
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

3-12-2009

A Framework for Superimposed Applications : A Framework for Superimposed Applications :

Techniques to Represent, Access, Transform, and Techniques to Represent, Access, Transform, and

Interchange Bi-level Information Interchange Bi-level Information

Sudarshan Srivivasa Murthy
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Murthy, Sudarshan Srivivasa, "A Framework for Superimposed Applications : Techniques to Represent,
Access, Transform, and Interchange Bi-level Information" (2009). Dissertations and Theses. Paper 5976.
https://doi.org/10.15760/etd.7846

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5976&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5976&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5976
https://doi.org/10.15760/etd.7846
mailto:pdxscholar@pdx.edu

A FRAMEWORK FOR SUPERIMPOSED APPLICATIONS:

TECHNIQUES TO REPRESENT, ACCESS, TRANSFORM, AND INTERCHANGE

BI-LEVEL INFORMATION

by

SUDARSHAN SRINIVASA MURTHY

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

Portland State University
©2009

UMI Number: 3368252

Copyright 2009 by
Murthy, Sudarshan Srinivasa

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3368252

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

DISSERTATION APPROVAL

The abstract and dissertation of Sudarshan Srinivasa Murthy for the Doctor of Philos

ophy in Computer Science were presented March 12, 2009, and accepted by the dis

sertation committee and the doctoral program.

COMMITTEE APPROVALS:

David Maier, Chair

Cynthia Brown

Fei Xie

Kenneth Cruikshank
Representative of the Office of Graduate
Studies

DOCTORAL PROGRAM APPROVAL:
Wu-chi Feng, Director'
Computer Science Ph.D. Program

ABSTRACT

An abstract of the dissertation of Sudarshan Srinivasa Murthy for the Doctor of Phi

losophy in Computer Science presented March 12, 2009.

Title: A Framework for Superimposed Applications: Techniques to Represent, Access,

Transform, and Interchange Bi-level Information

Superimposed applications (SAs) superimpose (that is, overlay) new information and

structures (such as annotations) on parts (such as sub-documents) of existing base in

formation (BI). In this setting, SA developers and users work with bi-level informa

tion, a combination of the superimposed information and the referenced BI parts.

We have designed a framework to assist SAs in the following bi-level-information-

management activities: representation, access, transformation, and interchange. This

framework defines the abstraction context agent to activate any BI part and to retrieve

information from the context of the part. It includes means to represent and access bi-

level information in a conceptual model (the Entity-Relationship model augmented

with relationship patterns), the relational model, the XML model, and an object mod

el. It defines a mechanism to transform bi-level information to alternative forms using

queries expressed in existing query languages and executed by existing query proces

sors. It also includes a formal model to improve the expression and execution of cer

tain classes of queries. Finally, the framework employs the notion of 57 dependency

graphs to facilitate interchanging of bi-level information among SA users.

Specifically for the XML model, the framework defines Sixml, an XML markup lan

guage to represent bi-level information; Sixml DOM, an extension of the XML Docu

ment Object Model (DOM) to efficiently manipulate Sixml documents at run time;

and Sixml Navigator, an alternative path navigator that improves both query expres

sion and execution.

Using our framework, an SA can reference heterogeneous BI parts in situ, allowing

multiple simultaneous organizations of the same BI parts, while preserving their origi

nal context. Also, the SA developer may employ the data model and schema that is

appropriate for each SA.

We have evaluated each framework component using a method appropriate for the

component. For example, we have implemented the context-agent abstraction to refer

ence BI parts of the following types: Microsoft Word, Excel, and PowerPoint; XML,

HTML, PDF, audio, and video. We have built six SAs that employ distinct schemas

(in different data models). We have implemented the design of Sixml DOM and Sixml

Navigator, used them with existing query processors, and experimentally evaluated the

implementations' performance.

Acknowledgements

I thank my advisor David Maier for his patient guidance throughout this research.

Each time I had an "idea", he tried to find some use for it, or found a way to improve

it. (Frankly, I wonder how he tolerated some of my early ideas.) In the process, he

gently helped me build and improve my own process to create and validate ideas. To

day, I confidently say that the contributions in this research are mine, but I also cate

gorically say that each contribution is better because of Dave.

I thank Lois Delcambre for her support throughout this research. I thank the other

members of my committee—Cynthia Brown, Kenneth Cruikshank, Alon Halevy, and

Fei Xie—for their valuable advice.

I thank my research collaborators at Virginia Tech and Villanova University for vali

dating key portions of this research. I particularly thank Ed Fox, Kapil Ahuja, Uma

Murthy, and Lillian Cassel. I also thank the students at Virginia Tech and at the

School of Science and Technology, Beaverton for trying out some applications of this

research.

Several colleagues provided constructive feedback along the way. I am especially

thankful to Dave Archer, Shawn Bowers, Laura Bright, Rafael Fernandez-Moctezuma,

Bill Howe, Jin Li, Vassilis Papadimos, Susan Price, Nick Rayner, Len Shapiro, James

Terwilliger, Pete Tucker, Kristin Tufte, and Mathew Weaver.

ii

Jo Ann Binkerd, Dana Director, Lorie Gookin, Cindy Pfaltzgraff, Shiva Gudetti, Kathi

Lee, Renee Remillard, and Leai Rose, all cheerfully helped me in various administra

tive matters.

I am grateful to the US National Science Foundation, whose funding partially sup

ported this research.

I am deeply indebted to my parents for inculcating in me the curiosity and commit

ment needed to engage in any research. Dad, I am sorry I did not complete this re

search soon enough.

My wife must love me a lot, because nothing else can explain her sacrifice and pa

tience during this research. Thank you, Karin, for holding the fort, for reviewing the

drafts, and for always keeping a smile. Also, thanks for gently nudging me to complete

this research soon so we can focus on other things.

Table of Contents

m

Acknowledgements i

List of Tables xii

List of Figures xiv

1. Introduction 1

1.1. The Real-world Objective 2

1.2. Superimposed Information and Superimposed Applications 4
1.2.1. Sidepad 5
1.2.2. SuperMix 8
1.2.3. The HTML+M Editor 11

1.3. The Research Objective 12

1.4. Related Work 15

1.5. Organization 17

2. Research Summary 20

2.1. Contributions 20
2.1.1. Context Information and Bi-level Information 22
2.1.2. Representing, Accessing, Transforming, and Interchanging Bi-level
Information 23

2.1.2.1. Representing Bi-level Information 23
2.1.2.2. Accessing Bi-level Information 25
2.1.2.3. Transforming Bi-level Information 27
2.1.2.4. Interchanging Bi-level Information 29

2.1.3. Superimposed Application Shareable Services 30
2.1.4. Deployment Guidelines 31

2.2. Framework Overview 32

2.3. Evaluation Overview 35

2.4. Topics Excluded 37

2.5. A Comparison of Related Systems 38

iv

2.6. Summary 39

3. Representing and Accessing Base References and Contexts 41

3.1. Introduction 41

3.2. Representing and Accessing Base References 45
3.2.1. Descriptors as Delimited Strings 45
3.2.2. Descriptors as XML Fragments 46
3.2.3. Referencing Base Parts using URIs 49
3.2.4. An Object Model for Base References 51
3.2.5. Storing and Accessing Base References 52

3.3. Representing and Accessing Context Information 54
3.3.1. Representing Context Information 54
3.3.2. Accessing Context Information 57
3.3.3. Activating Base Parts 58

3.4. Supporting New Context Elements and Base Types 60

3.5. Mark Robustness 61
3.5.1. Mark Invalidation 61

3.5.1.1. Context Invalidation 61
3.5.1.2. Address Invalidation 62
3.5.1.3. Intent Invalidation 63

3.5.2. The Role of Addressing Schemes 64
3.5.3. Improving Mark Robustness 64

3.6. Evaluation 65
3.6.1. Implementation 66

3.6.1.1. SPARCE 66
3.6.1.2. Context Agents 66
3.6.1.3. Superimposed Applications 70
3.6.1.4. Clipboard and UI Widgets 71
3.6.1.5. Development and Testing Aids 72

3.6.2. Architectural Qualities 73
3.6.2.1. Functionality 73
3.6.2.2. Reusability 74
3.6.2.3. Modifiability 75
3.6.2.4. Extensibility 76
3.6.2.5. Package Flexibility 77
3.6.2.6. Testability 78
3.6.2.7. Usability 79

V

3.6.3. Design Decisions 80
3.6.3.1. Flexible Representation and Storage of Base Descriptors 80
3.6.3.2. Use of High-level Abstractions 81
3.6.3.3. Representing and Accessing Context as Hierarchical Property Sets 84
3.6.3.4. Use of the Clipboard 86

3.6.4. Evaluation Summary 86

3.7. Related Work ...87
3.7.1. Predecessors of SPARCE 88
3.7.2. Early Visions 88

3.7.2.1. Memex 88
3.7.2.2. Evolutionary List File 89

3.7.3. Hypermedia Systems 90
3.7.3.1. IRIS Hypermedia Services 93
3.7.3.2. Dexter 95

3.7.4. Web-based Annotation Systems 97
3.7.5. Multivalent Document Model 99
3.7.6. Compound Documents -. 101

3.8. Summary and Conclusions 105

4. Modeling Bi-level Information 107

4.1. Introduction 108

4.2. Motivating Example 110

4.3. Modeling Marks and Use of Marks 113
4.3.1. Associating Marks with Entities 114
4.3.2. Associating Marks with Entity Attributes 115
4.3.3. Deriving Attribute Values 116
4.3.4. Associating Marks with Relationships 117
4.3.5. Associating Marks with Relationship Attributes 118

4.4. Generating Relational Schemas 119
4.4.1. Generating Schemas for the EMark and AMark Patterns 120
4.4.2. Generating Schemas for the AExcerpt Pattern 121
4.4.3. Generating Schemas for the RMark Pattern 124
4.4.4. Generating Schemas for the RAMark Pattern 126

4.5. Generating XML Schemas 127
4.5.1. Overview of the Schema-Generation Procedure 127
4.5.2. Element Types for Patterns of Use of Marks 130

vi

4.5.3. Generating Schema for the EMark Pattern 136
4.5.4. Generating Schema for the AMark and AExcerpt Patterns 137

4.6. Modeling Mark Descriptors 138
4.6.1. Conceptual Modeling 139
4.6.2. Relational Schema143
4.6.3. XML Schema 144

4.7. Modeling Context Information 147

4.8. Querying Bi-level Information 152

4.9. Evaluation 156
4.9.1. Sidepad 156
4.9.2. The Superimposed Scholarly Review System (SISRS) 157
4.9.3. The Superimposed System-Information Browser (SSIB) 160

4.10. Related Work 161
4.10.1. Relationship Patterns 161
4.10.2. Conceptual Models for Links 164

4.10.2.1. Topic Maps 165
4.10.2.2. Structured Maps 165
4.10.2.3. Superimposed Schematics 167
4.10.2.4. The Nested-Context Model 168
4.10.2.5. The Hypertext Design Model 170

4.11. Summary and Conclusions 172

5. Transforming Bi-level Information 176

5.1. Introduction 177

5.2. Representing Bi-level Information 180
5.2.1. Nested Schema 181
5.2.2. Normalized Schema 184
5.2.3. Impact of Representation Scheme on Si-only Queries 187

5.3. Goals and Strategy for Bi-level Querying 188
5.3.1. Goals 188
5.3.2. Strategy for the XML Model 191

5.4. Summary and Conclusions 193

6. Optimizing Bulk Access to Context Information 195

vii

6.1. Introduction 195

6.2. Bulk Access Considerations 199

6.3. Design 202
6.3.1. Pooling Policies 206
6.3.2. Choosing a Pooling Policy 209

6.3.2.1. Choosing a Pooling Policy Heuristically 209
6.3.2.2. Issues in Choosing a Pooling Policy Analytically 211

6.4. Evaluation 213
6.4.1. Implementation : 213
6.4.2. Experiments 217

6.4.2.1. The Tiny Dataset 218
6.4.2.2. The Sidepad Dataset 221
6.4.2.3. The SISRS Dataset 224
6.4.2.4. The SSIB Dataset 228
6.4.2.5. Evaluation Summary 230

6.5. Related Work 231
6.5.1. Structuring Schemas and Region Indexes 231
6.5.2. Object Management Systems 235

6.6. Summary and Conclusions 236

7. Representing and Manipulating XML Bi-level Information 238

7.1. Introduction 239

7.2. Overview of DOM 244

7.3. Diversity and Multiplicity of Mark Associations 248
7.3.1. DOM Node Types and Mark Associations 248

7.3.1.1. Serialization and Validation Considerations 249
7.3.1.2. DOM Node Types Permitted for Mark Association 250

7.3.2. Mark-Association Element Types 251

7.4. Design of Sixml DOM 253
7.4.1. Overview 253

7.4.1.1. Sixml Nodes 254
7.4.1.2. Mark-Association Nodes 255

7.4.2. Reading a Sixml document 256
7.4.2.1. Creating a Sixml DOM Tree 256
7.4.2.2. Detecting Mark-Association Elements 258

viii

7.4.3. Managing and Using Marks 261
7.4.3.1. Mark Repositories 261
7.4.3.2. Marks 262
7.4.3.3. Mark Descriptors and Context 263
7.4.3.4. Deriving a Node's Value from Mark Context 265

7.4.4. Serializing a Sixml Document 266

7.5. Integration with DOM 268

7.6. Evaluation 270
7.6.1. Implementation 270

7.6.1.1. Overview 271
7.6.1.2. Experience 274

7.6.2. Applications 277
7.6.3. Experiments 279

7.6.3.1. Overview of the Datasets 279
7.6.3.2. Ease of Accessing Mark Associations and SI 281
7.6.3.3. Scalability 283
7.6.3.4. Savings when Traversing Mark Associations 285
7.6.3.5. Savings when Traversing SI 288
7.6.3.6. Overhead to Traverse Non-Sixml Data 293
7.6.3.7. Evaluation Summary 294

7.7. Related Work 295
7.7.1. Embedding Links 295

7.7.1.1. XLink 296
7.7.1.2. Active XML 298

7.7.2. DOM Extensions 300

7.8. Summary and Conclusions 301

8. A Model for Improving Query Expression and Execution 304

8.1. Introduction 304
8.1.1. A Tree Model for Cloaking 304
8.1.2. Application to Bi-level Querying 306
8.1.3. Non-Bi-level-Query Applications 308
8.1.4. Benefits from Cloaking 310
8.1.5. Discussion 313

8.2. Modeling a Cloaking Query Processor 314
8.2.1. A Formal Model 314
8.2.2. Architectural Reference Model 318

ix

8.2.3. Discussion 319

8.3. Representing and Assigning Colors 320

8.4. Related Work 323
8.4.1. The Multi-colored Tree Model 323
8.4.2. Data Provenance 326
8.4.3. Annotation Propagation 328

8.5. Summary and Conclusions 329

9. Querying XML Bi-level Information 331

9.1. Overview of XML Querying 331
9.1.1. Overview of XPath 331

9.1.1.1. The XPath Data Model 332
9.1.1.2. XPath Expressions 334
9.1.1.3. Evaluating XPath Expressions 337

9.1.2. Overview of XSLT 340

9.2. Representing Sixml Data 344

9.3. Processing Bi-level Queries 348
9.3.1. Overview of a Bi-level Query Processor 348
9.3.2. Navigator State and Scope 350
9.3.3. Navigating Bi-level Information 353

9.3.3.1. Overview 353
9.3.3.2. Selecting Multiple Nodes in a Step 355
9.3.3.3. Retrieving Information on Demand 358

9.3.4. Cloaking Information 359

9.4. Evaluation 362
9.4.1. Implementation 362
9.4.2. Applications 364

9.4.2.1. Drafting a Survey Paper 364
9.4.2.2. Creating Alternative SI Structures 365
9.4.2.3. Creating Mash-ups 366

9.4.3. Experiments 368
9.4.3.1. Retrieving SI (Ql) 370
9.4.3.2. Retrieving Mark Associations (Q2) 374
9.4.3.3. Retrieving Mark Descriptors (Q3) 375
9.4.3.4. Listing Base Documents Referenced (Q4, Q7) 380
9.4.3.5. Focused and Unfocused Path Expressions (Q5) 381

X

9.4.3.6. Micro Queries (Q6, Q8) 382
9.4.4. Evaluation Summary 383

9.5. Related Work 384
9.5.1. Active XML 385
9.5.2. MetaXPath 387
9.5.3. Data Integration Systems 389
9.5.4. Tools to Produce Data Mash-ups 390

9.6. Summary and Conclusions 391

10. Interchanging Bi-level Information 396

10.1. Introduction 396

10.2. Si-Dependency Graphs 400

10.3. Creating Packages 402

10.4. Unpacking Packages 404
10.4.1. Concepts and Terms 405
10.4.2. The Unpacking Process 406
10.4.3. Exceptions 409

10.5. Evaluation 410

10.6. Related Work 412

10.7. Summary and Conclusions 414

11. Summary, Future Work, and Conclusions 417

11.1. Summary 417

11.2. Future Work 421
11.2.1. Declaratively Producing Data Mash-ups 422
11.2.2. Improving the Information-Retrieval Experience 425

11.3. Conclusions 428

Bibliography 430

Appendix A: Sixml Element Types 443

xi

Appendix B: Sixml DOM Interface Definition 449

B.l. Level 1 Core 449

B.2. Level 2 Core 454

B.3. Level 3 Load and Save 455

Appendix C: Queries Used in the Evaluation of the Bi-level Navigator 456

C.l.XPath Queries 456

C.2. XSLT Style Sheets 458

List of Tables

Xll

1.1 Example context information that may be retrieved from a mark 6
1.2 Common SA design and development activities 13

2.1 Activities on bi-level information and the data models emphasized 23
2.2 A comparison of System S and some related systems 40

3.1 Overview of context agents implemented for use with SP ARCE 68
3.2 Key design decisions and the architectural qualities to which each deci

sion contributes 87

4.1 Base sources SSIB consults 112
4.2 Correspondence of ER constructs and patterns of use of marks to XML

constructs 129

5.1 Summary of goals and strategy for bi-level querying 191

6.1 Time (in milliseconds) to retrieve excerpts and to initialize context agents
using the interactive sequence 198

6.2 Pool size and the number of context-agent switches for different pooling
policies 209

6.3 Data characteristics and pooling policies predicted using heuristics 210
6.4 Overview of the datasets used to evaluate the bulk accessor 218
6.5 Time (in milliseconds) to retrieve excerpts for the tiny dataset 220

7.1 Types of DOM nodes 246
7.2 Sixml documents used in the experiments to measure performance when

retrieving mark associations and SI 280
7.3 Time (in milliseconds) to retrieve mark associations and SI (separately)

over 20 iterations using the Sixml DOM implementations 284

9.1 Kinds of XPath nodes, and kinds of their children, siblings, and parent 333
9.2 Possible movements among XPath nodes 339
9.3 Possible state transitions of the bi-level navigator due to movements

among XPath nodes 351
9.4 Movements to retrieve context information 356
9.5 Movements to retrieve a mark descriptor 357
9.6 Queries used to evaluate the bi-level navigator 370
9.7 Time (in milliseconds) to retrieve SI and mark associations for different

navigator and document combinations in the normalized schema 372

xiii

9.8 Time (in milliseconds) to retrieve SI and mark associations for the SISRS
dataset in the normalized and nested schemas 374

9.9 Time (in seconds) to retrieve unique mark descriptors 379
9.10 Time (in seconds) to list the unique base documents referenced 380
9.11 Number of navigator movements attempted to retrieve comment text 3 82
9.12 A comparison of the performance of queries that exploit micro queries

with queries that do not 383
9.13 A summary of capabilities that the different combinations of XML tools

provide to a developer in a bi-level query setting 392

List of Figures

XIV

1.1 Multiple information structures superimposed over existing information 3
1.2 Marks referencing base information 5
1.3 A Sidepad document instance 6
1.4 A PDF mark activated 6
1.5 A Sidepad document and selected base information transformed to HTML 7
1.6 A SuperMix composition 9
1.7 A SuperMix cohort playing 10
1.8 An HTML+M document being edited 11

2.1 A framework to support design, development, and deployment of SA 33
2.2 A reference model for the framework to support design, development, and

deployment of SAs 34

3.1 The SPARCE reference model 43
3.2 Interactively creating marks 43
3.3 Examples of initiating mark creation interactively 44
3.4 Base-part descriptors represented as normalized XML fragments 47
3.5 Example use of mark descriptors in SI represented as XML 48
3.6 A context-free grammar to construct URIs in the sparce scheme 49
3.7 The SPARCE object model 53
3.8 Context information from marks displayed in the Context Browser 55
3.9 Utility to construct and test a mark descriptor 73
3.10 A superimposed application's view of SPARCE 82
3.11 A comparison of hypertext links and marks 91

4.1 System information displayed in SSIB I l l
4.2 A conceptual schema for SSIB 113
4.3 Associating marks with an entity 115
4.4 Associating marks with entity attributes 116
4.5 Deriving the value of an entity's attribute from a mark's excerpt 117
4.6 Associating marks with a relationship 118
4.7 Associating marks with a relationship attribute 119
4.8 Partial relational schema for the Mark entity type 120
4.9 Relational schema generated for EMark and AMark relationship types 121
4.10 Relational schema generated for an AExcerpt relationship type 122
4.11 View definition generated for an entity type participating in an AExcerpt

relationship 123
4.12 Relational schema generated for an RMark relationship type 125
4.13 Relational schema for an RAMark relationship type 126

XV

4.14 A simplified XML Schema instance document for the different patterns of
use of marks 131

4.15 XML schema generated for an EMark relationship type 136
4.16 XML schema generated for the AMark and AExcerpt relationship types.... 138
4.17 A conceptual model for a mark descriptor 141
4.18 Relational schema generated for mark descriptors 144
4.19 XML schema for SPARCE descriptors and XPointer pointers 146
4.20 Example use of SPARCE descriptor and XPointer pointer 147
4.21 A conceptual schema for context information 148
4.22 Partial context information for a mark to cells in a spreadsheet represented

using a generic schema 150
4.23 Partial context information in a schema determined by a context agent

developer 151
4.24 A conceptual schema for SI created using Sidepad 157
4.25 A conceptual schema for SI created using SISRS 158
4.26 XML representation of a SISRS document 159
4.27 Bi-level XSLT templates to generate author feedback in HTML format

from SISRS data 159
4.28 The complete conceptual schema for SSIB 160
4.29 Example application of relationship patterns 163
4.30 A structured map for OS updates 166

5.1 A reference model for a bi-level query system 180
5.2 Example bi-level information in the nested schema 183
5.3 Example bi-level information in the normalized schema 186
5.4 A reference model for an XML bi-level query processor 193

6.1 Sequence of tasks to retrieve an excerpt from a mark in an interactive
setting 197

6.2 Architecture of the bulk accessor 203
6.3 Sequence of tasks to retrieve excerpts from marks using the bulk accessor. 205
6.4 Simplified Transact-SQL code to integrate the bulk accessor into Micro

soft SQL Server 2005 215
6.5 Average time (in milliseconds) to retrieve an excerpt for the tiny dataset... 221
6.6 Average time (in milliseconds) to retrieve an excerpt for the Sidepad

dataset 223
6.7 Average time (in milliseconds) to retrieve an excerpt for the SISRS data-

set, with and without clustering 225
6.8 Moving average of time (in milliseconds) to retrieve excerpts for the

SISRS dataset 228
6.9 Average time (in milliseconds) to retrieve an excerpt for the SSIB dataset. 230
6.10 A region-inclusion graph for the event-log structuring schema 233

xvi

7.1 A Sixml document in the normalized schema showing marks associated
with an element, an attribute, and text content 240

7.2 A class diagram for Sixml DOM 245
7.3 A simplified DOM tree for a Sixml document 247
7.4 Procedure to create a mark-association node from a uni-mark type of

mark-association element 257
7.5 A simplified Sixml DOM tree for a Sixml document 258
7.6 Pseudo code to serialize a Sixml element, its contents, and mark

associations 267
7.7 The Sixml Browser and Editor 277
7.8 Procedures to get mark associations of a target node using DOM 282
7.9 Procedures to get mark associations and SI using Sixml DOM 282
7.10 A comparison of the Sixml DOM implementations when traversing mark

associations in the SISRS dataset 286
7.11 A comparison of the Sixml DOM implementations when traversing mark

associations in the SSIB dataset 287
7.12 A comparison of the Sixml DOM implementations when traversing SI in

the SISRS dataset 291
7.13 A comparison of the Sixml DOM implementations when traversing SI in

the SSIB dataset 292
7.14 Overhead to traverse non-Sixml data using Sixml DOM, compared to

DOM 294

8.1 A cloaked tree and the scope of two operations over the tree 305
8.2 A cloaked tree for a Sixml document in the nested schema and the scope

of two classes of queries 308
8.3 Partial XML data generated for a single cell in a Microsoft Excel

spreadsheet 309
8.4 An architectural reference model for a cloaking query processor 318
8.5 An example MCT database 324
8.6 An illustration of data provenance 327
8.7 An instance of a MONDRIAN relation and the result of a block selection

operation 328

9.1 XPath representation of an XML document 333
9.2 Pseudo-code outlining the procedure to evaluate a step in an XPath

expression 338
9.3 Overview of XPath and XSLT processing 339
9.4 An example of transforming an XML document using XSLT 343
9.5 Representation of a Sixml document in the normalized schema using the

extended XPath data model 346
9.6 Representation of a Sixml document in the nested schema using the ex

tended XPath data model 347

XV11

9.7 The architecture of abi-level query processor 349
9.8 The bi-level navigator state diagram 352
9.9 Pseudo-code outlining movement to the first child of the current XPath

node 356
9.10 Pseudo-code outlining movement to the next sibling of the current XPath

node 357
9.11 Bi-level information displayed as a timeline 365
9.12 A map-based mash-up 367
9.13 Thumbnail of the test documents in the normalized schema 371
9.14 Percentage time saved using the bi-level navigator with scope SI when re

trieving SI in the normalized schema 376
9.15 Percentage time saved using the bi-level navigator with scope Association

when retrieving mark associations in the normalized schema 377
9.16 Example data document with metadata populated using the MetaXPath

data model 388

10.1 A reference model for the run-time service to interchange bi-level
information 399

10.2 An Si-dependency graph 401
10.3 A Sixml document describing the mark associations an SI document uses. 403
10.4 A procedure to process document descriptors when unpacking an SI

package 408

1. Introduction

Imagine a researcher co-authoring a paper. In his research for the paper, he finds rele

vant information in a variety of sources: HTML (Hypertext Markup Language [61])

pages on the World Wide Web {the web), PDF (Portable Document Format [6]) doc

uments on the web and on compact discs (CDs), Microsoft (MS) Excel spreadsheets

and MS Word [96] documents on the local file system, and so on. He identifies rele

vant sub-documents (that is, portions of documents) and adds annotations containing

clarifications, questions, and conclusions in reference to the sub-documents. He fre

quently reorganizes the information he has collected and the added annotations to re

flect his current perspective. He intentionally keeps his information structure loose so

he can easily rearrange the content. When he has collected sufficient information, he

imports the sub-documents and his annotations into a word-processor document.

As he writes his part of the paper using a word-processor, the researcher may revisit

his sources to review information in its original context. For example, he may view a

selection in a PDF document using Adobe Acrobat (Acrobat) [8]. Also, as he writes

the paper, he may sometimes reorganize its contents, including the imported informa

tion, to suit the flow. He may search within an imported annotation, the annotated sub-

document, or the surrounding context of the sub-document. He may mix some of the

imported information with other information in the paper and transform the mixture to

suit his presentation needs. At one or more points in the development of the paper, he

2

sends his version of the paper to his co-authors, possibly along with the background

material he has collected.

1.1. The Real-World Objective

Most researchers will be familiar with manual approaches to scenarios similar to the

one just described. They may also be familiar with approaches that involve digital

documents and annotations. This dissertation is concerned with the digital approaches.

There are two kinds of digital annotations: inline and stand-off. An inline annotation

is stored within the annotated document, placed near the relevant target sub-document,

similarly to an annotation made on a hard copy of the document. An inline annotation

makes it easy to relate the annotation to its target, but it assumes the annotator owns

the target document. A stand-off annotation is stored separately from the target docu

ment, using some means of relating the annotation with its target. (For example, the

annotation may include a page number.) A stand-off annotation makes it harder to re

late the annotation to its target, but it does not require the annotator to own the target

document because the annotation is superimposed on its target.

Stand-off annotations facilitate multiple simultaneous organizations of existing infor

mation, without replicating that information. For example, a reader might superimpose

a list structure over a set of sub-documents, whereas another reader might superimpose

a hierarchy over the same set of sub-documents. Figure 1.1 illustrates such superim

posed structures.

3

3. This document is ...
4. The idea is to... """--

A superimposed list

¥& WSsl-

Base Docum

~~~ -^ 
n 

I I 1 1 T l 

INI II 

entbl~---.._ 

-.?_ .Observations 
• the square looks good 

• Questions 
' - - - • What is the gist of...? 

• Why is the color...? 
• Summaries 

• 

Base Document D2 A superimposed hierarchy 

Figure 1.1: Multiple information structures superimposed over existing information. A dashed 
arrow denotes a reference to an existing document or a sub-document. 

This dissertation is concerned with superimposed information (SI), which is new in

formation and structures overlaid on base information (BI), which is existing docu

ments and sub-documents. For example, a reader's annotation on a text selection in a 

PDF document is SI. The annotated PDF document itself is BI. 

Broadly, our real-world objective is to support the design, development, and deploy

ment of applications that facilitate SI. Specifically, we aim to support the following 

application capabilities: 

1. Select arbitrary portions of BI of many kinds (such as PDF, HTML, and MS 

Excel) in multiple locations (such as the web and a local disk). 

2. Create and maintain SI of different schema in different data models, such as the 

relational [41] and XML (Extensible Markup Language [43]) models. 

3. Activate BI (that is, show BI) in its original context by opening the base document 

in its original application and navigating to the region of interest, as well as bring 

the context of BI (such as enclosing text) to an application without visually activat

ing BI. 



4 

4. Group and link SI and BI, reorganize them as needed, and maintain multiple si

multaneous organizations. 

5. Combine SI and the referenced BI, and select and transform the combined bi-level 

information. 

6. Place references to BI in traditional documents such as MS Word documents and 

HTML pages. 

7. Interchange SI, the references to BI, and the BI itself, with other application users. 

1.2. Superimposed Information and Superimposed Applications 

In this section, we introduce some terms frequently used in this research, and preview 

three applications (namely Sidepad, SuperMix, and the HTML+M Editor) to illustrate 

the range of applications that can be developed using our research. 

As mentioned before, superimposed information is data placed over existing base in

formation sources to help organize, access, connect and reuse information elements in 

those sources [88]. SI references BI in situ using an abstraction called a mark [32]. In

formation exists in two layers in this setting: SI in the superimposed layer, BI in the 

base layer. Figure 1.2 shows these layers of information and the use of marks as refer

ences. 

The combination of SI and the referenced BI is called bi-level information. For exam

ple, a reader's comment superimposed on some text in a PDF document, and the 

commented text from the base layer, taken together, is bi-level information. Opera-



5 

tions such as transformation (illustrated in Section 1.2.1) and interchange (described in 

Chapter 10) frequently involve bi-level information. 

An application used to select and activate BI is a base application (BA). For example, 

Acrobat is a typical base application when interacting with a selection in a PDF docu

ment. An application used to create and view SI is a superimposed application (SA). 

An SA is like a traditional application, but with the ability to incorporate marks in SI 

and the ability to activate and access BI via marks. 

Superimposed 
Layer 

Information Information Information 
Source \ Sourcej ''' Source^ 

V x ' 
Heterogeneous sources: Word, Excel, PDF, HTML,... 

Figure 1.2: Marks referencing base information. This figure is an adaptation of a figure originally 
presented by Delcambre and others [32], and is shown here with permission [33] 

1.2.1. Sidepad 

Figure 1.3 shows an SI document (called Data Integration) created using an SA called 

Sidepad [111]. It shows information selections and annotations related to the topic of 

information integration. The document shown contains five items: Query Optimizer, 

Goal, Model, Definition and SchemaSQL. These items are associated with three distinct 

base documents of two kinds—PDF and HTML. A Sidepad item has a name, a de

scriptive text, and a mark (not apparent in the figure). For example, the item labeled 



Goal contains a mark into a PDF document. Garlic and Schematic Heterogeneity are 

groups, which are named collections of items and other groups. 

ffle g i t View Ti&t&atm Tools Hdp 

Gaffe 

Querv Optimizer 
integrates data from 
sources with very 

Goal T 

Mediate heterogwieeus data * 
sources v/ftftDut repScatins date. 

Model 
Provides a unified schema expressed in an o&jeci-cnented 
data (rods! that can he queried and manipulated using an 
object-oriented dialect of SQL 

Schematic Heterooeneftv 

Definition 
Data under one schema may 
be represented as metadata 
(for example, as attribute or 
class names) in anofiier. 

ScJiemaSCtL 
A knguage for uniform 
manip«iatkm of data and 
meta-data tn relational 
multi-database systems. 

& Adobe Acrobat Professional - [rtdedoiti-fin4l.pdf] [ 

*.' hie tdit yieiv Document Toofs Advanced 'h$nd&# Hefc 

• ^ ••''*> ri ,~. ^ a M 

3: Garlic Overview 
Loosely speaking, the 

j.: lobiea-reknional database 

jllwirliout acmallv itcniie 

llivithii! the Garlic ^ t e n r ! 

Garlic looks rather like a 

* B.SxUirt < 

| 4 H 3 of 8 

?)}U - W: 

goal of the Garlic projecl 

roper. Viewed from above, 

. a 

is to 

then. 

DBMS with an object-oriented 

> 

• M Q Z> - --

X 

J j 

_̂_ 

Figure 1.3: A Sidepad document instance Figure 1.4: A PDF mark activated 

In addition to manipulating items and groups, a user can activate a mark (that is, see 

BI in its original context), and browse context information such as excerpt (that is, the 

content of the marked region) and the containing paragraph from within Sidepad. Fig

ure 1.4 shows the result of activating the PDF mark associated with the item Goal. Ta

ble 1.1 shows some context information retrieved from this mark. 

Table 1.1: Example context information that may be retrieved from a mark. The information 
shown corresponds to the PDF mark of Figure 1.4 

Information Kind Name Value 

Content 

Placement 

Presentation 

Containment 

Containment 

Text excerpt provide applications and users with ... Garlic system 

Page number 3 

Font name Times New Roman 

Enclosing paragraph Loosely speaking, the goal ... 

Section heading 3: Garlic Overview 

A Sidepad document may be combined with the BI it references, and the combined 

bi-level information may be transformed to an alternative representation such as a 



7 

draft paper, a table of contents, or a timeline (when temporal data is involved). Figure 

1.5 shows the Sidepad document of Figure 1.3 transformed to a draft paper in HTML 

format. Each bullet indicates an item name. The text labeled Comment, located under

neath a bullet, is the item's descriptive text; the text labeled Excerpt is the text excerpt 

retrieved from the mark associated with the item. The URL (Uniform Resource Loca

tor [14]) attached to the bulleted text (and denoted by an underline) may be used to 

activate the mark associated with the item, just as one would from within Sidepad. 

Sidepad uses the application programming interface (API) of System S (an implemen

tation of the run-time services we have defined) to create marks, activate marks, re

trieve context information from marks, and to transform documents. Sidepad imple

ments the abstractions item and group itself, and it provides the necessary user inter

face (UI) to manipulate items and groups. 

Be Bwy Bit Be* 

Resuft-

W^WV&^ffi?*#8?" j '_ ' :" j ] 

Data Integration 
Garlic 

• Goal 

Comment: Mediate heteroge&eoas data sources without repEcatkig rWa 

Excerpt: provide applications and users with the benefits of a database with a schema — similar 
to what an object-oriented or object-relational database system might provide -- but without 
actually storing (at least the bulk of) the data within the Garlic system 

• Onery Optimizer 

Comment: Integrates data from sources wfth very different query capabilities 

Excerpt: a middleware system designed to integrate dotqfrom a broad range of data sources with 
very different query capabilities, tion of middleware is not extensible to the arbitrary systems 

" Model 

Figure 1.5: A Sidepad document and selected base information transformed to HTML 



8 

1.2.2. Super Mix 

SuperMix is an SA to compose and play multimedia presentations. A SuperMix 

composition is a sequence of cohorts, where a cohort is a set of members. A member 

has a name, a description, and is optionally associated with a mark. Depending on the 

associated base type, a member can also have duration. For example, a video clip has 

duration, whereas an HTML selection does not. Duration information is obtained from 

the context of the associated mark, if that information exists for that mark. "Playing" a 

member shows the corresponding marked content (for example, a video clip) in a spe

cific area inside a "player" window. 

Figure 1.6 shows a SuperMix composition of video clips (and their text descriptions) 

from an Indian wedding. Each row shows a member and each cohort has two mem

bers: a video and a text. The column Name contains phrases in the South-Indian lan

guage Kannada, written in Roman script using a transliteration scheme [79]. The hig

hlighted member is associated with a mark to a video clip of duration 58 seconds. The 

next member is associated with a text selection in an HTML file. The value 0 in the 

second column (in the figure) indicates that duration does not apply to this member. 

A cohort's members are presented simultaneously, whereas cohorts themselves are 

presented sequentially. A cohort's presentation is complete when its first member is 

"completely" presented, or when all its members are completely presented. (We omit 

the details, but this behavior is configurable.) All cohorts in the composition shown in 

Figure 1.6 have exactly two members: a video clip and a text description. In this case, 

a cohort's presentation is deemed complete when its first member (the video) is com-



9 

pletely presented. Thus, playing this composition plays a series of video clips, and 

presents a text annotation with each clip. 

File Edit View Insert Play Transform Tools Help 

D fiSHieiXff • » H 
Name jDescfMpn [.Duration | a j 

From 01:56 to 02:09 in AVSEQ01_3... 14 
Text selection in file7/C:\Program Fil... 0 

warana Agamana • text 
pAda pllje 
pAda pUje • text 
Arati 
Arati • text 
hattiradaiwaru mAtra 
hattiradawaru mAtra • text 
saNNauDugoregaLu 
saNNa uDugoregaLu 

Text selection 
From 03:20 to 
Text selection 
From 04:32 to 
Text selection 
From 04:56 to 
Text selection 
From 07:39 to 
Text selection 

in file7/€:\Program Fil... 
04:29 in AVSEQ01J ... 
in fileV/CAProgram Fil... 
04:56 in AVSEQ01J ... 
in file:*7C:\Program Fil... 
06:18 in AVSEQ01J ... 
in file7/CAProgram Fil... 
08:23 in AVSEQ01J ... 
in file7/C:\Program Fil... 

0 
70 
0 
23 
0 
82 
0 
45 
0 

InMating tern Parana Agamana • text' 

Figure 1.6: A SuperMix composition 

When a cohort is presented, each of its members is presented in a separate pane. Fig

ure 1.7 shows the cohort corresponding to the member highlighted in Figure 1.6 being 

played. A video-clip is playing in the top pane of this figure; a description of this clip 

is displayed in a pane below the clip. 

To help appreciate the utility of SuperMix, we provide some details of the composi

tion in Figure 1.6. The composition provides a 49-minute overview of an Indian wed

ding that took place over a 30-hour period. The video recording of the wedding is 

about 163 minutes long and is available on three CDs. The notes on the various rituals 

in a wedding are in a single HTML document (that we created). Here are some statis

tics related to the composition: 88 cohorts, 176 members, 172 marks, four base docu

ments (three video files and one HTML document), and two base applications (MS 

Windows Media Player [103] and MS Internet Explorer [95]). 



10 

Figure 1.7: A SuperMix cohort playing. The video in the top pane corresponds to the highlighted 
member in Figure 1.6. The text in the bottom pane corresponds to the member immediately after 

the highlighted member. The video is courtesy of Gopalakrishna, and is reproduced here with 
permission [54] 

The composition in Figure 1.6 does not present video clips in the exact chronological 

order of their recording, instead it groups them by rituals, without contradicting the 

tradition (of an Indian wedding) much. That is, it creates an alternative organization 

of base information. For example, the highlighted member in Figure 1.6 refers to a clip 

from the first CD. (The corresponding ritual took place at the beginning of the wed

ding.) The video member just before the highlighted member (named swAgata-2) refer

ences a clip from the third CD (the corresponding ritual took place after the wedding 

ceremony), but that member plays before the highlighted member. 

SuperMix uses the API exposed by System S to create and activate marks, retrieve 

context information from marks, and transform compositions. SuperMix implements 

the abstraction composition, and provides the UI to create and play compositions. 



11 

1.2.3. The HTML+MEditor 

The HTML+M Editor is a word-processor-style application that allows traditional 

hyperlinks and hypermarks (which are marks represented as traditional hyperlinks) in 

a document. The SI is saved in HTML format and may be viewed in any HTML 

browser. The HTML+M Editor is based on the "HTML Editor" sample application 

available in the MS Developer Network Library archive [108]. 

File Edit Format Help 

Q Cut Ctrl+X 

~i£=s -.-?f.x--*V-

Paste Ctrl-rV 

" 3 1 Normal j j | 7 ] j ] B I U S 

w m m B AS 

| sab-goals in Query 5 to obtamtiieiaiai query: 

Q (EL, T) <- V€ (y), V4 (m, yr r) 

Note that Queries 5 and 6 are both defined in tenss of arfbrmaion sources only. 

• Qwy $ 

5, Discussion 
The G a l e query processor dSers &ndamen£aSy from the other two systems. It prodaees query plans for 
execiflioo agamst heterogeneous sources. Ii£onnaiioo Mangold and InfoMaster both produce queries, not plans. 
(InibMaster queries can be used to braid a plan exteraafjy fD^sclska 1997].) 

Among the three systems, Garlic is best equipped to estimate cost and cardinality rea&ttcaly. This advantage may 
be attributed to Gar&'s teuse of query optimization technology from DB2. 

Information Manifold's strategy is limited to fading contained rewriting* of queries. J H m H H M i f f i M i 

Ml—MMHWMIffiffW 

Figure 1.8: An HTML+M document being edited 

Figure 1.8 shows a survey paper being edited in the HTML+M Editor. It shows the 

user associating a hypermark with a selection. The user has already associated a 

hypermark with another region of the survey paper—the last two words in the first pa

ragraph of Section 5 (the citation "Duschka 1997")—as indicated by an underline. 

When this document is viewed in an HTML browser, clicking on a region that con

tains a hypermark activates the BI selection that the hypermark represents. 



12 

The HTML+M Editor uses the API of System S to insert hypermarks into documents. 

The same API is also used when a hypermark is activated inside an HTML browser. 

The HTML+M Editor implements the word-processing features. 

1.3. The Research Objective 

Our research objective was to develop a comprehensive and generic framework that 

supports the design, development, and deployment of any SA that supports any subset 

of the application capabilities listed in Section 1.1. In this section, we briefly describe 

the rationale for this research objective, and summarize the considerations and features 

of the framework developed. We begin with the rationale for the research objective. 

Different S As are likely to be developed for different goals, just as different traditional 

applications have been developed for different goals. For example, one may use MS 

Word to write papers, but use MS PowerPoint [96] to prepare presentations. These ap

plications have different information models, support different use cases, and employ 

different UIs. Similarly, the SAs Sidepad, SuperMix, and the HTML+M Editor have 

different SI models, support different use cases, and employ different UIs. 

Regardless of the differences in the SI and UI models they employ, all SAs afford 

some common capabilities to their users: associate SI with marks; activate marks; re

trieve context information from marks; and others. We believe that reusable run-time 

services can be developed to support these and the other application capabilities listed 

in Section 1.1. Such services alleviate the need for an SA developer to implement the 

common capabilities. Instead, the developer can focus on SA-specific features. 



13 

As with the application capabilities, some of the development activities will also be 

similar for many SAs. Reusable solutions can support such activities as well. Table 1.2 

shows some common SA-development activities. Activities with dark shading indicate 

significant scope for reuse. Lightly shaded activities have some scope for reuse. Activ

ities not shaded have little or no scope for reuse (because they tend to be SA-specific). 

Our framework for SAs is a result of recognizing the aforementioned commonalities. 

Using our framework, developers can support marks to new kinds of base information, 

using any appropriate addressing scheme. Also within the framework, an SA can ref

erence any supported BI type, regardless of the location of the BI and references to it 

by other SAs. The framework, the SAs, and the base applications can all evolve inde

pendently with minimal adverse impact on each other. 

Table 1.2: Common SA design and development activities 

Phase 

Dcsiun 

Activity Remarks 

Design SI 

Design UI 

Implementation Implement UI 

Design conceptual, logical, and physical schemas. For 
example, an Entity-Relationship schema [25], relational 
schema, and a physical relational database respectively. 

For example, the Sidepad UI (in Figure 1.3). 

In addition to the UI for the SA, implement viewers such 
as those needed to display context information. 

Implement Si-layer operations For example, create and group items in Sidepad; persist 
Sidepad documents. 

Implement mark creation, aotivii- For example, mark a region in a PDF document, activate 
lion, and context retrieval it (as in Figure 1.4), and retrieve its text excerpt. 

Deployment ( enl"i;jiire 

Deploy 

Decide location and number of run-time components. 

Install and run components at selected locations. 

Our framework includes methodologies to represent bi-level information in different 

data models; a set of run-time services to represent, access, transform, and interchange 



14 

bi-level information; and a set of guidelines [112] to deploy the run-time services and 

the SAs that use the services. For brevity, this dissertation omits the description of the 

deployment guidelines. 

Our framework supports SI over both documents and sub-documents, but, in this dis

sertation, we mainly discuss SI over sub-documents because operations on sub-

documents present some unique challenges. We call out an operation on documents if 

it is substantially different from an equivalent sub-document operation. 

We made the following considerations in developing our framework: 

• We need to work with arbitrary SI schemas because we do not know the exact in

formation needs of the SAs that might use our framework. 

• We need to work with distributed, heterogeneous BI in situ. Thus, in general, we 

cannot modify or move BI, and, in some cases, we might even be prevented from 

copying it. We cannot preprocess BI (for example, load BI into a database) be

cause, in general, the collection of information SAs reference is not known in ad

vance. 

• We need to support the use of base applications with varying capabilities. For ex

ample, we need to work with base applications (such as MS Excel) that support in

formation structuring, as well as with applications (such as a text editor) with little 

or no such capability. 



15 

• We need to support arbitrary (but reasonable) deployment configurations for SAs. 

For example, we need to support the deployment of an SA and our framework on 

desktops. We also need to support an SA that uses our framework in a client-server 

setting. 

1.4. Related Work 

Applications and technologies that support some subset of the seven capabilities listed 

in Section 1.1 exist, but none supports the complete set of capabilities. 

Acrobat [8] and MS Word [96] support inline annotations. They do not support mul

tiple, simultaneous organizations of annotations, and they fix the annotation structure. 

For example, MS Word can display annotations (called comments) only as lists, and an 

annotation contains a user name, annotation date, and an annotation text. In both ap

plications, annotations are shared by sharing the annotated documents. 

Some hypertext systems allow creation of stand-off annotations, and help maintain 

multiple organizations of the same information. However, they tend to constrain the 

types of source, granularity of information, the location of information consulted, or 

the presentation model. For example, NoteCards [56] requires information consulted 

to be in a specific format, stored in a proprietary database, and allows references only 

to documents (called cards), not to sub-documents. It also fixes the presentation model 

for hypertext networks (that is, it fixes the user interface). IRIS [55] supports refer

ences to documents and sub-documents located anywhere in the file system, but re

quires specially constructed base applications. It allows creation of multiple hypertext 



16 

networks called webs, but a user can work with only one web at a time. It also fixes 

the UI for a web. The Dexter Hypertext Reference Model [57] allows references to 

documents (called components) and sub-documents (called anchors) of any type. It 

stores descriptions of components, anchors, and links in a storage layer. A run-time 

layer, which is not part of Dexter, displays a hypertext network. None of these systems 

(NoteCards, IRIS, and Dexter) can retrieve the excerpt of a base selection for use out 

of context. 

Systems such as OLE 2 [18] and OpenDoc [132] facilitate the creation of compound 

documents that can contain references to information in other documents. They allow 

annotations over documents and sub-documents, but they provide the user little con

trol over the kind of information that can be retrieved from a referenced document. 

Annotations are shared by sharing a compound document, but participating users must 

follow a convention for the location of referenced documents. For example, they must 

store the referenced documents in the same folder as the compound document. 

Modern HTML browsers can navigate to practically any kind of information using 

handlers (which are pieces of executable software), but they limit the kinds of data 

that can be incorporated within a document (in comparison to compound-document 

systems). Natively, browsers support references only to sub-documents the author has 

marked (using appropriate markup tags). That is, a user reading a document cannot 

create references to arbitrary portions of a document without modifying the document. 



17 

Of the systems mentioned in this section, compound document systems provide the 

best support for multiple, simultaneous organizations of annotations. Compound doc

ument systems, IRIS, and Dexter facilitate development of multiple applications to 

create and maintain stand-off annotations. However, none of these systems have the 

ability to retrieve information such as the "paragraph that contains the referenced sub-

document" from the context of a sub-document. Also, none of these systems readily 

supports querying a mixture of annotations and the annotated sub-documents. 

1.5. Organization 

This dissertation is composed of 11 chapters, including this chapter. Chapter 2 pro

vides a summary of this research, including an overview of the contributions, and an 

introduction to the various components of our framework. 

Chapters 3 through 10 describe the contributions of this research. Chapter 3 describes 

SPARCE (the Superimposed Pluggable Architecture for Contexts and Excerpts) [110], 

and shows its use to create marks, activate marks, and access context information. It 

explains how SPARCE may be extended (for example, to add support for new types of 

base information) without affecting existing components. An evaluation of an imple

mentation of SPARCE is included. 

Chapter 4 defines a methodology to conceptually model bi-level information in the 

Entity-Relationship (ER) model [25], and shows how a resulting conceptual schema 

enables queries over bi-level information [113]. The methodology includes procedures 

to translate a conceptual bi-level-information schema to a logical schema in either the 



18 

relational or the XML model. The methodology is evaluated by using it to prepare 

both conceptual and logical schemas for three SAs. Chapter 4 also introduces Sixml 

(pronounced 'siks-m&i) [120], a means of representing SI as XML: A Sixml 

document is an XML document that represents bi-level information using our metho

dology. 

Chapters 5 through 9 describe how bi-level information may be selectively trans

formed using queries in existing query languages. Chapter 5 explores the key issues in 

representing and querying bi-level information in the XML model, and outlines our 

goals and strategies to transform bi-level information. 

Chapter 6 describes a means of efficiently retrieving context information from a large 

number of marks using a bulk accessor [121], and illustrates the use of the bulk acces

sor in an existing relational query processor. It also presents the results of an experi

mental evaluation of the bulk accessor. 

Chapter 7 describes Sixml DOM [120], an object model to manipulate a Sixml docu

ment and the bi-level information derived from the Sixml document. It also describes 

implementation strategies and summarizes the results of experiments with different 

implementations. 

Chapter 8 formally presents a means of cloaking (that is, hiding) data to improve the 

performance of certain classes of queries over bi-level information. 

Chapter 9 builds on the developments in Chapters 6 through 8. It shows how a bi-level 

navigator (called the Sixml Navigator) [120] can be used in existing query processors 



19 

to evaluate queries over XML bi-level information. An experimental evaluation of the 

bi-level navigator is also presented. 

Chapter 10 describes a means of interchanging bi-level information among SA users. 

It introduces the notion of Si-dependency graphs, and shows how one of these graphs 

can be used to package bi-level information for interchange. 

Chapter 11 summarizes this dissertation and presents concluding remarks. It also out

lines two future applications for this research. 



2. Research Summary 

This chapter describes the major contributions of this research; introduces the compo

nents of our framework to assist in the design, development, and deployment of supe

rimposed applications (SAs); gives an overview of the evaluation of the framework; 

and compares the features of a reference implementation of the framework with re

lated systems. 

As mentioned in Section 1.3, we support SI over both documents and sub-documents, 

but, for simplicity, we focus the discussion on SI over sub-documents. We call out a 

situation involving entire base documents if it is substantially different from a similar 

situation involving sub-documents. 

2.1. Contributions 

The major contributions of this research are: 

1. The concept of context information for sub-documents, documents, and applica

tions (collectively called base parts) that reside in the base layer. 

2. The concept of bi-level information, which is a combination of superimposed in

formation (SI), the base-part references, and the context information obtained from 

the referenced base parts. 

3. Techniques to represent, access, transform, and interchange bi-level information, 

and an evaluation of these techniques. The techniques include: 

3.1. A system of representing context information as hierarchical property sets. 



21 

3.2. A methodology to define conceptual schemas over bi-level information, and 

procedures to translate conceptual schemas to logical schemas in the relational 

[41] and the XML [43] models. 

3.3. The abstraction context agent with an associated application-programming 

interface (API) to support retrieval of context information from arbitrary base 

parts. 

3.4. A generic means of accessing bi-level information in the relational and XML 

models. 

3.5. An architectural component called a bulk accessor to efficiently retrieve con

text information from a large number of base parts. 

3.6. The notion of bi-level queries to transform bi-level information using queries 

expressed in existing query languages. 

3.7. The notion of an XML bi-level navigator and its use in existing XML query 

processors to execute bi-level queries without modifying the processors or the 

query languages. 

3.8. A means of selectively cloaking (that is, hiding) parts of data to improve the 

expression and execution of certain classes of queries, and the application of 

cloaking to querying bi-level information. For example, it is possible to hide con

text information so that queries operating only on SI are more easily expressed and 

are more efficiently executed. 



22 

3.9. The notion of Si-dependency graphs to denote SI and the information on 

which SI depends, and the use of an SI dependency graph to package bi-level in

formation for interchange among SA users. 

4. The design of Superimposed Application Shareable Services (SASS, a set of run

time services to realize the techniques listed in Contribution 3), including architec

tural desiderata, an architectural reference model, and a reference implementation. 

5. A set of deployment guidelines for SAs and the components of SASS. 

In the rest of this section, we review each of the major research contributions. Section 

2.3 gives an overview of our approach to evaluate the contributions. 

2. /. /. Context Information and Bi-level Information 

Our first contribution is the ability to uniformly reference base parts (that is, sub-

documents, documents, and applications in the base layer) of arbitrary types; and the 

concept of context information (or just context for short) for such parts. Context 

information is the set of information that can be obtained from a base part [110]. An 

excerpt (that is, the content of a base part) is one kind of context information. 

"Containing paragraph" and "font name" are other kinds of context information. 

The second contribution is the concept of bi-level information [113], which is SI com

bined with the context information for the referenced base parts. This integrated access 

to bi-level information allows SA developers and users to produce useful artifacts and 

to provide useful services. For example, a user might transform a Sidepad document to 

an HTML document [61] (such as that shown in Figure 1.5) containing descriptions of 



23 

Sidepad items and the text excerpts of the referenced sub-documents. Access to bi-

level information also enables analytical tasks such as finding the base documents on 

which an SI document depends. Such analysis is necessary to interchange an SI docu

ment (among SA users). 

2.1.2. Representing, Accessing, Transforming, and Interchanging Bi-level Informa
tion 

Our third contribution is a collection of techniques to support the following common 

activities in relation to bi-level information: representation, access, transformation, 

and interchange. These techniques support a developer in both designing and develop

ing an SA. They also assist SA users at run time. 

This section reviews our support for the aforementioned activities, and the different 

data models we especially consider in this dissertation for these activities. Table 2.1 

lists the activities and the data models. 

Table 2.1: Activities on bi-level information and the data models emphasized. A number in paren
theses denotes the chapter where a combination of activity and data model is considered. 

Activity Data models for SI Data models for Context Information 

Conceptual representation ER (4) ER (4) 

Logical representation XML (4, 7); Relational (4); Other (3) XML (4); Property set (3) 

Access XML (7); Relational (6); Other (3) XML (7); Relational (6); Property set (3) 

Transformation XML (9); Relational (4) XML (9); Relational (4) 

Interchange Any (10) Not applicable 

2.1.2.1. Representing Bi-level Information 

Representing bi-level information involves representation of SI, the marks (which are 

references to base sub-documents) the SI employs, and the context information re

trieved from the marks. (For simplicity, we limit this discussion to sub-document ref-



24 

erences, but we also support references to base documents and applications.) We allow 

an SA developer to represent SI in any data model (such as the relational or XML 

models) with a schema appropriate to the S A. For example, each of the three S As pre

sented in Section 1.2 uses a distinct data model to represent its SI. 

We define three representations for a mark: encoded string, XML fragment, and Uni

form Resource Identifier (URI) [15]. An SA may store a mark (in any of the three 

forms) entirely within its SI, or store only a unique identifier (ID) string we assign the 

mark. A mark is assigned an ID when it is stored in a mark repository, a collection of 

marks managed by a service we define. These choices allow marks to be represented 

in data models that support string values, XML fragments, and URIs. Because XML 

fragments and URIs can be represented as strings, those representations can be used in 

any data model that supports strings; and almost every modern data model supports 

strings. Chapter 3 describes mark representations and mark repositories. 

When representing bi-level information, we do not represent a complete base docu

ment if only its sub-document is referenced. For example, if a Sidepad document ref

erences a PDF [6] sub-document, we do not model the containing PDF document. In

stead, we model only the context information (including the excerpt) retrieved from 

the referenced sub-document. 

We model context information for each mark as a hierarchical property set in which 

each kind of information element retrieved forms a part of the hierarchy, and each in

formation element retrieved has a name and a value. (See Table 1.1 for an example.) A 



25 

hierarchical property set provides a uniform representation for context information 

regardless of the base-document type, and forms the basis for representation of marks 

for other activities. Chapter 3 describes the representation of context information. 

To support designing SI, we provide a means of modeling SI, the marks, and context 

information, in both conceptual and logical data models [113]. For conceptual model

ing, we extend the Entity-Relationship (ER) model [25] with the notion of relationship 

patterns (that is, recurring relationships) [114] to associate any number of marks with 

SI entities, relationships, and attributes (of both entities and relationships). We also 

define procedures to translate conceptual ER schemas to logical schemas in the rela

tional and XML models. Chapter 4 describes this contribution. 

We have also developed methodologies to represent marks and context information in 

the relational and XML models, independent of the conceptual modeling solution. We 

have paid special attention to the association of marks with different XML constructs 

(such as elements, attributes, and text content). To this end, we have defined Sixml (SI 

represented as XML, pronounced 'siks-m&i) [118, 120], a means of expressing 

marks using only the constructs available in XML Schema [170]. We also define a 

procedure to serialize (that is, write) Sixml data using only the syntax to serialize tra

ditional XML documents [43]. Chapter 7 describes Sixml and its serialization. 

2.1.2.2. Accessing Bi-level Information 

Access to bi-level information requires access to SI, the marks, and the context infor

mation retrieved from the marks. In general, the SA developer is responsible for pro-



26 

viding access to SI because we do not know the organization of SI, a priori. The SA 

developer is also responsible for access to marks that are embedded in SI, but we de

fine an API to store and access marks in mark repositories we manage. We also define 

an API to activate marks regardless of where they are stored. 

We define an abstraction called context agent to extract context information from base 

parts. A developer can implement the API we define for this abstraction to retrieve 

context information for any base type. 

The mark-management and context-management APIs are implemented in SPARCE, 

the Superimposed Architecture for Contexts and Excerpts [110], our middleware for 

mark and context management. Chapter 3 describes SPARCE and illustrates its use to 

access context information from base parts of a variety of types including PDF, 

HTML, and Microsoft (MS) Word [96]. (SPARCE relates to the Contributions 3.1 and 

3.3, and is a part of SASS called out in Contribution 4.) 

Some access patterns (such as those involved in transforming bi-level information) of 

SAs might retrieve context information from a large number of marks. We define a 

component called the bulk accessor [121] to support such access patterns. The SA de

veloper can configure the bulk accessor to exploit data characteristics such as the 

number of marks and base sources, and the sequence of mark access. Chapter 6 de

scribes the bulk accessor, illustrates its integration into an existing relational query 

processor, and presents the results of an experimental evaluation. 



27 

In Section 2.1.2.1, we introduced our methodologies to represent bi-level information 

in the relational and XML models. In many cases, bi-level information in the relational 

model can be easily manipulated using existing mechanisms (such as user-defined 

functions [147]), but the same is not true for the XML model. To make manipulation 

of Sixml data (which is SI represented as XML) easier, we define Sixml DOM [120], 

an extension of the XML Document Object Model (DOM) [34]. Sixml DOM makes 

marks first-class objects in DOM; accommodates both marks embedded in SI and ref

erences to marks in repositories via IDs; and retrieves context information on the fly 

(using the bulk accessor). Chapter 7 describes Sixml DOM, reviews alternative im

plementations, and presents the results of an experimental evaluation. 

2.1.2.3. Transforming Bi-level Information 

An SA developer can retrieve marks and context information for the marks using our 

APIs, explicitly combine the retrieved information with SI, and transform the com

bined bi-level information to new forms (such as an HTML table of contents). Carry

ing out these tasks using imperative programming languages requires much develop

ment effort, and it can create dependence on specific programming platforms. 

(Chapter 5 illustrates these issues.) 

As an alternative, we define a means of implicitly preparing bi-level information and 

declaratively transforming it. We accomplish these tasks by representing context in

formation for the referenced base parts in the same data model as SI, or by 

representing both context information and SI in another data model (such as the rela-



28 

tional and XML models). To prepare bi-level information, an SA supplies only the SI 

and the associated marks to a transformation service we define. The service expands 

its input to include the context information appropriate to the transformation, and ex

ecutes the requested transformation. The SA or the SA user describes the transforma

tion to be executed using a bi-level query in an existing query language such as SQL 

[92]orXPath[166]. 

We do not require that a transformation service support all data models. We allow 

several transformation services, each service possibly supporting a specific data mod

el. We do not fix a query language to express transformations, but naturally expect 

that a language appropriate for the data model of the SI is employed. For example, 

SQL might be the query language if SI is in the relational model, but the language 

might be XPath or XSLT [177] if SI is in the XML model. We also do not fix a strate

gy (such as the order of retrieving information parts or the order of evaluating query 

parts) to execute bi-level queries, because the right strategy depends on factors such as 

the data model, the representation scheme, and the query language. 

We demonstrate the ability to execute bi-level queries in the XML and relational mod

els. In the relational model, we represent bi-level information using the representation 

scheme we alluded to in Section 2.1.2.1, express bi-level queries using standard SQL, 

and execute the queries using existing query processors. Chapters 4 and 6 provide the 

details. 



29 

In the XML model, we define a bi-level navigator [120] to expose bi-level information 

in the XPath data model so that bi-level information can be queried using existing 

XML query languages and query processors. The bi-level navigator accepts a Sixml 

document as input and uses Sixml DOM to prepare bi-level information. Chapter 9 

describes this navigator and illustrates its use in existing XPath and XSLT processors. 

The chapter also presents the results of an experimental evaluation using two represen

tation schemes for Sixml documents. Chapter 5 introduces the alternative representa

tion schemes. 

Finally, certain classes of bi-level queries (for example, queries that examine and re

turn only SI) can be harder to express and they might execute poorly in a bi-level in

formation setting. To improve this situation, we define a means for selectively 

cloaking (that is, hiding) parts of data to a query processor. Chapter 8 formally de

scribes cloaking and shows its application to bi-level query processing. Chapter 9 de

scribes how the bi-level navigator implements cloaking, and presents experimental 

results that illustrate the benefits of cloaking. 

2.1.2.4. Interchanging Bi-level Information 

To interchange bi-level information, we model SI, the associated marks, and the refe

renced base documents as an Si-dependency graph (which is a directed acyclic graph), 

and use the graph to package bi-level information for interchange among SA users. 

We also define a process to unpack a received package and allow the receiving user to 



30 

freely choose the location of SI and base documents extracted from the package. 

Chapter 10 describes Si-dependency graphs and their use in interchanging SI. 

2.1.3. Superimposed Application Shareable Services 
Our fourth contribution is a design for Superimposed Application Shareable Services 

(SASS, pronounced ' sas), which is a set of reusable runtime services (that is, services 

available at SA execution time) to access, transform, and interchange bi-level informa

tion. 

We have designed SASS with the following architectural qualities in mind. (Bass and 

others [13] provide an overview of qualities of software architectures.) 

• Functionality: The implementation must provide runtime services that are helpful 

in implementing the seven application capabilities listed in Section 1.1. 

• Reusability: Many SAs must be able to use the same SASS implementation. More 

than one SA instance must be able to run simultaneously on the same computer, 

and each instance must be able to interact with multiple base documents. 

• Modifiability: It must be possible to independently improve SASS and the SAs, 

with minimal adverse impact on each other. 

• Extensibility: It must be possible to support new base types and context elements 

without affecting existing SAs and context agents. 

• Package flexibility: It must be possible to change the location of the components 

of SASS to meet application and user needs. For example, we must be able to dep-



31 

loy the components of SASS on the same machine as the SA, or on a different ma

chine. (This quality is related to deployment of SASS. See Section 2.1.4.) 

• Testability: The SASS implementation must aid verification and validation of it

self, and of the SAs that use it. 

• Usability: The SASS implementation must use familiar metaphors, and follow re

levant development and UI conventions. It must also aid usability of SAs devel

oped using it. 

We have also defined a reference model (that is, a conceptual layout of the compo

nents) for implementations of SASS, and used the reference model to implement a 

prototype SASS called System S. Section 2.2 includes an overview of SASS and the 

reference model. 

2.1.4. Deployment Guidelines 

The fifth contribution is a set of guidelines to deploy SAs and the components of 

SASS [112]. For brevity, we do not present the guidelines in this dissertation, but 

summarize here the motivation to develop the guidelines. We also provide an outline 

of the guidelines. 

Component-based systems (such as SASS) allow new components to be plugged in 

easily, and allow existing components to be easily replaced. They also offer flexibility 

of deployment of the components involved. With proper interface design and abstrac

tion, components (both data and executable) can be either centrally deployed or distri

buted, without affecting the services provided. This flexibility is important because 



32 

placing a component at the right location can improve performance, especially for fre

quently used services. 

In this vein, the overall performance of an SA and SASS can be improved by match

ing the location of executable and data components to the needs of SA users and BI 

providers. However, deployment configurations of SAs can vary widely. For example, 

one user might install the Sidepad application on a desktop computer and consult in

formation available mostly on his local file system. Another user might use Sidepad to 

consult information primarily on the web. In the former case, Sidepad and SASS 

might be deployed on the same computer. In the latter, Sidepad and some parts of 

SASS might be installed on the user's computer, and other parts might run on a remote 

server. In contrast to these two cases, it is also possible to build a web-based SA that 

interacts with a SASS installation on a remote web server. 

Motivated by these observations, we have developed guidelines for five deployment 

alternatives, where each alternative varies the location of S A and of the components of 

SASS. The guidelines define some performance metrics, which we use to explore the 

trade-offs in each alternative. They also discuss potential barriers for performance, and 

posit some means to improve performance. 

2.2. Framework Overview 

Figure 2.1 provides an overview of our framework to support the design, development, 

and deployment of SAs. The top section of the figure shows design-time support to 



33 

model SI. The bottom section shows support for deployment. The shaded boxes in the 

middle section represent SASS. 

Superimposed Information Modeling 

Superimposed Applications and Superimposed Information 

I 
i 

E 
0 1 

CO 

o 
(J 

! 
5 1 

Base Applications and Base Information 

E 

o 
O 

Deployment Guidelines 

Figure 2.1: A framework to support design, development, and deployment of SAs 

The service Reference Management in Figure 2.1 supports creation and retrieval of 

marks. (This service's name captures our framework's ability to support references to 

base sub-documents, documents, and applications.) Context Management supports acti

vation of marks and retrieval of context information from marks. Ul Widgets provides 

UI tools (such as a viewer to browse context information) that multiple SAs may 

share. Transformation and Interchange support transformation and interchange of bi-level 

information, respectively. 

The boxes labeled Harvesting and Collection Management in Figure 2.1 are not part of 

SASS, instead they build on SASS. Harvesting refers to the programmatic generation 

of marks (as opposed to manual marking). For example, a script might mark the cita-



34 

tions in a research paper. The needs and means of harvesting vary among applications 

and tasks, but harvesters can build on the Reference Management service. 

Model SI 
Conceptual 

Schema 

Harvester 

Deploy Base Application 
Base 

Information 

Figure 2.2: A reference model for the framework to support design, development, and deploy
ment of SAs. Solid arrows show control dependency, dashed arrows show data flow 

Collection management refers to the management of a set of SI documents along with 

the marks they reference, and possibly the base documents to which the marks corres

pond. For example, one might manage a collection of Sidepad documents and the refe-



35 

renced base documents in a digital library. Collection management can reuse parts of 

the Interchange service. 

Figure 2.2 shows a reference model for our framework. The solid arrows in the figure 

denote control (or code) dependencies. The dashed arrows indicate data flow. The box 

labeled Model SI indicates our methodologies to conceptually (and logically) model bi-

level information. The box labeled Deploy refers to post-implementation activities re

lated to deploying SASS and the SAs. 

The area shaded dark represents SASS. The boxes Bi-level Transformer and Context 

Transformer together allow SA developers and SA users to manipulate bi-level infor

mation. The box Interchange provides a means to interchange bi-level information. The 

box Viewer represents UI widgets. The other boxes together indicate mark-

management and context-management services. 

2.3. Evaluation Overview 

In this section, we provide an overview of the evaluation method for the different 

components of our framework. 

We have evaluated our methodologies to conceptually and logically represent bi-level 

information by using the methodologies in three SAs: Sidepad, the Superimposed 

System Information Browser (SSIB) [113], and the Superimposed Scholarly Review 

System (SISRS) [109]. Section 4.9 presents the evaluation details. 



36 

We have experimentally evaluated the performance of the bulk accessor, Sixml DOM, 

and the bi-level navigator using datasets containing between a few thousand marks 

and over 100,000 marks. Chapters 6, 7, and 9 describe the experiments. 

We have evaluated the design of SASS and validated its architectural qualities by 

creating a reference implementation called System S using a combination of the .NET 

[129] and ActiveX technologies [93] for the MS Windows [104] platform. We have 

used the extensibility mechanism in System S to support referencing base parts of the 

following types: MS Word, MS Excel, MS PowerPoint, PDF, XML, HTML, and a 

variety of audio and video formats. Chapter 3 provides the details. 

To evaluate the utility of SASS, we have developed five SAs (Sidepad, SuperMix, 

HTML+M Editor, SSIB, and SISRS) using System S, and developed multiple queries 

over bi-level information created in these applications. We have also built a utility 

called Mash-o-matic [115] to generate a class of applications called mash-ups, and to 

generate data for mash-ups. 

The following is a list of applications developed by others using our framework. 

• The Superimposed Multimedia Presentation Editor and Player (SIMPEL) [123], an 

SA to organize multimedia content on a timeline and play the content in a syn

chronized manner. 

• IHMC CmapTools [63], a commercial application to develop concept maps, aug

mented to incorporate marks [124]. 



37 

• The Superimposed TRansactor for Integrating Data into Entities (STRIDE) [10], 

an SA designed to capture human attention when integrating data for specific 

tasks. 

• The Guava Context Agent [153], to mark into UI controls (such as text fields and 

list fields) in a class of applications developed using the .NET Framework [129]. 

2.4. Topics Excluded 

Several aspects of SA development and SI management exist that are not covered in 

this research, or are covered in only a limited way. 

In general, we do not handle updates to base sources with existing marks, nor do we 

handle base sources that move. However, our framework does not preclude interac

tions with such sources. Chapter 3 addresses this topic. 

When transforming bi-level information, we do not exploit the data-management ca

pabilities that a base application (such as a database management system) might have. 

Exploiting certain base-application capabilities can help execute some transformations 

more efficiently, and developers might be able to express the transformations more 

easily (or elegantly) using those capabilities. 

We do not define a specific runtime service to store SI. Delcambre and others [32] 

have defined a generic SI storage service called SLIMStore. We do not consider sto

rage of BI, because we consult base information in situ. 



38 

We support referencing of sub-documents in a cross-platform manner (that is, across 

different operating platforms), but we do not consider cross-platform support for all 

the runtime services we define. However, we believe the design of SASS is portable to 

most modern operating platforms and is amenable to implementation in most modern 

programming languages. For example, our research partners at Villanova University 

(under the supervision of Professor Lillian Cassel [60]) have ported parts of the 

System S implementation to Java [71]. 

2.5. A Comparison of Related Systems 

Table 2.2 shows a comparison of System S with some of the systems mentioned in 

Section 1.4 with respect to the runtime services our framework defines. The first two 

rows of Table 2.2 correspond to the service Reference Management in Figure 2.1. The 

third and fourth rows correspond to the service Context Management. We do not com

pare the systems with respect to the service Ul Widgets. The terms shown in italics in 

the table are defined in the literature of the respective systems. 

None of the related systems assists in modeling information as our framework does. 

Also, the literature for these systems does not address deployment issues. 

This comparison shows that our research framework provides a comprehensive set of 

design and development tools to SA developers, and that it enables the developers to 

provide a rich set of services to users of their applications. 



39 

2.6. Summary 

Broadly, this research examines the issues in realizing and leveraging bi-level infor

mation. It examines SAs and bi-level information from a software-engineering pers

pective as well as an information-engineering perspective. It defines a framework to 

design, develop, and deploy SAs; and presents techniques to represent, access, trans

form, and interchange bi-level information. 

This chapter has provided a summary of the contributions, components, and evaluation 

of this research. Chapter 3 begins the detailed description of the research with infor

mation about representing and accessing marks and context information. 



T
ab

le
 2

.2
: A

 c
om

pa
ri

so
n 

of
 S

ys
te

m
 S

 a
nd

 s
om

e 
re

la
te

d 
sy

st
em

s.
 T

he
 c

om
pa

ri
so

n 
is

 w
ith

 r
es

pe
ct

 to
 th

e 
ru

nt
im

e 
se

rv
ic

es
 s

ho
w

n 
in

 F
ig

ur
e 

2.
1 

M
ar

k 
cr

ea
tio

n 
m

ec
ha

ni
sm

 

M
ea

ns
 to

 
in

co
rp

or
at

e 
m

ar
ks

 

M
ar

k 
ac

tiv
at

io
n 

C
on

te
xt

 
re

tr
ie

va
l 

T
ra

ns
fo

rm
 

bi
-le

ve
l i

n
fo

rm
at

io
n 

In
te

rc
ha

ng
e 

SI
 

M
S 

W
or

d 
20

02
 

[9
6]

 

Se
le

ct
 a

 c
ha

ra
ct

er
 

sp
an

 a
nd

 c
re

at
e 

a 
bo

ok
m

ar
k 

In
se

rt
 a

 b
oo

km
ar

k 
an

yw
he

re
 in

 th
e 

sa
m

e 
do

cu
m

en
t 

D
oc

um
en

t m
us

t 
al

re
ad

y 
be

 o
pe

n 
to

 
ac

tiv
at

e 
a 

bo
ok


m

ar
k 

N
ot

 s
up

po
rte

d 
w

ith
in

 th
e 

ap
pl

i
ca

tio
n,

 b
ut

 A
PI

 
av

ai
la

bl
e 

V
ie

w
 u

nf
ilt

er
ed

 
se

qu
en

ce
 o

f o
nl

y 
co

m
m

en
ts

 a
nd

 
re

vi
si

on
s 

Sh
ar

e 
en

tir
e 

do
c

um
en

t 

M
S 

Po
w

er
Po

in
t 

20
02

 [9
6]

 

A
 li

nk
 to

 a
 s

lid
e 

is
 

au
to

m
at

ic
al

ly
 

cr
ea

te
d 

w
he

n 
a 

sl
id

e 
is

 r
ef

er
en

ce
d 

In
se

rt
 a

 h
yp

er
li

nk
 

to
 a

 s
lid

e 
in

 th
e 

cu
rr

en
t o

r a
no

th
er

 
pr

es
en

ta
tio

n 

A
ct

iv
at

e 
a 

hy
pe

r
lin

k 

N
ot

 s
up

po
rte

d 
w

ith
in

 th
e 

ap
pl

i
ca

tio
n,

 b
ut

 A
PI

 
av

ai
la

bl
e 

V
ie

w
 u

nf
ilt

er
ed

 
se

qu
en

ce
 o

f o
nl

y 
co

m
m

en
ts

 a
nd

 
re

vi
si

on
s 

L
im

ite
d 

sh
ar

in
g 

us
in

g 
th

e 
P

ac
k 

an
d 

G
o 

fe
at

ur
e 

[4
] 

A
cr

ob
at

 7
.0

 [8
] 

Pl
ac

e 
cu

rs
or

 o
n 

a 
pa

ge
 a

nd
 c

re
at

e 
a 

bo
ok

m
ar

k 

In
se

rt
 a

 b
oo

km
ar

k 
an

yw
he

re
 in

 th
e 

sa
m

e 
do

cu
m

en
t 

D
oc

um
en

t m
us

t 
al

re
ad

y 
be

 o
pe

n 
to

 
ac

tiv
at

e 
a 

bo
ok


m

ar
k 

N
ot

 s
up

po
rte

d 
w

ith
in

 th
e 

ap
pl

i
ca

tio
n,

 b
ut

 A
PI

 
av

ai
la

bl
e 

V
ie

w
 li

st
 o

f o
nl

y 
co

m
m

en
ts

; 
fi

lte
r,

 
so

rt,
 a

nd
 g

ro
up

 
op

er
at

io
ns

 a
f

fo
rd

ed
 

Sh
ar

e 
en

tir
e 

do
c

um
en

t 

IR
IS

 [5
5]

 

C
re

at
e 

an
 a

nc
ho

r 
an

d 
pe

rf
or

m
 th

e 
St

ar
t L

in
k 

op
er

a
tio

n 

C
re

at
e 

an
 a

nc
ho

r 
an

d 
pe

rf
or

m
 t

he
 

C
om

pl
et

e 
L

in
k 

op
er

at
io

n 

A
ct

iv
at

e 
a 

lin
k;

 
na

tiv
e 

su
pp

or
t t

o 
se

e 
su

b-
do

cu
m

en
t 

in
 c

on
te

xt
 

N
ot

 s
up

po
rte

d 

N
ot

 s
up

po
rte

d 

U
se

 a
 h

yp
er

te
xt

 
in

te
rc

ha
ng

e 
fo

r
m

at
 [

14
1]

; m
a

nu
al

ly
 s

ha
re

 re
fe


re

nc
ed

 d
oc

u
m

en
ts

, a
nd

 u
se

 a
 

co
nv

en
tio

n 
fo

r 
fil

e 
lo

ca
tio

n 

D
ex

te
r 

[5
7]

 

D
ef

in
e 

an
 a

nc
ho

r 
w

ith
in

 a
 c

om
po


ne

nt
 

D
ef

in
e 

a 
li

nk
 w

ith
 

an
ch

or
s 

as
 e

nd
-

po
in

ts
 

A
ct

iv
at

e 
a 

li
nk

's
 

en
dp

oi
nt

; e
ac

h 
ru

n-
ti

m
e 

la
ye

r 
is

 
re

qu
ir

ed
 to

 s
ho

w
 

su
b-

do
cu

m
en

t 
in

 
co

nt
ex

t 

N
ot

 s
up

po
rte

d 

N
ot

 s
up

po
rte

d 

U
se

 th
e 

D
ex

te
r 

In
te

rc
ha

ng
e 

F
or


m

at
; 

m
an

ua
lly

 
sh

ar
e 

re
fe

re
nc

ed
 

do
cu

m
en

ts
 

O
L

E
 2

 C
om


po

un
d 

D
oc

u
m

en
ts

 [1
8]

 

C
re

at
e 

a 
li

nk
 in

 a
 

se
rv

er
 a

pp
li

ca
ti

on
 

Pl
ac

e 
a 

lin
k 

in
 a

 
co

m
po

un
d 

do
cu


m

en
t 

A
ct

iv
at

e 
a 

lin
k;

 
na

tiv
e 

su
pp

or
t t

o 
se

e 
su

b-
do

cu
m

en
t 

in
 c

on
te

xt
 

R
et

ri
ev

e 
on

ly
 

co
nt

en
t, 

bu
t i

n 
se

ve
ra

l 
fo

rm
at

s 

N
o 

na
tiv

e 
su

pp
or

t; 
a 

co
nt

ro
ll

er
 a

pp
li


ca

ti
on

 m
ay

 s
up


po

rt
 it

 u
si

ng
 re


tri

ev
ed

 c
on

te
nt

s 

Sh
ar

e 
co

m
po

un
d 

do
cu

m
en

t; 
m

a
nu

al
ly

 s
ha

re
 re

fe


re
nc

ed
 d

oc
um

en
ts

 
an

d 
us

e 
a 

co
nv

en


tio
n 

fo
r 

fil
e 

lo
ca


tio

n 

Sy
st

em
 S

 

C
re

at
e 

a 
m

ar
k 

in
 a

 
ba

se
 a

pp
lic

at
io

n 

A
ss

oc
ia

te
 a

 m
ar

k 
w

ith
 a

n 
SI

 e
le


m

en
t s

uc
h 

as
 a

 
Si

de
pa

d 
ite

m
 

A
ct

iv
at

e 
a 

m
ar

k;
 

na
tiv

e 
su

pp
or

t t
o 

se
e 

su
b-

do
cu

m
en

t 
in

 c
on

te
xt

 

R
et

ri
ev

e 
co

nt
en

t 
an

d 
m

an
y 

ot
he

r 
ki

nd
s 

of
 c

on
te

xt
 

in
fo

rm
at

io
n 

N
at

iv
el

y 
su

p
po

rt
ed

; m
ay

 u
se

 a
 

de
cl

ar
at

iv
e 

qu
er

y 
la

ng
ua

ge
 

N
at

iv
el

y 
su

p
po

rt
ed

; 
re

fe
re

nc
ed

 
do

cu
m

en
ts

 m
ay

 
be

 fr
ee

ly
 r

el
oc

at
ed

 



3. Representing and Accessing Base References and Contexts 

Chapter 2 introduced the notion of Superimposed Application Shareable Services 

(SASS) and reviewed its role in our framework for superimposed applications (SAs). 

The Superimposed Pluggable Architecture for Contexts and Excerpts (SPARCE) [110] 

is the part of SASS that supports creation of references to base sub-documents, docu

ments, and applications (collectively called base parts), activation of base parts, and 

retrieval of context information from base parts. It is designed to satisfy the architec

tural requirements listed in Section 2.1.3. 

This chapter describes SPARCE, provides a summary of its evaluation, and reviews 

related work. 

3.1. Introduction 

This section introduces some terms, provides an overview of SPARCE, and reviews a 

process of creating references to base parts. 

SPARCE implements the mark abstraction to reference a base sub-document; the ab

straction document to reference a base-layer entity such as a document or a database in 

which marks may be created; and the abstraction application to reference a base pro

gram used to view and access marks and documents. 

In this dissertation, for simplicity (and for historic reasons), we use the term mark (a 

reference) to also mean a base sub-document (a referent). Likewise, we use the terms 

document and application generally to mean a referent. We disambiguate the use of 

these terms when the meaning is not clear from the context. 



42 

The information necessary to reference a base part is called a descriptor. A mark 

descriptor includes information such as the location of a sub-document within a base 

document. A document descriptor includes information such as the path to the disk 

file containing a base document. An application descriptor contains information such 

as the name and version of a base application. 

The abstraction context denotes information concerning a base part. Presentation in

formation such as font name, containment information such as enclosing paragraph, 

and placement information such as page number are examples of context information 

retrieved from a mark. File path and file size are examples of context information re

trieved from a base document. Application name and publisher name are examples of 

context information retrieved from a base application. 

Excerpt is the content (such as text and image) retrieved from a mark or a document. 

An application does not have an excerpt. An excerpt is a part of a base part's context. 

Figure 3.1 shows a reference model for SPARCE. The module Reference Management 

handles operations such as creation of base-part references. Context Management is re

sponsible for activating a base part (that is, showing the base part in its original con

text) and for retrieving context information from the base part. The Clipboard facilitates 

inter-process communication. The Descriptor Repository provides storage for base-part 

descriptors. 



43 

Superimposed 
Application 

| 

c r — • -a 

SI 

Clipboard 

Context 
Management 

v 
Reference 

Management 

i 

Descriptor 
Repository 

k^ _^J 

— • 
Base 

Application 
i \. 

Figure 3.1: The SPARCE reference model 

We now briefly describe the process of creating marks. Marks may be created interac

tively or programmatically. Figure 3.2 shows a user of an SA creating a mark interac

tively. In this case, the user first selects a sub-document within a base application—for 

example, a text selection in a Microsoft (MS) Word [96] document—and copies the 

selection to the clipboard that the operating system (OS) provides. This operation cop

ies a mark descriptor to the clipboard. The user then "pastes" the clipboard contents 

into an SI document, in an SA. In response, the SA retrieves the mark descriptor from 

the clipboard, and associates the retrieved descriptor with an SI element (that the user 

chooses). For example, in the Sidepad application introduced in Section 1.2.1, the user 

may associate a mark descriptor with an item. 

o 
Base Application 

Copy 

Operating System 

>J Clipboard 

Superimposed 
Application 

Paste 

Figure 3.2: Interactively creating marks 



44 

j : Fie Edit View Document f g j j j Advanced Wiidcw Help 

(such as docuinenh B™*** 
a l ready exist in f o n t Advanced Conwenflng 

migrated into a new I BaSc 

2oom 

3: Garlic Oveivi glanced Earn™, 

Loose ly speaking Measuring 

liess data 
Bided or 

feet is to 

proper. Viewed from above, thou 
<!•. S . S x l l i n < 

M * 3ofs >• H «g :• 

(a) 

l | j Fjle Edit View Insert Formal Took 5ld.e5how rjathType Window Help AdofeePDF 

y 66% - » Anal - 18 - B y U » S ^ ^ 1= !E A *" £ • 

Outline Slides x o. •? -̂  

• e s " _L j ^ ~ ==2 

m 
w^i 

• — JT — 

IS 

3H-

f=- ""V -ormat AutaShape,., 

(b) 

Figure 3.3: Examples of initiating mark creation interactively, (a) Using a new tool 'Create 
Mark' inserted into Acrobat; (b) Using the native copy operation in MS PowerPoint 

There are several ways to implement the "Copy" operation in a base application. For 

example, some base applications (such as Adobe Acrobat [8]) allow their user inter

face (UI) to be extended. In this case, a special mark-creation tool can be inserted into 

the application. The user invokes this special tool to create a mark descriptor. Some 



45 

base applications (such as MS PowerPoint [96]) provide a hook into their native copy 

operation. When the user copies information to the clipboard in these applications, the 

hook can be used simultaneously to copy a mark descriptor to the clipboard. 

Figure 3.3 illustrates these two example means of initiating mark creation. In the first 

case, a mark to a text selection is being created using a special tool named 'Create 

Mark' inserted into Acrobat. In the second case, a mark is being created to three text 

boxes in a slide using the clipboard-copy operation available natively in MS 

PowerPoint. 

3.2. Representing and Accessing Base References 

In this section, we describe two representations for a base part's descriptor (delimited 

string and XML fragment), the notion of a descriptor repository, and a means of 

representing a base-part reference as a Uniform Resource Identifier (URI) [15]. We 

also introduce a run-time object representation for base-part references. 

3.2.1. Descriptors as Delimited Strings 

A descriptor represented as a delimited string is a sequence of sub-strings separated by 

the "tab" character (the Unicode character \u0009 [157]). The first sub-string identi

fies the kind of base part described. The second sub-string identifies a software wrap

per called a context agent used to interact with the base part described. The first two 

sub-strings of a descriptor are required, but context-agent developers are free to decide 

the other sub-strings. At run time, SPARCE interprets only the first two sub-strings, 

file:///u0009


46 

and passes the entire descriptor to the appropriate context agent. Section 3.3 describes 

context agents. 

The following is an example mark descriptor from our SPARCE implementation (de

scribed in Section 3.6.1). The symbol -> represents the tab character. (The spaces 

around a tab character are included only for clarity.) The second sub-string in this ex

ample shows the name of an ActiveX class [93]. The third sub-string denotes that the 

sub-document referenced is a text selection in a PDF document. The fourth sub-string 

indicates that the referenced sub-document ranges over the Words 395-439 on Page 2. 

The last sub-string shows the date and time at which the descriptor was created. The 

ellipsis denotes sub-strings omitted for brevity. 

Mark -» AcrobatAgents. PDFAgent -» AcrobatPDFTextMark -» 2 [395! 439 -»...-» 2004-05-28 14:03:02 

A descriptor is commonly copied to the clipboard as a delimited string when a mark is 

created interactively (as described in Section 3.1). 

3.2.2. Descriptors as XML Fragments 

A descriptor may also be represented as an XML element. The name of the element 

(Mark, Document, App) is derived from the kind of the base part described. Figure 3.4 

shows the XML representation for three descriptors in our SPARCE implementation. 

In each descriptor, the optional attribute ID of the top-level element denotes the glo

bally-unique identifier (GUID) [18] assigned to the descriptor. (The figure shows sim

plified values instead of true GUIDs to improve readability.) The text content of the 

mandatory sub-element Agent identifies the context agent used to interpret the de-



47 

scriptor. Other than the sub-element Agent, context-agent developers are free to 

choose the inner structure of a descriptor. 

The representation of descriptors in Figure 3.4 is normalized [12] because the mark 

descriptor references a document descriptor (using the element DocumentID), and a 

document descriptor references an application descriptor (using the element AppID). 

This representation reduces redundancy when more than one mark is created in the 

same document, or when marks are created in more than one document that requires 

the same base application. 

A descriptor may directly contain another descriptor (in an un-normalized fashion), 

instead of referencing the other descriptor by its ID. For example, a mark descriptor 

may contain the element Document directly instead of the element DocumentID. 

<MarkID="M4"> 
<Agent>AcrobatAgents.PDFAgent</Agent> 
<Class>AcrobatPDFTextMark</Class> 
<Address>2|395|439</Address> 
<Description> 

Page 3 in f.pdf (Acrobat PDF) 
</Description> 
<CachedText>provide applications and ...</CachedText> 
<Who>smurthy</Who> 
<Where>C3</Where> 
<When>2004 -05 -28 14:03:02</When> 
<DocumentID>D6</DocumentID> 

</Mark> 

<Document ID="D6"> 
<Agent>AcrobatAgents.PDFAgent</Agent> 
< Location >E:\Base\f.pdf</Location> 
<AppID>A8</AppID> 

</Document> 

(b) 

<App ID="A8"> 
<Agent>AcrobatAgents.PDFAgent</Agent> 
<Name>Adobe Acrobat 5.0</Name> 

</App> 

(a) 00 
Figure 3.4: Base-part descriptors represented as normalized XML fragments, (a) A mark descrip

tor; (b) A document descriptor; (c) An application descriptor 

An SA may optionally store (some or all of) the descriptors it employs in a descriptor 

repository, which is a persistent collection of descriptors. For a descriptor stored in a 

repository, the SA includes only the descriptor's GUID in its SI, instead of including 

the descriptor directly. Figure 3.5 shows an XML representation of a part of the 



48 

Sidepad document in Figure 1.3. The first Sidepad item shown, denoted by the first 

instance of element Item, embeds a complete mark descriptor. The second item refer

ences a mark descriptor stored in a descriptor repository. (Chapter 7 describes how an 

SA associates a repository with SI.) 

<SidepadDoc title="Data Integration'^ 
<Item name="Goal"> 

Mediate heterogeneous data sources without replicating data 
<!—Embed a mark descriptor directly in SI. ID is optional in this case. —> 
<Mark ID="M4"> 

<Agent>AcrobatAgents.PDFAgent</Agent> 
<Class>AcrobatPDFTextMark</Class> 
<Address>2|395|439</Address> 
<Description>Page 3 in f.pdf (Acrobat PDF)</Description> 
<CachedText>provide applications and ...</CachedText> 
<Who>smurthy</Who> 
<Where>C3</Where> 
<When>2004-05 -28 14:03:02</When> 
<Document>...</Document> 

</Mark> 
</ I tem> 
<Item name="Model"> 

Provides a unified schema expressed in.. . 
<!—Reference a mark descriptor stored in a repository. ID is mandatory in this case. —> 
<Mark ID="M12"/> 

</ I tem> 
</SidepadDoc> 

Figure 3.5: Example use of mark descriptors in SI represented as XML 

SPARCE manages descriptor repositories, and assigns a GUID to each descriptor in a 

repository. We do not fix a representation scheme or data model for descriptors in a 

repository, but provide ways to represent descriptors in any schema in the relational 

and XML models. (The XML fragments in Figure 3.4 use the scheme that our proto

type SPARCE implementation employs.) Chapters 4 and 6 describe the use of descrip

tors in the relational model. Chapters 4 and 7 describe in detail the use of descriptors 

in the XML model. 

Referencing a base part using a GUID creates a dependency between an SA and a de

scriptor repository. This dependency does not exist if SI includes descriptors directly, 

but directly including descriptors does not eliminate the dependency of SI on base 



49 

documents and applications. Chapter 10 describes a means to manage these dependen

cies (when interchanging bi-level information). 

3.2.3. Referencing Base Parts using URIs 

We now describe a means (that we have defined) to represent a base-part reference as 

a URL (A URI names a resource, such as a document or a printer, independent of the 

resource's location.) 

URI 

hier-part 

fragment 

scheme 

query 

bp reference 

bp descriptor 

descriptor 

enc name value 

enc type 

bp id 

markID 

documentID 

appID 

action 

verb 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

scheme ":" hier-part [ "?" query ] [ "#" fragment ] 

« a s defined in RFC 3896» 

« a s defined in RFC 3896» 

"sparce" 

bp reference ["?" action] 

bp descriptor / bp id 

"descriptor=" descriptor ["?" enc name value] 

« a serialized descriptor, possibly encoded» 

"encoding=" enc type 

"none" / "base64" 

"markid=" markID / "documentid=" documentID / "appid=" appID 

«SPARCE-assigned mark ID» 

«SPARCE-assigned document ID» 

<<SPARCE-assigned application ID» 

"action=" verb 

"activate" / "showContext" / "getContext" 

Figure 3.6: A context-free grammar to construct URIs in the s p a r c e scheme 

In our approach, a base-part reference is constructed as a URI in a scheme called 

sparce. A URI in this scheme is chiefly for use in traditional documents, such as web 

pages, word processor documents, and spreadsheets, so that a user can add some SA 

capability to an existing application (such as a word processor or a web browser) 

without changing the application. Thus, the user is able to exploit the information 

model and functionality of existing applications even though the applications are not 



50 

built expressly as SAs. This capability comes from the user incorporating sparce 

URIs in the information created in an existing application, and from the application or 

the OS invoking the registered "handler" software when a sparce URI is activated. 

Figure 3.6 shows a context-free grammar to construct URIs in the sparce scheme. 

This grammar is to be interpreted in accordance with the general syntax for URIs spe

cified in the Internet Engineering Task Force's Request for Comments 3896 (RFC 

3896) [15]. In this grammar, brackets denote optional tokens, the slash symbol (/) de

notes an alternative, and double angle brackets contain informal descriptions. Strings 

shown in double quotes must be used literally, without the quote marks. Spaces out

side quotation marks are used only to improve readability. Such spaces must be ig

nored when constructing a URI. 

The non-terminal symbols URI, h ier -par t , fragment, scheme, and query used in 

this grammar are originally defined in RFC 3896. We retain the RFC 3896 rules for 

the symbols URI, h ier -par t , and fragment, but redefine the rules for the symbols 

scheme and query. Specifically, we restrict the value of scheme to the string 

"sparce". We also restrict the value of query such that it can only identify a base part 

and associate an action to be performed on the base part. Our rules for these two sym

bols generate strings that are valid according to RFC 3896. 

The symbol query allows a base part to be referenced directly using a descriptor or 

using a descriptor's ID. When a descriptor is used directly, it may be encoded using 



51 

the Base 64 encoding scheme [77] (which, among other things, encodes the descriptor 

to a string that is safe for transmission in a variety of environments). 

A sparce URI may optionally indicate one of the following actions to be performed 

on the referenced base part: activate (the default action), show context, and get con

text. 

The following URIs are constructed using the grammar in Figure 3.6. The first URI 

directs the user's computer (denoted by the server locaihost) to activate the mark 

M4. The second URI retrieves the context information for document D6 from the 

server sidewaik.cs.pdx.edu. The third URI asks the local computer to activate ap

plication A8. The last URI asks the local computer to activate the mark whose descrip

tor is embedded in the URI. (The descriptor in the last URI example is from Section 

3.2.1.) 

sparce:localhost?markid=M4 

sparce://sidewalk.cs.pdx.edu?documentid=D6?action=getContext 

sparce:?appid=A8?action=activate 

sparce: ?descriptor=Mark->AcrobatAgents . PDFAgent->...->2004-05-28 14:03:02 

3.2.4. An Object Model for Base References 

We also define an object model to work with base parts at run time. Figure 3.7 shows 

this model as a static class diagram drawn using the Unified Modeling Language 

(UML) syntax [159]. The superimposed application and base applications (that is, the 

packages shaded gray) are not part of SPARCE, but are shown for completeness. 

http://sidewaik.cs.pdx.edu
http://pdx.edu


52 

SPARCE does not define the classes shown with filled lines (for example, MS Word 

Agent), but it instantiates them at run time to interact with the base layer. 

The abstract class Context-aware Object represents a reference to a base part one might 

"see in context" and for which context information can be obtained. Marks, docu

ments, and applications are context-aware objects. A context-aware object is created 

from a descriptor, and has a GUID. The GUID is the same as that of the source de

scriptor, if the descriptor has a GUID. If the source descriptor does not have a GUID, a 

new GUID is assigned to the resulting context-aware object. The same GUID is also 

assigned to the source descriptor. 

An SA can work with the class Context-aware Object to interact with a base part regard

less of its kind. It can cast a context-aware object to a mark, document, or an applica

tion (as appropriate) to work with aspects specific to the kind of the base part. 

3.2.5. Storing and Accessing Base References 

The abstract class Descriptor Repository in Figure 3.7 defines the API to create, store, 

and retrieve base-part descriptors. The method GetCAO creates a run-time object repre

sentation of a base-part descriptor. It creates an instance of the class Mark, Document, or 

Application based on the descriptor, and casts the object created as an instance of the 

class Context-aware Object. An SA uses this method to work with a base part whose de

scriptor is stored directly in SI. 



53 

Mark ^ Document 

a ^ ^ 
-^\ Application 

Superimposed 
Applicators 

Context-aware Object 

ID 
Instantiates 

Instance 
Descriptor Repository 

^L 
Context Agent 

Activate() 
GetContext() 

^ 
"5 

Instantiates 

GetCAO(in descriptor) 

GetCAOFromlD(in id) 

StoreCAO(in descriptor) 
Jlnstance 

Context 

vs 

MS Word 

Wwwf 

Acrobat 

Root Kind I 
Context Kind 

Name 

MS 
Internet 
Explorer 

I Hierarchy 

Context Element 

Name 
Value 

Figure 3.7: The SPARCE object model 

The method GetCAOFromID returns an instance of Context-aware Object for the descrip

tor whose GUID is supplied, after retrieving the descriptor from the repository. An SA 

uses this method to work with a base part for which only the descriptor ID is stored 

with SI (instead of the complete descriptor being stored with SI). 

The method StoreCAO stores a descriptor in a descriptor repository and returns the 

GUID assigned to the descriptor. Two versions of this method exist: one accepts a de

scriptor; another accepts an instance of Context-aware Object (possibly created using the 

method GetCAO). 

Any number of descriptor repositories (that is, instances of implementations of the ab

stract class Descriptor Repository) may exist. An SA might even use multiple descriptor 



54 

repositories simultaneously. Chapter 7 describes in detail the use of descriptor reposi

tories in the XML model. 

The API described in this section does not include methods to retrieve descriptors. We 

consider that aspect as a part of representing, accessing, and transforming bi-level in

formation in specific data models. Table 2.1 lists the data models we have considered. 

An SA may freely alter the descriptors it stores with SI, but we do not allow an SA to 

directly update a descriptor stored in a repository. To ensure repository consistency, 

we allow only components of SASS to modify a descriptor in a repository. For exam

ple, the service to interchange bi-level information alters a base document's descriptor 

if the base document is relocated. Chapter 10 describes the interchange service. 

3.3. Representing and Accessing Context Information 

This section describes how context information for a base part is represented and re

trieved. It also introduces the abstraction context agent and shows how it is used to 

activate a base part and retrieve context information. 

3.3.1. Representing Context Information 

The context information for a referenced base part is a hierarchical property set (that 

is, a set of name-value pairs organized hierarchically). In this scheme, context ele

ments are organized into context kinds. For example, information such as font name 

and font size are of the kind "presentation", whereas information such as line number 

and page number are of the kind "placement". A context kind may have sub-kinds. 

Pieces of information at the leaf level of a context hierarchy are called context 



55 

elements. (This organization of context information is analogous to a hierarchical 

structure of directories and files: A context kind is similar to a directory; a context 

element is similar to a file.) 

^rV*^."f-.-V-i*^i- * . v :v.̂ .?.ri! :•£*••#'',: »w.;-̂ -'*'" ^»«".vv^ ws^^-v^-h-* _; j 
Hie Edit View 

M: A % : 
Context kinds and elements jValue of the context element currently selected 

ST Content A 

! IB 
Formatted Tent 

Picture 

B Presentation 

!••• Font Name 
L Font Size 

B Placement 
L Page Number v 

prov ide a p p l i c a t i o n s and u s e r s wi th the b e n e f i t s of a d a t a b a s e 
w i t s a scSieraa — s i m i l a r t o wfeat an o b j e c t - o r i e n t e d o r 
o b j e c t - r e l a t i o n a l d a t a b a s e system laight p rov ide — but 
wi thou t a c t u a l l y s t o r i n g { a t l e a s t t h e balk: of J t&e d a t a 
w i t h i n t h e G a r l i c system 

-s 

(a) 

• ttlrt. P u — P i * < a ^ c t » ( l f c * C J l i 
M W K 7T| \u 

. { 
[ — " , . " • " " 

8 AutoShapelO 

a Content 

Text 

RTF 
HTML 

SES&SSi 
- Presentation 

Font Name 

Font Size 

-J-Information 

ID 

Name 

Left 
-- Top 

Height 

Width 
- Type 

Animated? 

•f AutoShape11 

$-AutoShape12 

a Containing Slide 

S Content 

Graphics 

ffi- Information 

S- Substructure 

Header 

Footer 

• - - - _ _ . . _ _ _ . 

Preview Day 

.. . 

(b) 

Figure 3.8: Context information from marks displayed in the Context Browser. Figure 3.3 
shows the corresponding marked regions, (a) Context information for a PDF text selection; (b) 

Context information for a selection of multiple objects in an MS PowerPoint presentation 



56 

Figure 3.8 shows the context information retrieved from the two marked regions 

shown in Figure 3.3. The context information for each mark is shown in a Context 

Browser, a utility we have implemented (using the access mechanism described in 

Section 3.3.2). Figure 3.8(a) shows the browser displaying the partial context informa

tion for the mark to the PDF text selection of Figure 3.3(a). The tree in the left pane 

displays the context hierarchy. The right pane displays the value of the context ele

ment currently selected in the context hierarchy. In this case, the browser is showing 

the value of the text excerpt (which is a string) retrieved from the mark. 

Figure 3.8(b) shows the context browser displaying a part of the context information 

from the mark created in Figure 3.3(b) to three text boxes in an MS PowerPoint slide. 

The top-level entries named AutoShape 10, AuthoShape 11, and AutoShape 12 in the con

text hierarchy represent the three text boxes. (PowerPoint assigns these names to the 

text boxes). The entries under AutoShape 10 show the context hierarchy for the text box 

with the content 'Preview Day'. The last top-level entry named Containing Slide shows 

the context hierarchy for the slide that contains the three marked text boxes. The right 

pane in the context browser is currently showing an image of AutoShape 10. 

Representing context information as a hierarchical property set enables developers to 

support a context hierarchy that is specific to a base type (that is, type of BI) as illu

strated in Figure 3.8. The representation also lets a developer customize the hierarchy 

for each mark. For example, the context for an MS Word mark to text situated inside a 



57 

table can include a 'column heading' context element, but the context for a mark to 

text outside any table can exclude that context element. 

We define both object and XML representations for context information. In Figure 

3.7, the classes Context, Context Kind, and Context Element define the object model. 

Chapters 7 and 9 discuss the XML model. 

3.3.2. Accessing Context Information 

SPARCE uses an abstraction called a context agent (which is a mediator [162]) to ac

tivate a context-aware object and to retrieve context information for it. In Figure 3.7, 

the class Context Agent models a context agent. Several context-agent implementations 

(that is, specializations of the class Context Agent) may exist. Figure 3.7 shows three 

such implementations: MS Word Agent, PDF Agent, and HTML Agent, each supporting a 

distinct base type with the help of an appropriate base application. SPARCE pairs a 

context-aware object with a context-agent implementation based on the information 

contained in the descriptor for the context-aware object. For example, the element 

Agent in Figure 3.4(a) contains the name of the ActiveX class that implements a con

text agent for PDF marks. 

SPARCE passes the complete descriptor of a context-aware object to the associated 

context agent. The agent interprets the descriptor, and performs the operations an SA 

requests. 

An SA uses the context agent abstraction to operate on a context-aware object. Using 

this abstraction instead of using specific implementations enables an SA to work with 



58 

any supported base type and context-aware object. Also, it allows new context-agent 

implementations to be added and existing context agents to be modified, with minimal 

advese impact on the SAs. 

An SA uses the method GetContext to retrieve context information. In response, a con

text-agent implementation returns an instance of the class Context (containing the con

text information). The SA uses the retrieved context information as suits it. For exam

ple, by default, Sidepad populates the descriptive text of an item from the text excerpt 

of the mark associated with the item. SuperMix synchronizes a composition using the 

duration information obtained from the context of a mark to an audio or video clip. 

(See Section 1.2.) 

3.3.3. Activating Base Parts 

Activation is the process of showing a referenced base part in its original context. The 

result of activating a base part varies across references, but in general, activating a 

base application launches the application; activating a base document activates a base 

application and then opens the document; and activating a mark activates the appro

priate base document and then "highlights" the sub-document which the mark refer

ences. 

SPARCE supports two styles of activation: traditional style and arena style. The tradi

tional style conceptually mimics the manual process a user follows to activate a base 

part. In this activation style, a base application decides the characteristics of the win

dow where the base part is displayed. For example, Figure 1.4 shows the result of a 



59 

traditional activation. In this case, the base application, Adobe Acrobat, determines the 

location of the window on the screen, and possibly the window dimensions. If two 

marks for the same application are activated, the exact location and dimensions of the 

two windows might not be predetermined: The two marks may be activated in the 

same window or in different windows. If the marks are activated in the same window, 

the mark activated later might replace the result of the earlier mark activation. If the 

marks are activated in different windows, the windows might overlap. 

The traditional style of activation suffices for SAs such as Sidepad, but other SAs such 

as SuperMix need better control over activation. We provide arena style activation to 

support such applications. An arena is a UI window that an SA may split into smaller 

regions called panes. The SA may then direct the result of activating a base part to a 

particular pane. For example, Figure 1.7 shows two panes activated by SuperMix: a 

video mark in the top pane, and an HTML mark in the bottom pane. When the current 

video clip is completely played, SuperMix plays the next clip in the top pane, and 

shows the text for the new video clip in the bottom pane. The location and the dimen

sions of each pane are unaltered between activations. 

An SA uses the same set of context-agent implementations for either style of activa

tion, except that in the arena style, it provides each context agent a handle to the pane 

that should contain the result of activating the base part. 

Every context-agent implementation supports the traditional style of activation and 

optionally supports the arena style. An S A can determine at run-time if a context-agent 



60 

implementation supports the arena style of activation (by querying the interfaces that 

the context-agent implementation supports). 

3.4. Supporting New Context Elements and Base Types 

Supporting new context elements or changing the context elements supported by a 

context agent only requires changing the definition of the hierarchical property set in 

the relevant context-agent implementation. An SA may ignore new context elements if 

it is not capable of handling the new elements, or if it does not require them. After 

changing the context-agent implementation, the SA needs to be recompiled (but not 

rewritten) if the context-agent implementation and the SA are linked statically; the SA 

does not need to be recompiled if the linking is dynamic. 

Support for a new base type can be added by following these five steps: 

1. Study the base type to understand support for marking. This study should include 

understanding the addressing schemes possible for the base layer. Choose the ad

dressing schemes to support. 

2. Design the structure and content of descriptors. Figure 3.4 gives an example. 

3. Determine the context elements and the context hierarchy (or hierarchies) to sup

port. 

4. Study the base application to understand the means to interactively create marks 

(that is, to copy descriptors to the clipboard). This step is related to providing a UI 

element within the base application as illustrated in Figure 3.3. Choose and im

plement the interactive mark-creation means. 



61 

5. Implement a context agent. This step is related to activating marks and retrieving 

context information for marks with the help of the base application. 

Again, supporting a new base type may require SAs to be recompiled if the SAs are to 

be statically linked to the context agent that supports the new base type. 

Multiple context-agent implementations may exist for the same base type, and these 

implementations may employ distinct (possibly incompatible) descriptors. However, 

this possibility does not pose any problem, because a context-aware object created 

from a descriptor is processed only by the context-agent implementation indicated in 

that descriptor. 

3.5. Mark Robustness 

We now briefly discuss issues related to mark robustness, that is, the ability of a mark 

(which is a sub-document reference) to remain valid when some aspect of its base 

document changes. We limit this discussion to robustness of sub-document references 

for simplicity, and because sub-document references present some unique challenges. 

5.5.7. Mark Invalidation 
A mark may be subject to three kinds of invalidation: context invalidation, address 

invalidation, and intent invalidation. 

3.5.1.1. Context Invalidation 

Context invalidation occurs when the context information for a mark changes in any 

manner after the mark is created. For example, the font name of a marked region in a 

PDF document, or the content of the text surrounding the region, might change. 



62 

Content invalidation is a special case of context invalidation. It occurs when the con

tent of a marked sub-document changes after mark creation. 

Context invalidation can affect an SA or a context-agent implementation that caches 

context information to improve performance or to support disconnected operations 

(that is, support operations on parts of base information even when some base docu

ments are inaccessible). Context invalidation can also affect a context-agent imple

mentation that uses a context-based addressing scheme. For example, an implementa

tion might cache the text excerpt (retrieved using the access mechanism we define) at 

mark-creation time and use the excerpt as the sub-document address. 

3.5.1.2. Address Invalidation 

Address invalidation occurs when a mark cannot be activated even though its base ap

plication can be activated. There are several reasons for address invalidation. For ex

ample, context invalidation may cause address invalidation if the sub-document ad

dressing scheme is based on context information (such as text excerpt or section head

ing). A mark's address may also become invalid when the marked region is "deleted" 

or if the region containing the marked region is deleted. For example, assume that the 

addressing scheme for marks into text selections in PDF documents uses a page num

ber, and the starting and ending indexes of the words in the selection. Then, the ad

dress of a mark to the last few words in a PDF document becomes invalid if those 

words are deleted. In the same addressing scheme, the address of a mark to any selec

tion in the last page of a PDF document becomes invalid if the last page is deleted. 



63 

Similarly, if a record in a relational database is addressed using values of key 

attributes, the address can become invalid if the record is deleted. 

3.5.1.3. Intent Invalidation 

Intent invalidation occurs when a change to a base document results in a mark that ac

tivates successfully, but the mark no longer references the sub-document the mark 

creator originally intended. There are several reasons for intent invalidation. For ex

ample, inserting new data into a document can shift a marked sub-document causing 

the mark to reference the newly inserted data. 

Context invalidation can cause intent invalidation if the sub-document addressing 

scheme is based on context information. For example, if "slide number" is used to 

mark into a presentation, reordering the slides invalidates user intent. 

Understanding user intent is one of the harder parts of mark management. For exam

ple, when the user marks the first paragraph in a document, it can be hard to under

stand if the user means to mark into the particular text of the paragraph, or if he in

tends to mark into whatever is the first paragraph. 

Resolving a mark whose intent is invalidated might depend on the capabilities of the 

base application. For example, the application would need to support addressing 

schemes that capture the user's intention accurately (or, at least, sufficiently). Having 

the user direct mark resolution, or confirm the result of a resolution, is one way to 

handle intent invalidation. Capturing sub-document address using multiple addressing 



64 

schemes at mark-creation time (the "belt and suspenders" approach) is a way to reduce 

the frequency of (undetected) intent invalidation. 

3.5.2. The Role of Addressing Schemes 

The sub-document addressing scheme that a mark uses largely determines the robust

ness of a mark. Several addressing schemes may be possible for a given base type, and 

each scheme might provide robustness under different conditions. For example, when 

addressing a section in an MS Word document, one can use the starting and ending 

indexes of the characters in the section, use the section heading, or use the text content 

of the section as the address. A character index remains valid as long as the document 

has a sufficient number of characters, but it might not retain user intent. The scheme 

using section heading works as long as the heading is unaltered. Finally, text content 

works as the address as long as the text is unique and it appears somewhere in the 

document. 

SPARCE does not prescribe or proscribe specific sub-document addressing schemes. 

(It does not even interpret sub-document addresses.) Context-agent implementations 

are free to choose one or more addressing schemes based on factors such as the goal of 

addressing, the structure (or lack thereof) of base documents, and the capabilities of 

base applications. 

3.5.3. Improving Mark Robustness 
To improve the robustness of a mark, we make the following recommendations to 

context-agent implementers: 



65 

• Avoid addressing schemes based solely on content or context. 

• Exploit read-only base sources where available. 

• Capture some context information at mark-creation time, and use the captured con

text to validate and redirect a mark, if necessary. 

• Use multiple addressing schemes. Ensure that each scheme provides robustness 

under different conditions. 

• Where available, incorporate immutable identifiers from the base layer in sub-

document addresses. (For example, MS PowerPoint assigns a unique and immuta

ble ID to each slide.) Immutable identifiers assure that the same base object is ac

cessed always, as long as the object is not deleted. (The use of immutable identifi

ers might not prevent context invalidation.) 

• When resolving a sub-document address, locate the closest sub-document, or lo

cate the containing sub-document, instead of just failing if an address is invali

dated. For example, when activating a PDF mark, activate the containing page, if 

the marked words on that page are deleted. 

3.6. Evaluation 

We have evaluated the representation and access mechanisms discussed in this chapter 

by implementing SPARCE as middleware, and by building context agents and SAs 

that use the SPARCE implementation. In this section, we provide an overview of the 

implementation, and discuss how it performs with respect to the architectural qualities 



66 

listed in Section 2.1.3. We also review the key design decisions the evaluation vali

dates and briefly discuss some of the design alternatives. 

3.6.1. Implementation 

3.6.1.1. SPARCE 

We have implemented the architectural components of SPARCE shown in Figure 3.7 

for the MS Windows platform using primarily the ActiveX technology [93]. This im

plementation supports both the traditional and arena style of activation (described in 

Section 3.3.3). The implementation also includes a "handler" to interpret base-part 

references represented as URIs in the sparce scheme that are constructed using the 

grammar shown in Figure 3.6. (The application, most likely the OS, invokes the hand

ler when the user activates a sparce URL The handler parses the URI and uses the 

SPARCE API to complete the requested operation on the referenced base part.) 

Our research partners at Villanova University, under the supervision of Professor 

Lillian Cassel [60], have ported parts of our SPARCE implementation to Java [71]. 

3.6.1.2. Context Agents 

We have implemented context agents for the following base types: MS Word, MS 

Excel [96], MS PowerPoint, PDF, HTML, XML, and several audio and video formats. 

Table 3.1 provides an overview of these implementations and the sub-document ad

dressing scheme each implementation employs. Our colleague James Terwilliger has 

also implemented a context agent for marks into form fields in applications that con

form to the Guava framework [153, 154]. 



67 

We briefly review some of these context-agent implementations and extensions made 

to base applications (to create mark descriptors). 

MS Office marks: We have developed a single add-in (that is, software code added 

in) [97] for MS Office applications to copy mark descriptors to the clipboard. This 

add-in hooks into the native copy operation of MS Office applications (including MS 

Word, Excel, and PowerPoint). When the user copies a selection to the clipboard (as 

shown in Figure 3.3(b)), the add-in also copies a mark descriptor corresponding to the 

selection to the clipboard. 

Though we use a single add-in to copy mark descriptors from different MS Office ap

plications, we have implemented distinct context agents for each MS Office applica

tion. We made this choice because the sub-document addressing scheme and the 

process of interaction varies widely among those applications. For example, the sub-

document address for an MS Word text selection contains just the indexes of the first 

and last characters in the selection. (MS Word presents the main text of a document as 

a sequence of characters.) The context for an MS Word mark can be large, but the 

context hierarchy tends to be fairly simple: text excerpt, containing paragraph, con

taining section, and so on. 

In contrast, the sub-document address in the case of MS PowerPoint can be quite 

complex because marks may be created into a variety of information types from dif

ferent views. For example, the user may select a complete slide or a range of slides in 

the outline view or in the slide sorter. He can select one shape or multiple shapes in a 



68 

slide. When multiple slides or shapes are selected, the selected objects might not be 

contiguous. 

Table 3.1: Overview of context agents implemented for use with SPARCE 

Base types Base application Sub-document addressing scheme 

Text selection in an MS Word document MS Word 

Range of cells in a spreadsheet MS Excel 

Text selection, shape,set of shapes, slide, MS PowerPoint 
set of slides 

Text selection in a PDF document Adobe Acrobat 

Text and image selection in an HTML page MS Internet Explorer 
[95] 

One or more nodes in an XML document MS XML 4.0 [107] 

Audio span, video span in WAV, MP3, 
MPEG, and other formats 

Form fields such as textboxes and lists 

MS Windows Media 
Player [103] 

Guava[154] 

Indexes of the first and last character 
of the text selected 

Sheet name, row names and column 
names of the first and last cell of the 
range selected 

View type, slide identifier, shape iden
tifier, indexes of the first and last cha
racter of the text selected 

Page number, indexes of the first and 
last words of the text selected 

Path to the containing element in DOM 
tree, text of selection (for text only) 

XPath [166] and XPointer [167] ex
pressions 

Time offsets for the beginning and end 
of the span 

Application name, form name, field 
name 

The context hierarchy of an MS PowerPoint mark can be much more complex than 

that of an MS Word mark, largely due to the inherent nested organization. For exam

ple, a text selection inside an MS PowerPoint text field has the usual context informa

tion such as plain text excerpt, HTML excerpt, and font information. Its container, the 

text field, adds information such as name, shape, ID, size, and location. The containing 

slide adds information such as ID, number, header, and footer. Figure 3.8(b) illustrates 

some of these context elements. 

Activating an MS PowerPoint mark requires special care. For example, a mark created 

in the editing mode might be activated when the base presentation is being shown (that 



69 

is, when the presentation is running). In this case, the mark should be activated with

out exiting the show mode (because marks can be employed to transition among slides 

in different presentations). 

HTML marks: We have developed a custom tool in VBScript [160] to extend MS 

Internet Explorer [95] to enable mark creation. The HTML context agent uses the 

HTML Document Object Model (DOM) [35] (which represents an HTML document 

as a tree) to manipulate the base document. DOM provides a browser-independent 

means of handling HTML marks, but some of its limitations also pose interesting chal

lenges. For example, DOM does not provide a direct means to obtain the path to a 

node in a tree, or to obtain the position of a node among its siblings. Thus, given a us

er-selected node, the script to create a mark needs to walk up the tree to the root node 

to find the path to the selected node. The script must also visit the preceding siblings 

of the selected node, and of each ancestor node along the path, to compute the position 

of the node. These operations can be time consuming, especially because scripts are 

interpreted at run-time (not pre-compiled). 

Audio and video marks: We have extended the MS Windows Media Player [103] to 

facilitate creation of marks into a variety of audio and video formats. To mark an au

dio or video span, the user separately denotes the start point and end point of the span, 

and then copies the span to the clipboard using a special tool added to the player. The 

special tool incorporates the end points of the span into the mark descriptor. 



70 

Guava marks: Our colleague James Terwilliger has implemented a context agent for 

marks into form fields in applications that conform to the Guava framework [153, 

154]. (The Guava framework enables the use of an application's user interface as a 

query interface to the database that stores the application data.) To enable these marks, 

Terwilliger has defined a class of "markable" form fields using the .NET Framework 

[129]. When running a .NET application, a user can select any form field of this class, 

copy a mark descriptor to the clipboard, and employ the mark in any SA. Terwilliger 

has also implemented a context agent to activate a Guava mark and to retrieve context 

information for it. (Activating a Guava mark involves launching an appropriate .NET 

application, activating a sequence of forms in the application, and highlighting the 

marked field.) 

3.6.1.3. Superimposed Applications 

We have built six SAs using SPARCE (and other components of System S): the three 

SAs described in Section 1.2 (Sidepad, SuperMix, and the HTML+M Editor); an SA 

called the Superimposed System Information Browser (SSIB, described in Section 

4.2) that allows a computer system administrator to browse information such as event 

logs and OS updates; an SA called the Superimposed Scholarly Review System 

(SISRS, described in Section 4.9.2) that facilitates superimposition of review com

ments; and a general-purpose browser and editor for SI represented as XML (de

scribed in Section 7.6.2). We have also modified a previously existing application 

called the Schematics Browser [17] to use SPARCE. 



71 

Our research collaborators have developed an SA called the Superimposed Multime

dia Presentation Editor and Player (SIMPEL) [123] using SPARCE. SIMPEL is an SA 

to organize multimedia content on a timeline and play the content in a synchronized 

manner. It is developed using the .NET Framework. The same collaborators have also 

augmented a commercial tool called CmapTools [63] to use marks in a concept map 

[124]. They have introduced a new resource type called "mark" in CmapTools and 

allow a mark descriptor to be attached to each mark resource. 

Our colleague David Archer has developed an SA called the Superimposed 

TRansactor for Integrating Data into Entities (STRIDE) [10] using SPARCE. STRIDE 

is designed to capture human judgment when integrating data for specific tasks. 

3.6.1.4. Clipboard and UI Widgets 

We have defined the Clipboard abstraction, and implemented it for the MS Windows 

platforms: The MS Windows implementation is an ActiveX wrapper to the MS 

Windows clipboard API. It includes functions that make it easy to copy mark descrip

tors to, and retrieve descriptors from, the clipboard. (The clipboard implementation 

may be quite different on other platforms. For example, one might implement clip

board operations from the ground up on platforms that do not natively provide a clip

board.) 

The clipboard implementation can keep track of multiple mark descriptors copied, and 

allows SA developers and users to retrieve any of the copied descriptors. This feature 



72 

allows the SA user to create several marks in the base layer, possibly in different base 

documents, before employing one or more marks in an SA. 

We have implemented two UI widgets for the benefit of both context-agent implemen-

ters and SA developers: a set of tabbed "property pages" to display properties (such as 

ID and base address) of a context-aware object; and a Context Browser to let a user 

browse context information retrieved from any context-aware object. (Figure 3.8 

shows two uses of the Context Browser.) 

3.6.1.5. Development and Testing Aids 

We have implemented the following development and testing aids for context-agent 

implementers and SA developers: 

• A utility to construct a mark descriptor and copy it to the clipboard without ex

tending a base application. This utility is useful in the initial stages of adding sup

port for a new base type. Figure 3.9 shows the use of this utility to construct the 

mark descriptor shown in Figure 3.4. The field Agent factory contains the name of 

the context-agent class. The other fields are self explanatory. 

• A "Do Nothing" context-agent class to test a mark descriptor without implement

ing a context agent for the descriptor. An instance of this class accepts any descrip

tor, but does not interpret it. Also, it returns an empty property set as the context 

for any mark. 

• Logging and exception-reporting components to trace the execution path of 

SPARCE, the context agents, and the SAs. 



73 

A context-agent implementer may use any SA as a testing aid because an SA can work 

with any context-agent implementation. Likewise, an SA developer may use any base 

type and any context-agent implementation to test the SA's ability to incorporate and 

activate marks. 

Context-agent implementers and SA developers may use the Context Browser to test 

retrieval of context information for any mark. 

Ml Design Mark Descriptor lllflllfl 

JAcrobatAgents.PDFAgent 

|AcrobalPDFTex(Maik 

J2I395I439 

(Page 3 in f.pdf (Acrobat PDF) 

fprovide applications and users with the benefits of a database with a schema 

JAcrobatPDF 

JEABase\f.pdf 

jAcrobatS 

fAdobe Acrobat 5.0 

jCopj) Descriptor!} Create Mark 

1- llM*J 

- similar to what an ob 

1 QpenBeposiloryj 

Figure 3.9: Utility to construct and test a mark descriptor 

3.6.2. Architectural Qualities 

In this section, we summarize our experience with implementing and maintaining 

SPARCE, the context agents, and SAs to show that the system possesses the desired 

architectural qualities for SASS (listed in Section 2.1.3). The descriptions of the archi

tectural qualities are reproduced here (in italics). 

3.6.2.1. Functionality 

The implementation must provide runtime services that are helpful in implementing 

the seven application capabilities listed in Section 1.1. 

file://JEABase/f.pdf


74 

SPARCE, the context agents, the Clipboard, and the UI widgets collectively imple

ment the runtime services Reference Management, Context Management, and UI Widgets 

in Figure 2.1. Together, they also support Capabilities 1 through 4 listed in Section 

1.1. These capabilities relate to creation and activation of marks, and to creation and 

organization of SI. 

The URI representation of a mark descriptor in the sparce scheme (described in Sec

tion 3.2.3) and the corresponding handler implementation together support Capability 

6, making it possible to employ marks in traditional documents such as word proces

sor documents and spreadsheets. 

Capabilities 5 and 7 (transforming and interchanging bi-level information, respective

ly) are supported by other parts of System S with the help of SPARCE. Chapters 9 and 

10 discuss support for these capabilities. 

3.6.2.2. Reusability 

Many SAs must be able to use the same SASS implementation. More than one SA in

stance must be able to run simultaneously on the same computer, and each instance 

must be able to interact with multiple base documents. 

All the SAs implemented use the same SPARCE implementation. We have not made 

any special changes in the SPARCE implementation, or in the context agents, for any 

of these SAs. We have run (several) instances of different SAs simultaneously on the 

same computer and have verified that each SA instance is able to use marks in mul

tiple base documents. 



75 

The handler software for the sparce URI scheme uses the same context-agent imple

mentations the SAs use. We have used URIs in the sparce scheme in documents 

created by third-party applications such as MS Word, Adobe Acrobat, and HTML edi

tors. We have used these applications simultaneously with the SAs. 

We have also verified that different SAs, and traditional applications that employ 

sparce URIs, can reuse mark descriptors stored in the same descriptor repository. 

3.6.2.3. Modifiability 

It must be possible to independently improve SASS and the SAs, with minimal adverse 

impact on each other. 

Over the course of implementation (between March 2003 and January 2007), we have 

updated SPARCE, the context-agent implementations, and the SAs several times. For 

example, the source files related to SPARCE have been checked into our version con

trol database 352 times. (A check-in operation requires at least one change in a source 

file.) Between August 2005 and September 2006, there have been 13 releases of the 

complete implementation. 

Execution tests have shown that throughout these changes and releases, modifying one 

part of the system (for example, SPARCE) has not adversely affected other parts (for 

example, the context-agent implementations and the SAs). Also, upon modification of 

a part's source code, we have recompiled the source code for only that part. That is, 

we have been able to evolve SPARCE, the context agents, and the SAs independently. 



76 

The ability to modify different parts of the system without adversely affecting other 

parts is largely due to the separation of concerns afforded by our design (via abstrac

tions such as context agent and context-aware object), and due to the dynamic loading, 

linking, and instantiation [93] of context-agent classes. 

3.6.2.4. Extensibility 

It must be possible to support new base types and context elements without affecting 

existing SAs and context agents. 

We have used the steps outlined in Section 3.4 to develop all the context agents listed 

in Table 3.1, without any adverse impact on SPARCE and the SAs. We have also veri

fied that changing the definition of context a context agent supports does not affect 

SPARCE and the SAs. 

An SA that depends on a specific context element might be affected if a context agent 

no longer supports that element, but attempts to seek non-existent context information 

does not cause an exception in SPARCE and the implemented context agents. In this 

case, the SA might need to be altered to remove its dependence on the missing context 

element. Similarly, an SA might need to be altered if it is to take advantage of a newly 

added context element. Applications such as the Context Browser are unaffected by 

changes to the definition of context because they do not depend on specific context 

kinds or elements. 

The ability to associate each mark with a (different) context-agent class, and the use of 

the abstractions context agent and context-aware object, dynamic linking and instan-



77 

tiation of context agents make it possible to extend support for new base types. The 

use of the abstractions context, context kind, and context element makes it possible to 

extend context definition. 

3.6.2.5. Package Flexibility 

It must be possible to change the location of the components ofSASS to meet applica

tion and user needs. For example, we must be able to deploy the components ofSASS 

on the same machine as the SA, or on a different machine. 

The different components that make up SPARCE are packaged as ActiveX servers 

(seven servers in all). Due to the design of SPARCE, and some facilities in the 

ActiveX technology, any of these servers may be packaged either as an in-process 

server or as an out-of-process server. An in-process server runs in the address space of 

the client application that uses the server (and hence on the same computer as the 

client). An out-of-process server runs in its own address space. It may run on the same 

computer as the client or on a different computer. 

With an in-process server, each client application gets its own instance of the server, 

whereas several clients may share the same instance of an out-of-process server. Con

sequently, different client applications might be able to share certain resources (such 

as a connection to a database) when using an out-of-process server. 

We have verified that the server packaging does not affect the functionality of 

SPARCE and the SAs, except for some expected changes in performance [112]. For 

example, the execution speed tends to be better when a server is loaded in-process. 



78 

However, an out-of-process server provides resilience to both the server and the client 

because when one of the processes (server or client) aborts, the other process can con

tinue to run. 

We have also verified that descriptor repositories may be located on local or remote 

file systems (with respect to the location of SPARCE, the context agents, and the 

SAs). For example, we have deployed the SAs and context agents on one computer, 

SPARCE on another computer, and a descriptor repository on a third computer. 

3.6.2.6. Testability 

The SASS implementation must aid verification and validation of itself, and of the SAs 

that use it. 

We have used the UI widgets (mentioned in Section 3.6.1.4) and our development and 

testing aids (listed in Section 3.6.1.5) to verify SPARCE, the context agents, and our 

SAs. For example, we have used the Context Browser extensively to verify the context 

information that a context agent returns for a mark. Also, we have frequently used the 

Sidepad SA to test new context-agent implementations. 

We have used our logging facility to validate SPARCE, the context agents, and our 

SAs. Using this facility, we are able to trace the execution path of each part of the sys

tem and ensure that each part is indeed functioning as it should. However, validation 

of execution paths is not sufficient. Context-agent implementers and SA developers 

need to use appropriate techniques to validate that their implementations meet the 

needs of their users. 



79 

3.6.2.7. Usability 

The SASS implementation must use familiar metaphors, and follow relevant develop

ment and UI conventions. It must also aid usability ofSAs developed using it. 

The interactive mark-creation process requires users to perform only the familiar and 

natural "Copy" and "Paste" (as described in Section 3.1), and the mark-creation 

process is similar across base types. Also, a user may use the same descriptor in any 

number of SA instances. The user may also copy several descriptors, from different 

base documents, to the clipboard before using them in any SA. 

Our experience (and that of our collaborators) shows that it is quite easy to develop 

context agents and SAs with SPARCE. The following list illustrates the ease of use. 

• A context-agent needs to implement only four functions: Activate, Getcontext, 

and GetEiementvalue, plus a constructor. 

• Copying a mark descriptor to the clipboard after a user has selected a sub-

document region can often be accomplished in one line of code. For example, the 

following line of MS Visual Basic [101] code suffices to copy a descriptor string 

to the clipboard: 

SPARCEClipboard.Copy(descriptor) 

• Retrieving a mark descriptor from the clipboard and creating a mark is usually ac

complished in one line of code. For example, the following line of MS Visual 

Basic code creates a mark using the descriptor most recently placed in the clip

board. The identifier repository denotes an instance of a descriptor repository. 



80 

r e p o s i t o r y . G e t C A O ( S P A R C E C l i p b o a r d . R e c e n t D e s c r i p t o r ) 

• James Terwilliger needed only 8 hours [155] to implement the Guava context 

agent [153] (following the steps outlined in Section 3.4). 

• Our collaborators spent 120 hours developing the SA SIMPEL [123], of which 

they spent only about two hours on tasks related to integration with SPARCE. 

3.6.3. Design Decisions 
In this section, we summarize the key design decisions our evaluation has validated. 

We also briefly discuss some of the design alternatives considered. 

3.6.3.1. Flexible Representation and Storage of Base Descriptors 

As described in Section 3.2, a base-part descriptor may be represented as a delimited 

string, XML fragment, and as a URL (Chapter 4 discusses the representation of de

scriptors in the relational model.) These choices allow base parts to be employed in a 

variety of applications. Further, a descriptor needs to include only the name of a con

text-agent class. The rest of the descriptor structure is unconstrained. This flexibility 

allows a developer to structure descriptors according to his needs. 

The alternative of fixing a data model and structure for descriptors would simplify the 

system, but it would also limit the number of applications that benefit from our 

framework. 

We allow each base-part descriptor to specify the context-agent class used to interact 

with the referenced part. Thus, each base part can potentially have its own context-

agent implementation. The alternative of using a single context agent for each base 



81 

type (or base document) prevents the use of domain-specific context agents. For ex

ample, when working with patent information in PDF format, one might use a context-

agent implementation that returns domain-specific context information such as "de

pendent claims", but use a different PDF agent implementation in other applications. 

As described in Section 3.2.2, an SA may include base-part descriptors directly in SI, 

or it may store descriptors in a repository that SPARCE manages. This choice allows 

an SA developer to store descriptors in a location and manner that is most appropriate 

for the SA, yet be able to perform all operations on the referenced base parts. For ex

ample, an SA might deposit its SI and descriptors in a digital library managed by a 

third party [11, 112]. 

The alternative of requiring an SA to manage storage of descriptors itself likely in

creases SA-development effort and hinders sharing of SI among SAs and among SA 

users. Alternatively, requiring an SA to always store descriptors in a SPARCE-

managed repository might (seriously) constrain SA development and deployment. For 

example, when using a SPARCE-managed repository, an SA developer must use the 

SPARCE API to manipulate descriptors, and he might need to transform the descrip

tors from SPARCE's data model to the SA's data model. 

3.6.3.2. Use of High-level Abstractions 

In our design, context-agent implementations are unaware of the existence of SAs. In 

turn, SAs are unaware of the existence of specific context-agent implementations, be-



82 

cause SAs activate base parts and access context using only the classes Context Agent, 

Context, Context Kind, and Context Element. 

This isolation between context-agent implementations and SAs makes it possible for 

context agents and SAs to evolve independently, without affecting each other. Figure 

3.10 shows an SA's view of SPARCE. This figure is obtained from Figure 3.7 by re

moving from that figure the classes that an SA does not directly use. We have added a 

link between an SA and the class Context to denote that an SA may consume context 

information. 

—1 
Superimposed 

Applcation 

Context-aware Object 

ID 

\ / 
Context Agent 

Activate() 

GetContextQ 

Instantiates 

Instance 

Instantiates 

Descriptor Repository 

GetCAOfin descriptor) 
StoreCAO(in descriptor) 
GetCAOFromlD(in id) 

1. . 
instance 

1 
Context 

Root Kind) 

Context Kind ^ 

Name 

# | Hierarchy 

Context Element 

Name 
Value 

Figure 3.10: A superimposed application's view of SPARCE 

The use of the abstractions Context Kind and Context Element allows the run-time repre

sentation of any context information, but in some programming languages, a naive 

implementation can result in loss of compile-time type guarantees. For example, a 

naive MS Visual Basic 6.0 [101] implementation would represent both a text excerpt 



83 

and a page number as the same type (probably a string), but a Java implementation can 

distinguish the types of these two context elements (as String and Integer, respective

ly). (A Visual Basic 6.0 implementation can define wrapper classes such as "String" 

and "Integer" to aid compile-time typing.) 

Another design choice we made is related to the use of the class Context Agent to 

access base parts, instead of extending the class Mark for each type of mark to be sup

ported. We illustrate our choice and an alternative using an example. 

Consider the task of supporting references to MS Word marks, MS Word documents, 

and the MS Word application. In our approach, a single context-agent class (called MS 

Word Agent in our implementation) can accomplish this task because much of the code 

to work with MS Word marks, documents, and the application is the same. An in

stance of the class Mark, Document, or Application is passed to an instance of this con

text-agent class to activate and access the appropriate base part. 

In our approach, it is possible to reuse the same context-agent instance to access mul

tiple base parts by reinitializing the context-agent instance with a different context-

aware object. For example, the class MS Word Agent can be first initialized to access an 

MS Word mark (or document), and then reinitialized to access another MS Word mark 

(or document). As Chapter 6 illustrates, this ability can reduce execution time and save 

memory when retrieving context information for a large number of context-aware ob

jects. 



84 

An alternative approach is to extend the classes Mark, Document, and Application (using 

inheritance) to implement the classes Word Mark, Word Document, and Word Application, 

respectively. This approach results in three classes, each with similar code (or four 

classes, with the fourth class privately implementing common code). 

Attempting to reuse context-aware objects (as is possible in our approach) in the alter

native approach can adversely affect SAs. For example, assume two SAs use the me

thod GetCAO to retrieve the same mark, say an instance of the class Word Mark, from a 

descriptor repository. In this case, the mark the first SA holds would be invalidated if 

the second SA reuses the Word Mark instance to load another mark. (A shared context-

agent instance can be similarly invalidated in our approach. The situation is remedied 

using a new instance of the context agent, but the alternative approach would need two 

objects— Mark and WordMark—to remedy the situation.) 

3.6.3.3. Representing and Accessing Context as Hierarchical Property Sets 

Our evaluation shows that hierarchical property sets aptly handle the wide variability 

in context information among base types (as illustrated in Figure 3.8), and among 

marks of the same base type. A hierarchical property set provides a uniform represen

tation for context information and it simplifies the API to access context information. 

For example, the object model shown in Figure 3.7 uses only the classes Context, 

Context Kind, and Context Element to model context information for any mark. With 

these three classes, an SA is able to programmatically access context information for 

marks of any base type. 



85 

A simple alternative is to use non-hierarchical property sets, but that representation 

makes it hard for the developer to organize (and for the user to comprehend) context 

information. For example, without hierarchies, it would be quite challenging to organ

ize the context information shown in Figure 3.8(b). 

Another alternative is to define a separate schema for the context information applica

ble to each base type, and define an API that is specific to each base type. For exam

ple, define a schema specific to context information for MS Word marks, and define a 

corresponding API. Similarly, define a schema and API specific to MS PowerPoint. 

(This is the approach MS Office applications take.) 

In this alternative, an SA can detect new or missing context elements at compile time 

when a context agent revises the definition of context, but it requires that the S A and 

the context API implementation be linked statically, making it harder to independently 

evolve SAs and context agents. Also, this approach widens the API to access context 

information. For example, the API to access the context information for the MS Word 

Range object (which represents a selection in an MS Word document) includes over 

30 members [105]. Each Range object exposes these members, even when a member 

is not applicable to a particular object. (The value of a member that does not apply is 

typically NULL or empty). 

In contrast, our context access API defines only 8 methods, and is able to provide con

text information for any base type. Also, the context of a mark contains only those 

elements that apply to that mark. 



86 

3.6.3.4. Use of the Clipboard 

Our design employs the clipboard to interactively create marks (in addition to provid

ing a means to programmatically create marks without using the clipboard), which has 

two key advantages. First, it improves usability of the system because a user performs 

only familiar and natural clipboard operations and he typically performs only two op

erations ("Copy" and "Paste") to create and consume a mark. Second, using a clip

board de-couples base applications from SAs, and allows each class of application to 

evolve without affecting the other. (A related benefit is that, in some operating envi

ronments, supporting "copy and paste" makes it easy to support the "drag and drop" 

means to create and consume marks.) 

An alternative to using the clipboard is to consume a mark as soon as it is created, but 

doing so would require an SA to be running at mark-creation time. Also, if multiple 

SAs are running when a mark is created, it is hard to (automatically) choose the SA in 

which the mark is consumed. That is, several usability issues would exist. 

3.6.4. Evaluation Summary 

Our evaluation validates our representation for base-part descriptors and our middle

ware architecture to activate the referenced base parts and to retrieve context informa

tion from the parts. The evaluation also validates our design decisions, and shows that 

our choices indeed satisfy the architectural desiderata we set up at the beginning of 

this research. 

Table 3.2 summarizes the key design decisions and the architectural qualities to which 

each decision contributes. 



87 

Table 3.2: Key design decisions and the architectural qualities to which each decision contributes 

Design decision 

Flexible descriptor representa
tion 

Flexible descriptor storage 

Context-agent class per descrip
tor 

High-level abstractions 

Dynamic instantiation of context 
agents 

Choice in server packaging and 
deployment 

Context as hierarchical property 
set 

Use of clipboard for interactive 
marking 

F
un

ct
io

na
li

ty
 

V 

s 

• 

• / 

• 

• / 

s 

R
eu

sa
bi

li
ty

 

V 

•/ 

• / 

s 

s 

• / 

V 

M
od

if
ia

bi
li

ty
 

• 

• 

• / 

• / 

•/ 

E
xt

en
si

bi
li

ty
 

• / 

s 

• / 

s 

•/ 

s 

V 

P
ac

ka
ge

 f
le

xi
bi

li
ty

 

• / 

•/ 

• 

V 

T
es

ta
bi

li
ty

 

• 

V 

• / 

U
sa

bi
li

ty
 

• / 

• / 

• 

• / 

•/ 

V 

3.7. Related Work 

Chapters 1 and 2 list some systems that provide features comparable to those of 

SPARCE. In this section, we provide more details about some of those systems and 

describe a few systems not mentioned in the earlier chapters. The systems we describe 

give an insight into alternative approaches to solving the problems SPARCE solves. 

Before we describe the alternative approaches and systems, we briefly mention the 

predecessors of SPARCE. 



88 

3.7.1. Predecessors ofSPARCE 

The mark abstraction was first defined in a middleware architecture called SLIM and 

has been used to build an SA called SLIMPad [32]. SLIM supported marks over mul

tiple base types, but a mark could only be activated. Context information could not be 

retrieved for a mark. 

Prior to SLIM, Delcambre and others built a system called CARTE to provide naviga

tion over a set of HTML pages using superimposed structured maps [31] based on top

ic maps [158]. (Section 4.10 reviews structured maps and topic maps.) CARTE did not 

use (or have) the mark abstraction. Instead, it referenced a base selection using a URL 

That is, a reference to a sub-document was possible only if the base document exposed 

the sub-document's address as a URL For example, CARTE could reference a span in 

an HTML document if the document defined a bookmark over the span. This require

ment limited the number of base types that could be referenced. CARTE stored SI and 

the URIs in a relational database. 

3.7.2. Early Visions 

We first give an overview of some pioneering visions that have contributed to 

SPARCE and related systems. 

3.7.2.1. Memex 

In 1945, Vannevar Bush [22] envisioned a device called Memex to store and consult 

information efficiently. In his vision, Memex is a desk with translucent projection 

screens, a keyboard, a microfilm-based storage, and control levers for navigation. Its 

contents (books, pictures, periodicals, and so on) are stored as photographic images on 



89 

microfilm. A user can attach a mnemonic code to an information selection (for exam

ple, to the title page of a book) and use the code later to navigate directly to that ele

ment. Because there are several screens, the user can browse a selection in one screen 

while a different selection is projected on another screen. The user can attach annota

tions to material being browsed. 

Two or more information selections may be tied together using a common mnemonic 

code to form a trail. A selection may be used in any number of trails. Because trails 

persist, they can be recalled at any time. They can also be reproduced and passed to 

other users. 

Some of Memex's features relevant to SPARCE are: annotation, linking, sharing, and 

indexing. SPARCE, along with context agents and SAs, facilitates annotation, and 

linking. SPARCE does not directly support sharing, but it helps other parts of SASS 

share bi-level information (as described in Chapter 10). SPARCE does not index con

tents of descriptor repositories. An SA may index its SI. 

Memex assumes ownership of all referenced information; SPARCE does not. 

3.7.2.2. Evolutionary List File 
In the 1960s, Nelson [126] proposed a file structure called the Evolutionary List File 

(ELF) for use in his software system for personal filing and manuscript assembly. 

ELF stores three kinds of elements: entries, lists, and links. An entry is the basic unit 

of information, and it can be text, a picture, or a definition of an operation. A list is an 

ordered set of entries; an entry may be placed in any number of lists. Lists are used to 



90 

create categories, trails, and other structures. A link connects two entries in different 

lists; an entry in a list is linked to at most one entry in another list. Links are bi

directional. 

An entry may be annotated. An annotation is also stored as an entry, with a link to its 

target entry. ELF supports multiple simultaneous organizations of the same informa

tion by allowing an entry to be used in more than one list simultaneously. However, an 

entry placed in more than one list is replicated and the replicas are kept consistent. 

Nelson proposes versioning of entries and lists. SPARCE does not maintain versions 

of descriptors or base information, but an SA may maintain versions of its SI. 

3.7.3. Hypermedia Systems 

Nelson [126] first used the term hypertext to mean information containing text and 

graphics in such complex ways that it is hard to present the overall information in li

near media (such as paper). The term hypermedia was used in the 1980s to include 

multimedia data such as video [26]. In this section, we first compare SPARCE with 

hypermedia systems in general, and then compare SPARCE with specific hypermedia 

systems. 

In general, hypermedia systems facilitate linking of two or more documents or sub-

documents. A link signifies a relationship among the linked entities and is chiefly used 

to facilitate navigation from one linked entity to another. 

Some systems allow annotations to be attached to links. Figure 3.11(a) shows a typical 

hypermedia link with an attached annotation. In this approach, no new "document" 



91 

needs to be created to represent a hypermedia network, because it suffices to store on

ly the link definitions and the annotations. Some hypermedia systems also require that 

the linked documents, or the descriptions of the linked documents, be stored in a spe

cific database. For example, Dexter [57] requires document descriptions to be stored 

in its database. 

\ 

; * 
Link 

Annotation 

Base document Bl 

Link database 

(a) 

\ 
—fU • • • • • _ 

:* 
Mark 

Annotation 

Annotation 

Base document Bl 
SI 

(b) 

\ 

o 

Base document B2 

Mark 

> 

\ 

O 

Base document B2 

Figure 3.11: A comparison of hypertext links and marks, (a) A hypermedia link between selec
tions in two base documents. An annotation is attached to the link, and links and annotations are 
stored in a link database; (b) An SI document with marks into two base documents. Annotations 

are maintained as SI 

The most widely used hypermedia system, the World Wide Web (or, "the web"), uses 

a slightly different approach than what we have described thus far. Specifically, links 

on the web are uni-directional, and are embedded in the document that originates a 



92 

link. This approach is in contrast to Nelson's position [127] that a hypertext link 

should be bi-directional and be stored separate from the linked documents. 

In the SPARCE approach, a mark describes one endpoint—a base selection—of a 

potential link. An actual link is created when a mark is associated with an SI element 

(such as a Sidepad item), and the link always points to the base selection. Two base 

selections may be indirectly linked by associating marks to the base selections with the 

same SI element. The first annotation in Figure 3.11(b) shows such a link. However, 

this link does not facilitate navigation from one base selection to another. 

SPARCE offers flexibility about where mark descriptors are stored. A descriptor may 

be stored in a descriptor repository, similar to a hypermedia system storing a link spe

cification in a link database. Alternatively, an SA may choose to store a mark descrip

tor along with SI. 

Most hypertext systems support only the activation operation on links; they do not 

support retrieval of context information (such as text excerpts). In contrast, SPARCE 

provides a means to represent and retrieve rich context information for the referenced 

base selections. The ability to retrieve context information allows an SA user to ex

amine base selections without activating the (complete) containing document. As de

scribed in Chapter 5, it also enables declarative querying of the combined SI and con

text information. 

In the rest of this sub-section, we describe two hypermedia systems, IRIS and Dexter, 

and compare them to SPARCE. 



93 

3.7.3.1. IRIS Hypermedia Services 

IRIS Hypermedia Services [55] is a set of services over cooperative applications de

signed originally as a part of the Intermedia hypertext system [181]. IRIS includes five 

Intermedia applications—a text editor, a graphics editor, an image viewer, a 3D object 

viewer, and a timeline editor—specially designed to facilitate creation of hypermedia 

networks. These applications are called source applications, and a document created 

in one of these applications is called a source document. New source applications may 

be developed using Intermedia's framework. 

Each source application contains a UI element to create a link between anchors (that 

is, selected regions) in source documents. The linked anchors may be in the same doc

ument or in different documents (of the same type or different types). When a source 

document is opened, the source application visually indicates anchors that participate 

in links. Users may select any anchor and follow a link to see another anchor in con

text. The source document containing the other anchor is opened automatically, if it is 

not already open. The link creation process has four steps: Create an anchor, start link, 

create another anchor, and complete link. Links are binary and bidirectional. The link 

structure does not accommodate annotations. 

IRIS is designed to create links between sub-documents (via anchors). An entire doc

ument may be linked only by creating an anchor that covers the entire document. In 

contrast, with SPARCE, an SI element may reference any context-aware object, which 

may be a mark, a document, or an application. 



94 

An IRIS anchor is described using two pairs of integers: One pair describes the posi

tion of the anchor's beginning within a document; another describes the anchor's ex

tent. (The domain of these integers varies by source application. For example, the in

tegers denote character positions for a text editor, but they indicate screen coordinates 

in case of a graphics editor.) This anchor structure suffices for the addressing schemes 

the five source applications included in IRIS use, but it may be insufficient (or incon

venient) for other applications. For example, it can be challenging to describe a span 

in an HTML document using this structure. In comparison, SPARCE does not fix a 

structure for descriptors, thereby allowing each context-agent implementer to choose 

the best structure for the addressing schemes he supports. 

IRIS stores link specifications and anchor descriptions in a relational database. This 

database partitions links and anchors into webs. A user may create any number of 

webs, but can work with only one web at a time. Also, a web must be open in order to 

create or follow links. (An IRIS web can be viewed as an instance of a particular SI 

model.) IRIS includes a browser to view webs. 

IRIS requires that source applications store the source documents they create in a spe

cial file-system folder. All changes to a source document pass through IRIS so that the 

link and anchor descriptions are kept consistent. This approach can be quite expensive 

because anchor locations can change frequently in an interactive editing process (for 

example, when editing a word-processor document). 



95 

SPARCE allows an SA to decide where it stores mark descriptors, and it does not re

quire base documents to be stored in specific locations. It does not attempt to keep 

mark descriptors consistent with base documents, but descriptors may be changed 

when necessary to reflect changes to the base layer. 

3.7.3.2. Dexter 

Dexter [57] is a hypertext reference model resulting from a series of discussions 

among designers of hypertext systems such as NoteCards [56] and Intermedia [181]. 

The goal behind the model is to define common abstractions that make it easy to build 

and compare hypertext systems. The Dexter model is specified formally using the Z 

notation [146]. 

A Dexter hypertext network is composed of components, which are basic units of sto

rage. A component may be one of three types: atomic (that is, primitive), composite 

(which is a directed acyclic composition of other components), and link (which is a 

relationship between components). A component is associated with a presentation 

specification that guides the component's display. Also, each component has a unique 

identifier (UID) that distinguishes it across space and time. 

An anchor specifies a part of a component's contents. It is represented using an 

id-value pair. The id is a natural number unique within the anchor's component. The 

value of an anchor is an address of an item contained within its component. The exact 

format and content of an address can vary among content types. 



96 

A link relates components. An endpoint of a link is specified using a component speci

fication and an anchor id. An endpoint may also include a presentation specification so 

that the component can be displayed in a manner appropriate to the relationship in

tended. A link may have two or more endpoints and its directionality is configurable. 

Halasz and Schwartz [57] discuss specifying a sub-document as an endpoint (using a 

component and the id of an anchor within that component), but they do not discuss 

specifying a document (that is, just a component) as an endpoint. We assume that a 

document could be made a link's endpoint by omitting anchor id, or by using a special 

anchor id. 

A component is stored as one unit together with its attributes (which are name-value 

pairs), presentation specification, a list of anchors, and the actual content of the com

ponent. Storing the list of anchors as a part of the component specification means the 

component is altered whenever a new anchor is created, or whenever an existing anc

hor is changed or deleted. 

A hypertext system in the Dexter model is comprised of three layers: a storage layer, a 

within-component layer and a runtime layer. The storage layer manages a database of 

components. The within-component layer interprets contents of components for pur

poses such as anchoring (that is, addressing information inside a component). The 

runtime layer displays components according to presentation specifications. 

The bulk of the Dexter model focuses on the storage layer. This layer defines an 

accessor function that maps a UID to a unique component. It also defines a resolver 



97 

function to map a component specification to zero or more UIDs of components. (A 

component specification is a filter over the set of stored components.) 

To preserve consistency of links and anchors, Dexter requires all changes to a compo

nent to pass through both the within-component layer and the storage layer. This ap

proach to data consistency is similar to that of IRIS. 

As described by Halasz and Schwartz, a Dexter hypertext system requires all compo

nents to be stored in its database. However, Hardman and others [58] state that a com

ponent descriptor in the database may point to an external source such as a disk file or 

a web page that supplies the actual component content. We believe that Dexter cannot 

guarantee consistency of anchors into such a component because changes to the con

tents are not guaranteed to pass through the storage layer. 

The Dexter run-time layer is analogous to an SA, but it has more responsibilities than 

an SA: It is responsible for presenting both hypertext networks and the components in 

a network. By comparison, an SA is primarily responsible for presenting SI, and base 

applications typically display base selections. However, an SA can itself display con

text information it retrieves from base parts (via context agents). 

3.7.4. Web-based Annotation Systems 

A web-based annotation system is a system that uses the web infrastructure to facili

tate annotations of resources on the web. In the late 1990s and early 2000s, several 

such annotation systems existed (for example, CritLink [182]), but only one of them, 

Annotea [78], is reliably available for use today. 



98 

Many of the web-based annotation systems allow annotations only over HTML pages. 

With these systems, in general, a user creates a new annotation by first selecting a re

gion of an HTML page and then selecting a UI element that has been injected into the 

page, or has been added into the user's web browser. When the user loads an HTML 

page, the base page is modified to indicate annotations, or the annotations are dis

played in a separate area of the page or in a separate window. 

A variety of approaches have been used to build web-based annotation systems. The 

most popular approaches are: using a proxy web server, using custom extensions to 

existing web browsers, and using a custom web browser. A system using a proxy web 

server (for example, CritLink) requires users to access the web page to be annotated 

via a specific web server that acts as a proxy for the web server that holds the anno

tated page. The proxy server serves up the page to be annotated with appropriate mod

ifications to view, create, and modify annotations. User annotations are stored on the 

proxy server. 

The proxy web server approach has the advantage that users need only a web browser, 

and no other special software. These systems can be developed and maintained more 

easily than those involving custom web browsers (or browser extensions), but their 

capabilities are limited due to the use of (and dependence on) HTML. 

Some web-based annotation systems such as Third Voice (now defunct [84]) extend 

existing web browsers using custom plug-ins. This approach requires users to install 

custom plug-ins, but it allows the annotation system to provide a richer UI and better 



99 

annotation capabilities. It also makes it possible to store annotations on a user's local 

file system, or on a remote server. 

Another web-based annotation system, Annotea [78], allows attaching annotations to 

documents addressable using a URL It uses the Resource Description Framework 

(RDF) [140] to define annotation schemas, uses the XPointer framework [169] to ref

erence annotated regions of documents, and employs HTTP [45] to transport data. A 

user may choose to store annotations locally or on remote annotation servers. 

Annotea is not designed for use with a specific web browser, but an implementation is 

integrated into the Amaya web-page editor [9]. Annotea can be implemented for use 

with other browsers, or it may be implemented as a stand-alone application. 

Annotea annotations are limited to XML documents due to the XPointer framework. 

Annotea's data model and annotation schemas are also fixed. SPARCE does not have 

these limitations. Like SPARCE, Annotea does not attempt to maintain the consisten

cy of sub-document addresses. 

3.7.5. Multivalent Document Model 
In the Multivalent Document Model (MVD) [135, 137], a document of any type is 

represented in an intermediate tree form, and the document is viewed and annotated in 

a universal browser called the MVD Browser. Each node in the intermediate tree for a 

document has a unique identifier (ID). 

The annotations for a base document are stored in a "hub" document separate from the 

base document. Each annotation is associated with the IDs of the annotated tree nodes. 



100 

(An annotation may span multiple tree nodes.) To increase the robustness of a sub-

document address, MVD includes an excerpt of the annotated region and some struc

tural information, along with node IDs [136]. For example, when a text selection in a 

word-processor document is annotated, the text of the annotated region and the name 

of the section and the paragraph that contains the annotated region are also saved. 

An annotation is displayed using one or more behaviors, which are pieces of software 

executed according to a series of protocols. Behaviors also decide what operations are 

permissible on an annotation and on an annotated part of the base document. 

A key difference between MVD and our approach is that an MVD "hub" document, 

which is analogous to an SI document, contains the annotations for only one base doc

ument. In our approach, an SI document may contain annotations and other SI for any 

number of base documents; many SI documents may contain annotations over the 

same base document; and a single SI element (for example, a link) can span multiple 

base documents. 

The behaviors MVD employs to display and operate on annotations could be viewed 

as "annotation agents", a la context agents in SPARCE, but the annotation agents are 

not reusable in the same manner as context agents. (Section 3.6.3.2 reviews reusability 

and other attributes of context agents.) 

MVD assumes that all base documents can be represented in its internal tree form. 

This assumption may not be valid for all document types, or it may not be efficient to 

prepare a tree representation for all types of documents. Also, multiple tree representa-



101 

tions may be possible for some documents, each with different strengths and weak

nesses. For example, a plain text file can be mapped to different tree structures: It can 

be represented as a tree with one node containing the entire text, or it can be 

represented as a bushy tree with one leaf node for each line of text. 

MVD assumes that a single document browser suffices to view and edit all documents. 

It also uses a single format for the hub documents to store annotations. In contrast, our 

approach employs existing base applications, letting SA users employ the UI base ap

plications offer, and allowing SA developers to choose the data model that is best for 

their SI. We also believe (and have demonstrated in Section 1.3) that different SAs 

and different SI models are needed to serve different user goals. 

MVD's position on robustness of sub-document addresses is similar to ours. It too 

promotes the use of immutable identifiers and proposes use of context information to 

increase the likelihood that an intended sub-document is found when a base document 

changes. 

3.7.6. Compound Documents 

A compound document is a document created by combining new information with 

parts of existing information. A compound document system is a collection of coopera

tive applications that follow a set of protocols to display, print, and store data. In this 

system, existing information parts appear in a compound document as if they are an 

integral part of the result document. For example, a research paper can be composed 

as a compound document. In this case, much of the paper's text would likely be writ-



102 

ten directly in the compound document, but graphs and charts are likely inserted into 

the compound document from existing spreadsheets. Similarly, figures can be inserted 

from existing image files. (Each chapter of this dissertation is composed as a com

pound document.) 

A compound document is created in a host application that is responsible for provid

ing the overall document UI. Source applications supply the data for different parts of 

the compound document, and render the parts within the document UI. When a user 

selects a document part, the host application interacts with the appropriate source ap

plication and presents to the user a list of operations possible on the part; the source 

application carries out the action the user selects. "Activating" a part included in a 

compound document opens the source document that the part belongs to in its original 

application, and "highlights" the part. 

OLE 2 [18] and OpenDoc [132] are the best known compound document systems, 

with the former probably being in wider use. In the rest of this sub-section, we provide 

an overview of the OLE 2 compound document system and compare it to SPARCE. 

An existing information part may be embedded or linked in an OLE 2 compound doc

ument. Embedding makes a copy of the source part, but linking retains a link (called a 

moniker) to the source rather than making a copy. (Both approaches produce the same 

visual result in the compound document.) Also, the content of a linked part is updated 

in the compound document each time the compound document is opened. Due to their 

similarity with marks, we discuss only linked parts in the rest of this section. 



103 

An application capable of creating an OLE 2 compound document is called a 

container. An application that is capable of supplying data to a compound document is 

called a server. An application may be both a container and a server. For example, MS 

Word is both a container and a server, but Adobe Acrobat is only a server [7]. To im

port data into a compound document, a user copies the data in a server application to 

the clipboard and then pastes the data into the compound document. At the time of 

pasting the data, the user may decide either to embed the data or to create a link. 

The OLE 2 compound-document protocols require container and server applications to 

use Compound Files, a technology for persisting compound data. This technology 

provides a means to treat a file-system file as a collection of storages and streams. A 

storage element is analogous to a file-system directory; a stream element is analogous 

to a file. A storage element may contain streams and other storages. 

To store a compound document, a container application first opens a file-system file 

using traditional, OS-provided file-system functions. When external data is imported 

into the compound document, the container creates a storage element in the document 

file and passes the storage to the server application responsible for the imported data. 

That server first creates a stream in the storage, and writes the moniker corresponding 

to the linked data into the stream. The server may also write an image version of the 

data for quick drawing when the compound document is loaded again (so as to avoid 

the possible delay in invoking the server application to draw the linked data). 



104 

A server application may provide the content for a linked part in multiple formats. For 

example, MS PowerPoint can supply the content of a linked slide as a Slide object or 

as a picture. When content is available in more than one format, the container or the 

user may choose a display format for the content. However, once given a format and a 

display area, the server has complete control over what information is displayed and 

how it is displayed in the given area. 

The OLE 2 compound document system and SPARCE differ in several aspects. First, 

OLE 2 allows retrieval of only content from a linked part, and the container applica

tion has no control over how much data is retrieved or how the retrieved data is drawn. 

With SPARCE, an SA may retrieve any subset of the context information available for 

a mark, and display it in any manner. For example, an SA may retrieve the text of an 

MS Word selection and draw the text in any color. Alternatively, it may retrieve both 

text and color information, and draw the text in the retrieved color. 

OLE 2 imposes a storage model for compound documents. A controller application 

has little control over how monikers are written to a file because the server applica

tions write the monikers. SPARCE does not impose such constraints on SAs. 

Developing OLE 2 container and server applications can require large development 

efforts. By one account [16], supporting compound documents requires implementing 

13 interfaces and 126 functions (to support both container and server features). In con

trast, SAs do not need to implement any particular interface, and a context agent needs 

to implement only four functions (listed in Section 3.6.2.7). 



105 

3.8. Summary and Conclusions 

This chapter has described a flexible representation scheme for descriptors of base 

parts. The scheme allows a context-agent implementer to choose a descriptor structure 

appropriate to his needs, yet allows SAs to represent the use of marks in any data 

model. The URI representation of base-part references enables the use of marks in tra

ditional applications such as web browsers and word processors, without any change 

to those applications. 

This chapter has also described SPARCE, our middleware architecture to create base-

part references, and to activate base parts and retrieve context information from the 

parts. The chapter has also presented an evaluation of the representation schemes for 

descriptors and of the middleware. The evaluation shows that support for referencing 

information in different base types is added easily. It also shows that SAs and context 

agents can evolve independently due to the abstractions SPARCE defines. 

SPARCE is closely related to hypermedia systems, annotation systems, the multiva

lent document model, and compound document systems. These systems support sub

sets of the features SPARCE supports, but none supports all of SPARCE's features. 

No system provides the freedom SPARCE does in modeling of annotations and other 

information similar to SI. No system supports retrieval of context information from the 

base layer. The ability to access context information allows us to combine SI with base 

information, and to transform the combination to other forms. Chapters 6, 7, and 9 

show how others parts of SAS S employ SPARCE to support such transformation. 



106 

The next chapter builds on the descriptor representation schemes introduced in this 

chapter to model bi-level information in conceptual and logical data models. 



4. Modeling Bi-level Information 

This chapter describes a methodology to model bi-level information in the Entity-

Relationship (ER) model [25] at the conceptual level, and in the relational [41] and 

XML [43] models at the logical level. A developer of a superimposed application (SA) 

can use the methodology to prepare a conceptual schema for only the superimposed 

information (SI) and indicates which parts of SI are associated with marks. The me

thodology includes a means to automatically extend the SI schema to include mark 

descriptors and context information, thus modeling bi-level information. The metho

dology also includes procedures that can automatically generate logical bi-level in

formation schemas from a conceptual bi-level information schema. Instances of the bi-

level information schemas prepared using our methodology can be declaratively que

ried using languages such as the Structured Query Language (SQL) [92] and XML 

query languages. 

We present our methodology in three parts: First, we model marks and the use of 

marks (in Sections 4.3-4.5). Second, we model mark descriptors (in Section 4.6). Fi

nally, we model context information (in Section 4.7). With each part, we present de

tails of generating relational and XML schemas from ER schemas. 

Section 4.8 demonstrates the ability to express declarative queries over bi-level infor

mation. Section 4.9 presents an evaluation of the methodology in the form of bi-level 

information schemas generated for three SAs with distinct information needs. Section 



108 

4.10 reviews four related systems and compares those systems to our methodology. 

Section 4.11 summarizes the chapter and presents some concluding remarks. 

We begin the chapter with an introduction to the need for modeling bi-level informa

tion (in Section 4.1) and a description of a motivating example (in Section 4.2). 

4.1. Introduction 

An SA is different from a traditional application in two key respects: First, at run time, 

it uses marks to reference base-layer contents. Specifically, the SA associates marks 

with superimposed information (SI) elements. Second, at storage time, the SA in

cludes mark identifiers or mark descriptors with SI elements (as described in Section 

3.2). That is, the design of an SA must include representations for the use of marks in 

both the run-time model and the storage model of the SA. 

In Section 3.2.4 (see specifically Figure 3.7), we presented a means to represent the 

use of marks in the run-time model of an SA. In this chapter, we present a means to 

represent the use of marks in the storage model—more precisely, in the information 

model—of an S A. 

Earlier in this dissertation research, we used (and were satisfied with) ad-hoc means to 

represent the use of marks in the information model of an SA, but as the number of 

SAs grew (we know of nine SAs built thus far with our infrastructure: six due to us, 

and three due to our collaborators; see Section 3.6.1.3), we realized that SA developers 

would benefit from a systematic means to represent the use of marks. A systematic 



109 

means would take into account different uses of marks, and provide uniform syntax 

and semantics to represent these uses of marks. 

In this chapter, we describe a means of systematic conceptual modeling of the use of 

marks in the ER model. We model the use of marks at the conceptual level so that the 

resulting SI schemas are independent of logical data models (such as the relational 

model and the XML model). We use the ER model because it is widely used for con

ceptual information modeling, and SA developers are likely to be familiar with it. Ad

ditionally, by using the ER model, we are able to leverage existing procedures to au

tomatically generate SI schemas for the relational and XML models, which eases the 

transition from the SA-design phase to the implementation phase. 

An obstacle to representing the use of marks in the ER model, and in models like the 

ER-model, is that the native model constructs are not expressive enough. Specifically, 

they cannot express the layer-crossing property of marks. A solution would be to de

velop new models or modeling constructs that represent the use of marks. However, 

existing design methodologies and tools might not work with the extended or new 

model. An alternative is to use existing constructs as they are, but develop conventions 

to indicate the use of marks. We pursue the latter alternative. 

We identify the different patterns of use of marks, and provide a set of conventions to 

apply the patterns in a flexible and expressive manner. The patterns we identify allow 

an SA developer to accomplish the following information modeling tasks at design 



110 

time. In this list and in the rest of the chapter, we use the term attribute to mean either 

an ER entity's attribute or an ER relationship's attribute. 

• Associate marks with entities, attributes, and relationships. 

• Assign the excerpt obtained from a mark as the value of an attribute. 

• Impose cardinality and other constraints when associating marks. 

• Generate schemas for the relational and XML models from ER schemas. 

To use the patterns, the SA developers need not be aware of the information model of 

any base application. 

The patterns make it easy to exploit the context mechanism of SPARCE and provide a 

way to combine SI with context information. The combined bi-level information may 

then be queried using structured query languages such as SQL in the relational model, 

and XQuery [176] or XSLT [177] in the XML model. Section 4.8 shows some exam

ple queries over bi-level information. Chapters 5 and 9 discuss execution of queries 

over bi-level information. 

4.2. Motivating Example 

In this section, we describe the Superimposed System-Information Browser (SSIB), an 

SA developed using SPARCE. We describe the information needs of SSIB and present 

a traditional ER schema for SSIB information. In Sections 4.3^1.7 we use our metho

dology to model bi-level information to express the information needs of SSIB. 



I l l 

SSIB allows users to browse information such as operating system (OS) updates, and 

application and OS events, for a collection of computers. System administrators can 

use this application to browse information resident on networked computers for diag

nostic purposes. 

Vindows Update History (C2) 

File Updates Edit View 
Sdw 

Date Time Title URL 

17-Apr-03 10:25... Q817287: Critical Up... http7Auppoit.microsoft.cJ 
10-Apr-03 08:57... 816093: Security Up... http7Aupport.microsoft.cd| 
26-Mat-03 02:56... 331953: Security Up... http7Aupport.microsoft. 

01-Mar-03 03:04... Windows Media Play... 
01-Mar-03 02:58... Windows MovieMak... 
01-Mai-03 02:57... 
01-Mai-03 02:57... 
< 

163 items read from file. 

Euro Conversion Tool 
Microsoft Windows J... 

Efe Edit Vjew Favorites Toots Help 

- <Update> 
fitje>814878: Security Update (Microsoft 
'scr ipt version 5.6, Windows 2080, 
Windows XP)</Title> 

description>A security issue ... Once you 
have installed this item, it cannot be 
removed.</Description> 

<KBId>814078</KBId> 
<SupportURL>http://support.microsoft.com? 

kbid=814B78</SupportURL> 
</Update> 

Superimposed OS Update History for a computer XML Updates Catalog 

Figure 4.1: System information displayed in SSIB. OS-update information displayed on the left, 
with a mark into an XML document on the right 

Figure 4.1 shows some OS-update information displayed in SSIB. The window with 

the caption 'Windows Update History (C2)' displays a table structure superimposed 

on OS-update information for computer C2. The highlighted row shows the details of 

one OS update applied on that computer, excerpted from a set of marks. For example, 

the title of this update is retrieved using a mark into a shared catalog of available up

dates (called the Updates Catalog) stored on the network, shown on the right side of 

Figure 4.1. Though not shown in the figure, the highlighted row also contains support 

details such as a reason for the update and the underlying problem that necessitated the 

update. These details are retrieved using marks into HTML documents [61] available 

on the Microsoft (MS) Support web site [100]. Table 4.1 describes these and other 

sources that SSIB uses to display system information. 

http://http7Auppoit.microsoft.cJ
http://support.microsoft.com


112 

Modeling SSIB information as SI provides several benefits. It integrates disparate and 

distributed information without replication. It also allows structured querying over 

base information of varying structures. For example, an administrator can ask to see a 

timeline of errors on computer C2 since the last update related to MS Outlook [96] was 

applied on that computer. Answering this query requires looking up the support pages 

to discover which updates apply to MS Outlook, choosing the last such update on 

computer C2, and looking up error reports on computer C2 that occurred after that up

date. The query returns the date, time, and description of relevant errors. 

Table 4.1: Base sources SSIB consults 

Info. Kind 

Event log 

Error re
ports 

Update log 

Updates 
Catalog 

Support 
details 

Doc. Type 

MS Excel 

MS Word 

Text 

XML 

HTML 

Location 

Distributed 

Distributed 

Distributed 

Network, 
shared 

The web 

Description 

Records OS and application events, typically one event per row. 
Obtained using the Event Log Viewer built into MS Windows. 
Three log files per computer. 

Records OS and application errors. Obtained using the System 
Information Viewer built into MS Office [97]; reformatted for 
demonstration purposes. One document per computer. 

Contains one line per OS update applied. Not all available updates 
might be applied on a particular computer. One log per computer. 

Contains one Update XML element per available update (see 
Figure 4.1). One log per network. 

Describes symptoms, cause, and resolution related to a problem 
along with a list of affected applications. Available from MS Sup
port. Each update in the updates catalog typically references a 
support page. 

Figure 4.2 shows an ER schema for SSIB, drawn using a syntax similar to the syntax 

that the Unified Modified Language (UML) [159] defines for static class diagrams. 

Schema elements whose names are in bold have marks associated with them. The enti

ty Observation denotes observations that computer users record about their computers. 

(For example, a user might record seeing an error message related to MS Outlook.) 



113 

The entity Application represents applications such as MS Outlook. A system adminis

trator frequently uses this entity to determine which updates need to be applied on a 

given computer. (A support web page for an OS update typically lists the applications 

to which the update applies, whereas a scan of the computer reveals the applications 

installed on the computer.) The other entities relate to the base sources listed in Table 

4.1. 

Observation 
ObsDateTime 
Text 
User 

Lo 

Event 

EvDateTime 
Kind 
Source 
Description 

Relates To 

gged On ^ ^ Occ 

Computer 

Name 

jrs On 

Error 
ErrDateTime 
Source 
Description 
Notes 

UpdDateTime 
i 

! 
Applied On 

RunsOn\ . Appli 

Relates To 

OSUpdate 
Title 
Description 
Reason 

esTo 

Application 
l̂ame 

Figure 4.2: A conceptual schema for SSIB. Names in bold indicate elements with associated 
marks. AH relationships are many-to-many; all entities have a key attribute named ID (not 

shown). 

In the rest of this chapter we show how the mark associations in the schema of Figure 

4.2 are expressed using our methodology. Unless stated otherwise, all examples in this 

chapter are based on this schema. 

4.3. Modeling Marks and Use of Marks 

We model a mark as the ER entity Mark. This entity has a key attribute named ID. Its 

other attributes are derived from mark descriptors (described in Chapter 3), but we 

omit those attributes at this stage because they are immaterial to modeling the use of 

marks. Section 4.6 describes modeling of mark descriptors. 



114 

We model different uses of marks as relationship patterns [114], which capture recur

ring needs or problems when establishing relationships (at design time) among infor

mation elements. (Section 4.10.1 reviews the general notion of relationship patterns.) 

We define a relationship pattern for each type of schema element with which marks 

may be associated: entity, entity attribute, relationship, and relationship attribute. De

riving attribute values from the text excerpt of a mark forms another pattern. 

The relationship patterns we identify have the following informal signature: 

<pattern>:<type> (< para meters >) 

In this signature, <pattern> is the name of the pattern, <type> is the name of the rela

tionship type (that represents a use of mark) as chosen by the SA developer, and 

<parameters> indicates attribute names, when they are needed by the pattern. A rela

tionship pattern that represents the use of marks relates an entity of type Mark to non-

Mark entities or to relationships of any type. We call a non-Mark entity type a regular 

entity type or an 57 entity type. A relationship between regular entities is a regular 

relationship. 

In the rest of this section, we describe the five relationship patterns we have identified 

to represent the use of marks. For each pattern, we state its signature, describe the se

mantics, and list the constraints on using the pattern. 

4.3.1. Associating Marks with Entities 
The EMark pattern associates marks with regular entities. Figure 4.3 shows the use of 

this pattern to associate a mark with an Event entity. EMark is the name of the relation-



115 

ship pattern and EventDetail is the relationship type; Logged On is a regular ER relation

ship type. 

Signature: EMark:<type>. A relationship of EMark pattern has no parameters. 

Semantics: The EMark pattern associates marks with entire entities, not with any par

ticular set of entity-attributes, and no specific meaning is attached to this association. 

Instead, the developer interprets this association. For example, the developer might 

incorporate the excerpt extracted from the mark into the user interface of an S A. 

Constraints: The EMark pattern may be used to associate marks with any SI entity 

type. The developer may impose any cardinality constraint on EMark relationships. The 

schema in Figure 4.3 restricts the cardinality of the EventDetail relationship type to one 

because an event logged on a computer has just one associated mark in the SSIB ap

plication. 

Computer 

Name 

Logged On 
Event 

EvDateTime 
Kind 
Source 
Description 

EMark: EventDetail 

1 

Mark 

ID 

Figure 4.3: Associating marks with an entity 

4.3.2. Associating Marks with Entity Attributes 

The AMark pattern associates marks with attributes of an entity. Figure 4.4 shows two 

relationship types that associate marks with two attributes defined by the entity type 

Error. The relationship type ErrorTime associates the attribute ErrDateTime with a mark. 

The relationship type ErrorDetails associates the attribute Description with a mark. Occurs 

On is a regular ER relationship type. 



116 

Signature: AMark:<type>(ai, a2, ..., an), where ai, a2, ..., an (n>0) are distinct attributes 

of an SI entity. 

Semantics: All attributes specified are associated with the same mark (or the same set 

of marks if cardinality is greater than one). Associating a mark with an attribute does 

not mean its value is obtained using the mark. Rather, it gives an SA access to excerpt 

and other context information of the associated mark(s), in addition to having an 

attribute value stored in the superimposed layer. For example, an SA may display a 

retrieved excerpt as a "tool tip" upon mouse rollover. An SA may also activate the as

sociated mark. 

Constraints: An AMark relationship type is always a binary relationship between an SI 

entity type and the Mark entity type. At least one attribute must participate in the rela

tionship. The developer may impose any cardinality constraints. The schema in Figure 

4.4 restricts the cardinality of the relationship types ErrorTime and ErrorDetails to exact

ly one mark to satisfy the SSIB application needs. 

Computer 

Name 

Occurs On 

Error 

ErrDateTime 
Source 
Description 
Notes 

AMark: ErrorTime(ErrDateTime) 

AMark: ErrorDetails(Description) 

1 

i 

Mark 

ID 

Figure 4.4: Associating marks with entity attributes 

4.3.3. Deriving Attribute Values 
We define the pattern AExcerpt to derive an attribute's value from the excerpt of a 

mark. Figure 4.5 shows a relationship type in the AExcerpt pattern to set the value of 



117 

the attribute Title as the excerpt of a mark. (It is possible to define a more general pat

tern such as AContext to derive an attribute's value from any context element of a 

mark, but, for simplicity, we limit this discussion to excerpts. Chapter 7 discusses de

riving a value from any part of a mark's context.) 

Signature: AExcerpt:<type>(a), where a is an attribute of an SI entity. 

Semantics: The value of the attribute associated with a mark using this pattern is a 

function of the excerpt obtained from the mark. We assume that appropriate type con

version is performed before assigning the derived value to an attribute. 

Constraints: Like an AMark relationship type, an AExcerpt relationship type is always 

binary: between an SI entity type and the Mark entity type. Assuming that attributes are 

single-valued, the attribute in an AExcerpt relationship type may be associated with at 

most one mark. (Chapter 7 discusses deriving an attribute's value from more than one 

mark.) 

OSUpdate 

Title 
Description 
Reason 

AExcerpt: UpdateTitle(Title) Mark 
ID 

Figure 4.5: Deriving the value of an entity's attribute from a mark's excerpt 

4.3.4. Associating Marks with Relationships 

We use the RMark pattern to associate marks with relationships. Figure 4.6 shows a 

relationship type of this pattern that associates zero or more marks with relationships 

of the type Applies To. We use the term anchored relationship [17] to refer to a rela

tionship with which marks are associated. In Figure 4.6, the relationship Applies To is 



118 

anchored. We aggregate the anchored relationship (as indicated by a dashed rectangle 

around the relationship type [139]) to clarify that marks are associated with the rela

tionship. 

Signature: RMark:<type>. A relationship of RMark pattern has no parameters. 

Semantics: The RMark pattern associates marks with entire relationships. 

Constraints: A relationship of any type may be anchored (including another RMark 

relationship type). There are no constraints on the degree of the anchored relationship 

type, but an RMark relationship itself is always binary. That is, it relates an anchored 

relationship type with the Mark entity type. There are no constraints on the cardinality 

of either the anchored relationship type or the RMark relationship type, and either type 

may define attributes. 

Computer 
Name 

Applied On j 
OSUpdate 

.Title 
Description 
Reason 

Applies To Application 
Name 

RMark 

Mark 

ID 

Application 

Figure 4.6: Associating marks with a relationship 

4.3.5. Associating Marks with Relationship Attributes 

The RAMark pattern associates marks with attributes of a relationship. Figure 4.7 shows 

a relationship type that associates marks with the attribute UpdDateTime of an Applied 

On relationship. We aggregate the anchored relationship type Applied On to clarify that 

marks are associated with the relationship's attribute. 



119 

Signature: RAMark:<type>(ai, a2, ..., an), where ai, a2,..., an (n>0) are distinct attributes 

of a relationship. 

Semantics: The semantics of the RAMark pattern are similar to that of the AMark pat

tern. All attributes specified are associated with the same mark (or the same set of 

marks if cardinality is greater than one). Associating a mark with an attribute does not 

mean its value is obtained using the mark. 

Constraints: The RAMark pattern imposes constraints similar to those the RMark pat

tern does. The attributes of any relationship (including an RMark or RAMark relation

ship) may be associated with marks. There are no constraints on the degree of the anc

hored relationship type, but an RAMark relationship type itself is always binary. There 

are no constraints on the cardinality of either relationship type, and either type may 

define attributes. 

, . RAMark:UpdateLog(UpdDateTime) I j ^ j ^ I 

Computer 

Name 

UpdDateTime 

Applied On 

OSUpdate 

Title 
Description 
Reason 

Figure 4.7: Associating marks with a relationship attribute 

4.4. Generating Relational Schemas 

Having covered all the patterns of use of marks employed in Figure 4.2, we now de

fine the procedures to convert the relationship types (defined using the patterns) to re

lational schemas. We present relational schemas in the form of Data Definition 

Language (DDL) statements using SQL: 1999 [92]. 



120 

We represent the Mark entity type as the relation Mark with the key attribute ID (see 

Figure 4.8). Section 4.6 discusses the representation of other attributes of this relation. 

CREATE 

( 
ID 
) 

TABLE 

INTEGER 

Mark 

NOT NULL PRIMARY KEY, ... 

Figure 4.8: Partial relational schema for the Mark entity type 

The relational schemas generated for the different patterns of use of marks involve the 

Mark relation. Specifically, the schema generation procedures generate relations that 

reference the attribute Mark.ID. The procedures to generate relational schemas are 

based on the procedure defined by Elmasri and Navathe [41]. In the rest of this chap

ter, we call their procedure the traditional procedure. (Briefly, the traditional proce

dure translates each entity to a relation and each of the entity's attribute to an attribute 

of the relation generated for the entity. Based on the cardinality constraints, a relation

ship is represented either as an attribute in a participating entity's relation, or as a sep

arate relation.) 

Figure 4.2 omits the key attribute named ID from all entity types, but we add that 

attribute to the relational schema generated for the entity types. We also assign a rea

sonable data type to each attribute. 

4.4.1. Generating Schemas for the EMark and AMark Patterns 

We use the traditional procedure to generate relational schemas for EMark and AMark 

relationship types. Figure 4.9(a) shows the relational schema for the entity type Event 

and the relationship type EventDetail of Figure 4.3. The attribute EMark_EventDetaii 

stores the mark associated with an event. 



121 

CREATE TABLE Event 
( 
ID INTEGER NOT NULL PRIMARY KEY, 
EvDateTime TIMESTAMP, Kind CHAR(5), Source VARCHAR(25), 
Description VARCHAR(255), 
EMark_EventDetail INTEGER REFERENCES Mark(ID) 

J 
(a) 

CREATE TABLE Error 
( 
ID INTEGER NOT NULL PRIMARY KEY, 
ErrDateTime TIMESTAMP, Source VARCHAR(25), 
Description VARCHAR(255), Notes VARCHAR(255) , 
AMark_ErrorTime INTEGER REFERENCES Mark(ID), 
AMark_ErrorDetails INTEGER REFERENCES Mark(ID) 

J 
(b) 

Figure 4.9: Relational schema generated for EMark and AMark relationship types, (a) Schema for 
the Event entity type and EMark relationship type of Figure 4.3; (b) Schema for the Error entity 

type and AMark relationship types of Figure 4.4 

Figure 4.9(b) shows the relational schema generated for the Error entity type and the 

AMark relationship types of Figure 4.4. The last two attributes represent the AMark rela

tionship types. 

4.4.2. Generating Schemasfor the AExcerptPattern 

We generate the relational schema for a relationship type of the pattern AExcerpt in two 

steps: First, we generate the schema for a stored relation. Then we define a view (that 

is, a relation derived from other relations) over the stored relation in order to provide 

direct access to the excerpt retrieved from the base layer. 

To generate the schema for a stored relation, we generate the schema for the entity 

type involved in the AExcerpt relationship type using the traditional procedure, and re

move from the generated relational schema the attributes that participate in the 

AExcerpt relationship type. 



122 

Figure 4.10(a) shows the relational schema the traditional procedure generates for the 

entity type OSUpdate in Figure 4.5. Figure 4.10(b) shows the relational schema gener

ated for the stored relation after removing the attribute Ti t le because the value of that 

attribute is derived from a mark's excerpt. Note that the foreign-key attribute that 

represents the use of mark is present in both schemas. 

CREATE TABLE Traditional_OSUpdate 

{ 

ID INTEGER NOT NULL PRIMARY KEY, 
Title VARCHAR(IOO), 
Description VARCHAR(255) , 
Reason VARCHAR(255), 
AExcerpt UpdateTitle INTEGER REFERENCES 
) 

Ma rk(ID) 

(a) 
CREATE TABLE Stored_OSUpdate 
( 
ID INTEGER NOT NULL PRIMARY KEY, 
Description VARCHAR(255), 
Reason VARCHAR(255), 
AExcerpt_UpdateTitle INTEGER REFERENCES Mark(ID) 

J 
(b) 

Figure 4.10: Relational schema generated for an AExcerpt relationship type, (a) Traditional sche
ma generated for the entity type participating in an AExcerpt relationship; (b) Schema generated 

for the stored relation for an entity type participating in an AExcerpt relationship 

In the second step, we define a view over the stored relation. The view exposes as is 

the attributes whose values are not derived from a mark's excerpt, but hides the 

attribute that references the attribute Mark.ID (corresponding to the attribute whose 

value is derived from a mark's excerpt). Instead, the view exposes the excerpt ob

tained from the hidden mark ID attribute. 

Figure 4.11 shows the definition of the view over the stored relation for the entity type 

OSUpdate in Figure 4.5. The view exposes the attributes ID, Description, and Reason 



123 

as they are because their values are not derived from marks' excerpts. The view ex

poses the attribute Ti t le as a result of the function excerpt. The function excerpt 

accepts a mark ID and returns the text excerpt (a string) retrieved from the correspond

ing mark. This function may be implemented as a user-defined function [147] by reus

ing the context mechanism of SPARCE (described in Section 3.3.2). 

In the view definition that our procedure generates, the value of an attribute associated 

with an AExcerpt relationship is the same as the excerpt retrieved from a mark, but an 

SA developer may change the generated schema. For example, he might make the 

attribute's value only the first 10 characters of the excerpt. 

CREATE VIEW OSUpdate (ID, Title, Description, Reason) 
AS 
SELECT ID, excerpt(AExcerpt_UpdateTitle), Description, Reason 
FROM Stored OSUpdate 

Figure 4.11: View definition generated for an entity type participating in an AExcerpt relationship 

Type conformance is an important consideration when assigning an attribute value 

from a retrieved excerpt. As described, our procedure to generate relational schemas 

for the AExcerpt pattern assigns a value of type string to any attribute that derives its 

value from a mark's excerpt. Although the string type might satisfy many modeling 

needs, it is necessary to consider representing excerpts as other types (such as integer 

and date). 

An improvement to our procedure is to cast the result of the function excerpt to a 

type compatible with the type of the attribute that participates in an AExcerpt relation

ship type. 



124 

4.4.3. Generating Schemas for the RMarkPattern 

We generate the relational schema for an RMark relationship type in two steps. In the 

first step, we generate the schema for the anchored relationship type using an appro

priate procedure. That is, we use the traditional procedure if the anchored relationship 

is a regular ER relationship between SI entities; we use one of the procedures in this 

section if the relationship follows any of the patterns of use of marks. For example, we 

use the traditional procedure to generate the schema for the relationship type Applies To 

in Figure 4.6 because that relationship type is between SI entity types. Figure 4.12(a) 

shows the schema generated for that anchored relationship type (in the form of the re

lation AppiiesTo). For ease of reading, we include also the schema for the related ent

ity type Application (in the form of the relation Application). Figure 4.10(b) shows 

the schema for the other related entity type, OSUpdate. 

In the second step, we augment the schema generated in the first step to represent the 

RMark relationship type. The augmentation procedure is based on the cardinality con

straints of the RMark relationship type. If the cardinality constraints of the RMark rela

tionship allow multiple marks (that is the relationship is 1:N or M:N), we create a new 

relation and perform the following actions. 

1. Add the key attributes of the relation that captures the anchored relationship type, 

and constrain those attributes to be a foreign key. 

2. Add a foreign-key attribute to reference the attribute Mark. ID. 

3. Add the attributes of the RMark relationship. 



125 

4. Define the primary key of the new relation as the set of the foreign-key attributes. 

If the RMark relationship can have at most one mark (that is the relationship is 1:1 or 

M:l), we perform only the aforementioned Actions 2 and 3, but with the relation that 

captures the anchored relationship type. 

CREATE TABLE Application 
( 
ID INTEGER NOT NULL PRIMARY KEY, 

Name VARCHAR(255) 
) 

CREATE TABLE AppliesTo 
( 
UID INTEGER REFERENCES Stored_OSUpdate(ID) , 
AID INTEGER REFERENCES Application(ID), 
PRIMARY KEY (UID, AID) 
) 

(a) 
CREATE TABLE 

UID INTEGER, 
AID INTEGER, 

RMark_ Application 

CONSTRAINT FOREIGN KEY 
REFERENCES (Appl LesTo 

(UID 
.UID, 

RMarkID INTEGER REFERENCES 
PRIMARY KEY 
) 

(UID, AID, RMar 

, AID) 
AppliesTo 

Mark(ID), 
kID) 

.AID), 

(b) 

Figure 4.12: Relational schema generated for an RMark relationship type, (a) Schema for the anc
hored relationship type of an RMark relationship type; (b) Schema for an RMark relationship type 

Figure 4.12(b) shows the schema of a new relation created to represent the RMark rela

tionship type of Figure 4.6. A new relation is created because the RMark relationship 

type allows any number of marks to be associated with the anchored relationship type 

Applies To. The schema of the new relation contains the key attributes UID and AID of 

the relation AppliesTo, the relation that captures the anchored relationship type 

Applies To. These attributes together are also defined as a foreign key referencing the 



126 

primary key of the relation Applies To. The new relation also has a foreign key 

attribute to denote the use of a mark. The relation has no other attributes because the 

RMark relationship has no attributes. Finally, the set of all foreign key attributes (UID, 

AID, and RMarkiD) is the primary key of the new relation. 

4.4.4. Generating Schemasfor the RAMarkPattern 

Generating the relational schema for an RAMark relationship type is similar to generat

ing the relational schema for an RMark relationship type, except that the foreign key 

attribute that denotes the use of a mark is associated with a relationship's attribute, not 

with the relationship. 

CREATE TABLE 
i 

Computer 

ID INTEGER NOT NULL PRIMARY KEY, 
Name VARCHAR(255) 
) 

CREATE TABLE 

UID INTEGER 
CID INTEGER 
UpdDateTime 

AppliedOn 

REFERENCES 
REFERENCES 
TIMESTAMP, 

Stored OSUpdate 
Computer(ID) , 

RAMark UpdateLog INTEGER REFERENCES 
PRIMARY KEY 
) 

(UID, CID) 
Ma 

(ID), 

rk(ID), 

Figure 4.13: Relational schema for an RAMark relationship type 

Figure 4.13 shows the relational schema generated for the RAMark relationship type of 

Figure 4.7. For ease of reading, we include also the schema for the related entity type 

Computer. (Figure 4.10(b) shows the schema for the other related entity type, 

OSUpdate.) The relation AppliedOn in this schema captures the anchored relationship 

type Applied On. A new relation is not needed to capture the RAMark relationship type 

because its cardinality is M:l. 



127 

4.5. Generating XML Schemas 

In this section, we describe the procedures to generate XML schemas for the different 

patterns of use of marks. In XML terms, these procedures allow association of marks 

with elements, attributes, and text content. We describe the schemas generated for the 

XML model using XML Schema [170], instead of using XML Document Type 

Definition (DTD) [43], because the former is more expressive and permits more mod

ular construction of schemas. 

We begin this section with an overview of the procedure to generate XML schemas 

from ER schemas. 

4.5.1. Overview of the Schema-Generation Procedure 

The representational multiplicity (that is, the ability to express the same information in 

different ways) of the XML model poses special challenges when generating an XML 

schema from an ER schema: An ER attribute may be represented as an XML element 

or as an XML attribute; an ER relationship may be represented as an XML element or 

as an XML attribute, or using a combination of XML elements and attributes. Further, 

a relationship may be replicated for each participating entity, or it may be represented 

using a reference (for example, using an attribute of type IDREF). For reasons such as 

performance, an SA developer may use different representations for different applica

tions. 

Several researchers—Kleiner and Lipeck [82]; Sengupta and others [144]; Elmasri and 

others [42] among them—have considered the problem of generating XML schemas 



128 

from ER schemas. However, they all limit the developer's choices of XML representa

tions for ER schema elements. For example, Elmasri and others represent ER 

attributes as XML elements. That is, none of the current approaches to generate XML 

schemas from ER schemas fully handles the representational multiplicity of XML. 

To leverage these and other works, and to avoid the limitations of existing procedures, 

we have devised a two-step procedure to generate the XML schema for a pattern of 

mark use. In the first step, we allow the SA developer to employ any existing proce

dure to generate the XML schema for the ER entity, relationship, or attribute involved 

in the use of mark, excluding the relationship type that indicates the use of marks. This 

step generates the schema for an XML element or an attribute (because an ER entity, 

relationship, or attribute can only be represented using these XML constructs). 

In the second step, we add to the schema generated in the first step new XML ele

ments {always elements) that represent the use of marks. The location of a new XML 

element that is added is determined as follows: If the first step generates an element, 

the new element is added as a sub-element of the element generated; if the first step 

generates an attribute, the new element is added as a sub-element of the element that 

contains the attribute generated. 

Table 4.2 shows how the two steps of the procedure work together. The first column 

lists different ER constructs. The second column shows the relationship pattern used to 

represent the use of marks (in which an ER schema construct of the kind listed in the 

first column participates). The third column shows the XML constructs an existing 



129 

procedure to generate XML schemas might generate in the first step. The last column 

shows the type of XML element we add to the schema generated in the first step. Fig

ure 4.14 defines the element types we use to represent use of marks. Section 4.5.2 de

scribes these types, including the need for the type Xml_TMark (shown in the fifth data 

row of Table 4.2). 

Table 4.2: Correspondence of ER constructs and patterns of use of marks to XML constructs 

ER construct Relationship pattern XML construct generated XML element type added 

in Step 1 in Step 2 

Xml_EMark 

XmLAMark 

Xml_EMark 

XmLAMark 

Xml_TMark 

XmLAMark 

XmLEMark 

XmLAMark 

XmLEMark 

XmLAMark 

Our two-step procedure allows marks to be associated with any part of an XML doc

ument (elements, attributes, and text nodes), regardless of how an ER construct is 

represented in XML. That is, with respect to the use of marks, our procedure fully 

handles the representational multiplicity of XML. 

In this chapter, for simplicity, we assume that the first step in the schema-generation 

procedure represents ER elements and relationships as XML elements, and ER 

attributes as XML attributes. Consequently, we describe the procedures to generate 

XML schemas only for the EMark, AMark, and AExcerpt patterns. We omit discussing the 

Entity 

Entity 

Entity attribute 

Entity attribute 

Entity attribute 

Entity attribute 

Relationship 

Relationship 

Relationship attribute 

Relationship attribute 

EMark 

EMark 

AMark 

AMark 

AExcerpt 

AExcerpt 

RMark 

RMark 

RAMark 

RAMark 

Element 

Attribute 

Element 

Attribute 

Element 

Attribute 

Element 

Attribute 

Element 

Attribute 



130 

procedures for the RMark and RAMark patterns (because those procedures would be the 

same as the procedures for the EMark and AMark patterns, respectively). 

4.5.2. Element Types for Patterns of Use of Marks 

The XML Schema instance document in Figure 4.14 defines the element types we use 

to represent association of marks with different parts of an XML document. The ele

ment types belong to the namespace "sixml" and are bound to the Uniform Resource 

Identifier (URI) [15] "http://schema.sixml.org". For simplicity, where possible, we 

use our element types without this namespace or the URI. XML Schema defines the 

namespace "xs" (bound to the URI "http://www.w3.org/2001/XMLSchema"). 

The term Sixml (pronounced ' siks-m&i) [118, 120] refers to SI represented as XML. 

A Sixml document is an XML document that contains elements of the types we define 

for mark associations. To focus on generating XML schemas from ER schemas, we 

present here only the Sixml element types that can arise in our generation procedure. 

(The ER model cannot express all XML constructs.) Chapter 7 presents the complete 

set of Sixml types. Appendix A shows the XML Schema instance document contain

ing the complete set of Sixml types. That document is also available online [119]. 

http://schema.sixml.org
http://www.w3.org/2001/XMLSchema


<
xs

:s
ch

em
a 

ta
rg

et
N

am
es

pa
ce

=
"h

tt
p:

//
sc

he
m

a.
si

xm
l.o

rg
" 

xm
ln

s:
si

xm
l=

"h
tt

p
:/

/s
ch

e
m

a
.s

ix
m

l.o
rg

" 
xm

ln
s:

xs
=

"h
tt

p:
//

w
w

w
.w

3.
or

g/
20

01
/X

M
LS

ch
em

a"
>

 
<

!~
A

b
st

ra
ct

 b
as

e 
ty

pe
 f

or
 m

ar
k 

de
sc

rip
to

rs
 -

->
 

<
xs

:c
om

pl
ex

T
yp

e 
na

m
e=

"D
es

cr
ip

to
r"

 a
bs

tr
ac

t=
"t

ru
e"

 f
in

al
 =

 ""
 b

lo
ck

=
""

 m
ix

e
d

=
"t

ru
e

">
 

<
xs

:c
om

pl
ex

C
on

te
nt

 m
ix

e
d

=
"t

ru
e

"x
xs

:e
xt

e
n

si
o

n 
b

a
se

=
"x

s:
a

n
yT

yp
e

"/
x/

xs
:c

o
m

p
le

xC
o

n
te

n
t>

 
<

/x
s:

co
m

pl
ex

T
yp

e>
 

<
!~

C
o

n
te

xt
 i

nf
or

m
at

io
n 

of
 a

rb
itr

ar
y 

in
te

rn
al

 s
tr

uc
tu

re
 —

>
 

<
xs

:e
le

m
en

t 
na

m
e=

"C
on

te
xt

">
 

<
xs

:c
om

pl
ex

T
yp

e 
m

ix
e

d
=

"t
ru

e
">

 
<

xs
:s

e
q

u
e

n
ce

xx
s:

a
n

y 
p

ro
ce

ss
C

o
n

te
n

ts
=

"s
ki

p
"/

>
<

/x
s:

se
q

u
e

n
ce

xx
s:

a
n

yA
tt

ri
b

u
te

 
pr

oc
es

sC
on

te
nt

s=
"s

ki
p"

/>
 

<
/x

s:
co

m
pl

ex
T

yp
e>

 
<

/x
s:

e
le

m
e

n
t>

 
<

xs
:e

le
m

en
t 

na
m

e=
"D

es
cr

ip
to

r"
 

ty
p

e
=

"s
ix

m
l:D

e
sc

ri
p

to
r"

/>
 

<
xs

:a
tt

ri
b

u
te

 n
am

e=
"m

ar
kI

D
" 

ty
p

e
=

"x
s:

st
ri

n
g

"/
xx

s:
a

tt
ri

b
u

te
 

na
m

e=
"t

yp
e"

 t
yp

e
=

"x
s:

st
ri

n
g

"/
>

 
<

xs
:c

om
pl

ex
T

yp
e 

n
a

m
e

=
"X

m
l_

E
M

a
rk

" 
fin

al
 =

 "r
es

tr
ic

tio
n"

 b
lo

ck
=

"#
a

ll"
 m

ix
e

d
=

"t
ru

e
">

 
<

xs
:c

om
pl

ex
C

on
te

nt
 m

ix
ed

 =
 "t

ru
e

">
 

<
xs

:r
es

tr
ic

tio
n 

ba
se

=
"x

s:
an

yT
yp

e"
>

 
<

xs
:s

e
q

u
e

n
ce

xx
s:

e
le

m
e

n
t 

re
f=

"s
ix

m
l:D

es
cr

ip
to

r"
 m

in
O

cc
u

rs
=

"0
"/

xx
s:

e
le

m
e

n
t 

re
f=

"s
ix

m
l:C

on
te

xt
" 

m
in

O
cc

u
rs

=
"0

"/
x/

xs
:s

e
q

u
e

n
ce

>
 

<
xs

:a
tt

ri
b

u
te

 r
e

f=
"s

ix
m

l:
m

a
rk

ID
"/

xx
s:

a
tt

ri
b

u
te

 
re

f=
"s

ix
m

l:t
yp

e
"/

>
 

<
/x

s:
re

st
ri

ct
io

n
>

 
<

/x
s:

co
m

pl
ex

C
on

te
nt

>
 

<
/x

s:
co

m
pl

ex
T

yp
e>

 
<

xs
:a

tt
ri

b
u

te
 n

am
e=

"v
al

ue
S

ou
rc

e"
 t

yp
e

=
"x

s:
b

o
o

le
a

n
"/

xx
s:

a
tt

ri
b

u
te

 n
am

e=
"v

al
ue

E
xp

re
ss

io
n"

 t
yp

e
=

"x
s:

st
ri

n
g

"/
>

 
<

xs
:c

om
pl

ex
T

yp
e 

n
a

m
e

=
"X

m
l_

T
M

a
rk

" 
fin

al
=

"r
es

tr
ic

tio
n"

 b
lo

ck
=

"#
a

ll"
 m

ix
e

d
=

"t
ru

e
">

 
<

xs
:c

om
pl

ex
C

on
te

nt
 m

ix
e

d
=

"t
ru

e
">

 
<

xs
e

xt
e

n
si

o
n 

ba
se

=
"s

ix
m

l:X
m

l_
E

M
ar

k"
>

 
<

xs
:a

tt
ri

bu
te

 r
e

f=
"s

ix
m

l:
va

lu
e

S
o

u
rc

e
"/

xx
s:

a
tt

ri
b

u
te

 
re

f=
"s

ix
m

l:v
al

ue
E

xp
re

ss
io

n"
/>

 
<

/x
s:

ex
te

ns
io

n>
 

<
/x

s:
co

m
pl

ex
C

on
te

nt
>

 
<

/x
s:

co
m

pl
ex

T
yp

e>
 

<
xs

:s
im

pl
eT

yp
e 

n
a

m
e

=
"Q

N
a

m
e

L
is

t"
xx

s:
lis

t 
it

e
m

T
yp

e
=

"x
s:

Q
N

a
m

e
"/

x/
xs

:s
im

p
le

T
yp

e
>

 
<

xs
:a

tt
ri

b
u

te
 n

am
e=

"t
ar

ge
t"

>
 

<
xs

:s
im

p
le

T
yp

e
xx

s:
re

st
ri

ct
io

n 
b

a
se

=
"s

ix
m

l:Q
N

a
m

e
L

is
t"

xx
s:

m
in

L
e

n
g

th
 

va
lu

e
=

"l
"/

x/
xs

:r
e

st
ri

ct
io

n
x/

xs
:s

im
p

le
T

yp
e

>
 

<
/x

s:
a

tt
ri

b
u

te
>

 
<

xs
:c

om
pl

ex
T

yp
e 

n
a

m
e

=
"X

m
l_

A
M

a
rk

" 
fin

al
=

"r
es

tr
ic

tio
n"

 b
lo

ck
=

"#
a

ll"
 m

ix
e

d
=

"t
ru

e
">

 
<

xs
:c

om
pl

ex
C

on
te

nt
 m

ix
e

d
=

"t
ru

e
">

 
<

xs
:e

xt
en

si
on

 b
a

se
=

"s
ix

m
l:

X
m

l_
T

M
a

rk
"x

xs
:a

tt
ri

b
u

te
 

re
f=

"s
ix

m
l:t

a
rg

e
t"

 
u

se
=

"r
e

q
u

ir
e

d
"/

x/
xs

:e
xt

e
n

si
o

n
>

 
<

/x
s:

co
m

pl
ex

C
on

te
nt

>
 

<
/x

s:
co

m
pl

ex
T

yp
e>

 
<

/x
s:

sc
h

e
m

a
>

 

F
ig

ur
e 

4.
14

: A
 s

im
pl

if
ie

d 
X

M
L

 S
ch

em
a 

in
st

an
ce

 d
oc

um
en

t 
fo

r 
th

e 
di

ff
er

en
t 

pa
tt

er
ns

 o
f 

us
e 

of
 m

ar
ks

 

http://schema.sixml.org
http://schema.sixml.org
http://www.w3.org/2001/XMLSchema


132 

We use the type-derivation facility of XML Schema to define the element types that 

represent the different uses of marks. The type Xml_EMark is at the root of the type 

hierarchy. This type is used to associate a mark with an XML element. It includes an 

element named Descriptor to represent the descriptor of the associated mark, and the 

attribute markID to represent the ID of the mark. Both Descriptor and markID are la

beled optional, but at least one of these two must be used. Section 4.6 discusses the 

use of Descriptor. 

The optional element Context included in the type Xml_EMark represents the context 

information retrieved from the mark in question. Section 4.7 discusses the use of this 

element. Chapter 7 discusses the use of the optional attribute type. 

The following example segment shows how an instance of the EMark relationship type 

in Figure 4.3 can be represented in XML. The element Event represents the entity 

Event in that figure. EMark_EventDetail represents the EMark relationship. (The rela

tionship element's name is based on the name of the relationship pattern and the rela

tionship type in Figure 4.3.) 

<Event ID="..." EvDateTime="..." Kind="..." Source="..." Description^'..."> 
<EMark_EventDetail sixml:markID="87" xsi:noNamespaceSchemaLocation="."/> 

</Event> 
<xs:element name="EMark_EventDetail" type="sixml:EMark"/> 

The attribute xsi:noNamespaceSchemal_ocation in the example segment associates a 

schema with EMark_EventDetail. The prefix xsi indicates the XML Schema instance 

namespace [171]. The value (period) for xsi:noNamespaceSchemaLocation denotes 

that the schema for EMark_EventDetail is included in the "current" document. The 



133 

element xs:element defines the schema for EMark_EventDetail. The schema simply 

states that EMark_EventDetail is of type EMark. (This somewhat convoluted method 

of associating a schema with an element is actually the simplest way of associating a 

schema using XML Schema.) 

The second type in the type hierarchy, Xml_TMark, is used to model an AExcerpt rela

tionship type when the ER attribute in question is represented as an element. (See the 

fifth data row in Table 4.2.) Xml_TMark extends Xml_EMark by two attributes. The 

Boolean attribute valueSource indicates whether the text content of the XML element 

that corresponds to an ER attribute is derived from the context of the associated mark. 

The string attribute valueExpression denotes the context element that supplies the val

ue. We illustrate the use of Xml_TMark after discussing the use of the type 

Xml_AMark. Chapter 7 discusses the use of the attribute valueExpression. 

The type Xml_AMark is used to associate a mark with XML attributes. It extends the 

type Xml_TMark by the attribute target. The value of this attribute is a list of qualified 

names. (A qualified name [125]—Qname for short—is a sequence of characters al

lowable as the name of an XML element or attribute, possibly combined with a prefix 

that is associated with a URL For example, the strings sixml:markID and 

ErrDateTime are both QNames.) The qualified names listed as the value of the 

attribute target are required to identify attributes with which an Xml_AMark element 

associates a mark. The value of target must identify at least one attribute, and each 

identified attribute is associated with the same mark. 



134 

The following XML segment illustrates how instances of the AMark relationship types 

in Figure 4.4 might be represented in XML. The element Error denotes an Error entity. 

AMark_ErrorTime and AMark_ErrorDetails denote relationships. The missing attribute 

valueSource in each relationship element indicates that the target attribute's value is 

not derived from the associated mark. (Alternatively, valueSource may be set to 

"false".) 

<Error ID=". . . " ErrDateTime="..." Source="..." Description^'..." Notes="..."> 
<AMark_ErrorTime sixml:markID="..." sixml:target="ErrDateTime" 

xsi:noNamespaceSchemaLocation="."/> 
<AMark_ErrorDetails sixml:markID="..." sixml:target= "Description" 

xsi:noNamespaceSchemaLocation="."/> 
</Error> 

<xs:element name="AMark_ErrorTime" type="sixml:Xml_AMark"/> 
<xs:element name="AMark_ErrorDetails" type="sixml:Xml_AMark"/> 

The type Xml_AMark is also used to model an AExcerpt relationship type. In this use of 

Xml_AMark, the value of the attribute valueSource is always "true". For example, an 

instance of the AExcerpt relationship type in Figure 4.5 may be represented in XML as 

follows. Here, an OS update's title is represented as the attribute Title. The sub-

element AExcerpt_UpdateTitle (of type Xml_AMark) associates the attribute Title with 

a mark. The sub-element's attribute valueSource denotes that the target attribute's 

value is the excerpt from the associated mark. 

<OSUpdateTit le="..." Description^'..." Reason="..."> 
<AExcerpt_UpdateTitle s ixml:markID="146" sixml:target="Tit le" sixml:valueSource="true" 

xsi:noNamespaceSchemaLocation="."/> 
</OSUpdate> 

<xs:element name=" AExcerpt_UpdateTitle" type="sixml:Xml_AMark"/> 

The element type Xml_TMark handles the case of an ER attribute that participates in 

an AExcerpt relationship, and is represented as text content of an XML element. (This 

case corresponds to the fifth data row in Table 4.2.) The type Xml_AMark cannot be 



135 

used in this case because the target XML attribute would not exist. For example, if the 

attribute Title involved in the AExcerpt relationship type in Figure 4.5 is represented as 

text content, we insert the element TExcerpt_UpdateTitle (of type Xml_TMark) into 

the element OSUpdate as follows: 

<OSUpdate Description^'..." Reason="..."> 
<TExcerpt_UpdateTitle sixml:markID="146" sixml:valueSource="true" 

xsi:noNamespaceSchemaLocation="."/> 
</OSUpdate> 

<xs:element name=" TExcerpt_UpdateTitle" type="sixml:Xml_TMark"/> 

A sub-element of type Xml_TMark is only a design-time proxy for text content. At run 

time, this proxy is replaced by the excerpt retrieved from the associated mark. Chapter 

7 describes how the proxy is replaced at run time. 

The element types Xml_EMark, Xml_AMark, and Xml_TMark disallow an instance of a 

derived type to be used in place of an instance of the specified type (indicated by the 

value "#all" for the attribute block). This constraint ensures that only an element of the 

most appropriate type is used to represent the use of a mark. For example, an instance 

of Xml_AMark may not be used to associate a mark with an element. 

XML Schema cannot express or enforce all the constraints we need to represent the 

use of marks. For example, XML Schema (more precisely, an XML Schema com

pliant application) can ensure that the value of the attribute target of an Xml_AMark 

element is a list of qualified names. However, it cannot ensure that a name mentioned 

in the list identifies an attribute of the containing element. Chapter 7 shows how we 

enforce constraints that XML Schema cannot enforce. 



136 

4.5.3. Generating Schema for the EMarkPattern 

To generate the schema for an EMark relationship, we first generate the schema for the 

regular entity types that participate in the relationship. Then, into the schema generat

ed in the first step, we insert the schema for a sub-element of type Xml_EMark. 

<xs:schema xmlns:xs= 'h t tp: / /www 
<xs:element name="Event"> 

<xs:complexType> 
<xs:attr ibute name= 
<xs:attr ibute name= 
<xs:attr ibute name= 
<xs:attr ibute name= 
<xs:attr ibute name= 

</xs:complexType> 
</xs:element> 

</xs:schema> 

= " ID" type=" 

w3.org/2001/XMLSchema"> 

xs:str ing"/> 
= "EvDateTime" type="xs:dateTime"/> 
= "Kind" type ="xs:str ing"/> 
="Source" type="xs:str ing"/> 
="Description " type="xs:str ing"/> 

(a) 
<xs:schema xmlns:sixml="http://schema.sixml.org" xmlns:xs="http://www.w3.org/..."> 

<xs:import namespace="http://schema.sixml.org"/> 
<xs:element name="Event"> 

<xs:complexType> 
<xs:sequence> 
<xs:element name="EMark_EventDetail" type="sixml:Xml_EMark" maxOccurs="l"/> 

</xs:sequence> 
<xs:attribute name="ID" type="xs:string"/> 
<xs:attribute name="EvDateTime" type="xs:dateTime"/> 
<xs:attribute name="Kind" type="xs:string"/> 
<xs:attribute name="Source" type="xs:string"/> 
<xs:attribute name="Description" type="xs:string"/> 

</xs:complexType> 
</xs:element> 

</xs: schema > 

(b) 
<Event ID= 

xsi: 
<EMark 

</Event> 

"2" EvDateTime=" ..." Kind = "S" Source= "Log' Description= 
noNamespaceSchemaLocation="http://schema.sixm 
EventDetail sixml :markID= "87" /> 

.org/e 
'Started" 
xamples/ss ib.xsd"/> 

(c) 

Figure 4.15: XML schema generated for an EMark relationship type, (a) Schema for the entity 
type Event of Figure 4.3 excluding the EMark relationship type; (b) Schema for the entity type 

Event including the EMark relationship type; (c) An instance of the schema in Part (b) of this figure 

Figure 4.15(a) shows the XML schema generated in the first step of the procedure for 

the Event entity of Figure 4.3. It represents the Event entity type as an XML element 

and defines the attributes of the Event entity as XML attributes. This schema does not 

include the EMark relationship type EventDetail of Figure 4.3. 

http://www
http://schema.sixml.org
http://www.w3.org/
http://schema.sixml.org%22/
http://schema.sixm


137 

Figure 4.15(b) shows the XML schema produced in the second step of the procedure. 

This schema first imports the XML schema in the namespace "sixml" (that is, the 

schema shown in Figure 4.14) so that it can reference the element type Xml_EMark. 

The schema then includes the element named EMark_EventDetail of type Xml_EMark, 

and sets the attribute maxOccurs appropriately. 

Figure 4.15(c) shows an example instance of the schema generated in the second step 

(and shown in Figure 4.15(b)). The instance assumes that the generated schema is 

stored in the file pointed to by the attribute xshnoNamespaceSchemaLocation. (The 

complete schema for the SSIB application is available online at the location indicated 

in Figure 4.15(c).) 

4.5.4. Generating Schema for the AMarkand AExcerpt Patterns 

The procedures to generate the XML schema for the AMark and AExcerpt patterns are 

similar to the procedure for EMark, except that elements of types Xml_AMark are intro

duced. For these patterns we show only the final XML schema generated. 

Figure 4.16 shows the XML schema generated for the Error entity type of Figure 4.4, 

including the two AMark relationship types. The ER attributes that participate in the 

AMark relationships are modeled as attributes. The elements AMark_ErrorTime and 

AMark_ErrorDetails denote the AMark relationship types. 

Figure 4.16 also shows the XML schema generated for the OSUpdate entity type and 

the AExcerpt relationship type of Figure 4.5. The element AExcerpt_UpdateTitle de

notes the AExcerpt relationship type. 



138 

Each of the AMark elements shown in Figure 4.16 is associated with a target attribute 

(as illustrated in the second and third example XML segments in Section 4.5.2) when 

the schema is instantiated. 

<xs:schema xmlns:sixml="http://schema.sixml.org" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xs:import namespace="http://schema.sixml.org"/> 
<xs:element name="Error"> 
<xs:complexType> 
<xs:sequence> 
<xs:element name="AMark_ErrorTime" type="sixinl:Xml_AMark" maxOccurs="l"/> 
<xs:element name="AMark_ErrorDetails" type="sixml:Xml_AMark" 

maxOccurs="l"/> 
</xs:sequence> 
<xs:attribute name="ID" type="xs:string"/> 
<xs:attribute name="ErrDateTime" type="xs:dateTime"/> 
<xs:attribute name="Source" type="xs:string"/> 
<xs:attribute name="Description" type="xs:string"/> 
<xs:attribute name="Notes" type="xs:string"/> 

</xs:complexType> 
</xs:element> 

<xs:element name="OSUpdate"> 
<xs:complexType> 

<xs:sequence> 
<xs:element name="AExcerpt_UpdateTitle" type="sixml:Xiril_AMark" 

maxOccurs="l"/> 
</xs:sequence> 
<xs:attribute name="ID" type="xs:string"/> 
<xs:attribute name="Title" type="xs:string"/> 
<xs:attribute name="Description" type="xs:string"/> 
<xs:attribute name="Reason" type="xs:string"/> 

</xs: complexType > 
</xs:element> 

</xs: schema > 

Figure 4.16: XML schema generated for the AMark and AExcerpt relationship types. The schema 
generated for the Error entity type and the AMark relationship types of Figure 4.4, and the schema 
generated for the OSUpdate entity type and the AExcerpt relationship type of Figure 4.5 are shown 

4.6. Modeling Mark Descriptors 

In Section 3.7.3 we observed that a mark describes one endpoint—a base selection— 

of a potential link. An actual link to the base selection is created when a mark is asso

ciated with an SI element (such as a Sidepad item). Thus far in this chapter, we have 

modeled a link's endpoint (as the Mark entity type) and a link itself (as a relationship 

http://schema.sixml.org
http://www.w3.org/2001/XMLSchema
http://schema.sixml.org%22/


139 

type involving the Mark entity type). In this section, we model the specification of a 

link's endpoint: a mark descriptor. 

Ideally, we like to be able to represent a descriptor for any linking technology (such as 

OLE 2 compound documents [18] and SPARCE), but doing so can be challenging be

cause the structure of a mark descriptor can vary widely among linking technologies. 

For example, the OLE 2 compound document system allows a variety of monikers (a 

moniker encodes an address), while a URI may include a. fragment identifier (the por

tion of a URI that begins with the # character) [15] containing practically any data. 

Further, some frameworks allow development of new kinds of endpoint specifications. 

For example, the XPointer framework [168] allows development of new pointer 

schemes. (An XPointer pointer specifies a fragment of a resource that is identifiable 

using a URI.) 

In the rest of this section, we present a conceptual model for a mark descriptor and 

discuss the representation of a mark descriptor in relational and XML schemas. 

Through examples we show how our model can represent descriptors for any linking 

technology. 

4.6.1. Conceptual Modeling 

In Section 4.3 we mentioned that a Mark entity has the attribute ID as the primary key, 

and that other attributes of the entity are derived from its descriptor. A simple way 

(Alternative 1) to represent a mark descriptor for any linking technology is to add to 

the Mark entity type a Kind attribute to denote the linking technology, and a Descriptor 



140 

attribute to store a serialized form of a mark descriptor. This approach provides a sim

ple solution to the storage problem, but makes it hard to query the structure of a de

scriptor. 

Alternative 2 is to define a variation of the Mark entity type for each linking technolo

gy, with attributes specific to that technology. This approach allows storing of differ

ent kinds of descriptors (for different linking technologies), and allows structured que

ries over descriptors. However, the SA developer would need to choose, at design 

time, a variation of the Mark entity type to represent each use of marks. That is, the SA 

developer would need to choose linking technologies at Si-design time. (There is no 

notion of type inheritance in this alternative. Also, the basic ER model does not sup

port inheritance.) 

Alternative 3 is to specialize the Mark entity type (that is, derive new entities from 

Mark) for different kinds of descriptors using the Extended-ER (EER) model [41]. This 

approach allows storing of different kinds of descriptors, allows structured queries 

over descriptors, and leaves unchanged both the model for mark and the model for use 

of marks. Also, the SA developer would not need to choose linking technologies at SI-

design time. 

While it seems to exhibit several advantages, Alternative 3 is not practical for two rea

sons: First, the most popular logical data model, the relational model, does not native

ly support specialization. (Some relational database managements systems, for exam

ple DB2 [62], do support some form of specialization.) Second, many of the queries 



141 

over descriptors would need to consider descriptor kind because the attributes of de

scriptors tend to vary widely. Thus, for practical reasons, a Kind attribute would still be 

required in the Mark entity type. Example 4 in Section 4.8 demonstrates a use of this 

attribute. 

Alternative 4 is to add an attribute Kind to the Mark entity type to denote descriptor 

kind, add a new entity type for each kind of descriptor to support, and relate the Mark 

entity type with these new entity types. This approach has all the benefits of Alterna

tive 3, except that it changes the Mark entity (because it adds an attribute). Also, it does 

not require support for inheritance. 

Computer 

Name 

Logged On 
Event 

EvDateTime 
Kind 
Source 
Description 

EMarkiEventDetail 

1 

Mark 

ID 
Kind 

Aggregation 

Next 0..1 

Sequence 

1 

* 
XPointerMark 
Position 
SchemeName 
SchemeData 

I Previoi 

1 Extension 1 

SPARCEMark 

Agent 
Class 
Address 
Description 
CachedText 
Who 
Where 
When 

„ ., References 
JS0..1 

Application 

AID 

Agent 
Name 

1 References 

1 
Document 

DID 

Agen 
Locat ion 

Figure 4.17: A conceptual model for a mark descriptor. Example descriptor entity types are in
cluded only for illustration 

We pursue Alternative 4 to model mark descriptors. Figure 4.17 shows an ER schema 

in this alternative. It shows a new attribute Kind added to the entity type Mark. It also 

includes the EMark relationship type of Figure 4.3 to demonstrate that relationship 

types that indicate the use of marks are unaffected. The figure also includes entity 



142 

types for mark descriptors for SPARCE and for XPointer. The entity type SPARCEMark 

models a SPARCE mark descriptor. The attributes of this entity type and those of the 

related entities Document and Application are obtained from the descriptors in Figure 

3.4. 

The entity type XPointerMark models an XPointer scheme-based pointer [168]. A 

scheme-based pointer in the XPointer framework is a sequence of (scheme, fragment) 

pairs, where scheme is the name of an addressing scheme. The term fragment is a spe

cification of a fragment of data within the context of a resource pointed to by a URL A 

fragment specification is a string constructed using the production rules specified in 

the grammar for the associated addressing scheme. The pointer schemes defined using 

the XPointer framework are: elementQ [173] to address XML elements using element 

ids and positions, and xpointerQ [174] to address portions of XML data using an ex

tension of the XPath syntax [166]. Different fragments in a sequence that forms a 

scheme-based pointer may be addressed using different pointer schemes. For example, 

the first fragment in a sequence may be identified using the elementQ scheme, whereas 

the second fragment may be identified using the xpointerQ scheme. The entity type 

XPointerMark supports this kind of mixture of pointer schemes with the help of the 

attribute SchemeName. 

The entity type XPointerMark is modeled as a weak entity in Figure 4.17 because mul

tiple XPointer pointers (in a sequence) may be associated with a single mark ID. The 

attribute Position is the partial key for this entity type. The value of this attribute de-



143 

notes the position of an XPointer pointer in the sequence associated with a mark ID. 

For each pointer in the sequence, the attribute SchemeName denotes the pointer 

scheme, and the attribute SchemeData denotes the fragment identified. 

In this schema, we conveniently use the entity XPointerMark to represent both a URI 

and a sequence of XPointer pointers that specifies a fragment within the resource that 

the URI references. When representing a URI, we store the name of the URI scheme 

in the attribute SchemeName and the rest of the URI in the attribute SchemeData. In this 

approach, the first XPointerMark entity for a given mark ID (that is, the entity with the 

value zero for the attribute Position for the mark ID) represents a URI. 

We have included the entity types SPARCEMark and XPointerMark in Figure 4.17 only as 

examples of supporting descriptors of different linking technologies. 

4.6.2. Relational Schema 

We revise the schema of the relation Mark (to add the Kind attribute), but the proce

dures to generate relational schemas for any of the patterns of use of marks do not 

change. 

Figure 4.18(a) shows the revised schema for the relation Mark. Figure 4.18(b) shows 

the schema for the mark, document, and application descriptors of SPARCE. The 

attribute MarkiD in the relation SPARCEMark is both a primary key and a foreign key 

referencing the attribute Mark. ID. That is, a row in this relation is an extension of a 

row in the relation Mark. Figure 4.18(c) shows the schema for the XPointer descriptor. 



144 

One or more rows (varying by the attribute Position) in this relation correspond to a 

row in the Mark relation. 

CREATE TABLE Mark 
( 
ID INTEGER NOT NULL PRIMARY KEY, Kind VARCHAR(50) NOT NULL 

J 
(a) 

CREATE TABLE SPARCEMark 
( 
MarkID INTEGER NOT NULL REFERENCES (Mark.ID), 
Agent VARCHAR(50), Class VARCHAR(50), Address VARCHAR(255), 
Description VARCHAR(1024), CachedText VARCHAR(1024), 
Who VARCHAR(255), Where VARCHAR(255), When TIMESTAMP, 
DID INTEGER NOT NULL REFERENCES (Document.DID) , 
PRIMARY KEY MarkID 
) 

CREATE TABLE Document 
( 
DID INTEGER NOT NULL PRIMARY KEY, 
Agent VARCHAR(50), Location VARCHAR(1024), 
AID INTEGER NOT NULL REFERENCES (Application.AID) 
) 

CREATE TABLE Application 
( 
AID INTEGER NOT NULL PRIMARY KEY, 
Agent VARCHAR(50), Name VARCHAR(50) 

J 
(b) 

CREATE TABLE XPointerMark 
( 
MarkID INTEGER NOT NULL REFERENCES (Mark.ID), 
Position INTEGER NOT NULL, 
SchemeName VARCHAR(50) NOT NULL, SchemeData VARCHAR(1024), 
PRIMARY KEY (MarkID, Position) 

J 
(c) 

Figure 4.18: Relational schema generated for mark descriptors, (a) Revised schema for the Mark 
entity type; (b) Schema for a SPARCE descriptor; (c) Schema for an XPointer pointer 

4.6.3. XML Schema 
Together, the element types Descriptor and Xml_EMark shown in Figure 4.14 allow 

the use of new kinds of descriptors without altering any element type defined thus far. 



145 

There are no constraints on types derived from Descriptor (because the attribute final 

is empty), and an instance of a derived type may be used where an instance of 

Descriptor is expected (because the attribute block is empty). That is, an instance of an 

Xml_EMark, and its derived types, may include a mark descriptor for any linking tech

nology, by simply deriving a new type from Descriptor. 

Figure 4.19 shows the element types to represent SPARCE mark descriptors and 

XPointer pointers. These types are derived from Descriptor. Figure 4.20 illustrates the 

use of the new descriptor kinds. The element EMark_EventDetail uses a SPARCE de

scriptor to associate the Event element with a range of cells in a spreadsheet. The ele

ment AExcerpt_UpdateTitle uses an XPointer descriptor to associate the Title attribute 

of the OSUpdate element with a part of an XML document (containing the SSIB up

dates catalog) located at ht tp: / / iocaihost /updates .xmi. The XPointer descriptor 

uses the elementQ scheme to address an element within this XML document. 

The attribute xsi:type of the element Descriptor in each use of mark in Figure 4.20 

indicates the type of the actual descriptor used. XML Schema [170] requires the use of 

this attribute whenever an instance of a derived type is used in place of an instance of 

an abstract base type. This attribute also models the Kind attribute of the Mark entity 

shown in Figure 4.17. (The attribute Kind in an Event element is SI, and denotes the 

kind of event recorded for a computer. It is unrelated to the kind of mark descriptor.) 

http://iocaihost/updates.xmi


146 

<xs:schema xmlns:sixml="http://schema.sixml.org" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xs:import narnespace="http://schema.sixml.org"/> 
<xs:complexType name="Application"> 
<xs:sequence> 
<xs:element name="AID" type="xs:string"/> 
<xs:element name="Agent" type="xs:string"/> 
<xs:element name="Name" type="xs:string"/> 

</xs:sequence> 
</xs:complexType> 

<xs:complexType name="Document" mixed="true"> 
<xs:sequence> 

<xs:element name="DID" type="xs:string"/> 
<xs:element name="Agent" type="xs:string"/> 
<xs:element name="Location" type="xs:string"/> 
<xs:element name="Application" type="Application"/> 

</xs:sequence> 
</xs:complexType> 

<xs:complexType name="SPARCEMark" mixed = "true"> 
<xs:complexContent> 

<xs:extension base="sixml:Descriptor"> 
<xs:sequence> 

<xs:element name="Agent" type="xs:string"/> 
<xs:element name="Class" type="xs:string"/> 
<xs:element name="Address" type="xs:string"/> 
<xs:element name="Description" type="xs:string"/> 
<xs:element name="CachedText" type="xs:string"/> 
<xs:element name="Who" type="xs:string"/> 
<xs:eiement name="Where" type="xs:string"/> 
<xs:element name="When" type="xs:dateTime"/> 
<xs:element name="Document" type="Document"/> 

</xs:sequence> 
</xs: extension > 

</xs:complexContent> 
</xs:complexType> 

<xs:complexType name="XPointer_Part" mixed="true"> 
<xs:complexContent> 

<xs:restriction base="xs:anyType"> 
<xs:sequence> 

<xs:element name="SchemeName" type="xs:string" minOccurs="l" maxOccurs="l"/> 
<xs:element name="SchemeData" type="xs:string" minOccurs="0" maxOccurs="l"/> 

</xs:sequence> 
</xs: restriction > 

</xs: complexContent> 
</xs:complexType> 
<xs:complexType name="XPointerMark" mixed = "true"> 

<xs: com plexContent> 
<xs:extension base="sixml: Descriptor"> 

<xs:sequence> 
<xs:element name="PointerPart" type="XPointer_Part" minOccurs="l"/> 

</xs:sequence> 
</xs:extension> 

</xs:complexContent> 
</xs:complexType> 

</xs: schema > 

Figure 4.19: XML schema for SPARCE descriptors and XPointer pointers 

http://schema.sixml.org
http://www.w3.org/2001/XMLSchema
http://schema.sixml.org%22/


147 

<Even t ID="2 " EvDateTime="..." Kind="S" Source="Log" Description="Started"> 
<EMark_EventDetail s ixml:markID="87"> 

<sixml:Descriptor xmlns :xs i="h t tp : / /www.w3 .org /2001 /XMLSchema- ins tance" 
xsi:type="SPARCEMark"> 

<Agent>MSOfficeAgents.ExcelAgent</Agent> 
<Class>ExcelMark</Class> 
<Address>Sheetl |$A$2:$C$3</Address> 
<Description>Sheet Shee t l , Cell(s): A2:C3 in "ClSys.xls" (MS Excel)</Description> 
<CachedText>The EventLog service was started</CachedText> 
<Who>smurthy</Who> 
<Where>TYEE</Where> 
<When>2004-05-28 14:03:02</When> 
<Document> 

<DID>D9</DID> 
<Agent>MSOfficeAgents.ExcelAgent</Agent> 
<Location>C:\ClSys.xls</Location> 
<Application> 

<AID>A1</AID> 
<Agent>MSOff iceAgents.ExcelAgent</AgentxName>MS Excel 2002</Name> 

</Application> 
</Document> 

</s ixml:Descr iptor> 
</EMark_EventDetail> 

</Event> 

<OSUpdate Title="..." Description = "..." Reason="..."> 
<AExcerpt_UpdateTitle s ixml:markID="146" sixml:target="Tit le" sixml:valueSource="true"> 

<sixml:Descriptor x m l n s : x s i = " h t t p : / / w w w . w 3 . o r g / . . . " xsi: type="XPointerMark"> 
<PointerPart> 

<SchemeName>http</SchemeName><SchemeData>localhost/updates.xml</SchemeData> 
</PointerPart> 
<PointerPart> 

<SchemeName>element</SchemeName><SchemeData>/ l /3/ l</SchemeData> 
</PointerPart> 

</s ixml:Descr iptor> 
</AExcerpt_UpdateTitle> 

</OSUpdate> 

Figure 4.20: Example use of SPARCE descriptor and XPointer pointer 

4.7. Modeling Context Information 

We now discuss modeling context information (that is, information related to a mark 

retrieved from the base layer). Text excerpt, font name, and containing paragraph are 

examples of context information. 

As described in Section 3.3.1, the context information retrieved from a mark is orga

nized as a hierarchy of context kinds and context elements. A context kind groups re

lated parts of the context of a mark, whereas a context element is an atomic piece of 

information in the context of a mark. For example, text and image excerpts are context 

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/


148 

elements. Both context kinds and context elements have friendly names; a context 

element also has a value. A context kind may contain other context kinds. 

Figure 4.21 shows an ER schema for a mark's context information. This schema al

lows an SA developer to access base information without explicitly modeling the in

formation present in the base layer. It also makes navigation over bi-level information 

easy. For example, one can easily navigate from an Event entity (which is SI) to the 

text content for the mark associated with the entity. 

Event 

EvDateTime 
Kind 
Source 
Description 

EMark:EventDetail 

1 

Mark 

ID 
Kind 

1 Root 1 

Parent 0..1 

Context Kind 

Name 

Child 0.. 

1 * 

^ 

Context Element 

Name 
Value 

Context Hierarchy 

Figure 4.21: A conceptual schema for context information. The entity type Event is included to 
illustrate the ability to navigate bi-level information (that is, navigate from SI to context informa

tion) 

Though this conceptual model enables queries over context information, expressing 

such queries can be quite cumbersome in the relational model (due to the nesting of 

context kinds). Querying in the XML model is much easier, but the queries will likely 

employ a large number of value predicates (to test the names of context kinds and con

text elements). Further, we do not expect context information to be actually stored in a 

database, because the complete context information for a mark can be arbitrarily large, 

and certain context elements might not be queried at all. (An SA might choose to 

cache parts of context information for performance bebefits.) 



149 

In the rest of this section, we introduce a means of retrieving context information dy

namically at query execution time, and introduce a representation for context informa

tion that makes query expression easier in the XML model. 

We define the function context to dynamically retrieve the value of an element in the 

context for a mark. This function accepts a mark ID, a hierarchy of context kinds spe

cified as a path expression, and the name of a context element; and it returns the value 

of the specified context element. For example, the function call context ( '87 ' , 

' Content ' , ' Text') returns the text content for the mark whose ID is 87. This call 

is equivalent to the call excerpt ( '87 ' ) . (Section 4.4.2 describes the function 

excerpt.) The call context (' 87 ' , ' Container/Row' , ' Text' ) returns the text con

tent of the row that contains the region referenced by the mark with ID 87. The func

tion returns an empty value if the context-kind hierarchy or the context element sup

plied is not applicable to the specified mark. 

The function context makes it easy to traverse context hierarchies, especially in the 

relational model, by eliminating the potentially large number of self joins over the re

lation that represents context kinds. Using it also avoids eager materialization of con

text information in both the relational and XML models. Chapters 5 through 9 discuss 

in detail the issues related to executing queries over bi-level information. 

We now introduce a representation for context information to more easily query con

text in the XML model. This representation is a simple variation of the one generated 



150 

from the conceptual schema shown in Figure 4.21. We begin with an illustration of the 

need for an alternative schema. 

Figure 4.22 shows the Event element in Figure 4.20 with partial context information 

for the associated mark (to a range of cells in a spreadsheet) added in. Context infor

mation is included in the element Context, ContextKind represents a context kind, and 

ContextElement represents a context element. The text content of a ContextElement 

stores the value of the corresponding element. Instances of ContextKind and 

ContextElement are nested to reflect the context hierarchy. This representation for 

context information is faithful to the conceptual schema in Figure 4.21. 

<Even t ID="2" EvDateTime="2000-04-28Tl l :45:00" Kind="S" Source="Log" 
Description="Started"> 

<EMark_EventDetail s ixml :markID="87"> 
<sixml:Descriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:type="SPARCEMark"> 
<!— Descriptor truncated for brevity. Figure 4.20 shows the complete descriptor —> 

</sixml: Descr ip to r 
<sixml:Context> 

<ContextKind name="Content"> 
<ContextElement name="Text">The operation was canceled by the user.</ContextElement> 

</ContextKind> 
<ContextKind name= "Container"> 

<ContextKind name="Row"> 
<ContextElement name="Text"> 

The operation was canceled by the user. Your computer ... network address (DHCP) server 
</ContextElement> 

</ContextKind> 
</ContextKind> 
<ContextKind name="Placement"> 

<ContextElement name="Sheet">Sheetl</ContextElement> 
</ContextKind> 

</s ixml :Context> 
</EMark_EventDetail> 

</Event> 

Figure 4.22: Partial context information for a mark to cells in a spreadsheet represented using a 
generic schema. The schema used corresponds to the conceptual schema in Figure 4.21 

Given this representation for context information, the following XPath expression can 

retrieve the text of the row (or rows) containing the spreadsheet cells associated with 

http://www.w3.org/2001/XMLSchema-instance


151 

an event. This expression uses predicates over the names of context kinds and ele

ments to navigate to the desired context element. 

Event/EMark_EventDetail/sixml:Context/ContextKind[@name='Container'] 
/ContextKind[@name='Row']/ContextElement[@name='Text'] 

<Even t ID="2 " EvDateTime="2000-04-28Tl l :45:00" Kind = "S" Source= 
Description="Started"> 

<EMark_EventDetail s ixml:markID="87"> 
<sixml:Descriptor xmlns:xsi="ht tp: / /www.w2 

xsi:type="SPARCEMark"> 
<!— Descriptor truncated for brevity. Figure 

</s ixml: Descriptor> 
<sixml:Context> 

<Content> 
<Text>The operation was canceled by the 

</Content> 
<Container> 

<Row> 
<Text> 

The operation was canceled by the user. 
</Text> 

</Section> 
</Container> 
<Placement> 

<Sheet>3</Sheet> 
</Placement> 

</s ixml :Context> 
</EMark_EventDetail> 

</Event> 

.org/2001/XMLSchema-

"Log" 

instance" 

4.20 shows the complete descriptor —> 

user.</Text> 

Your computer ... network address (DHCP) server 

Figure 4.23: Partial context information in a schema determined by a context agent developer 

A simple change in this representation for context information is to express each con

text kind and context element with an element whose name is the same as the value of 

its name attribute. Figure 4.23 shows the context information in Figure 4.22 in the re

vised representation. With this revision, the following expression retrieves the text of 

the rows containing the cells associated with an event, without using value predicates: 

Event/EMark_EventDetail/sixml:Context/Container/Row/Text 

In addition to being simpler, the revised expression can potentially execute more effi

ciently because the query processor can use structural indexes. Also, the original ap-

http://www.w2


152 

proach fixes a schema for context information, but, in the revised approach, a context-

agent implementer may choose a schema. A potential disadvantage with the revised 

approach is that an SA developer might tightly couple SI with the schema that a par

ticular context agent employs. (The revised approach does let the context-agent devel

oper model context information as in the original approach.) 

In the rest of this dissertation, we use the functions excerpt and context to explicitly 

retrieve context information in the relational model. These functions can be used in the 

XML model as well, but we use only the representation in Figure 4.23 when discuss

ing the XML model. (Section 4.8 does use these functions with XML for illustration.) 

Chapter 5 discusses strategies to realize the representation scheme in Figure 4.23 when 

executing bi-level queries. 

4.8. Querying Bi-level Information 

We now demonstrate the ability to express bi-level queries (that is, queries over bi-

level information) using the logical schemas we generate. The examples in this section 

are based on the schema for the SSIB application. They demonstrate the ability to ex

press structured queries over the combined SI and base information, though the base 

information may be heterogeneous, distributed, loosely structured, and not stored in a 

traditional database. Chapter 5 introduces the process and performance of bi-level-

query execution. 

Example 1: List all OS updates related to security. 

The following SQL query suffices for the relational model (see Figure 4.11): 



153 

SELECT * FROM OSUpdate WHERE Title LIKE '%Security%' 

The following XPath expression suffices for the XML model (see Figure 4.16): 

/ /OSUpdate[conta ins(@Tit le , ' S e c u r i t y ' ) ] 

In both queries, the descriptions of OS updates are automatically obtained from the 

base layer because the attribute Title is modeled using the AExcerpt pattern (see Figure 

4.5). 

Example 2: List errors related to the application MS Word (see Figure 4.4). 

The following SQL query suffices for the relational model (see Figure 4.9(b)): 

SELECT * 
FROM Error 
WHERE excerpt(AMark_ErrorDetails) LIKE '%word.exe%' 

The following XQuery expression may be used in the XML model (see Figure 4.16): 

<Errors> { 
FOR $e IN document("SSIB.xml")//Error 
LET $d = sixmltexcerpt($e/AMark_ErrorDetails/@sixmlimarkid) 
WHERE contains($d, 'word.exe') 
RETURN $e 
} </Errors> 

The following XPath expression may also be used in the XML model, if the XPath 

processor permits user-defined functions (extension functions in XML terminology): 

//Error[contains(sixml:excerpt(AMark_ErrorDetails/@sixmlrmarkID), 
'word.exe')] 

All three queries in this example employ the user-defined function excerpt (intro

duced in Section 4.4.2) to retrieve, at query-execution time, the text excerpt from the 

mark associated with the Description attribute of each Error entity. All queries return 



154 

the stored error information if the text excerpt retrieved for the error description con

tains the String word.exe. 

The explicit use of the function excerpt can be avoided if the Description attribute 

is conceptually modeled after the AExcerpt pattern instead of the AMark pattern. How

ever, this choice is left to the SA developer. 

Example 3: For each mark associated with events, retrieve the text of the row contain

ing the marked region. For example, if a mark points to a few cells within a row of an 

MS Excel spreadsheet, return the text of the row that contains the marked cells. 

The following SQL query suffices for the relational model (see Figure 4.9(a)): 

SELECT context(EMark_EventDetail, 'Container/Row', 'Text') FROM Event 

Assuming the XPath processor permits extension functions, the following XPath ex

pression suffices for the XML model: 

sixml:context(//Event/EMark_EventDetail/@sixml:markID, 
'Container/Row', 'Text') 

Both these queries employ the user-defined function context (described in Section 

4.7) to retrieve context information at query-execution time. The following simpler 

XPath expression may be used in the XML model if context information is represented 

within the element that represents a use of a mark (as in Figure 4.23): 

//Event/EMark_EventDetail/sixml:Context/Container/Row/Text 

Example 4: List the number of each kind of mark descriptor in use. 

The following SQL query may be used in the relational model (see Figure 4.18). 



155 

SELECT 'SPARCE', COUNT(MarkID) FROM SPARCEMark 
UNION 
SELECT 'XPointer', COUNT(DISTINCT MarkID) FROM XPointerMark 

The following is an alternative SQL query. 

SELECT Mark.Kind, COUNT(*) FROM Mark GROUP BY Mark.Kind 

The first SQL query counts the number of unique mark IDs in the relations maintained 

for each kind of mark descriptor. The number of unique mark IDs in the SPARCEMark 

relation is the same as the number of mark IDs because the attribute MarkID is the 

primary key. On the other hand, the XPointerMark relation may have multiple rows 

per mark ID. Thus, writing this query requires a priori knowledge of the kinds of de

scriptors in use and the schema of the relation for each kind of descriptor. 

The second query also counts the unique marks per descriptor kind, but writing it does 

not require the knowledge of the schema of the relation for each kind of descriptor 

(because it uses the Kind attribute of the relation Mark). 

The following XSLT 2.0 [178] template suffices for the XML model (see Figure 

4.20). For simplicity, we assume that all uses of marks include mark descriptors, not 

mark IDs. 

<xsl:template match="/"> 
<Counts> 
<xsl:for-each-group select="//sixml:Descriptor" group-by="@xsi:type"> 
<xsl:element name="{string(current-grouping-key())}"> 
<xsl:value-of select="count(current-group())"/> 

</xsl:element> 
</xsl:for-each-group> 

</Counts> 
</xsl:template> 

The XSLT 2.0 template is similar to the second SQL query. It groups Descriptor ele

ments by the attribute xsi:type and outputs one XML element for each distinct value 



156 

of that attribute. The content of each element output is the number of descriptors of the 

descriptor kind corresponding to the element. 

We use XSLT 2.0 in this example, rather than using XQuery, XPath, or XSLT 1.0 

[177], because only XSLT 2.0 has the features needed to express the query in a declar

ative manner. Also, the use of XSLT 2.0 demonstrates that the XML schema our me

thodology generates can be used with different XML query languages. 

4.9. Evaluation 

We evaluate the relationship patterns to represent the use of marks by applying the 

patterns to three SAs with distinct information needs. The SAs are: Sidepad (intro

duced in Section 1.2.1), the Superimposed Scholarly Review System (SISRS) [109] 

(introduced here in Section 4.9.2), and the Superimposed System-Information Browser 

(SSIB) introduced in Section 4.2. 

4.9.1. Sidepad 

Section 1.2.1 introduced a simple scratchpad SA called Sidepad, and Figure 1.3 shows 

an instance of a document created in Sidepad. Figure 4.24 shows a conceptual model 

for the SI created with Sidepad. According to this schema, a Sidepad document owns 

items and groups. An item has a user-assigned name and a descriptive text. It may be 

associated with a mark (indicated by the EMark relationship ItemMark). A group con

tains items and other groups. It has only a user-assigned name, and it too may be asso

ciated with a mark (represented by the relationship GroupMark). An item is owned ei

ther by a group or by a document, but this constraint cannot be expressed in the ER 



157 

model. Items and groups have display attributes such as shape and color, but we omit 

modeling those attributes for simplicity. 

The relationship Nests represents the possible nesting of groups. Section 4.10.1 de

scribes the relationship pattern Hierarchy that Nests follows. 

Because the conceptual schema for Sidepad is quite simple, we omit showing the logi

cal schemas in the relational and XML models. 

Hierarchy: Nests(Outer, Inner) 

Document 

Title 

1 

Owns 
1 

( 

Owns 

Group 

Name 

Contains 
0..1 

Item 

Name 
Descrip tion 

EMark:GroupMark 

1 

Mark 

ID 
Kind 

EMark:ItemMark 

1 

Figure 4.24: A conceptual schema for SI created using Sidepad 

4.9.2. The Superimposed Scholarly Review System (SISRS) 

The Superimposed Scholarly Review System (SISRS, pronounced scissors) [109] is an 

SA that assists in a peer-review process (such as that an academic conference might 

use). SISRS helps a reviewer superimpose comments on an electronic version of a pa

per, and prepare a review report. It also helps collate review reports for a paper from 

different reviewers, and prepare feedback to authors. SISRS uses bi-level queries to 

prepare both reviewer reports and author feedback. Chapter 9 shows some bi-level 

queries executed over SISRS documents. 

Figure 4.25 shows a conceptual schema for SISRS. In this schema, each paper has a 

title. The AExcerpt relationship type TitleSource indicates that a paper's title is obtained 



158 

from the base paper. The EMark relationship type Applies To represents the region(s) of 

the paper with which a comment is associated. The AMark relationship type References 

allows the text of a comment to be associated with marks. For example, a reviewer 

might cite passages from related work. The AExcerpt relationship type Help allows easy 

access to the excerpt of the commented region. 

AExcerpt: TitJeSource(Title) 

Reviews 

1 

Paper 

Title 

1 

Reviews 

2 

Has 

.3 

Reviewer 

Name 

Creates 
1 

Comment 

Text 

Mark 

ID 
Kind 

I n r i-T- -*-\ 
AMarkiReterencesiText) 

AExcerot:HelDfExc erott 

Figure 4.25: A conceptual schema for SI created using SISRS. The bold line distinguishes the 
AExcerpt relationship type from the AMark relationship type 

Figure 4.26 shows a document that conforms to the XML schema generated for 

SISRS. The attribute xshnoNamespaceSchemaLocation points to the generated 

schema. The element EMark_AppliesTo associates the lone comment shown with the 

commented region. AExcerpt_Help assigns the excerpt of the same commented region 

to the attribute excerpt. Thus, both these mark association elements use the mark ID 

"23". TMark_References associates the comment text (modeled as the text content of 

the element Comment) with a mark. AExcerpt_TitleSource indicates that the com

mented paper's title is a mark's excerpt. Chapter 7 describes how an attribute is as

signed an excerpt at run time. 

We now illustrate the ability to express a bi-level query over the XML schema gener

ated from the conceptual schema. Figure 4.27 shows two XSLT templates to generate 



159 

an HTML document containing author feedback for each paper. For brevity, the query 

does not cluster comments by reviewer. 

<Reviews xsi:noNamespaceSchemaLocation="http://schema.sixml.org/examples/sisrs.xsd" 
xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance" 
xmlns:sixml="http://schema.sixml.org"> 

<Papertitle=""> 
<Comment excerpt="" reviewer="rl"> 

<TMark_References sixml:markID=" ">Text of the comment</TMark_References> 
<AExcerpt_Help sixml:markID="23" sixml:target="excerpt" 

sixml:valueSource="true"/> 
<EMark_AppliesTo sixml:markID="23"/> 

</Comment> 
<AExcerpt_TitleSource sixml:markID="..." sixml:target="title" 

sixml:valueSource="true"/> 
</Paper> 

</Reviews> 

Figure 4.26: XML representation of a SISRS document. Elements in bold show use of marks 

The template for the element Paper writes out one HTML document for each reviewed 

paper. This template writes the current paper's title directly from the attribute title 

even though the title is an excerpt from the reviewed paper. This operation is possible 

because title participates in an AExcerpt relationship in the conceptual schema. 

<xsl:template match="Paper"> 
<xsl:document method="html" href="{@title}"> 

<HTML><BODY> 
<P style="font-size:32"xxsl:value-of select="@title"/x/P> 
<xsl:apply-templates select="Comment"> 
<xsl:sort select="EMark_AppliesTo/sixml:Context/Placement/Page" 

data-type="number"/> 
</xsl:apply-templates> 

</BODYx/HTML> 
</xsl:document> 

</xsl:template> 

<xsl:template match = "Comment"> 
<P> 

<Bxxsl:text>Page: </xs l : textx /B> 
<xsl:value-of select="EMark_AppliesTo/sixml:Context/Placement/Page"/> 

</P> 
<P> 

<Bxxsl:text>Excerpt: < / x s l : t e x t x / B x l X x s l : v a l u e - o f select= 
</P> 
<PxBxxsl : text>Comment : </xsl : textx/B><xsl:value-of select= 

</xsl:template> 

'©excerpt"/></I> 

="textC)"/x/P> 

Figure 4.27: Bi-level XSLT templates to generate author feedback in HTML format from SISRS 
data. Key parts of the query are in bold font. Output HTML elements are in upper case 

http://schema.sixml.org/examples/sisrs.xsd
http://www.w3.org/2001/XMLSchema-instance
http://schema.sixml.org


160 

After writing the title, the template for Paper triggers a template for each contained 

Comment such that the comments are processed in the order of the page containing 

the commented regions. The template for Comment first writes the page number of 

the commented region, then writes (in italics) the text excerpt of the commented re

gion, and then writes the comment text. The page number and the text excerpt for a 

commented region are obtained from the base layer at query-execution time. 

4.9.3. The Superimposed System-Information Browser (SSIB) 

Section 4.3 has described how the various uses of marks in the SSIB application are 

represented using relationship patterns. Sections 4.4 and 4.5, respectively, show the 

logical schemas generated for SSIB in the relational and XML models. Figure 4.28 

shows the complete ER schema for SSIB. 

Observation 
ObsDateTime 
Text 
User 

Relates To 

Event 
EvDateTime 
Kind 
Source 
Description 

Logged On 

ErrDateTime 
Source 
Description 
Notes 

AMark: ErrorTime(ErrDateTime) 

EMark:EventDetail 

Relates To Application 

Name 

Mark 

AMark: ErrorDetails(Description) 

AExcerpt:UpdateTitle(Title) 

ID 
Kind 

RMark:Application 

1 RAMark:UpdateLog(UpdDateTime) 

Figure 4.28: The complete conceptual schema for SSIB. All relationships between SI entities are 
many-to-many. All entities have a key attribute named ID (not shown). Names in bold in the orig

inal ER schema of Figure 4.2 are retained for ease of comparison. 



161 

4.10. Related Work 

In this section, we review the notion of relationship patterns, the building block of our 

methodology to represent the use of marks. We also review four systems that concep

tually model links using a form of the ER model and compare them to our methodolo

gy-

4.10.1. Relationship Patterns 

Many researchers have extended the ER model, mostly by adding new constructs to 

the model. For example, Elmasri and Navathe [41] introduce new constructs to sup

port specialization; Tanaka and others [152] add constructs to express application se

mantics; and Cysneiros and others [29] add constructs to express non-functional re

quirements. 

Our methodology to represent use of marks in the ER model does not introduce new 

constructs, but uses a set of conventions for existing constructs based on the notion of 

relationship patterns [114]. A relationship pattern is an abstraction of a recurring need 

when establishing relationships among information elements in specific contexts. A 

relationship pattern is similar to a software-design pattern [47], except that it focuses 

on relationships. Like software-design patterns, relationship patterns are independent 

of modeling languages (although a particular modeling language may not have the 

power to express certain relationship patterns). 

Defining a relationship pattern allows developers to solve a kind of problems once (ra

ther than solving repeatedly), and it helps developers understand many relationship 



162 

types at once. It also lets developers customize how relationships are treated in various 

stages of the information life cycle. Finally, it allows developers to leverage known 

patterns and existing solutions. 

A relationship-pattern specification describes the contexts in which the pattern applies; 

the syntax to express relationship types of the pattern; the semantics and constraints of 

the pattern; and the consequences of using the pattern. For example, Section 4.3 in

formally describes the syntax, semantics, and constraints for each pattern of mark use. 

The name of each pattern (and the heading of the section in which the pattern is dis

cussed) conveys the context in which that pattern applies. Sections 4.4 and 4.5 de

scribe a consequence (in the form of the effect on logical schemas) of using the pat

terns to represent the use of marks. 

Relationship patterns may be used to specify patterns of any kind of relationships, not 

just to specify the use of marks. When a developer recognizes a relationship pattern, 

he simply needs to describe it by specifying the context, syntax, semantics, con

straints, and consequences of the pattern. For example, Figure 4.29(a) shows a rela

tionship type Manages that an entity type named Employee has with itself. This relation

ship type models a hierarchical relationship among employees in a company. Devel

opers encounter such relationships frequently, for example, when modeling bill-of-

material and supply-chain relationships. The relationship type Context Hierarchy in Fig

ure 4.21 is another example. Such relationship types have many things in common. 

First, they all represent hierarchies. The role names of relationships may change, but 



163 

the roles have the same cardinality constraints: an entity (called Employee in Figure 

4.29) has zero or one other entity playing the role of a "parent" (called Manager in Fig

ure 4.29), and zero or more "children" entities (called Subordinate in Figure 4.29). Ig

noring the labels, all these types of hierarchical relationships lead to the same general 

logical schema. 

Employee 
Name 

Manager 0..1 

Manages 

Employee 
Name 

Subordinate 0..* Hierarchy:Manages (Manager, Subordinate) 

(a) (b) 

Figure 4.29: Example application of relationship patterns, (a) A hierarchy of manager and sub
ordinates; (b) The hierarchy of manager and sub-ordinates modeled after a relationship pattern 

called Hierarchy 

A developer can capture the commonality among the hierarchical relationship types by 

defining a relationship pattern called Hierarchy. He can define the syntax to express 

relationships of this pattern, define the semantics of the pattern, impose cardinality 

constraints, and define the procedures to generate logical schemas. He can then get 

consistent representations of hierarchies by simply instantiating the Hierarchy pattern. 

The signature for this pattern could be: Hierarchy:<type>(<parent role>, <child role>), 

where <parent role> and <child role> are names of roles of "parent" and "child" enti

ties, respectively, in a relationship. 

Figure 4.29(b) shows the relationship type of Figure 4.29(a) expressed using the 

aforementioned Hierarchy pattern. Cardinality constraints are not shown because the 

relationship-pattern specification (which is omitted for simplicity) automatically as-



164 

signs the cardinality 0..1 to the Manager role (that is, to the "parent") and the cardinali

ty 0..* to the Subordinate role (that is, to the "child"). 

The relationship Nests in Figure 4.24 illustrates another use of the Hierarchy pattern. 

4.10.2. Conceptual Models for Links 

In this section, we review four systems that conceptually model links using a form of 

the ER model: structured maps [31], superimposed schematics [17], the nested-context 

model [24], and the hypertext design model [48]. Structured maps and superimposed 

schematics are models for SI, developed by colleagues in our research group. The 

nested-context model and the hypertext design model are models for hypertext, and 

are developed by others. We also review topic maps [68] (though they do not use the 

ER model) because structured maps are based on topic maps. 

We compare the five systems (including topic maps) with our methodology using the 

following criteria: Expressive power, independence from a linking technology, agnos

ticism toward the content and granularity of linked data, and ability to generate (or ex

press) schemas in implementation-friendly logical data models. 

A note on expressive power: In this section, we consider the ability to express rela

tionships similar to the ones possible with our patterns of use of marks. For example, 

with the AExcerpt pattern, we consider the ability to express (not implement) that the 

value of (an attribute of) an entity is derived from another entity. 



165 

4.10.2.1. Topic Maps 

A topic map [68] (also called a topic navigation map [67, 158]) represents the struc

ture of groups of addressable information objects called topics, and the relationships 

(called associations) between topics. An association is specified as a hyperlink in the 

Hypermedia/Time-based Structuring Language (HyTime) [64]. 

A topic has a set of properties called facets. "Title" and "Description" are commonly 

occurring facets. Special associations called anchors may be used to link a topic to its 

facets. An anchor may have a role name. 

Topic maps are expressed using the Standard Generalized Markup Language (SGML) 

[51, 66]. The use of SGML and HyTime makes a topic map very expressive, but it al

so makes a topic map hard to comprehend: Popular web browsers do not support 

browsing SGML documents and they do not handle HyTime links. An XML syntax 

[69] has also been published for topic maps. That syntax uses XLink [164] to create 

links, but an XLink link can only address XML content. 

A HyTime link is agnostic toward content and granularity of linked data, but it cannot 

express assignment of context information to an attribute. Finally, the topic map mod

el does not define a means to generate schemas in logical data models (but the DTD of 

a topic map may be viewed as a logical schema). 

4.10.2.2. Structured Maps 

The structured map model [31] is based on the topic-navigation-map model [67, 158], 

and is expressed using the ER model or as an SGML document. In structured maps, a 



166 

topic is called an entity, a topic relation is called a relationship, and an anchor role is 

called a. facet. A structured-map entity has only one attribute, the entity's topic text. 

When expressed in the ER model, structured-map entities and relationships are ex

pressed using ER constructs of the same name. Because a structured-map entity has 

only one attribute, the structured map model does not use the full expressive power of 

the ER model. 

The structured-map model does not explicitly state how facets are represented in the 

ER model, but in the examples Delcambre and others provide [31], a new kind of con

struct, akin to a relationship type involving only one entity type, is used to represent a 

facet. The value of a facet implicitly defines the other entity type in the relationship 

(which is an information selection in the base layer). 

applies to Application 
title 

described 

Figure 4.30: A structured map for OS updates 

Figure 4.30 shows a structured map describing a relationship between an OS update 

and an application. The facet type described denotes an anchor into the HTML support 

page that describes the OS update. 

Viewed as an ER schema, the structured-map model can express only the EMark pat

tern. However, viewed as an SGML document, the structured-map model can express 



167 

the EMark, AMark, RMark, and RAMark patterns. The structured-map model cannot ex

press the AExcerpt pattern. 

A facet in the structured map model is independent of a linking technology, and is ag

nostic toward linked content and granularity. A structured map expressed in the ER 

model may be transformed into relational and XML schemas. (We assume that a facet 

may be represented as a relationship with an entity similar to the Mark entity in our me

thodology.) 

4.10.2.3. Superimposed Schematics 

Bowers and others [17] have proposed the superimposed-schematic model, an exten

sion to the ER model to represent the use of marks. In this model, any entity or rela

tionship may be associated with one mark. A relationship must be binary and it cannot 

have attributes. An entity's attribute may also be associated with a mark, but the value 

of an attribute associated with a mark is always the excerpt retrieved from the mark. 

That is, the superimposed-schematic model supports a limited form of our EMark, 

RMark, and AExcerpt patterns. It cannot express the AMark and RAMark patterns. 

Our methodology improves upon the superimposed schematic model by removing the 

limitations on cardinality, and by allowing marks to be associated with attributes of 

both entities and relationship. We do not require the value of an attribute associated 

with a mark to be a base-layer excerpt. In general, we do not impose any limitations 

on ER-model constructs. 



168 

The superimposed-schematic model is independent of a linking technology and is ag

nostic towards content and granularity of linked data. The model supports bi-level 

querying at the conceptual level, but the extent of the base data that may be queried is 

limited to excerpts. The superimposed-schematic model does not include procedures 

to generate schemas in logical data models. 

4.10.2.4. The Nested-Context Model 

Casanova and others have proposed the nested-context model to model the structure, 

presentation, and navigational aspects of hypertext documents [24]. A sub-model ad

dresses each of these aspects. The definition sub-model deals with the structural aspect 

and is related to the conceptual modeling of links. In this section, we discuss the defi

nition sub-model due to its similarity with our work. 

In the nested-context model, a node is an information element with a unique id. There 

are two kinds of nodes: terminal nodes and context nodes. A terminal node is a node 

whose content is determined and interpreted by some application. For example, a ter

minal node may be an image or a video. A terminal node may have attributes contain

ing user-defined or application-defined information. The attribute named contents de

scribes the actual (application-specific) data of the node. A terminal node is analogous 

to a base document. 

A context node is a collection of terminal nodes and possibly other context nodes. A 

node may be contained in any number of context nodes, but it does not belong to any 



169 

context node. Thus, context nodes provide a means to create multiple simultaneous 

organizations of nodes, and are thus analogous to SI. A context node has no attributes. 

A link connects two nodes. In contrast to a node, a link always belongs to a specific 

context node. A link's endpoint is specified using an anchor, which is a pair (N, s), 

where N is a node that forms the base of the anchor, and s is an offset into the content 

of the base. The offset may be null to indicate a link to an entire node. If the base is a 

context node, the offset is another anchor; otherwise the offset specifies a displace

ment within the content of a terminal node. 

Links in the nested-context model support EMark and AMark relationships. (The latter 

type of relationship is supported only to a limited extent.) The AExcerpt pattern cannot 

be expressed. RMark can be simulated by first creating a context node containing the 

entities that participate in an anchored relationship, and then linking the newly created 

context node with another node. RAMark cannot be expressed, because a context node 

cannot have attributes. 

Links in the nested-context model are independent of a linking technology, and are 

agnostic towards the content and granularity of linked data. However, links are not 

typed. In contrast, by virtue of using the ER model, relationships in our methodology 

are typed. 



170 

4.10.2.5. The Hypertext Design Model 

The Hypertext Design Model [49] (HDM) is an extension to the ER model for model

ing the structural and navigational aspects of hypertext. In this section, we review 

HDM2 [48], the second iteration of HDM. 

The authors of HDM2 take the position that extending and reusing existing modeling 

techniques, and leveraging others' experience, is a better way to model hypertext sys

tems, instead of creating new models. They extend the constructs entity type and rela

tionship type of the ER model, and add new constructs called index type and guided 

tour type to facilitate easier access and focused navigation, respectively. 

In HDM2, an entity type is a tree structure of components, which are sets of informa

tion elements called units. A unit is a concrete representation of a component. For ex

ample, an OS update component may have two units: An executable file for installa

tion, and an HTML page with support information. 

An entity type defines a named structure that is either an aggregate or a homogeneous 

tree. An aggregate structure has a root component and a list of member structures. A 

homogeneous tree structure has only a set of homogeneous components organized as a 

tree, or as a sequence, or as a singleton (one component). HDM2 does not define in 

what sense components may be homogeneous, but it is expected that homogeneous 

components define different parts of the same larger component. 

A relationship is called an application web (or just a web) in HDM2. A web can relate 

entities and other webs, and includes a center component that annotates or otherwise 



171 

describes the relationship. A web type (analogous to an ER relationship type) is the 

schema of a web. It has a name, a list of destination specifications, and the specifica

tion of the center component. A destination specification identifies an entity type or a 

web type, and an optional path expression to identify a particular component or unit 

within a destination, but only when the destination is an entity. A cardinality specifica

tion may be associated with a web type, but not with a destination. That is, cardinality 

constraints have different semantics than in the ER model: In HDM2, a cardinality 

constraint limits the number of instances of a web type; in ER, a cardinality constraint 

limits the number of relationships of a given type in which an entity may participate. 

HDM2 introduces two constructs to enable easier access and focused navigation of a 

hypertext. An index defines a possibly heterogeneous collection of entities and com

ponents, making it easier to access specific elements and components directly, without 

traversing intervening webs. A guided tour is a linear path through entities and com

ponents. Indexes and guided tours may be recursive. 

HDM2 can express the EMark and AMark relationship patterns, but not the AExcerpt pat

tern. It can also express RMark relationships because a relationship may relate entities 

with other relationships, but it cannot express the RAMark pattern, because a web can

not have attributes. 

The entity construct of HDM2 is richer than that of the ER model, and hence richer 

than ours. However, the entity structure of HDM2 is motivated by the needs of hyper

text networks, and the structure can become unwieldy for other (simpler) classes of 



172 

applications. The framework of relationship patterns we use provides a more 

lightweight method of representing hierarchical structures in the ER model. Figure 

4.29 gives an example. 

Addressing a portion of an entity's content in HDM2 requires the use of a specific 

form of path expression. Also, a path expression can only select a unit (that is, a repre

sentation of a component), but it cannot select a region within a unit. For example, a 

path expression can select the HTML support page unit of an OS update, but it cannot 

select a region within the HTML page. 

HDM2 does not define a way to generate schemas in logical data models, but we be

lieve it is possible to generate an XML schema from an HDM2 schema. 

4.11. Summary and Conclusions 

We have presented a methodology to explicitly represent marks and the use of marks 

in ER schemas using a set of conventions to augment the semantics of existing ER 

model constructs. An SA that realizes an ER schema with these conventions can easily 

access the context information associated with a mark; can activate marks; and can 

readily express queries over combined SI and associated base information. 

Our methodology strictly extends the ER model. That is, it does not reduce the expres

sive power of any of the traditional ER constructs. Existing tools that operate on ER 

schemas will be unaffected, but the tools would need to be extended to exploit the no

tion of relationship patterns. (The tools would not need to be "mark aware"; they just 

need to be "relationship-pattern aware".) 



173 

Our methodology to represent the use of marks has three independent parts: a model 

for marks and use of marks, a model for mark descriptors, and a model for context in

formation. The model for marks and use of marks allows new relationship types and 

patterns of relationship types to be defined without affecting the model for mark de

scriptors and the model for context information. The model for mark descriptors al

lows new kinds of mark descriptors to be added without affecting the other two mod

els. Similarly, the model for context information may be changed without affecting the 

other parts. Each part of the methodology provides a systematic way to transform a 

conceptual schema to logical schemas in one or more data models. 

We have described five patterns of use of marks, but other patterns may emerge as 

SAs are developed. SA developers may define new patterns using the framework for 

relationship patterns. Also, we have omitted discussing a few obvious patterns. For 

example, we have described the AExcerpt pattern to derive the value of an entity's 

attribute from the excerpt of a mark. A similar pattern may be defined for relationship 

attributes. It is also possible to define a pattern to represent that an attribute's value is 

derived from a context element's value. Such a pattern would generalize the AExcerpt 

pattern. (In Section 4.7 we described the use of the function context to explicitly re

trieve a context element's value from the context of a mark.) 

Our model for mark descriptors can represent the specification of a link's endpoint in 

any linking technology. See Section 4.6. This ability allows an SA developer to 

choose a linking technology appropriate for SA needs. For example, the developer can 



174 

choose a technology based on factors such as address robustness, granularity of infor

mation addressed, and kinds of contents addressed. He can also mix and match the 

linking technologies. For example, he may use XPointer pointers to address XML con

tent, and use SPARCE to address a selection inside a PDF document [6]. 

Our model can represent an embedded link in any linking technology. A link is called 

an embedded link (or an inline link) if the specification of its endpoints is included in 

one of the linked entities. An n-way embedded link specifies n-\ endpoints; the last 

endpoint is implicitly the point of inclusion. Embedded links are directed (away from 

the point of inclusion) and tend to be binary. A link specified using the A tag in 

HTML, and a mark employed in SI, are examples of embedded links. 

In our model, only the EMark pattern can express an n-way embedded link, because 

relationship types of that pattern may be of any degree; all other patterns express bi

nary embedded links. (See constraints specification for each pattern in Section 4.3.) 

Our model for the use of marks, and the SI systems we reviewed in Section 4.10.2, 

cannot represent stand-off links. In a stand-off link, the link specification is maintained 

separately from the linked data. Consequently, an n-way stand-off link specifies n 

endpoints. Our model could be extended to represent stand-off links by allowing ex

pression of relationships among marks. Such a representation would allow different 

endpoints of a link to be expressed using different linking technologies. 

Currently, we use a single entity type Mark to represent any mark. It is possible to ex

tend that entity type according to base type or domain-specific type. A domain-



175 

specific type can abstract over base types, yet support additional semantics (and beha

vior) specific to a domain. For example, marks into patent applications may be defined 

as a domain-specific type, such as a claim mark, regardless of the format (such as 

HTML and PDF) of the base patent documents. 

In this chapter, we have used the ER model to represent the use of marks in conceptual 

schemas, but our approach may be used in other models (such as the UML model) as 

well, because our representation is simply an application of relationship patterns, and 

relationship patterns are independent of modeling languages [114]. (It is possible that 

a modeling language does not have the power to express certain relationship patterns.) 

In Section 4.8 we provided some examples of bi-level queries, but did not describe 

how those queries are executed. Chapters 5-9 show how bi-level queries can be ex

ecuted over the information represented in logical schemas generated using our me

thodology. 



5. Transforming Bi-level Information 

In Chapter 4, we discussed modeling superimposed information (SI), marks and their 

use, mark descriptors, and mark contexts. We also illustrated how SI and base infor

mation (BI) may be combined, and how the combined bi-level information may be fil

tered and transformed in the relational [41] and XML [43] models using bi-level 

queries expressed in existing languages. 

In this chapter, we consider a means of realizing bi-level queries. We introduce the 

notion of a bi-level query system (which is a representation scheme, or schemes, for 

bi-level information together with a processor for bi-level queries); set goals for a bi-

level query system; and identify a strategy to meet the goals in the XML model. 

Specifically, we discuss two representation schemes for XML bi-level information and 

analyze the effect of these schemes on query expression and query execution, especial

ly when a large number of marks and base documents are involved. We also provide a 

reference model for an XML bi-level query processor. Chapters 6 through 9 describe 

in detail the different parts of a bi-level query processor. 

Although we focus on bi-level querying in the XML model, many of our techniques 

for bi-level querying apply in other data models as well. For example, Chapter 6 illu

strates how context information can be retrieved dynamically from within a relational 

database management system. 



177 

5.1. Introduction 

Consider the following retrieval tasks in relation to a Sidepad document (such as that 

shown in Figure 1.3). 

Ql: List the base documents that the Sidepad document references. 

Q2: Extract excerpts from marks associated with items in the group named Garlic. 

Q3: List the names of items in the Sidepad document. 

Q4: Find the number of marks that the Sidepad document uses. 

Q5: Create an HTML page from the contents of the Sidepad document. 

Task Ql requires examining the descriptor of each mark used in the Sidepad document 

(to obtain the path to the base document with which a mark corresponds). Q2 requires 

examining the context of marks attached to items in a particular group. Q3 requires 

examining just the name of each item in the Sidepad document, but requires no access 

to mark associations, descriptors or context information. Q4 requires counting the 

number of mark associations, but does not require examining the descriptors or con

text information. Q5 requires transforming the contents of the Sidepad document, pos

sibly along with some context information, to an HTML page (such as that shown in 

Figure 1.5). 

In general, tasks such as Ql through Q5 require the user to filter and transform bi-

level information. A user can prepare and transform bi-level information manually 



178 

when the quantity of information is relatively small, but he could benefit from an au

tomated approach when processing large information sets. 

An SA developer can facilitate automation of tasks such as Ql through Q5 by provid

ing an API to the SA. A user can then develop scripts (which are interpreted programs, 

expressed in languages such as JavaScript [73] and VBScript [160]) that use the SA's 

API to examine SI and the referenced base information. For example, Sidepad can ex

pose an API that allows a user to navigate the groups and items (contained in a docu

ment), and the referenced base information. In this approach, an end user of an SA 

might develop custom scripts or he might execute canned scripts that the S A developer 

incorporates into the SA. 

With the scripting approach to automation, scripts can be developed external to an SA 

and executed without changes to the SA. However, executing a script requires a script 

interpreter that interacts with the SA's API using a specific technology, on a specific 

platform. For example, if Sidepad exposed an OLE Automation API [130], the script 

interpreter must be able to interact with OLE automation objects, probably on the MS 

Windows platform. If another SA exposed a Java [71] interface, the script interpreter 

would need to be capable of invoking Java methods. 

An alternative is to expose bi-level information so it can be filtered and transformed 

using queries expressed in a language appropriate to the SI model. For example, as 

illustrated in Section 4.8, SQL [92] might be the query language if SI is in the rela

tional model, whereas XQuery [176] or XSLT [177] might be the query language if 



179 

the SI model is XML (or a model that readily maps to XML). As with the scripting 

alternative, an end user might develop these queries or he might execute canned que

ries the SA-developer incorporates into the SA. 

Unlike the scripting alternative, the querying alternative allows bi-level information to 

be processed on any operating platform, using any implementation technology (with 

the data model being the only limiting factor). For example, an SA user can use any 

XML query language to query Sidepad data exposed in XML format, and he can use 

any XML query processor available on his favorite platform. 

The two alternatives also differ in the style of programming a user would likely em

ploy to automate transformation of bi-level information. The scripting approach likely 

requires the use of an imperative language such as VBScript and JavaScript (which 

requires the description of how a task is performed). In contrast, query languages 

(such as SQL) tend to be declarative (requiring the user to only describe what task 

needs to be performed; not how the task is to be performed.) For example, consider the 

Task Ql to list the base documents that a Sidepad document references. In the script

ing approach, the user expresses how duplicate document locations are eliminated (be

cause a Sidepad document may contain multiple marks into a base document.) In SQL, 

the user simply uses the DISTINCT qualifier in the SELECT clause to eliminate dupli

cates. 

Due to the benefits the SA developers and users can derive from it, we pursue the que

rying alternative to filter and transform bi-level information. 



180 

Figure 5.1 shows a reference model for a bi-level query system. Dashed arrows indi

cate data flow. The bi-level query system accepts SI, the referenced descriptors, and 

base information. It uses a set of transformers to represent the descriptors and base in

formation in the same data model as SI, according to a schema that is conducive for 

bi-level querying. As mentioned in Section 3.2.2, SI may include mark descriptors di

rectly, or include only mark IDs. Figure 5.1 shows a descriptor repository to accom

modate SI that uses mark IDs. 

Superimposed 
Information 

Descriptor 
Repository 

PDF 

I 

t 

HTML 

Context Agents 

Model Transformers 

Query 
Bi-level Query Processor 

Result y 

Figure 5.1: A reference model for a bi-level query system. Dashed arrows indicate data flow 

We restrict a bi-level query processor to use only one data model at a time, because, in 

practice, choosing a query language and the data model for the result can be hard if 

data models are mixed. 

5.2. Representing Bi-level Information 

For a given data model, several logical schemas are possible for bi-level information, 

and schemas can vary in their support for bi-level query processing. Some schemas 



181 

can make query expression easier, but can cause execution inefficiency, whereas other 

schemas can restrict querying capabilities. 

In this section, we introduce two XML schemas for bi-level information with different 

degrees of support for bi-level querying. The first schema, called the nested schema, 

integrates SI, the marks referenced in the SI, and the contextual information for the 

marks; and presents the integrated information as a single XML document for query

ing. The second schema, called the normalized schema, separates SI, the descriptors, 

and the context information; and requires the user to explicitly join the different kinds 

of information (as needed) in queries. 

In this section, we compare the effect of the two schemas on query expression and 

query-execution performance. We use the comparison to present our goals and strate

gies for bi-level querying (in Section 5.3). 

The representation schemes are based on the developments in Sections 4.5 through 

4.7. The examples we use are based on the conceptual schema presented in Figure 

4.24 for the Sidepad application. As in Chapter 4, the Sixml element types (that is, the 

element types used to represent mark associations) belong to the namespace "sixml" 

and are bound to the URI "http://schema.sixml.org". Also as in Chapter 4, for sim

plicity, we use the Sixml element types without a namespace. 

5.2.1. Nested Schema 

In the nested schema, a mark-association element (that is, an element that represents 

the use of a mark) is nested inside an SI element. The mark-association element in turn 

http://schema.sixml.org


182 

contains the mark descriptor and the complete context information retrieved from the 

mark. 

Figure 5.2 shows an example XML fragment in the nested schema. Some elements are 

shown in bold to highlight the nesting of information. The element Item and the text 

directly contained in that element represent SI. The element EMark_ItemMark 

represents a mark association. The sub-element Descriptor of the mark-association 

element contains a description of the associated mark. The sub-element Context 

represents the context information retrieved from the mark. For illustration, this sub-

element includes only three kinds of context information (content, containment, and 

placement). 

The nested schema allows a user to easily query bi-level information because SI, its 

associated marks, and the context information for the marks are all available together. 

The nesting of information allows "natural" navigation from the SI layer to the base 

layer. For example, the Task Ql (list the base documents used) can be accomplished 

using the following XPath 1.0 [166] (henceforth referred to simply as XPath) expres

sion: 

//Item/EMark_ItemMark/sixml:Descriptor/Document/Location 
[not (.=preceding::Location)] 

This XPath expression navigates from the root of the XML document to SI (the ele

ment Item), to a mark association (EMark_ItemMark), to the descriptor of the base 

document (the nested element Document), and finally to the element Location that 

contains the path to the referenced base document. The predicate in this expression 



183 

(that is, the portion enclosed in brackets) eliminates duplicate base-document loca

tions. 

<?xml vers ion=" l "?> 
<SidepadDoc t i t le="Data In tegrat ion '^ 
< I t e m name="Goal">Mediate heterogeneous data sources without replicating data. 
< E M a r k _ I t e m M a r k s i x m l : m a r k I D = " 2 3 " > 

<s i xm l :Desc r i p to r xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:sixml="http:/ /schema.sixml.org" xs:type="SPARCEMark"> 

<Agent>AcrobatAgents.PDFAgent</Agent> 
<Class>AcrobatPDFTextMark</Class> 
<Address>2|395|439</Address> 
<Description>Page 3 in f.pdf (Adobe Acrobat)</Description> 
<CachedText>provide applications and ...</CachedText> 
<Who>smurthy</Who> 
<Where>TYEE</Where> 
<When>2004-05-28 14:03:02</When> 
< D o c u m e n t ID="D6"> 

<Agent>AcrobatAgents.PDFAgent</Agent> 
< Location > E: \Base\f. pdf </Location > 
A p p l i c a t i o n ID="Acrobat5"> 

<Agent>AcrobatAgents.PDFAgent</Agent> 
<Name>Adobe Acrobat 5.0</Name> 

</Application> 
</Document> 

</s ixml: Descriptor> 
< s i x m l : C o n t e x t > 

<Con ten txTex t>p rov ide applications and . . .< /Tex tx /Con ten t> 
<Containment> 

<Sec t i onxHead ing>3 : Garlic Overv iew</Headingx/Sect ion> 
</Containment> 
<Placement><Page>3</Pagex/Placement> 

</sixml:Context> 
</EMark_ItemMark> 

< / I tem> 
</SidepadDoc> 

Figure 5.2: Example bi-level information in the nested schema 

The nested schema has two obvious problems. First, the details of a mark (including 

the descriptor and the context information) are represented redundantly if the mark is 

used more than once. Second, the descriptors for all marks, documents, and applica

tions, along with the context information for marks are eagerly materialized regardless 

of query needs. For example, the Task Q3 (list names of Sidepad items) can be ac

complished without consulting mark descriptors or context information (using the 

http://www.w3.org/2001/XMLSchema-instance
http://schema.sixml.org
file:///Base/f


184 

XPath expression //item/@name), yet the descriptors and context information are ma

terialized in this approach. 

The nested schema can be inefficient also because the context information for some 

marks can be rather large. Depending on what context elements a context agent pro

vides, the size of the complete context for a mark could exceed the size of its base 

document. 

In summary, the nested schema makes it easy to express bi-level queries, but it can 

potentially affect query-execution performance, especially when the number of marks 

is relatively large. 

5.2.2. Normalized Schema 

The normalized schema is a normalization [12] of the nested schema to eliminate re

dundancy. In this schema, bi-level information is represented in five documents, one 

each for SI and mark associations (together), mark descriptors, document descriptors, 

application descriptors, and context information. Figure 5.3 shows the bi-level infor

mation of Figure 5.2 represented in the normalized schema. Dashed lines separate the 

documents. The elements in bold indicate references between the XML documents. 

A query (such as Q3) over just SI executes efficiently in the normalized schema be

cause the query is executed over just the SI document, but navigating from the SI layer 

to the base layer is cumbersome because the user must explicitly join different docu

ments: Join queries are harder to express and they tend to be error-prone [70]. For ex

ample, completing Task Ql would require the following XQuery query: 



185 

<result> { 
fn:distinct-values( 
for $a in fn:doc("SI")//Item/EMark_ItemMark, 

$m in fn:doc("Marks")//sixml:Descriptor[@ID=$a/@sixml:markID], 
$d in fn:doc("Documents")//Document[@ID=$m/DID] 

return $d/Location 
) 
} </result> 

In this query, the for expression ranges over mark-association elements in the SI doc

ument, and binds the variable $ a to an EMark_ItemMark element in each iteration. For 

each EMark_ItemMark element in the SI document, the for expression binds the vari

able $m to the matching Descriptor element in the mark-descriptors document; and the 

variable $d to the matching Document element in the document-descriptors document. 

The expression then returns the Location sub-element from the matching Document 

element. The function fn :d is t inc t -values eliminates duplicates in the sequence of 

nodes that the for expression returns. The namespace fn is bound to the URI 

http://www.w3.org/2005/xpath-functions [176]. 

Clearly, the XPath expression to perform Task Ql (shown in Section 5.2.1 for the 

nested schema) is more compact, and is easier to develop and comprehend, than the 

XQuery query. 

The normalized schema solves the problem of redundant representation of descriptors 

and context information, but it still eagerly materializes the complete context informa

tion for the referenced marks whenever a query references the context document. (In 

this discussion, for simplicity, we ignore the issue of granularity of materialization.) 

http://www.w3.org/2005/xpath-functions


186 

<!— SI document --> 
<?xml version = " l " ? > 
<SidepadDoc t i t le="Data Integration"> 
<I tem name="Goal">Mediate heterogeneous data sources without replicating data. 

<EMark_ I temMark s i x m l : m a r k I D = " 2 3 " / > < ' ~ References the Mark-descriptors document—> 
</ I tem> 

</SidepadDoc> 

<!— Mark-descriptors document —> 
<?xml vers ion=" l "?> 
<Marks> 

<sixml:Descriptor xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:sixml = "http:/ /schema.sixml.org" xs:type="SPARCEMark" ID="23"> 

<Agent>AcrobatAgents.PDFAgent</Agent> 
<Class>AcrobatPDFTextMark</Class> 
<Address>2|395|439</Address> 
<Description>Page 3 in f.pdf (Adobe Acrobat)</Description> 
<CachedText>provide applications and ...</CachedText> 
<Who>smurthy</Who> 
<Where>TYEE</Where> 
<When>2004-05-28 14:03:02</When> 
< D I D > D 6 < / D I D > < / ~ References the Document-descriptors document—> 

</sxml : Descriptor> 

</Marks> 

</— Document-descriptors document —> 
<?xml version = " l " ? > 
<Documents> 
<Document ID="D6"> 
<Agent>AcrobatAgents.PDFAgent</Agent> 
< Location > E: \Base\f. pdf </Location > 
< A I D > A c r o b a t 5 < / A I D > < / — References the Application-descriptors document—> 

</Document> 

</Document> 

<!— Application-descriptors document —> 
<?xml vers ion=" l "?> 
<Applications> 
<Application ID="Acrobat5"> 
<Agent>AcrobatAgents.PDFAgent</Agent> 
<Name>Adobe Acrobat 5.0</Name> 

</Application> 

</Applications> 

</— Context document - -> 
<?xml version = " l " ? > 
<sixml:Contexts> 
<sixml:Context ID="23"></— The ID associates context with a descriptor —> 
<Con ten txTex t>p rov ide applications and . . . < /Tex tx /Con ten t> 
<Containment> 

<Sec t i onxHead ing>3 : Garlic Overv iew</Head ingx /Sect ion> 
</Containment> 
<P lacemen txPage>3< /Pagex /P lacemen t> 

</sixml:Context> 

</sixml:Contexts> 

Figure 5.3: Example bi-level information in the normalized schema 

http://www.w3.org/2001/XMLSchema-instance
http://schema.sixml.org
file:///Base/f


187 

5.2.3. Impact of Representation Scheme on Si-only Queries 

In this section, we consider the effect of the two representation schemes on Si-only 

queries, which are queries over just SI, returning only SI (possibly with newly con

structed information). For example, Task Q3 is accomplished with an Si-only query 

(//item/@name). We consider the issues in expressing and executing Si-only queries 

because we expect a significant number of queries to read and return only SI, and we 

wish to use the same mechanism to execute both bi-level queries and Si-only queries. 

Expressing an Si-only query can be harder in a bi-level setting because non-Si data 

might need to be (explicitly) excluded from the results. For example, the result of the 

XPath expression / / i tem to return all Sidepad items also returns mark-association 

elements (and the nested descriptors and context information if applied to the nested 

schema) embedded inside each Item element. Thus, the user needs to write the follow

ing, more complex, XQuery query (because XPath cannot exclude the contents of an 

element it returns [166]). 

<result> { 
for $i in fn:doc("SI")//Item 
return <Item name="{$i/@name}">{@i/text()}</Item> 

} </result> 

An Si-only query might execute poorly in a bi-level setting because the query proces

sor examines unwanted non-SI information. For example, when executing the Si-only 

query //item/@name (for Task Q3), the query processor examines all 26 elements in 

the nested schema (for the data in Figure 5.2), but only two of these elements represent 

SI. The processor examines three elements (SidepadDoc, Item, and EMark_ItemMark) 



188 

in the normalized schema (applied to the SI document in Figure 5.3), though only two 

elements represent SI. In both cases, only one element satisfies the query. 

In summary, expressing Si-only queries (and a few other classes of queries as illu

strated in Chapter 8) can be hard in both schemas. Also, the queries can execute ineffi

ciently in both schemas, and the inefficiency increases with the number of mark asso

ciations. 

5.3. Goals and Strategy for Bi-level Querying 

Section 5.2 has provided sufficient information to help the reader get a feel for the key 

issues in bi-level query processing. With that background information, we now present 

our goals for a bi-level query system and outline our strategy to meet the goals in the 

XML model. 

5.3.1. Goals 

We see four roles for people interacting with a bi-level query system: SA users, SA 

developers, bi-level query developers (that is, people who develop queries to accom

plish tasks such as Ql to Q5), and implementers of bi-level query processors. Our goal 

is to design a system such that the activities of all roles are made easier. We identify 

seven sub-goals to reach that larger goal: 

Gl: Si-schema independence: A representation scheme for bi-level information 

should not curb SI modeling. For example, it should not force the SA developer to in

clude or exclude particular SI elements. 



189 

G2: Diversity and multiplicity: It should be possible to associate zero or more marks 

with any conceptual SI element. For example, zero or more marks should be possible 

for both Sidepad groups and items. It should be possible to associate zero or more 

marks with any logical SI element. For example, in the XML model, it should be poss

ible to associate zero or more marks with elements, attributes, and text. 

G3: Execution efficiency: A bi-level query system should aid efficient query execu

tion in terms of speed. Specifically, it should not significantly hurt the performance of 

Si-only queries. 

G4: Scalability: A bi-level query system should be able to handle queries that involve 

a large number of marks or marks over a large number of base documents. Specifical

ly, the system should provide a reasonable response even for queries that involve 

100,000 marks. 

G5: Ease of query expression: A bi-level query system should aid "natural" navigation 

from the SI layer to the base layer. 

G6: Si-only-query preservation: Imagine an Si-only schema obtained by removing the 

mark-association elements from the normalized schema. The result of a query ex

ecuted over an instance of such a schema (for example, the SI document in Figure 5.3, 

but without the EMark_ItemMark element) must be preserved when the same query is 

executed over bi-level information. For example, in the XML model, the XPath ex

pression / / i tem executed as an Si-only query must return only SI when executed over 

the information in either Figure 5.2 or 5.3. We focus on Si-only-queries because facili-



190 

tating bi-level querying should not be at the cost of Si-only-queries (and we expect a 

good portion of queries to be of the Si-only kind). 

G7: Language compatibility: New operators or functions should not be required in an 

existing query language to express a bi-level query or an Si-only query. Language 

compatibility ensures that query developers do not need to learn anything new to ex

press bi-level queries, and that (parts of) existing query processors can be reused to 

process bi-level queries. 

Our goals for a bi-level query system apply to any logical data model (such as rela

tional and XML, with appropriate substitution and interpretation of terms). Whichever 

logical model is chosen, any SI schema in that model should be supported. However, it 

is possible that the logical model influences the degree to which a sub-goal is met. For 

example, Goal G5 might be met to different degrees in the XML and the relational 

models because the mechanism of navigation (setting aside its naturalness) is quite 

different between the two models. 

Though our goals for a bi-level query system are not specific to a logical data model, 

we focus on designing and implementing a system for the XML model, because of the 

increasing popularity of XML. In addition, XML bi-level queries pose some unique 

problems (such as those related to Si-only queries). 

With respect to the XML model, both the nested schema and the normalized schema 

(presented in Section 5.2) help meet Goals Gl, G2. The normalized schema helps 

meet G3, but conflicts with G5. The nested schema helps meet G5, but conflicts with 



191 

G3. Neither schema helps Goal G4, largely because the query-execution strategy in

fluences scalability more than a schema does. As described in Section 5.2.3, both 

schemas conflict with G6. Both schemas help meet G7 with respect to bi-level queries, 

but neither helps meet this goal with respect to Si-only queries. 

Many normalized schemas are possible for bi-level information, with differences in 

the degree to which the sub-goals are met, but we limit our discussion to the schema 

used in Figure 5.3. 

5.3.2. Strategy for the XML Model 

Within the XML model, we use a combination of SI design-time modeling solutions 

and SA run-time solutions to meet the goals identified. Table 5.1 summarizes the goals 

and shows the different parts of the strategy employed to reach each goal. 

Table 5.1: Summary of goals and strategy for bi-level querying. A number in parentheses indi
cates the chapter or section where the related discussion can be found 

Goal Means (Chapter or Section) 

Gl. Si-schema independence Modeling (7), Sixml DOM (7) 

G2. Diversity and multiplicity Modeling, Sixml DOM 

G3. Execution efficiency Normalized schema (5.2.2), Cloaking (8), Bi-level navigator (9) 

G4. Scalability Bulk accessor (6), Cloaking, Bi-level navigator 

G5. Ease of query expression Nested schema (5.2.1), Cloaking, Bi-level navigator 

G6. Sl-only-query preservation Normalized schema, Cloaking, Bi-level navigator 

G7. Language compatibility Modeling, Cloaking, Sixml DOM, Bi-level navigator 

To meet Goals Gl (Si-schema independence) and G2 (diversity and multiplicity), we 

use the Sixml element types introduced in Sections 4.5 through 4.7 to represent bi-

level information. We extend the element types for mark associations defined in Sec-



192 

tion 4.5.2 to indicate marks associated with parts of an XML document (for example, 

with text content and processing instruction) that the ER model cannot represent. 

We also define Sixml DOM, an extension of the W3C XML Document Object Model 

(DOM) [34] to represent and manipulate a Sixml document (that is, an XML docu

ment containing instances of Sixml element types) at run time. Chapter 7 describes the 

extended Sixml element types and Sixml DOM. 

To meet Goals G3 (execution efficiency) and G5 (ease of query expression), we re

quire SI to include just the mark associations as in the normalized schema (for exam

ple, the first document shown in Figure 5.3), but we allow bi-level queries to be ex

pressed over the nested schema (such as that used in Figure 5.2). If a query involves 

only the SI elements and the mark associations, no new data is materialized; if a query 

examines descriptors or context information, the necessary information is materialized 

just in time. 

We design and implement a bi-level navigator that implements just-in-time materiali

zation of descriptors and context information. The navigator uses Sixml DOM to in

ternally represent bi-level information, but uses the W3C XPath data model [166] to 

externally represent the same information for querying purposes. With the bi-level na

vigator, bi-level queries may be expressed in existing languages and executed with 

existing traditional XML query processors. Chapter 9 describes the bi-level navigator, 

its data model, and its use with existing query processors. 



193 

To meet Goal G4 (scalability), we use a bulk accessor component to efficiently re

trieve context information from a large number of marks and from marks in a large 

number of base documents. Chapter 6 describes the bulk accessor. Sixml DOM (and 

thus, indirectly, the bi-level navigator) employs the bulk accessor. 

To meet Goals G6 (Si-only query preservation) and G7 (language compatibility with 

respect to Si-only queries), we cloak (that is, make invisible) mark associations from 

Si-only queries, and exclude cloaked information from query results. Chapter 8 de

scribes a formal model for cloaking data and for executing queries over cloaked data. 

The bi-level navigator supports cloaking. 

Figure 5.4 shows a reference model for an XML bi-level query processor that employs 

the strategy outlined. The modules shaded gray denote traditional XML query proces

sors using the bi-level navigator to support bi-level querying. 

1 

>d Application 

r i 
Sixml 

h. YCI T nnrl VOi ion/ P 

r 
Sixml 

^ 
SPARPP 

DOM +-

^ 
—k. XPalh P rocessor 

T 

Ri \r\ic\ 1* 

r i 

Javigator 

' 

Figure 5.4: A reference model for an XML bi-level query processor. Arrows denote dependency. 
A gray module denotes an existing traditional XML query processor 

5.4. Summary and Conclusions 

In this chapter, we have introduced the notion of a bi-level query system to help filter 

and transform bi-level information using queries in existing languages. We have pre

sented two alternative representation schemes (namely, nested and normalized sche-

file:///r/ic/


194 

mas) for XML bi-level information, and explored how each scheme aids or affects 

query expression and execution. We have also illustrated that Si-only queries deserve 

special attention when designing a bi-level query system. 

We have identified seven goals for a bi-level query system, and presented a strategy to 

meet the goals in the XML model. At the heart of the strategy is the bi-level navigator, 

which allows an SA developer to model SI and mark associations in the normalized 

schema, but permits queries expressed over the nested schema. The navigator employs 

the other solutions identified to allow expression and execution of queries using exist

ing query processors unchanged. 

Chapters 6 through 9 describe the different parts of a bi-level query system. Each of 

those chapters includes a description of related work. 



6. Optimizing Bulk Access to Context Information 

Scalability (the ability to extract context information from a large number of marks 

and base documents for a single query) is one of the goals we set in Chapter 5 for a bi-

level query processor. In this chapter, we describe a component called the bulk 

accessor [121] that is specifically designed to achieve this goal. The bulk accessor 

supports different policies that a query processor can exploit to improve performance 

depending on data characteristics such as clustering of marks. 

In this chapter, we illustrate the use of the bulk accessor from within a relational query 

processor. Chapter 9 shows the use of the bulk accessor in an XML query processor. 

6.1. Introduction 

Imagine that the peer-review commenting of papers submitted to a conference is ma

naged using the Superimposed Scholarly Review System (SISRS) application intro

duced in Section 4.9.2. Assume that the conference receives 500 submissions (which 

is plausible: The conference VLDB 2006 had 624 submissions [30]). If each paper is 

reviewed by three reviewers, and if each reviewer comments on 10 distinct regions of 

each paper, 15,000 marks would be created in total. In this setting, some queries may 

combine the superimposed comments with context information retrieved from the 

commented regions. For example, the query shown in Figure 4.27 to prepare a draft of 

feedback to authors retrieves excerpts from commented regions. As illustrated in Sec

tions 4.7 and 4.8, a query processor can use the functions excerpt and context to 

retrieve context information, but retrieving context information from 15,000 marks 



196 

can consume an unacceptable amount of time, if these functions are implemented 

naively. 

In the rest of this section, we establish the need for giving special consideration to re

trieving context information, using bi-level queries, for marks stored in a database 

(DB). Specifically, we show that the process a typical superimposed application (SA) 

uses to retrieve context information in an interactive setting is impractical for bulk 

access in a DB setting. For simplicity, we limit this discussion to retrieving excerpts 

using the function excerpt, but a similar discussion holds for the function context. 

Figure 6.1 shows a sequence diagram drawn using the Unified Modeling Language 

(UML) [159] syntax. It shows the interactive sequence of tasks an SA and our mid

dleware SPARCE (described in Chapter 3) perform to retrieve the text excerpt from a 

mark, as well as the task sequence to release a context-agent instance. Tasks initiated 

by non-human actors are numbered. A total of eight tasks are involved in retrieving an 

excerpt. Releasing a context-agent instance involves three tasks. 

All 11 tasks in the interactive sequence may not be needed to retrieve the excerpt from 

every mark because the typical SA releases a context-agent instance only after the user 

closes the SA, not after each use of the instance. Consequently, later instances of a 

context-agent class may benefit from the work done by earlier instances. For example, 

only the first instance of the context agent for marks into a PDF document [6] might 

load the Adobe Acrobat (Acrobat) [8] application, eliminating Task 4 for later in

stances. Similarly, a base document loaded for one mark may be reused for other 



197 

marks into that document (avoiding Task 5). Some choices in context-agent imple

mentation and constraints in base applications can influence the specific set of tasks 

performed, but in general, applications and documents—once loaded—can be reused. 

SA SPARCE contextAgent baseApp 

1. getAgent(descriptor) 

7. getExcerpt() 

9. «destroy» 

2. «create» 

3. initializefdoc, subDoc) 
4. load() 

5. open(doc) 

6. locate(subDoc) 

8. extractExcerpt() 

10. close(doc) 

11.end() 

Figure 6.1: Sequence of tasks to retrieve an excerpt from a mark in an interactive setting 

The interactive sequence is practical for use by an SA, but it is impractical for bulk 

access needed to execute a query. For example, consider the following query in the 

Structured Query Language (SQL) [92] to retrieve the ID and excerpt from each mark, 

using the schema shown in Figure 4.18(a): 

SELECT ID, excerpt(ID) FROM Mark 

To execute this query, the query processor invokes the user-defined function (UDF) 

excerpt for each mark. Assume that the UDF naively performs all 11 tasks of the in

teractive sequence, so that it operates correctly regardless of the calling context and 

the number of invocations. 



198 

Table 6.1 shows the time (measured) to retrieve excerpts from four marks using the 

interactive sequence. The first two marks reference distinct regions of a PDF docu

ment; the last two marks reference distinct ranges in a Microsoft Excel (Excel) [96] 

workbook. The column "SA" indicates the time required to retrieve excerpts using the 

interactive sequence via an SA; the column "DB" denotes the time to retrieve excerpts 

with the aforementioned SQL query, using a naive implementation of the function 

excerpt in Microsoft SQL Server 2005 (MSSQL) [99]. Table 6.1 also shows the total 

time and the average time to retrieve excerpts for the four marks. The time to initialize 

context agents shown in the table is discussed in Section 6.2. 

Table 6.1: Time (in milliseconds) to retrieve excerpts and to initialize context agents using the 
interactive sequence 

Time to retrieve excerpt Time to initialize context agent 

Mark Document SA DB SA DB 

Ml Pl.pdf 2172 2281 2157 2141 

M2 Pl.pdf 79 2218 79 2078 

M3 El.xls 250 329 234 250 

M4 El.xls 15 297 15 234 

Total time (ms) 2516 5125 2485 4703 

Average time (ms) 629 1281 621 1176 

According to Table 6.1, the SA and the DB approaches consume about the same time 

to retrieve the excerpt for the first mark of each document in this dataset. However, the 

naive DB approach consumes far more time for the second mark of each document, 

because it repeatedly opens and closes the base application and document. At the rate 

shown for PDF marks in Table 6.1 (2.2 seconds per PDF mark), the naive DB ap

proach would need over nine hours to retrieve excerpts from 15,000 PDF marks. 



199 

6.2. Bulk Access Considerations 

We now analyze the similarities and the differences between the SA and na'i've DB ap

proaches to retrieving excerpts using the interactive sequence. We use this analysis to 

formulate the key considerations for bulk access. 

For each mark, both approaches instantiate a context agent (Tasks 1-6), retrieve the 

excerpt (Tasks 7 and 8), and release the context-agent instance (Tasks 9-11). Howev

er, they differ in the amount of work performed when a context agent is instantiated 

(Tasks 4-6) and when a context-agent instance is released (Tasks 10 and 11). They 

also differ in the ordering of these tasks. 

Our observations show that Tasks 4, 5, 10, and 11 consume a majority of the time 

needed to retrieve the excerpt from a mark. Consequently, we use the following equa

tions to approximate the time taken to retrieve excerpts for all marks. 

A D D A 

tsA = Z tload{a) + Z t0pen(d) + Z tC,ose{d)
 + Z tEnd{a) Equation 5 . 1 

o=l d=\ d=\ a=\ 

M M M M 

tDB = HtLoad(a) + lltoPen(d) + lltaoSe(d) + JltE„d(a) Equation 5.2 
a=\ d=\ d=\ a=\ 

Equation 5.1 estimates the total time tsA needed to retrieve excerpts from Mmarks us

ing the interactive sequence via an SA. Equation 5.2 estimates the total time toB 

needed to retrieve excerpts from M marks using the naive DB approach. A is the num

ber of distinct base applications, and D is the number of distinct base documents. The 

inequalities M>D>A hold because each mark is made in exactly one document; and 



200 

each document is opened using exactly one application. Load and End are functions 

over base applications; Open and Close are functions over base documents. 

In Equations 5.1 and 5.2, the first two terms correspond to Tasks 4 and 5, respectively. 

These tasks are performed as a part of Task 3, initialization of a context-agent in

stance. The third and fourth terms correspond to Tasks 10 and 11, respectively, and are 

performed as a part of Task 9, destruction of a context-agent instance. These equations 

show that the SA and DB approaches differ in the number of times base applications 

are loaded (and ended) and in the number of times base documents are opened (and 

closed). 

Although not captured by these equations, the SA and DB approaches also differ in the 

number of simultaneous instances of marks and context agents in memory. At the end 

of retrieving excerpts from all M marks, the SA approach maintains M context-agent 

instances. In contrast, the DB approach maintains only one context-agent instance in 

memory at any time. 

Table 6.1 includes the time taken to perform Tasks 3-6 (initialize context agents) for 

the four marks described in Section 6.1. It shows that in both the SA and DB ap

proaches, initializing the context agent consumes a significant portion of the time 

needed to retrieve the excerpt from a mark. 

With this information at hand, we discuss two conflicting considerations for bulk 

access: delaying context agent destruction (to reduce the time taken to repeatedly in

itialize context agents) and limiting the number of context-agent instances (to reduce 



201 

memory consumption). We also discuss clustering marks by base documents as a 

means of balancing the resource tradeoffs due to the conflicting considerations. 

The repeated destruction and initialization of context-agent instances is one reason the 

naive DB approach consumes more time. Thus, the approach could perform better if 

context-agent destruction is delayed until the end of a query, but a database manage

ment system (DBMS) might limit the number of object instances that may be created 

within a query batch. (A query batch is a sequence of queries executed as one unit.) 

For example, MSSQL limits the number of ActiveX object instances per batch to 256 

[147]. That is, a query can retrieve excerpts for at most 256 marks using the interactive 

sequence, if context agents are implemented as ActiveX classes [93]. 

Also, delaying context-agent destruction until the end of a query may not scale up for 

a large number of marks. For example, in our implementation, a context-agent in

stance requires at least 512 bytes of memory. At this rate, maintaining 15,000 context-

agent instances simultaneously would require over 7 MB of memory per query, ex

cluding the memory needs of base applications, base documents, and the DBMS. Or

dinarily, a DBMS can easily afford such amounts of memory, but the operating system 

(OS), not the DBMS, manages the memory for context agents and base applications. 

As a result, the number of simultaneously executing queries might be limited. 

In addition to the potential problem with scaling, too many simultaneous context-agent 

instances can also adversely affect the speed of bulk access: As the number of simul

taneous context-agent instances, loaded base applications, and open base documents 



202 

increases, the OS furnishes the various processes with more and more virtual memory, 

which can induce overhead due to disk operations. The amount of overhead induced 

depends on factors such as data-access patterns and the virtual-memory caching poli

cy. For example, the overhead might be small if consecutive marks reference the same 

base document, and the base document is already resident in physical memory. 

Clustering marks by base documents is a way to manage the tradeoff between delaying 

destruction of context-agent instances and the number of simultaneous agent instances. 

Clustering allows a context-agent instance to be reused for all marks in one document 

before the instance is reused for marks in other documents. It also exploits the OS's 

affinity for locality of reference because the base document is more likely to be resi

dent in physical memory for the entire duration of its use. Thus, clustering can reduce 

the time taken to initialize an agent instance. 

Clustering marks by base documents also allows a base document to be closed imme

diately after all its marks are processed, potentially reducing the stress on memory. 

6.3. Design 

In this section, we present the design of a bulk accessor that has the following fea

tures: 

• Requires the query processor to create only one object instance (that of the bulk-

accessor) per query batch, thus avoiding DBMS limits on the number of active ob

jects. 

• Pools context agents to share base applications and documents. 



203 

• Offers different pooling policies the query processor may exploit to improve per

formance depending on data characteristics such as clustering of marks. 

Figure 6.2 shows the architecture of the bulk accessor as a UML class diagram. The 

shaded classes are existing components of a DBMS. The class Bulk Accessor maintains 

a pool of context agents. The pool can be implemented as a hash table. The hash key 

depends on the pooling policy used. Section 6.3.1 describes the available pooling poli

cies. 

Query Processon 

'1 

«interface» 
Poolable Context Agent 

initialize(in doc, in subdoc) 
getExcerptQ 
getContext() 
conserveQ 
clearQ 

Starts Pools 

1 

Query Batch 
Owns poolPolicy 

Bulk Accessor 

setPoolPolicy(in policy) 
getExcerpt(in descriptor) 
getContextftn descriptor) 

Figure 6.2: Architecture of the bulk accessor 

The interface Poolable Context Agent defines the methods a context agent must imple

ment in order to support bulk access. The method initialize assigns a document location 

and a sub-document address to a context-agent instance. This method informs the con

text agent which mark the bulk accessor intends to access. The bulk accessor may in

voke this method several times in the same context-agent instance, and the values for 

document location and sub-document address can vary with each invocation. When 

this method is invoked, the context-agent instance should "smartly" reuse results of 



204 

previous invocations. For example, if the document location remains constant (but the 

sub-document address varies) between successive invocations, the context agent 

should attempt to reuse the previously opened base-document instance. 

The bulk accessor typically invokes the method getExcerpt or getContext after invoking 

initialize in a context-agent instance. These methods may be called any number of times 

between successive invocations of initialize, and initialize is always invoked (at some 

point) before retrieving excerpt or other context information. 

The bulk accessor uses the methods conserve and clear to manage memory. When the 

method conserve is invoked, a context-agent instance should release "non-essential" 

resources, but be able to retrieve context information without the bulk accessor invok

ing initialize again. In principle, a context-agent instance can release all information ex

cept the document location and sub-document address supplied in the most recent in

vocation of initialize, but the instance may choose to retain other information as well (at 

its discretion). The bulk accessor may invoke conserve several times in a row to indi

cate that more resources be freed, if possible. 

When the method clear is invoked, a context-agent instance should release all re

sources. After invoking clear in a context-agent instance, the bulk accessor must in

voke the method initialize before using the instance to retrieve context information. In

voking clear is equivalent to destroying and recreating a context-agent instance, but 

without incurring the complete destruction and construction expenses. 



205 

Figure 6.3 shows the bulk-access sequence of tasks performed to retrieve text excerpts 

from marks using the bulk accessor. The figure shows three groups of tasks. Each task 

is numbered to denote the group to which it belongs. The first group of tasks is carried 

out when the query processor receives a query batch; the second group of tasks is per

formed for each mark; and the third group of tasks is performed when the excerpts for 

all marks have been retrieved, and the query batch is completed. The task startBatch 

creates an instance of the bulk accessor, which in turn creates an empty pool of con

text agents. The task endBatch destroys the bulk accessor, which in turn clears the 

agent pool. Clearing the agent pool involves closing base documents and ending base 

applications. 

We first discuss different pooling policies and then discuss how a query processor may 

choose a pooling policy. 

queryProcessor 

Show Excerpts r-i 

bulkAccessor agentPool contextAgent baseApp 

1.1. startBatch 

1.2. «c rea te» 

2.1. getExcerpt(descriptor) 

3.1. endBatch 

3.2. «dest roy» 

1.3. «c rea te» 

2.2. getAgent(descriptor) 

2.5. irtitialize(doc, subDoc) 

2.8. getExcerpt() 

3.3. «dest roy» 

{2.3.: Create agent if not in pool} 

3.4. «destroy» 

2.4. load() 

2.6. open(doc) 

2.7. locate(subDoc) 

2.9. extractExcerptQ 

3.5. closeDoc(doc) 

3.6. end() 

Figure 6.3: Sequence of tasks to retrieve excerpts from marks using the bulk accessor 



206 

6.3.1. Pooling Policies 

The bulk accessor offers five pooling policies: Context-agent class, Document, Sub-

document, Interactive SA, and Interactive DB. 

The policy Context-agent class (PAgent) uses one instance of each context-agent class. 

The same instance is used to retrieve excerpts for all marks that use that class. The 

name of the context-agent class is used to determine if two marks use the same class. 

The policy Document (PDOC) uses one context-agent instance per combination of base-

document location (for example, a file path) and context-agent class. Excerpts for all 

marks of a base document that use the same context-agent class are retrieved using a 

single context-agent instance. The location of the document is used to determine if two 

marks belong to the same base document. We use the combination of document and 

context-agent class because marks into the same document may employ different con

text-agent classes. See Section 3.3.2. 

The policy Sub-document (Psd0C) uses one context-agent instance for a combination of 

base-document location, sub-document address, and context-agent class. That is, the 

excerpts for different marks pointing at the same region of a base document, and using 

the same context-agent class, are retrieved using a single context-agent instance. (Two 

users creating marks independently might create distinct marks pointing at the same 

region of a base document.) 

The policy Interactive SA (PSA) uses one context-agent instance per mark. It creates 

two context-agent instances even if two marks point at the same region of a base doc-



207 

ument and use the same context-agent class. This policy emulates the SA approach in 

the interactive sequence. 

The policy Interactive DB (PDB) creates one context-agent instance for each call to re

trieve an excerpt, and destroys the context-agent instance soon after retrieving the ex

cerpt. This policy emulates the naive DB approach in the interactive sequence. 

In all policies, except PDB, each base application is loaded (and ended) only once, and 

each base document is opened (and closed) only once. Some base applications, for ex

ample Acrobat, limit the number of base documents that may be open at once, but, for 

simplicity, we ignore that case for now (and consider it in the experimental evaluation 

described in Section 6.4.2). 

To estimate the time to retrieve excerpts for all marks, for all policies except PDB, we 

consider only the tasks in the second and third group in Figure 6.3. We disregard the 

first group of tasks because the time to execute them is negligible. The following eq

uation approximates the total time tsA needed to retrieve excerpts from M marks using 

the bulk-access sequence: 

A D D A ® 

tBA = 2jtLoad{a) + 2^toPen(d) + 2-ltClos4d) + 2^tEnd{a)+ 2^tSwitch(e) EqUatWH 5 . 3 
a=l d=\ d=\ a=\ 6=\ 

The first four terms in Equation 5.3 are the same as those in Equation 5.1. The fifth 

(new) term indicates the effort to reuse existing context-agent instances to retrieve ex

cerpts. The function Switch denotes the process where a context-agent instance is re

initialized for use with a mark: When the policy is PAgem, a context-agent instance may 



208 

need to switch to a different document or sub-document before extracting the excerpt 

for a mark; when the policy is PDOC, a context-agent instance may need to switch to a 

different sub-document. The symbol 0 denotes the total number of switches context-

agent instances make to retrieve the excerpts for all marks. This parameter depends on 

the pooling policy. For PAgent and PDOC this parameter is also dependent on the order in 

which marks are processed. 

The tasks in the third group shown in Figure 6.3 are executed after retrieving excerpts 

from all marks. Consequently, the query processor can perform this group of tasks af

ter delivering query results, without affecting the user's ability to process the results. 

Thus, we can simplify Equation 5.3 as follows: 

A D ® 

tBA = Y.tLoad{a)
 + lLtoPen(d) + lltSwitch{e) Equation 5.4 

a=\ d=\ 6=\ 

In addition to affecting the time to retrieve excerpts, a pooling policy also affects the 

pool size, which is the maximum number of simultaneous context-agent instances 

maintained, denoted by the symbol K. The number of switches 0 is inversely propor

tional to the pool size K. If marks are uniformly distributed, the number of switches 0 

is [~MXl. By uniform distribution of marks we mean the following: Marks are un

iformly distributed among context-agent classes when the policy is PAgent; marks are 

uniformly distributed among base documents when the policy is PDOC; and so on. 

Table 6.2 shows the relationship between pool size and the number of context-agent 

switches for different pooling policies. We assume that marks are uniformly distri-



209 

buted and that the excerpt from a mark is retrieved exactly once for each query. We 

use the symbol C to denote the number of distinct context-agent classes employed in a 

dataset, and the symbol S to denote the number of distinct sub-documents. The inequa

lities M>S>D>C hold. The number of switches for the policies PSA and PDB is zero 

because a context-agent instance is never reused in these cases. 

Table 6.2 shows that the policy PAge* is likely to have the most switching cost, but it 

results in the fewest simultaneous context-agent instances after PDB. The policy PSA has 

no switching cost, but it maintains the most number of simultaneous context-agent in

stances. 

Table 6.2: Pool size and the number of context-agent switches for different pooling policies. Uni
form distribution of marks is assumed. Example values for 1000 marks are also shown 

Policy Pool size K Example A" for 1000 marks Number of switches 0 Example 0 for 1000 marks 

PAgent C 4 TM/Cl 250 

PDOC D IO T M / D 1 IOO 

Psooc S 100 TM/Sl 10 

PSA M 1000 0 0 

PDB 1 1 0 0 

6.3.2. Choosing a Pooling Policy 
We first discuss choosing a pooling policy heuristically and then discuss some of the 

issues in making the choice analytically. 

6.3.2.1. Choosing a Pooling Policy Heuristically 

Table 6.3 lists some data characteristics and predicts pooling policies that will result in 

the fastest execution time. The column "Clustering" denotes the attributes by which 

marks are clustered. The column "Distribution" describes some aspect of distribution 



210 

such as number of marks per document and number of documents. The column 

"Policy" lists pooling policies determined heuristically. 

Table 6.3: Data characteristics and pooling policies predicted using heuristics 

Clustering 

Sub-document 

Document 

Document 

Any other 

Any other 

Any other 

Any other 

Any other 

Distribution 

Does not matter 

Many marks per document, few documents 

Many documents 

Many uses of the same mark 

Many references to the same sub-document 

Many marks, few marks per document 

Few marks, few marks per context-agent class 

Few marks 

Policy 

PAgent 

PDOC 

rAgent 

Psdoc 

Psdoc 

PAgent 

PSA 

rAgent 

The policy PAgent can provide the best performance when marks are clustered by docu

ment location and sub-document address (called "clustering by sub-document" for 

simplicity) for two reasons: It maintains a small pool, and it reduces the switching cost 

because all marks into a document are processed completely before processing marks 

into another document. 

The policy PAgent can also provide the best performance when marks are clustered by 

document only. However, if the number of distinct base documents is small (especial

ly, if the number of documents is not much more than the number of context-agent 

classes), the policy PDOC may be better as it would reduce the switching cost. 

If marks are not already clustered by sub-document or document, they may be clus

tered appropriately before retrieving marks. In many cases, the savings obtained by 

clustering marks can far exceed the cost of clustering. However, it may not always be 

beneficial, or possible, to cluster marks. For example, clustering marks early in the 



211 

query process may prevent the later use of some efficient join algorithms. The cluster

ing of marks represented in XML cannot be changed using XPath 1.0 (because an 

XPath 1.0 expression cannot reorder its input; Hlousek [59] has demonstrated that an 

XPath 2.0 expression can reorder its input, albeit in an imperative fashion). 

When marks cannot be clustered, an appropriate pooling policy can be determined 

based on the distribution of marks. If the cost of estimating (or computing) the distri

bution of marks is excessive, the policy PAgem is probably the best default choice. 

6.3.2.2. Issues in Choosing a Pooling Policy Analytically 

We do not build or evaluate an analytical model to choose a pooling policy because 

there are several impediments to building such a model. Instead, we use the heuristics 

described in Section 6.3.2.1, and our experiments with the bulk accessor (described in 

Section 6.4.2) show that the heuristics produce satisfactory results in many cases. 

To choose a pooling policy analytically, the query processor needs to only compare 

the value of the last term in Equation 5.4 among the pooling policies, because the first 

two terms are generally independent of the pooling policy. However, there are two 

impediments to computing the last term: estimating the number of context-agent 

switches 0, and estimating the time to switch (per individual mark). In the rest of this 

section, we provide an overview of these impediments and some possible means to 

overcome them. 

To compute the number of switches 6>, the query processor must estimate the number 

of marks, context-agent classes, base documents, and sub-documents at query-



212 

optimization time, but it can estimate only the number of marks (as a part of estimat

ing selectivity). It cannot estimate the other parameters because doing so requires an 

examination of the descriptors of the marks involved in the query, but the exact set of 

marks involved in the query is known only at query-execution time. 

A solution to the problem with estimating the number of switches is to index the mark 

descriptors and use the index to estimate the values required to predict the number of 

switches, regardless of the set of marks involved in the query. This solution assumes 

that the distribution of marks involved in a query is similar to the distribution of all 

known marks. 

Estimating the time to switch a context agent from one mark to another is a hard prob

lem because the switching time depends on parameters such as the number of marks, 

the distribution of marks, and the order in which marks are processed. The query pro

cessor can estimate the number of marks and enforce the order in which marks are 

processed, but it cannot estimate the distribution of marks. 

The time to switch a context agent also depends on the corresponding base applica

tion. The query processor can use a table of time estimates to switch between marks 

for different base applications, but this approach requires knowledge of intimate de

tails of context-agent implementations, in conflict with our desire to separate the de

tails of retrieving context information from the actual query processing. Even then, 

this approach requires that the query processor know the exact set of marks that are 

involved in a query. 



213 

An alternative solution is to maintain profiles of query workloads with associated 

pooling policies. The query processor can then choose a pooling policy based on the 

profile that matches a given query (or based on the profile the user assigns the query). 

This alternative has some of the elements of a learning query optimizer such as LEO 

[150]. (A learning query optimizer improves its estimates by comparing estimated 

values with actual values.) 

6.4. Evaluation 

In this section, we provide an overview of an implementation of the bulk accessor; 

show how it is integrated into a traditional relational query processor; and present the 

results of an experimental evaluation of our bulk-accessor implementation under the 

various pooling policies. 

6.4.1. Implementation 

We have implemented the design for the bulk accessor described in Section 6.3 as an 

ActiveX server using Microsoft Visual Basic 6.0 [101]. The implementation supports 

all the pooling policies described in Section 6.3.1, and allows a query processor to in

dicate if, and how, marks are clustered. 

Context-agent implementations are not required to implement the interface Poolable 

Context Agent (described in Section 6.3) but implementing it can improve bulk-access 

performance. We have extended all our context-agent implementations mentioned in 

Section 3.6.1.2 to implement this interface. 



214 

The following list provides some high-level implementation statistics (as of this writ

ing). 

• Number of interfaces: 2 

• Number of classes: 1 (new, the bulk accessor); 6 (context-agent classes extended) 

• Number of source files for the new classes and interfaces only: 3 

• Number of new lines of code (new code and extended code): 1010 

• Estimated time spent on implementing the bulk accessor and extending the con

text-agent implementations: 112 hours 

We have used the bulk accessor to execute bi-level queries using the MSSQL relation

al query processor and using the XML query processors included in Microsoft's dis

tribution of the .NET Framework [129]. Here, we provide an overview of the integra

tion of the bulk accessor into MSSQL and illustrate its use in SQL queries. 

Figure 6.4 shows a simplified version of the Transact-SQL [147] code used to inte

grate the bulk accessor into MSSQL. {Transact-SQL is Microsoft's implementation of 

SQL.) The text with gray background is comments. Key parts of the implementation 

are shown in bold. 



CREATE FUNCTION dbo.bulkAccessor(@policy int) RETURNS int AS 
BEGIN 

DECLARE @object int, @hr int 

— :V-:.J:-;. ::J:*> I--I'.X :i'.::;--»'=-"v [ : . r : } - ' . ' - ~ - - r : - - i ,<• ,1:: ?••:.:. :•;••?. r . - . i - - - ) , 

EXEC @hr = sp_OACreate 'SPARCEBulkAccess.Accessor', gobject OUT 
IF @hr <> 0 RETURN 0 — t-j'.s access;: cre-j-ior- faileo 
EXEC @hr = sp_OASetProperty @object, 'poolPolicy', gpolicy 
IF @hr = 0 RETURN @object ELSE RETURN 0 

END 

(a) 

CREATE FUNCTION dbo.bulkAccessorTable(@policy int) RETURNS TABLE AS 
RETURN (SELECT dbo .bulkAccessor (@policy) AS bulkAccessor) —r^--j:i.- the 

(b) 

CREATE FUNCTION dbo.excerpt (@doc varchar (1024), @sDoc varchar (256) , @bulkAccessor int) 
RETURNS varchar(max) AS 
BEGIN 

DECLARE gresult .-.::..- '• —rc::i;:.- of .:;.s £\;nc-::::; 
DECLARE @hr int — : < • ; - ; : ;: ̂ l.E ;.-.j;circ3ticr, f-jri.--ions 
DECLARE gsrc varchar (255) , Sdesc varchar(255) !:•::::: :::::::•..- :::: 

EXEC @hr = sp_OAMethod @bulkAccessor, 'getExcerpt' , Sresult OUT, gdoc, gsDoc 
IF @hr <> 0 
BEGIN 

• » ' : i : : i - . : i , • • * . . : •:•'••.•' ••-.• •'-.: •:-••!: : - :• 

EXEC sp_OAGetErrorInfo @bulkAccessor, @src OUT, @desc OUT 
SELECT Sresult = 'Error: ' + @desc + ' (' + CONVERT (varchar, @hr) + '; ' + @src +') ' 

END 

RETURN @result 
END 

00 

"::••; : :'.>•'•' ••fv^.:vy:i :?:« b - . < ::•:•:':-:-".- • .".:;: -.ir.-:'-; ;!::.":• : r . " . ':v5.-y h:j'.':::
 : " •:".-:• •:: <'• 

DECLARE @bulkAccessor int 
SELECT SbulkAccessor = dbo.bulkAccessor(0) 
SELECT Markid, dbo.excerpt(Location, Address, @bulkAccessor) As Excerpt 
FROM SPARCEMark JOIN CONTAINER ON CID 

(d) 

*»f! 

j.=i- •..'•.••Hi-.: .i :-vj. 

--..-.... .;!•"•':; ,.;«-::: r.:y:: •'•>- f1'.;. .* i--.-< ;•:•..' .r,.-:-,r:imt - . ' : i • : .:.• .•.;•.:»-"/ '.-.•• .•.;:: p . 

SELECT Markid, dbo.excerpt(Location, Address, bulkAccessor) As Excerpt 
FROM SPARCEMark JOIN DOCUMENT ON DID, dbo.bulkAccessorTable(0) 

(e) 

Figure 6.4: Simplified Transact-SQL code to integrate the bulk accessor into Microsoft SQL 
Server 2005. Text with gray background is comments. Bold text shows code that operates on the 
bulk accessor. Code to set the pooling policy is omitted for brevity: (a) Scalar UDF to instantiate 
the bulk accessor; (b) Table-valued UDF to instantiate the bulk accessor; (c) UDF to retrieve text 

excerpt using an instance of the bulk accessor; (d) Example use of the bulk accessor in a query 
expressed over the schema in Figure 4.18; (e) A query equivalent to the query in Part (d), but ex

pressed using the table-valued UDF 



216 

Figure 6.4(a) shows the definition of the UDF dbo.BuikAccessor to create an in

stance of a bulk accessor and return a handle to the new instance. The parameter 

@poiicy indicates the pooling policy to use. The functions spOACreate (instantiate 

an ActiveX class) and spjOASetProperty (set a property of an ActiveX object) that 

this UDF uses are built into MSSQL. 

Figure 6.4(b) defines the table-valued UDF dbo.BuikAccessorTabie. This UDF de

fines a table with one column and returns a table with one row. The lone cell in the 

returned table will contain a handle to a new bulk accessor instance. This UDF is use

ful in associating a bulk accessor instance with a query (as Figure 6.4(e) illustrates). 

Figure 6.4(c) defines the UDF dbo. excerpt to retrieve the text excerpt from a mark, 

via the bulk accessor. This UDF accepts the location of a document, the address of a 

sub-document, and a handle to a bulk accessor instance. The function spOAMethod 

built into MSSQL is used to invoke the method getExcerpt in the bulk accessor. 

Figure 6.4(d) illustrates the use of the bulk accessor to retrieve excerpts from all marks 

in the table SPARCEMark. (See the relational schema in Figure 4.18.) The query in this 

figure first obtains a handle to an instance of the bulk accessor and sets the pooling 

policy to PAgem (denoted by the value 0 for the parameter gpoiicy). It then uses the 

handle repeatedly to retrieve text excerpts. The attributes Location and Address de

note base-document location and sub-document address, respectively. 

Figure 6.4(e) shows another use of the bulk accessor to retrieve excerpts from all 

marks in the table SPARCEMark. This query batch is equivalent to the batch in Figure 



217 

6.4(d), except that it uses the table-valued UDF to create and initialize the bulk acces

sor. The attribute buikAccessor references the lone attribute that the table-valued 

UDF defines. 

6.4.2. Experiments 

We now present the results of experimentally evaluating the bulk accessor with four 

datasets: tiny, Sidepad, SISRS, and SSIB. Table 6.4 gives an overview of the four da-

tasets. The tiny dataset has only eight marks, but it demonstrates the utility of the bulk 

accessor even for small datasets. The Sidepad dataset involves marks over a variety of 

base types used in different Sidepad documents (created over a 3-year period). The 

SISRS dataset corresponds to the application Superimposed Scholarly Review System 

(SISRS) introduced in Section 4.9.2. The SSIB dataset corresponds to the SA 

Superimposed System Information Browser (SSIB) outlined in Section 4.2. 

Though our design allows different context-agent implementations for different marks 

over the same base type (and for different marks into the same base document), in our 

experiments, we used only one context-agent class per base type. For example, we 

used one context-agent class for PDF marks, and one class for Excel marks. 

In all experiments, the PDF context agent used Acrobat 6.0 (Professional Edition) [8] 

to retrieve excerpts; the Excel, Microsoft Word (Word), and Microsoft PowerPoint 

(PowerPoint) agents used applications from the Microsoft Office 2002 suite [96]; and 

the XML agent used Microsoft XML Software Development Kit 4.0 [107]. 



218 

We used a standalone driver application to collect experimental data, instead of using 

a DBMS, because the query processor in MSSQL does not allow us to collect perfor

mance data at the granularity we need for evaluation. For example, we cannot collect 

the data needed to plot Figure 6.8. We cannot instrument the query processor because 

we do not have access to its source code. However, we have verified that the results 

presented in this section are consistent with the results obtained by running retrieval 

queries within MSSQL. Section 6.4.2.2 provides example results of using the bulk ac

cessor in MSSQL. 

All experiments were run on an Intel Core Duo 1.66 GHz processor [65] with 1 GB of 

main memory. The OS was Microsoft Windows XP (Service Pack 2) [104]. Each ex

periment was run thrice, and the average result for each experiment is presented. 

Table 6.4: Overview of the datasets used to evaluate the bulk accessor 

Dataset 

Tiny 

Sidepad 

SISRS 

SSIB 

Context-agent 
classes (C) 

2 

4 

1 

3 

Documents 
(D) 

4 

56 

426 

25 

Sub-documents 
(S) 

8 

490 

15,336 

105,678 

Marks 
(M) 

8 

2735 

15,336 

107,622 

Characteristics 

Few marks per context-agent class 

Many marks to the same sub-document 

Many documents, many marks 

Many marks per document 

6.4.2.1. The Tiny Dataset 

Table 6.5 lists the eight marks in the tiny dataset and shows the time (in milliseconds) 

to retrieve the excerpt from each mark for three pooling policies. The column 

"Sub-document" shows the addresses of the marked sub-documents in the dataset. For 

PDF marks, this column shows the page number and the index of the first and last 

words in the marked region. For Excel marks, it shows the spreadsheet name and the 



219 

name of the cell in the marked region. (Only one cell was marked in each case.) The 

annotations in the first four rows describe the behavior of each policy. The last row 

shows the time to clear the pool after excerpts are retrieved from all marks. The marks 

were processed in the order shown. 

The policy PDB requires 10.3 seconds to retrieve excerpts from all marks in the tiny da-

taset; PAgem requires 3.7 seconds; and PDOC requires 3 seconds. On average, PAgem saves 

about 65% of the time over PDB; PDOC saves about 72% of the time. However, PDB con

sumes the least memory (one context-agent instance), whereas PDOC consumes the most 

memory (four context-agent instances). Consequently, the different policies take dif

ferent amounts of time to clear the pool. 

Figure 6.5 shows the average time (in milliseconds) to retrieve excerpts for the marks 

in the tiny dataset. The first set of bars show the average time to retrieve an excerpt 

when the marks are submitted to the bulk accessor in a shuffled order such that two 

consecutive calls to the bulk accessor retrieve marks from different documents. 

(Marks are shuffled before they are submitted to the bulk accessor. Shuffling increases 

the number of context-agent switches in the policy PAgem.) 



T
ab

le
 6

.5
: T

im
e 

(i
n 

m
il

li
se

co
nd

s)
 t

o 
re

tr
ie

ve
 e

xc
er

pt
s 

fo
r 

th
e 

ti
ny

 d
at

as
et

 

P
oo

li
n

g 
P

ol
ic

y 

D
oc

u
m

en
t 

S
u

b
-d

oc
u

m
en

t 
P

D
B

 
PA

ge
nt

 
PD

OC
 

P
l.

p
d

f 
1

,4
1

-9
7 

2,
28

1 
2,

15
6 

2,
15

9 

T
he

 A
cr

ob
at

 a
pp

lic
at

io
n 

is
 lo

ad
ed

 f
or

 t
he

 f
ir

st
 t

im
e,

 a
nd

 a
 c

on
te

xt
-a

ge
nt

 i
ns

ta
nc

e 
is

 c
re

at
ed

, 
in

 e
ac

h 
po

lic
y 

P
2.

pd
f 

1
,6

1
-9

3 
2,

28
2 

21
9 

17
2 

D
es

tr
oy

 c
ur

re
nt

 a
ge

nt
, c

re
at

e 
ne

w
 a

ge
nt

 i
ns

ta
nc

e,
 lo

ad
 A

cr
ob

at
 

Sw
itc

h 
to

 2
nd

 d
oc

um
en

t 
C

re
at

e 
ne

w
 a

ge
nt

 i
ns

ta
nc

e,
 o

pe
n 

do
cu


m

en
t 

P
l.

p
d

f 
3

,3
9

5
-4

3
9 

2,
21

8 
78

 
54

 

D
es

tr
oy

 c
ur

re
nt

 a
ge

nt
, c

re
at

e 
ne

w
 a

ge
nt

 i
ns

ta
nc

e,
 lo

ad
 A

cr
ob

at
 

Sw
itc

h 
to

 I
s' d

oc
um

en
t 

In
st

an
ce

 1
, s

w
itc

h 
to

 n
ew

 s
ub

-d
oc

um
en

t 

P
2.

pd
f 

2,
 1

7-
31

 
2,

20
3 

78
 

54
 

D
es

tr
oy

 c
ur

re
nt

 a
ge

nt
, c

re
at

e 
ne

w
 a

ge
nt

 i
ns

ta
nc

e,
 lo

ad
 A

cr
ob

at
 

Sw
itc

h 
to

 2
nd

 d
oc

um
en

t 
In

st
an

ce
 2

, s
w

itc
h 

to
 n

ew
 s

ub
-d

oc
um

en
t 

E
l.

x
ls

 
S

I,
 A

ll
 

32
9 

26
6 

21
9 

E
2.

xl
s 

S
1

,B
5 

31
2 

54
6 

29
6 

E
l.

x
ls

 
S

1
,A

6 
29

7 
18

8 
31

 

E
2.

xl
s 

S
1

,F
5 

39
1 

17
2 

31
 

T
ot

al
 t

im
e 

(m
s)

 
10

,3
12

 
3,

70
4 

3,
01

6 

A
ve

ra
ge

 t
im

e 
(m

s)
 

1,
28

9 
46

3 
37

7 

P
oo

l 
si

ze
 

1 
2 

4 

T
im

e 
to

 c
le

ar
 p

oo
l 

(m
s)

 
0 

28
1 

37
5 



221 

1600 

1"1400 

S 1200 -

HPAgent FJPDOC nPSdoc BPSA BPDB 

1289 
1344 

Shuff le Cluster by s u b - d o c u m e n t 

Figure 6.5: Average time (in milliseconds) to retrieve an excerpt for the tiny dataset. The first set 
of bars is for the case of shuffled marks; the second set is for marks clustered by sub-document 

In Figure 6.5, the second set of bars shows the average time when the marks are sub

mitted to the bulk accessor clustered by sub-document. With this clustering, r Agent U S e S 

12% less time per excerpt compared to the case when marks are shuffled. PAgmt even 

uses 10% less time compared to Psdoc, because with clustering, PAgent consumes much 

less memory than Psdoc: PAgmt requires only two context-agent instances (one per base 

type), whereas Ps** uses eight instances (one per sub-document). 

The average time to retrieve an excerpt using the policy PAgmt is more than that needed 

with the policy PDOC even with clustering, because the tiny dataset has only two docu

ments and involves only two context-agent classes. (We will show that this behavior 

reverses for a larger number of documents.) 

6.4.2.2. The SidepadDataset 

The Sidepad dataset contains 2735 marks into 490 distinct sub-documents in 56 dis

tinct documents. The document types are PDF, Excel, Word, and PowerPoint. The 



222 

best performance for any policy was obtained when the marks were clustered by doc

ument. The total time to retrieve excerpts for all marks for the best case was: PAgem 62.9 

seconds; PDOC 54.7 seconds; Psdoc 136.8 seconds; PSA 568.9 seconds; and PDB 1115.9 

seconds. 

Figure 6.6 shows the average time (in milliseconds) to retrieve an excerpt for the 

Sidepad dataset. The first set of bars shows the average time to retrieve an excerpt 

when the marks are shuffled; the second set of bars shows the average time when the 

marks are clustered by document; and the third set of bars shows the average time 

when the marks are clustered by sub-document. 

The summary observations based on the average time to retrieve an excerpt shown in 

Figure 6.6 are: 

• PDOC provides the best performance for both shuffled and clustered marks. 

• PDOC saves 90% over PSA, and 95% over PDB. 

• r Doc always outperforms rsdoc. 

• PAgent saves 69%-90% over PSA and 84%-94% over PDB. 

• Clustering helps P Agent perform 38% better than when the marks are shuffled. 

• Clustering also helps PAgSmt perform almost as well as PDOC because clustering reduc

es the number of context-agent switches for PAgem from 2098 to just 55. (Figure 6.6 

does not show the number of context-agent switches.) 



223 

The average execution times (in milliseconds) when marks are clustered by sub-

document and the bulk accessor is invoked from within MSSQL are: PAgent 25.18; PDOC 

24.73; Psdoc 54.82; PSA 208.73; and PDB 409.1. The ranking of pooling policies based on 

these times is the same as the ranking of the policies in the third set of bars in Figure 

6.6. For example, PDOC and PDB have the best and worst average time, respectively, in 

both cases. 

The pool size for the Sidepad dataset for the various policies was as follows: PAS^ 4; 

PDOC 56; Psdoc 490; PSA 2735; and PDB 1. The pool size is the same with or without clus

tering. 

450 \ 

400 

350 

300 

•j» 2 5 0 

200 

gi 150 

H PAgent HPDoc • PSdoc BPSA • PDB 

100 ] 

Shuffle Ouster by document Cluster by sub-document 

Figure 6.6: Average time (in milliseconds) to retrieve an excerpt for the Sidepad dataset. The 
three sets of bars are for marks shuffled, clustered by document, and clustered by sub-document, 

respectively 

Based on Figure 6.6 and the pool sizes, for the Sidepad dataset, the query processor 

needs to choose only between the policies PA^I and PDOC. If the marks are clustered by 



224 

document, the processor may prefer P Agent as its performance is comparable to that of 

PDOC, and its memory footprint is lower. 

6.4.2.3. The SISRS Dataset 

The SISRS dataset contains marks as might be created in a peer-review process. This 

dataset consists of 426 papers in PDF format obtained from the proceedings of a few 

of the past Computer Science conferences. Each document has exactly 12 pages, and 

each page has three marks, for a total of 15,336 marks. The marks were generated 

programmatically as follows: One mark was created in each third of a page. The loca

tion of the marked regions—the start of a region and its length—were determined us

ing a random-number generator. The lengths of the marked regions range between 3 

and 20 words. 

For this dataset, we report only the performance of the policies PAgem and PDOC when the 

marks are shuffled and when the marks are clustered by document. The other pooling 

policies performed poorly. As with the Sidepad dataset, clustering by sub-documents 

did not provide much benefit over clustering by documents. 

PAgem produced the best total time (6.2 minutes) to retrieve all excerpts with marks clus

tered; PDOC produced the best total time (7.9 minutes) when marks were shuffled. PSA 

could process only 59% of the dataset due to its excessive memory needs. We did not 

measure the performance of PDB for the entire dataset, but based on the performance 

for a part of the dataset, we estimate that it needs over nine hours to retrieve all ex

cerpts. 



225 

Figure 6.7 shows the average time (in milliseconds) to retrieve an excerpt for the 

SISRS dataset. The first two bars show the average time when shuffled marks are 

processed using the policies PAgem and PDOC, respectively. The third and fourth bars show 

the average time when marks clustered by document are processed using these poli

cies. We discuss the fifth bar after analyzing the first four bars. 

100 

1" 90 

e- so 
o 
8 70 

1 60 
> 
5 50 
Q> 

2 40 

I 30-

§ 20 t 

0 

H PAgent (shuffle) 

a PDoc (shuffle) 

• PAgent (cluster) 

• PDoc (cluster) 

• PAgent (cluster+) 

Figure 6.7: Average time (in milliseconds) to retrieve an excerpt for the SISRS dataset, with and 
without clustering 

According to Figure 6.7, on average, the policy PD« performs better than PAgem (65% 

savings) when marks are shuffled, but PAgent performs better than PDOC (18% savings) 

when marks are clustered. The better performance of PAgent when marks are clustered is 

attributed to its memory efficiency: PDOC employs 426 context-agent instances, whereas 

PAgem employs only one context-agent instance. Each instance of the PDF context-agent 

references six objects in the Acrobat library, resulting in 2556 Acrobat objects for PDOC, 

but only 6 Acrobat objects for PAgem. Acrobat is unable to handle the volume of data 

PDOC generates and triggers the conservation procedure of the bulk accessor. During 

this procedure, the context-agent instances for PDF marks release all references to 



226 

Acrobat objects, and, if more memory is needed, Acrobat is restarted (forcing Acrobat 

to release resources). Consequently, PDOC consumes more time on average to retrieve an 

excerpt than P A ^ does. 

The performance of the bulk accessor for the SISRS dataset when marks are shuffled 

deserves special attention: There are different degrees of shuffling of marks. Simple 

shuffling orders marks such that alternate calls to the bulk accessor retrieve excerpts 

from the same document. Extreme shuffling retrieves excerpts from the first mark of 

all documents, followed by the second mark of all documents, and so on. 

The first two bars in Figure 6.7 show the average time for simple shuffling. Executing 

the complete workload (of 15,536 marks) using this policy under extreme shuffling 

triggered the conservation procedure too frequently, and the average response time for 

the policy PAgem tended towards that expected for PDB. We believe that potential issues 

in Acrobat may have exacerbated the situation because the performance did not de

grade so drastically for similar workloads containing only Excel marks or only Word 

marks. 

Figure 6.7 shows that the policy PDOC performs slightly better when marks are shuffled 

than when marks are clustered. We attribute this difference to the order in which the 

marks were processed. Our logs show that the time to retrieve excerpts for some marks 

was much higher when marks were clustered than when the marks were shuffled. Ex

amining the order in which the marks were processed, we found three clusters of 

marks into graphics-intensive pages that were responsible for much of the difference 



227 

in the performances. Although in this case PD0C performed slightly slower when marks 

were clustered than when marks were shuffled, we believe that there is nothing inhe

rent in clustering marks by document that can hurt the performance of PDOC. 

The fifth bar, labeled "PA gent (cluster*)", i n Figure 6.7 shows the average time when marks 

are clustered by document for the policy PAgem, but in this case, a document is closed 

immediately after all its marks are processed, before the marks in the next document 

are processed. This approach results in a savings of 14% compared to PAgem when doc

uments are not immediately closed, and a savings of 29% compared to PDOC. 

The time shown in the fifth bar includes the time to close base documents, whereas for 

the other bars in Figure 6.7, the times shown exclude the time to close base docu

ments. That is, PAgem (dusted does more work than the other approaches, yet it consumes 

the least amount of time to retrieve all excerpts. If the time to close base documents is 

included, the average time to retrieve each excerpt increases to 28.13 and 34.21 re

spectively for P Agent (cluster) andP Doc (cluster). 

Figure 6.8 shows the moving average of the time to retrieve excerpts for P Doc (cluster), 1^Agent 

(duster), and PAgem (duster*-), computed for every 252 marks (that is, for every seven docu

ments). The topmost line corresponds to PDOC (duster). The moving average for this case 

has a rising trend until Document #251 (the x axis shows Document #), because with 

each new document encountered, a new context-agent instance is created, along with 

the creation of references to various Acrobat objects. When the 251st document is en

countered, the bulk accessor's conservation procedure forces context-agent instances 



228 

to release all open Acrobat objects, and restarts Acrobat. This process causes the spike 

seen in the average time to retrieve excerpts. (The time to complete the conservation 

procedure was over 5 seconds.) 

The second and the third line in Figure 6.8 correspond to PA gent (cluster) andP Agent (clusterf), TG~ 

spectively. These two lines have similar shape, but the line for PA gent (cluster*) shows that 

closing a document when it is no longer needed saves time consistently (because clos

ing a document increases available memory). 

Figure 6.8: Moving average of time (in milliseconds) to retrieve excerpts for the SISRS dataset 

6.4.2.4. The SSIB Dataset 

The SSIB dataset contains marks to events, errors, and updates related to nine comput

ers. (Section 4.2 describes the SSIB application.) It consists of 25 documents: 18 Ex

cel spreadsheets containing event logs (two per computer), six Word documents con

taining errors reported (one per computer; not all computers had reported errors), and 



229 

one XML document with details of available updates. Marks were created program-

matically into each of these documents using the following criteria: one mark per 

event, three marks per reported error, and one mark per update applied on a computer. 

A total of 107,622 marks were created over 105,678 distinct sub-documents. The dif

ference between the number of marks and sub-documents is due to the same update 

being applied on multiple computers. 

For this dataset, we report the performance of the policies P Agent and PDOC when marks 

are clustered by document. As with the other datasets, clustering by sub-documents 

did not provide much benefit over clustering by documents, and PDOC was the best 

choice when marks were shuffled. 

The first set of bars in Figure 6.9 shows the average time (in milliseconds) to retrieve 

an excerpt for the SSIB dataset. (We use a non-zero baseline to highlight the differ

ence in performance among the policies.) The policy PAgem saves 10.4% of the time on 

average compared to PDOC. The savings increase to 12.9% if a document is closed im

mediately after processing its marks (indicated by the bar labeled "P Agent (cluster*) '). Marks 

were processed in the following order: all marks into event log, followed by all marks 

into error reports, followed by all marks to the updates catalog. The total time (in mi

nutes) to retrieve excerpts for all marks was: PAgem 9.14, PDOC 10.29, and P Agent (cluster*) 8.97. 

We also measured the performance of the policies PAgem and PDOC when the marks are 

clustered by base documents, but all marks for a computer are processed completely 

before marks for another computer are processed. For example, marks into the event 



230 

logs for computer CI are processed first, followed by marks into error reports for CI, 

followed by updates for CI. This pattern then repeats for computer C2, and so on. 

6.00 -

5.80 -

S- 5.60 -

H- 5.40 -

1 5.00 

]« 
| 4.60 

i 4.40 

4.20 -

4.00 
Document Document+Computer 

Figure 6.9: Average time (in milliseconds) to retrieve an excerpt for the SSIB dataset. The first set 
of bars shows the average time when marks are clustered by document. The second set shows the 

average time when marks are clustered by document and by computer 

The second set of bars in Figure 6.9 shows the average time (in milliseconds) to re

trieve an excerpt when marks are clustered by document and are grouped by computer. 

In this case too, PAgOTt performs better than PDOC, and closing a document soon after 

processing all its marks results in additional savings with PAgent. That is, changing the 

order of marks did not change the ranking of the performance of the pooling policies 

(because the marks are still clustered by base documents). 

6.4.2.5. Evaluation Summary 

Our experiments provide the following insights into the use of the bulk accessor to 

retrieve excerpts: 

0 PAgent (cluster) a PDoc (cluster) • PAgent (cluster+) 

5.74 

5.10 

5.51 

5.00 



231 

• The bulk accessor performs better than the naive methods even for a very small 

number of marks. It can save 69%-90% of execution time in comparison to the in

teractive SA approach, and 84%-95% when compared to the naive DB approach, 

even when a query involves only a few thousand marks. 

• When marks are clustered by documents, PAgent provides the best response time and 

consumes the least memory. 

• When marks are shuffled, PDOC provides the best response time, but it consumes 

more memory than PAgent. Limitations of some base applications can affect the re

sponse time of PDOC. 

• The bulk accessor supports five pooling policies, but, generally, a query processor 

needs to choose only between the policies PAgent and PDOC. 

6.5. Related Work 

In this section, we provide an overview of a system of optimizing access to data resi

dent in files stored outside a traditional DB. We also briefly relate parts of the bulk 

accessor component to object management systems. 

6.5.1. Structuring Schemas and Region Indexes 

Consens and Milo [27] consider the problem of optimizing access to regions of file 

data using indexes over data described using structuring schemas. A structuring sche

ma [1] is a grammar and a set of programs that describe the content of a file. Structur

ing schemas are used to present a structured view of data stored in files. The grammar 

component of a structuring schema defines the structure of the file, and the programs 



232 

implement the grammar specification. For example, in the SSIB application (described 

in Section 4.2), the contents of an event-log file could be described using the follow

ing grammar. (Only a part of the grammar is shown.) 

<Events> = <Event> <Events> | £ 

<Event> = <EvDateTime> <Kind> <Source> <Description> 

<EvDateTime> = <Date> <Time> 

<Date> = <Month> <Day> <Year> | e 

<Time> = <Hour> <Minute> <Second> | z 

Some of the non-terminal symbols in this grammar can be exposed as DB elements. 

For example, a relation named Events, with rows of type Event, can be exposed. The 

row type Even t can expose the attributes EvDateTime, Kind, Source , and 

Description. The non-terminal symbols Date and Time need not be exposed. Pro

grams associated with this grammar can parse an event-log file and load the relation 

Events, or the programs can provide a view over the event-log file. 

A structuring schema is not a mark, but a mapping from a file's content to a relation's 

content. When the mapping is applied, the file is scanned sequentially and its contents 

are exposed as a row set (assuming the relational model). If a query over the file's 

content involves a predicate over the attributes the file exposes, the predicate is pushed 

down to the program associated with the structuring schema, as an optimization. 

The structuring-schema approach provides a means to mix DB data with external data, 

but it fully scans the external sources involved in a query. Consens and Milo [27] ad

dress this problem by maintaining an index over the structure of a file's content. The 

index may contain information about some or all components of a structuring schema. 



233 

An index entry indicates either a match point (which is the position of the indexed 

component) or a region (which is the span of the indexed component) in the file. 

Consens and Milo optimize access to indexed regions using region-inclusion graphs. 

A region-inclusion graph (RIG) is a directed graph with nodes representing indexed 

regions and edges denoting inclusion. An edge from region r to s means r includes s. 

For example, consider the aforementioned grammar for a structuring schema over an 

event-log file. Assume that all the non-terminal symbols are exposed and indexed. 

Figure 6.10 shows a RIG for this structuring schema. This graph shows that the region 

containing the information about an event in turn contains the regions with the date 

and time, kind, source, and description of the event. Also, the region containing event 

date and time is broken into two regions: one for event date, another for event time. 

Event 

EvDateTime Kind Source Description 

/ \ 

Date Time 

Figure 6.10: A region-inclusion graph for the event-log structuring schema 

Now, consider the path expression Event. EvDateTime. Date to retrieve the date of an 

event. This expression can be evaluated by finding an event region that contains an 

event date and time region, which in turn contains a date region. Because the regions 

of all three attributes in question are indexed, the objects that satisfy the path expres

sion can be found by evaluating the index expression Event ZD EvDateTime ZD Date, 

where the symbol => denotes range inclusion. If the region containing the attribute 



234 

EvDateTime is the only container of the region containing the attribute Date, the index 

expression can be rewritten as Event 3 Date. Evaluating the rewritten expression re

quires consulting the indexes for only two attributes, not three attributes. 

Maintaining a region index provides two key benefits in this example. First, candidate 

event records that satisfy a query can be determined without consulting the full event 

log. Second, the event log does not need to be scanned sequentially (assuming the 

event-log file supports random access). 

Region indexes can also reduce the number of file reads in some cases. For example, if 

a query needs the attributes Kind and Source, it would be possible to read the region 

encompassing both attributes at once (and separate the attributes in memory) instead 

of reading the two attributes separately. 

Region analysis can be useful in bi-level query execution, but it cannot be performed 

completely by a query processor in our approach because mark descriptors are opaque 

(by design) to the processor. The query processor can coordinate the analysis, but con

text agents would need to provide the functionality to compare marked regions. For 

example, an agent could test if a marked region contains (or overlaps) another region. 

An index over a file described using a structuring schema is a superimposed structure, 

but the data in a relation (or a view) obtained using a structuring schema contains only 

external data. That is, it does not allow the mixing of DB data and external data in the 

same schema instance. For example, in the event-log example for the relational model, 

the relation Events would contain only information from the event-log file. In con-



235 

trast, as shown in Sections 4.4 and 4.5, our approach allows a mark to be mixed with 

SI in the same schema instance. This approach allows a developer to easily combine 

SI and base information. 

A region index over a file's content indicates the exact portions of a file to read, and it 

can help reduce the number of file reads, but it does not address the issue of accessing 

a large number of regions in a file. 

6.5.2. Object Management Systems 

The pool of context-agent instances the bulk accessor uses is similar to object pools 

used by object management systems (OMSs) such as Enterprise JavaBeans [71] and 

BEA Tuxedo [90]. The methods initialize and clear (shown in Figure 6.2) correspond to 

the activation and passivation mechanisms, respectively, in an OMS. In an OMS, 

activation initializes an object before the object is used in providing a service; 

passivation saves the state of an object and deactivates the object. In contrast to a typi

cal OMS, the bulk accessor does not save the state of a context-agent instance after 

deactivation because that functionality is generally not needed for bulk access to con

text information. 

A typical OMS does not have an equivalent to the method conserve the bulk accessor 

uses to conserve memory without deactivating context-agent instances. Instead, an 

OMS deactivates objects. 



236 

6.6. Summary and Conclusions 

In this chapter, we have isolated the problem of efficiently accessing context informa

tion for a large number of marks when executing a bi-level query. We have proposed a 

component called the bulk accessor as a solution. A key part of this solution is to pool 

context-agent instances so that the cost of accessing base sources is amortized over the 

entire set of marks involved in a query. We have identified several pooling policies, 

and provided heuristics to choose a policy based on certain data characteristics. 

We have also described an implementation of the bulk accessor and showed experi

mentally that the accessor provides significant improvement over naive methods for 

even a small number of marks. However, when a query involves thousands of marks, 

even with a bulk accessor, the query can take minutes to complete. 

We see several opportunities to improve the performance of the bulk accessor. These 

opportunities lie in different realms: context-agent implementations and their interface 

with base applications; the query processor; and the interface between the query pro

cessor and the bulk accessor. 

The performance of the UDFs excerpt and context depends on the context-agent 

implementation, base type, and base application. Using light-weight wrappers to re

trieve context information instead of using full-blown applications can improve per

formance in some cases. For example, the open-source library PDFBox [134] can be 

used to retrieve context information from PDF marks instead of using Acrobat. In 



237 

general, loading only the parts of a base application and document necessary to re

trieve the requested information would provide better performance. 

Indexing (or caching) often-used context information can improve the overall perfor

mance of a bi-level query, but doing so requires that the DBMS be able to detect 

changes in base documents. Interestingly, the bulk accessor itself can be useful in up

dating an index on base documents. 

Another means of improving the overall performance of a bi-level query is to eagerly 

perform operations (for example, push down selections over SI) on SI stored in a tradi

tional DB to possibly reduce the number of base accesses. Making such decisions re

quires that a query processor distinguish DB-resident SI from information in the base 

layer, but current query processors do not possess this capability. For example, current 

processors treat the UDF excerpt on par with other internal UDFs. 

As illustrated in Section 6.4.2, shuffled marks can be a performance bottleneck. One 

way to process shuffled marks better is to submit marks in batches to the bulk acces

sor. The bulk accessor can internally cluster the marks by document, retrieve excerpts, 

and return a batch of results to the query processor. However, using this approach re

quires a significantly different interface (than the current one) between the query pro

cessor and the bulk accessor. 

In this chapter, we have used the bulk accessor in a traditional relational query proces

sor to execute bi-level queries. Chapters 7 and 9 show the use of the bulk accessor in 

the XML model. 



7. Representing and Manipulating XML Bi-level Information 

In this chapter, we describe Sixml and Sixml DOM, two parts of our strategy (outlined 

in Section 5.3.2) to transform XML bi-level information using queries in existing lan

guages. 

Section 4.5.2 introduced Sixml element types to associate marks with XML content 

that can be represented in the Entity-Relationship (ER) [25] model. In Section 7.3, we 

present element types to associate marks with XML content (such as a CData section 

[43]) that cannot be directly expressed in the ER model. (An ER attribute may be 

represented as a CData section in XML, but ER cannot distinuguish an attribute from a 

CData section.) The new element types, along with those introduced in Section 4.5.2, 

serve to meet our goal of Si-schema independence (Goal Gl in Section 5.3.1), and the 

goal of diversity and multiplicity of mark associations (Goal G2) for a bi-level query 

system. 

In Section 7.4, we describe Sixml DOM [120], an extension to the XML Document 

Object Model (DOM) [34], to manipulate Sixml data at run time. (DOM provides a 

means of manipulating a tree-like view of an XML document.) This extension is 

needed because DOM and its application-programming interface (API) do not ade

quately meet the run-time needs of Sixml data management. For example, DOM can

not automatically assign a mark's excerpt to an attribute (as the attribute's value). 

Sixml DOM allows an input Sixml document to be in the normalized schema (for ex

ample, the first document in Figure 5.3), but permits navigation over the document as 



239 

if the document is in the nested schema (for example, the document in Figure 5.2). By 

retrieving mark descriptors and context information just in time, and by supporting 

navigation in the nested schema, Sixml DOM can help a bi-level query processor meet 

the goals of query-execution efficiency (Goal G3) and ease of query expression (Goal 

G5). Chapter 9 describes a query processor that uses Sixml DOM. 

The XML representation schemes used in this chapter are based on the developments 

in Sections 4.5 through 4.7. As in those sections, the Sixml element types belong to 

the namespace "sixml" and are bound to the Uniform Resource Identifier (URI) [15] 

"http://schema.sixml.org". However, for simplicity, we refer to the Sixml element 

types and attributes without using a namespace. 

The names of the Sixml element types to associate marks introduced in Section 4.5.2 

have the prefix "Xml_". In the rest of this dissertation, we drop that prefix from type 

names (because we used that prefix in Chapter 4 only to distinguish XML element 

types from relationship patterns). Also, for simplicity, we give a mark-association 

element the same name as its type. For example, we give the name "EMark" to an in

stance of the element type EMark. 

7.1. Introduction 

In this section, we outline our motivation to define Sixml DOM as an extension of 

DOM to manipulate mark associations, descriptors, and context information. Section 

7.4 describes Sixml DOM in detail. 

http://schema.sixml.org


240 

A Sixml document can be manipulated using DOM (because a Sixml document is an 

XML document), but doing so can be challenging because DOM cannot distinguish 

mark associations from other information. We illustrate some of these challenges us

ing the Sixml document shown in Figure 7.1. This document is based on the element 

Comment in the Sixml document shown in Figure 4.26. For simplicity, the name of 

each mark-association element is changed to match its element type. The attribute 

xsi:noNamespaceSchemal_ocation associates a schema with Comment. The prefix 

xsi indicates the XML-Schema-instance namespace [171]. 

<?xml version="1.0" ?> 
<Comment excerpt="" 

xsi :noNamespaceSchemaLocation="http://schema.sixml.org/examples/sisrs.xsd" 
xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance" 
xmlns:sixml="http://schema. sixml. org" > 

<sixml:TMark sixml:type="sixml:TMark" sixml:markID="45"> 
Contradicts prior work 

</sixml:TMark> 
<sixml:AMark sixml:type="sixml:AMark" sixml:markID="23" sixml:target="excerpt" 

sixml: valueSource="true"/> 
<sixml:EMark sixml:type="sixml:EMark" sixml:markID="23"/> 

</Comment> 

Figure 7.1: A Sixml document in the normalized schema showing marks associated with an ele
ment, an attribute, and text content. SI parts are in bold. This document is based on the document 

in Figure 4.26. For simplicity, only the element Comment is shown, and the name of each mark-
association element is changed to match its element type. The namespace prefix xsi is used to as

sociate a schema with Comment 

Knowledge of schema: A developer needs to know mark association schemas to ma

nipulate mark associations using DOM. For example, accessing the marks associated 

with the element Comment shown in Figure 7.1 would require the following code. 

NodeList markAssociations = comment.getElementsByTagName("EMark") ; 

Here, the variable comment holds a reference to Comment. DOM [35] defines the 

function getElementsByTagName and the type NodeList. To develop this code, the 

http://schema.sixml.org/examples/sisrs.xsd
http://www.w3.org/2001/XMLSchema-instance
http://schema


241 

developer must know that mark associations for Comment are represented as elements 

named EMark, and that those elements are sub-elements of Comment. 

In contrast, Sixml DOM allows access to mark associations without the knowledge of 

their schema. For example, the list of marks associated with the element Comment 

can be accessed using the simple expression comment.markAssociations. 

Creating and serializing mark associations: Attaching a mark association to a part 

of an XML document, and serializing (that is, writing out) the association are both te

dious with DOM. With Sixml DOM, a mark association is added directly and seria

lized automatically using only the syntax recommended [43] by the World Wide Web 

Consortium (W3C) [163] for serialization of XML data. For example, the Sixml doc

ument in Figure 7.1 is serialized according to the recommended syntax. 

Accessing context information: Accessing mark descriptors and context information 

is tedious with DOM. For example, the following code would be needed to retrieve the 

context information from the first mark associated with the element Comment in Fig

ure 7.1. The types Element and s t r ing, and the function getAttribute used in this 

code are defined by DOM. Our middleware to access marks and context information 

(described in Sections 3.2-3.4) defines the other types and functions used. 

Element firstMA = comment.getElementsByTagName("EMark") .item[0]; 

string markID = firstMA.getAttribute("sixml:markID"); 

ContextAwareObject cao = repository.GetCAOFromID(markID); 

Context c = cao.ContextAgent.GetContext(); 



242 

The first two lines of this code extract the mark ID from the first mark-association 

element. The code then uses the extracted mark ID to retrieve a mark object from a 

descriptor repository SPARCE maintains. Finally, the code uses the context agent as

sociated with the retrieved mark object to get context information. However, context 

information thus retrieved cannot be manipulated using DOM because SPARCE re

turns context information in its own model; not in the XML model. See Section 3.3. 

In comparison, accessing context information is much easier with Sixml DOM. For 

example, the expression comment.markAssociations.item[0] .Context returns the 

context information for the first mark associated with Comment. Also, this informa

tion will be in the XML model, and it can be retrieved just in time from the base layer. 

As with retrieving context information, it is tedious to use DOM to assign a value 

from the context of a mark to some part of a document. For example, the value of the 

attribute excerpt seen in Figure 7.1 should be, at run time, the text excerpt obtained 

from a mark. Using DOM, the developer would need to explicitly retrieve the text ex

cerpt and assign it to the attribute. Sixml DOM automates this task. With Sixml DOM, 

the developer can declaratively specify (in the Sixml document) that the attribute's 

value should be a mark's text excerpt. Section 7.4.3.4 provides the details. 

Navigating bi-level information: With Sixml DOM, a Sixml document can be navi

gated in the nested schema (described in Section 5.2.1), though the document is in the 

normalized schema (described in Section 5.2.2). For example, the Sixml document of 

Figure 7.1 does not include mark descriptors and context information, but those parts 



243 

can be accessed as if they were included (using the mark-association properties 

Decriptor and Context, respectively). DOM cannot provide such access to mark de

scriptors and context information because it treats mark associations as traditional 

elements. 

Enabling bi-level querying: Code expressed against Sixml DOM tends to be similar 

to query expressions we wish to support over bi-level information. For example, the 

mark associations for Comment can be accessed using the XPath [166] expression 

/comment/EMark. Likewise, the context information for the first associated mark is 

accessed using the expression /Comment/EMark [ p o s i t i o n O=0] / C o n t e x t . (Both 

these expressions require knowledge of the mark-association schema. Chapter 9 dis

cusses querying mark associations without this knowledge.) A query processor can 

exploit this similarity to use Sixml DOM to help execute bi-level queries. Using Sixml 

DOM can make the query processor much simpler because Sixml DOM hides the de

tails of retrieving mark descriptors and context information (and it retrieves them just 

in time), and exposes the retrieved information in the XML model. 

In the rest of this chapter, we first provide an overview of DOM and then briefly revi

sit the issue of diversity and multiplicity of mark associations. We then present a de

tailed design of Sixml DOM. We also share the results of an experimental evaluation 

of Sixml DOM, review related work, and present some concluding remarks. 

In this chapter, we refer mainly to the class diagram for Sixml DOM shown in Figure 

7.2. (This diagram is drawn using the syntax for static class diagrams as defined in 



244 

UML, the Unified Modeling Language [159].) The classes shaded gray are defined in 

DOM. Only the DOM classes, methods, and relationships needed to describe Sixml 

DOM are shown. 

A note on terminology: DOM is specified in the Interface Definition Language (IDL) 

[131], a language to describe an API independent of an implementation language. The 

classes in Figure 7.2 are actually defined using the interface construct of IDL, but, for 

simplicity, we represent and refer to the interfaces as classes. In practice, an IDL inter

face can be expressed using the constructs class and interface in languages such as 

Java [71] and C# [148]. 

7.2. Overview of DOM 

DOM is defined in three numbered parts called levels. Level 1 [35] is the most basic 

level. A DOM level consists of one or more modules. A module specifies a narrow set 

of functionality. The module Level I Core [35] defines the core functionality needed 

to create different parts of an XML document; Level 2 Core [36] adds support for 

namespaces; and Level 3 Core [37] adds support for type information (that is, for 

schema information). The module Level 3 Load and Save [38] defines the functionali

ty to parse and serialize XML data, including the classes LSParser and LSSerializer in 

Figure 7.2. Level 1 Core defines the other shaded classes in this figure. 



C
la

ss
es

 in
 g

ra
y 

an
d 

th
e 

re
la

tio
ns

hi
ps

 a
m

on
g 

th
os

e 
cla

ss
es

 a
re

 d
ef

in
ed

 in
 D

O
M

. 
1

\ 
O

nly
 th

e 
DO

M
 c

la
ss

es
 a

nd
 re

la
tio

ns
hi

ps
 n

ee
de

d 
to

 d
es

cr
ib

e 
S

ixm
l D

O
M

 a
re

 s
ho

w
n.

 
C

la
ss

es
 fi

lle
d 

w
ith

 d
as

he
d 

lin
es

 a
re

 in
clu

de
d 

fo
r i

llu
st

ra
tio

n 
on

ly.
 

Si
xm

lP
ar

se
r 

sc
op

e 
J 

[>
 

LS
Pa

rs
er

 

Pe
rs

is
te

nt
R

ep
os

ito
ry

 

£ 
D

oc
um

en
t 

£ 

z£
z 

cr
ea

te
E

le
m

en
t(in

 ta
gN

am
e)

 
ge

tE
le

m
en

ts
By

Ta
gN

am
e(

in
 ta

gN
am

e)
 

M
ar

kR
ep

o
si

to
ry

 

ge
tM

ar
kp

n 
id

, i
n 

de
sc

rip
to

r)
 

T
 K

r 

ow
ne

rD
oc

um
en

t 

do
cu

m
en

tE
le

m
en

t 

Si
xm

lD
oc

um
en

t 

ge
tM

ar
k(

in
 id

, i
n 

de
sc

rip
to

r)
 

cr
ea

te
M

ar
kA

ss
oc

ia
tio

np
n 

na
m

e,
 in

 m
ar

kld
, i

n 
de

sc
rip

to
r)

 
cr

ea
te

M
ar

kD
es

cr
ip

to
r(i

n 
ty

pe
) 

± E
le

m
en

t 

M
ar

kF
ac

to
ry

 

de
sc

rip
to

rT
yp

e 

cr
ea

te
M

ar
k(

in
 id

, i
n 

de
sc

rip
to

r)
 

Fi
llM

ar
kD

es
cr

ip
to

rfi
n 

ra
w

D
es

cr
ip

to
r, 

in
ou

t d
es

cr
ip

to
r)

 

—
zr

 
T

 

M
ar

k 

id
 

te
xt

 

|a
ct

iva
te

()
 

7S
~7

S 

co
nt

ex
t. ^

j 
M

ar
kC

on
te

xt
 

fc
-

[S
PA

R
C

EM
ar

kF
ac

to
ry

 
SP

A
R

C
EM

ar
k 

K
P

oi
nt

ef
M

ar
R

III
to

ry
; 

S
S

if
fl

ff
lc

 

m
ar

k 

I 
at

tri
bu

te
s 

• 
^ 

M
ar

kD
es

cr
ip

to
r 

ty
pe

 7
T

 

M
ar

kA
ss

oc
ia

tio
n

 

na
m

e 
va

lu
eS

ou
rc

e 
va

lu
eE

xp
re

ss
io

n 
va

lu
e £ 

de
sc

rip
to

r 

Si
xm

lE
le

m
en

t 

m
ar

kA
ss

oc
ia

tio
ns

 

ar
ge

t 

1 

JL
 

S
ix

m
lN

o
d

e 

ch
ild

N
od

es
 

Si
xm

lS
er

ia
liz

er
 

_
&

 
N

o
d

e 

na
m

e 
va

lu
e 

£ 
LS

Se
ria

liz
er

 

3T
L 

A
ttr

 7
T

 
C

ha
ra

ct
er

D
at

a 

3E
 

C
om

m
en

t T
V

 

Si
xm

lA
ttr

ib
ut

e 

Te
xt

 
<

} 

Si
xm

lT
ex

t 

ap
pe

nd
M

ar
kA

ss
oc

ia
tio

n(
in

 a
ss

oc
ia

tio
n)

 
ge

tM
ar

kA
ss

oc
ia

tio
ns

By
N

am
e(

in
 n

am
e)

 tt
-

1 

C
D

A
TA

Se
ct

io
n

 

I 
S

L
 £ 

Si
xm

lC
D

A
TA

Se
ct

io
n

 

S
ix

m
lV

al
u

eN
o

d
e 

[is
Va

lu
eF

ro
m

M
ar

ks
l 

Si
xm

lC
om

m
en

t 

El
em

en
t 

N
o

d
e 

\/\
 

Pr
oc

es
si

ng
ln

st
ru

ct
io

n
 <̂

j 
Si

xm
lP

ro
ce

ss
in

gl
ns

tru
ct

io
n

 

F
ig

ur
e 

7.
2:

 A
 c

la
ss

 d
ia

gr
am

 f
or

 S
ix

m
l D

O
M

. T
he

 d
ia

gr
am

 i
s 

al
so

 a
va

il
ab

le
 o

nl
in

e 
[1

17
] 



Table 7.1: Types of DOM nodes 

246 

Node type Has value? Has parent? 

Element No Yes. The document is the parent of document element; otherwise 
another element is the parent 

Attribute 

Text 

CD ATA section 

Comment 

Processing instruction 

Document type 

Notation 

Entity reference 

Entity 

Document 

Document fragment 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

No 

Yes, the parent is always an element, b\ 
its parent 

Yes 

Yes 

Yes 

Yes 

Yes, the parent is always the document 

No 

Yes 

No 

No 

No 

DOM represents an XML document as an ordered tree of nodes. (The order is called 

document order, which is the order in which the nodes are serialized.) It defines 12 

types of nodes (listed in Table 7.1). Features common to most types of nodes are in

cluded in the class Node. This class is specialized for each type of node. Figure 7.2 

shows the specialized classes for six node types: element, attribute, text, CData 

section, comment, and processing instruction (PI). 

Some DOM nodes (for example, an attribute) may have a value. The column 

"Has Value?" in Table 7.1 indicates which node types may have a value. An attribute 

uses an additional text node to represent its value, but the other node types maintain a 

value without using additional nodes. 



247 

Some nodes (for example, an element) may own other nodes, but other nodes (for ex

ample, text) may not. Also, some node types cannot be owned by other nodes. (See the 

column "Has Parent?" in Table 7.1.) 

An element may have attributes, but it does not own its attribute nodes. An attribute 

has a "parent" element, but it is not a child of any element. That is, the collection in

duced by the relationship childNodes (in Figure 7.2) does not include attributes. (This 

relationship between an element and its attributes is contrary to the common expecta

tion that the parent and child relationships are inverses.) 

An XML document is represented by a node called the document node. A document 

node is an instance of the class Document. A DOM node is created in the context of a 

document using special methods called factory methods (one method per node type) 

defined in Document. For example, the method createElement creates an element node. 

Figure 7.3: A simplified DOM tree for a Sixml document. The tree corresponds to the document 
in Figure 7.1. The symbol @ denotes an attribute, quotes denote a text node, and the unlabeled 

node is the document node. Namespace information is omitted for simplicity. A solid line denotes 
a parent-child relationship. A dotted line connects an attribute to its element. 

The classes LSParser and LSSerializer are used to read and write, respectively, a node 

from or to an external source such as a disk file. These classes can also read and write 

a document because DOM represents a document as a node. Reading a document 



248 

builds a tree. Figure 7.3 shows a simplified DOM tree built from document in Figure 

7.1. The unlabeled root node is the document node. The node labeled Comment is the 

document element (that is, the top-level element). TMark, AMark, and EMark represent 

mark-association elements. The value of the attribute excerpt should be the text ex

cerpt from the associated mark, but it is not, because DOM is unaware of the seman

tics of mark associations. 

7.3. Diversity and Multiplicity of Mark Associations 

Section 4.5.2 illustrated how marks may be associated with XML content that can be 

represented in the ER model. However, an SA developer might wish to associate 

marks with content that cannot be represented in that model, or he might model SI di

rectly as XML (without first using a conceptual methodology). 

In this section, we discuss associating marks with different DOM node types, inde

pendent of the ER model. We highlight two key considerations in associating marks, 

and introduce new element types (in addition to the types discussed in Section 4.5.2) 

to represent mark associations. Section 7.4 discusses how a document containing in

stances of these element types is manipulated at run time using Sixml DOM. 

The developments in this section help meet our goal of diversity and multiplicity of 

mark associations (Goal G2 in Section 5.3.1), with respect to the XML model. 

7.3.1. DOM Node Types and Mark Associations 

DOM can be extended such that marks can be associated, at run time, with any of the 

12 DOM node types, but serialization and validation considerations limit the node 



249 

types with which marks may be associated. We now examine these considerations and 

determine the DOM node types with which marks may be associated. 

7.3.1.1. Serialization and Validation Considerations 

DOM is designed to interoperate with the syntax [43] W3C recommends for XML se

rialization. That is, a DOM implementation can read and write a document serialized 

according to this syntax. With Sixml DOM, we wish to maintain this interoperability 

with the W3C serialization syntax. Also, we would like a serialized Sixml document to 

contain markup that is uniform and comprehensible, and be amenable to validation 

using standard schema constructs. The serialized Sixml document shown in Figure 7.1 

satisfies these criteria. 

Encoding a mark association is the main problem in serializing a Sixml document. 

One solution is to develop conventions (for example, use comments with specific 

structure and contents) to encode mark associations, but conventions cannot be vali

dated using standard schema constructs. 

We choose to serialize a mark association as an element for the following reasons: 

• The element construct is defined in both DOM and the serialization syntax. 

• In both DOM and serialized forms, an element can contain most kinds of XML 

content, including another element. 

• When serialized, an element allows the markup for mark associations to be placed 

in close proximity to the data that is associated with marks, thus improving com

prehension. 



250 

• An element may be associated with a type via an XML Schema [170] instance 

document or a document type definition (DTD) [43] and hence validated. For ex

ample, in Figure 7.1, the attribute xshnoNamespaceSchemaLocation [171] asso

ciates a schema with the element Comment. (In XML Schema and in DTD, ele

ments and attributes are the only kind of XML content that may be typed.) 

Serializing a mark association as an element requires that a mark be associated with a 

DOM node only if the node can contain an element, or if an element can contain the 

node. (In this limited context, we treat an attribute node as being contained by an ele

ment node.) We call this requirement the element-containment requirement. 

A serialized mark association must also meet the requirement that a serialized XML 

document be well-formed. A well-formed document [43] begins with the XML decla

ration, followed by (but not necessarily immediately) exactly one document element 

(which is the element that contains all other elements in the document). For example, 

the first line in Figure 7.1 is the XML declaration. Comment is the document element. 

A document that is not well-formed is an ill-formed document. 

7.3.1.2. DOM Node Types Permitted for Mark Association 

We allow marks to be associated with the following six types of DOM nodes: element, 

attribute, text, CData section, comment, and PI. However, we disallow mark associa

tions for a comment, or a PI, if it is not contained by an element, because serializing 

such nodes results in an ill-formed document. 



251 

A note about comment nodes: An XML comment is quite different from its program-

ming-language counterpart. A comment in a program typically has no run-time repre

sentation, but an XML comment does. Also, XML comments may be selected and 

constructed using queries. We see several situations where an XML comment can 

benefit from mark associations. For example, a comment in the XML version of an 

API's documentation might reference the API's source, and possibly even obtain 

comment text from the source. (Both C# [23] and Java [72] promote API documenta

tion in XML format.) 

We allow any number of marks with nodes of the aforementioned six types. A devel

oper may use a schema to constrain the number of mark associations for a particular 

node. 

We disallow marks to be added to entities, documents, and document fragments, be

cause nodes of these types are just containers for other nodes. (That is, serializing a 

node of any of these types simply serializes its contents.) 

We disallow mark associations for an entity reference because it cannot satisfy the 

element-containment requirement. We also disallow marks with document type and 

notation nodes because their serialization would cause the document to be ill-formed. 

7.3.2. Mark-Association Element Types 

We now provide an overview of the element types to associate marks with the six 

DOM node types with which marks may be associated. Appendix A shows the 



252 

XML-Schema instance document containing the complete definition of the element 

types. That instance document is also available online [119]. 

Section 4.5 introduced the element types EMark, AMark, and TMark to associate marks 

with elements, attributes, and text content, respectively. To recap, an EMark element is 

added as a sub-element of the target element (that is, the element with which the mark 

is associated). An AMark element is included as a sub-element of the element that 

owns the target attribute. A TMark is made a sub-element of the element that owns the 

target text content, and the target text content is wrapped inside the TMark. Figure 7.1 

illustrates the use of these three element types. 

We refer to the element types EMark, AMark, and TMark as uni-mark types because an 

instance of any of these types associates only one mark with its target. In contrast, a 

multi-mark type associates multiple marks with a node. We now introduce some new 

uni-mark and multi-mark types. 

The uni-mark types CDataMark, CMark and PIMark respectively help associate a mark 

with CData section, comment, and PI. As with TMark, an instance of any of these 

types wraps its target. 

The multi-mark element types TMarks, CDataMarks, CMarks, and PIMarks respective

ly associate multiple marks with text, CData section, comment, and PI. An instance of 

any of these types also wraps its target, and it contains one uni-mark instance for each 

mark associated with the target. In this case, a contained uni-mark element does not 

wrap its target because the outer multi-mark element would have already done so. The 



253 

following XML segment shows two marks associated with the text content shown in 

Figure 7.1. 

<sixml:TMarks sixml:type="sixml:TMarks"> 
Contradicts prior work 
<sixml:TMark sixml:type="sixml:TMark" sixml:markID="45"/> 
<sixml:TMark sixml:type="sixml:TMark" sixml:markID="787> 

</sixml:TMarks> 

No multi-mark element types are needed to associate multiple marks with elements 

and attributes. Instead, multiple marks are associated with an element (attribute) simp

ly by using one EMark (AMark) element for each mark to be associated. (A multi-mark 

type is needed for content other than elements and attributes, so that content is not re

peated. For example, using TMarks to associate many marks with the same text con

tent avoids repeating the text for each associated mark.) 

7.4. Design of Sixml DOM 

In this section, we describe the design of Sixml DOM. We discuss how mark associa

tions are associated with DOM nodes at run time, how a serialized Sixml document is 

read for manipulation, and how a Sixml document is serialized when writing. Figure 

7.2 shows a UML class diagram for Sixml DOM. Appendix B shows the complete 

Sixml DOM interface definition. 

7.4.1. Overview 

We first introduce the classes, methods, and properties Sixml DOM defines to support 

mark associations. 



254 

7.4.1.1. Sixml Nodes 

In Sixml DOM, a node with which marks may be associated is called a Sixml node, 

and is represented by the class SixmlNode. A Sixml node that can contain a value is a 

Sixml value node, and is represented by SixmlValueNode, an extension of SixmlNode. 

See the column "Has Value?" in Table 7.1 for a list of node types that may contain a 

value. 

Although we allow marks to be associated with six types of DOM nodes, for simplici

ty, we limit this discussion to elements, attributes, and text nodes. The classes 

SixmlElement, SixmlAttribute, and SixmlText represent these types of nodes, respectively. 

These classes respectively extend the DOM classes Element, Attr, and Text. In addition, 

the class SixmlElement extends the class SixmlNode (because an element cannot have a 

value). The classes SixmlAttribute and SixmlText extend the class SixmlValueNode because 

nodes of these types may have a value. 

The class SixmlDocument extends the DOM class Document. It overrides the DOM fac

tory methods in order to create Sixml nodes instead of creating DOM nodes. For ex

ample, it overrides the method createElement to create an instance of the class 

SixmlElement instead of an instance of the DOM class Element. SixmlDocument does not 

override the factory methods for the types of nodes with which marks cannot be asso

ciated. Consequently, a Sixml document can contain a mixture of regular DOM nodes 

and Sixml nodes. 



255 

7.4.1.2. Mark-Association Nodes 

A mark-association node pairs a Sixml node, called the target node, with a mark and 

assigns a name to the pairing. A Sixml node may be associated with different marks 

using the same name, but a name may be used only once for a node-and-mark pairing. 

A node may be associated with any number of marks, unless the node's schema (if 

any) limits the maximum number of marks that may be associated with the node. 

A mark-association node has no children. It is attached to a target node, but it is not a 

child of its target. (This relationship between a mark association and its target is simi

lar to the relationship between an attribute and its owner element.) Marks may not be 

associated with a mark-association node. 

The class MarkAssociation together with its relationships with SixmlNode and Mark 

represents a mark association. MarkAssociation extends the DOM class Element because 

we represent a mark association as an element. 

A mark-association node is created using the factory method createMarkAssociation in 

the class SixmlDocument. The mark-association node thus created is added to a target 

node using the method appendMarkAssociation defined in SixmlNode. Methods to add a 

mark association at a particular location in the list of mark associations, to replace a 

mark association, and to delete a mark association are also defined. 

The mark-association nodes added to a Sixml node may be accessed via the collection 

induced by the relationship markAssociations. Mark associations with a specific name 

may be retrieved using the method getMarkAssociationsByName. 



256 

7.4.2. Reading a Sixml document 

We now describe how a Sixml DOM tree is created at run time from a serialized 

Sixml document. In this description, we use the term mark-association element to de

note an element that represents a mark association in the serialized form. We use the 

term mark-association node to denote a Sixml DOM node that is created from a mark-

association element. 

7.4.2.1. Creating a Sixml DOM Tree 

Conceptually, a Sixml DOM tree for a Sixml document is created in three steps. First, 

the document is represented as a tree in DOM. This step represents mark associations 

as DOM elements. Second, a mark-association node is created from each mark-

association element and is attached to the appropriate target node. Finally, the nodes 

for the source mark-association elements are deleted from the tree. 

The flow chart in Figure 7.4 outlines the procedure to create a mark-association node 

from a mark-association element of uni-mark type. Figure 7.5 shows the Sixml DOM 

tree generated from the DOM tree in Figure 7.3. A dashed edge connects a mark-

association node with its target node (to clarify that a mark-association node is not a 

child of its target node). Following, the procedure in Figure 7.4, the element EMark is 

replaced by a mark-association node attached to the element Comment. The mark-

association node generated from AMark is attached to the attribute excerpt. The text 

node that was wrapped inside TMark is now a child of Comment and the mark-

association node generated from TMark is attached to the text node. 



257 

The partial value shown in Figure 7.5 for the attribute excerpt is the text excerpt ob

tained from the associated mark. Section 7.4.3.4 describes how the mark's excerpt is 

assigned to the attribute. (Figure 1.4 shows the base region corresponding to the mark 

associated with the attribute. Figure 5.2 shows the descriptor and context information 

for the mark.) 

No Dissociate the first child and make it a 
child of the parent element in self's place 

Target node <— parent 

1 

Target node <— attribute of parent whose name 
is the value of the attribute "target" 

Target node <— new 
child of parent 

I 

Extract attributes of the mark-association element 

Create mark-association node, initialize, and 
append to list of target node's mark associations 

T 
Delete mark-association element 

( Stop ) 

Figure 7.4: Procedure to create a mark-association node from a uni-mark type of mark-
association element 

We now briefly discuss transforming a mark-association element of multi-mark type. 

Such a mark-association element (for example, TMarks) contains the target node (for 

example, text content) and a sequence of uni-mark elements (for example, TMark). 

This case is handled in the same mannner a uni-mark type that wraps its target node is 

handled: The target node is first made a child of the parent element, a mark-



258 

association node is created from each contained uni-mark element, and the generated 

mark-association nodes are attached to the target node. Finally, the multi-mark ele

ment is deleted from the tree. 

Figure 7.5: A simplified Sixml DOM tree for a Sixml document. The tree corresponds to the 
Six ml document in Figure 7.1. A dashed line connects a mark-association node with its target 

node. Other conventions used and the simplifications made are the same as in Figure 7.3 

7.4.2.2. Detecting Mark-Association Elements 

As seen in Section 7.4.2.1, determining which elements represent mark associations 

and determining the type of mark association an element represents are key parts of 

the procedure to transform mark-association elements to mark-association nodes. 

If a schema is associated with the input XML document, the type of an element can be 

examined to determine if the element is a mark-association element and to determine 

the type of node with which it associates marks. For example, an element associated 

with the type AMark from the namespace whose URI is http://schema.sixml.org is an 

element that associates a mark with an attribute. 

There are two impediments to relying on type information to detect mark-association 

elements and determine their types. First, many XML documents (especially those 

http://schema.sixml.org


259 

produced by ad-hoc queries) are not associated with a schema. Second, type informa

tion is supported only in DOM Level 3, but the DOM implementation an SA develop

er (or a user) chooses might not conform to DOM Level 3. 

We propose the following rules to determine if an element represents a mark associa

tion. The prefix sixml is associated with the URI http://schema.sixml.org: 

1. If the DOM implementation conforms to Level 3 and the element has type infor

mation, the element's type determines whether the element represents a mark as

sociation. 

2. If no schema is associated with the element, or if the DOM implementation con

forms only to Level 2, the element represents a mark association if its qualified 

name is the same as the qualified name of a mark-association type. For example, 

an element with the name "sixml:AMark" associates a mark with an attribute. 

3. If neither Rule 1 nor 2 holds, and the DOM implementation conforms only to 

Level 2, the element represents a mark association if the value of its attribute 

sixml :type is the same as the qualified name of a mark-association type. • 

4. If Rules 1-3 do not hold, or if the DOM implementation conforms only to Level 1, 

the element's name (that is, the unqualified name) indicates the type of mark asso

ciation. For example, an element with the name "AMark" associates a mark with an 

attribute. 

http://schema.sixml.org


260 

5. If Rules 1-4 do not hold, or if the element does not conform to the mark-

association type inferred according to Rules 2-4, the element does not represent a 

mark association. 

We recommend associating a schema with each mark-association element. We also 

recommend the use of the attribute sixml:type for mark associations with custom 

names (even if the serialization is produced by a DOM Level 3 implementation and a 

schema is associated with the mark association) so that mark associations can be inter

preted correctly by an implementation that conforms only to DOM Level 2. Following 

either of these recommendations allows the use of mark-association elements with 

custom names. 

The Sixml document in Figure 7.1 complies with our recommendations: It references a 

schema, and it includes the attribute sixml:type with each mark-association element. 

Strictly speaking, even without the schema, the attribute sixml:type is not needed in 

this document, because the mark-association elements do not use custom names. (The 

mark associations would be interpreted correctly according to Rule 2.) 

The Sixml document in Figure 4.26 does not fully comply with our recommendations 

though it references a schema, because it does not use the attribute sixml:type. A 

DOM implementation conforming to Level 3 would correctly interpret the mark asso

ciations in this document (according to Rule 1). However, the custom names would 

prevent an implementation conforming only to Level 2 from correctly interpreting the 



261 

mark associations. (A Level 2 implementation would incorrectly recognize the mark-

association elements as regular XML elements.) 

7.4.3. Managing and Using Marks 

We now provide an overview of managing marks, and accessing mark descriptors and 

context information. 

7.4.3.1. Mark Repositories 

In Section 7.4.1.2, we mentioned the use of the factory method createMarkAssociation in 

the class SixmlDocument to create a mark association. This method consults a mark 

repository, which is a collection of marks, to create marks. A mark repository corres

ponds to the notion of a descriptors repository introduced in Section 3.2.2. 

The class MarkRepository represents a mark repository. The method getMark of this 

class accepts a mark ID and a descriptor, and returns a matching mark from the reposi

tory, creating a new mark if necessary. At least one of the two inputs must be pro

vided. 

The class MarkRepository is abstract. That is, this class is not directly instantiated. Im

plementations of this class may differ in their strategies to store, look up, and create 

marks, but the method getMark in any implementation should exhibit the following be

havior: 

• If a descriptor, but no ID is provided, the method should return a mark with a 

matching descriptor, creating a new mark if no existing mark matches the descrip

tor. 



262 

• If only an ID is provided, the method should return the mark with the specified ID. 

The method should cause an error if no matching mark is found. 

• Whenever a descriptor is provided, the descriptor of the mark returned must match 

the input descriptor. If an ID is also provided, an implementation may choose to 

return a mark with a different ID. (Multiple marks in a repository might have the 

same descriptor.) 

Figure 7.2 includes two example implementations of the class MarkRepository. The 

class TransientRepository implements a main-memory-based collection of marks. The 

marks in this repository last only as long as the instance of the repository does. Also, 

the descriptor for each mark must be present in the input document. 

The class PersistentRepository models a repository that stores IDs and descriptors of 

marks in a persistent storage such as a disk file or a database. A persistent repository 

backed by an efficient look up facility for marks (for example, with the help of a data

base management system) can be useful when working with a large number of marks. 

An instance of the class SixmlDocument is generally associated with one mark reposito

ry, but the instance might perform the repository tasks on its own, instead of employ

ing a concrete implementation of MarkRepository. 

7.4.3.2. Marks 

The abstract class Mark models a reference to base information. A concrete implemen

tation of this class must exist for each kind of mark descriptor. (Section 4.6.3 discusses 

descriptor kinds.) Because the exact instantiation requirements of a mark implementa-



263 

tion cannot be known at design time, marks are created using a mark factory class spe

cific to a descriptor kind. 

The abstract class MarkFactory models a mark factory. A concrete implementation of 

this class must exist for each descriptor kind. The property descriptorType returns the 

kind of descriptor from which a factory can create a mark. 

The mark repository in use by a Sixml document may be associated with one or more 

mark factories. The repository uses a mark factory to create a mark from a mark de

scriptor. It chooses a mark factory by matching the attribute xsi:type (described in 

Section 4.6.3) of the mark descriptor with the property descriptorType of each mark fac

tory. 

In Figure 7.2, the class SPARCEMark denotes a mark created from a SPARCE descrip

tor. SPARCEMarkFactory is the corresponding mark factory. Similarly, XPointerMark and 

XPointerMarkFactory support XPointer pointers [168]. These four classes are not part of 

Sixml DOM, but they are shown for illustration. 

7.4.3.3. Mark Descriptors and Context 

The class MarkDescriptor represents a mark descriptor. A mark descriptor is either in

cluded in the input document (as the element Descriptor), or it is obtained from a re

pository. In either case, navigating the relationship descriptor provides access to a 

mark's descriptor. 



264 

A mark descriptor does not have a parent even though the descriptor might have been 

included in the input document. This constraint allows the same descriptor element to 

be reused when the same mark is used more than once in a document. 

MarkContext represents the top-level element (that is, the element sixmI:Context in 

Figure 5.2) in the context information retrieved from a mark's context. This top-level 

element also does not have a parent, so that it can be reused with different mark asso

ciations that use the same mark. 

The context information corresponding to a mark is retrieved using the context-agent 

implementation that the mark's descriptor indicates. As described in Section 3.3, a 

context agent represents context information as a hierarchical property set. MarkContext 

transforms the hierarchical property set a context agent returns to the XML model so 

that context information can be navigated using the DOM API. 

The property text in the class Mark provides access to the text excerpt retrieved from 

the context of a mark. The method activate displays the referenced base region in its 

original context, as described in Section 3.3.3. 

Our design allows an implementation to retrieve a mark's descriptor (from a mark re

pository) and context information (from the base layer) on demand (that is, only if the 

user navigates to these parts of a mark). The design also allows the implementation to 

cache context information so that the context information for the same mark is not re

peatedly retrieved from the base layer. Our Sixml DOM implementations described in 

Section 7.6.1 implement both these features. 



265 

A bi-level query processor that uses Sixml DOM to (internally) represent a Sixml doc

ument can benefit from on-demand information retrieval and context caching. Chapter 

9 illustrates such a query processor. 

7.4.3.4. Deriving a Node's Value from Mark Context 

A Sixml node may return a value derived from its associated marks, instead of return

ing an explicitly-stored value, as in DOM. The derived value of a node is the concate

nation of the string values obtained from each of its contributing marks. Not every 

mark associated with the node is required to contribute to the node's value. 

The class MarkAssociation defines the properties valueSource, value, and valueExpression 

to determine the value that a mark contributes to the target node's value (that is, sup

plies a part of the node's value): The property valueSource determines whether the 

mark contributes a value. The property value returns the contributed value if the prop

erty valueSource is true; otherwise value returns an empty string. 

The property valueExpression determines the value a mark contributes. If this property 

is empty, the text excerpt retrieved from the mark (using the property text) is contri

buted. If this property is not empty, it should be an XPath expression that selects the 

context elements that contribute the value. The expression is executed with the top-

level element (that is, the element sixml:Context) as the current node. For example, 

the expression Container/section/Heading over the context information included 

in Figure 5.2 contributes the heading of the section that contains the marked region. 

(Section 4.8 also illustrates retrieving context information using path expressions.) 



266 

The properties valueSource and valueExpression of a mark-association node correspond 

to attributes of the same name in a mark-association element. Section 4.5.2 describes 

these attributes. 

The class SixmlValueNode defines the property isValueFromMarks to denote whether a 

node's value is derived from its associated marks. This property is true only if the 

property valueSource is true for any of the mark associations added to the node. Set

ting the property isValueFromMarks of a value node to false (true) automatically sets 

the property valueSource of each of the node's mark associations to false (true). 

The class SixmlValueNode overrides the property value defined in the base DOM class 

Node to account for the property isValueFromMarks. If isValueFromMarks is false, the 

data explicitly stored in the node is returned. Otherwise, a concatenation of the string 

values obtained from each contributing mark is returned. 

7.4.4. Serializing a SixmlDocument 

We now discuss how mark associations in a Sixml document are serialized. (Mark de

scriptors and context information can also be serialized, but we omit those aspects. 

Section 7.3.1.1 discussed the need for serialization and the serialization considera

tions.) 

A Sixml document is serialized using the class SixmlSerializer, because the DOM seria-

lizer (LSSerializer) would serialize only the SI portion of the document. (In Sixml 

DOM, a mark-association node is not a child of its target node.) 



267 

Figure 7.6 shows a pseudo-code procedure to serialize a Sixml element and its child 

nodes and mark associations. Comments placed at the end of selected lines in the pro

cedure show how the different parts of the document element Comment in the tree of 

Figure 7.5 are serialized. 

procedure WriteElement(SixmlElement e) 
write start of element; //<Comment 

write attributes and namespaces; //excerpt="" ...> 

'/•ii:!t!! cat '..h: Id r.cic!:= a:'.;i their rar'x. £is:~oc; 2"_: '"'.;; 
for each child node 

if (child node is a SixmlElement) 

WriteElement (child node); //None in the example 
else if (child node does not have mark associations) 

write child node as in DOM; 
else if (child node has more than one mark association) 

write start of multi-mark-association element (for example TMarks) ; 
write child node as in DOM; 
for each mark associated with child node 

write mark-association element (for example TMark) ; 
write end of multi-mark-association element; 

else 

write start of mark-association element; //<sixml:TMark 

write attributes and namespaces; / sixml:type="sixml:TMark" sixml:markID="45"> 

write the child node as in DOM; //Contradicts... 

write end of mark-association element; //</sixml:TMark> 

• .;Kr.:e ;r-j£jc ^ss^Car Icr ;> ir,r. -.".: r. i.; .;: er; 
for each mark associated with each attribute 
write mark-association element; //<sixml:AMark sixml:type="sixml:AMark" .../> 

for each mark associated with self 
write mark-association element; / <sixml:EMark sixml:type="sixml:EMark" .../> 

write end of element; //</Comment> 

Figure 7.6: Pseudo code to serialize a Sixml element, its contents, and mark associations. End-of-
line comments show how the document element Comment in Figure 7.5 is serialized 

The serialization procedure writes the mark associations for a node in tree order. This 

order is important for a node that derives its value from marks because the value of 

that node is a concatenation of the string values obtained from each contributing mark 

(and string concatenation is not commutative). Also, the procedure first serializes child 

nodes (including their mark associations) of the input element, followed by the mark 

associations of the attributes of the element. Finally, it serializes the mark associations 



268 

for the input element. The ordering of the mark associations for attributes and the con

taining element is not necessary, but it provides determinism. 

7.5. Integration with DOM 

We now briefly discuss the integration of Sixml DOM interfaces with DOM interfac

es. 

Sixml DOM can be integrated with DOM by extending the DOM interfaces through 

inheritance, or by revising the DOM interfaces to include Sixml functionality from the 

ground up. In this section, we present four alternative means of integration: three using 

the extension strategy, one using the revision strategy. 

Alternative 1 is to introduce a new level, Level 4, to DOM. The new level would con

tain two modules. The module Level 4 Core would extend Level 3 Core, and the mod

ule Level 4 Load and Save would extend the module of the same name in Level 3. 

This approach provides a clean separation between DOM and Sixml DOM, but it re

quires an implementation to comply with Level 3 functionality, even though its devel

oper might wish to support only un-typed mark associations. (In general, conformance 

to a DOM Level n requires conformance to Level n—1.) 

Alternative 2 is to add new "Sixml" modules to existing DOM levels. That is, add the 

module Level 1 Sixml to support mark associations with default unqualified names, 

Level 2 Sixml to support mark associations with custom and default qualified names, 

and Level 3 Sixml Load and Save to support reading and writing of Sixml documents. 

(A Level 3 Sixml module would not be needed because typed mark associations are 



269 

handled using existing interfaces defined in Level 3 Core.) This approach does not af

fect existing DOM applications, but it contradicts the apparent DOM convention that 

no module extends an interface defined by another module at the same level. 

Alternative 3 is to add the Sixml interfaces to existing DOM modules. This approach 

allows creation of both DOM nodes and Sixml DOM nodes using the same DOM im

plementation because both DOM and Sixml DOM interfaces would be available si

multaneously. An application navigating a Sixml DOM tree using the DOM interfaces 

would be able to access only SI, but it would be able to access mark associations in the 

same tree using the Sixml interfaces. 

This approach, too, does not affect existing DOM applications, but the simultaneous 

availability of the two sets of interfaces can be occasionally confusing (to developers). 

However, the simultaneous availability of DOM and Sixml DOM interfaces can be 

handy at times, as Section 7.6.3.2 illustrates. 

Alternative 4 is to revise DOM interfaces such that the Sixml functionality is added to 

DOM from the ground up. This approach has the same effect as Alternative 2, but 

without using extensions and without adding new modules. This approach alters some 

of the interfaces in existing DOM modules, and it requires changes to existing DOM 

implementations. Existing applications need not be changed, but they might need to be 

recompiled. 

In Alternatives 1, 2, and 4, Sixml DOM functionality would be available through 

DOM interfaces. For example, the method appendMarkAssociation to add a mark asso-



270 

ciation to a target node would be available in the class Node, and the class SixmlNode 

would cease to exist. 

Our description of Sixml DOM in Section 7.4 corresponds to Alternative 3. Appendix 

B lists the complete IDL definition for this alternative. The IDL definitions for all four 

integration alternatives are available online [117]. We chose Alternative 3 because of 

the ability to use both DOM and Sixml DOM interfaces. We have also implemented 

Alternative 4 to see if it performs better than Alternative 3. 

7.6. Evaluation 

We have evaluated Sixml DOM by implementing the design presented in Section 7.4 

and by running experiments. We have evaluated the Sixml mark-association types and 

Sixml DOM by employing them in different applications. We first describe the Sixml 

DOM implementation and some applications, followed by experimental results. 

7.6.1. Implementation 

We have three implementations of Sixml DOM in C#: two implementations in the ex

tension strategy (Alternative 3 outlined in Section 7.5) and one in the revision strategy 

(Alternative 4 in Section 7.5). The first implementation in the extension strategy is 

based on the DOM implementation in Microsoft's distribution of the .NET Framework 

(.NET) [129]. The other two implementations are based on Mono's distribution (Ver

sion 1.2.5.1) [106] of .NET. 

We refer to our three implementations as Microsoft Extension (MSX), Mono 

Extension (MNX), and Mono Revision (MNR), respectively. We refer to the base 



271 

DOM implementation for MSX as Microsoft Base (MS), and refer to the base of MNX 

and MNR as Mono Base (MN). We have the source code for MN, but not for MS. We 

used the same source code to build MSX and MNX, and adapted much of that source 

code in MNR. 

We had initially implemented only MSX. Its performance overhead (compared to its 

base, MS) was more than what we anticipated. We then implemented MNX and MNR 

to test if the overhead in providing Sixml DOM functionality can be reduced. Section 

7.6.3 compares the performance of the three implementations. 

All three Sixml DOM implementations conform only to DOM Level 2 Core, because 

the base DOM implementations in .NET conform only to Level 2 Core [172]. That is, 

.NET does not implement the classes LSParser and LSSerializer in Figure 7.2, but im

plements all the other shaded classes. We have implemented all the Sixml-specific 

classes (that is, the classes not shaded), except SixmlParser and SixmlSerializer (because 

their respective base classes do not exist). 

Although .NET does not implement the classes LSParser and LSSerializer, it does pro

vide routines to parse and serialize XML data. We have implemented the parsing and 

serialization routines for Sixml data on top of these .NET routines. 

7.6.1.1. Overview 
Each of the three Sixml DOM implementations has the following capabilities: 



272 

• Associate any number of marks with any of the six types of nodes (element, 

attribute, text, CData section, comment, and PI) identified in Section 7.3.1.2, using 

the mark-association element types introduced in Section 7.3.2. 

• Detect mark associations according to Rules 2 through 5 listed in Section 7.4.2.2. 

Rule 1 is not implemented because the base DOM implementation does not sup

port typing. (The base .NET implementation conforms only to Level 2 Core.) 

• Derive a node's value from context information as described in Section 7.4.3.4. 

• Serialize a Sixml document using the deterministic procedure outlined in Section 

7.4.4. Also, a developer may choose the scope of serialization: only SI; SI and 

mark associations; or SI, mark associations, and mark descriptors. 

• Use any mark repository implementation that conforms to the specification in Sec

tion 7.4.3.1. Implementations of a transient and a persistent repository are included 

(in the form of the classes TransientRepository and PersistentRepository shown in 

Figure 7.2). The persistent repository implementation manages marks stored in any 

data source (such as a database created using MS SQL Server 2005 [99]) that 

complies with the OLE DB specification [98]. OLE DB is an object-oriented API 

that presents a row-set interface to data that may or may not be stored in a rela

tional database. 

• Manipulate marks using any concrete implementation of the classes Mark and 

MarkFactory described in Section 7.4.3.2. Implementations for SPARCE descriptors 

and XPointer descriptors are included. (See SPARCEMark, SPARCEMarkFactory, 



273 

XPointerMark, XPointerMarkFactory in Figure 7.2.) Multiple mark implementations 

may be used with the same Sixml document. For example, in Sixml document in 

Figure 7.1, the element TMark might use an XPointer mark descriptor, but AMark 

might use a SPARCE descriptor. (Figure 4.20 shows such descriptors.) Manipulat

ing this document using Sixml DOM would then result in the simultaneous use of 

both the SPARCE and XPointer mark implementations at run time. 

• Retrieve both mark descriptors (from a mark repository) and mark context (from 

the base layer) on demand, without special effort on the part of implementers of 

mark repositories and context agents. Also, mark context is retrieved using the 

bulk accessor component described in Chapter 6. The bulk accessor may be confi

gured (for example, the pooling policy may be altered) independently of any con

crete mark implementation. 

• Share mark descriptors and context information when a mark is used more than 

once in the same document. For example, the elements AMark and EMark in Figure 

7.1 would share both the mark descriptor and context information because the two 

mark associations involve the same mark. 

The following list presents some high-level implementation statistics (as of this writ

ing) to create the MSX and MNX implementations: 

• Number of interfaces: 7 

• Number of classes: 23 



274 

• Number of source files: 17 

• Number of lines of code: 5,771 

• Estimated time spent on implementation: 145 hours 

The following list presents some high-level implementation statistics for the MSR im

plementation: 

• Number of new interfaces: 7 

• Number of new classes: 14 (Sixml code is added to existing DOM classes) 

• Number of new source files: 2 

• Number of source files shared with MSX and MNX: 10 

• Number of lines of code shared with MSX and MNX: 3,838 

• Number of new lines of code: 469 

• Number of changes to base DOM implementation to add Sixml capability: 57 

• Estimated time spent on implementation: 75 hours 

7.6.1.2. Experience 

We now share our experience dealing with some design and implementation issues 

related to creating mark associations. These issues are due to constraints on creation of 

nodes in DOM. 

A DOM implementation may include several classes that implement a node type (such 

as element), but a factory method (for example, createElement) to create a node can use 



275 

only the node's name (that is, the local name in DOM Level 1; the combination of the 

local name and the namespace URI in other levels) to choose the instantiated class. 

For example, the factory method createElement in Sixml DOM instantiates the class 

MarkDescriptor when an element's local name is "Descriptor" and the namespace URI 

denotes Sixml, but instantiates the class Sixml Element in other cases. This choice al

lows strong typing of mark descriptors. 

The constraint that only a node's name be used to determine the node's class prevents 

us from making a mark association an instance of the class MarkAssociation, because 

we allow custom names for mark associations, as reflected in the rules listed in Sec

tion 7.4.2.2. For example, Rule 3 permits a mark-association element of any name, and 

allows the element's attribute sixml:type to convey the type of the association. How

ever, an element's attribute is created after the element is created. Thus, the method 

createElement is forced to make a mark association an instance of the SixmlElement, 

causing loss of type-checking benefits for mark associations. 

We remedy this situation with a combination of type casts and run-time checks. We 

define an interface IMarkAssociation that defines the functionality specific to mark asso

ciations, and implement this interface explicitly in the class SixmlElement. In C#, an 

explicitly implemented interface allows a class to implement many methods with the 

same signature, but identify each implementation with a different interface [23]. The 

actual method invoked depends on the compile-time type of the calling instance 

(which is different from polymorphism, where the method invoked depends on the 



276 

run-time type of the calling instance; with polymorphism, a class cannot define two 

methods with the same signature). For example, SixmlElement has two implementations 

of the property childNodes. One implementation is identified with SixmlElement and re

turns a (possibly empty) list of child nodes. The other implementation is identified 

with IMarkAssociation and always returns an empty list, because a mark association has 

no child nodes. 

A disadvantage of using explicit interface implementation to work around the afore

mentioned problem is that any instance of SixmlElement can be cast as IMarkAssociation. 

So, to prevent misuse of IMarkAssociation, we check at run time if a method invoked is 

appropriate for the instance's role. For example, we disallow appending a child node 

to an element that represents a mark association, and bar retrieval of context informa

tion from an element that is not a mark association. 

The explicit use of the interface IMarkAssociation provides strong type checking for 

mark associations, and the run-time checks provide operational consistency. However, 

depending on the access pattern, the run-time checks can introduce non-trivial run

time overhead. 

The node-creation constraint also affects the attributes and child nodes of mark associ

ations and mark descriptors because a DOM node is created independently of its use 

context (and then added to another node). For example, it should not be possible to 

associate marks with an attribute of a mark association, but the method createAttribute 

is forced to always instantiate the class SixmlAttribute, allowing mark associations to be 



277 

added to an attribute of a mark association or a descriptor. We work around this prob

lem using run-time checks, and by lazily building the data structures that hold mark 

associations, but certain memory and processing-time overheads are unavoidable. 

7.6.2. Applications 

We have created a general-purpose tool that can use any of our three Sixml DOM im

plementations to browse and edit arbitrary Sixml documents. Figure 7.7 shows the 

Sixml document of Figure 7.1 being viewed using the tool. The tree on the left shows 

the name of the document element Comment and its text child. (DOM [35] fixes the 

string #text as the name of any text node.) The top pane on the right lists the attributes 

and the namespaces of Comment. The attribute excerpt is selected and its lone mark 

association is listed in the bottom pane. The partial data shown for the value of the 

attribute and the excerpt retrieved from the associated mark are the same because the 

attribute's value is set to be the mark's text excerpt. 

BSESBSBBBmm 
r * ?.ai - V * T • H i i u i TJMS »ft>;i 

Value 

provr fe appscatsons and m^MVihi-.m 
Namespace LfRI 

xsi:no?iamespaceScheFnaLocation http://schema.stxmt.org/exaniptes/sjsrs.xsd ht tp : / /www.w3.org/2ra i /XMLSchema- i rcstance 
xmlns:xsi h t tp : / /www.w3.org /2Gai /XMtSchen ia- ins tance h t tp : / /www.w3.Org/2000/xn# is / 
xmlns:sixml ht tp: / /schema.sixml.org h t tp : / /www.w3.o rg /2000 /xu ins / 

Name : Description __. _ _ _ i^^^!^&^:,,,,,,-,„,.,-,,,,,,,.,,,, 
sixmt:AMark Page 3 in r ide-dom-f inaLpdf (Acrobat PDF) provide applications and users w i th the benefits o f a database 

Figure 7.7: The Sixml Browser and Editor. The Sixml document of Figure 7.1 is shown 

We have used Sixml in four SAs: Sidepad (introduced in Section 1.2.1), SuperMix 

(Section 1.2.2), the Superimposed Scholarly Review System (SISRS, Section 4.9.3), 

http://schema.stxmt.org/exaniptes/sjsrs.xsd
http://www.w3.org/2rai/XMLSchema-ircstance
http://www.w3.org/2Gai/XMtSchenia-instance
http://www.w3.Org/2000/xn%23is/
http://schema.sixml.org
http://www.w3.org/2000/xuins/


278 

and the Superimposed System Information Browser (SSIB, Section 4.2). Sidepad 

represents its data in a proprietary format, but also exposes its data in Sixml format to 

support transformation and other activities. SuperMix, SISRS, and SSIB represent 

their data as Sixml documents. Each of these four applications is able to use any of our 

Sixml DOM implementations (because all three implementations present the same in

terface). 

We have used Sixml to specify data mash-ups. A data mash-up is a document that 

contains information drawn from different sources [120]. (A data mash-up is different 

from a mash-up application that retrieves information from different sources. A mash-

up application might produce a data mash-up.) For example, a document that describes 

comments over different documents, with each comment modeled as the Comment 

structure in Figure 7.1, would be a data mash-up, because the value of the attribute 

excerpt could be drawn from different documents for different comments. The Sixml 

document in Figure 4.26 and the output of the bi-level query in Figure 4.27 are also 

data mash-ups. (Section 11.2.1 discusses data mash-ups in detail.) 

We have used Sixml DOM to manipulate and automatically reconstitute (that is, ex

tract constituent parts from different sources) data mash-ups specified using Sixml. 

For example, Figure 7.7 (and Figure 7.5) shows the value of the attribute excerpt re

constituted according to the specification in Figure 7.1. A tool called Mash-o-matic 

[115] uses Sixml, Sixml DOM, and our bi-level query processor to respectively speci

fy, reconstitute, and format map-based mash-ups. 



279 

Finally, we have used Sixml DOM to provide a run-time representation of Sixml doc

uments to support bi-level querying. Chapter 9 illustrates this use. 

7.6.3. Experiments 

We now present the results of experiments on the three Sixml DOM implementations. 

For these experiments, all C# code was compiled using Microsoft Visual Studio 2005 

[102]. The experiments were run in Microsoft's distribution of the .NET Common 

Language Runtime (Version 2.0) [128] on an Intel Core Duo 1.66 GHz processor [65] 

with 1 GB of main memory. The operating system was Microsoft Windows XP (Ser

vice Pack 2) [104]. 

We present the results of experiments that demonstrate the scalability of the Sixml 

DOM implementations and the savings possible by using Sixml DOM (compared to 

DOM) when retrieving mark associations and SI. We ran each experiment three times 

and report here the average results. 

7.6.3.1. Overview of the Datasets 

Table 7.2 lists the Sixml documents used in the evaluation. The documents are gener

ated by the applications SISRS and SSIB, and are based on the schemas presented in 

Section 4.9. The number at the end of each document's name (in the first column) is 

the size scale factor. For example, the document SISRS-2 has twice the number of 

mark associations as SISRS-1; SSIB-8 has eight times the number of mark associa

tions as SSIB-1. The documents SISRS-8 and SSIB-8 correspond to the datasets used 

to evaluate the bulk accessor (as described in Sections 6.4.2.3 and 6.4.2.4). 



280 

Table 7.2: Sixml documents used in the experiments to measure performance when retrieving 
mark associations and SI. The columns EMark, AMark, and TMark show a breakdown of the 
number of mark associations by mark-association type 

Number of mark associations 

SISRS-1 

SISRS-2 

SISRS-4 

SISRS-8 

SSIB-1 

SSIB-2 

SSIB-4 

SSIB-8 

206 

414 

833 

1593 

3,243 

6,486 

12,987 

26,107 

53 

106 

213 

1,908 

3,816 

7,668 

53 

106 

213 

Document File size (KB) Number of base documents EMark AMark TMark Total 

0 1,961 

0 3,922 

0 7,881 

426 15,336 426 0 15,762 

18 0 25,922 12,961 38,883 

18 0 51,850 25,925 77,775 

18 0 103,710 51,855 155,565 

18 0 207,426 103,713 311,139 

The third column in Table 7.2 lists the number of base documents each Sixml docu

ment references. The SISRS documents reference PDF fragments (as described in Sec

tion 6.4.2.3), whereas the SSIB documents reference cells in MS Excel spreadsheets 

(as outlined in Section 6.4.2.4). For the SSIB dataset, we used only event information 

because we did not have error reports and update history for all computers. Using only 

event information ensured that the number of mark associations and SI scale up un

iformly, and that the performance comparisons would be fair. 

Table 7.2 also shows the breakdown of the number of mark associations by mark-

association type, for each document. The SISRS documents use only mark associa

tions of type EMark and AMark. That is, these documents do not contain TMark ele

ments of the type shown in Figure 7.1. The SSIB documents use AMark and TMark 

elements, but no EMark elements. This variety allows us to test how the different types 

of mark associations affect performance. 



281 

7.6.3.2. Ease of Accessing Mark Associations and SI 

We first compare the effort to access mark associations and SI using DOM to the ef

fort to access the same information using Sixml DOM. 

Figure 7.8 shows pseudo-code procedures, based on node type, to retrieve mark asso

ciations for a target node in a Sixml document using DOM. Each procedure retrieves a 

list of nodes from an appropriate containing element and tests if each node in the list 

represents a mark association. For example, the procedure to discover the mark asso

ciations for an element tests the element's child nodes. The procedure to find the mark 

associations for an attribute tests the child nodes of the attribute's owner element. 

A C# implementation (available online [117]) of the procedures to retrieve mark asso

ciations using DOM contains about 382 lines. In contrast, with Sixml DOM, mark as

sociations are retrieved simply by using the property markAssociations on the target 

node. The procedure sixmiDOMGetMarkAssociations in Figure 7.9 illustrates the use 

of this property. 

We do not show the procedures to retrieve SI using DOM because they are too long. 

For example, using DOM, about 355 lines of C# code (available online) are needed to 

access only the following five types of SI nodes (related to a target node): parent node, 

first child, last child, next sibling, and previous sibling. (A node may have up to 19 

related SI nodes.) 



282 

const string sixmlNSURI = "http://schema.sixml.org"; 

procedure DOMGetMarkAssociations_AnyNode(Node target) 

switch(target.nodeType) 
case ELEMENT_NODE: DOMGetMarkAssociations_Element((Element)target) ; 
case ATTRIBUTE_NODE: DOMGetMarkAssociations_Attribute((Attr) target) ; 
case TEXT_NODE: DOMGetMarkAssociations_Other(target, "TMark"); 
case CDATA_SECTION_NODE: DOMGetMarkAssociations_Other(target, "CDataMark"); 
//similarly handle nodes of type COMMENT_NODE and PROCESSING_INSTRUCTION_NODE 

procedure DOMGetMarkAssociations_Element(Element e) 
for each node c in e.childNodes //mark associations are sub-elements 

if(c.nodeType == ELEMENT_NODE) 
if(IsMarkAssociation((Element)c, "EMark")) 

print(c.nodeName); lie is a mark association for e 

procedure DOMGetMarkAssociations_Attribute(Attr a) 
for each node c in a.ownerElement.childNodes //owner element has mark associations 
if(c.nodeType == ELEMENT_NODE) 
Element m = (Element)c; 
if(IsMarkAssociation(m, "AMark")) SS 

m.getAttributeNS(sixmlNSURI, "target") == a.nodeName) 
print(m.nodeName); //m is a mark association for a 

procedure DOMGetMarkAssociations_Other(Node n, string typeName) 
if(n.parentNode != null) 

if(n.parentNode.nodeType == ELEMENT_NODE)//parent is or has mark associations 
Element p = (Element)n.parentNode; 
if(IsMarkAssociation(p, typeName)) //typeName is "TMark", "CDataMark", etc. 
print(p.nodeName); //p is a uni-mark association for n 

else if(IsMarkAssociation(p, typeName+"s")) //"TMarks", "CDataMarks", etc. 
for each node c in p.childNodes lip is a multi-mark association 

if(c.nodeType == ELEMENT_NODE) 
if(IsMarkAssociation((Element)c, typeName)) 
print(c.nodeName); lie is a mark association for n 

//helper function to determine if an element represents a mark association 
procedure IsMarkAssociation(Element e, string sExpectedLName) 
if (e.namespaceURI == sixmlNSURI && e.localName == sExpectedLName) 

//the element's QName denotes a mark association: Rule 2, Section 7.4.2.2 
return true; 

else //test if the attribute sixmhtype indicates a mark association: Rule 3 
string qName = e.getAttributeNS(sixmlNSURI, "type"); 
//skipped: parse qName and place constituent parts in variables prefix and IName 
return (e.lookupNamespaceURI(prefix) == sixmlNSURI && IName == sExpectedLName); 

Figure 7.8: Procedures to get mark associations of a target node using DOM. Some code is omit
ted for brevity 

procedure SixmlDOMGetMarkAssociations(SixmlNode target) 
for each mark association m in target.markAssociations 
print(m.nodeName); //m is a mark association for target 

procedure SixmlDOMGetSI(Node target) //use only DOM to access SI 
if (target.parentNode != null) print(target.parentNode.nodeName); 
for each node c in target.childNodes print(c.nodeName); 
if (target.nodeType == ELEMENT_NODE) //print attributes 

for each attr a in target.attributes print(a.nodeName); 

Figure 7.9: Procedures to get mark associations and SI using Sixml DOM 

http://schema.sixml.org


283 

In contrast, Sixml DOM allows SI to be retrieved using just the DOM interfaces. For 

example, the DOM-defined properties parentNode and chiidNodes return the parent 

node and list of child nodes, respectively. The procedure sixmiDOMGetsi in Figure 7.9 

illustrates the use of the DOM interface to retrieve SI. 

A drawback when using DOM to manipulate a Sixml document is that the mark-

association elements are repeatedly distinguished from other elements. In contrast, 

Sixml DOM distinguishes each mark association only once. Also, it performs the tests 

needed to distinguish mark associations lazily so that any performance penalty is in

curred only when the mark associations contained in an element need to be distin

guished from other elements. 

7.6.3.3. Scalability 

We now show how the run-time performance of the three Sixml DOM implementa

tions scales up with the number of mark associations and SI. In this experiment, we 

traversed each Sixml document depth-first and retrieved the mark associations of each 

SI node in the document using the property markAssociations (as in Figure 7.9). We 

then computed a speed scale factor for each document in a dataset as the ratio of the 

time to traverse mark associations in the document to the time to traverse mark associ

ations in the first document in its set (that is, in the documents SISRS-1 and 

SSIB-1). Similarly, we also computed the speed scale factor to retrieve only the SI 

portion of each document using the property chiidNodes as in Figure 7.9. 



284 

Table 7.3 shows the time (in milliseconds) to complete 20 depth-first traversals of 

each Sixml document to retrieve all mark associations and SI (separately), in each of 

the three Sixml DOM implementations. The speed scale factor for each document is 

shown in parentheses. For example, using MSX, accessing all mark associations in the 

document SISRS-2 takes 2.3 times the time it takes for SISRS-1, but the same activity 

takes 2.1 times the time using MNR. (SISRS-2 has twice the number of mark associa

tions SISRS-1 has.) By definition, the speed scale factor for the first document in each 

dataset is 1. 

Table 7.3: Time (in milliseconds) to retrieve mark associations and SI (separately) over 20 itera
tions using the Sixml DOM implementations. The dashed line separates the documents in the 
SISRS dataset from documents in the SSIB dataset. A number in parentheses shows the speed 
scale factor. The speed scale factor for the first document in each dataset is 1. 

Document 

SISRS-1 

SISRS-2 

SISRS-4 

SISRS-8 

SSIB-1 

SSIB-2 

SSIB-4 

SSIB-8 

Time to access 

MSX 

62.5 

145.8 
(2.3) 

338.5 
(5.4) 

625.0 
(10.0) 

1,463.5 

2,901.0 
(2.0) 

6,057.3 
(4.1) 

11,828.1 
(8.1) 

i mark associations (ms) 

MNX MNR 

93.8 

218.8 
(2.3) 

442.7 
(4.7) 

953.1 
(10.2) 

1,807.3 

3,890.6 
(2.2) 

7,828.1 
(4.3) 

15,526.0 
(8.6) 

78.1 

166.7 
(2.1) 

364.6 
(4.7) 

765.6 
(9.8) 

1,708.3 

3,479.1 
(2.0) 

6,906.3 
(4.0) 

13,890.6 
(8.1) 

Time to 

MSX 

57.3 

125.0 
(2.2) 

286.5 
(5.0) 

572.9 
(10.0) 

1,442.7 

2,932.3 
(2.0) 

5,963.5 
(4.1) 

11,963.5 
(8.4) 

access SI (ms) 

MNX 

78.1 

171.9 
(2.2) 

416.7 
(5.3) 

875.0 
(11.2) 

1,911.5 

3,906.3 
(2.0) 

8,041.7 
(4.2) 

16,656.3 
(8.7) 

MNR 

72.9 

156.2 
(2.1) 

359.4 
(4.9) 

718.8 
(9.9) 

1,739.6 

3,500.0 
(2.0) 

7,203.1 
(4.1) 

14,828.1 
(8.4) 

Table 7.3 shows that, for all documents, MSX provides the fastest response, and MNX 

has the slowest response. MSX is faster because its base, MS, is faster than MN, the 

base of MNX and MNR [74]. MNR is faster than MNX because it does not have the 



285 

inheritance overheads of MNX, and Sixml DOM capability is added at the most op

timal location within the base implementation. 

The speed scale factor for MNR is always lower than or equal to that of MSX, though 

MSX has the better absolute speed. That is, the performance of MNR scales better 

than that of MSX. 

7.6.3.4. Savings when Traversing Mark Associations 

We now compare the time to retrieve mark associations using DOM (as in Figure 7.8) 

to the time to retrieve the associations using Sixml DOM (as in Figure 7.9). 

In this experiment, we measured the time to retrieve all mark associations in each 

Sixml document using each Sixml DOM implementation and computed the percentage 

time saved in comparison to the corresponding base DOM implementation. That is, we 

compare the performance of MSX to that of MS, and the performance of MNX and 

MNR to that of MN. 

Unless explicitly specified, the savings (overhead) we discuss in the rest of this chap

ter correspond to the savings (overhead) obtained by using a Sixml DOM implementa

tion in comparison to its base DOM implementation. 

Figure 7.10(a) shows the percentage time savings when traversing mark associations 

in the SISRS documents. The figure shows that MNX saves the least, and the savings 

from MNR are comparable to that from MSX. 



286 

s | 6 ° % 1 56% 55% 

O "S 
Q O 

c ° 50% -
5 CO 
.2 co 
(0 £ 
O) (0 
•i E 40% -
3 OJ 
_ C 
1 > O <U 

- i 30% -
(A p o> •-
c c 
> * is -£ 
» S 20% -
a> —. 
E S 
ss O 
0) Q 

? 2 10% -
C T3 
CD ffl 

£ i5 
£ | o% 4— 

>'-5%H 

H 

.8. SISRS-1 

5 1 % 5 1 % 

35% H 
• i ^ H 

^̂ H 
^^^^^^H ^^^^^^^ |̂ 

- ^^^H 
^^^^H 
^^^^^H 
^̂ ^̂ ^̂ J 
^^^^^H 
^^^H 
P^^^^^^^H P̂̂ P̂ P̂ P̂ P̂ H ^ ^ ^ ^ H 
^^^^H 

SISRS-2 

46% 46% 

34% H 

SBRS-4 

50% 51% 

39%H 

SISRS-8 

• MSX 

• MNX 

• MNR 

(a) 

P 

(b) 

Figure 7.10: A comparison of the Sixml DOM implementations when traversing mark associa
tions in the SISRS dataset. (a) Percentage savings due to Sixml DOM, compared to DOM; (b) 
Cumulative sum of time to access all mark associations in the document SISRS-8. The annota

tions call out the iteration at which a Sixml DOM implementation outperforms its base DOM im
plementation 



287 

ii 

fl 
fi 

62% 

60% 

58% 

56% 

54% 

52% 

50% 

48% 

46% 

44% 

SSIB-1 SSIB-2 SSIB-4 SSIB-8 

IMSX 

MNX 

IMNR 

(a) 

10 11 12 13 14 15 16 17 18 19 20 
iterations 

(b) 

Figure 7.11: A comparison of the Sixml DOM implementations when traversing mark associa
tions in the SSIB dataset. (a) Percentage savings due to Sixml DOM, compared to DOM; (b) Cu

mulative sum of time to access all mark associations in the document SSIB-8. 



288 

Figure 7.10(b) shows the cumulative sum of the access time for the document 

SISRS-8 as the 20 iterations progress. MNR outperforms MN from the first iteration. 

MSX and MNX initially consume more time than their respective base implementa

tions, but MSX outperforms MS after the first iteration, and MNX bests MN after two 

iterations. In general, a Sixml DOM implementation consumes more time initially be

cause it extracts mark-association elements from their original location and inserts 

them under appropriate target nodes (as depicted in Figure 7.4). When using DOM, no 

changes are made to the tree, and an element's mark-association type is tested each 

time the element is visited (as illustrated in Figure 7.8). 

Figure 7.11 compares the performance of the Sixml DOM implementations with DOM 

for the SSIB dataset. The performance for this dataset is similar to that for SISRS, but 

each Sixml DOM implementation needs more iterations (than needed for SISRS doc

uments) to outperform its respective base DOM implementation. For example, Figure 

7.11(b) shows that MNR outperforms MN only in the second iteration. This behavior 

is largely due to the presence of mark associations of type TMark, because the target 

text node that is initially represented as a child of a TMark is made a child of the parent 

of the mark-association element as described in Figure 7.4. (Compare the positions of 

the target text node in Figures 7.3 and 7.5.) Making this change consumes a non-trivial 

amount of time. 



289 

7.6.3.5. Savings when Traversing SI 

We now discuss the percentage time savings and overhead (as applicable) when tra

versing SI using Sixml DOM. For simplicity, we depict overhead as negative savings. 

Figure 7.12(a) shows the percentage time savings for the SISRS dataset. In all cases, 

the savings decline as the amount of SI increases. MSX has overhead for the docu

ments SISRS-4 and SISRS-8. MNX has overhead for only SISRS-8, but MNR pro

vides savings in all cases. The reduction in savings from the first document to the 

fourth document is 23-24 percentage points for both MSX and MNX, but the reduc

tion is only 10 percentage points for MNR. That is, as in the case of mark associations, 

MNR scales better. 

Figure 7.12(b) shows the cumulative sum of the access times for the document 

SISRS-8 as the iterations progress. It shows that MNR outperforms MN after the sixth 

iteration. It also shows that MSX and MNX are on a converging course with their re

spective base implementations. However, the relatively large number of iterations 

needed for convergence might make MSX and MNX unsuitable for traversing SI in 

some applications. 

Figure 7.13(a) compares the performance of the Sixml DOM implementations with 

DOM for the SSIB dataset. As with the SISRS dataset, MNR provides the best per

formance, but the overall performance is contrary to that seen for SISRS. This change 

is again due to the presence of mark associations of type TMark: Whereas a TMark 

element hurts the performance of Sixml DOM when traversing mark associations, it 



290 

hurts DOM when traversing SI because the target text node wrapped inside the TMark 

element is repeatedly unwrapped when using DOM (as outlined in Section 7.6.3.2). 

Thus, Sixml DOM performs better than DOM as the number of TMark elements in

creases. 

Figure 7.13(b) shows the cumulative sum of the access time for the document SSIB-8 

as the iterations progress. It shows that MNR outperforms MN after 12 iterations. It 

also shows that MSX and MNX are on a converging course with their respective base 

implementations. 

Figures 7.12 and 7.13 show that the savings when accessing SI using Sixml DOM is 

less than that obtained for mark associations. This difference is partly due to the over

heads we called out in Section 7.6.1.2, and in the case of MSX and MNX, it is also 

due to inheritance overheads. For example, when the property chiidNodes is invoked 

to retrieve SI children as shown in Figure 7.9, the base DOM implementation of this 

property is also invoked (after performing a few checks). This overhead is not incurred 

when accessing mark associations. The inheritance overhead is not incurred in MNR 

when retrieving SI, because the base DOM implementation is directly altered. 



291 

s o Q 

1 
X _ 
55 to 
c c 

• » ' > 

= •£ 
i £ 

ad
fr

 
he

n 

o 9 
1 = 
18 
D) O 
C _ • c •D 
% £ in a 
a °r 

ag
e 

tim
 

(c
or

r 

*-c a I 0 . 

25% -, 

20% -

15% -

10% -

5% -

0% -

-5% -

-10% -

22% 

17%H 
15%^^^H 

H • • • 

SISRS-1 

21% 

1 • 
13%H 

H • • 
_ | 

SISRS-2 

17% 
_ 
^H 
^ | • 1 

4%H 

H 
^^^^^^H 1 1 

1 1 
-2% 

SISRS-4 

12% 

• 
1 1 

J 
-7% 

-8% 

SISRS-8 

eMSX 

• MNX 

• MNR 

(a) 

(b) 

Figure 7.12: A comparison of the Sixml DOM implementations when traversing SI in the SISRS 
dataset. (a) Percentage savings (positive values) and overhead (negative values) due to Sixml 

DOM, compared to DOM; (b) Cumulative sum of time to access all SI in the document SISRS-8. 
The ovals highlight the converging course of MSX and MNX with their respective base DOM im

plementations 



s o • 

in v> 

c c 

II 

it 
<t> E 

IS 
O) O 

1 ' 
re c 
(A (0 

j i 
o o i 

n 
a. 

10% 

5% 

0% 

-5% -

-10% 

-15% 

-20% 

-25% 

-30% 

0% 

T 
-25% 

SSIB-1 

1% r 
-19% 

-25% 
-24% 

IMSX 

IMNX 

IMNR 

SSIB-2 SSIB-4 SSIB-8 

(a) 

Figure 7.13: A comparison of the Sixml DOM implementations when traversing SI in the SSIB 
dataset. (a) Percentage savings (positive values) and overhead (negative values) due to Sixml 

DOM, compared to DOM; (b) Cumulative sum of time to access all SI in the document SSIB-8 



293 

7.6.3.6. Overhead to Traverse Non-Sixml Data 

We also measured the performance of the Sixml DOM implementations when travers

ing non-Sixml documents (that is, XML documents with no mark associations). We 

conducted this experiment to see if Sixml DOM can be used to work with traditional 

XML documents as well. Also, a non-Sixml document is a good proxy for a Sixml 

document with few mark associations. 

We report results for three non-Sixml documents: SIGMOD Record 1999, the XML 

index of issues of ACM SIGMOD Record [5] for the year 1999; XMark, a document 

from the XMark benchmark [143]; and MBench, a document from the Michigan 

benchmark [142]. The salient features of these documents are, respectively: size 484 

KB and tree depth 4; 113.7 MB, depth 8; and 14.7 MB, depth 16. 

Figure 7.14 shows the percentage overhead to traverse the three non-Sixml documents. 

The figure is oriented such that it can be easily compared with Figures 7.12(a) and 

7.13(a). For each document, MNR has the least overhead and MSX has the most over

head. In general, the performance of a Sixml DOM implementation when traversing a 

non-Sixml document is similar to that of accessing SI in a Sixml document. (In fact, 

we use the same code in both cases.) For example, the trends seen in Figure 7.14 are 

similar to the trends seen in Figure 7.12(a) for the SISRS dataset. The trends in Figure 

7.14 are dissimilar from the trends shown in Figure 7.13(a) for SSIB because of the 

absence of elements such as TMark that need to be unwrapped. 



294 

Figure 7.14: Overhead to traverse non-Sixml data using Sixml DOM, compared to DOM 

7.6.3.7. Evaluation Summary 

Using Sixml DOM to access mark associations and SI requires less development effort 

than using DOM to access the same information. Using Sixml DOM saves time when 

accessing mark associations, even for a small number of traversals over the document. 

However, using Sixml DOM to access only SI can have some overhead. Mark associa

tions that wrap their targets (that is, mark associations that are not of type EMark or 

AMark) slow down retrieval of mark associations, but they speed up retrieval of SI. 

The performance characteristics of a Sixml DOM implementation when accessing a 

non-Sixml document are similar to the characteristics seen when accessing SI in a 

Sixml document that does not contain mark associations that wrap their targets. 

It might be better to use DOM to navigate some non-Sixml documents instead of using 

Sixml DOM implemented using the extension strategy. However, a developer is not 

required to exclusively choose DOM or Sixml DOM to work with all documents. In-



295 

stead, he can switch between the two at run time by simply switching the document 

constructor used: doc = new XmlDocument () Or doc = new SixmlDocument ( ) . 

Among the Sixml DOM implementations, MSX has the best absolute performance 

when traversing mark associations, SI, and non-Sixml data because its base, MS, is 

faster than MN. However, MNR scales best and gives the most savings (or has the 

least overhead) relative to its base DOM implementation. MNX generally underper-

forms MNR due to inheritance overheads. 

Both the extension and revision strategies of implementing Sixml DOM have merits. 

A Sixml DOM implementation can be fast (as in MSX) and have low overheads (as in 

MNX and MNR) if the base DOM implementation is fast and the source code for the 

base is available. That is, the speed of MNX and MNR can be improved by improving 

MN. The overheads in MSX can be reduced with compile-time access to the source 

code for MS. Overheads could be further reduced by adding Sixml DOM functionality 

to a DOM implementation from the ground up. 

7.7. Related Work 

In this section, we provide an overview of two systems of embedding links in XML 

documents, and briefly touch upon DOM extensions specially defined for two XML-

based markup languages. 

7.7.1. Embedding Links 
We first review XLink and Active XML, two systems of embedding links in arbitrary 

XML documents. 



296 

7.7.1.1. XLink 

Like Sixml, the XML Linking Language {XLink) [164] also allows embedding of links 

in arbitrary XML documents. A link is to a resource (for example, a document) that 

can be addressed using a URI or an XPointer pointer. A resource may be remote (that 

is, it may reside outside the document in which the link is embedded) or it may be 

local (that is, it can be a part of the linking document). 

An XLink link is expressed using a link element, which is any XML element that em

ploys specific XLink-defined attributes such as xlink:type. (The namespace prefix 

xlink is associated with the URI http://www.w3.org/1999/xlink.) A link may be sim

ple or extended. A simple link connects the link element (a local resource) to a remote 

resource, and is indicated by the value "simple" for xlink:type. For example, the fol

lowing XML fragment links the element Comment with a PDF document. 

<Comment excerpt="" xlink:type="simple" xlink:href="file://c:/ride-dom-final.pdf"/> 

The value of the attribute xlink: href is always the URI of a remote resource. The op

tional fragment-specifier portion of the URI (that is, the part after the # character in 

the URI) may use an XPointer pointer to identify a part of a resource. 

An extended link is indicated by the value "extended" for the attribute xlink:type. It 

links two or more resources. A link element that expresses an extended link uses a 

sub-element called a locator to identify a remote resource, and a sub-element called a 

resource to identify a local resource. A local resource can be the link element itself, or 

http://www.w3.org/1999/xlink
file://c:/ride-dom-final.pdf"/


297 

it can be another element within the current document. A local resource is indicated by 

the value "resource" for xlink:type. 

In addition to specifying the participating resources, an extended link can also specify 

a role for each linked resource and indicate how the resource should be displayed 

when the link is activated. For example, a link can specify that a resource should open 

in a new window. Sixml does not inherently support role and activation specifications, 

but an SA developer is free to introduce attributes and elements in the SI schema to 

support these features. (We do not constrain an SI schema in any way.) 

An XLink locator element (used to identify a remote resource) is comparable to a 

mark association. The attribute xlink:type is comparable to our attribute sixml:type 

because both attributes determine the owner element's function. We also allow a mark 

association's type to be conveyed via a schema, but XLink does not have typed loca

tors. Additionally, the value of the attribute xlink:href (an XLink locator uses to iden

tify a remote resource) is restricted to being a URI or an XPointer. In Sixml, a mark 

descriptor may have arbitrary structure and it may conform to any linking technology. 

See Section 4.6.3. 

Unlike XLink, Sixml does not directly support links from a Sixml document to anoth

er part of the same document. However, a mark descriptor is free to identify any part 

of any document, including the current Sixml document. 



298 

In XLink, a link does not always imply a connection with the link element, whereas in 

Sixml, a mark association is always paired with some part of the linking document. 

However, an SA is free to ignore this pairing and support XLink-like semantics. 

XLink allows a link only with an element in the linking document, but Sixml supports 

links to non-element content as well. Finally, XLink does not support deriving of con

tent (for example, attribute values) from linked resources. 

7.7.1.2. Active XML 

Active XML (AXML) [3] provides a means to describe parts of an XML document 

intensionally using service-call elements that encode calls to web services [161] 

(which provide a means of executing code located on a remote computer). The follow

ing is a hypothetical AXML representation of a part of the information in the element 

Comment in Figure 7.1. (This representation is based on examples in an unpublished 

report [156] on AXML.) 

<Comment xmlns:axml="http://activexml.net"> 
<axml:sc>sixml.org/getExcerpt(<mark ID="23">)</axml:sc> 

</Comment> 

The element axml:sc denotes a service call, and its children elements denote service 

parameters. The URI sixml.org/getExcerpt identifies a hypothetical web service to 

obtain the text excerpt of a mark. At run time, the service-call element is replaced by 

the XML element that the web service returns. For example, the following AXML 

fragment shows a possible result of executing the example service call. Here, the result 

element Excerpt has replaced the service-call element. 

http://activexml.net
http://sixml.org/getExcerpt


299 

<Comment xmlns:axml="http://activexml.net"> 
<Excerpt>provides...</Excerpt> 

</Comment> 

No special DOM is defined to manipulate an AXML document, but a special query 

processor executes service calls, and replaces each service-call element with a result 

element. In contrast, we provide both a DOM and a query processor so that an SA de

veloper can use the tool that is most appropriate to the task at hand. (Section 9.4 com

pares the AXML query processor to our bi-level query processor.) 

An AXML document references programs (in the form of web services), but a Sixml 

document references data. External data (that is, the result of service calls) brought 

into an AXML document is not necessarily related to any part of the document speci

fied extensionally, and it is not possible to distinguish external data from extensional 

data after replacement occurs. In contrast, Sixml makes the division between SI and 

the external data apparent. 

AXML uses a schema-language extension to express the type of the result of a service 

call, because at the schema level, the element axml:sc represents both a service call 

and its run-time result. That is, the schema for axmhsc needs to describe two types, 

but neither XML Schema nor DTD support assigning two types to a single element. In 

contrast, the schema of a Sixml document can be expressed using only the standard 

XML Schema constructs. 

An AXML service-call element can supply the content of an XML element, but unlike 

Sixml, it cannot supply values of parts such as attributes. Thus, the excerpt retrieved 

http://activexml.net


300 

from a commented region is represented as an element in the example AXML frag

ment, not as an attribute as in the Sixml document in Figure 7.1. 

In this chapter, we have not described a means to supply the content of an element in a 

Sixml document, but we do have the designs for a facility to achieve this goal. The 

facility uses the attributes valueSource and valueExpression in a mark association of 

type EMark, similar to the use of these attributes in other mark-association types (as 

described in Section 7.4.3.4). At run time, the part of the context information that the 

path expression in valueExpression selects would be added as the content of the target 

of EMark, in place of EMark. The EMark itself would be moved to the list of mark as

sociations of the target element, as described in Section 7.4.2.1. 

7.7.2. DOM Extensions 

DOM extensions have been defined for Mathematical Markup Language (MathML) 

[39] and Scalable Vector Graphics (SVG) [151], which are markup languages for ma

thematical and graphics information, respectively. Like Sixml, these extensions define 

specialized classes for elements and attributes, but unlike Sixml, their factory methods 

choose a class to instantiate based only on the node's name. For example, in the DOM 

extension for MathML, the factory method createElement instantiates the class 

MathMLMathElement if the element's local name is math and the namespace URI is 

http://www.w3.org/1998/Math/MathML (The element math is the top-level element 

in each MathML document or segment.) 

http://www.w3.org/1998/Math/MathML


301 

In Sixml DOM, a mark-association element can be detected either by its name or by 

its type, and a mark association's type can be assigned without using a schema (but 

using the attribute sixml:type). Because the DOM extensions for MathML and SVG 

rely only on a node's name to determine the node class to instantiate, they are not im

peded by the implementation and performance issues discussed in Section 7.6.1.2. 

7.8. Summary and Conclusions 

In this chapter, we have completed the discussion of Sixml (first introduced in Section 

4.5.2), a representation of SI as XML using only standard XML constructs. Sixml 

provides a means to incorporate marks (that is, links) to heterogeneous information 

fragments in arbitrary XML documents. A mark may be associated with the following 

kinds of XML content: element, attribute, text content, CData section, comment, and 

processing instruction. We have arrived at this list of content kinds, and have chosen 

to represent a mark association as an element, after considering issues such as seriali

zation and validation of mark associations. We have defined different element types 

for each kind of content with which a mark may be associated, using only the con

structs available in XML Schema. 

In this chapter, we have also described Sixml DOM, an extension of DOM to easily 

and efficiently manipulate Sixml data at run time. Using Sixml DOM, an SA develop

er can easily manipulate marks independently of the linking technology the marks em

ploy. He can also access mark associations without regard for the schema used to 

represent them. 



302 

We have defined rules to detect mark associations when a Sixml document is parsed, 

and have provided a deterministic procedure to serialize a Sixml document using only 

the W3C recommended syntax. We have also defined an interface for mark reposito

ries and outlined the expected behavior from a mark repository when a lookup opera

tion is performed. 

We have presented some thoughts on integrating Sixml DOM into DOM, outlined two 

strategies to implement Sixml DOM, and presented three implementations of Sixml 

DOM. We have also presented experimental results showing the savings achieved (or 

overhead incurred) from using Sixml DOM, in comparison to DOM. 

The schema for mark-association elements, the alternative interface definitions for 

Sixml DOM, and the source code for the three Sixml DOM implementations are all 

available online from http://www.sixml.org. 

Both Sixml and Sixml DOM support the normalized and nested representation 

schemes we identified for SI in Section 5.2. Both Sixml and Sixml DOM help us meet 

the goals Gl (Si-Schema independence), G2 (diversity and multiplicity of mark asso

ciations), and G3 (execution efficiency) identified in Section 5.3. In addition, Sixml 

also helps us meet the goal G5 (ease of query expression). Sixml DOM aids G3 by 

lazily retrieving mark descriptors (from a mark repository) and context information 

(from the base layer). For brevity, we omit summarizing how the other goals are aided. 

Sixml and Sixml DOM are useful in a wide range of superimposed applications. We 

have illustrated the use of Sixml (see Section 4.9) and Sixml DOM (see Section 7.6.2) 

http://www.sixml.org


303 

in three SAs: Sidepad, SISRS, and SSIB. Apart from their use in SAs, Sixml and 

Sixml DOM are also useful in declaratively producing data mash-ups, which are doc

uments that contain information obtained from different sources. 

This chapter concludes our discussion on representing and accessing bi-level informa

tion in the XML model. Chapter 9 describes the use of this chapter's developments in 

bi-level query processing. 



8. A Model for Improving Query Expression and Execution 

This chapter introduces the notion of cloaking (that is, temporarily hiding) parts of da

ta from a query processor so that certain classes of queries can be expressed easily and 

executed efficiently. It provides a means to achieve our goals of ease of expression 

(Goal G5 in Section 5.3.1) and efficient execution (G3) for bi-level queries; Sl-only-

query preservation (G6); and compatibility with existing query languages (G7). 

In this chapter, we define a formal model and an architectural reference model for a 

cloaking query processor (that is, a query processor that supports cloaking). The two 

models are independent of applications and data models (such as the relational and 

XML models). We also illustrate the benefits of cloaking in both bi-level-query and 

non-bi-level-query settings. 

Chapter 9 describes a cloaking query processor that applies the models presented in 

this chapter to improve the expression and execution of XML bi-level queries. 

8.1. Introduction 

In this section, we give an informal introduction to cloaking using a tree data model. 

We then illustrate use and benefits of cloaking in both bi-level-query and non-bi-level-

query settings. For simplicity, we limit this discussion to the XML model. 

8.1.1. A Tree Model for Cloaking 

Cloaking can be explained using a simple tree model in which tree nodes and opera

tions have colors. A color is chosen from a color set, and a cloaking scheme assigns 



305 

colors to tree nodes. A tree in which each node is colored using a cloaking scheme is a 

cloaked tree. Several cloaking schemes are possible. 

An operation on a cloaked tree is performed not on the tree, but on a sub-tree called 

the scope of the operation. (We use the term sub-tree in the same sense the term 

sub-graph is used in relation to graphs [28].) This sub-tree is obtained by retaining on

ly the input nodes (and the corresponding edges) that satisfy a given test function, 

which relates the operation's color with a node's color. That is, only the nodes that 

satisfy the test function are revealed to the operation, whereas the other nodes are 

cloaked. 

)<^ Root node 

\<^ Comment 

@excerpt--^•(^) ^ • . © ' ^ EMark 

^ Text content 
AMark-->f^ 

A 
i 

TMark „ „ , 
Scope of a Scope of a 

Input tree White operation Gray operation 
Figure 8.1: A cloaked tree and the scope of two operations over the tree. Colors are assigned from 
the totally ordered set {White, Gray}. Annotations map the nodes to the content of the Sixml doc

ument in Figure 7.1 

A color set, a cloaking scheme, and a test function, all taken together, are called a 

cloaking configuration. Here is an example cloaking configuration: 

• the totally ordered set {White, Gray), where Gray > White; 

• the cloaking scheme in which, for each node n, Color (n) > Color (Porent(n)); and 



306 

• the test function Color(operation) > Color(node). 

In this configuration, only White nodes are revealed to a White operation, but all nodes 

are revealed to a Gray operation. Figure 8.1 illustrates this example. Section 8.1.2 de

scribes the annotations and the node labels used in this figure. 

8.1.2. Application to Bi-level Querying 

In a bi-level-query setting, cloaking can preserve Si-only queries because a Sixml 

document can be represented as a tree, and a query can be seen as an operation on the 

tree. The tree representation is based on the XPath data model [166], which produces a 

tree similar to a Sixml DOM tree. Section 9.1.1.1 introduces the XPath data model. 

Section 9.2.2 discusses a bi-level query processor's representation of a Sixml docu

ment. 

We first discuss cloaking applied to a Sixml document in the normalized schema 

(which includes SI and mark associations, but not mark descriptors or context infor

mation), and then discuss the nested schema (which includes mark descriptors and 

context information). Section 5.2 introduced these schemas. 

The input tree in Figure 8.1 sketches the tree representation of the Sixml document in 

Figure 7.1. An SI node is labeled S, and a mark-association node is labeled A. The an

notations map the nodes to the content of the source Sixml document. The attributes of 

mark-association nodes are excluded for simplicity. 

The example cloaking configuration in Section 8.1.1 can preserve Si-only queries over 

a Sixml document in the normalized schema if the SI nodes are colored White and the 



307 

mark-association nodes are colored Gray. The nodes in the input tree in Figure 8.1 

(and in the Sixml DOM tree of Figure 7.5) are colored in this manner. With this color

ing, a White query would be an Si-only query, but a Gray query would operate over 

the entire document. 

Extending the example color set to {White, Gray, Slate, Black} can distinguish SI-

only queries even over a Sixml document in the nested schema. In addition, the ex

tended color set can distinguish three other classes of queries: queries that involve 

mark associations (for example, count the number of mark associations employed); 

queries that involve mark descriptors (list the base documents referenced); and queries 

that involve context information (get the page number of a commented region). 

With the extended color set, White queries continue to be Si-only queries; Gray que

ries operate only on SI and mark associations; Slate queries operate on SI, mark asso

ciations, and descriptors; and Black queries operate on the entire document. 

The input tree in Figure 8.2 shows the nested schema version of the Sixml document 

in Figure 7.1 as a cloaked tree. The nodes are colored from the totally ordered set 

{White, Gray, Slate, Black). As in Figure 8.1, an SI node is colored White and a mark-

association node is colored Gray. In addition, a mark descriptor is colored Slate, and 

context information is colored Black. Also, a mark descriptor is labeled D, and context 

information is labeled C. For simplicity, the details of mark descriptors and context 

information are omitted. 



308 

Figure 8.2 includes the scope of Slate and Black queries. The scopes of White and 

Gray queries are exactly as in Figure 8.1. 

Scope of a Scope of a 
Input tree Slate operation Black operation 

Figure 8.2: A cloaked tree for a Sixml document in the nested schema and the scope of two classes 
of queries. (Figure 8.1 shows the scope of two other classes of queries.) Colors are assigned from 

the totally ordered set {White, Gray, Slate, Black} 

8.1.3. Non-Bi-level-Query Applications 

Cloaking can be useful in non-bi-level-query settings as well. For example, if different 

versions of a document (such as source code) are represented as an XML document, 

cloaking can limit the version of the document that is exposed to a query. Cloaking 

can also be useful in data privacy and security applications [86]. In the rest of this sec

tion, we introduce the use of cloaking in an application involving spreadsheet data. 

Microsoft Excel [96] (Excel) allows a spreadsheet, or a range of cells in a spreadsheet, 

to be saved as an XML document, but much of the XML document generated relates 

to the presentation of the spreadsheet (for example, the height and color of a cell). 

Figure 8.3 shows a part of the XML data generated for a spreadsheet with just one 

cell. The ellipses indicate content edited for brevity. The portions with gray back

ground indicate presentation markup; the other portions indicate spreadsheet data. For 



309 

example, the element Styles defines different display styles (using elements named 

Style) and the attribute ss:StyleID associates a style with parts of the data. The ele

ments Row and Cell define spreadsheet data. 

<Workbook xmlns="..." xmlns:o="..." xmlns:x 
<Styles> 
<Style ss:ID="Default" ss:Name="Normal"> 
<Style ss:ID="s23">.. .</Style> 
<Style ss: ID="s30"> 
<Alignment ss:Vertical="Top"/> 
<Borders> 

= "..." xmlns:ss="..." xmlns:html=' 

...</Style> 

<Border ss:Position="Left" ss:LineStyle="Continuous" ss:Weight="2"/> 
<Border ss:Position="Right" ss:LineStyle=' 

</Borders> 
<Font ss:FontName="Times New Roman" x 

</Style> 
</Styles> 
<Worksheet ss:Name="Sheet l "> 

Continuous" ss:Weight="2"/> 

Family="Roman" ss :S i ze= " l l " ss 

<Table ss:ExpandedColumnCount="l" ss:ExpandedRowCount="l" ss:StyleID= 
<Column ss:StyleID="s23" ss:AutoFitWidth 
<Rowss:Height="15"> 
<Cell ss:StyleID="s30"> 

="0" ss:Width="91.57> 

<Data ss:Type="String">Arnold Ice Cave</Data> 
</Cell> 

</Row> 
</Table> 

</Worksheet> 
</Workbook> 

..."> 

Color=",*000000"/> 

"s23"> 

Figure 8.3: Partial XML data generated for a single cell in a Microsoft Excel spreadsheet. Frag
ments with clear background represent spreadsheet data. Fragments with gray background indi

cate presentation markup 

In this setting, cloaking presentation markup (such as the element Styles and the 

attribute ss:StyleID) can improve the expression and execution of data-only queries, 

which are queries that read and return only the spreadsheet data. 

The example cloaking configuration in Section 8.1 can cloak presentation markup 

from data-only queries, if the root node and the nodes representing spreadsheet data 

are colored White, and the presentation nodes are colored Gray. A data-only query 

would be colored White, whereas the other queries would be colored Gray. 



310 

8.1.4. Benefits from Cloaking 

For certain classes of queries, cloaking can ease query expression and it can improve 

query-execution performance. We first discuss ease of expression and then discuss 

execution performance. 

Ease of query expression: Cloaking allows the use of lightweight languages such as 

XPath in place of languages such as XQuery and XSLT [176, 177]. For example, con

sider the task of retrieving comments, minus the embedded mark associations, from a 

Sixml document that contains comments using the Comment structure in Figure 7.1. 

Without cloaking, the following XQuery query would be needed to complete this task. 

This query explicitly copies the text content of each Comment element, and explicitly 

leaves out the embedded mark associations. 

<result> { 

for $c in fn:doc("comments.xml")//Comment 

return <Comment>{$c/text()}</Comment> 

} </result> 

Without cloaking, the simple XPath expression //Comment cannot accomplish this 

task, because XPath cannot remove the child nodes of a node it returns. Specifically, 

in this case, XPath cannot remove the mark associations contained in each Comment 

element. However, when mark associations are cloaked, the expression //comment 

would accomplish the task, because only SI would be revealed to the query processor. 

Similarly, with the XML data generated from Excel, when the presentation markup is 

cloaked, the XPath expression / / c e l l returns only spreadsheet cell data, automatical-



311 

ly excluding the presentation attribute ss:StyleID. Achieving the same result without 

cloaking would require the following XQuery query: 

<result> { 

for $c in fn:doc("workbook.xml")//Cell 

return <Cell>{$c/Data}</Cell> 

} </result> 

Query-execution performance: Cloaking can speed up query execution in two ways. 

First, it eliminates the need for languages such as XQuery and XSLT, which always 

construct new result nodes. Using XPath saves execution time because XPath returns 

existing nodes. Second, cloaking can reduce the number of nodes the query processor 

visits, further reducing execution time. For example, without cloaking, when execut

ing the expression //Comment over the input tree in Figure 8.2, the query processor 

examines all elements in the document, including the mark-descriptor and context in

formation. (The descriptor and context information for a mark can have arbitrary 

structure, and retrieving context information from the base layer can consume a large 

amount of time.) In comparison, with cloaking, the query processor examines only 

Comment and the embedded mark-association element. (The mark-association ele

ment is examined, but is not output because it is not SI.) Also, context information 

would not be retrieved from the base layer. 

Similarly, with the Excel-generated XML data, executing the data-only query / / c e l l 

requires the query processor to examine 26 elements without cloaking, but with the 

presentation markup cloaked, the processor needs to examine only eight elements. 

(For brevity, we omit calling out the elements examined in each case.) 



312 

The savings in the example queries (//comment and / / c e l l ) are due to the cloaking 

scheme in use, which allows the child nodes of a node to be skipped if the node is 

cloaked. Our formal model (described in Section 8.2.1) for a cloaking query processor 

does not require this behavior from a cloaking scheme, but we expect this behavior to 

be fairly common in practice. 

Cloaking also has the potential to save memory during query execution because a 

cloaking query processor might be able to avoid allocating memory for cloaked nodes. 

The memory savings can be substantial in a bi-level query setting if the processor ob

tains mark descriptors and context information on demand. Our bi-level query proces

sor implementation exploits this capability. Section 9.3 describes the implementation 

and the savings obtained from using the implementation. 

The aforementioned improvements in query-expression and execution due to cloaking 

make ad hoc querying and data exploration easy, because a developer can use 

unfocused path expressions without incurring the performance penalties normally as

sociated with such expressions. A focusedpath expression is an expression that guides 

the query processor strictly along the path of interest. An unfocused expression does 

not guide the processor in this manner. 

For example, the expression /comments/Comment/text o is focused, whereas the 

expression / / t e x t () is unfocused. The latter expression asks for text nodes anywhere 

in the document, but when mark associations are cloaked, the query processor ex

amines only SI, and returns only the nodes that represent comment text. Section 



313 

9.3.3.5 shows experimental results that highlight the benefit of using unfocused path 

expressions with cloaking. 

8.1.5. Discussion 

We call queries that reveal cloaked information tachyon queries, after beams of hypo

thetical particles called tachyons [44]. Works of science fiction (for example, Star 

Trek [91, 149]) often employ tachyon beams to reveal cloaked objects. In the example 

cloaking configuration of Section 8.1, a Gray query is a tachyon query. 

We have thus far described a means of coloring both data and queries to selectively 

cloak and reveal data, but it is possible to achieve the same result by coloring only da

ta. In this alternative, a query only sees White nodes. A node is colored Gray to cloak 

it; White to reveal it. In science-fiction parlance, this alternative is similar to a universe 

with no tachyon beams. 

Coloring only data is simpler than coloring both data and queries, and it needs only 

two colors, but it requires updates to data depending on query needs. Updates can be 

time consuming, because they may need to examine many nodes (which we wish to 

avoid through cloaking). Also, updates can hinder the execution of multiple simulta

neous queries over the same data. 

We pursue the approach of coloring both data and queries, where multiple simultane

ous queries with different visibilities can be executed over the same data without 

changing the data. The alternative of coloring only data can still be emulated by limit

ing a query's color to the first color in the set of colors used. 



314 

8.2. Modeling a Cloaking Query Processor 

In this section, we present a formal model and an architectural reference model for a 

cloaking query processor. These models help us analyze cloaking independent of data 

models (such as the relational and XML models) and applications. 

We also relate the architectural model to the formal model and show how the formal 

model applies to the relational and XML data models. 

8.2.1. A Formal Model 
We model the data input to a query processor as a forest of trees. We cloak tree nodes 

from queries by coloring nodes and queries. In Section 8.1, we illustrated cloaking by 

assigning one color to each node. In the formal model, we generalize this aspect and 

allow multiple colors per node. However, we limit a query's color to one. 

A node is assigned colors from a color set (which is a non-empty set of colors) accord

ing to a cloaking scheme. A test function determines the nodes revealed to a query 

based on the query's color. 

Our approach to cloaking does not really require colors, but we use them because they 

make it easy to visualize cloaking. Section 8.2.3 discusses this topic further. 

We assume the following domains: 

8: The domain of truth values. B = {true, false}. 

V: The domain of colors. 

C: The domain of color sets. C = {C | C c D}. 



315 

7C The domain of cloaking schemes. 

h): The domain of nodes. 

F The domain of forests. 

F* The domain of colored forests. F, c: F See Definition 8.3. 

Q: The domain of user queries. 

T: The domain of test functions. See Definition 8.6. 

Definition 8.1: A tree T is a tuple (N, E), where TV c Kl is the set of tree nodes, and is 

is the set of edges between the tree nodes. Each node has a structured label. The label 

may include the set of colors associated with the node. 

Definition 8.2: Colors: M —> C is a function that returns the colors assigned to a node. 

The function returns the empty set 0 if no color is associated with the node. A cloak

ing scheme assigns a node's colors from a color set. See Definition 8.4. 

\F\ \F\ 

Definition 8.3: A forest F is a tuple (N, E), where N = | J Nt and E = \^JEt, where \F\ 

is the number of trees in the forest F. N, and Et denote the node set and edge set, re

spectively, of the tth tree in the forest. A forest is colored if Colors(n) ^ 0 V n e N. 

Additionally, the forest is colored^/rom the color set C if Colors(n) c C V n e N. 



316 

Definition 8.4: A cloaking scheme is a function fcWxCxp—»AJ that assigns colors 

from a color set C to a node n in a forest F. Colors(k(n, C, F)) c= C. The nodes n and 

£(«, C, F) can differ only by their colors. 

A cloaking scheme colors each node individually, but within the context of a forest so 

it can examine other nodes and edges in the forest. For example, the example cloaking 

scheme of Section 8.1 colors a node based on the colors of the node's parent. Another 

scheme might assign colors based on the tree to which the node belongs. 

A cloaking scheme might impose certain constraints on the color set and the input for

est. For example, the example scheme of Section 8.1 requires the color set to be totally 

ordered. Another scheme might require the forest to contain a single tree. 

Definition 8.5: The functional Cloak: Fx Kx C —»• fh colors a forest F = (N, E) from 

a color set C according to a cloaking scheme k to produce a colored forest Fk. 

Cloak(F, k, C)=Fk = (Nk, E0, where: 

Nk = {k(n, C,F)\neN} and Ek = {(k(nh C, F), k(n2, C, F)) \ (m, n2) e E} 

Definition 8.6: A test function t: V x C —* & "tests" a color c against a color set C. 

For example, a test function might test if a query's color is one of the colors assigned 

to a node. Though the second input's domain is C, in our use, its value will be a subset 

of the color set used to cloak the input forest. See the following definition. 

Definition 8.7: The functional Reveal: fh x T x V —> fh produces the scope of a 

query, based on query color, from a colored forest. Given a colored forest 



317 

Fk = (Nk Ek) (likely produced by the function Cloak), a test function t, and a query 

color c, the following holds: 

Reveal (Fk, t, c) = Fs = (Ns, Es), where: 

Ns = {n | n e Nk A /fc, Colors(n))} and 

^ = {fay, w^ | fa/. «2J e Ek/\nj e NSAN2 e Ns} 

Because the set of edges Es is equal to Ek restricted to the set of nodes in Ns, we ex

press Es as Ek j NS (read "Ek restricted to Ns"). 

Note that the revealed scope Fs might have more trees than the input colored forest Fk. 

Definition 8.8: A user query q: px hJ -^ 3 is a function that determines if a node n in 

the input forest F is passed to the output of the query processor. 

This function models the actual query the user intends to execute. The function oper

ates on one node at a time, but within the context of a forest so it can examine other 

nodes and edges in the forest. For example, a query might relate nodes in different 

trees. 

A user query might create new nodes in addition to filtering input nodes, but such ad

ditions may be performed after the filtering. 

Definition 8.9: The functional Query: p ^ x Q ^ ^computes the result of a user query 

over a colored forest (likely produced by the functional Reveal). Given a user query q, 

and the scope Fs = (Ns, Es), we have: 



318 

Query(Fs, q) = Fr = (Nr, Er), where Nr = {n \ n e Ns A q(Fs, n)} and Er = Es\ Nr 

The next section explores a possible means of effectively evaluating Query given a 

user query and a colored forest. 

8.2.2. Architectural Reference Model 

In this section, we present an architectural reference model for a cloaking query pro

cessor and relate it to the formal model presented in Section 8.2.1. 

Cloaking scheme (k) Test function (i) 

Input data (F) 
Cloak 

Cloaked data (Fj) 
Reveal Query 

•r • Cloaked data (tk) ' r ' scope (bs) T 
• 

Result (Fr) 

Color set (Q Query color (c) User query (q) 

Figure 8.4: An architectural reference model for a cloaking query processor. Dashed arrows indi
cate data flow. Solid arrows denote parameters of the query-execution process 

Figure 8.4 shows a reference model for a cloaking query processor. The modules 

Cloak, Reveal, and Query correspond respectively to the functionals Cloak, Reveal, and 

Query in the formal model. The symbols in parentheses in Figure 8.4 correspond to 

the symbols used in Section 8.2.1. 

Given an input forest F = (N, E), a cloaking scheme k, a color set C, a test function t, a 

query color c, and a user query q, the reference query processor produces a forest Fr. 

Fr = (Nr, Er) = Query (Reveal (Cloak(F, k, C), t, c), q), where: 

Nr = {k(n, C,F)\neNA t(Colors(c, k(n, C, F))) A q(F, k(n, C, F))} 

Er = {{k(nh C, F), k(n2, C, F)) \ (nh n2) e E A k(nh C, F) e Nr A k(n2, C, F) e Nr} 



319 

The equation for Nr is obtained by expanding the functionals Query, Reveal, and 

Cloak using Definitions 8.9, 8.7, and 8.5, respectively. The equation for Er is crafted 

such that the query processor's output includes all edges in the input forest, provided 

the corresponding nodes are also output. 

The equations for Nr and Er show that a cloaking query processor can execute a query 

without altering input nodes and without explicitly constructing the scope Fs of a user 

query q. (Note that the formula for Nr operates directly on the input entities.) 

The equation for Nr shows two optimization opportunities for a cloaking query proces

sor. First, because the test function and the user query are conjunctive terms, the pro

cessor is free to choose the order in which the terms are evaluated. This choice could 

even be based on cost estimates. Second, the processor might be able to combine the 

test function with the user query, so that the query is executed more efficiently. 

8.2.3. Discussion 

We now briefly discuss the use of color sets in our model, and the applicability of the 

tree model to the relational and XML data models. 

We have thus far used color sets to model cloaking, but our model does not need col

ors. In reality, a "color set" can be any set of values, but the properties of the values 

influence the domain of test functions. For example, if the values are nominal (that is, 

the values can be tested only for equality), a test function would be limited to equality 

tests on individual values. However, the function can apply inequality tests as well if 

the values are ordinal (for example, the totally ordered color set in the example cloak-



320 

ing configuration of Section 8.1). An application can control the color sets used by 

choosing the domains V and C appropriately. 

Our tree model works well in both the relational and XML data models. In the rela

tional model, a relation instance is a tree (of height 2): The relation is the root node, a 

tuple in the relation is a child of the root node, and a field (that is, a column) in a tuple 

is a child of the tuple's node. In the XML model, an XML document is a tree in the 

data models of XPath, XSLT, and XQuery. 

The tree model also works well with relational and XML query languages. In the rela

tional model, an SQL query [92] operates on a set of trees and outputs a single tree. In 

XML, the query languages XPath, XSLT, XQuery, all operate on and produce trees. 

8.3. Representing and Assigning Colors 

Section 8.2.2 has shown that a cloaking query processor can execute a query without 

explicitly assigning colors to input nodes, but, for performance efficiency, it might be 

better to assign colors beforehand. 

In this section, we briefly discuss some alternative means of representing and assign

ing colors to input nodes. Our cloaking model allows multiple colors per node, but, for 

ease of this discussion, we assume a node is assigned a single color. 

An input node's color can be represented at the schema level or at instance level. It 

can be represented extensionally or intensionally. Also, the assignment can be implicit 

or explicit. (Section 8.4.2 reviews data provenance and annotation management sys

tems that use some of these means to represent and assign data similar to colors.) 



321 

Schema-level and instance-level assignments: Assigning color at the schema-level 

makes color a part of a node's type, and all instances of a node type have the same 

color. (This approach obviously requires a schema.) If represented at the instance lev

el, different instances of a node type can have different colors. 

Representing colors at the instance level can pose problems in the relational model 

because an attribute's visibility to a query can vary between rows, and the relational 

model requires the same number of attributes for each row in a (result) relation. This 

difference in the visibility of the attribute between rows would need to be somehow 

reconciled. For example, a query processor can output a NULL value for the attribute in 

a row where the attribute is cloaked (but that value has to be distinguished from a 

NULL value in another row where the attribute is not cloaked). 

Explicit, extensional assignment: Explicitly representing colors at the schema-level 

requires appropriate features in the schema language (and possibly in the data model). 

For example, new constructs need to be added to XML Schema [170] for the XML 

model. Similarly, in the relational model, the syntax of the SQL statements CREATE 

TABLE and ALTER TABLE need to be extended to associate colors with attributes. (Al

ternatively, parallel color metadata might be employed.) 

Extensionally representing colors at the instance-level requires maintaining a "color" 

attribute for each node. The color attribute may be added as regular data or as metada

ta (that is, as secondary data). If color attributes are added as metadata, query languag

es need to provide a means to access metadata, but popular data models (including the 



322 

XML and relational models) and their query languages typically do not natively sup

port the notion of metadata. 

Explicit, intensional assignment: A node's color can be defined explicitly as a func

tion of schema and data. For example, in the XML model, an XPath expression paired 

with a color might be used to assign colors to nodes. The color assignment can be at 

the schema level because XPath allows examination of schema information (for ex

ample, the name of an element). 

In the relational model, an SQL query can be paired with a color to assign a color to 

nodes, but such assignments are possible where the schema is also stored in relations, 

if those relations are revealed. (Most current relational systems store schemas in rela

tions. A query in a language such as SchemaSQL [85] can examine schemas regard

less of how the schema is stored.) 

Implicit assignment: Node colors can be implicitly assigned, instead of users expli

citly assigning them. The assignments can be at the schema level, the instance level, or 

both. For example, a query processor can assign a node's color based on the node's 

name. 

Implicitly assigning colors has the advantage that no additional data is needed to 

represent colors. The disadvantage is that implicit assignment affects all applications 

and queries. 



323 

For XML bi-level query processing, we assign node colors implicitly at the schema-

level, using the 4-color cloaking scheme introduced in Section 8.1 (and illustrated in 

Figure 8.2). Section 9.2.6 provides the details. 

8.4. Related Work 

In this section, we review three systems: a tree model to ease navigation, a data prove

nance system, and an annotation propagation system. None of these systems is de

signed to cloak information from a query processor, but each system has some similar

ity to our approach to cloaking. 

8.4.1. The Multi-colored Tree Model 

The multi-colored tree model (MCT) [70] attempts to avoid update anomalies caused 

by data replication. It also attempts to simplify query expression over shallow trees 

that result from normalization of nested data. Thus, at a high level, MCT addresses 

some of the problems discussed in Section 5.2 in relation to the nested and normalized 

schemas for Sixml data. MCT achieves its goals by extending XQuery's data model 

(XDM) [175] and query language. 

In MCT, each XML document tree has a color. An element can be used in multiple 

document trees, and is implicitly assigned the set of colors formed by collecting the 

color of each tree in which the element is used. Attributes, namespaces, and the non-

element child nodes (such as text nodes) of an element are assigned the same set of 

colors as the element. 



324 

An MCT database is a sequence of colored trees that share the same root node. Figure 

8.5 shows a database with two trees, each tree modeling a Sixml document. The 

shared root node is not shown. Elements P, Q, and R denote SI. The first tree is colored 

white, the second is colored gray. The trees share the mark-association element EMark. 

This element (and its attributes and descendants) is colored both white and gray. It has 

two candidate parents: P in the white tree; Q in the gray tree. It has no preceding sibl

ing in the white tree, but it has one preceding sibling (R) in the gray tree. 

Figure 8.5: An example MCT database, (a) A white tree using a mark-association element; (b) A 
gray tree using the same mark-association element used in the white tree shown in Part (a) 

In MCT, a node can appear only once in a given tree. For example, the element EMark 

associated with the element Q in the tree of Figure 8.5(b) cannot also be associated 

with R in the same tree. A copy of EMark can be associated with R, but doing so also 

creates copies of the child elements Descriptor and Context. This level of copying 

causes redundancy and can lead to update anomalies, defeating one of MCT's goals. 

An MCT database is queried using MCXQuery, an extension of XQuery. MCXQuery 

allows each step in a path expression to choose the tree in which the navigation is ex

ecuted. The tree in which navigation is performed is indicated by including the tree 



325 

color at each step. For example, the expression doc("si") /{white}child: :* selects 

P; the expression doc ("si") /{grayjchiid: :* selects Q. 

The expression doc ("si") /{white}descendant: :EMark selects the shared element 

EMark in the white tree. Changing the color in this expression to gray selects the same 

element, but in the gray tree. In the context of EMark, {white}parent: :* selects P, 

but {gray}parent : :* selects Q. 

Our approach uses existing query languages as they are. A node's color is used to de

termine if a node is visible to a query; not to determine navigation paths. Also, in our 

approach, the entire query has the same color. Thus, all parts of the query operate over 

the same scope. 

As discussed in Section 8.1.4, an XQuery constructor always returns a copy of a node. 

This action gives the copy a new identity, hindering MCT's goal of reusing nodes. To 

address this problem, MCXQuery redefines XQuery constructors to return a node as 

is. It introduces new constructors to create a copy of a node when the original XQuery 

semantics are desired. It also introduces a color constructor to designate a color to a 

result tree. 

In our approach, nodes can be copied freely because the approach does not depend on 

node identity. 

MCT cannot cloak data. For example, consider retrieving the SI element P from the 

MCT database in Figure 8.5. The expression doc ("si") /{white}descendant: :P 



326 

correctly selects P, but that element will include as its child the mark-association ele

ment EMark. The same is true for the expression doc("Si") /{gray}descendant: :Q. 

In both cases, eliminating EMark requires a more complex XQuery query (as illu

strated in Section 8.1.4). 

8.4.2. Data Provenance 
We now review a representative system that supports data provenance (which is a 

record of the derivation of data items [21]). 

The system we review is due to Buneman and others [20]. They use colors to represent 

the provenance of a data item. They consider data in the nested relational model [2] 

(which allows complex values for attributes). They represent a relation instance as a 

tree similar to our approach described in Section 8.2.3. (The relation is at the root, a 

tuple is a child of the root, and a field in a tuple is a child of the tuple's node.) They 

add a primitive data type called color to the data model and allow one color to be ex

plicitly associated with an object. An object is a generic term that means a relation, 

tuple, field, or any part of a complex field. An object associated with a color is a 

colored object. All sub-objects of a colored object (for example, tuples in a relation, 

and fields in a tuple) are also colored, but not necessarily in the same color as the par

ent object. This coloring method is similar to ours. 

Figure 8.6(a) shows an instance of the relation R (A, B) modeled as a tree. The relation 

has one tuple (3, 5). The nodes are colored for illustration. 



327 

v P ^ , _ New objects 
,-4-s. £'' * colored _L 

(a) (b) 

Figure 8.6: An illustration of data provenance, (a) A tree model of a relation R (A, B) with one 
tuple in the relation instance; (b) A model of the result of the query SELECT A, 9 AS B FROM R. 

The name T for the result table is chosen arbitrarily 

A query is expressed in nested relational algebra [19] extended with "provenance 

aware" semantics. The extended algebra operators define color-preserving functions to 

propagate colors. A query may create new objects. A new object has the special col

or ±. 

Consider the SQL query SELECT A, 9 AS B FROM R (note the name of the second out

put attribute) over the relation modeled in Figure 8.6(a). This query creates a new rela

tion instance with the tuple (3, 9). The color of the output attribute A is propagated 

because that attribute is a copy of the input attribute A. The output attribute B, the out

put tuple, and the output relation have the color _L because they are all new. Figure 

8.6(b) illustrates the query result. 

Although our work is not about propagating colors, a node's color can be propagated 

in our approach as well (because a cloaking scheme can leave the node's color un

changed if the node is already colored). Also, as seen in the equation for Nr in Section 

8.2.2, our formal model always colors result nodes. 

Our formal model for cloaking does not assign colors to new nodes, because we only 

consider input nodes. (Again, see the equation for Nr in Section 8.2.2.) However, an 



328 

additional cloaking scheme may be used to color output nodes, without affecting our 

model. 

8.4.3. Annotation Propagation 

We now review MONDRIAN [50], another system to represent and propagate annota

tions. This system includes an extension of the relational model to represent annota

tions, and an extension of relational algebra to propagate annotations. 

MONDRIAN introduces the notion of a block, which is a non-empty subset of fields 

in a tuple. An annotation is a label attached to a block. An annotation is represented 

by a color, and a block with an attached annotation is a color block. A color block may 

have one or more colors (whereas Buneman and others allow only one color per ob

ject). A field (in a tuple) may be in zero or more color blocks. The set of fields in a 

color block can vary between tuples. That is, the definition of blocks and association 

of colors (to blocks) is at the instance level, not at the schema level. 

R S grayR 

A B C A B C 

4 

7 

/ 

1 6 9 

Figure 8.7: An instance of a MONDRIAN relation and the result of a block selection operation 

Figure 8.7 shows an instance of the relation R(A, B, c). Thick borders around cells 

indicate blocks. The gray block in the first tuple contains the fields A and B, but the 

gray block in the second tuple contains only A. Field c in the second tuple is in the 

slate block. Field B in the second tuple is in a block that is colored both gray and slate. 



329 

MONDRIAN uses a language called color algebra for querying. This algebra includes 

special operators to project, select, and merge blocks. Each operator in the algebra de

fines a fixed coloring function that decides how colors are propagated. Only the block-

selection operator 2 accepts an explicit color; the other operators implicitly choose a 

color. We illustrate the use of coloring functions in MONDRIAN using the block-

selection operator. 

The block-selection operator does three things: It filters out tuples that do not contain 

any block of the input color, it assigns only the input color to blocks that contain the 

input color, and it removes all colors from blocks that do not contain the input color. 

For example, Figure 8.7 shows the result of the query sgray R. The result excludes the 

last input tuple because that tuple does not contain any block colored gray. The input 

blocks colored gray are output as they are; the input block colored both gray and slate 

is colored only gray; and the slate block is not colored anymore. 

In our approach, cloaking schemes are not fixed and they are independent of operators 

and queries. (In fact, the same cloaking scheme may be used for different queries.) Al

so, in our approach, a color is assigned to an entire query, not to individual operators 

in a query. 

8.5. Summary and Conclusions 

In this chapter, we have presented both an informal and a formal model for a cloaking 

query processor. We have also provided an architectural reference model for a cloak

ing query processor, related it to the formal model, and showed how a query processor 



330 

can implement cloaking without altering its input data. The formal model and the arc

hitectural model are independent of applications and data models. 

We have illustrated how cloaking improves query expression and execution in both bi-

level and non-bi-level query settings. We have also reviewed representative systems 

from three different related areas and compared these systems to our own. 

The models for cloaking presented in this chapter helps achieve our goals of efficient 

query execution (Goal G3 in Section 5.3.1), ease of query expression (G5), Sl-only-

query preservation (G6), and compatibility with existing query languages (G7). Chap

ter 9 describes an XML bi-level query processor that employs cloaking to achieve 

these goals. 



9. Querying XML Bi-level Information 

In this chapter, we describe how bi-level queries over Sixml documents can be 

processed using existing query processors and query languages. Specifically, we in

troduce the bi-level navigator, an alternative XML path navigator designed to support 

bi-level querying [120]. 

This chapter brings together the various components and concepts described in Chap

ters 4 through 8 to realize our strategy to meet the seven goals we set for transforming 

bi-level information. (Section 5.3 outlines the goals and the strategy.) 

We begin the chapter with an overview of XML querying. We then present a data 

model for Sixml documents to support bi-level querying and discuss the details of the 

custom bi-level navigator. We also give an overview of our implementation of the bi-

level navigator and share the results of an experimental evaluation. 

9.1. Overview of XML Querying 

In this section, we provide an overview of the popular XML query languages XPath 

[166] and XSLT [177], including an overview of data navigation. 

9.1.1. Overview of XPath 

We begin with an overview of the XPath data model, the different parts of an XPath 

expression, and the process of evaluating an XPath expression. This discussion focus

es on XPath 1.0 [166], but much of it also applies to XPath 2.0 [165]. 



332 

9.1.1.1. The XPath Data Model 

XPath represents an XML document as an ordered tree similar to the Document 

Object Model (DOM) [34], but unlike DOM, XPath does not include an application-

programming interface (API). Consequently, XPath evaluators typically do not 

represent an XML document in the XPath data model. Instead, they internally 

represent the document as a DOM tree and evaluate path expressions over the DOM 

tree. 

XPath defines seven kinds of nodes. Four of these kinds—element, attribute, com

ment, processing instruction—are functionally equivalent to DOM node types with the 

same name. (Section 7.2 gives an overview of DOM.) The fifth kind—text—includes 

both text nodes and CData section nodes of DOM. The sixth kind, called root, corres

ponds to the node-type document in DOM. The seventh kind, called namespace, is not 

available in DOM. (Namespace information is available as node properties in DOM 

Level 2 Core [36].) 

The following types of DOM nodes have no equivalent in XPath: document fragment, 

document type, entity, entity reference, and notation. 

In XPath, only the root node and element nodes may have child nodes. An attribute 

node is not a child of its owner element, but, for querying purpose, an element may be 

treated as the parent of its attributes. The same is true for namespace nodes. All nodes 

except the root node may have siblings. An attribute node may have only an attribute 



333 

as a sibling; a namespace may have only a namespace as a sibling; and a text node 

may not have another text node as an immediate sibling. 

Table 9.1: Kinds of XPath nodes, and kinds of their children, siblings, and parent. The acronym 
PI denotes a processing instruction 

Node type 

Element 

Attribute 

Kinds of children 

Element, Comment, PI, Text 

None 

Kinds of siblings Kinds of parent 

Element, Comment, PI, Text Element, Root 

Attribute Element (only 
for querying) 

Comment None 

Processing instruction (PI) None 

Text None 

Root Element, Comment, PI 

Namespace None 

Element, Comment, PI, Text Element, Root 

Element, Comment, PI, Text Element, Root 

Element, Comment, PI Element 

None None 

Namespace Element (only 
for querying) 

Table 9.1 shows the different kinds of XPath nodes. For each kind of node, the table 

also shows the kinds of children and siblings a node of that kind may have. It also 

shows the kinds of nodes that could be the parent. 

Figure 9.1: XPath representation of an XML document. The representation for the Sixml docu
ment of Figure 7.1 is shown. The unlabeled node is the root node 

Figure 9.1 shows the Sixml document of Figure 7.1 represented as a tree in the XPath 

data model. This tree is similar to the DOM tree of Figure 7.3, except that attribute 

nodes do not use separate text nodes to represent values. The symbol @ denotes an 

attribute node; text enclosed in quotes indicates text nodes. A solid edge indicates a 

parent-child relationship; a dotted edge shows an attribute's relationship to its element. 



334 

9.1.1.2. XPath Expressions 

An XPath expression (also called a location path) selects parts of a tree represented in 

the XPath data model. It is always evaluated in the context of a node. A path expres

sion consists of one or more steps separated by the delimiter /. A step defines the cri

teria to choose nodes that are reachable from a given node. The first step indicates a 

sequence of nodes reachable from the expression's context node; the second step indi

cates the combined sequence of nodes reachable from the result nodes of the first step, 

and so on. For example, the expression TMark/* has two steps. When evaluated in the 

context of the element Comment in Figure 9.1, the first step (TMark) selects all ele

ments named TMark. The next step (*) selects all child elements of each node selected 

in the first step. (XPath 1.0 uses the term node set to describe the collection of nodes a 

step selects, but the collection is actually a node sequence. We, and XPath 2.0, use the 

term node sequence for accuracy.) 

The character / placed at the beginning of an expression indicates a step by itself. This 

step selects the root node. An expression beginning with the character / is an absolute 

expression (or an absolute path); all other expressions are relative expression (or rela

tive paths). 

A step in an expression consists of three parts: an axis, a node test, and an optional se

quence of predicates. An axis indicates a sequence of nodes reachable in a particular 

"direction" from a node. XPath defines 13 axes such as child, attribute, and descen

dant. The child axis of a node includes all its child nodes. The attribute axis of a node 

(applicable only to an element node) includes all the attributes of the node. The 



335 

descendant axis of a node includes all its child nodes, child nodes of child nodes, and 

so on. The child axis and the descendant axis do not include attributes. For example, in 

Figure 9.1, the attribute excerpt is not on the child axis (from element Comment), and 

markID is not on the descendant axis. 

An axis in a step is indicated by writing the name of the axis followed by a pair of co

lons. For example, ch i ld : : , a t t r i b u t e : : , and descendant:: indicate the child, 

attribute, and descendant axes, respectively. Names of some axes have abbreviations. 

The delimiting colons are omitted when an abbreviated name is used. The abbreviation 

for the child axis is an empty string (thus the child axis is the default axis); the charac

ter @ is the abbreviation for the attribute axis. The character / is the abbreviation for the 

descendant axis. Within an expression, the string / / indicates the descendant axis: The 

first / is the step separator, the second / is the axis abbreviation. The string / / at the 

beginning of an expression selects all descendant nodes of the root node. 

The second part of a step, the node test, restricts the nodes in the selected axis based 

on node kinds and node names. For example, one can choose only element nodes or 

only text nodes. One can also choose nodes with a specific name or choose all nodes 

by specifying the wildcard character *. 

Here are some XPath expressions and their results when the element Comment in the 

tree in Figure 9.1 is the context node: 

• TMark selects the element TMark. 



336 

• @excerpt selects the attribute excerpt. 

• * selects all contained elements. 

• . (a period by itself) selects the context node. 

• . / / t e x t () selects all descendant text. 

• . / / * selects all elements that descend from Comment, but not Comment itself. 

• . //@* selects all attributes of Comment and the attributes of its descendant ele

ments. 

Here are some XPath expressions and their results when the element TMark is the con

text node: @excerpt selects no nodes because TMark has no attribute named excerpt; 

/Comment/@excerpt selects the attribute excerpt of Comment (because this expres

sion is absolute); / / t e x t () selects all text nodes that descend from the root node; and 

//@* selects all (nine) attributes in the tree. 

The third part of a step, the optional sequence of predicates, further restricts the nodes 

that pass the node test. A predicate is a Boolean expression enclosed in brackets. For 

example, the following expressions over the tree in Figure 9.1 use predicates: 

/Comment/* [position o= i ] selects the element TMark contained in the element 

Comment (because it is the first child in the sequence of children of Comment); 

/Comment/* [dtarget] selects all child elements of Comment that possess an 

attribute named target . In this case, this expression selects the lone AMark element in 



337 

the document. (The function posit ion is built-in. It returns the position of a node in a 

sequence.) 

The XPath syntax allows the use of an axis with a node even when that axis is known 

to be empty for that (kind of) node. For example, the expression //@excerpt/* to re

turn all elements in the child axis of attribute excerpt is valid, even though an attribute 

does not have child nodes. (We take advantage of such expressions to facilitate navi

gation from an attribute to its mark associations. See Section 9.2.) 

9.1.1.3. Evaluating XPath Expressions 

Evaluating an XPath expression involves sequentially evaluating the steps in the ex

pression. The pseudo-code in Figure 9.2 provides an overview of the conceptual pro

cedure to evaluate a step. In this procedure, the input node sequence for a step is the 

node sequence resulting from the previous step; for the first step, the input node se

quence consists of only the expression's context node. The result node sequence from 

the final step is the result of evaluating the expression. 

Figure 9.2 illustrates three key parts of the procedure to evaluate an XPath step: De

termining the nodes that lie on an axis; performing node tests and evaluating predi

cates; and navigating the tree nodes. The code for navigating tree nodes is shown in 

large text. 

Figure 9.3 shows a high-level class diagram (drawn using the syntax defined in UML, 

the Unified Modeling Language [159]) depicting the association between an XPath 

evaluator and a context node. (This specific depiction is ours, but the XML query-



338 

processor development community widely uses the approach depicted, in one form or 

another.) The class XPathEvaluator is responsible for evaluating XPath expressions. It 

uses XPathNavigator to navigate the nodes related to a node. Section 9.1.2 describes 

XSLTProcessor and its relationship with XPathEvaluator. 

for each node in the input node sequence 
i f (axis i s "chi ld") 
{ 

c h i l d = f i r s t c h i l d of the input node 
while (child) 
{ 

i f ch i ld passes node t e s t and p r e d i c a t e s , add i t to the r e s u l t sequence 
c h i l d = next c h i l d of the input node 

} 

} 

e l s e i f (axis i s " a t t r i b u t e " ) ( 
a t t r i b u t e = f i r s t a t t r i b u t e of the input node 
while ( a t t r i b u t e ) 
{ 
if attribute passes node test and predicates, add it to the result sequence 

attribute = next attribute of the input node 
} 

} 
... //handle other axes 

Figure 9.2: Pseudo-code outlining the procedure to evaluate a step in an XPath expression. Lines 
in the larger font size contain code to navigate among tree nodes 

Separating navigation from evaluation as shown in Figure 9.3 makes it possible to 

employ a custom navigator (that is, an implementation of the navigation routines) that 

can report nodes not in the tree and skip nodes in the tree. We use the ability to report 

non-existing nodes to support navigation in the nested schema even though the input 

document is in the normalized schema. We use the ability to skip existing nodes to 

support cloaking. Thus, custom navigation is a key part of our strategy to meet our 

goals for bi-level querying. (Section 5.2 describes the normalized and nested schemas 

for Sixml data. Section 5.3 describes our goals and strategy for bi-level querying.) 



339 

Because navigation is an important part of our approach to bi-level querying, we pro

vide a brief overview of navigation among nodes in an XPath tree. 

XSLTProcessor 

apply(styleSheet) 

Source 

Embeds 

Node 
Evaluation Context XPathEvaluator 

evaluate(expression) 

Uses 

XPathNavigator 

moveToFirstChHd() 
moveToNextSiblingQ 
moveToParentQ 
moveToFirstAttributeO 
moveToFirstNamespace() 
moveToRoot() 
moveToPreviousSiblingO 

Figure 9.3: Overview of XPath and XSLT processing 

Table 9.2 summarizes the different kinds of movements possible among XPath nodes. 

Conceptually, an XPath navigator (or, just navigator) needs to support five basic 

movements from any node: first child, next sibling, parent, first attribute, and first na

mespace. Any other movement can be implemented using a combination of these five 

movements. 

Table 9.2: Possible movements among XPath nodes 

Current node type 

Element 

Attribute 

Comment 

Processing Instruction 

Text 

Root 

Namespace 

Move to 
root? 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Move to 
child? 

Yes 

No 

No 

No 

No 

Yes 

No 

Move to 
sibling? 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Move to 
parent? 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Move to 
attribute? 

Yes 

No 

No 

No 

No 

No 

No 

Move to na
mespace? 

Yes 

No 

No 

No 

No 

No 

No 

Some navigators also explicitly support two other movements—to the root and to the 

previous sibling—though these movements are not really needed. The seven methods 



340 

in the class XPathNavigator of Figure 9.3 indicate the five basic movements and move

ment to root and previous sibling. 

A navigator might support other kinds of movements (beyond the aforementioned sev

en movements). For example, a navigator might support direct movement to an 

attribute of a particular name. This movement can be provided by moving to the first 

attribute and traversing the attribute sequence until the required attribute is seen, but 

the movement can be more efficient if the attributes are organized as a hash table with 

the attribute name as the key. 

9.1.2. Overview ofXSLT 

Both XSLT and XQuery [176] provide ways to manipulate parts of an XML document 

already selected using embedded XPath expressions. In this section, we provide an 

overview of XSLT and show how XPath expressions are employed in XSLT queries. 

For simplicity, we limit this discussion to XSLT 1.0, but the discussion, in general, 

applies to XSLT 2.0 as well. 

XSLT is a rule-based language to transform an XML document to other forms (includ

ing non-XML forms, but we focus on XML). In the process, parts of the input docu

ment can be filtered out and new data can be added. XSLT represents the XML docu

ment to be transformed as a tree in the XPath data model. 

An XSLT transformation (that is, a query) is expressed in a style sheet (which is itself 

an XML document) consisting of a series of templates. A template defines a rule that 

is triggered based on the node being processed. A template uses a pattern expression to 



341 

describe the nodes to which it applies. A pattern expression tests features such as type 

and name of a node. 

An XSLT processor operates on a sequence of nodes. It traverses the tree induced by 

each input node in document order (that is, the order in which the nodes are seria

lized), and matches each unprocessed node in the current tree against template pat

terns. (The processor uses a complex priority scheme to search templates.) With the 

current node as the context node, the processor triggers a matching template if found, 

or a default template if no matching template is found. In most cases, the default tem

plate simply outputs the value of its context node. 

The foregoing description of the process of triggering templates is overly simplified, 

but it suffices for our purpose. Kay [80, 81] describes the process in detail. 

Figure 9.4(a) shows an XSLT style sheet with five templates to output mark-

association elements and to filter out other elements from a Sixml document. The first 

template matches only the root node. The second through fourth templates match any 

element with the name AMark, EMark, and TMark, respectively. The last template 

matches any element that is not matched by another template. The comments in the 

style sheet (shown in gray background) provide helpful information about the tem

plates. Figure 9.4(b) shows the result of transforming the document represented in 

Figure 9.1. 

The first template begins an output element named Marks. It then asks the XSLT pro

cessor, using the apply-templates instruction, to trigger a template for each element 



342 

that descends from the root node (using the XPath expression / /* as the value of the 

attribute select). The XSLT processor uses an XPath evaluator to evaluate the expres

sion / /*. In response, the XPath evaluator returns all elements in the document. Then, 

for each element returned, the XSLT processor finds a matching template, makes the 

element the context node for the template, and triggers the template. 

For the document tree in Figure 9.1, the first template selects and processes the fol

lowing elements (in the order shown) to produce the result shown in Figure 9.4(b): 

Comment, TMark, AMark, and EMark. We now discuss how each of these elements is 

processed. 

The element Comment matches the last template, which outputs nothing. That is, this 

element is filtered out. 

The element TMark matches the fourth template. This template outputs an element 

named TextMark and writes out the text with which the TMark element is associated. 

The template uses the instruction value-of to output text content. This instruction ac

cepts an XPath expression, evaluates the expression using an XPath evaluator, and 

outputs the string version of the result. 

The element EMark matches the third template. This template outputs an element 

named ElementMark and writes the name of the element that is the parent of the 

EMark element as the text of the output element. That is, the output will identify the 

element with which the input EMark element associates a mark. 



343 

The element AMark matches the second template. This template outputs an element 

named AttributeMark and writes the value of the attribute target (of the context node) 

as the text of the output element. That is, the output will identify the attribute with 

which the input AMark element associates a mark. 

<?xml version="1.0"?> 

<xsl:stylesheet version= 

<xsl:template match = 
<Marks> 

= "1.0" xmlns:xsl="http:/ /www.w3.org/1999/XSL/Transform 

="/"> <! 

<xsl:apply-templates select= 
</Marks> 

</xsl : template> 

<xsl:template match= 
<Attr ibuteMark> 

<xsl:value-of select= 
</Attr ibuteMark> 

</xsl : template> 

<xsl:template match = 
<ElementMark> 

<xsl:value-of select= 
</ElementMark> 

</xsl: template> 

<xsl:template match = 
<TextMark> 

<xsl:value-of select= 
</TextMark> 

</xsl : template> 

<xsl:template match= 

"AMark" 

— 1 . Template for the root node - -> 

"//*"/> <!—Trigger a template for each element in 

> <!- -2. Template for an AMark element - -> 

"@target"/> <!--Output name of attribute with which mark 

= "EMark' 

"name(. 

"TMark" 

"."/> < 

= "*"/> < 

> <!--3. Template for an EMark element - -> 

.)"/><!—Output name of element with which mark 

> <!—4. Template for a TMark element. Assume un 

—Output the text with which mark is associated--> 

1—5. Template for other elements: does nothing ~ 

</xsl:stylesheet> <!~End of style sheet—> 

<?xml version="1.0"?> 
<Marks> 

(a) 

<TextMark>Contradicts...</TextMark> 

<AttributeMark>excer pt</At t r buteMark> 

<ElementMark>Comment</ElementMark> 
</Marks> 

(b) 

"> 

the tree-

is assoc 

-> 

ated--> 

is associated—> 

i-mark -

> 

-> 

Figure 9.4: An example of transforming an XML document using XSLT. (a) A style sheet with 
templates to transform mark-association elements and filter out other elements. The start of each 
template is shown in bold for ease of reading; (b) The result of transforming the document tree in 

Figure 9.1 using the style sheet shown in Part (a) of this figure 

http://www.w3.org/1999/XSL/Transform


344 

As illustrated in the example style sheet, an XSLT processor uses an XPath evaluator 

to select parts of the input document. Thus, the navigator used with the XPath evalua

tor also determines the nodes exposed to the XSLT processor. 

9.2. Representing Sixml Data 

We now describe how a Sixml document is represented using an extension to the 

XPath data model. We first enumerate some alternative approaches and then describe 

our approach. Also, we discuss representing a Sixml document in the normalized 

schema before discussing representation in the nested schema. 

One approach, Alternative 1, to representing a Sixml document is to use the XPath da

ta model as is. For example, the Sixml document of Figure 7.1 would be represented 

as the tree in Figure 9.1. In this approach, the XPath expression . /sixml :EMark navi

gates from an element to its mark associations, but navigation from an attribute to 

mark associations requires the expression ./sixml:AMark[@target=$name], where 

$name is a variable bound to the name of the target attribute. However, creating va

riables and variable bindings requires the use of languages such as XSLT and XQuery, 

making query expression harder. (The expression . /AMark[@ target =name()] cannot 

return the mark associations for the attribute because, in this expression, the function 

name returns ' AMark', not the attribute's name.) 

Alternative 1 requires knowledge of the mark-association schema (for example, one 

would need to know mark association names), but it does not require any changes to 

the XPath data model or the query language. 



345 

Alternative 2 is to emulate Sixml DOM—remove the mark associations from the child 

axis and attach them to their respective target nodes—and introduce a new axis called 

marks to navigate from a node to its marks. (Section 7.4.2.1 describes how Sixml 

DOM represents mark associations.) The new axis would be needed because the mark 

associations would not be visible after removing them from the child axis. In this ap

proach, the expression marks:: * returns the marks associated with the current node, 

regardless of the node type. 

Alternative 2 does not require knowledge of the mark-association schema, but it re

quires extensions to both the XPath data model and the query language. 

Alternative 3, our approach, is to emulate Sixml DOM, but make a mark association a 

child of its target node, and access mark associations using the existing child axis. 

Figure 9.5 represents the tree of Figure 9.1 in this alternative. This tree is similar to the 

Sixml DOM tree in Figure 7.5, except that a mark-association element is represented 

as a child of its target node (as indicated by a solid edge). 

Alternative 3 extends the XPath data model (because nodes such as attributes would 

now need to accommodate children), but not the query language. This approach ex

ploits an allowance in the XPath expression syntax that allows following an axis from 

a node, even if that axis does not apply to that node. For example, following the child 

axis using the expression ch i ld : : * (or just *) in the context of attribute excerpt ordi

narily returns an empty node sequence (because an attribute does not have children), 



346 

but a custom navigator can return mark associations if the XPath evaluator can handle 

such results. 

Alternative 3 allows the navigator to reuse Sixml DOM because the extended data 

model is similar to the Sixml DOM representation. As will be illustrated in Section 

9.3, this reuse simplifies the design and implementation of the navigator. 

Selecting the mark associations of an element using the child axis requires a predicate 

or a name test because the element may have other child elements as well. For exam

ple, the expressions /comment/* [@sixml:type] and /Comment/sixmi:* return only 

mark associations; the expression /Comment/* [not (gsixmi: type) ] returns child 

elements that are not mark associations. (Section 7.4.2.2 discusses the use of the 

attribute sixml :type and the namespace sixml with mark-association elements.) 

Figure 9.5: Representation of a Sixml document in the normalized schema using the extended 
XPath data model. A mark association is represented as a child of its target node. SI is colored 

white. Mark association information is colored gray 

We now discuss representing a Sixml document in the nested schema. We represent a 

Sixml document in the nested schema by adding two child elements to each mark as

sociation: sixml:Descriptor representing the mark descriptor, and sixml:Context 

representing the context information retrieved from the mark using the descriptor. 



347 

Figure 9.6 shows the tree of Figure 9.5 represented in the nested schema. Details of 

namespaces, mark descriptors, and context information are omitted for simplicity. 

Representing mark descriptor and context information as children of a mark associa

tion differs from Sixml DOM (in which a mark association has no children), but it 

eases query expression because the child axis can be used to select the details of a 

mark association. For example, the following expression selects the descriptor for each 

mark associated with the attribute excerpt: 

/Comment/@excerpt /*/sixml:Descriptor 

Here, the wildcard * selects all children of excerpt, which, in the extended model, se

lects its mark associations. The last step selects the mark descriptor for each mark as

sociation. 

Figure 9.6: Representation of a Sixml document in the nested schema using the extended XPath 
data model. This representation is obtained from the tree in Figure 9.5 by adding child elements 

for descriptor and context information to each mark-association element. Details of mark descrip
tor and context information are omitted for brevity 

Representing the descriptor and context information as child elements does not imply 

that these information parts are eagerly added to the tree. Instead, a custom navigator 

can just report the presence of these elements even if they are not present in the input 



348 

document, and construct the elements on demand if the XPath evaluator accesses 

them. Our bi-level navigator implementation described in Section 9.4.1 follows this 

strategy. 

9.3. Processing Bi-level Queries 

In this section, we give an overview of a bi-level query processor, and discuss in detail 

the design of the Sixml Navigator, a custom XPath navigator for Sixml data. For ease 

of presentation, we call this navigator the bi-level navigator. 

9.3.1. Overview of a Bi-level Query Processor 

The bi-level navigator realizes the following strategies outlined in Section 5.3.2 for bi-

level querying: 

• Presenting a Sixml document in the nested schema for querying when the docu

ment is in the normalized schema. 

• Retrieving mark descriptors and context information on demand. 

• Cloaking mark associations to preserve Si-only queries and three other classes of 

queries identified in Section 8.1.2. 

Figure 9.7 shows the architecture of a bi-level query processor as a UML class dia

gram. The classes XPathEvaluator and XSLTProcessor are traditional query processors 

(that is, existing processors used to query XML data). These processors, unchanged, 

become bi-level query processors by virtue of using the bi-level navigator imple

mented in Sixml Navigator. 



349 

The class SixmlNode is similar to the Sixml DOM class SixmlNode (in Figure 7.2), ex

cept here, SixmlNode represents an XPath node. Alternatively, the Sixml DOM class 

SixmlNode may be used directly to simplify the bi-level navigator. (Our bi-level navi

gator implementation takes this approach.) 

XSLTProcessor 

apply(styleSheet) 

Source 

Embeds 

Node 

TV 

Evaluation Context 

1 

XPathEvaluator 

evaluate(expression) 

Uses 

XPathNavigator 

moveToFirstChild() 
moveToNextSiblingO 
moveToParent() 
moveToFirstAttribute() 
moveToFirstNamespaceO 
moveToRoot() 
moveToPreviousSibling() 

Produces 

IXM LContextTransformer 

SixmlNode transform(contextlnfo) 
BulkAccessor 

T" 
SixmlNavigator 

scope 

Figure 9.7: The architecture of a bi-level query processor. XPathEvaluator and XSLTProcessor are tra
ditional query processors using the bi-level navigator implemented in SixmlNavigator 

The class BulkAccessor represents the bulk accessor component described in Section 

6.3. XMLContextTransformer transforms context information retrieved from a context 

agent into XML. These classes are not needed here if the navigator uses Sixml DOM 

to represent the input document (because Sixml DOM already uses BulkAccessor and 

XMLContextTransformer). 

The class SixmlNavigator extends XPathNavigator (henceforth called the traditional 

navigator) to support bi-level navigation. This bi-level navigator functions as the tra

ditional navigator in the context of a non-Sixml node and in the context of a Sixml 

node that is not associated with marks. 



350 

In the rest of this section, we describe the design of the bi-level navigator and show 

the mechanics of bi-level navigation. We also discuss how the navigator cloaks se

lected information. Chapter 8 introduced cloaking. 

9.3.2. Navigator State and Scope 

The bi-level navigator is a state machine with four possible states: SI, Association, 

Descriptor, and Context. A state indicates the kind of information to which the naviga

tor currently points. 

The navigator's state transitions are governed by its movements. Table 9.3 shows the 

possible state transitions due to navigator movements. In this table, movement to a 

child means movement to first child; movement to sibling means movement either to 

the next sibling or to the previous sibling. The entries with asterisk indicate move

ments permitted only in the bi-level navigator, and are due to the use of the child axis 

to navigate to mark associations. 

The salient movements and state transitions are: Movement from any node to the root 

node causes a transition to the state SI. Movement from an element to its first child, a 

sibling, or the parent can change the state. Movement to a sibling from an element, 

text node, comment, or PI can cause the state to change from SI to Association. 

The state transitions of the navigator are influenced by the scope of the navigator 

which determines the kind of information the navigator reveals to the query processor. 

The scope is a value from the ordered set {57, Association, Descriptor, Context}. 

When the scope is SI, the navigator reveals only SI to the query processor; when the 



351 

S->A 
A-»D 

S^A* 

S-»A* 

S-»A* 

S^A* 

-

N/A 

S—A 
D^C 

-

S-̂ A 

S->A 

S->A 

N/A 

_ 

A->S 
D->A 
C->A 

-

-

-

-

N/A 
_ 

-

-

N/A 

N/A 

N/A 

N/A 

N/A 

-

N/A 

N/A 

N/A 

N/A 

N/A 
_ 

scope is Association, the navigator reveals SI and mark association information, but 

cloaks descriptor and context information; and so on. 

Table 9.3: Possible state transitions of the bi-level navigator due to movements among XPath 
nodes. The letters S, A, D and C correspond to the states SI, Association, Descriptor, and Context, 
respectively. X means any state. N/A means not applicable. A dash indicates no transition. Entries 
with asterisk denote deviation from the XPath model 

Current node type Move to Move to Move to Move to Move to Move to Na-
Root Child Sibling Parent Attribute mespace 

Element X^S 

Attribute X-»S 

Comment X—>S 

Processing Instruction X—»S 

Text X—S 

Root X->S 

Namespace X—»S 

The query processor sets the navigator scope implicitly as follows, based on the kind 

of information the path expression references: 

1. The scope is Association if the expression references an element in the namespace 

sixml or if the query examines the attribute sixml:type. For example, the scope of 

the expression /Comment/* [@sixml:type] is Association, whereas the scope of 

the expression /Comment/* is SI. 

2. The scope is Descriptor if the expression references the child element Descriptor 

of a mark association. For example, the scope of the expression 

/Comment/sixml:EMark/sixml: Desc r ip to r is Descriptor, but the scope of the 

expression /Comment/*/sixml: Desc r ip to r is SI. 



352 

3. The scope is Context if the expression references the child element Context of a 

mark association. The expression /Comment/sixml:EMark/sixml: Context has 

Context scope, but the scope of the expression /comment/*/Context is SI. 

4. The scope is SI if the expression does not satisfy any of the three aforementioned 

conditions. 

If the expression satisfies more than one condition, the navigator scope is set to the 

most permissive value. For example, if the first three conditions are met, the scope is 

set to Context. 

The user may explicitly set the navigator scope to any of the four possible values, re

gardless of the kind of information the query expression references. 

Figure 9.8: The bi-level navigator state diagram. Labels attached to arrows show movements that 
cause state transitions. Text in brackets denotes the condition for a transition 



353 

Figure 9.8 shows a UML state diagram that describes the navigator states, the move

ments that trigger state transitions, and the conditions for transitions, taking into ac

count the navigator scope. The ovals represent states and the arrows represent state 

transitions. The single dark circle denotes the start state. A dark circle with a surround

ing unfilled circle denotes a final state. The label associated with a transition denotes 

the kind of navigator movement that triggers the transition. The text in brackets de

notes the condition under which the trigger (that is, the movement) causes the transi

tion. The trigger labeled 'End' indicates the end of the use of the navigator. The navi

gator has no movement such as "move to end' that corresponds to this trigger, but the 

trigger is used in the figure to comply with the UML syntax: In UML, a state transition 

is immediate if no trigger or condition is attached to the transition. 

9.3.3. Navigating Bi-level Information 
We now describe how the bi-level navigator navigates a Sixml document. 

9.3.3.1. Overview 

Conceptually, a bi-level navigator uses four traditional navigators, one per state. The 

navigators are called S-navigator, A-navigator, D-navigator, and C-navigator. The bi-

level navigator receives navigation requests from the query processor and employs an 

internal traditional navigator based on the current state and the movement requested. 

Figures 9.9 and 9.10 show the procedures (in pseudo-code) to move the bi-level navi

gator from a node to its first child and to its next sibling, respectively. Tables 9.4 and 

9.5 list the movements made when evaluating example expressions. (The caption for 



354 

each table includes the example expression evaluated.) In the procedures, text with 

gray background indicates comments. End-of-line comments in bold provide example 

results of the internal movements. A number in parentheses (such as 9.4-1) indicates 

the table number and the row number that correspond to the example movement. For 

brevity, not all movements are identified in the figure. 

We illustrate the procedures using the expression sixmi:EMark/sixmi:Context to 

retrieve the context information for the marks associated with the element Comment. 

We assume that the bi-level navigator is currently positioned on Comment, so the na

vigator's current state is SI. We also assume that the navigator's scope is set to Con

text. Table 9.4 shows the four movements needed to reach context information. The 

movements can be traced on the tree in Figure 9.6. 

First, the query processor asks the bi-level navigator to move to the first child of the 

current node (that is, of the element Comment). The bi-level navigator in turn asks the 

S-navigator to move to the first child. The S-navigator moves successfully to the text 

node. The bi-level navigator remains in the state SI. 

The second movement asks the bi-level navigator to move to the next sibling of the 

text node. The bi-level navigator in turn asks the S-navigator to move to the next sibl

ing. The S-navigator fails because the text node has no SI siblings. As a result, the bi-

level navigator initializes the A-navigator with the mark associations for Comment (if 

the A-navigator is not yet initialized with that information) and then asks the 

A-navigator to move to the first mark-association element. It then changes its state 



355 

from SI to Association, and presents the first mark-association element as a sibling of 

the text node to the query processor. 

In the third movement, the query processor asks the bi-level navigator to move to the 

first child of the current mark-association element. In response, the bi-level navigator 

retrieves the descriptor for the current mark association (if the descriptor has not been 

retrieved before), initializes the D-navigator, asks the D-navigator to move to the ele

ment Descriptor. The bi-level navigator then changes its state from Association to 

Descriptor. 

In the fourth movement, the query processor asks the bi-level navigator to move to the 

sibling of the element Descriptor. In response, the bi-level navigator retrieves the con

text information (if it has not been retrieved before) using the descriptor for the current 

mark association and initializes the C-navigator with the retrieved context information. 

It then asks the C-navigator to move to the element Context, and changes state from 

Descriptor to Context. 

9.3.3.2. Selecting Multiple Nodes in a Step 

The navigation overview thus far assumes only one node passes the node test at each 

step, but, in reality, several nodes may pass the test at each step. For example, several 

EMark elements may be associated with Comment. 



356 

boolean moveToFirstChild() 

{ 
if (state == SI) 

{ 

i f (sNavigator .moveToFirstChild () ) r e tu rn t r u e ; / Comment^text (9.4-1) 
e l s e i f (scope > SI) 
{ 

aNavigator.load(currentNode.MarkAssociations); 

aNavigator.moveToRoot(); 

aNavigator. moveToFirstChild () ; •' • ©excerpt- >AMark (9.5-2) 

state = Association; return true; 

} 

else return false; 

) 
else if (state == Association and scope > Association) 

{ 

,' / 1 .11. .*' "*. C'i.'..-.Ii O l \\ i".:i~.t iif.'f.'O" 1 ci ..." \ ) \ \ '...'.'. U... m \j. y .'J '..'•-* i".(ji.'.< " ? ' " " r ". p*' O I ' 

dNavigator.load(currentMarkAssociation.Descriptor); 

dNavigator.moveToRoot(); 
dNavigator .moveToFirstChild!) ; . EMark vDescriptor (9.4-4) 

state = Descriptor; return true; 

} 

else if (state == Descriptor) 

return dNavigator.moveToFirstChild(); 

else if (state == Context) 

.•'Ti • • - : . : : • - • . ". : - x : ' • ' . ' . • • : • . ' : . . ' . : 

return cNavigator.moveToFirstChild(); 

} 

Figure 9.9: Pseudo-code outlining movement to the first child of the current XPath node 

Table 9.4: Movements to retrieve context information. Context information from marks asso
ciated with the element Comment is retrieved using the expression sixmi:EMark/sixmi: context. 
Comment is the "current node" at the beginning 

Movement to Result node Result state Remarks 

1. First child Text node SI Invoke S-navigator 

2. Next sibling sixml: EMark Association S-navigator fails; load and invoke A-navigator. 

3. First child sixml: Descriptor Descriptor Load and invoke D-navigator. 

4. Next sibling sixml :Context Context D-navigator fails; load and invoke C-navigator. 



357 

boolean moveToNextSibling() 

< 
if (state == SI) 

{ 

if (sNavigator.moveToNextSibling())return true; 

else if (sNavigator.CurrentNode is an attribute or a namespace) 

return false; 

else if (scope > SI) 

{ 

•'.:rz rr.cre ST, tr.t_- lir.-;7_ ::-?Y. i;ii:;;;:-i-icr. .;: ;u:ti:r.; ricic '- ;; -:.e r c-/.: ;fl'ol_:,g 

aNavigator.load(currentNode.MarkAssociations); 

aNavigator .moveToRoot () ; aNavigator .moveToFirstChild () ; ••'.-'text >EMark (9.4-2) 

state = Associations; return true; 

} 

else return false; 

} 

else if (state == Association) 

{ 

return aNavigator.moveToNextSibling(); //returns "false" for running example 

} 

else if (state == Descriptor) 

if (dNavigator.CurrentNode is not Descriptor) ,'/3or.eKh°re :ns.:cie d°.~cripror 

return dNavigator.moveToNextSibling(); 

else if (scope > Descriptor) 

{ 

cNavigator.load(currentMarkAssociation.Context); cNavigator.moveToRoot() ; 

cNavigator .moveToFirstChild () ; Descriptor ^Context (9.4-4) 

state = Context; return true; 

} 

else return false; 

else if (state == Context) 

if (cNavigator.CurrentNode is Context) 

//:.i i:1:.!'-; ri.;.'ii ̂ :. ri*. :;.. n rit'.i.• i..::!'. y : ift'i.i < : h i i ij r t-T: 

return false; 

else .•'.•'ic.Ti-xr.e-'c ; - ; L : V ;::r.:ex: 

return cNavigator.moveToNextSibling(); 

} 

Figure 9.10: Pseudo-code outlining movement to the next sibling of the current XPath node 

Table 9.5: Movements to retrieve a mark descriptor. The descriptor for each mark associated 
with the attribute excerpt is retrieved using the expression @excerpt/*/sixmi:Descriptor. 
Comment is the "current node" at the beginning 

Movement to Result node Result state Remarks 

1. First attribute @excerpt SI Invoke S-navigator. Movement code is omitted. 

2. First child sixml :AMark Association S-navigator fails, load and invoke A-navigator. 

3. First child sixml: Descriptor Descriptor Load and invoke D-navigator. 



358 

To select multiple nodes at a step, when a node passes a test, the query processor saves 

the navigator state so it can test other nodes later. For example, in Table 9.4, the 

second movement finds a node that passes the test for an element node with the name 

EMark. At this stage, the query processor saves the navigator state, and then proceeds 

with the other movements shown. After performing movements 3 and 4 to retrieve 

context information for the EMark element just found, the query processor restores the 

saved navigator state, and moves the navigator to the next node to see if another node 

passes the original test. It then repeats movements 3 and 4 for each EMark child ele

ment it finds for Comment. 

The query processor decides when to save and restore the navigator state. It also de

cides which movements to perform and when. The navigator is responsible for saving 

and restoring the state when the processor instructs it. It is also responsible for carry

ing out the movements the processor directs it to perform. Due to this separation of 

concerns, the query processor does not need to directly examine the navigator state, 

and the navigator can be independent of the overall query-processing strategy. Conse

quently, the design of the query processor and the navigator is simple, and different 

navigators can be used with the same query processor. 

9.3.3.3. Retrieving Information on Demand 

Our representation of Sixml data and the design of the bi-level navigator together real

ize our strategy of retrieving mark descriptors and context information on demand to 



359 

improve query-execution efficiency. (Section 5.3.2 outlines our strategy for bi-level 

querying.) 

The procedures in Figures 9.9 and 9.10 illustrate the opportunity to retrieve informa

tion on demand: The code in Figure 9.9 loads descriptor information only when the 

query processor needs to examine the descriptor for a mark association. Similarly, the 

code in Figure 9.10 loads context information on demand. Movements 3 and 4 in Ta

ble 9.4 exemplify on demand retrieval. 

Loading descriptor and context information on demand can significantly improve the 

performance of queries, especially for queries that do not need context information, 

because obtaining context information requires interacting with the base layer. An im

plementation of the bi-level navigator can further improve query-execution efficiency 

by caching the descriptor and context information for a mark, and reusing the cached 

information if the same mark is associated with another node. 

Our implementation of the bi-level navigator retrieves mark descriptors and context 

information on demand, and caches both kinds of information. Section 9.4.1 gives an 

overview of the implementation. Section 9.4.3 provides experimental verification of 

the savings due to our strategy. 

9.3.4. Cloaking Information 
We now discuss how the bi-level navigator cloaks (that is, hides) information from the 

query processor so that certain classes of queries, such as Si-only queries, can be ex-



360 

pressed more easily and be executed more efficiently. Section 8.1 introduced cloaking 

and its application to bi-level querying. 

In terms of the formal model for cloaking described in Section 8.2.1, the bi-level navi

gator employs the following cloaking configuration (which is also the configuration 

used in Figure 8.2): 

• a totally ordered set {White, Gray, Slate, Black}, where Black > Slate > Gray > 

White; 

• a cloaking scheme in which, for each node n, Color (n) > Co lor(Parent(n)); and 

• a test function Color (query) > Color (node). 

The navigator uses the following implicit cloaking scheme. The tree in Figure 9.6 is 

colored using this scheme: 

• A mark-association element is colored Gray. 

• Ancestors of a mark-association element are colored White. 

• The child element Descriptor of a mark-association element and the descendants 

of Descriptor are colored Slate. 

• The child element Context of a mark-association element and the descendants of 

Context are colored Black. 

• The color of an attribute is the same as its owner element. The same is true for a 

namespace node. 



361 

In terms of the design of the bi-level navigator, the state of the navigator corresponds 

to the color of the current node, and the scope of the navigator corresponds to the 

query color. Further, the set {SI, Association, Descriptor, Context} used to indicate the 

navigator scope is order isomorphic with the set {White, Gray, Slate, Black} used in 

the cloaking scheme. For example, the color White translates to the scope SI; the color 

Black translates to the scope Context. Thus, when the scope is SI, the navigator reveals 

only SI to the query processor; when the scope is Context, the navigator reveals all 

information to the query processor. 

The bi-level navigator realizes the vision (stated in Section 8.2.2) that a query proces

sor can cloak information without explicitly coloring the nodes and without explicitly 

constructing query scope. Figures 9.8, 9.9, and 9.10 illustrate how the bi-level naviga

tor realizes this vision. 

We now provide an example of how cloaking can improve the efficiency of executing 

certain queries. Consider the path expression / / t e x t () to select all text nodes in the 

tree. Without cloaking (or, with the navigator scope set to Context), the navigator vis

its at least 12 nodes when this expression is evaluated over the tree in Figure 9.6: 

Root, Comment, the text child of Comment, the three mark-association elements, and 

the child elements Descriptor and Context for each mark-association element. The 

navigator also visits all descendants of Descriptor and Context, but more importantly, 

it retrieves the context information from the base layer for each mark employed. 



362 

If the intent is to retrieve only comment text, the navigator scope may be set to SI. In 

this case, the navigator visits only three nodes: Root, Comment, and the text child of 

Comment. Also, it does not retrieve any context information from the base layer. 

Section 9.4.3 provides experimental verification of the savings due to cloaking. 

9.4. Evaluation 

We have evaluated the extended XPath data model and the design of the bi-level navi

gator by implementation, by using the implementation in a variety of applications, and 

by running experiments. We first outline the implementation and some applications, 

and then describe the experiments. 

9.4.1. Implementation 

We have fully implemented the extended XPath data model presented in Section 9.2 

and the design presented in Section 9.3. We have used the Sixml DOM implementa

tion described in Section 7.6.1 to internally represent the data to be queried. (The na

vigator can use any of our three Sixml DOM implementations.) 

The bi-level navigator (that is, the class SixmlNavigator) is implemented in C# by ex

tending the class XPathNavigator included in the .NET Framework (.NET) [129]. Our 

navigator can work with both the XPath evaluator and the XSLT processor included in 

.NET (including those in Microsoft's distribution of .NET, for which we do not have 

the source code). 

The .NET class XPathNavigator combines the functionality of an XPath evaluator and 

navigator. In our navigator, we have overridden the method evaluate to implicitly as-



363 

sign scope based on the expression to be evaluated (as discussed in Section 9.3.2). We 

have also overridden the navigation methods. The navigation methods generally fol

low the procedures in Figures 9.9 and 9.10, but some changes are made to suit the 

.NET implementation of the class XPathNavigator. In the design we presented, the me

thods MoveToNextSibling and MoveToPreviousSibling handle any kind of XPath node, but 

.NET handles movement among siblings differently: It uses MoveToNextAttribute to 

move from an attribute to the next attribute. Similarly, it uses MoveToNextNamespace to 

move among namespace nodes. It uses MoveToNext and MoveToPrevious for movements 

among other node kinds. (In .NET, XPathNavigator does not provide a means to move 

backward along the attribute and namespace axes.) 

Due to reusing Sixml DOM, our bi-level navigator implementation caches the context 

information retrieved from the base layer for a mark in a hash table keyed on mark ID. 

If context information for the same mark is needed again, it is retrieved from the cache 

(if available) instead of the base layer. The context cache is global so context informa

tion can be reused even when a mark is reused in a different (possibly simultaneously 

executing) query. 

The size of the context cache is configurable. By default, the size is bound only by 

available memory, but the size can be limited. When the cache size is limited, entries 

are evicted using a first-in, first-out policy, when needed. 

The following list provides some high-level implementation statistics (as of this writ

ing). 



364 

• Number of interfaces: 1 

• Number of classes: 1 

• Number of source files: 1 

• Number of lines of code: 1,265 

• Estimated time spent on implementation: 90 hours 

9.4.2. Applications 

We have employed bi-level queries in a wide variety of applications. We introduce 

three such applications in this section. Chapter 10 reviews a further application to in

terchange bi-level information. We have also developed a graphical user interface to 

bi-level query processors with which a user can compose and execute bi-level queries 

over arbitrary Sixml documents. 

9.4.2.1. Drafting a Survey Paper 

Figure 1.5 illustrates a simple use of bi-level querying. We obtained the HTML source 

used in this figure by transforming a Sixml representation of the Sidepad document 

shown in Figure 1.3. The source Sidepad document was one of three documents origi

nally created to collect and organize information for a survey paper as a term project. 

The transformation was the result of applying an XSLT style sheet to generate an 

HTML outline of the survey paper, which was then imported into MS Word. The pa

per was completed in MS Word and converted to PDF for submission. 



365 

9.4.2.2. Creating A Iternative SI Structures 
We now illustrate the use of bi-level queries to create alternative SI representations 

(such as a timeline) from existing SI (such as a Sidepad document). 

E8e: si!.;;: view > Transform.: Tools ;"*|elp: 

Catalog Description 

Objective t 

Statement 

|Guery wrflsig 

Exatrote 

Reading 

Example 
Meeting Reading 

Objective 2 

Statement 
Query 
transformation 

Objective^ 

Equwateni queries 

ObSe-

Statement 
Query 
processing 

Nates 

M_t 

I 

Ofrjectwe 6 

Statement "| | Meeting 
i Statement 
kmbedded SQL 

Object 

E5 
(a) 

1 2 3 
ten 

Mar 2 8 , 3 0 | Apr 4,6 | Apr 11 ,13 

1' WritecomplexSQLandretationalaigefaraqueries 

LH-i j J j 4 :Expia i»howquer 

m\ 

4 5 6 

Apr I S , 20 i Apr 25 ,27 1 May 9,11 

7 Use SQL queues embedded in a software application 

7 8 

| Hay 16,18 | Hay 23 , 25 

jj S: EvsSuHte the utility sf 351 sredex far a 
1 rslstiGnsldzitsbssitsbte 

5 : Evahsste existing database daslgsis and dasfgn new 1 
databases effectively I 

e^ a re processed a»d optlmtzed 

si 
JO) 

(b) 

Figure 9.11: Bi-level information displayed as a timeline, (a) A Sidepad document with marks to 
online course material; (b) The Sidepad document in Part (a) and the referenced base informa

tion transformed to a timeline 

Figure 9.11(a) shows a Sidepad document with marks into online course material for a 

university class offering [89]. Most of the items in this document are grouped by the 

learning objectives for the class. For example, the group labeled Objective 1 contains an 

item with a statement of the first learning objective. The group also contains items for 

the three class meetings in which the learning objective is addressed, and items for 



366 

notes and readings. In all, the document contains 58 items that incorporate 49 marks 

into 12 base documents. (Some marks are used more than once.) 

Figure 9.11(b) shows the Sidepad document of Figure 9.11(a) transformed to a time

line using a pair of XSLT style sheets: One style sheet generates timeline data from 

the Sidepad document, another draws the generated timeline data in a web browser. 

(The latter style sheet is based on the work of Kruchten [83].) The timeline lists the 

sequence of weeks in which the class meets, and shows the learning objectives met in 

each week. The name(s) of the instructor(s) teaching that week is (are) shown when 

the mouse cursor hovers over a week. All information displayed on the timeline (ex

cept the week numbers displayed at the top) is obtained from the base layer at query-

execution time. 

Any change to the source Sidepad document can easily be reflected on the timeline by 

simply re-applying the two style sheets. 

9.4.2.3. Creating Mash-ups 

Web applications called mash-ups combine information of varying granularity from 

different, possibly disparate, sources. We have created a utility called Mash-o-matic 

[115] to extract, clean, and combine disparate information fragments, and to automati

cally generate data for mash-ups and to generate the mash-ups themselves. 

At its core, Mash-o-matic is a set of schemas for Sixml documents together with a set 

of bi-level queries to combine Sixml documents with the referenced base information, 

and a set of queries to convert the combined bi-level information into different display 



367 

formats. For example, Mash-o-matic defines a schema to represent information about 

geographic landmarks as a Sixml document, and a set of XSLT style sheets to trans

form a Sixml document to data suitable for use by JavaScript [73] applications that use 

a map API such as Google Maps [53], Google Earth [52], and Yahoo! Maps [179]. 

(The same Sixml document can be transformed for use with different map APIs.) The 

style sheets also interact with third-party web services to geo-code landmark addresses 

(that is, to transform landmark addresses to map coordinates). 

! North 1 [ North-East 11 East 1 \£&m£aiBfc\ 1 South 11 South-West 11 West 11 North-West 1 

!—K-f '""-» DirMtam: ij!*!".? r-is l-.*f 

b S3 

\ • -Ol Si. !ksa>rr. ?*am\. I)R 

V. «-. 
*»^_ V 

^ ' '• . J H W .iidHi " - ' JKSBKffi jomm 
A„. ••_- , - . - w i . ^ " ^ ^ " ^ S P 

• ::.-• rj * -Thr 
.... . ^ ~ © . . . <H ^p -

Sues ^ p 

"5.-»—s. i » • 
*•-• 55.... <s£ > • 

. - .: <z> 1""*?f" w* 

5 • - : - :• 
' U • ; • . ' 
UelTgC' 

Slu^_Ltif i«ii 

iNor th l lNar th-East l lEasJ i l -S =• • :-i- 1 South f iSouth-West II West It Nor th-west 1 

X3.(Zat>»rfs,3»! ffiBdi^i^m^OESi 

-^SreSeaset fsSdfwoof t 12WSETacamttSt,?crfanAOR572«3 

N4. New Seuon'i SeFenComwi: 19315E Divisien St., Po ra»4 OR 9~202 

. BJt«h1U^ri<aU.B JBfaivimnr fnttiinrt fff l trttt , 

; 

& » n 

J-i 
• H n H n l • w m i a H H p i l l W U l p i 

» ' " 

" ! 

'i* 
/;:, 
*>» 

•<aM 1 i f I F • 

't 
% 

• ' *PP 
»»*-y 

^ » 
r • • -

'*• .fr , 
® " " - ^ ® 

s . - - • , . 

SS*E*_MB! 

l * • • 

f-,. 

Figure 9.12: A map-based mash-up. The mash-up shows grocery stores in the metropolitan area 
of Portland, OR (USA). This mash-up was developed for the Oregon Department of Agriculture 

Mash-o-matic automates much of the process of preparing data for mash-ups. For ex

ample, we built a mash-up that displays a campus map for Portland State University in 

only about 5.5 hours (including data collection). We built a much more sophisticated 

map of grocery stores in the metropolitan area of Portland, OR (USA) in only 16.5 



368 

hours (including collecting and cleaning data). Much of the savings in the time and 

effort needed to develop these mash-ups was due to bi-level queries. (The grocery 

store mash-up, shown in Figure 9.12, was developed for the Oregon Department of 

Agriculture.) 

9.4.3. Experiments 

We now present the results of an experimental evaluation of the bi-level navigator. 

The navigator used the MSX implementation of Sixml DOM described in Section 

7.6.1 to represent Sixml data in memory. A marks repository was maintained in an MS 

SQL Server 2005 (MSSQL) database and managed using the persistent marks reposi

tory implementation described in Section 7.6.1. 

All C# code was compiled using MS Visual Studio 2005 [102]. The experiments were 

run in MS's distribution of the .NET Common Language Runtime (Version 2.0) [128] 

on an Intel Core Duo 1.66 GHz processor [65] with 1 GB of main memory. The oper

ating system was MS Windows XP (Service Pack 2) [104]. 

The experiments involved executing query workloads on the Sixml documents listed 

in Table 7.2. The workloads were executed on documents in both the normalized 

schema and the nested schema. Documents in the normalized schema include only SI 

and their mark associations, but not mark descriptors. The mark descriptors for these 

documents are obtained on demand from a persistent marks repository at query-

execution time. Documents in the nested schema include SI, the mark associations, 



369 

and the mark descriptors. For both flavors of documents, context information was ob

tained on demand using the bulk accessor. 

Figure 9.13 shows a thumbnail version of the normalized schema documents used in 

the evaluation. In a SISRS document, a mark is used only once. Each Comment ele-

ment has an associated EMark. The attribute title of each Paper element has an AMark 

and the attribute's value is set to be the text excerpt retrieved from the mark. 

In an SSIB document, a mark is used thrice within the element Event: twice with 

attributes and once with text content. Error and Update elements each use three dis

tinct marks. All attributes and text content associated with a mark derive their values 

from marks, mostly using complex path expressions over context. 

Table 9.6 lists the combinations of queries, documents, navigator types, schemas, 

query scopes, and query languages used in the experiments. (Appendix C lists the ac

tual queries used.) In all, we evaluated 219 of these combinations: 88 combinations of 

the queries common to both SISRS and SSIB documents with the bi-level navigator, 

64 combinations with the traditional navigator, 64 combinations specific to SISRS, 

and 3 combinations specific to SSIB. For brevity, we present the results for only rep

resentative combinations. We executed a query in each combination thrice and report 

the average execution time. 

In the rest of this section, we use the term Bi-level-X to mean the bi-level navigator 

with scope X. X can be S, A, D, or C, and means the navigator scope is set to SI, 

Association, Descriptor, and Context, respectively. For example, Bi-level-A means the 



370 

bi-level navigator with scope set to Association. The notion of scope does not apply to 

the traditional navigator. 

Table 9.6: Queries used to evaluate the bi-level navigator. The entries in the last two columns 
show the query scope and the query language used. The letter S denotes the scope SI; A denotes 
the scope Association; D denotes Descriptor; and C denotes Context. 

Query, document, and navigator Information Normalized schema Nested schema 
combination queried 

Queries common to all documents, executed using both traditional and bi-level navigators 

Ql. Retrieve all SI SI S (XPath), A (XSLT) S (XPath), D (XSLT) 

Q2. Retrieve all mark associations Associations A (XSLT), D (XSLT) A (XSLT), D (XSLT) 

Queries common to all documents, executed using the bi-level navigator 

Q3. Retrieve unique mark descriptors Descriptors D (XSLT) 

Q4. List the base documents referenced Descriptors D (XSLT) 

Queries over SISRS documents only, executed using the bi-level navigator 

Q5: Retrieve the text of all comments SI S (XPath), A (XSLT) 

(three variations) 

Q6: Retrieve paper titles Context S (XPath), C (XPath) 

Queries over SSIB documents only, executed using the bi-level navigator 

Q7. List the base documents for security Descriptors D (XPath) 
events (SSIB-1 only) 
Q8. Create a timeline of "application Context S (XSLT), C (XSLT) 
hang" events (SSIB-8 only) 

9.4.3.1. Retrieving SI (Ql) 

This experiment compares the performance of Bi-level-S with the traditional navigator 

(which uses DOM for run-time representation) and with Bi-level-A when retrieving 

just the SI portion of a Sixml document. 

D (XSLT) 

D (XSLT) 

S (XPath), A (XSLT) 



<
R

e
v

ie
w

s 
xm

ln
s 

<
 P

a
p

e
r 

ti
tl

e
=

" 
:s

ix
m

l=
 

">
 

<
C

o
m

m
e

n
t 

re
v

ie
w

e
r 

<
si

xm
l:

A
M

a
rk

 
<

/P
a

p
e

r>
 

<
/R

e
vi

e
w

s>
 

si
xm

h
m

 'h
tt

p
:/

/s
c

h
e

m
a

.s
ix

m
l.

o
rg

">
 

=
"

l"
>

C
o

m
m

e
n

t 
l<

s
ix

m
l:

E
M

a
rk

 
s

ix
m

k
m

a
rk

ID
 

a
rk

ID
=

"2
0

0
5

1
2

7
1

0
5

4
1

6
0

.R
-3

0
2

.p
d

f-
ti

tl
e

" 
si

xm
l =

 "
2

0
0

5
1

2
7

1
0

5
4

1
6

0
. 

R
-3

0
2

.p
d

f_
l"

/ 
ta

rg
e

t=
 "

ti
tl

e
" 

si
xm

l :
va

lu
e

S
o

u
rc

e
=

 >
<

/C
o

m
m

e
n

t>
 

'T
ru

e
"/

>
 

(a
) 

<
S

S
IB

 x
m

ln
s:

si
xm

l =
 "

h
tt

p
:/

/s
c

h
e

m
a

.s
ix

m
l.

o
rg

" 
xm

ln
s:

e
=

"u
rn

:s
ch

e
m

a
s-

m
ic

ro
so

ft
-c

o
m

:o
ff

ic
e

:s
p

re
a

d
sh

e
e

t"
>

 
<

C
o

m
p

u
te

r 
n

a
m

e
=

"C
3

">
 

<
E

v
e

n
ts

> 
<

E
v

e
n

t 
d

a
te

T
im

e 
=

""
 k

in
d

=
"S

y
s

te
m

" 
s

o
u

rc
e

=
""

> 
< 

D
e

s
c

ri
p

ti
o

n
 >

 
<

si
xm

l:
T

M
a

rk
 s

ix
m

l:
m

a
rk

ID
=

"E
v

_
C

3
S

y
s

_
0

0
0

0
1

" 
si

xm
l:

va
lu

e
S

o
u

rc
e

=
"T

ru
e

" 
si

xm
l :

va
lu

e
E

xp
re

ss
io

n
=

"/
C

o
n

te
xt

/C
o

n
te

n
t/

X
M

L
ye

:W
o

rk
b

o
o

k/
e

:W
o

rk
sh

e
e

t/
e

:T
a

b
le

/e
:R

o
w

/e
: 

C
el

l 
[p

o
s

it
io

n
()

=
9

]/
e

:D
a

ta
"/

>
 

<
/D

e
sc

ri
p

ti
o

n
>

 
<

si
xm

l:
A

M
a

rk
 s

ix
m

l:
m

a
rk

ID
=

"E
v

_
C

3
S

y
s

_
0

0
0

0
1

" 
si

xm
l:

ta
rg

e
t=

"d
a

te
T

im
e

" 
si

xm
l:

va
lu

e
S

o
u

rc
e

=
"T

ru
e

" 
si

xm
l:

va
lu

e
E

xp
re

ss
io

n 
=

 "
/C

o
n

te
xt

/C
o

n
te

n
t/

X
M

L
/e

:W
o

rk
b

o
o

k/
e

:W
o

rk
sh

e
e

t/
e

:T
a

b
le

/e
:R

o
w

/e
:C

e
ll

[p
o

si
ti

o
n

()
 

=
 l 

o
r 

p
o

s
it

io
n

()
=

2
]/

e
:D

a
ta

"/
>

 
<

si
xm

l:
A

M
a

rk
 s

ix
m

l:
m

a
rk

ID
=

"E
v

_
C

3
S

y
s

_
0

0
0

0
1

" 
s

ix
m

l:
ta

rg
e

t=
 "

so
u

rc
e

" 
si

xm
l:

va
lu

e
S

o
u

rc
e

=
"T

ru
e

" 
si

xm
l :

va
lu

e
E

xp
re

ss
io

n
=

"/
C

o
n

te
xt

/C
o

n
te

n
t/

X
M

L
/e

:W
o

rk
b

o
o

k/
e

:W
o

rk
sh

e
e

t/
e

:T
a

b
le

/e
:R

o
w

/e
: 

C
el

l [
p

o
s

it
io

n
()

=
3

]/
e

: 
D

a
ta

 "
/>

 
<

/E
v

e
n

t>
 

<
/E

v
e

n
ts

>
 

<
E

rr
o

rs
> 

<
E

rr
o

r 
d

a
te

T
im

e
=

""
 s

o
u

rc
e

=
""

 
d

e
s

c
ri

p
ti

o
n

=
"

"
>

<
N

o
te

s
x

/N
o

te
s

> 
<

si
xm

l:
A

M
a

rk
 s

ix
m

l:
m

a
rk

ID
=

"E
r_

C
3

E
rr

_
0

0
1

" 
si

xm
l:

ta
rg

e
t=

"d
a

te
T

im
e

" 
si

xm
l:

va
lu

e
S

o
u

rc
e

=
"T

ru
e

"/
>

 
<

si
xm

l:
A

M
a

rk
 s

ix
m

l:
m

a
rk

ID
=

"E
r_

C
3

E
rr

_
0

0
2

" 
s

ix
m

l:
ta

rg
e

t=
 "

so
u

rc
e

" 
si

xm
l:

va
lu

e
S

o
u

rc
e

=
"T

ru
e

"/
>

 
<

si
xm

l:
A

M
a

rk
 s

ix
m

l:
m

a
rk

ID
=

"E
r_

C
3

E
rr

_
0

0
3

" 
si

xm
l:

ta
rg

e
t=

"d
e

sc
ri

p
ti

o
n

" 
si

xm
l:

va
lu

e
S

o
u

rc
e

=
"T

ru
e

"/
>

 
<

/E
rr

o
r>

 
<

/E
rr

o
rs

>
 

<
U

p
d

a
te

s
> 

<
U

p
d

a
te

 d
a

te
T

im
e

=
"2

0
0

8
-J

a
n

-1
2

">
<

T
it

le
x

s
ix

m
l:

T
M

a
rk

 
s

ix
m

l:
m

a
rk

ID
=

"U
p

d
_

0
1

3
2

_
ti

tl
e

" 
s

ix
m

l:
v

a
lu

e
S

o
u

rc
e

=
"T

ru
e

"/
x

/T
it

le
>

 
<

D
e

s
c

ri
p

ti
o

n
X

s
ix

m
l:

T
M

a
rk

 
si

xm
l:

m
a

rk
ID

=
"U

p
d

_
0

1
3

2
_

d
e

sc
" 

s
ix

m
l:

v
a

lu
e

S
o

u
rc

e
=

"T
ru

e
"/

x
/D

e
s

c
ri

p
ti

o
n

>
 

<
R

e
a

s
o

n
X

/R
e

a
s

o
n

>
<

s
ix

m
l:

E
M

a
rk

 
s

ix
m

l:
m

a
rk

ID
=

"U
p

d
_

0
1

3
2

"/
>

 
<

/U
p

d
a

te
>

 
<

/U
p

d
a

te
s

>
 

<
/C

o
m

p
u

te
r>

 
<

/5
S

IB
>

 

(b
) 

F
ig

ur
e 

9.
13

: T
hu

m
bn

ai
l 

of
 t

he
 t

es
t 

do
cu

m
en

ts
 i

n 
th

e 
no

rm
al

iz
ed

 s
ch

em
a.

 
SI

 is
 b

ol
de

d.
 (

a)
 A

 S
IS

R
S 

do
cu

m
en

t;
 (

b)
 A

n 
S

S
IB

 d
oc

um
en

t 

http://'http://schema.sixml.org
http://schema.sixml.org


372 

Retrieving SI using Bi-level-S is easy because the simple XPath expression " . " suffic

es (with the document root as the context node). In contrast, retrieving SI with the tra

ditional navigator requires a 96-line XSLT style sheet containing 8 templates that em

ploy 23 path expressions. Accomplishing the same task with Bi-level-A needs a 56-

line style sheet containing four templates and 11 path expressions. (The number of 

path expressions in a query is sometimes used as a measure of query complexity [70] 

and query workload [76].) 

Table 9.7 shows the time (in milliseconds) needed to retrieve SI for the SISRS and 

SSIB datasets in the normalized schema, for different navigator-document combina

tions. Figure 9.14 shows that Bi-level-S saves at least 50% time over the traditional 

navigator, and it saves at least 60% time over Bi-level-A. 

Table 9.7: Time (in milliseconds) to retrieve SI and mark associations for different navigator and 
document combinations in the normalized schema. The suffixes S and A for the bi-level navigator 
denote the query scope SI and Association, respectively. Table 7.2 describes the documents used 

Time to access SI (ms) Time to access mark associations (ms) 

Document 

SISRS-1 

SISRS-2 

SISRS-4 

SISRS-8 

SSIB-1 

SSIB-2 

SSIB-4 

SSIB-8 

Bi-level-S 
(XPath) 

5.21 

10.42 

20.83 

36.46 

78.12 

156.25 

312.50 

643.75 

Traditional 
(XSLT) 

10.42 

20.83 

41.67 

78.12 

213.54 

411.46 

848.96 

1531.25 

Bi-level-A 
(XSLT) 

12.98 

26.04 

52.08 

109.38 

276.04 

572.92 

1093.75 

2239.58 

Bi-level-A 
(XSLT) 

15.62 

31.25 

46.88 

93.75 

484.38 

640.62 

1375.00 

2520.83 

Traditional 
(XSLT) 

15.62 

31.25 

46.88 

93.75 

484.38 

718.75 

1666.67 

3333.33 

Bi-level-D 
(XSLT) 

20.83 

46.88 

78.12 

156.25 

606.42 

828.00 

1850.00 

3500.00 

Bi-level-S retrieves SI faster than the other two navigators because it examines fewer 

nodes: The traditional and Bi-level-A navigators attempt 62% more node movements 



373 

for the SISRS dataset. For the SSIB dataset, the traditional navigator attempts 93% 

more moves, and Bi-level-A attempts 73% more moves. Bi-level-S is faster also be

cause of the use of XPath: XPath returns existing nodes, whereas XSLT always con

structs new nodes (even when an existing node is to be returned as is) [177]. 

Bi-level-A is slower than the traditional navigator, despite attempting fewer node 

movements, partly due to the overhead to support bi-level navigation. It is also slower 

because of the initial work Sixml DOM performs to pair mark-association elements 

with target nodes. As in the case of traversing SI using Sixml DOM (described in Sec

tion 7.6.3.5), the performance gap between Bi-level-A and the traditional navigator 

narrows as the number of executions of a query increases and the cost of the initial 

work is amortized. We omit illustrating this phenomenon because neither Bi-level-A 

nor the traditional navigator is a viable alternative to Bi-level-S when retrieving just 

SI. 

In terms of scalability, the execution times in Table 9.7 illustrate that the performance 

of all three navigators (Bi-level-S, traditional, and Bi-level-A) scales up well with the 

number of mark associations. Similarly, Figure 9.14 shows that Bi-level-S retains its 

advantage even for large inputs. 

Retrieving SI from documents in the nested schema produced results similar to those 

obtained for the normalized schema in terms of execution time, but many more nodes 

were created due to the presence of mark descriptors. For example, retrieving SI from 

SISRS-1 created only 13,785 nodes in the normalized schema, but it created 49,083 



374 

nodes in the nested schema. The query execution times were higher due to the creation 

of additional nodes. Table 9.8 compares the time to retrieve SI for the SISRS dataset 

in the normalized and nested schemas. 

In summary, when retrieving SI from a Sixml document, cloaking mark associations 

(using Bi-level-S) saves time, and using the normalized schema saves memory. 

Table 9.8: Time (in milliseconds) to retrieve SI and mark associations for the SISRS dataset in the 
normalized and nested schemas 

Time (ms) to access SI Time (ms) to access mark associations 

using Bi-level-S (XPath) using Bi-level-A (XSLT) 

Document Normalized schema Nested schema Normalized schema Nested schema 

SISRS-1 5.21 5.21 15.62 15.62 

SISRS-2 10.42 15.62 31.25 41.67 

SISRS-4 20.83 26.88 46.88 72.92 

SISRS-8 36.46 46.88 93.75 140.62 

9.4.3.2. Retrieving Mark Associations (Q2) 

This experiment compares the performance of Bi-level-A with the traditional naviga

tor and with Bi-level-D when retrieving mark associations from a Sixml document, 

with the mark descriptor for each mark association excluded from the result. 

Retrieving mark associations requires XSLT even with Bi-level-A because XPath 

lacks the functionality needed to select custom-named mark associations associated 

with elements. (XPath does not provide a means to lookup the URI for a namespace 

prefix). The style sheet for Bi-level-A has 74 lines, 6 templates, and 17 path expres

sions. The style sheet for the traditional navigator has 138 lines, 13 templates, and 34 

path expressions. The Bi-level-D style sheet has 79 lines, 7 templates, and 17 path ex-



375 

pressions. (The style sheets for Bi-level-A and Bi-level-D are identical except that the 

latter must explicitly exclude mark descriptors from the result.) 

Table 9.7 shows the time (in milliseconds) to retrieve mark associations for documents 

in the normalized schema. Figure 9.15 shows that Bi-level-A performs at least as well 

as the traditional navigator, and it saves at least 20% of the time over Bi-level-D. 

For documents in the nested schema, the relative performance of the three navigators 

was the same as with the normalized schema, but query execution consumed more 

memory due to the presence of mark descriptors. Query execution times were also 

higher due to the time needed to instantiate additional nodes. Table 9.8 compares the 

time to retrieve mark associations for the SISRS dataset in the normalized and nested 

schemas. 

In summary, when retrieving mark associations from a Sixml document, cloaking 

mark descriptors (with Bi-level-A) saves time, and using the normalized schema saves 

memory. 

9.4.3.3. Retrieving Mark Descriptors (Q3) 

This experiment compares the performance of Bi-level-D when retrieving unique 

mark descriptors in the normalized schema and in the nested schema. In practice, this 

query is used to collect descriptors when interchanging bi-level information (as de

scribed in Chapter 10). 



376 

o 
£ in 70% -, 67% 

p
a
re

 

v
in

g
 

| | 60% -
O 0) 
*-* L. 

2 S 
I I 5 0 * -
* £ 
£S<°*-
s> 
E <= 
2 <: 30% -
£ -L 

v
e

d
 

le
v
e
 

10 . i , 
»> m 20% -
O -D 
E = 
•s a 

& S 10% -
IS O 
4* — c s 
a) -a 
o ra 
a - 0% 

60% 60% 60% ^ H 

^ H m Traditional 

^ 1 (XSLT) 

^ H BBi-level-A 

^ 1 (XSLT) 

°" SISRS-1 SISRS-2 SERS-4 SISRS-8 

(a) 

o 
* • » _ _ 

•o w 80% -, 

a .£ 
a. > 
E .2 70% -
?, -
u a> 
*—* *— 0) C 
-± a> 60% -
o £ 

72% 73% 7 1 % ? 1 % 

1 jt 
ffi | 50% -

.5 a) 
3 5 40% -
E <= 

2 f 
•5 1 30% -

Q .± 
lit 00 
« -o 20% -
£ £ 

s <o 
0) To 
1 " g 10% -

c IS ID X! 
O (0 
»- ^j no/ 

~~~^^^H •——B^B^BI 
^^^H
^^^| • • • •
^H •
^^^H
^^^| ^^^H
^ ^ H
^^^H •

^^^H
^^^H • • • •
^H •
^^^H
^^^| ^^^H
^ ^ H
^^^H •

• • • •
1
•

^ H Q Traditional

• (XSLT) • •
^ ^ k BBi-level-A
• (XSLT)

•
*• SSIB-1 SSIB-2 SSIB-4 SSIB-8

(b)

Figure 9.14: Percentage time saved using the bi-level navigator with scope SI when retrieving SI
in the normalized schema. The column labeled 'Traditional' denotes the savings over the tradi

tional navigator, 'Bi-level-A' denotes the savings over the bi-level navigator with scope
Association, (a) Savings for the SISRS dataset; (b) Savings for the SSIB dataset

377

u >c
S H 45% 1
?> £
s> 5>
| | 40%-
o o
o r ? ! 35%-

l! „.
'S.'s •>
S> o c

.£ | .2 25% -
S & 5

1! 12o% -
T> -L "

§ ? 15% -
a a 01 T
o m
E -o 10% -
- c
„ « o> •s
a g 5% -
c o

1 1 0%
l £ 0/°

40% 40%
^ _ ^ _
^^^H ^^^H

33% • • • •

^ H ^ H ^ H § Traditional
• • • • • • (XSLT) 25% • • ^M ^M
^H ^H ^H H i l l ^ 1 ^ 1 ^ 1 ^ 1 •

• • • • (XSLT) 1 1 1 1
^̂ H ^^1 ^^1 ^^1 ^^H ^^H ^^H ^^H
^^H ^^H ^^H ^^H ^^^H ^^^H ^^^H ^^^H
^^^B ^ ^ ^ | ^ ^ ^ 1 ^ ^ ^ |

^^M ^ ^ H ^ ^ H ^ ^ H
^^^H ^^^H ^^^H ^^^H

o% ^ B 0% ^ B o% • • o% ^ B
i

SISRS-1 SISRS-2 SBRS-4 SISRS-8

(a)

to

If
II

30%

25%

20% -

28%

26%

23%

20%

?5
s a It
2 c

. C,

n a>
(/> T

o> S
E -a

• •= c

a n

* 1
c o
8 *

| 1 0. -C

1 • s

ci
a

o (A
(A

a

15% -

10% -

5% -

0% -

• •
^^^B
| •
^^^H
^^H
^ ^ H I

o % ^ |
^^1

SSB-1

• •
r-M —•

l
SSIB-2

I Traditional
(XSLT)

I Bi-level-D
(XSLT)

SSB-4 SSB-8

(b)

Figure 9.15: Percentage time saved using the bi-level navigator with scope Association when re
trieving mark associations in the normalized schema. The column labeled 'Traditional' denotes
the savings over the traditional navigator, 'Bi-level-D' denotes the savings over the bi-level navi
gator with scope Descriptor, (a) Savings for the SISRS dataset; (b) Savings for the SS1B dataset

378

A mark association in the normalized schema contains only mark IDs but not mark

descriptors. Thus, it suffices to test the equality of only the descriptors of marks with

distinct IDs. In contrast, a mark association in the nested schema includes a mark de

scriptor. (As described in Section 7.4.3.1, a mark association in the nested schema

may include a mark ID, but a mark repository may employ an equivalent descriptor

with a different ID. The nested schema documents used in the evaluation do not in

clude mark IDs.) Thus, determining a descriptor's uniqueness requires that the de

scriptor be tested against all other descriptors.

If each mark ID in a normalized-schema document is used only once (as is the case

with SISRS documents), the test for equality of mark IDs always fails, giving a per

formance edge to its nested-schema counterpart. If a mark ID is reused within a nor

malized-schema document (as is the case with SSIB documents), fewer mark descrip

tors are created, giving it an edge over its nested-schema counterpart. In this context,

the speed with which mark descriptors can be retrieved from the repository (in case of

the normalized schema), and the effect of the increased number of mark descriptors (in

case of the nested schema) can influence performance significantly.

Two mark descriptors are equal if their serialized string representations are equal, but

neither XPath nor XSLT provide an easy and efficient means to perform this test. We

work around this limitation by building an on-the-fly hash index on mark descriptors.

Table 9.9 shows the time (in seconds) to retrieve unique mark descriptors for the com

plete SISRS dataset and for the document SSIB-1 in the SSIB dataset. We abandoned

379

this experiment with the other three documents in the SSIB dataset due to the exces

sive amount of time they needed to complete, and completing them would not have

given us any new insight. The last row in the table shows the savings obtained, or the

overhead incurred, by using the nested schema.

Table 9.9: Time (in seconds) to retrieve unique mark descriptors. A positive value in the last row
denotes savings from using the nested schema; a negative value indicates an overhead

Schema

Normalized

Nested

Savings (overhead) due to nested schema

SISRS-1

3.25

2.53

22.1%

SISRS-2

13.92

11.34

18.5%

SISRS-4

60.09

51.38

14.5%

SISRS-8

247.39

226.75

8.3%

SSIB-1

1638.08

3052.88

-86.3%

For the SISRS dataset, using the nested schema saves time because each mark is used

only once in a document, but the savings decline as the number of mark associations

increases because mark descriptors can be retrieved more efficiently from the persis

tent repository (thanks to MS SQL) at high volumes than retrieving them from a disk

file. The number of mark descriptors created was the same for both schemas.

For the SSIB dataset, using the nested schema causes an overhead because each mark

is used thrice within a document. Each use of the mark creates a mark descriptor in the

nested schema, but only one mark descriptor is created in the normalized schema re

gardless of the number of times a descriptor is used. For example, for SSIB-1, 38,883

mark descriptors were created in the nested schema, but only 12,961 mark descriptors

were created in the normalized schema.

In summary, when retrieving unique mark descriptors from a Sixml document, using

the normalized schema saves time and memory when a mark is used more than once

380

within the document. The nested schema saves time when marks are used only once,

but the savings decline as the number of mark associations increases.

9.4.3.4. Listing Base Documents Referenced (Q4, Q7)

Here we compare the performance of Bi-level-D when retrieving a list of unique base

documents a Sixml document references (Query Q4). In practice, this query is used

when interchanging bi-level information. (This experiment retrieves the location of

base documents, not the base documents themselves.)

Table 9.10: Time (in seconds) to list the unique base documents referenced. The results shown
correspond to Query Q4. A positive value in the last row denotes savings from using the nested
schema; a negative value indicates an overhead

Schema

Normalized

Nested

Savings (overhead) due to nested schema

SISRS-1

1.00

0.95

5.0%

SISRS-2

3.95

3.78

4.3%

SISRS-4

17.94

17.81

0.7%

SISRS-8

82.83

83.41

-0.7%

SSIB-1

1109.17

1474.05

-32.9%

To retrieve the list of unique base documents, we simply tested the uniqueness of the

location (for example, file path) of base documents. Table 9.10 shows the time (in

seconds) to retrieve the list of unique base documents. The last row shows the savings

obtained, or the overhead incurred, by using the nested schema. Not surprisingly, the

results are similar to those obtained in the experiments to retrieve unique mark de

scriptors.

We also evaluated the following simple XPath expression (Query Q7) over SSIB doc

uments to retrieve a list of base documents referenced by attributes of "security"

events:

SSIB/Computer/Events/Event[@kind='Security1]/@*//sixml:Descriptor/Doc

381

The result of this query is empty because no SSIB document tested contains a

"security" event. No marks need to be instantiated when evaluating this query because

all components of the path expression up to @kind=' Security' /@* reference only SI

nodes, and no SI node satisfies these components.

When evaluating this expression, indeed, no marks were instantiated for documents of

either schema. No mark descriptors were instantiated when using the normalized

schema, but all mark descriptors in the input document (38,883 for SSIB-1) were in

stantiated for the nested schema.

9.4.3.5. Focused and Unfocused Path Expressions (Q5)

This experiment illustrates the ability to employ unfocused path expressions, yet avoid

some of the performance penalties associated with such expressions.

A focused path expression is an expression that guides the query processor strictly

along the path of interest. An unfocused path expression does not guide the processor

in this manner. Table 9.11 lists an example expression of each kind of expression. Ac

tivities such as data exploration and ad-hoc querying are easier with unfocused expres

sions.

A focused expression causes fewer navigator movements, but is sensitive to schema

revisions. An unfocused expression causes more navigator movements, but tends to be

resilient to schema revisions and is easier to develop. Cloaking can reduce the number

of navigator movements for unfocused expressions, thereby reducing query-execution

effort while making it easier to express queries.

382

Table 9.11: Number of navigator movements attempted to retrieve comment text. The results
shown correspond to Query Q5 evaluated over the document SISRS-1

Path expression Traditional Bi-level-S Savings due to Bi-level-S

Focused: /Reviews/Paper/Comment/text () 7742 5834 33%

Unfocused://text () 13521 9705 39%

Table 9.11 shows the number of movements Bi-level-S and the traditional navigator

attempt when evaluating equivalent focused and unfocused expressions to retrieve

comment text from a SISRS document (Query Q5). The last column shows the percen

tage savings in navigator movements (over the traditional navigator) due to Bi-level-S.

Bi-level-S makes fewer movements because it cloaks mark associations.

9.4.3.6. Micro Queries (Q6, Q8)

This experiment illustrates the benefits of using micro queries. A micro query is a

query used to derive the value of an SI node from the context of marks using the mark

association attributes valueSource and valueExpression (as described in Section

7.4.3.4). For example, in Figure 9.13(a), the value of the attribute title in the element

Paper is the text excerpt retrieved from the associated mark. In Figure 9.13(b), the text

content of the element Description inside an Event element is the content of the 9th

column of a spreadsheet row.

A micro query implicitly obtains context information even with the query scope set to

SI. Without micro queries, a bi-level query needs to use path expressions that navigate

explicitly to context information, but doing so requires that the navigator scope is set

to Context. As demonstrated in experiments described thus far, the narrower query

383

scope (SI) possible with micro queries improves query execution in several cases (be

cause the query processor potentially visits fewer nodes).

Table 9.12 compares the query-execution performance with and without micro que

ries, when retrieving paper titles (Query Q6) from the document SISRS-8, and when

creating a timeline of "application hang" events (Query Q8) from SSIB-8. The first

version of each query exploits the micro queries employed in Figure 9.13. The second

version explicitly accesses context information. The table shows that using micro que

ries saved 17.3% time for Q6 and 85.3% time for Q8.

In summary, micro queries provide an easy and efficient means of integrating parts of

context information into SI.

Table 9.12: A comparison of the performance of queries that exploit micro queries with queries
that do not. All queries were executed over normalized-schema documents

Query Scope Time (ms) Movements

Q6: Retrieve paper titles (SISRS-8)

/Reviews/Paper/@ti t le SI 2765.62 1282

/Reviews/Paper /@ti t le /* /Context /Content /Text Context 3343.75 10179

Q8: Create a timeline of "application hang" events (SSIB-8)

XSLT style sheet using micro query SI 625.00 374

XSLT style sheet without using micro query Context 4250.00 758

9.4.4. Evaluation Summary

Our implementation of the bi-level navigator establishes the feasibility of our repre

sentation choice and our design of the navigator. The applications described in Section

9.4.2 and the queries used in the experimental evaluation illustrate that the bi-level na

vigator is of general purpose.

384

The experimental evaluation highlights the following aspects:

• The bi-level navigator works with existing query processors to support the full

range of queries possible in XPath and XSLT. Bi-level queries can be expressed

without using any extensions to the query language.

• The bi-level navigator performs better than the traditional navigator when retriev

ing the SI portion of a Sixml document. It performs at least as well as the tradi

tional navigator when retrieving mark associations.

• The normalized schema provides better performance than the nested schema in

most cases. The nested schema performs better for queries that examine mark de

scriptors in smaller documents, but it generally increases the memory footprint.

• Cloaking makes query expression easier, and it can provide significant time and

memory savings. It reduces the performance penalties for unfocused path expres

sions, making activities such as data exploration easier.

• Micro queries embedded in Sixml documents provide an easy and efficient means

to integrate context information with SI even when context information is cloaked

to the query.

9.5. Related Work

In this section, we provide an overview of two systems (Active XML and MetaXPath)

related to bi-level querying. We also compare our approach to traditional data integra

tion approaches and to two tools for producing data mash-ups.

385

9.5.1. Active XML

Section 7.7.1.2 introduced the representation aspects of Active XML (AXML) [3].

Here, we give an overview of the query-processing aspects of AXML. For ease of

reading, we repeat here parts of the text from Section 7.7.1.2.

AXML [3] provides a means to describe parts of an XML document intensionally us

ing service-call elements that encode calls to web services [161] (which provide a

means of executing code located on a remote computer). The following is a hypotheti

cal AXML representation of a part of the information in the element Comment in Fig

ure 7.1.

<Comment xmlns:axml="http://activexml.net">
<axml:sc>sixml.org/getExcerpt(<mark ID="23">)</axml:sc>

</Comment>

The element axmhsc denotes a service call, and its child elements denote service pa

rameters. The URI sixml.org/getExcerpt identifies a hypothetical web service to ob

tain the text excerpt of a mark. An AXML service-call element is similar to our mark-

association element.

AXML uses a special query processor to execute service calls. At run time, this query

processor replaces each service-call element by the XML element the web service re

turns. For example, the following AXML fragment shows a possible result of execut

ing the example service call. Here, the result element Excerpt has replaced the service-

call element.

<Comment xmlns:axml="http://activexml.net">
<Excerpt>provides...</Excerpt>

</Comment>

http://activexml.net
http://sixml.org/getExcerpt
http://activexml.net

386

The AXML query processor completes service calls lazily, so that only the calls

needed to answer a query are completed. It achieves this goal by analyzing the query

(to determine the service calls in the path of a query), and by comparing the type in

formation associated with a service call to the type of the information that the corres

ponding web service returns. The query processor might also push some predicates to

web services to reduce the number of replacement operations performed over the input

tree. Also, the processor can invoke web services in parallel to reduce the overall

query-execution time.

AXML extends XQuery so that service-call elements can be queried. For example, the

path expression comment/getExcerpt () selects the service-call elements contained in

the element Comment. Here, the extension is to allow the use of parentheses to indi

cate access to a service-call node, instead of accessing the result from a service call.

However, it is unclear how a service call can be queried after it has been replaced by

its results. (No query-language extension would be needed to access a service-call

node if the result were inserted as a child of axml:sc.)

We do not use a special query processor, but only a special navigator, to facilitate que

ries, and queries are expressed in existing query languages. Also, mark associations

can be queried even after external data is added to the document.

The AXML query processor and the bi-level query processor both lazily expand a

source document. Both processors retrieve external data only if a query needs that da-

387

ta, but only the AXML processor pushes predicates on external data to the external

source (potentially reducing the amount of external data retrieved).

The path expression / * provides an interesting point of comparison for the two query

processors. When evaluating this expression, the AXML query processor evaluates all

the service calls embedded in the source document, even if the user wishes to examine

only the service-call nodes. With the bi-level query processor, the user can set the

scope of the query so that no external data is retrieved if he does not wish to examine

external data.

9.5.2. MetaXPath

MetaXPath [40] extends the XPath data model to allow metadata to be associated with

a node. The metadata of a node is a document also represented in the MetaXPath data

model. Thus, a node in the metadata document may have its own metadata.

Figure 9.16 shows a data document and its metadata represented in the MetaXPath

data model. The data document is shown under the heading Level 0; the metadata

document for the nodes in Level 0 is shown under the heading Level 1; and the meta-

metadata document is shown under the heading Level 2. For brevity, the document in

Level 2 is not shown completely.

MetaXPath adds a property called "meta" to element nodes and nodes that can be

children of an element node. A node uses this property to reference its metadata doc

ument. A node inherits this property from its parent, but the inherited value may be

388

overridden. An attribute cannot have metadata, because only an element node and its

children may have the "meta" property.

Level 0 Level 1 Level 2

2 :::^9 *•

~ - ^ i

Figure 9.16: Example data document with metadata populated using the MetaXPath data model.
A dashed arrow indicates connection between a node and its metadata document

The dashed arrows in Figure 9.16 indicate the use of the "meta" property. The element

Y has the same metadata as its parent X because Y does not override the inherited me

tadata. The text child of X has its own metadata.

MetaXPath extends XPath by the level-shift operator A, which navigates from the cur

rent node to the root node of the metadata document for the current node. For exam

ple, the path expression /X/AMX returns the metadata element MX. However, no means

is defined to navigate from a metadata node to its data nodes.

MetaXPath serializes each document and metadata document as a separate XML doc

ument, but it does not define a means to specify the connection from a node to its me

tadata document. Also, it does not define an API to create this connection at run time.

MetaXPath supports a limited form of cloaking, because a node's metadata is visible

only when the level-shift operator is used. For example, the expression x returns only

389

the element X. However, there is no way to cloak data within a document. For exam

ple, the expression x returns X including the text node and Y.

The property "meta" can be used to associate mark associations, and the level-shift

operator can be used to navigate from an SI node to its mark associations. However,

this approach limits the node types with which marks may be associated, and it does

not allow navigation from a mark association to its target node.

9.5.3. Data Integration Systems

Data integration is the process of unifying data in different sources to present a single

view of the unified data. Traditionally, data integration involves specification of map

pings at data model, schema, and semantic levels [133]. Bi-level querying can be seen

as providing data integration, but it does not perform schema mapping or semantic

mapping. It does transform data from base information models to match the SI model.

Using the traditional data-integration approach typically requires much design-time

effort. Thus, it is not suitable for situational applications [75] (which are applications

developed for a small group of users and often designed to be short-lived) and for

most mash-ups. Our "lightweight" approach is better suited for these applications. For

example, the SA Superimposed Scholarly Review System (SISRS, described in Sec

tion 4.9.2) can be used for a specific conference without much up-front effort. Similar

ly, a mash-up that displays a campus map that includes information retrieved from

web pages of different academic departments is easily assembled using our system.

(One such mash-up is available at http://sparce.cs.pdx.edu/cmap.)

http://sparce.cs.pdx.edu/cmap

390

The traditional data-integration approach typically requires each source to present a

single schema, but that expectation might not be reasonable for some applications. For

example, in the SISRS application, a paper being reviewed can be broken down in

several ways: pages and lines; or, sections, paragraphs, sentences, and words. Choos

ing a single schema in this application also forces a single addressing scheme. Our ap

proach allows different schemas to be superimposed over the same source.

Using our approach does not preclude the use of traditional data-integration approach

es. Initially using our lightweight approach, and gradually integrating some sources

using the heavy-duty traditional approach, would be consistent with a "Pay-as-you-go"

approach [87] to data integration.

9.5.4. Tools to Produce Data Mash-ups

Damia [145] is a tool to produce data mash-ups from XML sources and from sources

that can be transformed to XML. (A data mash-up is a document that contains infor

mation drawn from different sources [120].) Each source is transformed to XML and

represented using a variation of the XQuery data model [175], and parts of the trans

formed XML are processed using special operators. A mash-up may use only parts of

a source, but the complete source is transformed to XML.

In contrast to Damia, in our approach, only the base parts that a mash-up uses (for ex

ample, just the sub-documents referenced; not the entire containing documents) are

transformed to XML, and the transformation is on demand. Also, the transformed

391

XML can be processed using existing query languages and query processors. (Section

11.2.1 further discusses the operations on data mash-ups.)

Yahoo! Pipes [180] is a visual editor to assemble data mash-ups using complete in

formation sources, not fragments. It supports operations such as sort and filter over

web feeds, but it does not support the expression and manipulation of a mash-up using

standard XML tools. (Yahoo! Pipes might internally represent a network of pipes as

XML, but that representation is not exposed.)

In general, both Yahoo! Pipes and Damia are designed to assist non-technical people

in assembling mash-ups. In contrast, our approach allows a developer to produce

mash-ups, and might form the basis for a tool such as Yahoo! Pipes and Damia.

9.6. Summary and Conclusions

In this chapter, we have presented the design, implementation, and evaluation of a bi-

level navigator for use with traditional XML query processors to evaluate bi-level que

ries over Sixml documents. Our design separates query evaluation from tree naviga

tion, making it possible to use custom navigators based on application needs. We use

one such custom navigator to enable bi-level querying.

Our bi-level navigator design also allows the navigator to internally represent a Sixml

document as a Sixml DOM tree. Using Sixml DOM simplifies the design of the navi

gator and it allows the navigator to exploit the following features of Sixml DOM: the

use of the bulk accessor to retrieve context information, on demand retrieval of mark

392

descriptors and context information, and caching of mark descriptors and context in

formation.

Table 9.13: A summary of capabilities that the different combinations of XML tools provide to a
developer in a bi-level query setting. The entry A* in the column "Information queried" means
the query must explicitly recognize mark associations. The entry "SI (auto)" in the column
"Cloaks possible" means the scope is automatically SI because the traditional navigator cannot
recognize mark associations

Document
type

XML

Sixml

Sixml

Sixml

Sixml

Schema

Any

Normalized

Nested

Normalized,
nested

Normalized,
nested

DOM kind

XML/Sixml

Either

XML

XML

Sixml

Sixml

Navigator type

Traditional/Bi-level

Either

Either

Either

Traditional

Bi-level

Information
queried

SI

SI, A*

SI, A*, D

SI

SI, A, D, C

Cloaks
possible

None

None

None

SI(auto)

SI, A, D, C

Micro
queries

No

No

No

Yes

Yes

Both Sixml DOM and the bi-level navigator are designed to intemperate with DOM

and the traditional navigator. They also support both the nested schema and the nor

malized schema. An SA developer can choose the DOM, navigator, and schema com

bination that is appropriate to the task at hand. For example, the developer may ex

ecute different queries over the same document instance using either the bi-level navi

gator or the traditional navigator. He can also mix mark associations in the nested

schema and the normalized schema in the same document. Table 9.13 summarizes the

different capabilities the various combinations of these components and the two sche-

mas provide to a developer.

The bi-level navigator, together with the Sixml representation and Sixml DOM, satis

fies all the seven goals we set in Section 5.3.1 for transformation of bi-level informa

tion in the XML model:

393

• An SA developer is free to use any SI schema (Goal Gl), and associate any num

ber of marks with any part of SI (G2). The developer can choose to indicate only

mark associations in a document and omit mark descriptors, or embed mark de

scriptors in the document, or use a combination approach (within the same docu

ment).

• Most bi-level queries are executed more efficiently (G3) than possible with the

traditional navigator. If needed, the developer may switch to the traditional naviga

tor to query the same document instance.

• Query execution performance scales up well to large documents involving thou

sands of marks (G4).

• Navigation from SI to marks to mark contexts is done naturally using path expres

sions (G5).

• Cloaking preserves queries over SI and their results (G6).

• No new operators or functions are needed to express bi-level queries (G7).

In terms of performance, the bi-level navigator performs better than the traditional na

vigator in many cases. The traditional navigator is better when retrieving mark associ

ations from smaller documents, but it does not automate bi-level querying tasks such

as recognizing mark associations and retrieving context information. Also, it does not

support cloaking. We have shown that cloaking improves query execution in many

cases.

394

Several improvements to the bi-level navigator are possible. For example, we current

ly allow specification of one scope for an entire query. This approach has proven quite

useful in improving query efficiency, but assigning different scopes to different parts

of a query can further improve performance for some queries.

For instance, consider the task of retrieving mark associations for all SI attributes.

Currently, the path expression //&*/* accomplishes this task if the query scope is set

to Association, but the query processor examines non-SI attributes even though they

cannot have marks. An improvement would be to use the scope SI to retrieve attributes

and then to use the scope Association to retrieve mark associations. For example, we

might use the expression scope-A(scope-si (//%*) / *) , where the function

scope-si executes its argument expression in scope SI, and the function scope-A ex

ecutes its argument in the scope Association.

This proposed extension violates our Goal G7 for bi-level querying by introducing

new functions to the query language, but it can improve query execution. For example,

in the current approach, the navigator attempts 29,581 movements to retrieve mark

associations for all SI attributes in the document SISRS-1. In contrast, the new ap

proach would attempt only 16,226 movements, a savings of over 45%.

This possibility for improvement motivates our future work on formalizing and im

plementing assignment of scope to query parts.

395

This chapter concludes our discussion on transformation of bi-level information.

Chapter 10 discusses the use of the results from this chapter (especially, Queries Q3

and Q4) in interchanging bi-level information among SA users.

10. Interchanging Bi-level Information

This chapter discusses a means to interchange bi-level information among SA users. It

introduces the notion of Si-dependency graphs and describes a run-time service that

can be used with any SA to interchange bi-level information.

Thus far in this dissertation, we have used the term bi-level information to mean SI

and the referenced base parts. However, in this chapter, we use that term to mean SI

and the referenced base documents.

10.1. Introduction

Several situations exist where interchanging SI would be beneficial: collaboration,

publishing and archiving (for example, depositing a Sidepad document in a digital li

brary collection), studying an expert's comments, reviewing a paper, and moving in

formation from one computer (setting) to another. Our experience building SAs has

shown us that the task of interchanging SI is non-trivial and that a run-time service to

interchange SI can save much SA-development effort.

Interchanging SI means interchanging bi-level information because fully exploiting SI

requires access to the referenced mark descriptors and base documents. For example,

activating the mark attached to a Sidepad item received from another user requires that

the descriptor for the mark associated with the item, and the corresponding base doc

ument also be accessible from the receiver's computer.

Though we discuss interchanging bi-level information, for ease of writing, we use the

phrase "interchanging SI" in the rest of this chapter.

397

Some of the challenges in interchanging SI are due to the use of an identifier (ID) in SI

to reference a descriptor in a repository, and due to the differences across computers in

the location of base documents. (For example, one user might store base documents on

a local disk; another might save them on a network drive.) Other challenges are due to

our desire to support interchanging of SI in any schema and data model.

One way to interchange SI is to use a shared descriptor repository and a shared base-

document repository. (Section 3.2.2 introduced the notion of descriptor repository.)

This approach necessitates an access-control mechanism, because users might wish to

share only some of the SI, and with only some users. Further, it would not address the

need to share across "SI worlds" (caused by different repositories), and it would not

facilitate disconnected operations. For example, a researcher might need to work of

fline when traveling.

The 'Save As Web Page, complete' (or just 'Save As') feature in web browsers such

as Firefox [46] to save a web page to a user's local disk suggests an alternative solu

tion. This feature also serves to illustrate some of the considerations for a service to

interchange arbitrary SI.

When the user invokes the 'Save As' feature in a web browser (as observed in Firefox

1.5 [46] and MS Internet Explorer 7.0 [95]), the browser saves the source web page to

a local folder the user chooses. It also saves the resources (such as images and frames)

that the saved page contains to a resources folder in the same folder where the web

page is saved. For example, if the user saves a web page with the title 'index' to the

398

folder C:\Out, the browser saves the resources to the folder C:\Out\index_fiies.

After creating the resources folder, the browser alters the saved copy of the web page

to use the contents of the resources folder. It also replaces each relative URL (that is, a

URL that does not specify a server) in the saved page with an absolute URL.

To interchange the saved web page, the user sends the saved page and the resources

folder to other users. A receiver is free to save the received page in any folder on his

local disk, but he must save both the page and the resources folder to the same folder.

For example, if the receiver saves the page in the folder E : \ in, he must also place the

resources folder inside the folder E : \ in .

An SA-independent service to interchange arbitrary SI cannot directly use a web

browser's 'Save As' approach because it entails the possibility of changing IDs of de

scriptors (as will be described in Section 10.4). Changing descriptor IDs in turn would

require changes to SI (to reflect the changed IDs), but the interchange service cannot

alter SI because, by design, it is unaware of the SI models.

Figure 10.1 shows a reference model for our run-time service to interchange arbitrary

SI. The dashed arrows indicate data flow. The service consists of two parts. A packing

part places the SI document, and the descriptors and (optionally) the base documents

on which the SI document depends, into a single SI package file. An unpacking part

lets a package receiver extract the SI document and base documents to any accessible

location, and updates the receiver's descriptor repository, all without altering SI. The

receiver need not follow the sender's folder structure for the received documents. In

file://C:/Out
file://C:/Out/index_fiies

399

fact, the receiver may extract each base document to a different folder (or drive or

computer), if desired.

Packing at sender

Bi-level Query Processor

T
SA

Descriptors
Pack J SI Package

Descriptors
Repository

Base
Docs

SI
Files

Unpacking at receiver

Bi-level Query Processor \-

I
i .

CD

Q

Advice to user
on software

needed

P

Base
Docs]}

~r
i
i
i

±

Unpack , <»
I 3

SI
Files

Figure 10.1: A reference model for the run-time service to interchange bi-level information

Notable aspects of the interchange service are:

• A package file is modeled as an Si-dependency graph (described in Section 10.2).

• The packing process (described in Section 10.3) uses the bi-level query processor

to analyze the information dependencies of the SI to be packaged.

• The packing process can package SI for any SA able to supply SI as files.

• The unpacking process (described in Section 10.4) can unpack SI packages for any

SA. In fact, as seen in Figure 10.1, an SA is not involved in the unpacking process.

• The service works with SI that uses IDs to reference descriptors in a repository

and with SI that directly includes mark descriptors.

400

An SI package does not include application software (code). A receiver needs to have

the necessary software such as SAs, base applications, and context agents. The un

packing process does advise the receiver as to the base applications and context agents

on which the unpacked SI depends.

10.2. Si-Dependency Graphs

In this section, we informally introduce the notion of Si-dependency graphs. An SI-

dependency graph is a directed acyclic graph we use to model an SI package. It pro

vides a conceptual basis for our approach to interchanging SI.

Figure 10.2 shows a partial Si-dependency graph for the Sidepad document shown in

Figure 1.3. Dashed horizontal lines distinguish different regions of the graph. The

nodes in the region labeled SI represent the SI to be interchanged. The nodes in the

Descriptors region denote the distinct descriptors SI references and the descriptors the

referenced descriptors depend on, and so on. For example, the SI items S1 and S2 ref

erence the mark descriptor M4. M4 in turn references the document descriptor D6,

which in turn references the application descriptor A8. (Figure 3.4 shows this organiza

tion of descriptors.)

The nodes in the Base region denote the distinct base documents that the document

descriptors reference. A base document might reference other documents. For exam

ple, a web page might reference an image file. Nodes in the External region denote

such external documents, and dotted arrows indicate references to external documents.

401

Edges in an Si-dependency graph denote information references. We have annotated

representative edges in Figure 10.2 to indicate how the various references are materia

lized: An SI element (such as a Sidepad item) references a descriptor using its ID. A

descriptor also references another descriptor using an ID. A document descriptor ref

erences a base document using a "path", such as a file-system path or a URL. A base

document may reference an external document using any mechanism such as URLs

and links in the Object Linking and Embedding protocol (OLE) [18].

External

Figure 10.2: An Si-dependency graph

We now discuss the acyclic nature of an Si-dependency graph: Edges within the SI

region may contain cycles, but we ignore all edges within the SI region because we

wish to interchange SI without knowledge of the SI semantics. That is, for the purpose

of interchanging SI, we can assume that the SI region has just one node and that all

edges from the SI region to the Descriptors region originate from that node.

By design, the edges within the Descriptors region cannot cause cycles. Similarly, an

edge between SI and a descriptor cannot cause cycles, nor can an edge between a doc

ument descriptor and a base document.

(eiy

402

Edges within the Base region may contain cycles, but we ignore them because those

edges are handled outside our service. We ignore the nodes in the External region and

the edges to and from those nodes because they too are handled outside our service.

For example, in Figure 10.2, we ignore the node E11 and its incoming edge. Analyzing

these edges would allow us to build a more complete package, but such analysis is not

central to sharing SI. That is, for the purpose of interchanging SI, we can assume that

the External region does not exist.

10.3. Creating Packages

The packing process analyzes information dependencies by examining the descriptors

used by the SI to be interchanged. For this purpose, the SA must provide the packing

process a Sixml document containing the mark associations for the SI to be inter

changed. This document does not need to represent the SI, and it can use any type of

mark association. The need to supply this Sixml document does not mean the SA must

store its SI as Sixml data, but an SA that represents its SI as Sixml data has an advan

tage, because it may supply the SI document as is.

For example, the Sidepad application stores its SI in a proprietary format, but to inter

change a Sidepad document, it prepares a Sixml document that describes only the

mark associations used in the Sidepad document. Figure 10.3 shows a Sixml document

that describes the mark associations for the three Sidepad items depicted in Figure

10.2. This Sixml document does not at all represent the organization of information in

a Sidepad document (for example, groups and items are not discernible), but it ex-

403

presses all the mark associations used. Also, it uses the simplest mark-association

type, EMark, to express mark associations.

<Marks xmlns:sixml=
<sixml:EMark
<sixml:EMark

</Marks>

sixml
sixml

"http://schema.sixm!
:markID=
:markID=

"M4"/>
"M5"/>

.org">

Figure 10.3: A Sixml document describing the mark associations an SI document uses

In contrast, the SA SuperMix (introduced in Section 1.2.2) represents its SI as a Sixml

document. Thus, it can supply its SI document, as is, to the packing process.

The packing process proceeds in four phases: gathering descriptors, gathering base

documents, gathering SI, and packaging.

Phase 1: The packing process retrieves unique descriptors by executing a variation of

the bi-level query Q3 described in Section 9.4.3.3. The query is executed over the

Sixml document that the SA provides.

Phase 2: The packing process executes the bi-level query Q4 described in Section

9.4.3.4 to retrieve the list of unique base documents referenced. It then allows the SA

user to choose which of the referenced base documents to include in the package. For

example, the user might include base documents stored on his local file system, but

leave out documents available on the web. However, a descriptor for a base document

is included in the package even if the document itself is excluded. For example, in

Figure 10.2, the document descriptor D7 would be included even if the user excludes

its base document B10. As Section 10.4 shows, a document descriptor for an omitted

http://schema.sixm

404

document needs to be included to ensure consistency of the receiver's descriptor repo

sitory.

Phase 3: The SA provides to the packing process the path to the file that contains the

SI to be interchanged. The SA and its user may include additional files in the package.

For example, when packaging the Sidepad document in Figure 1.3, the user can also

include the transformation shown in Figure 1.5. The packing process does not analyze

the contents of these files. In the rest of this chapter, we refer to these files as SI files.

Phase 4: In this phase, the packing process first prepares an XML document called the

manifest that lists the contents of the SI package. It also includes in the manifest the

unique descriptors extracted in Phase 1. The packing process then bundles the manif

est, the base documents selected in Phase 2, and the SI files selected in Phase 3 into a

single SI package file. The SA user can then send this package file to other users.

An SI package file realizes an Si-dependency graph, but without the following graph

elements: nodes in the Base region related to the documents excluded in Phase 2;

nodes in the External region; and the edges into and within the External region. For ex

ample, the SI package file corresponding to the graph in Figure 10.2 would not include

the nodes B10 and E11 and the edge incident to E11 (assuming the user omits B10; E11

is omitted because it is an external document).

10.4. Unpacking Packages

We now describe the process of unpacking an SI package. We begin with an introduc

tion to some necessary concepts and terms.

405

10.4.1. Concepts and Terms

Consistent descriptors: A descriptor is consistent if the corresponding base part can

be "activated": An application descriptor is consistent if the corresponding base appli

cation can be launched; a document descriptor is consistent if the corresponding base

document can be opened in an appropriate base application; a mark descriptor is con

sistent if its document descriptor is consistent and the context of the subdocument the

mark descriptor identifies can be accessed.

A descriptor repository is consistent if all descriptors in the repository are consistent.

We assume that the descriptors in an SI package come from a consistent repository

and that the unpacking process updates a consistent repository. Under these condi

tions, the unpacking process leaves the updated repository consistent. The repository is

allowed to be inconsistent during the unpacking process.

Known and New Descriptors: A descriptor in a received manifest is known to the

receiver if a descriptor with the received descriptor's ID is in the receiver's repository.

Otherwise the received descriptor is new. It is safe to determine a received descriptor's

"newness" using its ID because the ID is globally unique (as mentioned in Section

3.2.2).

A version of a received descriptor could already be in a repository for several reasons.

For example, the package might contain an updated version of a previously received

SI document, and some of the descriptors previously received are received again.

406

A received base document is known if the corresponding document descriptor is

known. Otherwise, the base document is new.

Conflicting Descriptors: A known descriptor causes a conflict if it is not equal to its

repository counterpart. Two descriptors are equal if their serialized string representa

tions are equal.

Application descriptors are unlikely to cause conflicts because a different descriptor is

maintained for each version of the application. Also, changes to an application de

scriptor do not affect dependent descriptors (that is, descriptors that reference the ap

plication descriptor) or SI because the descriptor is always referenced by its ID.

Conflicts in document descriptors are frequently due to differences in base-document

locations. For example, with the Si-dependency graph in Figure 10.2, the document

descriptor D6 causes a conflict if the location of its base document (B9) in the received

version is c: \Out, but the location is E : \ in in the receiver's repository.

10.4.2. The Unpacking Process

The process of unpacking an SI package proceeds in four phases: adapting the manif

est to suit the receiver's environment, extracting base documents, updating the receiv

er's descriptor repository, and extracting SI files.

Phase 1: This phase alters the received manifest to resolve conflicting descriptors

(present in the manifest) and to reflect the receiver's choice of base-document loca

tions. It also determines which of the received descriptors need to be added (from the

407

manifest) to the receiver's descriptor repository. All changes to the manifest are made

in memory so that the package can be reused, if necessary.

The following kinds of changes may be made to the manifest:

• Assign a new ID to a conflicting document or application descriptor, and update

dependent new descriptors to reflect the new ID. For example, if a document de

scriptor is assigned a new ID, the dependent new mark descriptors are updated to

reference the new document-descriptor ID.

• Remove from the manifest the descriptors for mark associations in the nested

schema, because those descriptors are directly included in SI and are to be re

trieved at run-time from the SI document, not from the descriptor repository. (Sec

tion 3.2.2 describes the storage choices an SA has about descriptors.)

• Remove known mark descriptors (from the manifest) because of the consistency

assumption.

• Remove known application descriptors that do not cause conflict because no user

action in the unpacking process can change these descriptors.

• Retain known document descriptors, even if they do not cause conflicts, because

the user has several choices for a known base document: He may ignore the docu

ment, overwrite his version of the document with the version in the package, or ex

tract the document to a new location. Note the user's choice for each base docu

ment corresponding to a document descriptor.

c Start 3

Yes

Test for conflicts
due to attributes
other than document
location

No

Yes

For each document
descriptor D in

package

c Abort

Obtain new location,!
update location in D

Assign D a new ID

Reflect D's new ID
in dependent new

mark descriptors (in
memory)

Yes

J>

Obtain new location
for base document

Update location in D

[Tag D for addition to
repository

End For each

c Stop D
gure 10.4: A procedure to process document descriptors when unpacking an SI package

409

In effect, this phase leaves only new descriptors in the manifest and it alters conflict

ing known descriptors in the manifest such that they are new to the receiver's reposito

ry-

Figure 10.4 outlines the process of determining the document descriptors to add to the

repository and the process of assigning a location to each base document. Each docu

ment descriptor that passes through the box labeled 'Tag D for addition to repository'

(the box with thick borders) is added to the receiver's repository.

Phase 2: In this phase, each new base document and each known base document that

the user chooses to extract is extracted to the location the user chooses.

Phase 3: This phase adds all descriptors left in the changed manifest to the receiver's

descriptor repository.

Phase 4: This phase extracts each SI file in the package to a location the user indi

cates.

10.4.3. Exceptions

We now discuss two kinds of exceptions that might arise during and after the unpack

ing process. The unpacking process warns the user of these exceptions.

A descriptor embedded in an unpacked SI document can cause exceptions if the user

extracts the descriptor's base document to a location different from that indicated in

the descriptor. (The unpacking process does not alter SI.)

410

Assigning a new ID to a conflicting document or application descriptor (as is done in

Phase 1 of the unpacking process) can cause exceptions if the SI document also refer

ences the conflicting descriptor. For example, assume the Sidepad item S2 in Figure

10.2 references the document descriptor D6 instead of referencing the mark descriptor

M4. Assume D6 causes a conflict and that the conflict is resolved by assigning this de

scriptor the new ID D12. Now, the unpacked Sidepad item S2 would reference the re

pository version of descriptor D6, not the version that was received and given a new

ID.

This exception is avoided if SI references a document or an application indirectly us

ing the object model described in Section 3.2.4, or by using a bi-level query over a

mark. However, indirectly referencing descriptors in this manner requires that the SI

document also reference at least one mark in the document to be indirectly referenced.

(To indirectly reference an application, the SI document must reference at least one

mark in some document that uses the application.) Section 10.7 explores an alternative

solution that does not have this requirement.

10.5. Evaluation

We have implemented the Si-interchange service described in this chapter in a com

ponent called SuperPack as an ActiveX server using Microsoft Visual Basic 6.0 [101].

The component creates package files as cabinet files using the Microsoft Cabinet

Software Development Kit [94]. A cabinet file is a compressed archive of disk files,

and is frequently used to bundle software installation files.

411

SuperPack is integrated into both Sidepad and SuperMix. We have used the integra

tion to share Sidepad documents with research partners. With assistance from our re

search partners at Villanova University [60], we have also used SuperPack in combi

nation with the bi-level query capability to add Sidepad documents to digital-library

collections.

We have used SuperPack from SuperMix to share compositions with friends. For ex

ample, we shared the SuperMix composition described in Section 1.2.2 with friends in

Germany to introduce them to traditional South Indian weddings (before the friends'

arrival in India for such a wedding).

Integrating SuperPack into an SA is quite easy: The developer needs to add a refer

ence to the SuperPack component library in his application, and call just one method

(often using just one line of code) to initiate package creation. For example, the fol

lowing line of Visual Basic code is used in SuperMix to package a composition:

SuperPack.Pack(compositionFilepath, compositionDoc)

The first parameter supplies the path to the disk file containing the composition to be

packaged. The second parameter is a reference to the Sixml document listing the mark

associations used in the composition. In this case, the second parameter is the compo

sition document itself, because SuperMix represents a composition as a Sixml docu

ment and manipulates it using Sixml DOM. (In contrast, Sidepad needs to construct a

Sixml document such as that shown in Figure 10.3 for the second parameter, because

it represents a document in a proprietary format; not as a Sixml document.)

412

No code is required in any S A to unpack a package (because unpacking is independent

of an SA). SuperPack extends the MS Windows shell so that a user can initiate the un

packing process by simply double-clicking on a package file.

We share an anecdote [122] that illustrates the flexibility and reusability of the pack

ing and unpacking processes: Some of our collaborators were in the process of devel

oping the SA called SIMPEL [123], and they needed us to test an early version of the

application. They had created a couple of test documents in SIMPEL, but they could

not package them because they had not yet integrated SuperPack into SIMPEL.

To work around the inability to interchange the test documents, our collaborators

created a proxy Sidepad document using the same set of marks the test documents

used, created a package file from the Sidepad document using SuperPack (already in

tegrated into Sidepad), and sent us the package file. They also sent us the test SIMPEL

documents as mail attachments. We unpacked the received Sidepad package to update

our descriptor repository and to retrieve the base documents that the test SIMPEL

documents referenced. We discarded the proxy Sidepad document and successfully

used the test documents in SIMPEL.

Through these applications and experiences, we are convinced that SuperPack satisfies

the relevant application capabilities and architectural qualities listed in Sections 1.1

and Section 2.1.3, respectively.

10.6. Related Work

We now briefly review some systems related to the Si-interchange service.

413

Our approach to sharing SI is similar to the 'Save As' functionality some web brows

ers provide, but it is also quite different from that functionality as outlined in Section

10.1. We now illustrate a limitation in the web browsers' approach to interchanging

web pages.

We mentioned in Section 10.1 that web browsers alter relative URLs in a saved web

page to absolute URLs, but this action can change the navigation structure of the saved

page. For example, assume the page http:/ /pdx.edu/index.htmi references the

page friends.html using a relative URL. If a user saves the former page to his local

disk, the browser changes the relative URL friends.html to the absolute URL

ht tp: / /pdx.edu/fr iends.htmi, possibly changing the web page author's intentions

for the navigation structure: The author intends to link pages in the same folder of a

computer, not pages on two different computers.

Microsoft PowerPoint includes a facility called 'Package for CD' [4] to package a

presentation file and the files the presentation references (limited to two levels deep).

However, this facility can package only a PowerPoint presentation, and files must be

linked using the OLE linking protocol (OLE) [18]. PowerPoint does not natively sup

port relocation of extracted files, but depends on OLE's support for relocation.

OLE provides a means of creating compound documents that can contain information

obtained via links to parts of other documents. (Section 3.7.6 reviews OLE compound

documents in detail.) Interchanging an OLE compound document requires a user to

manually package the compound document and the linked documents. To use all parts

http://pdx.edu/index.htmi
http://pdx.edu/friends.htmi

414

of a received compound document, a receiver generally needs to recreate the sender's

folder structure (including drive letters and folder names). Some OLE conventions can

reduce the burden of recreating the folder structure, but the conventions generally con

strain document names or document locations. For example, if a linked document is

not found in the expected folder, OLE looks for the document in the folder where the

compound document is saved. This convention requires each document in the package

to have a distinct name.

The hypertext systems Dexter and IRIS (reviewed in Section 3.7.3) define interchange

formats for hypertext data [57, 141]. In both systems, support for interchanging hyper

text data essentially consists of utilities to export and import parts of a hypertext net

work via database dumps. Neither system considers issues such as conflicts and doc

ument locations.

10.7. Summary and Conclusions

In this chapter, we have discussed the various considerations in interchanging bi-level

information among SA users and described an SA-independent service for such inter

change. We have introduced the notion of Si-dependency graphs, which form the con

ceptual basis for interchange, and showed how an Si-package embodies an SI-

dependency graph. We have also presented SuperPack, an implementation of the in

terchange service, and illustrated the ease with which it can be integrated into SAs.

We see scope for some improvement in usability in particular scenarios of interchang

ing bi-level information. For example, the current implementation works well for in-

415

teractive use (that is, user-guided extraction) when the number of base documents to

extract is relatively small. When the number of base documents to be extracted is

large, assigning locations to base documents and generally choosing the right action

when a known document is included in a package can be cumbersome. An SA or its

user might wish to automate choosing the locations of base documents in this situa

tion.

In Section 10.4, we mainly discussed conflicts due to differences in document loca

tions, but conflicts can also occur due to differences in other attributes. For example,

the receiver might employ a context agent implemented using a different technology

than the sender does (for example, Java [71] instead of ActiveX [93]).

In general, a descriptor can cause conflicts when the conditions of SI use change. We

call each condition or combination of conditions of SI use a perspective. We envision

a system in which users create (or a single user creates) a number of perspectives (but

probably operates from only one perspective at any time). A descriptor could then

vary among perspectives, yet retain its identity, unlike the current system which gives

the descriptor a new identity for each variation. For example, the entry for the context

agent class in a descriptor could point to a Java library in the sender's perspective, but

it could point to an ActiveX library in the receiver's perspective. With the proposed

extension, the descriptor would have the same ID in either perspective.

In this chapter, we have only informally defined the notion of Si-dependency graphs.

We plan to define the actions currently performed in the unpacking process as a set of

416

formal mappings over a dependency graph produced by the packing process. Such a

treatment enables us to more clearly state what properties can be guaranteed for the

packing and unpacking processes, and the conditions under which those guarantees

hold.

This chapter concludes the detailed description of this dissertation research. The next

chapter summarizes the research and presents concluding remarks.

11. Summary, Future Work, and Conclusions

Chapters 1 through 10 have provided a detailed description of this research. This chap

ter summarizes the research, and discusses some future work, including two applica

tion areas we like to pursue.

11.1. Summary

We begin the chapter with a summary of the developments in the earlier chapters.

Chapter 1 introduced the notion of superimposed information (SI), base information

(BI), and superimposed application (SA). It also presented three SAs and outlined our

real-world and research objectives to support the design, development, and deploy

ment of SAs.

Chapter 2 outlined the contributions of this research, provided an overview of our

framework to meet the research objectives, and gave a summary of the evaluation of

the framework components. The contributions called out were: the concept of context

information for sub-documents, documents, and applications; the concept of bi-level

information, which is a combination of SI and context information; mechanisms to

represent, access, transform, and interchange bi-level information, and an evaluation

of these mechanisms; a set of run-time services called the Superimposed Application

Shareable Services (SASS), including architectural desiderata, an architectural refer

ence model, and a reference implementation; and a set of deployment guidelines for

SAs and the components of SASS. Chapters 3 through 10 described these contribu-

418

tions in detail (except the deployment guidelines [112], which we excluded from this

dissertation for brevity).

Chapter 3 explained different ways to create, describe, and activate marks (which are

BI references). It introduced some abstractions an SA can use to reference, activate,

and retrieve context information from marks to arbitrary BI types. It also introduced

an abstraction called context agent, which represents pluggable software wrappers

used to interact with BI. These abstractions were presented as a part of SPARCE [110],

our middleware architecture to facilitate SA development. Chapter 3 also presented an

evaluation of SPARCE and the representation schemes for BI descriptors. The evalua

tion shows that the context-agent abstraction allows support for new BI types to be

added easily and incrementally, and that the SAs, context agents, and base applications

can all evolve independently.

Whereas Chapter 3 examined SI management from a software-architecture perspec

tive, Chapter 4 provided an information-architecture perspective. It presented a

framework [113] to explicitly represent the use of marks by employing a set of con

ventions to augment the Entity-Relationship (ER) model [25]. The framework has

three independent parts: a model for marks and the use of marks, a model for mark

descriptors, and a model for context information. The part related to mark descriptors

can express the specification of a link's endpoint in any linking technology (such as

SPARCE and XPointer [167]). Each part of the framework provides a systematic way

to transform a conceptual schema in the augmented ER model to logical schemas in

419

the relational and the XML models. The chapter also introduced Sixml, which is "SI

represented as XML" [118, 120].

Chapter 5 introduced the notion of a bi-level query system to help filter and transform

bi-level information using queries in existing languages. It presented two alternative

representation schemes—nested and normalized—for XML bi-level information, and

explored how each scheme impacts query expression and execution. It also illustrated

that Si-only queries deserve special attention when designing a bi-level query system.

Chapter 5 also identified seven goals for a bi-level query system, and presented a

strategy to meet these goals in the XML model. Chapters 6 through 9 described the

different components of a bi-level query system.

Chapter 6 isolated the problem of retrieving context information from a large number

of marks when executing a bi-level query, and proposed a component called the bulk

accessor [121] as a solution. This component pools context-agent instances so that the

cost of accessing base sources is amortized over the entire set of marks involved in a

query. The chapter identified several pooling policies for bulk access, and provided

heuristics to choose a policy based on certain data characteristics. It also described an

implementation of the bulk accessor and showed experimentally that the accessor pro

vides significant improvement over nai've methods for even a small number of marks.

Several means of further improving bulk-access performance were also outlined.

Chapter 7 discussed serialization and validation considerations for Sixml data and ar

rived at six kinds of XML content (element, attribute, text content, CData section,

420

comment, and processing instruction) with which marks may be associated. The chap

ter also described Sixml DOM [120], an extension of the XML Document Object

Model (DOM) [34], to easily and efficiently manipulate Sixml data at run time. Two

strategies to implement Sixml DOM and three implementations of Sixml DOM were

presented along with an experimental evaluation of the implementations. The evalua

tions showed that accessing mark associations and SI using Sixml DOM requires less

development effort than using DOM, and that Sixml DOM saves time when accessing

mark associations. Sixml DOM can have overhead when retrieving mark associations

for SI such as text content and CData sections, but it provides savings when retrieving

such SI itself.

Chapter 8 introduced a means to selectively cloak (that is, hide) parts of data from a

query processor to improve the expression and execution of certain classes of queries.

The chapter presented both a formal model and an architectural reference model for a

cloaking query processor. It also illustrated that the formal and architectural models

are independent of applications and data models by applying the models in both bi-

level and non-bi-level query settings.

Chapter 9 presented the design, implementation, and evaluation of a bi-level navigator

called the Sixml Navigator [120]. A bi-level navigator supports navigation over bi-

level information. The Sixml Navigator supports bi-level navigation in the nested

schema over Sixml documents in either the nested schema or the normalized schema.

421

The Sixml Navigator is designed as an alternative to the traditional path navigator

used in existing query processors. It internally represents a Sixml document as a Sixml

DOM tree, thereby deriving benefits such as the use of the bulk accessor, on demand

retrieval of mark descriptors and context information, and caching of mark descriptors

and context information. The navigator performs better than the traditional navigator

in many cases, and its support for cloaking improves query expression and execution.

Chapter 10 discussed the key considerations in interchanging bi-level information

among SA users and described an SA-independent runtime service for such inter

change. It introduced the notion of Si-dependency graphs, which form the conceptual

basis for interchanging bi-level information, and showed how an SI package embodies

an Si-dependency graph. The chapter also presented SuperPack, an implementation of

the interchange service, and illustrated the ease with which the service can be inte

grated into SAs.

11.2. Future Work

We now briefly mention some key areas of possible improvements to our framework

and describe two application prospects for the framework. We begin with the im

provement areas.

Some issues related to mark robustness exist, largely due to base-layer updates after

mark creation. We believe that our context-management mechanism can be useful in

resolving displaced and missing marks under these circumstances, but this use needs

to be verified.

422

Our design of SASS is independent of operating platforms, but our reference imple

mentation is specific to the Microsoft Windows platforms [104]. We believe the de

sign is portable to most modern operating platforms and is amenable to implementa

tion in most modern programming languages, but we wish to verify this assertion.

We also wish to improve bi-level query execution by implementing the following

strategies: push down selections over SI to possibly reduce the number of base ac

cesses (to retrieve context information); exploit the data-management capabilities of

base applications such as relational database management systems; and bind scope to

query parts, instead of binding scope to entire queries.

In the rest of this section, we discuss two application areas—mash-up production and

information retrieval—we wish to explore for our research framework.

11.2.1. Declaratively Producing Data Mash-ups

We see much potential for our framework in the production of data mash-ups. A

mash-up combines information of varying granularity from disparate sources; a data

mash-up is a document that is a mash up. (By this definition, an SA is a mash-up ap

plication, and an SI document is a data mash-up.)

In our view [120], a data mash-up has three forms: condensed, reconstituted, and for

matted. A condensed mash-up contains references to external source fragments, but it

does not yet include the actual external data. A reconstituted mash-up includes the ex

ternal data that the condensed form specifies. A formatted mash-up is an alternative

representation of a condensed or reconstituted mash-up. Multiple formatted mash-ups

423

might be generated from the same condensed or reconstituted mash-up. (Each format

ted mash-up might re-purpose the same information-set for a different audience.)

Our position is that Sixml, Sixml DOM, and the Sixml Navigator, together facilitate

declarative production of the three aforementioned forms of data mash-ups. Specifi

cally, Sixml provides a means to specify a condensed data mash-up. For example,

Figure 7.1 shows a condensed form of a data mash-up with comments on a paper,

represented as a Sixml document. Figure 9.13 shows two other Sixml documents that

are condensed data mash-ups.

We say Sixml supports declarative specification because the SA developer uses the

attributes sixmkvalueSource and sixml:valueExpression to simply state that the run

time value of a mash-up part (such as text content) is obtained from external sources,

without stating how the value is obtained and assigned. Section 7.4.3.4 provides the

details.

Sixml DOM provides a means to programmatically create and manipulate a condensed

mash-up. It also automatically reconstitutes the mash-up. For example, Figure 7.5

shows the run-time representation of a reconstituted mash-up corresponding to the

condensed mash-up in Figure 7.1. Creating, manipulating, and reconstituting a mash-

up with Sixml DOM is declarative because the mash-up producer does not need to

specify how these actions are mapped to the underlying Sixml representation.

The Sixml Navigator, in combination with a traditional query processor, provides a

means of producing a formatted mash-up. The formatting process is declarative be-

424

cause the mash-up producer can use a declarative query language. For example, Figure

4.27 shows a declarative query to format the condensed comment mash-up of Figure

7.1 as a web page containing author feedback. Section 9.4.2.3 discusses mash-ups

formatted as maps for use with Google Maps [53] and Yahoo! Maps [179].

A class of mash-ups called enterprise mash-ups especially interests us because of the

potential for a wider adoption of our framework. An enterprise mash-up is a mash-up

of business information such as employee, customer, and order information, possibly

personalized for each "user" (that is, an employee or a customer). For example, a

mash-up personalized for a dispatcher in a trucking business might show his check-in

time for the day (pulled from the attendance tracking system), the expected check-out

time (computed from check-in time), and the pending transportation requests (obtained

from order information) displayed on a map with markers at customer locations (ob

tained from customer information). For his personal consumption, the dispatcher

might also direct the mash-up to show news headlines and the title of the most recent

post by his favorite blogger.

We now discuss two key requirements, usability and scalability, in an enterprise mash-

up setting. Usability is a requirement because an end user must be able to easily com

pose the mash-up and interact with it. For example, a truck dispatcher must be able to

compose and personalize a mash-up without possessing programming skills.

Scalability is a key requirement for an enterprise mash-up framework because a large

number of mash-ups might execute simultaneously (in an enterprise with a large user

425

base). Also, some mash-ups can reference a large number of fragments in a large

number and variety of sources.

Our approach to producing mash-ups has the potential to satisfy both the usability and

the scalability requirements. Our approach can satisfy usability because we allow in

teractive creation of marks into heterogeneous source fragments using the familiar

copy-and-paste operations. (See Section 3.1, especially Figure 3.3, for information on

mark creation.) Also, in our approach, a mash-up can be easily composed as a web

page. Figure 1.8 illustrates how marks can be interactively incorporated in a web page.

Our framework can satisfy the scalability requirement because the bulk accessor,

Sixml DOM, and the Sixml Navigator are able to support the use of hundreds of thou

sands of mark associations in a single Sixml document. (Sections 6.4.2, 7.6.3, and

9.4.3, respectively provide experimental verifications of the scalability of these three

components.) Producing multiple mash-ups simultaneously is also feasible because

each mash-up can be produced using a separate query-processor instance. Also, our

framework can share context information across Sixml documents and queries, and a

single bulk-accessor instance can be employed for multiple mash-ups.

Encouraged by the possibility of a wider application of our research, we are currently

examining use cases and environments to produce enterprise data mash-ups.

11.2.2. Improving the Information-Retrieval Experience

Searching (for example, web search) is a common means of finding and retrieving in

formation, but much improvement is possible in the current search approaches. We

426

discuss one such improvement that also provides an opportunity to apply our research.

(The improvement we discuss is complementary to using semantic components [138],

which are selected segments of base-layer text used to enhance information retrieval.)

Currently, there is a disconnection between the information a user seeks and the re

sults a search engine returns: The user seeks just the sub-documents that satisfy his

needs (often expressed as a set of keywords), but the search engine returns a list of

documents. Consequently, the user clicks through (that is, visits or opens) each result

document in an appropriate application and invokes the search function that is already

built into the application to locate in the document the same keywords he has already

submitted to the search engine. Then, the user clicks through each keyword occurrence

and examines the context (for example, the containing paragraph) to determine sub-

document relevance. (In some applications, the user might need to scroll through a

document, manually identifying each occurrence of the keywords.)

Some search engines include in their results document excerpts with some keyword

occurrences highlighted, but the user still needs to click through each document to lo

cate and identify relevant sub-documents. The search functions in some applications

(for example, Adobe Acrobat [8]) give the user a list of the occurrences of the

searched keywords (after the user manually invokes the search function), but the user

has to click through each keyword occurrence because the information in the result list

is rarely sufficient to determine relevance.

427

The use of marks and context information can help reduce the number of click-through

operations required to determine the relevance of documents and sub-documents

[116]. For example, document search engines can be enhanced to return a mark to

each sub-document that contains (or is otherwise related to) the searched keywords.

The user can then examine the context information for a mark without activating the

marks. He can also use the mark to directly navigate to the sub-document, alleviating

the need to locate the keywords again within a document.

Similarly, search functions within applications can also be enhanced to return marks

and let users explore context information without the user clicking through each key

word occurrence.

To evaluate the feasibility of using our framework to improve information-retrieval

experience, we have implemented a prototype solution (called SuperSearch) using our

framework. This prototype extends the functionality of two popular (third-party)

search engines to let the user view sub-documents that match keywords, examine the

context information for any result sub-document, and navigate directly to a sub-

document. We are also in the process of extending search functions in a few popular

applications to provide functionality similar to that in our search-engine extension.

The key challenge in this application area is ranking and aggregating sub-documents,

because several sub-documents might relate to the searched keywords. There can also

be a need to transfer marks from one document type to another. For example, an ex

tended search engine might return marks to sub-documents of a Microsoft Word doc-

428

ument [96], but the user might not have installed this application. To assist the user in

such situations, search engines typically provide result documents in HTML format

[61]. In this case, we would need to transfer each MS Word mark in the result to an

HTML mark.

11.3. Conclusions

With the concepts, frameworks, components, and applications described in these chap

ters, we have successfully met both our real-world and research objectives. Specifical

ly, our framework helps SA developers support the seven application capabilities

listed in Section 1.1, and the runtime system, SASS, satisfies the architectural deside

rata listed in Section 2.1.3.

Our research facilitates a wide range of applications as illustrated throughout this dis

sertation. Chapter 1 introduced Sidepad, a scratch pad tool that lets a user collect and

organize information fragments in a nested model; a multi-media composer and player

called Super Mix; and a word-processor-style application called the HTML+M Editor.

Chapter 4 introduced the Superimposed System-Information Browser (SSIB) that lets a

computer system administrator view and query information such as event logs and op

erating-system updates; and the Superimposed Scholarly Review System (SISRS) to

facilitate reviewing of documents and generation of artifacts such as author feedback.

Section 11.2 introduced the use of our research in enterprise data mash-ups and in in

formation retrieval. Chapter 3 mentions applications developed by others using our

research framework.

429

The aforementioned SAs satisfy different user goals but they all use the same runtime

system. Instances of these applications (including multiple instances of the same SA)

can simultaneously use our runtime services on the same computer. Also, there can be

more than one simultaneous instance of any of our runtime services.

The aforementioned SAs also differ in the different data models and schemas em

ployed. For example, Sidepad uses a proprietary data model, SuperMix uses the XML

model, the HTML+M Editor uses HTML, and we have used SSIB and SISRS in both

the relational and XML models. Regardless of these data model and schema differenc

es, the information in each application is conceptually modeled using our framework

and logical schemas are generated in either the relational or the XML model.

In general, an SA is free to represent its information in any data model. Bi-level in

formation derived from the SI represented in (or SI that can be mapped to) the rela

tional or XML model can be transformed via queries in existing languages, using ex

isting query processors.

This chapter concludes the main body of this dissertation. The rest of the dissertation

provides supplementary information in the form of appendices.

Bibliography

1. Abiteboul, S., Cluet, S., Milo, T. 1993. Querying and Updating the File. In
Proceedings of 19th International Conference on Very Large Data Bases
(VLDB'93), Aug. 24-27, Dublin, Ireland.

2. Abiteboul, S., Hull, R., Vianu, V. 1995. Foundations of Databases. 1st edition.
Addison-Wesley.

3. Abiteboul, S., Benjelloun, O., Cautis, B., Manolescu, I., Milo, T., Preda, N. 2004.
Lazy Query Evaluation for Active XML. In Proceedings ofACMSIGMOD
International Conference on Management of Data (SIGMOD'04), Paris, France.

4. About Packaging and Copying a Presentation to CD. Microsoft Corporation.
Available from http://office.microsoft.com/en-us/powerpoint/
HP052727561033.aspx. Accessed Jan. 25, 2008.

5. ACM SIGMOD Record. ACM SIGMOD. Available from
http://www.sigmod.org/sigmod/record/xml/index.html. Accessed Jan. 25, 2008.

6. Adobe. Portable Document Format. Adobe Systems, Inc. Available from
http://partners.adobe.com/public/developer/pdf/index_reference.html. Accessed
Jan. 25, 2008.

7. Adobe. Acrobat Interapplication Communication Overview. Adobe Systems Inc.
Available from http ://partners.adobe.com/public/developer/en/acrobat/sdk/pdf/iac/
IACOverview.pdf. Accessed Jan. 25, 2008.

8. Adobe Acrobat. Adobe Systems Inc. Available from
http://www.adobe.com/products/acrobat. Accessed Jan. 25, 2008.

9. Amaya. W3C. Available from http://www.w3.org/Amaya/. Accessed Jan. 25,
2008.

10. Archer, D., Delcambre, L. 2006. Capturing and Reusing Human Attention in
Corporate Decision Making. In Proceedings of International ACM Workshop on
Contextualized Attention Metadata: Collecting, Managing and Exploiting of Rich
Usage Information, Nov. 11, Arlington, Virginia.

11. Archer, D., Delcambre, L., Corubolo, F., Cassel, L., Price, S., Murthy, U., Maier,
D., Fox, E. A., Murthy, S., McCall, J., Kuchibotla, K., Suryavanshi, R. 2008.
Superimposed Information Architecture for Digital Libraries. In Proceedings of
European Conference on Research and Advanced Technology for Digital
Libraries, Sep. 14-18, Aarhus, Denmark.

12. Arenas, M., Libkin, L. 2002. A Normal Form for XML Documents. In
Proceedings of 21st ACMSIGMOD-SIGACT-SIGARTSymposium on Principles of
Database Systems, Jun. 3-5, Madison, Wisconsin.

http://office.microsoft.com/en-us/powerpoint/
http://www.sigmod.org/sigmod/record/xml/index.html
http://partners.adobe.com/public/developer/pdf/index_reference.html
http://www.adobe.com/products/acrobat
http://www.w3.org/Amaya/

431

13. Bass, L., Clements, P., Kazman, R. 1998. Software Architecture in Practice.
Addison-Wesley.

14. Berners-Lee, T. 1994. Uniform Resource Locators (URL). IETF. Available from
http://www.ietf.org/rfc/rfcl738.txt. Accessed Jan. 25, 2008.

15. Berners-Lee, T., Fielding, R., Masinter, L. 2005. Uniform Resource Identifier
(URI): Generic Syntax. IETF. Available from http://www.ietf.org/rfc/rfc3986.txt.
Accessed Jan. 25, 2008.

16. Booker, P. S. K., Granger, R. K., Guest, E. J., Norton, S. A., Price, J. E., Glaser, H.
1999. Software Agents and their Use in Mobile Computing. Report# DSSE-TR-
99-5. Dept. of Electronics & Computer Science, University of Southampton.

17. Bowers, S., Delcambre, L., Maier, D. 2002. Superimposed Schematics:
Introducing E-R Structure for In-Situ Information Selections. In Proceedings of
21st International Conference on Conceptual Modeling (ER'02), Oct. 7-11,
Tampere, Finland.

18. Brockschmidt, K. 1994. Inside OLE 2. Microsoft Press.

19. Buneman, P., Naqvi, S., Tannen, V., Wong, L. 1995. Principles of Programming
with Complex Objects and Collection Types. Berlin, Germany. Elsevier Science
Publishers B.V.

20. Buneman, P., Cheney, J., Vansummeren, S. 2007. On the Expressiveness of
Implicit Provenance in Query and Update Languages. In Proceedings of 11th
International Conference on Database Theory (ICDT'07) Jan. 10-12, Barcelona,
Spain.

21. Buneman, P., Tan, W. C. 2007. Provenance in Databases, la. Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD'07), Jun.
11-14, Beijing, China.

22. Bush, V. 1945. As We May Think. The Atlantic Monthly, July 1945.

23. C# Programming Guide. Microsoft Corporation. Available from
http://msdn2.microsoft.com/en-us/library/67ef8sbd(VS.80).aspx. Accessed Oct.
27, 2007.

24. Casanova, M. A., Tucherman, L., Lima, M. J. D., Netto, J. L. R., Rodriguez, N. R.,
Soares, L. F. G. 1991. The Nested Context Model for Hyperdocuments. In
Proceedings of Hypertext 1991, San Antonio, Texas.

25. Chen, P. P. 1976. The Entity-Relationship Model - Towards a Unified View of
Data. ACM Transactions on Database Systems 1(1), 9-36.

26. Conklin, J. 1987. Hypertext: An Introduction and Survey. IEEE Computer 20(9),
17-41.

27. Consens, M. P., Milo, T. 1994. Optimizing Queries on Files. In Proceedings of
ACM SIGMOD International Conference on Management of Data (SIGMOD'94),
May 24-27, Minneapolis, Minnesota.

http://www.ietf.org/rfc/rfcl738.txt
http://www.ietf.org/rfc/rfc3986.txt
http://msdn2.microsoft.com/en-us/library/67ef8sbd(VS.80).aspx

432

28. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. 2001. Introduction to
Algorithms. 2nd edition. Cambridge, Massachussets. The MIT Press.

29. Cysneiros, L. M., Leite, J. C , Neto, J. M. 2001. A Framework for Integrating Non-
Functional Requirements into Conceptual Models. Requirements Engineering 6(2),
97-115.

30. Dayal, U., Lomet, D., Alonso, G., Lohman, G., Kersten, M., Cha, S. 2006. VLDB
2006 - A Word from the PC Chair. Available from
http://aitrc.kaist.ac.kr/~vldb06/intro_PC_chair.html. Accessed Jan. 25, 2008.

31. Delcambre, L., Maier, D., Reddy, R., Anderson, L. 1997. Structured Maps:
Modeling Explicit Semantics over a Universe of Information. International
Journal on Digital Libraries 1(1), 20-35.

32. Delcambre, L., Maier, D., Bowers, S., Weaver, M., Deng, L., Gorman, P., Ash, J.,
Lavelle, M., Lyman, J. 2001. Bundles in Captivity: An Application of
Superimposed Information. In Proceedings of 17th International Conference on
Data Engineering (ICDE'01), Apr. 2-6, Heidelberg, Germany.

33. Delcambre, L. 2006. Personal Communication. Sep. 12.

34. Document Object Model. W3C. Available from http://www.w3.org/DOM.
Accessed Jan. 25, 2008.

35. Document Object Model (DOM) Level 1 Specification. 1998. W3C. Available
from http://www.w3.org/TR/REC-DOM-Level-l. Accessed Jan. 25, 2008.

36. Document Object Model (DOM) Level 2 Core Specification. 2000. W3C.
Available from http://www.w3.org/TR/DOM-Level-2-Core. Accessed Jan. 25,
2008.

37. Document Object Model (DOM) Level 3 Core Specification. 2004. W3C.
Available from http://www.w3.org/TR/DOM-Level-3-Core. Accessed Jan. 25,
2008.

38. Document Object Model (DOM) Level 3 Load and Save Specification. 2004.
W3C. Available from http://www.w3.org/TR/DOM-Level-3-LS. Accessed Jan. 25,
2008.

39. Document Object Model for MathML. 2003. W3C. Available from
http://www.w3.org/TR/MathML2/appendixd.html. Accessed Jan. 25, 2008.

40. Dyreson, C. E., Bohlen, M. H., Jensen, C. S. 2001. METAXPath. In Proceedings
of International Conference on Dublin Core and Metadata Applications, Oct. 22-
26, Tokyo, Japan.

41. Elmasri, R., Navathe, S. B. 2003. Fundamentals of Database Systems. 4th edition.
Addison-Wesley.

42. Elmasri, R., Li, Q., Fu, J., Wu, Y., Hojabri, B., Ande, S. 2005. Conceptual
Modeling for Customized XML Schemas. Data and Knowledge Engineering
54(1), 57-76.

http://aitrc.kaist.ac.kr/~vldb06/intro_PC_chair.html
http://www.w3.org/DOM
http://www.w3.org/TR/REC-DOM-Level-l
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/MathML2/appendixd.html

433

43. Extensible Markup Language (XML) 1.0. 2006. W3C. Available from
http://www.w3.org/TR/xml. Accessed Jan. 25, 2008.

44. Feinberg, G. 1967. Possibility of Faster-Than-Light Particles. Physical Review
159(5), 1089-1105.

45. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T. 1999. Hypertext Transfer Protocol - HTTP/1.1. IETF. Available from
http://www.ietf.org/rfc/rfc2616.txt. Accessed Jan. 25, 2008.

46. Firefox. Mozilla. Available from http://www.mozilla.com/firefox/. Accessed Jan.
25, 2008.

47. Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley.

48. Garzotto, F., Mainetti, L., Paolini, P. 1993. HDM2: Extending the E-R Approach
to Hypermedia Application Design. In Proceedings of 12th International
Conference on the Entity-Relationship Approach (ER'93), Dec. 15-17, Arlington,
Texas.

49. Garzotto, F., Paolini, P., Schwabe, D. 1993. HDM - A Model-based Approach to
Hypertext Application Design. ACM Transactions on Information Systems 11(1),
1-26.

50. Geerts, F., Kementsietsidis, A., Milano, D. 2006. MONDRIAN: Annotating and
Querying Databases through Colors and Blocks. In Proceedings of 22nd
International Conference on Data Engineering (ICDE'06), Apr. 3-7, Atlanta,
Georgia.

51. A Gentle Introduction to SGML. Available from
http://www.isgmlug.org/sgmlhelp/g-index.htm. Accessed Jan. 25, 2008.

52. Google Earth API. 1. Google. Available from http://code.google.com/apis/earth/.
Accessed Jan. 25, 2008.

53. Google Maps API. 1. Google. Available from http://www.google.com/apis/maps/.
Accessed Jan. 25, 2008.

54. Gopalakrishna, D. S. 2006. Personal Communication. Jan. 30.

55. Haan, B. J., Kahn, P., Riley, V. A., Coombs, J. H., Meyrowitz, N. K. 1992. IRIS
Hypermedia Services. Communications of the ACM 35(1), 36-51.

56. Halasz, F. G., Moran, T. P., Trigg, R. H. 1987. NoteCards in a Nutshell. ACM
SIGCHI Bulletin 17(SI), 45-52.

57. Halasz, F. G., Schwartz, F. 1994. The Dexter Hypertext Reference Model.
Communications of the ACM 37(2), 30-39.

58. Hardman, L., Bulterman, D. C. A., Rossum, G. 1994. The Amsterdam Hypermedia
Model: Adding Time and Context to the Dexter Model. Communications of the
ACM37(2), 50-62.

http://www.w3.org/TR/xml
http://www.ietf.org/rfc/rfc2616.txt
http://www.mozilla.com/firefox/
http://www.isgmlug.org/sgmlhelp/g-index.htm
http://code.google.com/apis/earth/
http://www.google.com/apis/maps/

434

59. Hlousek, P. 2005. XPath 2.0: It Can Sort! In Proceedings of 2nd International
Workshop on XQuery Implementation, Experience and Perspectives (XIME-P'05),
Jun. 16-17, Baltimore, Maryland.

60. Home Page of Dr. Lillian (Boots) Cassel. Available from
http://csc.villanova.edu/faculty/lillian.cassel. Accessed Feb. 6, 2008.

61. Hypertext Markup Language (HTML). W3C. Available from
http://www.w3.org/MarkUp. Accessed Jan. 25, 2008.

62. IBM DB2 Database for Linux, UNIX, and Windows. 9. IBM Corporation.
Available from http://publib.boulder.ibm.com/infocenter/db21uw/v9. Accessed
Jan. 25, 2008.

63. IHMC CmapTools. 2006. Institute for Human and Machine Cognition. Available
from http://cmap.ihmc.us. Accessed Jan. 25, 2008.

64. Information Processing - Hypermedia/Time-based Structuring Language
(HyTime). 1997. Available from
http://wwwl.yl2.doe.gov/capabilities/sgml/wg8/document/nl920/. Accessed Jan.
25, 2008.

65. Intel Core Duo processor. Intel Corporation. Available from
http://www.intel.com/support/processors/mobile/coreduo/. Accessed Nov. 25,
2007.

66. ISO 8879: Information Processing - Text and Office Systems - Standard
Generalized Markup Language (SGML). 1986. ISO.

67. ISO/IEC 13250 Topic Navigation Maps. 1998. ISO. Available from
http://www.ornl.gov/sgml/sc34/document/0008.htm. Accessed Jan. 25, 2008.

68. ISO/IEC JTC 1/SC34 Topic Maps. 1999. ISO. Available from
http://www.ornl.gov/sgml/sc34/document/0058.htm. Accessed Jan. 25, 2008.

69. ISO/IEC JTC 1/SC 34 Topic Maps - XML Syntax. 2004. ISO. Available from
http://www.jtclsc34.org/repository/0495.htm. Accessed Jan. 25, 2008.

70. Jagadish, H. V., Lakshmanan, L. V. S., Scannapieco, M., Srivastava, D.,
Wiwatwattana, N. 2004. Colorful XML: One Hierarchy Isn't Enough. In
Proceedings ofACMSIGMOD International Conference on Management of Data
(SIGMOD'04), Jun. 13-18, Paris, France.

71. Java Technology. Sun Microsystems. Available from http://java.sun.com.
Accessed Jan. 25, 2008.

72. Javadoc Tool. Sun Microsystems. Available from
http://java.sun.com/j2se/javadoc/. Accessed Jan. 25, 2008.

73. JavaScript. Mozilla Foundation. Available from
http://developer.mozilla.org/en/docs/JavaScript. Accessed Jan. 25, 2008.

http://csc.villanova.edu/faculty/lillian.cassel
http://www.w3.org/MarkUp
http://publib.boulder.ibm.com/infocenter/db21uw/v9
http://cmap.ihmc.us
http://wwwl.yl2.doe.gov/capabilities/sgml/wg8/document/nl920/
http://www.intel.com/support/processors/mobile/coreduo/
http://www.ornl.gov/sgml/sc34/document/0008.htm
http://www.ornl.gov/sgml/sc34/document/0058.htm
http://www.jtclsc34.org/repository/0495.htm
http://java.sun.com
http://java.sun.com/j2se/javadoc/
http://developer.mozilla.org/en/docs/JavaScript

74. Jeswin, P. Xml Performance: XmlMark revisited: Java, Mono and .Net. Available
from http://www.process64.com/articles/xmlmarkl/. Accessed Oct. 29, 2007.

75. Jhingran, A. 2006. Enterprise Information Mashups: Integrating Information,
Simply. In Proceedings of 32nd International Conference on Very Large Data
Bases (VLDB'06), September 12-15, Seoul, Korea.

76. Jian, J., Su, H., Rundensteiner, E. A. 2003. Automaton Meets Query Algebra:
Towards a Unified Model for XQuery Evaluation over XML Data Streams. In
Proceedings of 22ndInternational Conference on Conceptual Modeling (ER'03),
Oct. 13-16, Chicago, Illinois.

77. Josefsson, S. 2006. The Basel6, Base32, and Base64 Data Encodings. IETF.
Available from http://www.ietf.org/rfc/rfc4648.txt. Accessed Jan. 25, 2008.

78. Kahan, J., Koivunen, M., Prud'Hommeaux, E., Swick, R. R. 2001. Annotea: An
Open RDF Infrastructure for Shared Web Annotations. In Proceedings of 10th
International World Wide Web Conference (WWW'01), May 1-5, Hong Kong.

79. Kannada-English Transliteration. Baraha. Available from
http://www.baraha.com/html_help/sdk_docs/kantrans_eng.htm. Accessed Sep. 11,
2006.

80. Kay, M. H. 2001. XSLTProgrammer's Reference. 2nd edition. Birmingham, UK.
Wrox Press Ltd.

81. Kay, M. H. 2004. XSLT2.0 Programmer's Reference. 3rd edition. Indianapolis,
IN. Wiley Publishing, Inc.

82. Kleiner, C , Lipeck, U. W. 2001. Automatic Generation of XML DTDs from
Conceptual Database Schemas. In Proceedings of GUahrestagung 2001, Sep. 25-
28, Vienna, Austria.

83. Kruchten, N. Context. Available from http://nicolas.kruchten.com/context.html.
Accessed Jan. 15, 2008.

84. Kumar, A. 2001. Third Voice Trails Off.... Wired News. Available from
http://www.wired.eom/news/business/0,1367,42803,00.html. Accessed Jan. 25,
2008.

85. Lakshmanan, L. V. S., Sadri, F., Subramanian, S. N. 2001. SchemaSQL: An
Extension to SQL for Multidatabase Interoperability. ACM Transactions on
Database Systems 26(4), 476-519.

86. LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D. J.
2004. Limiting Disclosure in Hippocratic Databases. In Proceedings of 30th
International Conference on Very Large Data Bases (VLDB'04), Aug. 31-Sep. 3,
Toronto, Canada.

87. Madhavan, J., Jeffery, S. R., Cohen, S., Dong, X., Ko, D., Yu, C, Halevy, A.
2007. Web-scale Data Integration: You can only afford to Pay As You Go. In

http://www.process64.com/articles/xmlmarkl/
http://www.ietf.org/rfc/rfc4648.txt
http://www.baraha.com/html_help/sdk_docs/kantrans_eng.htm
http://nicolas.kruchten.com/context.html
http://www.wired.eom/news/business/0

436

Proceedings of 3rd Biennial Conference on Innovative Data Systems Research
(CIDR'07), January 7-10, 2007, Asilomar, California.

88. Maier, D., Delcambre, L. 1999. Superimposed Information for the Internet. In
Proceedings ofACMSIGMOD Workshop on the Web and Databases, Jun. 3-4,
Philadelphia, Pennsylvania.

89. Maier, D., Shapiro, L. 2005. CS 386/586 Introduction to Databases, Spring 2005.
Portland State University. Available from http://web.cecs.pdx.edu/~len/386/.
Accessed May 08, 2005.

90. Making Component-Based Systems Scale with BEA Tuxedo® CORBA. 2002.
Report# CWP0434E0702-1A. BEA Systems, Inc.

91. McEveety, V. 1966. Balance of Terror. In Star Trek Season 1, Episode 14:
Paramount Pictures.

92. Melton, J., Simon, A. R. 2001. SQL: 1999: Understanding Relational Language
Components. 2nd edition. Morgan Kaufmann.

93. Microsoft. 1995. COM: The Component Object Model Specification. Microsoft
Corporation.

94. Microsoft Cabinet Software Development Kit. Microsoft Corporation. Available
from http://support.microsoft.com/kb/310618. Accessed Jan. 19, 2008.

95. Microsoft Internet Explorer. Microsoft Corporation. Available from
http://www.microsoft.com/windows/ie. Accessed Jan. 25, 2008.

96. Microsoft Office. Microsoft Corporation. Available from
http://office.microsoft.com. Accessed Jan. 25, 2008.

97. Microsoft Office Developer Center. Microsoft Corporation. Available from
http://msdn.microsoft.com/office/. Accessed Jan. 25, 2008.

98. Microsoft OLE DB. Microsoft Corporation. Available from
http://msdn2.microsoft.com/en-us/library/ms722784.aspx. Accessed Jan. 25, 2008.

99. Microsoft SQL Server. Microsoft Corporation. Available from
http://www.microsoft.com/sql. Accessed Jan. 25, 2008.

100. Microsoft Support Web Site. Microsoft Corporation. Available from
http://support.microsoft.com/. Accessed Jan. 25, 2008.

101. Microsoft Visual Basic 6.0. Microsoft Corporation. Available from
http://msdn2.microsoft.com/en-us/vbrun. Accessed Jan. 25, 2008.

102. Microsoft Visual Studio. Microsoft Corporation. Available from
http://msdn2.microsoft.com/en-us/vstudio/default.aspx. Accessed Nov. 25, 2007.

103. Microsoft Windows Media Player. Microsoft Corporation. Available from
http://www.microsoft.com/windows/windowsmedia. Accessed Jan. 25, 2008.

http://web.cecs.pdx.edu/~len/386/
http://support.microsoft.com/kb/310618
http://www.microsoft.com/windows/ie
http://office.microsoft.com
http://msdn.microsoft.com/office/
http://msdn2.microsoft.com/en-us/library/ms722784.aspx
http://www.microsoft.com/sql
http://support.microsoft.com/
http://msdn2.microsoft.com/en-us/vbrun
http://msdn2.microsoft.com/en-us/vstudio/default.aspx
http://www.microsoft.com/windows/windowsmedia

437

104. Microsoft Windows XP. Microsoft Corporation. Available from
http://www.microsoft.corrj/windows/products/windowsxp/default.mspx. Accessed
Nov. 25, 2007.

105. Microsoft Word Visual Basic Reference. Microsoft Corporation. Available from
http://www.msdn.microsoft.com/library/. Accessed Jan. 25, 2008.

106. Mono. Mono Project. Available from http://www.mono-project.com/. Accessed
Jan. 25, 2008.

107. MS XML 4.0 Software Development Kit. Microsoft Corporation. Available from
http://www.microsoft.com/downloads/details.aspx?FamilyID=3144b72b-b4f2-
46da-b4b6-c5d7485f2b42. Accessed Jan. 25, 2008.

108. MSDN Library Archive. Microsoft Corporation. Available from
http://msdn.microsoft.com/archive. Accessed Jan. 25, 2008.

109. Murthy, S., Maier, D. 2004. SISRS: The Superimposed Scholarly Review System.
Available from http://sparce.cs.pdx.edu/pubs/SISRS-WP.pdf. Accessed Jan. 25,
2008.

110. Murthy, S., Maier, D., Delcambre, L., Bowers, S. 2004. Putting Integrated
Information in Context: Superimposing Conceptual Models with SPARCE. In
Proceedings of 1st Asia-Pacific Conference of Conceptual Modeling, Jan. 22,
Dunedin, New Zealand.

111. Murthy, S. 2005. Sidepad User Guide. Available from
http://sparce.cs.pdx.edu/apps/Sidepad/userguide. Accessed Jan. 25, 2008.

112. Murthy, S., Maier, D., Delcambre, L. 2005. Distribution Alternatives for
Superimposed Information Services in Digital Libraries. In Peer-to-Peer, Grid,
and Service-Orientation in Digital Library Architectures, edited by Turker, C ,
Agosti, M., and Schek, H. Springer.

113. Murthy, S., Delcambre, L., Maier, D. 2006. Explicitly Representing Superimposed
Information in a Conceptual Model. In Proceedings of 25th International
Conference on Conceptual Modeling (ER'06), Nov. 6-9, Tucson, Arizona.

114. Murthy, S., Maier, D. 2006. A Framework for Relationship Pattern Languages.
Report# TR-08-03. Department of Computer Science, Portland State University.

115. Murthy, S., Maier, D., Delcambre, L. 2006. Mash-o-matic. In Proceedings of 6th
ACM Symposium on Document Engineering, Oct. 10-13, Amsterdam, Netherlands.

116. Murthy, S., Murthy, U., Fox, E. A. 2006. Using Superimposed and Context
Information to Find and Re-find Sub-documents. In Proceedings of Personal
Information Management 2006, Aug. 10-11, Seattle, Washington.

117. Murthy, S. 2007. Sixml DOM. Available from http://dom.sixml.org. Accessed Jan.
25, 2008.

118. Murthy, S. 2007. Sixml.org. Available from http://www.sixml.org. Accessed Jan.
25, 2008.

http://www.microsoft.corrj/windows/products/windowsxp/default.mspx
http://www.msdn.microsoft.com/library/
http://www.mono-project.com/
http://www.microsoft.com/downloads/details
http://msdn.microsoft.com/archive
http://sparce.cs.pdx.edu/pubs/SISRS-WP.pdf
http://sparce.cs.pdx.edu/apps/Sidepad/userguide
http://dom.sixml.org
http://Sixml.org
http://www.sixml.org

438

119. Murthy, S. 2007. Sixml Schema. Available from http://schema.sixml.org.
Accessed Jan. 25, 2008.

120. Murthy, S., Maier, D. 2008. Declaratively Producing Data Mash-ups. In
Proceedings of 14 th International Conference on Management of Data
(COMAD'08), Dec. 17-19, Mumbai, India.

121. Murthy, S., Maier, D., Delcambre, L. 2008. Speeding up On-the-Fly Integration of
DB and Exo-DB Data. In Proceedings of Workshop on Information Integration
Methods, Architectures, and Systems, Apr. 11-12, Cancun, Mexico.

122. Murthy, U., Ahuja, K. 2005. Personal Communication. Nov. 27.

123. Murthy, U., Ahuja, K., Murthy, S., Fox, E. A. 2006. SIMPEL: A Superimposed
Multimedia Presentation Editor and Player. In Proceedings of 6th ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL'06), Jun. 11-15, Chapel Hill, North
Carolina.

124. Murthy, U., Fox, E. A., Delcambre, L. 2006. Enhancing Concept Mapping Tools
Below and Above to Facilitate the Use of Superimposed Information. In
Proceedings of 2nd International Conference on Concept Mapping, Sep. 5-8, San
Jose, Costa Rica.

125. Namespaces in XML 1.0. 2006. W3C. Available from http://www.w3.org/TR/xml-
names. Accessed Jan. 25, 2008.

126. Nelson, T. H. 1965. A File Structure for the Complex, the Changing and the
Indeterminate. In Proceedings of ACM 20th National Conference, Aug. 24-26,
Cleveland, Ohio.

127. Nelson, T. H. 1999. Xanalogical Structure, Needed Now More than Ever: Parallel
Documents, Deep Links to Content, Deep Versioning, and Deep Re-Use. ACM
Computing Surveys 31(4)

128. .NET Common Language Runtime. Microsoft Corporation. Available from
http://msdn2.microsoft.com/en-us/library/8bs2ecf4(VS.7l).aspx. Accessed Nov.
25, 2007.

129. .NET Framework Developer Center. Microsoft Corporation. Available from
http://msdn.microsoft.com/netframework. Accessed Jan. 25, 2008.

130. OLE Automation Programmer's Reference. 1996. Microsoft Press.

131. OMGIDL Syntax and Semantics. 2004. In CORBA 3.0. Object Management
Group, Inc.

132. OpenDoc Design Team. 1994. The OpenDoc Technical Summary, la Proceedings
of Apple World Wide Developers Conference, Apr. 14, San Jose, California.

133. Parent, C, Spaccapietra, S. 1998. Issues and Approaches of Database Integration.
Communications of ACM 4\(5es), 166-178.

134. PDFBox. Available from http://www.pdfbox.org. Accessed Jan. 25, 2008.

http://schema.sixml.org
http://www.w3.org/TR/xml-
http://msdn2.microsoft.com/en-us/library/8bs2ecf4(VS.7l).aspx
http://msdn.microsoft.com/netframework
http://www.pdfbox.org

439

135. Phelps, T. A. 1998. Multivalent Documents: Anytime, Anywhere, Any Type,
Every Way User-Improvable Digital Documents and Systems. Report# UCB/CSD-
98-1026. University of California, Berkley.

136. Phelps, T. A., Wilensky, R. 2000. Robust Intra-document Locations. In
Proceedings of 9th International World Wide Web Conference (WWW'00), May
15-19, Amsterdam, Netherlands.

137. Phelps, T. A., Wilensky, R. 2000. Multivalent Documents. Communications of the
ACM43(6), 83-90.

138. Price, S. L., Nielsen, M. L., Delcambre, L. M. L., Vedsted, P. 2007. Semantic
Components Enhance Retrieval of Domain-specific Documents. In Proceedings of
16th ACM Conference on Information and Knowledge Management (CIKM'07),
Nov. 6-9, Lisbon, Portugal.

139. Ramakrishnan, R., Gehrke, J. 2003. Database Management Systems. 3rd edition.
McGraw Hill.

140. Resource Description Framework (RDF). W3C. Available from
http://www.w3.org/RDF/. Accessed Jan. 25, 2008.

141. Riley, V. 1990. An Interchange Format for Hypertext Systems: The Intermedia
Model. In Proceedings of Hypertext Standardization Workshop, Jan. 16-18,
Gaithersburg, Maryland.

142. Runapongsa, K., Patel, J. M., Jagadish, H. V., Chen, Y., Al-Khalifa, S. 2006. The
Michigan Benchmark: Towards XML Query Performance Diagnostics.
Information Systems 31(2), 13-91.

143. Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I., Busse, R. 2002.
XMark: a Benchmark for XML Data Management. In Proceedings of 28th
International Conference on Very Large Data Bases (VLDB'02), Hong Kong,
China.

144. Sengupta, A., Mohan, S., Doshi, R. 2003. XER - Extensible Entity Relationship
Modeling. In Proceedings of XML Conference and Exhibition 2003, Dec. 7-12,
Philadelphia, Pennsylvania.

145. Simmen, D. E., Altinel, M., Markl, V., Padmanabhan, S., Singh, A. 2008. Damia:
Data Mashups for Intranet Applications. In Proceedings ofACMSIGMOD
International Conference on Management of Data (SIGMOD'08), Jun. 9-12,
Vancouver, Canada.

146. Spivey, J. M. 1989. The Z Notation: A Reference Manual. Prentice-Hall, Inc.

147. SQL Server Books Online. Microsoft Corporation. Available from
http://msdn.microsoft.com/library/. Accessed Jan. 25, 2008.

148. Standard ECMA-334 C# Language Specification. 2006. ECMA. Available from
http://www.ecma-international.org/publications/standards/Ecma-334.htm.
Accessed Jan. 25, 2008.

http://www.w3.org/RDF/
http://msdn.microsoft.com/library/
http://www.ecma-international.org/publications/standards/Ecma-334.htm

440

149. Star Trek. Paramount Pictures. Available from http://www.startrek.com/. Accessed
Jan. 25, 2008.

150. Stillger, M., Lohman, G. M., Markl, V., Kandil, M. 2001. LEO - DB2's LEarning
Optimizer. In Proceedings of 27th International Conference on Very Large Data
Bases (VLDB'01), Sep. 11-14, Rome, Italy.

151. SVG Document Object Model. 2003. W3C. Available from
http://www.w3.org/TR/SVG/svgdom.html. Accessed Jan. 25, 2008.

152. Tanaka, A. K., Navathe, S. B., Chakravarthy, S., Karlapalem, K. 1991. ER-R: An
Enhanced ER Model with Situation-Action Rules to Capture Application
Semantics. In Proceedings of 10th International Conference on Entity-
Relationship Approach (ER'91), Oct. 23-25, San Mateo, California.

153. Terwilliger, J. T. 2006. Personal Communication. Aug. 13.

154. Terwilliger, J. T., Delcambre, L., Logan, J. 2006. The User Interface is the
Conceptual Model. In Proceedings of 25th International Conference on
Conceptual Modeling (ER'06), Nov. 6-9, Tuscon, Arizona.

155. Terwilliger, J. T. 2007. Personal Communication. Jan. 24.

156. The Active XML Team. 2003. Active XML Primer. Gemo. Available from
ftp://ftp.inria.fr/rNRIA/Projects/gemo/gemo/GemoReport-307.pdf. Accessed Jan.
25, 2008.

157. The Unicode Consortium. 2007. The Unicode Standard Version 5.0.0. Addison-
Wesley.

158. Topic Navigation Maps - An Overview. International SGML/XML Users' Group.
Available from http://www.isgmlug.org/n3-4/n3-4-15.htm. Accessed Jan. 25,
2008.

159. Unified Modeling Language (UML) Version 2.0. 2004. OMG. Available from
http://www.omg.org/technology/documents/formal/uml.htm. Accessed Jan. 25,
2008.

160. Visual Basic Scripting Edition. Microsoft Corporation. Available from
http://msdn2.microsoft.com/en-us/library/t0aew7h6.aspx. Accessed Jan. 25, 2008.

161. Web Services. W3C. Available from http://www.w3.org/2002/ws/. Accessed Jul.
12, 2007.

162. Wiederhold, G. 1992. Mediators in the Architecture of Future Information
Systems. IEEE Computer 25(3), 38^19.

163. The World Wide Web Consortium (W3C). Available from http://www.w3.org/.
Accessed Jan. 25, 2008.

164. XML Linking Language (XLink) Version 1.0. 2001. W3C. Available from
http://www.w3.org/TR/xlink/. Accessed Jan. 25, 2008.

http://www.startrek.com/
http://www.w3.org/TR/SVG/svgdom.html
ftp://ftp.inria.fr/rNRIA/Projects/gemo/gemo/GemoReport-307.pdf
http://www.isgmlug.org/n3-4/n3-4-15.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://msdn2.microsoft.com/en-us/library/t0aew7h6.aspx
http://www.w3.org/2002/ws/
http://www.w3.org/
http://www.w3.org/TR/xlink/

441

165. XML Path Language (XPath) 2.0. 2007. W3C. Available from
http://www.w3.org/TR/xpath20/. Accessed.

166. XML Path Language (XPath) Version 1.0. 1999. W3C. Available from
http://www.w3.org/TR/xpath. Accessed Jan. 25, 2008.

167. XML Pointer Language (XPointer). 2002. W3C. Available from
http://www.w3.org/TPJxptr. Accessed Jan. 25, 2008.

168. XML Pointer Language (XPointer) Framework. 2003. W3C. Available from
http://www.w3.org/TR/xptr-framework/. Accessed Jan. 25, 2008.

169. XML Pointer, XML Base and XML Linking. 2005. W3C. Available from
http://www.w3.org/XML/Linking. Accessed Jan. 25, 2008.

170. XML Schema. 2001. W3C. Available from http://www.w3.org/XML/Schema.
Accessed Jan. 25, 2008.

171. XML Schema Part 0: Primer Second Edition. 2004. W3C. Available from
http://www.w3.org/TR/xmlschema-0/. Accessed Aug. 15, 2007.

172. XmlNode Class. Microsoft Corporation. Available from
http://msdn2.microsoft.com/en-us/library/system.xml.xmlnode.aspx. Accessed
Jan. 25, 2008.

173. XPointer element() Scheme. 2002. W3C. Available from
http://www.w3.org/TR/xptr-element/. Accessed Jan. 25, 2008.

174. XPointer xpointer() Scheme. 2002. W3C. Available from
http://www.w3.org/TR/xptr-xpointer/. Accessed Jan. 25, 2008.

175. XQuery 1.0 and XPath 2.0 Data Model (XDM). 2007. W3C. Available from
http://www.w3.org/TR/xpath-datamodel/. Accessed Jan. 25, 2008.

176. XQuery 1.0: An XML Query Language. 2005. W3C. Available from
http://www.w3.org/TR/xquery/. Accessed Jan. 25, 2008.

177. XSL Transformations (XSLT). 1999. W3C. Available from
http://www.w3.org/TR/xslt. Accessed Jan. 25, 2008.

178. XSL Transformations (XSLT) Version 2.0. 2007. W3C. Available from
http://www.w3.org/TR/xslt20/. Accessed Jan. 25, 2008.

179. Yahoo! Maps Web Services. Yahoo! Available from
http://developer.yahoo.com/maps. Accessed Jan. 25, 2008.

180. Yahoo! Pipes. Yahoo! Inc. Available from http://pipes.yahoo.com. Accessed Jan.
25, 2008.

181. Yankelovich, N., Haan, B. J., Meyrowitz, N. K., Drucker, S. M. 1988. Intermedia:
The Concept and the Construction of a Seamless Information Environment. IEEE
Computer 21(1), 81-83, 90-96.

http://www.w3
http://www.w3.org/TR/xpath
http://www.w3.org/TPJxptr
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/XML/Linking
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xmlschema-0/
http://msdn2.microsoft.com/en-us/library/system.xml.xmlnode.aspx
http://www.w3.org/TR/xptr-element/
http://www.w3.org/TR/xptr-xpointer/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/
http://developer.yahoo.com/maps
http://pipes.yahoo.com

442

182. Yee, K. 2002. CritLink: Advanced Hyperlinks Enable Public Annotation on the
Web. In Proceedings of ACM 2002 Conference on Computer Supported
Cooperative Work, Nov. 16-20, New Orleans, Louisiana.

Appendix A: Sixml Element Types

This appendix describes the complete set of element types we have defined to

represent mark associations in a Sixml document. (Chapters 4 and 7 described Sixml).

Figure A. 1 shows the hierarchy of Sixml element types in the form of a static class

diagram drawn using the Unified Modeling Language. Section 7.3.2 introduces the

types shown, except MarkAssociation and MarkValueAssociation. MarkAssociation

defines the basic structure of a mark association. MarkValueAssociation includes the

information needed to derive XML content from the context of marks.

EMark

TMarks

I
TMark

CDataMark

CDataMarks

Context

I
[MarkAssociation

-WmarkID |
type

7̂ "

MarkValueAssociation

-t>valueSource fC}-
valueExpression

CMark

CMarks

Descriptor

xsktype

AMark

target

PIMark

PIMarks

Figure A.l: Hierarchy of Sixml element types

The rest of this appendix lists the XML Schema instance document that defines the

element types shown in Figure A.l. This document is also available online from

http://schema.sixml.org.

http://schema.sixml.org

<
?x

m
l

ve
rs

io
n=

"1
.0

"
en

co
di

ng
=

"u
tf

-8
"?

>

<
xs

:s
ch

em
a

ta
rg

et
N

am
es

pa
ce

=
"h

tt
p:

//
sc

he
m

a.
si

xm
l.o

rg
"

xm
ln

s:
si

xm
l =

 "h
tt

p
:/

/s
ch

e
m

a
.s

ix
m

l.o
rg

"
xm

ln
s:

xs
=

"h
tt

p:
//

w
w

w
.w

3.
or

g/
20

01
/X

M
LS

ch
em

a"
>

<
!-

-
B

as
e

ty
pe

 f
or

 d
es

cr
ip

to
rs

 —
 >

<

xs
:c

om
pl

ex
T

yp
e

na
m

e=
"D

es
cr

ip
to

r"
 m

ix
e

d
=

"t
ru

e
"

b
lo

ck
=

""
 a

bs
tr

ac
t=

"t
ru

e"
 f

in
a

l=
""

>

<
xs

:c
om

pl
ex

C
on

te
nt

 m
ix

ed
 =

 "t
ru

e
">

<

xs
:e

xt
en

si
on

 b
as

e=
"x

s:
an

yT
yp

e"
>

<

/x
s:

 e
xt

en
si

on
 >

<

/x
s:

co
m

pl
ex

C
on

te
nt

>

<
/x

s:
co

m
pl

ex
T

yp
e>

<!
—

C
on

te
xt

 i
nf

or
m

at
io

n
of

 a
rb

itr
ar

y
in

te
rn

al
 s

tr
uc

tu
re

 —
>

<

xs
:e

le
m

en
t

na
m

e=
"C

on
te

xt
">

<

xs
:c

om
pl

ex
T

yp
e

m
ix

e
d

=
"t

ru
e

">

<x
s:

se
qu

en
ce

 m
in

O
cc

ur
s=

"0
">

<

xs
:a

ny
 m

in
O

cc
ur

s=
"0

"
m

ax
O

cc
ur

s=
"u

nb
ou

nd
ed

"
na

m
es

pa
ce

=
"#

#a
ny

"
pr

oc
es

sC
on

te
nt

s=
"s

ki
p"

/>

<
/x

s:
se

qu
en

ce
>

<

xs
:a

ny
A

tt
ri

bu
te

 n
am

es
pa

ce
=

"#
#a

ny
"

pr
oc

es
sC

on
te

nt
s=

"s
ki

p"
/>

<

/x
s:

co
m

pl
ex

T
yp

e>

<
/x

s:
el

em
en

t>

<!
—

 B
as

e
ty

pe
 f

or
 a

ll
m

ar
k

as
so

ci
at

io
n

ty
pe

s
—

>

<
xs

:e
le

m
en

t
na

m
e=

"D
es

cr
ip

to
r"

ty

p
e

=
"s

ix
m

l:D
e

sc
ri

p
to

r"
/>

<

xs
:a

tt
ri

b
u

te
 n

am
e=

"t
yp

e"
 t

yp
e=

"x
s:

Q
N

am
e"

/>

<
xs

:a
tt

ri
b

u
te

 n
am

e=
"m

ar
kI

D
"

ty
p

e
=

"x
s:

st
ri

n
g

"/
>

<

xs
:c

om
pl

ex
T

yp
e

na
m

e=
"M

ar
kA

ss
oc

ia
tio

n"
 f

in
al

=
"r

es
tr

ic
tio

n"
 a

bs
tr

ac
t=

"t
ru

e"
 m

ix
e

d
=

"t
ru

e
"

b
lo

ck
=

"#
a

ll"
>

<

xs
:c

om
pl

ex
C

on
te

nt
 m

ix
ed

 =
 "t

ru
e

">

<
xs

:r
es

tr
ic

tio
n

ba
se

=
"x

s:
an

yT
yp

e"
>

<x

s:
se

qu
en

ce
 m

in
O

cc
ur

s=
"0

"
m

a
xO

cc
u

rs
=

"l
">

<

!-
-

A
 m

ar
k

as
so

ci
at

io
n

el
em

en
t

m
ay

 u
se

 a
n

in
st

an
ce

 o
f

a
ty

pe
 d

er
iv

ed
 f

ro
m

 s
ix

m
l:D

es
cr

ip
to

r.
 —

>

<
xs

:e
le

m
en

t
re

f=
"s

ix
m

l:D
es

cr
ip

to
r"

 m
in

O
cc

ur
s=

"0
"

m
a

xO
cc

u
rs

=
"l

"/
>

<

xs
:e

le
m

en
t

re
f=

 "s
ix

m
l:C

on
te

xt
"

m
in

O
cc

ur
s=

"0
"

m
a

xO
cc

u
rs

=
"l

">

<
/x

s:
el

em
en

t>

<
/x

s:
se

qu
en

ce
>

<!

-- D
en

ot
e

th
e

ty
pe

 o
f

th
e

m
ar

k
as

so
ci

at
io

n.
 T

he
 v

al
ue

 o
f

th
is

 a
tt

ri
bu

te
 m

us
t

be
 t

he
 q

ua
lif

ie
d

na
m

e
of

 a
 m

ar
k

as
so

ci
at

io
n

ty
pe

.
T

hi
s

at
tr

ib
ut

e
is

 u
se

fu
l t

o
de

fin
e

a
m

ar
k

as
so

ci
at

io
n

el
em

en
t

of
 a

rb
itr

ar
y

na
m

e
w

he
n

S
ix

m
l

da
ta

 i
s

pr
oc

es
se

d
w

ith
 a

 D
O

M
 im

pl
em

en
ta

tio
n

th
at

 d
oe

s
no

t
co

nf
or

m
 t

o
Le

ve
l

3
(t

h
a

t
is

, d
oe

s
no

t
re

co
gn

iz
e

ty
pe

 i
nf

or
m

at
io

n)
.

—
 >

<

xs
:a

tt
ri

b
u

te
 r

ef
=

 "s
ix

m
l:t

yp
e"

 u
se

=
"o

pt
io

na
l"

/>

<
xs

:a
tt

ri
b

u
te

 r
e

f=
"s

ix
m

l:m
a

rk
ID

"
us

e=
"o

pt
io

na
l"

/>

£

http://schema.sixml.org
http://schema.sixml.org
http://www.w3.org/2001/XMLSchema

<
/x

s
: r

e
st

ri
ct

io
n

>

<
/x

s
:

co
m

p
le

xC
o

n
te

n
t>

<

/x
s:

co
m

p
le

xT
yp

e
>

<
!-

-
B

as
e

ty
p

e
fo

r
m

a
rk

 a
ss

o
ci

a
ti

o
n

ty
p

e
s

th
a

t
su

p
p

o
rt

 v
a

lu
e

d
e

ri
va

ti
o

n
--

>

<
x

s
:a

tt
ri

b
u

te

n
a

m
e

=
"v

a
lu

e
S

o
u

rc
e

"
ty

p
e

=
"x

s
:b

o
o

le
a

n
"/

>

<
xs

:a
tt

ri
b

u
te

n

a
m

e
=

"v
a

lu
e

E
xp

re
ss

io
n

"
ty

p
e

=
"x

s
:s

tr
in

g
"/

>

<
xs

:c
o

m
p

le
xT

yp
e

n
a

m
e

=
"M

a
rk

V
a

lu
e

A
ss

o
ci

a
ti

o
n

"
fi

n
a

l=
"r

e
st

ri
ct

io
n

"
a

b
s

tr
a

c
t=

"t
ru

e
"

m
ix

e
d

=
 "

tr
u

e
"

b
lo

c
k

=
"#

a
ll

">

<
xs

:c
o

m
p

le
xC

o
n

te
n

t
m

ix
e

d
=

 "
tr

u
e

">

<
xs

:e
xt

e
n

si
o

n
b

a
se

=
"s

ix
m

l:
M

a
rk

A
ss

o
ci

a
ti

o
n

">

<
!—

 D
e

n
o

te
s

w
h

e
th

e
r

th
e

a
ss

o
ci

a
te

d
m

a
rk

 c
o

n
tr

ib
u

te
s

to
 t

h
e

va
lu

e
o

f
th

e
ta

rg
e

t
n

o
d

e
—

>

<
xs

:a
tt

ri
b

u
te

re

f=
"s

ix
m

l:
va

lu
e

S
o

u
rc

e
"

u
se

=
"o

p
ti

o
n

a
l"

/>

<
!-

-
D

e
n

o
te

s
w

h
a

t
ba

se
 v

a
lu

e
co

n
tr

ib
u

te
s

to
 t

h
e

va
lu

e
o

f
th

e
ta

rg
e

t
n

o
d

e
:

m
u

st
 b

e
e

m
p

ty
 o

r
a

p
a

th
 e

xp
re

ss
io

n
o

ve
r

co
n

te
xt

 i
n

fo
rm

a
ti

o
n

--
>

<

xs
:a

tt
ri

b
u

te

re
f=

"s
ix

m
l:

va
lu

e
E

xp
re

ss
io

n
"

u
se

=
"o

p
ti

o
n

a
l"

/>

<
/x

s:
e

xt
e

n
si

o
n

>

<
/x

s:
co

m
p

le
xC

o
n

te
n

t>

<
/x

s
: c

o
m

p
le

xT
yp

e
>

<
!-

-
T

yp
e

to
 a

ss
o

ci
a

te
 a

 m
a

rk
 w

it
h

an
 e

le
m

e
n

t
—

>

<
xs

:c
o

m
p

le
xT

yp
e

n
a

m
e

=
"E

M
a

rk
"

fi
n

a
l=

"r
e

st
ri

ct
io

n
"

m
ix

e
d

=
"t

ru
e

"
b

lo
c

k
=

"#
a

ll
">

<

xs
:c

o
m

p
le

xC
o

n
te

n
t

m
ix

e
d

=
"t

ru
e

">

<
xs

:e
xt

e
n

si
o

n
b

a
se

=
"s

ix
m

l:
M

a
rk

A
ss

o
ci

a
ti

o
n

"/
>

<

/x
s

:
co

m
p

le
xC

o
n

te
n

t>

<
/x

s:
co

m
p

le
xT

yp
e

>

<
!—

 T
yp

e
to

 l
is

t
Q

N
a

m
e

s
u

se
d

b
y

ty
p

e
A

M
a

rk
 —

>

<
xs

:s
im

p
le

T
yp

e
n

a
m

e
=

"Q
N

a
m

e
L

is
t"

>

<
xs

:l
is

t
it

e
m

T
yp

e
=

"x
s:

Q
N

a
m

e
"

/>

<
/x

s:
si

m
p

le
T

yp
e

>

<
!-

-
T

yp
e

to
 a

ss
o

ci
a

te
 a

 m
a

rk
 w

it
h

a
tt

ri
b

u
te

s
--

>

<
x

s
:a

tt
ri

b
u

te

n
a

m
e

=
"t

a
rg

e
t"

>

<
xs

:s
im

p
le

T
yp

e
>

<

!-
-

A
n

A
M

a
rk

 i
n

st
a

n
ce

 a
ss

o
ci

a
te

s
a

m
a

rk
 w

it
h

o
n

e
o

r
m

o
re

 a
tt

ri
b

u
te

s
o

f
a

n
e

le
m

e
n

t
—

>

<
xs

:r
e

st
ri

ct
io

n
b

a
se

=
"s

ix
m

l:
Q

N
a

m
e

L
is

t"
>

<

xs
:m

in
L

e
n

g
th

v

a
lu

e
=

"l
"/

>

<
/x

s
: r

e
st

ri
ct

io
n

>

<
/x

s:
si

m
p

le
T

yp
e

>

<
/x

s
:a

tt
ri

b
u

te
>

<

xs
:c

o
m

p
le

xT
yp

e
n

a
m

e
=

"A
M

a
rk

"
fi

n
a

l=
"r

e
st

ri
ct

io
n

"
b

lo
c

k
=

"#
a

ll
"

m
ix

e
d

=
"t

ru
e

">

<
xs

:c
o

m
p

le
xC

o
n

te
n

t
m

ix
e

d
=

"t
ru

e
">

<

xs
:e

xt
e

n
si

o
n

b
a

se
=

"s
ix

m
l:

M
a

rk
V

a
lu

e
A

ss
o

ci
a

ti
o

n
">

£

<
xs

:a
tt

ri
b

u
te

 r
e

f=
"s

ix
m

l:t
a

rg
e

t"

us
e=

"r
eq

ui
re

d"
/>

<

/x
s:

 e
xt

en
si

on
 >

<

/x
s:

co
m

pl
ex

C
on

te
nt

>

<
/x

s:
co

m
pl

ex
T

yp
e>

<!
—

 T
yp

e
to

 a
ss

oc
ia

te
 a

 m
ar

k
w

ith
 t

e
xt

 —
>

<

xs
:c

om
pl

ex
T

yp
e

na
m

e=
"T

M
ar

k"
 f

in
a

l=
"r

e
st

ri
ct

io
n

"
b

lo
ck

=
"#

a
ll"

 m
ix

e
d

=
"t

ru
e

">

<
xs

:c
om

pl
ex

C
on

te
nt

m

ix
e

d
=

"t
ru

e
">

<

xs
:e

xt
en

si
on

ba

se
=

"s
ix

m
l:M

ar
kV

al
ue

A
ss

oc
ia

tio
n"

/>

<
/x

s:
co

m
pl

ex
C

on
te

nt
>

<

/x
s:

co
m

pl
ex

T
yp

e>

<
!-

-
T

yp
e

to
 a

ss
oc

ia
te

 m
ul

tip
le

 m
ar

ks
 w

ith
 t

ex
t

--
>

<

xs
:c

om
pl

ex
T

yp
e

na
m

e=
"T

M
ar

ks
"

fin
al

 =
 "r

es
tr

ic
tio

n"
 b

lo
ck

=
"#

a
ll"

 m
ix

e
d

=
"t

ru
e

">

<
xs

:c
om

pl
ex

C
on

te
nt

 m
ix

e
d

=
"t

ru
e

">

<
xs

:e
xt

en
si

on
 b

as
e=

"x
s:

an
yT

yp
e"

>

<
xs

:s
eq

ue
nc

e
m

in
O

cc
u

rs
=

"l
">

<!

—
 A

ny
 e

le
m

en
t

th
at

 s
at

is
fie

s
th

e
sc

he
m

a
of

 s
ix

m
kT

M
ar

k
w

ill
 d

o
—

>

<
xs

:e
le

m
en

t
re

f=
"s

ix
m

l:T
M

ar
k"

/>

<
/x

s:
se

qu
en

ce
>

<

/x
s:

e
xt

e
n

si
o

n
>

<

/x
s:

 c
om

 p
le

xC
on

te
nt

 >

<
/x

s:
co

m
pl

ex
T

yp
e>

<
!-

-
T

yp
e

to
 a

ss
oc

ia
te

 a
 m

ar
k

w
ith

 a
 C

D
at

a
se

ct
io

n
—

 >

<
xs

:c
om

pl
ex

T
yp

e
na

m
e=

"C
D

at
aM

ar
k"

 f
in

a
l=

"r
e

st
ri

ct
io

n
"

b
lo

ck
=

"#
a

ll"
 m

ix
e

d
=

"t
ru

e
">

<

xs
:c

om
pl

ex
C

on
te

nt
 m

ix
e

d
=

"t
ru

e
">

<

xs
:e

xt
en

si
on

ba

se
=

"s
ix

m
l:M

ar
kV

al
ue

A
ss

oc
ia

tio
n"

/>

<
/x

s:
co

m
pl

ex
C

on
te

nt
>

<

/x
s:

co
m

pl
ex

T
yp

e>

<!
—

 T
yp

e
to

 a
ss

oc
ia

te
 m

ul
tip

le
 m

ar
ks

 w
ith

 a
 C

D
at

a
se

ct
io

n
—

>

<
xs

:c
om

pl
ex

T
yp

e
na

m
e=

"C
D

at
aM

ar
ks

"
fin

al
=

"r
es

tr
ic

tio
n"

 b
lo

ck
=

"#
a

ll"
 m

ix
e

d
=

"t
ru

e
":

<

xs
:c

om
pl

ex
C

on
te

nt

m
ix

e
d

=
"t

ru
e

">

<
xs

:e
xt

en
si

on

ba
se

=
"x

s:
an

yT
yp

e"
>

<

xs
:s

eq
ue

nc
e

m
in

O
cc

u
rs

=
"l

">

<
xs

:e
le

m
en

t
re

f =
 "

si
xm

l:C
D

at
aM

ar
k"

/>

<
/x

s:
se

qu
en

ce
>

<

/x
s:

 e
xt

en
si

on
 >

<

/x
s:

co
m

pl
ex

C
on

te
nt

>

<
/x

s:
co

m
pl

ex
T

yp
e>

4^

<
!-

-
T

yp
e

to
 a

ss
oc

ia
te

 a
 m

ar
k

w
ith

 a
 c

om
m

en
t

--
>

<

xs
:c

om
pl

ex
T

yp
e

na
m

e=
"C

M
ar

k"
 f

in
a

l=
"r

e
st

ri
ct

io
n

"
b

lo
ck

=
"#

a
ll"

 m
ix

ed
 =

 "t
ru

e
">

<

xs
:c

om
pl

ex
C

on
te

nt
 m

ix
e

d
=

"t
ru

e
">

<

xs
:e

xt
en

si
on

ba

se
=

"s
ix

m
l:M

ar
kV

al
ue

A
ss

oc
ia

tio
n"

/>

<
/x

s:
co

m
pl

ex
C

on
te

nt
>

<

/x
s:

co
m

pl
ex

T
yp

e>

<!
—

 T
yp

e
to

 a
ss

oc
ia

te
 m

ul
tip

le
 m

ar
ks

 w
ith

 a
 c

om
m

en
t

—
>

<

xs
:c

om
pl

ex
T

yp
e

na
m

e=
"C

M
ar

ks
"

fin
a

l=
"r

e
st

ri
ct

io
n

"
b

lo
ck

=
"#

a
ll"

 m
ix

e
d

=
"t

ru
e

">

<
xs

:c
om

pl
ex

C
on

te
nt

m

ix
e

d
=

"t
ru

e
">

<

xs
:e

xt
en

si
on

ba

se
=

"x
s:

an
yT

yp
e"

>

<x
s:

se
qu

en
ce

 m
in

O
cc

u
rs

=
"l

">

<
xs

:e
le

m
en

t
re

f=
"s

ix
m

l:C
M

ar
k"

/>

<
/x

s:
se

qu
en

ce
>

<

/x
s:

 e
xt

en
si

on
 >

<

/x
s:

co
m

pl
ex

C
on

te
nt

>

<
/x

s:
co

m
pl

ex
T

yp
e>

<!
—

 T
yp

e
to

 a
ss

oc
ia

te
 a

 m
ar

k
w

ith
 a

 p
ro

ce
ss

in
g

in
st

ru
ct

io
n

—
>

<

xs
:c

om
pl

ex
T

yp
e

na
m

e=
"P

IM
ar

k"
 f

in
a

l=
"r

e
st

ri
ct

io
n

"
b

lo
ck

=
"#

a
ll"

 m
ix

e
d

=
"t

ru
e

">

<
xs

:c
om

pl
ex

C
on

te
nt

m

ix
e

d
=

"t
ru

e
">

<

xs
:e

xt
en

si
on

ba

se
=

"s
ix

m
l:M

ar
kV

al
ue

A
ss

oc
ia

tio
n"

/>

<
/x

s:
co

m
pl

ex
C

on
te

nt
>

<

/x
s:

co
m

pl
ex

T
yp

e>

<!
—

 T
yp

e
to

 a
ss

oc
ia

te
 m

ul
tip

le
 m

ar
ks

 w
ith

 a
 p

ro
ce

ss
in

g
in

st
ru

ct
io

n
—

>

<
xs

:c
om

pl
ex

T
yp

e
na

m
e=

"P
IM

ar
ks

"
fin

al
=

"r
es

tr
ic

tio
n"

 b
lo

ck
=

"#
a

ll"
 m

ix
e

d
=

"t
ru

e
">

<

xs
:c

om
pl

ex
C

on
te

nt
 m

ix
e

d
=

"t
ru

e
">

<

xs
:e

xt
en

si
on

 b
as

e=
"x

s:
an

yT
yp

e"
>

<x

s:
se

qu
en

ce
 m

in
O

cc
u

rs
=

"l
">

<

xs
:e

le
m

en
t

re
f=

"s
ix

m
l:P

IM
a

rk
"/

>

<
/x

s:
se

qu
en

ce
>

<

/x
s:

e
xt

e
n

si
o

n
>

<

/x
s:

co
m

pl
ex

C
on

te
nt

>

<
/x

s:
co

m
pl

ex
T

yp
e>

<!
-- E
le

m
en

ts
 t

o
he

lp
 d

ef
in

e
a

sc
he

m
a

th
at

 u
se

s
de

fa
ul

t
m

ar
k

as
so

ci
at

io
n

na
m

es
 i

n
th

e
si

xm
l

na
m

es
pa

ce
.

T
he

 s
ch

em
a

of
 a

n
el

em
en

t
m

ay
 u

se
 t

he
 "

re
f"

 a
tt

ri
bu

te
 t

o
re

fe
re

nc
e

on
e

of
 t

he
se

 e
le

m
en

ts
.

--
>

<
xs

:e
le

m
en

t
na

m
e=

"E
M

ar
k"

 t
yp

e=
"s

ix
m

l:E
M

ar
k"

/>

<
xs

:e
le

m
en

t
na

m
e=

"A
M

ar
k"

 t
yp

e
=

"s
ix

m
l:A

M
a

rk
"/

>

<
xs

:e
le

m
en

t
na

m
e=

"T
M

ar
k"

 t
yp

e
=

"s
ix

m
l:T

M
a

rk
"/

>

<
xs

:e
le

m
en

t
na

m
e=

"T
M

ar
ks

"
ty

pe
=

"s
ix

m
l:T

M
ar

ks
"/

>

<
xs

:e
le

m
en

t
na

m
e=

"C
D

at
aM

ar
k"

ty

pe
=

"s
ix

m
l:C

D
at

aM
ar

k"
/>

<

xs
:e

le
m

en
t

na
m

e=
"C

D
at

aM
ar

ks
"

ty
pe

=
"s

ix
m

l:C
D

at
aM

ar
ks

"/
>

<

xs
:e

le
m

en
t

na
m

e=
"C

M
ar

k"
 t

yp
e=

"s
ix

m
l:C

M
ar

k"
/>

<

xs
:e

le
m

en
t

na
m

e=
"C

M
ar

ks
"

ty
pe

=
"s

ix
m

l:C
M

ar
ks

"/
>

<

xs
:e

le
m

en
t

na
m

e=
"P

IM
ar

k"
 t

yp
e

=
"s

ix
m

l:P
IM

a
rk

"/
>

<

xs
:e

le
m

en
t

na
m

e=
"P

IM
ar

ks
"

ty
pe

=
"s

ix
m

l:P
IM

ar
ks

"/
>

<
/x

s:
sc

he
m

a>

0
0

Appendix B: Sixml DOM Interface Definition

This appendix defines the complete application-programming interface of Sixml

DOM. This interface corresponds to Alternative 3 described in Section 7.5. The inter

face is defined using the Interface Definition Language. (See http://www.omg.org.)

This interface definition (as well as the interface definitions for Alternatives 1, 2, and

4 outlined in Section 7.5) is also available online from http://dom.sixml.org.

B.l. Level 1 Core
/*
* This file extends the W3C DOM Level 1 Core specification to allow mark associations
* (Alternative 3).
* Modifications are tagged by comments starting with the string "Sixml"
*
* This file: http://dom.sixml.org/a3/dom-l.idl

* Modified by: Sudarshan Murthy. smurthy period cs period pdx period edu.
* Modified on: July 11, 2007
* For more information on Sixml DOM, visit http://dom.sixml.org.
*
* Modifications (c) Sudarshan Murthy. All rights reserved.
* Permission to use modifications for non-commercial purpose. Use at your own risk.
* No warranties expressed or implied.
*/

fifndef _DOM_IDL_
•define _DOM_IDL_

Ipragma prefix "w3c.org"
module dom
{

valuetype DOMString sequence<unsigned short>;

interface DocumentType;
interface Document;
interface NodeList;
interface NamedNodeMap;
interface Element;

exception DOMException {
unsigned short code;

};
// ExceptionCode

http://www.omg.org
http://dom.sixml.org
http://dom.sixml.org/a3/dom-l.idl
http://dom.sixml.org
http://w3c.org

450

const
const
const
const
const
const
const
const
const
const

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short
short
short
short
short
short
short
short
short
short

INDEX_SIZE_ERR = 1
DOMSTRING_SIZE_ERR = 2
HIERARCHY_REQUEST_ERR = 3
WRONG_DOCUMENT_ERR = 4
INVALID_CHARACTER_ERR = 5
NO_DATA_ALLOWED_ERR = 6
NO_MODIFICATION_ALLOWED_ERR = 7
NOT_FOUND_ERR = 8
NOT_SUPPORTED_ERR = 9
INUSE ATTRIBUTE ERR = 1 0

interface DOMImplementation {
boolean hasFeature(in DOMString feature, in DOMString version);

interface Node

// NodeType
const unsigned short
const unsigned short
const unsigned short
const unsigned short
const unsigned short
const unsigned short
const unsigned short
const unsigned short
const unsigned short
const unsigned short
const unsigned short
const unsigned short

ELEMENT_NODE = 1
ATTRIBUTE_NODE = 2
TEXT_NODE = 3
CDATA_SECTION_NODE = 4
ENTITY_REFERENCE_NODE = 5
ENTITY_NODE = 6
PROCESSING_INSTRUCTION_NODE = 7
COMMENT_NODE = 8
DOCUMENT_NODE = 9
DOCUMENT_TYPE_NODE = 1 0
DOCUMENT_FRAGMENT_NODE =11
NOTATION NODE = 12

readonly attribute DOMString
attribute DOMString

nodeName;
nodeValue;
// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
Node

Node

Node
Node
boolean
Node

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

unsigned sho
Node
NodeList
Node
Node
Node
Node
NamedNodeMap
Document
insertBefore

replaceChild

removeChild(
appendChild(
hasChildNode
cloneNode(in

rt nodeType;
parentNode;
childNodes;
firstChild;
lastChild;
previousSibling ;
nextSibling;
attributes;
ownerDocument;

(in Node newChild, in Node refChild)
raises(DOMException);

(in Node newChild, in Node oldChild)
raises(DOMException);

in Node oldChild) raises(DOMException) ,
in Node newChild) raises(DOMException) ,
s();
boolean deep);

};

interface NodeList {
Node itemfin unsigned long index);
readonly attribute unsigned long length;

};

interface NamedNodeMap f
Node getNamedltem(in DOMString name);
Node setNamedltem(in Node arg) raises(DOMException);
Node removeNamedltem(in DOMString name) raises(DOMException) ,

451

Node item(in unsigned long index);
readonly attribute unsigned long length;

};

interface CharacterData : Node {
attribute DOMString data;

// raises(DOMException) on setting
// raises(DOMException) on retrieval

readonly attribute unsigned long length;
DOMString substringData(in unsigned long offset, in unsigned long count)

raises(DOMException);
void appendData(in DOMString arg) raises(DOMException);
void insertData(in unsigned long offset, in DOMString arg)

raises(DOMException);
void deleteData(in unsigned long offset, in unsigned long count)

raises(DOMException);
void replaceData(in unsigned long offset, in unsigned long count,

in DOMString arg) raises(DOMException);

interface Attr : Node {
readonly attribute DOMString
readonly attribute boolean

attribute DOMString

name ;
specified;
value;
// raises(DOMException) on setting

interface Element : Node {
readonly attribute DOMString tagName;
DOMString getAttribute(in DOMString name);
void setAttribute(in DOMString name, in DOMString value)

raises(DOMException);
void removeAttribute (in DOMString name) raises(DOMException);
Attr getAttributeNode(in DOMString name);
Attr setAttributeNode(in Attr newAttr) raises(DOMException);
Attr removeAttributeNode(in Attr oldAttr) raises(DOMException) ,
NodeList getElementsByTagName(in DOMString name);
void normalized;

);

interface Text
Text

);

CharacterData {
splitText(in unsigned long offset) raises(DOMException) ,

interface Comment : CharacterData { };

interface CDATASection : Text { };

interface DocumentType : Node {

readonly attribute DOMString name;
readonly attribute NamedNodeMap entities;
readonly attribute NamedNodeMap notations;

};

interface Notation : Node {
readonly attribute DOMString
readonly attribute DOMString

};

publicld;
systemld;

interface Entity : Node {
readonly attribute DOMString
readonly attribute DOMString
readonly attribute DOMString

};

publicld;
systemld;
notationName;

452

interface EntityReference : Node { };

interface Processinglnstruction : Node {
readonly attribute DOMString target;

attribute DOMString data;
// raises(DOMException) on setting

};

interface DocumentFragment : Node { };

interface Document : Node f
readonly attribute DocumentType doctype;
readonly attribute DOMImplementation implementation;
readonly attribute Element documentElement;
Element createElement(in DOMString tagName) raises(DOMException);
DocumentFragment createDocumentFragment();
Text createTextNode(in DOMString data);
Comment createComment(in DOMString data);
CDATASection createCDATASection(in DOMString data)

raises(DOMException);
Processinglnstruction createProcessinglnstruction(in DOMString target,

in DOMString data)
raises(DOMException);

Attr createAttribute(in DOMString name) raises(DOMException);
EntityReference createEntityReference(in DOMString name) raises(DOMException) ,
NodeList getElementsByTagName(in DOMString tagname);

};

//Sixml Sudarshan Murthy July 11, 2007
//Introduced to support mark associations

// ExceptionCode
const unsigned short INSUFFICIENT_INFO_ERR = 18;

interface MarkAssociation;

interface SixmlNode : Node {
readonly attribute NodeList markAssociations;
boolean hasMarkAssociations ();

MarkAssociation insertMarkAssociationBefore(in Node newMarkAssociation,
in Node refMarkAssociation)

raises(DOMException);
MarkAssociation replaceMarkAssociation(in Node newMarkAssociation,

in Node oldMarkAssociation)
raises(DOMException);

MarkAssociation removeMarkAssociation(in Node oldMarkAssociation)
raises(DOMException) ;

MarkAssociation appendMarkAssociation(in Node newMarkAssociation)
raises(DOMException);

NodeList getMarkAssociationsByName(in DOMString name);
};

interface SixmlValueNode : SixmlNode {
boolean isValueFromMarks();

};

interface SixmlElement : SixmlNode, Element { };

interface SixmlAttr : SixmlValueNode, Attr { };

interface SixmlText : SixmlValueNode, Text { };

interface SixmlCDATASection : SixmlValueNode, CDATASection { };

interface SixmlComment : SixmlValueNode, Comment { };

interface SixmlProcessinglnstruction : SixmlValueNode, Processinglnstruction { };

interface Mark {

readonly attribute DOMString markld;
readonly attribute DOMString descriptor;
DOMString getValuefin DOMString valueExpression) raises(DOMException);

};

interface MarkFactory {
readonly attribute DOMString markType;
Mark createMark(in DOMString markld, in DOMString descriptor)

raises(DOMException);
};

interface MarkRepository {
readonly attribute DOMString name;
Mark getMark(in DOMString markld, in DOMString descriptor)

raises(DOMException);
};

interface MarkAssociation Element
readonly attribute DOMString
readonly attribute DOMString

attribute boolean
attribute DOMString

markID;
descriptor;
isValueSource;
valueExpression;

Element
Element

};

getDescriptorElement() raises(DOMException) ;
getContextElement() raises(DOMException);

interface SixmlDocument : Document {
Mark getMark(in DOMString markld, in DOMString descriptor)

raises(DOMException);

MarkAssociation createMarkAssociation(in DOMString name, in DOMString markld,
in DOMString descriptor)

raises(DOMException) ;

};

tendif // DOM IDL

454

B.2. Level 2 Core

For this module, we show only the additions we have made to the existing interface

definition.

interface SixmlNode : Node {

readonly attribute NodeList markAssociations;

boolean hasMarkAssociations();

MarkAssociation insertMarkAssociationBefore(in Node newMarkAssociation,

in Node refMarkAssociation)

raises(dom::DOMException);

MarkAssociation replaceMarkAssociation(in Node newMarkAssociation,

in Node oldMarkAssociation)

raises(dom::DOMException) ;

MarkAssociation removeMarkAssociation(in Node oldMarkAssociation)

raises(dom::DOMException);

MarkAssociation appendMarkAssociation(in Node newMarkAssociation)

raises(dom::DOMException);

NodeList getMarkAssociationsByName(in DOMString name);

//Introduced in Level 2

NodeList getMarkAssociationByNameNS(in DOMString namespaceURI,

in DOMString localName)

raises(dom::DOMException) ;

};

455

B.3. Level 3 Load and Save

For this module, we show only the additions we have made to the existing interface

definition.

//Introduced Sixml parser and serializer

//scope of parsing and serializing

const unsigned short SI_SCOPE = 1;

const unsigned short MARK_ASSOCIATION_SCOPE = 2;

const unsigned short MARK_DESCRIPTOR_SCOPE = 3;

interface SixmlParser: ls::LSParser { attribute unsigned short scope; };

interface SixmlSerializer: Is::LSSerializer { attribute unsigned short scope; };

Appendix C: Queries Used in the Evaluation of the Bi-level Navigator

This appendix lists the queries used in experimental evaluation of the bi-level naviga

tor. Section 9.4.3 described the queries and the experimental results. (See also Table

9.6.)

For ease of presentation, we first present the XPath expressions used, followed by the

XSLT style sheets.

C I . XPath Queries

Ql: Retrieve all SI (all documents).

Scope SI, both normalized schema and nested schema.

. (the character period by itself)

Q5: Retrieve the text of all comments (SISRS documents)

Scope SI, both normalized schema and nested schema (three variations).

//textO

//Comment/text()

/Reviews/Paper/Comment/text 0

Q6: Retrieve paper titles (SISRS documents)

Scope SI, normalized schema:

/Reviews/Paper/@title

Scope Context, normalized schema.

/Reviews/Paper/@title/*/sixml:Context/Content/Text

457

Q7: List the base documents for security events (SSIB documents)

Scope Descriptor, normalized schema.

/SSIB/Computer/Events/Event[@kind='Security']/@*//sixml:Descriptor/Doc

458

C.2. XSLT Style Sheets

Ql: Retrieve all SI (all documents). Scope Association or Descriptor, both normalized

schema and nested schema.

<!--
Extract SI from a Sixml document represented using Sixml DOM.
- Only EMark elements are explicitly removed because Sixml DOM handles other mark associations

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNameThenAllofLastName at sixml dot org>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or
implied.

— >
<xsl:stylesheet version = "1.0" xmlns:xsl="http://www. w3.org/1999/XSL/Transform"

xmlns:sixml="http://schema.sixml.org">

<!-- Include template to determine mark association type from attribute sixmktype —>
<xsl: include href="GetMarkAssociationTypeFromTypeAttribute.xslt"/>

<!— Filter EMark elements with default name -->
<xsl:template match="sixml:EMark" priority="2"/>

<!— Filter EMark elements with custom name —>
<xsl:template match="*[@sixml:type]" priority="l">

<xsl:variable name="typeName">
<xsl:call-template name="GetMarkAssociationTypeFromTypeAttribute"/>

</xsl:variable>
<xsl:if test="not($typeName = 'EMark')">

<xsl:call-template name="CopySIEIement"/>
</xsl:if>

</xsl:template>

<!— Copy SI element: copy attributes and process children —>
<xsl:template name="CopySIEIement" match="*[not(@sixml:type)]" priority="l">

<xsl:copy>
<xsl:copy-of select="@*"/>
<xsl:apply-templates select="node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

http://schema.sixml.org
http://www
http://w3.org/1999/XSL/Transform
http://schema.sixml.org

459

Q2: Retrieve all mark associations (all documents). Scope Association, both norma

lized schema and nested schema.

<!--
Extract mark associations (exclude mark descriptors) from a Sixml document represented using
Sixml DOM
- EMark elements are distinguished from other children of an element; Sixml DOM distinguishes other

kinds of mark associations
- Performs deep copy of a mark association element and its attributes
- Query scope must be set to 'Associations'

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNameThenAllofLastName at sixml dot org>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or
implied.

-->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns: sixml = "http://schema.sixml.org">
<!-- Include template to determine mark association type from attribute sixml:type -->
<xsl:include href="GetMarkAssociationTypeFromTypeAttribute.xslt"/>
<xsl:template match="/">

<MarkAssociations>
<xsl:apply-templates select="*"/>

</MarkAssociations>
</xsl:template>

<!— Copy mark associations for attributes, text, comments, and PI: They are revealed as children —>
<xsltemplate match="@*|text()|comment()|processing-instruction()">

<xsl:copy-of select="*"/>
</xsl:template>

<!— Copy EMark elements that use default name —>
<xsl:template match="sixml:EMark" priority="2">

<xsl:copy-of select="."/>
</xsl:template>

<!— Copy EMark elements that use custom names —>
<xsl:template match="*[@sixml:type]" priority="l">

<xsl:variable name="typel\lame">
<xsl:call-template name="GetMarkAssociationTypeFromTypeAttribute"/>

</xsl:variable>
<xsl:choose>

<xsl:when test="$typeName = 'EMark'">
<xsl:copy-of select="*"/>

</xsl:when>
<xsl:otherwise>

<xsl:call-template name="ProcessSIEIement"/>
</xsl:otherwise>

</xsl: choose >
</xsl:template>
<!-- Process mark associations for children and attributes of SI elements -->
<xsl:template name="ProcessSIEIement" match="*[not(@sixml:type)]" priority="l">

<xsl:apply-templates select="node()"/>
<xsl:apply-templates select="@*"/>

</xsl:template>
</xsl:stylesheet>

http://schema.sixml.org
http://www.w3.org/1999/XSL/Transform
http://schema.sixml.org

460

Q2: Retrieve all mark associations (all documents). Scope Descriptor, both normalized

schema and nested schema.

Extract mark associations (exclude mark descriptors) from a Sixml document represented using
Sixml DOM
- EMark elements are distinguished from other children of an element; Sixml DOM distinguishes other

kinds of mark associations
- Performs shallow copy of a mark association element and its attributes
- Query scope can be set to "Associations" or greater

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNameThenAllofl_astName at sixml dot org>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or
implied.

-->
<xsl:stylesheet version = "1.0" xmlns:xsl="http:/ /www.w3.org/1999/XSL/Transform"

xmlns:sixml="http:/ /schema.sixml.org">

<! - - Include template to determine mark association type from attribute sixmktype —>
<xsl:include href="GetMarkAssociationTypeFromTypeAttribute.xslt"/>
<xsl:template match=" / ">

<MarkAssociations>
<xsl:apply-templates se lect="*" />

</MarkAssociations>
</xsl: template>
<!— Copy mark associations for attributes, text, comments, and PI: They are revealed as children —>
<xsl:template match="@*|text() |comment() |processing-instruct ion()">

<xsl:apply-templates select="*" mode="Copy"/>
</xsl : template>
<!— Copy EMark elements that use default name - ->
<xsl:template match="sixml:EMark" pr ior i ty="2">

<xsl:call-template name="CopyUniMark"/>
</xsl: template>

<!— Copy EMark elements that use custom names - ->
<xsl:template match = "* [@sixml: type]" p r io r i t y=" l ">

<xsl:variable name="typel\lame">
<xsl:call-template name="GetMarkAssociationTypeFromTypeAttribute"/>

</xsl:variable>
<xsl:choose>

<xsl:when test="$typel\lame = 'EMark'">
<xsl:call-template name="CopyUniMark"/>

</xsl :when>
<xsl:otherwise>

<xsl:call-template name="ProcessSIEIement"/>
</xsl:otherwise>

</xs l : choose >
</xsl: template>

<! - - Process mark associations for children and attributes of SI elements - ->
<xsl:template name="ProcessSIEIement" match="*[not(@sixml: type)]" pr io r i ty=" l ">

<xsl:apply-templates select="node()"/>
<xsl:apply-templates select="@*"/>

</xsl : template>

http://schema.sixml.org
http://www.w3.org/1999/XSL/Transform
http://schema.sixml.org

461

<!— Shallow-copy a mark association: Leave out mark descriptor and context, depending on query
scope —>

<xsl:template name="CopyUniMark" match="*" mode="Copy">
<xsl:copyxxsl:copy-of select="@*"/x/xsl:copy>

</xsl:template>
</xsl:stylesheet>

Ql, Q2 Supplement: Template to get the type of mark-association element based on

the attribute sixml: type. This template is used in Queries Ql and Q2.

<!--
Get the local name of the type of the mark association an element represents from the attribute
@sixml:type
- Utility template to include in other styles heets

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstl\lameThenAllofLastName at sixml dot org>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or
implied.

-->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns: sixml = "http://schema.sixml.org">

<!— Get the local name of the type of the mark association that an element represents from
@sixml:type

-->
<xsltemplate name="GetMarkAssociationTypeFromTypeAttribute">

<!-- extract the prefix and local name from the QName in @sixml:type —>
<xsl:variable name="prefix" select="substring-before(@sixml:type, ': ')"/>
<xsl:if test= "string(namespace::*[name()=$prefix])='http://schema.sixml.org'">

<xsl:choose>
<xsl:when test="contains(@sixml:type, ':')">

<xsl:value-of select="substring-after(@sixml:type, ': ')"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="string(@sixml:type)"/>
</xsl:otherwise>

</xsl:choose>
</xsl:if>

</xsl:template>

</xsl:stylesheet>

http://schema.sixml.org
http://www.w3.org/1999/XSL/Transform
http://schema.sixml.org
http://schema.sixml.org'

Q3: Retrieve unique mark descriptors (all documents). Scope Descriptor, normalized

schema.

<!--
Extract unique mark descriptors from a Sixml document represented using Sixml DOM
- Assumes input has mark associations with only mark ID and no mark descriptors
- Query scope must be set to "Descriptors"
- Reuses the templates to extract mark associations when the scope is set to "Associations"

- Works because the included templates "deep copy" mark associations, which includes descriptors
as needed in this application

- Reuses the templates to compute the "signature" of a mark descriptor
- Signatures are used to test if two descriptors are equal.

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNameThenAllofLastName at sixml dot org>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or

implied.
-->

<xsl:stylesheet version="1.0" xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
xmlns: sixml="http://schema. sixml. org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns: msxsl="urn:schemas-microsoft-com:xslt">

<!-- Include templates to extract mark associations -->
<xsl:include href="q2_ExtractAssociations_Sixml_ScopeA.xslt"/>

<!— Include templates to compute the "signature" of a descriptor—>
<xsl:include href="DescriptorSignature.xslt"/>

<xsl:template match="/">
<MarkDescriptors>

<xsl:variable name="associations'^
<xsl:apply-templates select="*"/>

</xsl:variable>
<xsl:call-template name="CopyUniqueMarkDescriptors">

<xsl:with-param name="associations" select="msxsl:node-set($associations)/*"/>
<xsl:with-param name="signatures'^

<xsl:apply-templates select="msxsl:node-set($associations)/*/sixml:Descriptor"
mode="Signature"/>

</xsl:with-param>
</xsl:call-template>

</MarkDescriptors>
</xsl:template>

<!-- Recursively process the list of mark associations and output unique descriptors -->
<xsl:template name="CopyUniqueMarkDescriptors">

<xsl:param name="associations"/>
<xsl:param name="signatures"/>
<xsl:param name="index" select="l"/>

<xsl:if test="count($associations) >= $index">

http://schema.sixml.org
http://www.w3.org/1999/XSL/Transform
http://schema
http://www.w3.org/2001/XMLSchema-instance

463

<xsl:if test="not($associations[$index]/@sixml:markID = $associations[$index >
position()]/@sixml:markID)">

<xsl:if test="not(msxsl:node-set($signatures)/*[$index] = msxsl:node-set($signatures)/*[$index
> position()])">

<!-- a descriptor for a mark association with this mark ID and a descriptor with this signature
has not been copied thus far

-->
<xsl:copy-of select="$associations[$index]/sixml:Descriptor"/>

</xsl:if>
</xsl:if>
<xsl:call-template name="CopyUniqueMarkDescriptors">

<xsl:with-param name="associations" select="$associations"/>
<xsl:with-param name="signatures" select="$signatures"/>
<xsl:with-param name="index" select="$index+l"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

</xsl:stylesheet>

Q3: Retrieve unique mark descriptors (all documents). Scope Descriptor, nested

schema.

<!--
Extract unique mark descriptors from a Sixml document represented using Sixml DOM
- Assumes input has mark descriptors but no mark ID
- Query scope must be set to "Descriptors"
- Reuses the templates to extract mark associations when the scope is set to "Associations"

- Works because the included templates "deep copy" mark associations, including descriptors
as needed in this application

- Reuses the templates to compute the "signature" of a mark descriptor
- Signatures are used to test if two descriptors are equal.

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNameThenAllofLastName at sixml dot org>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed
implied.

-->

<xsl:stylesheet version = "1.0" xmlns:xsl="http://www.w3.org/1999/XSI7Transform"
xmlns:sixml="http://schema.sixml.org"
xmlns:xsi="http://www. w3.org/2001/XMLSchema-instance"
xmlns:msxsl="urn:schemas-rnicrosoft-com:xslt">

<!— Include templates to extract mark associations —>
<xsl:include href="q2_ExtractAssociations_Sixml_ScopeA.xslt"/>

<!-- Include templates to compute the "signature" of a descriptor—>
<xsl:include href="DescriptorSignature.xslt"/>

<xsl:template match="/">
< MarkDescriptors>

<xsl:variable name="associations">
<xsl:apply-templates select="*"/>

</xsl:variable>
<xsl:call-template name="CopyUniqueMarkDescriptors">

<xsl:with-param name="associations" select="msxsl:node-set($associations)/*"/>
<xsl:with-param name="signatures">

<xsl:apply-templates select="msxsl:node-set($associations)/*/sixml:Descriptor"
mode="Signature"/>

</xsl: with-param >
</xsl:call-template>

</MarkDescriptors>
</xsl:template>

<!-- Recursively process the list of mark associations and output unique descriptors -->
<xsltemplate name="CopyUniqueMarkDescriptors">

<xsl:param name="associations"/>
<xsl:param name="signatures"/>
<xsl:param name="index" select="l"/>

<xsl:if test="count($associations) >= $index">
<xsl:if test="not(msxsl:node-set($signatures)/*[$index] = msxsl:node-set($signatures)/*[$

> position()])">

http://schema.sixml.org
http://www.w3.org/1999/XSI7Transform
http://schema.sixml.org
http://www
http://w3.org/2001/XMLSchema-instance

465

<!-- a descriptor with this signature has not been copied thus far -->
<xsl:copy-of select="$associations[$index]/sixml:Descriptor"/>

</xsl:if>
<xsl:call-template name="CopyUniqueMarkDescriptors">

<xsl:with-param name="associations" select="$associations"/>
<xsl:with-param name="signatures" select="$signatures"/>
<xsl:with-param name="index" select="$index+l"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

</xsl:stylesheet>

Q3 Supplement: Template to compute the signature of a mark descriptor. This tem

plate is used by Query Q3.

<!--
Compute "signature" of a mark descriptor
- The signature of a descriptor is essentially its "outer xml", without the xml punctuations
- Utility templates to include in other stylesheets

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNameThenAllofLastName at sixml dotorg>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or
implied. —>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:sixml="http://schema. sixml. org" >

<!-- Place the signature as the text content of an element —>
<xsl:template match = "sixml:Descriptor" mode="Signature">

<Signature>
<xsl:call-template name="Signature"/>

</Signature>
</xsl:template>
<!-- An element's signature is composed of its local name qualified by its namespace URI, the number

of attributes, and the signatures of attributes and children —>
<xsltemplate name="Signature" match = "*" mode="Signature">

<xsl:value-of select="concat(namespace-uri(), local-name(), count(@*))"/>
<xsl:apply-templates select="@*" mode="Signature"/>
<xsl:apply-templates select="node()" mode="Signature"/>

</xsl:template>
<!-- An attribute's signature is its local name qualified by its namespace URI, and the attribute's value

—>
<xsl:template match = "@*" mode="Signature">

<xsl:value-of select="concat(namespace-uri(), local-name(), .)"/>
</xsl:template>
<!-- A text node's signature is simply its content -->
<xsl:template match="text()" mode="Signature">

<xsl:value-of select="."/>
</xsl:template>
<!— No need to compute signature for comments and Pis —>

</xsl:stylesheet>

http://schema.sixml.org
http://www.w3.org/1999/XSL/Transform
http://schema

Q4: List the base documents referenced by the superimposed information (all docu

ments). Scope Descriptor, both normalized schema and nested schema

<!--
Extract unique mark descriptors from a Sixml document represented using Sixml DOM
- Query scope must be set to "Descriptors"
- Reuses the templates to extract mark associations when the scope is set to "Associations"

- Works because the included templates "deep copy" mark associations, including descriptors
as needed in this application

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNameThenAllofLastName at sixml dotorg>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or
implied.

-->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:sixml = "http://schema.sixml.org"
xmlns:xsi="http://www. w3.org/2001/XMLSchema-instance"
xmlns:msxsl="urn:schemas-microsoft-com:xslt">

<!-- Include templates to extract mark associations -->
<xsl:include href="q2_ExtractAssociations_Sixml_ScopeA.xslt"/>

<xsl:template match="/">
<MarkDescriptors>

<xsl:variable name="associations">
<xsl:apply-templates select="*"/>

</xsl:variable>
<xsl:call-template name="CopyUniqueBaseDocs">

<xsl:with-param name="docs" select="msxsl:node-set($associations)/*/sixml:Descriptor/Doc"/>
</xsl:call-template>

</MarkDescriptors>
</xsl:template>

<!— Recursively process the list of documents and output unique documents —>
<xsltemplate name="CopyUniqueBaseDocs">

<xsl:param name="docs"/>
<xsl:param name="index" select="l"/>

<xsl:if test="count($docs) >= $index">
<xsl:if test="not($docs[$index] = $docs[$index > position()])">

<xsl:copy-of select="$docs[$index]"/>
</xsl:if>
<xsl:call-template name="CopyUniqueBaseDocs">

<xsl:with-param name="docs" select="$docs"/>
<xsl:with-param name="index" select="$index+l"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

</xsl:stylesheet>

http://schema.sixml.org
http://www.w3.org/1999/XSL/Transform
http://schema.sixml.org
http://www
http://w3.org/2001/XMLSchema-instance

467

Q8: Create a timeline of "application hang" events (SSIB documents). Scope SI, nor

malized schema.

Construct a timeline of applications hanging for Computer '3' (from a Sixml document represented
using Sixml DOM).
- Uses micro queries
- Query scope of 'SI ' is sufficient

Last modified on: December 30, 2007.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNarneThenAllofLastName at sixml dot org>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or
implied.

-->

<xsl:stylesheet version="1.0" xmlns:xsl="http:/ /www.w3.org/1999/XSL/Transform"
xmlns:sixml="http:/ /schema.sixml.org">

<xs l templa te match=" / ">
<AppHangs>

<!— Use a focused path expression so the query is efficient —>
<xsl:apply-templates select="SSIB/Computer[@name='C3']/Errors/Error[@source=

'Application Hang']" />
</AppHangs>

</xsl : template>

<!— Describe one application hang event —>
<xsl:template match="Error[@source='Application Hang']">

<AppHang dateTime="{@dateTime>">
<!— The event description is of the form 'Hanging application xyz.exe,' —>
<xsl:value-of select="substring-before(substring-after(@description, 'Hanging application ') , ' , ') " />

</AppHang>
</xsl templa te >

</xsl:stylesheet>

http://schema.sixml.org
http://www.w3.org/1999/XSL/Transform
http://schema.sixml.org

Q8: Create a timeline of "application hang' events (SSIB documents). Scope Context,

normalized schema.

<!--
Construct a timeline of applications hanging for Computer '3' (from a Sixml document represented
using Sixml DOM).
- Does not use micro queries
- Query scope must be set to 'Context'

Last modified on: January 10, 2008.

For more information on Sixml, visit http://schema.sixml.org.
Contact: Sudarshan Murthy <firstLetterOfFirstNameThenAllofLastName at sixml dot org>

(c) 2007 Sudarshan Murthy. All rights reserved.
Permission to use for non-commercial purpose. Use at your own risk. No warranties expressed or
implied.

—>

<xsl:stylesheet version="1.0" xmlns:xsl = "http:/ /www.w3.org/1999/XSL/Transform"
xmlns:sixml="http: / /schema.sixml.org">

<xsl:template match=" / ">
<AppHangs>

<!— Use a focused path expression so the query is efficient - ->
<xsl:apply-templates select="SSIB/Computer[@name='C3']/Errors/Error[@source=

'Application Hang']" />
</AppHangs>

</xsl : template>

<!- - Describe one application hang event - ->
<xsl:template match="Error[@source='Application Hang']">

<AppHang dateTime="{@dateTime/*/Context/Content/Text/ text()}">
<! - - The event description is of the form 'Hanging application xyz.exe,' - ->
<xsl:value-of select="substring-before(

substring-after(@description/*/Context/Content/Text/text(),
'Hanging application ') , ' , ') " />

</AppHang>
</xsl : tern plate >

</xsl:stylesheet>

http://schema.sixml.org
http://www.w3.org/1999/XSL/Transform
http://schema.sixml.org

	A Framework for Superimposed Applications : Techniques to Represent, Access, Transform, and Interchange Bi-level Information
	Let us know how access to this document benefits you.
	Recommended Citation

	A Framework for Superimposed Applications : Techniques to Represent, access, transform, and interchange bi-level information

