

intstep1 : eval (simplifyPlusR e1) env ≡ numV simpPRe1

intstep1 = cong (λ x → eval x env) simpPRe1≡

intstep2 : eval (simplifyPlusR e2) env ≡ numV simpPRe2

intstep2 = cong (λ x → eval x env) simpPRe2≡

ih1t : eval e1 env ≡ numV evSimpRe1

ih1t = trans ih1 (trans intstep1 evSimpRe1≡ )

ih2 : eval e2 env ≡ eval (simplifyPlusR e2) env

ih2 = simplRPreserves e2 env

ih2t = trans ih2 (trans intstep2 evSimpRe2≡ )

...

Once we have these lemmas at our disposal, we can begin the main proof. We

begin with eval e1 env + eval e2 env. Using our lemmas above we can rewrite each

evaluation as the numV that it is equal to. We can show that this distributes, and the

proof is simply reflexive because of how +v is defined. We can then use the evSimpRe

proofs along with the proof of numV’s injectivity to substitute the evSimpRe values

with the simpRE values. This is reflexively equal to eval (num simPRe1 + simPRe2)

env because of how evaluation of plus is defined.

in
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begin

eval e1 env +v eval e2 env

≡〈 cong2 (λ x y → x +v y) ih1t ih2t 〉

numV evSimpRe1 +v numV evSimpRe2

≡〈 refl 〉

numV (evSimpRe1 + evSimpRe2)

≡〈 cong2

(λ x y → numV (x + y))

(numV-injective (sym evSimpRe1≡))

(numV-injective (sym evSimpRe2≡)) 〉

numV (simpPRe1 + simpPRe2)

≡〈 refl 〉

eval (num (simpPRe1 + simpPRe2)) env

≡〈 cong (λ pl → eval pl env) (sym simplDistr) 〉

eval (simplifyPlusR (plus e1 e2)) env �

The other basic behavior of the simplify function is in the case where either sub-

expression fails to simplify to a num. Really this results in many cases, but we only

include a single example, as all of the cases wind up having the same structure. We

can see that the proof of this case looks almost exactly like the proof of the original

simplification function above, however we need to justify with a lemma that we can

distribute across the plus. We also need to supply a proof that at least one simplified

value is not a num, which we can do by encoding a “there does not exist” statement.

Constructively, we represent this by creating a function in which we assume that

there does exist a value for which this is true, and generating a bottom value if one
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is supplied. We can generate such a bottom value using our lemma that no var can

equal a num, var6≡num, as well as a proof that simplifying the second sub expression

results in a var, simpe2≡var.

simplRPreserves {Γ} (plus e1 e2) env | _ | var _ with≡ simpe2≡var =

let

simple2 6≡num : ¬ ∃ (λ v2 → simplifyPlusR e2 ≡ num v2)

simple2 6≡num = λ { (fst , snd) → var6≡num (trans

(sym simpe2≡var)

snd)}

ih1 = simplRPreserves e1 env

ih2 = simplRPreserves e2 env

in

begin

eval e1 env +v eval e2 env

≡〈 cong2 (λ a b → a +v b) ih1 ih2 〉

eval (simplifyPlusR e1) env +v eval (simplifyPlusR e2) env

≡〈 refl 〉

eval (plus (simplifyPlusR e1) (simplifyPlusR e2)) env

≡〈 cong

(λ a → eval a env )

(sym (simplRNonNumDistrib e1 e2 (inj2 simple2 6≡num))) 〉

eval (simplifyPlusR (plus e1 e2)) env �

This is enough to finish our proof! Now we can pre-compute these additions in

peace, knowing that applying the optimization will not cause something to go horribly
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wrong in the program.

6.4 Approaches to optimization verification

We have already discussed at length the importance of proving that optimizations

do not change the semantics of the programs we apply them to. In the case of well-

formed programs, it is clear that this should be the case. However, what happens when

we run an optimization on an ill-formed program? By using an intrinsically-typed

interpreter, we have re-defined the domain of optimizations to that of valid programs,

excluding ill-typed or ill-scoped expressions by definition. CompCert [Ler09], a well-

known verified optimizing C compiler written in OCaml, takes a different approach.

Rather than defining a correct-by-construction representation of an intermediate

language, they construct an untyped representation and prove that if the source

program is valid, then the optimized program is valid and maintains the semantics

of the source program. To understand this approach, we can implement an untyped

language definition, an interpreter that may fail, an optimization, and a proof using

the optimization correctness framing used by CompCert. We can begin by defining

our data types, which look much like they do in the intrinsically-typed definition, but

with the context and indexed types removed from the definitions.

data Ty : Set where

int : Ty

bool : Ty

data Val : Set where

numV : Z → Val

boolV : Bool → Val
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data Expr : Set where

num : Z → Expr

bool : Bool → Expr

var : String → Expr

plus : Expr → Expr → Expr

Rather than using an All data type for our variables, we are using a String, which we

look up in a keywordList data structure, as defined below.

keywordList : Set → Set → Set

keywordList a b = List (a × b)

lookupa : keywordList String Val → String → Maybe Val

lookupa [] _ = nothing

lookupa ((key2 , val) :: ctx) key1 with key1 ≈? key2

... | false because _ = lookupa ctx key1

... | true because _ = just val

Env : Set

Env = keywordList String Val

The evaluator is quite similar to the intrinsically-typed version, with the differences

being the lookup function working over the keywordList, and a helper function plusE-

valHelper — used to handle the possibility of type errors and failed variable lookups —

in the plus case. This is operating in a Maybe monad, like the first Haskell evaluator

in Chapter 3.

plusEvalHelper : Maybe Val → Maybe Val → Maybe Val

plusEvalHelper (just (numV x)) (just (numV y)) = just (numV (x + y))
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plusEvalHelper _ _ = nothing

eval : Expr → Env → Maybe Val

eval (num x) env = just (numV x)

eval (bool x) env = just (boolV x)

eval (var x) env = lookupa env x

eval (plus e1 e2) env = plusEvalHelper (eval e1 env) (eval e2 env)

The simplifyPlus and simplifyPlusDistributes functions are identical to the ones im-

plemented earlier in the chapter — with the exception being the type context and

indexed types are removed from the Expr types — and thus will not be repeated here.

We need two simple lemmas before we proceed further: one proving that just and

nothing values cannot be equal, and another showing that plusEvalHelper evaluates to

nothing when its second argument is nothing.

just6=nothing : {v : Val} → ¬ (just v ≡ nothing)

just6=nothing ()

plusEvalNothing : ∀ {e} → plusEvalHelper e nothing ≡ nothing

plusEvalNothing {nothing} = refl

plusEvalNothing {just (numV x)} = refl

plusEvalNothing {just (boolV x)} = refl

Through a simple set of equational reasoning steps, we can prove our next lemma:

that if an expression e2 evaluates to nothing that the evaluation of a plus with e2 as

its second parameter will also evaluate to nothing.

evalnothing :

(e1 e2 : Expr)
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→ (env : Env)

→ (eval e2 env ≡ nothing)

→ (eval (plus e1 e2) env ≡ nothing)

evalnothing e1 e2 env evale2 =

begin

eval (plus e1 e2) env

≡〈 refl 〉

plusEvalHelper (eval e1 env) (eval e2 env)

≡〈 cong (λ x → plusEvalHelper (eval e1 env) x) evale2 〉

plusEvalHelper (eval e1 env) nothing

≡〈 plusEvalNothing 〉

nothing �

Our last separate lemma proves that if a plus expression evaluates to a just value,

its sub-expressions both evaluate to just values. This can be proven by casing over

the results of evaluating the expressions, using ⊥-elim to fulfill the impossible case —

where e2 evaluates to nothing —, and creating a straightforward pair in the other case.

evalSubEvals : ∀ {v}

→ (e1 e2 : Expr)

→ (env : Env)

→ (eval (plus e1 e2) env ≡ just v)

→ ((∃[ v1 ](eval e1 env ≡ just v1)) × (∃[ v2 ](eval e2 env ≡ just v2)))

evalSubEvals e1 e2 env eq with eval e1 env | inspect’ (eval e2 env)

... | just x | nothing with≡ x1 rewrite x1

= ⊥-elim (just 6=nothing (trans (sym eq) plusEvalNothing))
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... | just x | just y with≡ x1 = (x , refl) , (y , x1)

Finally, we can move on to proving the optimization correct. We can see that this

proof strategy is reflected in the type, where rather than proving the equality of the

evaluation of optimized and unoptimized expressions, we prove that if some expression

evaluates to a just value, its optimized form will evaluate to that same value. We can

see that the num and bool cases are both reflexive, as in the intrinsically-typed proof.

The variable case is different because of the lookup function’s ability to fail. Because a

proof that the source expression evaluates to a value is in scope, we can case over the

result of evaluating the var, and use ⊥-elim to deal with the case that the lookup fails.

simplPreserves : ∀ {v}

→ (e : Expr )

→ (env : Env)

→ (eval e env ≡ just v)

→ ((eval (simplifyPlus e) env) ≡ just v)

simplPreserves (num x) env refl = refl

simplPreserves (bool x) env refl = refl

simplPreserves {v} (var x) env eq with eq | inspect’ (eval (var x) env)

... | a | nothing with≡ x1 rewrite x1 = ⊥-elim (just 6=nothing (sym a ))

... | a | just x2 with≡ x1 = a

...

In our last case, that of the plus constructor, we must define a set of lemmas as

we did in the analogous intrinsically-typed proof. First, we can derive proofs that e1

and e2 evaluate to just values from the proof that plus e1 e2 evaluates to a just value
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with our evalSubEvals function. We can then take these proofs and generate our right

and left inductive hypotheses via recursive calls to simplPreserves. Finally, we can

prove that the result of adding the values which the sub-expressions evaluate to with

plusEvalHelper is equal to evaluating plus e1 e2.

simplPreserves {v} (plus e1 e2) env eq =

let

((v1 , evale1≡v1) , (v2 , evale2≡v2)) = evalSubEvals e1 e2 env eq

ihl : ((eval (simplifyPlus e1) env) ≡ just v1)

ihl = simplPreserves e1 env evale1≡v1

ihr : ((eval (simplifyPlus e2) env) ≡ just v2)

ihr = simplPreserves e2 env evale2≡v2

plusHelpEq : eval (plus e1 e2) env ≡ plusEvalHelper (just v1) (just v2)

plusHelpEq =

begin

eval (plus e1 e2) env

≡〈 refl 〉

plusEvalHelper (eval e1 env) (eval e2 env)

≡〈 cong2 (λ x y → plusEvalHelper x y) evale1≡v1 evale2≡v2 〉

plusEvalHelper (just v1) (just v2) �

...

With these lemmas, we can begin our proof of the plus case. Through a sequence of

equational reasoning steps, we can prove that the optimized plus expression evaluates

to the same just value as the unoptimized version does, proving this optimization

maintains the semantics of a validly constructed source expression.



CHAPTER 6. SIMPLELANG 102

in

begin

eval (simplifyPlus (plus e1 e2)) env

≡〈 simplifyPlusDistributes e1 e2 env 〉

eval (plus (simplifyPlus e1) (simplifyPlus e2)) env

≡〈 refl 〉

plusEvalHelper (eval (simplifyPlus e1) env) (eval (simplifyPlus e2) env)

≡〈 cong (λ x → plusEvalHelper x (eval (simplifyPlus e2) env)) ihl 〉

plusEvalHelper (just v1) (eval (simplifyPlus e2) env)

≡〈 cong (λ x → plusEvalHelper (just v1) x) ihr 〉

plusEvalHelper (just v1) (just v2)

≡〈 sym plusHelpEq 〉

eval (plus e1 e2) env

≡〈 eq 〉

just v �

We can see that the simplifyPlus optimization can be proven correct in the

intrinsically-typed and untyped styles. Much of the proof structure is the same

in these two proofs: they both require us to use the inductive hypotheses to re-write

the parameters of the respective addition functions, a distributivity of optimization

lemma, and the num and bool cases are reflexive. The differences mainly arise from

a difference in the base of truth in the proof: intrinsically-typed interpreters give

us assurances by data type design, whereas truths of untyped interpreters must be

derived from their evaluator behavior. For example, in the intrinsically-typed version

of the proof, the fact that variable lookups always succeed is guaranteed by the type
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of the var constructor, whereas in the untyped version, we have to derive successful

lookups from the successful evaluation of the source expression. In addition, in the

untyped case, we needed to derive that the evaluation of sub-expressions succeeds if

the evaluation of the parent expression succeeds manually, which is a required input

of recursive calls.

In the case of this specific proposition, both proofs seemed approximately equivalent

in terms of effort required. Although the untyped proof is much longer and requires

more lemmas, the data type design was trivial, whereas the design of the intrinsically-

typed data types requires considerably more time, especially as the language complexity

increases. The untyped approach is well-trodden ground, having been used in major

compiler and optimizer verification efforts [Ler09], so for the rest of this thesis, our

proofs will be in the intrinsically-typed style.

Hopefully this chapter was a sufficient introduction to understand what intrinsic

typing means, how it is useful in verifying properties of languages, and the basics of

using dependent types to verify properties of programs. Sadly, in this simple of a

language, we have exhausted the useful optimizations available for it, and it is not clear

how these relate to MIL’s optimizations, as these two languages differ substantially in

terms of basic structure. In the next chapter, let us work with something that looks a

little more like MIL.
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Chapter 7

Featherweight (M)IL

Now we can see the path the rest of this thesis will take: building progressively

more complicated interpreters to work from what is effectively the simplest language

available to something much more like the full functionality of MIL, and implementing

and proving optimizations based on the new features correct along the way. The hope

is that this work can eventually be extended to a full MIL implementation.

In this chapter, we introduce a language called Featherweight MIL, a very small

subset of the full MIL. This language effectively consists of the the functionality of

SimpleLang in the previous chapter, but without the ability to nest expressions. The

basic computational unit in MIL is a Tail, as shown below. We have types called

Word and Flag, which are analogous to int and bool respectively. The hope is that,

by reasoning about these with a type that corresponds to the implementation but

is slightly simplified, we can effectively smooth out the difficulty curve for those

attempting to understand what the MIL language is really doing, as opposed to

jumping directly to a full implementation.
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7.1 Abstract syntax and interpreter

The data types of this language look very much like SimpleLang in MIL’s clothing.

For the results of computation, akin to Vals in last chapter, we have primitive values

that can either carry Integers (Z) or Booleans (Bool), and which are parameterized

by their type. For input types, Atoms can either be variables (Var) or literals (Val),

and are also parameterized by a context Γ, and indexed by the type of the value they

carry.

Tails are either Return expressions (which contain an Atom which they share an

indexed type with), or a PrimCall (which require a primitive binary operation, PrimOp,

and two Atoms). Something to note here is that the PrimCall type definition enforces

that the parameter types of the supplied PrimOp match the types that index both the

input Atoms, and the result of the calculation. In this way, we assure that PrimCalls

are guaranteed to work and generate a value of the proper type at run time. Note

that although the input and output types are the same for the listed PrimOps, this

design can support differing input and output types, and can be extended to support

PrimOps of arbitrary arity. The data definitions of this language are described below:

data Ty : Set where

Word : Ty

Flag : Ty

Ctx = List Ty

data DataVal : Ty → Set where

W : Z → DataVal Word

F : Bool → DataVal Flag
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data PrimVal : Ty → Set where

I : Z → PrimVal Word

B : Bool → PrimVal Flag

data Atom (Γ : Ctx) : Ty → Set where

Var : ∀ {t} → t ∈ Γ → Atom Γ t

Val : ∀ {t} → PrimVal t → Atom Γ t

data PrimOp : Ty → Ty → Ty → Set where

Mmul : PrimOp Word Word Word

Mand : PrimOp Flag Flag Flag

data Tail (Γ : Ctx) : Ty → Set where

Return : ∀ {t} → Atom Γ t → Tail Γ t

PrimCall : ∀ {t1 t2 t3} → PrimOp t1 t2 t3

→ Atom Γ t1 → Atom Γ t2 → Tail Γ t3

The evaluation strategy for this language differs slightly from SimpleLang. Instead

of the language consisting of one expression type which is evaluated to values, Feath-

erweight MIL splits programs into combinations of Tails, PrimOps, and Atoms, each of

which requires its own small interpreter. Other than this structural difference, the

basic approach to evaluation is the same.

As in last chapter, we define operators over DataVals as our grounding of the seman-

tics of the evaluation in Agda’s semantics. Specifically we implement multiplication

(*d) and conjunction (∧d) as follows:

infixl 5 _*d_

_*d_ : DataVal Word → DataVal Word → DataVal Word
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W a *d W b = W (a Int.* b)

infixl 5 _∧d_

_∧d_ : DataVal Flag → DataVal Flag → DataVal Flag

F a ∧d F b = F (a ∧ b)

Our evalAtom function is similar to the evaluation strategy of last chapter: a lookup

is used in the case of a Var, and in the other cases the literal value is transferred from

inside the Atom to the corresponding DataVal. Note that, as before, the type indexing

the DataVal and the Atom is shared, to assure that our interpreter respects the typing

correspondence between them.

evalAtom : ∀ {Γ t } → Env Γ → Atom Γ t → DataVal t

evalAtom env (Var x) = lookup env x

evalAtom env (Val (I x)) = W x

evalAtom env (Val (B x)) = F x

The evalPrimCall function works similarly to evaluating the Plus constructor, except

that it determines which operation to apply to the two operands based on the PrimOp

supplied. The type of this function assures that the operands and the DataVal resulting

from the operation match the types indexing the PrimOp.

evalPrimCall :

∀ {Γ t1 t2 t3} →

Env Γ →

PrimOp t1 t2 t3 →

Atom Γ t1 →
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Atom Γ t2 →

DataVal t3

evalPrimCall env Mmul a1 a2 = evalAtom env a1 *d evalAtom env a2

evalPrimCall env Mand a1 a2 = evalAtom env a1 ∧d evalAtom env a2

Finally, the eval function either evaluates a Return value by evaluating its Atom

using evalAtom, or evaluates a PrimCall using the evalPrimCall function.

eval : ∀ {Γ t} → Tail Γ t → Env Γ → DataVal t

eval (Return x) env = evalAtom env x

eval (PrimCall primOp a1 a2) env = evalPrimCall env primOp a1 a2

With this we have our — very oversimplified — MIL interpreter! We can write

a simplifyTimes function, as we did in our last chapter, that pre-computes the multi-

plication of a PrimCall Mmul if and only if both of the Atoms are known at compile

time. Because of how simple the language design is at this time, the proof of each

case is reflexive! Because we have embedded as much type information as we have

in the data types themselves we get this proof effectively for free, so long as we case

split down to all of the cases. We need to split this to cases because without a known

constructor for the Tail we have no way of knowing what specifically it evaluates to,

which is required to show that an optimization does not change the result of that

evaluation.

simplifyTimes : ∀ {Γ t } → Tail Γ t → Tail Γ t

simplifyTimes (PrimCall Mmul (Val (I x)) (Val ( I y))) =

Return (Val (I ( x * y )))

simplifyTimes e = e



CHAPTER 7. FEATHERWEIGHT (M)IL 109

simplifyTimesPreserves : ∀ {Γ t env} → (tail : Tail Γ t)

→ eval tail env ≡ eval (simplifyTimes tail) env

simplifyTimesPreserves (Return x) = refl

simplifyTimesPreserves (PrimCall Mand (Var x) (Var x1)) = refl

simplifyTimesPreserves (PrimCall Mand (Var x) (Val x1)) = refl

simplifyTimesPreserves (PrimCall Mand (Val x) x2) = refl

simplifyTimesPreserves (PrimCall Mmul (Var x) (Var x1)) = refl

simplifyTimesPreserves (PrimCall Mmul (Var x) (Val x1)) = refl

simplifyTimesPreserves (PrimCall Mmul (Val (I x)) (Var x1)) = refl

simplifyTimesPreserves (PrimCall Mmul (Val (I x)) (Val (I x1))) = refl

7.2 A change of type

Although this is a very simple language, there are additional optimizations and

properties that we can prove about those optimizations that are interesting and show

how we might prove similar properties in more advanced interpreters. Consider that,

even though we have Word and Flag types, eventually all of our variables will be

represented as machine words when running on a physical machine. This implies

that there is a way to convert booleans and boolean operations to word and word

operations, while maintaining semantics.

If we convert the Boolean ∧d conjunction operation into a *d multiplication

operation, and map F true to W 1 and F false to W 0, we can see that this intuitively

maintains a kind of semantics. By drawing out a truth table of the results of ∧d and

*d over all possible inputs, we can see a correspondence between these two operations,

even though they are not literally equal. In the case that either input to *d is a W
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0, the whole expression evaluates to a W 0, and in the case where both are W 1 the

expression evaluates to W 1. In the same way, if either input to ∧d is a F false the

whole expression evaluates to an F false, and only in the case where both are F true

does it evaluate to F true.

a b a *d b
W 0 W 0 W 0
W 1 W 0 W 0
W 0 W 1 W 0
W 1 W 1 W 1

(a) *d Truth table

a b a ∧d b
false false false
true false false
false true false
true true true

(b) ∧d Truth table

Table 7.1: Illustration of the *d , ∧d correspondence

So what happens we when try to write a function that converts our boolean

operators to integer operators? Although this would be very simple to do in a non-

intrinsically typed language, we will soon see that the use of this kind of language

greatly complicates the matter, not just in the optimization function but also in the

proof. If we were to copy the type from previous optimization, that is ∀ {Γ t env} →

Tail Γ t → Tail Γ t, we would quickly run into a type error, as when t is a Flag, then

the input and output t do not match! To implement this, we need to build it from the

bottom up, implementing appropriate casts.

We first must write a function to process Atoms, so that Flags are converted to

Words, but Words are untouched. This runs into the same typing problems as before

because the output type may change depending on what t is. Conveniently we can

write a function to selectively cast types with relative ease!

cBool : Ty → Ty

cBool Word = Word

cBool Flag = Word
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With this, we can bring the output type into correspondence with the input type.

The casts for literals are quite easy as well, we can simply use our castBool function

below to cast Flags to Words.

castBool : Bool → Z

castBool false = (+ 0)

castBool true = (+ 1)

Once we begin to implement this cast for variables, however, things become more

complicated. Recalling that our variables are implemented as a proof of membership

in the Atom’s typing context, it should become clear that we need to change the

typing context to reflect this in the cast Atom. In order to do this, we need to write

functions that cast everything in the typing context, and prove that the cast type is

still present in the type-cast environment. The type environment cast cBoolTyEnv is

simply accomplished by mapping our cBool function across the type environment as

shown below.

cBoolTyEnv : Ctx → Ctx

cBoolTyEnv ctx = map cBool ctx

If we consider the case that an Atom is a Var of type Word, in order for the proof of

membership to match the updated type we need to show that given the proof Flag ∈

Γ, Word ∈ cBoolTyEnv Γ, which follows by simple induction as shown in lookupConvF.

A similar argument can be made in the case that the Atom is of type Word, which

is proven in lookupConW, but is omitted here due to it being almost identical to

lookupConF. Given these, we can finish writing our Atom casting function, castAtom.

lookupConvF : ∀ {Γ : Ctx} → Flag ∈ Γ → Word ∈ cBoolTyEnv Γ
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lookupConvF (here refl) = here refl

lookupConvF (there xs) = there (lookupConvF xs)

castAtom : ∀ {t} → {Γ : Ctx} → Atom Γ t → Atom (cBoolTyEnv Γ) (cBool t)

castAtom {Word} {Γ} (Var x) = Var {cBoolTyEnv Γ} (lookupConvW x)

castAtom {Flag} {Γ} (Var x) = Var {cBoolTyEnv Γ} (lookupConvF x)

castAtom (Val (I x)) = Val (I x)

castAtom (Val (B x)) = (Val (I (castBool x)))

Now that we have our castAtom function implemented, it is relatively trivial to

implement a function to convert our Flags to Words, and convert PrimCall Mand to

PrimCall Mmul in doing so.

collapseBool : ∀ {Γ t } → Tail Γ t → Tail (cBoolTyEnv Γ) (cBool t)

collapseBool (Return x) = Return (castAtom x)

collapseBool (PrimCall Mmul x y) = PrimCall Mmul (castAtom x) (castAtom y)

collapseBool (PrimCall Mand x y) = PrimCall Mmul (castAtom x) (castAtom y)

7.3 A proof of correspondence

As far as proving this optimization correct goes, it is essential to focus on what

exactly we are trying to prove. In the previous optimization, correctness meant that

applying some optimization function to an expression and then evaluating it was

equal to the result of evaluating the original expression if the context was the same.

That is not what we are saying here because — as we have already mentioned — this

optimization maintains a correspondence between the input and output behavior, not
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equality. For example, if we have a function that simply returns F true, this optimized

version would return a W 1. To capture this correspondence, we need a function

to convert the result of an evaluation of the optimized function to the type of the

unoptimized function. We can write analogs to our cBool and cBoolTyEnv functions

to operate over DataVals and evaluation contexts in order to finish the other half of

the correspondence.

castDataVal : ∀ {t} → DataVal t → DataVal (cBool t)

castDataVal (F x) = W (castBool x)

castDataVal (W x) = W x

simplifyEnv : ∀ {Γ} → Env Γ → Env (cBoolTyEnv Γ)

simplifyEnv [] = []

simplifyEnv (px :: env) = castDataVal px :: simplifyEnv env

With these two functions implemented, we can formalize this correspondence as

saying that evaluating the Tail and then casting the result to a Word with castDataVal

always results in the same output as running our optimization function, collapseBool,

and then evaluating the Tail. This can be visualized by the commutative diagram

shown in Figure 7.1, and represented by the type:

∀ Γ t env →

(tail : Tail Γ t) →

castDataVal (eval tail env) ≡ eval (collapseBool tail) (simplifyEnv env).

Rather than diving straight into the proof inhabiting that type, let us start with

some lemmas which will make the proof substantially easier to understand. We can

start by defining certain simple lemmas about how ∧d and *d work. First, it will be
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Figure 7.1: The correspondence between collapseBool, simplifyEnv, and castDataVal

useful later in this chapter to have proofs that ∧d and *d are both commutative. It

will also be necessary to show that F false ∧d x always evaluates to F false no matter

what x is. Next, we need a proof that W zero times anything equals W zero. Finally,

we need a proof that no expression can equal both F true and F false. All of these

lemmas are shown below:

∧d-comm : ∀ {a b} → a ∧d b ≡ b ∧d a

∧d-comm {F x} {F y} = cong F (∧-comm x y)

*d-comm : ∀ {x y} → x *d y ≡ y *d x

*d-comm {W x} {W y} = cong W (*-comm x y)

∧d-false-left-inv : ∀ {a} → F false ∧d a ≡ F false

∧d-false-left-inv {F false} = refl

∧d-false-left-inv {F true} = refl

*d-zeroVarl : ∀ {x} → W (+ 0) *d x ≡ W (+ 0)

*d-zeroVarl {W x} = refl
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true6≡false : ∀ {x} → x ≡ F false → x ≡ F true → ⊥

true6≡false {F false} refl ()

We can leverage the falseLeftInv lemma in our multFalse proof below, to prove that

this optimization of the ∧d to *d holds true in the case that the first Atom evaluates

to F false. We begin by approaching this via cases, casing over the result of inspecting

the evaluation of x using the with construct. Normally we could just use the with

construct to case over the evaluation of x itself, and Agda is intelligent enough to

determine that x must evaluate to F false, given that a proof of this is in context. Later

in this proof we do not want the proof of (evalAtom env x) ≡ F false being rewritten

as F false ≡ F false, which is what happens when we attempt to case directly over

the evaluation. Using the inspect’ function only adds one extra case, where (evalAtom

env x) ≡ F true, where we can simply use ⊥-elim to convert the ⊥ value generated by

passing the proofs that (evalAtom env x) equals both F true and F false to true6≡false.

multFalse :

∀ {Γ env}

→ (y : Atom Γ Flag)

→ (x : Atom Γ Flag)

→ (evalAtom env x) ≡ F false

→ castDataVal (evalAtom env x ∧d (evalAtom env y))

≡ evalAtom (simplifyEnv env) (castAtom x) *d

evalAtom (simplifyEnv env) (castAtom y)

multFalse {Γ} {env} y x eq with inspect’ (evalAtom env x)

... | F true with≡ evx≡True

= ⊥-elim (true 6≡false {evalAtom env x} eq evx≡True )
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Moving on to the case where x evaluates to F false, we begin with our initial

expression on the left-hand side of the equality, castDataVal (F false ∧d ( evalAtom

env y)). Using the lemmas defined earlier in this section, we can, through a series

of equational reasoning steps, prove the equivalence to evalAtom {cBoolTyEnv Γ }

simplifyEnv env) (castAtom x) *d evalAtom (simplifyEnv env) (castAtom y), finishing the

proof.

... | F false with≡ evx≡False rewrite evx≡False =

begin

castDataVal (F false ∧d (evalAtom env y))

≡〈 cong castDataVal ∧d-false-left-inv 〉

castDataVal (F false)

≡〈 refl 〉

W (+ 0)

≡〈 sym *d-zeroVarl 〉

W (+ 0) *d

evalAtom (simplifyEnv env) (castAtom y)

≡〈 refl 〉

castDataVal (F false) *d

evalAtom (simplifyEnv env) (castAtom y)

≡〈 cong

(λ a → castDataVal a

*d evalAtom (simplifyEnv env) (castAtom y))

(sym evx≡False)〉

castDataVal (evalAtom env x) *d
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evalAtom (simplifyEnv env) (castAtom y)

≡〈 cong

(λ a → a

*d evalAtom (simplifyEnv env) (castAtom y))

(evalFAtom’ {Γ} x )〉

evalAtom {cBoolTyEnv Γ} (simplifyEnv env) (castAtom x) *d

evalAtom (simplifyEnv env) (castAtom y) �

Now that this lemma has been proven, we can go on to write an additional lemma,

which captures the case when the Tail to be optimized is a PrimCall Mand. In the

case that the first Atom of the PrimCall evaluates to F false, we can directly call our

multFalse function, supplying the proof returned by the inspect’ function as input.

cast∧to* :

∀ {Γ}

→ {env : Env Γ}

→ (x : Atom Γ Flag)

→ (y : Atom Γ Flag)

→ castDataVal (eval (PrimCall Mand x y) env)

≡ eval (collapseBool (PrimCall Mand x y)) (simplifyEnv env)

cast∧to* {Γ} {env} x y

with inspect’ (evalAtom env x) | inspect’ (evalAtom env y)

... | F false with≡ evx≡False | F _ with≡ _

= multFalse y x evx≡False

The next case, where the second Atom in the PrimCall evaluates to F false, is a

mirror of the first. For this case, we need to prove that :
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castDataVal (evalAtom env x ∧d evalAtom env y)

≡

evalAtom (simplifyEnv env) (castAtom x) *d evalAtom (simplifyEnv env) (castAtom y)

We can use the ∧d-comm lemma to rewrite the left-hand side of the equality to

flip the Atoms, so that y is on the left and x is on the right, which refines the goal to

castDataVal (evalAtom env y ∧d evalAtom env x)

≡

evalAtom (simplifyEnv env) (castAtom x) *d evalAtom (simplifyEnv env) (castAtom y)

We can then rewrite the goal again with *d-comm to further refine the goal to :

castDataVal (evalAtom env y ∧d evalAtom env x)

≡

evalAtom (simplifyEnv env) (castAtom y) *d evalAtom (simplifyEnv env) (castAtom x)

Given that y is the variable we know to evaluate to F false this is the same goal as

the first case, so we can use the same multFalse function but flip the input variables x

and y’s order.

... | F true with≡ _ | F false with≡ evy≡False

rewrite (∧d-comm {evalAtom env x} {evalAtom env y})

| *d-comm

{(evalAtom (simplifyEnv env) (castAtom x))}

{(evalAtom (simplifyEnv env) (castAtom y))}
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= multFalse x y evy≡False

In the final case, we must consider what happens when both of the PrimCall’s

Atoms evaluate to true. By using the rewrite construct with the proofs resulting from

our inspect’ calls, we can refine the beginning of our proof from castDataVal (evalAtom

env x ∧d evalAtom env y) to W (+ 1). Via a short sequence of equational reasoning

steps as before, we can show this to be equal to evalAtom (simplifyEnv env) (castAtom

x n), and in doing so finish the proof.

... | F true with≡ evx≡True | F true with≡ evy≡True

rewrite evx≡True | evy≡True | castTrue {Γ} =

begin

W (+ 1)

≡〈 refl 〉

castDataVal (F true) *d castDataVal (F true)

≡〈 Eq.cong2

(λ a b → castDataVal a *d castDataVal b )

(sym evx≡True) (sym evy≡True) 〉

castDataVal (evalAtom env x) *d castDataVal (evalAtom env y)

≡〈 Eq.cong2 (λ a b → a *d b) (evalFAtom’ x) (evalFAtom’ {Γ} y ) 〉

evalAtom (simplifyEnv env) (castAtom x) *d

evalAtom (simplifyEnv env) (castAtom y) �

Finally, we can begin our main proof. The cases where Tail is a Return constructor

are not particularly interesting. When tail just returns a Val, this optimization does

not do anything, so the proof of the correspondence is reflexive. In the case where
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a Var is being returned, this can be can be proved via evalFAtom and evalWAtom,

depending on the type of the Var.

collapseBoolPreserves :

∀ {Γ t env}

→ (tail : Tail Γ t)

→ castDataVal (eval tail env)

≡ eval (collapseBool tail) (simplifyEnv env)

collapseBoolPreserves (Return (Val (I x))) = refl

collapseBoolPreserves (Return (Val (B x))) = refl

collapseBoolPreserves {Γ} {Flag} {env} (Return (Var x))

= evalFAtom {Γ} {env}

collapseBoolPreserves {Γ} {Word} {env} (Return (Var x))

= evalWAtom {Γ} {env}

The interesting cases are when the tail is a PrimCall, as these materially change

the tails. In the case that the PrimCall is a Mand we can simply call our cast∧to*

function, as proved earlier.

collapseBoolPreserves (PrimCall Mand x y) = cast∧to* x y

To prove the final case, when the Tail is a PrimCall Mmul, we can use the with

construct to inspect the result of evaluating the first and second Atoms in the Tail, x1

and x2. We see this results in only one case as the type definitions for PrimCalls and

the evalAtom are sufficiently constraining as to restrict the results of computation to

the type indexing the PrimCall, in this case a Word.
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collapseBoolPreserves {Γ} {Word} {env = env} (PrimCall Mmul x1 x2)

with inspect’ (evalAtom {Γ} env x1) | inspect’ (evalAtom env x2)

... | W y1 with≡ evx1≡y1 | W y2 with≡ evx2≡y2 =

begin

castDataVal (evalAtom env x1 *d evalAtom env x2)

≡〈 castDataVal-id (evalAtom env x1 *d evalAtom env x2) 〉

(evalAtom env x1 *d evalAtom env x2)

≡〈 Eq.cong2

(λ a b → a *d b )

(sym (castDataVal-id (evalAtom env x1)))

(sym (castDataVal-id (evalAtom env x2))) 〉

castDataVal (evalAtom env x1) *d

castDataVal (evalAtom env x2)

≡〈 Eq.cong2 (λ a b → a *d b) (evalWAtom’ x1) (evalWAtom’ x2) 〉

evalAtom (simplifyEnv env) (castAtom x1) *d

evalAtom (simplifyEnv env) (castAtom x2) �

In the final case of this proof, a small reflexive lemma castDataVal-id, as defined

below, simply shows that if a DataVal has type Word, castDataVal acts as an identity.

castDataVal-id :

(x : DataVal Word)

→ castDataVal x ≡ x

castDataVal-id (W x) = refl

Beginning the proof, we can see that we start with a castDataVal (evalAtom env x1 *d

evalAtom env x2). We can use the castDataVal-id to strip off the call to castDataVal, and
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leave us with the multiplication alone. We can then use cong2, and use castDataVal-id

in the reverse order using the sym, to apply a castDataVal to each of the inputs to *d. If

we use another cong2, we can apply our evalWAtom’ lemma to convert each castDataVal

(evalAtom env xn) to evalAtom ( simplifyEnv env ) (castAtom xn), completing the proof.

Even with this very simple interpreter, we can gain interesting perspectives on

language optimizations. In this chapter we implemented an analogous optimization

to the the simple addition optimization that we proved correct last chapter, and

proved correct the conversion from Flags to Words, which changed the proposition

we need to prove in interesting ways. In the next chapter, we will further increase

the complexity of our interpreter by adding the ability to introduce variables, and

through additional optimizations which depend on this feature, see how the increased

complexity translates to increased proof difficulty.
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Chapter 8

Pure (M)IL

In the last chapter, we dealt with a language that is so minimal it does not even

let one introduce variables. This seems like a problem, given that programmers often

want to introduce variables, so let us fix that by adding more advanced features to

our language.

8.1 Abstract syntax and interpreter

The Ty and DataVal constructors are the same as in the last chapter, although

the PrimVal data type has been changed. By taking a function that takes a Ty and

returns a Set, we can have a single constructor for PrimVal that gives the flexibility to

represent Words or Flags with a single Constant constructor, which greatly reduces the

size of the related proofs. We also added a new PrimOp, that of addition.

constant : Ty → Set

constant Word = Z

constant Flag = Bool

data PrimVal : Ty → Set where

Constant : (t : Ty) → constant t → PrimVal t
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data PrimOp : Ty → Ty → Ty → Set where

Madd : PrimOp Word Word Word

Mand : PrimOp Flag Flag Flag

Mmul : PrimOp Word Word Word

The most important addition to this language is that of a code sequence data type,

Code, which allows us to compute a Tail and then introduce the resulting DataVal into

the context in the nested code sequence. The code sequences are split up into two

different constructors as shown below, a Ta constructor which simply wraps a Tail,

and a Bind constructor.

data Code (Γ : Ctx) : Ty → Set where

Ta : ∀ {t} → Tail Γ t → Code Γ t

Bind : ∀ {t t1} → Tail Γ t →

Code (t :: Γ) t1 → Code Γ t1

In keeping with the theme of naming things consistently and then working up to

their full functionality, Bind is not really a monadic bind, as there is no monad the

evaluator is working in (thus the M being parenthesized in the title of these chapters)1.

It evaluates a Tail, and adds the result of the evaluation to the context of the next

code sequence execution. Importantly, this means we have to add the type of the Tail,

t, to the type context in the evaluation of the next code sequence, which is why if the

context in the current Code sequence is Γ, the nested code sequence’s context is t :: Γ.

Now that we can introduce variables, rather than only being able to look up

variables in a supplied initial context as in the last two chapters, we can see that
1This can be thought of as working in the identity monad, but this is not a useful way of

conceptualizing this interpreter.
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rather than the All type referencing some static index n in the context — where two

references to the same variable have the same All value — they count back to the

variable n Binds before the Var referencing the variable. This method of variable

binding based on distance from introduction is called a De Bruijn index [dBru72].

Note that the Bind is parameterized by the type of the Tail whose evaluation is to

be added to the context (t), and is indexed by the type of the rest of the calculation

(t1), which winds up being the type of the entire code sequence. This means that we

have embedded in the types the idea that the type of a code sequence is the type that

it returns.

The only real difference between the evaluator of Featherweight MIL and this

one — besides adding more functionality for the additional primitive operations and

adapting to the changing representation of PrimVals — is that now we must add a

codeEvaluator to evaluate the code sequences.

In the case of a Ta, this evaluator simply evaluates the Tail. In the case of a Bind

it evaluates the Tail and then evaluates the next code sequence with the result of the

Tail evaluation added to the evaluation context, as shown below.

infixl 5 _+d_

_+d_ : DataVal Word → DataVal Word → DataVal Word

W a +d W b = W (a + b)

evalAtom : ∀ {Γ t } → Env Γ → Atom Γ t → DataVal t

evalAtom env (Var x) = lookup env x

evalAtom env (Val (Constant Word x)) = W x

evalAtom env (Val (Constant Flag x)) = F x
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evalPrimCall :

∀ {t1 t2 t3} → PrimOp t1 t2 t3

→ DataVal t1 → DataVal t2 → DataVal t3

evalPrimCall Madd a1 a2 = a1 +d a2

evalPrimCall Mand a1 a2 = a1 ∧d a2

evalPrimCall Mmul a1 a2 = a1 *d a2

evalTail : ∀ {Γ t} → Tail Γ t → Env Γ → DataVal t

evalTail (Return a) env = evalAtom env a

evalTail (PrimCall primOp a1 a2) env =

evalPrimCall primOp (evalAtom env a1) (evalAtom env a2)

evalCode : ∀ {Γ t} → Code Γ t → Env Γ → DataVal t

evalCode (Ta x) env = evalTail x env

evalCode (Bind t c) env =

let

tail = evalTail t env

in

evalCode c (tail :: env)

8.2 Another simplification

The optimization of addition of known constants at compile time in this language

is similar to the last. The fact that this optimization only modifies the Tails and does

not change the shape of code sequences outside of that means that this optimization

is the same as that in last chapter, although this time over addition rather than
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multiplication. We can see that the simplification on the Tail level is reflexive as before,

in evalPreservesT.

simplifyPlusT : ∀ {Γ t } → Tail Γ t → Tail Γ t

simplifyPlusT (PrimCall Madd (Val (Constant Word x)) (Val (Constant Word y)))

= Return (Val (Constant Word (x + y)))

simplifyPlusT t = t

evalPreservesT : ∀ {Γ t env} → (tail : Tail Γ t)

→ evalTail tail env ≡ evalTail (simplifyPlusT tail) env

evalPreservesT (Return x) = refl

evalPreservesT (PrimCall Madd (Var x) (Var x1)) = refl

With the code sequence type, it is not enough to have an optimization that

modifies the tails, we need a way of getting our optimization to those tails. We need

one more function to map this optimization function across all the Tails present in

a code sequence, which we call simplifyPlusC, where the C stands for Code. For a

Ta, this function simply applies simplifyPlusT to the Tail it wraps. In the Bind case,

simplifyPlusT is applied to the Tail, and simplifyPlusC is recursively called on the nested

Code.

simplifyPlusC : ∀ {Γ t} → Code Γ t → Code Γ t

simplifyPlusC (Ta t) = Ta (simplifyPlusT t)

simplifyPlusC (Bind t c) = Bind (simplifyPlusT t) (simplifyPlusC c)

Proving that mapping this Tail optimization across a code sequence maintains

its semantics is pretty straightforward. In the base case, where the code sequence
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consists of a Ta, we can use our evalPreservesT function to prove that the simplification

maintains semantics across Tail values. In the case of a Bind, we can use the inductive

hypothesis, both from calling evalPreservesT on the tail and evalPreservesC recursively

on the nested Code, which show that simplifyPlusT and simplifyPlusC do not change

the result of evaluation, respectively. In our equational reasoning steps, we can use

our Code inductive hypothesis, ih, followed by a congruence with our Tail inductive

hypothesis, to complete this proof. This winds up being a pretty straightforward

inductive proof, although we did have to reason about modified values being added to

the context.

evalPreserves :

∀ {Γ t } → (env : Env Γ) → (code : Code Γ t)

→ evalCode code env ≡ evalCode (simplifyPlusC code) env

evalPreserves env (Ta x) = evalPreservesT x

evalPreserves env (Bind x c) =

let

ih : evalCode c ((evalTail x env) :: env)

≡ evalCode (simplifyPlusC c) ((evalTail x env) :: env)

ih = evalPreserves ((evalTail x env) :: env) c

ihT : evalTail x env ≡ evalTail (simplifyPlusT x) env

ihT = evalPreservesT x

in

begin

evalCode (Bind x c) env

≡〈 refl 〉



CHAPTER 8. PURE (M)IL 129

evalCode c (evalTail x env :: env)

≡〈 ih 〉

evalCode (simplifyPlusC c) ((evalTail x env) :: env)

≡〈 cong (λ y → evalCode (simplifyPlusC c) (y :: env)) ihT 〉

evalCode (simplifyPlusC c) ((evalTail (simplifyPlusT x) env) :: env)

≡〈 refl 〉

evalCode (simplifyPlusC (Bind x c)) env �

8.3 Mountains of monoids

Our previous optimization had the simple effect of adding known constants

together at compile time, rather than at runtime. Although this and optimizations

like it are important in the optimization of programs, it is clear that there are many

more optimizations that do not simply run parts of the program at compile time.

For example, consider the existence of algebraic identities. If we have some integer x

multiplied by 1, we know the resulting expression is equal to x. In a similar way, some

boolean x when logically conjoined with True is equal to x. In fact, integer addition

also follows this pattern, as for all x : Integer, x + 0 = x. These combinations of

types and operations are monoids [nLa21e]2, meaning that they follow the monoid

laws as shown in Figure 8.1.

We can formalize the idea of a monoid in a record. We need to specify a type

A, and a binary operation _<>_ that is closed, so it takes in two operands of type

A, and evaluates to another value of type A. We then require an identity element,
2Technically for the upcoming optimization we only require them to be unital magmas [nLa21g],

that is we do not need the associativity a monoid requires. Monoid is used here because the notation
is more familiar to the average Haskell user, and is a commonly used functional programming concept.
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Γ ` a : A Left identity
Γ ` mempty <> a ≡ a

Γ ` a : A Right identity
Γ ` a <> mempty ≡ a

Γ ` c : A Associativity
Γ ` (a <> b) <> c ≡ a <> ( b <> c )

Figure 8.1: The monoid laws

mempty, and proofs that it acts as a left and right identity. We then require a proof

of associativity, which completes the definition shown below.

record Monoid {l} (A : Set l) : Set l where

field

mempty : A

_<>_ : A → A → A

assoc : ∀{a b c} → ((a <> b) <> c) ≡ (a <> (b <> c))

identityl : ∀ {a : A} → (mempty <> a ≡ a)

identityr : ∀ {a : A} → (a <> mempty ≡ a)

open Monoid

For a simple example, we can prove that +d is a monoid by proving the relevant

properties of it. Because +d is implemented in terms of integer addition, we can use

cong W to wrap standard library proofs of the necessary properties in a W constructor,

thus making them apply to the DataVal type.

+d-identityl : ∀ {a} → W (+ zero) +d a ≡ a

+d-identityl {W a} = cong W (+-identityl a)
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+d-identityr : ∀ {a} → a +d W (+ zero) ≡ a

+d-identityr {W a} = cong W (+-identityr a)

+d-assoc : {a b c : DataVal Word} → a +d b +d c ≡ a +d (b +d c)

+d-assoc {W a} {W b} {W c} = cong W ( +-assoc a b c)

We can create a Monoid instance for DataVal Word by creating a record and

supplying the relevant proofs, operation, and mempty value.

instance

+d-monoid : Monoid (DataVal Word)

+d-monoid = record

{ mempty = W (+ zero)

; _<>_ = _+d_

; assoc = +d-assoc

; identityl = +d-identityl

; identityr = +d-identityr

}

These monoids all seem like candidates for the same sort of optimization: if either

of the operands of an evalPrimCall function is the mempty value matching the PrimOp,

we just convert the PrimCall to a Return of the other operand. As all of our PrimCalls

are monoidal, we can optimize all of them in this way.

The optimization described above requires us to compare constants to the mempty

value. This does bring up an interesting gap in what we have covered so far: how

do we determine whether or not two values are equal? In a traditional programming
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language, we could have some equality checking function that would return a boolean

value. As we have covered earlier, this would not give evidence of the equality. Our

≡ type does provide evidence of equality, but this does not admit the possibility of

failure. A Dec or Decidable3 data type is parameterized by a proposition P and has

two constructors: yes, which contains a proof that P is true, and no, which carries a

proof that it is false. For example, we can write a function _ty ?
=_ which compares

two types, and _op ?
=_, which compares two PrimOps, as shown below.

_ty ?
=_ : (t1 t2 : Ty) → Dec (t1 ≡ t2)

_ty ?
=_ Word Word = yes refl

_ty ?
=_ Word Flag = no (λ ())

_ty ?
=_ Flag Word = no (λ ())

_ty ?
=_ Flag Flag = yes refl

_op ?
=_ : ∀ {t1 t2 t3}

→ (p1 p2 : PrimOp t1 t2 t3)

→ Dec (p1 ≡ p2)

_op ?
=_ Madd Madd = yes refl

_op ?
=_ Madd Mmul = no (λ ())

_op ?
=_ Mand Mand = yes refl

_op ?
=_ Mmul Madd = no (λ ())

_op ?
=_ Mmul Mmul = yes refl

Now that we have a type powerful enough to compare values for equality, we can

move onto trying to formalize our mapping. There are two main complications with
3The reason this is called “decidable” is that it is also a proof that the supplied proposition is

decidable, meaning that it can be determined to be either true or false for all input values. As not
all propositions are decidable, this is not something we should take for granted.
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this strategy. First, PrimCalls do not directly operate on DataVals, they operate on

PrimVals, and as such we need some way to convert between these two data types

and some proof that these conversions are correct. We also need to map from the

PrimOp to the underlying monoidal operation we claim it is evaluated by. We can

create another record to encapsulate this, called MapToOperation.

We can start by requiring cmp, an equality function required to compare the

PrimVal to the mappend. Obviously the PrimOp, op, is required as well. We need

wrap and unwrap functions to convert between constants and DataVals, as well as some

proofs of their correctness, for example that unwrap is the left inverse of wrap4. We

will also need a proof that wrapping an x is equivalent to evaluating it as a constant.

Finally we need the function we’re claiming this PrimOp is implemented by, fun, and

a proof that the PrimCall is evaluated with that function, isEvaluatedWith.

record MapToOperation {a : Set} (t : Ty) : Set (lsuc lzero) where

field

cmp : Decidable {A = (constant t)} _≡_

op : PrimOp t t t

wrap : (constant t) → DataVal t

wrapP : ∀{x Γ env} → wrap x ≡ evalAtom {Γ} env (Val (Constant t x))

unwrap : DataVal t → (constant t)

wrapUnwrapInv : ∀{x y} → unwrap x ≡ y → x ≡ (wrap y)

fun : DataVal t → DataVal t → DataVal t

isEvaluatedWith : ∀ {l r : DataVal t} → fun l r ≡ (evalPrimCall op l r )

open MapToOperation

4Although this does not look like a left-inverse relation at first glance, if we substitute wrap y for
x, we get (unwrap ( wrap y ≡ y). The form of this is useful for a proof later in the chapter.
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Implementing an instance for the Madd operation is relatively straightforward.

The op is the Madd operation, cmp is the _ ?
=_ function, the wrap function is simply

the W constructor, and the unwrap function just strips a W off. The proof that wrap

over a constant is the same as evaluating it is reflexive, as is the proof that this PrimOp

is evaluated with _+d_. The proof of wrapUnwrapInv is simple, as unwrapx≡y : x ≡ y

and the goal is W x ≡ W y, it can be solved with a simple congruence.

instance

maddMapTo+d : MapToOperation {Z} (Word)

maddMapTo+d =

record

{ op = Madd

; cmp = _ ?
=_

; wrap = W

; wrapP = refl

; unwrap = λ { (W x) → x}

; wrapUnwrapInv

= λ { {W x} {n} unwrapx≡y → cong W unwrapx≡y }

; fun = (_+d_)

; isEvaluatedWith = refl

}

Rather than a mapping we could have defined the MapToOperation record to have

a Monoid record in it — with a proof that associates them — but the design we chose

allows us to associate a PrimOp with various properties that may be useful for other
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optimizations, for example associating Mmul with a instance of an absorption magma5

to optimize any Mmul PrimOps with zero operands.

Before we can define our optimizations, it is useful to notice that this optimization

should only change the Tail if it is operating over a Monoid. This first requires that

the types of both of the operands and the return type are the same as the Tail type.

We can write a helper function tysEq, that either returns a tuple of proofs that each

of the types is equal to t, or a nothing value.

tysEq : (t ty1 ty2 ty3 : Ty) → Maybe ((t ≡ ty1 × t ≡ ty2) × t ≡ ty3)

tysEq t ty1 ty2 ty3

with t ty ?
= ty1 | t ty ?

= ty2 | t ty ?
= ty3

... | no _ | _ | _ = nothing

... | yes _ | no _ | _ = nothing

... | yes _ | yes _ | no _ = nothing

... | yes p | yes p1 | yes p2 = just ((p , p1) , p2)

Before rushing to write the optimization function, consider that one could optimize

and then prove each of these monoid optimizations correct separately, but that does

seem like a lot of repeated boilerplate code. It also requires one to write additional

optimization functions and proofs whenever we added a primitive operation to the

compiler. This is an unideal solution, particularly given that we’ve encoded the idea of

a monoid in a record type. We can leverage this to define our function monoidSimplTail

such that it takes some Monoid, a MapToOperation, and a proof that the _<>_ from

the Monoid is the same as the fun associated with the operation in MapToOperation.
5An absorption magma is some set with a supplied closed binary operation that has a unique

member of that set which, when combined with any other member of that set via the binary operation,
evaluates to the unique member. For example, Integer multiplication is an absorption magma, because
it satisfies the law ∀x : Integer 0 ∗ x ≡ 0 ∧ x ∗ 0 ≡ 0 [nLa21a].
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This allows us to simplify a Tail with any Monoid in a single function, as shown in the

type signature below.

monoidSimplTail : ∀ {t t1 Γ}

→ (m : Monoid (DataVal t))

→ (mToOp : MapToOperation {constant t} t)

→ ((l r : DataVal t) → (fun mToOp l r ≡ (_<>_) m l r))

→ Tail Γ t1

→ Tail Γ t1

Although one has to optimize the cases when the left or right operand are mempty,

these cases are symmetrical and therefore the same optimization, but flipped. The

proof also follows this symmetry and duplication. Because of this symmetry, we will

only show the left operand case. In the case that the Tail is a Return, the optimization

should just evaluate to its input. If the input is a PrimCall, the first check that is

required is if the types all match. If they do, we need to make sure that the PrimOp

matches the op in the MapToOperation record. If it does, we can case split on the left

operand, and in the case that it is a Val, we can compare it to mempty with the cmp

function supplied by mToOp. If the left operand, l, is equal to mempty, we can replace

this PrimCall with a Return of the right operand. An analogous procedure can be used

to optimize for then l is not a Val.

monoidSimplTail monoid mToOp _ (Return x) = Return x

monoidSimplTail {t} monoid mToOp _ (PrimCall {pt1} {pt2} {pt3} pcOp l r)

with tysEq t pt1 pt2 pt3

... | nothing = (PrimCall pcOp l r)

... | just ((p , p1) , p2) rewrite p | p1 | p2
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with pcOp op ?
= (op mToOp)

... | no ¬op≡pcOp = (PrimCall pcOp l r)

... | yes op≡pcOp with l

... | Val (Constant _ l′) with cmp mToOp l′ (unwrap mToOp (mempty monoid))

... | no ¬x3≡mempty = (PrimCall pcOp l r)

... | yes x3≡mempty = Return r

...

Rather than writing a bunch of specialized optimizations, our function is able

to optimize away any operations with a mempty at compile time, as long as we’ve

provided the proper data types!

In order to prove this optimization correct, we must in turn prove that this

optimization maintains semantics over all Tails, Monoids, and MapToOperations. As in

our earlier tail optimizations, we need to prove that eval (f t) ≡ eval t where f is the

optimization function, as shown in the type signature below.

monoidSimplTailPreserves : ∀ {t Γ env}

→ (tail : Tail Γ t)

→ (m : Monoid (DataVal t))

→ (mToOp : MapToOperation {constant t} t)

→ (mapping : (l r : DataVal t) → (fun mToOp l r ≡ (_<>_) m l r))

→ evalTail (monoidSimplTail m mToOp mapping tail) env ≡ evalTail tail env

As we can see below, the case when Tail is a Return is reflexive, as our optimization

does not change the Tail in this case. In the case where the Tail is a PrimCall, we
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can replicate the series of with statements to split the proofs into paths where the

optimization is applied, and ones where the original Tail is simply returned. In the

cases where the Tail is not modified, that is where the operands, the Tail, and the

Primcall return type do not match, when the PrimOp does not match the op of the

mToOp, or when the Val does not equal mempty, the proof is simply reflexive.

monoidSimplTailPreserves (Return x) m mToOp match = refl

monoidSimplTailPreserves

{t} {Γ} {env} (PrimCall {pt1} {pt2} {pt3} pcOp l r) m mToOp match

with tysEq t pt1 pt2 pt3

... | nothing = refl

... | just ((p , p1) , p2) rewrite p | p1 | p2 with pcOp op ?
= (op mToOp)

... | no ¬p = refl

... | yes x≡op with l

... | Val (Constant _ l′) with cmp mToOp l′ (unwrap mToOp (mempty m))

... | no ¬x2′≡mempty = refl

... | yes x2′≡mempty =

In the cases where our optimization actually changes the PrimCall to a Return, we

need to show that evaluating Return x is equivalent to evaluating the PrimCall. This

reduces to proving that

evalAtom env r

≡

evalPrimCall pcOp ( evalAtom env( Val ( Constant pt2 l′)))( evalAtom env r)
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We have introduced let bindings for mempty, _<>_, op, fun, and wrap so we do

not have to add the Monoid or MapToOperation as a parameter to them, in order to

make the proof easier to read. Working from the top to the bottom, we can use the

identityl to expand our initial evalAtom to be mappended to the mempty value. We

can then use our match proof to convert this to an application of fun. We can use our

proof x2′≡mempty, along with our wrapUnwrapInv function to convert the mempty to

(wrap l′), and then the wrapP proof to further convert that to l′ being evaluated as a

constant. The isEvaluatedWith lemma allows us to convert the fun statement to the

evaluation of a PrimCall with the op from our MapToOp, and finally we can complete

the proof with an application of our x≡op lemma by converting op to pcOp.

begin

evalAtom env r

≡〈 sym (identityl m) 〉

(mempty <> evalAtom env r)

≡〈 sym (match mempty (evalAtom env r)) 〉

fun mempty (evalAtom env r)

≡〈 cong

(λ a → fun a (evalAtom env r))

(wrapUnwrapInv mToOp (sym x2′≡mempty)) 〉

fun (wrap l′) (evalAtom env r)

≡〈 cong

(λ a → fun a (evalAtom env r))

(wrapP mToOp {l′} {Γ} {env}) 〉

fun (evalAtom env (Val (Constant pt2 l′))) (evalAtom env r)
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≡〈 isEvaluatedWith mToOp 〉

evalPrimCall

op

(evalAtom env (Val (Constant pt2 l′)))

(evalAtom env r)

≡〈 cong

(λ a → evalPrimCall a (evalAtom env (Val (Constant pt2 l′)))

(evalAtom env r)) (sym x≡op) 〉

evalPrimCall

pcOp

(evalAtom env (Val (Constant pt2 l′)))

(evalAtom env r) �

So now that we have an optimization over Tails and a proof of correctness, we

can go on to write a function to optimize code sequences with this optimization. In

order to do this, we need a way to map some optimization over all the Tails in a code

sequence. This is relatively simple to accomplish, as in the Ta case one just applies

the optimization to the Tail and wrap the result in a Ta. In the Bind case, we apply

the tail optimization to the Tail, and then recursively call on the nested code.

monoidSimplCode : ∀ {t Γ}

→ (m : Monoid (DataVal t))

→ (mToOp : MapToOperation {constant t} t)

→ ((l r : DataVal t) → MapToOperation.fun mToOp l r ≡ (_<>_) m l r )

→ Code Γ t → Code Γ t

monoidSimplCode monoid mToOp match (Ta tail)
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= Ta (monoidSimplTail monoid mToOp match tail)

monoidSimplCode monoid mToOp match (Bind tail code) =

let

tail′ = monoidSimplTail monoid mToOp match tail

code′ = monoidSimplCode monoid mToOp match code

in

Bind tail′ code′

If this seems like an overly-specific way to apply the optimization, that’s because it

is! Our simplifyPlusC function looks almost exactly like our monoidSimplCode function,

but with the optimization function applied to each Tail differing. This is a hint

that maybe there is a way to generalize this, so that we can apply any optimization

function across a code sequence. In fact, this is an example of a functor6, and so we

can write a function that applies some function to every Tail in the code block. The

function tailMap below is exactly such a generalization. We can see from the type

annotation that this takes a function f as input, which takes in its own type, context,

and corresponding Tail, and returns a Tail of a matching type. tailMap then takes a

code sequence as input, and applies the function f to each Tail in the code sequence as

our previous more specific code optimization functions did.

tailMap :

∀ {t1 Γ}

→ (f :

6The code sequence is isomorphic to a non-empty list of Tails, and so we can implement our
map function almost identically to that of a list. If we had more information in our code block, for
example a variable name each variable was bound to, this would be an example of a lens. This is
because it would be applying some update function to a part of the nested data structure, rather
than all the members of it.
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{t : Ty}

→ {Γ’ : Ctx}

→ Tail Γ’ t

→ Tail Γ’ t)

→ Code Γ t1

→ Code Γ t1

tailMap f (Ta tail) = Ta (f tail)

tailMap f (Bind tail code) = Bind (f tail) (tailMap f code)

To prove this higher order optimization function correct, we need a higher order

proof to go with it. The type signature gives insight into what this must accomplish.

It is parameterized by a function f of the same type of f in tailMap. It takes an

additional argument t≡, which takes a context, a type of the tail, an environment and

a Tail parameterized by these, and evaluates to a proof that applying f to tail does not

change the result of evaluation.

tailMap≡ :

∀ {t2 Γ}

→ {env : Env Γ}

→ (c : Code Γ t2)

→ (f :

{t : Ty}

→ {Γ’ : Ctx}

→ Tail Γ’ t

→ Tail Γ’ t)

→ (t≡ :
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({∆ : Ctx}

→ {t1 : Ty}

→ {env’ : Env ∆}

→ (tail : Tail ∆ t1 )

→ (evalTail {∆} tail env’ ≡ evalTail {∆} {t1} (f tail) env’)))

→ (evalCode c env ≡ evalCode {Γ} {t2} (tailMap f c) env)

The Ta case is quite easy to prove, simply apply the proof passed in as a parameter

to the tail. The Bind case is slightly more complicated. The proof that applying the

optimization to the Tail can be created by applying the proof f≡ to the Tail value.

The inductive hypothesis ih shows that evaluating the nested code sequence c is the

same as the optimized code sequence tailMap f c. Given these lemmas, we can prove

our proposition with two simple equational reasoning steps.

tailMap≡ (Ta x) f f≡ = f≡ x

tailMap≡ {t2} {Γ} {env} (Bind {tt} {tc} tail code) f f≡ =

let

Γ’ = tt :: Γ

tV = evalTail {Γ} tail env

iht = f≡ tail

ih = tailMap≡ {tc} {Γ’} {(tV :: env)} code f f≡

in

begin

evalCode code (evalTail tail env :: env)

≡〈 ih 〉

evalCode (tailMap f code) (evalTail tail env :: env)
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≡〈 cong (λ y → evalCode (tailMap f code) (y :: env)) iht 〉

evalCode (tailMap f code) (evalTail (f tail) env :: env) �

We have shown that any optimization that can be applied to Tails and not

change their semantics can be mapped across all the Tails in a Code sequence without

changing the result of its evaluation. With our monoid optimization, we have many

such possible optimizations. It is a relatively trivial matter to show that we can

compose any two of these tail optimizations, and that the act of composing them does

not introduce a semantic divergence.

We can define a function tailEqCompose, which takes a Tail, tail1, and functions

f g, the optimization functions. It is then parameterized by proofs that f and g do

not change the semantics of the Tail evaluation. We can use these proofs with two

equational reasoning steps to show that the composition of optimization functions f

and g do not change the evaluation of the Tail they are applied to.

tailEqCompose :

∀ {t Γ env}

{tail1 : Tail Γ t}

→ (f g : Tail Γ t → Tail Γ t)

→ ((tail2 : Tail Γ t) → evalTail tail2 env ≡ evalTail (f tail2) env )

→ ((tail2 : Tail Γ t) → evalTail tail2 env ≡ evalTail (g tail2) env )

→ evalTail tail1 env ≡ evalTail (f (g tail1)) env

tailEqCompose {env = env} {tail1 = tail} f g ef≡e eg≡e =

begin

evalTail tail env

≡〈 eg≡e tail 〉
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evalTail (g tail) env

≡〈 ef≡e (g tail) 〉

evalTail (f (g tail)) env �

In this chapter we have added the ability to introduce variables, defined optimiza-

tions over monoids, and used higher level proofs to prove compositions of optimizations

correct. In the next chapter we can increase the complexity of our interpreter once

again, this time by adding an effect to our evaluator.
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Chapter 9

Writer MIL

In the last chapter, we extended the language with the ability to introduce variables,

which is certainly important. In this next language, we can finally remove the

parenthesis from (M)IL, and introduce a monadic effect! It is important that we

implement the interpreter in some monad, even a simple one, as two of the optimizations

in MIL depend on the monadic structure of the language. The monad we are choosing

to extend the language with is the Writer monad introduced in Chapter 5, as a standard

out equivalent seems like an essential part of a program evaluator. The execution of

our interpreter being in this monad means it does not just evaluate pure code, but

amasses a list of outputs in addition to a return value.

9.1 Abstract syntax and interpreter

We have added a Unit type to our interpreter, as all Tails must have a type and

return a value. Other than that, the types are the same as in the last interpreter.

data Ty : Set where

Word : Ty

Flag : Ty
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Unit : Ty

We have also added a U DataVal which is parameterized by the top value, tt. This

the same as the Haskell () in Chapter 4.

data DataVal : Ty → Set where

W : Z → DataVal Word

F : Bool → DataVal Flag

U : > → DataVal Unit

constant : Ty → Set

constant Unit = >

constant Word = Z

constant Flag = Bool

One additional constructor has been added to Tail: Output. It is parameterized

by an Atom, and is of type Unit. The Atom represents the value to be converted to a

string and inserted into the output list. The Code data type has not changed since

the last chapter, and so we will not be repeating it here.

data Tail (Γ : Ctx) : Ty → Set where

Return : ∀ {t} → Atom Γ t → Tail Γ t

PrimCall : ∀ {t1 t2 t3} → PrimOp t1 t2 t3

→ Atom Γ t1 → Atom Γ t2 → Tail Γ t3

Output : ∀{t} → Atom Γ t → Tail Γ Unit

Now that we have finished defining the type of abstract syntax trees of the language,

we can move on to implementing the evaluator. The evalAtom function has a case
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added for the Unit type, but is identical otherwise. The evalPrimCall function is

unchanged, as there is no way to evaluate a Unit value in this language.

evalAtom : ∀ {Γ t } → Env Γ → Atom Γ t → DataVal t

evalAtom env (Val (Constant Unit x)) = U x

evalAtom env (Var x) = lookup env x

evalAtom env (Val (Constant Word x)) = W x

evalAtom env (Val (Constant Flag x)) = F x

Given that this evaluator operates in a Writer monad, used as an analogue to

standard out, we need a way to covert our DataVals to Strings before they can be

supplied to this output list. We can implement this conversion in showdv, as shown

below.

showdv : ∀{t} → DataVal t → String

showdv (W n) = show n

showdv (F false) = "False"

showdv (F true) = "True"

showdv (U x) = "()"

The evalTail function needs a case added to it for the Output constructor. In the

Output case, we evaluate the supplied Atom to a DataVal, convert this to a String, and

supply a singleton list of that string as the log. The return value of the Writer is U

tt. In the other cases the result of evaluating the atom of a Return or a PrimCall, is

injected into a Writer with return.

evalTail : ∀ {Γ t} → Tail Γ t → Env Γ → Writer (DataVal t)

evalTail (Return a) env = return (evalAtom env a)
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evalTail (PrimCall primOp a1 a2) env =

return (evalPrimCall primOp (evalAtom env a1) (evalAtom env a2))

evalTail (Output a) env with evalAtom env a

... | x = ( U tt ) ,′ showdv x :: []

The evalCode function is only altered from Featherweight MIL in that, in the Bind

case, the result of evaluating the Tail is bound to the evaluation of the next code

sequence by the�= function. This results in our Bind constructor being implemented

as a legitimate monadic bind!

evalCode : ∀ {Γ t} → Code Γ t → Env Γ → Writer (DataVal t)

evalCode (Ta tail) env = evalTail tail env

evalCode (Bind tail code) env =

(evalTail tail env) �= (λ a → evalCode code (a :: env))

Now that we have defined our data types and interpreter, we will move onto

defining our monadic optimization functions in the next section.

9.2 Right monad law

We had mentioned in the beginning of this chapter that there are optimizations

that depend on the evaluator being in some monad. One of these is the use of the

right monad law to optimize a Return away in the case that it is wrapping the result of

the previous �=. We proved that this holds for the Writer monad in Chapter 5, and

as our evaluator is written in terms of return and �= we should be able to optimize

code sequences in Writer MIL in the same way.

This is a simple optimization to write. In the case of a Ta, it should act as an
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identity. In the case of a Bind it should only modify the code sequence in the case that

the Tail is a Return of the most recently introduced variable in the context, and then

it should change the Bind to a Ta of the most recently bound Tail. Finally, in the case

of a Bind other than that special case, we leave the Tail untouched and recursively call

the rightMonadLaw on the nested code sequence.

rightMonadLaw : ∀ {Γ t} → Code Γ t → Code Γ t

rightMonadLaw (Ta x) = Ta x

rightMonadLaw (Bind t (Ta (Return (Var (here refl))))) = Ta t

rightMonadLaw (Bind t c) = Bind t (rightMonadLaw c)

In order to prove that the rightMonadLaw function does not change the result of

evaluation, we need to prove one straightforward lemma: that evaluating a variable in

some environment the same as looking it up in that environment. A simple proof by

cases is sufficient to show this to be true.

evalVal≡lookup : ∀ {t Γ}

→ {env : Env Γ}

→ {x : t ∈ Γ}

→ (evalAtom {Γ} env (Var x)) ≡ lookup env x

evalVal≡lookup {Word} {Γ} {env} {x} = refl

evalVal≡lookup {Flag} {Γ} {env} {x} = refl

evalVal≡lookup {Unit} {Γ} {env} {x} = refl

Moving onto the main proof, we start by case splitting over the Code parameter. In

the rightMonadLaw optimization, the Code is only modified in two cases: the inductive

case of Bind, where the nested code sequence is also a Bind, and the specific case
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where the Bind has a nested code sequence that returns the last introduced variable:

Ta (Return (Var (here refl ))). All of the other cases are reflexive, as shown below.

rMLPreservesML : ∀ {Γ t env} → (code : Code Γ t)

→ evalCode code env ≡ evalCode (rightMonadLaw code) env

rMLPreservesML (Ta x) = refl

rMLPreservesML (Bind x (Ta (Return (Val x1)))) = refl

rMLPreservesML (Bind x (Ta (PrimCall x1 x2 x3))) = refl

rMLPreservesML (Bind x (Ta (Output x1))) = refl

rMLPreservesML (Bind x (Ta (Return (Var (there _))))) = refl

...

For the non-reflexive cases, we can begin with the case where the nested code

sequence returns the most recently introduced variable. If we begin with the left-hand

side of the equality we are trying to prove, evalCode (Bind x Ta (Return (Var (here

refl))))) env, we can step through the evaluation of this term in our equational reasoning

block, until we reduce it to (evalTail x env �= return). This is exactly the form our

right monad law proof, rML, took, and so we can use rML show that (evalTail x env

�= return) is equal to evalTail x env. From this, we can show through two simple

steps that it is equal to evalCode (rightMonadLaw Bind x Ta (Return (Var (here refl)))))

env, completing our proof of this case.

rMLPreservesML {_} {t} {env} (Bind x (Ta (Return (Var (here refl))))) =

begin

evalCode (Bind x (Ta (Return (Var (here refl))))) env

≡〈 refl 〉
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evalTail x env

�= (λ a → evalCode (Ta (Return (Var (here refl)))) (a :: env))

≡〈 refl 〉

evalTail x env

�= (λ a → evalTail (Return (Var (here refl))) (a :: env))

≡〈 refl 〉

(evalTail x env)

�= (λ a → return (evalAtom (a :: env) (Var (here refl))))

≡〈 cong (λ b → (evalTail x env)

�= (λ a → return b )) evalVal≡lookup 〉

(evalTail x env)

�= (λ a → return (lookup (a :: env) (here refl)) )

≡〈 refl 〉

(evalTail x env) �= (λ a → return a)

≡〈 refl 〉

( evalTail x env �= return)

≡〈 rML (evalTail x env) 〉

evalTail x env

≡〈 refl 〉

evalCode (Ta x) env

≡〈 refl 〉

evalCode (rightMonadLaw (Bind x (Ta (Return (Var (here refl)))))) env �

The final case we must consider is the inductive case, where the Code being

optimized is a Bind and its nested code sequence is also a Bind. In this case, we can



CHAPTER 9. WRITER MIL 153

simply step through the evaluation as above until we reach an explicit �= and then

apply the inductive hypothesis, followed by reversing the evaluation steps as we did in

the last proof.

rMLPreservesML {_} {_} {env} (Bind x (Bind x1 c)) =

let

ih = rMLPreservesML (Bind x1 c)

in

begin

evalCode (Bind x (Bind x1 c)) env

≡〈 refl 〉

evalTail x env

�= (λ a → evalCode (Bind x1 c) (a :: env))

≡〈 cong (λ z → (evalTail x env) �= (λ a → z) ) ih 〉

evalTail x env

�= (λ a → evalCode (rightMonadLaw (Bind x1 c)) (a :: env))

≡〈 refl 〉

evalCode (rightMonadLaw (Bind x (Bind x1 c))) env �

With this, we have proven that our first monadic optimization correctly optimizes

code sequences under very specific conditions. Now that we have this relatively simple

proof out of the way, we can move onto the harder and more powerful of the two

optimizations.
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9.3 Left monad law

The other, more involved monad law optimization is that of the left monad law.

In Chapter 5, we define the law in the form return a �= c ≡ c a. Intuitively, when

a return injects a into some monad, and then �= extracts it, these two operations

undo each-others effects, and so the bind becomes simple function application. There

is a problem here, however: MIL does not have pure function application! Everything

is in the language of binds, as we are in the MIL execution monad. An alternative

but equivalent representation (as shown in Chapter 2) is x ← return a; c ≡ [a/x]c,

where the returned value is substituted for the bound variable in c. This implies that

we need to write a substitution function, where we can substitute one variable for

another in the rest of the code sequence.

This brings with it significant difficulties, as substitution is already notoriously

difficult to get right. Our implementation of variable lookups as All values representing

paths to the introduction of the variable introduces another problem: if we remove

a Bind statement, we must change the lookup values for every variable below the

removal, as one segment of the path is removed in every variable that is not to be

substituted for the variable. Conveniently, similar representations of this have already

been formalized in Agda [WKS20], which is what we will base our implementation of

this method of substitution on.

First, we must consider the problem of contextual inconsistency between the

substituted and non-substituted Atoms. By removing a Bind from a code sequence,

we alter the context for everything below that removal. This requires us to implement

extension: that given some mapping from variables in one context to another, we can

extend both contexts with another variable and the mapping is maintained.
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extend : ∀ {Γ ∆ : Ctx}

→ (∀ {a } → (a ∈ Γ) → (a ∈ ∆))

→ (∀ {a b} → (a ∈ (b :: Γ) → a ∈ (b :: ∆)))

extend m (here px) = here px

extend m (there x) = there (m x)

Next, we must implement renaming, where given a mapping from variables in one

context to another we can map our expressions from the first context to the second.

Given the hierarchical nature of the MIL language design, this means implementing

renaming for Atom, Tail, and Code data types. The basic strategy for such renaming

is simple. In our renameAtom function, we apply the supplied mapping to Vars, and

act as an identity for Vals. The renameTail function simply calls renameAtom with its

supplied mapping. Finally, in renameCode we either call renameTail on the Ta case, or

call the renameTail function on the Tail, and then call renameCode on the nested code

sequence, with the mapping m extended with extend to account for the introduction

of the Tail into the environment.

renameAtom : ∀{Γ ∆}

→ (∀ {a} → (a ∈ Γ) → (a ∈ ∆))

→ (∀ {a} → (val : Atom Γ a) → (Atom ∆ a))

renameAtom m (Var x) = Var (m x)

renameAtom m (Val x) = Val x

renameTail : ∀{Γ ∆}

→ (∀ {a} → (a ∈ Γ) → (a ∈ ∆))

→ (∀ {a} → (val : Tail Γ a) → (Tail ∆ a))
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renameTail m (Return x) = Return (renameAtom m x)

renameTail m (PrimCall op x1 x2) = PrimCall

op

(renameAtom m x1)

(renameAtom m x2)

renameTail m (Output x) = Output (renameAtom m x)

renameCode : ∀{Γ ∆}

→ (∀ {a} → (a ∈ Γ) → (a ∈ ∆))

→ (∀ {a} → (val : Code Γ a) → (Code ∆ a))

renameCode m (Ta t) = Ta (renameTail m t)

renameCode m (Bind t c) = Bind (renameTail m t) (renameCode (extend m) c)

Finally, we can begin to implement substitution itself. Our substitution functions,

in keeping with our renaming functions, are split up into three different functions:

substituteAtom, substituteTail, and substituteCode, all of the form that given a mapping

from All values in one context to terms in another, we can map a value from the first

context to the second. Our substituteAtom function resembles renameAtom: if the

Atom is a Var it applies the mapping to the lookup in it, however, in the case of a Val,

it acts as an identity.

substituteAtom : ∀ {Γ ∆}

→ (∀ {t} → (t ∈ Γ) → Atom ∆ t)

→ (∀ {t} → Atom Γ t → Atom ∆ t)

substituteAtom m (Var x) = m x

substituteAtom m (Val x) = Val x
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Our substituteTail function acts like a lens, applying our substituteAtom function

with the supplied mapping to each Atom in the Tail.

substituteTail : ∀ {Γ ∆}

→ (∀ {t} → (t ∈ Γ) → Atom ∆ t)

→ (∀ {t} → Tail Γ t → Tail ∆ t)

substituteTail m (Return x)

= Return (substituteAtom m x)

substituteTail m (PrimCall op x1 x2)

= PrimCall op (substituteAtom m x1)(substituteAtom m x2)

substituteTail m (Output x)

= Output (substituteAtom m x)

Before we move onto the substituteCode function, recall that in our renameCode

function, we needed a way to extend our mapping by increasing the index of the

All value by one. We must develop an analogous extension function that extends a

mapping from All values to Atoms, which can be implemented by using the renameAtom

function to extend the context of the Atom.

extendSubst : ∀ {Γ ∆}

→ (∀ {t} → (t ∈ Γ) → Atom ∆ t)

→ (∀ {t1 t2} → (t1 ∈ (t2 :: Γ)) → (Atom (t2 :: ∆) t1))

extendSubst m (here px) = Var (here px)

extendSubst m (there a) = renameAtom there (m a)

Up until this point, we have referred to a “supplied mapping”, which would be

applied to all the Atoms in some data structure. We can implement the mapping in
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our function m’1 by supplying an Atom we wish to substitute, as well as an All value,

to indicate the index where the supplied Atom should be substituted out. In the case

that the All is here, this means that m’ substitutes the supplied Atom, otherwise the

Atom representing a variable has one there removed from it, to compensate for the

Bind removed in the optimization.

m’ : ∀ {t t1 Γ} → Atom Γ t1 → t ∈ ( t1 :: Γ) → (Atom Γ t)

m’ a (here refl) = a

m’ a (there i) = Var i

With these functions out of the way, we can finally implement our substituteCode

function. This implementation is relatively straightforward: in the Ta case, we apply

substituteTail to its Tail, whereas in the Bind case we take the additional step of a

recursive call on c, extending the mapping with extendSubst.

substituteCode : ∀ {Γ ∆}

→ (∀ {t} → (t ∈ Γ) → Atom ∆ t)

→ (∀ {t} → Code Γ t → Code ∆ t)

substituteCode m (Ta t)

= Ta (substituteTail m t)

substituteCode m (Bind t c)

= Bind (substituteTail m t) (substituteCode (extendSubst m) c)

Now that we have our substitution functions implemented, we can implement our

optimization, lmlSimplify. In the Ta case, it acts as an identity. In the (Bind (Return

x) c) case, we want to substitute the returned Atom, x, through the rest of the code
1The prime is used to avoid shadowing of the m variable used to represent a mapping variable in

the substitution and renaming functions.
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sequence, c. In the remaining cases, we call lmlSimplify recursively on the nested code

segment.

lmlSimplify : ∀ {t Γ} → Code Γ t → Code Γ t

lmlSimplify (Ta x) = Ta x

lmlSimplify (Bind (Return x) c)

= substituteCode (m’ x) c

lmlSimplify (Bind (PrimCall op x1 x2) c)

= (Bind (PrimCall op x1 x2) (lmlSimplify c))

lmlSimplify (Bind (Output x) c)

= (Bind (Output x) (lmlSimplify c))

To illustrate that this function works as intended, we apply it to a short code

sequence that converts a DataVal Word representing a Celsius value to one representing

a Kelvin value by adding 273 to it. Note that the optimized version both substitutes

the returned constant for the variable referencing it in the Primcall and decreases the

index of the other Var to compensate for the removal of the Bind.

_ : lmlSimplify

(Bind (Return (Val (Constant Word (+ 273))))

(Ta (PrimCall Madd (Var (there (here refl))) (Var (here refl)))))

≡

Ta (PrimCall Madd (Var (here refl)) (Val (Constant Word (+ 273))))

_ = refl

In other chapters of this thesis, this is the point where we would prove this

optimization correct. However, there are two important considerations that, when
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combined, make this a misallocation of our space and attention. First, proving

substitution correct is a famously difficult problem, and as such, the proofs involved

would take up a huge proportion of the remaining thesis. Second, in order to account

for additional features — such as imports — a full implementation of MIL will rely on

a different representation of variables, and as such, the proof would not even generalize.

Instead, let us end this chapter with an understanding of the monadic optimizations

themselves, and spend our attention on our final, and more advanced, language.
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Chapter 10

Block MIL

Although we’ve expanded the interpreter with a number of features throughout

the previous chapters, it has previously been limited to executing a code sequence

and returning a value at the end. One feature that has been conspicuously missing is

block calls: the ability to call other code sequences with arguments. In turn, this has

prevented us from implementing if statements, as in MIL they decide which of two

possible blocks to call. Let us introduce Block MIL, a further extension of our subset

of MIL, now with block calls and if statements added, among other features.

10.1 Abstract data types

The Ty and DataVal definitions have remained almost the same as in Writer MIL,

but we have removed the Unit type and corresponding DataVal, for reasons that will

become clear in the coming paragraphs. We have updated the PrimOp definition and

added some additional data types to capture code blocks and their types.

Up until this point, we have been writing lists by using the :: constructor. This

worked well, as generally we only used lists as contexts, in which case we were either

adding or removing the head of the list, via using :: or pattern matching respectively.

In this chapter we will often be constructing lists from scratch, and as such the ::
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constructor gets somewhat unwieldy1. We can use pattern synonyms [AAC+21d] — a

kind of syntactic sugar definition — to make construction of our lists more visually

similar to Haskell’s notation, as shown below2.

pattern [_]′′ z = z :: []

pattern [_,′′_]′′ y z = y :: z :: []

pattern [_,′′_,′′_]′′ x y z = x :: y :: z :: []

pattern [_,′′_,′′_,′′_]′′ w x y z = w :: x :: y :: z :: []

pattern [_,′′_,′′_,′′_,′′_]′′ v w x y z = v :: w :: x :: y :: z :: []

pattern [_,′′_,′′_,′′_,′′_,′′_]′′ u v w x y z = u :: v :: w :: x :: y :: z :: []

pattern [_,′′_,′′_,′′_,′′_,′′_,′′_]′′ t u v w x y z = t :: u :: v :: w :: x :: y :: z :: []

Up until now, PrimOps had two inputs and an output, all of the same type. We had

claimed that there were ways to make this more expressive in Chapter 7, and so let us

take this opportunity to make the implementation of our PrimOps expressive enough

to capture any number of inputs, of varying types. We can see below that rather than

having each PrimOp indexed by three types as we did before —representing the two

input and one output types— it is instead indexed by a list of input types, and an

output type. We have also implemented additional PrimOps, those of DataVal Word

equality and subtraction.

data PrimOp : List Ty → Ty → Set where

Madd : PrimOp [ Word ,′′ Word ]′′ Word

Msub : PrimOp [ Word ,′′ Word ]′′ Word

1This chapter originally used :: notation, but it was difficult to parse, even for the author. For the
sake of the readers, this was changed to a more easily visually parsed format.

2Our implementation of this pattern is based on a pattern used for the same purpose in Program-
ming Language Foundations in Agda [WKS20]
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Mand : PrimOp [ Flag ,′′ Flag ]′′ Flag

Mmul : PrimOp [ Word ,′′ Word ]′′ Word

MisZero : PrimOp [ Word ]′′ Flag

Mweq : PrimOp [ Word ,′′ Word ]′′ Flag

To define a block type, it is necessary to reflect for a moment on the limitations

of our earlier languages, and the expressiveness of the actual MIL specification when

it comes to code blocks. The actual specification allows multiple arguments to be

passed into a code block, which is standard for most programming languages. Each

code block, however, returns a list of values, possibly of different types. This change

in return type is why we eliminated the unit type, as we can instead return an empty

list.

As list types seem like a relatively important feature of MIL, let us extend our

Block MIL interpreter with them! To do so, first we must define a type DefType,

which consists of one constructor: BlockType. This is parameterized with two lists of

types, representing the input and output types respectively. We also need to define

a context to look code blocks up in, BCtx, much like our type context Ctx. BCtx is

defined as a list of DefTypes.

data DefType : Set where

BlockType : List Ty → List Ty → DefType

BCtx = List DefType

The Tail type has two differences from that in Writer MIL: first it is parameterized

with a block context ∆, and it is indexed by a list of output types, rather than a single

output type. To update the constructors present in Writer Mil, we update the Atom
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Γ t, a single Atom, to an All expression representing a list of input Atoms. A param

function is used as an alias for an All type where the type of the Atoms corresponds

to the list of types supplied as parameters to other parameters of the constructor, or

indexing the Tail as an output type.

params : Ctx → List Ty → Set

params Γ tys = All (Atom Γ) tys

In the case of Return, the tout parameterizes the parameter list and indexes the

Tail as its type. In the PrimCall case, tin parameterizes PrimOp as its input types,

as well as the list of arguments passed as inputs to it. The tout is the type of the

output of the PrimOp, and as such is the single member of the output type list for

the Tail. The Output constructor simply requires us to convert the Atom to a list of

Atoms and to construct a singleton list of the Unit type as the Tail type. Finally, the

BlockCall constructor takes an Any value to index into the BCtx to retrieve a block of

type BlockType tin tout in its context. It then takes a param that is parameterized by

tin as well, as the PrimCall case does, and then indexes the Tail with tout as its type.

data Tail (Γ : Ctx ) ( ∆ : BCtx) : List Ty → Set where

Return : ∀ {tout} → params Γ tout → Tail Γ ∆ tout

PrimCall : ∀ {tin tout } → PrimOp tin tout

→ params Γ tin

→ Tail Γ ∆ ([ tout ]′′)

Output : ∀ {t} → params Γ t → Tail Γ ∆ []

BlockCall : ∀ { tin tout } → (BlockType tin tout) ∈ ∆

→ params Γ tin → Tail Γ ∆ tout
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The Code type has the same updates from its Writer MIL definition as the Tail

does: an added BCtx, and the type context additions are modified from single types to

lists of types to account for the update to multiple return values. The Ta constructor

has not actually changed syntactically, but the type ts is now a list of types, rather

than a single type. The Bind constructor, as a result of the change to lists of types,

requires the return types of the Tail to be concatenated to the front of, rather than

consed onto the front of, the context that parameterizes the Code. Finally, we have a

new language construct, the If constructor. This is parameterized by a single Atom,

representing the conditional variable, and then two pairs of code blocks and matching

parameters, with the same return types. Recall from Chapter 2 that MIL only allows if

statements at the end of a block, and only allows them to call other blocks as resulting

statements. This contrasts with a language like Haskell, where an if statement can

directly evaluate to a value, for example if True then 1 else 0.

data Code (Γ : Ctx) ( ∆ : BCtx) : List Ty → Set where

Ta : ∀ {ts} → Tail Γ ∆ ts → Code Γ ∆ ts

Bind : ∀ {t t1} → Tail Γ ∆ t → Code (t ++ Γ) ∆ t1 → Code Γ ∆ t1

If : ∀ {tin1 tin2 tout} → Atom Γ Flag

→ ((BlockType tin1 tout) ∈ ∆ × params Γ tin1)

→ ((BlockType tin2 tout) ∈ ∆ × params Γ tin2 ) → Code Γ ∆ tout

As our last data definition in this language, we must specify our code block

definition, BlockV. This consists of one constructor BlockVal, which is parameterized by

a Code segment, and which is indexed by a DefType, where the input and output types

match those of the code block. With this, we can actually define entire programs,

rather than being relegated to evaluating single contiguous code blocks!
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data BlockV (∆ : BCtx) : DefType → Set where

BlockVal : ∀ {tin tout } → Code tin ∆ tout → BlockV ∆ (BlockType tin tout)

In the above abstract data types, the BCtx was a type context of block types. For

the interpreter, we need a context of block definitions at runtime, much like how Ctx

requires an Env definition in the evaluator. Our BlockContext is parameterized by

a BCtx, ∆, and constructs an All value as the evaluation context equivalent. The

definition may be a bit confusing, as the list ∆ is an argument both to the BlockV

and the All, but this is simply because each block has to be in scope for the code

blocks later in the list. ∆ both matches the types of each BlockV in the All, and puts

their types in scope for the other block definitions in the list. Although this seems

circular, it just requires that we supply the list of the block types when constructing a

BlockContext.

BlockContext : BCtx → Set

BlockContext ∆ = All (BlockV ∆) ∆

Now that we have all the pieces available, it is worth asking ourselves, what is a

program? In this context, it is useful to conceptualize a program in this language as a

list of block definitions and an entry point or a main function. We can encode this

type as below.

Program : ∀ {tin tout } → BCtx → Set

Program {tin} {tout} ∆ = (((BlockType tin tout) ∈ ∆) × BlockContext ∆ )

Consider the fast Fibonacci function as an example of how we can use this data

type to define an actual program. It uses a two-member list to return the current
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and one previous Fibonacci numbers. This is a kind of tabularization optimization

over the original Fibonacci function. This function was chosen as an example because

it requires mutual recursion, list return types, and the output to work correctly, as

this example writes each Fibonacci number to our output list in order. We must pass

in our type signatures as the BlkCtx, where we get the list of types parameterizing

the Program from. Directly writing out the abstract syntax tree (AST) results in a

difficult-to-read function, especially with De Bruijn indices as variables. To assist in

understanding, an equivalent version of the program has been transcribed in standard

MIL syntax with highlighting below the Agda AST.

fastFib : Program (BlockType [] [ Word ,′′ Word ]′′ ::

BlockType [] [ Word ,′′ Word ]′′ ::

BlockType [ Word ]′′ [ Word ,′′ Word ]′′ ::

BlockType [ Word ]′′ [ Word ,′′ Word ]′′ ::

BlockType [ Word ]′′ [ Word ,′′ Word ]′′ ::

BlockType [ Word ]′′ [ Word ]′′ :: [])

fastFib = ( there (there (there (there (there (here refl))))) ,′

(BlockVal

(Bind (Output [ Val (Constant Word (+ 0)) ]′′)

(Ta (Return

[ Val (Constant Word (+ 0)) ,′′ Val (Constant Word (+ 0)) ]′′)))) ::

(BlockVal

(Bind (Output [ Val (Constant Word (+ 0)) ]′′)

(Bind (Output [ Val (Constant Word (+ 1)) ]′′)

(Ta (Return



CHAPTER 10. BLOCK MIL 168

[ Val (Constant Word (+ 1)) ,′′ Val (Constant Word (+ 0)) ]′′))))) ::

(BlockVal

(Bind (PrimCall Msub [ Var (here refl) ,′′ Val (Constant Word (+ 1)) ]′′)

(Bind (BlockCall (there (there (there (here refl)))) [ Var (here refl) ]′′)

(Bind (PrimCall Madd [ Var (there (here refl)) ,′′ Var (here refl)]′′)

(Bind (Output [ Var (here refl) ]′′)

(Ta (Return

[ Var (here refl) ,′′ Var (there (here refl)) ]′′ ))))))) ::

(BlockVal

(Bind (PrimCall Mweq [ Var (here refl) ,′′ Val (Constant Word (+ 1))]′′)

(If (Var (here refl))

((there (here refl)) ,′ [])

((there (there (here refl))) ,′ [ Var (there (here refl))]′′ )))) ::

(BlockVal

(Bind (PrimCall Mweq [ Var (here refl) ,′′ Val (Constant Word (+ 0))]′′)

(If (Var (here refl))

((here refl) ,′ [])

((there (there (there (here refl)))) ,′ [ Var (there (here refl))]′′)))) ::

(BlockVal

(Bind (BlockCall

((there (there (there (there (here refl))))))

[ Var (here refl)]′′ )

(Ta (Return [ Var (here refl) ]′′)))) :: [])

oneCase : [Word,Word]
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oneCase =

[] <- output[0]

[] <- output[1]

return [1,0]

indCase : [Word] >>= [Word,Word]

indCase [x] =

[minusOne] <- sub((x,1))

[fib1, fib2] <- fibEntry[minusOne]

sum <- add((fib1,fib2))

[] <- output[sum]

return [sum, fib1]

zeroCase : [Word,Word]

zeroCase =

[] <- output[0]

return [0,0]

neZero : [Word] >>= [Word,Word]

neZero [x] =

[eqOne] <- eq((x,1))

if eqOne

oneCase []

indCase [x]
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fibEntry : [Word] >>= [Word,Word]

fibEntry [x] =

[eqZero] <- eq((x,0))

if eqZero

zeroCase []

neZero [x]

fibWrapper : [Word] >>= [Word]

fibWrapper [x] =

[fib1,fib2] <- fibEntry[x]

return [fib1]

main = fibWrapper

Now that we have gone over the definitions of our updated language and before we

move onto the evaluation section, we must consider a complicating factor in writing

the evaluator: what do we do about termination?

10.2 Turing completeness and the logic loophole

An important feature of Agda is that all functions are guaranteed to terminate3,

making it a total language [AAC+21f]. This is enforced by structural recursion,

where the value being recursed on must be a strict sub-expression of the input
3There are co-inductive data types in Agda that capture infinite data structures such as

streams [AAC+21b]. Totality requires that progress be made in recursion, so even the existence of
co-inductive data types does not allow us to skirt a form of termination checking.
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expression [AAC+21f]4. As each recursive call must be on a strict subset of the input

data structure, this structural recursion is guaranteed to terminate. It is important

to understand why Agda insists on totality, so let us go back to Haskell for a short

segment for some contrast.

We first established that one can define propositions as types and prove those

propositions by finding values that inhabit those types in Chapter 4. We also used

this technique to prove properties of type-level natural numbers in Haskell, including

that addition of natural numbers is commutative. There was a type, Void, which is

inhabited by no values. Haskell is Turing-complete, and therefore does allow infinite

loops, unlike Agda. We can leverage this to inhabit a Void as shown below.

oops :: Void

oops = oops

Why does this work? Well, if we claim that oops :: Void, and we need to find

a way to create a Void value, oops is in scope in the body of itself! The type of

an infinite loop can be anything, including Void. This means that in a non-total

language, it is trivial to create a bottom value, which through the principle of explosion

can inhabit any type! As a result of this non-termination, in Haskell every type is

inhabited by bottom5. With the ability to generate a bottom value at will we can

prove whatever we want, for example that 1 = 0.

oneEqZero :: Suc Z :~: Z

oneEqZero = principleExplosion oops
4Note that this version of termination checking does not solve the halting problem. There are

functions that do not recurse structurally, but can be proven to terminate on any input, and will be
excluded by Agda’s termination checker. Because we cannot determine if any arbitrary program will
halt, Agda restricts us to a subset of functions that can be termination checked.

5This is why the category of Haskell types and functions is sometimes referred to as Hask, distinct
from the category of Set. [MT19]
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Although hopefully the motivation behind Agda’s totality is clear, one may ask

why we are focusing on Agda’s termination checker at all? It is important to point

out that in earlier chapters our evaluators were guaranteed to terminate, as they

were at most effectively lists of tails, with the evaluator structurally recursing on the

code sequence. As such, we did not need to do anything fancy in order to get the

termination checker to approve of our evaluator. With the ability to execute block

calls however, it is fully possible to have a code block call itself, or call a chain of

blocks that eventually winds up in a cycle. A naive implementation of an interpreter

for this language will fail the Agda termination checker. How do we embed a language

evaluator that is not guaranteed to terminate in a language that is?

We can amend our evaluator by giving it “fuel”: instead of recursing only on some

code block or tail call, it can carry along a natural number that represents some limit

on the number of computations the interpreter can execute [RPS+19]. For example,

one way of implementing this would be decreasing the fuel by one for every recursive

evaluator call, and returning a nothing value in the case that we run out of fuel, when

we call the evaluation function with a fuel value of zero.

With our language, the only Tail whose execution may not terminate is a BlockCall.

As such, in the vast majority of cases, we do not need to decrement the fuel. However,

in the case that we evaluate a BlockCall, Agda needs some assurance that this will

indeed terminate, and thus we will reduce the fuel value by one each time we evaluate

a BlockCall. As we will see below, this is sufficient to convince Agda that our evaluator

will terminate.
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10.3 A gas-powered evaluator

Now that we have described the strategy for dealing with non-termination in our

evaluator, let us implement it! These evaluators are operating in the Maybe Writer

monad as described in Chapter 5, and return lists of values, in keeping with the newly

list-based return type of Block MIL. There is one difference in the implementation of

the »= function, specifically that the with abstraction in the earlier implementation

has been extracted to a helper function, writerHelper. This makes equational reasoning

easier, as the helper has an explicit type, rather than requiring Agda to try and infer

it.

writerHelper : ∀ {b} → Maybe (Writer b) → List String → Maybe (Writer b)

writerHelper nothing vs1 = nothing

writerHelper (just (b , vs2)) vs1 = just (b , (vs1 ++ vs2))

_»=_ : ∀ {a b}

→ Maybe (Writer a )

→ (a → Maybe (Writer b))

→ Maybe (Writer b)

nothing »= f = nothing

just (a , vs1) »= f = writerHelper (f a) vs1

The evalAtom function is identical to its version in last chapter, and thus will not

be described here. The evalPrimCall does need to be updated to handle our improved

PrimCall type. Because our PrimCall type is indexed by a list of input types, we can

use All values with the input type, and assure that the lists of values passed in matches

the type and fixity specified by the PrimOp.



CHAPTER 10. BLOCK MIL 174

evalPrimCall : ∀ { tin tout }

→ PrimOp tin tout → All DataVal tin → DataVal tout

evalPrimCall Madd (a1 :: a2 :: []) = a1 +d a2

evalPrimCall Mand (a1 :: a2 :: []) = a1 ∧d a2

evalPrimCall Mmul (a1 :: a2 :: []) = a1 *d a2

evalPrimCall MisZero (a :: []) = ≡0? a

evalPrimCall Mweq (a1 :: a2 :: []) = a1 ==d a2

evalPrimCall Msub (a1 :: a2 :: []) = a1 -d a2

To evaluate a block call, we must first take as parameters the fuel, the arguments

to the block call, the index of the BlockVal, the BlockContext, and the environment. If

the fuel is a zero, we are out of gas, and simply return nothing. Otherwise, we look up

the BlockVal in the BlockContext, and evaluate the code segment it contains with the

parameters as the context, subtracting one from the fuel value.

evalBlockCall :

∀ {t tin Γ ∆}

→ N

→ All DataVal tin

→ BlockType tin t ∈ ∆

→ BlockContext ∆

→ Env Γ

→ Maybe (Writer (All DataVal t))

evalBlockCall zero param blk blkCtx env

= nothing

evalBlockCall (N.suc n) param blk blkCtx env
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= case lookup blkCtx blk of λ where

(BlockVal c) → evalCode n c param blkCtx

Our evalTail function follows the same pattern, where it takes the BlockContext

and the fuel, but otherwise is similar to the Writer MIL interpreter. The primary

differences between these interpreters is that we have a function evalAll, which evaluates

the list of inputs by mapping evalAtom across the inputs. Other than updating the

Tails to accept multiple input values, the only other difference is by adding support

for the BlockCall constructor, which simply calls the evalBlockCall function we defined

earlier.

evalTail : ∀ {t Γ ∆}

→ N

→ Tail Γ ∆ t

→ Env Γ

→ BlockContext ∆

→ Maybe (Writer (All DataVal t))

evalTail n (Return args) env blkctx

= return (evalAll env args)

evalTail {t} n (BlockCall i args) env blkCtx

= evalBlockCall {t} n (evalAll env args) i blkCtx env

evalTail n (PrimCall primOp as) env blkctx

= return [ evalPrimCall primOp (evalAll env as) ]′′

evalTail n (Output as) env blkctx with map-All (λ x → (evalAtom env x)) as

... | outs = just ([] , showDV outs )

Finally, the code evaluator is almost identical to the Writer MIL code evaluator,
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except for two points. First, the Tail in the Bind constructor evaluates to a list of

DataVals, rather than a single one as before. To account for this, the result of Tail

evaluation has the environment appended to it, rather than using ::, as before. Second,

we must deal with the If case. Simply, this evaluates the Atom representing the

conditional, and then in the case that it evaluates to F true, it calls the first code

block with the matching parameters. Otherwise, it calls the second code block.

evalCode : ∀ {t Γ ∆ }

→ N

→ Code Γ ∆ t

→ Env Γ

→ BlockContext ∆

→ Maybe (Writer ((All DataVal t)))

evalCode n (Ta tail) env blkctx

= evalTail n tail env blkctx

evalCode n (Bind tail code) env blkCtx

= (evalTail n tail env blkCtx)

»= (λ a → evalCode n code ( a ++′ env) blkCtx )

evalCode n (If cond ( blk1 , arg1 ) ( blk2 , arg2 )) env blkCtx

with evalAtom env cond

... | F true = evalBlockCall n (evalAll env arg1) blk1 blkCtx env

... | F false = evalBlockCall n (evalAll env arg2) blk2 blkCtx env

Unique to Block MIL, we have one data type above Code on the data type hierarchy,

and that is the Program. We need one final evaluator, runProgram, which takes fuel,
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the supplied arguments, and a Program, and runs the Program with those arguments.

Recalling that a Program consists of a BlockContext and an entry point, this calls

the main function with the supplied arguments, the block context, and an empty

evaluation context.

runProgram : ∀ {tin tout ∆}

→ N

→ All DataVal tin

→ Program {tin = tin} {tout = tout} ∆

→ Maybe (Writer (All DataVal tout))

runProgram n args (main , blkCtx) = evalBlockCall n args main blkCtx []

Using this function, we can run our fastFib program with an input of 7, and we

can see that it evaluates to the correct corresponding Fibonacci number, and that it

outputs the 0th to the 7th Fibonacci numbers in the log. Thus, we have a way to run

realistic programs in a large subset of MIL!

_ : runProgram 1000 ((W (+ 7)) :: []) fastFib

≡

just ([ W (+ 13) ]′′

, [ "0" ,′′ "1" ,′′ "1" ,′′ "2" ,′′ "3" ,′′ "5" ,′′ "8" ,′′ "13" ]′′)

_ = refl

Overall, the changes between this interpreter and Writer MIL are relatively minor,

but make a huge difference in terms of the expressiveness of the language. Now, as

has been the pattern for this thesis, let us define an optimization based on these new

features, and prove that applying it does not change the semantics of the program.
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10.4 Optimization, termination, and proofs

Consider what happens when a conditional used in an If statement is known at

compile time. We know that the corresponding block and argument combination will

always be called no matter the context, and therefore we could simply rewrite the If

statement as the block call corresponding to the known conditional!

We can see that in our implementation of this optimization function, eliminate-

KnownIf, Ta constructed values are untouched, as are If statements with variables as

their conditional. For Bind values, the Tail is untouched, but the function is recursively

called on its nested code. In the case of an If with a Val constructor as its conditional,

we replace it with a BlockCall of the corresponding block and arguments.

eliminateKnownIf : ∀ {t Γ ∆} → Code Γ ∆ t → Code Γ ∆ t

eliminateKnownIf (Ta x) = Ta x

eliminateKnownIf (Bind x c) = Bind x (eliminateKnownIf c)

eliminateKnownIf (If (Var x) x1 x2 ) = (If (Var x) x1 x2)

eliminateKnownIf (If (Val (Constant Flag true)) (blockt , args) _)

= Ta (BlockCall blockt args)

eliminateKnownIf (If (Val (Constant Flag false)) _ (blockc , args))

= Ta (BlockCall blockc args)

Something to note here is the power of composed optimizations. This optimization

alone is unlikely to be commonly applicable, because a programmer presumably would

not write an If statement with a constant conditional. However, the left monad law

optimization can propagate values known at compile time throughout the rest of the

Code. Thus the combination of these two optimizations allow for known variables,

that is a variable that is bound to a Return, that is later used as a conditional of an If
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statement to be optimized by eliminateKnownIf.

This seems like a simple optimization to prove, and in fact, in Writer MIL it

would be reflexively so, as evaluation of If is implemented in terms of evalBlockCall.

However, this is not Writer Mil, and as such, we have to wrestle with the complexity

that possible non-termination brings. Previously we proved correctness by showing

that there is a direct correspondence between the result of evaluating the optimized

and unoptimized code sequence, but what happens when we do not know if these will

evaluate to a value at all?

In Chapter 6, we proved our plusSimplifies optimization correct in an untyped

style, in which we phrased the proposition as a statement that if the source expression

evaluates to a value, then the optimized program will evaluate to that same value.

This approach can be applied to optimizations in an intrinsically-typed interpreter

with fuel, because not all optimizations result in the source program evaluating to the

same thing as the target program when fuel is involved. For example, an optimization

that inlines a known block would reduce the required fuel to reach that code segment

by one, and as such, it is possible that optimization may cause a Code that previously

evaluated to a nothing to evaluate to a just value. The stronger equivalence property

holds in the case of the eliminateKnownIf optimization, but that is a special case. By

proving the equality of evaluation over the source and target program, we can derive

the weaker proposition of implication of semantic maintenance, as we can prove below

that equality implies implication.

≡→→ : ∀{A} → {a b c : Set A} → (a ≡ b) → ((a ≡ c) → (b ≡ c))

≡→→ a≡b rewrite a≡b = λ x → x

First, we must prove that if some code that is a Bind terminates then the Tail bound
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by it terminates as well, in our function bind⇓just⇒tail⇓just. Agda’s with abstraction

is advanced enough to sense that tail must evaluate to a just value with the proof of

code’s evaluation in context, and so, recalling that an existential requires both a value

to be applied to the predicate and a proof that the predicate holds over that value,

we can return the value dvt, and the proof is reflexive.

bind⇓just⇒tail⇓just :

∀ {n t t1 Γ ∆ v1}

→ {tail : Tail Γ ∆ t1}

→ {code1 : Code (t1 ++ Γ) ∆ t}

→ (env : Env Γ)

→ (blkCtx : BlockContext ∆)

→ (code : Code Γ ∆ t)

→ code ≡ Bind {Γ} {∆} {t1} tail code1

→ (evalCode n code env blkCtx ≡ just v1)

→ ∃ (λ x → evalTail n tail env blkCtx ≡ just x)

bind⇓just⇒tail⇓just {n} env blkCtx (Bind tail code1) refl cev

with (evalTail n tail env blkCtx)

... | just dvt = dvt , refl

It should also be clear that if some Bind of tail code evaluates to a just value, then

evaluating the code must evaluate to a just value. We can capture this in our bindToEq

function, by a manner analogous to that of the previous proof, with the evaluation of

tail in the with abstraction substituted for an evaluation of the Code.

bindToEq : ∀ {n Γ ∆ tt tc v1 log1 v2 log2}

→ {env : Env Γ}
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→ {blkCtx : BlockContext ∆}

→ (tail : Tail Γ ∆ tt)

→ (code : Code (tt ++ Γ) ∆ tc)

→ just (v1 , log1) »=

(λ a → evalCode n code (a ++′ env) blkCtx) ≡ just (v2 , log2)

→ ∃[ v3 ](evalCode n code (v1 ++′ env) blkCtx ≡ just v3)

bindToEq

{n} {v1 = v1} {env = env} {blkCtx = blkCtx} tail code tail»=code≡just

with (evalCode n code (v1 ++′ env) blkCtx)

... | just dvc = dvc , refl

We can combine these two proofs in our next lemma, bindtc⇓just→c⇓just. This

captures the proposition that if a Tail evaluates to a DataVal v1 and a log, and a code

segment which binds that Tail to a nested code sequence evaluates to a just value, that

evaluating the nested code sequence with v1 added to the front of the to the context

evaluates to a just value. We can define a lemma bridge, which we use to manipulate

the left-hand side of the equality into a form that bindToEq understands. We can use

the proof tail⇓just along with a congruence to convert the just value being bound to

an evalTail of tail, and then use our code⇓just to show equality to v2. We can then

pass this lemma, along with tail⇓just to bindToEq to complete the proof.

bindtc⇓just→c⇓just : ∀ {n Γ ∆ tt tc v1 log1}

→ (v2 : Writer (All DataVal tc))

→ (env : Env Γ)

→ (blkCtx : BlockContext ∆)

→ (tail : Tail Γ ∆ tt)
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→ (code : Code (tt ++ Γ) ∆ tc)

→ (evalTail n tail env blkCtx) ≡ just (v1 , log1)

→ evalCode n (Bind tail code) env blkCtx ≡ just v2

→ ∃[ v3 ](evalCode n code (v1 ++′ env) blkCtx ≡ just v3)

bindtc⇓just→c⇓just

{n} {v1 = v1} {log1 = log1} v2 env blkCtx tail code tail⇓just code⇓just =

let

bridge : (just (v1 , log1)

»= (λ a → evalCode n code (a ++′ env) blkCtx)) ≡ just v2

bridge =

begin

(just (v1 , log1)

»= (λ a → evalCode n code (a ++′ env) blkCtx))

≡〈 cong

(λ x → x »= (λ a → evalCode n code (a ++′ env) blkCtx))

(sym tail⇓just) 〉

(evalTail n tail env blkCtx

»= (λ a → evalCode n code (a ++′ env) blkCtx))

≡〈 code⇓just 〉

just v2 �

in

bindToEq {v1 = v1} tail code bridge

Now that we have proven the important termination relations among code sequences,

we must now prove a final one: that if evaluating a code sequence with some amount
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of fuel results in a just value being generated, then this is true even after applying

the optimization to it. That is to say, the optimization cannot cause a code sequence

that previously evaluated to a just value to evaluate to a nothing value. All but one

case of this proof is reflexive, the remaining case being the Bind case. We can use

our lemmas bind⇓just⇒tail⇓just and bindtc⇓just→c⇓just to prove that code and tail

evaluate to just values. We can then use the proof of code’s evaluation to recursively

call our code⇓just→simplcode⇓just function, giving us our inductive hypothesis, and

the result of evaluating the optimized code sequence.

Because this function returns an existential, we need to return a dependent pair

containing the result of the evaluation of the optimized code, and a proof that it is

that value. The value is easy: it is simply the first projection of the recursive call.

We start the proof with the left-hand side of the equality: the evaluation of the the

optimized Bind expression. Through a series of equational reasoning steps, using our

inductive hypothesis and tail⇓justvt, we can complete this proof.

code⇓just→simplcode⇓just : ∀ {n Γ ∆ t v1}

→ {env : Env Γ}

→ {blkCtx : BlockContext ∆}

→ (code : Code Γ ∆ t)

→ (evalCode n code env blkCtx ≡ just v1)

→ ∃[ v2 ](evalCode n (eliminateKnownIf code) env blkCtx ≡ just v2)

code⇓just→simplcode⇓just {v1 = v1} (Ta x) eq

= v1 , eq

code⇓just→simplcode⇓just {v1 = v1} (If (Var x) x1 x2 ) eq

= v1 , eq
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code⇓just→simplcode⇓just {v1 = v1} (If (Val (Constant Flag false)) x1 x2) eq

= v1 , eq

code⇓just→simplcode⇓just {v1 = v1} (If (Val (Constant Flag true)) _ _) eq

= v1 , eq

code⇓just→simplcode⇓just

{n} {Γ} {∆} {t} {v1} {env} {blkCtx} (Bind {tt} tail code) code⇓justv1 =

let

((vt , logt) , tail⇓just) =

bind⇓just⇒tail⇓just env blkCtx (Bind tail code) refl code⇓justv1

(termVal , code⇓justvc) =

bindtc⇓just→c⇓just v1 env blkCtx tail code tail⇓just code⇓justv1

((vc , logc) , ih) =

code⇓just→simplcode⇓just code code⇓justvc

in

(vc , (logt ++ logc)) , (

begin

evalCode n (eliminateKnownIf (Bind tail code)) env blkCtx

≡〈 refl 〉

evalTail n tail env blkCtx »=

(λ a → evalCode n (eliminateKnownIf code) (a ++′ env) blkCtx)

≡〈 cong (λ x → x »=

(λ a → evalCode n (eliminateKnownIf code) (a ++′ env) blkCtx))

tail⇓just 〉

just ( vt , logt) »=
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(λ a → evalCode n (eliminateKnownIf code) (a ++′ env) blkCtx)

≡〈 refl 〉

writerHelper

(evalCode n (eliminateKnownIf code) (vt ++′ env) blkCtx)

logt

≡〈 cong (λ x → writerHelper x logt) ih 〉

writerHelper (just (vc , logc)) logt

≡〈 refl 〉

just (vc , ( logt ++ logc)) �)

Next, we must prove that if a Bind of tail to code evaluates to nothing, then

evaluating code with the DataVal generated from evaluating tail added to the front of

the context also evaluates to a nothing. We can begin by inspecting the evaluation of

code. In the case this evaluates to a value, we can rewrite the hole to have type nothing

≡ nothing using our proof code⇓nothing, which is then reflexive. In the case where

code evaluates to a just value, we need to generate a ⊥ value, as this case should not

be reachable. We can do this first by creating bind⇓just, which proves that evaluating

Bind tail code in this environment results in a just value. This is straightforward to do,

as we have a proof that code evaluates to a just value. Now we have two proofs that

contradict: that evalCode n (Bind tail code) env blkCtx is equal to both nothing and

a just value. We can use our lemma just6≡nothing to create a ⊥ value, and then use

⊥-elim to generate a value of the type we need to finish this proof.

bindtc⇓nothing→c⇓nothing : ∀ {n tt vt Γ ∆ tc logt}

→ (env : Env Γ)

→ (blkCtx : BlockContext ∆)
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→ (tail : Tail Γ ∆ tt)

→ (code : Code (tt ++ Γ) ∆ tc)

→ evalTail n tail env blkCtx ≡ just (vt , logt)

→ evalCode n (Bind tail code) env blkCtx ≡ nothing

→ evalCode n code (vt ++′ env) blkCtx ≡ nothing

bindtc⇓nothing→c⇓nothing

{n} {_} {vt} {logt = logt} env blkCtx tail code evt evc

with inspect’ (evalCode n code (vt ++′ env) blkCtx)

... | nothing with≡ code⇓nothing rewrite code⇓nothing = refl

... | just vc with≡ code⇓just =

let

bind⇓just : ∃[ v ](evalCode n (Bind tail code) env blkCtx ≡ just v)

bind⇓just = ( (proj1 vc) , (logt ++ proj2 vc)) , (

( begin

evalCode n (Bind tail code) env blkCtx

≡〈 refl 〉

((evalTail n tail env blkCtx »=

(λ a1 → evalCode n code (a1 ++′ env) blkCtx)))

≡〈 cong

(λ x → x »=

(λ a1 → evalCode n code (a1 ++′ env) blkCtx) )

evt 〉

writerHelper (evalCode n code (vt ++′ env) blkCtx) logt

≡〈 cong (λ x → writerHelper x logt) code⇓just 〉
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writerHelper (just vc) logt

≡〈 refl 〉

just ((proj1 vc) , (logt ++ proj2 vc)) � ))

in

⊥-elim

(just6≡nothing

(evalCode n (Bind tail code) env blkCtx) (proj2 bind⇓just) evc)

We can now begin to prove that the eliminateKnownIf function does not alter the

result of evaluation of the code it is applied to, in the case that the Code evaluates to

a just value. Every case is reflexive except for the Bind case, which requires a bit of

work to prove. We know that tail evaluates to a just, and generate this proof using

bind⇓just⇒tail⇓just and ev≡v1. We also can produce a proof that the evaluation of code

results in a just value, by using our bindtc⇓just→c⇓just lemma. Finally, we can generate

a proof that the optimized code will terminate using code⇓just→simplcode⇓just. Using

these lemmas, we can step through a relatively straightforward equational reasoning

chain to prove our proposition.

code⇓just≡elimKnownIfCode⇓just :

∀ {t Γ ∆ v1 v2}

→ {env : Env Γ}

→ {blkCtx : BlockContext ∆}

→ (n : N)

→ (code : Code Γ ∆ t)

→ (evalCode n code env blkCtx ≡ just v1)

→ evalCode n code env blkCtx
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≡ (evalCode n (eliminateKnownIf code) env blkCtx)

code⇓just≡elimKnownIfCode⇓just n (Ta x) ev≡v1 = refl

code⇓just≡elimKnownIfCode⇓just n (If (Var x) x1 x2 ) ev≡v1 = refl

code⇓just≡elimKnownIfCode⇓just n (If (Val (Constant Flag false)) _ _) ev≡v1

= refl

code⇓just≡elimKnownIfCode⇓just n (If (Val (Constant Flag true)) _ _) ev≡v1

= refl

code⇓just≡elimKnownIfCode⇓just

{v1 = v1} {env = env} {blkCtx = blkCtx} n (Bind tail code) ev≡v1 =

let

((vt , logt) , tail⇓justvtlogt)

= bind⇓just⇒tail⇓just env blkCtx (Bind tail code) refl ev≡v1

(vc , code⇓justvc)

= bindtc⇓just→c⇓just v1 env blkCtx tail code tail⇓justvtlogt ev≡v1

(vs , simpcode⇓vs)

= code⇓just→simplcode⇓just code code⇓justvc

ih : evalCode n code (vt ++′ env) blkCtx ≡

evalCode n (eliminateKnownIf code) (vt ++′ env) blkCtx

ih = code⇓just≡elimKnownIfCode⇓just {v2 = vs} n code code⇓justvc

in

begin

(evalTail n tail env blkCtx »=

(λ z → evalCode n code (z ++′ env) blkCtx))

≡〈 cong
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(λ x → x »=

(λ z → evalCode n code (z ++′ env) blkCtx)) tail⇓justvtlogt 〉

writerHelper (evalCode n code (vt ++′ env) blkCtx) logt

≡〈 cong (λ x → writerHelper x logt) ih 〉

writerHelper (evalCode n (eliminateKnownIf code) (vt ++′ env) blkCtx) logt

≡〈 cong

(λ x → x »=

(λ z → evalCode n (eliminateKnownIf code) (z ++′ env) blkCtx))

(sym tail⇓justvtlogt) 〉

(evalTail n tail env blkCtx »=

(λ z → evalCode n (eliminateKnownIf code) (z ++′ env) blkCtx)) �

However, what about the case when the target Code evaluates to a nothing with

some given fuel? In this particular case, if a Code evaluates to nothing, the optimized

Code evaluates to nothing. So how can we prove it?

We can first case over the code value, and all cases but the Bind case are trivially

solved by the proof that evaluating the code results in a nothing value. This makes

sense, as in these cases the code block is unchanged, or is changed to a code block

that is reflexively equivalent under evaluation. For the Bind case, we can inspect the

evaluation of tail. In the case where it evaluates to a nothing value as above, we can

rewrite the hole with tail⇓nothing, which results in the hole being reflexive6

In the case where tail evaluates to a just value, we must then inspect the result
6This looks like it should be solvable by inserting tail⇓nothing in the hole without rewriting, but it

is not. tail⇓nothing : evalTail n tail env blkCtx ≡ nothing, and the hole initially has type (evalTail n tail
env blkCtx »= (λ a → evalCode n (eliminateKnownIf code) (a ++′ env) blkCtx)) ≡ nothing. Rewriting
replaces evalTail n tail env blkCtx with nothing, which allows Agda to refine the goal to nothing ≡
nothing, which is reflexive.
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of evaluating code. In the nothing case, we can rewrite this with tail⇓just and the

inductive hypothesis to refine the hole to reflexivity. The just case should not be

reachable, so we have to reach for our trusty ⊥-elim! We have proofs that code

evaluates to a just value, code1⇓justvc, and we can generate a proof that it evaluates

to nothing given our proof that (Bind tail code) evaluates to nothing, code⇓nothing.

With just6≡nothing we can then generate the ⊥ value we need to finish this proof.

code⇓nothing→simplcode⇓nothing : ∀ {n Γ ∆ t}

→ {env : Env Γ}

→ {blkCtx : BlockContext ∆}

→ (code : Code Γ ∆ t)

→ evalCode n code env blkCtx ≡ nothing

→ evalCode n (eliminateKnownIf code) env blkCtx ≡ nothing

code⇓nothing→simplcode⇓nothing

(Ta x) code⇓nothing = code⇓nothing

code⇓nothing→simplcode⇓nothing

(If (Var x) x1 x2 ) code⇓nothing = code⇓nothing

code⇓nothing→simplcode⇓nothing

(If (Val (Constant Flag false)) x1 x2 ) code⇓nothing = code⇓nothing

code⇓nothing→simplcode⇓nothing

(If (Val (Constant Flag true)) x1 x2 ) code⇓nothing = code⇓nothing

code⇓nothing→simplcode⇓nothing

{n} {env = env} {blkCtx = blkCtx} (Bind tail code) code⇓nothing

with inspect’ (evalTail n tail env blkCtx)

... | nothing with≡ tail⇓nothing rewrite tail⇓nothing = refl
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... | just (a , b) with≡ tail⇓just

with inspect’ (evalCode n code ( a ++′ env) blkCtx)

... | just vc with≡ code1⇓justvc

= ⊥-elim (

just6≡nothing

(evalCode n code ( a ++′ env) blkCtx)

code1⇓justvc

(bindtc⇓nothing→c⇓nothing env blkCtx tail code tail⇓just code⇓nothing))

... | nothing with≡ code1⇓nothing

rewrite tail⇓just |

code⇓nothing→simplcode⇓nothing

{n} {env = ( a ++′ env)} {blkCtx = blkCtx} code code1⇓nothing = refl

We can then combine our proofs for when our Code evaluates to nothing and when

it evaluates to just, to prove that evaluating some code is always equal to evaluating

eliminateKnownIf code in the same context. First we can inspect the result of evaluating

code. We can prove the nothing case by using our code⇓nothing→simplcode⇓nothing

lemma and a rewrite with code⇓nothing. The just case can be solved by directly calling

our code⇓just≡elimKnownIfCode⇓just lemma.

code⇓≡elimKnownIfCode⇓ :

∀ {t Γ ∆}

→ (env : Env Γ)

→ (blkCtx : BlockContext ∆)

→ (n : N)

→ (code : Code Γ ∆ t)
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→ evalCode n code env blkCtx

≡ (evalCode n (eliminateKnownIf code) env blkCtx)

code⇓≡elimKnownIfCode⇓ env blkCtx n code

with inspect’ (evalCode n code env blkCtx)

... | nothing with≡ code⇓nothing rewrite code⇓nothing =

sym (code⇓nothing→simplcode⇓nothing code code⇓nothing)

... | just x1 with≡ code⇓just =

code⇓just≡elimKnownIfCode⇓just {v2 = x1} n code code⇓just

With this, we end the chapter, and the technical part of the thesis. In this chapter,

we added the ability for our interpreter to initiate block calls, to have conditional

branches, and to run a program with a supplied input. We then implemented an

optimization that allows for reduction of If statements to block calls if the conditional

is known, and proved it correct by reasoning about the semantics of our fuel-based

evaluator.
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Chapter 11

Conclusion

We have finally concluded our march through the interpreters, and in doing so,

ended the technical part of the thesis! Hopefully by gradually working through

interpreters of greater complexity, the nuances of the final interpreter were easier to

understand than had this thesis started with the full implementation.

11.1 Future works

Obviously, there is more work to do in terms of more completely modeling MIL in

this style of interpreter. This includes two primary goals: adding the missing features

and proving correct all of the optimizations mentioned in the MIL paper [JBC18] in a

complete implementation of the language and the interpreter.

The features that must be added to give a complete implementation of MIL

are closures, user-defined data types (and therefore case statements), import (called

“require” in MIL) statements, export definitions, and top-level definitions. In addition

to requiring additional constructors of existing data types, such as adding the case

construct to the Code data type, improvements to the fundamental representation of

the language may be needed to accommodate these extra features.

For example, the strategy of using an Any value to look up variables worked
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well for our subset of MIL because there were really two scopes: the block definitions,

which were in scope everywhere, and the variables introduced in code segments, which

were only in scope in the rest of the code segment. However, this is not a sufficiently

advanced scoping system to allow more advanced features, such as imports, with ease.

Future work could implement scope graphs, which allow not just a linear indexing

of variables as our All based context did, but would also allow us to define paths to

in-scope variables as a graph [Cas19].

In addition, this thesis only touched on a subset of the optimizations described

in the MIL paper. As such, verification of all the optimization algorithms on a feature-

complete implementation of MIL would give maximal assurance that the optimizations

do not alter the semantics of the programs they are applied to. Hopefully the basic

strategies used in this thesis can inform the future work of proving other optimizations

correct.

Further, the optimizations described in the MIL paper are likely not the only

valid optimizations that exist. The task of developing new optimizations on this

platform and proving them correct, as well as optimizing parameters for graded

optimizations such as how long to unroll loops and which block calls to in-line is a

daunting but important one. As optimal optimization is undecidable in the general

case1, optimization platforms have traditionally been designed as a series of passes

with set orders and parameters. There are more modern techniques that are driven by

heuristics to decide what optimizations to call and in what order [CST02]. Integrating

these techniques into the MIL optimizer may result in more optimal optimizations
1For example, if we have a program consisting of a function call f followed by a sequence of

other statements, if the function f does not halt, the compiler could delete everything after the
function call. This optimization requires that the optimizer solve the halting problem to optimize to
the fullest extent, which we know it cannot do. The halting problem is not a special case, Rice’s
theorem [Sak21] states that any non-trivial semantic property of a program is undecidable.
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than the current approach, although only experimentation will tell.

Although we have discussed MIL in the context of the Habit compiler, there is

nothing intrinsic to the language that prevents its use in other functional language

compilers. Adding MIL back ends to more established languages may have the benefit

of expanding its optimization capabilities to other languages, and allowing other

language ecosystems to increase the optimization capabilities of MIL.

11.2 Discussion

The lessons learned from this thesis can be split into three different sections: facts

about the language and interpreter design used, background on types, and lessons on

the usefulness of typing in a more subjective context.

11.2.1 Intrinsically-typed definitional interpreters

The interpreter design we used conferred some benefits over a less strongly-typed

version. In Chapter 6, we implemented intrinsically-typed and untyped interpreters of

our SimpleLang language and proved the correctness of corresponding optimizations

using the untyped and intrinsically-typed styles. Intrinsically-typed definitional

interpreters give us properties of well-typedness and well-scopedness for free, and as

such, the proof of correctness for the specific optimization we implemented was shorter

than the untyped version. The intrinsically-typed proofs in this thesis did not require

us to reason explicitly about these typing and scoping properties. Rather, expressions

that violate these properties are not constructable as valid expressions. In the untyped

version, however, we had to explicitly prove why we did not have to consider the cases

when variable lookups failed or sub-expressions were ill-typed, requiring more lemmas
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and a greater number of cases to consider.

In addition to a change in proof style, it is possible that each strategy is

better suited for proving different kinds of propositions. For example, straightforward

optimizations that did not alter the context were relatively easy to prove in the

intrinsically-typed style, but great difficulties arose when modifications to that context

were involved (even with the simple De Bruijn indexing, as opposed to scope-graphs).

It is possible that propositions where the context is modified would be more easily

proven in the untyped style, given the difficulty of reasoning about these in an

intrinsically-typed style.

Further work is needed to move these suggestions beyond the world of conjecture.

A rigorous study where different kinds of optimizations are proven correct in both

styles may find that one is better than the other, or that they are both better suited

for different kinds of proofs. If the latter is found to be the case, a further possibility is

that one could implement two versions of language definitions and evaluators: untyped

and intrinsically-typed. One could then attempt to prove that proofs of optimization

correctness over the intrinsically-typed interpreter imply that a type-erased version

of the optimization is correct, to leverage the strengths of both styles, as shown in

Figure 11.1.

11.2.2 Broader applications of types in industry

Although this thesis primarily focused on dependent types for their ability to

prove propositions about code explicitly, dependent types are a powerful tool that

allow safe construction of functions that are not possible in less expressive type

systems. For example, printf is a function in C whose input type depends on a

format string passed to it as a parameter [rnet]. This dependency is not enforced at
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Psout Ptaut

Psoit Ptait

Vsout Vtaut

Vsoit Vtait

evalit evalit

optimizeit

fit

evalutevalut

optimizeut

fut

erase

Figure 11.1: A possible path forward with integrating intrinsically-typed and untyped
interpreters. In subscripts: ta indicates a target, so indicates source, it indicated
intrinsically-typed, ut indicates untyped.

compile time in C, however, because the ability to construct an input type based on

an argument is only conferred by dependent types, which C does not support. As

such, the mismatch between format strings and supplied variables is a source of many

vulnerabilities [Scu01] that are not detectable in the C type system. Dependent types

provide the ability to generate the type of input parameters from the format string,

allowing us to write a type-safe printf [Suz17] and to eliminate this entire class of

vulnerabilities. In addition, rather than being relegated to extremely niche languages,

mostly restricted to the mathematics and formal methods community, languages like

Idris2 [Bra21] and ATS [Xi17] promise a new generation of more practical dependently

typed languages, and will hopefully allow us to leverage these capabilities in broader

settings.

One does not have to jump straight to dependent types to give greater assurances

than a simple type system typically provides. Refinement types, such as those found

in LiquidHaskell [VSJ+14], do not allow us to run arbitrary computations on our

types, but instead allow one to define predicates that must hold over simple types.
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This gives us many of the benefits of dependent types, but without as large of an

amount of programmer effort required. Even in less advanced type systems, type-level

programming gives us the ability to use type-safe data structure operations — much

like dependent types, such as not allowing pop to be called on an empty vector — in

languages without dependent types such as Haskell [Chi21] and Rust [Lin20]. Other

typing features allow us to restrict the number of uses of variables to limit access

or to allow for more aggressive optimization. One does not need to get into esoteric

languages to use these: Rust’s move semantics is an example of affine types that limit

variables to up to one use, and Haskell has an experimental linear types extension

that allows restriction of variables to exactly one use [GHC]. There are even ways

to lift protocols into the domain of types with session types [HLV+16] and ways of

managing permissions with co-effects [Pet17, p.53]. We could spend an entire thesis

summarising the different advanced type systems that have appeared in recent years,

but the basic thrust of such a paper would be that modern type systems give us a

variety of dimensions and magnitudes by which we can make the behavior of our

programs more explicit, and get guarantees along these axes.

The discussion on modern type theory research is not to say that fancy type

systems are required to reap the benefits of static typing! It appears that dynamically-

typed languages that are commonly used in industry have created problems for

companies using them due to their lack of compile-time guarantees, with Python

being the clearest example of this. As a case study, consider that Python was the

most commonly used language at Dropbox, but that “the dynamic typing in Python

made code needlessly hard to understand and started to seriously impact productiv-

ity” [Leh19]. Over the next four years, Dropbox added gradual type annotations to

over four million lines of code, mostly manually, which was seen as a net positive,
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and which continues to this day. It was seen as a net benefit to invest in developing

a gradual typing framework and manually annotating existing codebases over years,

rather than to continue fighting against the dynamically-typed nature of their Python

codebase.

Finally, although this is hard to quantify with hard data, for many, types make

programming more fun! Although this thesis should have made clear the results of

using a language like Agda to write programs, it is hard to illustrate how helpful

feedback from the compiler was in obtaining these results. The ability to ask the

compiler what type of expression goes in a spot changes debugging from an exercise

in sifting through sand in the dark to a conversation with a helpful friend. Even

simple types give guarantees that rule out entire classes of frustrating to debug and

unpredictable errors, leaving more time for programming and requiring less stepping

through code or writing debugging print statements. This is not just a personal

opinion: according to the 2020 Stack overflow developers survey, four out of the five

“most loved” languages have static types, and the remaining one, Python, has optional

type hints, as described above [20]. Although the exact makeup of that list does vary

significantly from year to year, it is clear that types are perceived as helpful among a

variety of developers.

11.2.3 What was not covered

This thesis focused on one aspect of program hardening: program correctness

via static typing. It is important to know that this is not the only way to guarantee

correctness with respect to some property. For a simple example, exhaustively testing

the input space is one way to prove that such a property holds. There are other

methods, such as model checking [BK08] and symbolic execution [DE82], that attempt
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to map out the state space of a program and demonstrate that a property holds in

each state. Each approach has its own advantages and disadvantages, and the benefits

of static typing — that it gives real-time feedback via type checking and is not as

susceptible to the state space explosion problem — can definitely be outweighed in

terms of labor time if the state space is tractable with automated techniques.

The focus on lack of failure or incorrect behavior at runtime and type-level

guarantees captures one aspect of program correctness and resilience. An impor-

tant consideration is that we have been reasoning about our programs as platonic

forms [WN22], existing in a realm where no bits are flipped by cosmic rays, the

computer never runs out of memory, and there are no subtle race conditions. What if

a program is verified to only return natural numbers in a range, and then a cosmic ray

flips a bit in memory that causes the return value to exceed that range? What then?

In many cases, assurance of one of these axes of program resilience is enough. For

example, we can imagine a data analysis program that, as long as we have assurance

that if it does finish evaluating, it returns the right result, does not need to be assured

to run to completion 100% of the time. Does it really matter if it crashes occasionally

and we have to re-run it? Alternatively, maybe there is a web server where we do

not really care if it operates exactly as intended, as long as it is resilient enough to

have close to 100% uptime. There are other cases, for example, planes or implanted

medical devices, for which both are critically important.

This is to say that static type systems and verified programs are important tools

in preventing catastrophic errors, but that they are one view into program correctness,

with the ability to prevent errors along that axis. A holistic approach to correctness

moves beyond one tool or one medium and views entire systems together. For example,

if we revisit the Therac-25 mentioned in Chapter 1, a holistic approach would recognize
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that it is both true that verification of important safety properties in the machine’s

programming was critically important, and that the hardware interlocks should have

been left on.

11.3 Doing it right

When talking about targets for verification, one sees the term “critical system”

often used. This generally refers to planes, nuclear reactors, medical devices, or other

systems that would directly lead to loss of life, incur significant economic costs, or

cause the loss of sensitive data in the case of failure or significant error [HC10]. This

thesis opened with the Therac-25 example for exactly this reason: it is a clear case

where a buggy system and a dash of hubris led to the unnecessary death or injury of

six people.

These obviously critical systems are undoubtedly important, and when the author

had to undergo medical imaging, they found themself thinking of the Therac-25.

However, it is possible that these systems are not the primary software systems

capable of causing harm. Software systems are increasingly being used to determine

eligibility for welfare assistance, and in doing so, routinely flag people incorrectly as

fraudulent applicants [Gil21]. In this case, the difference between one receiving the

housing and food assistance they are qualified for, or otherwise starving in the street,

simply hangs in the balance of a system that undoubtedly is not tested and scrutinized

to the level of a critical system.

Medical devices themselves are carefully controlled, and great lengths are gone

to in order to minimize the likelihood of critical errors. Electronic health records,

however, are not subject to this scrutiny, and a recent study conducted on them has



CHAPTER 11. CONCLUSION 202

shown that they fail to detect potentially harmful drug interactions and medication

dosage errors two-thirds of the time. The study which revealed these problems went

as far as to say that “serious safety vulnerabilities persist in these [electronic health

records]” [CHC+20]. So, the difference between one being accidentally given a fatal

overdose or drug combination, or receiving proper treatment is simply a software error

away.

Even for systems that are not critical-system adjacent, there can be major fallout

from simple bugs in innocuous-seeming programs. There have been cases where

software errors have impacted test results in standardized testing [Wal17] and caused

incorrect grades to be entered on students’ final grade calculations [Dre19]. Again, the

difference between getting into college or forever fighting an uphill battle for gainful

employment could be determined by a rounding error.

Not all software is equally impactful or vulnerable to critical errors, but we now

have the tools to rule out entire classes of errors and vulnerabilities while not imposing

a large burden on the programmers. There is clearly a range between only ad-hoc

tests with dynamic types and a program written in a dependently typed language with

proofs of its important properties, and hopefully developers choose an appropriate

place on this spectrum for their projects. The buildup from simple types to dependent

types in this thesis has hopefully helped illustrate at least part of this range.

In the 20th century, humanity unknowingly began a grand and transformative

project: to integrate computers into humanity, physically and societally. If this seems

like overstating the case, consider how every aspect of our lives has become integrated

with computers and the results of computation. Every vocation from mathematics

to working at a restaurant has become fundamentally changed as the result of the

proliferation of computers, but this is only the beginning. Our schooling has become
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increasingly delivered via computers [MIC+20], both by digitizing traditional teaching

methods such as online lectures [DP07] and e-books [Cen12], but also by novel

teaching methods such as simulating surgery via virtual reality using robotic haptic

feedback [HGV+18].

Even our social lives have come to revolve around social networks, messaging

services, and other digital interactions. Most of us carry around small computers in

the form of mobile phones that have become our diaries, planners, and maps and, in

doing so, have become a digital extension of our consciousness. The availability of the

internet means that the entire world’s collected knowledge is available on any subject

imaginable, as fast as one’s internet connection will allow, and it is now in our pocket.

Our medications are often developed by high-speed massively parallel drug discovery

programs [MPG+21] [SMM11], and their effects are analyzed by various computer

based-data analysis programs [BGC+16]. When something is suspected to be medically

wrong with us, we use gigantic machines with spinning computerized magnets or

radiation emitters to look inside the human body as a living dissection, something

unimaginable even a century ago.

We replace our faulty hearts with new mechanical hearts, controlled by computers

and designed with the assistance of computers. We implant electrical simulators

into our brains to treat diseases [HCE16], and there are even those attempting to

integrate our brains with computers so that we can interface with them in a less

consciously-mediated way [Mus19].

There is no reason to believe that this pace will slow down or stop, and so the

future of humanity, and as an extension, the future of the world, is effectively that of

a planet infiltrated by a massively distributed computation network. We now have

and continue to develop better tools to understand what exactly these computational
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systems will be doing, if only we choose to use them. The question we as a species

need to ask ourselves is whether this digital transformation is worth doing. And if so,

isn’t it worth doing it right?
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