Portland State University

PDXScholar

Dissertations and Theses Dissertations and Theses
3-12-2009

A Framework for Superimposed Applications :
Techniques to Represent, Access, Transform, and
Interchange Bi-level Information

Sudarshan Srivivasa Murthy
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

b Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation

Murthy, Sudarshan Srivivasa, "A Framework for Superimposed Applications : Techniques to Represent,
Access, Transform, and Interchange Bi-level Information” (2009). Dissertations and Theses. Paper 5976.
https://doi.org/10.15760/etd.7846

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5976&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5976
https://doi.org/10.15760/etd.7846
mailto:pdxscholar@pdx.edu

A FRAMEWORK FOR SUPERIMPOSED APPLICATIONS:
TECHNIQUES TO REPRESENT, ACCESS, TRANSFORM, AND INTERCHANGE

BI-LEVEL INFORMATION

by

SUDARSHAN SRINIVASA MURTHY

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE

Portland State University
©2009

UMI Number: 3368252

Copyright 2009 by
Murthy, Sudarshan Srinivasa

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI

UMI Microform 3368252
Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

DISSERTATION APPROVAL

The abstract and dissertation of Sudarshan Srinivasa Murthy for the Doctor of Philos-

ophy in Computer Science were presented March 12, 2009, and accepted by the dis-

sertation committee and the doctoral program.

COMMITTEE APPROVALS:

DOCTORAL PROGRAM APPROVAL:

David Maier, Chair

Cynthia Brown

Lois Delcambre

Alon Halevy

Fei Xie

Kenneth Cruikshank
Representative of the Office of Graduate
Studies

Wu-chi Feng, Director*
Computer Science Ph.D. Program

ABSTRACT

An abstract of the dissertation of Sudarshan Srinivasa Murthy for the Doctor of Phi-

losophy in Computer Science presented March 12, 2009.

Title: A Framework for Superimposed Applications: Techniques to Represent, Access,

Transform, and Interchange Bi-level Information

Superimposed applications (SAs) superimpose (that is, overlay) new information and
structures (such as annotations) on parts (such as sub-documents) of existing base in-
Sformation (BI). In this setting, SA developers and users work with bi-level informa-

tion, a combination of the superimposed information and the referenced BI parts.

We have designed a framework to assist SAs in the following bi-level-information-
management activities: representation, access, transformation, and interchange. This
framework defines the abstraction context agent to activate any BI part and to retrieve
information from the context of the part. It includes means to represent and access bi-
level information in a conceptual model (the Entity-Relationship model augmented
with relationship patterns), the relational model, the XML model, and an object mod-

el. It defines a mechanism to transform bi-level information to alternative forms using

queries expressed in existing query languages and executed by existing query proces-
sors. It also includes a formal model to improve the expression and execution of cer-
tain classes of queries. Finally, the framework employs the notion of S/ dependency

graphs to facilitate interchanging of bi-level information among SA users.

Specifically for the XML model, the framework defines Sixm/, an XML markup lan-
guage to represent bi-level information; Sixm/ DOM, an extension of the XML Docu-
ment Object Model (DOM) to efficiently manipulate Sixml documents at run time;
and Sixml Navigator, an alternative path navigator that improves both query expres-

sion and execution.

Using our framework, an SA can reference heterogeneous BI parts in situ, allowing
multiple simultaneous organizations of the same BI parts, while preserving their origi-
nal context. Also, the SA developer may employ the data model and schema that is

appropriate for each SA.

We have evaluated each framework component using a method appropriate for the
component. For example, we have implemented the context-agent abstraction to refer-
ence BI parts of the following types: Microsoft Word, Excel, and PowerPoint; XML,
HTML, PDF, audio, and video. We have built six SAs that employ distinct schemas
(in different data models). We have implemented the design of Sixml DOM and Sixml
Navigator, used them with existing query processors, and experimentally evaluated the

implementations’ performance.

Acknowledgements

[thank my advisor David Maier for his patient guidance throughout this research.
Each time I had an “idea”, he tried to find some use for it, or found a way to improve
it. (Frankly, I wonder how he tolerated some of my early ideas.) In the process, he
gently helped me build and improve my own process to create and validate ideas. To-
day, I confidently say that the contributions in this research are mine, but I also cate-

gorically say that each contribution is better because of Dave.

I thank Lois Delcambre for her support throughout this research. I thank the other
members of my committee—Cynthia Brown, Kenneth Cruikshank, Alon Halevy, and

Fei Xie—for their valuable advice.

[thank my research collaborators at Virginia Tech and Villanova University for vali-
dating key portions of this research. I particularly thank Ed Fox, Kapil Ahuja, Uma
Murthy, and Lillian Cassel. I also thank the students at Virginia Tech and at the
School of Science and Technology, Beaverton for trying out some applications of this

research.

Several colleagues provided constructive feedback along the way. I am especially
thankful to Dave Archer, Shawn Bowers, Laura Bright, Rafael Fernandez-Moctezuma,
Bill Howe, Jin Li, Vassilis Papadimos, Susan Price, Nick Rayner, Len Shapiro, James

Terwilliger, Pete Tucker, Kristin Tufte, and Mathew Weaver.

il

Jo Ann Binkerd, Dana Director, Lorie Gookin, Cindy Pfaltzgraff, Shiva Gudetti, Kathi
Lee, Renee Remillard, and Leai Rose, all cheerfully helped me in various administra-

tive matters.

I am grateful to the US National Science Foundation, whose funding partially sup-

ported this research.

I am deeply indebted to my parents for inculcating in me the curiosity and commit-
ment needed to engage in any research. Dad, I am sorry I did not complete this re-

search soon enough.

My wife must love me a lot, because nothing else can explain her sacrifice and pa-
tience during this research. Thank you, Karin, for holding the fort, for reviewing the
drafts, and for always keeping a smile. Also, thanks for gently nudging me to complete

this research soon so we can focus on other things.

il

Table of Contents

Acknowledgements i
List of Tables . Xii
LISt Of FIZUTIES cuueiueeisieiieiiiieicieiccnncnnissnsessansossnssssnasssssssssssassssssssonssnsass xiv
1. Introduction . . |
1.1. The Real-world ObJECtIVEcociiiiiieciieeiieceeeeeetee et 2
1.2. Superimposed Information and Superimposed Applications..........ccccceeveerevenrennnne. 4
L.2.1. SIAEPAA ...ttt a e a e rnens 5
1.2.2. SUPETMIX ..ottt sttt e ettt s ettt e b entasmaenneeseesnens 8
1.2.3. The HTMLAM EditOr.....cc.oeoiiiiiieiieieieiete ettt sve e 11
1.3. The Research ObJectiVe.ccourriiriiiiieieieec et 12
1.4, Related WOTKccooiriiiiiiieii ettt sb e 15
1.5, OTZANIZALION ..c..venveeriiriiiieeteeiee e et steeteebe et et s te st e st e sae et e st e etesaeasnnensensesasesneans 17
2. Research Summarycccveenerscencssensenns 20
2.1, CONIIIDULIONS ...ccvoviriiiiiiriniineetecteee sttt b se et sae st e sae s seese e e e s eneensans 20
2.1.1. Context Information and Bi-level Information...........c.cccccveninvvninienrennnnnns 22

2.1.2. Representing, Accessing, Transforming, and Interchanging Bi-level
INFOTMALION ..ottt ettt vt e et e s s e e nnenes 23
2.1.2.1. Representing Bi-level Information..........cccoceeeeevenncnvincnccnecencnennn 23
2.1.2.2. Accessing Bi-level Information...........cccoceeenieicrinincnincnnenicnciecne 25
2.1.2.3. Transforming Bi-level Informationccccoeeoeiiinicniciicecnene 27
2.1.2.4. Interchanging Bi-level Information..........ccccoeveeviivninncnininnnccincnnne. 29
2.1.3. Superimposed Application Shareable Services.........coccveevrreceninvinrieeneeeneene 30
2.1.4. Deployment GUIAEIINESccuiiiiiiiiiieieeieieteieeee et see e ea et ee e ennenas 31
2.2. FrameworK OVETVIEWcccveiiiriieieiiecii ettt ceteee e e esee e seeeea s e esa et assesaeseaaeseaean 32
2.3. Evaluation OVETVIEWccoviriieterieniieieieeteiesteit et sttt et et st sense e enaeseesaes 35
2.4. Topics EXCIUAEQooouiriiiiieiii ettt 37

2.5. A Comparison of Related SyStems.........cccoeeeiiveveerenenreennenencreeteie e 38

v

2.6. SUMMATY.....corvveeneireirirenrienaeen bteeree ettt e e r et e e ae e e aese ot e s b e e s et s en s baesesanesnreses 39
3. Representing and Accessing Base References and Contexts .41
3.1, INtrOAUCHION ..ottt ete et e e e e et eeeabe e s asesbesebaeesssesnseeesseeessseensseens 41
3.2. Representing and Accessing Base Referencesccoooveevevceeviecvecceniececceeneennenne, 45
3.2.1. Descriptors as Delimited Strings........ccoceeiereerirerniernieeeerenenesreiesee e saesnenens 45
3.2.2. Descriptors as XML Fragments...........cccoccvvciniiiiniinieneenenireeireseeseesne e 46
3.2.3. Referencing Base Parts using URIS.........ccocviiiiiiinicccecnes 49
3.2.4. An Object Model for Base References.........ccoccoeevieveneivieniencennincnieenecene. 51
3.2.5. Storing and Accessing Base References..........coccoeveivinvenincniencncnennnene. 52
3.3. Representing and Accessing Context Information.........c.ceceeceeverenicenienceneennane 54
3.3.1. Representing Context Informationcoeeveeerereneneeneniennieeeeninenennens 54
3.3.2. Accessing Context INformation...........cocceeveeercrinenienenineneerce e 57
3.3.3. Activating Base Parts ..ot 58
3.4. Supporting New Context Elements and Base Types.......cccccvvveveninenencnnennennnns 60
3.5. Mark RODUSENESS ...oeeveeeieeceeeitenieereteiteste ettt ettt st be ettt ebeenees 61
3.5.1. Mark Invalidationcoocueeieeeiiiiiiiieeie ettt s 61
3.5.1.1. Context Invalidationcccceeviirienieriinniencnieeceteneeteee e 61
3.5.1.2. Address Invalidation...........cccueeieriereenencee et 62
3.5.1.3. Intent INVaAlIdAtionc..cocerirveriirnienieniereeee ettt nes 63
3.5.2. The Role of Addressing Schemes...........ccccoieririininiineneeeeeeeee 64
3.5.3. Improving Mark RODUSIESSco.ceovemiririiniiiicecc e 64
3.6, EVAIUALIONcicieiiieiieeceecetctte ettt ettt ettt ettt esae st e b st st e b e et aee 65
3.6.1. IMPlemMENTALION. ... cevieriiereiiteteeitrsee et ett et e et e e eree st e see et esbesmae st eanessaansenenen 66
3.6.1.1. SPARCE ..ottt sttt st be sttt ba st nes 66
3.6.1.2. Context AZENLScovviiiiiiiiiiiiiiiiiieiceee ettt s 66
3.6.1.3. Superimposed APPIICALIONS......c.ceevvierreriieeieeteieeir et v es 70
3.6.1.4. Clipboard and UL Widgets.......c..cceeierieeienieneeceieeeceee e 71
3.6.1.5. Development and Testing AidScocceoeeveeeeenennieniininieneeieseeeeeeeeeene 72
3.6.2. Architectural QUAlItIES........cceeeveiiiiieriiece ettt ae e eee b saa e sre e 73
3.6.2.1. FUNCHONALIEY .o.veveiereeeieieniieiect ettt eere st saesa et sse s saneas 73
3.6.2.2. REUSADIIILY ..ottt 74
3.6.2.3. MOdIfIability .. .ccveeuerieiiieniieieciereere ettt 75
3.6.2.4. EXtENSIDIIILYeciviiiiieieiecicectee sttt sttt e 76
3.6.2.5. Package F1exibilityccccoovuiriiiiiiiiiieciecteeeeee e 77
3.6.2.6. TesStability ...ccceveieiiiiiieeeee e e 78

3.6.2.7. USADILILY ..ot 79

3.6.3. DESIZN DECISIONS ..cnuviiuieirieeeieirieeeireeteeteesreesseeereesaeesssesseeesassaeserssseesssenn 80
3.6.3.1. Flexible Representation and Storage of Base Descriptorsc..c...... 80
3.6.3.2. Use of High-level ADSIractionsccececierveiirrienienienenieneeesiesieeeneeseenne 81
3.6.3.3. Representing and Accessing Context as Hierarchical Property Sets....... 84
3.6.3.4. Use of the CHPDOAId........ccoiiiiiiiririeieeeeeese ettt ene 86

3.6.4. Evaluation SUMMATYcccooiireiiiiiiiiie ettt esveeeereesreeebaeensvee s 86

3.7.Related WOrKcc.ooviiiiiiiiiiiii ettt et st 87

3.7.1. Predecessors of SPARCEco.oooiiiiiiieieeeet e 88

3.7.2. Barly VISIONS c..voiieiiiie ettt sttt sve e e v s sss e esaa e s e eaeenaeas 88
3721 MEIMIEX ..ottt ittt et et seete s tea e st e e s e e e s e s saa s nna e anassanae 88
3.7.2.2. Evolutionary List File........ccoovviiiiiiiiiiiciecieiecte ettt 89

3.7.3. Hypermedia SYStEIMScooiiiriiieriireiieriiereeereesreeseesaesenresreeseeseneesenessnasssens 90
3.7.3.1. IRIS Hypermedia SEIVICEScccceirerriririririeeeeienienee et sseneenee 93
3732 DEXLET ettt sttt ettt ettt s ae e n 95

3.7.4. Web-based Annotation SYStEMScccceeiverririrrenreneeieeie e seeee e eeeeenes 97

3.7.5. Multivalent Document Model ..o 99

3.7.6. Compound Documentscccoeeerieerirensieenienienienseeeee e reerte et e e 101

3.8. Summary and CONCIUSIONScceviiiieiieieeeciecieteete st ee et ere e e e e eesaeennens 105
4. Modeling Bi-level Informationceueceeesviencrensvnsannne .. 107
4.1, INEFOAUCHION ..ttt ettt e bt e et e e b sees 108
4.2. Motivating EXampPlecooouieiiiiiiieeiiiieette ettt 110
4.3. Modeling Marks and Use 0f Marks........c.c.ccooveviereineciiieeeee e 113

4.3.1. Associating Marks with ENtities.......cccceereninieniniiiniineereececesecteeene 114

4.3.2. Associating Marks with Entity Attributesccoeevveeieeiinencieeee e 115

4.3.3. Deriving Attribute Valtuescoovveiieienininnecniceetcece e 116

4.3.4. Associating Marks with Relationshipsccccooieiininiiniinnnniniienenee. 117

4.3.5. Associating Marks with Relationship Attributes.........cccceeveeviencninrenceenennee. 118

4.4. Generating Relational SChemas........cc.ccoeriiviiiiniinincc e 119

4.4.1. Generating Schemas for the EMark and AMark Patternsccocceveunee. 120

4.4.2. Generating Schemas for the AExcerpt Pattern............cccecevvinnnincnnnncn. 121

4.4.3. Generating Schemas for the RMark Pattern...........cocccovvvevieninecenicnienninnn, 124

4.4 4. Generating Schemas for the RAMark Pattern...........ccoccoeveiveiivvieivienciiennienn, 126

4.5. Generating XML SChemascco.ceriirimriiinieieree ettt 127

4.5.1. Overview of the Schema-Generation Procedurecccovveeveniininneennnnee. 127

4.5.2. Element Types for Patterns of Use of Marksccocevvuieieninenienenennieene. 130

vi

4.5.3. Generating Schema for the EMark Pattern..........coccovevvierenncciinncnienencnne. 136
4.5.4. Generating Schema for the AMark and AExcerpt Patterns...........ccccoceeuenen. 137
4.6. Modeling Mark DeSCIIPLOTSccouiiriieiriirniieteeieeeeeeieeeete e eraeseeesaeesne s ssaessaens 138
4.6.1. Conceptual MOdElINgcccocveeiiieiiiiniiiieniiiereeiete sttt 139
4.6.2. Relational SChema.......c..cooviiiiiiiiiiniiiececte e ... 143
4.6.3. XML SCREMA.coueciiiieiinieiiitentee ettt sttt sbe s saee 144
4.7. Modeling Context Information...........coceevveririrnenerninenereete et 147
4.8. Querying Bi-level [Nformationoceecivereniininieniininceiereseeete e 152
4.9, EValUAtiON......coiiiieeieceee ettt ettt e st a e st n e aees 156
4.9.1. SIAEPAM ...t 156
4.9.2. The Superimposed Scholarly Review System (SISRS)cccccovveierirennnnen. 157
4.9.3. The Superimposed System-Information Browser (SSIB)cc.ccceeveenne.e. 160
4.10. Related WOrK.......ooooccceeeroeeeerseeeen oo 161
4.10.1. Relationship Patternscccccviiiiiiiirrieinieeerer ettt 161
4.10.2. Conceptual Models for LinKsccccceveierienieieieereceeee e 164
4.10.2.1. TOPIC MAPS ...eeieuireeairieeieaiiieeriiieeeieeeteeesrteeeeessstessseesseesassessssssassseses 165
4.10.2.2. STrUCtured MaAPS.....ccocvcviiiiieieeeiieecreeesee ettt e erre e srae s baeseres e saeeernnas 165
4.10.2.3. Superimposed SChematiCscoveviereerreriirieieneeriere e eeenes 167
4.10.2.4. The Nested-Context Modelccccvvrirvniniineninenienenencneseee e 168
4.10.2.5. The Hypertext Design Modelcocoiiriiiiiiiniinineniecceeeeneen 170
4.11. Summary and CONCIUSIONSc.cooiiiiriiriririreienetet sttt eeens 172
5. Transforming Bi-level INformationcccoevvcvccscernccmnsnnscnssscscssensenssssssssanses 176
5.1 INEPOAUCHION ...ttt ettt et ettt e b e sa et e st e sae e e e saeesaeeraens 177
5.2. Representing Bi-level Information..........c...cocoeivieiriiniinineeeeecee e 180
5.2.1. Nested SChemaocuoiiiiriiiiiiee ettt st 181
5.2.2. Normalized SChema...........ccceviioiiriiiiiiniirtreetcieecee e e 184
5.2.3. Impact of Representation Scheme on SI-only Queries...........cccceorvevenenenne 187
5.3. Goals and Strategy for Bi-level QUerying.........cocccceveviivenmiienenniicniernneenienene 188
5.3 1 GOAIS ..ttt e st s st e e sae e 188
5.3.2. Strategy for the XML Model........cccoooiiiiiiiiiiiiiieiecece e 191
5.4. Summary and CONCIUSIONScc..coriirierriiinirierceieieereeteeeee et sae e eeeneans 193

6. Optimizing Bulk Access to Context Informationcccvceevnnrecseecsennnne 195

vii

6.1, INtrOAUCHIONeeiutiiiiiiieieieseetet ettt 195
6.2. Bulk Access ConSiderations.........cceciverierrireneniereeeneneeseseceeeeseessesseeseeesenens 199
6.3, DIBSIZIN ...ttt er ettt st e et et e st e e e st e s e et e s e e et eese et e bt et e be e teebe e besbenaean 202
6.3.1. POOLING POLICIESveeuvieiiieciieeiiiecitee et et vt s sae e e sananen 206
6.3.2. Choosing a Pooling POLICYcccevveevieriieiiiieieceseere e 209
6.3.2.1. Choosing a Pooling Policy Heuristically........c.ccceceevrienninennencnnenne. 209
6.3.2.2. Issues in Choosing a Pooling Policy Analytically......c..cccceverrercnnucnce. 211

6.4, EVAUAtIONooiiiiiiiieiieieeee ettt ettt e et e e et nesaaesaeenae s 213
6.4.1. IMPIemeENtation......iccueiviiierrieiiieciieee et eireee e e et e eeeessre st e sa e sae e e esanenes 213
6.4.2. EXPEIIMENLScviieriieienieriieieiertest e este e sttt ettt et et en e et svensnnens 217
6.4.2.1. The Tiny Dataselccccceriirrieriirieeere ettt eees 218
6.4.2.2. The Sidepad Datasetccccerereerieeiiiininiieneeeie e et 221
6.4.2.3. The SISRS Datasetccccveriemierierieeirreeiree ettt sneeee e 224
6.4.2.4. The SSIB Datasetcoceevieiviiiiriiniinicereeeeieeeeeeere et ee s e 228
6.4.2.5. Evaluation SUMMATYc.cecieeiierieeiieneereeriere ettt 230

6.5. Related WOTK....ccceiiiieiiiiiecteeeete ettt 231
6.5.1. Structuring Schemas and Region Indexesccooceeverinieniecincninncnenee. 231
6.5.2. Object Management SYSEIMSccceeeiirvuieeienieeieeneerieesreeseesneenssesneens 235
6.6. Summary and ConClUSIONSc.cecviiieeiieererieeirt et 236
7. Representing and Manipulating XML Bi-level Information «.238
7.1 INEOAUCHION ..ottt ettt ettt ettt be e e smaens 239
7.2. OVErVIEW OF DIOM ...ttt ettt sre et e st e sbesmsesaneenens 244
7.3. Diversity and Multiplicity of Mark Associations..........cco.covereererrereerierunnieneneene 248
7.3.1. DOM Node Types and Mark ASSOCIAtIONSc.cccceeerrerverrerernenrerreecriecennns 248
7.3.1.1. Serialization and Validation Considerationsccccceeveererccecercnnnnnen 249
7.3.1.2. DOM Node Types Permitted for Mark Association............cccccccreeneeene 250
7.3.2. Mark-Association Element TYPeSscccecveeueverinieirirenieiiieceniceeneeenees 251
7.4. Design of SiXmI DOM..........oooiiiiuiiiieeceeeeeeee e eeese s esesees s sse s sensens 253
T4 1. OVEIVIEW .ecoiiitieieeeieeeieeite et eeteete s te et e ssaeseesateseesete s aesee s aensestesnessaesnsesseesaans 253
741,10 SIXIN] NOAES <.ttt st 254
7.4.1.2. Mark-Association NOAEScocevieririenieiieeee et 255
7.4.2. Reading a Sixml document............ccccvveereeiiniiiiee e 256
7.4.2.1. Creating a Sixml DOM TT€Ecocovirieriiririeiiieenee et 256

7.4.2.2. Detecting Mark-Association Elements...........cccccccevnveeieevienneenieeennnne. 258

viii

7.4.3. Managing and Using Marksccccoooiiriiiiniinineceeeeee e 261
7.4.3.1. Mark REPOSILOTIESc.ceoueruiruerieirerienierieererrenieetesienseaeseeeeteseesessessnsenns 261
T4.3.2. MATKS ..ttt re e e et e e stb e e sae e e sb e e e e e s sae e ben e ns e e e aaeenaaeeane 262
7.4.3.3. Mark Descriptors and ConteXt...........ccecereerienenierneenieneeseneeneeseesaeneeen 263
7.4.3.4. Deriving a Node’s Value from Mark Context..........cccoceevevievercenneenennn. 265

7.4.4. Serializing a Sixml DOCUMENt...........cocoiviiiiiiiiiieieeeteree e 266

7.5. Integration with DOM ...t 268
7.6, EVAIUALIONeiiiiiiiiiiiicii ittt et e e et e eae s e s e sreeeresbe e e e seesresnesbaesnens 270

7.6.1. IMPlementation..........ooeeciiviiiiiinieniiiicece ettt s 270
T.0.1. 1. OVEIVIEW ..ottt ettt e et e e sreesae e saeesmeeenesaneans 271
7.6.1.2. EXPETICNCEeeeemeieiieeieeniienie et eeiee st te et s b et ebe et e e aseaasesa e e saesaneen 274

7.6.2. APPIICALIONS.....ecvreererieetecere ettt ettt et e et et e s e te s seesae e s e esenaeeseeas 277

7.6.3. EXPEIIMENESeuvveiiiieiiiiieieiie ettt te e reessiteesre e s et eeaeessaeessaesssseesnsesaneans 279
7.6.3.1. Overview of the Datasets..........ccceceevierieiiiieneneeeneeire et 279
7.6.3.2. Ease of Accessing Mark Associations and STccccoecevvrieciineenene. 281
7.6.3.3. SCAlabIlitycceeveeiniieiienietee et 283
7.6.3.4. Savings when Traversing Mark Associationsc...cccceceeveeereenuenncenn 285
7.6.3.5. Savings when Traversing Sl.........cocooioiiiiniiiienreee e 288
7.6.3.6. Overhead to Traverse Non-Sixml Dataccceceeveeereienieseneereneenenes 293
7.6.3.7. Evaluation SUMMATYc.c.cocivieiiiiiiiiinieiieeieee et e esa e seeeen 294

7. 7. Related WOTK....c..ooieieie ettt ea e st a e e s ae e s e e 295

7.7.1. Embedding Links.......cccooiiiiriiiiiiiintcteececeetee s 295
T7 11 XLANK ettt sttt st 296
7.7.1.2. ACtiVe XML...eioiiiiiiiiieieiteresieeteie ettt et et eseesneaesas e snnsnessasens 298

7.7.2. DOM EXEENSIONS ...eeeneieireerreeaiieeiteeiieesiteseteseteetasat e stasneesnsesenassaessanassasnsens 300

7.8. Summary and ConClUSIONScccceciiiiiieiireieriece et eeeeseesaeas 301
8. A Model for Improving Query Expression and Execution 304
8.1, INETOAUCHION «.eoieieiieeeetee ettt re e ev e ae e et e e s e e s e s saaessaaeenasaans 304

8.1.1. A Tree Model for CloaKingcccceceeceinivieneninieninenenierieeseeesve e 304

8.1.2. Application to Bi-level QUerying..........cccceevveeveevievienenieeceeeeceeeeeveieenes 306

8.1.3. Non-Bi-level-Query AppliCationscoccueevveevieieiienieeienerecrceeeeeieeeeeeeens 308

8.1.4. Benefits from CloaKINgccceviririreiiinieieeie ettt 310

B.1.5. DISCUSSION. ..c.tiiiitiiaeeierieeeieeriteeite et esteesaessee e s e e esessbassbeessesseessaessessssenssanns 313

8.2. Modeling a Cloaking QUEry ProCeSSOL........ccccovvertirerienienieienreree e ienar e 314

8.2.1. A Formal MOdel ...c.c.eeiriiiiinieiieeeee ettt 314

8.2.2. Architectural Reference MOAELooooiviiiiiiiee e eeeeeevereareeeverereeaeesss 318

ix

8.2.3. DISCUSSION. ..cu.eruiruierieieriretietierreieet e ete e esbesr et ete st et estese et essassassestassensenne 319
8.3. Representing and Assigning ColoTscceevveiievrmrirnienienieeirieee e sae e seees 320
8.4. Related WOTKcccuirieiiiiiiee ettt et 323

8.4.1. The Multi-colored Tree Model...........ccooevveieveenienieneninciereeeeceee e 323

8.4.2. Data PrOVENANCEccciieiiieiieiie ettt seae st eenreestesearesstasnaeessnannsens 326

8.4.3. Annotation Propagation..........cccceveuieviieiieniecieneeienteicrecete e e e 328
8.5. Summary and Conclusions...........ccccevveevecrvennenne. reehteebee et e e et et e s r e teereenterneea 329
9. Querying XML Bi-level Information 331
9.1. Overview of XML QUETYINGcecoviiiiariiiieeieiieeeenresieesieseessesaessessaessnessesssensans 331

9.1.1. OVerview of XPathcccovviviiriiiiiieeceeicetet ettt st 331

9.1.1.1. The XPath Data Model...........cccocovierieienieieirinceesree e 332
9.1.1.2. XPath EXPIeSSIONS.....c.eecvuiiiecrieeriiirieiieeieennesneeseeseesseeeseessnaessassesenens 334
9.1.1.3. Evaluating XPath EXPreSSionsccceeceeemriienienienrieneeneeseessesseeneenenas 337

0.1.2. OVerview Of XSLT ...cooiiiiieiieieeie ettt eeas 340
9.2. Representing SiXml Data........ccoceeeiieiiiiiiieceieeeiesee et se e saas 344
9.3. Processing Bi-1evel QUETIEScooeevuiiruieiuieriesiieseeeteieeeteseee et see e saeenens 348

9.3.1. Overview of a Bi-level Query Processor........cc.ecueveienievirniriienienrenierienieeens 348

9.3.2. Navigator State and SCOPE.........cceviriererierienierienerieseestestesiesresenesesaeseasaneeens 350

9.3.3. Navigating Bi-level Informationc.ccceoereinnnninninrceeresreieseeeens 353

0.3.3. 1. OVEIVIEW ...eoiieieeriecieeeee ettt et v sae e e saesse st e saasaeesvenssasaeesaaasseseas 353
9.3.3.2. Selecting Multiple Nodes in @ Stepceccevvereenrereeneninieeesrece e, 355
9.3.3.3. Retrieving Information on Demand..........ccccoccerevrrrircveneniierreienenrennen. 358

9.3.4. Cloaking INfOrmationcoocevievieiieiiniecneetecseeeet et e ettt eseesaensens 359
0.4, EVAIUALIONcuirtiiiiiiiieieecc ittt sttt ettt ettt s 362

9.4.1. ImMplementation........ccccecirierierieniieieiesiesre e eeresee e e siebesbe s s saeseeesesseeneone 362

0.4.2. APPIICALIONS....ceiitieieeieeteeteeeteere ettt et e e te st e ae s e e seessenseensesseeenas 364

9.4.2.1. Drafting a SUIVEY PAPETovoviveeeeceeeereeeeceereeeeeeiesenesesesesen s senaees 364
9.4.2.2. Creating Alternative SI StrUCLUIES.........coererierereriereniereenteeneseeenaens 365
9.4.2.3. Creating Mash-ups...........cccooirimieninincninenicceeee et 366
0.4.3. EXPEIIMENLScooiuiieiiieriiieeiieeieeeteeeteeesteeess e seaeseeesaeeseseseensessessrssesssesesennns 368
9.4.3.1. Retrieving ST Q1) .eecveeieiceeeiieeieecereeretr et neas 370
9.4.3.2. Retrieving Mark Associations (Q2)......ccoceeeerreenerrenrenetrieeseenaesaesseases 374
9.4.3.3. Retrieving Mark Descriptors (Q3).......cccoeeereririrrenineneneeeeeneeenanen 375
9.4.3.4. Listing Base Documents Referenced (Q4, Q7) ..cceoervevverveniecvenienrenennens 380

9.4.3.5. Focused and Unfocused Path Expressions (Q5)......ccccvervrreenveccenenen. 381

9.4.3.6. Micro Queries (Q6, QB8)ocveeieeiieeieeeeee e 382
9.4.4. Evaluation SUMMATYcccovveiiiiiieiiiiireieeereeeeseeeeee et e e seeeeeveeseneeesseaseneees 383
9.5. Related WOrK........oioiiiiiee ettt e 384
0.5.1. ACtIVE XML . .ottt ettt r et et enes 385
0.5.2. MetaXPath.........ooceeieeeii et s 387
9.5.3. Data Integration SYSEIMS.......coceeriiiriiniiirie ettt e 389
9.5.4. Tools to Produce Data Mash-upsc..ccceeouieiiieieiiiicieeceeereeceeere e 390
9.6. Summary and CONCIUSIONScccorierriarieiirnieeiee et eere et et e st e ssaeee e eenees 391
10. Interchanging Bi-level Information 396
10,1, INtTOQUCLION ...ttt ettt sttt ettt st saes 396
10.2. SI-Dependency Graphs........coccovcveriieiineiniiiintiieececeeeeere e 400
10.3. Creating Packagescccooeiieiiiiiciie ettt 402
10.4. Unpacking Packages........ccoevvverieiriiiiiniieeiiicce ettt enese e 404
10.4.1. Concepts and TEITSceevceirriiirieriienieeieeireeereeetererreeeeeraeessaesasesssessseenns 405
10.4.2. The Unpacking ProCessc..coceviirieniiiieniiieneeceetesiee et ee e 406
10.4.3. EXCEPLIONS ...vuieeemieiiiecieeieeitectteeie et et e sttt et e e et e saee et s e sbeeee 409
10.5. EVAIUALION.....cuiiiiitieieeiteeteeteeteete ettt ettt se et atesbeesaesbeete e s nesaneasennes 410
10.6. Related WOTK......ooouieeieeiieieeee ettt st st sbeessne s ae e e 412
10.7. Summary and ConcluSIONScccccueiriiiniiiiiiciieniecece et eae e 414
11. Summary, Future Work, and Conclusions 417
L1 1. SUMMATYceiiiiiiiiiete ittt e e e ne e e e snesaeeeas 417
T1.2. FULUTE WOTK. ...ttt ettt st sttt es 421
11.2.1. Declaratively Producing Data Mash-ups.........c.ccccceeceenerrieninienensreceneene 422
11.2.2. Improving the Information-Retrieval Experiencecc.coccevevvvevenvennennee. 425
11.3. Conclusionsccveeceevveneeneennenne. e eteete bttt ettt et et e st et e an e et et entenne 428
BibDlIOGIraphy ... iiciiiciienirnntinceenctecsinsniessieesssnsensssssssnssssessenssassssasssassssssssessassss 430

Appendix A: Sixml Element Types 443

X1

Appendix B: Sixml DOM Interface Definition 449
BL1. LEVEL 1 COT..uuiiiiiiietetieciteeteeteett ettt e e se e bt asbesbesaeemeenne 449
B2 LeVEl 2 COTE..uueiiiiiieiieteee sttt ettt ettt sae et ebe e s b st st neseasmsenne 454
B.3. Level 3 Load and SAVE..........coccevireeiiiieceeteeeesiteseere et et e e ssaeee e sneeneens 455
Appendix C: Queries Used in the Evaluation of the Bi-level N avigator' 456
C.1. XPath QUETIESeevvieeiieeeiieireeiriteeeieeeteeteeeeteeersesraeesaeesreesasaessaesssesssaessensssesnsans 456

C.2. XSLT Style SREEtS....ooeceiiieeiieeteeteeteeettee et ae s saean 458

2.1
2.2

3.1
3.2

4.1
4.2

5.1
6.1
6.2
6.3
6.4

6.5

7.1
7.2

7.3

9.1
9.2
9.3

94
9.5
9.6
9.7

Xii

List of Tables
Example context information that may be retrieved from a mark............. 6
Common SA design and development activities...............c.coevveeenennnnn. 13
Activities on bi-level information and the data models emphasized.......... 23
A comparison of System S and some related systems..........ccccecevveeenen... 40
Overview of context agents implemented for use with SPARCE............. 68
Key design decisions and the architectural qualities to which each deci-
SION CONEIIDULES. ..ottt e 87
Base sources SSIB consults...........coovviiiiiiiiiiii e 112
Correspondence of ER constructs and patterns of use of marks to XML
[o70) 4 1o 11 £ PP 129
Summary of goals and strategy for bi-level querying...........c.....cceeenene 191
Time (in milliseconds) to retrieve excerpts and to initialize context agents
using the INteractive SEQUENCE.ouiiriitin ittt eiiareeeeieenene 198
Pool size and the number of context-agent switches for different pooling
POLICIES . 1.ttt e 209
Data characteristics and pooling policies predicted using heuristics......... 210
Overview of the datasets used to evaluate the bulk accessor.................. 218
Time (in milliseconds) to retrieve excerpts for the tiny dataset............... 220
Types of DOM NOAES.....c.ueiniiiitiiiiii i e 246
Sixml documents used in the experiments to measure performance when
retrieving mark associations and SL...........c.ooviiiiiiiiiiiiiiii 280
Time (in milliseconds) to retrieve mark associations and SI (separately)
over 20 iterations using the Sixml DOM implementations.................... 284

Kinds of XPath nodes, and kinds of their children, siblings, and parent..... 333

Possible movements among XPath nodes...............cooooiiiiii 339
Possible state transitions of the bi-level navigator due to movements

among XPathnodes..........cccoooiiii i 351
Movements to retrieve context information...................ococeieviiiiinn 356
Movements to retrieve a mark descriptor............ccocvviiiiiniainiinninn.. 357
Queries used to evaluate the bi-level navigator...............................L. 370

Time (in milliseconds) to retrieve SI and mark associations for different
navigator and document combinations in the normalized schema............ 372

9.8

9.9

9.10
9.11
9.12

9.13

xiii

Time (in milliseconds) to retrieve SI and mark associations for the SISRS

dataset in the normalized and nested schemas..................cooviiniien.n 374
Time (in seconds) to retrieve unique mark descriptors......................... 379
Time (in seconds) to list the unique base documents referenced.............. 380
Number of navigator movements attempted to retrieve comment text....... 382
A comparison of the performance of queries that exploit micro queries

with queries that donot...........ooiiii i, 383

A summary of capabilities that the different combinations of XML tools
provide to a developer in a bi-level query setting............c.c..oooeiiennnnn. 392

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
22

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13

List of Figures

Multiple information structures superimposed over existing information.....
Marks referencing base information................cooooiiiiiiiiiiiiiiiiiiin
A Sidepad document INSEANCE.uieinireiiiiiii i iieeae e eeaaenne
A PDF mark activated.........c.oorieieiiii i
A Sidepad document and selected base information transformed to HTML
A SuperMiX COMPOSILIONueneintintei i e e
A SuperMix cohort Playing.........oeoieiiiiiiiniiiiniiie e
An HTML+M document being edited................coooiiiiiiiiiiininn.

A framework to support design, development, and deployment of SA........
A reference model for the framework to support design, development, and
deployment Of SAS. ...t

The SPARCE reference model............ooooviiiiiiiiiiiiiiiiiiiee
Interactively creating marks...........ooooiiiiiiiiiiiiiiiii
Examples of initiating mark creation interactively................c..coeenan.
Base-part descriptors represented as normalized XML fragments.............
Example use of mark descriptors in SI represented as XML....................
A context-free grammar to construct URIs in the sparce scheme..............
The SPARCE object model..........ooiiiiiiiiiii e
Context information from marks displayed in the Context Browser..........
Utility to construct and test a mark descriptor............oooeviiiviiniiininne.
A superimposed application’s view of SPARCE.................c.oooiienn
A comparison of hypertext links and marks................oooiiiiin

System information displayed in SSIB...........c.coooiiiiiiiiiiii
A conceptual schema for SSIB........ooiiiiiii
Associating marks with an entity.............ooooiiiiiiiiiiiiiiii
Associating marks with entity attributes.................oo
Deriving the value of an entity’s attribute from a mark’s excerpt.............
Associating marks with a relationship..............c.oco
Associating marks with a relationship attribute...................c.o.o
Partial relational schema for the Mark entity type.............cooeiiiiiiinn.
Relational schema generated for EMark and AMark relationship types......
Relational schema generated for an AExcerpt relationship type...............
View definition generated for an entity type participating in an AExcerpt

TElAtIONSIIP . . .ottt e
Relational schema generated for an RMark relationship type..................
Relational schema for an RAMark relationship type...........c.cocoeeiiiinnn.

xiv

—
— OO IO ON 1 W

—_

W
W

4.14

4.15

4.16°

4.17
4.18
4.19
4.20
421
4.22

4.23

4.24
4.25
4.26
427

4.28
4.29
4.30

5.1
52
53
5.4
6.1
6.2
6.3
6.4

6.5
6.6

6.7

6.8

6.9
6.10

A simplified XML Schema instance document for the different patterns of
USe Of MATKS.ot
XML schema generated for an EMark relationship type..............c.........
XML schema generated for the AMark and AExcerpt relationship types....
A conceptual model for a mark descriptor............ccoooiiiiiiiiiiiin
Relational schema generated for mark descriptors..............coooevieienen.
XML schema for SPARCE descriptors and XPointer pointers................
Example use of SPARCE descriptor and XPointer pointer.....................
A conceptual schema for context information......................c.ca
Partial context information for a mark to cells in a spreadsheet represented
using a generic SChema............oiiiiiiiiii e
Partial context information in a schema determined by a context agent
4S5 () o) PSR
A conceptual schema for SI created using Sidepad...................coenene
A conceptual schema for SI created using SISRS............cooiiiiiin.
XML representation of a SISRS document...............oooviiiiiiiiiian.
Bi-level XSLT templates to generate author feedback in HTML format
from SISRS data. ..o
The complete conceptual schema for SSIB.............ccoiviiiiiiiiin.
Example application of relationship patterns.................ocoviiiiiinnn..
A structured map for OS updates..........coooiiiiiiiiiiiiiiiii e

A reference model for a bi-level query system.............cccvvviiiiiiienn.n.
Example bi-level information in the nested schema.............................
Example bi-level information in the normalized schema.......................
A reference model for an XML bi-level query processor.......................

Sequence of tasks to retrieve an excerpt from a mark in an interactive

Sequence of tasks to retrieve excerpts from marks using the bulk accessor.
Simplified Transact-SQL code to integrate the bulk accessor into Micro-
SOft SQL Server 20005, ... i e
Average time (in milliseconds) to retrieve an excerpt for the tiny dataset...
Average time (in milliseconds) to retrieve an excerpt for the Sidepad
AASEL. . ettt e
Average time (in milliseconds) to retrieve an excerpt for the SISRS data-
set, with and without clustering................coooiiiiiiiiiiii
Moving average of time (in milliseconds) to retrieve excerpts for the
SISRS dataset.o.ouieiiii e
Average time (in milliseconds) to retrieve an excerpt for the SSIB dataset.
A region-inclusion graph for the event-log structuring schema...............

XV

131
136
138
141
144
146
147
148

150

7.1
7.2
7.3
7.4

7.5
7.6

7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
8.1
8.2
8.3
8.4
8.5

8.6
8.7

9.1
9.2
9.3
94
9.5

9.6

A Sixml document in the normalized schema showing marks associated
with an element, an attribute, and text content....................cooeeeeiinnn..
A class diagram for Sixml DOM...........coooiiiiiii e,
A simplified DOM tree for a Sixml document...............ccovvieiiiniinnee
Procedure to create a mark-association node from a uni-mark type of
mark-association element.ouiiiiiiinii i e
A simplified Sixml DOM tree for a Sixml document...........................
Pseudo code to serialize a Sixml element, its contents, and mark
ASSOCTATIOMS . ¢ttt ettt ettt ettt et ettt ettt aaeaeas
The Sixml Browser and Eitor..............coooiiiiiiiiiiiiiiii e
Procedures to get mark associations of a target node using DOM............
Procedures to get mark associations and SI using Sixml DOM...............
A comparison of the Sixml DOM implementations when traversing mark
associations in the SISRS dataset..............oooiiiiiiiiiiiiiiiii i
A comparison of the Sixml DOM implementations when traversing mark
associations in the SSIB dataset...............cc...oeeiiuieiinieiineeiienineninn,
A comparison of the Sixml DOM implementations when traversing SI in
the SISRS dataset.........coeiiiii i
A comparison of the Sixml DOM implementations when traversing SI in
the SSIB dataset.........couiiiiitiii i
Overhead to traverse non-Sixml data using Sixml DOM, compared to

A cloaked tree and the scope of two operations over the tree..................
A cloaked tree for a Sixml document in the nested schema and the scope
of two classes Of QUETIES.......o.oiuiiiiieiiii i
Partial XML data generated for a single cell in a Microsoft Excel

] 0] (5 16 1] 1151 A
An architectural reference model for a cloaking query processor.............
An example MCT database..........c.oviiiiiiiiiiiiiiiiiiiiii e
An illustration of data provenance.................coveiiiiiiiiiiiiiiiii,
An instance of a MONDRIAN relation and the result of a block selection
0] 015 21101 DO e

XPath representation of an XML document..............cooeiviiiiiiieniiniinn
Pseudo-code outlining the procedure to evaluate a step in an XPath

19 0 (1) (o) s D PP
Overview of XPath and XSLT processing.........c.cceveviviiiiiineenrennnnennn.
An example of transforming an XML document using XSLT.................
Representation of a Sixml document in the normalized schema using the
extended XPath datamodel...............cooiiii i
Representation of a Sixml document in the nested schema using the ex-
tended XPath datamodel..............c. o,

xvi

9.7
9.8
9.9

9.10
9.11
9.12
9.13
9.14
9.15

9.16

10.1

10.2
10.3
10.4

The architecture of a bi-level query processor.............cocvveviiiiiviineninn
The bi-level navigator state diagram................cocoiiiiiiiiiiiiiiniennn
Pseudo-code outlining movement to the first child of the current XPath

Bi-level information displayed as a timeline...................coeiiiiiiniai,
A map-based mash-up............coooiiiiiii i
Thumbnail of the test documents in the normalized schema...................
Percentage time saved using the bi-level navigator with scope SI when re-
trieving SI in the normalized schema.................ooiiiiiii i
Percentage time saved using the bi-level navigator with scope Association
when retrieving mark associations in the normalized schema..................
Example data document with metadata populated using the MetaXPath
data model... . ..o e

A reference model for the run-time service to interchange bi-level
INFOIMAtION. ... ettt e
An Sl-dependency graph............oiiiiiiiiii e
A Sixml document describing the mark associations an SI document uses.
A procedure to process document descriptors when unpacking an SI
PACKAZE. . .ot

Xvil

1. Introduction

Imagine a researcher co-authoring a paper. In his research for the paper, he finds rele-
vant information in a variety of sources: HTML (Hypertext Markup Language [61])
pages on the World Wide Web (the web), PDF (Portable Document Format [6]) doc-
uments on the web and on compact discs (CDs), Microsoft (MS) Excel spreadsheets
and MS Word [96] documents on the local file system, and so on. He identifies rele-
vanf sub-documents (that is, portions of documents) and adds annotations containing
clarifications, questions, and conclusions in reference to the sub-documents. He fre-
quently reorganizes the information he has collected and the added annotations to re-
flect his current perspective. He intentionally keeps his information structure loose so
he can easily rearrange the content. When he has collected sufficient information, he

imports the sub-documents and his annotations into a word-processor document.

As he writes his part of the paper using a word-processor, the researcher may revisit
his sources to review information in its original context. For example, he may view a
selection in a PDF document using Adobe Acrobat (Acrobat) [§8]. Also, as he writes
the paper, he may sometimes reorganize its contents, including the imported informa-
tion, to suit the flow. He may search within an imported annotation, the annotated sub-
document, or the surfounding context of the sub-document. He may mix some of the
imported information with other information in the paper and transform the mixture to

suit his presentation needs. At one or more points in the development of the paper, he

sends his version of the paper to his co-authors, possibly along with the background

material he has collected.

1.1. The Real-World Objective

Most researchers will be familiar with manual approaches to scenarios similar to the
one just described. They may also be familiar with approaches that involve digital

documents and annotations. This dissertation is concerned with the digital approaches.

There are two kinds of digital annotations: inline and stand-off. An inline annotation
is stored within the annotated document, placed near the relevant target sub-document,
similarly to an annotation made on a hard copy of the document. An inline annotation
makes it easy to relate the annotation to its target, but it assumes the annotator owns
the target document. A stand-off annotation is stored separately from the target docu-
ment, using some means of relating the annotation with its target. (For example, the
annotation may include a page number.) A stand-off annotation makes it harder to re-
late the annotation to its target, but it does not require the annotator to own the target

document because the annotation is superimposed on its target.

Stand-off annotations facilitate multiple simultaneous organizations of existing infor-
mation, without replicating that information. For example, a reader might superimpose
a list structure over a set of sub-documents, whereas another reader might superimpose
a hierarchy over the same set of sub-documents. Figure 1.1 illustrates such superim-

posed structures.

= The square looks good
= Questions
~--.» Whatis the gist of ...?
= Why is the color ...?
= Summaries
----- =-This document is... -

1. Anellipse is .=
2. Thistextz--="""""""
3. This document is ...
4. Theideaisto... ~

A superimposed list

Bdse Document D2 A superimposed hierarchy

Figure 1.1: Multiple information structures superimposed over existing information. A dashed
arrow denotes a reference to an existing document or a sub-document.

This dissertation is concerned with superimposed information (SI), which is new in-
formation and structures overlaid on base information (BI), which is existing docu-
ments and sub-documents. For example, a reader’s annotation on a text selection in a

PDF document is SI. The annotated PDF document itself is BI.

Broadly, our real-world objective is to support the design, development, and deploy-
ment of applications that facilitate SI. Specifically, we aim to support the following

application capabilities:

1. Select arbitrary portions of BI of many kinds (such as PDF, HTML, and MS

Excel) in multiple locations (such as the web and a local disk).

2. Create and maintain SI of different schema in different data models, such as the

relational [41] and XML (Extensible Markup Language [43]) models.

3. Activate BI (that is, show BI) in its original context by opening the base document
in its original application and navigating to the region of interest, as well as bring
the context of BI (such as enclosing text) to an application without visually activat-

ing BL

4. Group and link SI and BI, reorganize them as needed, and maintain multiple si-

multaneous organizations.

5. Combine SI and the referenced BI, and select and transform the combined bi-level

information.

6. Place references to BI in traditional documents such as MS Word documents and

HTML pages.

7. Interchange SI, the references to BI, and the Bl itself, with other application users.

1.2. Superimposed Information and Superimposed Applications

In this section, we introduce some terms frequently used in this research, and preview
three applications (namely Sidepad, SuperMix, and the HTML+M Editor) to illustrate

the range of applications that can be developed using our research.

As mentioned before, superimposed information is data placed over existing base in-
formation sources to help organize, access, connect and reuse information elements in
those sources [88]. SI references BI in situ using an abstraction called a mark [32]. In-
formation exists in two layers in this setting: SI in the superimposed layer, Bl in the
base layer. Figure 1.2 shows these layers of information and the use of marks as refer-

ences.

The combination of SI and the referenced BI is called bi-level information. For exam-
ple, a reader’s comment superimposed on some text in a PDF document, and the

commented text from the base layer, taken together, is bi-level information. Opera-

tions such as transformation (illustrated in Section 1.2.1) and interchange (described in

Chapter 10) frequently involve bi-level information.

An application used to select and activate Bl is a base application (BA). For example,
Acrobat is a typical base application when interacting with a selection in a PDF docu-
ment. An application used to create and view Sl is a superimposed application (SA).
An SA is like a traditional application, but with the ability to incorporate marks in SI

and the ability to activate and access BI via marks.

Superimposed {
Layer "
) A

<
3 £ *

.

. N

K&

! B
: marks *

|
Base
Layer

Information Infarmatmn Information
Source; Source; Sourcey,

- 7
~
Heterogeneous sources: Word, Excel, PDF, HTML, ...

Figure 1.2: Marks referencing base information. This figure is an adaptation of a figure originally
presented by Delcambre and others [32], and is shown here with permission [33]

1.2.1. Sidepad »
Figure 1.3 shows an SI document (called Data Integration) created using an SA called

Sidepad [111]. It shows information selections and annotations related to the topic of
information integration. The document shown contains five ifems: Query Optimizer,
Goal, Model, Definition and SchemaSQL. These items are associated with three distinct
base documents of two kinds—PDF and HTML. A Sidepad item has a name, a de-

scriptive text, and a mark (not apparent in the figure). For example, the item labeled

Goal contains a mark into a PDF document. Garlic and Schematic Heterogeneity are

groups, which are named collections of items and other groups.

EB: Sidepad - Data dntegration
e Edit - Yiew. . Transform - Tools - Help

Garlic

integrates data from data 3: Garlic Overview
Isources with very sources without replicating dsta.

Loosely speaking, the goal of the Garlic project 1s to

Model
Provides a unified schema expreszed in an object-oriented
data mogzi that cen be queried and manipulated using an
object-oriented dinlect of SQL

Schemetic Heterpoenelty

Definffion
Data under one schema may
be rep as
{for example, as sttrbute or
class names} in another.

SchemaSOl
Ai&rmngeforumfum
ion of dats and
meta data in relational ¢l BSxun o4
multi-database systems. T , . s -
i 4 3of8 LT -

Gm'hc looks rather hike a DBMS with an objectmented

v

< >

Figure 1.3: A Sidepad document instance Figure 1.4: A PDF mark activated

In addition to manipulating items and groups, a user can activate a mark (that is, see
BI in its original context), and browse context information such as excerpt (that is, the
content of the marked region) and the containing paragraph from within Sidepad. Fig-
ure 1.4 shows the result of activating the PDF mark associated with the item Goal. Ta-

ble 1.1 shows some context information retrieved from this mark.

Table 1.1: Example context information that may be retrieved from a mark. The information
shown corresponds to the PDF mark of Figure 1.4

Information Kind Name Value

Content Text excerpt provide applications and users with ... Garlic system
Placement Page number 3

Presentation Font name Times New Roman

Containment Enclosing paragraph ~ Loosely speaking, the goal ...

Containment Section heading 3: Garlic Overview

A Sidepad document may be combined with the BI it references, and the combined

bi-level information may be transformed to an alternative representation such as a

draft paper, a table of contents, or a timeline (when temporal data is involved). Figure
1.5 shows the Sidepad document of Figure 1.3 transformed to a draft paper in HTML
format. Each bullet indicates an item name. The text labeled Comment, located under-
neath a bullet, is the item’s descriptive text; the text labeled Excerpt is the text excerpt
retrieved from the mark associated with the item. The URL (Uniform Resource Loca-
tor [14]) attached to the bulleted text (and denoted by an underline) may be used to

activate the mark associated with the item, just as one would from within Sidepad.

Sidepad uses the application programming interface (API) of System S (an implemen-
tation of the run-time services we have defined) to create marks, activate marks, re-
trieve context information from marks, and to transform documents. Sidepad imple-
ments the abstractions item and group itself, and it provides the necessary user inter-

face (UI) to manipulate items and groups.

e Query. BBt Yiew -
Result

P PR S AR S S j|

E

Data Integration

C t: Mediate b geneons data sources without replicating data

Excerpt: provide applications and users with tha benefits of a database with a schema -- similar
to what an object-oriented or object-relational database system might provide -- but without
actually storing (at least the bulk of) the data within the Garlic system

= Umery Opfimizer

Commest: Integrates data from sources with very different query capabilities

Excerpt: a middleware system designed to integrare dotafrom a broad ranga of data sources with
very different query: capabilities. tion of middl ¢ is niot extensible to the arbitrary systevis

a Model :J

Figure 1.5: A Sidepad document and selected base information transformed to HTML

1.2.2. SuperMix
SuperMix is an SA to compose and play multimedia presentations. A SuperMix

composition is a sequence of cohorts, where a cohort is a set of members. A member
has a name, a description, and is optionally associated with a mark. Depending on the
associated base type, a member can also have duration. For example, a video clip has
duration, whereas an HTML selection does not. Duration information is obtained from
the context of the associated mark, if that information exists for that mark. “Playing” a
member shows the corresponding marked content (for example, a video clip) in a spe-

cific area inside a “player” window.

Figure 1.6 shows a SuperMix composition of video clips (and their text descriptions)
from an Indian wedding. Each row shows a member and each cohort has two mem-
bers: a video and a text. The column Name contains phrases in the South-Indian lan-
guage Kannada, written in Roman script using a transliteration scheme [79]. The hig-
hlighted member is associated with a mark to a video clip of duration 58 seconds. The
next member is associated with a text selection in an HTML file. The value 0 in the

second column (in the figure) indicates that duration does not apply to this member.

A cohort’s members are presented simultaneously, whereas cohorts themselves are
presented sequentially. A cohort’s presentation is complete when its first member is
“completely” presented, or when all its members are completely presented. (We omit
the details, but this behavior is configurable.) All cohorts in the composition shown in
Figure 1.6 have exactly two members: a video clip and a text description. In this case,

a cohort’s presentation is deemed complete when its first member (the video) is com-

pletely presented. Thus, playing this composition plays a series of video clips, and
presents a text annotation with each clip.
At R e p] I

Fle Edit Yiew Insert Play Transform Tools Help

Dol @& X& »i@

Name | Description | Duration i 5
swhgata-2 From 01:56 to 02:09 in AYSEQD1_3... 14 e
swAgata-2 - | 0

et

Tenxt selection in file://C:\Program Fil...

W

WSS g Aramans From D123 b 02 2

0
fss

warana Agamana -text Test selection in fle://C:\Program Fil.. 0

pada plie From 03:20t0 04:29 in AVSEQQ1_Y ... 70

pAda pUie - text Text selection in file://C:\Program Fil... 0

Arati From 04:32 to 04:56 in AVSEQQ_1.. 23

Arati - text Text selection in file://C:\Program Fil... 0

hattiradawaru matra From 04:56 to 06:18 in AVSEQOD1_1... 82

hattiradawaiu maltra - text Text selection in file://C:\Program Fil.. 0

saNNa uDugoregalu From 07:39to 08:23 in AVSEQO1_1 ... 45

saNNa uDugoregalu- ... Text selection in file://C:\Program Fil... 0 » :l
Initiating tem ‘warana Agamana - text’ /‘l

Figure 1.6: A SuperMix composition

When a cohort is presented, each of its members is presented in a separate pane. Fig-
ure 1.7 shows the cohort corresponding to the member highlighted in Figure 1.6 being
played. A video-clip is playing in the top pane of this figure; a description of this clip

is displayed in a pane below the clip.

To help appreciate the utility of SuperMix, we provide some details of the composi-
tion in Figure 1.6. The composition provides a 49-minute overview of an Indian wed-
ding that took place over a 30-hour period. The video recording of the wedding is
about 163 minutes long and is available on three CDs. The notes on the various rituals
in a wedding are in a single HTML document (that we created). Here are some statis-
tics related to the composition: 88 cohorts, 176 members, 172 marks, four base docu-
ments (three video files and one HTML document), and two base applications (MS

Windows Media Player [103] and MS Internet Explorer [95]).

10

M Superiix - A 49 -minute Indian Wedding

Wwindow Pane

3% warana mana

|welcomes the groom with a garland of flowers (almost always J.:
‘and elders are also received with similar respect.

Playing media

Figure 1.7: A SuperMix cohort playing. The video in the top pane corresponds to the highlighted
member in Figure 1.6. The text in the bottom pane corresponds to the member immediately after
the highlighted member. The video is courtesy of Gopalakrishna, and is reproduced here with
permission [54]

The composition in Figure 1.6 does not present video clips in the exact chronological
order of their recording, instead it groups them by rituals, without contradicting the
tradition (of an Indian wedding) much. That is, it creates an alternative organization
of base information. For example, the highlighted member in Figure 1.6 refers to a clip
from the first CD. (The corresponding ritual took place at the beginning of the wed-
ding.) The video member just before the highlighted member (named swAgata-2) refer-
ences a clip from the third CD (the corresponding ritual took place after the wedding

ceremony), but that member plays before the highlighted member.

SuperMix uses the API exposed by System S to create and activate marks, retrieve
context information from marks, and transform compositions. SuperMix implements

the abstraction composition, and provides the Ul to create and play compositions.

11
1.2.3. The HTML+M Editor
The HTML+M Editor is a word-processor-style application that allows traditional
hyperlinks and Aypermarks (which are marks represented as traditional hyperlinks) in
a document. The SI is saved in HTML format and may be viewed in any HTML
browser. The HTML+M Editor is based on the “HTML Editor” sample application

available in the MS Developer Network Library archive [108].

i e = W e —mrm .= - [A T - ——

file Edit Format Help

D Cut Ctrl+X

Copy Ctrl+C -
= EE == = Ao
Paste Ctri+V ’

insert Hyperman

sub-goals in Query 5 to obtan the final query

Insert Hyperlink

Ofm,) <- VE(v), Vi, ¥, T} o Query 6
Note that Queries 5 and 6 are both deficed in terms of iformation sources only.

5. Discussion

The Garfic query processor differs fundamentally from the other fwo systems. } produces query plans for
execution against b gencous sources. Inft ion Manifold and InfoMaster both produce queries, not plans.
(InfoMaster queries can be nsed to build a plan externally [Duschka 1997])

Among the three systems, Garlic is best equipped to estimate cost and cardinality realistically. This advantage may
be atiributed to Garlic’s reuse of query optimization technology from DB2.

Information Manifold's strategy is mifed to finding contained rewniings of queres. [o g i
[ind both costamed aod equalent vevrtinos

&

Figure 1.8: An HTML+M document being edited
Figure 1.8 shows a survey paper being edited in the HTML+M Editor. It shows the

user associating a hypermark with a selection. The user has already associated a
hypermark with another region of the survey paper—the last two words in the first pa-
ragraph of Section 5 (the citation “Duschka 1997”)—as indicated by an underline.
When this document is viewed in an HTML browser, clicking on a region that con-

tains a hypermark activates the Bl selection that the hypermark represents.

12

The HTML+M Editor uses the API of System S to insert hypermarks into documents.
The same API is also used when a hypermark is activated inside an HTML browser.

The HTML+M Editor implements the word-processing features.

1.3. The Research Objective

Our research objective was to develop a comprehensive and generic framework that
supports the design, development, and deployment of any SA that supports any subset
of the application capabilities listed in Section 1.1. In this section, we briefly describe
the rationale for this research objective, and summarize the considerations and features

of the framework developed. We begin with the rationale for the research objective.

Different SAs are likely to be developed for different goals, just as different traditional
applications have been developed for different goals. For example, one may use MS
Word to write papers, but use MS PowerPoint [96] to prepare presentations. These ap-
plications have different information models, support different use cases, and employ
different Uls. Similarly, the SAs Sidepad, SuperMix, and the HTML+M Editor have

different SI models, support different use cases, and employ different Uls.

Regardless of the differences in the SI and Ul models they employ, all SAs afford
some common capabilities to their users: associate SI with marks; activate marks; re-
trieve context information from marks; and others. We believe that reusable run-time
services can be developed to support these and the other application capabilities listed
in Section 1.1. Such services alleviate the need for an SA developer to implement the

common capabilities. Instead, the developer can focus on SA-specific features.

13

As with the application capabilities, some of the development activities will also be
similar for many SAs. Reusable solutions can support such activities as well. Table 1.2
shows some common SA-development activities. Activities with dark shading indicate
significant scope for reuse. Lightly shaded activities have some scope for reuse. Activ-

ities not shaded have little or no scope for reuse (because they tend to be SA-specific).

Our framework for SAs is a result of recognizing the aforementioned commonalities.
Using our framework, developers can support marks to new kinds of base information,
using any appropriate addressing scheme. Also within the framework, an SA can ref-
erence any supported BI type, regardless of the location of the BI and references to it
by other SAs. The framework, the SAs, and the base applications can all evolve inde-

pendently with minimal adverse impact on each other.

Table 1.2: Common SA design and development activities

Phase Activity Remarks

Design Design 81 Design conceptual, logical, and physical schemas. For
example, an Entity-Relationship schema [25], relational
schema, and a physical relational database respectively.

Design Ul For example, the Sidepad Ul (in Figure 1.3).

Implementation Implement Ul In addition to the UI for the SA, implement viewers such
as those needed to display context information.

Implement SI-layer operations For example, create and group items in Sidepad; persist
Sidepad documents.

hrplement mark creation, activa- For example, mark a region in a PDF document, activate

tion. and context retneval it (as in Figure 1.4), and retrieve its text excerpt.
Deployment C onfigure Decide location and number of run-time components.
Deploy Install and run components at selected locations.

Our framework includes methodologies to represent bi-level information in different

data models; a set of run-time services to represent, access, transform, and interchange

14

bi-level information; and a set of guidelines [112] to deploy the run-time services and
the SAs that use the services. For brevity, this dissertation omits the description of the

deployment guidelines.

Our framework supports SI over both documents and sub-documents, but, in this dis-
sertation, we mainly discuss SI over sub-documents because operations on sub-
documents present some unique challenges. We call out an operation on documents if

it is substantially different from an equivalent sub-document operation.
We made the following considerations in developing our framework:

e We need to work with arbitrary SI schemas because we do not know the exact in-

formation needs of the SAs that might use our framework.

e We need to work with distributed, heterogeneous BI in situ. Thus, in general, we
cannot modify or move BI, and, in some cases, we might even be prevented from
copying it. We cannot preprocess Bl (for example, load BI into a database) be-
cause, in general, the collection of information SAs reference is not known in ad-

vance.

e We need to support the use of base applications with varying capabilities. For ex-
ample, we need to work with base applications (such as MS Excel) that support in-
formation structuring, as well as with applications (such as a text editor) with little

or no such capability.

15

e We need to support arbitrary (but reasonable) deployment configurations for SAs.
For example, we need to support the deployment of an SA and our framework on
desktops. We also need to support an SA that uses our framework in a client-server
setting.

1.4. Related Work

Applications and technologies that support some subset of the seven capabilities listed

in Section 1.1 exist, but none supports the complete set of capabilities.

Acrobat [8] and MS Word [96] support inline annotations. They do not support mul-
tiple, simultaneous organizations of annotations, and they fix the annotation structure.
For example, MS Word can display annotations (called comments) only as lists, and an
annotation contains a user name, annotation date, and an annotation text. In both ap-

plications, annotations are shared by sharing the annotated documents.

Some hypertext systems allow creation of stand-off annotations, and help maintain
multiple organizations of the same information. However, they tend to constrain the
types of source, granularity of information, the location of information consulted, or
the presentation model. For example, NoteCards [56] requires information consulted
to be in a specific format, stored in a proprietary database, and allows references only
to documents (called cards), not to sub-documents. It also fixes the presentation model
for hypertext networks (that is, it fixes the user interface). IRIS [55] supports refer-
ences to documents and sub-documents located anywhere in the file system, but re-

quires specially constructed base applications. It allows creation of multiple hypertext

16

networks called webs, but a user can work with only one web at a time. It also fixes
the Ul for a web. The Dexter Hypertext Reference Model [57] allows references to
documents (called components) and sub-documents (called anchors) of any type. It
stores descriptions of components, anchors, and links in a storage layer. A run-time
layer, which is not part of Dexter, displays a hypertext network. None of these systems
(NoteCards, IRIS, and Dexter) can retrieve the excerpt of a base selection for use out

of context.

Systems such as OLE 2 [18] and OpenDoc [132] facilitate the creation of compound
documents that can contain references to information in other documents. They allow
annotations over documents and sub-documents, but they provide the user little con-
trol over the kind of information that can be retrieved from a referenced document.
Annotations are shared by sharing a compound document, but participating users must
follow a convention for the location of referenced documents. For example, they must

store the referenced documents in the same folder as the compound document.

Modern HTML browsers can navigate to practically any kind of information using
handlers (which are pieces of executable software), but they limit the kinds of data
that can be incorporated within a document (in comparison to compound-document
systems). Natively, browsers support references only to sub-documents the author has
marked (using appropriate markup tags). That is, a user reading a document cannot

create references to arbitrary portions of a document without modifying the document.

17

Of the systems mentioned in this section, compound document systems provide the
best support for multiple, simultaneous organizations of annotations. Compound doc-
ument systems, IRIS, and Dexter facilitate development of multiple applications to
create and maintain stand-off annotations. However, none of these systems have the
ability to retrieve information such as the “paragraph that contains the referenced sub-
document” from the context of a sub-document. Also, none of these systems readily

supports querying a mixture of annotations and the annotated sub-documents.

1.5. Organization

This dissertation is composed of 11 chapters, including this chapter. Chapter 2 pro-
vides a summary of this research, including an overview of the contributions, and an

introduction to the various components of our framework.

Chapters 3 through 10 describe the contributions of this research. Chapter 3 describes
SPARCE (the Superimposed Pluggable Architecture for Contexts and Excerpts) [110],
and shows its use to create marks, activate marks, and access context information. It
explains how SPARCE may be extended (for example, to add support for new types of
base information) without affecting existing components. An evaluation of an imple-

mentation of SPARCE is included.

Chapter 4 defines a methodology to conceptually model bi-level information in the
Entity-Relationship (ER) model [25], and shows how a resulting conceptual schema
enables queries over bi-level information [113]. The methodology includes procedures

to translate a conceptual bi-level-information schema to a logical schema in either the

18

relational or the XML model. The methodology is evaluated by using it to prepare
both conceptual and logical schemas for three SAs. Chapter 4 also introduces Sixm!/
(pronounced 'siks-mgl) [120], a means of representing SI as XML: A Sixml
document is an XML document that represents bi-level information using our metho-

dology.

Chapters 5 through 9 describe how bi-level information may be selectively trans-
formed using queries in existing query languages. Chapter 5 explores the key issues in
representing and querying bi-level information in the XML model, and outlines our

goals and strategies to transform bi-level information.

Chapter 6 describes a means of efficiently retrieving context information from a large
number of marks using a bulk accessor [121], and illustrates the use of the bulk acces-
sor in an existing relational query processor. It also presents the results of an experi-

mental evaluation of the bulk accessor.

Chapter 7 describes Sixml/ DOM [120], an object model to manipulate a Sixml docu-
ment and the bi-level information derived from the Sixml document. It also describes
implementation strategies and summarizes the results of experiments with different

implementations.

Chapter 8 formally presents a means of cloaking (that is, hiding) data to improve the

performance of certain classes of queries over bi-level information.

Chapter 9 builds on the developments in Chapters 6 through 8. It shows how a bi-level

navigator (called the Sixm! Navigator) [120] can be used in existing query processors

19

to evaluate queries over XML bi-level information. An experimental evaluation of the

bi-level navigator is also presented.

Chapter 10 describes a means of interchanging bi-level information among SA users.
It introduces the notion of SI-dependency graphs, and shows how one of these graphs

can be used to package bi-level information for interchange.

Chapter 11 summarizes this dissertation and presents concluding remarks. It also out-

lines two future applications for this research.

2. Research Summary

This chapter describes the major contributions of this research; introduces the compo-
nents of our framework to assist in the design, development, and deployment of supe-
rimposed applications (SAs); gives an overview of the evaluation of the framework;
and compares the features of a reference implementation of the framework with re-

lated systems.

As mentioned in Section 1.3, we support SI over both documents and sub-documents,
but, for simplicity, we focus the discussion on SI over sub-documents. We call out a
situation involving entire base documents if it is substantially different from a similar

situation involving sub-documents.

2.1. Contributions

The major contributions of this research are:

1. The concept of context information for sub-documents, documents, and applica-

tions (collectively called base parts) that reside in the base layer.

2. The concept of bi-level information, which is a combination of superimposed in-
formation (SI), the base-part references, and the context information obtained from

the referenced base parts.

3. Techniques to represent, access, transform, and interchange bi-level information,

and an evaluation of these techniques. The techniques include:

3.1. A system of representing context information as hierarchical property sets.

21

3.2. A methodology to define conceptual schemas over bi-level information, and
procedures to translate conceptual schemas to logical schemas in the relational

[41] and the XML [43] models.

3.3. The abstraction context agent with an associated application-programming
interface (API) to support retrieval of context information from arbitrary base

parts.

3.4. A generic means of accessing bi-level information in the relational and XML

models.

3.5. An architectural component called a bulk accessor to efficiently retrieve con-

text information from a large number of base parts.

3.6. The notion of bi-level queries to transform bi-level information using queries

expressed in existing query languages.

3.7. The notion of an XML bi-level navigator and its use in existing XML query
processors to execute bi-level queries without modifying the processors or the

query languages.

3.8. A means of selectively cloaking (that is, hiding) parts of data to improve the
expression and execution of certain classes of queries, and the application of
cloaking to querying bi-level information. For example, it is possible to hide con-
text information so that queries operating only on SI are more easily expressed and

are more efficiently executed.

22

3.9. The notion of SI-dependency graphs to denote SI and the information on
which SI depends, and the use of an SI dependency graph to package bi-level in-

formation for interchange among SA users.

4. The design of Superimposed Application Shareable Services (SASS, a set of run-
time services to realize the techniques listed in Contribution 3), including architec-

tural desiderata, an architectural reference model, and a reference implementation.
5. A set of deployment guidelines for SAs and the components of SASS.

In the rest of this section, we review each of the major research contributions. Section
2.3 gives an overview of our approach to evaluate the contributions.

2.1.1. Context Information and Bi-level Information

Our first contribution is the ability to uniformly reference base parts (that is, sub-
documents, documents, and applications in the base layer) of arbitrary types; and the
concept ofi context information (or just context for short) for such parts. Context
information is the set of information that can be obtained from a base part [110]. An
excerpt (that is, the content of a base part) is one kind of context information.

“Containing paragraph” and “font name” are other kinds of context information.

The second contribution is the concept of bi-level information [113], which is SI com-
bined with the context information for the referenced base parts. This integrated access
to bi-level information allows SA developers and users to produce useful artifacts and
to provide useful services. For example, a user might transform a Sidepad document to

an HTML document [61] (such as that shown in Figure 1.5) containing descriptions of

23

Sidepad items and the text excerpts of the referenced sub-documents. Access to bi-
level information also enables analytical tasks such as finding the base documents on
which an SI document depends. Such analysis is necessary to interchange an SI docu-

ment (among SA users).

2.1.2. Representing, Accessing, Transforming, and Interchanging Bi-level Informa-
tion

Our third contribution is a collection of techniques to support the following common
activities in relation to bi-level information: representation, access, transformation,

and interchange. These techniques support a developer in both designing and develop-

ing an SA. They also assist SA users at run time.

This section reviews our support for the aforementioned activities, and the different
data models we especially consider in this dissertation for these activities. Table 2.1

lists the activities and the data models.

Table 2.1: Activities on bi-level information and the data models emphasized. A number in paren-
theses denotes the chapter where a combination of activity and data model is considered.

Activity Data models for SI Data models for Context Information
Conceptual representation ER (4) ER (4)

Logical representatipn XML (4, 7); Relational (4); Other (3) XML (4); Property set (3)

Access XML (7); Relational (6); Other (3) XML (7); Relational (6); Property set (3)
Transformation XML (9); Relational (4) XML (9); Relational (4)

Interchange Any (10) Not applicable

2.1.2.1. Representing Bi-level Information
Representing bi-level information involves representation of SI, the marks (which are

references to base sub-documents) the SI employs, and the context information re-

trieved from the marks. (For simplicity, we limit this discussion to sub-document ref-

24

erences, but we also support references to base documents and applications.) We allow
an SA developer to represent SI in any data model (such as the relational or XML
models) with a schema appropriate to the SA. For example, each of the three SAs pre-

sented in Section 1.2 uses a distinct data model to represent its SI.

We define three representations for a mark: encoded string, XML fragment, and Uni-
form Resource Identifier (URI) [15]. An SA may store a mark (in any of the three
forms) entirely within its SI, or store only a unique identifier (ID) string we assign the
mark. A mark is assigned an ID when it is stored in a mark repository, a collection of
marks managed by a service we define. These choices allow marks to be represented
in data models that support string values, XML fragments, and URIs. Because XML
fragments and URIs can be represented as strings, those representations can be used in
any data model that supports strings; and almost every modern data model supports

strings. Chapter 3 describes mark representations and mark repositories.

When representing bi-level information, we do not represent a complete base docu-
ment if only its sub-document is referenced. For example, if a Sidepad document ref-
erences a PDF [6] sub-document, we do not model the containing PDF document. In-
stead, we model only the context information (including the excerpt) retrieved from

the referenced sub-document.

We model context information for each mark as a hierarchical property set in which
each kind of information element retrieved forms a part of the hierarchy, and each in-

formation element retrieved has a name and a value. (See Table 1.1 for an example.) A

25

hierarchical property set provides a uniform representation for context information
regardless of the base-document type, and forms the basis for representation of marks

for other activities. Chapter 3 describes the representation of context information.

To support designing SI, we provide a means of modeling SI, the marks, and context
information, in both conceptual and logical data models [113]. For conceptual model-
ing, we extend the Entity-Relationship (ER) model [25] with the notion of relationship
patterns (that is, recurring relationships) [114] to associate any number of marks with
SI entities, relationships, and attributes (of both entities and relationships). We also
define procedures to translate conceptual ER schemas to logical schemas in the rela-

tional and XML models. Chapter 4 describes this contribution.

We have also developed methodologies to represent marks and context information in
the relational and XML models, independent of the conceptual modeling solution. We
have paid special attention to the association of marks with different XML constructs
(such as elements, attributes, and text content). To this end, we have defined Sixm/ (SI
represented as XML, pronounced 'siks-msl) [118, 120], a means of expressing
marks using only the constructs available in XML Schema [170]. We also define a
procedure to serialize (that is, write) Sixml data using only the syntax to serialize tra-
ditional XML documents [43]. Chapter 7 describes Sixml and its serialization.

2.1.2.2. Accessing Bi-level Information

Access to bi-level information requires access to SI, the marks, and the context infor-

mation retrieved from the marks. In general, the SA developer is responsible for pro-

26

viding access to SI because we do not know the organization of SI, a priori. The SA
developer is also responsible for access to marks that are embedded in SI, but we de-
fine an API to store and access marks in mark repositories we manage. We also define

an API to activate marks regardless of where they are stored.

We define an abstraction called context agent to extract context information from base
parts. A developer can implement the APl we define for this abstraction to retrieve

context information for any base type.

The mark-management and context-management APIs are implemented in SPARCE,
the Superimposed Architecture for Contexts and Excerpts [110], our middleware for
mark and context management. Chapter 3 describes SPARCE and illustrates its use to
access context information from base parts of a variety of types including PDF,
HTML, and Microsoft (MS) Word [96]. (SPARCE relates to the Contributions 3.1 and

3.3, and is a part of SASS called out in Contribution 4.)

Some access patterns (such as those involved in transforming bi-level information) of
SAs might retrieve context information from a large number of marks. We define a
component called the bulk accessor [121] to support such access patterns. The SA de-
veloper can configure the bulk accessor to exploit data characteristics such as the
number of marks and base sources, and the sequence of mark access. Chapter 6 de-
scribes the bulk accessor, illustrates its integration into an existing relational query

processor, and presents the results of an experimental evaluation.

27

In Section 2.1.2.1, we introduced our methodologies to represent bi-level information
in the relational and XML models. In many cases, bi-level information in the relational
model can be easily manipulated using existing mechanisms (such as user-defined
functions [147]), but the same is not true for the XML model. To make manipulation
of Sixml data (which is SI represented as XML) easier, we define Sixm/ DOM [120],
an extension of the XML Document Object Model (DOM) [34]. Sixml DOM makes
marks first-class objects in DOM; accommodates both marks embedded in SI and ref-
erences to marks in repositories via IDs; and retrieves context information on the fly
(using the bulk accessor). Chapter 7 describes Sixml DOM, reviews alternative im-
plementations, and presents the results of an experimental evaluation.

2.1.2.3. Transforming Bi-level Information

An SA developer can retrieve marks and context information for the marks using our
APIs, explicitly combine the retrieved information with SI, and transform the com-
bined bi-level information to new forms (such as an HTML table of contents). Carry-
ing out these tasks using imperative programming languages requires much develop-
ment effort, and it can create dependence on specific programming platforms.

(Chapter 5 illustrates these issues.)

As an alternative, we define a means of implicitly preparing bi-level information and
declaratively transforming it. We accomplish these tasks by representing context in-
formation for the referenced base parts in the same data model as SI, or by

representing both context information and SI in another data model (such as the rela-

28

tional and XML models). To prepare bi-level information, an SA supplies only the SI
and the associated marks to a transformation service we define. The service expands
its input to include the context information appropriate to the transformation, and ex-
ecutes the requested transformation. The SA or the SA user describes the transforma-
tion to be executed using a bi-level query in an existing query language such as SQL

[92] or XPath [166].

We do not require that a transformation service support all data models. We allow
several transformation services, each service possibly supporting a specific data mod-
el. We do not fix a query language to express transformations, but naturally expect
that a language appropriate for the data model of the SI is employed. For example,
SQL might be the query language if SI is in the relational model, but the language
might be XPath or XSLT [177] if SI is in the XML model. We also do not fix a strate-
gy (such as the order of retrieving information parts or the order of evaluating query
parts) to execute bi-level queries, because the right strategy depends on factors such as

the data model, the representation scheme, and the query language.

We demonstrate the ability to execute bi-level queries in the XML and relational mod-
els. In the relational model, we represent bi-level information using the representation
scheme we alluded to in Section 2.1.2.1, express bi-level queries using standard SQL,
and execute the queries using existing query processors. Chapters 4 and 6 provide the

details.

29

In the XML model, we define a bi-level navigator [120] to expose bi-level information
in the XPath data model so that bi-level information can be queried using existing
XML query languages and query processors. The bi-level navigator accepts a Sixml
document as input and uses Sixml DOM to prepare bi-level information. Chapter 9
describes this navigator and illustrates its use in existing XPath and XSLT processors.
The chapter also presents the results of an experimental evaluation using two represen-
tation schemes for Sixml documents. Chapter 5 introduces the alternative representa-

tion schemes.

Finally, certain classes of bi-level queries (for example, queries that examine and re-
turn only SI) can be harder to express and they might execute poorly in a bi-level in-
formation setting. To improve this situation, we define a means for selectively
cloaking (that is, hiding) parts of data to a query processor. Chapter 8 formally de-
scribes cloaking and shows its application to bi-level query processing. Chapter 9 de-
scribes how the bi-level navigator implements cloaking, and presents experimental
results that illustrate the benefits of cloaking.

2.1.2.4. Interchanging Bi-level Information

To interchange bi-level information, we model SI, the associated marks, and the refe-
renced base documents as an SI-dependency graph (which is a directed acyclic graph),
and use the graph to package bi-level information for interchange among SA users.

We also define a process to unpack a received package and allow the receiving user to

30

freely choose the location of SI and base documents extracted from the package.
Chapter 10 describes SI-dependency graphs and their use in interchanging SI.

2.1.3. Superimposed Application Shareable Services

Our fourth contribution is a design for Superimposed Application Shareable Services
(SASS, pronounced 'sas), which is a set of reusable runtime services (that is, services
available at SA execution time) to access, transform, and interchange bi-level informa-

tion.

We have designed SASS with the following architectural qualities in mind. (Bass and

others [13] provide an overview of qualities of software architectures.)

¢ Functionality: The implementation must provide runtime services that are helpful

in implementing the seven application capabilities listed in Section 1.1.

¢ Reusability: Many SAs must be able to use the same SASS implementation. More
than one SA instance must be able to run simultaneously on the same computer,

and each instance must be able to interact with multiple base documents.

e Modifiability: It must be possible to independently improve SASS and the SAs,

with minimal adverse impact on each other.

e Extensibility: It must be possible to support new base types and context elements

without affecting existing SAs and context agents.

e Package flexibility: It must be possible to change the location of the components

of SASS to meet application and user needs. For example, we must be able to dep-

31

loy the components of SASS on the same machine as the SA, or on a different ma-

chine. (This quality is related to deployment of SASS. See Section 2.1.4.)

e Testability: The SASS implementation must aid verification and validation of it-

self, and of the SAs that use it.

e Usability: The SASS implementation must use familiar metaphors, and follow re-
levant development and UI conventions. It must also aid usability of SAs devel-

oped using it.

We have also defined a reference model (that is, a conceptual layout of the compo-
nents) for implementations of SASS, and used the reference model to implement a
prototype SASS called System S. Section 2.2 includes an overview of SASS and the
reference model.

2.1.4. Deployment Guidelines

The fifth contribution is a set of guidelines to deploy SAs and the components of
SASS [112]. For brevity, we do not present the guidelines in this dissertation, but
summarize here the motivation to develop the guidelines. We also provide an outline

of the guidelines.

Component-based systems (such as SASS) allow new components to be plugged in
easily, and allow existing components to be easily replaced. They also offer flexibility
of deployment of the components involved. With proper interface design and abstrac-
tion, components (both data and executable) can be either centrally deployed or distri-

buted, without affecting the services provided. This flexibility is important because

32

placing a component at the right location can improve performance, especially for fre-

quently used services.

In this vein, the overall performance of an SA and SASS can be improved by match-
ing the location of executable and data components to the needs of SA users and BI
providers. However, deployment configurations of SAs can vary widely. For example,
one user might install the Sidepad application on a desktop computer and consult in-
formation available mostly on his local file system. Another user might use Sidepad to
consult information primarily on the web. In the former case, Sidepad and SASS
might be deployed on the same computer. In the latter, Sidepad and some parts of
SASS might be installed on the user’s computer, and other parts might run on a remote
server. In contrast to these two cases, it is also possible to build a web-based SA that

interacts with a SASS installation on a remote web server.

Motivated by these observations, we have developed guidelines for five deployment
alternatives, where each alternative varies the location of SA and of the components of
SASS. The guidelines define some performance metrics, which we use to explore the
trade-offs in each alternative. They also discuss potential barriers for performance, and

posit some means to improve performance.

2.2. Framework Overview

Figure 2.1 provides an overview of our framework to support the design, development,

and deployment of SAs. The top section of the figure shows design-time support to

33

model SI. The bottom section shows support for deployment. The shaded boxes in the

middle section represent SASS.

Superimposed Information Modeling

Superimposed Applications and Superimposed Information]
5 £ =
£ g s 2
[(=}
c [@ 1= 5]
= c 3 E = c
7] = 5 = = S [}
e % = = = 5 =
o E x 5 & = S
] 5 3
‘B S =
o o
Base Applications and Base Information 'I
| ™

Deployment Guidelines

Figure 2.1: A framework to support design, development, and deployment of SAs

The service Reference Management in Figure 2.1 supports creation and retrieval of
marks. (This service’s name captures our framework’s ability to support references to
base sub-documents, documents, and applications.) Context Management supports acti-
vation of marks and retrieval of context information from marks. Ul Widgets provides
UI tools (such as a viewer to browse context information) that multiple SAs may

share. Transformation and Interchange support transformation and interchange of bi-level

information, respectively.

The boxes labeled Harvesting and Collection Management in Figure 2.1 are not part of
SASS, instead they build on SASS. Harvesting refers to the programmatic generation

of marks (as opposed to manual marking). For example, a script might mark the cita-

34

tions in a research paper. The needs and means of harvesting vary among applications

and tasks, but harvesters can build on the Reference Management service.

Conceptual

Model SI <~ -- Schema

File system

and the Collection
web Management

. e /

Harvester

Superimposed
Information

SASY

Superimposed -. A
Application

-

-«
—

Deploy Base Application

Figure 2.2: A reference model for the framework to support design, development, and deploy-
ment of SAs. Solid arrows show control dependency, dashed arrows show data flow

Collection management refers to the management of a set of SI documents along with
the marks they reference, and possibly the base documents to which the marks corres-

pond. For example, one might manage a collection of Sidepad documents and the refe-

35

renced base documents in a digital library. Collection management can reuse parts of

the Interchange service.

Figure 2.2 shows a reference model for our framework. The solid arrows in the figure
denote control (or code) dependencies. The dashed arrows indicate data flow. The box
labeled Model Sl indicates our methodologies to conceptually (and logically) model bi-
level information. The box labeled Deploy refers to post-implementation activities re-

lated to deploying SASS and the SAs.

The area shaded dark represents SASS. The boxes Bi-level Transformer and Context
Transformer together allow SA developers and SA users to manipulate bi-level infor-
mation. The box Interchange provides a means to interchange bi-level information. The
box Viewer represents Ul widgets. The other boxes together indicate mark-

management and context-management services.

2.3. Evaluation Overview

In this section, we provide an overview of the evaluation method for the different

components of our framework.

We have evaluated our methodologies to conceptually and logically represent bi-level
information by using the methodologies in three SAs: Sidepad, the Superimposed
System Information Browser (SSIB) [113], and the Superimposed Scholarly Review

System (SISRS) [109]. Section 4.9 presents the evaluation details.

36

We have experimentally evaluated the performance of the bulk accessor, Sixml DOM,
and the bi-level navigator using datasets containing between a few thousand marks

and over 100,000 marks. Chapters 6, 7, and 9 describe the experiments.

We have evaluated the design of SASS and validated its architectural qualities by
creating a reference implementation called Syszem S using a combination of the NET
[129] and ActiveX technologies [93] for the MS Windows [104] platform. We have
used the extensibility mechanism in System S to support referencing base parts of the
following types: MS Word, MS Excel, MS PowerPoint, PDF, XML, HTML, and a

variety of audio and video formats. Chapter 3 provides the details.

To evaluate the utility of SASS, we have developed five SAs (Sidepad, SuperMix,
HTML+M Editor, SSIB, and SISRS) using System S, and developed multiple queries
over bi-level information created in these applications. We have also built a utility
called Mash-o-matic [115] to generate a class of applications called mash-ups, and to

generate data for mash-ups.
The following is a list of applications developed by others using our framework.

e The Superimposed Multimedia Presentation Editor and Player (SIMPEL) [123], an
SA to organize multimedia content on a timeline and play the content in a syn-

chronized manner.

e [HMC CmapTools [63], a commercial application to develop concept maps, aug-

mented to incorporate marks [124].

37

e The Superimposed TRansactor for Integrating Data into Entities (STRIDE) [10],
an SA designed to capture human attention when integrating data for specific

tasks.

e The Guava Context Agent [153], to mark into UI controls (such as text fields and

list fields) in a class of applications developed using the .NET Framework [129].

2.4. Topics Excluded

Several aspects of SA development and SI management exist that are not covered in

this research, or are covered in only a limited way.

In general, we do not handle updates to base sources with existing marks, nor do we
handle base sources that move. However, our framework does not preclude interac-

tions with such sources. Chapter 3 addresses this topic.

When transforming bi-level information, we do not exploit the data-management ca-
pabilities that a base application (such as a database management system) might have.
Exploiting certain base-application capabilities can help execute some transformations
more efficiently, and developers might be able to express the transformations more

easily (or elegantly) using those capabilities.

We do not define a specific runtime service to store SI. Delcambre and others [32]
have defined a generic SI storage service called SLIMStore. We do not consider sto-

rage of BI, because we consult base information in situ.

38

We support referencing of sub-documents in a cross-platform manner (that is, across
different operating platforms), but we do not consider cross-platform support for al/
the runtime services we define. However, we believe the design of SASS is portable to
most modern operating platforms and is amenable to implementation in most modem
programming languages. For example, our research partners at Villanova University
(under the supervision of Professor Lillian Cassel [60]) have ported parts of the

System S implementation to Java [71].

2.5. A Comparison of Related Systems

Table 2.2 shows a comparison of System S with some of the systems mentioned in
Section 1.4 with respect to the runtime services our framework defines. The first two
rows of Table 2.2 correspond to the service Reference Management in Figure 2.1. The
third and fourth rows correspond to the service Context Management. We do not com-
pare the systems with respect to the service Ul Widgets. The terms shown in italics in

the table are defined in the literature of the respective systems.

None of the related systems assists in modeling information as our framework does.

Also, the literature for these systems does not address deployment issues.

This comparison shows that our research framework provides a comprehensive set of
design and development tools to SA developers, and that it enables the developers to

provide a rich set of services to users of their applications.

39

2.6. Summary

Broadly, this research examines the issues in realizing and leveraging bi-level infor-
mation. It examines SAs and bi-level information from a software-engineering pers-
pective as well as an information-engineering perspective. It defines a framework to
design, develop, and deploy SAs; and presents techniques to represent, access, trans-

form, and interchange bi-level information.

This chapter has provided a summary of the contributions, components, and evaluation
of this research. Chapter 3 begins the detailed description of the research with infor-

mation about representing and accessing marks and context information.

40

Pajeo0ojal A19913 9q
Aew S)uWINOOP

uop

-B20] 9]l 10J Uon
~UDAUOY B 2SN pue
SIUWINOOP Paoual
-9Ja1 21BYS A[[Enu

SIUDWNIOP
PoIUDIDJAI dIRYS
Aenuews {ow

uoned0|

[10J UOTJUDAUOD
® 3sn pue ‘sjudwll
-No0p PduUAI

-3Jo1 21BYS AJJenu
-ewr [1¢1] yew

[¥] aamesy 0p puv

paouaigjal ‘payod -BW §JUOWINOOP | ~d0,] 28upioLauf -10J S3ueydI93Ul juowm yovg oy} Suisn gliclitul 1S
-dns £joAneN punodwios a1eys A21x2(7 94} 5[] xopedAy e asp) -00p 2I1UQ dIRYS Suwreys panwry -00p a1yud a1eyS | AfueyarAu
SIUUOD PAASLY papioj
o8enSue| -a1 Jursn 11 y0d -Je suonerado SUOISIADI SUOISIADL
A1anb aAnjere[Oop -dns Aew uoyvo dnoi3 pue ‘pos PUE SIUSWWOD PUE SJUSWWOD uoyeuLIof
e osn Kew ‘paytod | -yddp 43jj0.48u00 © ‘I19)]1J {$IUIWLIOD Ajuo Jo souonbos Ajuo yo aouanbas -ul [2A9F1q
-dns AppaneN | ‘poddns sapeu oN pauoddns joN papoddns 10N A7u0 3O 1S1] MIIA paIdyun MIIA paIaIyun MIIA ULIOJSHRBA],
UuoHRULIOJU] J1qe|IRAR Jlqe[IeAE Jlqejreae
JX31U09 JO Spury SJBULIOJ [BIDADS 1dV Ing ‘uoned IdV 1nq ‘uoned 1dV Inq ‘uonjeds
Iayjo Auew pue urnq uaauod -11dde o) unpm -11dde ayy urynm -1idde oy urgna [BASLIA
JUSJUOD SASLHIY Ajuo aromY pauoddns joN panoddns joN panoddns 10N pauoddns joN papoddns joN 1X9Ju0)
JX2IU0D
Ul JUSWNOOp-qns
IXU0O U] IX91U0D Ul AMOYS 0} panbax JX2JU0D UL Jrew JYlew
JUSWNOOP-QNS 93§ | JUSWINOOP-qNS 39S S1 424p] swiy-und | JUWUNOOP-QNS 998 -)00q B 3jBAlOR -j0oq & 9jeAnde
01 poddns saneu 01 poddns sapeu yova Yuiodpus 01 poddns aaneu | 01 uado aq Apeaife yuip | o3 uado aq Apeaie uoneAnde
SjIew © 9)RANOY S[ul] © 9BANOY S Ul[© 91BADOY Ul B 9JBAIOY snun w0 | ~1odAy e 9jeAdY s a0 NIBA
woy pedopig uonerado uoneyudsard
® S Yons jusw Jusw spurod yuy'y a121dwior) JUSWNOOP 2wips | ISYIOUL IO JUdLIND JUSWNOOP 2UDS syJeu
-9J0 1S UB UM -noop punoduiod -pua se sIoyoue ayy uuopzad pue o ur aroymAue 9y} U1 OpIJS © 0} oy ur a1aymAue ajesodioour
JIew B 2Je100SSY BUINUI[BI0B]J | Uim yuy e sujaq Joyoue Ue 2jeal)) | Yleun{ooq e UISU] | YuipiadAy e osu] | YIBWN0Oq B HasUf 0 SuBIJ\l
uoy PaOUDISJaI ST APIS
Jusu ~-ev1ado yury 101§ FdDUY00q B USYM PIIBIID YdoUiyooq UISTUB YOI
uoneostjdde aseq | woypvoyddp 4sa.458 -odwios e UM oy uuoyrad pue | 9yeard pue ofed A[jeonewiolne | e 9JeAIO pue UDdS uonEdId
B U yIew e 98I0 BUI YUy € 9JRaI) | Loyoup ue SUYD(| 4oyoup Ue eAL) | B UO JOSINO 30R[J | SIOPHS R OYYUII Y | 42100.40Y3 B 103[§ NIB]A
(g1] syuour
-nooq punod [96] zooT f96]
S wdysAg -uo) 7 410 (£s] 1a1%2Qq {ss] sraT - (8] 0°L yeqosoy jurogasmod S 2007 piom SIN

[°T 2031, Ul UMOYS SIDTAIIS JWITIUNLE 3Y) 0) JIdSAX YJIM ST UOSLIBdUI0Dd Y J, *SWII)SAS PIJE[I.L JUIOS PuE § WI)SAS Jo uosireduiod y :7°7 dqe],

3. Representing and Accessing Base References and Contexts

Chapter 2 introduced the notion of Superimposed Application Shareable Services
(SASS) and reviewed its role in our framework for superimposed applications (SAs).
The Superimposed Pluggable Architecture for Contexts and Excerpts (SPARCE) [110]
is the part of SASS that supports creation of references to base sub-documents, docu-
ments, and applications (collectively called base parts), activation of base parts, and
retrieval of context information from base parts. It is designed to satisfy the architec-

tural requirements listed in Section 2.1.3.

This chapter describes SPARCE, provides a summary of its evaluation, and reviews

related work.

3.1. Introduction

This section introduces some terms, provides an overview of SPARCE, and reviews a

process of creating references to base parts.

SPARCE implements the mark abstraction to reference a base sub-document; the ab-
straction document to reference a base-layer entity such as a document or a database in
which marks may be created; and the abstraction application to reference a base pro-

gram used to view and access marks and documents.

In this dissertation, for simplicity (and for historic reasons), we use the term mark (a
reference) to also mean a base sub-document (a referent). Likewise, we use the terms
document and application generally to mean a referent. We disambiguate the use of

these terms when the meaning is not clear from the context.

42

The information necessary to reference a base part is called a descriptor. A mark
descriptor includes information such as the location of a sub-document within a base
document. A document descriptor includes information such as the path to the disk
file containing a base document. An application descriptor contains information such

as the name and version of a base application.

The abstraction context denotes information concerning a base part. Presentation in-
formation such as font name, containment information such as enclosing paragraph,
and placement information such as page number are examples of context information
retrieved from a mark. File path and file size are examples of context information re-
trieved from a base document. Application name and publisher name are examples of

context information retrieved from a base application.

Excerpt is the content (such as text and image) retrieved from a mark or a document.

An application does not have an excerpt. An excerpt is a part of a base part’s context.

Figure 3.1 shows a reference model for SPARCE. The module Reference Management
handles operations such as creation of base-part references. Context Management is re-
sponsible for activating a base part (that is, showing the base part in its original con-
text) and for retrieving context information from the base part. The Clipboard facilitates
inter-process communication. The Descriptor Repository provides storage for base-part

descriptors.

Clipboard
Superimposed o Context Base
Application Management Application
Y

s v

; Reference

E Management

'

1

H

A

Descriptor
Repository

Figure 3.1: The SPARCE reference model

43

We now briefly describe the process of creating marks. Marks may be created interac-

tively or programmatically. Figure 3.2 shows a user of an SA creating a mark interac-

tively. In this case, the user first selects a sub-document within a base application—for

example, a text selection in a Microsoft (MS) Word [96] document—and copies the

selection to the clipboard that the operating system (OS) provides. This operation cop-

ies a mark descriptor to the clipboard. The user then “pastes” the clipboard contents

into an SI document, in an SA. In response, the SA retrieves the mark descriptor from

the clipboard, and associates the retrieved descriptor with an SI element (that the user

chooses). For example, in the Sidepad application introduced in Section 1.2.1, the user

may associate a mark descriptor with an

item.

Base Application

Operating System

—

—> Clipboard

Superimposed
Application

G

Figure 3.2: Interactively creating marks

44

Advanced Editing
Loosely speaking — Measung

(@)

&1 e Edt View Imet Fgmat Jook SideShow MathType
[= s . ® ol -8 - BIU 3 EEE S

TAaK 0 MICke Ik Tophe I 300kS D ARDASOr AT
PSU Student-Ambassador Weekly Effort
Mia-termn
=~ Average
e
~&~Cateh up
i
i
"t fas g tlovaerg
5 8 7 Gouping '
Wosk Number O d
Set Autoshape Defauits
Dide, wam i¥ zy w2 | 5% Custom Animation... iy -
*, “ormat AutgShape. .. . s

Figure 3.3: Examples of initiating mark creation interactively. (a) Using a new tool ‘Create
Mark’ inserted into Acrobat; (b) Using the native copy operation in MS PowerPoint

There are several ways to implement the “Copy” operation in a base application. For
example, some base applications (such as Adobe Acrobat [8]) allow their user inter-
face (UI) to be extended. In this case, a special mark-creation tool can be inserted into

the application. The user invokes this special tool to create a mark descriptor. Some

45

base applications (such as MS PowerPoint [96]) provide a hook into their native copy
operation. When the user copies information to the clipboard in these applications, the

hook can be used simultaneously to copy a mark descriptor to the clipboard.

Figure 3.3 illustrates these two example means of initiating mark creation. In the first
case, a mark to a text selection is being created using a special tool named ‘Create
Mark’ inserted into Acrobat. In the second case, a mark is being created to three text
boxes in a slide using the clipboard-copy operation available natively in MS

PowerPoint.

3.2. Representing and Accessing Base References

In this section, we describe two representations for a base part’s descriptor (delimited
string and XML fragment), the notion of a descriptor repository, and a means of
representing a base-part reference as a Uniform Resource ldentifier (URI) [15]. We
also introduce a run-time object representation for base-part references.

3.2.1. Descriptors as Delimited Strings

A descriptor represented as a delimited string is a sequence of sub-strings separated by
the “tab” character (the Unicode character \u0009 [157]). The first sub-string identi-
fies the kind of base part described. The second sub-string identifies a software wrap-
per called a context agent used to interact with the base part described. The first two
sub-strings of a descriptor are required, but context-agent developers are free to decide

the other sub-strings. At run time, SPARCE interprets only the first two sub-strings,

file:///u0009

46

and passes the entire descriptor to the appropriate context agent. Section 3.3 describes

context agents.

The foilowing is an example mark descriptor from our SPARCE implementation (de-
scribed in Section 3.6.1). The symbol — represents the tab character. (The spaces
around a tab character are included only for clarity.) The second sub-string in this ex-
ample shows the name of an ActiveX class [93]. The third sub-string denotes that the
sub-document referenced is a text selection in a PDF document. The fourth sub-string
indicates that the referenced sub-document ranges over the Words 395-439 on Page 2.
The last sub-string shows the date and time at which the descriptor was created. The

ellipsis denotes sub-strings omitted for brevity.

Mark — AcrobatAgents.PDFAgent — AcrobatPDFTextMark — 2]395/439 —..— 2004~05-28 14:03:02
A descriptor is commonly copied to the clipboard as a delimited string when a mark is
created interactively (as described in Section 3.1).

3.2.2. Descriptors as XML Fragments

A descriptor may also be represented as an XML element. The name of the element
(Mark, Document, App) is derived from the kind of the base part described. Figure 3.4
shows the XML representation for three descriptors in our SPARCE implementation.
In each descriptor, the optional attribute ID of the top-level element denotes the glo-
bally-unique identifier (GUID) [18] assigned to the descriptor. (The figure shows sim-
plified values instead of true GUIDs to improve readability.) The text content of the

mandatory sub-element Agent identifies the context agent used to interpret the de-

47

scriptor. Other than the sub-element Agent, context-agent developers are free to

choose the inner structure of a descriptor.

The representation of descriptors in Figure 3.4 is normalized [12] because the mark
descriptor references a document descriptor (using the element DocumentID), and a
document descriptor references an application descriptor (using the element App.ID).
This representation reduces redundancy when more than one mark is created in the
same document, or when marks are created in more than one document that requires

the same base application.

A descriptor may directly contain another descriptor (in an un-normalized fashion),
instead of referencing the other descriptor by its ID. For example, a mark descriptor

may contain the element Document directly instead of the element DocumentID.

<Mark ID="M4"> <Document ID="D6">

<Agent>AcrobatAgents.PDFAgent</Agent>
<Class>AcrobatPDFTextMark</Class>
<Address>2|395[439 </Address>
<Description>

Page 3 in f.pdf (Acrobat PDF)

<Agent>AcrobatAgents.PDFAgent</Agent>
<Location>E:\Base\f.pdf</Location>
<AppID>A8</AppID>

</Document>
(b)

</Description>
<CachedText>provide applications and ...</CachedText>
<Who>smurthy</Who>

<Where>C3</Where>
<When>2004-05-28 14:03:02</When>
<DocumentID>D6 </DocumentID>
</Mark>

<App ID="A48">
<Agent>AcrobatAgents.PDFAgent</Agent>
<Name>Adobe Acrobat 5.0</Name>
</App>

(@) (©

Figure 3.4: Base-part descriptors represented as normalized XML fragments. (a) A mark descrip-
tor; (b) A document descriptor; (c) An application descriptor

An SA may optionally store (some or all of) the descriptors it employs in a descriptor
repository, which is a persistent collection of descriptors. For a descriptor stored in a
repository, the SA includes only the descriptor’s GUID in its SI, instead of including

the descriptor directly. Figure 3.5 shows an XML representation of a part of the

48

Sidepad document in Figure 1.3. The first Sidepad item shown, denoted by the first
instance of element Item, embeds a complete mark descriptor. The second item refer-
ences a mark descriptor stored in a descriptor repository. (Chapter 7 describes how an

SA associates a repository with SI.)

<SidepadDoc title="Data Integration">
<Item name="Goal">
Mediate heterogeneous data sources without replicating data
<!--Embed a mark descriptor directly in SI. ID is optional in this case. -->
<Mark ID="M4">
<Agent>AcrobatAgents.PDFAgent</Agent>
<Class>AcrobatPDFTextMark</Class>
<Address>2]395]|439</Address>
<Description>Page 3 in f.pdf (Acrobat PDF)</Description>
<CachedText>provide applications and ...</CachedText>
<Who>smurthy</Who>
<Where>C3</Where>
<When>2004-05-28 14:03:02</When>
<Document>...</Document>
</Mark>
</Item>
<Item name="Model">
Provides a unified schema expressed in...
<!-~-Reference a mark descriptor stored in a repository. ID is mandatory in this case. -->
<Mark ID="M12"/>
</Item>
</SidepadDoc>

Figure 3.5: Example use of mark descriptors in SI represented as XML

SPARCE manages descriptor repositories, and assigns a GUID to each descriptor in a
repository. We do not fix a representation scheme or data model for descriptors in a
repository, but provide ways to represent descriptors in any schema in the relational
and XML models. (The XML fragments in Figure 3.4 use the scheme that our proto-
type SPARCE implementation employs.) Chapters 4 and 6 describe the use of descrip-
tors in the relational model. Chapters 4 and 7 describe in detail the use of descriptors

in the XML model.

Referencing a base part using a GUID creates a dependency between an SA and a de-
scriptor repository. This dependency does not exist if SI includes descriptors directly,

but directly including descriptors does not eliminate the dependency of SI on base

49

documents and applications. Chapter 10 describes a means to manage these dependen-
cies (when interchanging bi-level information).

3.2.3. Referencing Base Parts using URIs

We now describe a means (that we have defined) to represent a base-part reference as
a URIL (A URI names a resource, such as a document or a printer, independent of the

resource’s location.)

URI = scheme ":" hier-part ["?" query] ["#" fragment]
hier-part = <<as defined in RFC 3896>>

fragment = <<as defined in RFC 3896>>

scheme = "sparce"

query = bp reference ["2" action]

bp reference = bp_descriptor / bp_id

bp_descriptor = T"descriptor=" descriptor ["?" enc_name_value]
descriptor = <<a serialized descriptor, possibly encoded>>
enc_name_value = "encoding=" enc_type

enc_type = "none" / "base64"

bp_id = "markid=" markID / "documentid=" documentID / "appid=" applD
markID = <<SPARCE-assigned mark ID>>

documentID = <<SPARCE-assigned document ID>>

applD = <<SPARCE-assigned application ID>>

action = "action=" verb

verb = Tactivate" / "showContext™ / "getContext"

Figure 3.6: A context-free grammar to construct URIs in the sparce scheme

In our approach, a base-part reference is constructed as a URI in a scheme called
sparce. A URI in this scheme is chiefly for use in traditional documents, such as web
pages, word processor documents, and spreadsheets, so that a user can add some SA
capability to an existing application (such as a word processor or a web browser)
without changing the application. Thus, the user is able to exploit the information

model and functionality of existing applications even though the applications are not

50

built expressly as SAs. This capability comes from the user incorporating sparce
URIs in the information created in an existing application, and from the application or

the OS invoking the registered “handler” software when a sparce URI is activated.

Figure 3.6 shows a context-free grammar to construct URIs in the sparce scheme.
This grammar is to be interpreted in accordance with the general syntax for URIs spe-
cified in the Internet Engineering Task Force’s Request for Comments 3896 (RFC
3896) [15]. In this grammar, brackets denote optional tokens, the slash symbol (/) de-
notes an alternative, and double angle brackets contain informal descriptions. Strings
shown in double quotes must be used literally, without the quote marks. Spaces out-
side quotation marks are used only to improve readability. Such spaces must be ig-

nored when constructing a URL

The non-terminal symbols URI, hier-part, fragment, scheme, and query used in
this grammar are originally defined in RFC 3896. We retain the RFC 3896 rules for
the symbols URI, hier-part, and fragment, but redefine the rules for the symbols
scheme and query. Specifically, we restrict the value of scheme to the string
"sparce”. We also restrict the value of query such that it can only identify a base part
and associate an action to be performed on the base part. Our rules for these two sym-

bols generate strings that are valid according to RFC 3896.

The symbol query allows a base part to be referenced directly using a descriptor or

using a descriptor’s ID. When a descriptor is used directly, it may be encoded using

51

the Base 64 encoding scheme [77] (which, among other things, encodes the descriptor

to a string that is safe for transmission in a variety of environments).

A sparce URI may optionally indicate one of the following actions to be performed
on the referenced base part: activate (the default action), show context, and get con-

text.

The following URIs are constructed using the grammar in Figure 3.6. The first URI
directs the user’s computer (denoted by the server localhost) to activate the mark
M4. The second URI retrieves the context information for document D6 from the
server sidewalk.cs.pdx.edu. The third URI asks the local computer to activate ap-
plication A8. The last URI asks the local computer to activate the mark whose descrip-
tor is embedded in the URI. (The descriptor in the last URI example is from Section

3.2.1)

sparce:localhost?markid=M4
sparce://sidewalk.cs.pdx.edu?documentid=D6?action=getContext
sparce:?appid=A8?action=activate

sparce:?descriptor=Mark—>AcrobatAgents.PDFAgent—..—>2004-05-28 14:03:02

3.2.4. An Object Model for Base References
We also define an object model to work with base parts at run time. Figure 3.7 shows

this model as a static class diagram drawn using the Unified Modeling Language
(UML) syntax [159]. The superimposed application and base applications (that is, the

packages shaded gray) are not part of SPARCE, but are shown for completeness.

http://sidewaik.cs.pdx.edu
http://pdx.edu

52

SPARCE does not define the classes shown with filled lines (for example, MS Word

Agent), but it instantiates them at run time to interact with the base layer.

The abstract class Context-aware Object represents a reference to a base part one might
“see in context” and for which context information can be obtained. Marks, docu-
ments, and applications are context-aware objects. A context-aware object is created
from a descriptor, and has a GUID. The GUID is the same as that of the source de-
scriptor, if the descriptor has a GUID. If the source descriptor does not have a GUID, a
new GUID is assigned to the resulting context-aware object. The same GUID is also

assigned to the source descriptor.

An SA can work with the class Context-aware Object to interact with a base part regard-
less of its kind. It can cast a context-aware object to a mark, document, or an applica-
tion (as appropriate) to work with aspects specific to the kind of the base part.

3.2.5. Storing and Accessing Base References

The abstract class Descriptor Repository in Figure 3.7 defines the API to create, store,
and retrieve base-part descriptors. The method GetCAQ creates a run-time object repre-
sentation of a base-part descriptor. It creates an instance of the class Mark, Document, or
Application based on the descriptor, and casts the object created as an instance of the
class Context-aware Object. An SA uses this method to work with a base part whose de-

scriptor is stored directly in SI.

53

Mark Document Application
Context-aware Object Instantiates
| | L D Instance |
_ Descriptor Repository
St;per;:mgéseu 1 GetCAO(in descriptor)
Pplcason GetCAOFromiD(in id)
Instanti StoreCAQ(in descriptor)
Context Agent nstantiates Jinstance
Activate()
GetContext{)
[/PDF Agert | [o Agent| Root Kind
Context Kind
Name
Hierarchy
—] — ?
MS Context Element
MS Word Acrobat Internet Name
Explorer Value

Figure 3.7: The SPARCE object model

The method GetCAOFromID returns an instance of Context-aware Object for the descrip-

tor whose GUID is supplied, after retrieving the descriptor from the repository. An SA

uses this method to work with a base part for which only the descriptor ID is stored

with SI (instead of the complete descriptor being stored with SI).

The method StoreCAO stores a descriptor in a descriptor repository and returns the

GUID assigned to the descriptor. Two versions of this method exist: one accepts a de-

scriptor; another accepts an instance of Context-aware Object (possibly created using the

method GetCAO).

Any number of descriptor repositories (that is, instances of implementations of the ab-

stract class Descriptor Repository) may exist. An SA might even use multiple descriptor

54

repositories simultaneously. Chapter 7 describes in detail the use of descriptor reposi-

tories in the XML model.

The API described in this section does not include methods to retrieve descriptors. We
consider that aspect as a part of representing, accessing, and transforming bi-level in-

formation in specific data models. Table 2.1 lists the data models we have considered.

An SA may freely alter the descriptors it stores with SI, but we do not allow an SA to
directly update a descriptor stored in a repository. To ensure repository consistency,
we allow only components of SASS to modify a descriptor in a repqsitory. For exam-
ple, the service to interchange bi-level information alters a base document’s descriptor

if the base document is relocated. Chapter 10 describes the interchange service.

3.3. Representing and Accessing Context Information

This section describes how context information for a base part is represented and re-
trieved. It also introduces the abstraction context agent and shows how it is used to
activate a base part and retrieve context information.

3.3.1. Representing Context Information

The context information for a referenced base part is a hierarchical property set (that
is, a set of name-value pairs organized hierarchically). In this scheme, context ele-
ments are organized into context kinds. For example, information such as font name
and font size are of the kind “presentation”, whereas information such as line number
and page number are of the kind “placement”. A context kind may have sub-kinds.

Pieces of information at the leaf level of a context hierarchy are called context

55

elements. (This organization of context information is analogous to a hierarchical
structure of directories and files: A context kind is similar to a directory; a context

element is similar to a file.)

€ pp o L R e R LT M e e et)

PR, - —— " e - - m = Mem mmdes Er e s s

B & &
Context kinds and elements [Malue of the context element currently selected
& Content A iprovide applications and users with the benefits of & detabase =
H with 2 3chema -- 3imilar to what an object- oriented oOT
Formatted Text object- relational datebase system might provide -- but
: Picture without actually 3toring { at least the buik of) the datas
= Presentation within the Garlic system
: Font Name
- . Font Size
- Placement
.. Page Number ~
e

@

B Mtiphe PowsrPoint Objmects (Mask fada e - 1= X
a -

- AutoShape 10

 Contert Preview Day

- Presentation
- Font Name
- Fant Size
B-Irformation
1D
Name
- Left
- Top
- Height
~Width
- Type
- Animated?
#-AutcShape 11
£-AutoShape 12
- Cantaining Slide
E Content
i Graphics
93 {nformation
&-Substructure
i Header
. Footer 1

(b)

Figure 3.8: Context information from marks displayed in the Context Browser. Figure 3.3
shows the corresponding marked regions. (a) Context information for a PDF text selection; (b)
Context information for a selection of multiple objects in an MS PowerPoint presentation

56

- Figure 3.8 shows the context information retrieved from the two marked regions
shown in Figure 3.3. The context information for each mark is shown in a Context
Browser, a utility we have implemented (using the access mechanism described in
Section 3.3.2). Figure 3.8(a) shows the browser displaying the partial context informa-
tion for the mark to the PDF text selection of Figure 3.3(a). The tree in the left pane
displays the context hierarchy. The right pane displays the value of the context ele-
ment currently selected in the context hierarchy. In this case, the browser is showing

the value of the text excerpt (which is a string) retrieved from the mark.

Figure 3.8(b) shows the context browser displaying a part of the context information
from the mark created in Figure 3.3(b) to three text boxes in an MS PowerPoint slide.
The top-level entries named AutoShape 10, AuthoShape 11, and AutoShape 12 in the con-
text hierarchy represent the three text boxes. (PowerPoint assigns these names to the
text boxes). The entries under AutoShape 10 show the context hierarchy for the text box
with the content ‘Preview Day’. The last top-level entry named Containing Slide shows
the context hierarchy for the slide that contains the three marked text boxes. The right

pane in the context browser is currently showing an image of AutoShape 10.

Representing context information as a hierarchical property set enables developers to
support a context hierarchy that is specific to a base type (that is, type of BI) as illu-
strated in Figure 3.8. The representation also lets a developer customize the hierarchy

for each mark. For example, the context for an MS Word mark to text situated inside a

57

table can include a ‘column heading’ context element, but the context for a mark to

text outside any table can exclude that context element.

We define both object and XML representations for context information. In Figure
3.7, the classes Context, Context Kind, and Context Element define the object model.
Chapters 7 and 9 discuss the XML model.

3.3.2. Accessing Context Information

SPARCE uses an abstraction called a context agent (which is a mediator [162]) to ac-
tivate a context-aware object and to retrieve context information for it. In Figure 3.7,
the class Context Agent models a context agent. Several context-agent implementations
(that is, specializations of the class Context Agent) may exist. Figure 3.7 shows three
such implementations: MS Word Agent, PDF Agent, and HTML Agent, each supporting a
distinct base type with the help of an appropriate base application. SPARCE pairs a
context-aware object with a context-agent implementation based on the information
contained in the descriptor for the context-aware object. For example, the element
Agent in Figure 3.4(a) contains the name of the ActiveX class that implements a con-

text agent for PDF marks.

SPARCE passes the complete descriptor of a context-aware object to the associated
context agent. The agent interprets the descriptor, and performs the operations an SA

requests.

An SA uses the context agent abstraction to operate on a context-aware object. Using

this abstraction instead of using specific implementations enables an SA to work with

58

any supported base type and context-aware object. Also, it allows new context-agent
implementations to be added and existing context agents to be modified, with minimal

advese impact on the SAs.

An SA uses the method GetContext to retrieve context information. In response, a con-
text-agent implementation returns an instance of the class Context (containing the con-
text information). The SA uses the retrieved context information as suits it. For exam-
ple, by default, Sidepad populates the descriptive text of an item from the text excerpt
of the mark associated with the item. SuperMix synchronizes a composition using the
duration information obtained from the context of a mark to an audio or video clip.

(See Section 1.2.)

3.3.3. Activating Base Parts
Activation is the process of showing a referenced base part in its original context. The

result of activating a base part varies across references, but in general, activating a
base application launches the application; activating a base document activates a base
application and then opens the document; and activating a mark activates the appro-
priate base document and then “highlights” the sub-document which the mark refer-

€nces.

SPARCE supports two styles of activation: traditional style and arena style. The tradi-
tional style conceptually mimics the manual process a user follows to activate a base
part. In this activation style, a base application decides the characteristics of the win-

dow where the base part is displayed. For example, Figure 1.4 shows the result of a

59

traditional activation. In this case, the base application, Adobe Acrobat, determines the
location of the window on the screen, and possibly the window dimensions. If two
marks for the same application are activated, the exact location and dimensions of the
two windows might not be predetermined: The two marks may be activated in the
same window or in different windows. If the marks are activated in the same window,
the mark activated later might replace the result of the earlier mark activation. If the

marks are activated in different windows, the windows might overlap.

The traditional style of activation suffices for SAs such as Sidepad, but other SAs such
as SuperMix need better control over activation. We provide arena style activation to
support such applications. An arena is a Ul window that an SA may split into smaller
regions called panes. The SA may then direct the result of activating a base part to a
particular pane. For example, Figure 1.7 shows two panes activated by SuperMix: a
video mark in the top pane, and an HTML mark in the bottom pane. When the current
video clip is completely played, SuperMix plays the next clip in the top pane, and
shows the text for the new video clip in the bottom pane. The location and the dimen-

sions of each pane are unaltered between activations.

An SA uses the same set of context-agent implementations for either style of activa-
tion, except that in the arena style, it provides each context agent a handle to the pane

that should contain the result of activating the base part.

Every context-agent implementation supports the traditional style of activation and

optionally supports the arena style. An SA can determine at run-time if a context-agent

60

implementation supports the arena style of activation (by querying the interfaces that

the context-agent implementation supports).

3.4. Supporting New Context Elements and Base Types

Supporting new context elements or changing the context elements supported by a
context agent only requires changing the definition of the hierarchical property set in
the relevant context-agent implementation. An SA may ignore new context elements if
it is not capable of handling the new elements, or if it does not require them. After
changing the context-agent implementation, the SA needs to be recompiled (but not
rewritten) if the context-agent implementation and the SA are linked statically; the SA

does not need to be recompiled if the linking is dynamic.
Support for a new base type can be added by following these five steps:

1. Study the base type to understand support for marking. This study should include
understanding the addressing schemes possible for the base layer. Choose the ad-

dressing schemes to support.
2. Design the structure and content of descriptors. Figure 3.4 gives an example.

3. Determine the context elements and the context hierarchy (or hierarchies) to sup-

port.

4. Study the base application to understand the means to-interactively create marks
(that is, to copy descriptors to the clipboard). This step is related to providing a Ul
element within the base application as illustrated in Figure 3.3. Choose and im-

plement the interactive mark-creation means.

61

5. Implement a context agent. This step is related to activating marks and retrieving

context information for marks with the help of the base application.

Again, supporting a new base type may require SAs to be recompiled if the SAs are to

be statically linked to the context agent that supports the new base type.

Multiple context-agent implementations may exist for the same base type, and these
implementations may employ distinct (possibly incompatible) descriptors. However,
this possibility does not pose any problem, because a context-aware object created
from a descriptor is processed only by the context-agent implementation indicated in

that descriptor.

3.5. Mark Robustness

We now briefly discuss issues related to mark robustness, that is, the ability of a mark
(which is a sub-document reference) to remain valid when some aspect of its base
document changes. We limit this discussion to robustness of sub-document references
for simplicity, and because sub-document references present some unique challenges.
3.5.1. Mark Invalidation

A mark may be subject to three kinds of invalidation: context invalidation, address
invalidation, and intent invalidation.

3.5.1.1. Context Invalidation

Context invalidation occurs when the context information for a mark changes in any
manner after the mark is created. For example, the font name of a marked region in a

PDF document, or the content of the text surrounding the region, might change.

62

Content invalidation is a special case of context invalidation. It occurs when the con-

tent of a marked sub-document changes after mark creation.

Context invalidation can affect an SA or a context-agent implementation that caches
context information to improve performance or to support disconnected operations
(that is, support operations on parts of base information even when some base docu-
ments are inaccessible). Context invalidation can also affect a context-agent imple-
mentation that uses a context-based addressing scheme. For example, an implementa-
tion might cache the text excerpt (retrieved using the access mechanism we define) at
mark-creation time and use the excerpt as the sub-document address.

3.5.1.2. Address Invalidation

Address invalidation occurs when a mark cannot be activated even though its base ap-
plication can be activated. There are several reasons for address invalidation. For ex-
ample, context invalidation may cause address invalidation if the sub-document ad-
dressing scheme is based on context information (such as text excerpt or section head-
ing). A mark’s address may also become invalid when the marked region is “deleted”
or if the region containing the marked region is deleted. For example, assume that the
addressing scheme for marks into text selections in PDF documents uses a page num-
ber, and the starting and ending indexes of the words in the selection. Then, the ad-
dress of a mark to the last few words in a PDF document becomes invalid if those
words are deleted. In the same addressing scheme, the address of a mark to any selec-

tion in the last page of a PDF document becomes invalid if the last page is deleted.

63

Similarly, if a record in a relational database is addressed using values of key
attributes, the address can become invalid if the record is deleted.

3.5.1.3. Intent Invalidation

Intent invalidation occurs when a change to a base document results in a mark that ac-
tivates successfully, but the mark no longer references the sub-document the mark
creator originally intended. There are several reasons for intent invalidation. For ex-
ample, inserting new data into a document can shift a marked sub-document causing

the mark to reference the newly inserted data.

Context invalidation can cause intent invalidation if the sub-document addressing
scheme is based on context information. For example, if “slide number” is used to

mark into a presentation, reordering the slides invalidates user intent.

Understanding user intent is one of the harder parts of mark management. For exam-
ple, when the user marks the first paragraph in a document, it can be hard to under-
stand if the user means to mark into the particular text of the paragraph, or if he in-

tends to mark into whatever is the first paragraph.

Resolving a mark whose intent is invalidated might depend on the capabilities of the
base application. For example, the application would need to support addressing
schemes that capture the user’s intention accurately (or, at least, sufficiently). Having
the user direct mark resolution, or confirm the result of a resolution, is one way to

handle intent invalidation. Capturing sub-document address using multiple addressing

64

schemes at mark-creation time (the “belt and suspenders™ approach) is a way to reduce
the frequency of (undetected) intent invalidation.

3.5.2. The Role of Addressing Schemes

The sub-document addressing scheme that a mark uses largely determines the robust-
ness of a mark. Several addressing schemes may be possible for a given base type, and
each scheme might provide robustness under different conditions. For example, when
addressing a section in an MS Word document, one can use the starting and ending
indexes of the characters in the section, use the section heading, or use the text content
of the section as the address. A character index remains valid as long as the document
has a sufficient number of characters, but it might not retain user intent. The scheme
using section heading works as long as the heading 1s unaltered. Finally, text content
works as the address as long as the text is unique and it appears somewhere in the

document.

SPARCE does not prescribé or proscribe specific sub-document addressing schemes.
(It does not even interpret sub-document addresses.) Context-agent implementations
are free to choose one or more addressing schemes based on factors such as the goal of
addressing, the structure (or lack thereof) of base documents, and the capabilities of
base applications.

3.5.3. Improving Mark Robustness

To improve the robustness of a mark, we make the following recommendations to

context-agent implementers:

65

e Avoid addressing schemes based solely on content or context.
e Exploit read-only base sources where available.

e Capture some context information at mark-creation time, and use the captured con-

text to validate and redirect a mark, if necessary.

e Use multiple addressing schemes. Ensure that each scheme provides robustness

under different conditions.

e Where available, incorporate immutable identifiers from the base layer in sub-
document addresses. (For example, MS PowerPoint assigns a unique and immuta-
ble ID to each .slide.) Immutable identifiers assure that the same base object is ac-
cessed always, as long as the object is not deleted. (The use of immutable identifi-

ers might not prevent context invalidation.)

e When resolving a sub-document address, locate the closest sub-document, or lo-
cate the containing sub-document, instead of just failing if an address is invali-
dated. For example, when activating a PDF mark, activate the containing page, if

the marked words on that page are deleted.

3.6. Evaluation

We have evaluated the representation and access mechanisms discussed in this chapter
by implementing SPARCE as middleware, and by building context agents and SAs
that use the SPARCE implementation. In this section, we provide an overview of the

implementation, and discuss how it performs with respect to the architectural qualities

66

listed in Section 2.1.3. We also review the key design decisions the evaluation vali-

dates and briefly discuss some of the design alternatives.

3.6.1. Implementation

3.6.1.1. SPARCE
We have implemented the architectural components of SPARCE shown in Figure 3.7

for the MS Windows platform using primarily the ActiveX technology [93]. This im-
plementation supports both the traditional and arena style of activation (described in
Section 3.3.3). The implementation also includes a “handler” to interpret base-part
references represented as URIs in the sparce scheme that are constructed using the
grammar shown in Figure 3.6. (The application, most likely the OS, invokes the hand-
ler when the user activates a sparce URI. The handler parses the URI and uses the

SPARCE API to complete the requested operation on the referenced base part.)

Our research partners at Villanova University, under the supervision of Professor
Lillian Cassel [60], have ported parts of our SPARCE implementation to Java [71].
3.6.1.2. Context Agents

We have implemented context agents for the following base types: MS Word, MS
Excel [96], MS PowerPoint, PDF, HTML, XML, and several audio and video formats.
Table 3.1 provides an overview of these implementations and the sub-document ad-
dressing scheme each implementation employs. Our colleague James Terwilliger has
also implemented a context agent for marks into form fields in applications that con-

form to the Guava framework {153, 154].

67

We briefly review some of these context-agent implementations and extensions made

to base applications (to create mark descriptors).

MS Office marks: We have developed a single add-in (that is, software code added
in) [97] for MS Office applications to copy mark descriptors to the clipboard. This
add-in hooks into the native copy operation of MS Office applications (including MS
Word, Excel, and PowerPoint). When the user copies a selection to the clipboard (as
shown in Figure 3.3(b)), the add-in also copies a mark descriptor corresponding to the

selection to the clipboard.

Though we use a single add-in to copy mark descriptors from different MS Office ap-
plications, we have implemented distinct context agents for each MS Office applica-
tion. We made this choice because the sub-document addressing scheme and the
process of interaction varies widely among those applications. For example, the sub-
document address for an MS Word text selection contains just the indexes of the first
and last characters in the selection. (MS Word presents the main text of a document as
a sequence of characters.) The context for an MS Word mark can be large, but the
context hierarchy tends to be fairly simple: text excerpt, containing paragraph, con-

taining section, and so on.

In contrast, the sub-document address in the case of MS PowerPoint can be quite
complex because marks may be created into a variety of information types from dif-
ferent views. For example, the user may select a complete slide or a range of slides in

the outline view or in the slide sorter. He can select one shape or multiple shapes in a

68

slide. When multiple slides or shapes are selected, the selected objects might not be

contiguous.

Table 3.1: Overview of context agents implemented for use with SPARCE

Base types

Base application

Sub-document addressing scheme

Text selection in an MS Word document

Range of cells in a spreadsheet

Text selection, shape,set of shapes, slide,
set of slides

Text selection in a PDF document

Text and image selection in an HTML page
One or more nodes in an XML document
Audio span, video span in WAV, MP3,

MPEG, and other formats

Form fields such as textboxes and lists

MS Word

MS Excel

MS PowerPoint

Adobe Acrobat

MS Internet Explorer
[95]

MS XML 4.0 [107]

MS Windows Media
Player [103]

Guava [154]

Indexes of the first and last character
of the text selected

Sheet name, row names and column
names of the first and last cell of the
range selected

View type, slide identifier, shape iden-
tifier, indexes of the first and last cha-
racter of the text selected

Page number, indexes of the first and
last words of the text selected

Path to the containing element in DOM
tree, text of selection (for text only)

XPath [166] and XPointer [167] ex-
pressions

Time offsets for the beginning and end
of the span

Application name, form name, field
name

The context hierarchy of an MS PowerPoint mark can be much more complex than

that of an MS Word mark, largely due to the inherent nested organization. For exam-

ple, a text selection inside an MS PowerPoint text field has the usual context informa-

tion such as plain text excerpt, HTML excerpt, and font information. Its container, the

text field, adds information such as name, shape, ID, size, and location. The containing

slide adds information such as ID, number, header, and footer. Figure 3.8(b) illustrates

some of these context elements.

Activating an MS PowerPoint mark requires special care. For example, a mark created

in the editing mode might be activated when the base presentation is being shown (that

69

is, when the presentation is running). In this case, the mark should be activated with-
out exiting the show mode (because marks can be employed to transition among slides

in different presentations).

HTML marks: We have developed a custom tool in VBScript [160] to extend MS
Internet Explorer [95] to enable mark creation. The HTML context agent uses the
HTML Document Object Model (DOM) [35] (which represents an HTML document
as a tree) to manipulate the base document. DOM provides a browser-independent
means of handling HTML marks, but some of its limitations also pose interesting chal-
lenges. For example, DOM does not provide a direct means to obtain the path to a
node in a tree, or to obtain the position of a node among its siblings. Thus, given a us-
er-selected node, the script to create a mark needs to walk up the tree to the root node
to find the path to the selected node. The script must also visit the preceding siblings
of the selected node, and of each ancestor node along the path, to compute the position
of the node. These operations can be time consuming, especially because scripts are

interpreted at run-time (not pre-compiled).

Audio and video marks: We have extended the MS Windows Media Player [103] to
facilitate creation of marks into a variety of audio and video formats. To mark an au-
dio or video span, the user separately denotes the start point and end point of the span,
and then copies the span to the clipboard using a special tool added to the player. The

special tool incorporates the end points of the span into the mark descriptor.

70

Guava marks: Our colleague James Terwilliger has implemented a context agent for
marks into form fields in applications that conform to the Guava framework [153,
154]. (The Guava framework enables the use of an application’s user interface as a
query interface to the database that stores the application data.) To enable these marks,
Terwilliger has defined a class of “markable” form fields using the NET Framework
[129]. When running a .NET application, a user can select any form field of this class,
copy a mark descriptor to the clipboard, and employ the mark in any SA. Terwilliger
has also implemented a context agent to activate a Guava mark and to retrieve context
information for it. (Activating a Guava mark involves launching an appropriate NET
application, activating a sequence of forms in the application, and highlighting the
marked field.)

3.6.1.3. Superimposed Applications

We have built six SAs using SPARCE (and other components of System S): the three
SAs described in Section 1.2 (Sidepad, SuperMix, and the HTML+M Editor); an SA
called the Superimposed System Information Browser (SSIB, described in Section
4.2) that allows a computer system administrator to browse information such as event
logs and OS updates; an SA called the Superimposed Scholarly Review System
(SISRS, described in Section 4.9.2) that facilitates superimposition of review com-
ments; and a general-purpose browser and editor for SI represented as XML (de-
scribed in Section 7.6.2). We have also modified a previously existing application

called the Schematics Browser [17] to use SPARCE.

71

Our research collaborators have developed an SA called the Superimposed Multime-
dia Presentation Editor and Player (SIMPEL) [123] using SPARCE. SIMPEL is an SA
to organize multimedia content on a timeline and play the content in a synchronized
manner. It is developed using the NET Framework. The same collaborators have also
augmented a commercial tool called CmapTools [63] to use marks in a concept map
[124]. They have introduced a new resource type called “mark” in CmapTools and

allow a mark descriptor to be attached to each mark resource.

Our colleague David Archer has developed an SA called the Superimposed
TRansactor for Integrating Data into Entities (STRIDE) [10] using SPARCE. STRIDE
is designed to capture human judgment when integrating data for specific tasks.
3.6.1.4. Clipboard and UI Widgets

We have defined the Clipboard abstraction, and implemented it for the MS Windows
platforms: The MS Windows implementation ié an ActiveX wrapper to the MS
Windows clipboard API. It includes functions that make it easy to copy mark descrip-
tors to, and retrieve descriptors from, the clipboard. (The clipboard implementation
may be quite different on other platforms. For example, one might implement clip-
board operations from the ground up on platforms that do not natively provide a clip-

board.)

The clipboard implementation can keep track of multiple mark descriptors copied, and

allows SA developers and users to retrieve any of the copied descriptors. This feature

72

allows the SA user to create several marks in the base layer, possibly in different base

documents, before employing one or more marks in an SA.

We have implemented two Ul widgets for the benefit of both context-agent implemen-
ters and SA developers: a set of tabbed “property pages” to display properties (such as
ID and base address) of a context-aware object; and a Context Browser to let a user
browse context information retrieved from any context-aware object. (Figure 3.8

shows two uses of the Context Browser.)

3.6.1.5. Development and Testing Aids

We have implemented the following development and testing aids for context-agent

implementers and SA ‘developers:

e A utility to construct a mark descriptor and copy it to the clipboard without ex-
tending a base application. This utility is useful in the initial stages of adding sup-
port for a new base type. Figure 3.9 shows the use of this utility to construct the
mark descriptor shown in Figure 3.4. The field Agent factory contains the name of

the context-agent class. The other fields are self explanatory.

e A “Do Nothing” context-agent class to test a mark descriptor without implement-
ing a context agent for the descriptor. An instance of this class accepts any descrip-
tor, but does not interpret it. Also, it returns an empty property set as the context

for any mark.

e Logging and exception-reporting components to trace the execution path of

SPARCE, the context agents, and the SAs.

73

A context-agent implementer may use any SA as a testing aid because an SA can work
with any context-agent implementation. Likewise, an SA developer may use any base
type and any context-agent implementation to test the SA’s ability to incorporate and

activate marks.

Context-agent implementers and SA developers may use the Context Browser to test

retrieval of context information for any mark.

M Dosign Mark Descriptor f2|@®

Agent factory * }Acmbamgents.PDFAgenk

Mark class !AcmbalPDFT extMark

Subrdoc address 213951439

Description ;Page 3in {.pdf [Actabat PDF}

Excempt %provide applications and users with the benefits of a database with a schema -- similar to what an ob

Conitainer class gncmbazPDF
Container path ;E:\Base\f.pdf

App class iAcrobaIS
App name iAdabe Acrobat 5.0

R oy

Copy Descriptor] Create Mark i Open Repository

Figure 3.9: Utility to construct and test a mark descriptor

3.6.2. Architectural Qualities
In this section, we summarize our experience with implementing and maintaining

SPARCE, the context agents, and SAs to show that the system possesses the desired
architectural qualities for SASS (listed in Section 2.1.3). The descriptions of the archi-
tectural qualities are reproduced here (in italics).

3.6.2.1. Functionality

The implementation must provide runtime services that are helpful in implementing

the seven application capabilities listed in Section 1.1.

file://JEABase/f.pdf

74

SPARCE, the context agents, the Clipboard, and the UI widgets collectively imple-
ment the runtime services Reference Management, Context Management, and Ul Widgets
in Figure 2.1. Together, they also support Capabilities 1 through 4 listed in Section
1.1. These capabilities relate to creation and activation of marks, and to creation and

organization of SL

The URI representation of a mark descriptor in the sparce scheme (described in Sec-
tion 3.2.3) and the corresponding handler implementation together support Capability
6, making it possible to employ marks in traditional documents such as word proces-

sor documents and spreadsheets.

Capabilities 5 and 7 (transforming and interchanging bi-level information, respective-
ly) are supported by other parts of System S with the help of SPARCE. Chapters 9 and
10 discuss support for these capabilities.

3.6.2.2. Reusability

Many SAs must be able to use the same SASS implementation. More than one SA in-
stance must be able to run simultaneously on the same computer, and each instance

must be able to interact with multiple base documents.

All the SAs implemented use the same SPARCE implementation. We have not made
any special changes in the SPARCE implementation, or in the context agents, for any
of these SAs. We have run (several) instancés of different SAs simultaneously on the
same computer and have verified that each SA instance is able to use marks in mul-

tiple base documents.

75

The handler software for the sparce URI scheme uses the same context-agent imple-
mentations the SAs use. We have used URIs in the sparce scheme in documents
created by third-party applications such as MS Word, Adobe Acrobat, and HTML edi-

tors. We have used these applications simultaneously with the SAs.

We have also verified that different SAs, and traditional applications that employ
sparce URIs, can reuse mark descriptors stored in the same descriptor repository.
3.6.2.3. Modifiability

1t must be possible to independently improve SASS and the SAs, with minimal adverse

impact on each other.

Over the course of implementation (between March 2003 and January 2007), we have
updated SPARCE, the context-agent implementations, and the SAs several times. For
example, the source files related to SPARCE have been checked into our version con-
trol database 352 times. (A check-in operation requires at least one change in a source
file.) Between August 2005 and September 2006, there have been 13 releases of the

complete implementation.

Execution tests have shown that throughout these changes and releases, modifying one
part of the system (for example, SPARCE) has not adversely affected other parts (for
example, the context-agent implementations and the SAs). Also, upon modification of
a part’s source code, we have recompiled the source code for only that part. That is,

we have been able to evolve SPARCE, the context agents, and the SAs independently.

76

The ability to modify different parts of the system without adversely affecting other
parts is largely due to the separation of concerns afforded by our design (via abstrac-
tions such as context agent and context-aware object), and due to the dynamic loading,
linking, and instantiation [93] of context-agent classes.

3.6.2.4. Extensibility

It must be possible to support new base types and context elements without affecting

existing SAs and context agents.

We have used the steps outlined in Section 3.4 to develop all the context agents listed
in Table 3.1, without any adverse impact on SPARCE and the SAs. We have also veri-
fied that changing the definition of context a context agent supports does not affect

SPARCE and the SAs.

An SA that depends on a specific context element might be affected if a context agent
no longer supports that element, but attempts to seek non-existent context information
does not cause an exception in SPARCE and the implemented context agents. In this
case, the SA might need to be altered to remove its dependence on the missing context
element. Similarly, an SA might need to be altered if it is to take advantage of a newly
added context element. Applications such as the Context Browser are unaffected by
changes to the definition of context because they do not depend on specific context

kinds or elements.

The ability to associate each mark with a (different) context-agent class, and the use of

the abstractions context agent and context-aware object, dynamic linking and instan-

77

tiation of context agents make it possible to extend support for new base types. The
use of the abstractions context, context kind, and context element makes it possible to
extend context definition.

3.6.2.5. Package Flexibility

It must be possible to change the location of the components of SASS to meet applica-
tion and user needs. For example, we must be able to deploy the components of SASS

on the same machine as the SA, or on a different machine.

The different components that make up SPARCE are packaged as ActiveX servers
(seven servers in all). Due to the design of SPARCE, and some facilities in the
ActiveX technology, any of these servers may be packaged either as an in-process
server or as an out-of-process server. An in-process server runs in the address space of
the client application that uses the server (and hence on the same computer as the
client). An out-of-process server runs in its own address space. It may run on the same

computer as the client or on a different computer.

With an in-process server, each client application gets its own instance of the server,
whereas several clients may share the same instance of an out-of-process server. Con-
sequently, different client applications might be able to share certain resources (such

as a connection to a database) when using an out-of-process server.

We have verified that the server packaging does not affect the functionality of
SPARCE and the SAs, except for some expected changes in performance [112]. For

example, the execution speed tends to be better when a server is loaded in-process.

78

However, an out-of-process server provides resilience to both the server and the client
because when one of the processes (server or client) aborts, the other process can con-

tinue to run.

We have also verified that descriptor repositories may be located on local or remote
file systems (with respect to the location of SPARCE, the context agents, and the
SAs). For example, we have deployed the SAs and context agents on one computer,
SPARCE on another computer, and a descriptor repository on a third computer.
3.6.2.6. Testability

The SASS implementation must aid verification and validation of itself, and of the SAs

that use it.

We have used the Ul widgets (mentioned in Section 3.6.1.4) and our development and
testing aids (listed in Section 3.6.1.5) to verify SPARCE, the context agents, and our
SAs. For example, we have used the Context Browser extensively to verify the context
information that a context agent returns for a mark. Also, we have frequently used the

Sidepad SA to test new context-agent implementations.

We have used our logging facility to validate SPARCE, the context agents, and our
SAs. Using this facility, we are able to trace the execution path of each part of the sys-
tem and ensure that each part is indeed functioning as it should. However, validation
of execution paths is not sufficient. Context-agent implementers and SA developers
need to use appropriate techniques to validate that their implementations meet the

needs of their users.

79
3.6.2.7. Usability
The SASS implementation must use familiar metaphors, and follow relevant develop-
ment and UI conventions. It must also aid usability of SAs developed using it.

The interactive mark-creation process requires users to perform only the familiar and

4

natural “Copy” and “Paste” (as described in Section 3.1), and the mark-creation
process is similar across base types. Also, a user may use the same descriptor in any

number of SA instances. The user may also copy several descriptors, from different

base documents, to the clipboard before using them in any SA.

Our experience (and that of our collaborators) shows that it is quite easy to develop

context agents and SAs with SPARCE. The following list illustrates the ease of use.

¢ A context-agent needs to implement only four functions: Activate, GetContext,

and GetElementValue, plus a constructor.

e Copying a mark descriptor to the clipboard after a user has selected a sub-
document region can often be accomplished in one line of code. For example, the
following line of MS Visual Basic [101] code suffices to copy a descriptor string
to the clipboard:

SPARCEClipboard.Copy(descriptor)

¢ Retrieving a mark descriptor from the clipboard and creating a mark is usually ac-
complished in one line of code. For example, the following line of MS Visual
Basic code creates a mark using the descriptor most recently placed in the clip-

board. The identifier repository denotes an instance of a descriptor repository.

80

repository.GetCAO (SPARCEClipboard.RecentDescriptor)

o James Terwilliger needed only 8 hours [155] to implement the Guava context

agent [153] (following the steps outlined in Section 3.4).

e Our collaborators spent 120 hours developing the SA SIMPEL [123], of which
they spent only about two hours on tasks related to integration with SPARCE.

3.6.3. Design Decisions

In this section, we summarize the key design decisiqns our evaluation has validated.

We also briefly discuss some of the design alternatives considered.

3.6.3.1. Flexible Representation and Storage of Base Descriptors

As described in Section 3.2, a base-part descriptor may be represented as a delimited

string, XML fragment, and as a URI. (Chapter 4 discusses the representation of de-

scriptors in the relational model.) These choices allow base parts to be employed in a

variety of applications. Further, a descriptor needs to include only the name of a con-

text-agent class. The rest of the descriptor structure is unconstrained. This flexibility

allows a developer to structure descriptors according to his needs.

The alternative of fixing a data model and structure for descriptors would simplify the
system, but it would also limit the number of applications that benefit from our

framework.

We allow each base-part descriptor to specify the context-agent class used to interact
with the referenced part. Thus, each base part can potentially have its own context-

agent implementation. The alternative of using a single context agent for each base

81

type (or base document) prevents the use of domain-specific context agents. For ex-
ample, when working with patent information in PDF format, one might use a context-
agent implementation that returns domain-specific context information such as “de-

pendent claims”, but use a different PDF agent implementation in other applications.

As described in Section 3.2.2, an SA may include base-part descriptors directly in SI,
or it may store descriptors in a repository that SPARCE manages. This choice allows
an SA developer to store descriptors in a location and manner that is most appropriate
for the SA, yet be able to perform all operations on the referenced base parts. For ex-
ample, an SA might deposit its SI and descriptors in a digital library managed by a

third party [11, 112].

The alternative of requiring an SA to manage storage of descriptors itself likely in-
creases SA-development effort and hinders sharing of SI among SAs and among SA
users. Alternatively, requiring an SA to always store descriptors in a SPARCE-
managed repository might (seriously) constrain SA development and deployment. For
example, when using a SPARCE-managed repository, an SA developer must use the
SPARCE API to manipulate descriptors, and he might need to transform the descrip-
tors from SPARCE’s data model to the SA’s data model.

3.6.3.2. Use of High-level Abstractions

In our design, context-agent implementations are unaware of the existence of SAs. In

turn, SAs are unaware of the existence of specific context-agent implementations, be-

82

cause SAs activate base parts and access context using only the classes Context Agent,

Context, Context Kind, and Context Element.

This isolation between context-agent implementations and SAs makes it possible for
context agents and SAs to evolve independently, without affecting each other. Figure
3.10 shows an SA’s view of SPARCE. This figure is obtained from Figure 3.7 by re-
moving from that figure the classes that an SA does not directly use. We have added a

link between an SA and the class Context to denote that an SA may consume context

information.
Context-aware Object instantiates
| | iD Instance |
) Descriptor Repository
Superimposed)\ GeiCAO(n desariptor)
poicaJcn StoreCAO(in descriptor)
) GetCAOFromID(in id)
Context Agent Instantiates]
g Instance
Activate()
GetContext()
Context
Root Kind
Context Kind
Name
? Hierarch
Context Element
Name
Value

Figure 3.10: A superimposed application’s view of SPARCE
The use of the abstractions Context Kind and Context Element allows the run-time repre-

sentation of any context information, but in some programming languages, a naive
implementation can result in loss of compile-time type guarantees. For example, a

naive MS Visual Basic 6.0 [101] implementation would represent both a text excerpt

83

and a page number as the same type (probably a string), but a Java implementation can
distinguish the types of these two context elements (as String and Integer, respective-
ly). (A Visual Basic 6.0 implementation can define wrapper classes such as “String”

and “Integer” to aid compile-time typing.)

Another design choice we made is related to the use of the class Context Agent to
access base parts, instead of extending the class Mark for each type of mark to be sup-

ported. We illustrate our choice and an alternative using an example.

Consider the task of supporting references to MS Word marks, MS Word documents,
and the MS Word application. In our approach, a single context-agent class (called MS
Word Agent in our implementation) can accomplish this task because much of the code
to work with MS Word marks, documents, and the application is the same. An in-
stance of the class Mark, Document, or Application is passed to an instance of this con-

text-agent class to activate and access the appropriate base part.

In our approach, it is possible to reuse the same context-agent instance to access mul-
tiple base parts by reinitializing the context-agent instance with a different context-
aware object. For example, the class MS Word Agent can be first initialized to access an
MS Word mark (or document), and then reinitialized to access another MS Word mark
(or document). As Chapter 6 illustrates, this ability can reduce execution time and save
memory when retrieving context information for a large number of context-aware ob-

jects.

84

An alternative approach is to extend the classes Mark, Document, and Application (using
inheritance) to implement the classes Word Mark, Word Document, and Word Application,
respectively. This approach results in three classes, each with similar code (or four

classes, with the fourth class privately implementing common code).

Attempting to reuse context-aware objects (as is possible in our approach) in the alter-
native approach can adversely affect SAs. For example, assume two SAs use the me-
thod GetCAO to retrieve the same mark, say an instance of the class Word Mark, from a
descriptor repository. In this case, the mark the first SA holds would be invalidated if
the second SA reuses the Word Mark instance to load another mark. (A shared context-
agent instance can be similarly invalidated in our approach. The situation is remedied
using a new instance of the context agent, but the alternative approach would need two
objects— Mark and WordMark—to remedy the situation.)

3.6.3.3. Representing and Accessing Context as Hierarchical Property Sets

Our evaluation shows that hierarchical property sets aptly handle the wide variability
in context information among base types (as illustrated in Figure 3.8), and among
marks of the same base type. A hierarchical property set provides a uniform represen-
tation for context information and it simplifies the API to access context information.
For example, the object model shown in Figure 3.7 uses only the classes Context,
Context Kind, and Context Element to model context information for any mark. With
these three classes, an SA is able to programmatically access context information for

marks of any base type.

85

A simple alternative is to use non-hierarchical property sets, but that representation
makes it hard for the developer to organize (and for the user to comprehend) context
information. For example, without hierarchies, it would be quite challenging to organ-

ize the context information shown in Figure 3.8(b).

Another alternative is to define a separate schema for the context information applica-
ble to each base type, and define an API that is specific to each base type. For exam-
ple, define a schema specific to context information for MS Word marks, and define a
corresponding API. Similarly, define a schema and API specific to MS PowerPoint.

(This is the approach MS Office applications take.)

In this alternative, an SA can detect new or missing context elements at compile time
when a context agent revises the definition of context, but it requires that the SA and
the context API implementation be linked statically, making it harder to independently
evolve SAs and context agents. Also, this approach widens the API to access context
information. For example, the API to access the context information for the MS Word
Range object (which represents a selection in an MS Word document) includes over
30 members [105]. Each Range object exposes these members, even when a member
is not applicable to a particular object. (The value of a member that does not apply is

typically NULL or empty).

In contrast, our context access API defines only 8§ methods, and is able to provide con-
text information for any base type. Also, the context of a mark contains only those

elements that apply to that mark.

86
3.6.3.4. Use of the Clipboard
Our design employs the clipboard to interactively create marks (in addition to provid-
ing a means to programmatically create marks without using the clipboard), which has
two key advantages. First, it improves usability of the system because a user performs
only familiar and natural clipboard operations and he typically performs only two op-
erations (“Copy” and “Paste”) to create and consume a mark. Second, using a clip-
board de-couples base applications from SAs, and allows each class of application to
evolve without affecting the other. (A related benefit is that, in some operating envi-
ronments, supporting “copy and paste” makes it easy to support the “drag and drop”

means to create and consume marks.)

An alternative to using the clipboard is to consume a mark as soon as it is created, but
doing so would require an SA to be running at mark-creation time. Also, if multiple
SAs are running when a mark is created, it is hard to (automatically) choose the SA in
which the mark is consumed. That is, several usability issues would exist.

3.6.4. Evaluation Summary

Our evaluation validates our representation for base-part descriptors and our middle-
ware architecture to activate the referenced base parts and to retrieve context informa-
tion from the parts. The evaluation also validates our design decisions, and shows that
our choices indeed satisfy the architectural desiderata we set up at the beginning of

this research.

Table 3.2 summarizes the key design decisions and the architectural qualities to which

each decision contributes.

87

Table 3.2: Key design decisions and the architectural qualities to which each decision contributes

£
=
Z 2 > H
E=} 2 = h—1)
S) = = = z
- = = =2 o = &
2 = = ‘@ 1) a =
-] o = <] =
1] b= 7] < S =
= = = - [} 7} <
. .. = 1 E » 53 4] 7]
Design decision = =4 = A f -
Elex1ble descriptor representa- v v v v
tion
Flexible descriptor storage v v v
Context-agent class per descrip- v v v v
tor
High-level abstractions v v v v v v v
Dynamic instantiation of context v v v v
agents
Choice in server packaging and v v v v v v
deployment
Context as hierarchical property v v v v v
set
Use of clipboard for interactive v v v v v v

marking

3.7. Related Work

Chapters 1 and 2 list some systems that provide features comparable to those of

SPARCE. In this section, we provide more details about some of those systems and
describe a few systems not mentioned in the earlier chapters. The systems we describe

give an insight into alternative approaches to solving the problems SPARCE solves.

Before we describe the alternative approaches and systems, we briefly mention the

predecessors of SPARCE.

88
3.7.1. Predecessors of SPARCE
The mark abstraction was first defined in a middleware architecture called SLIM and
has been used to build an SA called SLIMPad [32]. SLIM supported marks over mul-
tiple base types, but a mark could only be activated. Context information could not be

retrieved for a mark.

Prior to SLIM, Delcambre and others built a system called CARTE to provide naviga-
tion over a set of HTML pages using superimposed structured maps [31] based on top-
ic maps [158]. (Secﬁon 4.10 reviews structured maps and topic maps.) CARTE did not
use (or have) the mark abstraction. Instead, it referenced a base selection using a URL.
That is, a reference to a sub-document was possible only if the base document exposed
the sub-document’s address as a URI. For example, CARTE could reference a span in
an HTML document if the document defined a bookmark over the span. This require-
ment limited the number of base types that could be referenced. CARTE stored SI and
the URIs in a relational database.

3.7.2. Early Visions

We first give an overview of some pioneering visions that have contributed to
SPARCE and related systems.

3.7.2.1. Memex

In 1945, Vannevar Bush [22] envisioned a device called Memex to store and consult
information efficiently. In his vision, Memex is a desk with translucent projection
screens, a keyboard, a microfilm-based storage, and control levers for navigation. Its

contents (books, pictures, periodicals, and so on) are stored as photographic images on

89

microfilm. A user can attach a mnemonic code to an information selection (for exam-
ple, to the title page of a book) and use the code later to navigate directly to that ele-
ment. Because there are several screens, the user can browse a selection in one screen
while a different selection is projected on another screen. The user can attach annota-

tions to material being browsed.

Two or more information selections may be tied together using a common mnemonic
code to form a trail. A selection may be used in any number of trails. Because trails
persist, they can be recalled at any time. They can also be reproduced and passed to

other users.

Some of Memex’s features relevant to SPARCE are: annotation, linking, sharing, and
indexing. SPARCE, along with context agents and SAs, facilitates annotation, and
linking. SPARCE does not directly support sharing, but it helps other parts of SASS
share bi-level information (as described in Chapter 10). SPARCE does not index con-

tents of descriptor repositories. An SA may index its SI.

Memex assumes ownership of all referenced information; SPARCE does not.
3.7.2.2. Evolutionary List File
In the 1960s, Nelson [126] proposed a file structure called the Evolutionary List File

(ELF) for use in his software system for personal filing and manuscript assembly.

ELF stores three kinds of elements: entries, lists, and links. An entry is the basic unit
of information, and it can be text, a picture, or a definition of an operation. A /list is an

ordered set of entries; an entry may be placed in any number of lists. Lists are used to

90

create categories, trails, and other structures. A /ink connects two entries in different
lists; an entry in a list is linked to at most one entry in another list. Links are bi-

directional.

An entry may be annotated. An annotation is also stored as an entry, with a link to its
target entry. ELF supports multiple simultaneous organizations of the same informa-
tion by allowing an entry to be used in more than one list simultaneously. However, an

entry placed in more than one list is replicated and the replicas are kept consistent.

Nelson proposes versioning of entries and lists. SPARCE does not maintain versions
of descriptors or base information, but an SA may maintain versions of its SI.

3.7.3. Hypermedia Systems

Nelson [126] first used the term Ayperfext to mean information containing text and
graphics in such complex ways that it is hard to present the overall information in li-
near media (such as paper). The term hypermedia was used in the 1980s to include
multimedia data such as video [26]. In this section, we first compare SPARCE with
hypermedia systems in general, and then compare SPARCE with specific hypermedia

systems.

In general, hypermedia systems facilitate linking of two or more documents or sub-
documents. A link signifies a relationship among the linked entities and is chiefly used

to facilitate navigation from one linked entity to another.

Some systems allow annotations to be attached to links. Figure 3.11(a) shows a typical

hypermedia link with an attached annotation. In this approach, no new “document”

91

needs to be created to represent a hypermedia network, because it suffices to store on-
ly the link definitions and the annotations. Some hypermedia systems also require that
the linked documents, or the descriptions of the linked documents, be stored in a spe-
cific database. For example, Dexter [57] requires document descriptions to be stored

in its database.

- - ;:

. _4
e— TTTT.CN bt \ —_—
—_—ene . [Y N]
JE—-E— Pt] Link H L F

el LLLLA T T Plwnnad O

p—— ol — |
= : -

" K
@ Link database ———

Base document Bl Base document B2

—_— —\

Mark

:

—--.-.A ark !

- E—* 4 Annotation 4 Ppeses

N — : 1 Panand O
:
1 —
1
]
]

Base document Bl Base document B2
(b)

Figure 3.11: A comparison of hypertext links and marks. (a) A hypermedia link between selec-
tions in two base documents. An annotation is attached to the link, and links and annotations are
stored in a link database; (b) An SI document with marks into two base documents. Annotations

are maintained as SI

The most widely used hypermedia system, the World Wide Web (or, “the web”), uses
a slightly different approach than what we have described thus far. Specifically, links

on the web are uni-directional, and are embedded in the document that originates a

92

link. This approach is in contrast to Nelson’s position [127] that a hypertext link

should be bi-directional and be stored separate from the linked documents.

In the SPARCE approach, a mark describes one endpoint—a base selection—of a
potential link. An actual link is created when a mark is associated with an SI element
(such as a Sidepad item), and the link always points to the base selection. Two base
selections may be indirectly linked by associating marks to the base selections with the
same SI element. The first annotation in Figure 3.11(b) shows such a link. However,

this link does not facilitate navigation from one base selection to another.

SPARCE offers flexibility about where mark descriptors are stored. A descriptor may
be stored in a descriptor repository, similar to a hypermedia system storing a link spe-
cification in a link database. Alternatively, an SA may choose to store a mark descrip-

tor along with SL.

Most hypertext systems support only the activation operation on links; they do not
support retrieval of context information (such as text excerpts). In contrast, SPARCE
provides a means to represent and retrieve rich context information for the referenced
base selections. The ability to retrieve context information allows an SA user to ex-
amine base selections without activating the (complete) containing document. As de-
scribed in Chapter 5, it also enables declarative querying of the combined SI and con-

text information.

In the rest of this sub-section, we describe two hypermedia systems, IRIS and Dexter,

and compare them to SPARCE.

93
3.7.3.1. IRIS Hypermedia Services
IRIS Hypermedia Services [55] is a set of services over cooperative applications de-
signed originally as a part of the Intermedia hypertext system [181]. IRIS includes five
Intermedia applications—a text editor, a graphics editor, an image viewer, a 3D object
viewer, and a timeline editor—specially designed to facilitate creation of hypermedia
networks. These applications are called source applications, and a document created
in one of these applications is called a source document. New source applications may

be developed using Intermedia’s framework.

Each source application contains a Ul element to create a link between anchors (that
is, selected regions) in source documents. The linked anchors may be in the same doc-
ument or in different documents (of the same type or different types). When a source
document is opened, the source application visually indicates anchors that participate
in links. Users may select any anchor and follow a link to see another anchor in con-
text. The source document containing the other anchor is opened automatically, if it is
not already open. The link creation process has four steps: Create an anchor, start link,
create another anchor, and complete link. Links are binary and bidirectional. The link

structure does not accommodate annotations.

IRIS i1s designed to create links between sub-documents (via anchors). An entire doc-
ument may be linked only by creating an anchor that covers the entire document. In
contrast, with SPARCE, an SI element may reference any context-aware object, which

may be a mark, a document, or an application.

94

An IRIS anchor is described using two pairs of integers: One pair describes the posi-
tion of the anchor’s beginning within a document; another describes the anchor’s ex-
tent. (The domain of these integers varies by source application. For example, the in-
tegers denote character positions for a text editor, but they indicate screen coordinates
in case of a graphics editor.) This anchor structure suffices for the addressing schemes
the five source applications included in IRIS use, but it may be insufficient (or incon-
venient) for other applications. For example, it can be challenging to describe a span
in an HTML document using this structure. In comparison, SPARCE does not fix a
structure for descriptors, thereby allowing each context-agent implementer to choose

the best structure for the addressing schemes he supports.

IRIS stores link specifications and anchor descriptions in a relational database. This
database partitions links and anchors into webs. A user may create any number of
webs, but can work with only one web at a time. Also, a web must be open in order to
create or follow links. (An IRIS web can be viewed as an instance of a particular SI

model.) IRIS includes a browser to view webs.

IRIS requires that source applications store the source documents they create in a spe-
cial file-system folder. All changes to a source document pass through IRIS so that the
link and anchor descriptions are kept consistent. This approach can be quite expensive
because anchor locations can change frequently in an interactive editing process (for

example, when editing a word-processor document).

95

SPARCE allows an SA to decide where it stores mark descriptors, and it does not re-
quire base documents to be stored in specific locations. It does not attempt to keep
mark descriptors consistent with base documents, but descriptors may be changed

when necessary to reflect changes to the base layer.

3.7.3.2. Dexter
Dexter [57] is a hypertext reference model resulting from a series of discussions

among designers of hypertext systems such as NoteCards [56] and Intermedia [181].
The goal behind the model is to define common abstractions that make it easy to build
and compare hypertext systems. The Dexter model is specified formally using the Z

notation [146].

A Dexter hypertext network is composed of components, which are basic units of sto-
rage. A component may be one of three types: atomic (that is, primitive), composite
(which is a directed acyclic composition of other components), and /ink (which 1s a
relationship between components). A component is associated with a presentation
specification that guides the component’s display. Also, each component has a unique

identifier (UID) that distinguishes it across space and time.

An anchor specifies a part of a component’s contents. It is represented using an
id-value pair. The id is a natural number unique within the anchor’s component. The
value of an anchor is an address of an item contained within its component. The exact

format and content of an address can vary among content types.

96

A link relates components. An endpoint of a link is specified using a component speci-
fication and an anchor id. An endpoint may also include a presentation specification so
that the component can be displayed in a manner appropriate to the relationship in-

tended. A link may have two or more endpoints and its directionality is configurable.

Halasz and Schwartz [57] discuss specifying a sub-document as an endpoint (using a
compongnt and the id of an anchor within that component), but they do not discuss
specifying a document (that is, just a component) as an endpoint. We assume that a
document could be made a link’s endpoint by omitting anchor id, or by using a special

anchor id.

A component is stored as one unit together with its attributes (which are name-value
pairs), presentation specification, a list of anchors, and the actual content of the com-
ponent. Storing the list of anchors as a part of the component specification means the
component is altered whenever a new anchor is created, or whenever an existing anc-

hor is changed or deleted.

A hypertext system in the Dexter model is comprised of three layers: a storage layer, a
within-component layer and a runtime layer. The storage layer manages a database of
components. The within-component layer interprets contents of components for pur-
poses such as anchoring (that is, addressing information inside a component). The

runtime layer displays components according to presentation specifications.

The bulk of the Dexter model focuses on the storage layer. This layer defines an

accessor function that maps a UID to a unique component. It also defines a resolver

97

function to map a component specification to zero or more UIDs of components. (A

component specification is a filter over the set of stored components.)

To preserve consistency of links and anchors, Dexter requires all changes to a compo-
nent to pass through both the within-component layer and the storage layer. This ap-

proach to data consistency is similar to that of IRIS.

As described by Halasz and Schwartz, a Dexter hypertext system requires all compo-
nents to be stored in its database. However, Hardman and others [58] state that a com-
ponent descriptor in the database may point to an external source such as a disk file or
a web page that supplies the actual component content. We believe that Dexter cannot
guarantee consistency of anchors into such a component because changes to the con-

tents are not guaranteed to pass through the storage layer.

The Dexter run-time layer is analogous to an SA, but it has more responsibilities than
an SA: It is responsible for presenting both hypertext networks and the components in
a network. By comparison, an SA is primarily responsible for presenting SI, and base
applications typically display base selections. However, an SA can itself display con-
text information it retrieves from base parts (via context agents).

3.7.4. Web-based Annotation Systems

A web-based annotation system is a system that uses the web infrastructure to facili-
tate annotations of resources on the web. In the late 1990s and early 2000s, several
such annotation systems existed (for example, CritLink [182]), but only one of them,

Annotea [78], is reliably available for use today.

98

Many of the web-based annotation systems allow annotations only over HTML pages.
With these systems, in general, a user creates a new annotation by first selecting a re-
gion of an HTML page and then selecting a Ul element that has been injected into the
page, or has been added into the user’s web browser. When the user loads an HTML
page, the base page is modified to indicate annotations, or the annotations are dis-

played in a separate area of the page or in a separate window.

A variety of approaches have been used to build web-based annotation systems. The
most popular approaches are: using a proxy web server, using custom extensions to
existing web browsers, and using a custom web browser. A system using a proxy web
server (for example, CritLink) requires users to access the web page to be annotated
via a specific web server that acts as a proxy for the web server that holds the anno-
tated page. The proxy server serves up the page to be annotated with appropriate mod-
ifications to view, create, and modify annotations. User annotations are stored on the

Proxy Server.

The proxy web server approach has the advantage that users need only a web browser,
and no other special software. These systems can be developed and maintained more
easily than those involving custom web browsers (or browser extensions), but their

capabilities are limited due to the use of (and dependence on) HTML.

Some web-based annotation systems such as Third Voice (now defunct [84]) extend
existing web browsers using custom plug-ins. This approach requires users to install

custom plug-ins, but it allows the annotation system to provide a richer Ul and better

99

annotation capabilities. It also makes it possible to store annotations on a user’s local

file system, or on a remote server.

Another web-based annotation system, Annotea [78], allows attaching annotations to
documents addressable using a URI. It uses the Resource Description Framework
(RDF) [140] to define annotation schemas, uses the XPointer framework [169] to ref-
erence annotated regions of documents, and employs HTTP [45] to transport data. A

user may choose to store annotations locally or on remote annotation servers.

Annotea is not designed for use with a specific web browser, but an implementation is
integrated into the Amaya web-page editor [9]. Annotea can be implemented for use

with other browsers, or it may be implemented as a stand-alone application.

Annotea annotations are limited to XML documents due to the XPointer framework.
Annotea’s data model and annotation schemas are also fixed. SPARCE does not have
these limitations. Like SPARCE, Annotea does not attempt to maintain the consisten-
cy of sub-document addresses.

3.7.5. Multivalent Document Model

In the Multivalent Document Model (MVD) [135, 137], a document of any type is
represented in an intermediate tree form, and the document is viewed and annotated in
a universal browser called the MVD Browser. Each node in the intermediate tree for a

document has a unique identifier (ID).

The annotations for a base document are stored in a “hub” document separate from the

base document. Each annotation is associated with the IDs of the annotated tree nodes.

100

(An annotation may span multiple tree nodes.) To increase the robustness of a sub-
document address, MVD includes an excerpt of the annotated region and some struc-
tural information, along with node IDs [136]. For example, when a text selection in a
word-processor document is annotated, the text of the annotated region and the name

of the section and the paragraph that contains the annotated region are also saved.

An annotation is displayed using one or more behaviors, which are pieces of software
executed according to a series of protocols. Behaviors also decide what operations are

permissible on an annotation and on an annotated part of the base document.

A key difference between MVD and our approach is that an MVD “hub” document,
which is analogous to an SI document, contains the annotations for only one base doc-
ument. In our approach, an SI document may contain annotations and other SI for any
number of base documents; many SI documents may contain annotations over the
same base document; and a single SI element (for example, a link) can span multiple

base documents.

The behaviors MVD employs to display and operate on annotations could be viewed
as “annotation agents”, a /a context agents in SPARCE, but the annotation agents are
not reusable in the same manner as context agents. (Section 3.6.3.2 reviews reusability

and other attributes of context agents.)

MVD assumes that all base documents can be represented in its internal tree form.
This assumption may not be valid for all document types, or it may not be efficient to

prepare a tree representation for all types of documents. Also, multiple tree representa-

101

tions may be possible for some documents, each with different strengths and weak-
nesses. For example, a plain text file can be mapped to different tree structures: It can
be represented as a tree with one node containing the entire text, or it can be

represented as a bushy tree with one leaf node for each line of text.

MVD assumes that a single document browser suffices to view and edit all documents.
It also uses a single format for the hub documents to store annotations. In contrast, our
approach employs existing base applications, letting SA users employ the Ul base ap-
plications offer, and allowing SA developers to choose the data model that is best for
their SI. We also believe (and have demonstrated in Section 1.3) that different SAs

and different SI models are needed to serve different user goals.

MVD’s position on robustness of sub-document addresses is similar to ours. It too
promotes the use of immutable identifiers and proposes use of context information to
increase the likelihood that an intended sub-document is found when a base document

changes.

3.7.6. Compound Documents
A compound document is a document created by combining new information with

parts of existing information. A compound document system is a collection of coopera-
tive applications that follow a set of protocols to display, print, and store data. In this
system, existing information parts appear in a compound document as if they are an
integral part of the result document. For example, a research paper can be composed

as a compound document. In this case, much of the paper’s text would likely be writ-

102

ten directly in the compound document, but graphs and charts are likely inserted into
the compound document from existing spreadsheets. Similarly, figures can be inserted
from existing image files. (Each chapter of this dissertation is composed as a com-

pound document.)

A compound document is created in a host applicaiion that is responsible for provid-
ing the overall document Ul Source applications supply the data for different parts of
the compound document, and render the parts within the document Ul. When a user
selects a document part, the host application interacts with the appropriate source ap-
plication and presents to the user a list of operations possible on the part; the source
application carries out the action the user selects. “Activating” a part included in a
compound document opens the source document that the part belongs to in its original

application, and “highlights” the part.

OLE 2 [18] and OpenDoc [132] are the best known compound document systems,
with the former probably being in wider use. In the rest of this sub-section, we provide

an overview of the OLE 2 compound document system and compare it to SPARCE.

An existing information part may be embedded or linked in an OLE 2 compound doc-
ument. Embedding makes a copy of the source part, but linking retains a link (called a
moniker) to the source rather than making a copy. (Both approaches produce the same
visual result in the compound document.) Also, the content of a linked part is updated
in the compound document each time the compound document is opened. Due to their

similarity with marks, we discuss only linked parts in the rest of this section.

103

An application capable of creating an OLE 2 compound document is called a
container. An application that is capable of supplying data to a compound document is
called a server. An application may be both a container and a server. For example, MS
Word is both a container and a server, but Adobe Acrobat is only a server [7]. To im-
port data into a compound document, a user copies the data in a server application to
the clipboard and then pastes the data into the compound document. At the time of

pasting the data, the user may decide either to embed the data or to create a link.

The OLE 2 compound-document protocols require container and server applications to
use Compound Files, a technology for persisting compound data. This technology
provides a means to treat a file-system file as a collection of storages and streams. A
storage element is analogous to a file-system directory; a stream element is analogous

to a file. A storage element may contain streams and other storages.

To store a compound document, a container application first opens a file-system file
using traditional, OS-provided file-system functions. When external data is imported
into the compound document, the container creates a storage element in the document
file and passes the storage to the server application responsible for the imported data.
That server first creates a stream in the storage, and writes the moniker corresponding
to the linked data into the stream. The server may also write an image version of the
data for quick drawing when the compound document is loaded again (so as to avoid

the possible delay in invoking the server application to draw the linked data).

104

A server application may provide the content for a linked part in multiplé formats. For
example, MS PowerPoint can supply the content of a linked slide as a Slide object or
as a picture. When content is available in more than one format, the container or the
user may choose a display format for the content. However, once given a format and a
display area, the server has complete control over what information is displayed and

how it is displayed in the given area.

The OLE 2 compound document system and SPARCE differ in several aspects. First,
OLE 2 allows retrieval of only content from a linked part, and the container applica-
tion has no control over how much data is retrieved or how the retrieved data is drawn.
With SPARCE, an SA may retrieve any subset of the context information available for
a mark, and display it in any manner. For example, an SA may retrieve the text of an
MS Word selection and draw the text in any color. Alternatively, it may retrieve both

text and color information, and draw the text in the retrieved color.

OLE 2 imposes a storage model for compound documents. A controller application
has little control over how monikers are written to a file because the server applica-

tions write the monikers. SPARCE does not impose such constraints on SAs.

Developing OLE 2 container and server applications can require large development
efforts. By one account [16], supporting compound documents requires implementing
13 interfaces and 126 functions (to support both container and server features). In con-
trast, SAs do not need to implement any particular interface, and a context agent needs

to implement only four functions (listed in Section 3.6.2.7).

105

3.8. Summary and Conclusions

This chapter has described a flexible representation scheme for descriptors of base
parts. The scheme allows a context-agent implementer to choose a descriptor structure
appropriate to his needs, yet allows SAs to represent the use of marks in any data
model. The URI representation of base-part references enables the use of marks in tra-
ditional applications such as web browsers and word processors, without any change

to those applications.

This chapter has also described SPARCE, our middleware architecture to create base-
part references, and to activate base parts and retrieve context information from the
parts. The chapter has also presented an evaluation of the representation schemes for
descriptors and of the middleware. The evaluation shows that support for referencing
information in different base types is added easily. It also shows that SAs and coﬁtext

agents can evolve independently due to the abstractions SPARCE defines.

SPARCE is closely related to hypermedia systems, annotation systems, the multiva-
lent document model, and compound document systems. These systems support sub-
sets of the features SPARCE supports, but none supports all of SPARCE’s features.
No system provides the freedom SPARCE does in modeling of annotations and other
information similar to SI. No system supports retrieval of context information from the
base layer. The ability to access context information allows us to combine SI with base
information, and to transform the combination to other forms. Chapters 6, 7, and 9

show how others parts of SASS employ SPARCE to support such transformation.

106

The next chapter builds on the descriptor representation schemes introduced in this

chapter to model bi-level information in conceptual and logical data models.

4. Modeling Bi-level Information

This chapter describes a methodology to model bi-level information in the Entity-
Relationship (ER) model [25] at the conceptual level, and in the relational [41] and
XML [43] models at the logical level. A developer of a superimposed application (SA)
can use the methodology to prepare a conceptual schema for only the superimposed
information (SI) and indicates which parts of SI are associated with marks. The me-
thodology includes a means to automatically extend the SI schema to include mark
descriptors and context information, thus modeling bi-level information. The metho-
dology also includes procedures that can automatically generate logical bi-level in-
formation schemas from a conceptual bi-level information schema. Instances of the bi-
level information schemas prepared using our methodology can be declaratively que-
ried using languages such as the Structured Query Language (SQL) [92] and XML
query languages.

We present our methodology in three parts: First, we model marks and the use of
marks (in Sections 4.3-4.5). Second, we model mark descriptors (in Section 4.6). Fi-
nally, we model context information (in Section 4.7). With each part, we present de-

tails of generating relational and XML schemas from ER schemas.

Section 4.8 demonstrates the ability to express declarative queries over bi-level infor-
mation. Section 4.9 presents an evaluation of the methodology in the form of bi-level

information schemas generated for three SAs with distinct information needs. Section

108

4.10 reviews four related systems and compares those systems to our methodology.

Section 4.11 summarizes the chapter and presents some concluding remarks.

We begin the chapter with an introduction to the need for modeling bi-level informa-

tion (in Section 4.1) and a description of a motivating example (in Section 4.2).

4.1. Introduction

An SA is different from a traditional application in two key respects: First, at run time,
it uses marks to reference base-layer contents. Specifically, the SA associates marks
with superimposed information (SI) elements. Second, at storage time, the SA in-
cludes mark identifiers or mark descriptors with SI elements (as described in Section
3.2). That is, the design of an SA must include representations for the use of marks in

both the run-time model and the storage model of the SA.

In Section 3.2.4 (see specifically Figure 3.7), we presented a means to represent the
use of marks in the run-time model of an SA. In this chapter, we present a means to
represent the use of marks in the storage model—more precisely, in the information

model—of an SA.

Earlier in this dissertation research, we used (and were satisfied with) ad-hoc means to
represent the use of marks in the information model of an SA, but as the number of
SAs grew (we know of nine SAs built thus far with our infrastructure: six due to us,
and three due to our collaborators; see Section 3.6.1.3), we realized that SA developers

would benefit from a systematic means to represent the use of marks. A systematic

109

means would take into account different uses of marks, and provide uniform syntax

and semantics to represent these uses of marks.

In this chapter, we describe a means of systematic conceptual modeling of the use of
marks in the ER model. We model the use of marks at the conceptual level so that the
resulting SI schemas are independent of logical data models (such as the relational
model and the XML model). We use the ER model because it is widely used for con-
ceptual information modeling, and SA developers are likely to be familiar with it. Ad-
ditionally, by using the ER model, we are able to leverage existing procedures to au-
tomatically generate SI schemas for the relational and XML models, which eases the

transition from the SA-design phase to the implementation phase.

An obstacle to representing the use of marks in the ER model, and in models like the
ER-model, is that the native model constructs are not expressive enough. Specifically,
they cannot express the layer-crossing property of marks. A solution would be to de-
velop new models or modeling constructs that represent the use of marks. However,
existing design methodologies and tools might not work with the extended or new
model. An alternative is to use existing constructs as they are, but develop conventions

to indicate the use of marks. We pursue the latter alternative.

We identify the different patterns of use of marks, and provide a set of conventions to
apply the patterns in a flexible and expressive manner. The patterns we identify allow

an SA developer to accomplish the following information modeling tasks at design

110

time. In this list and in the rest of the chapter, we use the term attribute to mean either

an ER entity’s attribute or an ER relationship’s attribute.

e Associate marks with entities, attributes, and relationships.

e Assign the excerpt obtained from a mark as the value of an attribute.

e Impose cardinality and other constraints when associating marks.

e Generate schemas for the relational and XML models from ER schemas.

To use the patterns, the SA developers need not be aware of the information model of

any base application.

The patterns make it easy to exploit the context mechanism of SPARCE and provide a
way to combine SI with context information. The combined bi-level information may
then be queried using structured query languages such as SQL in the relational model,
and XQuery [176] or XSLT [177] in the XML model. Section 4.8 shows some exam-
ple queries over bi-level information. Chapters 5 and 9 discuss execution of queries

over bi-level information.

4.2. Motivating Example

In this section, we describe the Superimposed System-Information Browser (SSIB), an
SA developed using SPARCE. We describe the information needs of SSIB and present
a traditional ER schema for SSIB information. In Sections 4.3—4.7 we use our metho-

dology to model bi-level information to express the information needs of SSIB.

111

SSIB allows users to browse information such as operating system (OS) updates, and
application and OS events, for a collection of computers. System administrators can
use this application to browse information resident on networked computers for diag-

nostic purposes.

M Windows Update History (C2)
Updates Edit View

File

24 sanba.cecs. pdx.edu\datalablsparce\Researe. . [T @\@
Date |} Time | Tile { URL | He Edt Yew Favortes Took Heb ¥

17-Apr-03 10:25.. Q817287 Citical Up... hitp://support. microsoft.cd R
10-4pr-03 08:57.. B16093: Securty Up... http://support.microsoft.cd - <Update> ko

26-Mar-03 02:56... 331953 Secuity Up... hitp://support.miciosoft. _4&9814078: Security Update (Microsoft
ERNEE] 814076 Security Up, .1 Btpe// suppdst mictnsolt oo script version 5.6, Windows 2000,
Windows XP)</Title>

01-Mar-03 03:04.. Windows Media Play...

01-Mar03 0256, ‘Windows MovieMak... <Description>A security issue ... Once you

have installed this item, it cannot be

01-Mar-03 0257... Euro Conversion Tool removed.</Description>
01-Mar-03 02:57... Microsoft Windows J... <KBId>814078</KBId>
< <SupportURL>http:// support.microsoft.com?

kbid=814078</SupportURL>
</Update> ¥

Superimposed OS Update History for a computer XML Updates Catalog

I 163 items read from file.

Figure 4.1: System information displayed in SSIB. OS-update information displayed on the left,
with a mark into an XML document on the right

Figure 4.1 shows some OS-update information displayed in SSIB. The window with
the caption ‘Windows Update History (C2)’ displays a table structure superimposed
on OS-update information for computer c2. The highlighted row shows the details of
one OS update applied on that computer, excerpted from a set of marks. For example,
the title of this update is retrieved using a mark into a shared catalog of available up-
dates (called the Updates Catalog) stored on the network, shown on the right side of
Figure 4.1. Though not shown in the figure, the highlighted row also contains support
details such as a reason for the update and the underlying problem that necessitated the
update. These details are retrieved using marks into HTML documents [61] available
on the Microsoft (MS) Support web site [100]. Table 4.1 describes these and other

sources that SSIB uses to display system information.

http://http7Auppoit.microsoft.cJ
http://support.microsoft.com

112

Modeling SSIB information as SI provides several benefits. It integrates disparate and
distributed information without replication. It also allows structured querying over
base information of varying structures. For example, an administrator can ask to see a
timeline of errors on computer c2 since the last update related to MS QOutlook [96] was
applied on that computer. Answering this query requires looking up the support pages
to discover which updates apply to MS Outlook, choosing the last such update on
computer c2, and looking up error reports on computer c2 that occurred after that up-

date. The query returns the date, time, and description of relevant errors.

Table 4.1: Base sources SSIB consults

Info. Kind | Doc. Type | Location Description

Event log MS Excel Distributed | Records OS and application events, typically one event per row.
Obtained using the Event Log Viewer built into MS Windows.
Three log files per computer.

Error re- MS Word Distributed | Records OS and application errors. Obtained using the System

ports Information Viewer built into MS Office [97]; reformatted for
demonstration purposes. One document per computer.

Update log | Text Distributed | Contains one line per OS update applied. Not all available updates
might be applied on a particular computer. One log per computer.

Updates XML Network, Contains one Update XML element per available update (see

Catalog shared Figure 4.1). One log per network.

Support HTML The web Describes symptoms, cause, and resolution related to a problem

details along with a list of affected applications. Available from MS Sup-
port. Each update in the updates catalog typically references a
support page.

Figure 4.2 shows an ER schema for SSIB, drawn using a syntax similar to the syntax
that the Unified Modified Language (UML) [159] defines for static class diagrams.
Schema elements whose names are in bold have marks associated with them. The enti-
ty Observation denotes observations that computer users record about their computers.

(For example, a user might record seeing an error message related to MS Outlook.)

113

The entity Application represents applications such as MS Outlook. A system adminis-
trator frequently uses this entity to determine which updates need to be applied on a
given computer. (A support web page for an OS update typically lists the applications
to which the update applies, whereas a scan of the computer reveals the applications

installed on the computer.) The other entities relate to the base sources listed in Table

4.1.

UpdDateTime

Observation 7 OSUpdate
ObsDateTime Relates To Computer : Title
Text Name : Description
User Applied On Reason

Logged On Occurs On Runs OR Applies To

Event Error
EvDateTime ErrDateTime| pojates o Application
Kind Source
Source Description Name

Notes

Description

Figure 4.2: A conceptual schema for SSIB. Names in bold indicate elements with associated
marks. All relationships are many-to-many; all entities have a key attribute named ID (not
shown).

In the rest of this chapter we show how the mark associations in the schema of Figure
4.2 are expressed using our methodology. Unless stated otherwise, all examples in this

chapter are based on this schema.

4.3. Modeling Marks and Use of Marks
We model a mark as the ER entity Mark. This entity has a key attribute named ID. Its

other attributes are derived from mark descriptors (described in Chapter 3), but we
omit those attributes at this stage because they are immaterial to modeling the use of

marks. Section 4.6 describes modeling of mark descriptors.

114

We model different uses of marks as relationship patterns [114], which capture recur-
ring needs or problems when establishing relationships (at design time) among infor-
mation elements. (Section 4.10.1 reviews the general notion of relationship patterns.)
We define a relationship pattern for each type of schema element with which marks
may be associated: entity, entity attribute, relationship, and relationship attribute. De-

riving attribute values from the text excerpt of a mark forms another pattern.
The relationship patterns we identify have the following informal signature:

<pattern>:<type> (<parameters>)

In this signature, <pattern> is the name of the pattern, <type> is the name of the rela-
| tionship type (that represents a use of mark) as chosen by the SA developer, and
<parameters> indicates attribute names, when they are needed by the pattern. A rela-
tionship pattern that represents the use of marks relates an entity of type Mark to non-
Mark entities or to relationships of any type. We call a non-Mark entity type a regular
entity type or an SI entity type. A relationship between regular entities is a regular

relationship.

In the rest of this section, we describe the five relationship patterns we have identified
to represent the use of marks. For each pattern, we state its signature, describe the se-
mantics, and list the constraints on using the pattern.

4.3.1. Associating Marks with Entities

The EMark pattern associates marks with regular entities. Figure 4.3 shows the use of

this pattern to associate a mark with an Event entity. EMark is the name of the relation-

115

ship pattern and EventDetail is the relationship type; Logged On is a regular ER relation-

ship type.

Signature: EMark:<type>. A relationship of EMark pattern has no parameters.

Semantics: The EMark pattern associates marks with entire entities, not with any par-
ticular set of entity-attributes, and no specific meaning is attached to this association.
Instead, the developer interprets this association. For example, the developer might

incorporate the excerpt extracted from the mark into the user interface of an SA.

Constraints: The EMark pattern may be used to associate marks with any SI entity
type. The developer may impose any cardinality constraint on EMark relationships. The
schema in Figure 4.3 restricts the cardinality of the EventDetail relationship type to one
because an event logged on a computer has just one associated mark in the SSIB ap-

plication.

Event
Computer Logged On |EvDateTime EMark:EventDetail Mark
Name Kind 1|mD
Source
Description

Figure 4.3: Associating marks with an entity

4.3.2. Associating Marks with Entity Attributes
The AMark pattern associates marks with attributes of an entity. Figure 4.4 shows two

relationship types that associate marks with two attributes defined by the entity type
Error. The relationship type ErrorTime associates the attribute ErrDateTime with a mark.
The relationship type ErrorDetails associates the attribute Description with a mark. Occurs

On is a regular ER relationship type.

116

Signature: AMark: <type>(aj, @y, ..., @), where ai, a, ..., an (n>0) are distinct attributes

of an SI entity.

Semantics: All attributes specified are associated with the same mark (or the same set
of marks if cardinality is greater than one). Associating a mark with an attribute does
not mean its value is obtained using the mark. Rather, it gives an SA access to excerpt
and other context information of the associated mark(s), in addition to having an
attribute value stored in the superimposed layer. For example, an SA may display a
retrieved excerpt as a “tool tip” upon mouse rollover. An SA may also activate the as-

sociated mark.

Constraints: An AMark relationship type is always a binary relationship between an Sl
entity type and the Mark entity type. At least one attribute mﬁst participate in the rela-
tionship. The developer may impose any cardinality constraints. The schema in Figure
4.4 restricts the cardinality of the relationship types ErrorTime and ErrorDetails to exact-

ly one mark to satisfy the SSIB application needs.

AMark:ErrorTime(ErrDateTime)

Error

ErrDateTime . . -
Computer Occurs On Source AMark:ErrorDetails(Description) Mark
Name Description 1 |ID

Notes

Figure 4.4: Associating marks with entity attributes

4.3.3. Deriving Attribute Values
We define the pattern AExcerpt to derive an attribute’s value from the excerpt of a

mark. Figure 4.5 shows a relationship type in the AExcerpt pattern to set the value of

117

the attribute Title as the excerpt of a mark. (It is possible to define a more general pat-
tern such as AContext to derive an attribute’s value from any context element of a
mark, but, for simplicity, we limit this discussion to excerpts. Chapter 7 discusses de-

riving a value from any part of a mark’s context.)
Signature: AExcerpt:<type>(a), where a is an attribute of an SI entity.

Semantics: The value of the attribute associated with a mark using this pattern is a
function of the excerpt obtained from the mark. We assume that appropriate type con-

version is performed before assigning the derived value to an attribute.

Constraints: Like an AMark relationship type, an AExcerpt relationship type is always
binary: between an SI entity type and the Mark entity type. Assuming that attributes are
single-valued, the attribute in an AExcerpt relationship type may be associated with at
most one mark. (Chapter 7 discusses deriving an attribute’s value from more than one

mark.)

OSUpdate

Title
Description ID
Reason

AExcerpt:UpdateTitle(Title) Mark

Figure 4.5: Deriving the value of an entity’s attribute from a mark’s excerpt

4.3.4. Associating Marks with Relationships
We use the RMark pattern to associate marks with relationships. Figure 4.6 shows a

relationship type of this pattern that associates zero or more marks with relationships
of the type Applies To. We use the term anchored relationship [17] to refer to a rela-

tionship with which marks are associated. In Figure 4.6, the relationship Applies To is

118

anchored. We aggregate the anchored relationship (as indicated by a dashed rectangle
around the relationship type [139]) to clarify that marks are associated with the rela-

tionship.
Signature: RMark:<type>. A relationship of RMark pattern has no parameters.
Semantics: The RMark pattern associates marks with entire relationships.

Constraints: A relationship of any type may be anchored (including another RMark
relationship type). There are no constraints on the degree of the anchored relationship
type, but an RMark relationship itself is always binary. That is, it relates an anchored
relationship type with the Mark entity type. There are no constraints on the cardinality
of either the anchored relationship type or the RMark relationship type, and either type

may define attributes.

i [0sUpdate :

Computer AppliedOn + f=nc Applies To | Application |
Name | {Description Name :
i [Reason :

] RMark:Application
Mark
1D

Figure 4.6: Associating marks with a relationship

4.3.5. Associating Marks with Relationship Attributes
The RAMark pattern associates marks with attributes of a relationship. Figure 4.7 shows

a relationship type that associates marks with the attribute UpdDateTime of an Applied
On relationship. We aggregate the anchored relationship type Applied On to clarify that

marks are associated with the relationship’s attribute.

119

Signature: RAMark: <type>(ay, ay, ..., an), where ay, ay, ..., an (n>0) are distinct attributes

of a relationship.

Semantics: The semantics of the RAMark pattern are similar to that of the AMark pat-
tern. All attributes specified are associated with the same mark (or the same set of
marks if cardinality is greater than one). Associating a mark with an attribute does not

mean its value is obtained using the mark.

Constraints: The RAMark pattern imposes constraints similar to those the RMark pat-
tern does. The attributes of any relationship (including an RMark or RAMark relation-
ship) may be associated with marks. There are no constraints on the degree of the anc-
hored relationship type, but an RAMark relationship type itself is always binary. There
are no constraints on the cardinality of either relationship type, and either type may

define attributes.

pmmmmmmmmemommomomememooommoooooo——ooo—————- RAMark:Updatelog(UpdDateTime) Mark
' UpdDateTime] 1|0

i OSUpdate i

i | Computer i Title ‘

' Name Applied On Description i

; Reason

Figure 4.7: Associating marks with a relationship attribute

4.4. Generating Relational Schemas

Having covered all the patterns of use of marks employed in Figure 4.2, we now de-
fine the procedures to convert the relationship types (defined using the patterns) to re-
lational schemas. We present relational schemas in the form of Data Definition

Language (DDL) statements using SQL:1999 [92].

120

We represent the Mark entity type as the relation Mark with the key attribute 1D (see

Figure 4.8). Section 4.6 discusses the representation of other attributes of this relation.

CREATE TABLE Mark

(
ID INTEGER NOT NULL PRIMARY KEY, ..

)

Figure 4.8: Partial relational schema for the Mark entity type

The relational schemas generated for the different patterns of use of marks involve the
Mark relation. Specifically, the schema generation procedures generate relations that
reference the attribute Mark.1D. The procedures to generate relational schemas are
based on the procedure defined by Elmasri and Navathe [41]. In the rest of this chap-
ter, we call their procedure the traditional procedure. (Briefly, the traditional proce-
dure translates each entity to a relation and each of the entity’s attribute to an attribute
of the relation generated’for the entity. Based on the cardinality constraints, a relation-
ship is represented either as an attribute in a participating entity’s relation, or as a sep-

arate relation.)

Figure 4.2 omits the key attribute named ID from all entity types, but we add that
attribute to the relational schema generated for the entity types. We also assign a rea-
sonable data type to each attribute.

4.4.1. Generating Schemas for the EMark and AMark Patterns

We use the traditional procedure to generate relational schemas for EMark and AMark
relationship types. Figure 4.9(a) shows the relational schema for the entity type Event
and the relationship type EventDetail of Figure 4.3. The attribute EMark EventDetail

stores the mark associated with an event.

121

CREATE TABLE Event
(
ID INTEGER NOT NULL PRIMARY KEY,
EvDateTime TIMESTAMP, Kind CHAR(5), Source VARCHAR(25),
Description VARCHAR (255),
EMark_EventDetail INTEGER REFERENCES Mark (ID)
)

(@

CREATE TABLE Error

(

ID INTEGER NOT NULL PRIMARY KEY,

ErrDateTime TIMESTAMP, Source VARCHAR(25),
Description VARCHAR(255), Notes VARCHAR (255),
AMark_ErrorTime INTEGER REFERENCES Mark(ID),
AMark ErrorDetails INTEGER REFERENCES Mark (ID)

(b)

Figure 4.9: Relational schema generated for EMark and AMark relationship types. (a) Schema for
the Event entity type and EMark relationship type of Figure 4.3; (b) Schema for the Error entity
type and AMark relationship types of Figure 4.4

Figure 4.9(b) shows the relational schema generated for the Error entity type and the
AMark relationship types of Figure 4.4. The last two attributes represent the AMark rela-
tionship types.

4.4.2. Generating Schemas for the AExcerpt Pattern

We generate the relational schema for a relationship type of the pattern AExcerpt in two
steps: First, we generate the schema for a stored relation. Then we deﬁne a view (that
is, a relation derived from other relations) over the stored relation in order to provide

direct access to the excerpt retrieved from the base layer.

To generate the schema for a stored relation, we generate the schema for the entity
type involved in the AExcerpt relationship type using the traditional procedure, and re-
move from the generated relational schema the attributes that participate in the

AExcerpt relationship type.

122

Figure 4.10(a) shows the relational schema the traditional procedure generates for the
entity type OSUpdate in Figure 4.5. Figure 4.10(b) shows the relational schema gener-
ated for the stored relation after removing the attribute Tit1e because the value of that
attribute is derived from a mark’s excerpt. Note that the foreign-key attribute that

represents the use of mark is present in both schemas.

CREATE TABLE Traditional OSUpdate

(

ID INTEGER NOT NULL PRIMARY KEY,

Title VARCHAR(100),

Description VARCHAR(255),

Reason VARCHAR (255),

AExcerpt UpdateTitle INTEGER REFERENCES Mark (ID)

(@

CREATE TABLE Stored OSUpdate

(

ID INTEGER NOT NULL PRIMARY KEY,

Description VARCHAR{(255),

Reason VARCHAR({(255),

AExcerpt UpdateTitle INTEGER REFERENCES Mark (ID)

)

(b)

Figure 4.10: Relational schema generated for an AExcerpt relationship type. (a) Traditional sche-
ma generated for the entity type participating in an AExcerpt relationship; (b) Schema generated
for the stored relation for an entity type participating in an AExcerpt relationship

In the second step, we define a view over the stored relation. The view exposes as is
the attributes whose values are not derived from a mark’s excerpt, but hides the
attribute that references the attribute Mark.1D (corresponding to the attribute whose
value is derived from a mark’s excerpt). Instead, the view exposes the excerpt ob-

tained from the hidden mark ID attribute.

Figure 4.11 shows the definition of the view over the stored relation for the entity type

OSUpdate in Figure 4.5. The view exposes the attributes 1D, Description, and Reason

123

as they are because their values are not derived from marks’ excerpts. The view ex-
poses the attribute Title as a result of the function excerpt. The function excerpt
accepts a mark ID and returns the text excerpt (a string) retrieved from the correspond-
ing mark. This function may be implemented as a user-defined function [147] by reus-

ing the context mechanism of SPARCE (described in Section 3.3.2).

In the view definition that our procedure generates, the value of an attribute associated
with an AExcerpt relationship is the same as the excerpt retrieved from a mark, but an
SA developer may change the generated schema. For example, he might make the

attribute’s value only the first 10 characters of the excerpt.

CREATE VIEW OSUpdate (ID, Title, Description, Reason)

AS

SELECT ID, excerpt (AExcerpt UpdateTitle), Description, Reason
FROM Stored OSUpdate

Figure 4.11: View definition generated for an entity type participating in an AExcerpt relationship

Type conformance is an important consideration when assigning an attribute value
from a retrieved excerpt. As described, our procedure to generate relational schemas
for the AExcerpt pattern assigns a value of type string to any attribute that derives its
value from a mark’s excerpt. Although the string type might satisfy many modeling
needs, it is necessary to consider representing excerpts as other types (such as integer

and date).

An improvement to our procedure is to cast the result of the function excerpt to a

type compatible with the type of the attribute that participates in an AExcerpt relation-

ship type.

124
4.4.3. Generating Schemas for the RMark Pattern
We generate the relational schema for an RMark relationship type in two steps. In the
first step, we generate the schema for the anchored relationship type using an appro-
priate procedure. That is, we use the traditional procedure if the anchored relationship
is a regular ER relationship between SI entities; we use one of the procedures in this
section if the relationship follows any of the patterns of use of marks. For example, we
use the traditional procedure to generate the schema for the relationship type Applies To
in Figure 4.6 because that relationship type is between SI entity types. Figure 4.12(a)
shows the schema generated for that anchored relationship type (in the form of the re-
lation AppliesTo). For ease of reading, we include also the schema for the related ent-
ity type Application (in the form of the relation Application). Figure 4.10(b) shows

the schema for the other related entity type, OSUpdate.

In the second step, we augment the schema generated in the first step to represent the
RMark relationship type. The augmentation procedure is based on the cardinality con-
straints of the RMark relationship type. If the cardinality constraints of the RMark rela-
tionship allow multiple marks (that is the relationship is 1:N or M:N), we create a new

relation and perform the following actions.

1. Add the key attributes of the relation that captures the anchored relationship type,

and constrain those attributes to be a foreign key.
2. Add a foreign-key attribute to reference the attribute Mark. ID.

3. Add the attributes of the RMark relationship.

125

4. Define the primary key of the new relation as the set of the foreign-key attributes.

If the RMark relationship can have at most one mark (that is the relationship is 1:1 or
M:1), we perform only the aforementioned Actions 2 and 3, but with the relation that

captures the anchored relationship type.

CREATE TABLE Application
(
ID INTEGER NOT NULL PRIMARY KEY,
Name VARCHAR (255)
)

CREATE TABLE AppliesTo

(

UID INTEGER REFERENCES Stored OSUpdate(ID),
AID INTEGER REFERENCES Application(ID),
PRIMARY KEY (UID, AID)

)

&)

CREATE TABLE RMark Application
(

UID INTEGER,

ATID INTEGER,

CONSTRAINT FOREIGN KEY (UID, AID)

REFERENCES (AppliesTo.UID, AppliesTo.AID),
RMarkID INTEGER REFERENCES Mark(ID),
PRIMARY KEY (UID, AID, RMarkID)

(b)

Figure 4.12: Relational schema generated for an RMark relationship type. (a) Schema for the anc-
hored relationship type of an RMark relationship type; (b) Schema for an RMark relationship type

Figure 4.12(b) shows the schema of a new relation created to represent the RMark rela-
tionship type of Figure 4.6. A new relation is created because the RMark relationship
type allows any number of marks to be associated with the anchored relationship type
Applies To. The schema of the new relation contains the key attributes utd and ATD of
the relation AppliesTo, the relation that captures the anchored relationship type

Applies To. These attributes together are also defined as a foreign key referencing the

126

primary key of the relation AppliesTo. The new relation also has a foreign key
attribute to denote the use of a mark. The relation has no other attributes because the
RMark relationship has no attributes. Finally, the set of all foreign key attributes (u1Dp,
AID, and RMarkID) is the primary key of the new relation.

4.4.4. Generating Schemas for the RAMark Pattern

Generating the relational schema for an RAMark relationship type is similar to generat-
ing the relational schema for an RMark relationship type, except that the foreign key
attribute that denotes the use of a mark is associated with a relationship’s attribute, not

with the relationship.

CREATE TABLE Computer
(
ID INTEGER NOT NULL PRIMARY KEY,
Name VARCHAR (255)
)

CREATE TABLE AppliedOn

(

UID INTEGER REFERENCES Stored OSUpdate (ID),
CID INTEGER REFERENCES Computer (ID),
UpdDateTime TIMESTAMP,

RAMark UpdateLog INTEGER REFERENCES Mark(ID),
PRIMARY KEY (UID, CID)

Figure 4.13: Relational schema for an RAMark relationship type

Figure 4.13 shows the relational schema generated for the RAMark relationship type of
Figure 4.7. For ease of reading, we include also the schema for the related entity type
computer. (Figure 4.10(b) shows the schema for the other related entity type,
OSUpdate.) The relation appliedon in this schema captures the anchored relationship
type Applied On. A new relation is not needed to capture the RAMark relationship type

because its cardinality is M:1.

127

4.5. Generating XML Schemas

In this section, we describe the procedures to generate XML schemas for the different
patterns of use of marks. In XML terms, these procedures allow association of marks
with elements, attributes, and text content. We describe the schemas generated for the
XML model using XML Schema [170], instead of using XML Document Type
Definition (DTD) [43], because the former is more expressive and permits more mod-

ular construction of schemas.

We begin this section with an overview of the procedure to generate XML schemas

from ER schemas.

4.5.1. Overview of the Schema-Generation Procedure
The representational multiplicity (that is, the ability to express the same information in

different ways) of the XML model poses special challenges when generating an XML
schema from an ER schema: An ER attribute may be represented as an XML element
or as an XML attribute; an ER relationship may be represented as an XML element or
as an XML attribute, or using a combination of XML elements and attributes. Further,
a relationship may be replicated for each participating entity, or it may be represented
using a reference (for example, using an attribute of type IDREF). For reasons such as
performance, an SA developer may use different representations for different applica-

tions.

Several researchers—KIleiner and Lipeck [82]; Sengupta and others [144]; Elmasri and

others [42] among them—have considered the problem of generating XML schemas

128

from ER schemas. However, they all limit the developer’s choices of XML representa-
tions for ER schema elements. For example, Elmasri and others represent ER
attributes as XML elements. That is, none of the current approaches to generate XML

schemas from ER schemas fully handles the representational multiplicity of XML.

To leverage these and other works, and to avoid the limitations of existing procedures,
we have devised a two-step procedure to generate the XML schema for a pattern of
mark use. In the first step, we allow the SA developer to employ any existing proce-
dure to generate the XML schema for the ER entity, relationship, or attribute involved
in the use of mark, excluding the relationship type that indicates the use of marks. This
step generates the schema for an XML element or an attribute (because an ER entity,

relationship, or attribute can only be represented using these XML constructs).

In the second step, we add to the schema generated in the first step new XML ele-
ments (always elements) that represent the use of marks. The location of a new XML
element that is added is determined as follows: If the first step generates an element,
the new element is added as a sub-element of the element generated; if the first step
generates an attribute, the new element is added as a sub-element of the element that

contains the attribute generated.

Table 4.2 shows how the two steps of the procedure work together. The first column
lists different ER constructs. The second column shows the relationship pattern used to
represent the use of marks (in which an ER schema construct of the kind listed in the

first column participates). The third column shows the XML constructs an existing

129

procedure to generate XML schemas might generate in the first step. The last column
shows the type of XML element we add to the schema generated in the first step. Fig-
ure 4.14 defines the element types we use to represent use of marks. Section 4.5.2 de-
scribes these types, including the need for the type Xml_TMark (shown in the fifth data

row of Table 4.2).

Table 4.2: Correspondence of ER constructs and patterns of use of marks to XML constructs

ER construct Relationship pattern =~ XML construct generated XML element type added
in Step 1 in Step 2
Entity EMark Element Xml_EMark
Entity EMark Attribute Xml_AMark
Entity attribute AMark Element Xml_EMark
Entity attribute AMark Attribute Xmi_AMark
Entity attribute AExcerpt Element Xmi_TMark
Entity attribute AExcerpt Attribute Xml_AMark
Relationship RMark Element Xml_EMark
Relationship RMark Attribute Xml_AMark
Relationship attribute RAMark Element Xml_EMark
Relationship attribute RAMark Attribute Xml_AMark

Our two-step procedure allows marks to be associated with any part of an XML doc-
ument (elements, attributes, and text nodes), regardless of how an ER construct is
represented in XML. That is, with respect to the use of marks, our procedure fully

handles the representational multiplicity of XML.

In this chapter, for simplicity, we assume that the first step in the schema-generation
procedure represents ER elements and relationships as XML elements, and ER
attributes as XML attributes. Consequently, we describe the procedures to generate

XML schemas only for the EMark, AMark, and AExcerpt patterns. We omit discussing the

130

procedures for the RMark and RAMark patterns (because those procedures would be the
same as the procedures for the EMark and AMark patterns, respectively).

4.5.2. Element Types for Patterns of Use of Marks

The XML Schema instance document in Figure 4.14 defines the element types we use
to represent association of marks with different parts of an XML document. The ele-
ment types belong to the namespace "sixml" and are bound to the Uniform Resource
Identifier (URI) [15] "http://schema.sixml.org". For simplicity, where possible, we
use our element types without this namespace or the URI. XML Schema defines the

namespace "xs" (bound to the URI "http://www.w3.0rg/2001/XMLSchema").

The term Sixm! (pronounced 'siks-ms1) [118, 120] refers to SI represented as XML.
A Sixml document 1s an XML document that contains elements of the types we define
for mark associations. To focus on generating XML schemas from ER schemas, we
present here only the Sixml element types that can arise in our generation procedure.
(The ER model cannot express all XML constructs.) Chapter 7 presents the complete
set of Sixml types. Appendix A shows the XML Schema instance document contain-

ing the complete set of Sixml types. That document is also available online [119].

http://schema.sixml.org
http://www.w3.org/2001/XMLSchema

131

SyJaew Jo 3sn Jo surded JUIISPIP 3Y) I0] JUIUIRIOP IDUEBISUI BUIYIS TTINX PayIduars v :p1°p 2InS1y

<BWBYIS:SX/>
<adA1xa)dwod:sx/>
<jua3uoDX3|dwod:sx/>
<UO0ISURIXD:SX/> </, palinbal,=asn 39b4e]:|WXIS, =Ja4 9INQIIR:ISX> < MHBW L WX : JWXIS, =9SBq UO|SUIIX:SX>
<,9N43,=poxiw juauo)xa|dwod:sx>
<,ON43,=paxiw ,||e#,=320|q ,U0IDHISal, =|euly IMBWY WX, =sweu adA] xajdwod:sx>
<9inglpe:sx/>
<adA]ajdwis:sx/> <Uo|dISBLISX/> </, T, =9N|BA YIDUSTUIW SX> <, ISITIWEND I |WX]S, =95.q U0[3D1135a1:SX> <adA] 9|dwis:sx>
<,J9b4e3,=dweu aInqe:sx>
<adAaldwis:sx/> </, 2WeND:sx,=adAwal 1S1|:SX> <, IsIToweND, =dweu adA19dwis :sx>
<9dAx9|dwod:sx/>
<juduo)xadwod:sx/>
<UOISURIXD:SX/>
</,U0issaldXIaN|eA: JWXIS, =Jo4 9INQIIIIRISX> < /,901N0S3N|BA: [WXIS,=Jo] NqLIIIe:SX>
< OHRWI WX :|WXIS, =9seq UOISUDIXD:SX>
<, 9N}, =paxiw JuauoHxajdwod:sx>
<,9N4},=paxiw ||e#,=>20|q ,UolIdL1Isal, =|euly HJepw L~ jwx,=sweu adA] xa|dwod:sx>
</,bulns:sx,=adA} ,uoissaidxgan|ea,=sweu 93nqI1e:SX> < /,ULd|00q:SX, =9dA} ,901N0SBN|BA, =W eU 3INGLIIIe:SX>
<adA]xa|dwod:sx/>
<juduo)xadwod:sx/>
<UOIPIISBLISX />
</,9dA3:jwxIS, =01 DINqLUNIRISX> </, dDRW |WXIS =81 9InqlIe:sX>
<92UaNbas:SX/></,0,=SIN2D0OUIW ,IXDUOD: [WXIS, =JOJ JUBWDD:SX></,0,=5IN2J0uIW ,103dIIISQ: |WXIS,=Jo] JUBLIB[D:SX><dUaNbas:sx>
<,9dA] Aue:SX,=9seq UOIPIIISAIISX>
<, 9n4},=paxiw jusjuo)xa|dwod:sx>
<,9N4),=paxiW ,||R#,=X20|q ,UO[DISAL, =|euly YJeWI (WX, =dweu adA] xa|dwod:sx>
</, bulns:sx,=adAy ,adAy, =oweu anquIe:SX> </,0UllS SX,=2dA} ,gDeW,=dWeu 3)Nqupe:SX>
</ d01dldseq: |wxis, =adAy 103d143SQ, =dWeU JUdBWI[3:SX>
<juswR|a:sx/>
<adAlxa|dwod:sx/>
</, dps, =sjuauonssadodd anguUnvAue:sx> <aduanbasisx/> < /,dpis, =sjusjuo)ssadold Aue:sx><eouanbasisx>
<, 943, =paxiw adA]xaidwod:sx>
<, JX2U0D, =dWeU JUBWDD:SX>
<-- 3INPNIS [PUIDIUI AJRIHGIE JO UOIFRWIOHN| IXDIUOD--|>
<adA1xa|dwod:sx/>
<juajuodxajdwod:sx/></,2dAlAue:SX, =DSBQ UOISUDIXD:SX> <, 2N}, =PIXIW JUUODHX3dwod:sX>
<,9n4,=paxiu ,,=x20[q ,,=|euly ,ani3,=pensqe Joydudsaq,=sweu adA]xajdwodr:sx>
<-- s103d1Dsap ylew Joj 9dA] aseq ensqy--i>
<, BWAYISTWX/T00Z /010 cM MMM/ /:dY,, =SX:SUjwX
JDJ0°jWwixis ewayds//1dny,, =|wxis:sujwx 610 1wxis ewayds//:diy, =adedsaweNiabie) ewayds:sx>

http://schema.sixml.org
http://schema.sixml.org
http://www.w3.org/2001/XMLSchema

132

We use the type-derivation facility of XML Schema to define the element types that
represent the different uses of marks. The type XmI_EMark is at the root of the type
hierarchy. This type is used to associate a mark with an XML element. It includes an
element named Descriptor to represent the descriptor of the associated mark, and the
attribute markID to represent the ID of the mark. Both Descriptor and markID are la-
beled optional, but at least one of these two must be used. Section 4.6 discusses the

use of Descriptor.

The optional element Context included in the type Xml_EMark represents the context
information retrieved from the mark in question. Section 4.7 discusses the use of this

element. Chapter 7 discusses the use of the optional attribute type.

The following example segment shows how an instance of the EMark relationship type
in Figure 4.3 can be represented in XML. The element Event represents the entity
Event in that figure. EMark_EventDetail represents the EMark relationship. (The rela-
tionship element’s name is based on the name of the relationship pattern and the rela-

tionship type in Figure 4.3.)

<Event ID="..." EvDateTime="..." Kind="..." Source="..." Description="...">
<EMark_EventDetail sixmi:markID="87" xsi:noNamespaceSchemalocation="."/>
</Event>

<xs:element name="EMark_EventDetail" type="sixml:EMark"/>

The attribute xsi:noNamespaceSchemalocation in the example segment associates a
schema with EMark_EventDetail. The prefix xsi indicates the XML Schema instance
namespace [171]. The value (period) for xsi:noNamespaceSchemalLocation denotes

that the schema for EMark_EventDetail is included in the “current” document. The

133

element xs:element defines the schema for EMark_EventDetail. The schema simply
states that EMark_EventDetail is of type EMark. (This somewhat convoluted method
of associating a schema with an element is actually the simplest way of associating a

schema using XML Schema.)

The second type in the type hierarchy, XmI_TMark, is used to model an AExcerpt rela-
tionship type when the ER attribute in question is represented as an element. (See the
fifth data row in Table 4.2.) Xmi_TMark extends Xmi_EMark by two attributes. The
Boolean attribute valueSource indicates whether the text content of the XML element
that corresponds to an ER attribute is derived from the context of the associated mark.
The string attribute valueExpression denotes the context element that supplies the val-
ue. We illustrate the use of Xml_TMark after discussing the use of the type

Xml_AMark. Chapter 7 discusses the use of the attribute valueExpression.

The type Xml_AMark is used to associate a mark with XML attributes. It extends the
type Xml_TMark by the attribute target. The value of this attribute is a list of qualified
names. (A qualified name [125]—Qname for short—is a sequence of characters al-
lowable as the name of an XML element or attribute, possibly combined with a prefix
that is associated with a URI. For example, the strings sixml:markID and
ErrDateTime are both QNames.) The qualified names listed as the value of the
attribute target are required to identify attributes with which an Xmi_AMark element
associates a mark. The value of target must identify at least one attribute, and each

identified attribute is associated with the same mark.

134

The following XML segment illustrates how instances of the AMark relationship types
in Figure 4.4 might be represented in XML. The element Error denotes an Error entity.
AMark_ErrorTime and AMark_ErrorDetails denote relationships. The missing attribute
valueSource in each relationship element indicates that the target attribute’s value is
not derived from the associated mark. (Altematively, valueSource may be set to

"false".)

<Error ID="..." ErrDateTime="..." Source="..." Description="..." Notes="...">
<AMark_ErrorTime sixml:markID="..." sixml:target="ErrDateTime"
xsi:noNamespaceSchemalocation="."/>
<AMark_ErrorDetails sixml:markID="..." sixml:target="Description"
xsi:noNamespaceSchemalocation="."/>
</Error>

<xs:element name="AMark_ErrorTime” type="sixmi:Xml_AMark"/>
<xs:element name="AMark_ErrorDetails" type="sixml:XmiI_AMark"/>

The type XmI_AMark is also used to model an AExcerpt relationship type. In this use of
XmI_AMark, the value of the attribute valueSource is always "true". For example, an
instance of the AExcerpt relationship type in Figure 4.5 may be represented in XML as
follows. Here, an OS update’s title is represented as the attribute Title. The sub-
element AExcerpt_UpdateTitle (of type XmI_AMark) associates the attribute Title with
a mark. The sub-element’s attribute valueSource denotes that the target attribute’s

value is the excerpt from the associated mark.

<0OSUpdate Title="..." Description="..." Reason="...">
<AExcerpt_UpdateTitle sixml:markID="146" sixml:target="Title" sixml:valueSource="true"
xsiznoNamespaceSchemalocation="."/>
</0OSUpdate>

<xs:element name=" AExcerpt_UpdateTitle" type="sixml:Xml_AMark"/>

The element type Xml_TMark handles the case of an ER attribute that participates in
an AExcerpt relationship, and is represented as text content of an XML element. (This

case corresponds to the fifth data row in Table 4.2.) The type Xmi_AMark cannot be

135

used in this case because the target XML attribute would not exist. For example, if the
attribute Title involved in the AExcerpt relationship type in Figure 4.5 is represented as
text content, we insert the element TExcerpt_UpdateTitle (of type Xml_TMark) into

the element OSUpdate as follows:

<0SUpdate Description="..." Reason="...">
<TExcerpt_UpdateTitle sixm!:markID="146" sixmi:valueSource="true"
xsi:noNamespaceSchemalocation="."/>
</0SUpdate>

<xs:element name=" TExcerpt_UpdateTitle" type="sixml:Xml_TMark"/>

A sub-element of type Xmi_TMark is only a design-time proxy for text content. At run
time, this proxy is replaced by the excerpt retrieved from the associated mark. Chapter

7 describes how the proxy is replaced at run time.

The element types Xmi_EMark, Xml_AMark, and XmI_TMark disallow an instance of a
derived type to be used in place of an instance of thé specified type (indicated by the
value "#all" for the attribute block). This constraint ensures that only an element of the
most appropriate type is used to represent the use of a mark. For example, an instance

of XmI_AMark may not be used to associate a mark with an element.

XML Schema cannot express or enforce all the constraints we need to represent the
use of marks. For example, XML Schema (more precisely, an XML Schema com-
pliant application) can ensure that the value of the attribute target of an Xml_AMark
element is a list of qualified names. However, it cannot ensure that a name mentioned
in the list identifies an attribute of the containing element. Chapter 7 shows how we

enforce constraints that XML Schema cannot enforce.

136
4.5.3. Generating Schema for the EMark Pattern
To generate the schema for an EMark relationship, we first generate the schema for the
regular entity types that participate in the relationship. Then, into the schema generat-

ed in the first step, we insert the schema for a sub-element of type Xml_EMark.

<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="Event">
<xs:complexType>
<xs:attribute name="ID" type="xs:string"/>
<xs:attribute name="EvDateTime" type="xs:dateTime"/>
<xs:attribute name="Kind" type="xs:string"/>
<xs;attribute name="Source" type="xs:string"/>
<xs:attribute name="Description" type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:schema>

(a)
<xs:schema xmins:sixml="http://schema.sixml.org" xmins:xs="http://www.w3.org/...">
<xs:import namespace="http://schema.sixml.org"/>
<xs:element name="Event">
<xs:complexType>
<xs:sequence>
<xs:element name="EMark_EventDetail" type="sixml:XmI_EMark" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="ID" type="xs:string"/>
<xs:attribute name="EvDateTime" type="xs:dateTime"/>
<xs:attribute name="Kind" type="xs:string"/>
<xs:attribute name="Source" type="xs:string"/>
<xs:attribute name="Description" type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:schema>

(b)
<Event ID="2" EvDateTime="..." Kind="S" Source="Log" Description="Started"
xsi:noNamespaceSchemalocation="http://schema.sixml.org/examples/ssib.xsd"/>
<EMark_EventDetail sixml:markID="87"/>
</Event>

©

Figure 4.15: XML schema generated for an EMark relationship type. (a) Schema for the entity
type Event of Figure 4.3 excluding the EMark relationship type; (b) Schema for the entity type
Event including the EMark relationship type; (¢) An instance of the schema in Part (b) of this figure

Figure 4.15(a) shows the XML schema generated in the first step of the procedure for
the Event entity of Figure 4.3. It represents the Event entity type as an XML element
and defines the attributes of the Event entity as XML attributes. This schema does not

include the EMark relationship type EventDetail of Figure 4.3.

http://www
http://schema.sixml.org
http://www.w3.org/
http://schema.sixml.org%22/
http://schema.sixm

137

Figure 4.15(b) shows the XML schema produced in the second step of the procedure.
This schema first imports the XML schema in the namespace "sixml" (that is, the
schema shown in Figure 4.14) so that it can reference the element type Xml_EMark.
The schema then includes the element named EMark_EventDetail of type XmI_EMark,

and sets the attribute maxOccurs appropriately.

Figure 4.15(c) shows an example instance of the schema generated in the second step
(and shown in Figure 4.15(b)). The instance assumes that the generated schema is
stored in the file pointed to by the attribute xsi:noNamespaceSchemalocation. (The
complete schema for the SSIB application is available online at the location indicated
in Figure 4.15(c).)

4.5.4. Generating Schema for the AMark and AExcerpt Patterns

The procedures to generate the XML schema for the AMark and AExcerpt patterns are
similar to the procedure for EMark, except that elements of types Xml_AMark are intro-

duced. For these patterns we show only the final XML schema generated.

Figure 4.16 shows the XML schema generated for the Error entity type of Figure 4.4,
including the two AMark relationship types. The ER attributes that participate in the
AMark relationships are modeled as attributes. The elements AMark_ErrorTime and

AMark_ErrorDetails denote the AMark relationship types.

Figure 4.16 also shows the XML schema generated for the OSUpdate entity type and
the AExcerpt relationship type of Figure 4.5. The element AExcerpt_UpdateTitle de-

notes the AExcerpt relationship type.

138

Each of the AMark elements shown in Figure 4.16 is associated with a target attribute
(as illustrated in the second and third example XML segments in Section 4.5.2) when

the schema is instantiated.

<xs:schema xmins:sixml="http://schema.sixml.org"
xmlins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:import namespace="http://schema.sixml.org"/>
<xs:element name="Error">
<xs:complexType>
<xs:sequence>
<xs:element name="AMark_ErrorTime" type="sixml:XmI_AMark" maxOccurs="1"/>
<xs:element name="AMark_ErrorDetails" type="sixml:Xmi_AMark"
maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="ID" type="xs:string"/>
<xs:attribute name="ErrDateTime" type="xs:dateTime"/>
<xs:attribute name="Source" type="xs:string"/>
<xs:attribute name="Description" type="xs:string"/>
<xs:attribute name="Notes" type="xs:string"/>
</xs:complexType>
</xs:element>

<xs:element name="0SUpdate">
<xs:complexType>
<xs:sequence>
<xs:element name="AExcerpt_UpdateTitle" type="sixmhXmI_AMark"
maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="ID" type="xs:string"/>
<xs:attribute name="Title" type="xs:string"/>
<xs:attribute name="Description" type="xs:string"/>
<xs:attribute name="Reason" type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 4.16: XML schema generated for the AMark and AExcerpt relationship types. The schema
generated for the Error entity type and the AMark relationship types of Figure 4.4, and the schema
generated for the OSUpdate entity type and the AExcerpt relationship type of Figure 4.5 are shown

4.6. Modeling Mark Descriptors

In Section 3.7.3 we observed that a mark describes one endpoint—a base selection—
of a potential link. An actual link to the base selection is created when a mark is asso-
ciated with an SI element (such as a Sidepad item). Thus far in this chapter, we have

modeled a link’s endpoint (as the Mark entity type) and a link itself (as a relationship

http://schema.sixml.org
http://www.w3.org/2001/XMLSchema
http://schema.sixml.org%22/

139

type involving the Mark entity type). In this section, we model the specification of a

link’s endpoint: a mark descriptor.

Ideally, we like to be able to represent a descriptor for any linking technology (such as
OLE 2 compound documents [18] and SPARCE), but doing so can be challenging be-
cause the structure of a mark descriptor can vary widely among linking technologies.
For example, the OLE 2 compound document system allows a variety of monikers (a
moniker encodes an address), while a URI may include a fragment identifier (the por-
tion of a URI that begins with the # character) [15] containing practically any data.
Further, some frameworks allow development of new kinds of endpoint specifications.
For example, the XPointer framework [168] allows development of new pointer
schemes. (An XPointer pointer specifies a fragment of a resource that is identifiable

using a URL)

In the rest of this section, we present a conceptual model for a mark descriptor and
discuss the representation of a mark descriptor in relational and XML schemas.
Through examples we show how our model can represent descriptors for any linking
technology.

4.6.1. Conceptual Modeling

In Section 4.3 we mentioned that a Mark entity has the attribute ID as the primary key,
and that other attributes of the entity are derived from its descriptor. A simple way
(Alternative 1) to represent a mark descriptor for any linking technology is to add to

the Mark entity type a Kind attribute to denote the linking technology, and a Descriptor

140

attribute to store a serialized form of a mark descriptor. This approach provides a sim-
ple solution to the storage problem, but makes it hard to query the structure of a de-

scriptor.

Alternative 2 is to define a variation of the Mark entity type for each linking technolo-
gy, with attributes specific to that technology. This approach allows storing of differ-
ent kinds of descriptors (for different linking technologies), and allows structured que-
ries over descriptors. However, the SA developer would need to choose, at design
time, a variation of the Mark entity type to represent each use of marks. That is, the SA
developer would need to choose linking technologies at SI-design time. (There is no
notion of type inheritance in this alternative. Also, the basic ER model does not sup-

port inheritance.)

Alternative 3 is to specialize the Mark entity type (that is, derive new entities from
Mark) for different kinds of descriptors using the Extended-ER (EER) model [41]. This
approach allows storing of different kinds of descriptors, allows structured queries
over descriptors, and leaves unchanged both the model for mark and the model for use
of marks. Also, the SA developer would not need to choose linking technologies at SI-

design time.

While it seems to exhibit several advantages, Alternative 3 is not practical for two rea-
sons: First, the most popular logical data model, the relational model, does not native-
ly support specialization. (Some relational database managements systems, for exam-

ple DB2 [62], do support some form of specialization.) Second, many of the queries

141

over descriptors would need to consider descriptor kind because the attributes of de-
scriptors tend to vary widely. Thus, for practical reasons, a Kind attribute would still be
required in the Mark entity type. Example 4 in Section 4.8 demonstrates a use of this

attribute.

Alternative 4 is to add an attribute Kind to the Mark entity type to denote descriptor
kind, add a new entity type for each kind of descriptor to support, and relate the Mark
entity type with these ﬁew entity types. This approach has all the benefits of Alterna-
tive 3, except that it changes the Mark entity (because it adds an attribute). Also, it does

not require support for inheritance.

Event SPARCEMark
Computer Logged On |EvDateTime EMark:EventDetail Mark i Extension 1 [Agent
Name Kind 1|ID Class
Sourcg) Kind Address
Description 1 Description
Aggregation CachedText
* Who
XPointerMark Where
Position When
Next 0..1||SchemeName
SchemeData
Sequence Previous 0.1 References .
Application Document
AID 1 References |PIP
Agent Agent
Name Location

Figure 4.17: A conceptual model for a mark descriptor. Example descriptor entity types are in-
cluded only for illustration

We pursue Alternative 4 to model mark descriptors. Figure 4.17 shows an ER schema
in this alternative. It shows a new attribute Kind added to the entity type Mark. It also
includes the EMark relationship type of Figure 4.3 to demonstrate that relationship

types that indicate the use of marks are unaffected. The figure also includes entity

142

types for mark descriptors for SPARCE and for XPointer. The entity type SPARCEMark
models a SPARCE mark descriptor. The attributes of this entity type and those of the

related entities Document and Application are obtained from the descriptors in Figure

3.4.

The entity type XPointerMark models an XPointer scheme-based pointer [168]. A
scheme-based pointer in the XPointer framework is a sequence of (scheme, fragment)
pairs, where scheme is the name of an addressing scheme. The term fragment is a spe-
cification of a fragment of data within the context of a resource pointed to by a URIL. A
fragment specification is a string constructed using the production rules specified in
the grammar for the associated addressing scheme. The pointer schemes defined using
the XPointer framework are: element() [173] to address XML elements using element
ids and positions, and xpointer() [174] to address portions of XML data using an ex-
tension of the XPath syntax [166]. Different fragments in a sequence that forms a
scheme-based pointer may be addressed using different pointer schemes. For example,
the first fragment in a sequence may be identified using the element() scheme, whereas
the second fragment may be identified using the xpointer() scheme. The entity type
XPointerMark supports this kind of mixture of pointer schemes with the help of the

attribute SchemeName.

The entity type XPointerMark is modeled as a weak entity in Figure 4.17 because mul-
tiple XPointer pointers (in a sequence) may be associated with a single mark ID. The

attribute Position is the partial key for this entity type. The value of this attribute de-

143

notes the position of an XPointer pointer in the sequence associated with a mark ID.
For each pointer in the sequence, the attribute SchemeName denotes the pointer

scheme, and the attribute SchemeData denotes the fragment identified.

In this schema, we conveniently use the entity XPointerMark to represent both a URI
and a sequence of XPointer pointers that specifies a fragment within the resource that
the URI references. When representing a URI, we store the name of the URI scheme
in the attribute SchemeName and the rest of the URI in the attribute SchemeData. In this
approach, the first XPointerMark entity for a given mark ID (that is, the entity with the

value zero for the attribute Position for the mark ID) represents a URI.

We have included the entity types SPARCEMark and XPointerMark in Figure 4.17 only as
examples of supporting descriptors of different linking technologies.

4.6.2. Relational Schema

We revise the schema of the relation Mark (to add the Kind attribute), but the proce-
dures to generate relational schemas for any of the patterns of use of marks do not

change.

Figure 4.18(a) shows the revised schema for the relation Mark. Figure 4.18(b) shows
the schema for the mark, document, and application descriptors of SPARCE. The
attribute MarkID in the relation SPARCEMark is both a primary key and a foreign key
referencing the attribute Mark.1D. That is, a row in this relation is an extension of a

row in the relation mMark. Figure 4.18(c) shows the schema for the XPointer descriptor.

144

One or more rows (varying by the attribute Position) in this relation correspond to a

row in the Mark relation.

CREATE TABLE Mark

(

ID INTEGER NOT NULL PRIMARY KEY, Kind VARCHAR(50) NOT NULL
)

(@

CREATE TABLE SPARCEMark

(

MarkID INTEGER NOT NULL REFERENCES (Mark.ID),

Agent VARCHAR(50), Class VARCHAR(50), Address VARCHAR(255),
Description VARCHAR(1024), CachedText VARCHAR(1024),

Who VARCHAR(255), Where VARCHAR (255), When TIMESTAMP,

DID INTEGER NOT NULL REFERENCES (Document.DID),

PRIMARY KEY MarkID

)

CREATE TABLE Document

(

DID INTEGER NOT NULL PRIMARY KEY,

Agent VARCHAR(50), Location VARCHAR(1024),

AID INTEGER NOT NULL REFERENCES (Application.AID)
)

CREATE TABLE Application

{

AID INTEGER NOT NULL PRIMARY KEY,
Agent VARCHAR(50), Name VARCHAR (50)
)

)

CREATE TABLE XPointerMark
(
MarkID INTEGER NOT NULL REFERENCES (Mark.ID),
Position INTEGER NOT NULL,
SchemeName VARCHAR (50) NOT NULL, SchemeData VARCHAR(1024),
PRIMARY KEY (MarkID, Position)
)

©

Figure 4.18: Relational schema generated for mark descriptors. (a) Revised schema for the Mark
entity type; (b) Schema for a SPARCE descriptor; (c) Schema for an XPointer pointer

4.6.3. XML Schema
Together, the element types Descriptor and Xml_EMark shown in Figure 4.14 allow

the use of new kinds of descriptors without altering any element type defined thus far.

145

There are no constraints on types derived from Descriptor (because the attribute final
is empty), and an instance of a derived type may be used where an instance of
Descriptor is expected (because the attribute block is empty). That is, an instance of an
Xml_EMark, and its derived types, may include a mark descriptor for any linking tech-

nology, by simply deriving a new type from Descriptor.

Figure 4.19 shows the element types to represent SPARCE mark descriptors and
XPointer pointers. These types are derived from Descriptor. Figure 4.20 illustrates the
use of the new descriptor kinds. The element EMark_EventDetail uses a SPARCE de-
scriptor to associate the Event element with a range of cells in a spreadsheet. The ele-
ment AExcerpt_UpdateTitle uses an XPointer descriptor to associate the Title attribute
of the OSUpdate element with a part of an XML document (containing the SSIB up-
dates catalog) located at http://localhost/updates.xml. The XPointer descriptor

uses the element() scheme to address an element within this XML document.

The attribute xsi:type of the element Descriptor in each use of mark in Figure 4.20
indicates the type of the actual descriptor used. XML Schema [170] requires the use of
this attribute whenever an instance of a derived type is used in place of an instance of
an abstract base type. This attribute also models the Kind attribute of the Mark entity
shown in Figure 4.17. (The attribute Kind in an Event element is SI, and denotes the

kind of event recorded for a computer. It is unrelated to the kind of mark descriptor.)

http://iocaihost/updates.xmi

146

<xs:schema xmins:sixml="http://schema.sixml.org"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:import namespace="http://schema.sixmi.org"/>
<xs:complexType name="Application">
<xs:sequence>
<xs:element name="AID" type="xs:string"/>
<xs:element name="Agent" type="xs:string"/>
<xs:element name="Name" type="xs:string"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="Document" mixed="true">
<xs:sequence>
<xs:element name="DID" type="xs:string"/>
<xs:element name="Agent" type="xs:string"/>
<xs:element name="Location" type="xs:string"/>
<xs:element name="Application" type="Application"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="SPARCEMark" mixed="true">
<xs:complexContent>
<xs:extension base="sixmi:Descriptor">
<xs:sequence>
<xs:element name="Agent" type="xs:string"/>
<xs:element name="Class" type="xs:string"/>
<xs:element name="Address" type="xs:string"/>
<xs:element name="Description" type="xs:string"/>
<xs:element name="CachedText" type="xs:string"/>
<xs:element name="Who" type="xs:string"/>
<xs:element name="Where" type="xs:string"/ >
<xs:element nhame="When" type="xs:dateTime"/>
<xs:element name="Document" type="Document"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="XPointer_Part" mixed="true">
<xs:complexContent>
<xs:restriction base="xs:anyType">
<xs:sequence>
<xs:element name="SchemeName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="SchemeData" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="XPointerMark" mixed="true">
<xs:complexContent>
<xs:extension base="sixml:Descriptor">
<xs:sequence>
<xs:element name="PointerPart" type="XPointer_Part" minOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:schema>

Figure 4.19: XML schema for SPARCE descriptors and XPointer pointers

http://schema.sixml.org
http://www.w3.org/2001/XMLSchema
http://schema.sixml.org%22/

147

<Event ID="2" EvDateTime="..." Kind="S" Source="Log" Description="Started">
<EMark_EventDetail sixmi:markID="87"> .
<sixml:Descriptor xmins:xsi="http:/ /www.w3.0rg/2001/XMLSchema-instance"
xsi:type="SPARCEMark">
<Agent>MSOfficeAgents.ExcelAgent</Agent>
<Class>ExcelMark</Class>
<Address>Sheet1|A2:C3</Address>
<Description>Sheet Sheetl, Cell(s): A2:C3 in "C1Sys.xls" (MS Excel)</Description>
<CachedText>The EventLog service was started</CachedText>
<Who>smurthy</Who>
<Where>TYEE</Where>
<When>2004-05-28 14:03:02</When>
<Document>
<DID>D9</DID>
<Agent>MSOfficeAgents.ExcelAgent</Agent>
<Location>C:\C1Sys.xis</lLocation>
<Application>
<AID>A1</AID>
<Agent>MSOfficeAgents.ExcelAgent</Agent> <Name>MS Excel 2002</Name>
</Application>
</Document>
< /sixml:Descriptor>
</EMark_EventDetail>
</Event>

<0OSUpdate Title=".." Description="..." Reason="...">
<AExcerpt_UpdateTitle sixmi:markID="146" sixml:target="Title" sixml:valueSource="true">
<sixml:Descriptor xmlins:xsi="http://www.w3.0org/..." xsi:type="XPointerMark">
<PointerPart>
<SchemeName>http</SchemeName> <SchemeData>localhost/updates.xml</SchemeData>
</PointerPart>
<PointerPart>
<SchemeName>element</SchemeName> <SchemeData>/1/3/1</SchemeData>
</PointerPart>
< /sixml:Descriptor>
</AExcerpt_UpdateTitle>
</0OSUpdate>

Figure 4.20: Example use of SPARCE descriptor and XPointer pointer

4.7. Modeling Context Information

We now discuss modeling context information (that is, information related to a mark
retrieved from the base layer). Text excerpt, font name, and containing paragraph are

examples of context information.

As described in Section 3.3.1, the context information retrieved from a mark is orga-
nized as a hierarchy of context kinds and context elements. A context kind groups re-
lated parts of the context of a mark, whereas a context element is an atomic piece of

information in the context of a mark. For example, text and image excerpts are context

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/

148

elements. Both context kinds and context elements have friendly names; a context

element also has a value. A context kind may contain other context kinds.

Figure 4.21 shows an ER schema for a mark’s context information. This schema al-
lows an SA developer to access base information without explicitly modeling the in-
formation present in the base layer. It also makes navigation over bi-level information
easy. For example, one can easily navigate from an Event entity (which is SI) to the

text content for the mark associated with the entity.

Event
. i Context Element

EvDateTime EMark:EventDetail Mark 1 Root 1 |ContextKind |3 *

i iD Name Name
Kind 1 Parent 0..1
Source Kind Value
Description | IChiId 0..*

Context Hierarchy

Figure 4.21: A conceptual schema for context information. The entity type Event is included to
illustrate the ability to navigate bi-level information (that is, navigate from SI to context informa-
tion)

Though this conceptual model enables queries over context information, expressing
such queries can be quite cumbersome in the relational model (due to the nesting of
context kinds). Querying in the XML model is much easier, but the queries will likely
employ a large number of value predicates (to test the names of context kinds and con-
text elements). Further, we do not expect context information to be actually stored in a
database, because the complete context information for a mark can be arbitrarily large,

and certain context elements might not be queried at all. (An SA might choose to

cache parts of context information for performance bebefits.)

149

In the rest of this section, we introduce a means of retrieving context information dy-
namically at query execution time, and introduce a representation for context informa-

tion that makes query expression easier in the XML model.

We define the function context to dynamically retrieve the value of an element in the
context for a mark. This function accepts a mark ID, a hierarchy of context kinds spe-
cified as a path expression, and the name of a context element; and it returns the value
of the specified context element. For example, the function call context ('87",
"Content', 'Text') returns the text content for the mark whose ID is 87. This call
is equivalent to the call excerpt('87'). (Section 4.4.2 describes the function
excerpt.) The call context ('87', 'Container/Row', 'Text') returns the text con-
tent of the row that contains the region referenced by the mark with ID 87. The func-
tion returns an empty value if the context-kind hierarchy or the context element sup-

plied is not applicable to the specified mark.

The function context makes it easy to traverse context hierarchies, especially in the
relational model, by eliminating the potentially large number of self joins over the re-
lation that represents context kinds. Using it also avoids eager materialization of con-
text information in both the relational and XML models. Chapters 5 through 9 discuss

in detail the issues related to executing queries over bi-level information.

We now introduce a representation for context information to more easily query con-

text in the XML model. This representation is a simple variation of the one generated

150

from the conceptual schema shown in Figure 4.21. We begin with an illustration of the

need for an alternative schema.

Figure 4.22 shows the Event element in Figure 4.20 with partial context information
for the associated mark (to a range of cells in a spreadsheet) added in. Context infor-
mation is included in the element Context, ContextKind represents a context kind, and
ContextElement represents a context element. The text content of a ContextElement
stores the value of the corresponding element. Instances of ContextKind and
ContextElement are nested to reflect the context hierarchy. This representation for

context information is faithful to the conceptual schema in Figure 4.21.

<Event ID="2" EvDateTime="2000-04-28T11:45:00" Kind="S" Source="Log"
Description="Started">
<EMark_EventDetail sixmi:markID="87">
<sixml:Descriptor xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="SPARCEMark">
<1-- Descriptor truncated for brevity. Figure 4.20 shows the complete descriptor -->
</sixmi: Descriptor>
<sixml:Context>
<ContextKind name="Content">
<ContextElement name="Text">The operation was canceled by the user.</ContextElement>
</ContextKind>
<ContextKind name="Container">
<ContextKind name="Row">
<ContextElement name="Text">
The operation was canceled by the user. Your computer ... network address (DHCP) server
</ContextElement>
</ContextKind>
</ContextKind>
<ContextKind name="Placement">
<ContextElement name="Sheet">Sheetl </ContextElement>
< /ContextKind >
< /sixmi:Context>
</EMark_EventDetail>
</Event>

Figure 4.22: Partial context information for a mark to cells in a spreadsheet represented using a
generic schema. The schema used corresponds to the conceptual schema in Figure 4.21

Given this representation for context information, the following XPath expression can

retrieve the text of the row (or rows) containing the spreadsheet cells associated with

http://www.w3.org/2001/XMLSchema-instance

151
an event. This expression uses predicates over the names of context kinds and ele-
ments to navigate to the desired context element.

Event/EMark EventDetail/sixml:Context/ContextKind[@name='Container’]
/ContextKind[@name="'Row']/ContextElement [@name="'Text"]

<Event ID="2" EvDateTime="2000-04-28T11:45:00" Kind="S" Source="Log"
Description="Started" >
<EMark_EventDetail sixmi:markID="87">
<sixmi:Descriptor xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="SPARCEMark" >
<!-- Descriptor truncated for brevity. Figure 4.20 shows the complete descriptor -->
</sixml:Descriptor>
<sixml:Context>
<Content>
<Text>The operation was canceled by the user.</Text>
</Content>
<Container>
<Row>
<Text>
The operation was canceled by the user. Your computer ... network address (DHCP) server
</Text>
< /Section>
</Container>
<Placement>
<Sheet>3</Sheet>
</Placement>
< /sixml:Context>
</EMark_EventDetail>
</Event>

Figure 4.23: Partial context information in a schema determined by a context agent developer

A simple change in this representation for context information is to express each con-
text kind and context element with an element whose name is the same as the value of
its name attribute. Figure 4.23 shows the context information in Figure 4.22 in the re-
vised representation. With this revision, the following expression rétrieves the text of

the rows containing the cells associated with an event, without using value predicates:

Event/EMark EventDetail/sixml:Context/Container/Row/Text
In addition to being simpler, the revised expression can potentially execute more effi-

ciently because the query processor can use structural indexes. Also, the original ap-

http://www.w2

152

proach fixes a schema for context information, but, in the revised approach, a context-
agent implementer may choose a schema. A potential disadvantage with the revised
approach is that an SA developer might tightly couple SI with the schema that a par-
ticular context agent employs. (The revised approach does let the context-agent devel-

oper model context information as in the original approach.)

In the rest of this dissertation, we use the functions excerpt and context to explicitly
retrieve context information in the relational model. These functions can be used in the
XML model as well, but we use only the representation in Figure 4.23 when discuss-
ing the XML model. (Section 4.8 does use these functions with XML for illustration.)
Chapter 5 discusses strategies to realize the representation scheme in Figure 4.23 when

executing bi-level queries.

4.8. Querying Bi-level Information

We now demonstrate the ability to express bi-level queries (that is, queries over bi-
level information) using the logical schemas we generate. The examples in this section
are based on the schema for the SSIB application. They demonstrate the ability to ex-
press structured queries over the combined SI and base information, though the base
information may be heterogeneous, distributed, loosely structured, and not stored in a
traditional database. Chapter 5 introduces the process and performance of bi-level-

query execution.

Example 1: List all OS updates related to security.

The following SQL query suffices for the relational model (see Figure 4.11):

153

SELECT * FROM OSUpdate WHERE Title LIKE '%Security%’

The following XPath expression suffices for the XML model (see Figure 4.16):

//0SUpdate [contains (@Title, 'Security')]
In both queries, the descriptions of OS updates are aufomatically obtained from the
base layer because the attribute Title is modeled using the AExcerpt pattern (see Figure

4.5).

Example 2: List errors related to the application MS Word (see Figure 4.4).

The following SQL query suffices for the relational model (see Figure 4.9(b)):

SELECT *
FROM Error
WHERE excerpt (AMark ErrorDetails) LIKE 'Sword.exe%'

The following XQuery expression may be used in the XML model (see Figure 4.16):

<Errors> {

FOR $e IN document ("SSIB.xml")//Error

LET $d = sixml:excerpt ($e/AMark ErrorDetails/@sixml:markid)
WHERE contains ($d, 'word.exe')

RETURN $Se

} </Errors>

The following XPath expression may also be used in the XML model, if the XPath

processor permits user-defined functions (extension functions in XML terminology):

//Error[contains (sixml:excerpt (AMark ErrorDetails/@sixml:markID),
‘word.exe"')]

All three queries in this example employ the user-defined function excerpt (intro-
duced in Section 4.4.2) to retrieve, at query-execution time, the text excerpt from the

mark associated with the Description attribute of each Error entity. All queries return

154

the stored error information if the text excerpt retrieved for the error description con-

tains the string word.exe.

The explicit use of the function excerpt can be avoided if the Description attribute
is conceptually modeled after the AExcerpt pattern instead of the AMark pattern. How-

ever, this choice is left to the SA developer.

Example 3: For each mark associated with events, retrieve the text of the row contain-
ing the marked region. For example, if a mark points to a few cells within a row of an

MS Excel spreadsheet, return the text of the row that contains the marked cells.

The following SQL query suffices for the relational model (see Figure 4.9(a)):

SELECT context (EMark EventDetail, 'Container/Row', 'Text') FROM Event

Assuming the XPath processor permits extension functions, the following XPath ex-

pression suffices for the XML model:

sixml:context (//Event/EMark EventDetail/@sixml:markID,
'Container/Row', 'Text')

Both these queries employ the user-defined function context (described in Section
4.7) to retrieve context information at query-execution time. The following simpler
XPath expression may be used in the XML model if context information is represented

within the element that represents a use of a mark (as in Figure 4.23):

//Event/EMark EventDetail/sixml:Context/Container/Row/Text

Example 4: List the number of each kind of mark descriptor in use.

The following SQL query may be used in the relational model (see Figure 4.18).

155

SELECT 'SPARCE', COUNT (MarkID) FROM SPARCEMark
UNION
SELECT 'XPointer', COUNT (DISTINCT MarkID) FROM XPointerMark

The following is an alternative SQL query.

SELECT Mark.Kind, COUNT (*) FROM Mark GROUP BY Mark.Kind
The first SQL query counts the number of unique mark IDs in the relations maintained
for each kind of mark descriptor. The number of unique mark IDs in the SPARCEMark
relation is the same as the number of mark IDs because the attribute Mark1ID is the
primary key. On the other hand, the XPointerMark relation may have multiple rows
per mark ID. Thus, writing this query requires a priori knowledge of the kinds of de-

scriptors in use and the schema of the relation for each kind of descriptor.

The second query also counts the unique marks per descriptor kind, but writing it does
not require the knowledge of the schema of the relation for each kind of descriptor

(because it uses the xind attribute of the relation Mark).

The following XSLT 2.0 [178] template suffices for the XML model (see Figure
4.20). For simplicity, we assume that all uses of marks include mark descriptors, not

mark IDs.

<xsl:template match="/">
<Counts>
<xsl:for-each-group select="//sixml:Descriptor" group-by="@xsi:type">
<xsl:element name="{string(current-grouping-key())}">
<xsl:value-of select="count(current-group())"/>
</xsl:element>
</xsl:for-each-group>
</Counts>
</xsl:template>

The XSLT 2.0 template is similar to the second SQL query. It groups Descriptor ele-

ments by the attribute xsi:type and outputs one XML element for each distinct value

156

of that attribute. The content of each element output is the number of descriptors of the

descriptor kind corresponding to the element.

We use XSLT 2.0 in this example, rather than using XQuery, XPath, or XSLT 1.0
[177], because only XSLT 2.0 has the features needed to express the query in a declar-
ative manner. Also, the use of XSLT 2.0 demonstrates that the XML schema our me-

thodology generates can be used with different XML query languages.

4.9. Evaluation

We evaluate the relationship patterns to represent the use of marks by applying the
patterns to three SAs with distinct information needs. The SAs are: Sidepad (intro-
duced in Section 1.2.1), the Superimposed Scholarly Review System (SISRS) [109]
(introduced here in Section 4.9.2), and the Superimposed System-Information Browser

(SSIB) introduced in Section 4.2.

4.9.1. Sidepad
Section 1.2.1 introduced a simple scratchpad SA called Sidepad, and Figure 1.3 shows

an instance of a document created in Sidepad. Figure 4.24 shows a conceptual model
for the SI created with Sidepad. According to this schema, a Sidepad document owns
items and groups. An item has a user-assigned name and a descriptive text. It may be
associated with a mark (indicated by the EMark relationship ItemMark). A group con-
tains items and other groups. It has only a user-assigned name, and it too may be asso-
ciated with a mark (represented by the relationship GroupMark). An item is owned ei-

ther by a group or by a document, but this constraint cannot be expressed in the ER

157

model. Items and groups have display attributes such as shape and color, but we omit

modeling those attributes for simplicity.

The relationship Nests represents the possible nesting of groups. Section 4.10.1 de-

scribes the relationship pattern Hierarchy that Nests follows.

Because the conceptual schema for Sidepad is quite simple, we omit showing the logi-

cal schemas in the relational and XML models.

Hierarchy:Nests(Outer, Inner)

Document Owns Group EMark:GroupMark Mark
Title 1 Name 1|0
1 0.1 Kind
Contains| 1
Item
Owns Name EMark:ItemMark
Description

Figure 4.24: A conceptual schema for SI created using Sidepad

4.9.2. The Superimposed Scholarly Review System (SISRS)
The Superimposed Scholarly Review System (SISRS, pronounced scissors) [109] is an

SA that assists in a peer-review process (such as that an academic conference might
use). SISRS helps a reviewer superimpose comments on an electronic version of a pa-
per, and prepare a review report. It also helps collate review reports for a paper from
different reviewers, and prepare feedback to authors. SISRS uses bi-level queries to
prepare both reviewer reports and author feedback. Chapter 9 shows some bi-level

queries executed over SISRS documents.

Figure 4.25 shows a conceptual schema for SISRS. In this schema, each paper has a

title. The AExcerpt relationship type TitleSource indicates that a paper’s title is obtained

158

from the base paper. The EMark relationship type Applies To represents the region(s) of
the paper with which a comment is associated. The AMark relationship type References
allows the text of a comment to be associated with marks. For example, a reviewer
might cite passages from related work. The AExcerpt relationship type Help allows easy

access to the excerpt of the commented region.

AExcerpt: TitleSource(Title)

Reviews Paper Reviews Reviewer Mark
1 Title 2..3 |Name D
1 1 Kind
Creates
Has Comment EMark:Applies To
Toxt AMark:References(Text)
Excerpt

AExcerpt:Help(Excerpt)

Figure 4.25: A conceptual schema for SI created using SISRS. The bold line distinguishes the
AExcerpt relationship type from the AMark relationship type

Figure 4.26 shows a document that conforms to the XML schema generated for
SISRS. The attribute xsi:noNamespaceSchemalocation points to the generated
schema. The element EMark_AppliesTo associates the lone comment shown with the
commented region. AExcerpt_Help assigns the excerpt of the same commented region
to the attribute excerpt. Thus, both these mark association elements use the mark ID
"23". TMark_References associates the comment text (modeled as the text content of
the element Comment) with a mark. AExcerpt_TitleSource indicates that the com-
mented paper’s title is a mark’s excerpt. Chapter 7 describes how an attribute is as-

signed an excerpt at run time.

We now illustrate the ability to express a bi-level query over the XML schema gener-

ated from the conceptual schema. Figure 4.27 shows two XSLT templates to generate

159

an HTML document containing author feedback for each paper. For brevity, the query

does not cluster comments by reviewer.

<Reviews xsi:noNamespaceSchemalocation="http://schema.sixml.org/examples/sisrs.xsd"
xmlins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:sixml="http://schema.sixml.org">
<Paper title="">
<Comment excerpt="" reviewer="r1">
<TMark_References sixml:markID=".">Text of the comment</TMark_References>
<AExcerpt_Help sixml:markID="23" sixml:target="excerpt"
sixml:valueSource="true" />
<EMark_AppliesTo sixml:markID="23"/>

</Comment>
<AExcerpt_TitleSource sixml:markID="." sixml:target="title"
sixml:valueSource="true"/>
</Paper>
</Reviews>

Figure 4.26: XML representation of a SISRS document. Elements in bold show use of marks

The template for the element Paper writes out one HTML document for each reviewed
paper. This template writes the current paper’s title directly from the attribute title
even though the title is an excerpt from the reviewed paper. This operation is possible

because title participates in an AExcerpt relationship in the conceptual schema.

<xsl:template match="Paper">
<xsl:document method="html|" href="{@title}">
<HTML><BODY>
<P style="font-size:32"> <xsl:value-of select="@title"/></P>
<xsl:apply-templates select="Comment">
<xsl:sort select="EMark_AppliesTo/sixml:Context/Placement/Page"
data-type="number"/>
</xsl:apply-templates>
</BODY></HTML>
</xsl:document>
</xsl:template>

<xsl:template match="Comment">
<P>
<xsl:text>Page: </xsl:text>
<xsl:value-of select="EMark_AppliesTo/sixml:Context/Placement/Page"/>
</P>
<P>
 <xsl:text>Excerpt: </xsl:text> <I><xsl:value-of select="@excerpt"/></I1>
</P>
<P><xsl:text>Comment: </xsl:text><xsl:value-of select="text()"/></P>
</xsl:template>

Figure 4.27: Bi-level XSLT templates to generate author feedback in HTML format from SISRS
data. Key parts of the query are in bold font. Qutput HTML elements are in upper case

http://schema.sixml.org/examples/sisrs.xsd
http://www.w3.org/2001/XMLSchema-instance
http://schema.sixml.org

160

After writing the title, the template for Paper triggers a template for each contained
Comment such that the comments are processed in the order of the page containing
the commented regions. The template for Comment first writes the page number of
the commented region, then writes (in italics) the text excerpt of the commented re-
gion, and then writes the comment text. The page number and the text excerpt for a
commented region are obtained from the base layer at query-execution time.

4.9.3. The Superimposed System-Information Browser (SSIB)

Section 4.3 has described how the various uses of marks in the SSIB application are
represented using relationship patterns. Sections 4.4 and 4.5, respectively, show the
logical schemas generated for SSIB in the relational and XML models. Figure 4.28

shows the complete ER schema for SSIB.

e Tn, |
- | UpdDateTime ; ol
Observat.lon 1 : : 0SUpdate P
ObsDateTime Relates To 1| Computer H " ITide Ly
Text I [Name Applied On ¢ [Description | 1 |}
User PP 1 |Reason i I
b o S = - ———— -_— -
Logged On Occurs On Runs OR : 3 .
Event Error E § '
EvDateTime ErrDateTime H N N E
e Source Relates To i Application :
Source Description 1 [Name '
Description Notes fommmmmmmmm oo oo !
AMark:ErrorTime(ErrDateTime), AMark:ErrorDetails(Description)
1 1 AExcerpt:UpdateTitle(Title)
EMark:EventDetail Mark
1{ID RMark:Application
Kind

1 RAMark:Updatelog(UpdDateTime)

Figure 4.28: The complete conceptual schema for SSIB. All relationships between SI entities are
many-to-many. All entities have a key attribute named ID (not shown). Names in bold in the orig-
inal ER schema of Figure 4.2 are retained for ease of comparison.

161

4.10. Related Work

In this section, we review the notion of relationship patterns, the building block of our
methodology to represent the use of marks. We also review four systems that concep-

tually model links using a form of the ER model and compare them to our methodolo-
gy.

4.10.1. Relationship Patterns '
Many researchers have extended the ER model, mostly by adding new constructs to
the model. ‘For example, Elmasri and Navathe [41] introduce new constructs to sup-
port specialization; Tanaka and others [152] add constructs to express application se-
mantics; and Cysneiros and others [29] add constructs to express non-functional re-

quirements.

Our methodology to represent use of marks in the ER model does not introduce new
constructs, but uses a set of conventions for existing constructs based on the notion of
relationship patterns [114]. A relationship pattern is an abstraction of a recurring need
when establishing relationships among information elements in specific contexts. A
relationship pattern is similar to a software-design pattern [47], except that it focuses
on relationships. Like software-design patterns, relationship patterns are independent
of modeling languages (although a particular modeling language may not have the

power to express certain relationship patterns).

Defining a relationship pattern allows developers to solve a kind of problems once (ra-

ther than solving repeatedly), and it helps developers understand many relationship

162

types at once. It also lets developers customize how relationships are treated in various
stages of the information life cycle. Finally, it allows developers to leverage known

patterns and existing solutions.

A relationship-pattern specification describes the contexts in which the pattern applies;
the syntax to express relationship types of the pattern; the semantics and constraints of
the pattern; and the consequences of using the pattern. For example, Section 4.3 in-
formally describes the syntax, semantics, and constraints for each pattern of mark use.
The name of each pattern (and the heading of the section in which the pattern is dis-
cussed) conveys the context in which that pattern applies. Sections 4.4 and 4.5 de-
scribe a consequence (in the form of the effect on logical schemas) of using the pat-

terns to represent the use of marks.

Relationship patterns may be used to specify patterns of any kind of relationships, not
just to specify the use of marks. When a developer recognizes a relationship pattern,
he simply needs to describe it by specifying the context, syntax, semantics, con-
straints, and consequences of the pattern. For example, Figure 4.29(a) shows a rela-
tionship type Manages that an entity type named Employee has with itself. This relation-
ship type models a hierarchical relationship among employees in a company. Devel-
opers encounter such relationships frequently, for example, when modeling bill-of-
material and supply-chain relationships. The relationship type Context Hierarchy in Fig-
ure 4.21 is another example. Such relationship types have many things in common.

First, they all represent hierarchies. The role names of relationships may change, but

163

the roles have the same cardinality constraints: an entity (called Employee in Figure
4.29) has zero or one other entity playing the role of a “parent” (called Manager in Fig-
ure 4.29), and zero or more “children” entities (called Subordinate in Figure 4.29). Ig-
noring the labels, all these types of hierarchical relationships 1ead to the same general

logical schema.

Employee Manager 0..1 Employee
Name Name
[Manages
Subordinate 0..* Hierarchy:Manages (Manager, Subordinate)
@ (b)

Figure 4.29: Example application of relationship patterns. (a) A hierarchy of manager and sub-
ordinates; (b) The hierarchy of manager and sub-ordinates modeled after a relationship pattern
called Hierarchy

A developer can capture the commonality among the hierarchical relationship types by
defining a relationship pattern called Hierarchy. He can define the syntax to express
relationships of this pattern, define the semantics of the pattern, impose cardinality
constraints, and define the procedures to generate logical schemas. He can then get
consistent representations of hierarchies by simply instantiating the Hierarchy pattern.
The signature for this pattern could be: Hierarchy:<type>(<parent role>, <child role>),
where <parent role> and <child role> are names of roles of “parent” and “child” enti-

ties, respectively, in a relationship.

Figure 4.29(b) shows the relationship type of Figure 4.29(a) expressed using the
aforementioned Hierarchy pattern. Cardinality constraints are not shown because the

relationship-pattern specification (which is omitted for simplicity) automatically as-

164

signs the cardinality 0..1 to the Manager role (that is, to the “parent”) and the cardinali-

ty 0..* to the Subordinate role (that is, to the “child”).

The relationship Nests in Figure 4.24 illustrates another use of the Hierarchy pattern.
4.10.2. Conceptual Models for Links

In this section, we review four systems that conceptually model links using a form of
the ER model: structured maps [31], superimposed schematics [17], the nested-context
model [24], and the hypertext design model [48]. Structured maps and superimposed
schematics are models for SI, developed by colleagues in our research group. The
nested-context model and the hypertext design model are models for hypertext, and
are developed by others. We also review topic maps [68] (though they do not use the

ER model) because structured maps are based on topic maps.

We compare the five systems (including topic maps) with our methodology using the
following criteria: Expressive power, independence from a linking technology, agnos-
ticism toward the content and granularity of linked data, and ability to generate (or ex-

press) schemas in implementation-friendly logical data models.

A note on expressive power: In this section, we consider the ability to express rela-
tionships similar to the ones possible with our patterns of use of marks. For example,
with the AExcerpt pattern, we consider the ability to express (not implement) that the

value of (an attribute of) an entity is derived from another entity.

165
4.10.2.1. Topic Maps
A topic map [68] (also called a topic navigation map [67, 158]) represents the struc-
ture of groups of addressable information objects called topics, and the relationships
(called associations) between topics. An association is specified as a hyperlink in the

Hypermedia/Time-based Structuring Language (HyTime) [64].

A topic has a set of properties called facets. “Title” and “Description” are commonly
occurring facets. Special associations called anchors may be used to link a topic to its

facets. An anchor may have a role name.

Topic maps are expressed using the Standard Generalized Markup Language (SGML)
[51, 66]. The use of SGML and HyTime makes a topic map very expressive, but it al- .
so makes a topic map hard to comprehend: Popular web browsers do not support
browsing SGML documents and they do not handle HyTime links. An XML syntax
[69] has also been published for topic maps. That syntax uses XLink [164] to create

links, but an XLink link can only address XML content.

A HyTime link is agnostic toward content and granularity of linked data, but it cannot
express assignment of context information to an attribute. Finally, the topic map mod-
el does not define a means to generate schemas in logical data models (but the DTD of
a topic map may be viewed as a logical schema).

4.10.2.2. Structured Maps

The structured map model [31] is based on the topic-navigation-map model [67, 158],

and is expressed using the ER model or as an SGML document. In structured maps, a

166

topic is called an entity, a topic relation is called a relationship, and an anchor role is

called a facet. A structured-map entity has only one attribute, the entity’s topic text.

When expressed in the ER model, structured-map entities and relationships are ex-
pressed using ER constructs of the same name. Because a structured-map entity has
only one attribute, the structured map model does not use the full expressive power of

the ER model.

The structured-map model does not explicitly state how facets are represented in the
ER model, but in the examples Delcambre and others provide [31], a new kind of con-
struct, akin to a relationship type involving only one entity type, is used to represent a
facet. The value of a facet implicitly defines the other entity type in the relationship

(which is an information selection in the base layer).

OSUpdate
title applies to Application

title
\1escribed

Figure 4.30: A structured map for OS updates

Figure 4.30 shows a structured map describing a relationship between an OS update
and an application. The facet type described denotes an anchor into the HTML support

page that describes the OS update.

Viewed as an ER schema, the structured-map model can express only the EMark pat-

tern. However, viewed as an SGML document, the structured-map model can express

167

the EMark, AMark, RMark, and RAMark patterns. The structured-map model cannot ex-

press the AExcerpt pattern.

A facet in the structured map model is independent of a linking technology, and is ag-
nostic toward linked content and granularity. A structured map expressed in the ER
model may be transformed into relational and XML schemas. (We assume that a facet
may be represented as a relationship with an entity similar to the Mark entity in our me-

thodology.)

4.10.2.3. Superimposed Schematics
Bowers and others [17] have proposed the superimposed-schematic model, an exten-

sion to the ER model to represent the use of marks. In this model, any entity or rela-
tionship may be associated with one mark. A relationship must be binary and it cannot
have attributes. An entity’s attribute may also be associated with a mark, but the value
of an attribute associated with a mark is always the excerpt retrieved from the mark.
That is, the superimposed-schematic model supports a limited form of our EMark,

RMark, and AExcerpt patterns. It cannot express the AMark and RAMark patterns.

Our methodology improves upon the superimposed schematic model by removing the
limitations on cardinality, and by allowing marks to be associated with attributes of
both entities and relationship. We do not require the value of an attribute associated
with a mark to be a base-layer excerpt. In general, we do not impose any limitations

on ER-model constructs.

168

The superimposed-schematic model is independent of a linking technology and is ag-
nostic towards content and granularity of linked data. The model supports bi-level
querying at the conceptual level, but the extent of the base data that may be queried is
limited to excerpts. The supel‘imposed-schématic model does not include procedures
to generate schemas in logical data models.

4.10.2.4. The Nested-Context Model

Casanova and others have proposed the nested-context model to model the structure,
presentation, and navigational aspects of hypertext documents [24]. A sub-model ad-
dresses each of these aspects. The definition sub-model deals with the structural aspect
and is related to the conceptual modeling of links. In this section, we discuss the defi-

nition sub-model due to its similarity with our work.

In the nested-context model, a node is an information element with a unique id. There
are two kinds of nodes: terminal nodes and context nodes. A terminal node is a node
whose content is determined and interpreted by some application. For example, a ter-
minal node may be an image or a video. A terminal node may have attributes contain-
ing user-defined or application-defined information. The attribute named contents de-
scribes the actual (application-specific) data of the node. A terminal node is analogous

to a base document.

A context node is a collection of terminal nodes and possibly other context nodes. A

node may be contained in any number of context nodes, but it does not belong to any

169

context node. Thus, context nodes provide a means to create multiple simultaneous

organizations of nodes, and are thus analogous to SI. A context node has no attributes.

A link connects two nodes. In contrast to a node, a link always belongs to a specific
context node. A link’s endpoint is spec{ﬁed using an anchor, which is a pair (N, s),
where N is a node that forms the base of the anchor, and s is an offser into the content
of the base. The offset may be #null to indicate a link to an entire node. If the base is a
context node, the offset is another anchor; otherwise the offset specifies a displace-

ment within the content of a terminal node.

Links in the nested-context model support EMark and AMark relationships. (The latter
type of relationship is supported only to a limited extent.) The AExcerpt pattern cannot
be expressed. RMark can be simulated by first creating a context node containing the
entities that participate in an anchored relationship, and then linking the newly created
context node with another node. RAMark cannot be expressed, because a context node

cannot have attributes.

Links in the nested-context model are independent of a linking technology, and are
agnostic towards the content and granularity of linked data. However, links are not
typed. In contrast, by virtue of using the ER model, relationships in our methodology

are typed.

170
4.10.2.5. The Hypertext Design Model
The Hypertext Design Model [49] (HDM) is an extension to the ER model for model-
ing the structural and navigational aspects of hypertext. In this section, we review

HDM?2 [48], the second iteration of HDM.

The authors of HDM2 take the position that extending and reusing existing modeling
techniques, and leveraging others’ experience, is a better way to model hypertext sys-
tems, instead of creating new models. They extend the constructs entity type and rela-
tionship type of the ER model, and add new constructs called index type and guided

tour type to facilitate easier access and focused navigation, respectively.

In HDM2, an entity type 1s a tree structure of components, which are sets of informa-
tion elements called units. A unit is a concrete representation of a component. For ex-
ample, an OS update component may have two units: An executable file for installa-

tion, and an HTML page with support information.

An entity type defines a named structure that is either an aggregate or a homogeneous
tree. An aggregate structure has a root component and a list of member structures. A
homogeneous tree structure has only a set of homogeneous components organized as a
tree, or as a sequence, or as a singleton (one component). HDM2 does not define in
what sense components may be homogeneous, but it is expected that homogeneous

components define different parts of the same larger component.

A relationship is called an application web (or just a web) in HDM2. A web can relate

entities and other webs, and includes a center component that annotates or otherwise

171

describes the relationship. A web type (analogous to an ER relationship type) is the
schema of a web. It has a name, a list of destination specifications, and the specifica-
tion of the center component. A destination specification identifies an entity type or a
web type, and an optional path expression to identify a particular component or unit
within a destination, but only when the destination is an entity. A cardinality specifica-
tion may be associated with a web type, but not with a destination. That is, cardinality
constraints have different semantics than in the ER model: In HDM2, a cardinality
constraint limits the number of instances of a web type; in ER, a cardinality constraint

limits the number of relationships of a given type in which an entity may participate.

HDM2 introduces two constructs to enable easier access and focused navigation of a
hypertext. An index defines a possibly heterogeneous collection of entities and com-
ponents, making it easier to access specific elements and components directly, without
traversing intervening webs. A guided tour is a linear path through entities and com-

ponents. Indexes and guided tours may be recursive.

HDM2 can express the EMark and AMark relationship patterns, but not the AExcerpt pat-
tern. It can also express RMark relationships because a relationship may relate entities
with other relationships, but it cannot express the RAMark pattern, because a web can-

not have attributes.

The entity construct of HDM2 is richer than that of the ER model, and hence richer
than ours. However, the entity structure of HDM2 is motivated by the needs of hyper-

text networks, and the structure can become unwieldy for other (simpler) classes of

172

applications. The framework of relationship patterns we use provides a more
lightweight method of representing hierarchical structures in the ER model. Figure

4.29 gives an example.

Addressing a portion of an entity’s content in HDM2 requires the use of a specific
form of path expression. Also, a path expression can only select a unit (that is, a repre-
sentation of a component), but it cannot select a region within a unit. For example, a
path expression can select the HTML support page unit of an OS update, but it cannot

select a region within the HTML page.

HDM?2 does not define a way to generate schemas in logical data models, but we be-

lieve it is possible to generate an XML schema from an HDM2 schema.

4.11. Summary and Conclusions

We have presented a methodology to explicitly represent marks and the use of marks
in ER schemas using a set of conventions to augment the semantics of existing ER
model constructs. An SA that realizes an ER schema with these conventions can easily
access the context information associated with a mark; can activate marks; and can

readily express queries over combined SI and associated base information.

Our methodology strictly extends the ER model. That is, it does not reduce the expres-
sive power of any of the traditional ER constructs. Existing tools that operate on ER
schemas will be unaffected, but the tools would need to be extended to exploit the no-
tion of relationship patterns. (The tools would not need to be “mark aware”; they just

need to be “relationship-pattern aware™.)

173

Our methodology to represent the use of marks has three independent parts: a model
for marks and use of marks, a model for mark descriptors, and a model for context in-
formation. The model for marks and use of marks allows new relationship types and
patterns of relationship types to be defined without affecting the model for mark de-
scriptors and the model for context information. The model for mark descriptors al-
lows new kinds of mark descriptors to be added without affecting the other two mod-
els. Similarly, the model for context information may be changed without affecting the
other parts. Each part of the methodology provides a systematic way to transform a

conceptual schema to logical schemas in one or more data models.

We have described five patterns of use of marks, but other patterns may emerge as
SAs are developed. SA developers may define new patterns using the framework for
relationship patterns. Also, we have omitted discussing a few obvious patterns. For
example, we have described the AExcerpt pattern to derive the value of an entity’s
attribute from the excerpt of a mark. A similar pattern may be defined for relationship
attributes. It is also possible to define a pattern to represent that an attribute’s value is
derived from a context element’s value. Such a pattern would generalize the AExcerpt
pattern. (In Section 4.7 we described the use of the function context to explicitly re-

trieve a context element’s value from the context of a mark.)

Our model for mark descriptors can represent the specification of a link’s endpoint in
any linking technology. See Section 4.6. This ability allows an SA developer to

choose a linking technology appropriate for SA needs. For example, the developer can

174

choose a technology based on factors such as address robustness, granularity of infor-
mation addressed, and kinds of contents addressed. He can also mix and match the
linking technologies. For example, he may use XPointer pointers to address XML con-

tent, and use SPARCE to address a selection inside a PDF document [6].

Our model can represent an embedded link in any linking technology. A link is called
an embedded link (or an inline link) if the specification of its endpoints is included in
one of the linked entities. An n-way embedded link specifies »—1 endpoints; the last
endpoint is implicitly the point of inclusion. Embedded links are directed (away from
the point of inclusion) and tend to be binary. A link specified using the A tag in

HTML, and a mark employed in SI, are examples of embedded links.

In our model, only the EMark pattern can express an n-way embedded link, because
relationship types of that pattern may be of any degree; all other patterns express bi-

nary embedded links. (See constraints specification for each pattern in Section 4.3.)

Our model for the use of marks, and the SI systems we reviewed in Section 4.10.2,
cannot represent stand-off links. In a stand-off link, the link specification is maintained
separately from the linked data. Consequently, an n-way stand-off link specifies n
endpoints. Our model could be extended to represent stand-off links by allowing ex-
pression of relationships among marks. Such a representation would allow different

endpoints of a link to be expressed using different linking technologies.

Currently, we use a single entity type Mark to represent any mark. It is possible to ex-

tend that entity type according to base type or domain-specific type. A domain-

175

specific type can abstract over base types, yet support additional semantics (and beha-
vior) specific to a domain. For example, marks into patent applications may be defined
as a domain-specific type, such as a claim mark, regardless of the format (such as

HTML and PDF) of the base patent documents.

In this chapter, we have used the ER model to represent the use of marks in conceptual
schemas, but our approach may be used in other models (such as the UML model) as
well, because our representation is simply an application of relationship patterns, and
relationship patterns are independent of modeling languages [114]. (It is possible that

a modeling language does not have the power to express certain relationship patterns.)

In Section 4.8 we provided some examples of bi-level queries, but did not describe
how those queries are executed. Chapters 5-9 show how bi-level queries can be ex-
ecuted over the information represented in logical schemas generated using our me-

thodology.

5. Transforming Bi-level Information

In Chapter 4, we discussed modeling superimposed information (SI), marks and their
use, mark descriptors, and mark contexts. We also illustrated how SI and base infor-
mation (BI) may be combined, and how the combined bi-level information may be fil-
tered and transformed in the relational [41] and XML [43] models using bi-level

queries expressed in existing languages.

In this chapter, we consider a means of realizing bi-level queries. We introduce the
notion of a bi-level query system (which is a representation scheme, or schemes, for
bi-level information together with a processor for bi-level queries); set goals for a bi-

level query system; and identify a strategy to meet the goals in the XML model.

Specifically, we discuss two representation schemes for XML bi-level information and
analyze the effect of these schemes on query expression and query execution, especial-
ly when a large number of marks and base documents are involved. We also provide a
reference model for an XML bi-level query processor. Chapters 6 through 9 describe

in detail the different parts of a bi-level query processor.

Although we focus on bi-level querying in the XML model, many of our techniques
for bi-level querying apply in other data models as well. For example, Chapter 6 illu-
strates how context information can be retrieved dynamically from within a relational

database management system.

177

5.1. Introduction

Consider the following retrieval tasks in relation to a Sidepad document (such as that

shown in Figure 1.3).

Q1: List the base documents that the Sidepad document references.

Q2: Extract excerpts from marks associated with items in the group named Garlic.
Q3: List the names of items in the Sidepad document.

Q4: Find the number of marks that the Sidepad document uses.

QS5: Create an HTML page from the contents of the Sidepad document.

Task Q1 requires examining the descriptor of each mark used in the Sidepad document
(to obtain the path to the base document with which a mark corresponds). Q2 requires
examining the context of marks attached to items in a particular group. Q3 requires
examining just the name of each item in the Sidepad document, but requires no access
to mark associations, descriptors or context information. Q4 requires counting the
number of mark associations, but does not require examining the descriptors or con-
text information. Q5 requires transforming the contents of the Sidepad document, pos-
sibly along with some context information, to an HTML page (such as that shown in

Figure 1.5).

In general, tasks such as Q1 through QS5 require the user to filter and transform bi-

level information. A user can prepare and transform bi-level information manually

178

when the quantity of information is relatively small, but he could benefit from an au-

tomated approach when processing large information sets.

An SA developer can facilitate automation of tasks such as Q1 through QS5 by provid-
ing an API to the SA. A user can then develop scripts (which are interpreted programs,
expressed in languages such as JavaScript [73] and VBScript [160]) that use the SA’s
API to examine SI and the referenced base information. For example, Sidepad can ex-
pose an API that allows a user to navigate the groups and items (contained in a docu-
ment), and the referenced base information. In this approach, an end user of an SA
might develop custom scripts or he might execute canned scripts that the SA developer

incorporates into the SA.

With the scripting approach to automation, scripts can be developed external to an SA
and executed without changes to the SA. However, executing a script requires a script
interpreter that interacts with the SA’s API using a specific technology, on a specific
platform. For example, if Sidepad exposed an OLE Automation API [130], the script
interpreter must be able to interact with OLE automation objects, probably on the MS
Windows platform. If another SA exposed a Java [71] interface, the script interpreter

would need to be capable of invoking Java methods.

An alternative is to expose bi-level information so it can be filtered and transformed
using queries expressed in a language appropriate to the SI model. For example, as
illustrated in Section 4.8, SQL [92] might be the query language if SI is in the rela-

tional model, whereas XQuery [176] or XSLT [177] might be the query language if

179

the SI model is XML (or a model that readily maps to XML). As with the scripting
alternative, an end user might develop these queries or he might execute canned que-

ries the SA-developer incorporates into the SA.

Unlike the scripting alternative, the querying alternative allows bi-level information to
be processed on any operating platform, using any implementation technology (with
the data model being the only limiting factor). For example, an SA user can use any
XML query language to query Sidepad data exposed in XML format, and he can use

any XML query processor available on his favorite platform.

The two alternatives also differ in the style of programming a user would likely em-
ploy to automate transformation of bi-level information. The scripting approach likely
requires the use of an imperative language such as VBScript and JavaScript (which
requires the description of how a task is performed). In contrast, query languages
(such as SQL) tend to be declarativ\e (requiring the user to only describe what task
needs to be performed; not how the task is to be performed.) For example, consider the
Task Q1 to list the base documents that a Sidepad document references. In the script-
ing approach, the user expresses how duplicate document locations are eliminated (be-
cause a Sidepad document may contain multiple marks into a base document.) In SQL,
the user simply uses the prsTINCT qualifier in the SELECT clause to eliminate dupli-

cates.

Due to the benefits the SA developers and users can derive from it, we pursue the que-

rying alternative to filter and transform bi-level information.

180

Figure 5.1 shows a reference model for a bi-level query system. Dashed arrows indi-
cate data flow. The bi-level query system accepts SI, the referenced descriptors, and
base information. It uses a set of transformers to represent the descriptors and base in-
formation in the same data model as SI, according to a schema that is conducive for
bi-level querying. As mentioned in Section 3.2.2, SI may include mark descriptors di-
rectly, or include only mark IDs. Figure 5.1 shows a descriptor repository to accom-

modate SI that uses mark IDs.

Superimposed
Information

Model Transformers

T
]
]

v
Bi-level Query Processor

Que
e

Result ﬁ

Figure 5.1: A reference model for a bi-level query system. Dashed arrows indicate data flow

We restrict a bi-level query processor to use only one data model at a time, because, in
practice, choosing a query language and the data model for the result can be hard if

data models are mixed.

5.2. Representing Bi-level Information

For a given data model, several logical schemas are possible for bi-level information,

and schemas can vary in their support for bi-level query processing. Some schemas

181

can make query expression easier, but can cause execution inefficiency, whereas other

schemas can restrict querying capabilities.

In this section, we introduce two XML schemas for bi-level information with different
degrees of support for bi-level querying. The first schema, called the nested schema,
integrates SI, the marks referenced in the SI, and the contextual information for the
marks; and presents the integrated information as a single XML document for query-
ing. The second schema, called the normalized schema, separates SI, the descriptors,
and the context information; and requires the user to explicitly join the different kinds

of information (as needed) in queries.

In this section, we compare the effect of the two schemas on query expression and
query-execution performance. We use the comparison to present our goals and strate-

gies for bi-level querying (in Section 5.3).

The representation schemes are based on the developments in Sections 4.5 through
4.7. The examples we use are based on the conceptual schema presented in Figure
4.24 for the Sidepad application. As in Chapter 4, the Sixm! element types (that is, the
element types used to represent mark associations) belong to the namespace "sixml"
and are bound to the URI "http://schema.sixml.org". Also as in Chapter 4, for sim-
plicity, we use the Sixml element types without a namespace.

5.2.1. Nested Schema

In the nested schema, a mark-association element (that is, an element that represents

the use of a mark) is nested inside an SI element. The mark-association element in turn

http://schema.sixml.org

182

contains the mark descriptor and the complete context information retrieved from the

mark.

Figure 5.2 shows an example XML fragment in the nested schema. Some.elements are
shown in bold to highlight the nesting of information. The element Item and the text
directly contained in that element represent SI. The element EMark_ItemMark
represents a mark association. The sub-element Descriptor of the mark-association
element contains a description of the associated mark. The sub-element Context
represents the context information retrieved from the mark. For illustration, this sub-
element includes only three kinds of context information (content, containment, and

placement).

The nested schema allows a user to easily query bi-level information because SI, its
associated marks, and the context information for the marks are all available together.
The nesting of information allows “natural” navigation from the SI layer to the base
layer. For example, the Task Q1 (list the base documents used) can be accomplished
using the following XPath 1.0 [166] (henceforth referred to simply as XPath) expres-

sion:

//Item/EMark ItemMark/sixml:Descriptor/Document/Location
[not (.=preceding: :Location)]

This XPath expression navigates from the root of the XML document to SI (the ele-
ment Item), to a mark association (EMark_ItemMark), to the descriptor of the base
document (the nested element Document), and finally to the element Location that

contains the path to the referenced base document. The predicate in this expression

183

(that is, the portion enclosed in brackets) eliminates duplicate base-document loca-

tions.

<?xmi version="1"?>
<SidepadDoc title="Data Integration">
<Item name="Goal">Mediate heterogeneous data sources without replicating data.
<EMark_ItemMark sixml:markID="23">
<sixml:Descriptor xmins:xs="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:sixmi="http://schema.sixml.org" xs:type="SPARCEMark">
<Agent>AcrobatAgents.PDFAgent</Agent>
<Class>AcrobatPDFTextMark</Class>
<Address>2|395|{439</Address>
<Description>Page 3 in f.pdf (Adobe Acrobat)</Description>
<CachedText>provide applications and ...</CachedText>
<Who>smurthy</Who>
<Where>TYEE</Where>
<When>2004-05-28 14:03:02</When>
<Document ID="D6">
<Agent>AcrobatAgents.PDFAgent</Agent>
<Location>E:\Base\f.pdf</Location>
<Application ID="Acrobat5">
<Agent>AcrobatAgents.PDFAgent</Agent>
<Name>Adobe Acrobat 5.0</Name>
</Application>
</Document>
</sixml:Descriptor>
<sixml:Context>
<Content><Text>provide applications and ...</Text></Content>
<Containment>
<Section><Heading>3: Garlic Overview </Heading> </Section>
</Containment>
<Placement> <Page>3</Page></Placement>
</sixml:Context>
</EMark_ItemMark>
</Item>
</SidepadDoc>

Figure 5.2: Example bi-level information in the nested schema

The nested schema has two obvious problems. First, the details of a mark (including
the descriptor and the context information) are represented redundantly if the mark is
used more than once. Second, the descriptors for all marks, documents, and applica-
tions, along with the context information for marks are eagerly materialized regardless
of query needs. For example, the Task Q3 (list names of Sidepad items) can be ac-

complished without consulting mark descriptors or context information (using the

http://www.w3.org/2001/XMLSchema-instance
http://schema.sixml.org
file:///Base/f

184

XPath expression //Item/@name), yet the descriptors and context information are ma-

terialized in this approach.

The nested schema can be inefficient also because the context information for some
marks can be rather large. Depending on what context elements a context agent pro-
vides, the size of the complete context for a mark could exceed the size of its base

document.

In summary, the nested schema makes it easy to express bi-level queries, but it can
potentially affect query-execution performance, especially when the number of marks
is relatively large.

5.2.2. Normalized Schema

The normalized schema is a normalization [12] of the nested schema to eliminate re-
dundancy. In this schema, bi-level information is represented in five documents, one
each for SI and mark associations (together), mark descriptors, document descriptors,
application descriptors, and context information. Figure 5.3 shows the bi-level infor-
mation of Figure 5.2 represented in the normalized schema. Dashed lines separate the

documents. The elements in bold indicate references between the XML documents.

A query (such as Q3) over just SI executes efficiently in the normalized schema be-
cause the query is executed over just the SI document, but navigating from the SI layer
to the base layer is cumbersome because the user must explicitly join different docu-
ments: Join queries are harder td express and they tend to be error-prone [70]. For ex-

ample, completing Task Q1 would require the following XQuery query:

185

<result> {
fn:distinct-values(
for $a in fn:doc("SI")//Item/EMark ItemMark,
$m in fn:doc ("Marks")//sixml:Descriptor[@ID=%a/@sixml:markID],
$d in fn:doc ("Documents")//Document [@ID=5m/DID]
return $d/Location
)
} </result>

In this query, the for expression ranges over mark-association elements in the SI doc-
ument, and binds the variable $a to an EMark_ItemMark element in each iteration. For
each EMark_ItemMark element in the SI document, the for expression binds the vari-
able $m to the matching Descriptor element in the mark-descriptors document; and the
variable $d to the matching Document element in the document-descriptors document.
The expression then returns the Location sub-element from the matching Document
element. The function fn:distinct-values eliminates duplicates in the sequence of
nodes that the for expression returns. The namespace fn is bound to the URI

http://www.w3.0rg/2005/xpath-functions [176].

Clearly, the XPath expression to perform Task Q1 (shown in Section 5.2.1 for the

nested schema) is more compact, and is easier to develop and comprehend, than the
XQuery query.

The normalized schema solves the problem of redundant representation of descriptors
and context information, but it still eagerly materializes the complete context informa-

tion for the referenced marks whenever a query references the context document. (In

this discussion, for simplicity, we ignore the issue of granularity of materialization.)

http://www.w3.org/2005/xpath-functions

186

<!/-- SI document -->

<?xml version="1"?>

<SidepadDoc title="Data Integration">

<Item name="Goal">Mediate heterogeneous data sources without replicating data.
<EMark_ItemMark sixml:markID="23"/> </-- References the Mark-descriptors document-->

</Item>

</SidepadDoc>

<!-- Mark-descriptors document -->
<?xml version="1"?>
<Marks>
<sixml:Descriptor xmIns:xs="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:sixml="http://schema.sixml.org" xs:type="SPARCEMark" ID="23">
<Agent>AcrobatAgents.PDFAgent</Agent>
<Class>AcrobatPDFTextMark</Class>
<Address>2|395|439</Address>
<Description>Page 3 in f.pdf (Adobe Acrobat)</Description>
<CachedText>provide applications and ...</CachedText>
<Who>smurthy</Who>
<Where>TYEE</Where>
<When>2004-05-28 14:03:02</When>
<DID>D6</DID><!/-- References the Document-descriptors document-->
</sxml:Descriptor>

</ Marks>

<!-- Document-descriptors document -->
<?xml version="1"?>
<Documents>
<Document ID="D6">
<Agent>AcrobatAgents.PDFAgent</Agent>
<Location>E:\Base\f.pdf</Location>
<AID>Acrobat5</AID> </-- References the Application-descriptors document-->
</Document>

</Document>

<!-- Application-descriptors document -->

<?xml version="1"?>

<Applications>

<Application ID="Acrobat5">
<Agent>AcrobatAgents.PDFAgent</Agent>
<Name>Adobe Acrobat 5.0</Name>
</Application>

</Applications>

<!-- Context document -->

<?xml version="1"?>

<sixml:Contexts>

<sixml:Context ID="23"></-- The ID associates context with a descriptor -->
<Content><Text>provide applications and ...</Text></Content>
<Containment>

<Section><Heading>3: Garlic Overview</Heading> </Section>

</Containment>
<Placement><Page>3</Page></Placement>

</sixml:Context>

</sixml:Contexts>

Figure 5.3: Example bi-level information in the normalized schema

http://www.w3.org/2001/XMLSchema-instance
http://schema.sixml.org
file:///Base/f

187

5.2.3. Impact of Representation Scheme on SI-only Queries
In this section, we consider the effect of the two representation schemes on S/-only

queries, which are queries over just SI, returning only SI (possibly with newly con-
structed information). For example, Task Q3 is accomplished with an SI-only query
(//1tem/@name). We consider the issues in expressing and executing SI-only queries
because we expect a significant number of queries to read and return only SI, and we

wish to use the same mechanism to execute both bi-level queries and SI-only queries.

Expressing an SI-only query can be harder in a bi-level setting because non-SI data
might need to be (explicitly) excluded from the results. For example, the result of the
XPath expression //Item to return all Sidepad items also returns mark-association
elements (and the nested descriptors and context information if applied to the nested
schema) embedded inside each Item element. Thus, the user needs to write the follow-
ing, more complex, XQuery query (because XPath cannot exclude the contents of an

element it returns [166]).

<result> {

for $i in fn:doc("SI")//Item

return <Item name="{$i/@name}">{Q@i/text () }</Item>
} </result>

An Sl-only query might execute poorly in a bi-level setting because the query proces-
sor examines unwanted non-SI information. For example, when executing the SI-only
query //Ttem/@name (for Task Q3), the query processor examines all 26 elements in
the nested schema (for the data in Figure 5.2), but only two of these elements represent

SI. The processor examines three elements (SidepadDoc, Item, and EMark_ItemMark)

188

in the normalized schema (applied to the SI document in Figure 5.3), though only two

elements represent SI. In both cases, only one element satisfies the query.

In summary, expressing SI-only queries (and a few other classes of queries as illu-
strated in Chapter 8) can be hard in both schemas. Also, the queries can execute ineffi-
ciently in both schemas, and the inefficiency increases with the number of mark asso-

ciations.

5.3. Goals and Strategy for Bi-level Querying

Section 5.2 has provided sufficient information to help the reader get a feel for the key
issues in bi-level query processing. With that background information, we now present
our goals for a bi-level query system and outline our strategy to meet the goals in the

XML model.

5.3.1. Goals
We see four roles for people interacting with a bi-level query system: SA users, SA

developers, bi-level query developers (that is, people who develop queries to accom-
plish tasks such as Q1 to Q5), and implementers of bi-level query processors. Our goal
is to design a system such that the activities of all roles are made easier. We identify

seven sub-goals to reach that larger goal:

G1: Sl-schema independence: A representation scheme for bi-level information
should not curb SI modeling. For example, it should not force the SA developer to in-

clude or exclude particular SI elements.

189

G2: Diversity and multiplicity: It should be possible to associate zero or more marks
with any conceptual SI element. For example, zero or more marks should be possible
for both Sidepad groups and items. It should be possible to associate zero or more
marks with any Jogical SI element. For example, in the XML model, it should be poss-

ible to associate zero or more marks with elements, attributes, and text.

G3: Execution efficiency: A bi-level query system should aid efficient query execu-
tion in terms of speed. Specifically, it should not significantly hurt the performance of

SI-only queries.

G4: Scalability: A bi-level query system should be able to handle queries that involve
a large number of marks or marks over a large number of base documents. Specifical-

ly, the system should provide a reasonable response even for queries that involve

100,000 marks.

GS: Ease of query expression: A bi-level query system should aid “natural” navigation

from the SI layer to the base layer.

G6: Sl-only-query preservation: Imagine an S/-only schema obtained by removing the
mark-association elements from the normalized schema. The result of a query ex-
ecuted over an instance of such a schema (for example, the SI document in Figure 5.3,
but without the EMark_ItemMark element) must be preserved when the same query is
executed over bi-level information. For example, in the XML model, the XPath ex-
pression //Item executed as an SI-only query must return only ST when executed over

the information in either Figure 5.2 or 5.3. We focus on SI-only-queries because facili-

190

tating bi-level querying should not be at the cost of SI-only-queries (and we expect a

good portion of queries to be of the SI-only kind).

G7: Language compatibility: New operators or functions should not be required in an
existing query language to express a bi-level query or an Sl-only query. Language
compatibility ensures that query developers do not need to learn anything new to ex-
press bi-level queries, and that (parts of) existing query processors can be reused to

process bi-level queries.

Our goals for a bi-level query system apply to any logical data model (such as rela-
tional and XML, with appropriate substitution and interpretation of terms). Whichever
logical model is chosen, any SI schema in that model should be supported. However, it
is possible that the logical model influences the degree to which a sub-goal is met. For
example, Goal G5 might be met to different degrees in the XML and the relational
models because the mechanism of navigation (setting aside its naturalness) is quite

different between the two models.

Though our goals for a bi-level query system are not specific to a logical data model,
we focus on designing and implementing a system for the XML model, because of the
increasing popularity of XML. In addition, XML bi-level queries pose some unique

problems (such as those related to SI-only queries).

With respect to the XML model, both the nested schema and the normalized schema
(presented in Section 5.2) help meet Goals G1, G2. The normalized schema helps

meet G3, but conflicts with G5. The nested schema helps meet G5, but conflicts with

191

G3. Neither schema helps Goal G4, largely because the query-execution strategy in-
fluences scalability more than a schema does. As described in Section 5.2.3, both
schemas conflict with G6. Both schemas help meet G7 with respect to bi-level queries,

but neither helps meet this goal with respect to Sl-only queries.

Many normalized schemas are possible for bi-level information, with differences in
the degree to which the sub-goals are met, but we limit our discussion to the schema
used in Figure 5.3.

5.3.2. Strategy for the XML Model

Within the XML model, we use a combination of SI design-time modeling solutions
and SA run-time solutions to meet the goals identified. Table 5.1 summarizes the goals

and shows the different parts of the strategy employed to reach each goal.

Table 5.1: Summary of goals and strategy for bi-level querying. A number in parentheses indi-
cates the chapter or section where the related discussion can be found

Goal Means (Chapter or Section)

G1. SI-schema independence Modeling (7), Sixml DOM (7)

G2. Diversity and multiplicity Modeling, Sixml DOM

G3. Execution efficiency Normalized schema (5.2.2), Cloaking (8), Bi-level navigator (9)
G4. Scalability Bulk accessor (6), Cloaking, Bi-level navigator

G35. Ease of query expression Nested schema (5.2.1), Cloaking, Bi-level navigator

G6. SI-only-query preservation Normalized schema, Cloaking, Bi-level navigator

G7. Language compatibility Modeling, Cloaking, Sixm! DOM, Bi-level navigator

To meet Goals G1 (Sl-schema independence) and G2 (diversity and multiplicity), we
use the Sixml element types introduced in Sections 4.5 through 4.7 to represent bi-

level information. We extend the element types for mark associations defined in Sec-

192

tion 4.5.2 to indicate marks associated with parts of an XML document (for example,

with text content and processing instruction) that the ER model cannot represent.

We also define Sixm/ DOM, an extension of the W3C XML Document Object Model
(DOM) [34] to represent and manipulate a Sixml document (that is, an XML docu-
ment containing instances of Sixml element types) at run time. Chapter 7 describes the

extended Sixml element types and Sixml DOM.

To meet Goals G3 (execution efficiency) and G5 (ease of query expression), we re-
quire SI to include just the mark associations as in the normalized schema (for exam-
ple, the first document shown in Figure 5.3), but we allow bi-level queries to be ex-
pressed over the nested schema (such as that used in Figure 5.2). If a query involves
only the SI elements and the mark associations, no new data is materialized; if a query
examines descriptors or context information, the necessary information is materialized

just in time.

We design and implement a bi-level navigator that implements just-in-time materiali-
zation of descriptors and context information. The navigator uses Sixml DOM to in-
ternally represent bi-level information, but uses the W3C XPath data model [166] to
externally represent the same information for querying purposes. With the bi-level na-
vigator, bi-level queries may be expressed in existing languages and executed with
existing traditional XML query processors. Chapter 9 describes the bi-level navigator,

its data model, and its use with existing query processors.

193

To meet Goal G4 (scalability), we use a bulk accessor component to efficiently re-
trieve context information from a large number of marks and from marks in a large
number of base documents. Chapter 6 describes the bulk accessor. Sixml DOM (and

thus, indirectly, the bi-level navigator) employs the bulk accessor.

To meet Goals G6 (SI-only query preservation) and G7 (language compatibility with
respect to SI-only queries), we cloak (that is, make invisible) mark associations from
SI-only queries, and exclude cloaked information from query results. Chapter 8 de-
scribes a formal model for cloaking data and for executing queries over cloaked data.

The bi-level navigator supports cloaking.

Figure 5.4 shows a reference model for an XML bi-level query processor that employs
the strategy outlined. The modules shaded gray denote traditional XML query proces-

sors using the bi-level navigator to support bi-level querying.

'——-—->| XSLT and XQuery Processors]

al
»| XPalr Processor]

y v
| Sixml f¢—{ SixmDOM |e— Bilevel Navigator |

I SPARCE |<—| Bulk Accessor I | Cloaker]

Figure 5.4: A reference model for an XML bi-level query processor. Arrows denote dependency.
A gray module denotes an existing traditional XML query processor

5.4. Summary and Conclusions

In this chapter, we have introduced the notion of a bi-level query system to help filter
and transform bi-level information using queries in existing languages. We have pre-

sented two alternative representation schemes (namely, nested and normalized sche-

file:///r/ic/

194

mas) for XML bi-level information, and explored how each scheme aids or affects
query expression and execution. We have also illustrated that SI-only queries deserve

special attention when designing a bi-level query system.

We have identified seven goals for a bi-level query system, and presented a strategy to
meet the goals in the XML model. At the heart of the strategy is the bi-level navigator,
which allows an SA developer to model SI and mark associations in the normalized
schema, but permits queries expressed over the nested schema. The navigator employs
the other solutions identified to allow expression and execution of queries using exist-

ing query processors unchanged.

Chapters 6 through 9 describe the different parts of a bi-level query system. Each of

those chapters includes a description of related work.

6. Optimizing Bulk Access to Context Information

Scalability (the ability to extract context information from a large number of marks
and base documents for a single query) is one of the goals we set in Chapter 5 for a bi-
level query processor. In this chapter, we describe a component called the bulk
accessor [121] that is specifically designed to achieve this goal. The bulk accessor
supports different policies that a query processor can exploit to improve performance

depending on data characteristics such as clustering of marks.

In this chapter, we illustrate the use of the bulk accessor from within a relational query

processor. Chapter 9 shows the use of the bulk accessor in an XML query processor.

6.1. Introduction

Imagine that the peer-review commenting of papers submitted to a conference is ma-
naged using the Superimposed Scholarly Review System (S/SRS) application intro-
duced in Section 4.9.2. Assume that the conference receives S00 submissions (which
is plausible: The conference VLDB 2006 had 624 submissions [30]). If each paper is
reviewed by three reviewers, and if each reviewer comments on 10 distinct regions of
each paper, 15,000 marks would be created in total. In this setting, some queries may
combine the superimposed comments with context information retrieved from the
commented regions. For example, the query shown in Figure 4.27 to prepare a draft of
feedback to authors retrieves excerpts from commented regions. As illustrated in Sec-
tions 4.7 and 4.8, a query processor can use the functions excerpt and context to

retrieve context information, but retrieving context information from 15,000 marks

196

can consume an unacceptable amount of time, if these functions are implemented

naively.

In the rest of this section, we establish the need for giving special consideration to re-
trieving context information, using bi-level queries, for marks stored in a database
(DB). Specifically, we show that the process a typical superimposed application (SA)
uses to retrieve context information in an interactive setting is impractical for bulk
access in a DB setting. For simplicity, we limit this discussion to retrieving excerpts

using the function excerpt, but a similar discussion holds for the function context.

Figure 6.1 shows a sequence diagram drawn using the Unified Modeling Language
(UML) [159] syntax. It shows the interactive sequence of tasks an SA and our mid-
dleware SPARCE (described in Chapter 3) perform to retrieve the text excerpt from a
mark, as well as the task sequence to release a context-agent instance. Tasks initiated
by non-human actors are numbered. A total of eight tasks are involved in retrieving an

excerpt. Releasing a context-agent instance involves three tasks.

All 11 tasks in the interactive sequence may not be needed to retrieve the excerpt from
every mark because the typical SA releases a context-agent instance only after the user
closes the SA, not after each use of the instance. Consequently, later instances of a
context-agent class may benefit from the work done by earlier instances. For example,
only the first instance of the context agent for marks into a PDF document [6] might
load the Adobe Acrobat (Acrobat) [8] application, eliminating Task 4 for later in-

stances. Similarly, a base document loaded for one mark may be reused for other

197

marks into that document (avoiding Task 5). Some choices in context-agent imple-
mentation and constraints in base applications can influence the specific set of tasks

performed, but in general, applications and documents—once loaded—can be reused.

SA SPARCE contextAgent baseApp
Show Excerpt | | {_getAgent(descriptor)

2. <<create>>

3. initialize(doc, subDoc)

4. load()

5. open(doc)

6. locate(subDoc)

i
I
1
]
t
1
)
I
1
)
1
[}
1
i
[}
1
1
1
[}
i
i
1
1
:
1
1
[}
1

7. getExcerpt()
8. extractExcerpt()

r—————ios—e—ﬁ 9. <<destroy>>
: 10. close(doc)
I -
i 11. end()
]
1

L L L L

Figure 6.1: Sequence of tasks to retrieve an excerpt from a mark in an interactive setting

The interactive sequence is practical for use by an SA, but it is impractical for bulk
access needed to execute a query. For example, consider the following query in the
Structured Query Language (SQL) [92] to retrieve the ID and excerpt from each mark,

using the schema shown in Figure 4.18(a):

SELECT ID, excerpt(ID) FROM Mark
To execute this query, the query processor invokes the user-defined function (UDF)
excerpt for each mark. Assume that the UDF naively performs all 11 tasks of the in-

teractive sequence, so that it operates correctly regardless of the calling context and

the number of invocations.

198

Table 6.1 shows the time (measured) to retrieve excerpts from four marks using the
interactive sequence. The first two marks reference distinct regions of a PDF docu-
ment; the last two marks reference distinct ranges in a Microsoft Excel (Excel) [96]
workbook. The column “SA” indicates the time required to retrieve excerpts using the
interactive sequence via an SA; the column “DB” denotes the time to retrieve excerpts
with the aforementioned SQL query, using a naive implementation of the function
excerpt 1n Microsoft SQL Server 2005 (MSSQL) [99]. Table 6.1 also shows the total
time and the average time to retrieve excerpts for the four marks. The time to initialize

context agents shown in the table is discussed in Section 6.2.

Table 6.1: Time (in milliseconds) to retrieve excerpts and to initialize context agents using the
interactive sequence

Time to retrieve excerpt Time to initialize context agent

Mark Document SA DB SA DB
M1 Pl.pdf 2172 2281 2157 2141
M2 Pl.pdf 79 2218 79 2078
M3 El.xls 250 329 234 250
M4 Elxls 15 297 15 234
Total time (ms) 2516 5125 2485 4703
Average time (ms) 629 1281 621 1176

According to Table 6.1, the SA and the DB approaches consume about the same time
to retrieve the excerpt for the first mark of each document in this dataset. However, the
naive DB approach consumes far more time for the second mark of each document,
because it repeatedly opens and closes the base application and document. At the rate
shown for PDF marks in Table 6.1 (2.2 seconds per PDF mark), the naive DB ap-

proach would need over nine hours to retrieve excerpts from 15,000 PDF marks.

199

6.2. Bulk Access Considerations

We now analyze the similarities and the differences between the SA and naive DB ap-
proaches to retrieving excerpts using the interactive sequence. We use this analysis to

formulate the key considerations for bulk access.

For each mark, both approaches instantiate a context agent (Tasks 1-6), retrieve the
excerpt (Tasks 7 and 8), and release the context-agent instance (Tasks 9—-11). Howev-
er, they differ in the amount of work performed when a context agent is instantiated
(Tasks 4-6) and when a context-agent instance is released (Tasks 10 and 11). They

also differ in the ordering of these tasks.

Our observations show that Tasks 4, 5, 10, and 11 consume a majority of the time
needed to retrieve the excerpt from a mark. Consequently, we use the following equa-

tions to approximate the time taken to retrieve excerpts for all marks.

A D D A
tSA = thload(a)+ ;tOpen(a')-i_ ;tClose(a’)-i_ thEna'(a) Equation 51

M M M M
tos= ztloaa'(a) + ;tom(d) + ; ! Closela) ™ thEnd(a) Eguation 5.2

a=l]

Equation 5.1 estimates the total time fs4 needed to retrieve excerpts from A marks us-
ing the interactive sequence via an SA. Equation 5.2 estimates the total time pp
needed to retrieve excerpts from A marks using the naive DB approach. 4 is the num-
ber of distinct base applications, and D is the number of distinct base documents. The

inequalities M > D > 4 hold because each mark is made in exactly one document; and

200

each document is opened using exactly one application. Load and End are functions

over base applications; Open and Close are functions over base documents.

In Equations 5.1 and 5.2, the first two terms correspond to Tasks 4 and 5, respectively.
These tasks are performed as a part of Task 3, initialization of a context-agent in-
stance. The third and fourth terms correspond to Tasks 10 and 11, respectively, and are
performed as a part of Task 9, destruction of a context-agent instance. These equations
show that the SA and DB approaches differ in the number of times base applications
are loaded (and ended) and in the number of times base documents are opened (and

closed).

Although not captured by these equations, the SA and DB approaches also differ in the
number of simultaneous instances of marks and context agents in memory. At the end
of retrieving excerpts from all M marks, the SA approach maintains M context-agent
instances. In contrast, the DB approach maintains only one context-agent instance in

memory at any time.

Table 6.1 includes the time taken to perform Tasks 3—6 (initialize context agents) for
the four marks described in Section 6.1. It shows that in both the SA and DB ap-
proaches, initializing the context agent consumes a significant portion of the time

needed to retrieve the excerpt from a mark.

With this information at hand, we discuss two conflicting considerations for bulk
access: delaying context agent destruction (to reduce the time taken to repeatedly in-

itialize context agents) and limiting the number of context-agent instances (to reduce

201

memory consumption). We also discuss clustering marks by base documents as a

means of balancing the resource tradeoffs due to the conflicting considerations.

The repeated destruction and initialization of context-agent instances is one reason the
naive DB approach consumes more time. Thus, the approach could perform better if
context-agent destruction is delayed until the end of a query, but a database manage-
ment system (DBMS) might limit the number of object instances that may be created
within a query batch. (A query batch is a sequence of queries executed as one unit.)
For example, MSSQL limits the number of ActiveX object insfances per batch to 256
[147]. That is, a query can retrieve excerpts for at most 256 marks using the interactive

sequence, if context agents are implemented as ActiveX classes [93].

Also, delaying context-agent destruction until the end of a query may not scale up for
a large number of marks. For example, in our implementation, a context-agent in-
stance requires at least 512 bytes of memory. At this rate, maintaining 15,000 context-
agent instances simultaneously would require over 7 MB of memory per query, ex-
cluding the memory needs of base applications, base documents, and the DBMS. Or-
dinarily, a DBMS can easily afford such amounts of memory, but the operating system
(OS), not the DBMS, manages the memory for context agents and base applications.

As a result, the number of simultaneously executing queries might be limited.

In addition to the potential problem with scaling, too many simultaneous context-agent
instances can also adversely affect the speed of bulk access: As the number of simul-

taneous context-agent instances, loaded base applications, and open base documents

202

increases, the OS furnishes the various processes with more and more virtual memory,
which can induce overhead due to disk operations. The amount of overhead induced
depends on factors such as data-access patterns and the virtual-memory caching poli-
cy. For example, the overhead might be small if consecutive marks reference the same

base document, and the base document is already resident in physical memory.

Clustering marks by base documents is a way to manage the tradeoff between delaying
destruction of context-agent instances and the number of simultaneous agent instances.
Clustering allows a context-agent instance to be reused for all marks in one document
before the instance is reused for marks in other documents. It also exploits the OS’s
affinity for locality of reference because the base document is more likely to be resi-
dent in physical memory for the entire duration of its use. Thus, clustering can reduce

the time taken to initialize an agent instance.

Clustering marks by base documents also allows a base document to be closed imme-

diately after all its marks are processed, potentially reducing the stress on memory.

6.3. Design

In this section, we present the design of a bulk accessor that has the following fea-

tures:

e Requires the query processor to create only one object instance (that of the bulk-
accessor) per query batch, thus avoiding DBMS limits on the number of active ob-

jects.

e Pools context agents to share base applications and documents.

203

e Offers different pooling policies the query processor may exploit to improve per-

formance depending on data characteristics such as clustering of marks.

Figure 6.2 shows the architecture of the bulk accessor as a UML class diagram. The
shaded classes are existing components of a DBMS. The class Bulk Accessor maintains
a pool of context agents. The pool can be implemented as a hash table. The hash key
depends on the pooling policy used. Section 6.3.1 describes the available pooling poli-

cies.

«interface»
Poolable Context Agent

initialize(in doc, in subdoc)
getExcerpt()
getContext()
1 conserve()
clear()

Starts Pools

1
Bulk Accessor

*

Owns poolPolicy
Query Batch 1 1 [setPoolPolicy(in policy)
getExcerpt(in descriptor)
[getContext(in descriptor)

Figure 6.2: Architecture of the bulk accessor

The interface Poolable Context Agent defines the methods a context agent must imple-
ment in order to support bulk access. The method initialize assigns a document location
and a sub-document address to a context-agent instance. This method informs the con-
text agent which mark the bulk accessor intends to access. The bulk accessor may in-
voke this method several times in the same context-agent instance, and the values for
document location and sub-document address can vary with each invocation. When

this method is invoked, the context-agent instance should “smartly” reuse results of

204

previous invocations. For example, if the document location remains constant (but the
sub-document address varies) between successive invocations, the context agent

should attempt to reuse the previously opened base-document instance.

The bulk accessor typically invokes the method getExcerpt or getContext after invoking
initialize in a context-agent instance. These methods may be called any number of times
between successive invocations of initialize, and initialize is always invoked (at some

point) before retrieving excerpt or other context information.

The bulk accessor uses the methods conserve and clear to manage memory. When the
method conserve is invoked, a context-agent instance should release “non-essential”
resources, but be able to retrieve context information without the bulk accessor invok-
ing initialize again. In principle, a context-agent instance can release all information ex-
cept the document location and sub-document address supplied in the most recent in-
vocation of initialize, but the instance may choose to retain other information as well (at
its discretion). The bulk accessor may invoke conserve several times in a row to indi-

cate that more resources be freed, if possible.

When the method clear is invoked, a context-agent instance should release all re-
sources. After invoking clear in a context-agent instance, the bulk accessor must in-
voke the method initialize before ﬁsing the instance to retrieve context information. In-
voking clear is equivalent to destroying and recreating a context-agent instance, but

without incurring the complete destruction and construction expenses.

205

Figure 6.3 shows the bulk-access sequence of tasks performed to retrieve text excerpts
from marks using the bulk accessor. The figure shows three groups of tasks. Each task
is numbered to denote the group to which it belongs. The first group of tasks is carried
out when the query processor receives a query batch; the second group of tasks is per-
formed for each mark; and the third group of tasks is performed when the excerpts for
all marks have been retrieved, and the query batch is completed. The task startBatch
creates an instance of the bulk accessor, which in turn creates an empty pool of con-
text agents. The task endBatch destroys the bulk accessor, which in turn clears the
agent pool. Clearing the agent pool involves closing base documents and ending base

applications.

We first discuss different pooling policies and then discuss how a query processor may

choose a pooling policy.

‘ bulkAccessor \ 1 agentPoal ‘ contextAgent ‘ ‘baseApp ‘

Show Excerpts = - = i
-
> 1.1. startBatch
1.2. <<create>>

F

1.3. <<create>>

2.1. getExcerpt(descriptor)

2.2. getAgent{descriptor)

{2.3.: Create agent if not in pool}
T P 2.4. Ioad()

2.5, initialize(doc, subDoc)

2.8. open(doc)
2.7. locate(subDoc)

2.8. getExcerpt()
3.1. endBatch 2.9. extractExcerpt()

3.2. <<destroy>>

3.3. <<destroy>>

3.4, <<destroy>> 3.5. closeDac{doc)
3.6.end()

1
1
|
|
|
1
|
l
|
!
|
1
I
1
|
|
[
|
]
|
:
|
|
1
I
|
|
|
1
|
|
]
I
1

Figure 6.3: Sequence of tasks to retrieve excerpts from marks using the bulk accessor

206
6.3.1. Pooling Policies
The bulk accessor offers five pooling policies: Context-agent class, Document, Sub-

document, Interactive SA, and Interactive DB.

The policy Context-agent class (Pagn) uses one instance of each context-agent class.
The same instance is used to retrieve excerpts for all marks that use that class. The

name of the context-agent class is used to determine if two marks use the same class.

The policy Document (Ppo.c) uses one context-agent instance per combination of base-
document location (for example, a file path) and context-agent class. Excerpts for all
marks of a base document that use the same context-agent class are retrieved using a
single context-agent instance. The location of the document is used to determine if two
marks belong to the same base document. We use the combination of document and
context-agent class because marks into the same document may employ different con-

text-agent classes. See Section 3.3.2.

The policy Sub-document (Ps«c) uses one context-agent instance for a combination of
base-document location, sub-document address, and context-agent class. That is, the
excerpts for different marks pointing at the same region of a base document, and using
the same context-agent class, are retrieved using a single context-agent instance. (Two
users creating marks independently might create distinct marks pointing at the same

region of a base document.)

The policy Interactive SA (Psa) uses one context-agent instance per mark. It creates

two context-agent instances even if two marks point at the same region of a base doc-

207

ument and use the same context-agent class. This policy emulates the SA approach in

the interactive sequence.

The policy Interactive DB (Pos) creates one context-agent instance for each call to re-
trieve an excerpt, and destroys the context-agent instance soon after retrieving the ex-

cerpt. This policy emulates the naive DB approach in the interactive sequence.

In all policies, except Pos, each base application is loaded (and ended) only once, and
each base document is opened‘(and closed) only once. Some base applications, for ex-
ample Acrobat, limit the number of base documents that may be open at once, but, for
simplicity, we ignore that case for now (and consider it in the experimental evaluation

described in Section 6.4.2).

To estimate the time to retrieve excerpts for all marks, for all policies except Pos, we
consider only the tasks in the second and third group in Figure 6.3. We disregard the
first group of tasks because the time to execute them is negligible. The following eq-
uation approximates the total time 734 needed to retrieve excerpts from M marks using
the bulk-access sequence:

4 D D A ®
tBA = Z tLoad(a) + ;tOpen(d) + dz_ltaose(d) + Z tEnd(a) + ZtSwitch(B) Equation 5.3

a=1 a=l] =1

The first four terms in Equation 5.3 are the same as those in Equation 5.1. The fifth
(new) term indicates the effort to reuse existing context-agent instances to retrieve ex-
cerpts. The function Switch denotes the process where a context-agent instance is re-

initialized for use with a mark: When the policy is Pagx, a context-agent instance may

208

need to switch to a different document or sub-document before extracting the excerpt
for a mark; when the policy is Po«, a context-agent instance may need to switch to a
different sub-document. The symbol @ denotes the total number of switches context-
agent instances make to retrieve the excerpts for all marks. This parameter depends on
the pooling policy. For Pagx and Pooc this parameter is also dependent on the order in

which marks are processed.

The tasks in the third group shown in Figure 6.3 are executed affer retrieving excerpts
from all marks. Consequently, the query processor can perform this group of tasks af-
ter delivering query results, without affecting the user’s ability to process the results.

Thus, we can simplify Equation 5.3 as follows:

A D €]
tBA = Z] tLoad(a) + ; tOpen(d) + ; tSwitch(H) Equation 54

In addition to affecting the time to retrieve excerpts, a pooling policy also affects the
pool size, which is the maximum number of simultaneous context-agent instances
maintained, denoted by the symbol K. The number of switches & is inversely propor-
tional to the pool size K. If marks are uniformly distributed, the number of switches @
is [M/K 1. By uniform distribution of marks we mean the following: Marks are un-
iformly distributed among context-agent classes when the policy is Pagw; marks are

uniformly distributed among base documents when the policy is Poo; and so on.

Table 6.2 shows the relationship between pool size and the number of context-agent

switches for different pooling policies. We assume that marks are uniformly distri-

209

buted and that the excerpt from a mark is retrieved exactly once for each query. We
use the symbol C to denote the number of distinct context-agent classes employed in a
dataset, and the symbol S to denote the number of distinct sub-documents. The inequa-
lities M > § > D > C hold. The number of switches for the policies Psa and Pos is zero

because a context-agent instance is never reused in these cases.

Table 6.2 shows that the policy Pagx is likely to have the most switching cost, but it
results in the fewest simultaneous context-agent instances after Pos. The policy Psa has
no switching cost, but it maintains the most number of simultaneous context-agent in-

stances.

Table 6.2: Pool size and the number of context-agent switches for different pooling policies. Uni-
form distribution of marks is assumed. Example values for 1000 marks are also shown

Policy Poolsize K Example K for 1000 marks Number of switches @ Example @ for 1000 marks

Pagm C 4 M/l 250
Poec D 10 [M/D] 100
Psdoc S 100 m/s] 10
Psa M 1000 0 0
PpB 1 1 0 0

6.3.2. Choosing a Pooling Policj)
We first discuss choosing a pooling policy heuristically and then discuss some of the

issues in making the choice analytically.

6.3.2.1. Choosing a Pooling Policy Heuristically

Table 6.3 lists some data characteristics and predicts pooling policies that will result in
the fastest execution time. The column “Clustering” denotes the attributes by which

marks are clustered. The column “Distribution” describes some aspect of distribution

210

such as number of marks per document and number of documents. The column

“Policy” lists pooling policies determined heuristically.

Table 6.3: Data characteristics and pooling policies predicted using heuristics

Clustering Distribution Policy
Sub-document Does not matter PAagent
Document Many marks per document, few documents Ppoc
Document Many documents Pagent
Any other Many uses of the same mark Psdoc
Any other Many references to the same sub-document Psdoc
Any other Many marks, few marks per document Pagent
Any other Few marks, few marks per context-agent class Psa
Any other Few marks Pagent

The policy Pagn can provide the best performance when marks are clustered by docu-
ment location and sub-document address (called “clustering by sub-document” for
simplicity) for two reasons: It maintains a small pool, and it reduces the switching cost
because all marks into a document are processed completely before processing marks

into another document.

The policy Pagn can also provide the best performance when marks are clustered by
document only. However, if the number of distinct base documents is small (especial-
ly, if the number of documents is not much more than the number of context-agent

classes), the policy Po.. may be better as it would reduce the switching cost.

If marks are not already clustered by sub-document or document, they may be clus-
tered appropriately before retrieving marks. In many cases, the savings obtained by
clustering marks can far exceed the cost of clustering. However, it may not always be

beneficial, or possible, to cluster marks. For example, clustering marks early in the

211

query process may prevent the later use of some efficient join algorithms. The cluster-
ing of marks represented in XML cannot be changed using XPath 1.0 (because an
XPath 1.0 expression cannot reorder its input; Hlousek [59] has demonstrated that an

XPath 2.0 expression can reorder its input, albeit in an imperative fashion).

When marks cannot be clustered, an appropriate pooling policy can be determined
based on the distribution of marks. If the cost of estimating (or computing) the distri-
bution of marks is excessive, the policy Paen is probably the best default choice.
6.3.2.2. Issues in Choosing a Pooling Policy Analytically

We do not build or evaluate an analytical model to choose a pooling policy because
there are several impediments to building such a model. Instead, we use the heuristics
described in Section 6.3.2.1, and our experiments with the bulk accessor (described in

Section 6.4.2) show that the heuristics produce satisfactory results in many cases.

To choose a pooling policy analytically, the query processor needs to only compare
the value of the last term in Equation 5.4 among the pooling policies, because the first
two terms are generally independent of the pooling policy. However, there are two
impediments to computing the last term: estimating the number of context-agent
switches @, and estimating the time to switch (per individual mark). In the rest of this
section, we provide an overview of these impediments and some possible means to

overcome them.

To compute the number of switches &, the query processor must estimate the number

of marks, context-agent classes, base documents, and sub-documents at query-

212

optimization time, but it can estimate only the number of marks (as a part of estimat-
ing selectivity). It cannot estimate the other parameters because doing so requires an
examination of the descriptors of the marks involved in the query, but the exact set of

marks involved in the query is known only at query-execution time.

A solution to the problem with estimating the number of switches is to index the mark
descriptors and use the index to estimate the values required to predict the number of
switches, regardless of the set of marks involved in the query. This solution assumes
that the distribution of marks involved in a query is similar to the distribution of all

known marks.

Estimating the time to switch a context agent from one mark to another is a hard prob-
lem because the switching time depends on parameters such as the number of marks,
the distribution of marks, and the order in which marks are processed. The query pro-
cessor can estimate the number of marks and enforce the order in which marks are

processed, but it cannot estimate the distribution of marks.

The time to switch a context agent also depends on the corresponding base applica-
tion. The query processor can use a table of time estimates to switch between marks
for different base applications, but this approach requires knowledge of intimate de-
tails of context-agent implementations, in conflict with our desire to separate the de-
tails of retrieving context information from the actual query processing. Even then,
this approach requires that the query processor know the exact set of marks that are

involved in a query.

213

An alternative solution is to maintain profiles of query workloads with associated
pooling policies. The query processor can then choose a pooling policy based on the
profile that matches a given query (or based on the profile the user assigns the query).
This alternative has some of the elements of a learning query optimizer such as LEO
[150]. (A learning query optimizer improves its estimates by comparing estimated

values with actual values.)

6.4. [Evaluation

In this section, we provide an overview of an implementation of the bulk accessor;
show how it is integrated into a traditional relational query processor; and present the
results of an experimental evaluation of our bulk-accessor implementation under the
various pooling policies.

6.4.1. Implementation

We have implemented the design for the bulk accessor described in Section 6.3 as an
ActiveX server using Microsoft Visual Basic 6.0 [101]. The implementation supports
all the pooling policies described in Section 6.3.1, and allows a query processor to in-

dicate if, and how, marks are clustered.

Context-agent implementations are not required to implement the interface Poolable
Context Agent (described in Section 6.3) but implementing it can improve bulk-access
performance. We have extended all our context-agent implementations mentioned in

Section 3.6.1.2 to implement this interface.

214

The following list provides some high-level implementation statistics (as of this writ-
ing).

e Number of interfaces: 2

e Number of classes: 1 (new, the bulk accessor); 6 (context-agent classes extended)
e Number of source files for the new classes and interfaces only: 3

e Number of new lines of code (new code and extended code): 1010

e Estimated time spent on implementing the bulk accessor and extending the con-

text-agent implementations: 112 hours

We have used the bulk accessor to execute bi-level queries using the MSSQL relation-
al query processor and using the XML query processors included in Microsoft’s dis-
tribution of the .NET Framework [129]. Here, we provide an overview of the integra-

tion of the bulk accessor into MSSQL and illustrate its use in SQL queries.

Figure 6.4 shows a simplified version of the Transact-SQL [147] code used to inte-
grate the bulk accessor into MSSQL. (Transact-SQL is Microsoft’s implementation of
SQL.) The text with gray background is comments. Key parts of the implementation

are shown in bold.

215

CTRCINTA A hatdie Teow DGW LZBIanve wf 1 he Bl® At Yo Beiuve Doun
CREATE FUNCTION dbo.bulkBccessor (@policy int) RETURNS int AS
BEGIN

DECLARE Qobject int, @hr int

LerdolYoan

SV Y, el g R I R

, @object ouT

]

n : Bt penl ko oanoasaer ol »
EXEC @hr = sp_OACreate 'SPARCEBulkAccess Accessor
IF @hr <> 0 RETURN O --tulx accessgry creatior £
EXEC @hr = sp_OASetProperty @object, 'poolPolicy', @policy
IF @hr = 0 RETURN Qobject ELSE RETURN 0

END

CREATE FUNCTION dbo bulkAccessorTable(@pollcy lnt) RETURNS TABLE AS
RETURN (SELECT dbo.bulkAccessor (Rpolicy) AS bulkAccessor) --rcui.- the s5oz.a

A _®
SSHOIaTn Tl ems aesae Droam e Gholtled marRodenaT ia St N
CREATE FUNCTION dbo. excerpt(@doc varchar (1024), @sDoc varchar(256), @bulkAccessor int)
RETURNS varchar (max) AS
BEGIN
DECLARE Qresult - =: .-
DECLARE @hr int --resu.:z &I
DECLARE @src varchar (255), @desc varchar(255)

3 L v g ogerinnnr oreiand oo ocelcnen Laxs exen:n E
EXEC @hr = sp_OAMethod @bulkAccessor, getExcerpt', @result OUT @doc, @sDoc
IF @hr <> 0
BEGIN

o fan i, i e . gt iy
EXEC sp_| OAGetErrorInfo @bulkAccessor, @src OUT, Rdesc OUT
SELECT Qresult = 'Error: ' + @desc + ' (' + CONVERT (varchar, @hr) + '; ' + @src +")'

END

RETURN @result
END

DECLARE @bulkAccessor int

SELECT @bulkAccessor = dbo.bulkAccessor (0)

SELECT MarkId, dbo.excerpt(Location, Address, @bulkAccessor) As Excerpt
FROM SPARCEMark JOIN CONTAINER ON CID

SOTR L TG,

-

SELECT MarkId dbo excerpt(Locatlon Address, bulkAccessor) As Excerpt
FROM SPARCEMark JOIN DOCUMENT ON DID, dbo.bulkAccessorTable (0)

Q)

Figure 6.4: Simplified Transact-SQL code to integrate the bulk accessor into Microsoft SQL
Server 2005. Text with gray background is comments. Bold text shows code that operates on the
bulk accessor. Code to set the pooling policy is omitted for brevity: (a) Scalar UDF to instantiate
the bulk accessor; (b) Table-valued UDF to instantiate the bulk accessor; (c) UDF to retrieve text

excerpt using an instance of the bulk accessor; (d) Example use of the bulk accessor in a query
expressed over the schema in Figure 4.18; (¢) A query equivalent to the query in Part (d), but ex-
pressed using the table-valued UDF

216

Figure 6.4(a) shows the definition of the UDF dbo.BulkAccessor to create an in-
stance of a bulk accessor and return a handle to the new instance. The parameter
@policy indicates the pooling policy to use. The functions sp_OACreate (instantiate
an ActiveX class) and sp_OASetProperty (set a property of an ActiveX object) that

this UDF uses are built into MSSQL.

Figure 6.4(b) defines the table-valued UDF dbo.BulkAccessorTable. This UDF de-
fines a table with one column and returns a table with one row. The lone cell in the
returned table will contain a handle to a new bulk accessor instance. This UDF is use-

ful in associating a bulk accessor instance with a query (as Figure 6.4(e) illustrates).

Figure 6.4(c) defines the UDF dbo.excerpt to retrieve the text excerpt from a mark,
via the bulk accessor. This UDF accepts the location of a document, the address of a
sub-document, and a handle to a bulk accessor instance. The function sp 0aMethod

built into MSSQL is used to invoke the method getExcerpt in the bulk accessor.

Figure 6.4(d) illustrates the use of the bulk accessor to retrieve excerpts from all marks
in the table sSPARCEMark. (See the relational schema in Figure 4.18.) The query in this
figure first obtains a handle to an instance of the bulk accessor and sets the pooling
policy to Pagr (denoted by the value 0 for the parameter epolicy). It then uses the
handle repeatedly to retrieve text excerpts. The attributes Location and Address de-

note base-document location and sub-document address, respectively.

Figure 6.4(¢) shows another use of the bulk accessor to retrieve excerpts from all

marks in the table sparRcEMark. This query batch is equivalent to the batch in Figure

217

6.4(d), except that it uses the table-valued UDF to create and initialize the bulk acces-

sor. The attribute bulkaAccessor references the lone attribute that the table-valued

UDF defines.

6.4.2. Experiments
We now present the results of experimentally evaluating the bulk accessor with four

datasets: tiny, Sidepad, SISRS, and SSIB. Table 6.4 gives an overview of the four da-
tasets. The tiny dataset has only eight marks, but it demonstrates the utility of the bulk
accessor even for small datasets. The Sidepad dataset involves marks over a variety of
base types used in different Sidepad documents (created over a 3-year period). The
SISRS dataset corresponds to the application Superimposed Scholarly Review System
(SISRS) introduced in Section 4.9.2. The SSIB dataset corresponds to the SA

Superimposed System Information Browser (SSIB) outlined in Section 4.2.

Though our design allows different context-agent implementations for different marks
over the same base type (and for different marks into the same base document), in our
experiments, we used only one context-agent class per base type. For example, we

used one context-agent class for PDF marks, and one class for Excel marks.

In all experiments, the PDF context agent used Acrobat 6.0 (Professional Edition) [8]
to retrieve excerpts; the Excel, Microsoft Word (Word), and Microsoft PowerPoint
(PowerPoint) agents used applications from the Microsoft Office 2002 suite [96]; and

the XML agent used Microsoft XML Software Development Kit 4.0 [107].

218

We used a standalone driver application to collect experimental data, instead of using
a DBMS, because the query processor in MSSQL does not allow us to collect perfor-
mance data at the granularity we need for evaluation. For example, we cannot collect
the data needed to plot Figure 6.8. We cannot instrument the query processor because
we do not have access to its source code. However, we have verified that the results
presented in this section are consistent with the results obtained by running retrieval
queries within MSSQL. Section 6.4.2.2 provides example results of using the bulk ac-

cessor in MSSQL.

All experiments were run on an Intel Core Duo 1.66 GHz processor [65] with 1 GB of
main memory. The OS was Microsoft Windows XP (Service Pack 2) [104]. Each ex-

periment was run thrice, and the average result for each experiment is presented.

Table 6.4: Overview of the datasets used to evaluate the bulk accessor

Dataset Context-agent Documents Sub-documents Marks Characteristics

classes (C) D)) ™)
Tiny 2 4 8 8 Few marks per context-agent class
Sidepad 4 56 490 2735 Many marks to the same sub-document
SISRS 1 426 15,336 15,336 Many documents, many marks
SSIB 3 25 105,678 107,622 Many marks per document

6.4.2.1. The Tiny Dataset
Table 6.5 lists the eight marks in the tiny dataset and shows the time (in milliseconds)

to retrieve the excerpt from each mark for three pooling policies. The column
“Sub-document” shows the addresses of the marked sub-documents in the dataset. For
PDF marks, this column shows the page number and the index of the first and last

words in the marked region. For Excel marks, it shows the spreadsheet name and the

219

name of the cell in the marked region. (Only one cell was marked in each case.) The
annotations in the first four rows describe the behavior of each policy. The last row
shows the time to clear the pool after excerpts are retrieved from all marks. The marks

were processed in the order shown.

The policy Pos requires 10.3 seconds to retrieve excerpts from all marks in the tiny da-
taset; Pagn requires 3.7 seconds; and Po. requires 3 seconds. On average, Pagn saves
about 65% of the time over Pos; Po.c saves about 72% of the time. However, Pos con-
sumes the least memory (one context-agent instance), whereas Po.. consumes the most
memory (four context-agent instances). Consequently, the different policies take dif-

ferent amounts of time to clear the pool.

Figure 6.5 shows the average time (in milliseconds) to retrieve excerpts for the marks
in the tiny dataset. The first set of bars show the average time to retrieve an excerpt
when the marks are submitted to the bulk accessor in a shuffled order such that two
consecutive calls to the bulk accessor retrieve marks from different documents.
(Marks are shuffled before they are submitted to the bulk accessor. Shuffling increases

the number of context-agent switches in the policy Page.)

220

SLE 182 0 (sw) jood yea[d 0y dun],
14 [4 I 9z1s [00d
LLE £9% 68Z°1 (swr) own o8e10Ay
910°¢ YOLE z1go1 (swr) owiy ej0],
I Ll 16¢ Sd‘18 SIX'7d
1€ 881 L6T 9V ‘IS SIX'TH
96¢ 229 Cle sd IS S[X'TH
61¢ 99¢ 67¢ IV ‘IS SIX'TH
JUDWNIOP-QRS MIU 0] YI)IMS ‘7 20UB)ISU] JUSWMIOP |, T 0} YoIIMS 18qOIdY PEO ‘cour)sul Juafe mau)eosd ‘yuade Juormo Aonso
129 8L €02 1€-L1°C pdzg
JUDWNOOP-QNS MIU 0] YINTMS ‘] 2oUR)ISU] JUSWINIOP (] 0} YNIMS 12QOIOY PROJ “03URISUT JUsTe MU 9)BaId “udde JuoLIng LAoNso
S 8L 81T°C 6£-S6¢€ ‘€ Jpd'1d
Judw
-noop uodo ‘oourisur JusSe mou 91ed1) JUSWNIOP ,7 0) YI)IMS 1BqOIOY PEO[‘00uB)SUl JUdTe moU d)ea1d ‘quade Juolns Aonsag
Ll 61¢C 78T°C £6-19 ‘1 Jpd-zd
Aorjod yoes ur ‘pajeard s 90UR)SUI JUSTL-)XJU0D B PUR “OWT) ISIJ SY) J0J POPRO] ST uoneordde jeqoIdy oy
6S1°C 91T 182°C L671¥ ‘1 Jpd'1d
sag waly g aq g JUIUWMDOP-qNS TIUWNIOQ
Kd1104 Surjoog

19sejep Aury ay) 10} s3dId0X3 9AILIPII 03 (SPUOIISI[[IWL UT) dWL], :S"9 L

221

1600 4

PAgent B8PDoc O0PSdoc mPSA mPDB

1289

1344

-

N

[=3

(=]
L

1200 -
1000 -
800 -

600 -|
406 475

~
=)
S

200

Average time to retrieve an excerpt (ms)

-

Shuffle Cluster by sub-document

Figure 6.5: Average time (in milliseconds) to retrieve an excerpt for the tiny dataset. The first set
of bars is for the case of shuffled marks; the second set is for marks clustered by sub-document

In Figure 6.5, the second set of bars shows the average time when the marks are sub-
mitted to the bulk accessor clustered by sub-document. With this clustering, Pagn uses
12% less time per excerpt compared to the case when marks are shuffled. Pag« even
uses 10% less time compared to Psic, because with clustering, Pagn« consumes much
less memory than Pswc: Pagen requires only two context-agent instances (one per base

type), whereas Ps«.c uses eight instances (one per sub-document).

The average time to retrieve an excerpt using the policy Pagn is more than that needed
with the policy Po. even with clustering, because the tiny dataset has only two docu-
ments and involves only two context-agent classes. (We will show that this behavior
reverses for a larger number of documents.)

6.4.2.2. The Sidepad Dataset

The Sidepad dataset contains 2735 marks into 490 distinct sub-documents in 56 dis-

- tinct documents. The document types are PDF, Excel, Word, and PowerPoint. The

222

best performance for any policy was obtained when the marks were clustered by doc-
ument. The total time to retrieve excerpts for all marks for the best case was: Pagen: 62.9
seconds; Po.. 54.7 seconds; Pswe 136.8 seconds; Psa 568.9 seconds; and Pos 1115.9

seconds.

Figure 6.6 shows the average time (in milliseconds) to retrieve an excerpt for the
Sidepad dataset. The first set of bars shows the average time to retrieve an excerpt
when the marks are shuffled; the second set of bars shows the average time when the
marks are clustered by document; and the third set of bars shows the average time

when the marks are clustered by sub-document.

The summary observations based on the average time to retrieve an excerpt shown in

Figure 6.6 are:

e Po. provides the best performance for both shuffled and clustered marks.

e Po. saves 90% over Psa, and 95% over Pos.

e Po. always outperforms Psac.

¢ Pagn saves 69%—90% over Psa and 84%—94% over Pos.

e Clustering helps Pagn perform 38% better than when the marks are shuffled.

¢ Clustering also helps Pagx perform almost as well as Po.. because clustering reduc-
es the number of context-agent switches for Pagn from 2098 to just 55. (Figure 6.6

does not show the number of context-agent switches.)

223

The average execution times (in milliseconds) when marks are clustered by sub-
document and the bulk accessor is invoked from within MSSQL are: Pagen 25.18; Poo
24.73; Psac 54.82; Psa 208.73; and Pps 409.1. The ranking of pooling policies based on
these times is the same as the ranking of the policies in the third set of bars in Figure
6.6. For example, Po. and Pos have the best and worst average time, respectively, in

both cases.

The pool size for the Sidepad dataset for the various policies was as follows: Pagn 4;
Poec 56; Psac 490; Psa 2735; and Pos 1. The pool size is the same with or without clus-

tering.

450 { EPAgent BPDoc OPSdoc ®PSA mPDB

408 408 408
400 -
350 -
300
250 -

200

150 |

Average time to retrieve an excerpt {ms)

-

[=3

[=]
n

(&)
[=]

[=]
+

Shuffle Cluster by document Cluster by sub-document

Figure 6.6: Average time (in milliseconds) to retrieve an excerpt for the Sidepad dataset. The
three sets of bars are for marks shuffled, clustered by document, and clustered by sub-document,
respectively

Based on Figure 6.6 and the pool sizes, for the Sidepad dataset, the query processor

needs to choose only between the policies Pagn and Poe. If the marks are clustered by

224

document, the processor may prefer Paen as its performance is comparable to that of
Pooc, and its memory footprint is lower.

6.4.2.3. The SISRS Dataset

The SISRS dataset contains marks as might be created in a peer-review process. This
dataset consists of 426 papers in PDF format obtained from the proceedings of a few
of the past Computer Science conferences. Each document has exactly 12 pages, and
each page has three marks, for a total of 15,336 marks. The marks were generated
programmatically as follows: One mark was created in each third of a page. The loca-
tion of the marked regions—the start of a region and its length—were determined us-
ing a random-number generator. The lengths of the marked regions range between 3

and 20 words.

For this dataset, we report only the performance of the policies Pagn and Po.. when the
marks are shuffled and when the marks are clustered by document. The other pooling
policies performed poorly. As with the Sidepad dataset, clustering by sub-documents

did not provide much benefit over clustering by documents.

Pagen produced the best total time (6.2 minutes) to retrieve all excerpts with marks clus-
tered; Po.. produced the best total time (7.9 minutes) when marks were shuffled. Psa
could process only 59% of the dataset due to its excessive memory needs. We did not
measure the performance of Pos for the entire dataset, but based on the performance
for a part of the dataset, we estimate that it needs over nine hours to retrieve all ex-

cerpts.

225

Figure 6.7 shows the average time (in milliseconds) to retrieve an excerpt for the
SISRS dataset. The first two bars show the average time when shuffled marks are
processed using the policies Pagn and Poo, respectively. The third and fourth bars show
the average time when marks clustered by document are processed using these poli-

cies. We discuss the fifth bar after analyzing the first four bars.

100 4 8 PAgent (shufiie)
%01 @ PDoc (shuffle)

0 PAgent (cluster)
& PDoc (cluster)

W PAgent (cluster+)

34
31 28

Average time to retrieve an excerpt (ms)
(%))
Q

Figure 6.7: Average time (in milliseconds) to retrieve an excerpt for the SISRS dataset, with and
without clustering »

According to Figure 6.7, on average, the policy Pox performs better than Pagn (65%
savings) when marks are shuffled, but Pagen performs better than Po. (18% savings)
when marks are clustered. The better performance of Pag Wwhen marks are clustered is
attributed to its memory efficiency: PDoc} employs 426 context-agent instances, whereas
Paen employs only one context-agent instance. Each instance of the PDF context-agent
references six objects in the Acrobat library, resulting in 2556 Acrobat objects for Poc,
but only 6 Acrobat objects for Pagn. Acrobat is unable to handle the volume of data
Po.c generates and triggers the comservation procedure of the bulk accessor. During

this procedure, the context-agent instances for PDF marks release all references to

226

Acrobat objects, and, if more memory is needed, Acrobat is restarted (forcing Acrobat
to release resources). Consequently, Po.. consumes more time on average to retrieve an

excerpt than Pagn does.

The performance of the bulk accessor for the SISRS dataset when marks are shuffled
deserves special attention: There are different degrees of shuffling of marks. Simple
shuffling orders marks such that alternate calls to the bulk accessor retrieve excerpts
from the same document. Extreme shuffling retrieves excerpts from the first mark of

all documents, followed by the second mark of all documents, and so on.

The first two bars in Figure 6.7 show the average time for simple shuffling. Executing
the complete workload (of 15,536 marks) using this policy under extreme shuffling
triggered the conservation procedure too frequently, and the average response time for
the policy Pagn tended towards that expected for Pos. We believe that potential issues
in Acrobat may have exacerbated the situation because the performance did not de-
grade so drastically for similar workloads containing only Excel marks or only Word

marks.

Figure 6.7 shows that the policy Po. performs slightly better when marks are shuffled
than when marks are clustered. We attribute this difference to the order in which the
marks were processed. Our logs show that the time to retrieve excerpts for some marks
was much higher when marks were clustered than when the marks were shuffled. Ex-
amining the order in which the marks were processed, we found three clusters of

marks into graphics-intensive pages that were responsible for much of the difference

227

in the performances. Although in this case Poe. performed slightly slower when marks
were clustered than when marks were shuffled, we believe that there is nothing inhe-

rent in clustering marks by document that can hurt the performance of Pos.

The fifth bar, labeled “Pagen cusiery”, in Figure 6.7 shows the average time when marks
are clustered by document for the policy Pagx, but in this case, a document is closed
immediately after all its marks are processed, before the marks in the next document
are processed. This approach results in a savings of 14% compared to Pagx when doc-

uments are not immediately closed, and a savings of 29% compared to Poe.

The time shown in the fifth bar includes the time to close base documents, whereas for
the other bars in Figure 6.7, the times shown exclude the time to close base docu-
ments. That is, Pagen cusery does more work than the other approaches, yet it consumes
the least amount of time to retrieve all excerpts. If the time to close base documents is
included, the average time to retrieve each excerpt increases to 28.13 and 34.21 re-

spectively for Pagentcusten and Pooc ctusten.

Figure 6.8 shows the moving average of the time to retrieve excerpts for Poo ciusen, Pagent
@uster, aNd Pagent cusiery, computed for every 252 marks (that is, for every seven docu-
ments). The topmost line corresponds to Pow @usen. The moving average for this case
has a rising trend until Document #251 (the x axis shows Document #), because with
each new document encountered, a new context-agent instance is created, along with
the creation of references to various Acrobat objects. When the 251* document is en-

countered, the bulk accessor’s conservation procedure forces context-agent instances

228

to release all open Acrobat objects, and restarts Acrobat. This process causes the spike
seen in the average time to retrieve excerpts. (The time to complete the conservation

procedure was over 5 seconds.)

The second and the third line in Figure 6.8 correspond to Pagen ciuseery and Pagent elusiers), T€-
spectively. These two lines have similar shape, but the line for Pagn cusery Shows that
closing a document when it is no longer needed saves time consistently (because clos-

ing a document increases available memory).

s Plloe (cluster)
wsannne P foent {clusler)

— PAgent {clustert)

Time to retrieve excerpt jms)

7 125 Document # 28 Bt

Figure 6.8: Moving average of time (in milliseconds) to retrieve excerpts for the SISRS dataset

6.4.2.4. The SSIB Dataset
The SSIB dataset contains marks to events, errors, and updates related to nine comput-

ers. (Section 4.2 describes the SSIB application.) It consists of 25 documents: 18 Ex-
cel spreadsheets containing event logs (two per computer), six Word documents con-

taining errors reported (one per computer; not all computers had reported errors), and

229

one XML document with details of available updates. Marks were created program-
matically into each of these documents using the following criteria: one mark per
event, three marks per reported error, and one mark per update applied on a computer.
A total of 107,622 marks were created over 105,678 distinct sub-documents. The dif-
ference between the number of marks and sub-documents is due to the same update

being applied on multiple computers.

For this dataset, we report the performance of the policies Pagn and Po.. when marks -
are clustered by document. As with the other datasets, clustering by sub-documents
did not provide much benefit over clustering by documents, and Po.. was the best

choice when marks were shuffled.

The first set of bars in Figure 6.9 shows the average time (in milliseconds) to retrieve
an excerpt for the SSIB dataset. (We use a non-zero baseline to highlight the differ-
ence in performance among the policies.) The policy Pagn saves 10.4% of the time on
average compared to Po.. The savings increase to 12.9% if a document is closed im-
mediately after processing its marks (indicated by the bar labeled “Pagen: chsery””). Marks
were processed in the following order: all marks into event log, followed by all marks
into error reports, followed by all marks to the updates catalog. The total time (in mi-

nutes) to retrieve excerpts for all marks was: Pagea 9.14, Pooc 10.29, and Pagen: lusiersy 8.97.

We also measured the performance of the policies Pagn and Po.. when the marks are
clustered by base documents, but all marks for a computer are processed completely

before marks for another computer are processed. For example, marks into the event

230

logs for computer C1 are processed first, followed by marks into error reports for Cl1,

followed by updates for C1. This pattern then repeats for computer C2, and so on.

PAgent (cluster) £ PDoc (cluster) 0 PAgent (cluster+)
5.80 1 574

6.00 7{

5.60

5.51

540 -

5.20

5.00

4.95

5.00

490

4.80 -

4.60

Avergage time to retrieve an excerpt (ms)

4.40 -

4.20 w

4.00 4

Document Document+Computer

Figure 6.9: Average time (in milliseconds) to retrieve an excerpt for the SSIB dataset. The first set
of bars shows the average time when marks are clustered by document. The second set shows the
average time when marks are clustered by document and by computer

The second set of bars in Figure 6.9 shows the average time (in milliseconds) to re-
trieve an excerpt when marks are clustered by document and are grouped by computer.
In this case t00, Pagn performs better than Po., and closing a document soon after
processing all its marks results in additional savings with Pag. That is, changing the
order of marks did not change the ranking of the performance of the pooling policies

(because the marks are still clustered by base documents).

6.4.2.5. Evaluation Summary
Our experiments provide the following insights into the use of the bulk accessor to

retrieve excerpts:

231

e The bulk accessor performs better than the naive methods even for a very small
number of marks. It can save 69%—-90% of execution time in comparison to the in-
teractive SA approach, and 84%-95% when compared to the naive DB approach,

even when a query involves only a few thousand marks.

e When marks are clustered by documents, Pagn provides the best response time and

consumes the least memory.

e When marks are shuffled, Po.. provides the best response time, but it consumes
more memory than Pag.. Limitations of some base applications can affect the re-

sponse time of Poe.

e The bulk accessor supports five pooling policies, but, generally, a query processor

needs to choose only between the policies Pagen and Poc.

6.5. Related Work

In this section, we provide an overview of a system of optimizing access to data resi-
dent in files stored outside a traditional DB. We also briefly relate parts of the bulk

accessor component to object management systems.

6.5.1. Structuring Schemas and Region Indexes
Consens and Milo [27] consider the problem of optimizing access to regions of file

data using indexes over data described using structuring schemas. A structuring sche-
ma [1] is a grammar and a set of programs that describe the content of a file. Structur-
ing schemas are used to present a structured view of data stored in files. The grammar

component of a structuring schema defines the structure of the file, and the programs

232

implement the grammar specification. For example, in the SSIB application (described
in Section 4.2), the contents of an event-log file could be described using the follow-

ing grammar. (Only a part of the grammar is shown.)

<Events> = <Event> <Events> | ¢

<Event> = <EvDateTime> <Kind> <Source> <Description>
<EvDateTime> = <Date> <Time>

<Date> = <Month> <Day> <Year> | ¢

<Time> = <Hour> <Minute> <Second> | ¢

Some of the non-terminal symbols in this grammar can be exposed as DB elements.
For example, a relation named Events, with rows of type Event, can be exposed. The
row type Event can expose the attributes EvDateTime, Kind, Source, and
Description. The non-terminal symbols pate and Time need not be exposed. Pro-
grams associated with this grammar can parse an event-log file and load the relation

Events, or the programs can provide a view over the event-log file.

A structuring schema is not a mark, but a mapping from a file’s content to a relation’s
content. When the mapping is applied, the file is scanned sequentially and its contents
are exposed as a row set (assuming the relational model). If a query over the file’s
content involves a predicate over the attributes the file exposes, the predicate is pushed

down to the program associated with the structuring schema, as an optimization.

The structuring-schema approach provides a means to mix DB data with external data,
but it fully scans the external sources involved in a query. Consens and Milo [27] ad-
dress this problem by maintaining an index over the structure of a file’s content. The

index may contain information about some or all components of a structuring schema.

233

An index entry indicates either a match point (which is the position of the indexed
component) or a region (which is the span of the indexed component) in the file.
Consens and Milo optimize access to indexed regions using region-inclusion graphs.
A region-inclusion graph (RIG) is a directed graph with nodes representing indexed

regions and edges denoting inclusion. An edge from region » to s means » includes s.

For example, consider the aforementioned grammar for a structuring schema over an
event-log file. Assume that all the non-terminal symbols are exposed and indexed.
Figure 6.10 shows a RIG for this structuring schema. This graph shows that the region
containing the information about an event in turn contains the regions with the date
and time, kind, source, and description of the event. Also, the region containing event

date and time is broken into two regions: one for event date, another for event time.
Event

EvDateTime Kind Source Description

Date Time
Figure 6.10: A region-inclusion graph for the event-log structuring schema

Now, consider the path expression Event .EvDateTime.Date to retrieve the date of an
event. This expression can be evaluated by finding an event region that contains an
event date and time region, which in turn contains a date region. Because the regions
of all three attributes in question are indexed, the objects that satisfy the path expres-

sion can be found by evaluating the index expression Event > EvDateTime D Date,

where the symbol o denotes range inclusion. If the region containing the attribute

234

EvDateTime 1s the only container of the region containing the attribute pate, the index
expression can be rewritten as Event D Date. Evaluating the rewritten expression re-

quires consulting the indexes for only two attributes, not three attributes.

Maintaining a region index provides two key benefits in this example. First, candidate
event records that satisfy a query can be determined without consulting the full event
log. Second, the event log does not need to be scanned sequentially (assuming the

event-log file supports random access).

Region indexes can also reduce the number of file reads in some cases. For example, if
a query needs the attributes Kind and source, it would be possible to read the region
encompassing both attributes at once (and separate the attributes in memory) instead

of reading the two attributes separately.

Region analysis can be useful in bi-level query execution, but it cannot be performed
completely by a query processor in our approach because mark descriptors are opaque
(by design) to the processor. The query processor can coordinate the analysis, but con-
text agents would need to provide the functionality to compare marked regions. For

example, an agent could test if a marked region contains (or overlaps) another region.

An index over a file described using a structuring schema is a superimposed structure,
but the data in a relation (or a view) obtained using a structuring schema contains only
external data. That is, it does not allow the mixing of DB data and external data in the
same schema instance. For example, in the event-log example for the relational model,

the relation Events would contain only information from the event-log file. In con-

235

trast, as shown in Sections 4.4 and 4.5, our approach allows a mark to be mixed with
SI in the same schema instance. This approach allows a developer to easily combine

SI and base information.

A region index over a file’s content indicates the exact portions of a file to read, and it
can help reduce the number of file reads, but it does not address the issue of accessing

a large number of regions in a file.

6.5.2. Object Management Systems
The pool of context-agent instances the bulk accessor uses is similar to object pools

used by object management systems (OMSs) such as Enterprise JavaBeans [71] and
BEA Tuxedo [90]. The methods initialize and clear (shown in Figure 6.2) correspond to
the activation and passivation mechanisms, respectively, in an OMS. In an OMS,
activation initializes an object before the object is used in providing a service;
passivation saves the state of an object and deactivates the object. In contrast to a typi-
cal OMS, the bulk accessor does not save the state of a context-agent instance after
deactivation because that functionality is generally not needed for bulk access to con-

text information.

A typical OMS does not have an equivalent to the method conserve the bulk accessor
uses to conserve memory without deactivating context-agent instances. Instead, an

OMS deactivates objects.

236

6.6. Summary and Conclusions

In this chapter, we have isolated the problem of efficiently accessing context informa-
tion for a large number of marks when executing a bi-level query. We have proposed a
component called the bulk accessor as a solution. A key part of this solution is to pool
context-agent instances so that the cost of accessing base sources is amortized over the
entire set of marks involved in a query. We have identified several pooling policies,

and provided heuristics to choose a policy based on certain data characteristics.

We have also described an implementation of the bulk accessor and showed experi-
mentally that the accessor provides significant improvement over naive methods for
even a small number of marks. However, when a query involves thousands of marks,

even with a bulk accessor, the query can take minutes to complete.

We see several opportunities to improve the performance of the bulk accessor. These
opportunities lie in different realms: context-agent implementations and their interface
with base applications; the query processor; and the interface between the query pro-

cessor and the bulk accessor.

The performance of the UDFs excerpt and context depends on the context-agent
implementation, base type, and base application. Using light-weight wrappers to re-
trieve context information instead of using full-blown applications can improve per-
formance in some cases. For example, the open-source library PDFBox [134] can be

used to retrieve context information from PDF marks instead of using Acrobat. In

237

general, loading only the parts of a base application and document necessary to re-

trieve the requested information would provide better performance.

Indexing (or caching) often-used context information can improve the overall perfor-
mance of a bi-level query, but doing so requires that the DBMS be able to detect
changes in base documents. Interestingly, the bulk accessor itself can be useful in up-

dating an index on base documents.

Another means of improving the overall performance of a bi-level query is to eagerly
perform operations (for example, push down selections over SI) on SI stored in a tradi-
tional DB to possibly reduce the number of base accesses. Making such decisions re-
quires that a query processor distinguish DB-resident SI from information in the base
layer, but current query processors do not possess this capability. For example, current

processors treat the UDF excerpt on par with other internal UDFs.

As illustrated in Section 6.4.2, shuffled marks can be a performance bottleneck. One
way to process shuffled marks better is to submit marks in batches to the bulk acces-
sor. The bulk accessor can internally cluster the marks by document, retrieve excerpts,
and return a batch of results to the query processor. However, using this approach re-
quires a significantly different interface (than the current one) between the query pro-

cessor and the bulk accessor.

In this chapter, we have used the bulk accessor in a traditional relational query proces-
sor to execute bi-level queries. Chapters 7 and 9 show the use of the bulk accessor in

the XML model.

7. Representing and Manipulating XML Bi-level Information

In this chapter, we describe Sixm! and Sixm!/ DOM, two parts of our strategy (outlined

in Section 5.3.2) to transform XML bi-level information using queries in existing lan-
guages.

Section 4.5.2 introduced Sixml element types to associate marks with XML content
that can be represented in the Entity-Relationship (ER) [25] model. In Section 7.3, we
present element types to associate marks with XML content (such as a CData section
[43]) that cannot be directly expressed in the ER model. (An ER attribute may be
represented as a CData section in XML, but ER cannot distinuguish an attribute from a
CData section.) The new element types, along with those introduced in Section 4.5.2,
serve to meet our goal of SI-schema independence (Goal G1 in Section 5.3.1), and the
goal of diversity and multiplicity of mark associations (Goal G2) for a bi-level query

system.

In Section 7.4, we describe Sixml DOM [120], an extension to the XML Document
Object Model (DOM) [34], to manipulate Sixml data at run time. (DOM provides a
means of manipulating a tree-like view of an XML document.) This extension is
needed because DOM and its application-programming interface (API) do not ade-
quately meet the run-time needs of Sixml data management. For example, DOM can-

not automatically assign a mark’s excerpt to an attribute (as the attribute’s value).

Sixml DOM allows an input Sixml document to be in the normalized schema (for ex-

ample, the first document in Figure 5.3), but permits navigation over the document as

239

if the document is in the nested schema (for example, the document in Figure 5.2). By
retrieving mark descriptors and context information just in time, and by supporting
navigation in the nested schema, Sixml DOM can help a bi-level query processor meet
the goals of query-execution efficiency (Goal G3) and ease of query expression (Goal

G5). Chapter 9 describes a query processor that uses Sixml DOM.

The XML representation schemes used in this chapter are based on the developments
in Sections 4.5 through 4.7. As in those sections, the Sixml element types belong to
the namespace "sixml|" and are bound to the Uniform Resource Identifier (URI) [15]
"http://schema.sixml.org". However, for simplicity, we refer to the Sixml element

types and attributes without using a namespace.

The names of the Sixml element types to associate marks introduced in Section 4.5.2
have the prefix "Xml_". In the rest of this dissertation, we drop that prefix from type
names (because we used that prefix in Chapter 4 only to distinguish XML element
types from relationship patterns). Also, for simplicity, we give a mark-association
element the same name as its type. For example, we give the name "EMark" to an in-

stance of the element type EMark.

7.1. Introduction

In this section, we outline our motivation to define Sixml DOM as an extension of
DOM to manipulate mark associations, descriptors, and context information. Section

7.4 describes Sixml DOM in detail.

http://schema.sixml.org

240

A Sixml document can be manipulated using DOM (because a Sixml document is an
XML document), but doing so can be challenging because DOM cannot distinguish
mark associations from other information. We illustrate some of these challenges us-
ing the Sixml document shown in Figure 7.1. This document is based on the element
Comment in the Sixml document shown in Figure 4.26. For simplicity, the name of
each mark-association element is changed to match its element type. The attribute
xsi:noNamespaceSchemalocation associates a schema with Comment. The prefix

xsi indicates the XML-Schema-instance namespace [171].

<?xml version="1.0" ?>
<Comment excerpt=""
xsi:noNamespaceSchemalocation="http://schema.sixml.org/examples/sisrs.xsd"
xmins:xsi= "http://www.w3.0rg/2001/XMLSchema-instance"
xmins:sixml="http://schema.sixml.org">
<sixml: TMark sixml:type="sixm!|:TMark" sixml:markIiD="45">
Contradicts prior work
</sixml:TMark>
<sixml:AMark sixml:type="sixml:AMark" sixml:markID="23" sixml:target="excerpt"
sixml:valueSource="true"/>
<sixml: EMark sixml:type="sixml:EMark" sixm!:markID="23"/>
</Comment>

Figure 7.1: A Sixml document in the normalized schema showing marks associated with an ele-
ment, an attribute, and text content. SI parts are in bold. This document is based on the document
in Figure 4.26. For simplicity, only the element Comment is shown, and the name of each mark-
association element is changed to match its element type. The namespace prefix xsi is used to as-
sociate a schema with Comment

Knowledge of schema: A developer needs to know mark association schemas to ma-
nipulate mark associations using DOM. For example, accessing the marks associated

with the element Comment shown in Figure 7.1 would require the following code.
Nodelist markAssociations = comment.getElementsByTagName ("EMark") ;

Here, the variable comment holds a reference to Comment. DOM [35] defines the

function getElementsByTagName and the type NodeList. To develop this code, the

http://schema.sixml.org/examples/sisrs.xsd
http://www.w3.org/2001/XMLSchema-instance
http://schema

241

developer must know that mark associations for Comment are represented as elements

named EMark, and that those elements are sub-elements of Comment.

In contrast, Sixml DOM allows access to mark associations without the knowledge of
their schema. For example, the list of marks associated with the element Comment

can be accessed using the simple expression comment .markAssociations.

Creating and serializing mark associations: Attaching a mark association to a part
of an XML document, and serializing (that is, writing out) the association are both te-
dious with DOM. With Sixml DOM, a mark association is added directly and seria-
lized automatically using only the syntax recommended [43] by the World Wide Web
Consortium (W3C) [163] for serialization of XML data. For example, the Sixml doc-

ument in Figure 7.1 is serialized according to the recommended syntax.

Accessing context information: Accessing mark descriptors and context information
is tedious with DOM. For example, the following code would be needed to retrieve the
context information from the first mark associated with the element Comment in Fig-
ure 7.1. The types Element and string, and the function getAttribute used in this
code are defined by DOM. Our middleware to access marks and context information

(described in Sections 3.2—3.4) defines the other types and functions used.

Element firstMA = comment.getElementsByTagName ("EMark") .item[0];
string markID = firstMA.getAttribute ("sixml:markID") ;
ContextAwareObject cao = repository.GetCAOFromID (markID);
Context ¢ = cao.ContextAgent.GetContext();

242

The first two lines of this code extract the mark ID from the first mark-association
element. The code then uses the extracted mark ID to retrieve a mark object from a
descriptor repository SPARCE maintains. Finally, the code uses the context agent as-
sociated with the retrieved mark object to get context information. However, context
information thus retrieved cannot be manipulated using DOM because SPARCE re-

turns context information in its own model; not in the XML model. See Section 3.3.

In comparison, accessing context information is much easier with Sixml DOM. For
example, the expression comment .markAssociations.item[0].Context returns the
context information for the first mark associated with Comment. Also, this informa-

tion will be in the XML model, and it can be retrieved just in time from the base layer.

As with retrieving context information, it is tedious to use DOM to assign a value
from the context of a mark to some part of a document. For example, the value of the
attribute excerpt seen in Figure 7.1 should be, at run time, the text excerpt obtained
from a mark. Using DOM, the developer would need to explicitly retrieve the text ex-
cerpt and assign it to the attribute. Sixml DOM automates this task. With Sixml DOM,
the developer can declaratively specify (in the Sixml document) that the attribute’s

value should be a mark’s text excerpt. Section 7.4.3.4 provides the details.

Navigating bi-level information: With Sixml DOM, a Sixml document can be navi-
gated in the nested schema (described in Section 5.2.1), though the document is in the
normalized schema (described in Section 5.2.2). For example, the Sixml document of

Figure 7.1 does not include mark descriptors and context information, but those parts

243

can be accessed as if they were included (using the mark-association properties
Decriptor and Context, respectively). DOM cannot provide such access to mark de-
scriptors and context information because it treats mark associations as traditional

elements.

Enabling bi-level querying: Code expressed against Sixml DOM tends to be similar
to query expressions we wish to support over bi-level information. For example, the
mark associations for Comment can be accessed using the XPath [166] expression
/Comment/EMark. Likewise, the context information for the first associated mark is
accessed using the expression /Comment/EMark[position()=0]/Context. (Both
these expressions require knowledge of the mark-association schema. Chapter 9 dis-
cusses querying mark associations without this knowledge.) A query processor can
exploit this similarity to use Sixml DOM to help execute bi-level queries. Using Sixml
DOM can make the query processor much simpler because Sixml DOM hides the de-
tails of retrieving mark descriptors and context information (and it retrieves them just

in time), and exposes the retrieved information in the XML model.

In the rest of this chapter, we first provide an overview of DOM and then briefly revi-
sit the issue of diversity and multiplicity of mark associations. We then present a de-
tailed design of Sixml DOM. We also share the results of an experimental evaluation

of Sixml DOM, review related work, and present some concluding remarks.

In this chapter, we refer mainly to the class diagram for Sixml DOM shown in Figure

7.2. (This diagram is drawn using the syntax for static class diagrams as defined in

244

UML, the Unified Modeling Language [159].) The classes shaded gray are defined in
DOM. Only the DOM classes, methods, and relationships needed to describe Sixml

DOM are shown.

A note on terminology: DOM is specified in the Interface Definition Language (/DL)
[131], a language to describe an API independent of an implementation language. The
classes in Figure 7.2 are actually defined using the inferface construct of IDL, but, for
simplicity, we represent and refer to the interfaces as classes. In practice, an IDL inter-

face can be expressed using the constructs class and interface in languages such as

Java [71] and C# [148].

7.2. Overview of DOM
DOM is defined in three numbered parts called /evels. Level 1 [35] is the most basic

level. A DOM level consists of one or more modules. A module specifies a narrow set
of functionality. The module Level I Core [35] defines the core functionality needed
to create different parts of an XML document; Level 2 Core [36] adds support for
namespaces; and Level 3 Core [37] adds support for type information (that is, for
schema information). The module Level 3 Load and Save [38] defines the functionali-
ty to parse and serialize XML data, including the classes LSParser and LSSerializer in

Figure 7.2. Level 1 Core defines the other shaded classes in this figure.

245

[L11] aurfuo ajqefreAe os[e ST WeaSerp Y [, “JNO [WXIS 10) WEISEIp sSepd V :7°L 91nSi

_ uoonnsuiBuissasolgjuxIg

SHEJYWOIJIN|EAS]

apoN l_ _ Juaway _

{sweu usweNAgsuoneRosSYEIAD

JUAWILIODJWIXIS

PONON[EAIWXIS

U0HASY1YadIwuxig

v (uoneioosse ufjuoneicossyeppusdde f

3pONJXIS SUOHRID0SSYHRW

JA

anfea
UOISSOIdXTAN[EA
80In0gaNjEA
suweu

F *

oleI00SSYIE

(Jarenyoe]

(s01duosap Jnoul ‘Jojdiassgme uoiduosagyepjid

(so1duosap u ‘pt upiiesiea,

100109,
\ M Mew
adA)

10ydudsa@uen

adA Joyduosap

3
p

[popuoomen j&—

P sneuseu__o_

Jsojoepriey

ven |

M O]

)

(adA) uiojdussaUENeIEaI)

Y

sezjeiess

1TiRPISIWXIS

d ' i
\V4 (J01duDSSP U ‘PI3JEW Ul ‘SWEU UUONEINOSSYBSIEaI0) *) (ioidasep ul 'pruPERd
_ my Wwawalg {i0jdunsop uf ‘pl u)eeb Suwey
sainquye JWewnIoqUIXIS Kioysodayyiey
b
JUBWS|FHUSWNI0P p—
! Aiaysodagiuafsues
anjen A (oweNbey unewenbe Agsiuatua|3iah
sweu) (swep6e; ujuswe|zeeas|
apoN P——— juatundog F»h&_wonm%:&,m_tmm_
8doos]
SOPONPHYD E < JasIEgINIS *A|UC UOIBAISNII 10} PBPRIOUL 818 SBUIf PAYSEP LM Pajjy SSSSEID

"UMOYS 88 WO WXIS 8quosap 0} papaau sdiysuonela: pue sessep WOQ au Ao
‘WOQ Ut pauyap aue sessepd asoy; Buowe sdiysuonejal sy pue Aeib ui sasse|))

Table 7.1: Types of DOM nodes

246

Node type Has value? Has parent?

Element No Yes. The document is the parent of document element; otherwise
another element is the parent

Attribute Yes Yes, the parent is always an element, but an attribute is not a child of
its parent

Text Yes Yes

CDATA section Yes Yes

Comment Yes Yes

Processing instruction Yes Yes

Document type No Yes, the parent is always the document

Notation No No

Entity reference No Yes

Entity No No

Document No No

Document fragment No No

DOM represents an XML document as an ordered tree of nodes. (The order is called

document order, which is the order in which the nodes are serialized.) It defines 12

types of nodes (listed in Table 7.1). Features common to most types of nodes are in-

cluded in the class Node. This class is specialized for each type of node. Figure 7.2

shows the specialized classes for six node types: element, attribute, text, CData

section, comment, and processing instruction (PI).

Some DOM nodes (for example, an attribute) may have a value. The column

“Has Value?” in Table 7.1 indicates which node types may have a value. An attribute

uses an additional text node to represent its value, but the other node types maintain a

value without using additional nodes.

247

Some nodes (for example, an element) may own other nodes, but other nodes (for ex-
ample, text) may not. Also, some node types cannot be owned by other nodes. (See the

column “Has Parent?” in Table 7.1.)

An element may have attributes, but it does not own its attribute nodes. An attribute
has a “parent” element, but it is not a child of any element. That is, the collection in-
duced by the relationship childNodes (in Figure 7.2) does not include attributes. (This
relationship between an element and its attributes is contrary to the common expecta-

tion that the parent and child relationships are inverses.)

An XML document is represented by a node called the document node. A document
node is an instance of the class Document. A DOM node is created in the context of a
document using special methods called factory methods (one method per node type)

defined in Document. For example, the method createElement creates an element node.

Figure 7.3: A simplified DOM tree for a Sixml document. The tree corresponds to the document
in Figure 7.1. The symbol @ denotes an attribute, quotes denote a text node, and the unlabeled
node is the document node. Namespace information is omitted for simplicity. A solid line denotes
a parent-child relationship. A dotted line connects an attribute to its element.

The classes LSParser and LSSerializer are used to read and write, respectively, a node
from or to an external source such as a disk file. These classes can also read and write

a document because DOM represents a document as a node. Reading a document

248

builds a tree. Figure 7.3 shows a simplified DOM tree built from document in Figure
7.1. The unlabeled root node is the document node. The node labeled Comment is the
document element (that is, the top-level element). TMark, AMark, and EMark represent
mark-association elements. The value of the attribute excerpt should be the text ex-
cerpt from the associated mark, but it is not, because DOM is unaware of the seman-

tics of mark associations.

7.3. Diversity and Multiplicity of Mark Associations

Section 4.5.2 illustrated how marks may be associated with XML content that can be
represented in the ER model. However, an SA developer might wish to associate
marks with content that cannot be represented in that model, or he might model SI di-

rectly as XML (without first using a conceptual methodology).

In this section, we discuss associating marks with different DOM node types, inde-
pendent of the ER model. We highlight two key considerations in associating marks,
and introduce new element types (in addition to the types discussed in Section 4.5.2)
to represent mark associations. Section 7.4 discusses how a document containing in-

stances of these element types is manipulated at run time using Sixml DOM.

The developments in this section help meet our goal of diversity and multiplicity of
mark associations (Goal G2 in Section 5.3.1), with respect to the XML model.

7.3.1. DOM Node Types and Mark Associations

DOM can be extended such that marks can be associated, at run time, with any of the

12 DOM node types, but serialization and validation considerations limit the node

249

types with which marks may be associated. We now examine these considerations and
determine the DOM node types with which marks may be associated.

7.3.1.1. Serialization and Validation Considerations

DOM is designed to interoperate with the syntax [43] W3C recommends for XML se-
rialization. That is, a DOM implementation can read and write a document serialized
according to this syntax. With Sixml DOM, we wish to maintain this interoperability
with the W3C serialization syntax. Also, we would like a serialized Sixml document to
contain markup that is uniform and comprehensible, and be amenable to validation
using standard schema constructs. The serialized Sixml document shown in Figure 7.1

satisfies these criteria.

Encoding a mark association is the main problem in serializing a Sixml document.
One solution is to develop conventions (for example, use comments with specific
structure and contents) to encode mark associations, but conventions cannot be vali-

dated using standard schema constructs.
We choose to serialize a mark association as an element for the following reasons:

o The element construct is defined in both DOM and the serialization syntax.

e In both DOM and serialized forms, an element can contain most kinds of XML

content, including another element.

e When serialized, an element allows the markup for mark associations to be placed
in close proximity to the data that is associated with marks, thus improving com-

prehension.

250

e An element may be associated with a type via an XML Schema [170] instance
document or a document type definition (DTD) [43] and hence validated. For ex-
ample, in Figure 7.1, the attribute xsi:noNamespaceSchemalocation [171] asso-
ciates a schema with the element Comment. (In XML Schema and in DTD, ele-

ments and attributes are the only kind of XML content that may be typed.)

Serializing a mark association as an element requires that a mark be associated with a
DOM node only if the node can contain an element, or if an element can contain the
node. (In this limited context, we treat an attribute node as being contained by an ele-

ment node.) We call this requirement the element-containment requirement.

A serialized mark association must also meet the requirement that a serialized XML
document be well-formed. A well-formed document [43] begins with the XML decla-
ration, followed by (but not necessarily immediately) exactly one document element
(which is the element that contains all other elements in the document). For example,
the first line in Figure 7.1 is the XML declaration. Comment is the document element.

A document that is not well-formed is an ill-formed document.

7.3.1.2. DOM Node Types Permitted for Mark Association

We allow marks to be associated with the following six fypes of DOM nodes: element,
attribute, text, CData section, comment, and PI. However, we disallow mark associa-
tions for a comment, or a PI, if it is not contained by an element, because serializing

such nodes results in an ill-formed document.

251

A note about comment nodes: An XML comment is quite different from its program-
ming-language counterpart. A comment in a program typically has no run-time repre-
sentation, but an XML comment does. Also, XML comments may be selected and
constructed using queries. We see several situations where an XML comment can
benefit from mark associations. For example, a comment in the XML version of an
API’s documentation might reference .the API’s source, and possibly even obtain
comment text from the source. (Both C# [23] and Java [72] promote API documenta-

tion in XML format.)

We allow any number of marks with nodes of the aforementioned six types. A devel-
oper may use a schema to constrain the number of mark associations for a particular

node.

We disallow marks to be added to entities, documents, and document fragments, be-
cause nodes of these types are just containers for other nodes. (That is, serializing a

node of any of these types simply serializes its contents.)

We disallow mark associations for an entity reference because it cannot satisfy the
element-containment requirement. We also disallow marks with document type and
notation nodes because their serialization would cause the document to be ill-formed.
7.3.2. Mark-Association Element Types

We now provide an overview of the element types to associate marks with the six

DOM node types with which marks may be associated. Appendix A shows the

252

XML-Schema instance document containing the complete definition of the element

types. That instance document is also available online [119].

Section 4.5 introduced the element types EMark, AMark, and TMark to associate marks
with elements, attributes, and text content, respectively. To recap, an EMark element is
added as a sub-element of the target element (that is, the element with which the mark
is associated). An AMark element is included as a sub-element of the element that
owns the target attribute. A TMark is made a sub-element of the element that owns the
target text content, and the target text content is wrapped inside the TMark. Figure 7.1

illustrates the use of these three element types.

We refer to the element types EMark, AMark, and TMark as uni-mark types because an
instance of any of these types associates only one mark with its target. In contrast, a
multi-mark type associates multiple marks with a node. We now introduce some new

uni-mark and multi-mark types.

The uni-mark types CDataMark, CMark and PIMark respectively help associate a mark
with CData section, comment, and PI. As with TMark, an instance of any of these

types wraps its target.

The multi-mark element types TMarks, CDataMarks, CMarks, and PIMarks respective-
ly associate multiple marks with text, CData section, comment, and PI. An instance of
any of these types also wraps its target, and it contains one uni-mark instance for each
mark associated with the target. In this case, a contained uni-mark element does not

wrap its target because the outer multi-mark element would have already done so. The

253

following XML segment shows two marks associated with the text content shown in

Figure 7.1.

<sixml:TMarks sixml:type="sixml:TMarks" >
Contradicts prior work
<sixml:TMark sixmi:type="sixml:TMark" sixmi:markID="45"/>
<sixml:TMark sixmi:type="sixmi:TMark" sixml:markID="78"/>
</sixml:TMarks>

No multi-mark element types are needed to associate multiple marks with elements
and attributes. Instead, multiple marks are associated with an element (attribute) simp-
ly by using one EMark (AMark) element for each mark to be associated. (A multi-mark
type is needed for content other than elements and attributes, so that content is not re-
peated. For example, using TMarks to associate many marks with the same text con-

tent avoids repeating the text for each associated mark.)

7.4. Design of Sixml DOM

In this section, we describe the design of Sixml DOM. We discuss how mark associa-
tions are associated with DOM nodes at run time, how a serialized Sixml document is
read for manipulation, and how a Sixml document is serialized when writing. Figure
7.2 shows a UML class diagram for Sixml DOM. Appendix B shows the complete

Sixml DOM interface definition.

7.4.1. Overview
We first introduce the classes, methods, and properties Sixml DOM defines to support

mark associations.

254
7.4.1.1. Sixml Nodes
In Sixml DOM, a node with which marks may be associated is called a Sixm! node,
and is represented by the class SixmINode. A Sixml node that can contain a value is a
Sixml value node, and is represented by SixmlValueNode, an extension of SixmiNode.
See the column “Has Value?” in Table 7.1 for a list of node types that may contain a

value.

Although we allow marks to be associated with six types of DOM nodes, for simplici-
ty, we limit this discussion to elements, attributes, and text nodes. The classes
SixmiElement, SixmlAttribute, and SixmiText represent these types of nodes, respectively.
These classes respectively extend the DOM classes Element, Attr, and Text. In addition,
the class SixmlElement extends the class SixmiNode (because an element cannot have a
value). The classes SixmlAttribute and SixmiText extend the class SixmlValueNode because

nodes of these types may have a value.

The class SixmIDocument extends the DOM class Document. It overrides the DOM fac-
tory methods in order to create Sixml nodes instead of creating DOM nodes. For ex-
ample, it overrides the method createElement to create an instance of the class
SixmlElement instead of an instance of the DOM class Element. SixmiDocument does not
override the factory methods for the types of nodes with which marks cannot be asso-
ciated. Consequently, a Sixml document can contain a mixture of regular DOM nodes

and Sixml nodes.

255
7.4.1.2. Mark-Association Nodes
A mark-association node pairs a Sixml node, called the farget node, with a mark and
assigns a name to the pairing. A Sixml node may be associated with different marks
using the same name, but a name may be used only once for a node-and-mark pairing.
A node may be associated with any number of marks, unless the node’s schema (if

any) limits the maximum number of marks that may be associated with the node.

A mark-association node has no children. It is attached to a target node, but it is not a
child of its target. (This relationship between a mark association and its target is simi-
lar to the relationship between an attribute and its owner element.) Marks may not be

associated with a mark-association node.

The class MarkAssociation together with its relationships with SixmlNode and Mark
represents a mark association. MarkAssociation extends the DOM class Element because

we represent a mark association as an element.

A mark-association node is created using the factory method createMarkAssociation in
the class SixmliDocument. The mark-association node thus created is added to a target
node using the method appendMarkAssociation defined in SixmINode. Methods to add a
mark association at a particular location in the list of mark associations, to replace a

mark association, and to delete a mark association are also defined.

The mark-association nodes added to a Sixml node may be accessed via the collection
induced by the relationship markAssociations. Mark associations with a specific name

may be retrieved using the method getMarkAssociationsByName.

256
7.4.2. Reading a Sixml document
We now describe how a Sixml DOM tree is created at run time from a serialized
Sixml document. In this description, we use the term mark-association element to de-
note an element that represents a mark association in the serialized form. We use the
term mark-association node to denote a Sixml DOM node that is created from a mark-

association element.

7.4.2.1. Creating a Sixml DOM Tree
Conceptually, a Sixml DOM tree for a Sixml document is created in three steps. First,

the document is represented as a tree in DOM. This step represents mark associations
as DOM elements. Second, a mark-association node is created from each mark-
association element and is attached to the appropriate target node. Finally, the nodes

for the source mark-association elements are deleted from the tree.

The flow chart in Figure 7.4 outlines the procedure to create a mark-association node
from a mark-association element of uni-mark type. Figure 7.5 shows the Sixm! DOM
tree generated from the DOM tree in Figure 7.3. A dashed edge connects a mark-
association node with its target node (to clarify that a mark-association node is not a
child of its target node). Following, the procedure in Figure 7.4, the element EMark is
replaced by a mark-association node attached to the element Comment. The mark-
association node generated from AMark is attached to the attribute excerpt. The text
node that was wrapped inside TMark is now a child of Comment and the mark-

association node generated from TMark is attached to the text node.

257

The partial value shown in Figure 7.5 for the attribute excerpt is the text excerpt ob-
tained from the associated mark. Section 7.4.3.4 describes how the mark’s excerpt is
assigned to the attribute. (Figure 1.4 shows the base region corresponding to the mark
associated with the attribute. Figure 5.2 shows the descriptor and context information

for the mark.)

Dissociate the first child and make it a
child of the parent element in self's place

Type =
EMark?

Type =
AMark?

A

Target node «— parent Target node «— attribute of parent whose name Target node «— new
is the value of the attribute “target” child of parent
{ 1 J
v

Extract attributes of the mark-association element

v

Create mark-association node, initialize, and
append to list of target node’s mark associations

v

Delete mark-association element

Figure 7.4: Procedure to create a mark-association node from a uni-mark type of mark-
association element

We now briefly discuss transforming a mark-association element of multi-mark type.
Such a mark-association element (for example, TMarks) contains the target node (for
example, text content) and a sequence of uni-mark elements (for example, TMark).
This case is handled in the same mannner a uni-mark type that wraps its target node is

handled: The target node is first made a child of the parent element, a mark-

258

association node is created from each contained uni-mark element, and the generated
mark-association nodes are attached to the target node. Finally, the multi-mark ele-

ment is deleted from the tree.

CME

Figure 7.5: A simplified Sixml DOM tree for a Sixml document. The tree corresponds to the
Sixml decument in Figure 7.1. A dashed line connects a mark-association node with its target
node. Other conventions used and the simplifications made are the same as in Figure 7.3

7.4.2.2. Detecting Mark-Association Elements
As seen in Section 7.4.2.1, determining which elements represent mark associations

and determining the type of mark association an element represents are key parts of

the procedure to transform mark-association elements to mark-association nodes.

If a schema is associated with the input XML document, the type of an element can be
examined to determine if the element is a mark-association element and to determine
the type of node with which it associates marks. For example, an element associated
with the type AMark from the namespace whose URI is http://schema.sixml.org is an

element that associates a mark with an attribute.

There are two impediments to relying on type information to detect mark-association

elements and determine their types. First, many XML documents (especially those

http://schema.sixml.org

259

produced by ad-hoc queries) are not associated with a schema. Second, type informa-
tion is supported only in DOM Level 3, but the DOM implementation an SA develop-

er (or a user) chooses might not conform to DOM Level 3.

We propose the following rules to determine if an element represents a mark associa-

tion. The prefix sixml is associated with the URI http://schema.sixml.org:

1. If the DOM implementation conforms to Level 3 and the element has type infor-
mation, the element’s type determines whether the element represents a mark as-

sociation.

2. If no schema is associated with the element, or if the DOM implementation con-
forms only to Level 2, the element represents a mark association if its qualified
name is the same as the qualified name of a mark-association type. For example,

an element with the name "sixml:AMark" associates a mark with an attribute.

3. If neither Rule 1 nor 2 holds, and the DOM implementation conforms only to
Level 2, the element represents a mark association if the value of its attribute

sixml:type is the same as the qualified name of a mark-association type.

4. If Rules 1-3 do not hold, or if the DOM implementation conforms only to Level 1,
the element’s name (that is, the unqualified name) indicates the type of mark asso-
ciation. For example, an element with the name "AMark" associates a mark with an

attribute.

http://schema.sixml.org

260

5. If Rules 1-4 do not hold, or if the element does not conform to the mark-
association type inferred according to Rules 2—4, the element does not represent a

mark association.

We recommend associating a schema with each mark-association element. We also
recommend the use of the attribute sixml:type for mark associations with custom
names (even if the serialization is produced by a DOM Level 3 implementation and a
schema is associated with the mark association) so that mark associations can be inter-
preted correctly by an implementation that conforms only to DOM Level 2. Following
either of these recommendations allows the use of mark-association elements with

custom names.

The Sixml document in Figure 7.1 complies with our recommendations: It references a
schema, and it includes the attribute sixml:type with each mark-association element.
Strictly speaking, even without the schema, the attribute sixml:type is not needed in
this document, because the mark-association elements do not use custom names. (The

mark associations would be interpreted correctly according to Rule 2.)

The Sixml document in Figure 4.26 does not fully comply with our recommendations
though it references a schema, because it does not use the attribute sixml:type. A
DOM implementation conforming to Level 3 would correctly interpret the mark asso-
ciations in this document (according to Rule 1). However, the custom names would

prevent an implementation conforming only to Level 2 from correctly interpreting the

261

mark associations. (A Level 2 implementation would incorrectly recognize the mark-
association elements as regular XML elements.)

7.4.3. Managing and Using Marks

We now provide an overview of managing marks, and accessing mark descriptors and
context information.

7.4.3.1. Mark Repositories

In Section 7.4.1.2, we mentioned the use of the factory method createMarkAssociation in
the class SixmiDocument to create a mark association. This method consults a mark
repository, which is a collection of marks, to create marks. A mark repository corres-

ponds to the notion of a descriptors repository introduced in Section 3.2.2.

The class MarkRepository represents a mark repository. The method getMark of this
class accepts a mark ID and a descriptor, and returns a matching mark from the reposi-

tory, creating a new mark if necessary. At least one of the two inputs must be pro-

vided.

The class MarkRepository is abstract. That is, this class is not directly instantiated. Im-
plementations of this class may differ in their strategies to store, look up, and create
marks, but the method getMark in any implementation should exhibit the following be-

havior:

e If a descriptor, but no ID is provided, the method should return a mark with a
matching descriptor, creating a new mark if no existing mark matches the descrip-

tor.

262

e Ifonly an ID is provided, the method should return the mark with the specified ID.

The method should cause an error if no matching mark is found.

e Whenever a descriptor is provided, the descriptor of the mark returned must match
the input descriptor. If an ID is also provided, an implementation may choose to
return a mark with a different ID. (Multiple marks in a repository might have the

same descriptor.)

Figure 7.2 includes two example implementations of the class MarkRepository. The
class TransientRepository implements a main-memory-based collection of marks. The
marks in this repository last only as long as the instance of the repository does. Also,

the descriptor for each mark must be present in the input document.

The class PersistentRepository models a repository that stores IDs and descriptors of
marks in a persistent storage such as a disk file or a database. A persistent repository
backed by an efficient look up facility for marks (for example, with the help of a data-

base management system) can be useful when working with a large number of marks.

An instance of the class SixmlDocument is generally associated with one mark reposito-
ry, but the instance might perform the repository tasks on its own, instead of employ-
ing a concrete implementation of MarkRepository.

7.4.3.2. Marks

The abstract class Mark models a reference to base information. A concrete implemen-
tation of this class must exist for each kind of mark descriptor. (Section 4.6.3 discusses

descriptor kinds.) Because the exact instantiation requirements of a mark implementa-

263

tion cannot be known at design time, marks are created using a mark factory class spe-

cific to a descriptor kind.

The abstract class MarkFactory models a mark factory. A concrete implementation of
this class must exist for each descriptor kind. The property descriptorType returns the

kind of descriptor from which a factory can create a mark.

The mark repository in use by a Sixml document may be associated with one or more
mark factories. The repository uses a mark factory to create a mark from a mark de-
scriptor. It chooses a mark factory by matching the attribute xsi:type (described in
Section 4.6.3) of the mark descriptor with the property descriptorType of each mark fac-

tory.

In Figure 7.2, the class SPARCEMark denotes a mark created from a SPARCE descrip-
tor. SPARCEMarkFactory is the corresponding mark factory. Similarly, XPointerMark and
XPointerMarkFactory support XPointer pointers [168]. These four classes are not part of
Sixml DOM, but they are shown for illustration.

7.4.3.3. Mark Descriptors and Context

The class MarkDescriptor represents a mark descriptor. A mark descriptor is either in-
cluded in the input document (as the element Descriptor), or it is obtained from a re-
pository. In either case, navigating the relationship descriptor provides access to a

mark’s descriptor.

264

A mark descriptor does not have a parent even though the descriptor might have been
included in the input document. This constraint allows the same descriptor element to

be reused when the same mark is used more than once in a document.

MarkContext represents the top-level element (that is, the element sixml:Context in
Figure 5.2) in the context information retrieved from a mark’s context. This top-level
element also does not have a parent, so that it can be reused with different mark asso-

ciations that use the same mark.

The context information corresponding to a mark is retrieved using the context-agent
implementation that the mark’s descriptor indicates. As described in Section 3.3, a
context agent represents context information as a hierarchical property set. MarkContext
transforms the hierarchical property set a context agent returns to the XML model so

that context information can be navigated using the DOM API.

The property text in the class Mark provides access to the text excerpt retrieved from
the context of a mark. The method activate displays the referenced base region in its

original context, as described in Section 3.3.3.

Our design allows an implementation to retrieve a mark’s descriptor (from a mark re-
pository) and context information (from the base layer) on demand (that is, only if the
user navigates to these parts of a mark). The design also allows the implementation to
cache context information so that the context information for the same mark is not re-
peatedly retrieved from the base layer. Our Sixml DOM implementations described in

Section 7.6.1 implement both these features.

265

A bi-level query processor that uses Sixml DOM to (internally) represent a Sixml doc-
ument can benefit from on-demand information retrieval and context caching. Chapter
9 illustrates such a query processor.

7.4.3.4. Deriving a Node’s Value from Mark Context

A Sixml node may return a value derived from its associated marks, instead of return-
ing an explicitly-stored value, as in DOM. The derived value of a node is the concate-
nation of the string values obtained from each of its contributing marks. Not every

mark associated with the node is required to contribute to the node’s value.

The class MarkAssociation defines the properties valueSource, value, and valueExpression
to determine the value that a mark contributes to the target node’s value (that is, sup-
plies a part of the node’s value): The property valueSource determines whether the
mark contributes a value. The property value returns the contributed value if the prop-

erty valueSource is true; otherwise value returns an empty string.

The property valueExpression determines the value a mark contributes. If this property
is empty, the text excerpt retrieved from the mark (using the property text) is contri-
buted. .If this property is not empty, it should be an XPath expression that selects the
context elements that contribute the value. The expression is executed with the top-
level element (that is, the element sixml:Context) as the current node. For example,
the expression Container/Section/Heading over the context information included
in Figure 5.2 contributes the heading of the section that contains the marked region.

(Section 4.8 also illustrates retrieving context information using path expressions.)

266

The properties valueSource and valueExpression of a mark-association node correspond
to attributes of the same name in a mark-association element. Section 4.5.2 describes

these attributes.

The class SixmlValueNode defines the property isValueFromMarks to denote whether a
node’s value is derived from its associated marks. This property is true only if the
property valueSource is true for any of the mark associations added to the node. Set-
ting the property isValueFromMarks of a value node to false (true) automatically sets

the property valueSource of each of the node’s mark associations to false (true).

The class SixmiValueNode overrides the property value defined in the base DOM class
Node to account for the property isValueFromMarks. If isValueFromMarks is false, the
data explicitly stored in the node is returned. Otherwise, a concatenation of the string
values obtained from each contributing mark is returned.

7.4.4. Serializing a Sixml Document

We now discuss how mark associations in a Sixml document are serialized. (Mark de-
scriptors and context information can also be serialized, but we omit those aspects.
Section 7.3.1.1 discussed the need for serialization and the serialization considera-

tions.)

A Sixml document is serialized using the class SixmiSerializer, because the DOM seria-
lizer (LSSerializer) would serialize only the SI portion of the document. (In Sixml

DOM, a mark-association node is not a child of its target node.)

267

Figure 7.6 shows a pseudo-code procedure to serialize a Sixml element and its child
nodes and mark associations. Comments placed at the end of selected lines in the pro-
cedure show how the different parts of the document element Comment in the tree of

Figure 7.5 are serialized.

procedure WriteElement (SixmlElement e)
write start of element; //<Comment
write attributes and namespaces; //excerpt=""...>

fwrita 2wt ohild nedes and thelr rark aszoc auionz
for each child node
if (child node is a SixmlElement)
WriteElement (child node); //None in the example
else if (child node does not have mark associations)
write child node as in DOM;
else if {(child node has more than one mark association)
SN Il v omare Lerosianiare T s b surr mnosaenn
write start of multi-mark-associlation element (for example TMarks) ;
write child node as in DOM;
for each mark associated with child node
write mark-association element (for example TMark) ;
write end of multi-mark-association element;
else
write start of mark-association element; //<sixml:TMark
write attributes and namespaces; //sixml:itype="sixml:TMark” sixml:markID="45">
write the child node as in DOM; //Contradicts...
write end of mark-association element; //</sixml:TMark>

WX T TRYXK ZESLI.zl.lnd TSX slTrorules

for each mark associated with each attribute
write mark-association element; //<sixml:AMark sixml:type="sixml:AMark"” .../>

for each mark associated with self
write mark-association element; //<sixml:EMark sixml:type="sixml:EMark" ... />

write end of element; //</Comment>

Figure 7.6: Pseudo code to serialize a Sixml element, its contents, and mark associations. End-of-
line comments show how the document element Comment in Figure 7.5 is serialized

The serialization procedure writes the mark associations for a node in tree order. This
order 1s important for a node that derives its value from marks because the value of
that node is a concatenation of the string values obtained from each contributing mark
(and string concatenation is not commutative). Also, the procedure first serializes child
nodes (including their mark associations) of the input element, followed by the mark

associations of the attributes of the element. Finally, it serializes the mark associations

268

for the input element. The ordering of the mark associations for attributes and the con-

taining element is not necessary, but it provides determinism.

7.5. Integration with DOM
We now briefly discuss the integration of Sixml DOM interfaces with DOM interfac-

€s.

Sixml DOM can be integrated with DOM by extending the DOM interfaces through
inheritance, or by revising the DOM interfaces to include Sixml functionality from the
ground up. In this section, we present four alternative means of integration: three using

the extension strategy, one using the revision strategy.

Alternative 1 is to introduce a new level, Level 4, to DOM. The new level would con-
tain two modules. The module Level 4 Core would extend Level 3 Core, and the mod-
ule Level 4 Load and Save would extend the module of the same name in Level 3.
This approach provides a clean separation between DOM and Sixml DOM, but it re-
quires an implementation to comply with Level 3 functionality, even though its devel-
oper might wish to support only un-typed mark associations. (In general, conformance

to a DOM Level n requires conformance to Level #n—1.)

Alternative 2 is to add new “Sixml” modules to existing DOM levels. That 1s, add the
module Level I Sixml to support mark associations with default unqualified names,
Level 2 Sixml to support mark associations with custom and default qualified names,
and Level 3 Sixml Load and Save to support reading and writing of Sixml documents.

(A Level 3 Sixml module would not be needed because typed mark associations are

269

handled using existing interfaces defined in Level 3 Core.) This approach does not af-
fect existing DOM applications, but it contradicts the apparent DOM convention that

no module extends an interface defined by another module at the same level.

Alternative 3 is to add the Sixml interfaces to existing DOM modules. This approach
allows creation of both DOM nodes and Sixml DOM nodes using the same DOM im-
plementation because both DOM and Sixml DOM interfaces would be available si-
multaneously. An application navigating a Sixml DOM tree using the DOM interfaces
would be able to access only SI, but it would be able to access mark associations in the

same tree using the Sixml interfaces.

This approach, too, does not affect existing DOM applications, but the simultaneous
availability of the two sets of interfaces can be occasionally confusing (to developers).
However, the simultaneous availability of DOM and Sixml DOM interfaces can be

handy at times, as Section 7.6.3.2 illustrates.

Alternative 4 is to revise DOM interfaces such that the Sixml functionality is added to
DOM from the ground up. This approach has the same effect as Alternative 2, but
without using extensions and without adding new modules. This approach alters some
of the interfaces in existing DOM modules, and it requires changes to existing DOM
implementations. Existing applications need not be changed, but they might need to be

recompiled.

In Alternatives 1, 2, and 4, Sixml DOM functionality would be available through

DOM interfaces. For example, the method appendMarkAssociation to add a mark asso-

270

ciation to a target node would be available in the class Node, and the class SixmINode

would cease to exist.

Our description of Sixml DOM in Section 7.4 corresponds to Alternative 3. Appendix
B lists the complete IDL definition for this alternative. The IDL definitions for all four
integration alternatives are available online [117]. We chose Alternative 3 because of
the ability to use both DOM and Sixml DOM interfaces. We have also implemented

Alternative 4 to see if it performs better than Alternative 3.

7.6. Evaluation

We have evaluated Sixml DOM by implementing the design presented in Section 7.4
and by running experiments. We have evaluated the Sixml mark-association types and
Sixml DOM by employing them in different applications. We first describe the Sixml
DOM implementation and some applications, followed by experimental results.

7.6.1. Implementation

We have three implementations of Sixml DOM in C#: two implementations in the ex-
tension strategy (Alternative 3 outlined in Section 7.5) and one in the revision strategy
(Alternative 4 in Section 7.5). The first implementation in the extension strategy is
based on the DOM implementation in Microsoft’s distribution of the .NET Framework
(.NET) [129]. The other two implementations are based on Mono’s distribution (Ver-

sion 1.2.5.1) [106] of .NET.

We refer to our three implementations as Microsoft Extension (MSX), Mono

Extension (MNX), and Mono Revision (MNR), respectively. We refer to the base

271

DOM implementation for MSX as Microsoft Base (MS), and refer to the base of MNX
and MNR as Mono Base (MN). We have the source code for MN, but not for MS. We
used the same source code to build MSX and MNX, and adapted much of that source

code in MNR.

We had initially implemented only MSX. Its performance overhead (compared to its
base, MS) was more than what we anticipated. We then implemented MNX and MNR
to test if the overhead in providing Sixml DOM functionality can be reduced. Section

7.6.3 compares the performance of the three implementations.

All three Sixml DOM implementations conform only to DOM Level 2 Core, because
the base DOM implementations in .NET conform only to Level 2 Core [172]. That is,
.NET does not implement the classes LSParser and LSSerializer in Figure 7.2, but im-
plements all the other shaded classes. We have implemented all the Sixml-specific
classes (that is, the classes not shaded), except SixmiParser and SixmiSerializer (because

their respective base classes do not exist).

Although NET does not implement the classes LSParser and LSSerializer, it does pro-
vide routines to parse and serialize XML data. We have implemented the parsing and
serialization routines for Sixml data on top of these .NET routines.

7.6.1.1. Overview
Each of the three Sixml DOM implementations has the following capabilities:

272

Associate any number of marks with any of the six types of nodes (element,
attribute, text, CData section, comment, and PI) identified in Section 7.3.1.2, using

the mark-association element types introduced in Section 7.3.2.

Detect mark associations according to Rules 2 through 5 listed in Section 7.4.2.2.
Rule 1 is not implemented because the base DOM implementation does not sup-

port typing. (The base .NET implementation conforms only to Level 2 Core.)
Derive a node’s value from context information as described in Section 7.4.3.4.

Serialize a Sixml document using the deterministic procedure outlined in Section
7.4.4. Also, a developer may choose the scope of serialization: only SI; SI and

mark associations; or SI, mark associations, and mark descriptors.

Use any mark repository implementation that conforms to the specification in Sec-
tion 7.4.3.1. Implementations of a transient and a persistent repository are included
(in the form of the classes TransientRepository and PersistentRepository shown in
Figure 7.2). The persistent repository implementation manages marks stored in any
data source (such as a database created using MS SQL Server 2005 [99]) that
complies with the OLE DB specification [98]. OLE DB i1s an object-oriented API
that presents a row-set interface to data that may or may not be stored in a rela-

tional database.

Manipulate marks using any concrete implementation of the classes Mark and
MarkFactory described in Section 7.4.3.2. Implementations for SPARCE descriptors

and XPointer descriptors are included. (See SPARCEMark, SPARCEMarkFactory,

273

XPointerMark, XPointerMarkFactory in Figure 7.2.) Multiple mark implementations
may be used with the same Sixml document. For example, in Sixml document in
Figure 7.1, the element TMark might use an XPointer mark descriptor, but AMark
might use a SPARCE descriptor. (Figure 4.20 shows such descriptors.) Manipulat-
ing this document using Sixml DOM would then reéult in the simultaneous use of

both the SPARCE and XPointer mark implementations at run time.

Retrieve both mark descriptors (from a mark repository) and mark context (from
the base layer) on demand, without special effort on the part of implementers of
mark repositories and context agents. Also, mark context is retrieved using the
bulk accessor component described in Chapter 6. The bulk accessor may be confi-
gured (for example, the pooling policy may be altered) independently of any con-

crete mark implementation.

Share mark descriptors and context information when a mark is used more than
once in the same document. For example, the elements AMark and EMark in Figure
7.1 would share both the mark descriptor and context information because the two

mark associations involve the same mark.

The following list presents some high-level implementation statistics (as of this writ-

ing) to create the MSX and MNX implementations:

Number of interfaces: 7

Number of classes: 23

274

e Number of source files: 17
e Number of lines of code: 5,771
e Estimated time spent on implementation: 145 hours

The following list presents some high-level implementation statistics for the MSR im-

plementation:

e Number of new interfaces: 7

e Number of new classes: 14 (Sixml code is added to existing DOM classes)

e Number of new source files: 2

e Number of source files shared with MSX and MNX: 10

¢ Number of lines of code shared with MSX and MNX: 3,838

e Number of new lines of code: 469

e Number of changes to base DOM implementation to add Sixml capability: 57

e Estimated time spent on implementation: 75 hours

7.6.1.2. Experience

We now share our experience dealing with some design and implementation issues
related to creating mark associations. These issues are due to constraints on creation of

nodes in DOM.,

A DOM implementation may include several classes that implement a node type (such

as element), but a factory method (for example, createElement) to create a node can use

275

only the node’s name (that is, the local name in DOM Level 1; the combination of the
local name and the namespace URI in other levels) to choose the instantiated class.
For example, the factory method createElement in Sixml DOM instantiates the class
MarkDescriptor when an element’s local name is "Descriptor" and the namespace URI
denotes Sixml, but instantiates the class SixmiElement in other cases. This choice al-

lows strong typing of mark descriptors.

The constraint that only a node’s name be used to determine the node’s class prevents
us from making a mark association an instance of the class MarkAssociation, because
we allow custom names for mark associations, as reflected in the rules listed in Sec-
tion 7.4.2.2. For example, Rule 3 permits a mark-association element of any name, and
allows the element’s attribute sixml:type to convey the type of the association. How-
ever, an element’s attribute is created after the element is created. Thus, the method
createElement is forced to make a mark association an instance of the SixmlElement,

causing loss of type-checking benefits for mark associations.

We remedy this situation with a combination of type casts and run-time checks. We
define an interface IMarkAssociation that defines the functionality specific to mark asso-
ciations, and implement this interface explicitly in the class SixmlElement. In C#, an
explicitly implemented interface allows a class to implement many methods with the
same signature, but identify each implementation with a different interface [23]. The
actual method invoked depends on the compile-time type of the calling instance

(which is different from polymorphism, where the method invoked depends on the

276

run-time type of the calling instance; with polymorphism, a class cannot define two
methods with the same signature). For example, SixmiElement has two implementations
of the property childNodes. One implementation is identified with Sixml|Element and re-
turns a (possibly empty) list of child nodes. The other implementation is identified
with IMarkAssociation and always returns an empty list, because a mark association has

no child nodes.

A disadvantage of using explicit interface implementation to work around the afore-
mentioned problem is that any instance of SixmlElement can be cast as IMarkAssociation.
So, to prevent misuse of IMarkAssociation, we check at run time if a method invoked is
appropriate for the instance’s role. For example, we disallow appending a child node
to an element that represents a mark association, and bar retrieval of context informa-

tion from an element that is not a mark association.

The explicit use of the interface IMarkAssociation provides strong type checking for
mark associations, and the run-time checks provide operational consistency. However,
depending on the access pattern, the run-time checks can introduce non-trivial run-

time overhead.

The node-creation constraint also affects the attributes and child nodes of mark associ-
ations and mark descriptors because a DOM node is created independently of its use
context (and then added to another node). For example, it should not be possible to
associate marks with an attribute of a mark association, but the method createAttribute

is forced to always instantiate the class SixmlAttribute, allowing mark associations to be

277

added to an attribute of a mark association or a descriptor. We work around this prob-
lem using run-time checks, and by /azily building the data structures that hold mark
associations, but certain memory and processing-time overheads are unavoidable.
7.6.2. Applications

We have created a general-purpose tool that can use any of our three Sixml DOM im-
plementations to browse and edit arbitrary Sixml documents. Figure 7.7 shows the
Sixml document of Figure 7.1 being viewed using the tool. The tree on the left shows
the name of the document element Comment and its text child. (DOM [35] fixes the
string #text as the name of any text node.) The top pane on the right lists the attributes
and the namespaces of Comment. The attribute excerpt is selected and its lone mark
association is listed in the bottom pane. The partial data shown for the value of the
attribute and the excerpt retrieved from the associated mark are the same because the

attribute’s value is set to be the mark’s text excerpt.

8 Stumd Browser and Editor - Figure7.1.xml

Foe 280 Wew Tarefer Txen rep

- Comment Name Value Namespace URI

SroLt BX! provide applcations and users with the b...
i paceSchemalocation http://schema.sixml.org/examples/sisrs.xsd hitp://www.w3.0rg/2001/XME Schema-instance
xmins : xsi hitp://www.w3.0rg/2001/XMLSchema-instance http://www.w3.0rg/2000/xmins/
xmins : sixmt http://schema.sixml.org htip://www.w3.0rg/2000/xmins/

Name Descripton Excempt
sixml:AMark Page 3 in ride-dom- final.pdf (Acrobat PDF) provide applications and users with the benefits of a database

Comment.

i |

Figure 7.7: The Sixml Browser and Editor. The Sixm! document of Figure 7.1 is shown

We have used Sixml in four SAs: Sidepad (introduced in Section 1.2.1), SuperMix

(Section 1.2.2), the Superimposed Scholarly Review System (SISRS, Section 4.9.3),

http://schema.stxmt.org/exaniptes/sjsrs.xsd
http://www.w3.org/2rai/XMLSchema-ircstance
http://www.w3.org/2Gai/XMtSchenia-instance
http://www.w3.Org/2000/xn%23is/
http://schema.sixml.org
http://www.w3.org/2000/xuins/

278

and the Superimposed System Information Browser (SSIB, Section 4.2). Sidepad
represents its data in a proprietary format, but also exposes its data in Sixml format to
support transformation and other activities. SuperMix, SISRS, and SSIB represent
their data as Sixml documents. Each of these four applications is able to use any of our
Sixm]l DOM implementations (because all three implementations present the same in-

terface).

We have used Sixml to specify data mash-ups. A data mash-up is a document that
contains information drawn from different sources [120]. (A data mash-up is different
from a mash-up application that retrieves information from different sources. A mash-
up application might produce a data mash-up.) For example, a document that describes
comments over different documents, with each comment modeled as the Comment
structure in Figure 7.1, would be a data mash-up, because the value of the attribute
excerpt could be drawn from different documents for different comments. The Sixml
document in Figure 4.26 and the output of the bi-level query in Figure 4.27 are also

data mash-ups. (Section 11.2.1 discusses data mash-ups in detail.)

We have used Sixml DOM to manipulate and automatically recomnstitute (that is, ex-
tract constituent parts from different sources) data mash-ups specified using Sixml.
For example, Figure 7.7 (and Figure 7.5) shows the value of the attribute excerpt re-
constituted according to the specification in Figure 7.1. A tool called Mash-o-matic
[115] uses Sixml, Sixml DOM, and our bi-level query processor to respectively speci-

fy, reconstitute, and format map-based mash-ups.

279

Finally, we have used Sixml DOM to provide a run-time representation of Sixml doc-

uments to support bi-level querying. Chapter 9 illustrates this use.

7.6.3. Experiments
We now present the results of experiments on the three Sixml DOM implementations.

For these experiments, all C# code was compiled using Microsoft Visual Studio 2005
[102]. The experiments were run in Microsoft’s distribution of the .NET Common
Language Runtime (Version 2.0) [128] on an Intel Core Duo 1.66 GHz processor [65]
with 1 GB of main memory. The operating system was Microsoft Windows XP (Ser-

vice Pack 2) [104].

We present the results of experiments that demonstrate the scalability of the Sixml
DOM implementations and the savings possible by using Sixml DOM (compared to
DOM) when retrieving mark associations and SI. We ran each experiment fhree times
and report here the average results.

7.6.3.1. Overview of the Datasets

Table 7.2 lists the Sixml documents used in the evaluation. The documents are gener-
ated by the applications SISRS and SSIB, and are based on the schemas presented in
Section 4.9. The number at the end of each document’s name (in the first column) is
the size scale factor. For example, the document SISRS-2 has twice the number of
mark associations as SISRS-1; SSIB-8 has eight times the number of mark associa-
tions as SSIB-1. The documents SISRS-8 and SSIB-8 correspond to the datasets used

to evaluate the bulk accessor (as described in Sections 6.4.2.3 and 6.4.2.4).

280

Table 7.2: Sixml documents used in the experiments to measure performance when retrieving
mark associations and SI. The columns EMark, AMark, and TMark show a breakdown of the
number of mark associations by mark-association type

Number of mark associations

Document File size (KB) Number of base documents EMark AMark TMark Total

SISRS-1 206 53 1,908 53 0 1,961
SISRS-2 414 106 3,816 106 0 3,922
SISRS-4 833 213 7,668 213 0 7,881
SISRS-8 1593 426 15,336 426 0 15,762
©ossBet 3243 s 0 25922 12961 38883
SSIB-2 6,486 18 0 51,850 25925 77,775
SSIB-4 12,987 18 0 103,710 51,855 155,565
SSIB-8 26,107 18 0 207426 103,713 311,139

The third column in Table 7.2 lists the number of base documents each Sixml docu-
ment references. The SISRS documents reference PDF fragments (as described in Sec-
tion 6.4.2.3), whereas the SSIB documents reference cells in MS Excel spreadsheets
(as outlined in Section 6.4.2.4). For the SSIB dataset, we used only event information
because we did not have error reports and update history for all computers. Using only
event info@ation ensured that the number of mark associations and SI scale up un-

iformly, and that the performance comparisons would be fair.

Table 7.2 also shows the breakdown of the number of mark associations by mark-
association type, for each document. The SISRS documents use only mark associa-
tions of type EMark and AMark. That is, these documents do not contain TMark ele-
ments of the type shown in Figure 7.1. The SSIB documents use AMark and TMark
elements, but no EMark elements. This variety allows us to test how the different types

of mark associations affect performance.

281
7.6.3.2. Ease of Accessing Mark Associations and SI
We first compare the effort to access mark associations and SI using DOM to the ef-

fort to access the same information using Sixml DOM.

Figure 7.8 shows pseudo-code procedures, based on node type, to retrieve mark asso-
ciations for a target node in a Sixml document using DOM. Each procedure retrieves a
list of nodes from an appropriate containing element and tests if each node in the list
represents a mark association. For example, the procedure to discover the mark asso-
ciations for an element tests the element’s child nodes. The procedure to find the mark

associations for an attribute tests the child nodes of the attribute’s owner element.

A C# implementation (available online [117]) of the procedures to retrieve mark asso-
ciations using DOM contains about 382 /ines. In contrast, with Sixml DOM, mark as-
sociations are retrieved simply by using the property markAssociations on the target
node. The procedure sixmlDOMGetMarkAssociations in Figure 7.9 illustrates the use

of this property.

We do not show the procedures to retrieve SI using DOM because they are too long.
For example, using DOM, about 355 lines of C# code (available online) are needed to
access only the following five types of SI nodes (related to a target node): parent node,
first child, last child, next sibling, and previous sibling. (A node may have up to 19

related SI nodes.)

282

const string sixmlNSURI = "http://schema.sixml.org";

procedure DOMGetMarkAssociations_AnyNode (Node target)
switch(target.nodeType)
case ELEMENT NODE: DOMGetMarkAssociations_Element ((Element)target);
case ATTRIBUTE_NODE: DOMGetMarkAssociations_Attribute((Attr)target);
case TEXT NODE: DOMGetMarkAssociations_Other(target, "TMark"):;
case CDATA SECTION NODE: DOMGetMarkAssociations_Other (target, "CDataMark");
//similarly handle nodes of type COMMENT_NODE and PROCESSING_INSTRUCTION NODE

procedure DOMGetMarkAssociations_Element (Element e)
for each node ¢ in e.childNodes //mark associations are sub-elements
if (c.nodeType == ELEMENT_ NODE)
if (IsMarkAssociation((Element)c, "EMark"))
print (c.nodeName); //c is a mark association for e

procedure DOMGetMarkAssociations_Attribute (Attr a)
for each node ¢ in a.ownerElement.childNodes //owner element has mark associations

if (c.nodeType == ELEMENT NODE}
Element m = (Element)c;
if (IsMarkAssociation (m, "AMark™)) &&
m.getAttributeNS (sixmlNSURI, "target") == a.nodeName)

print (m.nodeName); //m is a mark association for a

procedure DOMGetMarkAssociations_Other (Node n, string typeName)

if (n.parentNode != null)
if (n.parentNode.nodeType == ELEMENT NODE)//parent is or has mark associations
Element p = (Element)n.parentNode;
if(IsMarkAssociation(p, typeName)) //typeName is "TMark", "CDataMark", etc.
print (p.nodeName); //p is a uni-mark association for n

else if (IsMarkAssociation (p, typeName+"s")) //"TMarks", "CDataMarks", etc.
for each node ¢ in p.childNodes //p is a multi-mark association
if (c.nodeType == ELEMENT NODE)
if (IsMarkAssociation((Element)c, typeName))
print(c.nodeName); //c is a mark association for n

//helper function to determine if an element represents a mark association
procedure IsMarkAssociation (Element e, string sExpectedLName)
if (e.namespaceURI == sixmlNSURI && e.localName == sExpectedLName)
//the element's QName denotes a mark association: Rule 2, Section 7.4.2.2
return true;
else //test if the attribute sixmil:itype indicates a mark association: Rule 3
string gName = e.getAttributeNS (sixmlNSURI, "type");
//skipped: parse gName and place constituent parts in variables prefix and 1Name
return (e.lookupNamespaceURI (prefix) == sixmlNSURI && lName == sExpectedLName);

Figure 7.8: Procedures to get mark associations of a target node using DOM. Some code is omit-
ted for brevity

procedure SixmlDOMGetMarkAssociations (SixmlNode target)
for each mark association m in target.markAssociations
print (m.nodeName); //m is a mark association for target

procedure SixmlDOMGetSI (Node target) //use only DOM to access SI

if (target.parentNode != null) print(target.parentNode.nodeName) ;
for each node ¢ in target.childNodes print (c.nodeName) ;
if (target.nodeType == ELEMENT_NODE) //print attributes

for each attr a in target.attributes print (a.nodeName);

Figure 7.9: Procedures to get mark associations and SI using Sixml DOM

http://schema.sixml.org

283

In contrast, Sixml DOM allows SI to be retrieved using just the DOM interfaces. For
example, the DOM-defined properties parentNode and childNodes return the parent
node and list of child nodes, respectively. The procedure sixm1DoMGetST in Figure 7.9

illustrates the use of the DOM interface to retrieve SI.

A drawback when using DOM to manipulate a Sixml document is that the mark-
association elements are repeatedly distinguished from other elements. In contrast,
Sixml DOM distinguishes each mark association only once. Also, it performs the tests
needed to distinguish mark associations /azily so that any performance penalty is in-
curred only when the mark associations contained in an element need to be distin-
guished from other elements.

7.6.3.3. Scalability

We now show how the run-time performance of the three Sixml DOM implementa-
tions scales up with the number of mark associations and SI. In this experiment, we
traversed each Sixml document depth-first and retrieved the mark associations of each
SI node in the document using the property markAssociations (as in Figure 7.9). We
then computed a speed scale factor for each document in a dataset as the ratio of the
time to traverse mark associations in the document to the time to traverse mark associ-
ations in the first document in its set (that is, in the documents SISRS-1 and
SSIB-1). Similarly, we also computed the speed scale factor to retrieve only the SI

portion of each document using the property childNodes as in Figure 7.9.

284

Table 7.3 shows the time (in milliseconds) to complete 20 depth-first traversals of
each Sixml document to retrieve all mark associations and SI (separately), in each of
the three Sixml DOM implementations. The speed scale factor for each document is
shown in parentheses. For example, using MSX, accessing all mark associations in the
document SISRS-2 takes 2.3 times the time it takes for SISRS-1, but the same activity
takes 2.1 times the time using MNR. (SISRS-2 has twice the number of mark associa-
tions SISRS-1 has.) By definition, the speed scale factor for the first document in each

datasetis 1.

Table 7.3: Time (in milliseconds) to retrieve mark associations and SI (separately) over 20 itera-
tions using the Sixml DOM implementations. The dashed line separates the documents in the
SISRS dataset from documents in the SSIB dataset. A number in parentheses shows the speed
scale factor. The speed scale factor for the first document in each dataset is 1.

Time to access mark associations (ms) Time to access SI (ms)

Document MSX MNX MNR MSX MNX MNR
SISRS-1 62.5 93.8 78.1 57.3 78.1 72.9
SISRS-2 145.8 218.8 166.7 125.0 1719 156.2
(2.3) (2.3) 2.1 2.2) 2.2) 2.1

SISRS-4 338.5 4427 364.6 286.5 416.7 3594
(5.4) “.7 “.7 (5.0) (5.3) 4.9)

SISRS-8 625.0 953.1 765.6 572.9 875.0 718.8
(10.0) (10.2) (9.8) (10.0) (11.2) 9.9

SSIB-1 1,463.5 1,807.3 1,708.3 1,442.7 1911.5 1,739.6
SSIB-2 2,901.0 3,890.6 3,479.1 2,932.3 3,906.3 3,500.0
2.0) 2.2) (2.0) 2.0) (2.0) 2.0)

SSIB-4 6,057.3 7,828.1 6,906.3 5,963.5 8,041.7 7,203.1
4.1) “4.3) 4.0) “.1) 4.2) 4.1

SSIB-8 11,828.1 15,526.0 13,890.6 11,963.5 16,656.3 14,828.1
8.1) (8.6) (8.1) (8.4) 8.7 (8.4)

Table 7.3 shows that, for all documents, MSX provides the fastest response, and MNX
has the slowest response. MSX is faster because its base, MS, is faster than MN, the

base of MNX and MNR [74]. MNR is faster than MNX because it does not have the

285

inheritance overheads of MNX, and Sixml DOM capability is added at the most op-

timal location within the base implementation.

The speed scale factor for MNR is always lower than or equal to that of MSX, though
MSX has the better absolute speed. That is, the performance of MNR scales better

than that of MSX.

7.6.3.4. Savings when Traversing Mark Associations
We now compare the time to retrieve mark associations using DOM (as in Figure 7.8)

to the time to retrieve the associations using Sixml DOM (as in Figure 7.9).

In this experiment, we measured the time to retrie\}e all mark associations in each
Sixml document using each Sixml DOM implementation and computed the percentage
time saved in comparison to the corresponding base DOM implementation. That is, we
compare the performance of MSX to that of MS, and the performance of MNX and

MNR to that of MN.

Unless explicitly specified, the savings (overhead) we discuss in the rest of this chap-
ter correspond to the savings (overhead) obtained by using a Sixml DOM implementa-

tion in comparison to its base DOM implementation.

Figure 7.10(a) shows the percentage time savings when traversing mark associations
in the SISRS documents. The figure shows that MNX saves the least, and the savings

from MNR are comparable to that from MSX.

286

7] o,
s S 0% 7 56% 5oy,
-t 0
Q § 51% 51% 509 O
E 2 50% - 46% 46%
X m
7]
o E 399% B MSX
5 E 40% -
3o 34%
£5
o
22 B MNX
" 5 30% -
m B
£5
3 <
g i 20% | o MNR
=
£3
=]
2o 10% -
t o
Q9
<4 s
g8 w L. - -
§ SISRS-1 SISRS-2 SISRS-4 SISRS-8
(a)
1600.00
i MBX -=-MS —&— MNX = MNR

1400.00

1200.00

o /
f

1000.00

800.00

SISRS-8

600.00

400.00

200.00

Cumulative sum of time (ms) to traverse mark associations in

0.00

7 8 9 10 11
keration#

12

13 14 15 16 17 18 19 20

(b)

Figure 7.10: A comparison of the Sixml DOM implementations when traversing mark associa-

tions in the SISRS dataset. (a) Percentage savings due to Sixml DOM, compared to DOM; (b)

Cumulative sum of time to access all mark associations in the document SISRS-8. The annota-
tions call out the iteration at which a Sixml DOM implementation outperforms its base DOM im-

plementation

287

62% -
60% | 59% 59%
56%

58% | — 57%

56% 56% 56%
56% ’ @ MSX

56% [— 59,

54%
54% -

52% | W MNX

0% 50%

50%

48% = MNR

DOM) when retrieving mark associations

46% -

% - i -
SSIB-1 SSIB-2 SSiB4 SsiB-8

(@

Percentage time savings from using Sixml DOM (compared to

Cumulative sum of time (ms) to traverse mark associations in
$S1B-8

35000.00

g MEX -B-MS —A—MNX ¢MNR —8—-MN

30000.00

rsoon00 D/Z/E!

20000.00

15000.00

10000.00

T MSX < MS

5000.00 +—= ‘
1 2 3 4 5 8 7 8 9 10 1" 12 13 14 15 16 17 18 19 20
teration#

®)

Figure 7.11: A comparison of the Sixml DOM implementations when traversing mark associa-
tions in the SSIB dataset. (a) Percentage savings due to Sixml DOM, compared to DOM; (b) Cu-
mulative sum of time to access all mark associations in the document SSIB-8.

288

Figure 7.10(b) shows the cumulative sum of the access time for the document
SISRS-8 as the 20 iterations progress. MNR outperforms MN from the first iteration.
MSX and MNX initially consume more time than their respective base implementa-
tions, but MSX outperforms MS after the first iteration, and MNX bests MN after two
iterations. In general, a Sixml DOM implementation consumes more time initially be-
cause it extracts mark-association elements from their original location and inserts
them under appropriate target nodes (as depicted in Figure 7.4). When using DOM, no
changes are made to the tree, and an element’s mark-association type is tested each

time the element is visited (as illustrated in Figure 7.8).

Figure 7.11 compares the performance of the Sixml DOM implementations with DOM
for the SSIB dataset. The performance for this dataset is similar to that for SISRS, but
each Sixml DOM implementation needs more iterations (than needed for SISRS doc-
uments) to outperform its respective base DOM implementation. For example, Figure
7.11(b) shows that MNR outperforms MN only in the second iteration. This behavior
is largely due to the presence of mark associations of type TMark, because the target
text node that is initially represented as a child of a TMark is made a child of the parent
of the mark-association element as described in Figure 7.4. (Compare the positions of
the target text node in Figures 7.3 and 7.5.) Making this change consumes a non-trivial

amount of time.

289
7.6.3.5. Savings when Traversing SI
We now discuss the percentage time savings and overhead (as applicable) when tra-

versing SI using Sixml DOM. For simplicity, we depict overhead as negative savings.

Figure 7.12(a) shows the percentage time savings for the SISRS dataset. In all cases,
the savings decline as the amount of SI increases. MSX has overhead for the docu-
ments SISRS-4 and SISRS-8. MNX has overhead for only SISRS-8, but MNR pro-
vides savings in all cases. The reduction in savings from the first document to the
fourth document is 2324 percentage points for both MSX and MNX, but the reduc-
tion is only 10 percentage points for MNR. That is, as in the case of mark associations,

MNR scales better.

Figure 7.12(b) shows the cumulative sum of the access times for the document
SISRS-8 as the iterations progress. It shows that MNR outperforms MN after the sixth
iteration. It also shows that MSX and MNX are on a converging course with their re-
spective base implementations. However, the relatively large number of iterations
needed for convergence might make MSX and MNX unsuitable for traversing SI in

some applications.

Figure 7.13(a) compares the performance of the Sixml DOM implementations with
DOM for the SSIB dataset. As with the SISRS dataset, MNR provides the best per-
formance, but the overall performance is contrary to that seen for SISRS. This change
is again due to the presence of mark associations of type TMark: Whereas a TMark

element hurts the performance of Sixml DOM when traversing mark associations, it

290

hurts DOM when traversing SI because the target text node wrapped inside the TMark
element is repeatedly unwrapped when using DOM (as outlined in Section 7.6.3.2).
Thus, Sixml DOM performs better than DOM as the number of TMark elements in-

creascs.

Figure 7.13(b) shows the cumulative sum of the access time for the document SSIB-8
as the iterations progress. It shows that MNR outperforms MN after 12 iterations. It
also shows that MSX and MNX are on a converging course with their respective base

implementations.

Figures 7.12 and 7.13 show that the savings when accessing SI using Sixml DOM is
less than that obtained for mark associations. This difference is partly due to the over-
heads we called out in Section 7.6.1.2, and in the case of MSX and MNX, it is also
due to inheritance overheads. For example, when the property childNodes is invoked
to retrieve SI children as shown in Figure 7.9, the base DOM implementation of this
property is also invoked (after performing a few checks). This overhead is not incurred
when accessing mark associations. The inheritance overhead is not incurred in MNR

when retrieving SI, because the base DOM implementation is directly altered.

291

0,
25% 2%
21%

20%
17%
15%

15%

13%

10%

5% 4%

0%

{compared to DOM) when retrieving SI

2%
-5%

Percentage time savings/overhead from using Sixml DOM

-10%

SISRS-1 SISRS-2

SISRS-4

17%

MSX
12%

W MNX

HMNR

8% 1%

SISRS-8

(@

900.00

—g--M8X —-=-MS —i— MNX =< MNR

800.00

——MN

3l

Ao
*e
anns®

700.00

600.00

500.00

400.00

300.00

200.00 +—

Cumulative sum of time (ms) to traverse S! in SISRS-8

100.00

0.00

10 11
lteration#

12 13

(b)

Figure 7.12: A comparison of the Sixml DOM implementations when traversing SI in the SISRS

dataset. (a) Percentage savings (positive values) and ove
DOM, compared to DOM; (b) Cumulative sum of time to

rhead (negative values) due to Sixml
access all SI in the document SISRS-8.

The ovals highlight the converging course of MSX and MNX with their respective base DOM im-

plementations

10%

5%

0%

5%

-10%

-15%

Percentage time savings/overhead from using Sixml DOM
(compared to DOM) when retrieving SI

0%

1%

3%

5%

292

B MNX
-20% 1 19%
L |
25% 4 L L -24%,
-25% -25% B MNR
-30% -
SSIB-1 SSIB-2 SSB-4 SSIB-8
@
18000.00
g MSX =B=MS ~A&—MNX =MNR —e—MN

16000.00

14000.00

12000.00

10000.00

8000.00

Cumulative sum of time (ms) to traverse Sl in SSIB-8

6000.00

4000.00

10 1
lteration#

12

13

14

15

16

17 18

19

20

(b)

Figure 7.13: A comparison of the Sixml DOM implementations when traversing SI in the SSIB
dataset. (a) Percentage savings (positive values) and overhead (negative values) due to Sixml
DOM, compared to DOM; (b) Cumulative sum of time to access all SI in the document SSIB-8

293

7.6.3.6. Overhead to Traverse Non-Sixml Data
We also measured the performance of the Sixml DOM implementations when travers-

ing non-Sixml documents (that is, XML documents with no mark associations). We
conducted this experiment to see if Sixml DOM can be used to work with traditional
XML documents as well. Also, a non-Sixml document is a good proxy for a Sixml

document with few mark associations.

We report results for three non-Sixml documents: SIGMOD Record 1999, the XML
index of issues of ACM SIGMOD Record [5] for the yeér 1999; XMark, a document
from the XMark benchmark [143]; and MBench, a document from the Michigan
benchmark [142]. The salient features of these documents are, respectively: size 484

KB and tree depth 4; 113.7 MB, depth 8; and 14.7 MB, depth 16.

Figure 7.14 shows the percentage overhead to traverse the three non-Sixml documents.
The figure is oriented such that it can be easily compared with Figures 7.12(a) and
7.13(a). For each document, MNR has the least overhead and MSX has the most over-
head. In general, the performance of a Sixml DOM implementation when traversing a
non-Sixml document is similar to that of accessing SI in a Sixml document. (In fact,
we use the same code in both cases.) For example, the trends seen in Figure 7.14 are
similar to the trends seen in Figure 7.12(a) for the SISRS dataset. The trends in Figure
7.14 are dissimilar from the trends shown in Figure 7.13(a) for SSIB because of the

absence of elements such as TMark that need to be unwrapped.

294

SIGMOD XMark MBench
0% +— :

5% 4
10% -
15% -

20% +

2% 4 23%

30% -

- i
30% ! B MNR
35% | | |

(compared to DOM) to access non-Sixml| data

0f | 1 1
40% i !

[
45% - 43%

Percentage time overhead from using Sixml DOM

Figure 7.14: Overhead to traverse non-Sixml data using Sixml DOM, cempared to DOM

7.6.3.7. Evaluation Summary
Using Sixm]l DOM to access mark associations and SI requires less development effort

than using DOM to access the same information. Using Sixml DOM saves time when
accessing mark associations, even for a small number of traversals over the document.
However, using Sixml DOM to access only SI can have some overhead. Mark associa-
tions that wrap their targets (that is, mark associations that are not of type EMark or

AMark) slow down retrieval of mark associations, but they speed up retrieval of SI.

The performance characteristics of a Sixml DOM implementation when accessing a
non-Sixml document are similar to the characteristics seen when accessing SI in a

Sixml document that does not contain mark associations that wrap their targets.

It might be better to use DOM to navigate some non-Sixml documents instead of using
Sixml DOM implemented using the extension strategy. However, a developer is not

required to exclusively choose DOM or Sixml DOM to work with all documents. In-

295

stead, he can switch between the two at run time by simply switching the document

constructor used: doc = new XmlDocument () Or doc = new SixmlDocument ().

Among the Sixml DOM implementations, MSX has the best absolute performance
when traversing mark associations, SI, and non-Sixml data because its base, MS, is
faster than MN. However, MNR scales best and gives the most savings (or has the
least overhead) relative to its base DOM implementation. MNX generally underper-

forms MNR due to inheritance overheads.

Both the extension and revision strategies of implementing Sixml DOM have merits.
A Sixml DOM implementation can be fast (as in MSX) and have low overheads (as in
MNX and MNR) if the base DOM implementation is fast and the source code for the
base is available. That is, the speed of MNX and MNR can be improved by improving
MN. The overheads in MSX can be reduced with compile-time access to the source
code for MS. Overheads could be further reduced by adding Sixml DOM functionality

to a DOM implementation from the ground up.

7.7. Related Work

In this section, we provide an overview of two systems of embedding links in XML
documents, and briefly touch upon DOM extensions specially defined for two XML-
based markup languages.
7.7.1. Embedding Links
We first review XLink and Active XML, two systems of embedding links in arbitrary

XML documents.

296
7.7.1.1. XLink
Like Sixml, the XML Linking Language (XLink) [164] also allows embedding of links
in arbitrary XML documents. A link is to a resource (for example, a document) that
can be addressed using a URI or an XPointer pointer. A resource may be 'remote (that
1s, it may reside outside the document in which the link is embedded) or it may be

local (that is, it can be a part of the linking document).

An XLink link is expressed using a /ink element, which is any XML element that em-
ploys specific XLink-defined attributes such as xlink:type. (The namespace prefix
xlink is associated with the URI http://www.w3.0rg/1999/xlink.) A link may be sim-
ple or extended. A simple link connects the link element (a local resource) to a remote
resource, and is indicated by the value "simple" for xlink:type. For example, the fol-
lowing XML fragment links the element Comment with a PDF document.

<Comment excerpt="" xlink:type="simple" xlink:href="file://c:/ride-dom-final.pdf"/>
The value of the attribute xlink:href is always the URI of a remote resource. The op-

tional fragment-specifier portion of the URI (that is, the part after the # character in

the URI) may use an XPointer pointer to identify a part of a resource.

An extended link is indicated by the value "extended" for the attribute xlink:type. It
links two or more resources. A link element that expresses an extended link uses a
sub-element called a locator to identify a remote resource, and a sub-element called a

resource to identify a local resource. A local resource can be the link element itself, or

http://www.w3.org/1999/xlink
file://c:/ride-dom-final.pdf"/

297

it can be another element within the current document. A local resource is indicated by

the value "resource” for xlink:type.

In addition to specifying the participating resources, an extended link can also specify
a role for each linked resource and indicate how the resource should be displayed
when the link is activated. For example, a link can specify that a resource should open
in a new window. Sixml does not inherently support role and activation specifications,
but an SA developer is free to introduce attributes and elements in the SI schema to

support these features. (We do not constrain an SI schema in any way.)

An XLink locator element (used to identify a remote resource) is comparable to a
mark association. The attribute xlink:type is comparable to our attribute sixml:type
because both attributes determine the owner element’s function. We also allow a mark
association’s type to be conveyed via a schema, but XLink does not have typed loca-
tors. Additionally, the value of the attribute xlink:href (an XLink locator uses to iden-
tify a remote resource) is restricted to being a URI or an XPointer. In Sixml, a mark
descriptor may have arbitrary structure and it may conform to any linking technology.

See Section 4.6.3.

Unlike XLink, Sixml does not directly support links from a Sixml document to anoth-
er part of the same document. However, a mark descriptor is free to identify any part

of any document, including the current Sixml document.

298

In XLink, a link does not always imply a connection with the link element, whereas in
Sixml, a mark association is always paired with some part of the linking document.

However, an SA is free to ignore this pairing and support XLink-like semantics.

XLink allows a link only with an element in the linking document, but Sixml supports
links to non-element content as well. Finally, XLink does not support deriving of con-
tent (for example, attribute values) from linked resources.

7.7.1.2. Active XML

Active XML (AXML) [3] provides a means to describe parts of an XML document
intensionally using service-call elements that encode calls to web services [161]
(which provide a means of executing code located on a remote computer). The follow-
ing is a hypothetical AXML representation of a part of the information in the element

Comment in Figure 7.1. (This representation is based on examples in an unpublished

report [156] on AXML.)

<Comment xmins:axmi="http://activexml.net">
<axml:sc>sixml.org/getExcerpt(<mark ID="23">)</axml:sc>
</Comment>

The element axml:sc denotes a service call, and its children elements denote service
parameters. The URI sixml.org/getExcerpt identifies a hypothetical web service to
obtain the text excerpt of a mark. At run time, the service-call element is replaced by
the XML element that the web service returns. For example, the following AXML
fragment shows a possible result of executing the example service call. Here, the result

element Excerpt has replaced the service-call element.

http://activexml.net
http://sixml.org/getExcerpt

299

<Comment xmins:axml="http://activexml.net">
<Excerpt>provides...</Excerpt>
</Comment>

No special DOM is defined to manipulate an AXML document, but a special query
processor executes service calls, and replaces each service-call element with a result
element. In contrast, we provide both a DOM and a query processor so that an SA de-
veloper can use the tool that is most appropriate to the task at hand. (Section 9.4 com-

pares the AXML query processor to our bi-level query processor.)

An AXML document references programs (in the form of web services), but a Sixml
document references data. External data (that is, the result of service calls) brought
into an AXML document is not necessarily related to any part of the document speci-
fied extensionally, and it is not possible to distinguish external data from extensional
data after replacement occurs. In contrast, Sixml makes the division between SI and

the external data apparent.

AXML uses a schema-language extension to express the type of the result of a service
call, because at the schema level, the element axml:sc represents both a service call
and its run-time result. That is, the schema for axml:sc needs to describe two types,
but neither XML Schema nor DTD support assigning two types to a single element. In
contrast, the schema of a Sixml document can be expressed using only the standard

XML Schema constructs.

An AXML service-call element can supply the content of an XML element, but unlike

Sixml, it cannot supply values of parts such as attributes. Thus, the excerpt retrieved

http://activexml.net

300

from a commented region is represented as an element in the example AXML frag-

ment, not as an attribute as in the Sixml document in Figure 7.1.

In this chapter, we have not described a means to supply the content of an element in a
Sixml document, but we do have the designs for a facility to achieve this goal. The
facility uses the attributes valueSource and valueExpression in a mark association of
type EMark, similar to the use of these attributes in other mark-association types (as
described in Section 7.4.3.4). At run time, the part of the context information that the
path expression in valueExpression selects would be added as the content of the target
of EMark, in place of EMark. The EMark itself would be moved to the list of mark as-
sociations of the target element, as described in Section 7.4.2.1.

7.7.2. DOM Extensions

DOM extensions have been defined for Mathematical Markup Language (MathML)
[39] and Scalable Vector Graphics (SVG) [151], which are markup languages for ma-
thematical and graphics information, respectively. Like Sixml, these extensions define
specialized classes for elements and attributes, but unlike Sixml, their factory methods
choose a class to instantiate based only on the node’s name. For example, in the DOM
extension for MathML, the factory method createElement instantiates the class
MathMLMathElement if the element’s local name is math and the namespace URI is
http://www.w3.0rg/1998/Math/MathML. (The element math is the top-level element

in each MathML document or segment.)

http://www.w3.org/1998/Math/MathML

301

In Sixml DOM, a mark-association element can be detected either by its name or by
its type, and a mark association’s type can be assigned without using a schema (but
using the attribute sixml:type). Because the DOM extensions for MathML and SVG
rely only on a node’s name to determine the node class to instantiate, they are not im-

peded by the implementation and performance issues discussed in Section 7.6.1.2.

7.8. Summary and Conclusions

In this chapter, we have completed the discussion of Sixm/ (first introduced in Section
4.5.2), a representation of SI as XML using only standard XML constructs. Sixml
provides a means to incorporate marks (that is, links) to heterogeneous information
fragments in arbitrary XML documents. A mark may be associated with the following
kinds of XML content: element, attribute, text content, CData section, comment, and
processing instruction. We have arrived at this list of content kinds, and have chosen
to represent a mark association as an element, after considering issues such as seriali-
zation and validation of mark associations. We have defined different element types
for each kind of content with which a mark may be associated, using only the con-

structs available in XML Schema.

In this chapter, we have also described Sixml DOM, an extension of DOM to easily
and efficiently manipulate Sixml data at run time. Using Sixml DOM, an SA develop-
er can easily manipulate marks independently of the linking technology the marks em-
ploy. He can also access mark associations without regard for the schema used to

represent them.

302

We have defined rules to detect mark associations when a Sixml document is parsed,
and have provided a deterministic procedure to serialize a Sixml document using only
the W3C recommended syntax. We have also defined an interface for mark reposito-
ries and outlined the expected behavior from a mark repository when a lookup opera-

tion is performed.

We have presented some thoughts on integrating Sixml DOM into DOM, outlined two
strategies to implement Sixml DOM, and presented three implementations of Sixml
DOM. We have also presented experimental results showing the savings achieved (or

overhead incurred) from using Sixml DOM, in comparison to DOM.

The schema for mark-association elements, the alternative interface definitions for
Sixml DOM, and the source code for the three Sixml DOM implementations are all

available online from http://www.sixml.org.

Both Sixml and Sixml DOM support the normalized and nested representation
schemes we identified for SI in Section 5.2. Both Sixml and Sixml DOM help us meet
the goals G1 (SI-Schema independence), G2 (diversity and multiplicity of mark asso-
ciations), and G3 (execution efficiency) identified in Section 5.3. In addition, Sixml
also helps us meet the goal G5 (ease of query expression). Sixml DOM aids G3 by
lazily retrieving mark descriptors (from a mark repository) and context information

(from the base layer). For brevity, we omit summarizing how the other goals are aided.

Sixml and Sixml DOM are useful in a wide range of superimposed applications. We

have illustrated the use of Sixml (see Section 4.9) and Sixml DOM (see Section 7.6.2)

http://www.sixml.org

303

in three SAs: Sidepad, SISRS, and SSIB. Apart from their use in SAs, Sixml and
Sixml DOM are also useful in declaratively producing data mash-ups, which are doc-

uments that contain information obtained from different sources.

This chapter concludes our discussion on representing and accessing bi-level informa-
tion in the XML model. Chapter 9 describes the use of this chapter’s developments in

bi-level query processing.

8. A Model for Improving Query Expression and Execution

This chapter introduces the notion of cloaking (that is, temporarily hiding) parts of da-
ta from a query processor so that certain classes of queries can be expressed easily and
executed efficiently. It provides a means to achieve our goals of ease of expression
(Goal G5 in Section 5.3.1) and efficient execution (G3) for bi-level queries; SI-only-

query preservation (G6); and compatibility with existing query languages (G7).

In this chapter, we define a formal model and an architectural reference model for a
cloaking query processor (that is, a query processor that supports cloaking). The two
models are independent of applications and data models (such as the relational and
XML models). We also illustrate the benefits of cloaking in both bi-level-query and

non-bi-level-query settings.

Chapter 9 describes a cloaking query processor that applies the models presented in

this chapter to improve the expression and execution of XML bi-level queries.

8.1. Introduction

In this section, we give an informal introduction to cloaking using a tree data model.
We then illustrate use and benefits of cloaking in both bi-level-query and non-bi-level-
query settings. For simplicity, we limit this discussion to the XML model.

8.1.1. A Tree Model for Cloaking

Cloaking can be explained using a simple tree model in which tree nodes and opera-

tions have colors. A color is chosen from a color set, and a cloaking scheme assigns

305

colors to tree nodes. A tree in which each node is colored using a cloaking scheme is a

cloaked tree. Several cloaking schemes are possible.

An operation on a cloaked tree is performed not on the tree, but on a sub-tree called
the scope of the operation. (We use the term sub-free in the same sense the term
sub-graph is used in relation to graphs [28].) This sub-tree is obtained by retaining on-
ly the input nodes (and the corresponding edges) that satisfy a given test function,
which relates the operation’s color with a node’s color. That is, only the nodes that

satisfy the test function are revealed to the operation, whereas the other nodes are

cloaked.
<& -----Root node
< ----- Comment
@excerpt - > D<----- EMark
"“Text content
AMark- -> =
TMark
Scope of a Scope of a
Input tree White operation Gray operation

Figure 8.1: A cloaked tree and the scope of two operations over the tree. Colors are assigned from
the totally ordered set {White, Gray}. Annotations map the nodes to the content of the Sixml doc-
ument in Figure 7.1

A color set, a cloaking scheme, and a test function, all taken together, are called a

cloaking configuration. Here is an example cloaking configuration:

o the totally ordered set {White, Gray}, where Gray > White;

o the cloaking scheme in which, for each node n, Color(n) > Color(Parent(n)); and

306

e the test function Color(operation) > Color(node).

In this configuration, only White nodes are revealed to a White operation, but all nodes
are revealed to a Gray operation. Figure 8.1 illustrates this example. Section 8.1.2 de-
scribes the annotations and the node labels used in this figure.

8.1.2. Application to Bi-level Querying

In a bi-level-query setting, cloaking can preserve SI-only queries because a Sixml
document can be represented as a tree, and a query can be seen as an operation on the
tree. The tree representation is based on the XPath data model [166], which produces a
tree similar to a Sixml DOM tree. Section 9.1.1.1 introduces the XPath data model.
Section 9.2.2 discusses a bi-level query processor’s representation of a Sixml docu-

ment.

We first discuss cloaking applied to a Sixml document in the normalized schema
(which includes SI and mark associations, but not mark descriptors or context infor-
mation), and then discuss the nested schema (which includes mark descriptors and

context information). Section 5.2 introduced these schemas.

The input tree in Figure 8.1 sketches the tree representation of the Sixml document in
Figure 7.1. An SI node is labeled S, and a mark-association node is labeled A. The an-
notations map the nodes to the content of the source Sixml document. The attributes of

mark-association nodes are excluded for simplicity.

The example cloaking configuration in Section 8.1.1 can preserve SI-only queries over

a Sixml document in the normalized schema if the SI nodes are colored White and the

307

mark-association nodes are colored Gray. The nodes in the input tree in Figure 8.1
(and in the Sixml DOM tree of Figure 7.5) are colored in this manner. With this color-
ing, a White query would be an SI-only query, but a Gray query would operate over

the entire document.

Extending the example color set to {White, Gray, Slate, Black} can distinguish SI-
only queries even over a Sixml document in the nested schema. In addition, the ex-
tended color set can distinguish three other classes of queries: queries that involve
mark associations (for example, count the number of mark associations employed);
queries that involve mark descriptors (list the base documents referenced); and queries

that involve context information (get the page number of a commented region).

With the extended color set, White queries continue to be SI-only queries; Gray que-
ries operate only on SI and mark associations; S/ate queries operate on SI, mark asso-

ciations, and descriptors; and Black queries operate on the entire document.

The input tree in Figure 8.2 shows the nested schema version of the Sixml document
in Figure 7.1 as a cloaked tree. The nodes are cofored from the totally ordered set
{White, Gray, Slate, Black}. As in Figure 8.1, an SI node is colored White and a mark-
association node is colored Gray. In addition, a mark descriptor is colored Slate, and
context information is colored Black. Also, a mark descriptor is labeled D, and context
information is labeled C. For simplicity, the details of mark descriptors and context

information are omitted.

308

Figure 8.2 includes the scope of Slate and Black queries. The scopes of White and

Gray queries are exactly as in Figure 8.1.

Scope of a Scope of a
Input tree Slate operation Black operation

Figure 8.2: A cloaked tree for a Sixml document in the nested schema and the scope of two classes
of queries. (Figure 8.1 shows the scope of two other classes of queries.) Colors are assigned from
the totally ordered set {White, Gray, Slate, Black}

8.1.3. Non-Bi-level-Query Applications
Cloaking can be useful in non-bi-level-query settings as well. For example, if different

versions of a document (such as source code) are represented as an XML document,
cloaking can limit the version of the document that is exposed to a query. Cloaking
can also be useful in data privacy and security applications [86]. In the rest of this sec-

tion, we introduce the use of cloaking in an application involving spreadsheet data.

Microsoft Excel [96] (Excel) allows a spreadsheet, or a range of cells in a spreadsheet,
to be saved as an XML document, but much of the XML document generated relates
to the presentation of the spreadsheet (for example, the height and color of a cell).
Figure 8.3 shows a part of the XML data generated for a spreadsheet with just one
cell. The ellipses indicate content edited for brevity. The portions with gray back-

ground indicate presentation markup; the other portions indicate spreadsheet data. For

309

example, the element Styles defines different display styles (using elements named
Style) and the attribute ss:StyleID associates a style with parts of the data. The ele-

ments Row and Cell define spreadsheet data.

<Workbook xmins="..." xmins:o="..." xmins:x="..." xmlIns:ss="..." xmIns:html="...">
<Styles>
<Style ss:ID="Default" ss:Name="Normal">...</Style>
<Style s5:ID="523">...</Style>
<Style ss:ID="s30">
<Alignment ss:Vertical="Top"/>
<Borders>
<Border ss:Position="Left" ss:LineStyle="Continuous" ss:Weight="2"/>
<Border ss:Position="Right" ss:LineStyle="Continuous" ss:Weight="2"/>
</Borders>

</Style>
</Styles>
<Worksheet ss:Name="Sheet1">
<Table ss:ExpandedColumnCount="1" ss:ExpandedRowCount="1" ss:StyleID="s23">
<Column s5:StyleID="s23" ss:AutoFitWidth="0" ss:Width="91.5"/>
<Row ss:Height="15">
<Cell ss:StyleID="s30">
<Data ss:Type="String">Arnold Ice Cave</Data>
</Cell>
</Row>
</Table>
</Worksheet>
</Workbook>

Figure 8.3: Partial XML data generated for a single cell in a Microsoft Excel spreadsheet. Frag-
ments with clear background represent spreadsheet data. Fragments with gray background indi-
cate presentation markup

In this setting, cloaking presentation markup (such as the element Styles and the
attribute ss:StyleID) can improve the expression and execution of data-only queries,

which are queries that read and return only the spreadsheet data.

The example cloaking configuration in Section 8.1 can cloak presentation markup
from data-only queries, if the root node and the nodes representing spreadsheet data
are colored White, and the presentation nodes are colored Gray. A data-only query

would be colored White, whereas the other queries would be colored Gray.

310
8.1.4. Benefits from Cloaking
For certain classes of queries, cloaking can ease query expression and it can improve
query-execution performance. We first discuss ease of expression and then discuss

execution performance.

Ease of query expression: Cloaking allows the use of lightweight languages such as
XPath in place of languages such as XQuery and XSLT [176, 177]. For example, con-
sider the task of retrieving comments, minus the embedded mark associations, from a
Sixml document that contains comments using the Comment structure in Figure 7.1.
Without cloaking, the following XQuery query would be needed to complete this task.
This query explicitly copies the text content of each Comment element, and explicitly

leaves out the embedded mark associations.

<result> {
for $c in fn:doc ("comments.xml")//Comment
return <Comment>{S$c/text () }</Comment>
} </result>
Without cloaking, the simple XPath expression //Comment cannot accomplish this
task, because XPath cannot remove the child nodes of a node it returns. Specifically,
in this case, XPath cannot remove the mark associations contained in each Comment

element. However, when mark associations are cloaked, the expression //Comment

would accomplish the task, because only SI would be revealed to the query processor.

Similarly, with the XML data generated from Excel, when the presentation markup is

cloaked, the XPath expression //Cel1 returns only spreadsheet cell data, automatical-

311

ly excluding the presentation attribute ss:StyleID. Achieving the same result without

cloaking would require the following XQuery query:

<result> {
for $c in fn:doc ("workbook.xml")//Cell
return <Cell>{S$c/Data}</Cell>
} </result>
Query-execution performance: Cloaking can speed up query execution in two ways.
First, it eliminates the need for languages such as XQuery and XSLT, which always
construct new result nodes. Using XPath saves execution time because XPath returns
existing nodes. Second, cloaking can reduce the number of nodes the query processor
visits, further reducing execution time. For example, without cloaking, when execut-
ing the expression //Comment over the input tree in Figure 8.2, the query processor
examines all elements in the document, including the mark-descriptor and context in-
formation. (The descriptor and context information for a mark can have arbitrary
structure, and retrieving context information from the base layer can consume a large
amount of time.) In comparison, with cloaking, the query processor examines only
Comment and the embedded mark-association element. (The mark-association ele-

ment is examined, but is not output because it is not SI.) Also, context information

would not be retrieved from the base layer.

Similarly, with the Excel-generated XML data, executing the data-only query //cell
requires the query processor to examine 26 elements without cloaking, but with the
presentation markup cloaked, the processor needs to examine only eight elements.

(For brevity, we omit calling out the elements examined in each case.)

312

The savings in the example queries (//Comment and //cell) are due to the cloaking
scheme in use, which allows the child nodes of a node to be skipped if the node is
cloaked. Our formal model (described in Section 8.2.1) for a cloaking query processor
does not require this behavior from a cloaking scheme, but we expect this behavior to

be fairly common in practice.

Cloaking also has the potential to save memory during query execution because a
cloaking query processor might be able to avoid allocating memory for cloaked nodes.
The memory savings can be substantial in a bi-level query setting if the processor ob-
tains mark descriptors and context information on demand. Our bi-level query proces-
sor implementation exploits this capability. Section 9.3 describes the implementation

and the savings obtained from using the implementation.

The aforementioned improvements in query-expression and execution due to cloaking
make ad hoc querying and data exploration easy, because a developer can use
unfocused path expressions without incurring the performance penalties normally as-
sociated with such expressions. A focused path expression is an expression that guides
the query processor strictly along the path of interest. An unfocused expression does

not guide the processor in this manner.

For example, the expression /Comments/Comment/text () is focused, whereas the
expression //text () is unfocused. The latter expression asks for text nodes anywhere
in the document, but when mark associations are cloaked, the query processor ex-

amines only SI, and returns only the nodes that represent comment text. Section

313

9.3.3.5 shows experimental results that highlight the benefit of using unfocused path
expressions with cloaking.

8.1.5. Discussion

We call queries that reveal cloaked information tachyon queries, after beams of hypo-
thetical particles called tachyons [44]. Works of science fiction (for example, Star
Trek [91, 149]) often employ tachyon beams to reveal cloaked objects. In the example

cloaking configuration of Section 8.1, a Gray query is a tachyon query.

We have thus far described a means of coloring both data and queries to selectively
cloak and reveal data, but it is possible to achieve the same result by coloring only da-
ta. In this alternative, a query only sees White nodes. A node is colored Gray to cloak
it; White to reveal it. In science-fiction parlance, this alternative is similar to a universe

with no tachyon beams.

Coloring only data is simpler than coloring both data and queries, and it needs only
two colors, but it requires updates to data depending on query needs. Updates can be
time consuming, because they may need to examine many nodes (which we wish to
avoid through cloaking). Also, updates can hinder the execution of multiple simulta-

neous queries over the same data.

We pursue the approach of coloring both data and queries, where multiple simultane-
ous queries with different visibilities can be executed over the same data without
changing the data. The alternative of coloring only data can still be emulated by limit-

ing a query’s color to the first color in the set of colors used.

314

8.2. Modeling a Cloaking Query Processor

In this section, we present a formal model and an architectural reference model for a
cloaking query processor. These models help us analyze cloaking independent of data

models (such as the relational and XML models) and applications.
We also relate the architectural model to the formal model and show how the formal

model applies to the relational and XML data models.

8.2.1. A Formal Model
We model the data input to a query processor as a forest of trees. We cloak tree nodes

from queries by coloring nodes and queries. In Section 8.1, we illustrated cloaking by
assigning one color to each node. In the formal model, we generalize this aspect and

allow multiple colors per node. However, we limit a query’s color to one.

A node is assigned colors from a color set (which is a non-empty set of colors) accord-
ing to a cloaking scheme. A test function determines the nodes revealed to a query

based on the query’s color.

Our approach to cloaking does not really require colors, but we use them because they

make it easy to visualize cloaking. Section 8.2.3 discusses this topic further.
We assume the following domains:
B: The domain of truth values. B = {true, false}.

D: The domain of colors.

C: The domain of color sets. C= {C| C < D}.

315

K: The domain of cloaking schemes.
N: The domain of nodes.
F: The domain of forests.

F: The domain of colored forests. F_c F See Definition 8.3.

Q: The domain of user queries.
T: The domain of test functions. See Definition 8.6.

Definition 8.1: A tree T is a tuple (N, E), where N < N is the set of tree nodes, and E

is the set of edges between the tree nodes. Each node has a structured label. The label

may include the set of colors associated with the node.

Definition 8.2: Colors: N — C is a function that returns the colors assigned to a node.

The function returns the empty set & if no color is associated with the node. A cloak-

ing scheme assigns a node’s colors from a color set. See Definition 8.4.

] |F|
Definition 8.3: A forest F is a tuple (N, E), where N = UN, and £ = UE, , where |F]

t=1 t=1
is the number of trees in the forest F. N, and £, denote the node set and edge set, re-
spectively, of the 1™ tree in the forest. A forest is colored if Colors(n) # @ ¥ n € N.

Additionally, the forest is colored firom the color set C if Colors(n) = C V n € N.

316

Definition 8.4: A cloaking scheme is a function k: N x Cx F — N that assigns colors
from a color set C to a node # in a forest F. Colors(k(n, C, F)) < C. The nodes » and

k(n, C, F) can differ only by their colors.

A cloaking scheme colors each node individually, but within the context of a forest so
it can examine other nodes and edges in the forest. For example, the example cloaking
scheme of Section 8.1 colors a node based on the colors of the node’s parent. Another

scheme might assign colors based on the tree to which the node belongs.

A cloaking scheme might impose certain constraints on the color set and the input for-
est. For example, the example scheme of Section 8.1 requires the color set to be totally
ordered. Another scheme might require the forest to contain a single tree.

Definition 8.5: The functional Cloak: F x Kx C— F,_ colors a forest ' = (N, E) from

a color set C according to a cloaking scheme & to produce a colored forest F.
Cloak(F, k, C) = Fy = (Ny, Ei), where:
Ni={k(n, C, F) |n € N} and Ex = {(k(n,), C, F), k(ny, C, F)) | (n;, ny) € E}

Definition 8.6: A fest function t: D x C — B “tests” a color ¢ against a color set C.

For example, a test function might test if a query’s color is one of the colors assigned

to a node. Though the second input’s domain is C, in our use, its value will be a subset

of the color set used to cloak the input forest. See the following definition.

Definition 8.7: The functional Reveal: F,_ x TxD— T, produces the scope of a

query, based on query color, from a colored forest. Given a colored forest

317

Fr = (Ny, Ey (likely produced by the function Cloak), a test function ¢, and a query

color ¢, the following holds:
Reveal(Fy, t, ¢c) = Fs; = (N,, E), where:
N;={n|n e Ni A t(c, Colors(n))} and
E;={(n, ny| (n;, ny) € Exnn; € NyAn; € N}

Because the set of edges E; is equal to Ej restricted to the set of nodes in N, we ex-

press E as Ex | ns (read “Ej restricted to N;”).
Note that the revealed scope F; might have more trees than the input colored forest F.

Definition 8.8: A user query q: F x N — B is a function that determines if a node » in

the input forest F is passed to the output of the query processor.

This function models the actual query the user intends to execute. The function oper-
ates on one node at a time, but within the context of a forest so it can examine other
nodes and edges in the forest. For example, a query might relate nodes in different

trees.

A user query might create new nodes in addition to filtering input nodes, but such ad-

ditions may be performed after the filtering.

Definition 8.9: The functional Query: F, x Q — F,_computes the result of a user query

over a colored forest (likely produced by the functional Reveal). Given a user query g,

and the scope F; = (N,, E,), we have:

318

Query(F,, q) = F, = (N,, E,), where N,= {n|n € Ny A q(Fs, n)} and E, = E; | n,
The next section explores a possible means of effectively evaluating Query given a
user query and a colored forest.

8.2.2. Architectural Reference Model
In this section, we present an architectural reference model for a cloaking query pro-

cessor and relate it to the formal model presented in Section 8.2.1.

Cloaking scheme (k) Test function (1)
---------- » Cloak }f--------=-----% Reveal [----------%» Query -------p
Input data (F) Cloaked data (Fy) Scope (Fy) Result (F,)
Color set (C) Query color (¢) User query (q)

Figure 8.4: An architectural reference model for a cloaking query processor. Dashed arrows indi-
cate data flow. Solid arrows denote parameters of the query-execution process

Figure 8.4 shows a reference model for a cloaking query processor. The modules
Cloak, Reveal, and Query correspond respectively to the functionals Cloak, Reveal, and
Query in the formal model. The symbols in parentheses in Figure 8.4 correspond to

the symbols used in Section 8.2.1.

Given an input forest F' = (N, E), a cloaking scheme £, a color set C, a test function ¢, a

query color ¢, and a user query g, the reference query processor produces a forest F.
F,.=(N,, E,) = Query(Reveal(Cloak(F, k, C), t, ¢), q), where:

N,={k(n, C, F) |n e N t(Colors(c, k(n, C, F))) n q(F, k(n, C, F))}

E, = {(k(n;, C F), k(ny, C, F)) | (ns, ny) € Enk(n;, C, F) e N, Ak(ny, C, F) € N,}

319

The equation for N, is obtained by expanding the functionals Query, Reveal, and
Cloak using Definitions 8.9, 8.7, and 8.5, respectively. The equation for E, is crafted
such that the query processor’s output includes all edges in the input forest, provided

the corresponding nodes are also output.

The equations for N, and E, show that a cloaking query processor can execute a query
without altering input nodes and without explicitly constructing the scope F; of a user

query ¢g. (Note that the formula for N, operates directly on the input entities.)

The equation for N, shows two optimization opportunities for a cloaking query proces-
sor. First, because the test function and the user query are conjunctive terms, the pro-
cessor is free to choose the order in which the terms are evaluated. This choice could
even be based on cost estimates. Second, the processor might be able to combine the
test function with the user query, so that the query is executed more efficiently.

8.2.3. Discussion

We now briefly discuss the use of color sets in our model, and the applicability of the

tree model to the relational and XML data models.

We have thus far used color sets to model cloaking, but our model does not need col-
ors. In reality, a “color set” can be any set of values, but the properties of the values
influence the domain of test functions. For example, if the values are nominal (that is,
the values can be tested only for equality), a test function would be limited to equality
tests on individual values. However, the function can apply inequality tests as well if

the values are ordinal (for example, the totally ordered color set in the example cloak-

320

ing configuration of Section 8.1). An application can control the color sets used by

choosing the domains D and C appropriately.

Our tree model works well in both the relational and XML data models. In the rela-
tional model, a relation instance is a tree (of height 2): The relation is the root node, a
tuple in the relation is a child of the root node, and a field (that is, a column) in a tuple
is a child of the tuple’s node. In the XML model, an XML document is a tree in the

data models of XPath, XSLT, and XQuery.

The tree model also works well with relational and XML query languages. In the rela-
tional model, an SQL query [92] operates on a set of trees and outputs a single tree. In

XML, the query languages XPath, XSLT, XQuery, all operate on and produce trees.

8.3. Representing and Assigning Colors

Section 8.2.2 has shown that a cloaking query processor can execute a query without
explicitly assigning colors to input nodes, but, for performance efficiency, it might be

better to assign colors beforehand.

In this section, we briefly discuss some alternative means of representing and assign-
ing colors to input nodes. Our cloaking model allows multiple colors per node, but, for

ease of this discussion, we assume a node is assigned a single color.

An input node’s color can be represented at the schema level or at instance level. It
can be represented extensionally or intensionally. Also, the assignment can be implicit
or explicit. (Section 8.4.2 reviews data provenance and annotation management sys-

tems that use some of these means to represent and assign data similar to colors.)

321

Schema-level and instance-level assignments: Assigning color at the schema-level
makes color a part of a node’s type, and all instances of a node type have the same
color. (This approach obviously requires a schema.) If represented at the instance lev-

el, different instances of a node type can have different colors.

Representing colors at the instance level can pose problems in the relational model
because an attribute’s visibility to a query can vary between rows, and the relational
model requires the same number of attributes for each row in a (result) relation. This
difference in the visibility of the attribute between rows would need to be somehow
reconciled. For example, a query processor can output a NULL value for the attribute in
a row where the attribute is cloaked (but that value has to be distinguished from a

NULL value in another row where the attribute is not cloaked).

Explicit, extensional assignment: Explicitly representing colors at the schema-level
requires appropriate features in the schema language (and possibly in the data model).
For example, new constructs need to be added to XML Schema [170] for the XML
model. Similarly, in the relational model, the syntax of the SQL statements CREATE
TABLE and ALTER TABLE need to be extended to associate colors with attributes. (Al-

ternatively, parallel color metadata might be employed.)

Extensionally representing colors at the instance-level requires maintaining a “color”
attribute for each node. The color attribute may be added as regular data or as metada-
ta (that is, as secondary data). If color attributes are added as metadata, query languag-

es need to provide a means to access metadata, but popular data models (including the

322

XML and relational models) and their query languages typically do not natively sup-

port the notion of metadata.

Explicit, intensional assignment: A node’s color can be defined explicitly as a func-
tion of schema and data. For example, in the XML model, an XPath expression paired
with a color might be used to assign colors to nodes. The color assignment can be at
the schema level because XPath allows examination of schema information (for ex-

ample, the name of an element).

In the relational model, an SQL query can be paired with a color to assign a color to
nodes, but such assignments are possible where the schema is also stored in relations,
if those relations are revealed. (Most current relational systems store schemas in rela-
tions. A query in a language such as SchemaSQL [85] can examine schemas regard-

less of how the schema is stored.)

Implicit assignment: Node colors can be implicitly assigned, instead of users expli-
citly assigning them. The assignments can be at the schema level, the instance level, or
both. For example, a query processor can assign a node’s color based on the node’s

name.

Implicitly assigning colors has the advantage that no additional data is needed to
represent colors. The disadvantage is that implicit assignment affects all applications

and queries.

323

For XML bi-level query processing, we assign node colors implicitly at the schema-
level, using the 4-color cloaking scheme introduced in Section 8.1 (and illustrated in

Figure 8.2). Section 9.2.6 provides the details.

8.4. Related Work

In this section, we review three systems: a tree model to ease navigation, a data prove-
nance system, and an annotation propagation system. None of these systems is de-
signed to cloak information from a query processor, but each system has some similar-

ity to our approach to cloaking.

8.4.1. The Multi-colored Tree Model
The multi-colored tree model (MCT) [70] attempts to avoid update anomalies caused

by data replication. It also attempts to simplify query expression over shallow trees
that result from normalization of nested data. Thus, at a high level, MCT addresses
some of the problems discussed in Section 5.2 in relation to the nested and normalized
schemas for Sixml data. MCT achieves its goals by extending XQuery’s data model

(XDM) [175] and query language.

In MCT, each XML document tree has a color. An element can be used in multiple
document trees, and is implicitly assigned the set of colors formed by collecting the
color of each tree in which the element is used. Attributes, namespaces, and the non-
element child nodes (such as text nodes) of an element are assigned the same set of

colors as the element.

324

An MCT database is a sequence of colored trees that share the same root node. Figure
8.5 shows a database with two trees, each tree modeling a Sixml document. The
shared root node is not shown. Elements P, Q, and R denote SI. The first tree is colored
white, the second is colored gray. The trees share the mark-association element EMark.
This element (and its attributes and descendants) is colored both white and gray. It has
two candidate parents: P ih the white tree; Q in the gray tree. It has no preceding sibl-

ing in the white tree, but it has one preceding sibling (R) in the gray tree.

Figure 8.5: An example MCT database. (a) A white tree using a mark-association element; (b) A
gray tree using the same mark-association element used in the white tree shown in Part (a)

In MCT, a node can appear only once in a given tree. For example, the element EMark
associated with the element Q in the tree of Figure 8.5(b) cannot also be associated
with R in the same tree. A copy of EMark can be associated with R, but doing so also
creates copies of the child elements Descriptor and Context. This level of copying

causes redundancy and can lead to update anomalies, defeating one of MCT’s goals.

An MCT database is queried using MCXQuery, an extension of XQuery. MCXQuery
allows each step in a path expression to choose the tree in which the navigation is ex-

ecuted. The tree in which navigation is performed is indicated by including the tree

325

color at each step. For example, the expression doc ("S1")/{white}child: :* selects

P; the expression doc ("S1") /{gray}child: : * selects Q.

The expression doc ("S1")/{white}descendant::EMark selects the shared element
EMark in the white tree. Changing the color in this expression to gray selects the same
element, but in the gray tree. In the context of EMark, {white}parent::* selects P,

but {gray}parent: : * selects Q.

Our approach uses existing query languages as they are. A node’s color is used to de-
termine if a node is visible to a query; not to determine navigation paths. Also, in our
approach, the entire query has the same color. Thus, all parts of the query operate over

the same scope.

As discussed in Section 8.1.4, an XQuery constructor always returns a copy of a node.
This action gives the copy a new identity, hindering MCT’s goal of reusing nodes. To
address this problem, MCXQuery redefines XQuery constructors to return a node as
is. It introduces new constructors to create a copy of a node when the original XQuery
semantics are desired. It also introduces a color constructor to designate a color to a

result tree.

In our approach, nodes can be copied freely because the approach does not depend on

node identity.

MCT cannot cloak data. For example, consider retrieving the SI element P from the

MCT database in Figure 8.5. The expression doc ("SI")/{white}descendant::P

326

correctly selects P, but that element will include as its child the mark-association ele-
ment EMark. The same is true for the expression doc ("SI")/{gray}descendant: :Q.
In both cases, eliminating EMark requires a more complex XQuery query (as illu-
strated in Section 8.1.4).
8.4.2. Data Provenance
We now review a representative system that supports data provenance (which is a

record of the derivation of data items [21]).

The system we review is due to Buneman and others [20]. They use colors to represent
the provenance of a data item. They consider data in the nested relational model [2]
(which allows complex values for attributes). They represent a relation instance as a /
tree similar to our approach described in Section 8.2.3. (The relation is at the root, a
tuple is a child of the root, and a field in a tuple is a child of the tuple’s node.) They
add a primitive data type called color to the data model and allow one color to be ex-
plicitly associated with an object. An object is a generic term that means a relation,
tuple, field, or any part of a complex field. An object associated with a color is a
colored object. All sub-objects of a colored object (for example, tuples in a relation,
and fields in a tuple) are also colored, but not necessarily in the same color as the par-

ent object. This coloring method is similar to ours.

Figure 8.6(a) shows an instance of the relation r (A, B) modeled as a tree. The relation

has one tuple (3, 5). The nodes are colored for illustration.

327

(R) & R~-_ New objects
-1
— L ’,: colored L
O €&
(@)

Figure 8.6: An illustration of data provenance. (a) A tree model of a relation r(a, B) with one
tuple in the relation instance; (b) A model of the result of the query SsELECT A, 9 AS B FROM R.
The name T for the result table is chosen arbitrarily

A query is expressed in nested relational algebra [19] extended with “provenance
aware” semantics. The extended algebra operators define color-preserving functions to
propagate colors. A query may create new objects. A new object has the special col-

or L.

Consider the SQL query SELECT A, 9 AS B FROM R (note the name of the second out-
put attribute) over the relation modeled in Figure 8.6(a). This query creates a new rela-
tion instance with the tuple (3, 9). The color of the output attribute 2 is propagated
because that attribute is a copy of the input attribute a. The output attribute B, the out-
put tuple, and the output relation have the color L because they are all new. Figure

8.6(b) illustrates the query result.

Although our work is not about propagating colors, a node’s color can be propagated
in our approach as well (because a cloaking scheme can leave the node’s color un-
changed if the node is already colored). Also, as seen in the equation for N, in Section

8.2.2, our formal model always colors result nodes.

Our formal model for cloaking does not assign colors to new nodes, because we only

consider input nodes. (Again, see the equation for N, in Section 8.2.2.) However, an

328

additional cloaking scheme may be used to color output nodes, without affecting our
model.

8.4.3. Annotation Propagation

We now review MONDRIAN [50], another system to represent and propagate annota-
tions. This system includes an extension of the relational model to represent annota-

tions, and an extension of relational algebra to propagate annotations.

MONDRIAN introduces the notion of a block, which is a non-empty subset of fields
in a tuple. An annotation is a label attached to a block. An annotation is represented
by a color, and a block with an attached annotation is a color block. A color block may
have one or more colors (whereas Buneman and others allow only one color per ob-
ject). A field (in a tuple) may be in zero or more color blocks. The set of fields in a
color block can vary between tuples. That is, the definition of blocks and association

of colors (to blocks) is at the instance level, not at the schema level.

R ZgrayR
A B [od A B [od
7 3 3 7
4 ? s 4 2
1 6 9

Figure 8.7: An instance of a MONDRIAN relation and the result of a block selection operation

Figure 8.7 shows an instance of the relation R (3, B, C). Thick borders around cells
indicate blocks. The gray block in the first tuple contains the fields A and B, but the
gray block in the second tuple contains only a. Field c in the second tuple is in the

slate block. Field B in the second tuple is in a block that is colored both gray and slate.

329

MONDRIAN uses a language called color algebra for querying. This algebra includes
special operators to project, select, and merge blocks. Each operator in the algebra de-
fines a fixed coloring function that decides how colors are propagated. Only the block-
selection operator X accepts an explicit color; the other operators implicitly choose a
color. We illustrate the use of coloring functions in MONDRIAN using the block-

selection operator.

The block-selection operator does three things: It filters out tuples that do not contain
any block of the input color, it assigns only the input color to blocks that contain the
input color, and it removes all colors from blocks that do not contain the input color.
For example, Figure 8.7 shows the result of the query 2,.., R. The result excludes the
last input tuple because that tuple does not contain any block colored gray. The input
blocks colored gray are output as they are; the input block colored both gray and slate

is colored only gray; and the slate block is not colored anymore.

In our approach, cloaking schemes are not fixed and they are independent of operators
and queries. (In fact, the same cloaking scheme may be used for different queries.) Al-
so, in