
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1-2009

Classical Search and Quantum Search Algorithms Classical Search and Quantum Search Algorithms

for Synthesis of Quantum Circuits and Optimization for Synthesis of Quantum Circuits and Optimization

of Quantum Oracles of Quantum Oracles

Sazzad Hossain
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hossain, Sazzad, "Classical Search and Quantum Search Algorithms for Synthesis of Quantum Circuits
and Optimization of Quantum Oracles" (2009). Dissertations and Theses. Paper 5980.
https://doi.org/10.15760/etd.7850

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5980&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5980&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5980
https://doi.org/10.15760/etd.7850
mailto:pdxscholar@pdx.edu

CLASSICAL SEARCH AND QUANTUM SEARCH ALGORITHMS FOR

SYNTHESIS OF QUANTUM CIRCUITS AND OPTIMIZATION OF QUANTUM

ORACLES

by

SAZZAD HOSSAIN

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
2009

DISSERTATION APPROVAL

The abstract and dissertation of Sazzad Hossain for the Doctor of Philosophy in

Electrical and Computer Engineering were presented January 14, 2009, and accepted

by the dissertation committee and the doctoral program.

COMMITTEE APROVALS:

Marek Perkowski, Chair

Charles Weber
Representative of the Office of Graduate Studies

DOCTORAL PROGRAM APPROVAL:

Malgorzata Ckrzanowska-ljeske, Director
Electrical and Computer Engineering
Ph.D. Program

ABSTRACT

An abstract of the dissertation of Sazzad Hossain for the Doctor of Philosophy in

Electrical and Computer Engineering presented January 14, 2009.

Title: Classical Search and Quantum Search Algorithms for Synthesis of Quantum

Circuits and Optimization of Quantum Oracles.

We observe an enormous increase in the computational power of digital

computers. This was due to the revolution in manufacturing processes and controlling

semiconductor structures on submicron scale, ultimately leading to the control of

individual atoms. Eventually, the classical electric circuits encountered the barrier of

quantum mechanics and its effects. However, the laws of quantum mechanics can be

also used to produce computational devices that lead to extraordinary speed increases

over classical computers. Thus quantum computing becomes a very promising and

attractive research area. The Computer Aided Design for Quantum circuits becomes

an essential ingredient for such emerging research which may lead to these powerful

computers to be realized—an era of Quantum computing. This thesis presents an

integrated theoretical study of software algorithms to design circuits of quantum

oracles as well as methods for designing quantum oracles for Grover algorithm to

solve combinatorial problems. An implementation of quantum algorithm involves the

initialization of the input state and its manipulation with quantum gates followed by

the measurements. In Grover algorithm the problem to be solved is specified by a

permutative logic oracle - the fundamental problem is then how to build this oracle

from quantum logic circuits and how to optimize these circuits. These problems are

NP-hard and require search algorithms. In future, the search will be also done in

quantum and this thesis leads to quantum algorithms to design quantum circuits more

efficiently.

2

\

DEDICATION

This thesis is dedicated to:

My parents;

My wife;

My daughters;

11

ACKNOWLEDGMENTS

I am deeply grateful to my dissertation advisor, Professor Marek Perkowski, who

allowed me the opportunity to take the next step in my scientific vocation and do my

PhD. He allowed me the scope to follow my thoughts and develop my scientific skills,

whilst always being available to provide guidance, inspiration and discussion

whenever it was needed over a period of several years. I would like to thank Professor

Xiaoyu Song and Professor Fu Li for serving on both of my dissertation proposal

defense and comprehensive exam committee. I would like to extend special thanks to

Professor James Morris, Professor Xiaoyu Song, Professor Douglas Hall and Professor

Charles Weber for being on my dissertation committee. Special thanks to Professor

James Morris for stimulating discussion and sharing with me his incredible breadth of

knowledge in Quantum Mechanics and nanotechnology. Again, special thanks to

Professor Charles Weber for his invaluable review of my dissertation presentation.

Special thanks to the Governing authority of International Islamic University

Chittagong, Bangladesh for their constant inspiration and financial support. I would

like to thank my friends for their support and inspiration. I also gratefully

acknowledge my friends Shamsul Abedin and his wife Morsheda Khatun for their

continuous inspiration and support. Lastly but not leastly, I would like to express my

gratitude to my parents, my wife Leila Hossain, daughters Sanzida Hossain and

Tanzila Hossain for their love, understanding, patience and support sustained me

through the end of my PhD.

in

TABLE OF CONTENTS

Page

Acknowledgements iii

List of Tables xix

List of Figures xx

1. Introduction 1

1.1. Why Quantum Computers are superior to classical Computers 1

1.2. Towards Quantum CAD 3

1.2.1. The idea of using a quantum computer to design a quantum computer 3

1.2.2. Quantum Computer Aided Design Using Grover Algorithm 6

1.3. Solving problems by reducing them to basic combinatorial search

problems. 7

1.4. Problems in synthesis of quantum circuits. 10

1.5. New General-Purpose Search Approaches for classes of combinatorial

problems. 13

1.6. Organization of the thesis with respect to new ideas in logic design. 16

1.6.1. New circuit structures for permutative quantum logic. 18

1.6.2. The role of AND-EXOR structured forms in quantum circuit synthesis 20

1.6.3. New concepts of synthesis algorithms for particular structures 24

1.6.4. The role of additional knowledge and heuristics in creating algorithms 25

1.7. New integrated approaches to search 27

1.7.1. QSPS or Quantum Search Problem Solver 27
iv

1.7.2. Origins of our main quantum search idea 28

1.8. Summary of new concepts and ideas 32

1.9. Guide to the contents of chapters. 34

2. From Realization Technology Models of Quantum Permutative Gates to

Uniform Synthesis Approaches. 43

2.1. Towards Computer Aided Design of Quantum Computers. 43

2.2. Quantum gates and circuits on the level of pulses in Quantum technologies such

as NMR and ion traps. 44

2.2.1. The quantum gates on the level of electromagnetic pulses. The fundaments. 44

2.2.2. Models of Basic Gates 59

2.2.3. Circuit Identities and Optimizing Transformations 61

2.2.4. Single Qubit Gates 65

2.2.5. Two-Qubit Gates 67

2.2.6. Three-Qubit Gates 74

2.2.7. Large gates and gates for the "neighbor-only" technology 84

2.3. Realization of Fredkin Gate Using Cellular Automata 87

2.3.1. Non-quantum Realization of Reversible Binary Gates. 87

2.3.2. The Builder CA 89

2.3.3. The Fredkin gate - one method of modeling using stable architectures only 95

2.3.4. The Fredkin gate - a faster method utilizing both stable architecture and

oscillating elements 99

2.3.5. Conclusions on my Cellular Automata designs. 101

2.4.Conclusion on Technologies. 102

3. The AND EXOR Logic 103

3.1. The AND/EXOR logic to synthesize quantum circuits on level of permutative

gates 103

3.1.1. The choice of logic synthesis methods for quantum circuits 103

3.1.2. Reed-Muller Logic, Permutative Logic and Quantum Computing 106

3.1.3. The AND/EXOR base of logic. Fundamental methods and graphic

visualizations. 107

3.1.3.1. Quantum Karnaugh Maps. 107

3.1.3.2. From reversible gates to quantum gates. I l l

3.1.3.2.1. Superposition and its visualization in Kmap. I l l

3.1.3.2.2. Calculating a quantum state using matrices. 113

3.1.3.2.2.1. Calculating the operation matrix. 113

3.1.3.3. States calculated by the Hadamard gate. 115

3.1.4. Visualization of states in larger gates. 120

3.1.4.1. The Feynman or CNOT gate 120

3.1.4.2. The 3*3 Toffoli or CCNOT gate 121

3.1.4.3. The 3 * 3 Fredkin or Controlled-SWAP gate 122

3.1.4.4. The Ancilla Qubits 124

3.2. Why the AND/EXOR Logic Base? 125

3.2.1. Is the AND/EXOR base best for reversible and quantum logic? 125

VI

3.2.2. Some types of Permutative Quantum Circuits. The Quantum circuit Synthesis

problem 130

3.2.2.1. Forms for AND - EXOR Logic. 130

3.2.2.2. The Fixed-Polarity Reed-Muller Forms. 132

3.2.2.3. Which forms and gates are best for quantum circuits? 135

3.2.3. The problem of good structure selection. 137

3.2.3.1. Polarized forms. 137

3.2.4. ESOP expressions , 143

3.3. Motivating Example: Building a quantum array for a very simple oracle. 145

3.4. Selected Basic Concepts and Formalisms for Classical, Reversible and

Quantum Circuits Analysis and Synthesis. 152

3.4.1. Tensor products. 152

3.4.2. Permutative notation for permutative circuits. 157

3.4.3. Recursive use of Shannon Expansions to create trees. 158

3.4.4. Generalized control Quantum gates with other than AND controlling functions.

163

3.4.5. Controlled-root-of-NOT gates. 170

3.4.6. Controlling V gates based on arbitrary controls. 170

3.4.7. Universal 3 qubit circuits. 176

3.5. Search and Optimization. 177

3.5.1. Evolutionary, Search and Quantum Search approaches to Synthesize Quantum

Circuits from the above-introduced gates and circuits 177

Vll

3.5.2. Formalism for Expansions. 183

3.6. Butterfly diagrams for FPRM Forms 191

3.6.1'. Transformation from disjoint SOP to PPRM 197

3.7. Conclusions to chapter 3. 200

4. Algebras, Expansions, Trees, Forms, Hypercubes and Quantum Arrays 202

4.1. Types of Logic 202

4.2. Binary Reed-Muller Logic. 209

4.3. Representation of AND/EXOR Logic - The Polarity Maps 225

4.3.1. Transforming a KMap to an EXOR Map. 227

4. 4. Gray-code based systematic generation of all FPRM forms. 231

4. 5. Tree search methods for the generation of a heuristic subset of FPRM forms. 234

4.6. Evolutionary generation of FPRM forms. 238

4.7. The concept of Distance Gates. 240

4.8. Conclusion on generation of FPRM and similar forms. 246

5. Quantum Algorithms 249

5.1. Introduction. Classes of Oracles for Grover Algorithm 249

5.2. Quantum Algorithms 250

5.2.1. Introduction to Quantum Algorithms. 250

5.2.2. Background 253

5.2.3. Quantum Oracle. 253

5.2.3.1. The Deutsch Algorithm 257

viii

5.2.3.2. The Deutsch-Jozsa Algorithm 263

5.2.3.3. The Bernstein-Vazirani Algorithm 269

5.2.3.4. The Simon Algorithm 271

5.3. Grover's Algorithm 275

5.3.1. Initial Presentations. 275

5.3.2. Some Insight about Grover ideas: the "Phase Kick-back". 281

5.3.3. More Ideas on using and Improving the Grover's Algorithm for Quantum CAD

Problems. 285

5.3.4. Calculations and Experimental Results. 288

5.3.5. The Detailed Layout of the Grover Algorithm. 290

5.3.6. The G-iteration. 291

5.4. The Matlab Simulations. 294

5.4.1. The need for a simulation 294

5.4.2. The method of simulation 294

5.5. Conclusion 299

6. Tree Search, Parallel Search and Quantum Parallel Search 300

6.1. Introduction. The essence of parallel quantum search. 300

6.2. Advanced Search Method 304

6.2.1. Introduction to Advanced Search Methods 304

6.3. Multi-strategic Combinatorial Problem Solving 316

6.3.1. Basic Ideas of Multi-strategic search 316

6.3.2. Description of the Solution Tree 319

6.3.2.1. Basic concepts 319

6.4. Formulating a Problem 325

6.5. Creating Search Strategies 337

6.6. General Strategies for search. 339

6.7. Conditions in QSPS. 341

6.8. Relations on Operators and States 343

6.9. Component Search Procedures of C++ realization of ECPS. 348

6.10. Pure Search Strategies 359

6.11. Switch Strategies 369

6.12. Standard versus Quantum Searches. 375

6.13. Example of Application: The Covering Problem 384

6.13.1. The Formulation of the Set Covering Problem 3 84

6.13.2. Tree Search Method 1 388

6.13.3. Tree Search Method 2 391

6.13.4. Tree Search Method 3 393

6.13.5. Tree Search Method 4 394

6.13.6. Tree Search Method 5 397

6.13.7. General Ideas about Covering and Mapping Problems 403

6.14. Real-Time based Parallel Quantum Computer. A Hypothetical Scenario for

QSPS 408

6.15. Variants of Quantum Computing in QSPS. 411

6.16. Heuristic Search versus Quantum Search 414

7. Affine Binary Gates and Affine Circuit Structures 423

7.1. Introduction to the Concept of Affine Gates 423

7. 2. Affine Root-of-NOT Gates (ARNG) 425

7. 2.1. Design of 3 * 3 gates and circuits using controlled gates. 425

7. 2.2. Design of 4 * 4 gates and circuits using controlled root gates 428

7.2.3. Design of big gates using Controlled-root-of-NOT gates 432

7. 2.4. Design of 2-interval gates 434

7.2.5. Affine Toffoli gates 439

7.3. More on Affine Gates 441

7.3.1. Design of 3 * 3 gates and circuits using controlled gates. 441

7.3.2. Design of 4 * 4 gates and circuits/using controlled root gates 444

7.4. Design of symmetric functions 448

7.4.1. Methods to analyze totally symmetric functions. 449

7.4.2. Conclusions on 2-interval and symmetric functions. 460

7.5. The Program Generator to Synthesize Quantum Arrays with "Affine Root of

NOT" Gates. 462

XI

7.5.1. Introductory ideas 462

7.5.2. Reduction of circuits to binary 466

7.6. Using Cheap Quantum Gates (CQG) in general AND/EXOR synthesis. 471

7.6.1. From Affine Root of NOT Gates to Affine Toffoli Gates and Affine Complex

Gates. 471

7.7. Affine Polarities. 483

7.8. Program CircuitSearch 486

7.8.1. Introduction to CircuitSearch 486

7.8.2. Affine Circuit Search Implementation 488

7.8.3. How the Iterative Deepening Algorithm Works? 493

7.8.4. Searching. 495

7.9. Comparison of Search Techniques and discussion of results. 497

7.10. Library based design 504

7.10.1. Design of library of reversible blocks for single-output functions. 504

7.11 New Methodology for Synthesis of Quantum Circuits 520

7.11.1. General Recursive Decomposition of arbitrary non-reversible Boolean

functions to hierarchical quantum circuits with ancilla qubits. 520

7.11.2. Ashenhurst-Curtis Decomposition 521

7.11.3. Using symmetry and regularity to select "simple gates" for generalized

Decomposition 526

7.11.4. Realization of single minterm functions for functions of many variables. 528

7.11.5. Minterm Pair Functions. 531

7.12. Conclusions on affine concepts and decompositions. 538

8. Minimization of Incompletely Specified Boolean Functions for Generalized

Reed-Muller Forms realized in Quantum Arrays 548

8.1. Introduction 548

8.2. Generating systematically all product terms for all GRMs of all polarities and

related problems. 550

8.3. The Extended Cybernetic Search used to solve the GRJVI minimization problem

555

8.4 Illustrative Example of Minimization for Incompletely Specified Fuction

Specification with GRJVI Forms 561

8.4.1. Introductory Examples 561

8.4.2. Detailed description of building the Table (Table 8.4.2.1) 569

8.4.3. Iteration Process 573

8.4.4. Repetition and New Polarity Vectors 574

8.5. The Detailed description of the ECPS Algorithm Applied to the Approximate

Minimization of the Generalized Reed-Muller Form for Incompletely Specified Data

575

8.6. Results of Testing on Benchmarks 577

8.7. Discussion and Comparison 581

8.8. Conclusions 582

9. Affine Extensions to Linearly Independent Logic 585

9.1. Binary ESOP Logic and Affine Extensions 585
xiii

9.2. Possible approaches of selecting functions to be EXOR-ed 590

9.3. Linearly Independent Zhegalkin Logic 591

9.4. Family of LI base functions using AND and OR operators. 607

9.5. How to Create Inexpensive LI Families? 612

9.5.1. Use of Various Controlled Primitives to create inexpensive gates for set SI. 614

9.5.2. Symmetric Base Functions. 619

9.5.3. Big Base Functions. 620

9.5.4. Creating LI matrices from LI matrices by operating on them. 622

9.5.5. Finding All (or some) Affine Functions to Construct Base Functions. 625

9.5.6. KRM-Like and Other Mixed Forms. 628

9.5-.7. Creating Base Functions Based on Bi-decomposition. 628

9.5.8. Composing Gates for Base Functions. 631

9.5.9. Creating LI matrices for "all polarity search" algorithms from other LI

matrices. 632

10. Affine Multiple-Valued Galois Gates and Their Circuit Structures 635

10.1. From Binary Affine Toffoli Gates to Affine Toffoli Galois Gates. 635

10.2. Ternary Gates and Affine Ternary Gates. 638

10.2.1. Ternary Quantum Technology and Circuits 638

10.2.2. Ternary Galois Field Logic, Reversible Gates. 644

10.2.3. Ternary SWAP Gates. 649

10.2.4. Realization of classical MIN/MAX multiple-valued logic and their

generalizations circuits in ternary quantum circuits. 651

10.2.5. Synthesis of Polynomial Circuits Based on Galois Field Gates. 658

10.2.6. Realization of new type of Toffoli gates in ternary quantum logic. 667

10.3. Affine Hybrid Gates with Binary Outputs. 671

10.4. Extending Zhegalkin Hierarchy. 673

10.5. Conclusions. 676

11. Design of Blocks for Oracles and Quantum Computers using Permutative

Circuits 681

11.1. Introduction 681

11.2. Simple Adder Circuits. 681

11.3. "COUNT ONES" Circuit. 685

11.4. Binary Equality, Inequality and Order Comparators. 689

11.5. Ternary Adder and its Use in the "COUNT ONES' Circuit. 694

11.6. Ternary Logic "GREATER THAN" Comparator. 697

11.7. The Binary Compressor Tree. 699

11.8. Multiple-Valued Logic Realization of the Compressor Tree. 702

11.9. The Sorting / Absorbing Circuit. 705

11.10. The Iterative Comparator of A = B, A > B and A < B. 712

11.11. Arithmetic Reversible Blocks: Adders, Subtractors and Kernels. 718

11.12. Circuits for other Spectral Transforms 725

11.13. Low level realization of FPRM Transforms. FPRM processor 731

12. Quantum Search for Satisfiability, Petrick Function Minimization and

Related Problems 734

12.1. Solving the Satisfiability Class of Problems 738
XV

12.1.1. Product of Sums SAT (POS SAT) 738

12.1.2. Generalized SAT. 740

12.1.3. AND/OR DAGs. 745

12.2. Solving the Unate Covering Problem. 747

12.3. Finding Maximum Independent Sets in a graph 750

12.3.1. The Maximum Independent S et Problem 750

12.3.2. Finding Prime implecants of Boolean Function. 752

12.4. Classes of Satisfiability Problems. 756

12.4.1. Variants of reducing various problems to SAT. 756

12.4.2. Quantum Computers for Solving Satisfiability and Petrick Function Problems

762

12.4.3. Discussion on branching and parallelism. 781

12.5. Oracle for the Exact ESOP Minimization Problem. 787

12.5.1. Binary Case 787

12.5.2. Binary Generalizations. 792

12.5.3. Multiple-valued Generalizations. 793

12.6. Conclusion to Chapter 12. 794

13. Oracle for the Graph Coloring Problems. 797

13.1. The Graph Coloring Problem. 797

XVI

13.2. Proposed Architecture for Graph Coloring Problem using Grover's Algorithm

799

13.3. Problems that exist to design the Quantum Layout. 808

14. Oracles for Constraint Satisfaction Problems 814

14.1. Constraints Satisfaction Problems that are also Equational Logic Problems. 815

15. Towards Grover-Based Parallel Quantum Computers for Robotics and

Adiabatic Quantum Computing 824

15.1. Introduction. 824

15.2. Constraint Satisfaction Model for Robotics. 824

15.3. Adiabatic Quantum Computing to Solve Constraint Satisfaction Problems

Efficiently. 831

15.4. Machine Learning Using Spectral Approach. 842

15.4.1. General remarks about Machine Learning 842

15.4.2. Oracle for completely specified FPRJV1. 844

15.4.3. Oracle for incompletely specified FPRM. 848

15.4.4. Generalizations and Applications of Spectral Learning Model. 854

15.4.4.1. Generalizations and applications of methods from sections 15.4.2 and 15.4.3.

854

XVll

15.4.4.2. Applications in Quantum Game Theory. 860

15.4.4.3. Advances in the design of quantum arithmetics. 861

15.4.4.4. Quantum oracles for learning based on non-spectral approaches and types of

transforms. 862

16. Conclusions 864

16.1. What can be found in this concluding chapter? 864

16.2. Evolutionary Darwinian algorithms versus Evolution of Quantum States 865

16.3. Links of our methods to Machine Learning and Data Mining 870

16.4. Links of our methods to Evolvable Hardware. Towards Quantum FPGA. 873

16.5. Our approaches do not belong to the family of "quantum inspired algorithms"

877

16.6. Are our search models from this thesis realistic? 880

16.7. The main idea of quantum search in this dissertation. 881

16.8. Brute force Search versus human-like intelligence. 884

16.9. Exact versus approximate methods 886

16.10. Search with many strategies and heuristics 887

16.11. The implemented "Extended Cybernetic Problem Solver" versus the general

quantum search model from the thesis 888

16.12. Arguments for AND/EXOR logic in binary quantum applications 893

16.12.1. Galois Fields Logic for quantum circuits. 894

16.12.2. Highly Testable Quantum Circuits 895

17. References. 898

XVlll

LIST OF TABLES

Table Page

Table 1.1: Various approaches to main synthesis problems of the thesis. 42

Table 2.2.1: Cost of gate primitives 48

Table 2.2.2: X,Y,Z Pauli phase rotations. 55

Table 3.2.1.1: Tabular Comparison of Classical, reversible and Quantum gates. 129

Table 3.4.2.1: Truth table for reversible function [0, 3, 1, 2,4, 6, 5, 7]. 157

Table 7.2.1: The schematic explaining construction of 2-interval functions of positive literals. 434

Table 7.9.2.1: Complexity evaluation for some results of CircuitSearch. 501

Table 7.9.2.2: Generating matched circuits CircuitSearch Program using exhaustive search. 501

Table 7.9.2.3: Generating matched circuits CircuitSearch Program using iterative deepening search.

502

Table 7.10.1.1: Costs of gates (cells) in our library 519

Table 8.4.2.1: The Comparison Table illustrating the optimization process for a selected polarity
genotype for function [f1; f2] from Example 8.4.2 and example 8.4.3. 572

Table 8.6.1: Benchmarking on incompletely specified functions with various percents. 579

Table 8.6.2: Results for larger and multi-output functions. 580

Table 9.1.1: Comparison of old and new permutative gate libraries. 588

Table 9.5.1.1: Cost calculations for minterm pair gates for three and four variables 618

Table 10.2.1.1: Inverse functions for each single qutrit function. 643

Table 10.4.1: Extended Zhegalkin Hierarchy table with new "Affine Forms". 674

Table 10.4.2: Comparison of basic algebra axioms used in various algebras related to this dissertation.
675

Table 10.4.3: This table illustrates relations between algebras and expansions used in LI logic. 676

Table 11.8.1: Signed Binary table used to prevent long carry propagation chain. 703

Table 11.11.1: The truth table of the Walsh Transform kernel for width of registers k = 2. 722

xix

LIST OF FIGURES

Figure Page

Figure 1.1: The contents of the Chapters 41

Figure 2.2.1: Hadamard gate notation and its unitary matrix 51

Figure 2.2.2: Feynman gate notation and its unitary (in this case also permutative) matrix 51

Figure: 2.2.3 (a) Cascading V gates creates an inverter. Measurement of intermediate state would give

|o) and |l) with equal probabilities, composition of these gates acts as a classical inverter (b)

Controlled-V gate and its unitary matrix,(c) Controlled-Vtgate and its unitary matrix. 52

Figure 2.2.4: (a) Example how to calculate unitary matrices of generalized rotations from general
matrix formulas in Table 2.2.1. (b) Equivalent transformation of Z gate, (c) equivalent transformation
of CNOT and Hadamard gates, (d) CNOT and NOT transformation, (e) CNOTs and Pauli Y
transformation. 54

Figure 2.2.5a: Basic gates: NOT (or Pauli X), Pauli Y, Pauli Z, Hadamard, Controlled Square Root of
NOT or V, Phase Gate. 54

Figure 2.2.5b: Pseudo-Hadamard and inverse pseudo-Hadamard gates. 55

Figure 2.2.6: Controlled gates, (a) Controlled Hadamard gate, (b) Controlled Rotation with respect to
angle 0. This symbol applies to any angle, particularly X, Y and Z. Additional symbol is used to denote
the angle, (c) symbol of Pauli rotation where subscript i = X,Y,Z, (d) controlled phase and its unitary
matrix, (e) Controlled Z and its unitary matrix, (f) controlled phase gate and its unitary matrix. 56

Figure 2.2.7: (a) CNOT realized with controlled-Z and pseudo-hadamard gates. Symbol h stands for
pseudo-hadamard gate and symbol h"1 for inverse pseudo-hadamard gate, (b) CV realized with
Controlled-S and Hadamard gates, (c) CV* realized with controlled-S1 and Hadamards, (d) CVt

realized with controlled-S"1 and pseudohadamards. 57

Figure 2.2.8: (a) Controlled-Z gate realized with controlled-phi gate surrounded by pseudo-hadamards,
(b) Calculation of unitary matrix for lower qubit of this gate, (c) Various gates realized by § for angles
0°, 90°, -90° and 180° in X rotations.The (|) gate realizes identity, Square-root-of-NOT, its adjoint and
Inverter, (d) gates realized by Y rotations. 58

Figure 2.2.9: Calculating all possible superposition states that can be obtained from basis states |o) and

|l) using V and V ^ates. 59

Figure 2.2.3.1: Graphical illustration of the rule [A, B] = 0. 61

Figure 2.2.3.2: Graphical illustration of some commutation rules for quantum algebra that are used in
my tree search-based pulse-level circuit minimization algorithm. 63

Figure 2.2.3.3 : (a) The Controlled-NOT gate realised by controlled-Z gate surrounded by Hadamard
gates, (b) two serially connected Hadamard gate are together equal to a quantum wire and (c) for
controlled Z we can interchange the control qubit and the target qubit in the control-Z gate. 63

xx

Figure.2.2.3.4 : Identities for Feynman gate surrounded by Hadamard gate and construction of CV and
CV^ from Hadamard gate , Phase gate(S) and its inverse(S'). 64

Figure 2.2.3.5: (a) Example of transformation for Feynman gate surrounded by Hadamard gates,
(b)Hadamard gate used as serial connection creates Z gate, (c)Y gate surrounded by Hadamard creates
Y gate, (d) Z gate surrounded by Hadamard gates creates NOT gate. 64

Figure 2.2.4.1: (a) Calculation of matrix for Pauli X rotation, (b) calculation of matrix for Hadamard
gate, (c) Calculation of matrix for S gate. 65

Figure 2.2.4.2: Quantum gates realized on the pulse level, they are decomposed to rotations with respect
to axes x, y and z. 66

Figure 2.2.4.3: Calculation of unitary matrix for inverter. Illustrates accuracy with phase and relates to
the Table 2.2.2. 67

Figure 2.2.5.1: Representation of the CNOT Gate with EXOR up. 67

Figure 2.2.5.2: CNOT gate with EXOR down. 68

Figure 2.2.5.3: Controlled-V gate realized with 5 pulses. 70

Figure 1.2.5.4: SWAP Gate comprised of 3 CNOT gates. 71

Figure 2.2.5.5: Swap Gate with 11 Pulses. 72

Figure 2.2.5.6: Two-Qubit Rotation Operations. 73

Figure 2.2.6.1: (a)The Peres Gate, (b) The Toffoli Gate, (c)The Fredkin Gate, (d) The Miller Gate 74

Figure 2.2.6.2: Peres Gate with 12 pulses 75

Figure 2.2.6.3: The Toffoli gates with 13 pulses. 76

Figure 2.2.6.4: The Fredkin Gate with 19 pulses. 76

Figure 2.2.6.5: The Miller Gate with 24 pulses 76

Figure 2.2.6.6: Miller Gate realized with 45 pulses from Equation 2.2.6.8. 83

Figure 2.2.6.7: Miller Gate realized with 30 pulses from Equation 2.2.6.10. 84

Figure 2.2.6.8: Optimal Miller Gate Realized with 24 pulses from Equation 2.2.6.11. 84
Figure 2.2.7.1: Transforming a 3*3 Toffoli gate with qubit X] going through, (a) the SWAP gate, (b)
the transformation of the Toffoli gate by surrounding it with two SWAP gates. 85

Figure 2.2.7.2: Realization of Toffoli gate in the technology that allows interactions only between
neighbor qubits. 85

Figure 2.2.7.3: Transformation of "big CNOT" gate in the "neighbors only" quantum Technology. 86

Figure 2.3.2.1: The P0019 block oscillator 91

Figure 2.3.2.2: The T25 junction 92
xxi

Figure 2.3.3.1: P0045 Clock 95

Figure2.3.3.2: The signal doubler 96

Figure 2.3.3.3: The surface of the interleaver. 98

Figure 2.3.3.4: The signal tripler 98

Figure 2.3.4.1: Illustration of OR gate 99

Figure 2.3.4.2: (a) The Fredkin vl gate in Builder and (b) Fredkin Gate v2 in Builder 100

Figure 3.1.3.1.1: a) Complete Karnaugh map of the CNOT Gate from Figure 3.1.3.1.1b 108

Figure 3.1.3.1.2: Skeleton of the 4 bit Karnaugh maps 108

Figure 3.1.3.1.3: Groups in partial Karnaugh map of CNOT. Overlap of the groups represents 0. 109

Figure 3.1.3.2.1.1: Explanation of superposed states and their measurements. 112

Figure 3.1.3.2.2: Matrix representation of state 0 going through Hadamard gate. 113

Figure 3.1.3.2.2.1.1: Example of Kronecker multiplication of 2><2 matrix A and 3x3 matrix B. 114

Figure 3.1.3.3.1: The Hadamard gate matrix. 115

Figure 3.1.3.3.2: Dirac notation of Hadamard outputs. 115

Figure 3.1.3.3.3: The symbolic notation for a Hadamard gate that is controlled by various basis states.

117

Figure 3.1.3.3.4: Analysis of Hadamard gate applied to various input states. 117

Figure 3.1.3.3.5: The Quantum Kmap of the output of Hadamard gate (from Matlab). 117

Figure 3.1.3.3.6: The EPR circuit that illustrates the concept of entanglement. 118

Figure 3.1.3.3.7: The quantum KMap illustrating the output state of the EPR circuit. 118

Figure 3.1.3.3.8: Matlab simulation to find the Quantum KMap for EPR circuit. 118

Figure 3.1.3.3.9: A circuit similar to EPR circuit but the "EXOR down CNOT" was replaced with the
"EXORUpCNOT". 119

Figure 3.1.3.3.10: Matlab simulation QMap for the circuit when CNOT is controlled from the bottom
bit(Figure 3.1.3.3.9). 119

xxn

Figure 3.1.4.1.1: (a) Feynman gate, (b) Feynman gate matrix, (c) the KMap of the Feynman gate.

120

Figure 3.1.4.2.1: The 3*3 Toffoli gate. It is also called the Controlled-Controlled-NOT or the CCNOT
gate. 121

Figure 3.1.4.3.1: Fredkin gate realized using Toffoli and CNOT gates. 122

Figure 3.1.4.3.2: (a) Fredkin gate represented symbolically with classical Multiplexers, (b) Fredkin gate
at control input value a = 0, (c) Fredkin gate at control inputvalue a = 1. 123

Figure 3.1.4.3.3:(a) Generalized Fredkin Gate using classical multiplexers, (b) What Generalized
Fredkin gate realizes while control input a = 0 and (c) What Generalized Fredkin gate realizes when
control input a = 1. 123

Figure 3.1.4.4.1: (a) Realization of AND gate using Toffoli gate with the ancilla qubit initialized to
zero, (b) Realization of NAND gate using Toffoli gate with the ancilla qubit initialized to one. 125

Figure 3.2.1.1: Realization of a Mealy Quantum State Machine with classical Binary memory. The
Binary memory uses standard memory elements (flip-flops). The primary inputs and primary outputs
are quantum. 126

Figure 3.2.2.2.1: Quantum Circuit f for Polarity Number 7 for function f = abc © a © 1. 133

Figure 3.2.2.2.2: Quantum circuit f for Polarity Number 6 for function from Figure 3.2.2.2.1. 133

Figure 3.2.2.2.3: Quantum circuit f for Polarity Number 2 134

Figure 3.2.2.2.4: Quantum circuit f for Polarity Number 0 134

Figure 3.2.3.1.1: Quantum Oracle for function abc®abc build as ESOP type expression realized
with 4 * 4 Toffoli gates (non-existent technologically). 138

Figure 3.2.3.1.2: Quantum Oracle for function from Figure 3.2.3.1.1 using realistic 3 * 3 Toffoli gates
and one additional ancilla bit for the ESOP circuit from Figure 3.2.3.1.1. 139

Figure 3.2.3.1.3: KMap for the GRM realization of the function realized as ESOP in Figure 3.2.3.1.1.
139

Figure 3.2.3.1.4: Realization of quantum cascade (oracle) for factorized GRM f = ac®bc®ab
141

Figure 3.2.3.1.5: Quantum Oracle for direct (non-factorized) realization of GRM. 141

Figure 3.2.3.1.6 The quantum circuit (being also an oracle since inputs are replicated to output) for the
PPRM form of function from Figure 3.2.3.1.1. 141

Figure 3.2.3.1.7: A general view of quantum oracle realizing an FPRM form. 142

Figure 3.2.4.1: KMap with groups selected for ESOP expression for function F2. 144

Figure 3.2.4.2: Quantum Array for function F2 from Figure 3.2.4.1 used as an oracle. 144

Figure 3.3.1: Graph for coloring with five nodes. 146

Figure 3.3.2: Assignment of bits to encoded colors of nodes for the graph from Figure 3.3.1. 146

Figure 3.3.3: The inequality comparator used in Map Coloring and Graph Coloring problems. 147

Figure 3.3.4: (a)The inequality comparator from Figure 3.3.3 applied assuming five or more (< 8)
colors in the graph. 148

Figure 3.3.5: Encoding of colors for the graph coloring oracle of another graph having 3 nodes. 149

Figure 3.3.6: Principle of graph coloring applied to a simple graph from Figure 3.3.5. This is a classical
oracle. 149

Figure 3.3.7: Quantum array realized for the classical oracle from Figure 3.3.6. 151

Figure 3.3.8: Complete Grover Loop for the simple graph coloring problem. 152

Figure 3.4.1.1: Parallel connection of gates H and V. 152

Figure 3.4.1.2: Decomposition of the famous Einstein-Podolsky-Rosen (EPR) circuit (that produces
entanglement) to parallel and serial blocks in order to calculate its unitary matrix. 153

Figure 3.4.1.3: Symbolic Decomposition of the EPR circuit to matrix operations corresponding to the
parallel and serial blocks. 154

Figure 3.4.3.2.1: General representation of Shannon Expansion of Boolean function F(a,b,c,d) using a
classical multiplexer. 159

Figure 3.4.3.2.2: The multiplexer and the formula from its Shannon Expansion for simple function F =
ag + ah = ag®ah. 160

Figure 3.4.3.2.3: The quantum array for the multiplexer of Shannon Expansion from Figure 3.4.3.2.2.
160

Figure 3.4.3.3.1: Multiplexer based realization of a classical circuit for function G (a, b, c, d). 162

Figure 3.4.3.3.2: Quantum array for the classical circuit from Figure 3.4.3.3.1. 162

Figure 3.4.4.1: Quantum gate controlled by a + b. We have P = a, Q = b, R = (a+b) e c. 163

Figure 3.4.4.2: A non-optimal realization of (a+b) © c. 164

Figure 3.4.4.3: The circuit with CV and CNOT gates that realizes inexpensively the same function as
the circuit from Figure 3.4.4.1. 164

Figure 3.4.4.4: A circuit that uses only 2*2 truly quantum gates to realize an otherwise complex
function maj (a, b, c) © d if realized with Toffoli gates. 165

Figure 3.4.4.5a: Basic quantum algebra rules for CV and CVt gates. 165

Figure 3.4.4.5b: Symbolic graphical analysis of the circuit from Figure 3.4.4.4. 166
Figure 3.4.4.6: A non-optimal structure for the circuit from Figure 3.4.4.4. 166
Figure 3.4.4.7: 000. Realization of function |c) = |(a + 6)ffic) using only 2-qubit quantum primitives.

166
Figure 3.4.4.8: 001. Realization of standard Toffoli gate. 167

Figure 3.4.4.9: 010 Realization of function \c) = \ab®c) using only 2-qubit quantum primitives. 167

xxiv

Figure 3.4.4.10: Oil Realization of function |c)= a6©c) using only 2-qubit quantum primitives. 167

Figure 3.4.4.11:100 Another realization of function \c) = \ab®c\ using only 2-qubit quantum

primitives. 168
Figure 3.4.4.12: 101 Another realization of function |c) = |a6©c) using only 2-qubit quantum

primitives. 168
Figure 3.4.4.13: 110 Another realization of standard Toffoli gate. 168

Figure 3.4.4.14: 111 Another realization of function \c) = \(a + b)®c) using only 2-qubit quantum

primitives. 168

Figure 3.4.4.15: Example of cascading new gates from Figure 3.4.4.7 - 3.4.4.14. 169

Figure 3.4.5.1: Realization of Controlled-NOT and Controlled-V gate from Controlled-G gates. 170

Figure 3.4.6.1: Controlled- V gates with arbitary controlling functions. 171

Figure 3.4.6.2: QMap Analysis of the circuit using Controlled-V(Controlled- VNOT) gates with arbitary
controlling functions from Figure 3.4.6.1. 171

Figure 3.4.6.3: Quantum circuit using Controlled-V(Controlled- -JNOT) gates with arbitary controlling
functions from Figure 3.4.6.2. 172

Figure 3.4.6.4: Another example of Controlled- V gates with arbitrary controlling functions (linear in
this case. 173

Figure 3.4.6.5: Analysis of several functions from cascade (Figure 3.4.6.4) with a single truth table.
174

Figure 3.4.6.6: Graphical Illustration of the general algebra rules for controlling quantum gates by
Boolean variables. 174

Figure 3.4.6.7: QKMap based analysis of Figure 3.4.6.6a. 175

Figure 3.4.6.8: Presents QKMap analysis of Figure 3.4.6.6b. 175

Figure 3.4.6.9: The minimization that can be applied on the gate level. Here two NOT gates can be
cancelled. 175

Figure 3.4.7.1: Quantum Circuit from controlled gates versus equivalent to it Quantum Multiplexer
Circuit. 176

Figure 3.5.2.1: Representation of binary cofactors in the Karnaugh map. 184

Figure 3.5.2.2: Graphical representation of Shannon expansion for the Karnaugh map from Figure

3.5.2.1. 185

Figure 3.5.2.3: Step-by-step calculation of Shannon expansion with KMap visualization. 185

Figure 3.5.1.4: Shannon Tree for binary logic of two variables. 186

Figure 3.5.2.5: The Quantum array with ancilla bits for nodes 1, k, and f drawn directly from the
decision diagram from Figure 3.5.2.4. 186

Figure 3.5.2.6: Part of a quantum array to realize the positive Davio expansion, where f0 and (f0 © fi)
are functions of remaining variables, which may require ancilla bits. 188

Figure 3.5.2.7: Graphical representation of Positive Davio expansion for function
/ = ax © bx © ab = x(a © b) © ab . 188

Figure 3.5.2.8: Realization of Negative Davio Expansion. 190

Figure 3.6.1: Coefficients of cells of 2-variable KMap for symbolic transformation. 194

Figure 3.6.2: Butterfly structure for transforming minterms fy of a Kmap to spectral coefficients c, of the
corresponding PPRM form for two variables. 194

Figure 3.6.3: Conversion of PPRM. 195

Figure 3.6.4: Conversion from minterms to FPRM with polarity 111 (PPRM). 196

Figure 3.6.5: Conversion from minterms to FPRM with polarity 110. 196

Figure 3.6.1.1: PPRM transform for 3 variables 197

Figure 3.6.1.2: Calculation of coefficients for the PPRM Circuit for function from Figure 3.6.1.1(a).
199

Figure 3.7.1: Diagrams of main concepts introduced in chapter 3. 201

Figure 4.1.1: (a) GF(3) Logic operators Table of Galois Field addition for 3-valued variables
(GF(3)add). It is Latin Square (b) Table of Galois Field multiplication for 3-valued variables (GF(3)
*). 208

Figure 4.1.2: GF(4) Logic operators, (a) Table of Galois Field addition for 4 variables (GF(4)add). It is
a Latin Square, (b) Table of Galois Field multiplication for 4-valued variables (GF(3)*). 208

Figure 4.2.1: Expansion tree for the Positive Davio Expansions. 211

Figure 4.2.2: An Example of using positive Davio expansions to calculate the expansion tree for order
of variables a, b, c. 211

Figure 4.2.3: The PPRM form realized as a quantum array using Feynman and Toffoli gates for the
function f = c®b®bc® ac® abc from Figure 4.2.2. 212

Figure 4.2.4: Circuits for Example 4.2.2. 213

Figure 4.2.5: FPRM forms and their diagrams: 214

Figure 4.2.6: The quantum array of the FPRM form derived in Example 4.2.4 (not an oracle). 216

Figure 4.2.7: A general form of a KRO Expansion Tree. 217

Figure 4.2.8: An oracle for a KRO expansion. 218

Figure 4.2.9: An Example of a PSDRM tree. 219

Figure 4.2.10: The PSDRM tree for f(\ux2,x3,\4) = x\ x2 x3 x3 © x~\ x2 x3 I 4 hi which has the

flattened PSDRM form of x2 x3 © x\ x3 x4 © xxx2 x4 © xix2x3 . 220

xxvi

Figure 4.2.11: The quantum array for the flattened PSDRM form from Example 4.2.9. 220

Figure 4.2.12: The quantum array oracle for the Generalized Reed Muller form of the function from
example 4.2.10. 222

Figure 4.2.13: The hierarchy of the popularly known canonical forms and AND/EXOR expressions.

224

Figure 4.2.14: Classical, Green-Sasao hierarchy of Reed-Muller binary trees, diagrams and expansions
224

Figure 4.3.1: The Exor Maps for all FPRM polarities for functions of three variables. 226

Figure 4.3.2: Exor Map for polarity a b c . 229

Figure 4.3.3: Representations of Example 4.3.2. 230

Figure 4.3.4: Visual Transformation of FPRM from Example 3.4.2 in different polarities, (111), (101)
and (100). 231

Figure 4.4.1: Hamming distance 1 path (HD1 path) through all nodes in a 3-dimensional hypercube.
231

Figure 4.4.2: A sequence of HD1 polarity Exor Maps for the exact minimum FPRM generation. 233

Figure 4.4.3: Graphical method to obtain function F for new polarity FPRM from the previous polarity
FPRM while looping through Exor Maps of all polarities in Gray code. 234

Figure 4.5.1: The (partial) tree search in the hypercube with polarities as nodes. 235

Figure 4.5.2: The Tree search corresponding to the sub tree for polarities from Figure 4.5.1. 236

Figure 4.5.3: Tree (this time exhaustive) that visually illustrates the tree search for Example 4.5.2. 237

Figure 4.6.1: Evolutionary Generation of FPRM forms in various polarities. 238

Figure 4.7.1: Toffoli gate is HD1 gate permuting inside cube ab. 240

Figure 4.7.2: The Toffoli-like HD1 gate permuting inside cube a b. 241

Figure 4.7.3: Toffoli-like HD1 gate permutting inside cube a b . 241

Figure 4.7.4: Toffoli-like HD1 gate permutting inside cube a b. 242

Figure 4.7.5: Toffoli-like HD1 gate permutting inside cube be. 242

Figure 4.7.6: Toffoli-like HD1 gate permutting inside cube b c. 242

Figure 4.7.7: Toffoli-like HD1 gate permutting inside cube b c . 243

Figure 4.7.8: Toffoli-like HD1 gate permutting inside cube b c. 243

Figure 4.7.9: Toffoli-like HD1 gate permutting inside cube ac. 243

Figure 4.7.10: Toffoli-like HD1 gate permutting inside cube a c. 244

Figure 4.7.11: The gate for / = a(b®c) {s a simple distance-2 gate (HD2 gate) with no restoration of
inputs. 245

xxvn

Figure 4.7.12: Toffoli gate surrounded by linear gates creates a distance 2 gate for four variables.
245

Figure 4.7.13: Changing the order of variables in Figure 4.7.12 creates another distance 2 gate as can be
verified in the corresponding KMap. 245

Figure 5.2.3.1: Oracle for quantum algorithms. 254

Figure 5.2.3.1.1: Deutsch Quantum Algorithm. M is the single-qubit measurement operator, f is a one-
argument Boolean function. 257

Figure 5.2.3.1.2: Four cases of the Deutsch oracle, function f(x)=0 and f(x)=l are constants, function

f(x)=x and f(x)= x are balanced. 261

Figure 5.2.3.1.3: Oracle with input and output Hadamards for the case f(x) = 0. 261

Figure 5.2.3.1.4: Oracle with input and output Hadamards for the case f(x) = 1. 261

Figure 5.2.3.1.5: Oracle with input and output Hadamards for the case f(x) = x. 262

Figure 5.2.3.1.6: Oracle with input and output Hadamards for the case f(x)= x. 262

Figure 5.2.3.2.1: Deutsch-Jozsa Quantum Algorithm with two inputs Xj and x2as measurement of f .
263

Figure 5.2.3.2.2: Graphical method applied to an instance of Deutsch-Jozsa algorithm 269

Figure 5.2.3.4.1: The Simon Algorithm. 271

Figure 5,3.1.1: Controlled Quantum gates, the top wire always represents the most significant qubit.
279

Figure 5.3.2.1: Oracle for function f together with input Hadamards. 282

Figure 5.3.2.2: Calculation of the quantum state after oracle. Information is hidden in phase. 283

Figure 5.3.4.1: Grover Algorithm Block Diagram. 289

Figure 5.3.5.1: The Grover Algorithm block diagram. Here, the G's in the boxes represent Grover
operators as in Figure 5.3.4.1. 290

Figure 5.3.5.2: the mathematical representation of initial state \<p) 290

Figure 5.3.6.1: The first G-iteration 291

Figure 5.3.6.2: Function f(i) 292

Figure 5.3.6.3: Function Uf. 292

Figure 5.3.6.4: Geometric representation of G-iteration. 293

Figure 5.4.2.1: The graph with 3 nodes for coloring to be simulated. 295

XXVlll

Figure 5.4.2.2: The Grover Loop for graph coloring of the simple map (planar graph) from Figure
5.4.2.1. 295

Figure 5.4.2.3: The Graph Coloring checking oracle for the graph from Figure 5.4.2.1. 296

Figure 5.4.2.4: Calculations of the Unitary (permutative) matrices from the oracle. 297

Figure 5.4.2.5: Analysis of the single iteration of Grover Loop. 298

Figure 6.1.1: Hierarchical control Figure. 303

Figure 6.3.1.1: Example of Ti type tree generator of a full tree. 318

Figure 6.4.10.1: Examples of tree generators. 331

Figure 6.4.10.2: More examples of tree generators. 332

Figure 6.4.11.1: Symbols for columns of a Quantum array used to encode genes in a chromosome of a
GA for 3x3 quantum arrays synthesis. 335

Figure 6.4.11.2: Circuit corresponding to the Chromosome BCB, which is the quantum circuit for the
Fredkin gate composed from two Feynman gates and the Toffoli gate. 335

Figure 6.4.11.3: Operation of the Genetic Algorithm to find the chromosome BCB leading to the
phenotype circuit from Figure 6.4.11.2. 336

Figure 6.4.11.4: Operation of the exhaustive breadth first search algorithm to find the circuit from
Figure 6.4.11.2. 336

Figure 6.10.1: The example of the lattice with three maximum and two minimum elements. 364

Figure 6.12.1: (a) Incomplete function to be realized as a PPRM, (b) Positive Polarity Exor Map with
costs of product terms. 376

Figure 6.12.2: Exhaustive/greedy strategy based on repeated calls of quantum Grover Algorithm. 376

Figure 6.12.3: Visualization of search space of an exhaustive/greedy strategy extended by sequential
calls to the quantum Grover accelerator. 377

Figure 6.12.4: ESOP minimization search for an incomplete function Fun l(a, b, c, d). 379

Figure 6.12.5: Master Slave Processor with quantum co-processors used in Example 6.12.2. 381

Figure 6.12.6: Verifying if variable a is a Linear Variable of function g(a, b, c, d). 382

Figure 6.12.7: Tree search with additional linearity test. 383

Figure 6.13.1: A Covering Table With Equal Costs of Rows 385

Figure 6.13.2: First Search Method for the Table from Figure 6.13.1. 389

Figure 6.13.3.1: Second Search Method for the Table from Figure 6.13.1. 392

Figure 6.13.6.1: Final Search Method for the Table from Figure 6.13.1. 401

Figure 6.13.6.2: A Covering Table with Costs of Rows that are not Equal. 402

Figure 6.13.6.3: A Search Method for the Table from Figure 6.13.6.2. 403

xxix

Figure 6.13.7.1: Node Descriptions for the Tree from Figure 6.13.6.2. 407

Figure 6.15.1: The oracles for the maximum clique problem. 413

Figure 7.1.1: Feynman Gate; example for reversibility. This gate is a fundament of affine gates. 424

Figure 7.2.1: The cost of a 3*3 Toffoli gate is five 2-qubit gates. 426

Figure 7.2.2: Realization of "double-cube"function | F) = (ctbc + abc) ® d 426

Figure 7.2.3: (a) Extension of standard Toffoli gate to 4x4 Toffoli gate by multiplying by signal c.
429

Figure 7.2.3: (b) Realization of the 4*4 Toffoli gate from Figure 7.2.3a using controlled-root-of-order-
four-of-NOT gates, CG. 429

Figure 7.2.4: Simplified circuit from Figure 7.2.3b. 430

Figure 7.2.5: Realization of function a(b ® c) © d using linear controls of V/V* gates. 430

Figure 7.2.6: Realization of function f = ab c®abc using affme-controlled target gates V, V1^

and NOT. 431

Figure 7.2.7: With d=0 we realized here a symmetric function of variables a, b, c. 432

Figure 7.2.8: Realization of 3-controlled U. 433

Figure 7.2.9: Realization of 3-controlled operator U from Fig. 7.2.8 with CV, CV+ and
Controlled -JU, V(7+ gates. 433

Figure 7.2.10: Realization of S2,3 (a, b, c, d) © e using ARNGs. 436

Figure 7.2.11: Binary Affine Toffoli Gate for function from Figure 7. 2.12. 440

Figure 7.2.12: Graphical Analysis of the affine Toffoli gate from Figure 7.2.11. 440

Figure 7.2.13: Derivation of various non-optimal circuits for the minimum gate from Figure 7.2.11. 441

Figure 7.3.1.1: Realization of Toffoli gate with output logic equations. 443

Figure 7.3.1.2: The cost of Toffoli gate is five 2-qubit gates. 443

Figure 7.3.1.3: Peres gate has a cost of four 2-qubit gates. 443

Figure 7.3.2.1: With d=0 we realized here a symmetric function of variables a, b, c. 444

Figure 7.3.2.2: Realization of function D = maj (x,y,z) © d = [(ab)y + (ab)z +yz] © d. 444

Figure 7.3.2.3: Realization of 3-input double-controlled U gate with use of two-qubit gates. 445

Figure 7.3.2.4: Realization of n-controlled U with 2-controlled U and two (n-1) controlled inverters.
446

Figure 7.3.2.5: Realization of (n-1) controlled NOT for a (n + 1) * (n + 1) width of quantum register.
447

Figure 7.4.1: Realization of S2'3 (a, b, c, d, e) © f using ARNGs. 450

xxx

Figure 7.4.2: Realization of S2'3'6 (a, b, c, d, e, f) © g using ARNGs. 450

Figure 7.4.3: KMaps for the lowest qubit of the circuit from Figure 7.2.7. 450

Figure 7.4.4: Synthesis of symmetric base functions and symmetric index-functions to illustrate the
concept of symmetric bases. 457

Figure 7.4.5: Example of a structure with affine controls of V/V1^ gates. 460

Figure 7.5.1.1: Generalized structure to explain the operation of the CircuitSearch generator program.

463

Figure 7.5.1.2: The circuit given to test our program CircuitSearch. 463

Figure 7.5.1.3: Partitioning of the quantum circuit from Figure 7.5.1.2 for Genetic Algorithm used by
previous authors. 464

Figure 7.5.1.4: An example of created circuit for 4 segments, a@b© c is one possible affine function
from Figure 7.5.1.3 but generated directly for a single control, found by my program. 465

Figure 7.5.1.5: Example KMap Specification of binary values in Affine Circuit Search method 466

Figure 7.5.2.1: QMap 1 (symbolic) for V controlled by input a in circuit from Figure 7.5.1.4. 467

Figure 7.5.2.2: QMap 2 for V controlled by input b. 468

Figure 7.5.2.3: QMap 3 for V controlled by input c. 468

Figure 7.5.2.4: The combined QMap for 3 V's controlled by inputs a, b and c each. 468

Figure 7.5.2.5: QMap for a® b e c is a KMap. 469

Figure 7.5.2.6: The QMap of V1^ controlled by control function a © b © c. 469

Figure 7.5.2.7: Combining QMaps with composition operator for the entire circuit from Figure 7.5.1.4.
470

Figure 7.5.2.8: Reduction of the symbolic QMap to the standard KMap of the function realized by the
exhaustively generated circuit. I = I (d) = d = 0 and NOT = NOT (d) = NOT (0) = 1. 470

Figure 7.6.1.1: Re-use of the basic majority pattern: 472

Figure 7.6.1.2: Shows that by exoring with variables we create dual-minterm functions of Hamming
distance 3. 473

Figure 7.6.1.3: Exoring the cheap functions. 473

Figure 7.6.1.4: The Even HD3 function to be synthesized in Example 7.6.1.2. 474

Figure 7.6.1.5: Standard method to realize the function from Figure 7.6.1.4. 475

Figure 7.6.1.6: Analysis to be used in our new method to realize the function from Figure 7.6.1.4. 475

Figure 7.6.1.7: Quantum Circuit for F based on equation F ®{a®b®c) = maj(a, b, c). 475

xxxi

Figure 7.6.1.8: Function S2'3(a, b, c, d) e a . . 477

Figure 7.6.1.9: For function f from Figure 7.6.1.9a the symmetric grouping is shown in Figure 7.6.1.9b,
while a non symmetric grouping is shown in Figure 7.6.1.9c. The grouping from Figure 7.6.1.9b is
realized in Figure 7.6.1.9d while the grouping from Figure 7.6.1.9c is realized in Figure 7.6.1.9e. 478

Figure 7.6.1.10: Realizing bigger groups is always better. 479

Figure 7.6.1.11: Examples of four variables functions that can be generated from 2-interval and affine
functions. 480

Figure 7.6.1.12: (a) EXOR decomposition of function from Figure 7.6.1.8. (b) S3 (a , b, c, d), (c)
realization of HD4 function of 4 variables using the crosslink synthesis operator of cube calculus
[Perkowski], (d) its realization. 481

Figure 7.6.1.13: (a) S3 (a , b, c, d) and its factorized equation with Affine Toffoli gates, (b)
corresponding quantum array, (c) realization of function from Figure 7.6.1.12c as a composition of
inexpensive circuits. 482

Figure 7.7.1: Oracle being a composition of two Affine Toffoli gates with different affine polaritie. 484

Figure 7.7.2: Realization of quantum arrays with affine gates realized according to Algorithm 7.7.1.
484

Figure 7.7.3: (a) Preprocessor and postprocessor for Standard polarities, (b) Pairs of the Preprocessor
and postprocessor for arbitrary circuits, (c) example of simple linear affine preprocessor for a PPRM
be © ac, (d) example of an FPRM generalization created by adding linear pre- and post- processors.

485

Figure 7.8.2.1: CircuitSearch generated 18 circuits for a simple 2 input, 1 segment specification. 490

Figure 7.8.2.2:(a) the process, with arrays, flags, generated circuits, and reasons for invalidation in
CircuitSearch Program. 492

Figure 7.8.2.3: (b) the process, with arrays, flags, generated circuits, and reasons for invalidation in
CircuitSearch Program. 493

Figure 7.8.4.1.1: Browser of CircuitSearch Program. 495

Figure 7.9.2.1: Examples of Circuit simulator interface. 499

Figure 7.9.2.2: More corcuits found automatically by CircuitSearch. 500

Figure 7.10.1.1: Patterns of the least expensive realizations of functions of 2 variables. 504

Figure 7.10.1.2: Pattern of all gates in 5x5 library of 4-argument functions. 504

Figure 7.10.1.3: Shows patterns of 3X3 Fredkin-Like gates. 506

Figure 7.10.1.4: This figure illustrates patterns of majority function of 3 variables with 3 polarities, abc,

abc and abc resepectively. 506

Figure 7.10.1.5: Shows pattern of Toffoli-Like 3X3 gates. 507

Figure 7.10.1.6: Patterns of affine (Feynman-Like) 3x3 gates. 507

Figure 7.10.1.7: A general method to realize a single-output function of many variables \FHj using

cells of 3-variable library. 508

Figure 7.10.3.8: The original decomposition of non-reversible function FH to be next realized as a
reversible function using our library of reversible cells. 508

Figure 7.10.1.9: Creation of NPN equivalent functions of three variables. 509

Figure 7.10.1.10: Example realization of library cells for all NPN equivalent functions of three
variables. 512

Figure 7.10.1.11: Realization of NPN class of Function \F4). 513

Figure 7.10.1.12: Another realization of NPN (|F4)). 513

Figure 7.10.1.13: Realization of NPN (|F5)). 514

Figure 7.10.1.14: Realization of NPN class of function \F6). 515

Figure 7.10.1.15: Realization of the library cell for NPN (\Fl)). 515

Figure 7.10.1.16: Realization of NPN class function of | ̂ 8) . 516

Figure 7.10.1.17: Realization of NPN class function of NPN (\F9)). 517

Figure 7.10.1.18: Realization of NPN function in library. 518

Figure 7.10.1.19: Realization of affine functions NPN(F11) and NPN (F12) as the library cells. 519

Figure 7.11.2.1: Symbolic representation of Ashenhurst Decomposition. 522

Figure 7.11.2.2: Realization of Ashenhurst decomposition from Figure 7.11.2.1 trasformed to a
reversible circuit. 522

Figure 7.11.2.3: Ashenhurst Decomposition with non-disjoint sets of bound and free variables. Free
variables are {a, b} and bound variables are {b, c}. 523

Figure 7.11.2.4: The realization of circuit from Figure 7.11.2.3 in a reversible cascade with reversible
blocks G and H and their mirror blocks. 524

Figure 7.11.3.1: Reversible Net structure to generate all multi-output symmetric functions of variables
a, b, c. 526

Figure 7.11.3.2: Standard quantum array (with dimension of time from left to right) for part of the
reversible Net Figure 7.11.3.1. 527

Figure 7.11.4.1: Recursive realization of big Toffoli gates. 529

Figure 7.11.4.2: (a) Classical one-dimensional circuit for AND of many inputs, (b) classical tree circuit
for AND of many inputs, (c) quantum circuit corresponding to circuit from Figure 7.11.4.2a has 13
3X3 Toffoli gates and 7 ancilla qubits. 530

Figure 7.11.4.3: Reversible Folded variant of the circuit from Figure 7.11.4.2b. 530

xxxin

Figure 7.11.4.4: The quantum circuit for \F) = \abcdefgh) w i m 5 ancilla bits, 8 3x3 Toffoli gates and

one 5x5 Toffoli gate. 531

Figure 7.11.5.1: Chains in functions of 4 variables realized with affine Toffoli gates. 532

Figure 7.11.5.2: Functions with 6 and 10 minterms. Different decompositions of sets of minterms to
minterm pairs. 533

Figure 7.11.5.3: HD5 minterm pair function of 5 variables realized with 4 Toffoli gates and 2 Feynman
gates. 533

Figure 7.11.5.4: Explanation to composition (EXORing) of an irreversible function F to reversible
functions Fj and F2, 534

Figure 7.11.5.5:Example of decomposition to two ARNG functions and standard Toffoli gates 535

Figure 7.11.5.6: Visualization of affine patterns in KMaps of four variables 536

Figure 7.11.5.7: Visualization of affine patterns in KMaps of four variables 536

Figure 7.12.1: Specification of the problem of designing a comparator with three predicates. 543

Figure 7.12.2: Specification of the problem of designing a comparator with three predicates. 544

Figure 7.12.3: Graphical illustration for the realization of Affine Toffoli gate (a © c)' * (b © d)' for
predicate function (A=B). 544
Figure 7.12.4: Graphical illustration for the realization of composition of Toffoli and Affine Toffoli
gates ac ffi b d (a© c)' for predicate function (A > B). 545

Figure 7.12.5: The quantum array for the complete three-output comparator circuit realized in Example
7.12.1. 545
Figure 7.12.6: The quantum array for the complete three-output comparator circuit realized in Example
7.12.1 and in Figure 7.12.5. 546
Figure 8.2.1: Space of generalized polarities for 2 variables using Ternary Gray Code. 550

Figure 8.2.2: A Hamming-Distance-1 path in the generalized polarities space corresponds to ternary
Gray code counting . 551
Figure 8.2.3: A Hamming-Distance-1 path in the generalized polarities space corresponds to ternary
Gray code counting (Closed Ternary path). 551

Figure 8.2.4: (a) Hamming-Distance-1 path of all groups generated for all GRM polarities for two
variables, (b) All groups generated for GRM polarities using a KMap. 552

Figure 8.2.5: Three Dimensional Space of generalized polarities for functions of 3 variables using
Ternary Gray code. 554

Figure 8.2.6: Ternary Gray Code counting for generalized polarities. 554

Figure 8.3.1: The general idea of hierarchical search applied to GRM forms for incompletely specified
functions. 557

Figure 8.3.2: A systematic way to create all polarities for a function of three variables: a, b, c. 560

xxxiv

file:///abcdefgh

Figure 8.3.3: Maps for another approach (Method 4) for systematic creation of all GRMs for functions
of two variables. 561

Figure 8.4.1: Minimization of single-output function f = ab c , assuming the PPRM polarity. 563

Figure 8.4.2: (a) The 2-output function (fj (a, b, c), f2 (a, b, c)) used in Examples 8.4.2, 8.4.3 and
section 8.4.2. 566

Figure 8.4.2: (b) Partial search tree for 2-output function (f1; f2) from Figure 8.4.2a. 567

Figure 8.4.2: (c) Partial search tree for function (fj, f2) from Figure 8.4.1. 568

Figure 8.8.1: Illustration of enhancing any GRM synthesis method by using the concept of the affine
preprocessor and its mirror postprocessor. 584

Figure 9.1.1: The quantum array for 3-outputESOP:X = aZ>eZ)cJ, Y = c®cad, Z = l®ab®d . 587

Figure 9.1.2: All gates to be used for synthesis of 3x3 permutative functions. 589

Figure 9.1.3: Examples of all types of 4x4 gates used in our synthesis algorithms 590

Figure 9.1.4: Some examples of (affine) inexpensive 5x5 gates that are used in our synthesis
algorithms. 590

Figure 9.3.1: Function of four variables to Example 9.3.1. 595

Figure 9.3.2: Developing the Vector FV from the K-map of Figure 9.3.1. 595

Figure 9.3.3: (a) Matrix M, (b) The matrix equation for Figure 9.3.1. 596

Figure 9.3.4: Matrix equation using the inverse matrix M"1 where M"1 FV = CV is the vector of spectral

coefficient functions. 597

Figure 9.3.5: Calculation of spectral coefficients. In general, the base functions on variables A and B
are of arbitrary type, and the linear combinations of cofactors on variables C and D are also of arbitrary
type. 597

Figure 9.3.6: Verification of matrix equation for matrices M and M"1. 598

Figure 9.3.7: Realizations of LI expansions based circuits 599

Figure 9.3.8: The quantum array directly corresponds to the circuit from the left part of Figure 9.3.7.
600

Figure 9.3.9: The principle of mixing single variable expansions 603

Figure 9.3.10: Calculating of cofactors of X] to be further expanded in GRMs. 604

Figure 9.3.11: GRM is applied for all branches of level two of the decision diagram. 605

Figure 9.3.12: The final quantum oracle calculated for the function from Example 9.3.2. 606

Figure 9.4.1: The AND/OR orthogonal family. 610

Figure 9.4.2: A general pattern of a complex LI affine circuit that is composed of layers from left to
right: 610

XXXV

Figure 9.4.3: Part of the pattern for creating all linear combinations of inputs for the affine preprocessor
of 3 variables. 611

Figure 9.5.1.1: Realization of double-controlled V gate from single-controlled G and Gt gates. 614

Figure 9.5.1.2: Realization of CCCNOT using double-controlled-V, single controlled G, G! and CNOT.
614

Figure 9.5.1.3: The first auxiliary Circuit (at left in Figure 9.5.1.2) to calculate the 3-controlled Toffoli
(a) Circuit, (b) QMap analysis. 614

Figure 9.5.1.4: The analysis of the second auxiliary circuit from Figure 9.5.1.2. 615

Figure 9.5.1.5: The final QMap analysis of the circuit from Figure 9.5.1.2. 615

Figure 9.5.1.6: The (inefficient) quantum array for ESOP with 4><4 Toffoli gates. 616

Figure 9.5.1.7: 2-inputs Toffoli for 3 variable ESOP. 616

Figure 9.5.1.8: Using factorized GRM for the function of the circuit from Figure 9.5.1.6. 616

Figure 9.5.1.9: Modification of the circuit from Figure 9.5.1.8 to make it an oracle. 617

Figure 9.5.1.10: Realization of the "minterm pair" function of 4 variables abed® a b cd®e using 3
x 3 Toffoli and two ancilla qubits. 617

Figure 9.5.1.11: Naive factorization for the oracle type circuit for

abcd®abcd®e = ab(c®d)®cd(a®b)®e two ancilla qubits for the "minterm pair"
function of 4 variables. 617

Figure 9.5.1.12: The circuit for / = ab{c®d)®cd(a®b) with one ancilla bit which is not designed
to be an oracle. 618

Figure 9.5.2.1: Examples of inexpensive arrays for symmetric functions of three variables with only one
ancilla qubit each. 620

Figure 9.5.3.1: Typical tricks to realize large gates. 621

Figure 9.5.4.1: Spectral Matrix with minterms as columns and basis functions as rows - this is a change
of basis matrix. 623

Figure 9.5.4.2: Step-by-Step generation of a sequence of families of Linearly Independent base
functions using exoring and starting from PPRM base. 623
Figure 9.5.4.3: Realization of oracle f = abc with two ancilla bits and 2><2 quantum primitives. 624
Figure 9.5.4.4: An Oracle for function S2'3 (a, b, c, d, e) © (a © b © c> (d © e). 624
Figure 9.5.5.1: Illustration to general construction methods of affine gates with pre- and post
processing. 626

Figure 9.5.5.2: The complete tree method (chapter 6) to create all possible affine preprocessors to gates
on four input variables. 627

xxx vi

Figure 9.5.6.1: Realization of KRM form in a quantum array with separate functions fi and f2. where f
= fi © f2 . 628

Figure 9.5.7.1: Pieces of Quantum arrays corresponding to typical gate connections in classical bi-
decomposition. 629

Figure 9.5.7.2: From Boolean bi-decomposition to quantum array. 630

Figure 9.5.7.3: The final step of converting a bi-decomposed circuit to a quantum array. 631

Figure 9.5.8.1: Realization of complex gates by composition. 631

Figure 10.1.1: New (Affine Ternary) Toffoli gate which is a multiple-valued generalization of affine
binary Toffoli gate for any radix Km . 635

Figure 10.1.2: Binary Affine Toffoli Gate for function from Figure 10.1.3. 637

Figure 10.1.3: Graphical Analysis of the affine Toffoli gate from Figure 10.1.2. 637

Figure 10.2.1.1: Example of implementation with ternary multiplexers. 641

Figure 10.2.1.2: Graphical analysis based on ternary quantum multiplexers for the Example from Figure
10.2.1.1. 641

Figure 10.2.2.1: Realization of the Ternary Feynman gate using one quantum multiplexer and two
single qudit operations. 645

Figure 10.2.2.2: Galois Field (3) multiplication; a) a symbol, b) the ternary map which shows that GF
multiplication is not a Latin Square. 647

Figure 10.2.2.3: Realization of Galois field multiplication using quantum multiplexers. 647

Figure 10.2.2.4: Ternary Galois Toffoli (2-controlled-NOT) gate; minimal solution using quantum
multiplexers. 648

Figure 10.2.3.1: (a) The structure of the Ternary SWAP gate and (b) the graphical analysis using ternary
logic maps. 650

Figure 10.2.4.1: Realization of the Ternary Min gate with control order of "DCDC". 651

Figure 10.2.4.2.: Realization of the Ternary Min gate with control order of "ABAB". 652

Figure 10.2.4.3: Realization of the Ternary Max gate with control order of "CDCD". 652

Figure 10.2.4.4: A cascade of two 2-controlled Toffoli-like gates for ternary logic that uses the ternary
minimum operator. 653

Figure 10.2.4.5: Ternary Wave Cascade. 654

Figure 10.2.4.6: Classical MIN/MAX logic realization (one stage only) using ancilla bits in target
MAX gates. 655

Figure 10.2.4.7: Affine generalizations of reversible cascades for MIN/MAX logic 655

Figure 10.2.4.8: Creation of mirror circuits in ternary logic. 656

Figure 10.2.4.9: Ternary maps of the a • b and a • b • 2 operators. 657

xxx vn

Figure 10.2.4.10: Using of mirrors in ternary Galois cascades that realize big ternary Galois Toffoli
gates. 657

Figure 10.2.4.11: Simplified schematics with ternary notation for the circuit from Figure 10.2.4.10.
657

Figure 10.2.5.1: Example of Realization of a ternary polynomial in a quantum cascade with mirrors.
659

Figure 10.2.5.2: Some Ternary polynomials of single variable. 660

Figure 10.2.5.3: Analysis/Synthesis of Galois Field(3) Toffoli using single-controlled ternary quantum
multiplexers with 2 ancilla qubits. 661

Figure 10.2.5.4: (a) Realization of Ternary GF Toffoli from M-S gates and Ternary Feynman gates,
(b)Ternary Feynman from ternary mux, (c) Ternary KMap of ternary Feynman gate, (d) realization of
Galois product as a composition of "+2"controlled gates (left map) and controlled "+" gate (middle).

662
Figure 10.2.5.5: Realization of ternary SWAP using ternary Feynman gates, single qubit operators and
ternary GF(3) polynomials. 662

Figure 10.2.5.6: (a) Symbol of ternary Swap gate, (b) its realization with annotated expressions showing
stages of analysis or synthesis based on ternary GF polynomials. 663

Figure 10.2.5.7: Synthesis of Ternary SWAP gate from outputs to inputs using ternary polynomials.
664

Figure 10.2.5.8: Using polynomials to synthesize ternary SWAP gate 665

Figure 10.2.5.9: Using factorization method of Galois Field expressions for synthesis of a GF(3)
reversible circuit. 666

Figure 10.2.6.1: Realization of the Ternary Controlled-NOT gate. Value 2 of qudit A-R is selected here
as the activating value. 668

Figure 10.2.6.2: Symbol of Ternary Toffoli of "if-then-else" type gate and its function. 669

Figure 10.2.6.3: Ternary Toffoli (2-controlled-NOT) gate for the symbol from Figure 10.2.6.2. 670

Figure 10.2.6.4: Analysis of the first new Toffoli gate which has a "+1" operator in target bit. 670

Figure 10.3.1: Realization of ternary-control binary-target hybrid quantum circuit using quantum
multiplexers. 671

Figure 10.3.2: Realization of the Ternary Controlled-NOT gate with binary target. 672

Figure 10.3.3: A cascade of two 2-controlled Toffoli-like gates for Modulo sum of minima type of
circuits. 672

Figure 10.3.4: Ternary-Controlled Binary-Target Hybrid Wave Cascade structure. 672

Figure 10.5.1: Partial Classifications of affine gates 679

Figure 11.2.1: Quantum Adders. 682

Figure 11.2.2 Block diagram of an adder of three 2-bit numbers. 684

Figure 11.3.1: Block "Count Ones" realized using binary Half-Adders and Full-Adders. 686

Figure 11.3.2: Karnaugh map for "Count Ones" circuit without binary encoding. 687

xxxviii

Figure 11.3.3: Karnaugh map for "Count Ones" obtained from Figure 11.3.2 after binary encoding.

Figure 1

Figure 1

Figure 1

Figure 1

.3.4: Karnaugh map for "Count Ones"qubit Oj.

.3.5: Karnaugh map for "Count Ones" qubit 02 .

.3.6: Separate Quantum Arrays for the "Count Ones" circuit from Figure 11.3.3.

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

words.

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1
8-bit data (e0, e i , e2, e3, e4, e5 , e6 , e7) and 4 bit data (b0, b i , b 2 , b3).

687

688

688

689

.4.1: Inverted Karnaugh map of the C block, the binary equality/inequality comparator. 690

.4.2: Classical representation of the equality/inequality comparator (C block) for two 2-qubit

691

.4.3: Quantum Inequality Comparator (C Block) for 2 qubits in a word using one ancilla qubit.
691

.4.4: Binary Implementation of Quantum Comparator for 2 words of length 4. 693

.5.1: The ternary full-adder TA invented by Khan and Perkowski[Khan05a]. 694

.5.2: Block diagram of the Ternary Implementation of the "Count Ones"circuit. 695

.5.3: The Ternary KMaps for output Si of the ternary adder TA from Figure 11.5.1. 695

.5.4: Ternary KMaps of signal X; from Figure 11.5.1. 696

.5.5: Ternary KMaps for signals Y; and Zf from Figure 11.5.1. 696

.5.6: Ternary KMaps for signals X; and Q +1 from Figure 11.5.1. 697

.6.1: The Ternary Implementation of "Greater Than" Comparator. 698

.7.1: Block diagram of the 8:4 Compressor Tree. 700

.7.2: Binary Quantum Array for the 8:4 Compressor from Figure 11.7.1 and Comparator for
701

704 .8.1: Quantum Array for the Ternary Sign Adder Circuit.

.9.1: Butterfly iterative circuit for sorting/absorbing to be used as a block in cost optimizing
705

Figure 1

Figure 1
oracles.

Figure 1

Figure 1
values of predicates (a = b), (a > b), (a < b).

9.2: The symbolic schematics of the SAP processor 706

.9.3: The map for cdzv the output signals c, d, z, v as the functions of their inputs x, y, and

708

708

709

709

710

.9.4: The KMap for c. Observe that c is in general a k-input word, not a bit.

.9.5: Classical circuit for qubit bus c of k bit-width.

.9.6: The KMap for bus d of arbitrary width.

.9.7: The classical circuit for bus d for k width of qudits in data.

xxxix

Figure 11.9.8: The KMap for v. 710
Figure 11.9.9: Classical circuit for the tag qubit v. Words a and b are of width k. 710

Figure 11.9.10: The quantum circuit for the tag qubit v. In this particular example words a and b have
three qubits each 711

Figure 11.9.11: The KMap for z. 711

Figure 11.9.12: Classical circuit for the tag qubit z 711

Figure 11.9.13: Quantum circuit for the tag qubit z. 712

Figure 11.10.1: State machine for predicates. 714

Figure 11.10.2: The Karnaugh map representation of the state machine graph from Figure 11.10.1. 714

Figure 11.10.3: The Karnaugh map after state encoding as shown in left. 715

Figure 11.10.4: Karnaugh map for output Qj+. The groups are for ESOP synthesis. 715

Figure 11.10.5: Karnaugh map for Q2
+ . 716

Figure 11.10.6: Circuit for Qi+Q2
+. Please observe garbage qubits G, and the use of SWAP gates to

provide the outputs Q;+ in the same qubit from top as the next expected qubit Qj+. 717

Figure 11.10.7: The iterative action of then-bit comparator circuit. 717

Figure 11.11.1: (a) Irreversible modulo adder, (b) the same adder made reversible by replicating its k-
width input A to output. 718

Figure 11.11.2: The reversible adder/subtractor used in Hadamard/Walsh butterflies and its notations.
719

Figure 11.11.3: The butterfly of 4 kernels for 2 variables. 721

Figure 11.11.4: The butterfly from Figure 11.11.3 in another notation. 721

Figure 11.11.5: The quantum array for the circuit specified in Table 11.11.1 emphasizes "quantum
layout" of blocks. 723

Figure 11.11.6: The detailed design of the switching network for Walsh Transform from Figure 11.11.5.
723

Figure 11.11.7: The reversible butterfly architectures for Adding and Arithmetic Spectral Transform.

< 725

Figure 11.12.1: The Generalized Transform Kernel for Butterflies: 726

Figure 11.12.2: Realization of the kernel block for the Generalized Transform Butterfly 727

Figure 11.12.3: Reversible multiplier/divider and the derivation of its equations. 728

Figure 11.12.4: Reversible power/logarithm circuit and the derivation of its equations. 728

Figure 11.12.5: Reversible shift circuit and derivation of its equations. 728

xl

Figure 11.12.6: Cyclic "Shifter To Right" circuit for 4 bits. 729

Figure 11.12.7: Left/right reversible cyclic shifter. 730

Figure 11.12.8: (a) The schematic of GF(8) adder realized in Binary, (b) The quantum array for GF(8)

adder. v 730

Figure 11.13.1: RM Transformation Butterflies and Corresponding Quantum Logic Circuit. 732

Figure 11.13.2: 3-variable FPRM Processor using butterfly of blocks from Figure 11.13.1. 733

Figure 12.1.1.1: Classical oracle for POS Satisfiability f\={a + c + d)(a + c)(c + ~b + ~d) . 738

Figure 12.1.1.2: Realization of oracle for POS SAT f = (a + c + d)»(a + c)*(c + b + d) using quantum
NANDs and a quantum AND. 739

Figure 12.1.1.3: Oracle for function f2 = [(ab+ cd)» (ac+ b)]® [(abed)* (a+ b+ c)] using
mirror circuits to decrease the number of ancilla bits. 741

Figure 12.1.1.4: Step-by-step transformations of large classical oracle with many levels to a quantum
oracle. 742

Figure 12.1.1.5: Non optimized quantum array of the classical oracle from Figure 12.1.1.4c. 743
Figure 12.1.1.6: Incompability graph for the ancilla bits from Figure 12.1.1.5. 743
Figure 12.1.1.7: Quantum array for netlist from Figure 12.1.1.4 with mirror a circuit designed based on
folding that was found from graph from Figure 12.1.1.6. 744

Figure 12.1.3.1: AND/OR DAG for certain Artificial Intelligence Task 745

Figure 12.1.3.2: Example of the AND node in the AND/OR graph. 746

Figure 12.1.3.3: Example ofthe OR node in the AND/OR graphs. 746

Figure 12.2.1: Finding graphically all prime implicants for minimal Covering of a SOP circuit. 748

Figure 12.2.2: Covering table for function from Figure 12.2.1. 748

Figure 12.2.3: Solving the Petrick Function from the unate covering table in Figure 12.2.4. 749

Figure 12.2.4: Another example of an unate covering problem represented by a table. 749

Figure 12.3.1: Maximum Clique in graph G . 750

Figure "12.3.2: Quantum Oracle for finding all independent sets ofthe graph from Figure 12.3.1. 751

Figure 12.3.3: Using mirror circuit in the oracle for finding all independent sets. 751

Figure 12.3.2.1: Graph G and its complement graph G . 752

Figure 12.3.2.2: Example of a graph to find the maximum independent set. 753

Figure 12.3.2.3: The classical oracle to find all maximum independent sets of graph from Figure
12.3.2.2. 753

xli

Figure 12.3.2.4: The optimizing Oracle to find all independent sets in a graph that have more than val
nodes each. 754

Figure 12.3.2.5: An oracle to solve Petrick Function. Value of k is set by the user. 755

Figure 12.3.2.6: One more alternative approach to solving Petrick Function. 755

Figure 12.4.2.2.1.1: The variant of the first branching method as the general approach to find all
solutions to a SAT 767

Figure 12.4.2.2.1.2: Smart selection of a decomposition variable in the first branching method. 768

Figure 12.4.2.2.3.9.1: Tabular Representation of Function Fl. 779

Figure 12.4.2.2.3.9.2: Second Method for Tabular Representation of Function Fl. 780

Figure 12.4.3.1: The second branching method applied to function from Figure 12.4.2.2.1.1. 783

Figure 12.4.3.2: The groups obtained from search in Figure 12.4.3.1 that are not included in other
groups generated at the left in Figure 12.4.3.1. 784

Figure 12.4.3.3: Part of the tree of all subsets of literals applied to function from Figure 12.4.3.1. 785

Figure 12.5.1: Oracle for ESOP to be minimized using the Helliwell's Function. 790

Figure 12.5.2: Quantum Oracle for the oracle from Figure 12.5.1 791

Figure 12.6.1: The reductions of basic CAD and Quantum CAD problems discussed in this dissertation.

795

Figure 12.6.2: Schematic representation of Grover oracles for all problems from Figure 12.6.1. 796

Figure 13.1: Map of Europe. 797

Figure 13.2.1: Block Diagram of creating superposed quantum states with negative phase for all good
colorings of a map. 800

Figure 13.2.2: A simple graph coloring problem: the color comparators correspond to the borders of the
countries or the edges of the graph. 801

Figure 13.2.3: A simple quantum graph coloring problem: here all the input states are created using
zero-initialized Hadamard gates in all variable qubits. 802

Figure 13.2.4: Simplified schematic of our optimization Graph Coloring Oracle. 802

Figure 13.2.5: (a) One block of sorter absorber, .(b) The schematics illustrating the use of SWAP gates.

804

Figure 13.2.6: (a) Graph coloring oracle - decision part. Order of inputs a, b should be changed
according to the order from oracle. 805

Figure 13.2.6: (b) Preprocessing of the circuit from Figure 13.2.6a using SWAP gates to change order
of variables, (c) Inverse circuit-mirror for the decision oracle part. 805

xlii

Figure 13.2.7: (a) Graph coloring oracle-counter of ones circuit. 806

Figure 13.2.7: (b) Explanation of symbols of signals for six blocks of the sorter/absorber butterfly to
Figure 13.2.7a. 806

Figure 13.2.8: Graph coloring oracle - complete right part of the oracle optimization part. 807

Figure 13.3.1: Butterfly iterative circuit for sorting/absorbing to be used as a single regular block in cost
optimizing oracles from Figure 11.9.1 in chapter 11. 808

Figure 13.3.2: Butterfly iterative circuit for sorting/absorbing to be used as a block in cost optimizing
oracles from Figure 11.9.1 in chapter 11 and in Figure 13.3.1. 809

Figure 13.3.3: Single non-reversible block of the Butterfly iterative circuit for sorting/absorbing. 809

Figure 13.3.4: Single non-reversible block of the Butterfly iterative circuit for sorting/absorbing 810

Figure 13.3.5: Three non-reversible blocks of the Butterfly iterative circuit for sorting/absorbing that
together correspond to the first and second columns of processors SAP from Figure 13.3.1. 810

Figure 13.3.6: The single reversible block of the Butterfly iterative circuit for sorting/absorbing with its
order of inputs and outputs as required for quantum layout created by adding four SWAP gates at the
right. 811

Figure 13.3.7: The block diagram of the first three columns of sorter architecture with its order of inputs
and outputs as required for the final quantum layout. 811

Figure 13.3.8: The final reversible blocks of the Butterfly iterative circuit for sorting/absorbing with 2
columns and with its order of inputs and outputs and mirror circuit. 812

Figure 14.1.1: Cryptographic problem example. Substitute digits for letters to make the equation to be
true. 815

Figure 14.1.2: Equations compiled from the problem formulation from Figure 14.1.1. 816

Figure 14.1.3: Constraints for nodes in the graph. Each node is a 4-qubit string. 816

Figure 14.1.4: Inequalities for unique encoding of nodes of the graph. 817

Figure 14.1.5: Simplified Equations compiled from Figure 14.1.2. 817

Figure 14.1.6: Graph of constraints for the SEND+MORE=MONEY problem. 818

Figure 14.1.7: (a) Enumeration of cells in the M-map, (b)Groups of true minterms in the KMap for the
circuit to check each equation from Figure 14.1.3. 819

Figure 14.1.8: Realization of circuit GN that checks if an argument is a binary-encoded digit, i.e. that
checks if the binary argument is a Good Number 819

Figure 14.1.9: The remaining part of the oracle All-Good-Number for the SEND+MORE=MONEY
problem. 820

Figure 14.1.10: (a) The part of an oracle All-Different for the SEND+MORE=MONEY problem that
checks if the mapping is a one-to-one mapping, (b)systematic method to create all pairs of symbols for
pair wise comparisons. 821

Figure 14.1.11: The complete quantum oracle for the SEND+MORE=MONEY problem. 822

Figure 14.1.12: The part of oracle to calculate the all-good-numbers predicate. 823

Figure 15.4.2.1: Quantum Architecture for FPRM Oracle for Graver's Algorithm. 846

xliii

Figure 15.4.3.1: Quantum Architecture for FPRM Oracle for Grover's Algorithm. 849

Figure 15.4.3.2: Quantum Architectures for spectral-based Oracle for Grover's Algorithm for the
problem 15.4.3.2 from section 15.4.3. 850

Figure 15.4.3.3: Explanation of using inputs for known and unknown values on inputs to extended
Grover Algorithm. 853

xliv

CHAPTER 1

Introduction

1.1. Why Quantum Computers are superior to classical Computers

This thesis is devoted to some aspects of designing quantum computers. One may ask

"Why quantum computers are of interest and why are they more powerful than

standard computers realized in CMOS technology?"

1. First, a quantum computer operates on a qubit (quantum bit) and not bit. Much

more information can be contained in a qubit than in a bit. While a bit has only

one bit of information, 0 or 1, the qubit can be represented by a point on a

sphere. So, theoretically qubit has an infinite capacity (this sphere is called a

Bloch Sphere [NielsenOO]). However, the information in the qubit is so-called

"hidden" which means that to know this information some special processing

must be executed and some of this information will be lost. If we measure the

qubit in the simplest way, it is probabilistically converted to a normal bit, thus

we measure the value of 0 or 1, with certain probabilities. A memory of qubits

can store much more information than a standard memory.

2. Second, normal logic gate can be in one state, 0 or 1. But a quantum gate can

be in any superposition of states |0) and |1) which are quantum states (basis

states) corresponding to 0 and 1, respectively. These are just two points on the

1

Bloch Sphere. Superposition is of the form a|0) + (311 > where a and p are

complex numbers called quantum amplitudes. These values are so constrained

that they correspond to all points on the surface of the sphere. It can be showed

that this is equivalent to |a| + |P| = 1 . This means that a quantum circuit

calculates in parallel on many values, and the scale of this parallelism is orders

of magnitude higher than in any classical parallel system available now or ever.

This is called quantum parallelism.

3. When measured, a bit collapses to |0) with probability |a|2 and to |1> with

probability |P| . Thus a probabilistic computer can be easily simulated on a

quantum computer. We know that a (classical) probabilistic computer is more

powerful than a deterministic (classical) computer. Based on the above a

quantum computer is at least as powerful as a classical deterministic and

probabilistic computer. It is however much more powerful, but for not all

problems.

4. There is one more source of power of quantum computers, the most important

one. It is called entanglement and it results from the fact that quantum

amplitudes are complex numbers. The entanglement is the resource that exists

only in quantum mechanics. It does not exist in classical physics and is very

difficult to simulate in it. It is treated now by physicists as a fundamental

2

resource of the Universe, on par with matter, energy and information. Now

only three types of computing are known: deterministic, probabilistic and

entangled and, only quantum computer has them all. The entanglement is a

constraint on states that the quantum system can have. When we add or

multiply classical probabilities we never get a value zero. However adding and

multiplying quantum amplitudes zero can be created which means that some

states are excluded. This is the fundament of creating quantum states being

solutions in many quantum algorithms.

1.2. Towards Quantum CAD

1.2.1. The idea of using a quantum computer to design a quantum

computer

It is popularly known, even among non-specialists that modern computers and all

integrated circuits are built using computer using Computer Aided Design software.

Humans are just not able to deal with enormous complexity of such designs without

the use of computers in all stages of designing, optimizing, verifying, validating and

testing modern systems.

It is however less well known that several basic problems in Computer Aided Design

3

of standard logic circuits are NP hard. This means that they are optimization problems

that are counterparts of NP complete decision problems. NP complete problems allow

verifying that S is a solution to problem P in polynomial time but they need

exponential time to find the solution. The solution is of Yes/No type. An example of

such problem is Satisfiability where we have a Boolean formula and we have to

answer a question: "does there exist an assignment of values to Boolean variables

from the formula such that this formula is satisfied? "

Classical circuits are designed using AND, OR and NOT gates (logic or Boolean

operators). We call it the AND/OR base. Quantum computers are designed with AND,

EXOR and NOT base and they are reversible (chapter 2). The synthesis and

optimization problems in quantum computing are even more difficult than classical

problems as in the classical reversible logic there is no possibility to find a general

structure like AND/OR or no general decomposition of a large problem to smaller

ones. Standard AND/EXOR logic methods cannot be used without modifications.

The field of synthesis of binary (classical) reversible logic is very new. The synthesis

problems become even more difficult when the CAD system is built to synthesize and

minimize quantum circuits. The contemporary algorithms for this task are based

mostly on heuristic and evolutionary ideas, or are based on matrix algebra but

applicable only to very small quantum circuit specifications.

4

The reason of these difficulties is a much more complex model of a quantum circuits.

For instance, Richard Feynman observed that quantum mechanics problems are very

difficult to solve on a classical computer. This observation caused him to conclude -

"we need a quantum computer to model quantum mechanical phenomena efficiently".

While working on test of quantum circuits, Biamonte and Perkowski [Biamonte04,

Biamonte05, Biamonte05a, Biamonte05b] observed that testing of quantum circuits is

much simpler when quantum phenomena themselves are applied. Therefore the

following idea may came to mind - "May be similar bootstrapping can exist in the area

of synthesizing quantum circuits? May be a quantum computer can allow to solve

problems efficiently for which the standard computer is very inefficient". This thesis,

among other new ideas, tries to answer this question and realize this intuition by

designing conceptual quantum circuits, blocks and oracles that will become useful for

automated synthesis with the introduction of practical quantum computers.

But before quantum computers will become available we still have to design them

using classical computers. So the thesis is also interested in how to use standard

computers to design quantum computers efficiently. We will show relations between

these two problems of classical and quantum design of quantum circuits.

5

1.2.2. Quantum Computer Aided Design Using Grover Algorithm

Grover algorithm to search unstructured data base is perhaps the most important and

practical quantum algorithm. In this research a new approach to solve several hard

problems of Computer Aided Design, and particularly logic synthesis of quantum

oracles for Grover algorithm is given. CAD of quantum circuits is one of the most

important prerequisites to build a practical quantum computer. Grover algorithm

speeds up all NP problems quadratically. There are thousands of such problems, many

of them of high practical use, especially in CAD of classical circuits.

We assume here a hypothetical, yet to be build quantum computer, and analyze what

would be its use in the area of Computer Aided Design of quantum computers. It has

to be pointed out that although we speculate on the existence of a quantum computer

with tens of thousands of qubits, we do not speculate on the physical reality of all

quantum phenomena such as quantum parallelism, superposition and entanglement,

since all these amazing phenomena have been already verified experimentally

[Bennett93, Cleve98, Knill05, Nielsen98]. For instance the Grover and Shor

algorithms have been already experimentally verified independently in several

quantum techonologies [Chuang95, Chuang98, Grover98]. Thus our situation can be

compared to that of George Boole and Charles Babbage speculating about the power

of computers based on mechanical switches and Boolean algebra in year 1850 - the

theory exists and the experimental base exists, but more theory is needed to build

6

practical circuits and more theoretical/experimental/development work is necessary to

develop adequate technology for practical use. Quantum CAD will happen because

humanity never goes back on existing scientific and technological possibilities. The

problem is only who will build the fundament for this new research area of "Quantum

CAD" and when.

1.3. Solving problems by reducing them to basic combinatorial search

problems

Many generic combinatorial problems are known in classical logic synthesis such as

satisfiability, graph coloring, binate covering, spectral transforms based on butterflies

and others. Many of these problems are known as Constraint Satisfaction Problems

where some solution must be found that satisfies a set of constraints such as equalities

and inequalities. In many problems the solution must additionally optimize certain cost

function (such as energy). Spectral transforms are another wide class of problems with

many applications, just to mention the ubiquitous Fast Fourier Transform or the Fast

Cosine Transform used in MPEG.

We will demonstrate in this thesis that these and other problems still remain a

fundament for efficiently designing quantum computers. How then to solve these

7

problems on a quantum computer? How to use a quantum computer to calculate

spectra of Boolean functions? How to use a quantum computer to minimize reversible

circuits and reversible automata?

Can be this done in principle? Nobody is surprised now that a standard computer can

minimize its own circuits better than any human on the earth, but the author of this

thesis knows from his Ph.D. advisor, Dr. Perkowski that when he was a beginning

engineer the top authorities believed that only a human can optimize logic circuits. The

author of this thesis is deeply convinced that future quantum computers will be able to

solve problems that are absolutely out of reach not only for a human, but also for the

whole Earth supercomputers of 2007 connected by the Internet. These will be not only

isolated and abstract problems like factoring large numbers [Shor94] but the real life

problems in weather prediction, global economics, designing new drugs or designing

quantum computers. We believe that all these problems can be reduced to some finite

set of problems for which FPGA-like quantum hardware will be built. FPGA stands

for Field Programmable Gate Array.

What is a standard (binary logic) FPGA? This is a new technology in which the user

can program not only the memory as in standard computer, but can program also gates,

blocks and their connections using special hardware design languages (such as Verilog

or VHDL) and synthesis (CAD) software. This way the digital designer can practically

8

"build his own computer" for given task programmed by him. FPGAs have truly

revolutionized digital design since 1986 and are used in all practical products from

simple controllers to supercomputers. We introduce in this thesis a model of FPGA-

like parallel quantum computer.

Concluding, our model of a quantum computer proposed in this thesis is a multi

purpose, possibly parallel, programmable, reconfigurable, quantum accelerator

connected to a standard computer.

1. Our model is multi-purpose because it is not for arbitrary problem but for only

some classes of problems. These classes include however many problems.

2. Our model is parallel because we have available in our system not just a single

quantum computer but a collection of computers that share information.

3. Our model is programmable in an analogous way as FPGAs are programmable

in modern VLSI technology. FPGA is hardware programmable in classical

CMOS technology and our Quantum FPGA is hardware programmable in

quantum technology (regardless of its technical details).

4. Our model is reconfigurable in the same way as FPGA systems are

reconfigurable in modern system design. This means that the top-level

structure of the system can be reconfigured dynamically to another system.

Thus a vision processor can be modified to a DSP processor or a sorter. When

the basic structure of a quantum reprogrammable hardware is created, it can be

reprogrammed very quickly to arbitrary given application. The existing

technology already allows for this but is not yet scaleable.

5. Our general model is quantum as some of the processors (except of the

master/programmer processor) in the parallel system are quantum.

6. It is an accelerator to emphasize that only some problems are accelerated, not

all problems. Nobody would ever need a quantum computer for word

processing, standard laptop will suffice. It is however very likely that future

computer games will be accelerated on a quantum computer, as it is a perfect

hardware to simulate any kind of physics (rendering, shading, motion, biology).

1.4. Problems in synthesis of quantum circuits

Our thesis statement here is that Quantum computers themselves will be used to

optimize and synthesize quantum circuits. It will be the same way as the standard

computers are used now to synthesize classical circuits from VHDL specifications

(VHDL is Very High Level Design automation Language to specify hardware for

VLSI and FPGAs). To aid in inventing these new algorithms a new generalized unified

approach is created and investigated in my thesis.

This new approach should be of interest to the quantum logic synthesis community

because of its analogies and extensions to that of the classical Reed-Muller Logic and

10

classical reversible logic. Reed-Muller logic is a specialized spectral approach of logic

structures invented by Zhegalkin, Reed and Muller that uses AND and EXOR gates as

its base. Classical Reversible Logic was invented by Feynman, Toffoli and Fredkin

[Feynman82, Feynman96, Fredkin82]. Classical reversible logic research uses gates

such as the Fredkin Gate, Toffoli Gate and Feynman gate. These gates are very

different from the gates used in classical logic. Recent research in reversible logic

research area can be found in [Lukac02, Lukac02a, Lukac05, AlRabadi02, KhanOl,

Mischenko02, Khlopotine02, Negotevic02, Dill97b, Perkowski02, Yang05]. An

important advantages of reversible circuits are low power and high testability.

Biamonte and Perkowski extended the classical test generation algorithm for Reed-

Muller logic circuits, created by Reddy, to quantum circuits, using an equivalent of

Positive Polarity Reed-Muller logic (PPRM). PPRM is a one type of Reed-Muller

Logic, the simplest one. Biamonte and Perkowski showed that by applying superposed

test vectors to a quantum circuit instead of using standard tests, the testing time can be

dramatically reduced. It is however known that Sarabi and Perkowski [Perkowski95,

Perkowski99d, Sarabi99, Chang99], Sasao [Sasao91a], Falkowski [Falkowski03],

Bhattacharya [Bhattacharyal] and others generalized the results of Reddy [Reddy72]

to even more complex structures than PPRM, still having high testability. The same

ideas can be thus perhaps used to quantum circuits. First one has however to find the

quantum counterparts of such circuits, which amazingly was not done yet in the

literature. In this thesis it will be shown how KRM, FPRM, GRM, ESOP and other

11

canonical forms and equation types can be extended and generalized to highly testable

quantum circuits. Because of the wide scope of the thesis the testability issues

themselves, analyzed by new students in PSU Quantum Group, will be not discussed

here.

The complexity of synthesizing large circuits of reversible and quantum types exceeds

much the complexity of designing classical circuits. Efficient methods for synthesizing

them are therefore necessary. The researches of previous Ph.D. students at PSU (Anas

Al-Rabadi [Al-Rabadi02], Karen Dill [DillOl], Bruce Yen [Yen05], Martin Lukac

[Lukac08]) as well as other researcher's world-wide (Maslov [Maslov05], Viamontes

[Viamontes04]) have been only partially successful and there are still no CAD tools

for most important problems in quantum circuit synthesis. This thesis is competing

with these previous approaches in the sense that we are building here practical CAD

tools and using existing computer software technology, for the synthesis of quantum

circuits.

Moreover, we speculate also on the future Computer Aided Design tools for this class

of problems that will become possible with the availability of quantum computers.

One can thus say that this thesis tries to do for both classical and quantum CAD an

equivalent of what was done by Peter Shor for computer security, (as related to RSA

cracking). It means, enable a new technology. However, while Shor invented a new

12

quantum algorithm for this purpose, we use the Grover algorithm.

We aim also that our synthesis methods will be not for theoretical specifications only

(like reversible truth tables) but for practical data that may appear in designing

practical oracles. These specifications are irreversible and hierarchical thus allowing to

specify a general class of Grover oracles for large problems and not only for toy

problems. Our methodology outlined on many examples in this thesis can be used by

other researchers for their own problems if these problems are reducible to Grover

algorithm.

1.5. New General-Purpose Search Approaches for classes of

combinatorial problems

We will present here the development of a general-purpose quantum

search/synthesis/learning meta-algorithm Quantum Search Problem Solver (QSPS) to

be used in solving highly complex CAD combinatorial problems, especially the

Constraint Satisfaction Problems. QSPS is a new "meta-algorithm" and a general

constructive learning methodology. It is applicable for both logic synthesis and

minimization. QSPS is designed for logic circuits implemented in quantum hardware,

as well as for software applications of logic synthesis such as Data Mining, Machine

Learning, off-line Evolvable Hardware, and Knowledge Discovery in Databases

13

(KDD). Our approach is therefore very general. Although there are other meta-

algorithms, QSPS is original and more general than other algorithms of this type.

The QSPS method is based on the general concept of search in certain space of

solutions and candidates for solutions. Our search approach has a variant for classical

search and another variant for parallel quantum search. The classical search is of

course only a special case of the parallel quantum search. Both the classical and the

quantum algorithm variants presented here can be improved by this author of other

authors in the future. These future improvements will be however based on the main

ideas of algorithms presented here. Why I believe this point? Looking to history of

classical software search on standard computers it was possible to find new better

search methods long time after the concept of search was invented. For instance, the

Iterative Deepening Search that I use in Chapter 7 of this dissertation was invented

many years after the classical depth-first search and A* search were created. Similarly

in the area of quantum search new variants of Grover algorithm have been recently

invented by both Grover himself and other authors that are, in one or another way,

better than the original Grover Algorithm for some specific problem sub-domains.

Most of our search ideas in quantum case are based on the Grover algorithm

[Grover96], one of two most important quantum algorithms known so far. However,

we not only use Grover as it is, but we wrap it around in a more general search system

14

of parallel reconfigurable computers. This system uses parallelism of programming,

parallelism of execution, heuristics, reprogramming (as in FPGAs) and it calls Grover

Algorithm for sub-problems, possibly with oracles that are adapted and modified. We

call this the "dynamic approach to quantum problem-solving based on Grover". By

solving some class of problems in Grover, we can learn some parameters to improve

the speedup of the next calls of the "Grover Processor". For instance, when one knows

the chromatic number of the graph, the optimal coloring of this graph can be found

more efficiently by reducing the size of the oracle. Reducing the oracle's size leads to

the reduction of the solution time of Grover Algorithm, as will be discussed. Any

additional knowledge available to the system designer should be thus used in (parallel)

quantum computing to improve the search efficiency. Observe that this is exactly the

same problem-solving philosophy as it is used in contemporary standard parallel

search algorithms.

Several applications of this quantum meta-learning algorithm will be presented in

detail in chapters 12 - 16 of this dissertation, including graph coloring, satisfiability,

maximum cliques, SOP minimization, ESOP minimization and others. One

application is the minimization of incompletely specified data with FPRM (fixed

polarity Reed-Muller forms in which every variable has the same polarity, negated or

not negated consistently in the expression). Another application of our approach is the

minimization of the GRM (Generalized Reed-Muller) forms (mixed polarities of

15

variables). FPRMs and GRMs are two most well-known types of the AND/EXOR

expressions [Sasao93e]. As the quantum variant of this algorithm is not realizable

now, because the largest quantum computers are only for 10 qubits, we may only

analyze its simulated behavior and its predicted behavior on future quantum

computers, comparing results of quantum algorithm with classical algorithms running

on current computers.

We created also a classical model of our quantum search algorithm (special case of

QSPS) and we investigate it on the same class of problems. This leads to our Extended

Cybernetic Problem Solver (ECPS). ECPS is a simplified and non-quantum model of

sequential software search. It is still an efficient tool to solve some CAD problems.

This completes the outline of the basic innovative ideas of my thesis, but there are

other new concepts presented below.

1.6. Organization of the thesis with respect to new ideas in logic

design

This thesis introduces new ideas in quantum logic design, quantum circuit structures

and respective synthesis algorithms and also new ideas in quantum algorithm design.

In a sense, "everything relates to everything" in this thesis: "we build

16

quantum algorithms using quantum circuits to automatically design the next and more

improved class of quantum circuits". This multi-aspect core of the thesis makes the

presentation difficult. Therefore we organizationally separate the thesis to parts that

are relatively less connected. We need also some small text repetitions to simplify the

reading of the thesis.

The areas of logic design and algorithm design are respectively isolated, and they are

linked by the fact that to build a practical quantum oracle one has to be able to

optimize it from quantum gates. For the simplification of introduction, in this chapter

we will separate these two ideas in the general presentation. We will link these two

ideas more in next chapters when all background will be already introduced. We can

thus say that the thesis has two parts, the first part (chapters 2 - 1 1) relates to the

quantum circuit design, the second part (chapters 12 - 15) relates to the quantum

oracles design for Grover. Of course, as oracles are built from circuits, the reader has

to be familiar with circuit design to understand the oracle design. The first part

introduces also some important quantum algorithms including the Grover Algorithm

as the core of the thesis. Section 1.6 of this introductory chapter is related to quantum

circuits and in section 1.7 we will introduce quantum algorithms, mainly the Grover

algorithm.

17

1.6.1. New circuit structures for permutative quantum logic

The organization of the chapters will be now outlined in more detail. Initially, it will

be shown that logical forms for new families of algebras can be developed that are a

good match with quantum hardware. These families of forms are analogous to the

classical (Reed-Muller) AND-EXOR forms. These families are like the building

blocks for reversible circuits. The descriptions of these circuits allow also for an easy

conversion of non-reversible specifications to reversible circuits that are realized in

quantum. At the beginning, we will show in detail how the proposed basic gates are

practically realizable in NMR and we mention briefly also other quantum

implementation technologies. A complete logical hierarchy of expansions, trees,

decision diagrams, and forms for this new family will be developed to be used in

oracles and other quantum (permutative) circuits. These ideas are influenced on one

hand by certain algebraic structures, both by those already used in quantum mechanics

and by structures used in other technologies. On the other hand, our algebraic

structures are influenced by the possibilities of real quantum technology such as those

presented in papers of Brassard [Brassard04], Muthukrishan and Stroud

[MuthukrishanOO] and others. The new concept invented in this thesis is that of

"Affine gates" (chapter 7). As "Affine gate" I will define a classical quantum gate

such as Toffoli Gate or Controlled-V Gate, which is controlled by an arbitrary affine

function. Since affine function is very cheap in quantum realization (as it includes only

inexpensive inverters and inexpensive Feynman gates - see chapter 2 for costs of

18

gates), we use new affine gates instead of classical quantum gates. Our new approach

can always lead to the improvements of circuit's cost and speed if a respective

synthesis algorithm is implemented. This property results from the fact that the set of

the new gates is a superset of the known gates. We can thus talk about "affine Toffoli

gate", "affine Fredkin gate" and "affine Controlled-Square-Root-of-Not gate".

The introduced by us logic can also be implemented with hypothetical AND and

EXOR gates and is a "regular logic". It means, it has a regular structure of gates and

connections, similarly to the well-known classical programmable Logic Arrays

(PLAs). Our logic is thus a fundament of building quantum arrays with generalized

and affine Toffoli gates. (Quantum array is another name used by specialists for

quantum circuits). Our affine AND/EXOR regular reversible array concept is

somehow similar to classical PLA, but adapted to reversible quantum circuits. The

high degree of quantum testability [Biamonte04], (which generalizes the classical

testability concepts [McCluskey97]) for several expression types within the new

families of the logics introduced here, provides further motivation for the introduction

and study of affine AND/EXOR circuits.

The new family of logic was invented by me from the insights gained by the analogy

of the different algebras introduced here (based on literature) and used to minimize

logic circuits. Previous research has shown that the hierarchy of Reed-Muller

19

Expansions can be generalized to a Zhegalkin subset of the Linearly Independent

Hierarchy of expansions [Perkowski97a, Perkowski97b, Perkowski97c]. Previous PhD

students from PSU, Bogdan Falkowski, Ingo Schafer, X. Zeng, Karen Dill, Ugur Kalay

and Anas Al-Rabadi have demonstrated how some decision diagrams and forms

[Zeng95] can be obtained by extending the Reed-Muller logic concepts [Dill97a,

Dill97b, Dill98, DillOl]. In this dissertation, however, I am able to show some further

improvements and generalizations, and also stronger links to modern quantum

technology, because some breakthroughs occurred in quantum realizations just very

recently, in years 2004-2005 [Biamonte04]. Here we introduce the Quantum Zhegalkin

Hierarchy. We use the name Zhegalkin not because he contributed to this logic, but

because the name Reed-Muller is already reserved. We propose to keep the name

"Reed-Muller circuits" for the RM family binary circuits and to introduce the name

"Zhegalkin circuits" to all their counterpart quantum circuits, in order to honor the

Russian researcher Zhegalkin [Zhegalkin29] who is unfairly not respected in Western

World despite the fact that everybody acknowledges his priority (year 1927) over

Irving S. Reed [Reed54] and D.E. Muller [Muller54] (year 1954).

1.6.2. The role of AND-EXOR structured forms in quantum circuit

synthesis

One of our approaches to using quantum computers for CAD problems considers the

fact that the structured forms, such as FPRMs, are easier to optimize than the

20

completely unstructured designs such as the general purpose reversible circuits from

arbitrary gates. Therefore the quantum approach for FPRM minimization from [Li06]

was generalized here to Generalized Reed-Muller (GRM) forms (We developed also

classical search algorithm for GRM and compared it to previous research based on the

GA Algorithm [Koza99, Dill98]). This is for the first time that the approach to the

minimization of Generalized Reed-Muller forms with the quantum algorithm has been

attempted. The GRM equation type is a general, canonical expression of the

Exclusive-Or Sum-of-Products (ESOPs) type, in which for every subset of input

variables there exists not more than one term with arbitrary polarities of all variables.

The general-purpose AND-EXOR implementation has been shown in classical CMOS

technology to be economical. Generally it requires fewer gates and connections than

the AND-OR logic implementations of the same functions. GRM logic is also very

highly testable, making it desirable for building permutative quantum oracles (like

those used in Grover Algorithm). Most importantly, GRM logic is imminently

practical for quantum arrays; this type of logic expression is immediately realizable in

quantum hardware and the implementation can be directly compared with that of other

algorithms for reversible logic. Our synthesis method converts an arbitrary non

reversible function to a reversible function as the byproduct of the design method

itself. The only potential drawback (found only for rare circuits) is an increased

number of ancilla qubits. Ancilla qubits are additional qubits added to the circuit to

allow the realization of a function that specified this circuit. The previous research

21

(Dill [Dill97a], Sasao [Sasao93e], Debnath [Debnath95]) has shown the GRM

equations are very difficult to minimize, especially with many don't cares. To date,

the one exact minimization algorithm developed has required exhaustive searches and

is extremely time consuming [Sasao94]. The approximate algorithms [Zeng95,

Debnath95, Debnath96, Debnath98] are faster and allow the minimization of larger,

completely specified functions. It is however difficult to evaluate the quality of the

circuits produced by these algorithms. The goal of using the Quantum Search Problem

Solving for GRM minimization is to create exact exhaustive and non-exact heuristic

minimization techniques that will produce a higher quality of optimization, i.e.

minimized circuits with fewer terms and literals, than that of other heuristic GRM

minimization methods, (chapter 8 on GRM ECPS and chapter 15 on FPRM/Quantum).

Concluding, the GRM was selected as one example of many canonical forms of

Zhegalkin hierarchy, for which some high quality solutions are known [Debnath95,

Debnath96, Debnath98] and can be thus compared with.

In the application of minimizing GRM forms, the CGRMIN Software [Software 1] was

utilized to create a GRM expression for a disjoint input/output table (benchmark).

Following this approach, a ECPS algorithm is implemented and Quantum Search

Problem-Solving algorithm is described in this dissertation. An interesting property of

this search is that only the search space of all "correct", functionally equivalent

equations is searched, with the singular task of finding the best reduction. This is in

22

contrast to all previous algorithms. With this limited-size search space the solutions

have absolute guaranteed function coverage. There is no application-specific

knowledge incorporated into the method. As such, the results are particularly

remarkable since they compare favorably with that of the heuristic algorithms

developed by top human experts over several years [Debnath95, Debnath96] in the

past. This composition/minimization technique, utilizing the GRM form for the

specification of both specified and strongly unspecified functions, by its very nature, is

applicable to not only hardware circuit design, but also to the off-line Evolvable

Hardware and Data Mining. The methods like this, based on building oracles with

complex regular structures in them (in particular butterflies, but also SAT-like

circuits), are applicable to many CAD problem formulations.

It has been shown both by this research and other authors [Dill97, Dill98, Dill013,

Miller97] that in the logic synthesis process the exhaustive search approaches find

circuit implementations that are often different in appearance from those that a human

designer would produce. In the outlined logic minimization process, in contrast to

many known logic synthesis approaches, the human-designed, application specific

heuristics are not the main mechanism to search for solutions. "Could non-human,

quantum heuristics be found?" - it remains to be investigated. This thesis does not

answer this question. For now we observe experimentally that humans operate only in

small subsets of the entire solution spaces. Our software discovered new gates which

23

were not found by humans and which confirms this observation.

1.6.3. New concepts of synthesis algorithms for particular structures

The application of the benefits gained with the development of the above mentioned

new algebras and structures as well as classical circuits, reversible circuits, and

standard binary quantum circuits demands that practical, general synthesis and

minimization algorithms (CAD tools) be created for them. This general class of

quantum algorithms should have a wide applicability to logic problems, for automated

logic circuit synthesis and optimization, machine learning, and directed knowledge

discovery, because as it will be shown in the sequel, all these research areas are closely

related. Although some of these links are known in classical research, they are new in

the quantum domain.

It is also desired that good partial heuristic methods be developed for the synthesis

algorithm, or rather, class of algorithms. This is thus the second task to be achieved in

this thesis. For instance, let us assume that we use the quantum Grover algorithm to

solve the problem of "graph coloring" where every two adjacent nodes of a non-

directed graph should get different colors. Additionally we look for graph coloring

with the minimal number of colors. As we know, Grover algorithm will improve the

complexity of finding exact minimum coloring from N to square-root-of N, where N is

the number of all mappings of nodes to colors. Being able to solve this particular

problem efficiently, most of the important optimization and decision problems that

24

appear in CAD algorithms could be solved. This universality of optimization

algorithms and/or data structures is the general promise of:

(1) SAT solvers,

(2) universal algorithms,

(3) resolution-based programming languages such as Prolog, and

(4) hardware accelerators.

Some of these approaches, like the universal SAT solvers, are extensively used in

modern CAD industry. And in our case, the universal solvers will be used in the work

towards the promise of future "quantum CAD accelerators" that this thesis attempts to

make a ground for.

Concluding on the "universality versus special domain" issue, this thesis develops

algorithms that are both general, have both classical and quantum variants and allow in

addition to incorporate problem specific knowledge into them.

1.6.4. The role of additional knowledge and heuristics in creating

algorithms

It is well known that in classical algorithms, any additional knowledge about the

problem, like for instance the upper bound to the chromatic number of the graph being

colored, can help to create a more efficient algorithm. We will show that the same is

true for quantum algorithms of certain type, including the quantum algorithm for

25

graph coloring. Among the several possible approaches to create such a meta-

algorithm, the biologically motivated computations, such as evolutionary, were viewed

as attractive because of their generality and flexibility. Thus, in the long research and

development process to create QSPS and ECPS algorithms, the PSU group applied the

biologically inspired, evolutionary processes of Genetic Algorithms and Genetic

Programming. These algorithms were also sometimes combined with the, humanly

designed, heuristic and search methods. This was done for instance in several papers

by Karen Dill [DillOl], Martin Lukac [Lukac05a], and Normen Giesecke

[Giesecke08].

The final quantum search algorithm presented here is motivated, however, more by the

quantum mechanics than by the biology. On the other hand, our approach also points

out to the ubiquity of some basic ideas in all of the Nature: Quantum Evolution versus

Darwinian Evolution. Because of its general applicability and combination of

problem-solving methods, the algorithm is denoted as the Quantum Search Problem

Solver (QSPS). Its non-quantum counterpart is called Extended Cybernetic Problem

Solver to underline the power of Cybernetics to unify the understanding and use of

various mechanisms of Nature.

26

1.7. New integrated approaches to search

1.7.1. QSPS or Quantum Search Problem Solver

Within this dissertation, original automated quantum problem-solving methods are

developed as its central point. Exploring evolutionary design and optimization

techniques, investigating and discussing several design approaches as a potential

candidate I decided how to combine them for the design of a meta-algorithm, as a

quantum-mechanically and biologically inspired, application-specific reconfigurable

parallel (FPGA-like) hardware. General search heuristics are utilized independently

and in combination with other techniques. After several research approaches were

investigated and analyzed together with my thesis advisor, a new type of meta-

algorithm, with artificial evolutionary methodologies for algorithm development,

combined with Heuristic Search, Constraint Programming, and human-designed

Expert Systems, is created in this dissertation. This approach is referred to as the

Quantum Search Problem-Solving Algorithm (QSPS). My approach supports quasi-

automatic, and in future - automatic, design of application-specific quantum

algorithms. These algorithms will be for logic synthesis, minimization, decision and

other problems in quantum circuits, data mining, and other areas. The proposed

approach is demonstrated on examples of binary logic, hardware circuit synthesis,

"logic expression building" or Knowledge Discovery (i.e. explaining underlying

principles by discovering meaningful patterns and rules about a data set), and logic

minimization. Although we concentrate ourselves mainly with the new, proposed

27

here, area of Quantum Computer-Aided Design (chapters 11, 12, 13,14 and 15), this

research can also be directly applied with broad implications to the fields of Intelligent

Robotics (chapter 15), Machine Learning, Data Mining, and Evolvable Hardware. The

wide applicability of our approaches results from the multiplicity of problems that can

be characterized as the Constraint Satisfaction Problems.

1.7.2. Origins of our main quantum search idea

My first approach to develop a quantum search algorithm for CAD application

originates from the paper by Lin, Thornton and Perkowski [Li06]. Their paper can be

explained as an application of an exhaustive search speed-up by classical Grover

algorithm to create the best Fixed Polarity Reed-Muller Form (FPRM). This circuit is

found for a given truth table of positive and negative examples. These "examples"

(terminology of machine learning) are called "minterms" in the area of logic

synthesis. Such FPRM form is a type of structured logic expression that should be as

simple as possible and should separate the truth from the false - thus for all minterm

examples categorized as "false" (negative examples, zero-minterms) the value of

expression is false and for all minterm examples categorized as "true" (positive

examples or "ones" in the truth table) the value of the expression is true.

Careful analysis of the approach from [Li06], however, reveals that this idea can be

applied with little modification to an incompletely specified function, thus

28

becoming applicable in Data Mining and Machine Learning [DillOl, Koza94,

Koza99]. This observation was an inspiration and the starting point to much of the

research reported in this thesis.

Let us explain the idea on a simple example of inducing formula from a set of

examples.

A set of positive and negative examples is collected by observing successes or failures

of various pairs of humans, related to their character, social position, physical

properties, etc. Next an ideal life partner is induced from this set - it may be described

by an expression "(Beautiful and Smart) © Rich". This formula means that the

candidate person has to be either "beautiful and smart" or rich but not all positive

properties at once: beautiful smart and rich (somebody who is beautiful, smart and rich

may drop his partner soon, which was reflected in the particular set of specific

examples given to the learning tool). Denoting B = Beautiful, S = Smart, and R =

Rich, the learned (Fixed Polarity) Reed-Muller expression is BS © R. This is a

Positive Polarity formula (i.e. all variables are not negated), possibly realized in a

single (quantum) Toffoli gate. Thus, a logic formula that generalizes the results from

all examples is the result of learning. This learning can be either classical Machine

Learning or Quantum Machine Learning, presented in chapters 11 and 15.

My conclusion of this generalization is very powerful - every problem for which

29

"pure" Genetic Algorithm was applied to in binary logic synthesis or Constraint

Satisfaction Problem can be extended now to a quantum search algorithm based on

the Grover Algorithm or based on various generalization and variants of this

algorithm that appeared subsequently and continue to appear in literature.

My approach applies also to the data that are incomplete (i.e. there are unknowns, or

examples without positive or negative characterizations), thus we can construct or

"build" a logical expression (in this case, the FPRM expression) to satisfy the

behavioral criteria. As a new method of logic synthesis, the Quantum Search, as this

one, offers a unique approach to automatic logic design or "quantum evolvable

hardware". We can speculate that future evolvable hardware will be a quantum

accelerator equipped with different "universal" components. These components will

be in theory "universal" (such as SAT is universal in classical CAD) but practically

only "wide range" components. These components will be created for particular

applications such as: Grover Algorithm for FPRM, GRM, and ESOP synthesis,

Quantum Walsh and Quantum Fourier Algorithms for image matching or spectral

coefficients minimization for structured forms of learning, as well as other

learning/problem-solving methods.

The "logic circuit" (equivalently, the "solution specification") is designed by

evolutionary means and the process is entirely "hands-off' for the user. This is

30

however not a biological "Darwinian evolution", but the evolution of the superposed

(quantum) states in a quantum computer. This computer is intentionally designed by

humans to use quantum evolution in order to solve certain class of problems. Like in

FPGAs, each class of problems requires new computer hardware, in this case a new

oracle. The beauty of the proposed here method is that problems can be solved without

explicit computer programming. It is just the use of the general quantum search

algorithm itself. While the general search mechanism (of Grover) is universal, each

specific problem is described by the user, as a specific oracle.

Observe that in future many parameterized descriptions of many problems will be

created by designers, similarly as it is done now in the areas of "intellectual property

design" and "circuit generators and hardware compilers" where sophisticated blocks

are designed in hardware languages such as Verilog and VHDL. Because the oracles

for classes of problems are similar, in the further future certain "smart software

generators" will be written to create parameterized descriptions, similarly as it is done

now in Matlab or Al-based generators of VHDL or Verilog programs. There exists

therefore a clear path from the FPGA fast prototyping methods that are at the forefront

of CAD tools in year 2008 to the future quantum CAD tools for quantum computers.

Further, let us observe that in theory, a single technique is applicable to solve all logic

design problems (because all problems such as graph coloring or SOP minimization

can be polynomially reduced to a Boolean Satisfiability formula - the SAT problem).

31

Such approach is theoretically feasible in classical computers, but only sometimes it is

practical. Our quantum search has perhaps similar properties: although in theory we

can reduce all problems to Quantum SAT, it is better when the user/designer disposes

several types of reduction specified as software modules to be used.

In my thesis I explain in full all necessary details of quantum algorithms by Deutsch,

Deutsch-Jozsa, Grover and other algorithms. This is done both for completeness of

presentation in the thesis, but it is expected that the reader interested in all

mathematical formalisms should study for instance the Chuang/Nielsen textbook

[NielsenOO]. Starting from chapter 2, all our descriptions, however, have an ambition

of being very simple, precise, and illustrative for the non-expert reader.

1.8. Summary of new concepts and ideas

Concluding, there are several new ideas proposed in my dissertation:

1. A new logic family of algebra is introduced. New families based on

affine gates are used and new algorithms are created for them. The

practicality of this new extension to Zhegalkin Logic is demonstrated.

These algebraic forms realized as quantum arrays are highly testable.

32

2. These algebraic forms realized as quantum arrays are practically

realizable in NMR and new quantum hardware technologies (as shown

in Chapter 3).

3. The combined search strategies originally developed by Marek

Perkowski [Perkowski82] and extended by James Brown [Brown90],

Juling Lee [Lee99] and Karen Dill have been much extended, modified

and implemented as the ECPS program and its behavior has been

improved. It works regardless of the type of logic operators. Most

importantly, this concept has been extended to parallel quantum

searches.

4. Search algorithms for FPRM, KRM, GRM and ESOP circuits and

general reversible circuits have been proposed. The algorithms are

unaffected by the degree to which the problems were completely

specified (i.e. a large or small number of "don't cares" is unimportant).

This new learning meta-algorithm is the historically second quantum

algorithm for logic synthesis, and the first algorithm for incompletely

specified functions thus leading to Machine Learning applications. The

goal is to demonstrate that the method is applicable to many

benchmarks, for the logic minimization/synthesis of binary logic

33

hardware circuits, Knowledge Discovery for Data Mining, off-line

Evolvable Hardware development, and Machine Learning.

5. The QSPS quantum evolvable hardware system has been invented and

explained, it was also simulated using Matlab and a general-purpose

quantum simulator QUIDPRO to prove the validity of our approach. We

simulated the hardware for graph coloring, SAT, FPRM, GRM, ESOP

and other circuit types, but for all algebraic extensions discussed in this

thesis the same can be done.

1.9. Guide to the contents of chapters

This thesis takes background and ideas from several fields of physics, mathematics,

computer science and computer engineering. We wanted also the dissertation to be as

much as possible self-contained. My goal was predominantly to explain in an easy

engineering text several complicated concepts that appeared so far only in

mathematics, physics, or computer science journals and books. Unifying, simplifying

and binding together were thus few of the tasks of this dissertation. Because several

sub-areas of this thesis are interlinked to other sub-areas in many ways, organizing the

text in a linear manner was not easy. Below we provide short information about what

is in which chapter and how the chapters are interconnected.

34

1. Chapter 1 is an introduction to the presented research. It presents the history of

this thesis and its main concepts from the bird's eye point of view - no details

just basic concepts. However, to understand fully the contents of this chapter

the reader should be familiar with the next chapters of the thesis first. Chapter

1 should be thus read again after the entire thesis.

2. Chapter 2 presents the design of quantum computers on the lowest level -

electromagnetic pulses for NMR. Optimization of such circuits using search

methods is presented and various basic gates are designed. This level of detail

helps to formulate realistic costs of gates to be used in the next chapters. For

instance, we learn how inexpensive are the quantum NOT and CNOT gates as

compared to the quantum Toffoli gates. To demonstrate that our reversible

logic synthesis methods from chapters 3 — 10 are general and applicable not

only to NMR technology, we discuss how the Fredkin gate can be built using

cellular automata.

3. In Chapter 3 we discuss the problems of designing larger quantum gates from

small primitives and the links between low level and medium level synthesis of

quantum (permutative) circuits. Chapter 3 is the background material for the

thesis and it is based mostly on the literature. The concepts of basic expansions

35

in AND/EXOR logic, data structures and logic structures that are fundaments

for the research of next chapters are introduced. Because the introduced in this

thesis new structures such as the affine gates are the extensions of the existing

structures, we present the basic material in all necessary detail.

4. In Chapter 4 devision trees and diagrams based on Davio expansions are

introduced. The concept of polarity search is also explained in a simple way

that will allow in chapters 7, 8, 9 to explain its use not only for FPRMs but for

arbitrary linearly-independent families of forms.

5. Chapter 5 is an attempt to explain in as easy way as possible the concept of

Grover algorithm, the central topic of this thesis. We explain first simple

algorithms; Deutsch, Deutsch-Jozsa, Bernstein-Vazirani and Simon, making

this way our explanation divided to several small pieces, each of them simpler

to grasp. Finally the Grover algorithm is explained in full detail and from

various points of view. This presentation is based on literature and previous

work of PSU group. Certain intuitions which I found myself very useful to

create new applications are also explained.

6. Chapter 6 introduces the concept of universal search method based on

combining various search methods. This method is applicable to all

36

combinatorial synthesis problems and other problems introduced in this thesis.

It can be used for both classical and quantum computing.

7. Chapter 7 is the main chapter of this thesis. It introduces the new powerful

concept of affine gates and generator of circuits with such gates. All material in

this chapter is new and is based on previous papers and reports of this author.

The exhaustive and iterative-deepening depth-first search algorithms were

implemented. Their complete analysis is given and superiority demonstrated.

The invention of new quantum gates is documented.

8. Chapter 8 illustrates the use of universal search to the problem of synthesizing

GRM forms for incompletely specified problems. This is the first solution to

this problem. Analysis of experimental results is presented. Other applications

of universal search are also explained.

9. Chapter 9 introduces GRMs, ESOPs and Linearly Independent logic. These

expressions are used in the algorithms of this chapter. Multi-polarity Linearly

independent expansions and Zhegalkin Logic are also presented, as much as

necessary for the practical applications in quantum circuit design. Chapter 9

completes the first part. of the thesis - designing various types of binary

permutative quantum circuits (and also reversible circuits as a byproduct) using

37

various approaches based on exhaustive and intelligent searches. All these

methods are useful for designing oracles which is the subject of next chapters.

The methods are geared towards quantum oracles to give speedup to Grover

algorithm, but in theory they can be used to build also classical oracles for

reversible technologies, for instance in nano technology.

10. Chapter 10 introduces new multiple-valued gates and circuit structures and it

generalizes some results of previous chapters to multiple-valued logic.

11. Chapter 11 is the link between the two parts of the thesis - first part about

designing circuits and second part about designing algorithms (oracles) using

blocks realized from these circuits. The chapter presents several practical

blocks that are used to build oracles. Most of these blocks are next used in

chapters 12 - 15 to construct oracles. All blocks are reversible and realizable

with any quantum technology, but are optimized towards NMR-like

technologies. The methods that we used to design these blocks are wider than

the methods from the first part of the dissertation. The design of optimal

oracles is a broad subject of study (it is also at its very beginning). The

practical examples show that various circuit structures and design approaches

are necessary to find the circuits that are reasonably small from the common-

sense point of view. Design of quantum blocks, as in classical computing

38

requires human intuition and experience and can not be fully automated in

2008.

12. In Chapter 12 the concept of oracle design for Grover is illustrated with

examples from Satisfiability, logic equations and logic design. A sub-family of

reductions to SAT is illustrated, all of these problems are in close link to CAD

algorithms from the thesis and many of them appear in synthesis algorithms

from the first part of my dissertation.

13. Chapter 13 discusses Constraint Satisfaction problems as Grover Oracles.

Specifically we illustrate the graph coloring problem.

14. Chapter 14 discusses crypto-arithmetic puzzles which are models of a wide

category of problems in CAD, scheduling, planning, vision and robotics.

Although we did not create a methodology to solve all problems of the classes

from chapters 12 - 13, we collected enough ideas and examples to create a

human-aided methodology of building algorithms and oracles that can be

applied to solve new problems of these types.

15. Chapter 15 introduces first the class of constraint satisfaction problems in

robotics and argues that the existence of a general tool to solve all these

39

problems more efficiently would mean a breakthrough in robotics. Next we

introduce the adiabatic quantum computer Orion, recently presented by a

commercial company DWAVE for the first time in history and we present that

our model can be reduced to their model, making all approaches from this

thesis practically applicable to an existing quantum (adiabatic) computer which

can be used in robotics applications. This part of the chapter is a compilation of

many ideas from Internet and recent papers from years 2005 - 2008. Finally we

present a new class of problems in Machine Learning and Data Mining which

use multi-polarity spectral transforms with Grover algorithm selecting the best

polarity (a well-known exponential complexity problem). These models can be

also reduced to the adiabatic computer. Some speculations on future research

based on these ideas are also given.

16. Finally Chapter 16 is a comprehensive conclusion of my thesis. We present

new ideas that expand the methods and ideas from this thesis and we speculate

on future research in this area.

40

The Visual Flow Diagram of the chapters in the thesis is given in Figure 1.1.

Quantum
Circuit Design

Quantum J

Oracle Design

Fundamentals and some Problems and
approaches in Quantum Circuits

(Chapters 2,3,4)

I
Algorithmic Search Approach, both Classical

and Quantum
(Chapter 5)

Search Approach Applied to binary synthesis
problems

(Chapters 7, 8,9)

I
Search Approach to multiple valued quantum

circuit synthesis problems
(Chapter 10)

I
Basic Blocks of Quantum Oracles

(Chapter 11)

Design of Oracles for Grover
(Chapters 12,13,14)

Constraint Satisfaction Problems and the
Adiabatic Quantum Computer

(Chapter 15)

Figure 1.1: The contents of the Chapters.

41

The comparison of methods and algorithm approaches from the thesis is given in

Table 1.1.

^" \<\ lgor i thms
Prob lems^"^- \

FPRM

ESOP

Affine Generator

GRM

Graph coloring

SAT

Set Covering

Linear Search

Chapters 3 and 4

Does not exist

Old version: Exhaustive
search (chapter 7)

Zheng [Zeng95]

Does not exist

Does not exist

Does not exist

Tree Search

Chapters 3 and 4

Chapter 6

Chapter 7

Sasao,Debnath,Dill
[Sasao95, Debnath98, DillOl]

Popular

Popular

Popular

Evolutionary
Search

Not known

Not known

Does not exist

Dill [Dill98]

ECPS Hybrid Search

Chapter 9

Chapters 6 and 12

Future work

Chapter 8

Chapter 6

Chapters 6 and 12

Chapters 6 and 12

QSPS Quantum
Search

Chapter 15

Chapter 12

Future work

Chapter 12

Chapter 13

Chapter 12

Chapter 12

Table 1.1: Various approaches to main synthesis problems of the thesis.

42

CHAPTER 2

From Realization Technology Models of Quantum Permutative Gates

to Uniform Synthesis Approaches.

2.1. Towards Computer Aided Design of Quantum Computers.

In the past few decades, integrated circuit technology has grown substantially, from

that of realizing only a few logic gates on a single device to more currently

constructing billions of logic gates, effectively creating a "computer on a chip". But,

with this massive growth in technological capability, it becomes ever more difficult

for future human invention to both maintain and surpass the capabilities of previous

creations. With larger and larger designs, a need for high testability, increasing design

complexity, and more aggressive time-to-market schedules, higher demands are

placed on the human design team. Thus, new methods of invention become necessary,

which combine both human expertises with that of the increased computational

capabilities of computers. As already discussed in chapter 1, one of the most

promising technologies of the future is the quantum computer. Computer Aided

Design methods should be developed for quantum computers as well as methods of

efficient mapping of quantum algorithms to quantum hardware. Our synthesis will be

mostly on a "permutative" level of gates such as Toffoli and Fredkin. Thus in this

chapter we will present design details close to technologies. In sections 2.2 and 2.3 we

will illustrate two respective ways of building such gates on top of the two types of

lower level primitives.

43

2.2. Quantum gates and circuits on the level of pulses in Quantum

technologies such as NMR and ion traps.

2.2.1. The quantum gates on the level of electromagnetic pulses. The

fundaments.

Every quantum gate and circuit, from the smallest like Pauli rotation to the largest,

like the Quantum Algorithm of Grover, can be represented by a unitary matrix of the

Hilbert space. Hilbert space can be defined as vector space with infinitely many

dimensions. The dot product u • v = Sum u{ v,- (or Sum ut vt* for spaces on the complex

numbers) is replaced by the corresponding infinite sum or integral. The (length of u)

is defined as u • u as usual, and the space only contains those vectors whose length is

finite. We are building large quantum matrices of algorithms from small quantum

matrices of gates (pulses) that are realizable in some selected quantum technologies.

In this chapter we will concentrate on realization of quantum circuits in two most

advanced as of 2007 quantum realization technologies: that of liquid state nuclear

magnetic resonance (NMR) [Cory97, Gershenfeld97, Jones98, Jones98a] and ion traps

[Leibfried03, Paul90, Steane97, Wineland98].

As we will see in next chapters, the designer designs a quantum algorithm on many

levels; block level, circuit level and gate level. This requires the decomposing or

composing of the gates' Unitary matrices. Here we will start with standard elementary

44

quantum gates for computation [Lee06]. In implementation, each gate is again

converted to a sequence of physical operations that a given type of quantum computer

technology can actually directly implement. In this thesis we abstract from the

physical nature of qubits, they may be spins of electrons or polarization of photons.

This is completely immaterial to the quantum mechanics abstraction used in this

dissertation.

The total calculation time in quantum computation depends on the number of basic

gates in the series and the number of physical operations required for a quantum

system to implement each gate. Let us denote a series of physical operations as a

sequence of electromagnetic pulses distinguishing it from the series of basic gates, as

the physical operations are either the time evolution of finite duration under the

influence of an externally applied magnetic field, or interactions between qubits. In

quantum computation, the calculation time is a very precious resource due to the finite

coherence time of a quantum system. Therefore, it is important to know the cost of

gates for the successful implementation of an algorithm, and thus for the future design

of a practical quantum computer. Once the pulse sequences for the single-qubit and

two-qubit gates are obtained, the total pulse sequence for a circuit is given by

replacing each elementary gate by the corresponding pulse sequence. The pulse

sequence of more complicated circuits with larger numbers of input qubits can be

obtained in the same way, that is, by finding the quantum circuits composed of simpler

gates and replacing each gate by the corresponding pulse sequence. In paper [Lee06]

45

the costs of gates were calculated in terms of numbers of basic pulses. The software

used there calculated the cost of each gate by reducing the number of pulses in the

sequence using the commutation rules of the pulse operations using naive greedy

search algorithm. We demonstrate that these results can be improved by using the new

heuristic search algorithm that will be developed in this chapter.

The optimized circuits presented in [Lee06] are not necessarily minimal, since the

heuristic algorithm that found them has no way of knowing if the solutions found are

local or global minima. Therefore, they may not be the true minimal costs of gates,

and the authors claim only to provide the upper bounds as the worst case. To evaluate

the quality of their heuristic algorithm we develop exhaustive search to be used in

comparison of small problems.

We know that Quantum Computation relies on quantum mechanics which is a

mathematical model that describes the evolution of physical realization of

computation and hence the computer itself. Several philosophically different but

physically equivalent formulations have been found for quantum mechanics [Styer02].

In this thesis, we follow Schrodinger [Schrodinger26] which describes the physical

state of a quantum system by a temporally evolving vector \w(0) in a complete

complex inner product space H called a Hilbert space. The time evolution under the

influence of a single term of the Hamiltonian is a single physical operation, in this

dissertation we will be optimizing circuits at the level of such operations (pulses).
46

(Hamiltonian is a physical state of a system which is observable corresponding to the

total energy of the system. Hence it is bounded for finite dimensional spaces and in

the case of infinite dimensional spaces, it is always unbounded and not defined

everywhere.). The new approach in quantum circuits synthesis introduced in [Lee06]

differed from the previous publications [Smolin96, Shende03, Miller02, Miller03]

which optimized the quantum circuit at higher levels of abstraction. It is still rare to

see papers in the literature that would optimize on the level of pulses, but this is done

systematically in this thesis. This is partially possible thanks to our software which is

intended to perform hierarchical top-down synthesis from various levels of

specification. In one synthesis variant, the software will modify the initial non-optimal

design by shifting gates left and right in the circuit and applying quantum logic

identities, analogously to [Lee06, Lomont03], but calculating the combined cost of the

operations that are necessary to build arbitrary quantum circuits instead of the total

gate cost (gate number). The approach from [Lee06] was next extended to larger

circuits, but with a smaller number of transformations [Miller03], the so-called

"template matching approach". In next chapters we present software that operates on

larger circuits and with a larger, user-defined numbers of operations.

The most important result from [Lee06] is a table of realizations of useful gates and

their costs, given in Table 2.2.1

47

Table 2.2.1 - Cost of gate primitives

Gate

NOT

Phase

Hadamard

CNOT

SWAP

Peres

Toffoli

Pulse Sequence

iRx(n)

<&Rg(<f>)

iRy(%)Rz{n)

B ^ % (f) i ? l z (- |) i 2 2 2 (- f) J l 2 (f)R2y{-i)

R\y { ~~ f) Jl2 (, f J Rlx (f) R-2SC (~ f J J12 { f)

C-^f ty (f) / ^ (f) ^ (-¥)Al , (- f) J23 (f)

^.(-5)-;i2(5)J22lr(-5)J?2*(f)-'3i(-f)

e^i?i,(-f)i22.(-f)Ji2CI)J2ay(-f)

#3z (f J ̂ 31 (— f) '̂ 23 (- f) ̂ 3y (f) -h 1 (f)

Cost

1

1

2

5

11

12

13

48

Fredkin

Miller

e ' T JVf)* i* (-T) J M(§)JW5) B *(-T)

Jl2(J)R2y(f)R22{-1l)J2B(f)R^(^)

ii2(f)J?2¥(-fP2,(-"f)J3i(-f)i23(-f)

e«T/^(j)JL2(f)iZ2,(-5)fl22(-^:)fl1,(|)

JziWRiy&Rni-fyRtoWRtoi-fy

J3i(-|)J23(-5)i2a»(f)i22.(-f)ili»(-f)

19

24

The basic quantum gates that are used in quantum circuits are Inverter (NOT, Pauli X

rotation), Hadamard, Toffoli, Feynman, CV (controlled square root of NOT) and CV^

(controlled square root of NOT Adjoint gate). These gates are truly quantum and

universal. Their subset {NOT, CV, CV^} allows creating all permutative binary

quantum gates (circuits) by their compositions.

A quantum gate operating in parallel with another quantum gate will increase the

dimensions of the quantum logic system represented in matrix form. This is due to

49

application of the Kronecker (tensor) product of matrices to the system. Kronecker

Matrix Multiplication is responsible for the growth of qubit states such that N bits

correspond to a superposition of r1"* states, whereas in other digital systems, N bits

correspond to rN distinct states. The number r denotes the base (radix) of logic, being 2

for the binary and 3 for the ternary logic. The Kronecker Product of two one-qubit

gates is illustrated below:

hx by

bz hv

dx dy

dz dv

(Equation 2.2.1)

The multiplication operation in Equation 2.2.1 is, in the most general case, the

multiplication of complex numbers. Kronecker multiplication can be defined for

matrices or vectors of any sizes.

A quantum gate in series with another quantum gate will retain the dimensions of the

quantum logic system. The resultant matrix is calculated by multiplying the operator

matrices in a reverse order. This is standard multiplication operation on matrices.

In Figure 2.2.1 we show the notation and the unitary matrix of a very important

quantum gate - the Hadamard gate. This is a "truly quantum" gate that cannot be

realized in a "binary reversible" or "permutative" circuit. This is in contrast to the

50

a h

c d
x y
Z V

a

c

X

Z-

X

,.z

y
V

' y
V

h

d

X

„ ~

X

„ -

1

•

VJ
y
V

at

az
ex

ez

ay

m-
c)'
cv

permutative sates (described by permutative matrices) that can be realized by standard

reversible logic circuits. This realization is however only in logic/mathematic sense

and the reversible gates do not allow superposition and entanglement.

Jjl 1
Vlh -1

H

Hadamard Gate

Figure 2.2.1: Hadamard gate notation and its unitary matrix.

An example of a unitary and permutative matrix is the Feynman gate. A permutative

matrix has exactly one ' 1' in every row and column.

A.-

B- • e

p

"I

0

0

_0

0

1

0

0

0

0

0

1

i)

0

1

0

Feynman Gate

Figure 2.2.2: Feynman gate notation and its unitary (in this case also permutative)
matrix

By V we denote the "square root of NOT" gate. When it is applied to basis states then

it creates superposition states on its output. The conjugated transpose of a unitary

matrix U is called the adjoint of matrix U and denoted by \j\ By V1" we denote a gate

that has a unitary matrix which is an adjoint of V. Therefore, the adjoint of V is called

"square root of NOT adjoint" and has the unitary matrix Uy^ of gate V1". Design of

51

many permutative gates is based on (controlled) cascading of V and V^ gates.

Cascading two square-root-of-NOT gates acts as a basic inverter gate (see Figure

2.2.3a). The operation of the circuit from Figure 2.2.3a can be explained by the matrix

multiplication. Multiplying the unitary matrix Uy by the input state we obtain the

vector Vi [1+j 1-j] T = Vo, Figure 2.2.9a. By multiplying V by this vector we obtain

vector [0 1] T = |i). The kets |o)and |i)are in Dirac notation and they represent

classical 0 and the classical 1 in quantum mechanics.

|0) =

We have also that

and 11)

= [1 Of .

= [0 l]'

(a)

(b)

4NOT •{NOT

a

h

H >-

\ i Q

o

o

x =
0 1

1 0

1 0 0 0

0 i 0 0

2 2

Izl 111

0 0

0 0

(c)

v+
•Q

«

1 0 0 0

0 1 0 0
]_y]+2

2 2
1+J W.

? 1

0 0

0 0

Figure: 2.2.3 (a) Cascading V gates creates an inverter. Measurement of intermediate
state would give |o) and |i) with equal probabilities, composition of these gates acts

as a classical inverter (b) Controlled- V gate and its unitary matrix, (c) Controlled-
Vgate and its unitary matrix.

52

A quantum circuit can be easily analyzed. A parallel connection of gates corresponds

to the Kronecker Product (the Tensor Product) of unitary matrices of respective gates.

The serial connection of gates corresponds to the serial multiplication (in reverse

order) of the matrices of these gates. One can check that the equivalence

transformations from Figures 2.2.4 and 2.2.5 are correct. All verifications of quantum

equivalence transformations can be done by multiplying and comparing respective

unitary matrices. Figure 2.2.6a presents the controlled general phase gate used

together with a pair of the pseudo-Hadamard and its inverse gate. Figure 2.2.6b has

the symbolic unitary matrix when the control signal is|i). By substituting various

values of angles, 0°, 90 ° , -90 ° , 180 ° the unitary matrices are created which are next

combined with the pseudo-Hadamard matrices, as in Figure 2.2.6b. This leads to the

table from Figure 2.2.6c that demonstrates that by changing the angle the gate from

Figure 2.2.6a can work as a 2-qubit identity, controlled-V, controlled-V1^ and CNOT.

Actually this gate can be used as a controlled root of various degrees. Figure 2.2.6d

illustrates unitary matrices for various angles of Y. This figure demonstrates therefore

the usefulness of Y and Z rotations to create gates.

*
COS—

2
• <t>

sin—
2

• f
- s i n—

2
4

cos—
2 .

Y($) = cos^ - / - ; s i n^F = cos-*-
2 2 2

(a)

"l 0"

0 1
- ; s i n —

2

"0

i

— i

0
_

cos-?- 0
2

0 cos-

53

•w-

\m
\H\

-®-

(b) (c)

-9

-9- _

(• "a

Y ,

Vi

^ r*;
Figure 2.2.4: (a) Example how to calculate unitary matrices of generalized rotations
from general matrix formulas in Table 2.2.1. (b) Equivalent transformation of Z gate,
(c) equivalent transformation of CNOT and Hadamard gates, (d) CNOT and NOT
transformation, (e) CNOTs and Pauli Y transformation.

• ^ H i h Y Zh- -m-
'0 O

1 0
\

V

0\, =
y

f°
[i

~A
«J

H 5

1 0

0 - 1 4i
I I

I - l

v=-
\+i l-i

\\ -i i + \j
S{<p).

1 0

0 e~*

Figure 2.2.5a: Basic gates: NOT (or Pauli X), Pauli Y, Pauli Z, Hadamard,
Controlled Square Root of NOT or V, Phase Gate.

54

V2
a -n /!-' =

V2
ri i
- i i

Figure 2.2.5b: Pseudo-Hadamard and inverse pseudo-Hadamard gates.

We will be using the single qubit gates that are commonly used in papers on quantum

synthesis. They are : NOT (Pauli rotation X, denoted also in literature by ax),

Hadamard, Phase, and T. Some of these gates are shown in Figure 2.2.5a. Some gates

are also listed in Tables 2.2.1 and 2.2.2. We use Pauli rotations X, Y and Z or

arbitrary angle rotations with respect to axes X, Y and Z of the Bloch sphere and

some their special cases for fixed angles which are multiples of 45°. We will use also

two new gates; pseudo-Hadamard h and its adjoint pseudo-Hadamard gate h'1, Figure

2.2.5.b, because they are used to build many quantum gates, both permutative

(pseudo-binary) and general-purpose-quantum gates (called also truly quantum gates)

that are most useful in synthesis [Biamonte04, Jones98, Jones98a].

T =
1

0

0
jn

e 4

^ d) (b
P{(/)) = e 2 I, X{(f)) = cos ^ - / - y s i n ^ X ,

Y{(j)) = cos $-1- j sin ^-Y, Z(<f>) = cos $-1 - 7 sin ^-Z

Table 2.2.2: X,Y,Z Pauli phase rotations.

55

In Table 2.2.2 symbols X, Y, and Z are the defined earlier Pauli spin matrices and

P((|)), X((j>), Y(<|>), and Z((|)) are the corresponding 2*2 matrices of arbitrary

parameterized angle rotations by angle §. The rotations X((|)), Y(<))), and Z((|)) can be

explained as rotations with respect to angles X, Y and Z, respectively, as illustrated

on the Bloch sphere [NielsenOO]. P is a phase rotation by ty/2 to help match identities

automatically and its idea comes from [Lomont03].

(a)

(d)

H

-v*p

(b)
R(9)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e~'*

(C)
<Ji

® = 71

(e)

CZ--

f\
0
0
0

0
1
0
0

0
0
1
0

<T
0
0

-1

<D = 7t/2

(f)

CZ-

1̂ 0 0 0^|

0 1 0 0

0 0 1 0

0 0 0 -i

Figure 2.2.6: Controlled gates, (a) Controlled Hadamard gate, (b) Controlled
Rotation with respect to angle 6. This symbol applies to any angle, particularly X, Y
and Z. Additional symbol is used to denote the angle, (c) symbol of Pauli rotation
where subscript i = X,Y,Z, (d) controlled phase and its unitary matrix, (e) Controlled
Z and its unitary matrix, (f) controlled phase gate and its unitary matrix.

(a)
- # - ^ - 1 !

56

(b)
V H\ \H]

(c)
Ft 4* 11

I I —

s H

(d)
Ft ** h~ „—1 h

Figure 2.2.7: (a) CNOT realized with controlled-Z and pseudo-hadamard gates.
Symbol h stands for pseudo-hadamard gate and symbol h~ for inverse pseudo-
hadamard gate, (b) CV realized with Controlled-S and Hadamard gates, (c) CV
realized with controlled-S and Hadamards, (d) CV realized with controlled-S' and
pseudohadamards. Observe that this realization requires less pulses than its
equivalent from Figure 2.2.7c.

(a)
4$ — h-1 -

4 1

— # — — h

(b)

_i 1 1 - 1
k*d>*h =—=•

V5L1 1.
1 0

.0 J*\ fi
1 1

-1 1

57

^ = 0

^ = 90°

^ = -90°

^ = 180°

/

1

1

"l - l "

1 1

"I r
- i i

r o - i i
|_1 0_

= h

= h~l

0 = 0

^ = 90°

<p = - 9 0 °

^ = 180°

/

V

v+

X

Figure 2.2.8: (a) Controlled-Z gate realized with controlled-phi gate surrounded by
pseudo-hadamards, (b) Calculation of unitary matrix for lower qubit of this gate, (c)
Various gates realized by tpfor angles 0°, 90°, -90° and 180° in Xrotations.The <j)
gate realizes identity, Square-root-of-NOT, its adjoint and Inverter, (d) gates realized
by Y rotations.

Let us now try to find, by matrix/vector multiplication, all possible states that can be

created by applying all possible serial combinations of gates V and V^ to states |o) ,|i)

and all states created from these basis states (Figure 2.2.9). A qubit |o), given to a

"square root of NOT" gate (Figure 2.2.9a) gives a state denoted by \v0). After

measurement this state gives |o) and |i) with equal probabilities lA. Similarly all

other possible cases are calculated in Figure 2.2.9b - h. As we see, after obtaining

states|O),|I),|K0) and \vx) the system is closed and no more states are generated.

Therefore the subset of (complex, continuous) quantum space of states is restricted

with these gates to a set of states that can be described by a four-valued algebra with

values (|o), |i),|r0), 1^)}.

58

(a) |o> -

(b)

1-7 i+y

V |vD>

1
x —

2

V0>

1 + ./

V

<» —

1>

.1 +,/ 1 - . /

W 1+./
i + y

i - . /

(C) | F 0) - £ ^ | l >

(i + y^+O-y)2

(i - /) + (] - / \

(d) |K,)-t->|0>

(g) IO-^IK.)

2(1 + 7')

2 (1 - /) 1 + 1

(C) | 0) - i ^ | F , >

(h) | F ,) - i ^ | l >

Figure 2.2.9: Calculating all possible superposition states that can be obtained from
basis states |o) and |i) using V and V gates.

Figure 2.2.3b shows the Controlled-V gate (Controlled-Square-Root-of-Not, denoted

also by CV) and its unitary matrix. The gate operates as follows. Control signal a goes

through the gate unaffected, i.e. P = a. If the control signal has value 0 then the qubit

b goes through the controlled part unaffected, i.e. Q = b. If a = 1 then the unitary

operation that is inside the box is applied to the input signal b, it means Q = V (b) in

our case. This operation is general for all binary controlled gates, for instance the

Controlled-V-adjoint (Controlled-Square-root-of-Not-adjoint, denoted also by CV1).

This gate and its unitary matrix are shown in Figure 2.2.3c.

2.2.2. Models of Basic Gates

The component particles of the quantum system should have at least two well-defined

quantum states to be used as qubits, and should interact with each other. There must

be a way for external devices to perform single-qubit operations and read the qubit
59

states. When we write "particles" here it may be any quantum entities: electrons,

protons, other particles, photons, ions, nuclei atoms etc. We define a model quantum

computer for both NMR and ion trap technologies as a system that meets the

following specifications:

The Hamiltonian of the system is given by,

H = \a. a. +VJ..O". <j.
/ ' ia la ' - ij iz jz

'><* '-J Equation 2.2.2.1

where a = x, y or z and symbol a represent one of the Pauli operators. This is the most

familiar form of the spin Hamiltonian where spins are interacting with each other in an

external magnetic field. However, this Hamiltonian is not particular to spin systems

but is general, as similar forms are relevant for any quantum computer. It is common

to refer to the first term of the Hamiltonian in Equation 2.2.2.1 as the Zeeman term.

The second term as of Equation 2.2.2.2 is known as the interaction term.
aia aia Equation 1.2.2.2 - Zeeman term

i,a

The Zeeman term is necessary to produce all the single qubit gates. As its name

implies the second term defines interaction between qubits, such as those that are

essential to make a CNOT gate. In the standard form, the so-called Ising model

[Lee06] is characterized by the interaction of only Z-components of spins. The

interaction form should not necessarily be of the Ising type, although it is

advantageous because the Ising type interaction can generate the indispensable CNOT

gate, while it is not quite clear if general interactions can do the same.
60

Z

The physical pulses one is able to implement by the Hamiltonian from Equation

2.2.2.2 are,

«,«M = -e 2

~l-Zaiz°jz
Jij(<P) = e 2

Equation 2.2.2.3

We define the cost of a gate as the number of pulses corresponding to the minimal

pulse-level implementation of this gate. The algorithm first introduced by Soonchill

Lee [Lee06] and also our improved algorithm perform reduction (full or partial) using

the commutation rules on the sequence of pulses representing the gates circuit.

2.2.3. Circuit Identities and Optimizing Transformations

The reduction uses, among others the well-known rule [Nielsen97]: [A, B] = AB -

BA, AB-BA = 0 -> AB = BA.

This reduction rule is illustrated in the quantum circuit from Figure 2.2.3.1 which

means, that one can shift left or right pulses or gates for which the above rule holds.

H-4 : B h

B A

Figure 2.2.3.1: Graphical illustration of the rule [A, B] = 0.

61

In my reduction algorithm the following commutation rules are used (Equations

2.2.3.1-2.2.3.4):

[Ria, Rja,] = 0 for / * j Equation 2.2.3.1

Rtc(±x)RtV) = RtH>)Rtl(±x)

Rix((j>)Riy(±7c) = Riy(±7r)Rix(-(/>)

Rix(±^)Riy(0) = Ri2(±0)Rix(±^)

Rix(±^)RM = Riy(+mA±^)

i ? , x (^ > (± |) = i?;>(±|)i?,,(+^)

(0(±f) = **(±§)*»(+0 Equation 2.2.3.2

and the relations generated by the cyclic permutation of x -> y -> z.

[Jy, JVj,] = 0 Equation 2.2.3.3

[Jy, RVz] = 0 Equation 2.2.3.4

Graphically, they are represented as in Figure 2.2.3.2. If necessary, more rules can be

added to the program, and/or we can make some rules usable only in one direction

(only from left to right or from right to left).

62

i? ix (±7T) Ri. = -\Ri9{-<f>) N J ? ^ (± T T)

— JSjx (<$) — jR-jy (±JT) — — — Riu(dtnr) — i ^ x (— $) —

-J iZi, (±f) W Riy (» L- = -J Riz (±4) W ifc, (±|)

H^(f)H^(?)h = H ^ C T ^ H ^ - N B

H ̂ m H ̂ (±1) h = -\Riy (±1) H ̂ (±#

Jfc* (s») -*Hs v 2 / •fHs i ^ a) ^ (T?)

Figure 2.2.3.2: Graphical illustration of some commutation rules for quantum algebra
that are used in my tree search-based pulse-level circuit minimization algorithm.

a) •® H H

b)

c)

H H

Figure 2.2.3.3: (a) The Controlled-NOT gate realised by controlled-Z gate
surrounded by Hadamard gates, (b) two serially connected Hadamard gate are
together equal to a quantum wire and (c) for controlled Z we can interchange the
control qubit and the target qubit in the control-Z gate.

63

a)

b)

cl

- # -

v+

H

TT
£
<

— H -

— H -

3

»

—o

— S — H

1
-S-1 H

Figure.2.2.3.4: Identities for Feynman gate surrounded by Hadamard gate and
construction ofCVand CV from Hadamard gate, Phase gate(S) and its inverse(S) .

4> Ti

H

H

- ^ -

a)

-AH^fr-AH^ Z

b)

c)
HHYHH\-

d)
H f f H ^ H f f h -9-

Figure 2.2.3.5: (a) Example of transformation for Feynman gate surrounded by
Hadamard gates, (b)Hadamard gate used as serial connection creates Z gate, (c)Y
gate surrounded by Hadamard creates Y gate, (d) Z gate surrounded by Hadamard
gates creates NOT gate. These rules can be used to prove the correctness of the
Grover Algorithm.

64

2.2.4. Single Qubit Gates

The most frequently used single qubit gates in quantum algorithms are the NOT(N)

{also known as Pauli-X, or X [Nielsen97]), Hadamard(H), and phase(P) (also known

as S [NielsenOO]) gates in the vector space spanned by basis vectors in both Dirac and

Heisenberg notations from Equation 2.2.4.1:

| o > = l')=
Equation 2.2.4.1

These gates are the special cases of the single qubit rotation operations and are

implemented by the rotation pulses as shown in Figure 2.2.4.1

(a) N = tRx (x) = i
cos

^

-/sin

12
n

-rsin| —
2

(^
cos

^

v^y

0 1
1 0

W ^ a f f !*(,) = < •G) -sin| —
4

7t\ (' K
sin I — cos —

4) U.

e 2 0

0 e1

1 1 1

1 -1

X

H

(c) P = e2Rz((/>) = e

" -it
e 2

0

0

e2_

"l 0"

0 e*_

Figure 2.2.4.1: (a) Calculation of matrix for Pauli X rotation, (b) calculation of
matrix for Hadamard gate, (c) Calculation of matrix for S gate.

65

Therefore, the costs of Gates N and P are said to be 1, and that of H is 2, from the

definition of our model quantum computer (see Figure 2.2.4.2). It is worthwhile to

note that gates with the same number of input qubits can have and usually have very

different costs in practice. The pulse sequence of a gate is not unique in general. It is

also worthwhile to note the fact that the N, H and P gates are implemented up to

overall phase. We illustrate an example of this fact for the N gate below in Figure

2.2.4.3.

Not gate, cost 1 Phase gate, cost 1

Hadamard gate, cost 2

Figure 2.2.4.2: Quantum gates realized on the pulse level, they are decomposed to
rotations with respect to axes x, y andz.

Let us denote a NOT gate such that it is correct to overall phase, doing so we have the

equations from Figure 2.2.4.3.

N = RX(TT) =

cos
fn^

-zsin

v 2 y

f -
, 2 ,

-zsin
ffc^

\^ J

cos
' ^

\ * j

0 -i

-i 0 =H 0 1

1 0

66

Figure 2.2.4.3: Calculation of unitary matrix for inverter. Illustrates accuracy with
phase and relates to the Table 2.2.2. The value of(-i) = (- -f^i) is the phase that is lost
in every quantum measurement.

The concepts of rotations and phase can be illustrated using the Bloch sphere,

[NielsenOO].

2.2.5. Two-Qubit Gates

The most frequently used two-qubit gates are the CNOT and SWAP gates. A possible

pulse sequences for the CNOT gate is given in Equation 2.2.5.1.

CNOT^R,
f„\ f„\ f„\ („ \ f_K\ K

V2y
R J*

n

V2y
i?,

K

v 2 y
J*

K

V 2y
R; jy

V * J

Equation 2.2.5.1: Pulse sequence for CNOT gate (accurate to phase, where i is the
target bit).

•m

^ '. '11

' . (-f)

< -f)
T2(1-i]

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

Figure 2.2.5.1: Representation of the CNOT Gate with EXOR up.

Most equations were verified by me using Matlab [MATLAB] and simulation results

are presented for the most important circuits in the thesis. Some circuits I simulated

also in QuiddPro [QuIDDPro].

67

Matlab simulation of Figure 2.2.5.1

CNOT =

0.7071-0.707li 0

0 0

0 0

0 0

0 0.7071-0.707li

0.7071-0.7071 i 0

0 0.7071-0.707li 0 0

Simulation 2.2.5.1

CNOT = Rh
' ^

R
' - ^

2z
y^j

R^
r - ^ fn^

J\2 — R\
\^ J

• n

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Figure 2.2.5.2: CNOT gate with EXOR down.

Step by step Matlab simulation of Figure 2.2.5.2

Rl =

0.7071-0.707li 0 0 0

0 0.7071-0.7 07 li 0 0

0 0 0.7071+0.707li - 0

0 0 0 0.7071+0.707 li

68

R2 =

0.7071 0-0.707li 0 0

0-0.707li 0.7071 0 0

0 0 0.7071 0-0.707li

ft 0 0-0.7071 i 0.7071

R3 =

0.7071 -0.7071 0 0

0.7071 0.7071 0 0

0 0 0.7071 -0.7071

0 0 0.7071 0.7071

R4 =

0.7071 +0.707 li 0

0 0.7071

0 0

0 0

R5 =

0.7071 0.7071 0

-0.7071 0.7071 0

0 0 0.7071

0 0 -0.7071

0 0

0

0.7071-0.707 li 0

0 0.7071+C

0

0

0.7071

0.7071

69

0.7071-0.707 li 0

0 0.7071+C

0

0

0.7071

0.7071

69

0.7071-0.707 li 0

0 0.7071+C

0

0

0.7071

0.7071

69

0.7077/ 0

0.7071 -0.707 li

0 0.7

0

0

0.7071

0.7071

69

CNOT =

0.7071- 0.707li 0 + O.OOOOi 0 0

0.0000 .7071-0.707li 0 0

0 0 0.0000 - O.OOOOi 0.7071 - 0.707li

0 0 0.7071-0.707 li 0 + O.OOOOi

Simulation 2.2.5.2: Where Rl, R2, R3, R4 and R5 are the Pauli Matrices from Figure
2.2.5.5 and CNOT results from the Equation 2.2.5.1.

In Figure 2.2.5.2 the upper qubit is the control and lower qubit is target respectively.

As shown by Equation 2.2.5.1, the cost of a CNOT gate is 5. The circuit

corresponding to the equation 2.2.5.3 is shown in Figure 2.2.5.2. Another frequently

used controlled gate is the controlled-V where V2 is equivalent to a NOT gate. The

cost of this gate is also 5 because it can be implemented by Equation 2.2.5.3.

Controlled - V = R 2y (-)
v2y

R
v4j

R,
, 4 ,

Jr
(-71^

4 J
R

f-n^
2y

V ^ J

Equation 2.2.5.3: Pulse sequence for Controlled- V gate (accurate to phase, where i
is the target bit).

* < 7 >

<*;> 4

712(-^)
4

**-f) V

Figure 2.2.5.3: Controlled-V gate realized with 5 pulses.

70

Once the pulse sequences of the CNOT, controlled-V, and single qubit gates are

known, the pulse sequence for the other multi-qubit gates can be obtained if the gate is

decomposed to a series of these basic gates.

Costs Cost I CostS
n~n ^__ r̂ n vt?

I
4=#=1

-b*r±
i

LTJ fc*=r-

Figure 1.2.5.4: SWAP Gate comprised of 3 CNOT gates. The cost of the SWAP should
be then 3x5 = 15 but it is lower thanks to local optimizations based on quantum
algebra.

The SWAP gate is decomposed of three CNOT gates as shown in Figure 1.2.5.4. The

pulse sequence of the SWAP gate obtained by replacing each CNOT gate (EXOR up)

by the sequence in Equation 2.2.5.1 and EXOR down CNOT with sequence from

Figure 2.2.5.2 is given in Equation 2.2.5.4. It has cost 15.

SWAP = R2 a) R.
r-7t^

R
f-K^

•Iz

V ^ J
J, 12

V ^ J ,2)
R

' - ^
iy

V * J

xR
ly V2y

R,
' - ^

R,
f-n^

V * J
J 12

V ^ J v2y
R

' - ^
ly

V ^ J

xR 2y v2y
R,.

f-7T^
R

f-n^
2z

V *)
J, n

12

V <* J
R

' - ^
iy

\ *• J

Equation 2.2.5.4

71

Using the algorithm from [Lee06] it can be shown that Equation 2.2.5.4 can be

reduced to Equation 2.2.5.5 and from Equation 2.2.5.5, the cost of the SWAP gate is

11. The circuit corresponding to Equation 2.2.5.5 is shown in Figure 2.2.5.5.

SWAP = R 1y

fn^

\^J
K

-IK
R

-3x

xj,.
' ^

v^y
K ^ 1 * . =?-\J, fWf jy^L4?W?

Equation 2.2.5.5

Rz(-—)

M-)

m(.-)

~ , 3;z\

M-—)

«-f)

"ytj)

•"2(-j)

Figure 2.2.5.5: Swap Gate with 11 Pulses.

72

cos— 0 -isin — 0
2 2

0 cos— 0 -isin—
2 2

-('sin— 0 cos—
2 2

0 -z'sin— 0 cos—
2 2

* : ^) = ^

cos— 0 -sin— 0
2 2

0 c o s ^ 0
2

sin— 0 cos—
2 2

0 sin— 0 cos—
2 2

1 0 0 0

0 1 0 0

0 0 e¥ 0

0 0 0 e¥

^ W :

1 0 0 0

0 eijl 0 0

0 0 ,'? 0

0 0 0 1

V
COS —

2

-isin—
2

0

0

- • v - ism —
2

COS —

2

0

0

0

0

<t>
cos—

2
• • * -isin —

2

0

0

• • (* -isin —
2

4
cos—

2 ,

*>)=

cos— -sin— 0 0
2 2

sin— cos—
2 2

R2M = e

o o

0 0 cos— -sin—
2 2
«S a!

0 0 sin— cos—
2 2

1 0 0 0

0 d* 0 0

0 0 1 0

0 0 0 e4

Figure 2.2.5.6: Two-Qubit Rotation Operations.

The Rotations matrices for two-qubit gates are given in Figure 2.2.5.6. They can be

easily used to verify some of the calculations from the thesis.

73

2.2.6. Three-Qubit Gates

The most frequently used three qubit gates are Toffoli and Fredkin gates, the Miller

gate [Miller02] and Peres gate [Peres85] are also used. The circuit diagrams of these

four gates are shown in Figure 2.2.6.1. The Peres gate is the cheapest found among

those familiar in the universal set of reversible logic gates. It is just like a Toffoli gate

but without the last CNOT gate, as shown in Figure 2.2.6.1 (a).

H F H F

« — t -

Ft

•4

HvHv W

~~\J7~~

(a) (b)

-Gh $^$

VHV\ Ft

4ft

vHv

-©-

- $ -

y t

(c) (d)

Figure 2.2.6.1: (a)The Peres Gate, (b) The Toffoli Gate, (c)The Fredkin Gate,
(d) The Miller Gate

The pulse sequence of the Toffoli gate reduced from the circuit in Figure 2.2.6.1b is

composed of 15 pulses and contains 5 interaction terms. However, the equivalent

sequence of this gate analyzed by the geometric algebra method presented in [Cory97]

is composed of 13 pulses and contains 6 interaction terms. The sequence we listed in

Table 2.2.lTable 2.2.1 for the Toffoli gate is the one with the lower cost. This case

indicates that there is at least one quantum circuit for the Toffoli gate more efficient
74

file:///J7~~

than shown in Figure 2.2.6.1b, a possibility also exists that the sequences listed in the

table can be reduced further. Although the cost of the Toffoli gate given in Table

2.2.1 is lower than the gate shown in Figure 2.2.6.1b, the gate from Figure 2.2.6.1b is

practically cheaper than using the method explained in [Lee06]. It is also possible that

equivalent sequences can have a different number of interaction terms because

^;z(
; r)^/z(; r)^(/(•7r)is eclual to the identity operation. The minimized Peres gate on

the level of pulses is shown in Figure 2.2.6.2.

4

K,(3""l / (- l j I

*xf> 4

J23(£)
4

*c-f>

:

•"2(f)

JW-f)
4

4

1
4

Ry(-\)

Figure 2.2.6.2: Peres Gate with 12pulses

The circuit diagram for the "pulse-level" realization of 3 * 3 Toffoli gate is shown in

Figure 2.2.6.3. This is perhaps the exact minimum pulse-level realization. This fact

has been confirmed by our exhaustive search software. If the search will be completed

we will be the first team to prove the cheapest universal gate for quantum computing

(most likely Peres gate) and to find the cheapest realization of the Fundamental

Toffoli gate.

75

^(-v)

&(--)

/12(-)
4 J31(--)

4
•«l(y) J31(--)

^(--) 4

/23(--)
4

*Ky) ^(7)

y23(--)
4

«r(-T)

Figure 2.2.6.3: The Toffoli gates with 13 pulses.

^ - r)

<)hf<-T

A H « ^

723(-1

K*(—) H*-?

^K-T)

m—)

ntiD

**(y)

•/23(7j

^ - > r

Figure 2.2.6.4: The Fredkin Gate with 19pulses.

«*0r>

**-j> H*3l

Mf)M

M -)

k3KT)i

*(f)l-M5

• ° ^ '

k2^)

Figure 2.2.6.5: The Miller Gate with 24 pulses.

76

The circuit for the minimized "pulse-level" Fredkin gate is given in Fig.2.2.6.4. and

the circuit for the minimized Miller gate is given in Figure 2.2.6.5.

To explain the fundament of our exhaustive search we will analyze and visualize the

Miller gate's pulse level optimization from the Following Equation 2.2.6.1 through

Equation 2.2.6.11.

Example 2.2.6.1: Specifically the mathematical analysis is shown in the Equations

from 2.2.6.8 through 2.2.6.11.

• NMR Hamiltonian

k j,k

Equation 2.2.6.1

• Preferred operations

Single -qubit operations

1. Rotation of qubit k by 90° and 180° about the x axis.

Jkx(—) = exp(-i—Ikx)- Equation 2.2.6.2

lkx(ri) = exp(-iflf J*). Equation 2.2.6.3

2. Rotation of qubit k by 90° and 180° about the y axis.

77

iky (y) = exp(-i - j /jty). Equation 2.2.6.4

Iky O) = exp(-^Ay)- Equation 2.2.6.5

3. Rotation of qubit A: by 6 about the z axis.

hz (&) = e x P(~ i e i kz)- Equation 2.2.6.6

Two-qubit operations

1. Rotations of the states of two qubit_/ and k by 6 through the

evolution by the coupling term ^ ^ jk

Jjk{0) = exp(-i0 21 jkhz)- Equation2.2.6.7

• Any single-qubit rotation can be accomplished in three steps, known as Euler

rotations. The Euler rotations are composed of two z-rotations and one y-

rotation. We prefer 90° or 180° ̂ -rotations and the y-rotations in arbitrary

angles can be decomposed into two 90° x-rotations and z-rotation.

The original Miller's gate is specified as in Equation 2.2.6.8.

78

hy (y-) l3z (- f -) A z (- y-) -/13 (y -) ' i , (- y -)

' 2 , (y -) / 3 z (- y -) / 2 z (- y -) ^23 (y -) / 2 , (- y -)

' 2 , (y -) / i z (- y -) ' 2 z (- y -) ^12 (y -) / 2 y (- y -)

/ 3 7 (y -) / 2 z (- y -) / 3 z (- y -) '23 (y -) ' 3 , (- y -)

' 2 , (y -) / i z (- y -) / 2 z (- y -) ^12 (y -) ' 2 , (- f -)

^ 3 v (f) A z (f) / 3 z (f) '13 (- ^ -) / 3 v (- 4 -)

' 3 , (y -) / 2 z (y -) / 3 z (- y -) '23 (" y-)'*3 , (- y -)

79

llv (4") I-iz (" 4 -) / 2 z (- 4 -) J23 (4 -) / 2 y (" 4 ")

' l ^ (y) ' 3 z (- y -) ' i z (- y -) Jn (y) A , (- y)

Equation 2.2.6.8

hyi^) / 2 , (y -) / 3 z (- f") / l z (" y-)>13 (f")

7T K 71 71 71

/ 2 z (- y -) ^12 (y -) / 2 , (- y -) ^3 , (y) / 2 z (- y)

*3z (- 4 ") J23 (T J ^ V (^") / l z (-•T")' /2z (- 4 -)

'12 (y) '2 , (-y)Az (y) /3z (y) '13 (- y)

80

/ 2 z (~) / 3 z (^) - / 2 3 (- 4 -) / 3 V (- T) J 2 V (T)

' i , (f -) / 3 * (- Y -) / 2 z (- y -) ^23 (y -) / 3 z (- y -)

/ l z (f) ^13 (^-)l2y(-^T) / 1 » (- V)

Equation 2.2.6.9

Ily ("J") ^12 (y -) / 2 , (- ~ -) • ' i xCyO- ' lS (y")

/ l , (y O / l z (" 0 / 3 i (f -) *3z (" y -) / 2 z (- ^ f -)

^23 (y -) / 2 , (" Y -) A z (- y -) ^12 (y -)

/ 2 v (4 -) ^13 (- ^ -) / 2 z (- r -) ^ 3 z (^ -) - / 2 3 (" 4")

llz (- •?") 73z (- *) / 3 v (-?") ' 2 * (- T) J l z (- 4 ")

81

Equation 2.2.6.10

liyi1^-) Jn (y-)/2x(-y-) ^2z(-^) / i , (f -)

J23 i^~) l2x(-^)Jl2 (y O !2y (- y) ^ 2 z (- y)

•J 31 (-"T") '23 (- - 7 -) / 3 , (^") *2* (- f) A , (- ^ -) 4 4 ^ 2 2 2

'23 (f -) / 2 ^ (" y O - ' s i ^ ^ ^ ^

Equation 2.2.6.11

82

The subsequent equations show one branch of the search tree which leads to the

supposedly minimal solution that we dispose at this point.

Example 2.2.6.5.2:

Now, we graphically visualize the Miller gate's pulse level optimization from the

following Figure 2.2.6.6 through Equation 2.2.6.8 as below:

Ry(-) M-- rtw-f *-i*^> f y
JW-)

j i3Ah-UAf-N-T)

&<--)

«X--)|-| /^)U&(--)

m^\

•n*j\

RX-lh-1*<—)

R*-)LJlt2(—) Rt-

J2X-)
4

i _ | W -) U i « - L J f t (T U J W -)

*rfo ^-f)

&(f:

<*fj 4

«Kf)

/23(-£

*x-f:

^13(f)|

^-f) *X-f)

J23(-

«-f) «-f) *x-§)

Figure 2.2.6.6: Miller Gate realized with 45 pulses from Equation 2.2.6.8.

83

ft(T) Rz(-7i)

l^(T)l

m-)

m~)\

•>13(-)

St—) 4 ^ I ' H ^ - ' H ^

K>2(T)| | j l 3 (- ^

^|A<-f jU*<- |)

4

<)UW-£lU*<-f)

* * -)

^ j

«-T) «xaH^~)

4

&<7>

K23(y)

*X—) Rz(-x)

W-j)

Figure 2.2.6.7: Miller Gate realized with 30 pulses from Equation 2.2.6.10.

•^>

H**3l

*<—r) n j

K3^)]

a(—)|

•/23R

l*7>

J2-(—)

«x-

• '23(d

Figure 2.2.6.8: Optimal Miller Gate Realized with 24 pulses from Equation 2.2.6.11.

These figures can be compared with the macro-level specification of the Miller gate

using 2x2 quantum gates from Figure 2.2.6.Id.

2.2.7. Large gates and gates for the "neighbor-only" technology

Example 2.2.7.1:

In some technologies such as "Linear ion trap" [Leibfried03] every qubit can

communicate only with its neighbors above and below; this increases the cost of gates.

84

If we have a wire that is "going through" the Feynman gate (Figure 2.2.7.1b), what

should we do? We have to create a sequence of Feynman gates realizing SWAPs

(Figure 2.2.7.1). The realization of Toffoli gate itself in the "neighbor-only"

technology is shown in Figure 2.2.7.2. Again the SWAP gates should be transformed

as in Figure 2.2.7.1a.

(a)

SWAP

Fo) | s i)— |zo)

!*o)~ |a:i)

Figure 2.2.7.1: Transforming a 3*3 Toffoli gate with qubit Xj going through, (a) the
SWAP gate, (b) the transformation of the Toffoli gate by surrounding it with two
SWAP gates. Each of these SWAP gates is next transformed as in Figure 2.2.7.1a.

Example 2.2.7.2:

-®

Figure 2.2.7.2: Realization of Toffoli gate in the technology that allows interactions
only between neighbor qubits.

85

Example 2.2.8.3:

a
b

c

d—m
^ c

a®b a®b®c a®b®c®d c b®c

Figure 2.2.7.3: Transformation of "big CNOT" gate in the "neighbors only"
quantum Technology. This is a Feynman gate with two qubit wires "going through " it.

A CNOT gate with many qubit wires "going through" can be realized as shown in

Figure.2.2.7.3. Please note the Boolean equations used in the verification process. As

we see from these simple examples, the "neighbor-only" technologies increase very

substantially the costs of gates and circuits satisfying their linearity constraint. These

effects were entirely not taken into account by the previous researchers thus the

claimed by them "minimal circuits" are in fact very far from the minimum when one

calculates their costs on "pulse level" rather than "abstract mathematical gate level"

(like n-input Toffoli). This is why we create affine gates and similar concepts in next

chapters, and why in some variants we take the "neighbor only" constraint of linear

Ion-Trap.

86

2.3. Realization of Fredkin Gate Using Cellular Automata

2.3.1. Non-quantum Realization of Reversible Binary Gates.

The permutative gates such as Toffoli, Peres or Fredkin can be built in the

technologies other than NMR. The synthesis methods that will be presented in all next

chapters are general and they operate on the level of permutative gates. It means, that

when the gate is already designed using lower level primitives, it is treated as an

entity. Therefore, all next methods will not depend on the internal realization of the

gate and the gate may be either reversible non-quantum, or quantum. Only when

taking the cost of gates (circuits) into account we will refer to the quantumness of the

lower-level realizations.

Please note thus, that the gates themselves, such as Fredkin, Feynman and Toffoli can

be also build in non-quantum technologies such as Optical or Nano-technologies. Here

it will be illustrated how I was able to build the Fredkin gate using a new non-

partitioned, Moore-neighborhood, 2-dimensional cellular automata. The background

knowledge of cellular automata can be found in [Buller03a, Fredkin03, Hanson93,

IlachinskiOl, Kari94, Kari96, Margolus03, Morita94, Wolframe02, Wireworldl,

vonNeumann66, Toffoli90]. Such automata are models for several nano-technologies

and are universal models of computing on micro-level, equivalent to Turing Machines.

This method can be used for the modeling of Boolean logic gates and general circuit

construction. Various types of signals can be modeled as well as various stable

87

architectures that use oscillating and quasi-oscillating elements. These cellular

automata are capable of modeling various circuit's functions, all classical logic gates,

and can implement Fredkin, Toffoli, and other reversible gates, thus showing

universal computation. The CAs can achieve given input/output requirements by

cellular signal/architecture/oscillator interactions or by signal collisions. The model

has the ability to construct what Fredkin calls the Arbitrary Machines [Fredkin03]. My

model meets many of the requirements for a 2-dimensional universal construction as

outlined by Miller and Fredkin [Miller97]. Two methods of gate construction using

the Fredkin reversible gate will be given below.

Cells are simple identical information processing machines and a cellular automaton is

an iterative array of cells where each cell can communicate with neighboring cells.

These cells can change from one state to another as a function of the state of the cell

and states of its neighbors at discrete moments of time. Thus the collection of cells is

characterized by some type of behavior on a global basis. Here we will introduce a

new non-partitioned, Moore neighborhood 2-dimensional Reversible Cellular

Automata (RCA) which is capable of modeling various functions, all classical logic

gates, and can implement Fredkin, Toffoli, and universal reversible computation. The

goal of our investigation was to determine how simple the individual cells should be

for the global behavior to achieve some specified criterion of complexity, like the

ability to perform a computation or to reproduce some pattern. The physical relevance

of reversibility in computation and a discussion of time/space trade-offs involved in

88

reversible computation are introduced in [Bennett89, Morita94, Toffoli90]. In addition

we refer the reader for the brief history, aims, uses, decidability and large bibliography

of RCA field [Bennett82, Morita94, Kari94]. The 2-D CA shown by Banks in

[Banks71] is known to be universal constructor and also Cellular automata capable of

universal computation based on BBM (Biliard Ball Model) [Margolus87, Margolus03,

Fredkin82]. In [Miller97] Miller and Fredkin described a two-state three-dimensional

RCA capable of universal computation.

2.3.2. The Builder CA

The class of 2-dimensional cellular automata rules includes a subset family of

generation or history rules. The distinctive character of these rules is that cells besides

having the binary property of being in "off or "on" states, also can have quasi-

on/quasi-off, decay states called "histories". These states do not interact with other

"living cells" in the array, except in an inhibitory function. No new growth can occur

in cells that are in "history states", nor do history state cells incite new growth in their

Moore neighborhoods. They are in effect "dead" cells in the array, removed from the

general computation. As a convention we denote cells in the on-state as having value

1, cells in the off-state as having value 0 and history or decay cells as having values n-

1, n-2, n-3, n-4 The general effect of history cells in a Moore neighborhood is to

vector growth in the directions away from the history cells.

89

The introduced above global property of history rules leads to a great deal of

flexibility and resource in modeling signals and signal processes. The history rule:
'V.

0345/26/6 meaning that cells survive from one clock cycle to another if their Moore

neighborhood has either 0, 3, 4, or 5 neighboring cells in the on state; that there is cell

growth if the Moore cell count is either 2 or 6 live cells; and that all cells have 6

possible states: 0 (off) 1 (on), and 4 intermediary decay states. This particular one of

the history or generation rules, defined as Builder, 0345/26/6, means that cells

survive from one clock cycle to another if their Moore neighborhood has either 0, 3, 4,

or 5 neighboring cells in the "on" state. It means that there is cells' growth if the

Moore cell count is either 2 or 6 live cells; and that all cells have 6 possible states: 0

(off) 1 (on), and 4 intermediary decay states. It can be used to model all classical logic

gates (NAND, EXOR, NOT, AND, OR, NOR, etc), and the classical versions of many

quantum gates (Toffoli, Fredkin, Swap, CNOT, etc). It can also model signals as

discrete impulses, waves, etc. Signals can be made to travel free or move as multi

valued pulses along conducting elements or within channels. Signals can be deflected

in x or y axis, reflected, modulated, damped, delayed, accelerated, stored, multiplied

or deleted. Signal streams can be manipulated in various ways, including pulsing, un-

pulsing, merging, splitting, shifting, redirecting, and selective cancellations. The rule

is isotropic, so all functions are unaffected by interchanging x and y-axes and 90

degree rotations. There are 4 decay states that cells may have between the "on" and

"off states. All growth and signal propagation is at Moore speed which is defined as

one contiguous cell per cycle. Here a signal is a moving, self-renewing group of live

90

cells that propagates in the array. A p**** clock is an oscillator or quasi-oscillator

that emits an unending stream of signals. The P value is the cycle time between signal

emissions. Any integral value period is constructible in Builder and this rule is based

on the Moore neighborhood.

Aiding these operations, the rule supports the construction of cellular devices that are

oscillatory and these oscillations can be made of any integral period; even, odd and

prime. Such devices can be used to interact with individual signals or signal streams

to generate synchronized circuit networks of great complexity. The rule also supports

cellular "guns" or clocks that emit signals in any integral periodicity. This allows the

designer to choose clock speeds for individual circuits. The POO 19 block oscillator is

shown in Figure 2.3.2.1.

Figure 2.3.2.1: The P0019 block oscillator

The rule supports stable architectures that can serve as conducting elements for signals

or as gates for signal interaction. Stable architectures work in any clock cycle.

Architectures, like signals, have fundamental properties based on their geometries.

They are either traversible by a signal or not, and the transit time must be either an

odd or even natural number. These two properties are crucial in their effects on

signals interacting with them. A second topological property is that of connectivity

91

and non-connectivity: traversible structures may be of either type and although

connectivity does not effect either transit time or traversibility, it has a key effect on

signal interactions.

Figure 2.3.2.2: The T25 junction

Any architecture that is traversable and many non-traversable architectures can be

made into a quasi-oscillator. This property adds another resource to the methods of

working with signals. Because of the multiple possibilities of architectural

geometries, signals can interact with these architectures in many different ways. The

optimized EXOR gate realization in Builder is an example of a gate based on a quasi-

oscillator.

Signals influencing on architecture can destabilize the architectures or preserve them

and be damped or destabilized themselves, or preserve the architectures and be

channeled into useable outputs. It is this latter class of interactions that are used to

build the logic gates and memories. A Fredkin gate realization in Builder employs a

property of a specific type of traversable connected architecture surface that allows

impinging signals to break into two separate forms of conducting pulses. These two

types of pulses have algebra of interaction with each other on the surface of the

architecture that allows them to either reflect off each other, cancel each other both,

cancel one or the other, pass through each other or swap with each other.
92

Architectures can also take two or more signals and make them interact with each

other to generate distinctive outputs. Another realization of a Fredkin gate in this rule

utilizes this property to make the control signal alter the path of the target signal.

Signals can be modulated from the standard minimum signal to forms that have parity

values of various degrees of complexity. These more complex signals also interact

with architectures and oscillators in very distinctive ways. Signals can also be

modeled as waves that are continuous and are active along their entire wavefront.

These too can be made to interact with oscillators and stable architectures to generate

useable outputs.

The 0345/26/6 rule also supports signals that move at one/half Moore speed and 2/3

Moore speed. In addition one can observe that on conducting elements or travelling

freely elements, their signal pulses can be accelerated or delayed from the Moore

speed constant. Besides interacting with oscillators, quasi-oscillators, or stable

architectures, signals can interact with each other, and collision-based computation

can be modeled in the Builder rule. Since the rule supports signal forms that move at

different Moore speeds, it is possible to use streams of differing speed signals to

interact with each other to various effects. These effects in my designs include the

following: deflection, remote cell placement, remote oscillator creation, remote clock

creation, and remote quasi-oscillator creation. These latter structures can also serve as

memories based on their cycle periods. With these properties, the rule meets many of

the criteria for the Wolfram's "universal construction" capability [Wolfram02].

93

Generally speaking, for any given desired signal output in this particular cellular

domain, there exists a minimum of four distinct approaches to realizing it, given a

specific input. The approaches are:

• stable architectures interacting with signals;

• oscillator and quasi-oscillators interacting with signals;

• mixtures of stable architectures and oscillating elements interacting with

signals;

• signals interacting with each other via collision or Moore neighborhood

approach distances.

This gives the designer a great deal of leeway in handling difficult modeling tasks.

There have been multiple uses of two-dimensional (2D) cellular automata employing

non-partitioned arrays with Moore neighborhoods to model circuit functions. J.H.

Conway's famous Life rule [Wolfram02] uses intersecting streams of "gliders" to

achieve selective cancellations and hence binary signal streams. The Wireworld rule

of B. Silverman [Wireworldl] employs 4-state cells to generate conducting wires and

signals traversing those wires. The famous Billiard Ball Machine of E. Fredkin

[Fredkin82] uses signal collision and reflection based methods. Interestingly Builder

is capable of emulating some features of all these approaches. Colliding stream with

selective cancellations can be modeled as "moving signals through channels". For the

purpose of this section, we use alternative methods not illustrated in these other

projects, and not discussed in this dissertation for brevity.

94

2.3.3. The Fredkin gate - one method of modeling using stable

architectures only

For the distinctive Fredkin output, we need three input signals: one control signal that

passes directly to output, and two target signals. For the purpose of this model,

standard signals moving at Moore speed are used. The Fredkin gate's fundamental to

the property of reversibility from my work is achieved by flipping the values of the A

and B signals under the influence of the control signal. This allows for the recovery of

the original input when two Fredkin gates are cascaded.

In Builder the setup is fairly straightforward. We set up 3 clocks at P0045 to generate

signals streams for the control signal and two target signals A and B. The clocks

themselves are quasi-oscillators that have P0045 periodicity (Figure 2.3.3.1). This

particular periodicity was chosen because of the clearance traverse time of pulses on

one of the gate elements and signal path crossing timing issues.

Figure 2.3.3.1: P0045 Clock

Once the clocks are constructed and positioned, then the architecture that doubles the

control stream is constructed and placed so that the free signals in the C control stream

95

interact with this architecture. The purpose of the design is to ensure that the control

signal reaches the output and is still able to interact with the target signal(s). The

control signal in this method is run through two signal doublers — architectures which

have the ability to double the signals traversing them — so as to create three control

streams: one to output, one to an architecture where it meets the A stream and one to

an architecture where it meets the B stream (see Figure 2.3.3.2).

Figure2.3.3.2: The signal doubler

The A, and B streams are simultaneously routed to two architectures, one for each, that

are designed to accept the free signals, convert them to bifurcated conducted pulses

that traverse the architecture's odd-integral value surface and emerge again as free

signals traveling to the output.

The Control stream is routed in both of these architectures where it also is converted

and bifurcated and interacts with the signals arriving from the A and B clocks. There

the four pulses (two of the C and 2 of the A or B) interact. One pulse each of the C and

the target pulses cancel each other and the two remaining pulses combine to emerge as

a free signal. The distinction is that this free signal emerges at a shifted focus on the

structure and thence travels a different path then the uncontrolled A and B exit points

and paths. This is one of the key features of the gate, the ability of an architectural

element to shift stream exit paths given control signal inputs.

96

The design now has five possible output streams: A, B, C, CA and CB. The remaining

design is to take the A, B and CA and CB paths, direct them to another architecture

that will handle them differentially and generate the characteristic Fredkin outputs.

We want A to go to A' output, B to go to B' output, CA to go to B' output and CB to

go to A' output. C is already routed direct to C and its doubles have been cancelled

out at the junction architectures.

The architecture chosen for the task is one that has the ability to receive incoming

signals and convert them to two forms: a single layer pulse and a double-layer pulse.

Both types of pulses have characteristic architectures that allow them to emerge from

the structure as free signals moving to the outputs. One end of the architecture is

constructed to allow only single layer signals to exit, the other end will allow only

double layer signals. The A signal is converted to double layer form, the B signal to

single layer form. When the control signal is present at the junction device, CA and

CB signals arrive and are given opposite values. The CA signal generates a single

layer form on the architecture and the CB signal generates a double layer form. The

task of this architecture is to route the A, B, CA, and CB streams to the appropriate

outputs, achieve the necessary cancellations and signal pass-throughs, and be able to

handle any combination of incoming signals moving along four paths at full traffic

loads.

97

Figure 2.3.3.3: The surface of the interleaver.

The last point, is the hardest to accomplish with this type of architecture, as signal

paths have x or y axis displacement causing transit times to vary. The fastest clock

cycle this approach can run at is P0041. This is caused by the necessity of the

conducted signals clearing the reception area of the architecture before the next wave

of signals arrives.

Figure 2.3.3.4: The signal tripler

The last details of the realized Fredkin gate are timing issues at the outputs and x/y

displacement of the outputs so cascading can be achieved. Since different path

distances are involved, C, A, B, CA and CB signals arrive at the outputs at differing

times. We use the delay architecture to synchronize the inputs and outputs. The bulk

of the gate is tied up in such architectures and the outcome is that the gate transit time

as a whole is adversely affected. In the design the final gate has a 400+cycle transit

98

time which seems unacceptably high. For this reason and the slow clock time, another

approach seems wise.

2.3.4. The Fredkin gate - a faster method utilizing both stable

architecture and oscillating elements

The desire here is to preserve a high POO 19 clock rate and minimize the transit time.

An entirely new approach is employed that removes the interleaver structure and relies

solely on junctions. The setup is similar to the previous one with a few minor changes.

POO 19 clocks replace the P0045 clocks. The C control stream is run through one

signal tripler. This is an architecture constructed to accept a signal traveling on a

given axis, send copies in positive and negative directions in the other axis and lastly

let the original signal emerge continuing along its original direction. An x axis control

signal then generates two y-axis signals moving in opposite directions to each other,

and then continues along the x-axis to its output point.

Figure 2.3.4.1: Illustration of OR gate

The A and B streams, as in the other model, go to junctions where they can encounter

the control signal and be modified in their exit paths. With this idea, the design

approaches are similar: taking A and B signals and giving them four possible paths to

the outputs A' and B'.
99

(a) (b)

Figure 2.3.4.2: (a) The Fredkin vl gate in Builder and (b) Fredkin Gate v2 in Builder

The change in this faster method is that the interleaver architecture is left out and we

achieve the same ends by arranging that A and CB streams meet at a variety of OR

gates. At another OR gate the B and CA streams meet. The OR gates used have the

property of being able to accept signals coming in along different paths and converting

them to synchronized outputs moving at one single path. To do this, the OR gate has

two small architectures that take incoming signals, cancel out one of the two

conducted pulses generated, conduct the remaining pulse down to a gap where it too

cancels out. Passing through the gap continuously are free signals generated by a

POO 19 clock. These signals act to inhibit signal firing at another POO 19 clock. When

the conducted A, B, CB, and CA signals are conducted into .this gap at the proper

timing, they delete out the free signals. This allows the inhibited clock to fire a signal

toward the output. Thus the synchronization of the POO 19 basic cycle is effected

although we have differing path lengths for the four signal streams. The two OR gates

100

take the four signal streams and generate two output streams going to A' and B'.

This completes the construction of the gate.

Both methods realize the Fredkin gate's input/output table, minimize garbage signals

and can be used as design elements within larger circuits. Both methods rely heavily

on architectures that deflect, and delay free signals so as to ensure timing constraints.

Using similar methods, the Toffoli, Swap, Simple Majority, and CNOT gates have

also been constructed and can be demonstrated on software during the dissertation

defense. Toffoli gate of any size can be built from Fredkin and CNOT gates.

Therefore, all developed by me synthesis methods from next chapters are applicable to

cellular automata and thus. all physical models described by cellular automata

[Toffoli90, Fredkin82, Fredkin03, Wolfram02].

2.3.5. Conclusions on my Cellular Automata designs.

The Builder rule is highly flexible in the resources available to the designer. All

classical gates can be constructed. Most gates exist within multiple design types that

have varying throughput times and cell counts. The optimized XOR gate, for instance,

is almost 90% smaller than its biggest cousins. Clocks can be optimized too: the first

P008 clock designed in this rule had a cell count of over 2150 cells, three increasingly

optimized versions reduced the cell count to 79 only!

101

The rule's weakness is that being path-dependent, most of the gates rely heavily on

routing and delay elements that significantly impair the transit times for signals to

clear. The bulk of a circuit constructed with this rule is tied up in such elements. The

longest path determines the speed of the gate and even the longest paths are made

longer by the necessity for delay elements to achieve output timing requirements.

Counterbalancing this, a very rich array of inter-signal collision effects is possible,

and various architectures can be made on these principles: from extreme simplicity to

baroque intricacy. Since the rule supports periodicity of any integral value, a large

number of interactions based on differential timing are available. The Fredkin gates

presented here are probably not the optimum in cell count, cycle speed, or throw-put

time. But they do point out what is possible.

2.4. Conclusion on Technologies.

All gates that will be used in next chapters are based on quantum gates from this

chapter. The quantum costs that we developed and illustrated in this chapter will be

used in the entire thesis.

102

CHAPTERS

The AND EXOR Logic

3.1. The AND/EXOR logic to synthesize quantum circuits on level of

permutative gates

3.1.1. The choice of logic synthesis methods for quantum circuits

In section 2.2 we explained about the lowest level synthesis of quantum circuits in an

existing technology and in section 2.3 the synthesis of reversible (permutative) circuits

in a general cellular automata model proposed for various nanotechnologies

[Wolfram02]. The question appears - "how to specify permutative circuits on gate

level in a way convenient to oracle designer and next how to convert this (higher level,

more abstract) specification into an optimized circuit with these permutative gates."

This is one of fundamental questions of this thesis.

All methods from next chapters that will optimize circuits on level of Toffoli, Peres,

Feynman and Fredkin gates are good for arbitrary technology used to realize the gates

themselves. They can be thus used for any realization of Peres or Fredkin gates,

including those from the sections 2.2 and 2.3 below. There are however, two ways of

using the oracle. The classical oracle obtains all its inputs sequentially, this can be

applied with the reversible circuit in any technology. The quantum oracle obtains from

the input-level vector of Hadamard gates the superposition of all states in parallel, and

thus superposed signals are transmitted to the gates inside the oracle. Thus, in case of

103

quantum oracles, only the quantum realizations of permutative (reversible) circuits

(gates) are allowed.

From now on we will concentrate therefore only on NMR technology but we hope the

reader understands that our circuit synthesis methods apply to all realizations of

permutative circuits, however with different methods of cost calculation. Various

methods have been proposed for permutative circuit synthesis and optimization, of

which the historically first and so far the most advanced are methods of evolutionary

algorithms, specifically Genetic Algorithms and Genetic Programming. It is well

known that Genetic Algorithm (GA) [Goldberg89, Holland92] and Genetic

Programming (GP) [Koza92, Koza94, Koza99] techniques provide means for applying

the theory of Darwinian evolution within an artificial system. The GA is a system that

evolves problem parameters directly; the GP evolves programs for problem solution.

Through a process of emergent intelligence, the GA/GP formulates engineering

solutions based on an accumulated knowledge of the problem and the merit of

potential solutions. In recent years the Genetic Algorithm and Genetic Program, as the

machine learning techniques, have been successfully applied to a wide range of

engineering problems and were the main methods used in other research groups that

work on quantum circuits design [RubinsteinOl, Spector99, Willimans99] and also in

our research group for quantum circuits synthesis [Lukac02, Lukac02a, Lukac03,

Lukac05, Khan03, Khan04, Giesecke07]. However, these methods brought only

104

limited success to the design of circuits, as they use knowledge insufficiently. Past

experience has shown that the GA application to logic minimization has serious

limitations of size, computation time, and solution optimality [Dill97b, DillOl]. A

question arises, if once the quantum computers are developed, will it be a good idea to

use GA and GP on them? Or rather use a general-purpose processor with software GA

algorithm to synthesize the quantum circuits? We cannot find anything in a quantum

computer that would make such a computer to be principally superior to a standard

computer with respect to realizing classical Darwinian evolutionary algorithms (of

course quantum computers will have technological advantages such as speed and low

power, but I mean here the fundamental algorithm complexity). We can, however, still

make use of quantum computer general speed-up in Grover-like algorithms to adapt

standard GA-like algorithm to quantum computers. We can still use the general

metaphor of evolution through chromosomes, genotypes, phenotypes and survival of

the fittest. Another method to be tried is the exhaustive search - again, useful in the

first phase of research and well-adaptable to Grover-like algorithms. Yet other

methods are heuristic search methods which use knowledge - the so-called structured

or informed search approaches. Before we discuss our algorithms and hardware for

synthesis, we will systematically introduce the background, this time not the

technology level of circuits but the logic level of circuits will be discussed. Now that

after reading chapter 2 the reader is more familiar with the basic underlying technology

105

we can be more specific than in Chapter 1 and we will try to motivate our use of gates,

structures, circuit specifications and algorithms.

3.1.2. Reed-Muller Logic, Permutative Logic and Quantum

Computing

Most of the current CAD tools in classical computing utilize AND-OR design

implementations for both logic synthesis and minimization, both for two-level and

multi-level design. These minimization tools are used, also because of historical

reasons, in the development of standard digital systems and can be potentially adapted

to quantum circuits. However, the fundamental permutative gates in quantum logic

are CNOT (Controlled NOT) which uses EXOR gate, Toffoli (which uses double-

controlled NOT or C = ab © c function), Fredkin, Peres and generalized Toffoli, like

abcde...n © m. As discussed in section 2.2, these gates are internally build from

Controlled-V (Controlled Square root of NOT) and its adjoint gate Controlled-V1"

[Yang05, Yang05a, Yang05b]. The basic classical logic components of quantum gates

and quantum design are therefore not the AND and OR operators but the AND and

EXOR operators, which means the CV, CV+ gates on the lower level level of

description. The algebra of EXOR and controlled circuits (with commutative

operations like (a (B c) and non-commutative operations like (a CONTROL c) is not

similar to AND/OR/NOT Boolean logic and all respective methods based on Boolean

laws (like finding prime implicants, graph coloring to minimize the cover of minterms

106

with prime implicants or unate/binate covering approaches for two or more -level

circuits optimization). In contrast to the classical CMOS logic where the realization of

the EXOR operator is expensive, the gates based on EXOR are the cheapest in

quantum technologies, because of the similarity of this gate to the interaction of

particles (see section 2.2 in chapter 2). Note also that the gates that use OR are

expensive and unnecessarily large in quantum implementation, because they are

ultimately realized based on the Boolean logic law a + b = a © b © a b .

3.1.3. The AND/EXOR base of logic. Fundamental methods and

graphic visualizations.

3.1.3.1. Quantum Karnaugh Maps.

Now we will bring the point of importance and difference of AND/EXOR base of logic.

When analyzing such circuits it is important to use the familiar Karnaugh maps (K-

maps) in a new way. The user has to learn how to overlap groups in the map - this way

new circuits and new circuit types have been invented in our PSU group. We will use

many KMaps in this thesis; standard KMaps, and their generalizations presented later

on. These maps allow to find patterns in Boolean, multiple-valued, multiple-valued-

input-binary-output and quantum functions. All synthesis methods in classical logic are

based on patterns, the special classes of functions (such as the symmetrical or unate

functions) have their specific patterns in KMaps. Therefore, being able to find new

107

types of patterns and use these patterns in synthesis is very important when one wants

to create new logic synthesis methods for new types of logic.

The Karnaugh map is derived from the truth table in a relatively simple process. The

Karnaugh map of the CNOT gate is illustrated in Figure 3.1.3.1.1.

a \ 0 1

0

1

00

11

01

10

x, y

x
®— V

(a) (b)

Figure 3.1.3.1.1: a) Complete Karnaugh map of the CNOT Gate from Figure
3.1.3.1.1b

cd

ab \
00

01

11

10

00 01 11 10

wxyz

Figure 3.1.3.1.2: Skeleton of the 4 bit Karnaugh maps.

The arrangement of bits on the Kmap's rows and columns are in a sequence known as

Gray code, where each value is only one bit change away from the preceding value. In

this case, the procession is 0,1. The sequence is 00,01,11,10, as it is for all two-bit

108

Karnaugh maps (an example is in Figure 3.1.3.1.2), and so on. In a Karnaugh map,

each possible bit combination of a and b is listed, with cells representing every single

possible input/output combination. Use the truth table to put the correct output in each

cell. We will notice that the Karnaugh map for 2 inputs registers x and y as the outputs

(Figure 3.1.3.1.1a). Now we make it y Karnaugh map (Figure 3.1.3.1.3) and synthesize

from it (other output is trivial).

For EXOR-based synthesis, groups in the map are "boxes" (loops) that should include

as many ones as possible in it, and can overlap. Assume that zero is an even number.

Thus every zero of the Kmap should be covered by an even number of groups (as

using these rules: A@A = Q, A@O = A). Every one of the KMap cells with a " 1 " should be

covered by an odd number of groups. The AND/EXOR synthesis methods differ only

in the strategy how these groups are selected. In this case, we can have one-cell

groups; in all larger Karnaugh maps, the groups must have a power of two of cells so

you can write their logic expressions. The logic expression (logic code) of a group is

based on the nature of the cells it occupies. It represents a product of literals (inputs

and negated inputs).

0

1

0

C^t
A\
V ^

Figure 3.1.3.1.3: Groups in partial Karnaugh map of CNOT. Overlap of the groups
represents 0. Thus function is ab®ab = a®b.

109

During synthesis, we can take the notations for each of the groups and EXOR them all

together, then try to simplify them algebraically. As the cells in the groups cover a and

b, and they both overlap over a 0, the notation is a©b, or an EXOR of a and b. (Figure

3.1.3.1.3) Through a Karnaugh map, we can derive the function of a gate whose

behavior was specified by this KMap. This simple principle is the base of all new

synthesis methods introduced in next chapters.

Thus we can see that the circuitry of a function can be found through the utilization of

Karnaugh maps and logic synthesis, leading to a quantum circuit. For any desired

function, we can write the Karnaugh map based on how the desired function

transforms inputs into outputs. From there, the designer can use groups of KMap cells

and logic synthesis procedures to simplify the function into a collection of basic

functions (OR, AND, EXOR) and so the designer can derive the circuitry of the

desired function specification. Although KMap is useful to invent new methods and

was used by me extensively in this dissertation, it is only a means to design an efficient

computer algorithm that executes the entire synthesis. Thus the role of a human is not

to design quantum circuits using KMaps but to develop software to design quantum

circuits and the role of (quantum) KMaps is of a didactic nature only.

110

The Kmaps are useful in designing classical and reversible circuits, although in

reversible and quantum logic other authors do not use them. As we illustrate in this

thesis, we found a way to use Kmaps also in truly quantum (non-permutative) circuit

synthesis. We call them Quantum QMaps and they were introduced for the first time in

this dissertation.

3.1.3.2. From reversible gates to quantum gates.

3.1.3.2.1. Superposition and its visualization in Kmap.

In quantum computers, one is allowed to use only quantum states instead of the

classical states. So, the electric spin or polarization can be replaced by some quantum

state: the quantum bit (qubit for short). Just as a bit has a state 0 or 1, a qubit also has a

state |o) orji). The difference between bits and qubits is that a qubit \r) can also be in a

linear combination of states |o) and|i) :

|y) = a |0) + j8|l)

This above equation is in the so-called Dirac notation which is the standard notation

for states in Quantum Mechanics.

The state | j') above is called a superposition of the states |o) and |i) with amplitudes a

and p (a and (3 are complex numbers). Thus, the state | y) is a vector in a two-

dimensional complex vector space with basis vectors |o) and |i). The matrix

(Heisenberg notation) representations of the vectors |o) and |i) are given by

i l l

for State |o) for State |i). Thus \y) =
a

[o\
+

0

[A]

a

LP}
is a vector of

complex amplidudes.

Quantum mechanics tells us that if one measures the state |y> one gets either |o), with

probability aa* (|a|2), or |i) with probability pp* (|P|2). Here, a* is the complex

conjugate of a. If a was a complex number g + bj, the conjugate would be g - bj (j2 = -

1). That is, measurement changes the state of a qubit. In fact, any attempt to find out

the amplitudes of the state |y> produces a nondeterministic collapse of the

superposition to either |o) or |i) basis states (eigenvectors). If | a |2 and | p |2 are

probabilities and there are only two possible outputs, then the calculation as in Figure

3.1.3.2.1.1 can be done.

Sum of all event's probabilities is " 1 " so that

| a |2 + | p |2 = 1

—= 10) —==• l) Supperposed Sate
V2 V2

«|0) + j8|l)

|a | = a • a * -> 10) Basic State

112

Figure 3.1.3.2.1.1: Explanation of superposed states and their measurements.

3.1.3.2.2. Calculating a quantum state using matrices.

Any quantum circuit, however large, can be represented as a unitary matrix, which is

multiplied by the input vector to generate the output vector, shown in Heisenberg and

next in Dirac notations in Figure 3.1.3.2.2.

1

V2"

1 1

1 - 1

1

V2~ ; »

Figure 3.1.3.2.2: Matrix representation of state 0 going through Hadamard gate. The
Dirac notation is presented at the right.

In Figure 3.1.3.2.2 one can see how an input state reacts to the gate represented in

matrix form. What is shown is the input vector, state 0, is acted upon by the Hadamard

gate. When a circuit (Operator, Matrix) acts upon an input vector, it is simply

multiplied by the matrix of the circuit, following the rules of standard matrix

multiplication. The Dirac notation at the right is more convenient for some symbolic

calculations and interpretation. We will be therefore using both Heisenberg and Dirac

notations in this dissertation.

3.1.3.2.2.1. Calculating the operation matrix.

113

Given the means of calculating a gate's matrix as given above, to find the operation

matrix is not too difficult. The most essential part of this is how to deal with parallel

gates. In a circuit, gates will be found "on top" of each other, in terms of wiring (levels

of qubits). As we remember from section 2.2, these gates are to be Kronecker Product

multiplied from top to bottom. Kronecker multiplication of two gates entails the

second matrix being multiplied by each element in the first, with the solution replacing

the element of the first. In Figure 3.1.3.2.2.1.1 we illustrate Kronecker type of

multiplication on binary matrices. Observe that these matrices can be of arbitrary

dimensions, allowing thus to mix binary and ternary qubits into a single unitary

matrix.

0 0 0 1 0 0 "
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0 "
0 1 0 0 0 0
0 0 1 0 0 0 .

Figure 3.1.3.2.2.1.1: Example of Kronecker multiplication of2*2 matrix A and 3*3
matrix B. This corresponds to a binary qubit on top and a ternary qudit (qutrit) on the
bottom.

Kronecker Products will create a large matrix for the first set of parallel gates of the

circuit. Use this method until every set of parallels has its own matrix, and then

multiply the matrices by each other, starting from the rightmost column towards the

leftmost. Once this has been done, the operation matrix of the entire circuit will have

been found. We use Matlab to perform all calculations on matrices larger than 8*8.

114

A<%>B =
0 1

1 0
L J

®

1 0 0
0 1 0
0 0 1

Many circuits results from this dissertation using Matlab [MATLAB] or QuiddPro

software [QuIDDPro]. Some quantum algorithms were also verified.

3.1.3.3. States calculated by the Hadamard gate.

As we remember, the Hadamard gate is represented by a 2-by-2 matrix from Figure

3.1.3.3.1. Applying the gate to states |o) and|i) we obtain states that in Dirac notation

are shown in Figure 3.1.3.3.2. How we can draw the superposed states created by this

gate in a quantum Kmap?

1 [l 1
JL [l -1

Figure 3.1.3.3.1: The Hadamard gate matrix.

nm = ^
mi) = BzB..

Figure 3.1.3.3.2: Dirac notation of Hadamard outputs.

The Hadamard gate followed directly be the measurement gate acts like an ideal

random number generator, with one input. When the Hadamard gate operates on

inputs |i) or|o), the resulting outputs after measurement will be identical. Though the

result for |i) has a -|i) entry instead of |i), this is irrelevant in measurement since all

probability amplitudes are squared if the output of H is directly measured (i.e., the

115

global quantum phase is lost). The output state before the measurement (see Figure

3.1.3.3.2) represents an equal probability of states |i) and |o), but it represents also the

phase. As the coefficient becomes the amplitude of both states, the square of it (1/2)

becomes the probability of that state in case of measurement. In this case the phase is

not relevant. However, before the measurement some next operations can be executed

on this state so its phase is relevant in such a case, this is so for instance in Grover

algorithm. Therefore the KMap of the Hadamard gate, shown in Figure 3.1.3.3.5,

illustrates complete information about the output quantum states for all possible input

basis states. Observe that this quantum KMap is just another form of illustrating a

quantum state which can be done by all output quantum vectors. KMap has however

more information than the truth tables or vectors. This information is useful in analysis

and synthesis processes to those users who understand well functional patterns in

classical KMaps. Let us observe that the entries in the binary cells of the KMap are no

longer binary but may be superposed or even entangled values.

In Figure 3.1.3.3.3 a Superposition state created by the Hadamard gate is shown.

Figure 3.1.3.3.4 repeats these calculations using the Heisenberg notation. As often

done by physicists, the coefficient -*= is omitted in this particular calculation.

116

\o)-{W}- ^(loJ + l1))
m-{W}- ^j(io)-ii»

a-\o) + p - \ l)

Figure 3.1.3.3.3: The symbolic notation for a Hadamard gate that is controlled by
various basis states.

Hadamard apply to \0) =

1 1

1 - 1

1
0

=
1
1

= = | 0 > + | 1 >

Hadamard apply to 1) =

"1 1"
1 -1

"o"
1

=
" 1"
-1 |o)-|i>

Figure 3.1.3.3.4: Analysis of Hadamard gate applied to various input states.

Figure 3.1.3.3.5. illustrates the quantum K-map of the Hadamard gate.

0

1

0.7071 0)+ 0.7071 |l)

0.7071 0)- 0.7071 |l)

Figure 3.1.3.3.5: The Quantum Kmap of the output of Hadamard gate (from Matlab).

117

a H

b -0-

Figure 3.1.3.3.6: The EPR circuit that illustrates the concept of entanglement.

The famous EPR circuit illustrating the thought experiment of Einstein, Podolsky and

Rosen is given in Figure 3.1.3.3.6. and its corresponding quantum K-map in Figure

3.1.3.3.7. This table has been verified using Matlab as in Figure 3.1.3.3.8.

0 1

0 ^|oo>+irM
^M-^o)

^°Hll0)

ii00>+ii">
P.Q

Figure 3.1.3.3.7: The quantum KMap illustrating the output state of the EPR circuit.
This KMap visualizes the entanglement from the circuit in Figure 3.1.3.3.6.

0.7071 |00)

0 |01)

0 |10)

0.7071 | l l)

0.7071 |00)

0 |01)

o |io)

- 0.7071 |ll)

o |oo)

0.7071 |0l)

0.7071 |l0)

0 | l l)

0 |00)

0.7071 |0l)

- 0.7071110)

0 | l l)

Figure 3.1.3.3.8: Matlab simulation to find the Quantum KMap for EPR circuit.

118

a —\H

b

-©- P

Q

Figure 3.1.3.3.9: A circuit similar to EPR circuit but the "EXOR down CNOT" was
replaced with the "EXOR Up CNOT".

The circuit from Figure 3.1.3.3.9 has been also verified with Matlab (Figure

3.1.3.3.10).

As we see, by rotating the CNOT gate the entanglement is removed, as the quantum

states from Figure 3.1.3.3.10. can be factorized to separate qubit states.

0

0.5000-0.5000i

0

0.5000 - 0.5000i

0

0.5000 -0.5000i

0

-0.5000 +0.5000i

0

0

0.5000-0.5000i

0

0.5000 - 0.5000i

0

-0.5000 +0.5000i

0

-0.5000-0.5000i

Figure 3.1.3.3.10: Matlab simulation QMap for the circuit when CNOT is
controlled from the bottom bit(Figure 3.1.3.3.9). There is no entanglement.

119

3.1.4. Visualization of states in larger gates.

3.1.4.1. The Feynman or CNOT gate

For illustration we will compare various notations for the same gate. This is the CNOT

gate from Figure 3.1.3.3.6 used in EPR circuit above. Its permutative matrix is 4-by-4,

as shown in Figure 3.1.4.2.2.1a and its KMap is shown in Figure 2.4.4.2.2.1b. Please

compare the matrix and the KMap. Remember that the order in rows and columns in

the matrix is natural binary code and not the Gray code as in KMaps.

a

h

P

Q

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

a b \ 0

0

1

0,0

1,1

0,1

1,0

P,Q

a) b) c)

Figure 3.1.4.1.1: (a) Feynman gate, (b) Feynman gate matrix, (c) the KMap of the
Feynman gate.

Many of CNOT properties have already been seen above, in the Quantum Circuitry

section. It is basically a reversible EXOR gate, reversible in that each qubit is

continued to an output, unlike the classical EXOR. It is also deterministic, unlike the

Hadamard, which means that a given input vector will always register the same output

value. This gate is inexpensive in quantum and thus making it the base of synthesis is

one of the main ideas of this thesis.

120

3.1.4.2. The 3*3 Toffoli or CCNOT gate

The Toffoli is an interesting and powerful gate in that it can have any number of inputs

and the EXOR can be located in any wire of it. To be of practical usage, it must take

these many forms. The circuitry is as in Figure 3.1.4.2.1:

a_

b

Figure 3.1.4.2.1: The 3*3 Toffoli gate. It is also called the Controlled-Controlled-NOT
or the CCNOT gate. The right part of the figure shows the Kmapfor this gate.

We can see that it is a double controlled inverter. One might think that the addition of

another control would still make it a close relative of the Feynman. That is not so. For

the Toffoli has 3 inputs, a, b, and c, and the designer can put constants in any of those

positions, thus transforming the gate. By manipulations of this property, one can derive

classical gates, and thus, prove that the Toffoli is a universal quantum gate.

The input/output relationship is p = a, q = b and r = ab©c. Although Toffoli is a

generalized form of the Feynman gate, the Toffoli gate is a universal gate in both

classical and reversible (but not quantum) logic but the Feynman gate is not universal.

121

E

a
r

a b \

00

01

11

10

0

000

010

CQi
100

001

011

iTo^
101

Changes are only
when a = b = 1

P, q, r

On the other hand Feynman gate is Affine gate but Toffoli gate is not. These gates are

then complementary and using them together leads to a synergy.

3.1.4.3. The 3 * 3 Fredkin or Controlled-SWAP gate

P = a,
Q = (b © c) © (ab © c a) = b a © ca
R = a.(bffic) © c = abffi c a

Figure 3.1.4.3.1: Fredkin gate realized using Toffoli and CNOT gates. At right we
illustrate algebraic analysis method using Boolean andEXOR algebra.

Fredkin gate in quantum array form is analyzed as in Figure 3.1.4.3.1. It is important to

note that one can view the Fredkin gate from a different perspective, other than

AND/EXOR logic. This perspective is that of multiplexing between signals. This

perspective on the Fredkin gate (not AND/EXOR logic) is used in Cellular Automata

and Optical realizations and in some nano-technologies especially those based on

billiard ball model and conservative logic. This point of view is illustrated in Figure

3.1.4.3.2.

a

h
c

QJ -®-

•4 -

P
Q
R

122

a = 0

(a) (b)

P = a a = 1

Q = b

R = c

(c)

P = a

Q = c

R = b

Figure 3.1.4.3.2: (a) Fredkin gate represented symbolically with classical
Multiplexers, (b) Fredkin gate at control input value a = 0, (c) Fredkin gate at control
inputvalue a = 1.

Understanding the Fredkin from multiplexers we can generalize Fredkin to arbitrary

number of qubits. See Figure 3.1.4.3.3. below. Considerations like this have been used

by us to create new synthesis methods.

c -f-

a = 0 P=a a=1

Q = b

R = c

S = d

P = a

Q = d

R = b

S = c

(a) (b) (c)

Figure 3.1.4.3.3:(a) Generalized Fredkin Gate using classical multiplexers, (b) What
Generalized Fredkin gate realizes while control input a = 0 and (c) What Generalized

123

Fredkin gate realizes when control input a = 1.

3.1.4.4. The Ancilla Qubits

Ancilla qubits are extra qubits. They are not variables, though they can be mapped

onto an output. Ancilla qubits are useful for input variables in large size gates, as well

as on wires that lead to the output. In a large circuit, it is not always good to have

every wire assigned to a variable input; the functions of the gates can be changed in

useful ways if some of the wires are assigned to a constant. To explain its uses in large

gates, one must look no further than the Toffoli. In order for the Toffoli to be of use, in

many cases the wire that goes to the EXOR must have a constant value (1 or 0) to

change its uses and allow it to be a universal gate. Those l's and 0's are ancilla bits,

since they are not input variables, and are constant. They can also be placed on wires

leading to an output, whether it is because the ancilla bit was on the answer register of

the final gate, or because it is simply more efficient to do so. Figure 3.1.4.4.1

illustrates how AND and NAND gates of classical logic can be built using the Toffoli

gate with the lowest qubit being an ancilla bit. As we see in the example, ancilla bit is

absolutely necessary if I want to convert a non-reversible function (called also an

irreversible function) like AND or EXOR into reversible (quantum) circuit.

124

a — # — a a —f— a

b — " — b b —«»— 6

0 (p ab 1 (p ^5

(a) AND (b) NAND

Figure 3.1.4.4.1: (a) Realization of AND gate using Toffoli gate with the ancilla qubit
initialized to zero, (b) Realization of NAND gate using Toffoli gate with the ancilla
qubit initialized to one.

3.2. Why the AND/EXOR Logic Base?

3.2.1. Is the AND/EXOR base best for reversible and quantum logic?

While not as widely utilized for classical integrated circuit design as the AND-OR

Sum-of-Product (SOP) logic, the Exclusive-Or Sum-of-Product (ESOP) form (the

most general, unrestricted AND-EXOR logic form) compares favorably even in

classical design [Sasao90c, Sasao91d, Sasao91e]. Functions realized by such circuits

(ESOPs) can have fewer gates, fewer connections, and take up less area even in the

VLSI and especially, FPGA realizations. More importantly, in case of quantum arrays,

the advantage of ESOP over SOP becomes dramatic, as will be illustrated in the next

chapter. (As an illustration one can take function f = abc + cde + gfe + klm and next

convert it to ESOP. Here + stands for inclusive Boolean OR). AND-EXOR circuits are

also easily testable [Reddy72, Sasao95g, Kalay99, Kalay99a]. It was shown, both

theoretically and experimentally [Sarabi93, Sasao91c, Sasao91d, Sasao91e] that

125

ESOPs have on average smaller numbers of product terms for both "worst case" and

"average" Boolean functions. Additionally, it can be shown that reversible circuits

based on two-level AND-EXOR realizations are also good for the combinational logic

portions of finite state machines, as they have proven more testable and can yield less

area than the two-level AND-OR implementations. The same is true for quantum state

machines assuming that the classical memory is used in them and quantum circuit is

used only to calculate the next state and the output state. (Measurement units are

inserted on all outputs of this circuit Figure 3.2.1.1). Thus it can be concluded that the

AND-EXOR implementation is in many applications superior to the AND-OR logic,

for both its testable and economical characteristics, and in quantum logic this type of

logic remains practically the only logic of choice to design permutative circuits

[Perkowski03].

Quantum Array
M_

M

Binary memory

Figure 3.2.1.1: Realization of a Mealy Quantum State Machine with classical Binary
memory. The Binary memory uses standard memory elements (flip-flops). The primary
inputs and primary outputs are quantum. This design is based on a quantum array
that may be designed and specified as in this and next chapters.

126

However, let us observe that other authors use other types of logic for reversible and

quantum synthesis. Many authors including Igor Markov, Vivek Shende, Alexis De

Vos, Yvan von Retergem, Guowu Yang, William Hung, Xiaoyu Song and Marek

Perkowski use group theory which does not distinguish between AND/OR and

AND/EXOR base. This is true and this is other possible line of research. But let me

make a point that the group theoretical approaches are used so far only for small

circuits, at most 4*4, while our methods are applicable to circuits with at least 14 bits.

Some other authors such as Dmitri Maslov, Michael Miller and Gerhard Dueck use

Fredkin gates but these gates are presented in the framework of AND/EXOR type

multi-input CCNOT gates. Concluding, from the point of existing theories of

representation and their corresponding algorithms there are two groups of algorithms

used with some (limited) success - the group theory-based and the AND/EXOR-based

and this thesis follows the more common AND/EXOR approach.

Let us observe, based on literature, that the only competitor universal gates to the

Toffoli gates are the Peres and Fredkin gates. The Peres Gate has many EXORs inside

it in every known realization as it can be composed from Toffoli and CNOT or from

direct CV/CV^ realization shown previously, therefore this gate can be best handled

with the methods developed in this dissertation. Fredkin's Gate internal realization in

many quantum technologies is also based on the 2-Toffoli gate (P=a, Q=b, R=ab e c)

and two Feynman gates, so it is reducible to our methods.

127

Although we can handle Fredkin gates in terms of AND/EXOR logic, as in new

variants of MMD [Miller03], it may be not the best way if one can realize this gate

directly with electromagnetic pulses and the cost of such a realization would be

smaller than its counterpart cost shown earlier. There are at least two interesting

aspects related to Fredkin gates realization and cost:

1. In some technologies such as superconducting, the Fredkin gate is built

inexpensively from Square root of Swap gates [BlaisOO]. This shows that not

always AND/EXOR logic and ESOP-like structures are the best basic logic

types and structures and EXOR may not necessarily be the best basic gate in

quantum. We write about this fact just to show the wide scope of our literature

search, but we are not addressing this issue much as it seems to require a totally

new mathematical approach. The Fredkin gate design issues are discussed in a

PhD of Nouraddin Alhagi [Alhagi08].

2. When realizing satisfiability formulas in form of a product of sums, there is no

advantage or no possibility of converting them to ESOP, in this case the POS

(product of sums) logic which is dual to SOP is still applicable, even as the

price of many ancilla bits is paid.)

128

NOT
AND
OR

EXOR
C/CNOT

CV
CV1

Hadamard

Classical

@

@

@

@

Reversible

@

@

@

Quantum

@

@

@

@

@

@

7aZ>/e 3.2.1.1: Tabular Comparison of Classical, reversible and Quantum
gates.

Finally, Table 3.2.1.1 compares classical, reversible and quantum gates. As we see,

NOT gate is used in all technologies and is very cheap. It should be then used as much

as possible in reversible and quantum synthesis, this leads to concepts of polarity and

mixed polarity forms and expressions introduced in chapters 7 - 9 . Next, the EXOR

operator as such is cheap as a component of gates in all these technologies but

especially in quantum. It should be used extensively in synthesis methods, which is not

satisfied by other authors. CNOT gate and CCNOT gate are used in reversible and

quantum but they are more expensive. The methods should thus allow to realize circuit

with affine (EXORs and NOTs) gates as much as possible, and CCNOT only when

absolutely necessary. CCNOTs are build from CV and CV^ gates and the Hadamard

gate is the only one more quantum gate that we need.

129

3.2.2. Some types of Permutative Quantum Circuits. The Quantum

circuit Synthesis problem

3.2.2.1. Forms for AND - EXOR Logic.

We can not build quantum circuits based on AND/OR gates without ancillas, as they

are not reversible [Toffoli80]. If we convert such circuits (netlists from AND and OR

and similar gates) directly to reversible logic - many ancilla bits must be in most cases

added. This should be in general avoided. Researchers are emphasizing increasing

efforts to find an automatic way to create efficient quantum circuits implementing

Boolean functions [Lee99, Iwama02, Younes03]. We know however that there is a

close connection between Boolean Quantum operations and certain classical Boolean

operations known as Reed-Muller logic expansions [Almaini89]. The AND-EXOR

form has been developed into a complete hierarchy of Reed-Muller (RM) expansions,

using the Shannon, Positive Davio, and Negative Davio Expansions in the works of

Tsutomu Sasao [Sasao91c, Sasao91d, Sasao91e, Saso93e, Sasao95g] and especially

the PSU group (Perkowski, Mishchenko, Dill, Sarabi, Schaefer, Safranek, Pierzchala,

Chrzanowska-Jeske) [Perkowski91, Dill97b, Sarabi92]. This hierarchy is described

with logic equations, forms, trees, and decision diagrams [Sasao93e]. We will present

this hierarchy for completeness of this dissertation and next we will add new items to

the hierarchy, motivated by their practical applications in quantum NMR technology.

In quantum interpretation the whole new extended hierarchy gets new meaning as a

hierarchy of quantum array structure types that can be relatively easily mapped to the

130

recently proposed Quantum Field Programmable Gate Arrays [Nielsen97] and other

quantum realization technologies. Our interest is mainly in the dominating technology

of NMR but also to the close to it Ion Trap technology which is predicted to have a

great future although it is less developed as of year 2008. As components of our

oracles we are particularly interested in (multi-output) Fixed Polarity Reed Muller

(FPRM), Generalized Reed-Muller (GRM) forms and their affine generalizations,

because of their relative simplicity and usefulness in design of quantum circuits,

complete oracles and quantum evolvable hardware. Although some of the forms from

hierarchy have been the focus of the logic synthesis and minimization research for

many years and investigated by many authors, finding the exact solutions for small

circuits or the good quality approximate circuits is still very difficult for larger

functions that are necessary for some practical oracles that use interative arrays of

simple blocks (Chapters 11 and 15).

The GRM logic is a canonical expression (exhibiting a regular structure) which is a

subset of the Exclusive-Or Sum-Of-Products (ESOP) expression, in which for every

subset of input variables there exists at most one term with any polarities of variables.

Explaining GRM, we should explain that implementing Boolean functions on quantum

computers is an essential goal for us to explore the benefits that may be gained from

systems operating by quantum rules. On classical computers, a circuit can be build for

any Boolean function using AND, OR and NOT gates.

131

3.2.2.2. The Fixed-Polarity Reed-Muller Forms.

Any Boolean function/ with n variables,/: {0, 1}" -> {0, 1}, can be represented as a

disjoint sum of products SOP [Almaini89] as in equation 3.2.2.2.1:

2"-l

f(xo> ,xn_l) =+2_jaimi Equation 3.2.2.2.1

/=o

Where mi are the minterms and at = 0 or 1 indicates the presence or absence of

minterms respectively and the plus in front of the sigma means that the arguments are

subject to Boolean operation inclusive-Oi?. This expansion can also be expressed in

Reed-Muller (RM) as in Equation 3.2.2.2.2 from [Akers59]:

2"-l

/(*o> >xn-\) = ®^j>m Equation 3.2.2.2.2
i=0

where

«-i
<y>i=TT4* Equation 3.2.2.2.3

k=0

where xk=xk and xk,bt e {0,1} and /^represent the binary digit of k.

<pi are known as product terms and bt determine whether a product term is presented

or not. Symbol © indicates the EXOR operation and multiplication is assumed to be

the AND operation.

Consider the RM expansion shown in Equation 3.2.2.2.2, where xk can be x\ or xk

exclusively. For w-variables expansions where each variable may be its true or

132

complemented form, but not both, then there will be 2" possible expansions. These are

known as the fixed polarity Reed-Muller (FPRM) expansions. We can differentiate

various FPRM expansions by polarity number, which is a number that represents the

binary number calculated in the following way: if a variable appears in its true form, it

will be represented by 1, and by 0 for a variable appearing its complemented form.

For example, consider the function f(x0,xl,x2):abc®a®i where f(x0,xi,x2) has

polarity 7 (111), f(x0,xi,x2) has the polarity 5 (101), f(x0,xx,x2) has polarity 2

(010), and /(3c0,3ci,3c2) has polarity 0 (000), and so on.

Younes and Miller [Younes03] showed that changing the polarity will change the

number of CNOT gates in the circuit; and its efficiency.

0} Cp Q) CP

Figure 3.2.2.2.1: Quantum Circuit f for Polarity Number 7 for function f = abc ® a
®1.

• • •

4
10)

-Q-

(1) d) Ct) 0)
4

Figure 3.2.2.2.2: Quantum circuit f for Polarity Number 6 for function from Figure
3.2.2.2.1.

133

I a) - $ i—t-

-e- • & - &

d) o o • ^ - < £ -

a;

c)

I/)

Figure 3.2.2.2.3: Quantum circuit f for Polarity Number 2.

| a) —^~

|&) — $ -

|c) — $ -

|0> -A ay w

- $ -

;• cp cp cp cp cp

-̂ f̂ -
- $ -

\b)

I/)

Figure 3.2.2.2.4: Quantum circuit/ for Polarity Number 0.

For FPRM expansions, the number of CNOT gates in the final quantum circuit can be

calculated as in Equation 3.2.2.2.4:

Si = m + 2K, 0<m<2"; 0<K<n Equation 3.2.2.2.4

where Si is the total number of CNOT gates, m is the number of product terms in the

expansion, K is the number of variables in the complemented form and n is the

number of inputs to the Boolean function; the term 2K represents the number of

CNOT gates that will be added at the beginning and at the end of the circuit

(complemented form) to negate the value of control qubit during the run of the circuit

and to restore its original value, respectively.

134

3.2.2.3. Which forms and gates are best for quantum circuits?

Expansions and gates that are efficient for classical logic circuits are not necessarily so

efficient for quantum circuits. Thus we find the research interest in our thesis to

develop the search algorithms for optimizing FPRJVI, GRM and the newly invented

affine expansions and corresponding expressions for quantum Boolean functions

similar to those found for the classical digital circuit design.

In other words, each term in the GRM form (introduced formally in next chapter) is

unique in both variable name and polarity. It is interesting to note that often the GRM

forms may produce results with the number of terms very close to that of exact

minimum ESOPs [Cohn62, Perkowski99b, Saul92, Wu96]. GRM forms are also even

more easily testable than the general-purpose ESOPs [Sasao95g]. In case of the

classical Binary logic, [Sasao95g] showed that the average number of products for

GRMs is less than half of the respective PPRMs.

There are several speculations [WeissOl, Hollenberg04], however, that reversible

logics similar to those presented here will become practical when the technological

limits of sub-micron technologies are reached. Also, there are both technological

reasons (for technologies such as Josephson Junction or resonant tunneling diodes)

and mathematical reasons why some new logic operators or design structures may

become preferable. However, this dissertation is constrained only to quantum

135

technology because this technology is the most mature, most interesting and most

promising. It is the quantum technology that proposes an entirely new prospect for

computing and not only speeds-up the current computing model. One of the reasons

that we discussed mapping of permutative gates to cellular automata is that according

to Professor Ed Fredkin, cellular automata may allow to create in the future a unified

view of the world in which the same mathematics will be used for the quantum world

and the macro-world of standard physics. (Although it was not shown by anybody how

to map efficiently non-permutative circuits to reversible cellular automata, it still may

be possible, but we are not concerned with this issue here). We believe thus that based

on the previous research reviewed in this thesis we can formulate the statement -

"every universal model of permutative computing (binary and multiple-valued —

described by any permutative unitary matrices) is realizable at the level of quantum

phenomena ".

What may be nonsensically complex in contemporary CMOS-based circuits, may be

the best choice in quantum technologies. The best example is the Hadamard transform.

One-bit Hadamard transform requires only two Pauli Rotations internally so it is the

cheapest "quantum gate" after the inverter in quantum design (inverter requires only

one Pauli rotation). In classical logic design the Hadamard transform used one multi-

bit subtracter and one multi-bit adder being thus a big and complex block of many

AND/OR level gates (see Chapter 11). Although for other quantum gates the

136

differences are not that dramatic as for the Hadamard gate, the problem is very

characteristic when comparing quantum and classical circuit design: "what is cheap in

classical logic may be very expensive in quantum logic (like OR of many terms) and

what is expensive in classical logic may be very inexpensive in quantum logic (like

Hadamard) ". This is an important observation that explains why the entire design with

quantum gates should be deeply re-thinked and methods may be adapted from classical

design only with an extreme care.

Concluding, we motivated above the AND-EXOR forms for quantum design based on

their strong links to NMR gates, their high testability and the possibility of using

mathematics to develop structures and algorithms. It is obvious that, like in standard

CAD, our algorithms have to use some kind of search. But there are many methods to

execute search, evolutionary algorithms or simulated annealing are just two well-

known search approaches. We have therefore now to discuss in more detail the

advantages and disadvantages of known search methods and relate them to circuit

structures. Although choice of AND-EXOR logic seems obvious, the choices of its

forms are less obvious. We will discuss them now.

3.2.3. The problem of good structure selection.

3.2.3.1. Polarized forms.

Let us continue our background material overview with the crucial observation: it is

137

not only important to optimize certain type of circuit, but we must be able to select a

good circuit type (structure) for the given problem and the given technology. For

instance the minimized ESOP oracle for function f = abc + abc = abc © abc is shown

in Figure 3.2.3.1.1. It has only two product terms. Although it theoretically looks like

an optimal solution as it has the exact minimum number of terms, its realization in

Figure 3.2.3.1.3 with more realistic gate model shows that the quantum cost of this

ESOP circuit is high. On the other hand the factorized GRJVI form of f (Figure

3.2.3.1.4) has 3 product terms but has a smaller quantum cost. The GRM circuit that is

shown in Figure 3.2.3.1.5 is also cheaper than the ESOP circuit but the PPRM circuit

(Figure 3.2.3.1.6) is even more expensive for any type of cost function.

W)
\c)

1°) 4 *

-o-
kP

-*$-

-<$-

xP \c)

ibc S abc\

Figure 3.2.3.1.1: Quantum Oracle for function abc®abc build as ESOP type
expression realized with 4*4 Toffoli gates (non-existent technologically). These gates
are decomposed to 2*2 controlled gates or 3*3 Toffoli macros which causes this
solution to have a high quantum cost.

138

I a)

\b)

\c)-

|0)

- * - -©-

-®-

Figure 3.2.3.1.2: Quantum Oracle for function from Figure 3.2.3.1.1 using realistic 3
* 3 Toffoli gates and one additional ancilla bit for the ESOP circuit from Figure
3.2.3.1.1.

Each 3 * 3 Toffoli gate from Figure 3.2.3.1.2 can be realized as in Figure 3.2.3.1.3.

This type of design allows for more realistic cost function estimation, but it is still far

from the optimum. Observe in Figure 3.2.3.1.2 the NOT gates added at the end to

return the original values of input variables, the condition is necessary in oracles, but is

not necessary in blocks used only as parts of oracles.

^ \

<<q
•<°J 3>

ab

bc f = a c® be® ab

Figure 3.2.3.1.3: KMap for the GRM realization of the function realized as ESOP in
Figure 3.2.3.1.1.

Here we get a nice example which is ESOP realizing the function f = abc®abc in

Figure 3.2.3.1.1, both two terms in ESOP here is the subset of {a,b,c}, which is

allowed for ESOP. But for GRM, every term should be a different subset of

139

variables. Hence: the GRM will be f = ac®bc®ab in Figure 3.2.3.1.3, which is using

subsets {a,c},{b,c} and {a,b}. This is not an FPRM circuit. ESOP uses more quantum

primitives, thus it is expensive. In FPRM each variable is positive or negative, not

both. GRM is different. GRM is mixed. In GRM, for every subset of variables, we

have only one term. If the same subset of variables appears more than once, then it is

not a GRM, perhaps ESOP. In Figure 3.2.3.1.1 to Figure 3.2.3.1.5, we nicely show the

difference between ESOP based Quantum circuits and GRM based Quantum circuits

visually.

We will discuss now how the better solution is found. The GRM for the function is

done by EXOR-ing the three overlapping groups from Figure 3.2.3.1.3. After

factorization, this leads to the realization of GRM as a quantum cascade from Figure

3.2.3.1.4. Without factorization, the GRM will lead to the oracle from Figure 3.2.3.1.2.

Finally, the PPRM is shown in Figure 3.2.3.1.6. Obviously the PPRM is very

expensive not only using quantum cost but also counting the gate number. Even better

solutions for this kind of problems will be showed in the chapter 7 where I will

introduce one of the main concepts of this dissertation - the affine gates. Solutions

with affine gates are always better than the classical AND/EXOR solutions, provided

that the sufficient search was executed to find these affine solutions.

140

I a; t p -

|6)

14
|0}

• 4 -

-e- - $ -

(a®b)c®ab

Figure 3.2.3.1.4: Realization of quantum cascade (oracle) for factorized GRM

f = ac®bc®ab (Us KMap illustrated in Figure 3.2.3.1.3).

\a) ~ ^ -
\b)
\c) —$~

10}

- $)—f

^ — ^

• # •

|ajt

la c® 6cSafe)

Figure 3.2.3.1.5: Quantum Oracle for direct (non-factorized) realization of GRM.

b)

4
-A 0 & \f7~ £ ^ y,i

Figure 3.2.3.1.6 The quantum circuit (being also an oracle since inputs are replicated
to output) for the PPRMform of function from Figure 3.2.3.1.1.

The PPRM circuit from Figure 3.2.3.1.6 is nonsensically non-optimum but

demonstrates how important is a good selection of circuit model and polarity in

practical quantum design. In case of a circuit with many inputs and outputs the

quantum cost differences may be truly dramatic.

141

c) -M£4
0} . - t ^ i

Figure 3.2.3.1.7: A general view of quantum oracle realizing an FPRM form. The
circuit is a result of its polarity (NOT gates in front and in back) and its general
gate/circuit type (PPRMrealizedwith Toffoli gates in this and previous figures).

Finally, Figure 3.2.3.1.7 presents the general view of an FPRM circuit realized as a

quantum array - it is a PPRM of some other polarity function surrounded by NOT

gates. In this particular example the NOT gates are realized for qubits xi and X3. This

view is used in all synthesis algorithms introduced in this dissertation. The reader

should appreciate from these examples, that changing the polarity influences very

substantially the cost and especially the quantum cost of the solution. However, Figure

3.2.3.1.7 shows that the polarity is a global concept, the NOT gates affect the function

inside the box PPRM in Figure 3.2.3.1.7. But these additional NOT gates cost very

little, since in every quantum technology of implementation the cost of the NOT gate is

practically negligible. Thus the circuit inside the box can be realized using any

AND/EXOR method or affine gate based method to further decrease the entire

realization cost.

142

HrH

As we see, every AND/EXOR synthesis method from this sub-area has thus two

components:

(1) The polarity,

(2) The basic gate/circuit model of the circuit inside the box. In particular these can

be Toffoli gates or affine gates of any type.

We are adding hereby the third component of "affine design" as the main innovative

idea of this dissertation.

3.2.4. ESOP expressions

A question may arise: "why to use the concept of polarity at all?" May be removing

this restriction one can create better circuits? Yes, in classical logic removing all

polarity restrictions leads to the so-called ESOP or Exclusive-Or-Sum-Of-Products

(non-canonical) circuits which have smaller number of terms. However, synthesis of

such circuits, especially to minimize not only the number of terms but also the number

of literals is extremely difficult. Also their testability is lower then that of the

canonical forms. As we will see in future chapters, the ESOPs may be also worse for

quantum realizations, especially for large functions with many don't cares. Thus in

this dissertation we are not optimizing ESOP structures. In any case, one has to be

familiar with them as we use them in few of our illustrative oracles in chapters 11 -15.

143

\ c d
a b \
00

01

11

10

00

c4$^~-
r°\ 1

1
w

01

1

0

0

0

11

J j

0

(^

M.

10

- 3 >
0

~~>^

V
Figure 3.2.4.1: KMap with groups selected for ESOP expression for function F2.
Overlap of even number of groups creates a "0 ".

Figure 3.2.4.1 shows KMap of realization of function F2 = c~d © a~b © ac

using ESOP expression. The principle of creating value zero in the overlap of groups

is again illustrated. All next methods in this dissertation will use this principle. The

quantum array for the formula above is shown in Figure 3.2.4.2. Please observe that

many inverters are added, but they do not contribute much to the cost in any quantum

realization technology known to me. F2 expression above is also a GRM, but this

example better than the example from section 3.2.3.1 illustrates the synthesis approach

and the repeated inverter characteristic to realization of ESOPs in quantum arrays.

W
\b)^—

\c) — e -
\d) ®-

3)

- $ -

-&

10) - * -

i j i

cu

-©-

- ^

a)

b)

c}

c?)

cd Cf); 8 ac}

Figure 3.2.4.2: Quantum Array for function F2 from Figure 3.2.4.1 used as an oracle.
This explains why two NOTs are added in qubits \b) and \d) - this is because we want

to return original inputs at the output of every quantum oracle.

144

3.3. Motivating Example: Building a quantum array for a very

simple oracle.

Now that we know how to realize permutative quantum circuits, we can show, ahead

of order, a single example of building an oracle, just to show my thesis direction and

explain many ideas of the thesis to which we refer in early chapters, before the oracles

will be formally introduced in chapter 12.

The problem is this. We want to color nodes of the graph from Figure 3.3.1 below with

as few colors as possible so that any two nodes linked by an edge have different colors.

Assuming that we have no any knowledge of the graph that we color other than that it

has five nodes, we have to assume pessimistically that in the worst case it needs as

many colors as there are nodes, which means five. Five numbers need at least 3 bits to

encode them, it would be too bad to have this kind of a problem for a graph with

10,000,000 nodes which would be colorable with 2 colors, but let us make important

point again that we have absolutely no information about the data in this variant.

However, if we would know that the graph is planar, one can use the famous "Four

Color Theorem" to know that only four colors are sufficient and thus encode the colors

with only two qubits.

145

red

*1

blue

3

blue

Figure 3.3.1: Graph for coloring with Jive nodes. It is colored with red, blue and
yellow colors in such a way that every two neighbor nodes have different colors. The
chromatic number of this graph is 3.

Assuming no knowledge of the chromatic number of the graph the encoding requires

three bits for each color and is shown as in Table from Figure 3.3.2 below. One

particular example of encoding another simpler graph is shown in Figure 3.3.5.

Color

red

blue

blue

yellow

red

Bit

ai, a2, a3

bi, b2, b3

C], C2, C3

di, d2, d3

ei, e2, e3

Figure 3.3.2: Assignment of bits to encoded colors of nodes for the graph from Figure
3.3.1.

146

An inequality comparator circuit is used to compare two nodes of the graph, as shown

in Figure 3.3.3 for nodes a and b. Such comparator is connected to encoding bits of

any two nodes that are linked by an edge in the graph. If the colors of nodes a and b are

the same then the output of the comparator will be zero. If the codes are different

(which is good) then the output will be 1. Therefore, if oracle has such a comparator

for every two nodes of the graph linked by an edge and if a global AND gate of

outputs of comparators is created, the output of this AND gate will be one for a good

coloring and will be a zero even only in one pair of neighbor nodes of the graph the

proper coloring will be violated, see Figure 3.3.6 for the classical oracle.

<

/

3

/ 3

b

/
/ 3

*

/ /1

(a#b)

Figure 3.3.3: The inequality comparator used in Map Coloring and Graph Coloring
problems. Here it compares node a with node b. Observe that the size of this
comparator depends very much on the possible maximum number of colors. The
comparator produces "1" at its output if the arguments a and b are different binary
vectors of width 3. The binary signal (a ̂ b) is also called a predicate.

\M

Csp-t j C-/io ^ LA- -3

(a)

(b)
1

(a ^ a ^) ^ ipib2b3)

1

r

1

p
^
U

1

,
M

1 1

.*

,

\

1

r
1

• ^

f

i

1

V

m
m
k

63

(t t i a 2 « 3 ^ 616263)

Figure 3.3.4: (a)The inequality comparator from Figure 3.3.3 applied assuming Jive
or more (< 8) colors in the graph. This is a Classical schematic for the inequality
operator circuit, but next we convert it to a quantum reversible circuit, (b) The
quantum array for the comparator from Figure 3.3.4a. This is an oracle so three
CNOT gates are added at right to restore inputs.

The classical schematics of the comparator using EXOR, NOT and AND gates is

shown in Figure 3.3.4a. It is rewritten to the quantum array shown in Figure 3.3.4b.

148

red

blue

yellow

000

001

010

ni

n2

n3

Figure 3.3.5: Encoding of colors for the graph coloring oracle of another graph
having 3 nodes. This graph is used in Matlab simulation.

ai

B2

33

bi

b2

ba
C1

C2

C3

I I I I

-• -•
— - • a

T 1

-• •
a a

a a •

a a—

-m a

Figure 3.3.6: Principle of graph coloring applied to a simple graph from Figure
3.3.5. This is a classical oracle. In this and previous graph coloring problem we are
not checking for a minimal solution. We look here only for a coloring that satisfies the
constraint of correct coloring. Thus every proper coloring that uses any 3 of 5 colors
is good, (this example is trivial, but we wanted to have a simple circuit for the
example).

The final quantum oracle for Grover algorithm for the graph from Figure 3.3.5 is

shown in Figure 3.3.7. It is preceded with Hadamard gates that create superposition of

all input states corresponding to all possible colorings of the graph. The oracle is the

part of the so-called Grover loop quantum circuit which includes some other output-

149

processing circuit and is repeated many times in the full Grover algorithm (Figure

3.3.8), which will be discussed in full detail in chapter 5. At this point our only goal

was to explain the concept of a quantum oracle and its design using quantum gates.

Remember that using reversible non-quantum gates is not possible in the oracle for

Grover algorithm, because they would not produce and process the superpositions of

quantum states which are fundamental to the Grover algorithm. In this example the

oracle is very simple and can be designed by hand. In general, the oracle is very

complex, its design will require automation and the thesis produces software

(classical) and hardware/software (quantum) tools for this automation.

I believe that in future high level languages will be developed that will automatically

design, adapt and reconfigure oracles thus the user will program in them without

realizing the complexity of created circuits, as it is now in case of VHDL

programming for ASIC or FPGAs.

150

c3

1

I

i

o

« -h
h

i L

dr

e-H

• y ^

- ^

-®-

fej7

4 *

T T " *

(D 4 (I)

-m

€ W
"TP

- # •

• ^

\fc^

- #

• « -

T T

Garbage-

Garbage

Garbage.

Oracle answer

Figure 3.3.7: Quantum array realized for the classical oracle from Figure 3.3.6.
Observe three additional ancilla bits. There is 4 ancilla qubits here and this is not
taking into account additional ancilla qubits necessary for realization of the four 4*4
Toffoli gates.

Figure 3.3.7 illustrates three quantum comparators (a ^ b), (b ^ c), (a ^ c) quantumly

ANDed to give the minimum solution of its classical counterpart in Figure 3.3.6.

Mirror gates are added to preserve the original values in qubits bi, b2, b3, ci, c2 and C3.

This oracle requires four ancilla bits but the lower bound is only one ancilla bit. The

circuit with one ancilla bit would be however very expensive.

151

ai

a2

c 3

|1>

|1>

|1>

|0>

G = : Graver
Oracle from
Figure 3.3.7

• &

ai

a2 — I

G"1 "~ °3 — c3

I1>

I1>

I1>

H
.

Z H

Complete Graver Oracle

Graver Loop

Figure 3.3.8: Complete Grover Loop for the simple graph coloring problem.

3.4. Selected Basic Concepts and Formalisms for Classical, Reversible

and Quantum Circuits Analysis and Synthesis.

In this section we present briefly selected notions that will be used in the next chapters.

3.4.1. Tensor products.

To explain better quantum simulation used in calculating all fitness functions for

quantum circuits, we have to go deeper to the analysis of quantum circuits.

- \ R \ -

-\v\-

Figure 3.4.1.1: Parallel connection of gates H and V.

152

Let us calculate for instance the unitary matrix of the circuit from Figure 3.4.1.1

above. We use Kronecker operation as follows:

1 i i
i - i

i + / 1 - /
1 - / 1 + i

It is also called the Tensor Product. It can be illustrated on symbolic values as in

Equation 3.4.1.1 below:

a2\ a22
® hi

hi
hi
h2l\

au

fl21

\ l

hi
'hi

7

hi

h2

hi__
hi
7

^22_

a\2

«22

hi
hi
hi

hi

hi\
hi]
hi~\

hi_
(Equation 3.4.1.1)

H
/7?i

m2

m4

m3

• &

m5

Figure 3.4.1.2: Decomposition of the famous Einstein-Podolsky-Rosen (EPR) circuit
(that produces entanglement) to parallel and serial blocks in order to calculate its
unitary matrix.

153

The decomposition of the entire circuit for EPR entanglement is shown in Figure

3.4.1.2. The formula for final unitary matrix is given in Equation 3.4.1.4 below:

/^•(/^®/7^)=/?25

m»

Figure 3.4.1.3: Symbolic Decomposition of the EPR circuit to matrix operations
corresponding to the parallel and serial blocks.

The calculations are performed step-by-step as in Equations 3.4.1.2 -3.4.1.4 below:

#24 = S
1

1

1~

- 1
®

"1 0"

0 1 4~2

1 1

1 - 1
(Equation 3.4.1.2)

m^ = mi 09 m2
V2 V2

4l 4l

1

V2"

0

1

V2"
0

0

1

7T
0

1

7T

1

V2"
0

1

~ 4i
0

0

1

0

1

' 4~i (Equation 3.4.1.3)

154

m5 = m3 m4 :

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

4~2
0

1

vr
0

o

1

o

1

1

vr
0

1

~n
0

4~2

0

1

ri
0

1

~V2

1

0

0

1

i

1

V?
1

7T
0

o

0

1

1

4i
I

"VT
0 v^

(Equation 3.4.1.4)

Now we can introduce in a simple way the Dirac and Heisenberg notations and their

mutual links:

Dirac Notation for the initial state: 10) <8> 10) = 100)

Corresponding to it Heisenberg Notation:
"ll

0
® r

0̂

"i"
0

0
0

We calculate the final output state for the input state |oo). This is shown in Equation

3.4.1.5 below:

1

1 0 1

0 1 0

0 1 0

1 0 - 1

o"
1

- 1

0

*

"f
0

0

0

1 =vr

"l"

0

0

1
(Equation 3.4.1.5)

155

1

ll

Y
0
0
l

=-^|oo)+o|oi)+o|io)+-^=|ii)

^|oo)+^|n>

Observe that both Dirac and Heisenberg notations are useful and we have to be able to

go from one of them to another one. The above type of calculations is done in any

circuit analysis, for instance in every quantum simulator and while calculating fitness

functions in genetic and similar algorithms for quantum circuit synthesis. Here we

illustrate the Matlab simulation 3.4.1 of EPR Circuit's (Figure 3.4.1.2) output which

verified our above mathematical analysis as well. Which clearly shows the

counterintuitive and revolutionary property of the EPR circuit's Entanglement.

m5 00= m5 01

0.7071
0
0

0.7071

0
0.7071
0.7071

0

m5_10 =

0.7071
0
0

-0.7071

mSJl =

0
0.7071

-0.7071
0

Simulation 3.4.1: Matlab simulation for Figure 3.4.1.2.

156

3.4.2. Permutative notation for permutative circuits.

Algorithms such as MMD [Maslov05, Maslov05a, Maslov05b, Maslov06] use simple

permutative notation to represent permutative circuits. This notation can be used in

both the group-theory based algorithms and in the enumerative or evolutionary

algorithms. This notation cannot be used for quantum circuits represented by unitary

but non-permutative matrices. The example of permutative notation is shown below:

[0,3,1,2,4,6,5,7]

Its corresponding truth table is shown in Table 3.4.2.1

a b c

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

A B C

0 0 0
0 1 1
0 0 1
0 1 0
1 0 0
1 1 0
1 0 1
1 1 1

Table 3.4.2.1: Truth table for reversible function [0, 3, 1, 2, 4, 6, 5, 7J. It shows that
index 0 (000) is mapped to value 0 (000), index 1(001) is mapped to value 3(011) and
so on.

157

3.4.3. Recursive use of Shannon Expansions to create trees.

3.4.3.1. Shannon expansions.

Some new quantum circuit synthesis methods that we created are based on expansions.

All expansions historically started from the famous Shannon expansion, illustrated by

Equation 3.4.3.1.1 below:

Example 3.4.3.1.1:

F{a, b,c,d) = a-F [a,b,c,d)+a-F (a,b,c,d)

= a-Fo (a, b, c,d) + a F\ {a, b, c, d)

= OFQ (a, b, c, d) © F[(a, b, c, d)
(Equation 3.4.3.1.1)

To illustrate a practical expansion for a function, let us assume:

F = ab + ac + bed + acd

We will calculate Shannon expansions step by step:

F- =F(a,b,c,d)\a=Q =0-b + 0-c + bcd+ 0-cd

= c + bed = c

Fa = F(a,b,c, d)\ -\-b + l-c + bed + \-cd

= b + 0-c + bed + cd = b + bed + cd

158

Shanon Expansion in classical logic is implemented with a standard Multiplexer. This

expansion can be also used in Reversible and Quantum Logic and is the base of Davio

expansions and new expansions introduced in chapters 7, 8, 9.

3.4.3.2. Shannon Expansion using Multiplexer

Shannon Expansion can be illustrated using a classical multiplexer, as shown in Figure

3.4.3.2.1 below. The input to data input 0 is the negative cofactor with respect to the

(control) variable a, and the input to data input 1 of the mutiplexer is the positive

cofactor of function F with respect to its input variable a. The special easy case of this

expansion is illustrated in Figure 3.4.3.2.2.

F-(b,c,d)

Fa{b,cJ)

a

Figure 3.4.3.2.1: General representation of Shannon Expansion of Boolean function
F(a,b,c,d) using a classical multiplexer. The data inputs show the cofactors with
respect to the control variable a.

159

h
F= ag + ah

Figure 3.4.3.2.2: The multiplexer and the formula from its Shannon Expansion for
simple function F = a g + ah = a g ® ah .

9

0

• ^ - t

\P

9
h
F ih

Figure 3.4.3.2.3: The quantum array for the multiplexer of Shannon Expansion from
Figure 3.4.3.2.2. Functions g and h on outputs can he either reused in next stages of
the quantum array or they will become garbage.

3.4.3.3. Recursive Shannon Expansions create a Tree of Multiplexers

Given is function G

G(a, b, c, d) = abc + acd + ab + cd

We will calculate recursively expansions of function G in some order of variables a, b,

c, d and next we will draw the tree of these expansions. We select a as the first

160

expansion variable and we calculate negative cofactor G^ and positive cofactor Ga

for this variable:

G- = 0 • be + 0 • cd +1 • b + cd = b + cd
a

Ga-\-bc + l-cd + 0-b + cd = bc + cd + cd

Then expanding new functions H (b, c, d) and F (b, c, d) for variable b we get the

following sub-functions.

HT = 0 + cd = cd = J(c, d)

Hb=l + cd = l

Fr=0-c + d = d
b

Fb =l-c + d = c + d = I(c,d)

Then expanding new functions J(c, d) and I(c, d) for variable c we get the following

expansions.

J- =\-d = d
c

j c = o.d = o

I-=0 + d = d
c

Ic = \+d = \

Based on recursion of the above expansions we can draw now the classical tree of

multiplexers, Figure 3.4.3.3.1.

161

a
G-=b + cd

a

H- = cd
b

\G(a,b,c,d)

G„ = bc+cd + cd

c —

J-=d Jc=0

Hb=l
FT = d

Fi = c+d

I-=d

T
A = i

Figure 3.4.3.3.1: Multiplexer based realization of a classical circuit for function G (a,
b, c, d).

a —Q-

c—0-

-®

\SP~ -&

~\4S

« ®

- ^

^ 5 -

-4B—*

-0-

b

c

d

%

Fb

G (a, b, c, d)

Figure 3.4.3.3.2: Quantum array for the classical circuit from Figure 3 4.3.3.1.

^ ®

& •

5- -rtj.

Finally the quantum array corresponding to the tree of multiplexers is shown in Figure

3.4.3.3.2. Please observe many ancilla qubits. Our methods will attempt at reducing

162

the number of these ancilla qubits. This way, the expansions and classical multiplexers

can be used in quantum arrays of oracles. The concept of classical multiplexer will be

next transformed to the new concept of a quantum multiplexer that plays a critical role

in quantum circuits.

3.4.4. Generalized control Quantum gates with other than AND

controlling functions.

Toffoli is the most important quantum gate, but we can observe that similar gates can

be created with the same or even lower costs. The importance of Toffoli gate is

perhaps only historical and didactical, not technical. While the Toffoli gate realizes a

function of AND of its controls, other controlling functions can be realized. Figure

3.4.4.1 presents a reversible function which uses control OR of inputs a, b instead of

control AND of inputs a, b. Can we realize this function in quantum? At what

realization cost?

Figure 3.4.4.1: Quantum gate controlled by a + b. We have P = a, Q = b, R = (a+b)«
c.

163

Using KMap-based synthesis methods outlined in this chapter one can find the

realization of function (a+b) © c from Figure 3.4.4.2.

a

b
c —m-

\\)

fc t3 ab ® c

Figure 3.4.4.2: A non-optimal realization of (a+b) © c. It uses a complete Toffoli gate
as its part.

We can realize this gate much cheaper using the CV/CV^ approach originated by

Barenco and much extended in chapter 7 of this thesis. The quantum circuit that

realizes the function realized by the symbol-level circuit from Figure 3.4.4.1 is

presented in Figure 3.4.4.3.

a <

0

i <

V

1

' 1
••-A/

V

< i

•4>

V

a

h

(a+fe) © c

Figure 3.4.4.3: The circuit with CV and CNOT gates that realizes inexpensively the
same function as the circuit from Figure 3.4.4.1.

Larger circuits using CV/CV^ gates can be also built using the exhaustive reachability

method developed by Hung, Song, Yang and Perkowski [Hung04, Hung06]. For

instance the circuit from Figure 3.4.4.4 realizes function F = majority (a, b, c) EXOR d.

This circuit was not invented in [Hung04, Hung06]. Observe that this circuit uses only

164

truly quantum gates (2x2 primitives) and not some abstract macros with more than 2

inputs. This and similar circuits can be analyzed based on the quantum transformation

rules from Figure 3.4.4.5a. Symbolic analysis of this circuit is shown in Figure

3.4.4.5b. If realized only from Toffoli macros, the circuit would be much more

expensive, as shown in Figure 3.4.4.6.

d—^VH V

f—e—t—$

<-D

Ft (ab ® ac ® be) ® d = rnaj (a, b, c) 3 d

Figure 3.4.4.4: A circuit that uses only 2*2 truly quantum gates to realize an
otherwise complex function maj (a, b, c)®d if realized with Toffoli gates.

2

1 + /' 1 - /

\-i 1 + /

V = J NOT

V • V = y/NOT y/NOT

• = yl(NOT f = NOT

V. V? = Vf. V = I; Vf. Vf = NOT

Figure 3.4.4.5a: Basic quantum algebra rules for CV and CI" gates.

165

abN

00

01

11

10

V

w

V

V

w

vw

w

o

abN

00

01

11

10

v+

v+

v+

v+

abN

00

01

11

10

0

0

1

0

0

1

1

1

= ab®bc®ac

Figure 3.4.4.5b: Symbolic graphical analysis of the circuit from Figure 3.4.4.4. The
graphical method of composing Quantum KMaps (QMaps) shown here is the base of

my methods presented in chapter 7. Symbol O stands for composing symbolic
QMaps.

c

d 0-^fe ab © be © ae © <&

Figure 3.4.4.6: A non-optimal structure for the circuit from Figure 3.4.4.4. As we see
this circuit is much more expensive than the circuit using CV/CV" gates (from Figure
3.4.4.4) because it uses the non-directly —quantum-realizable 3*3 Toffoli gates of high
quantum realization cost each.

la)

4 ^v\Av

-A ±*-

V

\a)

16}
a -\-b

- #

\a)
\b)

| (a + b) S c)

Figure 3.4.4.7: 000. Realization of function \c) = \(a + b)®c) using only 2-qubit quantum

primitives.

166

\b)

i

— V-\

l <>

?•
1 f t
V '

o

M
| a)

|6)

\c)

a.
\a)

Figure 3.4.4.8: 001. Realization of standard Toffoli gate.

Figures 3.4.4.1 and Figure 3 AAA presented thus two powerful generalizations of

CV/CV1" based Toffoli gate. They were not known to Barenco [Barenco95] and Smolin

[Smolin96]. How far can we go in using the quantum primitives CV and CV* to

create powerful permutative macros? This is answered in Figures 3.4.4.7 - 3.4.4.15.

let}

\b)

\c)-\V\-\v1

- & • -m-

v
W)

x.h
\h)

\ah © cl

Figure 3.4.4.9: 010 Realization of function \c) = \ab®c) using only 2-qubit quantum

primitives.

\a)

\b)

V Ft

-te '\b)

F t -<&-

a)
b)

ab ® c)

Figure 3.4.4.10: 011 Realization of function \c) = \ab®c) using only 2-qubit quantum

primitives.

167

a)

\h\ \°J

\ c) - F+

I t 4 1

- \

*""
-

*f

\.r
V

1>

MJ

\a)

\b)

\c)

?,5
\a)

Figure 3.4.4.11: 100 Another realization of function \c) = \ab®cj using only 2-qubit

quantum primitives.

|o>

\b)

\c) —\ Ft

Cp

F

-tb-

vt
|6)

14

a.fc
W

\b)

\ab ® e)

Figure 3.4.4.12: 101 Another realization of function \c) = \ab®c) using only 2-qubit

quantum primitives.

\b)

I^HF+HFt

-0- -•—m
a)

\b)

\4

a.b
\a)

\- m
I {oh) 0 c)

Figure 3.4.4.13: 110 Another realization of standard Toffoli gate.

\c) H Ft U Ft

~W

Ft
[by

\c)

a + b
- IM

|(a + 6)8-

Figure 3.4.4.14: 111 Another realization of function |c) = |(a + 6)©c) wswg ow/y 2-qubit

quantum primitives.

168

a)

b)

c)

d)

{[(a + 6) © c] +<£} # e)

(a + Z>)©c (a + 6) © c c/ C

Figure 3.4.4.15: Example of cascading new gates from Figure 3.4.4.7-3.4.4.14.

Observe that by permutating CV and CV' gates, one can create many useful gates as

shown in Figures 3.4.4.7 - 3.4.4.14. Though we find repeating gates of the same

functionality with different circuits like Figure 3.4.4.9 and Figure 3.4.4.12. Also

Figure 3.4.4.10 and Figure 3.4.4.11. However, this repetition does not lead to any

disadvantage, besides, we can use this as well. It is representations-two ways to realize

the same functionality. The mirror gates can be used (Figure 3.4.4.15) to restore

original values of input variables a, b, c, d while creating larger gates from these

primitives (as useful in oracles). Also, by removing the right most CNOT gate new

variants of Peres gates are created. Thus creating Peres families that are larger than

Toffoli families because in Peres families many linear functions are returned in all

upper bits instead of only the original inputs. Our methods from chapters 7 - 9 will

extend these ideas.

169

3.4.5. Controlled-root-of-NOT gates.

G gate is the square root of square root of NOT. Obviously the tautological

transformations from Figure 3.4.5.1 below apply to this gate.

1

— i

1 1

1-C

— G

i o « i —

•* r* in
7 \J \Jf

- c 1

o

— NOT —

Figure 3.4.5.1: Realization of Controlled-^TOT and Controlled-V gate from
Controlled-G gates.

Similar transformations can be created for arbitrary root-gates-of NOT gates; NOT

k = 4,5,6

l/k

Using a combination of new methods from the thesis all circuits derived by Barenco

using V and G in his famous paper [Barenco95] can be created as just few special

cases.

3.4.6. Controlling V gates based on arbitrary controls.

Figure 3.4.6.1 presents a circuit in which the Controlled-V gate is controlled by an

arbitrary function. This circuit concept generalizes the standard Controlled-V gate.

170

b c]CONTROL -JNOT 0 [b © a b c]CONTROL yJNOT

Figure 3.4.6.1: Controlled- V gates with arbitary controlling functions.

The analysis of the circuit from Figure 3.4.6.1 is shown in Quantum Kmap from

Figure 3.4.6.2.

abN

00

01

11

10

0

V

0

V

V

0

V

V

G

abN

00

01

11

10

0

V

V

0

0

0

V

0

alD1

00

01

11

10

I

NOT

V(d)

V(d)

V(d)

I

NOT

V(d)

Figure 3.4.6.2: QMap Analysis of the circuit using Controlled- V(Controlled- J NOT)
gates with arbitary controlling functions from Figure 3.4.6.1. Operator W means
composition. I is the identity transformation.

171

a -5$-*

c J - »

o ^ - e — ^

t-e-
- $ -

^
L

•nr $ - t $ — ^ a

•3Hf

t » — & - — #

vWOT
J JL

y/NOT

6 6j&afee

output

Figure 3.4.6.3: Quantum circuit using Controlled- V(Controlled- -JNOT) gates with
arbitary controlling functions from Figure 3.4.6.2.

The (non-optimized) realization of the circuit from Figure 3.4.6.1 using quantum array

is shown in Figure 3.4.6.3.

00

01

11

10

T1
0 1

(a)

I

I

V

V

I

I

V

V

00

01

11

10

T2
0 1

I

V

NOT

V

I

V

NOT

V

aF

00

01

11

10

T3
0 T1 i

V

NOT

V

V

V.V

NOT.M 11

V

aF

00

01

T4
0 1

10

I

V.V+

NOT

I

V.V+

NOT

NOT.V.
V+

NOT

172

i T l I I T2 I

a

b

(b)
Q—\V V

T3j

o —\ v H V H V

Ft

T4!

A

B

G

output

A

B

C

y\ — output
(c)

Figure 3.4.6.4: Another example of Controlled- V gates with arbitrary controlling
functions (linear in this case), (a) Quantum QMap analysis of the circuit from Figure
3.4.6.4b. (b) Quantum Circuit analyzed from left to right in Figure 3.4.6.4a., (c)
Quantum circuit as in Figure 3.4.6.4b without analysis stages Tj, i = 1, ...4. Inputs b,
c are not restored.

Another circuit of this type is shown in Figure 3.4.6.4. In addition, the analysis of this

circuit using quantum truth table is shown in Figure 3.4.6.5. The quantum states are

shown for the lowest (output) qubit in points Tl, T2, T3 and T4 from the quantum

array from Figure 3.4.6.4, respectively.

173

a b c
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

T l

1

1

I

I

V

V

V

V

^̂

]

1

V

V

V

V

N

N

T 3

i
V

V

V2=N
V

N

N

N-V

T 4

1

V -V+ = l
V -V+ = I

N

1

N

N

NV -V* = N

Figure 3.4.6.5: Analysis of several functions from cascade (Figure 3.4.6.4) with a
single truth table. This method of analysis is more convenient in some cases than the
analysis method based on many Quantum QMaps.

— (

\

»—
k

•

/ \

)

/

a®b 3 -b a.b b a®b

V e ^ V V V*

(a) (b)

Figure 3.4.6.6: Graphical Illustration of the general algebra rules for controlling
quantum gates by Boolean variables.

We invented a set of general graphical transformations, which we can use as general

algebra of controlled quantum gates. Say we have the control like in Figure 3.4.6.6 (a),

where binary qubits a and b are controlling V gates . It is equivalent to qubit a © b

controlling V, and composed with qubit a • b (AND (a, b)) controlling the NOT gate

(CNOT). This is a very useful identity, which we can use in synthesis later on. From

Figure 3.4.6.6(a) we can derive Figure 3.4.6.6(b). This is very useful, this is a better

way of explaining controlled circuits in the form of a new algebra. We can say that this

174

kind of transformations is related to analysis of circuits, which is next very useful in

our synthesis methods for Quantum Circuits.

<

0

1

0 1

CO
(v\

\v)

\ b
a \

0
=>

1

0 1

v
v y

V V V
V.V = NOT

Figure 3.4.6.7: QKMap based analysis of Figure 3.4.6.6a.

QMap interpretation of the rule from Figure 3.4.6.6a is given in Figure 3.4.6.7.

Similarly, the QMap interpretation of the rule from Figure 3.5.6.6b is presented in

Figure 3.4.6.8.

a \ 0
\ b
a \ 0 1 aN 1 aN

v_V v_̂

0

o
1

h w
0

o
1 ©

©
a \ b 0

I

I

V.V

Figure 3.4.6.8: Presents QKMap analysis of Figure 3.4.6.6b.

b-0- -9-

^ ^ -9-

-&=-

~~VPT

*^-=^

V NOT V —H NOT H NOT H— NOT I

1$"

-&-

- $ 5—* - $ -

JVOT output

Figure 3.4.6.9: The minimization that can be applied on the gate level. Here two NOT
gates can be cancelled. More optimizing transformations can be next extended.

175

The Figure 3.4.6.1 can be transformed to the circuit from Figure 3.4.6.9. Template

matching transformations [Miller03] can be next used iteratively on this circuit to

simplify it.

3.4.7. Universal 3 qubit circuits.

A new approach to realize arbitrary 3-qubit circuits is shown in Figure 3.4.7.1.

Analyzing every possible combination of control signals a and b we can verify that the

schematics on the left and on the right of Figure 3.4.7.1 are equivalent in the sense of

having their unitary matrices equal.

X(c) forab = 00
J ZX(c) forab = 01
|YX(c) forab = 10

ZYX{c) for ab = 11

Figure 3.4.7.1: Quantum Circuit from controlled gates versus equivalent to it
Quantum Multiplexer Circuit.
The transformation at the right side of Figure 3.4.7.1 shows that the Quantum

multiplexer implemented using operators X, ZX, YX, ZYX as data is equivalent to the

circuit from controlled gates at the left. This can be verified by multiplying

corresponding symbolic unitary matrices. Several similar transformations exist.

a

c — X Y Z

a •

b

I
0\

1 \

2 /

V

176

3.5. Search and Optimization.

3.5.1. Evolutionary, Search and Quantum Search approaches to

Synthesize Quantum Circuits from the above-introduced gates and

circuits

Much of my research conducted so far and described in this thesis was to develop a

general-purpose algorithmic approaches that would automatically design application

specific quantum algorithms for few selected classes of binary logic synthesis and

minimization problems. They are included in chapters 7, 8 and 9 of this thesis.

However, in order to understand these approaches, sufficient background on classes of

functions and design methods for them will be first necessary. Why we believe these

algorithms will be better than the approaches used so far?

When I learned about the concepts of evolvable hardware and machine learning, I

wanted to make my methods for quantum synthesis to be very general and applicable

to logic synthesis, minimization, Data Mining, Knowledge Discovery, and Evolvable

Hardware.

Several other new approaches were created in the past at PSU and elsewhere to utilize

search and evolutionary techniques for both logic synthesis and circuit minimization of

AND/EXOR circuits. Initially developed by Karen Dill [Dill97, Dill97a, Dill97b,

Dill97c, Dill98, DillOl] for a single purpose, rather than broadly applicable to binary

177

logic design and minimization problems some algorithms were viewed as initial trials

for the biology inspired methodologies. The results of Karen Dill, Martin Lukac and

Normen Giesecke as well as other researchers (about evolutionary, Particle Swarm

Optimization (PSO), Bacteria Foraging (BF) methods and cultural, social memetic

algorithms) have been critically analyzed by me and new approaches have been thus

developed in this dissertation and proved to be better by the experimental software

results.

The first design in my research involved the application of various approaches for the

minimization of Generalized Reed-Muller (GRM) logic forms. As may be recalled,

the GRM equation type is a general, canonical expression of the Exclusive-Or Sum-of-

Products (ESOP) type, in which for every subset of input variables there exists not

more than one term with arbitrary polarities of all variables. This AND-EXOR

implementation has been demonstrated to be economical, generally requiring fewer

gates and connections than that of other variants of AND-EXOR logic such as

particularly PPRM and FPRM. GRM logic is also highly testable, making it desirable

for quantum designs. Research from [Dill97] used standard Darwinian and

Lamarckian evolution [DillOl] as a model from which logic minimization algorithms

are determined. To date, the few developed exact minimization algorithms have

required nearly exhaustive searches on standard computers and are quite time

consuming. We found this model insufficient and thus the ideas of search and

178

quantum search were added and combined with the evolutionary methods. The goal of

using our new approaches for AND/EXOR logic in this dissertation was to create non

exact heuristic minimization techniques that would constitute an improvement in the

quality for the optimizations produced by the heuristic (rule-based) methods known

from the literature. Moreover, the minimization methods developed in this

dissertation are applicable to both single-output and multiple-output permutative

quantum circuits.

For completely specified data, the GRM equation form has been proven difficult to

minimize, as no exact minimization method (other than a nearly exhaustive search)

has been devised. For instance, Miller and Thomson [Miller94a] give an exhaustive

search algorithm for the FPRM form [Miller94b, Drechsler99]. Exhaustive search

methods on classical computers are time consuming, making an effective, and high-

quality, approximate minimization method very attractive. On the other hand, the

exhaustive methods are of interest in Grover-like quantum computing where the

efficiency is not a problem to be practically considered, since such computers simply

do not exist. The new concept with its mathematical proof is however theoretically

interesting. Thus we created such quantum algorithms in chapter 15.

Several variants of Genetic Algorithms and Genetic Programming were used at PSU to

minimize FPRM circuits [Dill97a, Dill97b, Dill97c] and various types of reversible

179

circuits with general structures [Giesecke06, Giesecke07, Lukac02, Lukac04,

Lukac05, Khan03, Khan05a, Khan05b]. For instance, several attempts were made to

develop a purely evolutionary (i.e., GA with no human-designed heuristics) approach

to the minimization of GRJV1 forms. As no application-specific knowledge was

incorporated to these methods [Dill97b, Dill98, DillOl], the results were remarkable as

they compared favorably with that of the heuristic algorithms designed by human

experts [Debnath95, Debnath96]. On the other hand, for some functions, Sasao and

Debnath [Debnath98] found better solutions using heuristic knowledge-based

algorithm, which showed that the evolutionary approach should be possibly equipped

with more human-like knowledge and/or human intervention in the automatic solution

process. The first approach to minimize incompletely specified functions has been also

developed by the PSU team [Zheng95, Dill97b, DM98, DillOl]; the GRMin software

was created. But this was only done for small, single-output functions. Although

Debnath and Sasao [Debnath96, Debnath98] developed a successful heuristic for

GRM minimization, capable of handling functions with a large number of variables

and multi-outputs, their software (not available in public domain) was applicable only

to completely specified functions. Finally, I develop in this thesis the ECPS software

culminating the efforts of the PSU team that have started many years ago. I proved

experimentally on many benchmarks that this software is better than all previous

software.

180

Few authors [Green91, Mckenzie93, Varma91, Riege92, Zilic02] have considered the

problem of Positive-polarity Reed-Muller (PPRM) form minimization for single-

output incompletely specified functions. However, with the exception of work by

Zilic and Vranesic [Zilic02], the algorithms are very inefficient for functions that have

a large number of don't cares, as the algorithm complexity increases with the amount

of unspecified data. Moreover, all these algorithms cannot be adapted to the GRM

form, which is quite different from that of the PPRM form.

The minimization of incompletely specified functions is well known to be more

difficult than the minimization of the completely specified functions. This problem is

important also because of its possible applications in Data Mining and Machine

Learning. For instance, Chang and Falkowski [Falkowski97] developed a FPRM

minimization algorithm for a small percentage of don't cares. On the other hand,

Zakrevskij [Zakrevskij95] developed a FPRM minimization algorithm for FPRMs that

is efficient only for a very high percentage of don't cares. Similarly, it is most difficult

to minimize ESOPs for the incompletely specified functions that have 5 - 9 5 % don't

cares. It can thus be predicted, for GRMs also, that the minimization of few (<5%) or

very many (>95%) don't cares is easier than the case of a medium amount of don't

cares. The iGRMMIN minimization algorithm [Dill97a, Dill97b] performed well for

all categories._The software developed by me for this dissertation performs even better.

181

As may be recalled, while more restrictive than the Exclusive-Or Sum-of-Products

(ESOP) expression, the GRM equation form incorporates the Fixed-Polarity Reed-

Muller (FPRM) and Positive-Polarity Reed-Muller (PPRM) forms as its special cases.

The GRM is a canonical expression that allows complete freedom as to the polarity

selection of each term, but there is at most one product term for every subset of

variables.

The new GRM minimizing software is the second application of the GRM form to the

synthesis and minimization of incompletely specified data. A multi-strategic approach

was taken. Human expertise was combined with the genetic search mechanism, for

the development of an efficient problem-solving expert system. The goal of using the

Genetic Algorithm for GRM minimization was simply to aid the solution search

process for the human-designed logic minimization heuristic.

The results of various algorithms developed in this dissertation are compared with

those from [DillOl, Sasao90a, Sasao93, Stankovic97, Lukac07]. My numerical results

from this dissertation supersede the previous results from other authors . My results

are obtained also for a more general family of structures than GRM. The conceptual

and software approaches from my dissertation are also applicable to PPRM forms,

FPRM forms, and other canonical forms, as well as to ESOPs, factorized circuits, and

182

circuits with linear preprocessor and affine circuits thus allowing to compare

uniformly many variant designs of a circuit in quantum technologies.

3.5.2. Formalism for Expansions.

Example 3.5.2.1: A GF-PPRM, in GF(2), is generated by the application of the

Positive Davio Expansion, (i.e. all literals, xt s have positive polarity). For binary

logic using three variables, an example is given.

f(xi. X2, X3) = ao © aiX! © a2X2 © 83X3 © a4X]X2 © a5X]X3 © a^xix.^ © a7Xix2x3

Example 3.5.2.2: A GF-GRM, in GF(2), has both positive and negative polarities. For

binary logic using three variables, an example is given.

fltx1.x2.x3) = ao © ajX 1 © a2X2 © a3X3 © a4X {K2 © a5X 1X3 © a6X2X3 © a7XiX2

X3

Where, X= x or x

In addition to being the standard Reed-Muller forms, the expressions in Examples

3.5.2.1 and 3.5.2.2 are actually polynomial forms in GF(2) for three variables.

With this background, the Galois Fields from chapter 3 can now be fully related to the

Reed-Muller Logic. Most central to the development of Reed-Muller logic forms, the

classical Shannon Expansion utilizes a variable polarity separation technique to

183

http://fltx1.x2.x3

represent a function. The Shannon Expansion for a variable x is obtained by splitting

the variable into two different polarities, x and x. The relation between these

polarities can be represented as x = 1 © x. For a binary function f(xi, x2, ... , xn) the

Shannon Expansion, originally developed by Boole [Boole54, Brown90] is:

f(xu...,xn) = x j ^ x ^ O ^ ^ , . . . ^) 0 xif(xi=l,x2, x3,...,xn)

f(X],...,Xn)= I f 0 © x f i

Equation 3.5.2.1: f(x)=xf0©xfi (Shannon Expansion)

Relating the Shannon Expansion to a KMap, another perspective can be gained about

its application. This gives a visual depiction of how the components "fit" together to

make the total function. In Figure 3.5.2.1, a simple KMap is given, with binary values

represented by variables, with subscripts labeled for their location.

'oo

fio

foi

fn

Figure 3.5.2.1: Representation of binary cofactors in the Karnaugh map.

In Equation 3.5.2.1 for the Shannon Expansion, fo and fi are simply rows of the KMap,

where x = 0 and 1, respectively. These are given in Figure 3.5.2.2 below.

184

f0 = U =

M ~ 'x=1 ~

*00 foi

fio fn

Figure 3.5.2.2: Graphical representation of Shannon expansion for the Karnaugh map
from Figure 3.5.2.1.

Starting with the Shannon Expansion, then, the KMap is related as follows in Figure

3.5.2.3.

f(x) =xf 0©xf! Shannon Expansion, GF(2)

X

1

0

fo

foo foi ©

X

0

1

fi

fio fn

^00

0

foi

0
6 B

0

fio

0

fn

'oo

fio

foi

fn

Figure 3.5.2.3: Step-by-step calculation of Shannon expansion with KMap
visualization.

185

The Shannon Expansion shown in algebraic form can also be represented as a decision

tree. This is shown in Figure 3.5.2.4.

Figure 3.5.1.4: Shannon Tree for binary logic of two variables. Two notations are
used for negations, this is useful in mv generalizations of such trees.

ha
fat

/io
/u

0

0
x

0

y —9-

\y

-€&

- # - $ -

- $ -

* — $ • •

Figure 3.5.2.5: The Quantum array with ancilla bits for nodes I, k, and f drawn
directly from the decision diagram from Figure 3.5.2.4.

The Davio Expansions in binary logic are well known and derived from the Shannon

Expansion by considering either the positive polarity (x) or negative polarity (3c) of the

variable x. (Alternatively, starting from either the Positive Davio or Negative Davio,

the Shannon Expansion may be derived). These derivations are shown in Equations

186

3.5.2.2 and 3.5.2.3 below. The Shannon, Positive Davio, and Negative Davio

Expansions may be utilized to derive all possible expansions, to obtain all logic family

forms, trees, and decision diagrams.

Derivation of Positive Davio Expansion:

Shannon f(x) = x f0 0 xfi

By substituting x = x © 1

f(x) = (x © l)f0 © xf!

f(x) = xf0 © f0 © x^

f(x) = x(f0 © fi) © f0

Positive Davio: f(x) = x(f0 © fi) © f0

We derive here Davio expansions because they are a fundament of more complex

expansions that we will introduce in the sequel.

Equation 3.5.2.2: The Positive Davio Expansion for binary (GF(2)) logic is the

following:

f(x) = x(f0 © fi) © f0

187

/o -m- / (*)

Figure 3.5.2.6: Part of a quantum array to realize the positive Davio expansion,
where fo and (fo ®fi) are functions of remaining variables, which may require ancilla
bits.

Example 3.5.2.3:

Let f = ax®bx®ab = x(a®b)®ab. Thus the cofactors with respect to variable x are

the following :

f x = f |x = o = ab

f x = f|x=i = a 0 b 8 a b = (a + b)

The Boolean difference is

f0 0 ft = f x® fx = ab 0 (a 0 b 0 ab) = a 0 b

From this we can draw the quantum array from Figure 3.5.2.7. Observe the mirror

circuit to restore variable b.

a

b -ffi-

-©-

X

a

h

f

Figure 3.5.2.7: Graphical representation of Positive Davio expansion for function
f = ax ® bx © ab = x(a © b) ® ab .

Derivation of Negative Davio Expansion:

188

Shannon f(x) = x f0 e xft

By substituting x = x © 1

f(x) = i f o 0 (x © l)fi

f(x) = x f 0 © I f , © f 1

f(x) = x (f0 © ft) © fi

Negative Davio: f(x) = x (f0 © fi) © fi

Equation 3.5.2.4: The Negative Davio Expansion for binary (GF(2)) logic

f(x) = x (f0 © fi) © fi

The realization of Negative Davio Expansion in quantum array is represented in Figure

3.5.2.8. As the cost of NOT is negligible in all quantum technologies, the negative and

positive Davio expansions should be used on equal terms in all synthesis algorithms

leading to improved results with respect to the approaches that use only the Positive

Davio. This is analogical to the superiority of FPRM over PPRM.

189

X — c p —

foBfi

Figure 3.5.2.8: Realization of Negative Davio Expansion.

Expansion trees provide a graphical representation of functional components. As a

diagram of cofactors and multipliers (constants), they provide a visual depiction of

decision trees, which are a useful tool in deriving the forms of an algebraic family and

find also applications in Data Mining.

Expansions such as the Shannon, Positive and Negative Davios can be applied to

functions, as a variable separation technique, creating an expansion tree diagram. In

expansion tree diagrams, several expansion nodes may be combined, such that each

node on a level, corresponding to an expansion variable, has one of the defined

expansions. The total function (over the entire tree), in its new form, can then be re

constructed by combining the cofactors and multipliers for each of the branches with

the EXOR operation. These methods were used to derive circuits and algorithms from

this and next chapters of my thesis.

190

3.6. Butterfly diagrams for FPRM Forms

This section contains preliminary background discussion on the theory of butterfly

diagrams for FPRM forms. Butterfly diagrams are used in transformations and

optimizations of AND/EXOR spectral logic [Falkowski97, Falkowski98,

Falkowski03] and in our oracles in chapter 15.

A switching function is commonly described in a sum-of-minterms form that is

canonic and which in the binary case represents a collection of conjunctive terms

joined by a disjunctive operator. As an example, all binary functions of three variables

may be expressed in the form

F

I itLA JV-\ *\"^*\"7 ~t~ /AYc.A-1 J\"j JV'y ~\ 11l/r Jv-i ~\"j J\"j l~ lilriJ\>-\J\"jJ\>n

where w ;e{0,l} are commonly referred to as the minterms of the function/ It can be

easily proved that every OR operator in this formula can be replaced with EXOR

operator because all the minterms are pairwise disjoint. Alternatively, such functions

may also be represented as a Reed-Muller expansion of a given polarity using a

collection of conjunctive terms joined by the modulo-additive operator as

191

#0 1 © a\ x\ © #2 *2 ® a3 *3 ® a\2 *1*2 ® a\T> *1*3 © a23 *2*3 ® a123 *1*2*3

where a ;e{0,l} are the FPRM spectral coefficients and ̂ represents a literal in either

complemented or uncomplemented form consistent for all values of /. The particular

assignment of polarities of the dependent variables *i leads to the polarity number.

For example *i*2*3 -» 7, xx x2 x3 -+ 4 , xx X2XT, -> 3 ; etc.

The problem of interest in several classical, reversible and quantum logic synthesis

problems is to find the polarity number P<T such that a Reed-Muller expansion can

be formed where at least T spectral coefficients are zero-valued. The solution of this

problem allows for the realization of a FPRM expansion that utilizes no more than T

conjunctive operations and is a problem of interest for the logic synthesis and

verification community. We discuss here the FPRM case, but similar techniques are

used for other canonical AND/EXOR forms such as GRM, GPMPRM [Zeng95] and

other group-based forms (Linearly Independent logic expressions).

The two expressions shown previously are both canonical forms (they may be affine

functions in a special case) that are related by a linear transformation. This

transformation is well-known and is commonly characterized by a linear

transformation matrix as the fixed-polarity Reed-Muller transform [Perkowski97,

Perkowski97a, Perkowski97c]. The structure of this transformation matrix can be

expressed as a Kronecker (or tensor) matrix product where each dependent variable is

192

represented by a matrix representing a given polarity. As an example, the

transformation matrix for the PPRM transformation is given as

Mn =
1 0

1 1
MPn=®MPL

For an FPRM, the negative polarity matrix used in forming the transformation matrix

Mm is used to represent complemented variables and that of Mpl is used for positive-

polarity variables. As an example the transformation matrix for an FPRM of polarity 5

is formed as

Mm®Mn®Mm

1 1

0 1
«

1 0

1 1
®

1 1

0 1

Due to the Kronecker product decomposition of an FPRM transformation matrix, the

techniques first attributed to [Lee86, Li06] may be used to represent the transformation

in the so-called "butterfly" signal flow-graph (also known as a "fast transform") where

edges represent multiplicative weights (in this case all weights are unity) and vertices

represent additions modulo-2, shown in Figure 3.6.1. Here we also add more details

about the butterfly structure with Exor Map and the mapping of coefficient of polarity

in KMap for better explaining of our method.

193

a
b0

b2

b,

b3

Figure 3.6.1: Coefficients of cells of 2-variable KMap for symbolic transformation.

The symbolic transformation for coefficients from Figure 3.6.1 given as follows:

b§ab ®biab@b2db ©b^ab

= b0 -1 0 (bo ®b2)a 0 (bp®^^ e (b0®b{®b2 ®b3)ab
c0 C2 c\ <?3

From above symbolic transformation we can get the butterfly circuit for this

transformation, as shown in Figure3.6.2 below.

bo

bi

b2

b3

1

0

0

1

1

^ \ 1 ^

0 ^

^ \ 1

1

\ 1

\ 1

\ 0

CO

C1

C2

C3

Figure 3.6.2: Butterfly structure for transforming minterms bj of a Kmap to spectral
coefficients ct of the corresponding PPRMform for two variables.

194

From the outputs of the butterfly in Figure 3.6.2 we get the symbolic transformation as

below:

cQ © c2a © cxb © c^ab

= 1© l « a © 1«Z>© 0*ab

= 1© a®b

Now, Figure 3.6.3 explains the symbolic transformation of butterfly structure in Exor

Map for positive polarity (a = 1, b = 1) and the mapping of polarity coefficients in the

KMap.

0 1

1

0

0

1

r
C Q d

1

a

b

ab

1

1

1

0

(a) (b) (c) (d)

Figure 3.6.3: Conversion ofPPRM. a) The KMap of the function being realized, every
cell represents the minterm of the function (b) The K-map with the groups selected to
realize the function from Figure 3.6.3a, (c) Mapping of variables in product terms of
PPRM in Exor Map for positive polarity, (d)Every cell in this positive polarity Exor
Map is now not a minterm but a Exor Map coefficient on ci from the butterfly

structure in Figure 3.6.2. Thus \®a®b = a®b = ab®ab as in Figure 3.6.3a.

We will show and explain an Example for FPRM in butterfly structure and its Exor

Map for certain fixed polarity of 3 variables (Figure 3.6.4 and Figure 3.6.5).

195

Polarity 111

(a)

1 X!X2X3

X3X2

00

01

11

10

0
1

0

0

1

0

1

0

(b)

X3X2

00

01

11

10

0

1

1

0

1

0

1

1

(c)

Figure 3.6.4: Conversion from minterms to FPRM with polarity 111 (PPRM). (a) A
Butterfly signal flow-graph for the polarity 111 of function F represented by minterms
at the left, (b) Karnaugh Map of the minterms, (c) Coefficient mapping in the Exor
Map for polarity 111.

Polarity 110
x2

(a)

X3X2

00

01

11

10

0
1

0

0

1

0

1

0

(b)

X3X2

00

01

11

10

1

1

0

1

0
1

1

1

(c)

Figure 3.6.5: Conversion from minterms to FPRM with polarity 110. (a)Butterfly
signal flow-graph for the polarity 110 of function F, (b) Karnaugh Map of the
minterms and (c) Coefficient mapping in the Exor Map for polarity 110.
Figure 3.6.4 describes the Butterfly transformation equivalent to:

196

x l x 3 x2 ® x 3 x2 xl ® X1X2X3

= xj (1 © %2 © X3 © X2X3 © X2 (1 © xi © X3 © X1X3) © X1X2X3

= xj © x^X2 © xjX3 © X1X2X3 © X2 © xjX2 © X2X3

= xi © X2 © X1X3 © X2X3 © X1X2X3

As is described in detail in chapter 15 the butterfly diagrams may be created for any

given polarity number for the FPRM expansion. Unfortunately, finding the "best"

polarity number and its corresponding maximal number of zero-valued FPRM

coefficients resulting in the "best" butterfly structure is very challenging. In this

thesis, in chapter 15, we show how the use of quantum logic circuits can give an

optimal polarity number more efficiently than any existing or even any possible

algorithm for a standard computer.

3.6.1. Transformation from disjoint SOP to PPRM

:abP'*>
. <5:;:

; : ;f
;;1:;::

; 6

: -1 f

0

0

0

(a)

00

01

11

10

0

bo

b2

b6

b4

bi

b3

b7

b5

(b)

af>

00

01

11

10

0

1

b

ab

a

c

be

abc

ac

(c)

Figure 3.6.1.1: PPRM transform for 3 variables (a) KMap to calculate the PPRM,

197

(b)SOP minterm Coefficients of Kmap cells for transformation of three variables
calculated below in Figure 3.6.1.2, (c)the products of variables (base functions) for
PPRM that correspond to the cells of the KMap and their respective coefficients from
Figure 3.6.1.1b. The KMap from Figure 3.6.1.1c is related to EXOR Maps that will be
introduced in chapter 8.

Based on coefficients and product terms from Figure 3.6.1.1b, c, we show the method

to calculate the PPRM for the function from Figure 3.6.1.1(a). This is illustrated in

Figure 3.6.1.2. The Figures explain several useful formalisms used to calculate the

PPRM c® ac®b® abc 0f the initial function ab c®abc®abc from Figure

3.6.1.1a. Figure 3.6.1.3 shows the relation between the minterms and the b;

coefficients in a canonical SOP formula for minterms.

198

b0(a ® V)(b © l)(c 0 1) -> b0(l 0 a © 6 © c © ab © ac © be © o6c)

fyO © 1)(6 © l)c -> ^ (1 © a © 6 © a6)c -> ^ (c © ac © Z>c © a6c)

62(0 © l)6(c © 1) - » Z?2(l © a © c © oc)6 -^b2(b®ab®cb® abc)

b3 (a © l)Z>c -> 63 (a t e © be)

b4a(b © l)(c © 1) -> 64 (a © 06 © ac © a£c)

Z?5a(̂ © V)c -» 65 (tf 6c © arc)

Z>6a6(c © 1) -> Z>6(aft © afc)

6c Z?c(b 0 ©^i©^2®^3)

a6 ^ (Z ? o 0 5 2 © ^ 4 © ^ 6)

aftc abc(All)

abc®~dbc® abc

= (1 © a)(l © 6)c © (1 © a)fe(l © c) © oZ>(l © c)

= (1 © a © b © aZ>)c © (l © a © c © ac)b © a£>(l © c)

= c © ac © be © aftc © ft © ab © 6c © abc ®ab® abc

= c®ac®b®abc

PPRM - CQ • 1 © q • c © C2 • b ® C3 • be ® C4 • a ® c5 • ac ® eg • ab ® cj • abc

ct e {0,1}

Figure 3.6.1.2: Calculation of coefficients for the PPRM Circuit for function from
Figure 3.6.1.1(a).

199

3.7. Conclusions to chapter 3.

Above we presented, based on published literature and research of the PSU quantum

team, a unified description of basic ideas that we will use in the next chapters of the

thesis. We gave also some examples discussing the importance of structure selection,

transformation and analysis. Concluding, a successful method should take into account

both the structure and the search algorithm for this structure. The next chapter will

review some known structures and will introduce some new structures.

Based on this chapter I hope that I gave sufficient arguments for AND/EXOR logic as

a base of algorithms for permutative quantum circuits synthesis and that I demonstrated

also that the evolutionary programming approaches popular in the research literature on

quantum synthesis are not sufficient. Our goal from now on will be to create efficient

methods for AND/EXOR synthesis, for single-output and multiple-output function, that

will allow for more efficient knowledge-based algorithms than those used so far and

based on exhaustive group theory or evolutionary algorithms.

200

GRM

Quantum
realization of

circuits

Non-perm utative

3-qubit
gates

Inverter

Hadamard

Single-
qubit gate

Pauli
Rotations

Universal
quantum
circuits

FPRM

polarities ^

2-qubit
Interaction

Gate
4x4 Unitary matrices

2x2
Unitary
matrices

SchrOdinger
Equation

quantum

Quantum graph
coloring oracle

f Composition
of blocks

Block = quantum
inequality

comparator

Cellular
Automata

classical

Dynamics of a
Computing System

Figure 3.7.1: Diagrams of main concepts introduced in chapter 3.

Various decision diagrams used for switching functions can be uniformly regarded as

graphical representations related to AND-EXOR expressions, derived by considering

the switching functions as functions in the Galois Field, GF(2) [Stankovic97]. The

diagram of the main concepts introduced in this chapter and their mutual relations is

presented in Figure 3.7.1.

201

CHAPTER 4

Algebras, Expansions, Trees, Forms, Hypercubes and Quantum

Arrays

As we have already shown, Reed-Muller (AND-EXOR) logic is fundamental to

synthesize both "classical reversible" and "permutative quantum" circuits. It is still

uncertain which forms of AND-EXOR logic are best as the first synthesis stage to

create a reduced oracle. Moreover, it is not certain if Reed-Muller forms are the best

choice for NMR-based quantum circuit design. A number of new algebraic families of

complete operator sets and circuit structures, based on the Reed-Muller type logics,

with particular interest in binary logic ESOP expressions (non-canonical) and their

(canonical) subsets, as well as tree expansions, are introduced in Section 4.1.

4.1. Types of Logic

Several different algebraic systems of "group based logics" are developed in this

dissertation. Boolean Logic, traditionally utilized in integrated circuit design, is

restricted to binary input/output values and a few simple, basic gates, from which all

circuits are built. With conventional CMOS technology and Boolean logic, a two-level

AND-OR-structure-based implementation is most commonly utilized in practical

designs. The algorithms for AND-OR minimization are based on the so-called "unate

covering problem" (look chapter 6 for software realization and chapter 12 for quantum

202

oracle realization). The Unate covering can be also used as a part of the whole system

for quantum circuit minimization. But, even in the case of contemporary VLSI

CMOS technology the AND-EXOR implementation has been shown to be more

economical, generally requiring fewer gates, fewer connections and smaller

technology-related costs, much reduced (quantum) costs in quantum domain and high

testability. In addition to quantum arrays, binary classical structures in standard

notation will be also presented for completeness and as a link to classical circuits. This

serves also as a link to classical CAD algorithms. Our main goal will be however to

develop algorithms to synthesize quantum oracles and their partial logic blocks.

It is well known that the AND-EXOR form has been developed into a complete

hierarchy of Reed-Muller (RM) Expansions (recalled in Section 4.1.1), using the

Shannon [Shannon49], Positive Davio, and Negative Davio Expansions. This

hierarchy is described with logic equation forms, trees, and decision diagrams

[Sasao93e]. The AND-EXOR representations have interesting characteristics,

allowing the representation of large functions and efficient representation of their

properties.

Reed-Muller Logic Theory was also expanded with the introduction of the

Generalized Kronecker Expansions to the Zhegalkin Hierarchy [Perkowski97a,

Perkowski97c]. (Note that the Zhegalkin Kronecker Reed-Muller Form is obtained

when a single expansion, from the set of all possible Zhegalkin linearly independent

203

forms is applied to every input variable. It was also recognized that "the GRM

expansion with functional coefficients is a special case of the LI expansion with

functional coefficients " [Perkowski97b]. Hence given a defining logic table, a method

is presented for Zhegalkin Expansion, (either with or without functional coefficients),

resulting in a valid GRM (Generalized Reed-Muller) with Linear Independence. With

this understanding, the Reed-Muller Logic Hierarchy can be related to the Zhegalkin

Hierarchy, as described by forms, trees, and decision diagrams [Perkowski97a,

Perkowski97c]. While GRM is an AND/EXOR form the general LI forms are not.

The Zhegalkin Hierarchy is a subset of the Linearly Independent Logic Hierarchy

[Perkowski97]. It includes the Reed-Muller Hierarchy and all other AND/EXOR

forms, both those presently known and those to be found in future. (Note that the

Linearly Independent Hierarchy is not restricted to circuits built from AND and

EXOR gates in the binary case). The Zhegalkin Hierarchy is named in honor of the

Russian scientist who in 1927 discovered the forms [Zhegalkin29] now attributed to

Reed and Muller's research published in 1954 [Reed54]. These forms were the

starting point to the whole research area of "EXOR logic" that influenced heavily the

classical and quantum circuit design.

I prefer the AND-EXOR logic structures because of their good match to quantum

technology. Even for the case of AND-EXOR logic, the Sum-of-Products (SOP)

expansion is the popularly used general form for specifying a given Boolean function.

SOP or POS are used by necessity in many oracles. These two expression types we

204

call regular because one can clearly distinguish two planes in them - the AND plane

and the OR plane which are both structures of regularly placed gates and planes are

abutting. This is important for possible hardware layout purposes. The concept of

regularity is important in classical logic design with many applications in PLAs,

PLDs, and FPGAs. In addition, the SOP (and especially Disjoint SOP or DSOP) is a

good starting point from which to develop the logic family hierarchy and problem

specifications. Methodically, starting from expansions, then trees, followed by

decision diagrams, and finally two-level forms, the complete new linearly independent

logical family hierarchies will be developed in chapters 8, 9 and 10. However using

only AND and OR gates one cannot build an arbitrary function. Negations are also

needed. Thus AND/EXOR logic is more powerful in the sense that AND and EXOR

gates together with the constant " 1 " form a universal logic system (the NOT gate is

not needed). The families based on AND/EXOR logic are more extended and more

interesting than AND/OR circuit. Most importantly, they are superior in quantum

circuit design.

The main observation is that in quantum logic many gates used as operators are the

algebraic structures called groups. We will call all of them the group-based logics.

(Note [Stewart89]):

Definition 4.1.1: A group (G,*) is a non-empty set G and a binary operator (*) on G,

such that the following conditions hold:

205

Closure: For all a, b e G, a*b e G.

Associativity: For all a, b, and c in G, a * (b * c) = (a*b) * c.

Identity: There exists an identity element "e" e G, such that a * e = e * a = a, for all a

e G .

Inverse: For each a e G, there exists an inverse a"1 e G, such that a * a"1 = a"1 * a = e.

The symbol * here is the so-called group operator and should not be confused

with multiplication. It is rather like an EXOR.

Definition 4.1.2: A non-empty set F is called a field when the two-argument

operations "+" and "*" are defined on F and the following properties hold.

They are called a sum and a product, respectively (addition and

multiplication).

Closure:

For all a, b e F, a + b e F and a*b <= F.

Associative:

For all a, b, and c e F, a + (b + c) = (a + b) + c and a * (b * c) = (a * b) * c.

Commutative:

For all a, b e F, a + b = b + a and a * b = b * a.

Distributive:

For all a, b, and c e F , a*(b + c) = a * b + a * c and (a + b) • * c = a * c + b * c.

206

Identity:

For all a e F, a + 0 = a, (since 0 is the additive identity) and a * 1 = a, (since 1 is the

multiplicative identity).

Inverse:

For each a e F, there exist inverses -a e F and a"1 e F, such that a + (-a) = 0, (since -a

is the additive inverse) and a * a"1 = 1, (since a"1 is the multiplicative inverse).

In brief, a simple definition is that Galois Field (GF) is algebra with finite set of

elements, and two operations, the Galois addition and Galois multiplication. There are

certain operators expressed in Tables in Figure 4.1 .1. Figure 4.1 .la shows GF(3)

addition of elements, which shows that if we have a and b inputs in the table, then

output will be defined inside the table. And those operations have to satisfy certain

Axioms (Definition 4.1 .1 and Definition 4.1 .2). The Galois Field addition for 3-

valued (ternary) variables (GF(3) add), Figure 4.1 .la which is the same as the modulo

addition. In the Figure 4.1 .1, we have arguments which are always the values of 0, 1,

2 -that is a ternary system. As we see, the table in Figure 4.1.1a is a Latin Square,

every row and every column is different and uses all elements 0, 1 and 2. In Figure

4.1.1b is Galois Multiplication for 3 valued variables (GF(3) *) which is the same as

the modulo-3 multiplication. Again, we find Latin Square in Galois Field

multiplication.

207

a \
0
1
2

0
0
1

2

1
1
2

0

2
2

0
1

+

aN
0
1
2

0
0
0
0

1
0

2
0

4 2s

^ \
* Latin square

(a) (b)

Figure 4.1.1: (a) GF(3) Logic operators Table of Galois Field addition for 3-valued
variables (GF(3)add). It is Latin Square (b) Table of Galois Field multiplication for
3-valued variables (GF(3) *).

Here in Figure 4.1.2a we showed the Galois Field addition for 4-valued variables.

Galois Addition here we have to calculate as the Boolean vector exoring. For example,

if we have vectors (0,1) and (0,1), then we need to do exoring bit-by-bit which

produces a 0 for adding the 1 and 1 arguments. As like Galois Field Multiplication

for 4 variables in Figure 4.1.2b, also creates a Latin Square - non-zero values. The

multiplication operation is defined to satisfy all GF axioms together with the addition

operation.

a \ 0 1 2 3
0
1
2
3 i ^

(a)

0
1

2

3

1

0

3
2

2

3

0
1

3
2

1

0

a \ % 1 2 3

0 0 0 0 0

0 215
0 _ 2 | 1 y

o"VT7 \
—L_iL—J^U i -(b)

Latin square

Figure 4.1.2: GF(4) Logic operators, (a) Table of Galois Field addition for 4
variables (GF(4)add). It is a Latin Square, (b) Table of Galois Field
multiplication for 4-valued variables (GF(3)*). It is not a Latin Square but it
includes a Latin Square.

208

We found that all binary logic synthesis methods from this thesis can be

extended to arbitrary Galois Fields but this is not a subject of this thesis.

4.2. Binary Reed-Muller Logic.

The Reed-Muller Hierarchy is well known from the literature (called also Green

hierarchy or Green-Sasao hierarchy) [Sasao97fj. Such circuits have desirable

properties including: 1) requiring fewer product terms for many classes of functions

[Dill97] and 2) desirable testing properties [Biamonte04, Biamonte05, Biamonte05b,

Perkowski07, Pierce05]. Here only a limited review of the definitions useful for this

thesis and the hierarchy of forms will be presented. There are several different

classifications of AND-EXOR expressions [Sasao90a]. All Reed-Muller forms are

canonical, as there exists only one function expression (called the form) for the given

polarity of variables. The general expression for several Reed-Muller forms

(including GRM, FPRM and PPRM) is given as follows:

f(xi,x2, ..., x„) = ao ®a]Xj ©012X2 0...@a„Xn Qa^X^ Qaj^XjX^ ...0an.

l,r^n-lxn ®a12...nxlx2x3-xn

where, a's are binary constants and X; are literals, X; = Xj or x;'.

Function expansions are the basis for the derivation of the hierarchy of logic families.

The Shannon, Positive Davio, and Negative Davio are well known [Sasaol] and we
209

discussed them in Chapter 3 as the fundament of this thesis. Here we repeat the

formulas for reader's convenience. Given an arbitrary logic function, f(xj, %2, x^,...,

Xyj), where the cofactors are fg = f(0, xj, X3,..., x^), and fj=f(l, X2, X3,..., x^, and

Boolean difference is/2 =/0 ®fb these expansions are recalled as follows.

Positive Davio Expansion: f=l*fQQxi*f2 =f0®xif2

NegativeDavioExpansion: f= l*fi © xl*f2 =fi © x\f2

Shannon Expansion: / = x\fo (Bxrfi

The following definitions describe each of the specific forms within the Reed-Muller

Hierarchy. The above expansions can be generalized to expansions with respect to

groups of binary variables and to expansions for Galois Fields.

The most restrictive form in the binary classification is the Positive Polarity Reed-

Muller (PPRM) expression form. This type of equation is canonical, with less than or

equal to 2 n products of only positive literals. It is more formally defined as follows.

Definition 4.2.1: The Positive Polarity Reed-Muller Form (PPRM) is a Reed-Muller

expression in which all literals of variables are expressed with positive polarities. The

expansion tree [Sasao89] is given in Figure 4.2.1.

210

PD,

V
W)

\ X 3

'002

V
T020

\ \ X 3

*002

V
f022

\ X 3

f200

V
f202

\ \ X 3

*222

Figure 4.2.1: Expansion tree for the Positive Davio Expansions.

f = ab®a c@abc

1 a Expansion
variable a

b®c®bc
u Expansion

variable b

y \ c Expansion
1 ' \ variable c

Figure 4.2.2: An Example of using positive Davio expansions to calculate the
expansion tree for order of variables a, b, c.

It can be verified by exoring all branches in Figure 4.2.2 leading to " 1 " , thus

f = c®b®bc®ac®abc = ca®b{\ ®c®ac) = ca®b(\®ca) = ca®b{a®ac) = ca®ab®abc = f

combining isomorphic nodes the tree is converted to a decision diagram DD

[Sasao93e].

211

Example 4.2.1: Given is f = ab®ac®abc. The tree expanded using only positive

Davio expansions is shown in Figure 4.2.2. The multilevel circuit corresponding to

this tree is given in Figure 4.2.3. After flattening the tree, one obtains

f = c®b©bc®ac®abc .

i
e)
f=c$/>$bc$ ac® abe)

04 T 1"
6) f f "-
c) — # 1 — < > <>-
0} q? (p Q (p '6

Figure 4.2.3: The PPRMform realized as a quantum array using Feynman and Toffoli
gates for the function f = c®b®bc®ac®abc from Figure 4.2.2.

Example 4.2.2: An example PPRM is given:

f(X], X2, Xi) =Xi ®X2 ®X} ®XiX2 ©X2X3 ®X}X3 ©X1X2X3

The classical diagram for this function is drawn in Figure 4.2.4a and its corresponding

quantum array is presented in Figure 4.2.4b.

3^
J ^ > - f(XuX2,X3)

(a)

212

(b)
|0) -<$ 9 © 0 Q d)

Figure 4.2.4: Circuits for Example 4.2.2. (a) The PPRM circuit as a classical
diagram, (b) PPRM form realized as a quantum array using Feynman gates and
unrestricted Toffoli gates.

Another form in the classification for AND-EXOR equations is the Fixed Polarity

Reed-Muller (FPRM) form which includes the PPRM types of expressions (forms) as

a special case. The FPRM expression can contain either positive or negative literals

for each variable, but not a mixture of product terms with various polarities of the

same variable. This FPRM expression is canonical, having unique coefficients, and

usually requires fewer terms than the PPRM form, but can never have more terms.

Because of a low cost of inverters (realized in quantum as single Pauli X rotations) in

all quantum technologies the optimal FPRM is always not worse (in most cases better)

than the PPRM form, at least it is so far the single output functions.

Definition 4.2.2: The Fixed Polarity Reed-Muller Form (FPRM) is defined as a Reed-

Muller expression in which all the literals of a variable can be either positive or

negative, but cannot exist in both polarities.

213

Example 4.2.3: An example of a FPRM is given.

f{x\, X2, X3) - x\ ®X2 ©X3 ®x~i X2 ®X2 X3 ®x\ X3 ®x\ X2 X3

The variables xi and X3 have negative polarities, while x2 has a positive polarity

throughout the expression (Figure 4.2.5). Two Quantum arrays for two different

polarities are shown in Figure 4.2.5c.

(a)

^ 1
not used

< not used
< not used

T>i

D
f (X i , X 2 , X 3)

21}

22)

|0>

(b)

" tjv "

-©- VVRM -e-
*

ar2)
* s > — ^ VVRM -9-

(c)

Figure 4.2.5: FPRM forms and their diagrams: (a) classical schematics of FPRM
from Example 4.2.3, (b) The realization of the function from Example 4.2.3 as a
schematic quantum array; the PPRM in the box realizes function

here X\=xi, X2 = X2, X3 = ^3 . (c) the circuit for negative
polarity FPRM form.

214

Given an arbitrary Reed-Muller Expression, to formulate the FPRM form, either

Positive or Negative Davio Expansions are substituted for each variable x[(i = 1, 2, 3,

..., n) in subsequent expansions.

Example 4.2.4: The FPRM form is derived for the two-level AND-EXOR expression

[Sasao81] given below:

f(Xl, X2, Xit X4) = X1X2X3X4 0 X\ X2 X3 X4

Variables xi and X2 should have positive polarity and variables X3 and X4 should have

negative polarity. The circuit should be minimized not as an oracle.

Substitutions for variables, with identity expressions, are made as follows:

x~i = xi e 1

*2 = x2 © 1

x3 = *3 © 1

X4 = M © 1

Thus,

f(xu x2, x3, x4) = x 1X2X3X4 69 *i x2 x3 x4

f(xhx2,x3,x4) =xix2(X3 ei)*(M ei) @(xi ei)(x2 ei) *3 M

f(xh x2, x3, x4) =xix2 (1 & *3 ®H 69*3 M) ®(1 Qxi 0x2 <9xix2) *3 H

215

f(xi, x2, x3, x4) = xjx2 ®xix2
 x3 ®xix2

 x4 ® x3 x4 9xi x3 x4 0x2
 x3 x4

This FPRM form with negative polarities of variables X3 and X4 is realized as a

quantum array in Figure 4.2.6.

M
10} ^ 9 9 $ $ fe

Figure 4.2.6: The quantum array of the FPRM form derived in Example 4.2.4 (not an
oracle).

In Figure 4.2.6 variables X3 and X4 are not restored and remain negated. Observe that

outputs X3 and X4 have inverted values. This is not acceptable if the whole circuit is

used as a single oracle in which case every input variable must be repeated in

unchanged form on the oracle's output to be measured together. It is however

acceptable in a circuit being a sub-block of an oracle.

Definition 4.2.3: The Kronecker Reed-Muller Form (KRO), KRM is derived by the

application of the Shannon, Positive Davio, or Negative Davio Expansions, with the

restriction that only one type of expansion can be applied per level in the ordered tree

(one variable per level).

216

Example 4.2.5:

An example of a general KRO expansion Tree [Sasao86] is shown in Figure 4.2.7. A

KRO tree for function f = ab+(c®ab) is given in Figure 4.2.8a. The flattened KRO

form obtained from this tree is given in Figure 4.2.8b.

Figure 4.2.7: A general form of a KRO Expansion Tree. In this case Shannon
Expansion is applied to variable xj, positive Davio Expansion is applied to variable X2
and Negative Davio Expansion is applied to variable X3.

f = ab + (c®ab)

a-> Shannon

b ^ p D

c-> nD

b+(c®0)=b+c

1 / \ b

(a)

217

(b) a@ac@ab@a®ac®abc

CP f <P

(c)
0 - - # vp

- $ -

4 &

^ 6
c

/

Figure 4.2.8: An oracle for a KRO expansion, (a) A practical Example of KRO
Expansion Tree using Shannon Expansion, Positive Davio and Negative Davio
Expansion in order of variables a, b,c, (b) the flat KRO equation form obtained from
this tree, (c)The quantum array obtained directly from this
tree: a(b®c)®a(b+c) = a(b®c)® ab®abc . Mirror added to restore input c. Observe that
all inputs are restored as this is an oracle.

An algebraic expression can be constructed from an expansion tree by combining the

coefficients for each expansion, with Boolean multiplication along each branch to the

leaf, and then combining the branches (product terms) with the exclusive-or operation.

Example 4.2.7: Write the algebraic expression for the example KRO Expansion tree

shown in Figure 4.2.7.

f(Xj, X2, X3) =X*1* l*fooi 0 * 1 * 1 **3 *f002 &X\ *X 2* 1 * f021 0 * 1 * * 2 **13 *

f022 0X1*1*1 *f,0J ®Xi*l*X3 *fl02 ^Xi *X2*l*fl21 ®Xi*X2 * *3 *fm

The quantum array can be drawn from the above expression after substituting the

values offjk with binary constants 0, 1.

218

Definition 4.2.4: The Pseudo Reed-Muller Form (PSDRM) is obtained by applying

the Positive Davio and Negative Davio Expansions, but with different expansions for

each sub-function, as desired. This means that observing the expansion tree for the

PSDRM, either the Positive or Negative Davio expansions are applied at will,

regardless of the node or level of the tree, and different types of expansions may be

used for the same variable [Sasao94].

Example 4.2.8:

An example of a PSDRM Expansion Tree is given in Figure 4.2.9. In this tree, each

level consists of both Positive and Negative Davio Expansions.

x,'

'01 ' 2 0 /

nD '222

A l\
y\" 1 \
1

•oioo '0102 '0120

1 / S

"0210

'0122

^
f0212 '0221

x;

^0222

A \
y *4 y W

/
^2010 '2012 '2021 '2022

Vs

'2201

s * ; *

'2202

X •v"""""-
'2221

& •

T 2 2 2 2

Figure 4.2.9: An Example of a PSDRM tree.

219

Example 4.2.9: For the function/(x/, %2, x?, X4) = JC/ X2 X3 x4 © x\ x2 ^3 x4) the

particular PSDRM form described by the tree in Figure 4.2.9 can be applied to

produce the expansion tree shown in Figure 4.2.10 below [Sasao95f]. The Expression

obtained by flattening the tree from Figure 4.2.9 is the following:

X2 XT, ©X1X3 X4 ffixjX2JC4 ©X1X2X3 .

3
0 (nf j)

1 / S

0 I

0

NXj'

nD)

1

0 1

Figure 4.2.10: The PSDRM tree for f(x1,x2,X3,x4) = *i*2x3x3 ©*i*2*3x4 in which

has the flattened PSDRM form of x2 x3 ©xjx3 x4 © x ^ ^ ©*lx2*3 .

The quantum array corresponding to the flattened expression is shown in Figure

4.2.11. It is an oracle.

N)
ka}

I x4)

|0>

-$- -0-

-9-
-e-

-$-

e—$ -e- - *

Figure 4.2.11: The quantum array for the flattened PSDRM form from Example 4.2.9.

220

Definition 4.2.5: The Pseudo-Kronecker Reed-Muller Form (PSDKRO) is derived by

the application of any subset of Shannon, Positive Davio, and Negative Davio

Expansions in an expansion tree level, but the tree is ordered (with the same order of

variables for each branch). Herein, the tree is defined and introduced as desired.

Definition 4.2.6: The Free Kronecker Reed-Muller Form (FKRM) is not canonical

and is derived by the application of the Shannon, Positive Davio, and Negative Davio

Expansions, without restrictions and with no ordering of variables.

As may be recalled, while more restrictive than the Exclusive-Or Sum-of-Products

(ESOP) expression, the GRM form incorporates the Fixed-Polarity Reed-Muller

(FPRM) and the Positive Polarity Reed-Muller (PPRM) Forms as its special cases. Of

course, the GRM is canonical for each of its polarities.

Definition 4.2.7: The Generalized Reed-Muller Form (GRM) is a general, canonical

expression of the Exclusive-Or-Sum-of-Products type, in which for every subset of

input variables, there exists at most one term with any arbitrary polarities of all

variables. Thus for an n-variable function there are r^n-1 literals and 2n2A(n-l)

polarities. The GRM expansion of an n-variable function is shown as:

f(xi, X2, ..., xn) = ag ®ajX] 0... ®anXn 0aj2Xi X2 ®a13Xi X$ Q... (D a„(n.i)

XnXn_1®...®a12_nX1X2...Xn

221

Where,

X can be expressed either as a positive literal x, or a negative literal x;'

x = (x e 8)

8 = 0/1 for positive/negative polarity

a; = coefficient of X;, and can be 0 or 1

Example 4.2.10: An example of a GRM is given as f(xj, X2, xs) = x\ 0xiX2 (B x3 0

xix2x3.

The quantum array corresponding to this expression is shown in Figure 4.2.12. As we

see, the quantum array for GRM can be represented as a concatenation of arrays for

certain FPRMs. This observation can be used to create efficient iterative algorithms

that find the best FPRMs for the remainder sub-functions of the initial function and

concatenate them.

23> - + -

|0> (D 0

-4 1-

1 1 J.

-=>-$-

9—®
L _ _ J L _ _

-I-©-

_1

FPRM1 FPRM2

Figure 4.2.12: The quantum array oracle for the Generalized Reed Muller form of the
function from example 4.2.10.

Finally, the most general classification of AND-EXOR equations, including the

PPRMs, FPRMs, and GRMs classifications, is the Exclusive-Or-Sum-of-Products

222

(ESOP) expression. Because the ESOP form is not a canonical expression, there are

no restrictions on the terms in its expression. Defined loosely, it is an expression

simply consisting of arbitrary product terms with arbitrary literals, negated or not,

combined with the EXOR operations.

Definition 4.2.8: The Exclusive-Or-Sum-of-Products expression (ESOP) is a non-

canonical form in which arbitrary product terms are combined using EXOR logic

gates [Sasao94].

The relations between the classical, binary Reed-Muller expressions are shown in

Figure 4.2.13. (This does not include Zhegalkin forms.) The forms illustrated in this

diagram have the following inclusion relations: (1) PPRM <z FPRM, (2) FPRM e

PSDRM, (3) FPRM c KRO, (4) KRO c PSDKRO, (5) PSDRM c PSDKRO, (6)

PSDKRO c FKRM, and (7) PSDRM c GRM. (Note that the GRM Form, while still

canonical, usually requires nearly as few terms as the ESOP Form.) The families of

expressions shown in dashed lines, FKRM and ESOP, are not canonical.

223

Figure 4.2.13: The hierarchy of the popularly known canonical forms and
AND/EXOR expressions. This is also called Green hierarchy or Green-Sasao
hierarchy.

A subset of the Reed-Muller Hierarchy is given with corresponding expansions, trees,

decision diagrams, and forms in Figure 4.2.14.

Expansion
Shannon
Expansion (S)

Positive Davio
Expansion (pD)

Shannon, Positive and
Negative Davio
(S, pD, nD) (But only
one type of expan
sion per level)

Shannon, Positive,
and Negative Davio
(S, pD, nD) (But any
subset in every level)

Shannon, Positive,
and Negative Davio
(S, pD, nD) (No order
of Variables)

Tree
Shannon Tree

Positive Davio Tree

Kronecker Tree

Pseudo- Kronecker Tree

Free Kronecker Tree

Diagram
Binary Decision
Diagram (BDD)

Functional Decision
Diagram (FDD)

Kronecker Decision
Diagram (KDD)

Pseudo- Kronecker
Decision Diagram
(PKDD)

Free Kronecker
Decision Diagram
(FKDD)

Form
Sum-of- Product
Canonical Form

Positive Polarity
Reed- Muller Form (PPRM)

Kronecker Reed- Muller
Form (KRM)

Pseudo- Kronecker
Reed- Muller Form
(PKRM)

Free Kronecker
Reed- Muller Form
(FKRM)

Figure 4.2.14: Classical, Green-Sasao hierarchy of Reed-Muller binary trees,
diagrams and expansions

224

As previous research has shown, the relations of these forms in the Reed-Muller

Hierarchy correspond directly to and have counterparts in the Zhegalkin

[Perkowski97b] and Galois Field Hierarchies [DM97, Dill97a, Dill97b, Dill97c]. The

Zhegalkin Hierarchy includes all (including Reed-Muller) AND/EXOR canonical

forms (also trees, decision diagrams, and expansions), both presently known and those

that may be developed in the future, which are created by linearly independent,

AND/EXOR expansions (i.e. Shannon, Positive and Negative Davio, GRMs, etc.).

For each of structures in Figure 4.2.14 a corresponding quantum array can be created.

The examples given so far should convince the reader that the above statement is true.

4.3. Representation of AND/EXOR Logic - The Polarity Maps

As we have seen, the concept of polarity is very useful for synthesis of AND/EXOR

forms. The problem is, how can we systematically find all 2n FPRMS for a given

function F. There are several methods known from the literature to achieve this task,

for instance using butterfly diagrams or matrix multiplication, but faithful to our

graphical approach from this thesis, I will show the graphical, methods based on the

Exor Maps introduced originally by Tran [Tran89]. My method presented here is

simpler and more intuitive. All the FPRM forms can be generated by changing the

polarities of the variable in the PPRM Exor Map, one variable at a time.

225

For each of 2n maps we can use EXOR rules to factorize or resynthesize the

expression from the map in the best possible way.

• > n _ n 3
All 2n = T = 8 FPRMs for 3 variables are shown in Figure 4.3.1 below:

abN

Polarity 000

1

00
01
11
10

Polarity 100

ab

abN

Polarity 001

1 abN

Polarity 010

1

Polarity 101 Polarity 110

abN

Polarity 011

0 1

,1

h
ab
a

c

be

abc
ac

00
01
11
10

1

b
ab
a

c

be
"ab c
a' c

00
01
11
10

1

b

ab
a

c
be

~ab~c

~a~c

00
01
11
10

1

b
ab

a

c
be

a be
flC

Polarity 111

N!

00

01

11

10

0

1

b
3b

a

1

c

be

abc
a c

abX

00

01

11

10

0

1

b
3b

a

1

c

j c

ah~c

ac

abX

00

01

11

10

0

1

b

ab

a

1

c
be

abc

a c

abX

00

01

11

10

0

1

b

ab

a

1

c

be

abc

, ac

Figure 4.3.1: The Exor Maps for all FPRMpolarities for functions of three variables.

Observe that the sets of variables are the same in all corresponding cells of these

maps, but the variables are negated or not in them, according to the respective

(consistent or "fixed") polarity. Now our question is how to transform the same

function to find its representation in a new polarity, knowing the representation of this

function in the previous polarity.

226

The transformation rules for variables in product terms are the following:

Transformation rule

X^O(forpolarity=l)

X ^ l (for polarity=0)

1->1 (forpolarity=l)

1^0 (for polarity-0)

O^X (for polarity 0 or 1)

4.3.1. Transforming a KMap to an EXOR Map.

If f is the Exor Map function and x is the KMap function and p is the polarity of the

Exor Map then Exor Map function can be generated from the KMap function using the

following rules

Rule-1: F;=X ifx;=0

Rule-2: F;= p; ifx;=l

Rule-3: Fi=p;' ifx;=X

Note: Reduction of the Kmap may be extended using the ESOP minimization, before

applying the transformation rules.

227

Proof for Rule-1

In the Exor Map for any polarity the position 000.. .0 in it is always XXX...X

Whereas in Kmap it is always 000.. .0

Therefore the transformation rule is: 0-> X

Proof for Rule-2

In the exor map for any polarity the position 111 1 it is always the same as the

polarity,

Whereas in Kmap it is always 111... 1

So the transformation rule is

1 -M (for polarity= 1)

1^0(forpolarity=0)

Therefore it is the same as the polarity.

Proof for Rule-3

Let us consider first an example.

Example 4.4.1 :

Given is the Exor Map in polarity abc from Figure 4.3.2.

228

1
b

ab

~a

c
be

a be
a c

a b \ 0
00
01
11
10

Figure 4.3.2: Exor Map for polarity ab c.

From KMap

F=b

=X1X

Using transformation rules

Polarity of the Exor map: Oil

X1X-M10

From the Exor Map we obtain

F=b0 be 0 a'b 0 a'be

=abc'

=110

From the above example it can be inferred that symbol X from the KMap are

converted to 0 if the polarity of the variable is one and to 1 if the polarity of the

variable is 0, which is nothing but the negation of the polarity values. End of proof.

229

Example 4.3.2:

Here we give a complete example of this kind of transformations for a function from a

PPRM as in Figure 3.3.3a to another FPRMs of another polarities.

00
01
11
10

0 1
0

0
0

0

0
0
1

0

at)
00
01
11
10

0

a b c

abc

ab c

ab c

ab c

a be

abc
abc

(a) (b)

Figure 4.3.3: Representations of Example 4.3.2. (a) Positive polarity Exor Map
representing function f = abc. (b) Symbolic representation of standard minterms in a
standard Kmap.

We explain in brief how we transform from polarity 111 of function / = abc. Figure

4.3.3(b) gives a symbolic representation of minterms as products of literals in a KMap

for Figure 4.3.3a assumes polarity 111 (a = 1, b = 1, c = 1). Figure 4.3.3(a) is the

Exor Map that represents the function as a set of its minterms. Each cell is a positive

polarity product. Here in Figure 4.3.4 we go systematically in Gray code through the

polarities of 111, 101 and 100 and using the transformation rules we find the Exor

Maps of f for their corresponding polarities.

230

Polarity 100 Polarity 101 Polarity 111

a b \ 0

00

01

10

1 ab" 0 1 abN

f=a®ac®ab®abc f = ac® abc

0 1
0

0

1

1

0

0

1

1

00

01

* 11
10

0

0

0

0

0

0

1

1

00

01

" 11
10

0

0

0

0

0

0

1

0

f= abc

Figure 4.3.4: Visual Transformation of FPRM from Example 3.4.2 in different
polarities, (111), (101) and (100). Similarly all FPRMs can be generated changing a
polarity of one variable at a time.

4. 4. Gray-code based systematic generation of all FPRM forms.

abc _ abc

000 C->C 001

abc / ~ ^s
M—£j^e r

010 „ A , . 0 1 1

a^>a

110_

abc

abc,

abc

<—c<\ c
'100

abc
101

b^b

111
abc

a b \

00

01

11

10

ooekkoot
01CE—oir
iid<—an
10Qg-[—10 f

(a) (b)

Figure 4.4.1: Hamming distance 1 path (HD1 path) through all nodes in a 3-
dimensional hypercube.

231

In this section we denote polarities as binary numbers and not decimal numbers, for

simplification.

Figure 4.4.1a presents all polarities of 3 variables as nodes of a hypercube. We want to

go through all polarities in Figure 4.4.1a. It means we go through all nodes with

Hamming Distance 1 (HD1) in the hypercube graph. The black arrows show the

sequence of nodes (a loop) with Hamming distance (HD) of 1 between any two

neighbors. Figure 4.4.1b does the same using the KMap corresponding to this

hypercube. Figure 4.4.2 illustrates that the changes are in only one bit each and the

polarities are in the Gray code sequence. This is the way we exhaustively search all

polarities.

As we know, there are several advantages of the exhaustive search:

a) It can be applied to find exact solutions for small functions; this is useful to

create and evaluate approximate algorithms for the same task.

b) It helps to understand the structure of the problems.

c) It can be solved by classical or quantum search relatively easily.

This is why I devote so much attention to exhaustive search in my thesis.

232

Figure 4.4.2: A sequence ofHDl polarity Exor Maps for the exact minimum FPRM
generation. We start with polarity 000 and end up with polarity 100. The
transformation a->a at the right is thus not executed.

Each box in Figure 4.4.2 represents an Exor Map (or in general any functional

description) in the given polarity. This Figure illustrates how the Gray code sequence

from the hypercube is used to generate all polarity Exor Maps, each based on the

previous Exor Map only. Another, more detailed, illustration of polarity search is

given in Figure 4.4.3.

233

a b \
00
01

11
10

a b \
00

01
11
10

0
1

r
a b

a

1

C

Yc

abc

a c

000

0 t«!
1

b

a~b

a

c

be

abc

ac

a b \

00

01

11

10

a b ^

00

'_ 01

~ 11

10

1

T
ab

a

C

be

abc

a c

001

0 1

1

b

ab~

a

c

be

abc
ac

a b \

00

01

11

10

a b ^

00
_ 01

~ 11
10

1

b

7b

a

c

be
abc

a c

011

0 1
1

b

ab
a

c

be

abc
ac

a b \

00

01

11

10

a b ^

00

:_ 01

11

10

1

b

7b

a

c

be

abc

a c

010

0 T 1

1

b

ab
a

c

b~c

abc

a c

100 101 111 110

Figure 4.4.3: Graphical method to obtain function F for new polarity FPRMfrom the
previous polarity FPRM while looping through Exor Maps of all polarities in Gray
code. This Figure represents the same idea as Figure 4.4.2 and illustrates the very
powerful concept of polarity search which is one of the fundaments of my thesis.

The FPRM with the smallest number of terms for forms with all these polarities is the

exact minimum (term-wise) FPRM for function F.

4. 5. Tree search methods for the generation of a heuristic subset of

FPRM forms.

While the method from section 4.4 generates the exact minimum FPRM, it can not be

applied to large functions. Thus we explain the tree search method based on greedy

(partial) search through the nodes of the hypercube of polarities.

234

000 001

/

"
/ l O O

/
011

110 111

Figure 4.5.1: The (partial) tree search in the hypercube with polarities as nodes.

In section 4.4 we traversed systematically in Gray code through all polarities. But

here we started from certain point 000 in Figure 4.5.1, and we find three candidate

polarities (001,010 and 001) as per Gray code Hamming Distance of 1. It is the Tree

search method, only for the subsets of hypercube nodes. This is the whole idea, we are

not going through all polarities exhaustively as in section 4.4. If we can generate all,

that method will be better, but normally using a tree search method we will generate

only a subset. The search is greedy, i.e. opportunistic. Using the gradient of the cost

(quality) function, we go through these sub-hypercubes where the cost function is

locally minimal. Example 4.5.1 and Example 4.5.2 explain the Tree search method in

details.

Example 4.5.1:

Given is function fas on top of Figure 4.5.2 in initial polarity 000. We check all HD1

polarities 001, 010 and 100. The FPRM for each of them has 8 terms. Thus we select

235

randomly the polarity 001. (Figure 4.6.2 shows the expansion only for this polarity)

Now starting from polarity 001 (greedy search) we generate its HD1 polarities (not yet

used) Oil and 101. The FPRMs in them have both costs of 4 terms. Thus any of these,

say 011 is selected. The only remaining HD1 polarity of 011 is 111. The FPRM for

polarity 111 is found which has 1 term.

f=\®a®b®c®ab®ac®bc®abc

4 terms 001

000 8 terms

010 4 terms 1 0 0 4 terms

f=l®a®(l®b)®c®d[\®b)®ac®(\®b)c®d(l®b)c

=b®ab®bc®abc

2 terms 011

111

101

1 term

2 terms

Figure 4.5.2: The Tree search corresponding to the sub tree for polarities from Figure
4.5.1. The FPRM equations for nodes 010, 100, 011, 101 and 111 are not shown to
simplify the figure.

Example 4.5.2:

Given is function f=\®a®b®ab.

236

f=\®a®b®ab
4 terms

f=\®a®([®b)®ct\®b) f=l®Q.®a)®b®(l®a)b

= b®ab 2 terms =a®ab

00

f=b®d}=b®^®^b=ab 1 t e r m

Figure 4.5.3: Tree (this time exhaustive) that visually illustrates the tree search for
Example 4.5.2. The binary polarities of expansions are inside boxes. An equation is
given to help the reader to analyze the tree.

The Figure 4.5.2 visually explains the Tree search method for the function

f=\®a®b~®c®a~b®ac®bc®abc and the Figure 4.5.3 explains visually the Tree search

method for the function f=\®a®b®ab. The Tree search method starts from a certain

node or polarity and then systematically goes through the neighbors of that particular

node (polarity). In Figure 4.5.3, we started from polarity 11 for the

function f=\®a®b®ab, and we are changing variable b to reach polarity node 10 and

changing variable a to reach polarity node 01 as in Figure 4.5.3. The search algorithm

works in one-bit changes, hence it changes one polarity to other HD1 polarity. This

way our algorithm works. In Figure 4.5.3 we found that the polarity node 11 has 4

terms and for polarity node 10 and 01 the nodes have only two terms and the polarity

00 has only 1 term. So, we found the local minimum cost, the minimum number of

terms in FPRM expression f = ab realizing the function f=\® a® b® ab .

Same as in Figure 4.5.2, which realizes the function f=\®a®b®c®ab®ac®bc®abc
237

at starting polarity node in our example is 000 with 8 terms, then it changes to polarity

node 001 which have 4 terms, which means, the polarity node 001 has smaller cost.

Thus we can expand other nodes as per our greedy or systematic tree search using the

heuristic subset of FPRM polarities. Now we can say that if we compare the method

with traversing through all FPRM forms, in the worst case, this tree search algorithm

will generate all polarities (but it is not worthy). Observe that for large functions of the

real life, we always want to generate the subset based on the cost function. That

means, where we expect the minimum cost, but we are looking for a local minimum

only.

4. 6. Evolutionary generation of FPRM forms.

Initial
Polarities

Child 1

Parent 1

0 0 1 0

Crossover

0 0 1
£

0

Parent 2

0 1

0 1

1 0

1 0 Child 2

Figure 4.6.1: Evolutionary Generation of FPRM forms in various polarities. Parents
and children in the genotype are polarities as binary numbers. The phenotypes are
FPRM circuits corresponding to these polarities.

238

Our Evolutionary algorithm outlined in chapter 3 was randomly executing crossovers

and mutations, which means, we create something, which may be a solution or not.

So, our chromosomes can describe the entirely incorrect circuits. However, polarity

based generation of evolutionary FPRM forms introduced here by me creates always

correct solutions. Now, let's say, in Figure 4.6.1, we have the polarity 0010 of the

mother chromosome and the polarity 0110 of the father chromosome. By crossover we

take from mother the 00 and from father we take 10 which creates the string

chromosome (0010) same as mother, nothing new. Our other child polarity (0110) is

new, but it may be a polarity leading to more expensive phenotypes than the parents.

When we are operating on polarities, each of the solutions is correct. Fact is that we

can generate more expensive polarity. Now that the chromosomes are polarities, we do

crossover and mutation same as before. But now every chromosome describes a

correct circuit. Whether the cost is better or worse, we do not know. So, we still have

to calculate the cost function but every solution is correct. This is the difference of our

evolutionary approach with respect to the previous GA approaches. Because, if we are

using Genetic algorithm to polarities as a genotype, we are always within the space of

correct solutions. We are not creating nonsensical circuits. This simple idea leads in

my algorithm from chapter 8 to big cost improvements for solutions.

239

4.7. The concept of Distance Gates.

In the new distance gate concept, we are systematically creating all possible functions

in K-map for a particular Hamming distance between two minterms. It only changes

the specific positions in KMap of the reversible function where we are permutating

numbers, all other input vectors are the same as output vectors. This is the concept of

the "distance gate". We can create pattern by changing order of variables and also by

negating the inputs. Here we will explain formations of all possible distance 1 Toffoli

gates. Our plan is to answer these questions:

How many distance-1 gate exists for 3-variable functions?

How each of them can be realized by inverting each inputs and outputs to the

Toffoli gate?

Generalize to n input functions.

Toffoli gate

a

b
c

a

h

c $ ab

a?o\ 0

00
01
11
10

000

010

CTTi
100

001

011
1ISi
101

Cube ab

Figure 4.7.1: Toffoli gate is HD1 gate permuting inside cube ab.

240

As seen in Figure 4.7.1, the Toffoli gate with EXOR in the bottom qubit is the

distance 1 (HD1) gate for minterms 110 and 11 l(a cube 1IX). It permutes only inside

this cube keeping all other cells with no change.

Inverting input a

a

b
c

k\)

4

-& a

b

00

01

11

10

0

000

011

110

100

001

°i^
111

101
Cube a b

Figure 4.7.2: The Toffoli-like HD1 gate permuting inside cube a b.

As we see in Figure 4.7.2 by inverting a single input a we still have a distance gate but

the pair of affected minterms shifted to the cube 01X. <

Inverting input b

c 4>
•«P-

a

b

c$&ab

at)

00

01

11

10

0

000
010
110

Cjp1

001
011
111
10ĝ

Figure 4.7.3: Toffoli-like HD1 gate permutting inside cube a b .

241

Negating variable b creates the cube 10X for minterms 100 and 101 as in Figure 4.7.3.

Inverting input a and b

b^$-
4ft
4—t $ -

a

b

e(B~ab

00
01

11

10

0

C§oi
010

110

100

ocg:
011

111

101

Figure 4.7.4: Toffoli-like HD1 gate permutting inside cube a b

Swapping input a and c

c
b
a £ $ -

c

b
a® be

00

01

11

10

0

000

010

110

100

001

A11N
vpiy
101

Figure 4.7.5: Toffoli-like HD1 gate permutting inside cube be.

Inverting input b

c

b
a

•<P-

-6
-̂ f̂ "

a © fee

a b \

00

01

11

10

000

010

110

100

goiy
011
111

^ 0 ^

Figure 4.7.6: Toffoli-like HD1 gate permutting inside cube b c.

242

Inverting input c

c
b
a

- 4&-

-0-

c

b
a (B eh

00

01

0

000

7TW\

10

11 k01CM

"100

001

011

111

101

Figure 4.7.7: Toffoli-like HD1 gate permutting inside cube b c.

Inverting input b and c

c

b

a

- $ -

-0

-&

a fcb ci

b \
00
01
11
10

0

vioqy
010
110

^00^

1
001
011
111
101

Figure 4.7.8: Toffoli-like HD1 gate permutting inside cube b c

Swapping input b and c

-& fc® ac

a b ^ 0

00

01

11

10

000
010
110
100

001
011

^ioTN
\iiiy

Figure 4.7.9: Toffoli-like HD1 gate permutting inside cube ac.

243

file:///iiiy

Inverting input a

^~ -&

-<fc-

a

e

6® ae

ab\

00
01
11
10

0 1

000
010
110
100

^JiiN
vpoiy
111
101

•a

c

6

Figure 4.7.10: Toffoli-like HD1 gate permutting inside cube a c.

As illustrated visually in Figures 4.7.1 - 4.7.10, HD1 gates change in specific

numbers of their respective KMap only. We found the general explanation that all

those circuits in Figures 4.7.1 - 4.7.10 systematically generated only by executing

permutation of two cells in the KMap, all other cells remain unchanged. This means

that we are always doing some local replacement of two numbers. And all other

numbers remain the same. This observation is very important for our new synthesis

methods (chapters 7 - 9). We call this distance one gate, Hamming distance one.

Now, the main idea is that we found HD1 the pattern in KMaps, thus we can build

also a distance 2 gate for 3 variables (The HD2 gate). Which is shown below in

Figure 4.7.11.

244

b
c

-9- f

Figure 4.7.11: The gate for f = a(b®c)is a simple distance-2 gate (HD2 gate) with
no restoration of inputs.

at>\ 00 01 11 10
a — 9 *-

b Cp f Cp

d—m- MJ

00
01
11
10

L1S

Distance 2

Figure 4.7.12: Toffoli gate surrounded by linear gates creates a distance 2 gate for
four variables.

a
c

d —i

w-

- #

• \ H ' ~

4 ^ £

a t>\00 01 11 10
00

01
11
10

n?
2 <L.

Distance 2

Figure 4.7.13: Changing the order of variables in Figure 4.7.12 creates another
distance 2 gate as can be verified in the corresponding KMap.

This interesting distance-2 gate can be also recognized as a pattern in KMaps.

Software should find these patterns in order to synthesize quantum circuits. Other,

more complex example of gates with higher Hamming distances are shown in Figure

245

4.7.12 and Figure 4.7.13. The linear gates that surround Toffoli gate will be called pre-

and post-processor and will find many applications in my thesis.

4. 8. Conclusion on generation of FPRM and similar forms.

Concluding this chapter: Based on literature, we introduced the concept of the

algebraic group that is fundamental to all our synthesis methods and next we

introduced the Fixed Polarity Reed Muller forms that are well known and allow to

create algorithms relatively easily. These forms allow to explain the concept of

polarity well, especially that this concept is not well explained in literature for higher

order forms. Based on our explanation of polarity for FPRM it will be relatively easy

to extend this concept for higher order AND/EXOR forms and other (Linearly

Independent) forms. This will be done in chapters 7, 8 and 9. We introduced also

Kronecker forms and Generalized Reed Muller forms which will be of our interest in

next chapters. Finally we showed the concept of polarity Exor Maps that is a base of

extending all algorithms from one polarity to all polarities. We showed that many

algorithms for FPRM (and other forms) belong to three categories:

1. Exhaustive search based on linear (ring) transversal through all polarities.

These methods are based on butterflies and polarity maps. They cannot be

applied to larger circuits, but the concepts of these algorithms can be applied to

create both sequential (standard, classical), parallel and quantum architectures.
246

They explain also the structure of such families.

2. Tree-Search methods that use a tree to generate all or some solutions.

These methods are linked to the main methods of this thesis and allow to create

both exact and more importantly efficient heuristic (approximate) search

algorithms.

3. Evolutionary algorithms. While a ring or a tree are basis "generation

structures" in the above categories of algorithms, the evolutionary algorithms

are chaotic and they have no structure. Instead of going through the solution

space systematically in linear or tree-like fashion, they jump from point to

point (polarity to polarity) in a pretty random way. However, they are

supposed to find solutions based on fitness function. So far, the reality did not

confirm superiority of these algorithms in any area related to quantum

permutative circuits, but they are still one of the best for the non-permutative

quantum circuits specified by arbitrary matrices [Lukac04].

The comparison and combination of three families of search algorithms; linear, tree

like and evolutionary is the fundament of universal hybrid search methods developed

in this dissertation.

Finally we introduced the new concept of Distance gates for various Hamming

247

Distances of permuted cells. Such gates will be used in algorithms and further

generalized. Now we are thus ready to learn about more advanced families of forms

and try to~ apply these three types of search algorithms to them. This will start in

chapter 7 where iterative deepening search is discussed, chapter 8 where the generated

search is applied to GRM and other forms and chapter 9 where these methods are

extended to Linearly Independent families. Chapters 5 and 6 are devoted to universal

search methods, both classical and quantum, sequential and parallel, developed for the

class of combinatorial CAD problems that are of interest to us.

248

CHAPTER 5

Quantum Algorithms

5.1. Introduction. Classes of Oracles for Grover Algorithm

It is well-known that a quantum algorithm can be orders of magnitude more efficient

than a standard algorithm. Unfortunately, there are very few algorithms in addition to

the famous Shor [Shor94] and Grover [Grover96] algorithms that are known to be of

any practical use outside pure mathematics. One has thus to consider how the known

quantum algorithms can be used to solve practical problems. There is a large class of

highly complex CAD problems that cannot be exactly solved on standard computers.

But they could be solved if a classical Satisfiability or one of other similar Decision

Functions were solvable. This can be done using Grover Algorithm.

This chapter is based on literature with the exception of the graphical analysis method

and simulation example. This chapter will present quantum algorithms: Deutsch,

Deutsch-Jozsa, Bernstein-Vazirani and their modifications and next the Grover

algorithm. Next, in chapters 6, 7 these ideas will be related to hierarchical parallel

search system and in chapter 12 a discussion of satisfiability oracles will follow and

several such oracles will be constructed, including POS satisfiability, covering

problems and ESOP minimization. Chapter 13 discusses oracles for graph coloring

and chapter 14 the oracles for other constraint satisfaction problems. Path problems

and oracles will be also discussed in the final version of the thesis. Finally, chapter 15

249

presents problems and oracles for spectral methods and machine learning and an

overview of constraint satisfaction problems in robotics.

5.2. Quantum Algorithms

5.2.1. Introduction to Quantum Algorithms.

When we look into the laws of Nature, we can say that managing information and

logic, hence computing can not exist in a detachment. That means information must be

recorded/written on some physical substance such as paper, or magnetic media or

neural connections in our brain, or a beam photons or electrons trapped in quantum

dots. Here the physical law of these media determines the logic to store information,

and to compute that information. Quantum mechanics governs the behavior and the

properties of those media in a fundamental way on the microscopic scale of atoms and

molecules. So, we can say that classical computers are following the rules of quantum

mechanics. But the architectures of classical computers are not based on quantum

mechanics. The information in computing, how the zero and the one bits evolve inside

those machines can be explained by classical logic and information theory. However,

quantum computers exploit the phenomena of superposition and entanglement which

are fundamental issues in quantum mechanics [NielsenOO]. Thus quantum computers

have additional features than their counterpart classical computers lack. Hence

quantum computer are more powerful than the classical computers or in some

250

problems at least similar. Observe that Quantum and Classical computer both in

principle can emulate each other, but with very different efficiencies.

Now, we can ask ourselves why we need Quantum Computing? Is it for the sake of

flourishing and very attractive research area [HirvensaloOl] or "mathematical wishful

thinking" [Manin99]? "Quantum Computing" comprises theories, algorithms and

techniques for exploiting the unique nature of quantum events to obtain computational

advantages. Actually that is not the reason, the fact is that the quantum computer

promises great future for computing: it significantly reduces the times of solving many

computational tasks. It was shown by Peter Shor in 1994 that the problem of factoring

a number into prime numbers could efficiently be solved on a quantum computer in

polynomial time [Shor94], hence showing the advantage of Quantum computers in

solving efficiently problems that are hard for classical computers. (Hard means that

the time for solving the problem grows at least exponentially with the length of input

data). Again, a classical simulation of quantum mechanic problems typically suffers

from exponential slowdown, whereas quantum system could in principle execute the

simulation of any other quantum system efficiently [Feynman96]. Apart from the

computational power, Moore's law has physical limits [Moore65]; then in year 2020

the components of computers will be on atomic scale where quantum effects are

dominant. So, quantum computers will be one of the natural solutions for future

computing. Moreover, we know from Landauer [Landauer61] that binary logic circuits

built using irreversible gates lead inevitably to energy dissipation, regardless of the

technology used to realize the gates. Zhirnov et al. [Zhirnov03] showed that power
251

dissipation in any future CMOS will lead to impossible heat removal and thus the

speeding-up of CMOS devices will be impossible at some point which will be reached

soon. Bennett [Bennett73] proved that for power not to be dissipated in a binary logic

circuit, it is necessary that the circuit be built from reversible gates. Thus all output

patterns are just permutations of input patterns. Such circuit can be described by a

permutation matrix. Bennett's theorem suggests that every future binary technology

will have to use some kind of reversible gates in order to reduce power dissipation.

Quantum technology is inherently reversible and is now the most promising

technology for future computing systems [NielsenOO]. Even small building blocks of

a quantum computer or small quantum circuits may be useful like in quantum

cryptography [Gisin02], in atomic clock [Wineland94, Huelga97], in entanglement

distillation [Bennett96, HorodeckiOl]. (In the atomic clock, a quantum circuit could in

principal reduce the uncertainty of the clock by a factor VTV by generating quantum

correlations between N relevant atoms, which is very important in global positioning

system and in synchronizing networks and distant telescope. Besides, application of

small quantum circuits in many cases distills a few highly entangled states out of

many weakly entangled ones in order to distribute entangled states over large

distances. We have to send them through inevitably noisy channels, thereby loosing

some of the entanglement.)

252

Moreover, Quantum Circuits (QC) have an advantage of being able to perform

massively parallel computations in one time step [HirvensaloOl] which causes interest

in them to perform in future massively parallel computations.

5.2.2. Background

This section contains preliminary background discussion of basic topics of binary

quantum algorithms and Grover's Algorithm.

As we have shown in chapters 2 - 4 the circuit model for the quantum computer

[NielsenOO] is in principle very similar to the traditional circuit model. We know that a

classical computer operates on a vector of input bits and returns a vector of output bits,

hence the functions can be described as logical circuits built out of many elementary

logic operations. Thereby, in quantum computers we have to replace the input-output

function by a quantum operation mapping. In quantum computing bits are replaced by

qubits in a complex multi-dimensional Hilbert space; these spaces and their tensor

products constitute the objects of quantum algebra as well.

5.2.3. Quantum Oracle.

An oracle is a logic circuit that answers "yes/no" to a question asked to it, for instance

- "is this mapping of nodes to colors a correct graph coloring?" Quantum oracles are

built from truly quantum gates and many oracles include arithmetic, logic, and mixed

blocks. The oracle architecture is very suitable for quantum computers and basically, it

253

is one of very few architectures investigated in this field. We know the probabilistic

read-out nature of a quantum system, thus if one only knows how to build a respective

oracle, Grover algorithm and its modifications would be immediately useful to solve

many problems when the physical quantum computers will become available. These

algorithms are either deterministic or probabilistic in nature. It is therefore important

to study methods and algorithms to build various types of oracles. The problem of

building various classes of oracles or their blocks (components) is well known in case

of binary quantum circuits [NielsenOO, Perkowski04]. The questions asked the oracles

may be as elaborate as you can make them, the procedure that answers the questions

may be lengthy and a lot of auxiliary data may get generated while the question is

being answered. Yet all that comes out is just yes or no. However, an oracle is the

portion of an algorithm which can be regarded as a "black box" whose behavior can be

relied upon. Figure 5.2.3.1 illustrates the nature of quantum oracle, input to the

synthesis is a black box for a function f(x) that verifies some property.

Xi

Xn

y

Figure 5.2.3.1: Oracle for quantum algorithms.

This oracle architecture is very suitable for quantum computers, for simplification,

even a single quantum gate can be treated in some problems as a black box, i.e.

Quantum Oracle. We remember probabilistic nature of Quantum system measurement.

254

fix)

Xl

Xn

y© f(xi,..... xj

This is an important research and experimentation problem. However, in this thesis the

challenges are to implement practical quantum computers and to design quantum

circuits made of available quantum gates [Deutsch89].

The quantum algorithms that will be explained as an introduction to Grover algorithm

are the following:

The Deutsch Algorithm

This algorithm answers the following question. Suppose we have a

function / : {0,1} -> {0,1}, which can be either constant or balanced. In this case the

function is constant if / (0) = / (l) and it is balanced if 7(0)^/(1). Classically it

would take two evaluations of the function to tell whether it is one or the other.

Quantumly, we can answer this question in a single evaluation only. The reason for

this is that quantumly we can pack 0 and 1 into x at the same time, of course. This fact

was the first breakthrough in quantum computing thanks to David Deutsch.

The Deutsch-Jozsa Algorithm

This algorithm generalizes the Deutsch algorithm to a function / : {0, l}" -»{0,1}. We

ask the same question: is the function is constant or balanced. Here balanced means

that the function is 0 on half of its arguments and 1 on the other half. Of course in this

case the function may be neither constant nor balanced. In this case the oracle doesn't

work: it may say yes or no and the answer will be meaningless. Although deeper than

Deutsch algorithm, this extension by Jozsa was still limited to particular uses.

255

The Bernstein-Vazirani Algorithm

Suppose there is a function /:{0,1}"->{0,1}. of the form f(x) = a»x , where a is a

constant vector of Os and Is and - is a scalar product, x is vector of input variables,

thus f(x) is a linear Boolean function always, for instance xi©x2®x3 . How many

measurements are required to find the value of a? Classically one has to perform

measurements for all possible arguments and then solve a system of linear equations

for a. Quantumly a is delivered in one computational step on output lines of the oracle.

This problem has limited but practical applications in logic synthesis and image

processing. It is related to Walsh-Hadamard spectral transforms which find many

applications.

The Simon Algorithm

Suppose there is a function/:{0,1}" ->{0,1}" . The function is supposed to be 2-to-l, i.e.,

for every value off there are always two n-arguments such xi and X2 that/(xi) =/(x2).

The function is also supposed to be periodic, meaning that there is such a binary

vector a t ha t / (xe a) = / (x) , where e is a bitwise EXOR on words xi and X2. The

algorithm returns the period a in 0(n) measurements. Of course, if one disposes a

sufficiently large ensemble of quantum computers then a single computation will

return the answer in the density operator, but we are not discussing ensemble

computers much in this thesis. This algorithm is historically very important as it

started Shor to think about using periodicity which led ultimately to the discovery of

the Shor algorithm.

256

5.2.3.1. The Deutsch Algorithm

The circuit that implements the Deutsch Oracle is shown in Figure 5.2.3.1.1:

H

H

X

y
j J

L J

H

f(x) tb y

M l«)

10
Figure 5.2.3.1.1: Deutsch Quantum Algorithm. M is the single-qubit measurement
operator./ is a one-argument Boolean function.

Here H is the Hadamard gate, which we have already encountered in Chapter 2:

^l°> = ^ (| °) + l1))

or in matrix notation:

H =
Si

1 1

1 -1

In Figure 5.2.3.1.1 the block U/ denotes a controlled gate defined as follows, using

Dirac notation:

Uf\xy) = \x)®\y®f{x))

Function/maps {0, 1} to {0, 1}. Symbol <8> is the tensor product. Function of/can be

either constant or balanced. As discussed at the beginning of this section, on a

257

classical computer two measurements are required to figure out one if function f is

balanced or constant.

The Hadamard gate in the upper qubit converts |o)to-^(|o) + |i)). Thus both |o)and |i)

are simultaneously given to x.

The detailed analysis of this circuit will follow:

1. The first pair of Hadamard gates performs the following transformation:

|01)-+I(|0)+|1))®(|0)-|1))

2. Now the controlled-U/gate is applied to this quantum state. The Equation 5.2.3.1.1

is now derived:

C//|x)®(|0)-|l)) = |x)®((|0)-|l))8/(x)) Equation 5.2.3.1.1

Observe that when fix) = 0 then the Equation 5.2.3.1.2 holds.

(|0)-|l))®/(x) = |0)-|l) = (-l)°(|0)-|l)) = (-l/«(|0)-|l)) Equation 5.2.3.1.2

Similarly for fix) = 1 we have Equation 5.2.3.1.3.

(|0)-|l))®/(x) = |l)-|0) = (-l)1(|0)-|l)) = (-l/«(|0)-|l)) Equation 5.2.3.1.3

It results from Equation 5.2.3.1.2 and Equation 5.2.3.1.3 that the same formula holds

258

for all values ofJ(x). This leads to Equation 5.2.3.1.4.

Uf\x)®(\o)-\l)) = (-l/(x)\x}® (|0)-|l)) Equation5.2.3.1.4

Applying equation to our state from stepl leads to Equation 5.2.3.1.5.

Ufi(\0)+\1))® (|0)-|1))

=i t-0W>|0>+(- l)«) | l>) .40)- | .)) Equation 5.23.U

3. Finally the Hadamard gate is applied to the first vector as in Equation 5.2.3.1.6.

(_!)/(0) |0)+ (- i / a) |i) Equation 5.2.3.1.6

Which leads to Equation 4.2.3.1.7.

-i((-l)^°)//|0> + (-l)/«|l>)® (|0)-|1>)
2

2
(-i)/(o)-L(|o)+ |i))+(-i)/a) i <|o)_|i)) ®(|o)-|i))

V2 V2)

4 (0) (H) / (0) + (-I)/(1)K|I> ((-i)/(0)-(-D/(1)))®^(|O)-|I))

Equation 5.2.3.1.7

WhenXx) is a constant function then (-1)^0) - (- l) ^ = 0 . This means that Equation

5.2.3.1.7 reduces to Equation 5.2.3.1.8 for the upper qubit.

|(|0> (H)/<°> +(-!) /«)) = ± |0) / ^ / ™ 5.23.7.5

259

When/*) is balanced then (-1) m + (-1) m

Equation 5.2.3.1.9.

i(|i)(:-i/w-(-i/«J=± |i>

Thus to find if function fix) is constant or balanced we have to measure the upper

qubit vector. If it is |o)then/(*) is a constant, if it is |i)thenX*) is a balanced function.

One may wonder what happens to the bottom qubit and why the values such as (- 1) ^

mysteriously shifted to the upper qubit and have not stayed with the bottom qubit. The

answer is that the bottom qubit is allowed to decohere (as a garbage qubit). As it does

so, it collapses onto |o) or |i), thus forcing the parameters that describe the bipartite

state onto the upper qubit. The Deutsch oracle is a very nice and simple demonstration

of the essentials of quantum computing: first it shows the power of quantum

parallelism, then it shows the importance of entanglement and non-locality in quantum

computing. Every quantum computer demonstrates that the quantum states perceived

as nonsensical by the Einstein-Podolsky-Rosen paradox truly exist, thus proving

Einstein to be wrong [Einstein35, Bennett93] and demonstrating that true science has

no authorities, only facts.

Now I will explain the Deutsch Algorithm one more time using a simple

transformation based method. The oracles for cases f (x) = 0, f (x) = 1, f (x) = x and f

(x) = x are shown in Figure 5.2.3.1.2.

= 0 which reduces the upper qubit to

Equation 5.2.3.1.9

260

X

y •Q-

1/ —I |—

f{x) = 1

X

X

y

y -& X) = X

3?

-4*- ""\J7~~

/(ar) = 0

f(x) = x

constants

balanced
functions

Figure 5.2.3.1.2: Four cases of the Deutsch oracle, function f(x)=0 and f(x)=l are
constants, function f(x)=x andf(x)= x are balanced.

0} -\H] [f l j - |0) |0)

|1) -\H H+- 1 L)

|0>

ID
f(x) = 0

Figure 5.2.3.1.3: Oracle with input and output Hadamards for the case f(x) = 0.

Using quantum equivalence transformations from chapter 2 the left part of Figure

5.2.3.1.3 is transformed to the right part. As expected, the upper qubit is |o) before

measurement so it will be 0 after the measurement. Thus for f(x)=0 a constant, the

measured qubit is 0. Similarly, analyzing case of f(x) = 1, Figure 5.2.3.1.4, the

quantum equivalence transformation produces the circuit from the right which gives 0

on the first qubit after measurement.

x = |0) —[H H 10} 10)

|1> - W ^ 4 1 } - 10} I1)

J/ f (x)= l
Z

Figure 5.2.3.1.4: Oracle with input and output Hadamards for the caseffx) = 1.

261

file:///J7~~

Using the quantum equivalence transformation the circuit (algorithm) for case f(x) =

x, (Figure 5.2.3.1.5 left) is converted to the circuit from the right of Figure 5.2.3.1.5

thus giving value 1 in the measurement of the upper bit for balanced function f(x) = x.

x = |0) -\H_

|1>

i f h |0) ffi-

H - ® - H — |1)
•'• f (x) = x

ID

Figure 5.2.3.1.5: Oracle with input and output Hadamards for the caseffx) = x.

| o > -

11) - H \xi

H

H

T TT

'''
") (T) TT

f (X) = x

H —'

il ^

n

V— H

-H

-H

H

— tp— H

®-

]— 1

(a)

|l>

|l>

111
(b)

H

H

^ ^ ^ \W}- |o) -&

'^M Hp-®h-\H\- |1)

11)

zY- -|i>

Figure 5.2.3.1.6: Oracle with input and output Hadamards for the case f(x) = x . (a)
stages of transformation, (b) marked sub circuits subject to transformations in Figure
5.2.3.1.6a.

Transformation of the last case of the algorithm, when f(x) = x is more tricky. The

original circuit is given at the left in Figure 5.2.3.1.6. We can not apply any

meaningful transform to simplify this circuit directly. But we can see that the upper

and lower wires directly to the right of the Feynman gate can be replaced as a serial

composition of the Hadamards each. This allows to apply the transform from Figure

262

5.2.3.1.5 to the left part of the circuit (in a rectangle). At the same time the

transformation from Figure 5.2.3.1.4 is applied to the right part of the left circuit from

Figure 5.2.3.1.6b thus leading to the right circuit from Figure 5.2.3.1.6b. Clearly,

when we measure the upper qubit it will be a " 1 " . Thus, the measurement of the upper

qubit is always 0 for constant functions and always 1 for balanced functions. The same

result as derived analytically by Deutsch. The graphical method here shows also that

the choice of a particular transformation rule, is non-trivial, as we have to make first a

more complex circuit by adding two pair of Hadamards, in order to be able to simplify

it later on by applying quantum equivalence transformations. I hope that a general

intelligent smart software based on such transformations will prove some interesting

facts.

5.2.3.2. The Deutsch-Jozsa Algorithm

Jozsa extended Deutsch ideas so his oracle is similar to the Deutsch oracle, but it has

more bits:

o\ u /
Xi

o\ u /

x2

h\
IV

H

H

H uf

H

H

M

M

M

Figure 5.2.3.2.1: Deutsch-Jozsa Quantum Algorithm with two inputs xj and %2 as
measurement of f.

263

The role of the Hadamard gates is the same as in Deutsch algorithm. However, the U/

gate is now controlled by n qubits (by two qubits xj and %2 in Figure 5.2.3.2.1).

Function / maps from {0, l} n to {0, 1}. As in Deutsch algorithm function/can be

either constant or balanced. The task of the quantum circuit is to check whether 'U/ is a

constant or a balanced function by performing just one measurement. A classical

oracle would require 2" measurements, one for each value of the argument, to

ascertain that/ is constant. By knowing that the choice is only between constant and

balanced functions the classical oracle would still need 2nA + 1 measurements

(because by taking randomly 2n_1 measurements and having a 0 always we still would

not know if the 2 n l + 1 measurement will give a 0 or a 1. If it will give a zero, the

function is a constant, otherwise the function is balanced).

The detailed analysis of the Deutsch-Jozsa algorithm will follow.

1. As before, H gates are first applied, as in Equation 5.2.3.2.1 to n states |o).

H\O)H\O) ••• H\O)

= ^ (| O) + | I)) ^ (| O) + | I)) - ^ (| O) H I))

= • ^ 2 " (| 0 0 - 0) + | 0 0 . . . 1 > + . . . + | l l . . . l))

i v Equation 5.2.3.2.1
= ̂ l°HlH2>+"H2"-l})

2" - l
1

2 yi/2 2JXI
x = 0

264

Applying H to the bottom qubit gives -/=(|o) - |i>). From which the state of the entire

computer is described as in Equation 5.2.3.2.2:

1
,»/2

' 2 » - l A

®_(|o)-|l)) Equation 5.2.3.2.2

2. Now the rc-qubit controlled U/ operator (gate) is applied. By extending the approach

from the previous section, we obtain Equation 5.2.3.2.3.

1
,w/2]T(-i)/«|*) ®-^do)-|i»

JC=0 I

Equation 5.2.3.2.3

3. Finally the Hadamard transform is applied to the top n qubits again. But the top

qubits are no longer just |o). Observe that the basic definition of Hadamard transform

can be represented in Equation 5.2.3.2.4 and Equation 5.2.3.2.5.

^ |o) = -^do> + | i »= ' -^ ((- i) 0 - 0 | o> + (- i) ^ | i » Equation 5.2.3.2.4

H\l) = ^ (l 0)" ! 1)) = ;j=((-l)1#0|0) + (-l)1,1|l>) Equation 5.2.3.2.5

Combining together Equation 5.2.3.2.4 and Equation 5.2.3.2.5 we obtain Equation

5.2.3.2.6.

265

*»=i Znr^)
u=°

Equation 5.2.3.2.6

The Hadamard transform from Equation 5.2.3.2.6 is now applied to the tensor product

of n qubits, leading to Equation 5.2.3.2.7.

H\XX)®H\X2)® — ®H\xn)

^ZH^'^W^^ZH^^h)
>i=o

\
y2=0

^ Z < - 1) J C " ' " " W
y„=o

— Z (-1)Xl -y i (-1)JC2'y2 -H)*""3'" \nyi-yn)
y\yr--yn

2" - l

;^2>'>"'W

Equation 5.2.3.2.7

y = 0

wherex.y = x\.yi + x2.y2 + --- +xn.yn . Observe that the addition is here arithmetic,

not Boolean or modulo. The final expression from Equation 5.2.3.2.7 is now inserted

into our formula. This leads to Equation 5.2.3.2.8.

266

file:///nyi-yn

,w/2

2" - l

x =0

®-^(|0) - | l))

(2"-\

-.nil

2"-\

E' - '^^TTZ*- 1 *" 7 !^
x=0 y = 0

®-jU(|o)-|l))

J_
~2"

(2"-\2n-\

^^(-l/^i-ir^y) ®j=(\0)-\l))
x=0 x=0

Equation 5.2.3.2.8

Several interesting properties can be now derived from the final formula. For instance,

if f(x) is constant, it can be taken before the sum symbol. Therefore the sum becomes

as in Equation 5.2.3.2.9.

2"- l 2"- l

I EH)""!*)
x=0 ^=0

Equation 5.2.3.2.9

Now, the value of \y) is fixed to analyze Equation 5.2.3.2.10.

2"- l

^ry\y)
x=0

In case of y ^ 0 we obtain Equation 5.2.3.2.11.

2"- l

^ (- l) ^ =

x=0

Equation 5.2.3.2.10

Equation 5.2.3.2.11

267

This is beacuse x • y will "push as often to the right as to the left". So the only term

that is going to survive in this case is for y = \y). Therefore the final state of the oracle

is in this case as in Equation 5.2.3.2.12.

_L(_i)/w
2"

r2n-\

5>1)X*»
x=0

'^(|0)- |1))=(-D / W |0)®^(|0)- |1)) Equation 5.2.3.2.12

In the second case, when f(x) is balanced then |̂) = |o) leads to Equation 5.2.3.2.13.

E (- 1) / W (-1) X° = Z (- 1) / W 1°) = ° Equation 5.2.3.2.13
x=0 x=Q

Observe that f{x) pushes as often to the right as it pushes to the left, because f is

balanced. Therefore the probability amplitude of finding \y) in |o) is zero.

Concluding these cases if function X*) is constant then measuring the output control

qubits must return |o) on every qubit xi, ..., xn. If this is not the case then function

J[x) must be balanced.

Now I will use the graphical method introduced already at the end of the previous

section to explain the Deusch-Jozsa algorithm for Uf controlled by 2 qubits (Figure

268

5.2.3.2.2). This figure shows only one case, other can be done similarly. In this case

outputs in xi, X2 are not 0, so function is balanced.

Observe that with the graphical method I can only check quickly many cases of

balanced functions that I can not make a general proof. My method still remains useful

as it allows for fast testing if some property of a quantum algorithm is true.

0 — H

0 —H

1 — H (
N ̂

 f
V N

i TT
' 11

n
ii

1 TT
! 11

A

u
0 — H

1 — H r \
M

TT
1 '*•'

i i"l|
TT 1 1 l |

H^H

i TT
" 1

1

1

(\ rr 1

0

0

1

m-

(a) (b) (c)

Figure 5.2.3.2.2: Graphical method applied to an instance of Deutsch-Jozsa algorithm
(a) Original circuit with balance function f {x\,x2) = x\®x2 , (b) adding two
Hadamards in series to allow double applications of transformation from Figure
5.2.3.1.5, (c) The final circuit.

Although the algebraic proof is more general, the graphical method developed by me

is more intuitive, especially for the digital design engineers, who are familiar with

graphical transformations of logic schemata.

5.2.3.3. The Bernstein-Vazirani Algorithm

The Bernstein Vazirani Oracle is the Deutsch Jozsa oracle with f(x) = a • x, where the

multiplication is arithmetical.The final state of the oracle is described by Equation

5.2.3.3.1.

269

J_
2"

2"-l 2"-l

Y, ^(-V"x(-Vxmy]y)
x=0 y=0

>H>» Equation 5.2.3.3.1

Using the same method as in previous sections we write the formula for the sum over

x, as given in Equation 5.2.3.3.2.

2"-l

]T (-I)"-* (-DX#7|j) Equation 5.2.3.3.2
x = 0

In case when a ^ y this leads to value 0, because the components of the sum will push

as much to the right as they will push to the left. In case when a = y the Equation

5.2.3.3.3 is obtained.

(_!)«•* (- i) a , * | j ,) = i Equation 5.2.3.3.3

From Equation 5.2.3.3.3 we derive the formula for the final quantum state, as given in

Equation 5.2.3.3.4.

2 > > > ®^o)-ii>)=ifl>®^do)-ii>) Equation 5.2.3.3.4

Therefore the value of a is returned by measuring the control qubits.

270

5.2.3.4. The Simon Algorithm

*3 *5

An example of a Simon algorithm for a function / : {0,1} -> {0,1} is shown Figure

5.2.3.4.1.

1°)

I")

|o>

1°)

1°)

1°)

H

H

H

Ufi

Up

Ufi

H M

H M

H M

garbage

garbage

garbage

Figure 5.2.3.4.1: The Simon Algorithm.

In general the oracle comprises n qubits at the top, which look the same as the top

qubits in oracles from previous sections of this chapter. Then we have n qubits at the

bottom. Each of these n qubits corresponds to a sub-function ft •. {0, i}" -> {0,1}, n of

which make up function/

271

The boxes labelled U# are the controlled-NOT gates, where the control is provided by

Mx).

In summary, the Simon Algorithm tests a function / : {0, l}" -> {0, l}" which in Figure

5.2.3.4.1 was decomposed into n scalar-valued functions /*:{0, l}" -> {0,1} .

The oracle function in Simon Algorithm must satisfy the following conditions:

l . / i s 2-to-l, i.e., for every value of/there are always two different vectors xi and X2

such thatX*;) =fi*2)

2. / i s periodic, i.e., there exists such vector a thaty(x e a) =fix)

Of course, the following question may be asked: iff is periodic then it should be more

than just 2-to-l, because

fixea @ a)=fix®0)=fix)

But remember that here we work within binary arithmetic and e is a modulo-2

addition (or EXOR), hence for every vector a we have a © a = 0 and therefore x ®a®

a takes us back to x.

Assuming that function fix) satisfies these conditions, the oracle presents its period a

in 0(n) measurements.

272

This is a considerable improvement on a classical system designed to do the same. To

find the value of a the classical oracle would have to be queried an exponential

number of times in n .

The detailed analysis of the Simon Algorithm follows:

Step 1. Applying the Hadamard transform to the top n qubits works the same as in the

Deutsch-Jozsa algorithm. We thus reuse the result obtained in step 1 of the analysis of

the Deutsch-Jozsa circuit. Thus we have Equation 5.2.3.4.1.

1
2"-l

x=0
I°>I°>-|O) = 4 T

v * = o j

® |o) Equation 5.2.3.4.1

Step 2. The application of the U# gates at this stage converts the n bottom qubits that

carry|o) into \fk(x)) • Observe in the circuit that for every individual |o)qubit, if its

correspondingfk{x) evaluates to 1 then the qubit is flipped to |i) , iffk(x) evaluates to 0,

the qubit stays at|o). Consequently the qubit simply becomes |A(*)). Concluding

these calculations, the final equation is Equation 5.2.3.4.2.

, 7 1 - 1

2"-l

x = 0

®|/to) Equation 5.2.3.4.2

273.

Step 3. Now allow the bottom n qubits to decohere and this yields some value, which

corresponds either to J(xo) or to J\xo © a). So this sets the top n qubits into a

superposition of these two vectors and the state of the computer becomes as in

Equation 5.2.3.4.3.

-L(\X0)+\XQ®a)) ®|/(*<,))
V2

Equation 5.2.3.4.3

Observe that the Einstein-Podolsky-Rosen paradox was observed here again, the

fundament of all quantum computing.

Step 4. Applying the Hadamard transform to the top n qubits results now in Equation

5.2.3.4.4.

1 1

4l 2" /2

2"-l

^((-i)x°'y + (-i)(x°®a^y)\y)

x=0

®|/(*o)) Equation 5.2.3.4.4

All vectors y are derived now to two classes. For first class y • a = 1. For the second

class we have y • a = 0. For the first class the Equation 5.2.3.4.5 is obtained:

(-Y)xo*y _ (_i)*o#.y = Q for every coefficient. Equation 5.2.3.4.5

274

Therefore the only vectors y that are going to survive this are the vectors

perpendicular to vector a. The sum evaluates therefore to Equation 5.2.3.4.6.

V2 2" /2 ®|/(*o)) Equation 5.2.3.4.6

Measuring the top n qubits returns now always a vector y which is perpendicular to a.

But it can be any vector from the superposition generated by the corresponding

measurement on the bottom n qubits. However, if we perform the measurement a

sufficient number of times to obtain n different vectors y*, then we get the set of n

independent equations, as in Equation 5.2.3.4.7 below:

y\» a = 0

yi • a = 0
; Equation 5.2.3.4.7
y„»a = 0

The Equation 5.2.3.4.7 can be solved classically for the vector a.

5.3. Grover's Algorithm

5.3.1. Initial Presentations.

In this section the Grover algorithm will be presented in full detail. It is not only a

theory, as we know the Grover's algorithm has been successfully realized in NMR

275

[Chuang98], optical system [Kwiat99] and in cavity QED system [ScullyOl]. However,

all these implementations are restricted to case N = 4 for which only one state is

required to recover the target state with probability 1. Besides, an extension for greater

values of N would be complicated [AhnOO]. We have however simulated Grover for

higher values of N using QuiddPro and Matlab.

Let a system have unordered states that are labeleds,,^,...,^. Let n be such that 2n >

N. Let there be an unique state, say Sm , that satisfies the conditionC(Sm) = 1, whereas

for all other states S, C(S) = 0 (assume that for any state S, the condition C(S) can be

evaluated in unit time). The problem is to identify the state Sm . Formulated as this, the

Graver's problem is called an "unstructured database search" which name was

observed by several authors to be confusing. For an unstructured database, there does

not exist any sorting that would aid to select the solution state. The basic idea behind

the Grover's algorithm is that one wants to start off with a superposition of all possible

database elements. The encoding space for these elements would only be (log2N)

qubits but more importantly a quantum register (or a group of qubits) would be able to

hold all possibilities at the same time. This would mean that any operation on the

memory would act on all possible elements of the database, in unit time. This is indeed

astonishing. The core of the algorithm then revolves around changing the amplitudes

vectors (amplitude dictates the probability of each state being observed upon

measurement) of the superposed states such that the amplitude vectors of the solutions

get magnified at the expense of non solutions. The database metaphor here is not good

276

for intuitions of an engineer. Let us better assume that we can construct some device,

the oracle to tell us if Sm solves the search problem. This device is called historically

the Oracle, a logical mechanism device with the ability to recognize solutions to the

search problem. Grover implemented this concept using a combination of two

transformations performed iteratively for an optimal number of iterations. These are

the "selective phase inversion" operation and the "inversion about the mean"

operation. Selective inversion of the marked state, followed by the inversion about the

mean is also referred to as the Grover Operator, called also the " Grover Loop" and

denoted by G. The Grover Operator has the effect of increasing the amplitude of the

marked state by 0{\/4N) . Therefore, after 0(4N) operations, the probability of

measuring the marked state approaches the value of " 1 " [NielsenOO, Grover96].

The definition of the diffusion matrix D: D;; = 2/N and Dy = - 1 + 2/N if i ^ j is an

inversion of about the average operator. The matrix representations of all operators

used are unitary to preserve the normalization constraint. Assume N = 2n for n input

qubits, for simplification.

Here is how the Grover algorithm works; just to explain main idea and in a big

simplification.

Step 1. Initialize the quantum memory register to state |0-• -0)

Step 2. Initialize the system to the superposition:

277

I l l 1 ^

V N ' V N ' Viv'''"'"'Vw,
for each N states

i.e. there is the same amplitude -jL to be in each of the TV states of qubits.
•JN

Step 3. Repeat the following unitary operations 0(-JN) times.

(a) Let the system be in any state S : change the amplitude aj to - a,- for

Sm such that C(Sm) = 1, for all other states, leave the amplitude unaltered.

(b) Apply inversion about the average to increase amplitude of S with

C(Sm) = 1. This transformation can be implemented by the diffusion matrix (or

diffusion operator) D given above.

Step 4. Measure the first register state which should give us the state S„ where

S„ is in { 0, 2n - 1}. Check C (Sn). This will be the state Sm (i.e. the desired

state that satisfies the condition C(Sm) = 1 with a probability of at least lA).

Step 5. If Sm does not satisfy C(Sm) = 1, then go to 1. This would be in case the

algorithm fails to measure the correct marked state. This is a low probability

event, which is however possible.

As we know, placing the register in an equal superposition of all states can be

accomplished by applying the Walsh-Hadamard operator [Hayward02]. Using Hilbert

space notions, the selective inversion of the marked state in the Grover Operator

278

means if the system is in any state S and C(S) = 1, we rotate the phase by n radians,

otherwise we leave the system unaltered. This operation can be accomplished with the

Oracle as described in [Abe02]. This is also a very natural generalization of the

methods from previous sections. In section 5.3.6 we give brief mathematical overview

of Grover Algorithm [Chen02] and its Quntumness. We will use the binary string

basis in increasing lexicographic order as in Equation 5.3.1.1.

|00...00),|00...0l),|00...010),...,|ll...l0),|ll...ll) Equation 5.3.1.1

for the 2n dimensional Hilbert space H. In the Figure 5.3.1.1, we utilize the important

and elegant results by Barenco et al.[Barenco95] for quantum network representation.

1
2
3

n + 1 U

Figure 5.3.1.1: Controlled Quantum gates, the top wire always represents the most
significant qubit.

Let D = {wt i=0,\,---,N-l},(N = 2") be a database oracle which is encoded in an n-qubit

quantum computers as £> = {|w,|/=0,l,---,Ar-l} with H = spanZ). Assume that|w0) is

279

the unknown search target in D . Now, the information through this black box Oracle

function is the following / : D -+ {0,1}, / (| wt)) = SiQ, i = 0,1, • • •, N - 1 .

Here, we can represent |w0) as following for the mathematical simplicity and

explanation, Equation 5.3.1.2.

\w0) = \aia2---an),aie{0,l}, i = 0,l,---,w. Equation 5.3.1.2

We can write also the Equation 5.3.1.3.

w0) = 0 - f t) 0 - F - ^ | l l - l l > Equation 5.3.1.3

in which

a
(/). 0 1

1 0 J=i\,i2,---,lk Equation 5.3.1.4

Equation 5.3.1.4 is for Pauli-X rotation matrix (NOT-gate) acting on they'-th qubit.

So, aj = 0 forj = i\J2, • •••ik. and for all other a, 's are 1.

J V - l

Initially we create k) = ~ 7 = ^ l w ') , the uniform superposition of all basis states in
*N i = 0

Hilbert space H . Now the calculation of matrix 1WQ can be obtained as in Equation

5.3.1.5:

N-\

Av 0 = / - X f h H - i / ^ k) • fan-rf^ fa
j = 0

= 1-2IWQJIWQ \, and

Is = I-2\s)(s\
Equation 5.3.1.5

280

Here, both iw and Is are unitary operators. The Grover's unitary operator in the

iterative search for|w0) is G . If initial state is \s) and we apply Grover operator G, k

times, we obtain operator Gk\s), k = ̂ -^N , in which we will obtain |w0) with

probability close to 1.

5.3.2. Some Insight about Grover ideas: the "Phase Kick-back".

We verified using Matlab and QuiddPro the quantum computational model

implemented by the Deutsch-Jozsa Algorithm and the Grover's Algorithm. So we

verified our hypothesis how to build the Quantum Oracle for Grover using Quantum

Circuits. This is our fundamental idea, from which we can construct all new algorithm

for quantum CAD. We call them algorithms but they all use Grover.

From observation, we found that if we do some nice transformation in the input and

output state of a Quantum circuit, we can convert the quantum information which is

hidden in the phase to the amplitude of the qubit. Here we introduce analysis

procedure from input to outputs with Walsh-Hadamard Transform in the input and

possible combination of different transforms in the output and keeping our Quantum

Oracle in between. By calculating phase in spectral domain we get information which

tells us the global issues of the quantum circuit. Besides, we investigated examples of

spectral transforms which helped us to explain the general method to create new

spectral transforms. The important concept to help understand intuitively the Grover

algorithm and similar algorithms is called the "phase kick-back".

281

Example 5.3.2.1:

This example explains intuitively the concept of "phase kick-back".

As from the Figure 5.3.2.1 we have input vector|ooi). After Hadamards or other truly

quantum gates, in general, the values are complex numbers, and we operate in Hilbert

space. This is the hidden information in the quantum state (lost in measurement). As

the state vector goes left to right (in quantum evolution or its simulation), each of the

complex numbers in vector coordinates will change to another complex number.

These vectors can be visualized to help understand the quantum evolution of the

circuit. Here we try to develop the kind of an intuition: we have the vector of complex

numbers which permanently changes but it preserves all the quantum state vector

properties as all the matrices are unitary. If we measure the vector, the sum of squares

(sum of probabilities) is equal to one. Hidden information from phase is lost in the

measurement, so the information must move by certain transformation from phase to

magnitude.

I»> H

H

H

f

-a—
Figure 5.3.2.1: Oracle for function f together with input Hadamards.

Input state to oracle f:

(|00> + |01> + |10> + |11»(|0>-|1»

282

Output state of the oracle:

((-l)^00)|00>-f-(-l)^01)|01>-H(-l)^1°)|lO> + (-l)^11)|ll>)<S>(|0>-|l>) . This is shown

in Figure 5.3.2.2.

H

H

H

/

-e 3 -

- H

-- H
i i

((-l)/(°0) 100) + (-l)/(01) 101) + (-l/(10) 110) + (-1) ™!> 111))

Figure 5.3.2.2: Calculation of the quantum state after oracle. Information is hidden in
phase. The Hadamards on data qubits located after oracle transform the phase
information to magnitude information.

The state of the inputs \u) of the oracle that has a output result of 1 is 'tagged' with a

negative phase " - 1 " . After Hadamard the solution is "known" in Hilbert space by

having value -1. But it is hidded from us. If we observe (i.e. measure) it, we loose it.

The state \j/y in Hilbert space after oracle may be thus one of the following:

|\|/oo) = - |00> + |01> + |10> + |11> if item |00) is data-base is "marked".

|\|/oi> = + |00> - |01) + |10> + |11) if item |01) is data-base is "marked".

IVio> = + |00> + |01) - |10) + |11) if item |10> is data-base is "marked".

|\|/n> = +|00) + |01) + |10)-| l l> ifitem 111) is data-base is "marked".

283

Measuring many times will not help as the magnitudes are equal and phases are lost.

We need some trick to convert the phase information to one that can be measured.

And here comes the great discovery of Deutsch (and Grover) - the Hadamard gates at

the output of oracle help (see Figure 5.3.2.2). If we can even slightly change the

magnitude we can learn probabilistically the marked states. This is done in Grover

loop.

Classically we would need three measurements for two qubits oracles with one

minterm marked. But here we need to build extremely complicated quantum circuit

after the oracle to convert to magnitude, and next repeat measure and verify using a

•standard computer until the correct solution is found. Generally in Grover, we see that

we have to repeat the Grover Loop OVw times. Now the question is, is this approach

practical? Certainly for Database problem it is not practical as the inverted database

can be created more efficiently. The reasoning is that if we can build efficient oracle

of certain width then basically the length of the oracle is less important, assuming that

we have some ways to keep the decoherence fixed. In chapters 12, 13, 14 and 15 1

will show problems for which Grover is practical(in future).

We know from Computer Science that every NP hard problem can be reduced in

polynomial time to the Satisfiability Problem. SAT is exponential, however in Grover

we are improving from N to -JN , the gain is tremendous, change the exponent to root

284

of exponent is a big gain. Grover is the most practical quantum algorithm as all

Artificial Inteligence problem like satisfiability, graph coloring, Boolean mimization

can in principle be reduced to Grover. Grover is a hardware accelerator for any kind

of search. In cases that we have backtracking or heuristic strategies, we can further

improve our Grover accelerator.

5.3.3. More Ideas on using and Improving the Grover's Algorithm for

Quantum CAD Problems.

Quantum algorithms benefit from the superposition principle applied to the internal

states of the quantum computer which are considered to be states of a (finite

dimensional) Hilbert space. For instance, while classical algorithm needs N steps to

search an unstructured database, a quantum Grover algorithm [Grover96] needs only

oV(N) steps and it can be proved that there is no classical algorithm that would require

less steps than O(N) [Zalka99, Boyer96]. Although only few quantum algorithms are

now known, many problems can be reduced to some of these algorithms, for instance

to Quantum Fast Fourier Transform or to Grover Algorithm. But from this point of

view Grover is much better than Shor Algorithm. Thus, any NP-hard problem can be

reduced to Grover to give a practically useful and substantial reduction for large

values of N, although not as high as in the case of exponential speedup obtained by the

famous Shor quantum algorithm [NielsenOO] for integers factorization. The question

is: "can we improve Grover Search?"

285

Simplifying, an oracle is a logic circuit that answers "yes/no" to a question asked to it.

Quantum oracle is build from quantum gates to allow superposition and entanglement

of its outputs. Remember, that inputs to the oracle are also repeated as some of its

outputs and they encode the solution using the "phase kick-back" [NielsenOO].

Without going yet to full details how an oracle works in a quantum algorithm, let us

observe here only that the oracle must be built from truly quantum gates and that many

oracles include arithmetic, logic, and mixed blocks. If one only knows how to build a

respective oracle, Grover algorithm and its modifications would be immediately useful

to solve many problems when the physical quantum computers will become available.

It is therefore important to study methods and algorithms to build various types of

oracles (next chapters). The problem of building various classes of oracles or their

blocks (components) is well known in case of binary quantum circuits (see

[NielsenOO] and recent review about automatic synthesis in [Perkowski04]). Many

papers how to synthesize them from binary quantum gates, or proposing general-

purpose logic synthesis algorithms for binary quantum circuits have been recently

published, which can be used together with the methods derived in Chapters 7 - 15 of

this thesis.

We know that orthogonal transformations can be used to transform a Boolean function

into its unique representation in the spectral domain. Many such transforms are

surveyed by Hurst et. al.[Hurst85]. In particular, the Hadamard transform is

susceptible for computing purposes. Each coefficient of Hadamard transform gives
286

some global information about the function. The indices of a coefficient represent

which input variables the coefficient correlates. In the general case , for a given F,

there is one zeroth order coefficient. This term reflects the correlation of F to a

constant value. The orders of coefficients increase upto nth order. The higher order

coefficients correlate to the exclusive or of all the input variables specified in the

coefficient index. Manipulations between spectral and Boolean domains are easy since

forward and inverse operations involve applications of the same transform. Walsh-

Hadamard transform bases are waves and the Walsh coefficients correspond to "chess

patterns" in KMaps. They are thus used in communication, encryption, image

processing and logic synthesis.

These properties of Hadamard Transform are used in Deutch, Deutch-Jozsa, Berstein-

Vazirani and Simon algorithms. They should be also used in Grover-based problem

solving, but this subject is absent from literature.

Concluding, the Grover algorithm in CAD applications can be improved by:

1) Using special cases and related heuristics.

2) Using parallelism on the level of quantum process, i.e., many quantum

computers working in parallel (as in ensemble quantum computing, or

in other parallel computing).

3) Using spectral transforms in synthesis, i.e., the Quantum Fast Fourier

Transform. Hadamard Transform, Reed-Muller Transform, etc.

287

4) Using parallel quantum accelerators working with standard computers

that control, verify and interpret data from quantum computers.

5) Reconfiguring quantum hardware dynamically.

6) Using phase kick-back and similar tricks.

Although Grover can not be improved as a general search algorithm, it can be

improved for particular problem instances.

5.3.4. Calculations and Experimental Results.

We calculated (simulated) several circuits. We calculated the Deutsch algorithm and

also Grover algorithm by using QuiDDPro Simulator. We build the Oracle in

QuDDPro and also showed the visualization of quantum evolution of quantum circuits.

Every quantum algorithm is basically Oracle plus spectral transform on subsets of

inputs and outputs. We illustrated in simulations the trick of putting the information in

phase and the quantum parallelism. We found experimentally that inputs to the oracle,

repeated as some of its outputs, encode the solution using the so-called "phase kick

back" [Brassard97]. Every NP complete problem can be reduced to Satisfiability,

Graph Coloring or similar problem. Thus our simulation results confirm the validity of

our novel method to build a "general purpose" Quantum CAD design system

(chapters 7-15) .

288

In several architectures, we use Grover Algorithm to evaluate the condition that

number of ones in the co-domain of certain mapping is less than certain user-selected

threshold value (graph coloring - chapter 13).

A block diagram of our simulated version of quantum circuit of Grover Algorithm is

shown in Figure 5.3.4.1.

0(N1'

Input

oracle ,

\rf>
N5^

Walsh-
Hadamard

/
z.
i 0

r
a
c
1
e

f—

G G

— . . . —

.....Grover 0

Inversion
about mean

• ^

G

pera
oracle qubit

tor H

Figure 5.3.4.1: Grover Algorithm Block Diagram.

Circuit design is described in chapters 7, 8, 9. Blocks are presented in chapter 11.

Oracles are in chapters 12, 13, 14 and 15. Inversion about the mean will be discussed

in full detail in the remaining of this chapter. The discussion of more detailed physical

aspects of the implementation of Grover algorithm is beyond the scope of this

dissertation.

289

5.3.5. The Detailed Layout of the Grover Algorithm.

fet
S i t *

fibife)

;I#B

i»:»-m

IV N'
IIU

&

c

i4)

6

W(?i

-H-w

Figure 5.3.5.1: The Grover Algorithm block diagram. Here, the G's in the boxes
represent Grover operators as in Figure 5.3.4.1.

The Hadamard gates that act upon all inputs make every element in the state vector

equal. This state vector is represented as stated) in Figure 5.3.5.1. The mathematical

expression of \<p) (the initial state) is shown in Figure 5.3.5.2.

= Jf®"|0,...,0>

= (if |0))®n

^2
J V - l

VN i FEI^

Figure 5.3.5.2: the mathematical representation of initial state \<p), first register(see

Figure 5.3.5.1).

290

The second input register is a bit 1, and serves to make the G-iteration work. After

going through a Hadamard gate, it assumes the output state of the Hadamard gate (see

Figure 5.3.6.1), and is denoted by state | -) . The inputs go through a number of G-

iterations, after which the state vector will become the solution state.

5.3.6. The G-iteration.

Grover's Algorithm transforms the basic state |^), where the probabilities of measuring

each state are equal, into a state that has an overwhelming probability of measuring the

solution. This transformation is achieved through G-iterations, illustrated in Figure

5.3.6.1.

Inverse by the mean circuit

loRji}
v'2

V2

1 \
1 /

t

Oracle

Uf

i

2WM-/

1

Ifc)

Figure 5.3.6.1: The first G-iteration

The G-iteration is composed of the Oracle Uf and the "inverse by the mean" function

2|p)(p|-/. Grover's Algorithm is meant to significantly increase the amplitude of the

desired element. In order to be able to transform the element state's amplitude, we

291

need a function that will specifically act on it, which will be the basis of all later

transformations of the element. This is f(i), which is illustrated in Figure 5.3.6.2.

, , .x I 1 if i is the searched element (I'O)

0 otherwise.

Figure 5.3.6.2: Function f(i)

Uf is an oracle that is based on the function f(i). Uf is designed to conduct a phase shift

on the desired element, i0, which corresponds to it gaining a negative phase in the state

vector. This does not affect the other inputs at all; as probability amplitudes are

squared, negative amplitude makes no difference. The function of Uf is illustrated in

Figure 5.3.6.3.

B|_„ _ ummzEimm

y'*2

= (- l) « 0 W | -) .

Figure 5.3.6.3: Function Uf.

This Uf marks the io with a minus sign, but the amplitude is yet to be increased. The

state vector after Uf matrix can be considered \q>]), io is increased by the second part of

the G-iteration the "inverse by the mean" circuit described by the unitary matrix

292

2|p)(p|-/. The operation of unitary matrix 2|^)(^|-/ cannot easily be explained in

terms that are not geometric (Figure 5.3.6.4).

•• l i n i

Figure 5.3.6.4: Geometric representation of G-iteration.

2\<P)(<P\-I is the operator that occurs between 91 and q>G. It flips the state over the initial

state I?.) . This increases the amplitude of io. \<p){q>\ when applied to any state, brings up

the initial stated). The operators Uf and 2|p)(p|-/ combine to increase the amplitude

of the desired state ioby an arbitrary amount theta, which is smaller when the Graver's

"database" is larger (thus requiring more G-iterations).

It is important to note that Grover Algorithm is usually discussed as a "stand-alone"

quantum algorithm executed on a single quantum computer. However, a more

interesting approach is to consider a parallel system of computers, each of them being

a classical computer with its reconfigurable quantum accelerator processor that can be

dynamically reprogrammed and thus adapt to any given particular problem. This

293

approach will be presented in chapter 6. In chapters 12, 13, 14 and 15, I will discuss

various applications of Grover for which I constructed oracles.

5.4. The Matlab Simulations.

5.4.1. The need for a simulation

We need to prove that our Oracle complies with Grover's Algorithm. If it did not, then

we would have to find an entirely different model for our algorithm, as our existing one

would be faulty. The simulations were useful exercises as we often found several errors

in our design and text files. I used QuiDDPro and MATLAB simulators to explore and

verify my idea of designing Grover Oracle for various problems and their versions

discussed in chapters 12 and 13.

5.4.2. The method of simulation

We used the MATLAB program to simulate the circuit, as we have no quantum

computers to do so. MATLAB uses matrices, so we would have to derive the operation

matrix of our algorithm, and the test it on the initial state vector (see Figure 5.4.2.2).

We used a simplified graph (Figure 5.4.2.1), and a simplified version of the Oracle,

consisting only of the Graphic rule checker (Figure 5.4.2.2). The entire final circuit of

the oracle is shown in Figure 5.4.2.3.

294

Figure 5.4.2.1: The graph with 3 nodes for coloring to be simulated.

H

H

H

H

NH

U
Our

oracle

H

H

-e-

•e- &

H ^

H

H

• #

(a) HZH

n = 3
W
0)

H

H

H

T

M

M

(b)
Output qubit V v̂" times repeated result

Figure 5.4.2.2: The Grover Loop for graph coloring of the simple map (planar graph)
from Figure 5.4.2.1. (a) Gives the complete "Grover Loop" circuit, denoted by G.

(b)This circuit should be iterated JN = V2" = V23 = 2 42 = 2.1.41 ~ 3 times.

We find the matrix of this Oracle below. By creating the matrices of Ul, U2, etc., we

can find the total matrix of the comparator, which is denoted as Mcomp here. Our

initial naive design of the oracle is shown in Figure 5.4.2.3a. Next I improved the

design to the circuit from Figure 5.4.2.3b and finally I got the idea of the circuit from

295

Figure 5.4.2.4b. This circuit was so simple and beautiful that it actually made me think

about the role of CNOT gate which ultimately led to the invention of Affine gates.

a — t

b-
c —

(a)

o - i—t: i *

0 — 0

a

b

c

a =£ h

good coloring

b—m

(b)

-m

-©

) t CD

b

c

0 ^ r t

a® b b® c

Figure 5.4.2.3: The Graph Coloring checking oracle for the graph from Figure 5.4.2.1.
(a) the circuit created directly from problem definition and without any optimization,
(b)the next variant of the circuit uses mirrors for a®b and bee and is more expensive
than the circuit from Figure 5.4.2.1a.

This circuit concept leads however to the circuit with one less ancilla bit (Figure

5.4.2.4) which simplifies much the Matlab simulation.

296

Wire CNOT Gate

Ul=

U2=

U3=

+
n? ® 0 1

1 000
01 00
0001
0010

1000
01 00
0001
0010

®

®
1
0
0
1 ®

,
1 0
0 1

1 0~
0 1

1 0
0 1

10000000
01000000
00100000
000 10000
00001000
00000 100
00000001
0000001 0

(U4 is identical to U2, U5 is identical to Ul)
The total U matrix of the Oracle is
U=U5 * U4 * U3 * U2 * Ul

(a)

rv-

^

^ A

vn
A

L.
ktN

A

L. A

|o)

(b)
Ui u5 U3 U4= U2 U5= Ui

Figure 5.4.2.4: Calculations of the Unitary (permutative) matrices from the oracle, (a)
The calculations of the matrices, (b) the complete oracle circuit with partitioning to
matrices from Figure 5.4.2.4a.

The HZH is the Zero Shift subcircuit in the Grover's Algorithm (Figure 5.4.2.2). The

circuit analyzed in Figure 5.4.2.5 circuit is composed of basic gates. These gates have

respective matrices. "H" is the matrix of a Hadamard, "Minv" an inverter, "wire" a

wire, and "Toffoli 3" a 3-input Toffoli gate. Using Kronecker. multiplication, we can

297

find the matrices of each column. The columns of HZH are denoted as HN, where N is

a number. N starts from the rightmost column, and increases as you go to the left.

These column-matrices are multiplied together to create the total matrix of the circuit.

This is done below. Mh is the initial Hadamard transform of the circuit, and U is the

matrix of the Oracle. Vinit is the initial input vector.

Hl=H<8H®H®wire
H2=Mim® Minv® Minv®Wire
H3=(Toffoli 3)

(H4 is equal to H2, H5
equal to HI)

The total matrix HZH is equal to:
HI * H2 * H3 * H2 * HI

So, the total matrix for one iteration is:
(HZH * U * Mh) Vinit

Figure 5.4.2.5: Analysis of the single iteration ofGroverLoop.

MATLAB calculated all these results plus the entire Unitary matrix of the Grover

Algorithm for this case. The results were consistent with what would happen if truly

quantum Grover's Algorithm was applied to the problem. Thus, we prove that our

Oracle can work with the truly quantum Grover's Algorithm to solve a very simple

graph coloring problem.

298

5.5. Conclusion

The oracle design for Grover Algorithm has been successful in creating an Oracle for

graph coloring, as verified by several MATLAB simulations. The concepts presented

in this thesis were learned alongside the creation of the project. Important concepts

such as logic synthesis and simulation were necessary for the oracle design theory, and

their usage solidified my knowledge of them. This oracle design was my first

application of quantum computing, and so proved invaluable to my education of all

presented concepts. This led also to invention of new gates and oracles, as well as new

blocks. For instance the circuit from Figure 5.4.2.4 attracted me to the idea of affine

Toffoli gates. The powerful idea that influenced me comes from Raymon Lullus (XIII

century) who influenced Descartes who influenced in turn George Boole. Boole said

"every logic problem can be formulated as a logic equation". We call them now the

"Boolean Equations" to honor George Boole and the name of Raymon Lullus is

unfortunately forgotten.

299

CHAPTER 6

Tree Search, Parallel Search and Quantum Parallel Search

6.1. Introduction. The essence of parallel quantum search.

This chapter contains a description of our new approach to problem-solving and

learning. The method presented in this chapter is an improved search method that

applies both to classical and quantum search.

There are several approaches to find solutions in combinational problems. One group

of approaches are based on tree searching. Algorithms such as depth-first-search,

breadth-first-search, tabu search or A* search are used. Another approach uses Genetic

Programming or Genetic Algorithm. Yet another approach uses Simulated Annealing.

Learning can be incorporated in one way or another into any of these algorithms.

Here we will show a new approach where several algorithms are combined together

and that is specialized for minimization of multi-level, binary and multiple-valued

logic networks from various types of gates, in particular in AND/EXOR, Galois and

Linearly Independent Logic.

Search can be realized on a serial (one-processor computer) and on a parallel

computer. Parallelism gives of course the increase of the processing power thanks to

many processors working in parallel that can be used to decrease the processing time.

300

There is however also another advantage of parallelism. It is that the processors can

use different algorithms and thus one of them can find some coefficients or bounds

that can be next used by all processors as the bound constraining their search thus

improving the total processing time to find the solution. Also, using FPGAs or other

reconfigurable system allows to use the learned problem characteristics to modify the

structure of the computing systems or/and its processing units. All these ideas can be

applied to the quantum search as well as to the standard search.

We can characterize a general parallel quantum search method as having the following

properties:

1. The general search method uses "unit processors" to perform "canonical

searches".

2. Each canonical search uses certain strategy, this strategy is quantum or not.

Each canonical search searches certain subspace of the entire problem space.

3. Each canonical search searches certain tree in a complete or incomplete search

manner. Its work can be stopped by other processor to load a new search

problem to its processor or the search parameters can be updated.

4. There are three types of parallelism related to quantum computing:

1) The quantum algorithm as introduced in Chapter 5 of this thesis. We will

call it the "standard quantum computer". This computer has quantum

301

parallelism as represented in Grover algorithm. This parallelism is based on

superposition and entanglement and was fully explained in chapter 5.

2) In contrast to "standard quantum computer" the quantum computer can be

"ensamble quantum computer." In ensamble quantum computer many

standard quantum computers work in parallel as one unit, performing

exactly the same algorithm. Observe that if a standard quantum computer is

for instance in state Vo then, when measured, it gives probabilistically 0 or

1 with probability 1/2 each. We thus do not know if the computer was in

state 0 or Vo. Quantum Ensamble computer however works differently. Let

us assume that 10,000 standard quantum computers in this ensamble

computer are in state Vo, then during the measurement statistically 5,000

computers will read 0 and another 5,000 computers will read 1. Thus we

statistically know that the state of each computer was on a big circle

(Equator) of the Bloch sphere. We have thus more information than in the

case of a standard quantum computer and we can distinquish state 0, 1 and

Vo in this single (ensamble) measurement.

3) Finally, there can be a set of standard quantum computers or a set of

ensamble quantum computers that work in parallel. This is similar to a

parallel computing system of normal computers, and various structure and

network types of parallel computers can be used. This is the most general

model of computing of this thesis.

302

results

4

Dynamic
allocation and

scheduling

Main Classical Processor

Dynamic
"Master"

processor

Quantum Computer
Decomposed

task

Partial
answers

Problem
Specification

Synthesis and
decomposition of the

problem

Slave
quantum —
processor

Slave
quantum —
processor

loading

loading

Hardware
programming of slave
processor structures

Hardware re-
programming of slave
processor structures

and parameters

Static synthesis, decomposition, allocation
and hardware programming

Figure 6.1.1: Hierarchical control Figure.

The entire search can be thus decomposed to many quantum and standard computers.

When we talk in this dissertation about a search tree, one has to understand that

various parts of this tree can be expanded separately in various processors and by

various algorithms and computational mechanisms 1), 2), 3) as above. The schematic

diagram of a parallel quantum computer is presented in Figure 6.1.1.

303

6.2. Advanced Search Method

6.2.1. Introduction to Advanced Search Methods

One of the most important components to create successful programs for many CAD

applications is developing a good search strategy that is based on the particular

problem to be solved and its problem-specific heuristics.

In principle, better search methods either use some kind of heuristics, or utilize some

systematic search strategies that guarantee, at least local, optima. One convenient and

popular way of describing such strategies is to use the concepts of tree searching. Tree

is a structure of sub-trees, these subtrees can be be searched in parallel or in series.

Each subsearch can be executed on a standard computer, or a parallel or a quantum

computer. The theory that we present here relates thus both to the entire tree search

problem and to each subsearch problem.

The problem of creating complex heuristic strategies to deal with combinatorial

problems in CAD is very similar to that of general problem-solving methods in

Artificial Intelligence and Robotics. There are five main principles of problem solving

inAI:

• state-space approaches including constraint satisfaction,

• problem decomposition,

• automatic theorem proving,

304

• rule-based systems,

• learning methods (neural nets, abductive nets, immunological, fuzzy logic,

genetic algorithm, genetic programming, Artificial Life, etc.).

Since we will limit the discussion in this chapter to the description of the state-space

principle, the approach that we will use is based on the assumption that any

(combinatorial) problem of our class can be solved by searching some space of states.

The space is enormously large in practical problems and it has a certain structure or

not. If the space has no structure, not much can be done other than making the search

as parallel as possible. But usually the space has some type of structure and this

structure should be used to design the improved search method.

Search in space of states seems to be the best approach because of its simplicity,

generality, adaptability, parallelization, parameterization and other nice properties. By

using this approach, the sets of problems within this framework are not greatly

restricted.

There are also other reasons for choosing the state-space heuristic programming

approach:

6.2.1a. The combinatorial problem can be often reduced to integer programming,

dynamic programming, or graph-theoretic problems. The graph-theoretic

approaches include in particular, the set covering, the maximum clique, and

the graph coloring. The computer programs that would result from pure,

305

classical formulations in these approaches would not sufficiently take into

account the specific features and heuristics of the problems. Instead

reducing to known models, we will create our own general model, and

"personalize" it to our problems. For instance, instead of using a standard

(proper) graph coloring approach, we may formulate the compatible graph

coloring problem, an adaptation of proper graph coloring that uses also

other constraints. Moreover, we use heuristic directives based on our data

to solve the modified/adapted problem efficiently. The problems are rather

difficult to describe using these standard formulations. The transition from

the problem formulation, in these cases, to the working version of the

problem-solving program is usually not direct and cannot be automated

well. It is difficult to experiment with strategy changes, heuristics, etc.

These parameterized experimentations are one of our main goals here in

case of standard computers. The same rules and methods can be however

used also in future to quantum computers. We aim at the model's

flexibility, and of the model's being able to easily tune its parameters

experimentally. In a sense, we are looking at a "fast prototyping"

possibility. Now we cannot use our model fully on quantum simulators, as

we do not dispose a parallel system of quantum simulators.

6.2.1b. Some of these combinatorial problems (or similar problems) have been

successfully solved using the state-space heuristic programming methods.

The state-space methods include some methods that result from other AI

306

approaches mentioned above. Some backtracking methods of integer

programming, and graph-traversing programs used in graph partitioning

and clustering methods, are for instance somewhat similar to the variable

partitioning problem. They can be considered as special cases of the

problem-solving strategies in the space of states.

6.2.1c. Other problems were solved using Genetic Algorithm as it was not possible

to use another type of search because of problem size. Hopefully, quantum

computing will allow to create algorithms of higher quality and efficiency,

including exact minimizations for problem instances that are not possible

on standard computers.

6.2.Id. We found that there are, in most cases, some straightforward procedures to

convert search algorithms to quantum oracle problem formulations. This is

only a beginning of research and we are mostly restricted to Grover

Algorithm.

Roughly speaking, several partial problems in logic CAD can be reduced to the

following general model:

6.2.2a. The rules governing the generation of some set S, called state-space, are

given. This space can be created in series and in parallel, in standard world

or in quantum world. This set is in most cases implicitly defined, not

explicitely. Explicit formulation is only in the simplest games and puzzles

used as illustrations.

307

6.2.2b. Constraint conditions exist which, if not met, would cause some set 5" <= S

to be deleted from the set of potential solutions. Again, this deletion can be

done in series or in parallel, in standard or in quantum computing spaces.

6.2.2c. The solution is an element of S that meets all the problem conditions.

6.2.2d. The cost function F is defined for all solutions. This function is calculated

in series, in parallel or in a mixed serial/parallel way. It is calculated by

software or by hardware. The hardware oracle block is combinational in

quantum synthesis but it may have memory and automata components in

quantum or non-quantum hardware. We are not interested in quantum

automata in this dissertation.

6.2.2e. The solution (one, more than one, or all of them) should be found such that

the value of the cost function is optimal (quasi-optimal) out of all the

solutions.

A problem condition pc is a function with arguments in S and values true and false.

For instance, if set S is the set of natural numbers:

pci{x) = true - ifx is a prime number; false - otherwise

In general, ^problem can be defined as an ordered triple: P = (S;PC,F), where:

6.2.3a. PC is a set of predicates on the elements S of, called problem conditions. In

standard design the conditions are checked for one candidate at a time.

308

However, the power of quantum computing is that all conditions are verified

for all the states being solution candidates in parallel.

6.2.3b. F is the cost function that evaluates numerically the solutions. Solution is an

element of S that satisfies all the conditions in PC.

The tree search method includes:

6.2.3b. 1. The problem P,

6.2.3b.2. The constraint conditions,

6.2.3b.3. Additional solution conditions that are checked together with the problem

conditions,

6.2.3b.4. The generator of the tree. Generation can be done in parallel, in series, in

quantum, in standard software, using sequential or combinational circuit.

6.2.3b.5. The tree-searching strategy. The strategy can be parallel, serial, quantum,

standard software, etc. As discussed earlier. The strategy is usually

composed of several sub-strategies. Only in didactic examples we will use

pure strategies that are not mixed.

Additional solution conditions are defined to increase the search efficiency.

For instance, assume that there exists an auxiliary condition that is always satisfied

when the solution conditions are satisfied, but the auxiliary condition can be tested

less expensively than the original solution conditions. In such case the search

efficiency is increased by excluding the candidates for solutions that do not satisfy this

auxiliary condition. This can be done in the same search process or in another search
309

process, executed subsequently. Standard processor gives more flexibility but quantum

computer gives more processing power and parallelism.

The additional solution conditions together with the problem conditions are called

solution conditions. The method is complete if it searches the entire state-space and

thus assures the optimality of the solutions. Otherwise, the entire space is not searched

and the search methods will be referred to as incomplete methods. Obviously, for

practical examples most of our searches will use incomplete search methods. Although

quantum computer gives enormously high processing power comparing to standard

computers, they will be also restricted as we will formulate more complex problems

for them. Thus incomplete and approximate methods will be always of use, only the

complexity of the problems will dramatically increase.

We will illustrate these ideas for the case of the minimal covering (set covering, unate

covering) problem, which has several applications. For instance, the problem is

defined as follows:

A. The problem is represented as a rectangular table with rows and columns.

Each column is to be covered with the minimum total cost of rows. The

state-space S is a set that includes all of the subsets of the set of rows of the

covering table (rows correspond for instance to prime implicants contained

in a Boolean function [Kohavi70].

B. The solution is an element of S that covers all the columns of the function.

310

C. A cost function assigns the cost to each solution. The cost of a solution is

the number of selected rows. It may also be the total sum of the selected

rows and their costs.

D. A solution (set of rows) should be found that is a solution and minimizes

the cost function.

E. Additional quality functions are also defined that evaluate states and rows

in the search process.

F. This process consists of successively selecting "good" rows (based on the

value of the quality function), deleting other rows that cover fewer of the

matrix columns (these are the dominated rows), and calculating the value

of the cost function.

G. The cost value of each solution cover found can then be used to limit the

search by backtracking.

H. This process can be viewed as a search for sets of rows in the state-space,

and can be described as a generation of a tree(solution tree) using rows as

operators, sets of rows as nodes of the tree, and solutions as terminal

nodes.

A combinatorial problem of a set covering type can either be reduced to a covering

table, or solved using its original data structures. Finally it can be reduced to a logic

equation (Petrick Function) which is evaluated in software, in standard (classical

oracle) or in a quantum oracle. It has been shown by many authors [CordoneOl], that

311

the following classical logic synthesis problems, (among many other), can be reduced

to the Set Covering Problem.

These problems are:

(1) the PL A minimization problem.

(2) the finding of vacuous variables.

(3) the column minimization problem.

(4) the microcode optimization problem.

(5) the data path allocation problem.

(6) the Three Level AND/NOT Network with True Inputs (TANT) minimization

problem.

(7) the factorization problem.

(8) the test minimization problem, and many other classical logic synthesis

problems.

(9) the layout minimization problems, including ancilla bits minimization in

quantum circuits.

(10) the ESOP minimization problem.

Therefore, the Set Covering, Even/odd covering, Binate covering, and many similar

(selection) problems can be treated as a generic logic synthesis subroutine. Several

312

efficient algorithms for this problem have been created [Dill97, Perkowski99, Files97,

Files98, Files98a]. Some of these algorithms can be used also to create oracles.

The methods presented here can be applied to all problems presented in chapters 2, 3,

4, 7 - 11 and specifically to:

1. Finding minimum realization in the sense of number of elementary pulses for

quantum gates (chapter 2)

2. Finding minimum realization of PPRM for incompletely specified function

3. Finding minimum realization of FPRM for completely and incompletely

specified function

4. Finding minimum realization GRM for completely and incompletely specified

functions

5. Finding minimum realization for all kinds of affine circuits for various

polarities.

6. Finding minimum realizations for all other canonical forms and ESOP.

We can use the search ideas from this chapter to solve efficiently all these problems.

Some will be illustrated. Equivalently, I believe that some of the ideas from the

literature about optimization and oracle construction can also be used to extend the

search framework presented by us, both its classical and quantum aspects.

313

Moreover, various methods of reducing a given problem to the Set Covering Problem

exist. These methods would result in various sizes of the covering problem. By a smart

approach, the problem may still be NP-hard, but of a smaller dimension. For a

particular problem then, one reduction will make the problem practically manageable,

while the other reduction will create a non-manageable problem. This is true, for

instance, when the PLA minimization problem is reduced to the set covering with the

signature cubes [Brayton87] as columns of the covering table, rather than the

minterms as the columns of this table. Such reduction reduces significantly the size of

the covering table. Similar properties exist for the Graph Coloring, Maximum Clique,

reversible logic synthesis, ESOP minimization, quantum circuit minimization and

other combinatorial problems of our interest. Although the problems are still NP-hard

as a class, good heuristics can solve a high percent of real life problems efficiently.

This is because of the Occam's Razor principle - circuits described by engineers are

not random circuits - the random circuits are the most difficult to minimize, but

hopefully there is no use to minimize them so they will be not a subject of

optimizations.

Many other partial problems for CAD of classical computers, including those in high-

level synthesis, logic synthesis, and physical CAD, can also be reduced to a class of

NP-hard combinatorial problems that can be characterized as the constrained logic

optimization problems. This is a subclass of the constraint satisfaction problems.

314

These problems are described using binary and multiple-valued Boolean functions,

various graphs and multi-graphs, arrays of symbols or other specifications. Some

constraints are formulated on these data, and some transformations are executed in

order to minimize the values of cost functions. These problems include Boolean

satisfiability, tautology, complementation, set covering [Hochbaum82], clique

partitioning [Pozak95], maximum clique [Jou93], generalized clique partition, graph

coloring, maximum independent set, set partitioning, matching, variable partitioning,

linear and quadratic assignment, encoding, and others. These entire problems can be

realized as quantum oracles, and we will illustrate several of them in chapters 12, 13,

14 and 15.

With respect to high importance of these problems, several different approaches have

been proposed in the literature to solve them. These approaches include:

1. Mathematical analyses of the problems are performed in order to find the most

efficient algorithms (the algorithms may be exact or approximate). If this cannot

be achieved, the algorithms for particular sub-classes of these problems are

created. This can speed up solving problems on large classes of practical data, in

spite of the fact that the problems are NP-hard so that no efficient (polynomial)

algorithms exist for them. For instance, the proper graph coloring problem is NP-

hard, but for a non-cyclic graph there exists a polynomial complexity algorithm.

How practical is the polynomial algorithm, it depends only on how often non-

cyclic graphs are found in any given area of application where the graph coloring

is used.

315

2. Special hardware accelerators are designed to speed-up the most executed or the

slowest operations on standard types of data used in the algorithms.

3. General purpose parallel computers, like message-passing hypercube processors,

SIMD arrays, data flow computers and shared memory computers are used

[Duncan90]. Some ideas of parallel, systolic, cellular and pipelined hardware can

be applied to building quantum oracles. For instance, the sorter absorber circuit

that I use for converting lists to sets in quantum oracles (chapter 13) has been

adapted from pipelined sorters used in standard hardware.

4. The ideas of Artificial Intelligence, computer learning, genetic algorithms, and

neural networks are used, also mimicking humans that solve these problems. In

this dissertation we also follow some of these ideas [Nilsson71].

6.3. Multi-strategic Combinatorial Problem Solving

6.3.1. Basic Ideas of Multi-strategic search

The goal of this section is to explain how the general objectives outlined in sections

6.1 and 6.2 can be realized in programs and hardware systems to solve combinatorial

problems. It is well-known that the difference between hardware and software has

been recently blurred with the introduction of reconfigurable computers and Field

Programmable Gate Arrays. It should be thus clear to the reader that many of ideas

316

that we present below are applicable to both software and hardware, including

quantum oracles.

Some of the methods presented here have been already programmed, some other not

yet. Some have been used to design quantum oracles from next chapters, some other

are not incorporated into the thesis as they lead to very complex circuits. I am afraid

that they would expand the thesis too much. Our interest is in a uniform explanation

and the creation of state-space tree search methods that would be general and

independent on the computing substrate. Our first goal is Fast Prototyping. By fast

prototyping, we want the program to be written or a system to be designed in such a

way that the developer will be able to easily change the program/hardware for each

experiment. This is illustrated by the set covering software and by the way of building

respective logic oracles in chapter 12.

Our general methodology includes an important component of changing the problem

description variants and create various search strategies for different tree search

methods to optimize the efficiency of the search.

The tree-search strategy was created by selecting respective classes and values of

strategy parameters. The creation of multiple variants of a tree-searching program,

that could require weeks of writing and debugging code would then be possible in a

317

shorter period of time. Some efficiency during execution will be lost, but the gain of

being able to test many variants of the algorithm will be much more substantial. The

behavior of the variants of the tree search methods will then be compared and

evaluated by the developer to create even more efficient algorithms.

0 1 2 3
QS GS
{} {1,2,3} {1} {2,3} {1,2} {3} {1,2,3} {}

Figure 6.3.1.1: Example of Tj type tree generator of a full tree.

Figure 6.3.1.1 presents a tree generator. Such generator can be used in software or

standard hardware. It generates all subsets of a set of elements {1, 2, 3}. This

generation can be done in series or in parallel. It can be decomposed to many subtrees.

In case of quantum processing, the generation is done as creating binary vectors

corresponding to subsets and all these vectors are superposed within a single unit

search subprocess. For instance, we can imagine a hierarchical system that has parallel

structure of quantum computers. The initial problem for set {1, 2, 3} is created in a

318

processor corresponding to node no. It is decomposed serially to two sub-problems,

Sub-problem-1 is for the sub-tree with nodes m, 114, nq, n5. Another sub-problem, Sub-

problem-2 has nodes n2, n6 and n3. Observe that the Sub-problem-2 is the complete

search of all subsets of set {2, 3} so it has a general nature which can be used to build

a quantum computer for all subsets of set {2, 3}. The Sub-problem-1 includes all

solutions with element 1, and in addition it searches the subsets of set {2, 3}. Thus

another quantum computer can be constructed for set {2,3} which in addition knows

that element 1 is selected. These quantum computers can be realized dynamically

using a quantum software/hardware design approach that extends standard FPGAs.

We call it Reconfigurable Quantum FPGA. In this simple example we have Processor-

0 which is a standard processor, and two subordinated to it processors: Processor-1

and Processor-2 that execute Sub-problem-1 and Sub-problem-2, respectively.

Observe that when one of the quantum processors finds a solution it informs the

Processor-0 about the cost value and the Processor-0 can change its strategy of giving

values and sub-problems to subordinated quantum processors. It can also reconfigure

them, by practically designing them from scratch using quantum circuit design. For

instance, in case of graph coloring, if a proper coloring with a new cost value k is

found, if this value is much lower than the current assumed or computed value, the

processors are redesigned for a smaller value of k, which means a smaller number of

qubits encoding every node of the graph. This will be illustrated in more detail in

chapter 15.

319

6.3.2. Description of the Solution Tree

6.3.2.1. Basic concepts

The search strategy realizes some design task by seeking to find a set of solutions that

fulfill all problem conditions. It checks a large number of partial results and temporary

solutions in the tree search process, until finally it determines the optimality of the

solutions, the quasi-optimality of the solutions, or just stops when any solution is

found.

6.3.2.1. The state-space S for a particular problem solved by the program is a set

which includes all the solutions to the problem. The elements of S are referred

to as states. New states are created from previous states by application of

operators. During the realization of the search process in the state-space, a

memory structure termed solution tree, solution space, is used. These states

should be not confused with quantum states from the quantum evolution that is

executed in the oracle.

6.3.2.1.1. The solution tree is defined as a graph: D = [NO, RS] . A solution tree

contains nodes from set NO, and arrows from the set of arrows RS. Nodes

correspond to the stages of the solution process (see Figure 6.3.1.1 and Figure

6.3.1.2.)

6.3.2.1.2. Each arrow is a pair of nodes nu, nt2. Arrows are also called oriented edges.

They correspond to transitions from stages to stages of the solution process.

320

6.3.2.1.3. An open node is the node without created children , or immediate

successors. A child of child is called grandchild. If s is a child ofp then p is a

parent of s. A successor is defined recursively as a child or a successor of a

child. A predecessor is defined recursively as a parent or a predecessor of a

parent.

6.3.2.1.4. A semi-open node is a node that has part of its children created, but not yet

all of its children are implicitly formed.

6.3.2.1.5. A closed node is a node, where all of its children have already been created

in the tree.

6.3.2.1.6. The set of all nodes corresponding to the solutions will be denoted by 5F.

6.3.3. Terminology and Notations

The Sub-Spaces of the Solution Space are related to its structure.

In the solution space we can distinguish the following sub-spaces:

6.3.3.\.actual solution space - the space which has a representation in the computer

memory (both RAM and disk),

6.3.3..2.potential solution space - the implicit space that can be created from the actual

space using operators and taking into account constraints,

6.3.3.3.closed space - the space which has already been an actual space for some time,

but has been removed from the memory (with exception of the solutions).

321

6.3.3.4.As the search process grows, the actual space is at the expense of the potential

space. The closed space grows at the expense of the actual space. The actual

space is permanently modified by adding new tree segments and removing

other segments. Sometimes the closed space is saved in hard disk, and re-used

only if necessary.

6.3.3.5.By "opening a node" we will mean creating successors of this node. The way

to expand the space, called the search strategy, is determined by:

(6.3.5.1) the way the open and semi-open nodes are selected,

(6.3.5.2) the way the operators applied to them are selected,

(6.3.5.3) the way the termination of search procedure is determined,

(6.3.5.4) the conditions for which the new search process is started, and

(6.3.5.5) the way the parts of the space are removed from the memory.

6.3.3.6. The arrows in the tree are labeled by the descriptors of the operators. Each

node contains a description of a state-space state and some other search-related

information. In particular, the state can include the data structure corresponding

to the descriptors of the operators that can be applied to this node. Descriptors

are some simple data items. For instance, the descriptors can be: numbers,

names, atoms, symbols, pairs of elements, sets of elements. The choice of what

the descriptors are, is often done by the programmer. Descriptors are always

manipulated by the search program. (In some problems, they are also created

dynamically by the search program.) Descriptors can be stored in nodes or

322

removed from the descriptions of nodes. As an example of using descriptors, we

will discuss the case where the partial solutions are the sets of integers. In this

problem then, the descriptors can be the pairs of symbols (aritmetic_operator,

integer). The application of an operator consists in taking a number from the

partial solution and creating a new number. This is performed like this:

<new_number> := <number> <aritmetic_operator>< integer>

The number is replaced in the partial solution of the successor node by the

new_number.

6.3.3.7. In those cases that the descriptors are dynamically created, the programs that

create them are called the descriptor generators. They generate descriptors for

each node one-by-one, or all of them at once. The operators traverse the tree

from a node to a node. Operator is a concept that corresponds to applying

certain program to nodes of the solution tree. This program has the descriptor as

its parameter. Creating new nodes of the tree is equivalent to searching among

the states of S.

6.3.3.8. Each of the solution tree's nodes is a vector of data structures. For explanation

purposes, this vector's coordinates will be denoted as follows:

• N - the node number,

• SD - the node depth,

• CF - the node cost,

• AS - description of the hereditary structure,

323

• QS - partial solution,

• GS - set of descriptors of available operators.

6.3.3.9. Additional coordinates can then be defined, of course, as they are required.

Other notations used:

• NN - the node number of the immediately succeeding node (a child),

• OP - the descriptor of the operator applied from N to NN,

• NAS- actual length of list AS,

• NQS- actual length of list QS,

• NGS- actual length of list GS.

6.3.3.10. The operator is denoted by OPt, and it's corresponding descriptor by rt. An

application of operator OPj with the descriptor rt to node TV of the tree is denoted

by 0(ru N). A macro-operator is a sequence of operators that can be applied

successively without retaining the temporarily created nodes.

324

6.4. Formulating a Problem

A prerequisite to formulating the combinatorial problem in the search model is to

ascertain the necessary coordinates for the specified problem in the initial node (the

root of the tree). The way in which the coordinates of the subsequent nodes are created

from the preceding nodes must be also found. This leads to the description of the

generator of the solution space (tree generator). Solution conditions and/or cost

functions should be formulated for most of the problems. There are, however,

generation problems (such as generating all the cliques of a specific kind), where only

the generator of the space is used to generate all the objects of a certain kind.

6.4.1. QS is the partial solution: that portion of the solution that is incrementally

grown along the branch of the tree until the final solution is arrived at. A set of

all possible values of QS is a state-space of the problem. According to our

thesis, some relation RE eSxS of partial order exists usually in S. Therefore,

the state s eS symbolically describes the set of all s' e S such that s RE s'.

The solution tree usually starts with QS(No) which is either the minimal or the

maximal element ofS. All kinds of relations in S should be tried to find by the

researcher/developer, since they are very useful in creating efficient search

strategies.

6.4.2. The set GS(N) of descriptors denotes the set of all operators that can be applied

to node N.

325

6.4.3. AS(N) denotes the hereditary structure. By a hereditary structure we understand

any data structure that describes some properties of the node N that it has

inherited along the path of successor nodes from the root of the tree.

6.4.4. The solution is a state of space that meets all the solution conditions.

6.4.5. The cost function CF is a function that assigns the cost to each solution.

6.4.6. The quality function QF can be defined as a function of integer or real values

pertinent to each node, i.e., to evaluate its quality. It is convenient to define

the cost and quality functions such that

QF(N) < CF(N) and if QS(N) is the solution, then QF(N) = CF(N) Equation 6.4.1

6.4.7. TREE(N) denotes a subtree with node TV as the root. Often function QF(N) is

defined as a sum of function F(N) and function h(N) :

QF(N) = CF(N) + h(N) Equation 6.4.2

6.4.8. h{N) evaluates the distance h(N) of node N from the best solution in

TREE(N). F(N), in such a case, defines a partial cost of QS(N), thus h(N) is

called a heuristic function. We want to define h in such a way that it as close

to h as possible (see [Nilsson71] for general description and mathematical

proofs).

326

6.4.9. Cost function f

A theoretical concept of function / is also useful to investigate strategies as well as

cost and quality functions. This function is defined recursively on nodes of the

extended tree, starting from the terminal nodes, as follows:

f(NN) = CF(NN) when the terminal node AW is a solution from SF, Equation 6.4.3

f(NN) = oo when the terminal node AW is not a solution, Equation 6.4.4

f(N) = min (f(Ni)), for all which Nt are the children of node N. Equation 6.4.5

This function can be calculated for each node only if all its children have known

values, which means practically that the whole tree has been expanded. f(N) is the cost

of the least expensive solution for the path which leads through node N. We assume

that the function CF can be created for every node N (and not only for the nodes from

the set SF, of solutions), it holds that the following must also be true

CF(N) < f(N) Equation 6.4.6

and

CF(NN) > CF(N) for NN e SUCCESSORS(N) Equation 6.4.7

The general idea of the Branch and Bound Strategy consists in having a CF that

satisfies equations 6.4.1, 6.4.2, 6.4.3. Then, knowing a cost CFmin of any intermediate

solution that is temporarily treated as the minimal solution, one can cutt-off all

327

subtrees TREE(N) for which CF(N)> CFmin (or, CF(NN) > CFmia when we look for

only one minimal solution).

In many problems it is advantageous to use a separate function QF, distinct from CF,

such that CF guides the process of cutting-off subtrees, while QF guides the selection

of nodes for expansion of the tree.

In particular, the following functions are defined:

g(N) the smallest from all the values of cost function calculated on all paths from JVo to

N. Equation 6.4.8

h(N) the smallest from all the values of increment of cost function calculated from TV

to some Nk eSF . This is the so-called heuristic function. Equation 6.4.9

f(N) = g(N) + h(N). Equation 6.4.10

Since function h cannot be calculated in practice for node N during tree's expansion,

and g is often difficult to find, some approximating functions are usually defined.

Function CF approximates function g. Function h approximates function h, such that

QF(N) = CF(N) + h(N) QF(N) Equation 6.4.11

h(N) > h(N) > 0 Equation 6.4.12

h(M) - h(N) < h(M,N) Equation 6.4.13

328

where h(M,N) is the smallest of all increment values of cost function from M to N,

whenM,N eSF.It also holds that:

QF(N) = CF(N) for NeSF Equation 6.4.14

h(N) > h(N) = 0 for NeSF Equation 6.4.15

Functions defined like this are useful in some search strategies, called Nilsson A*

Search Strategies. Sometimes while using branch-and-bound strategies it is not

possible to entirely define the cost function g(N) for N <£ SF. However, in some cases

one can define a function QF such that for each N.

QF(N)<g{N) Equation 6.4.16

For nodes N eSF one calculates then g(N) = CF(N), and then uses standard cut-off

principles, defining for the remaining nodes Nf. CF(Ni) = QF(Ni), and using function

CF in a standard way for cutting-off. A second, standard role of QF is to control the

selection of non-closed nodes. (By non-closed nodes we mean those that are either

open or semi-open.) One should then try to create QF that plays both of these roles.

A quasi-optimal or approximate solution is one with no redundancy; i.e., if the

solution is a set, all of its elements are needed. When the solution is a path in a certain

graph, for example, it has no loops. An optimal solution is a solution QS{N) = s <ES

such that there does not exist s' eS where QF(s) > QF(s'). The problem can have

329

more than one optimal solution. The set of all solutions will be denoted by SS.

Additional quality functions for operators can also be used.

6.4.10. Descriptors and tree types

In many combinatorial problems, the set of all mathematical objects of some type are

needed: sets, functions, relations, vectors, etc. For example, the following data are

created:

• The set of all subsets of prime implicants in the minimization of a Boolean

function.

• The set of all subsets of bound variables in the Variable Partitioning Problem.

• The set of all two-block partitions in the Encoding Problem.

• The set of maximal compatibles in the Column Minimization Problem.

These sets can be generated by the respective search routines created for them in a

standard way, that use the generators of trees. This is useful in direct problem

descriptions.

It is desirable to develop descriptor generators for several standard sets, several types

of tree generators, many ordering possibilities for each generation procedure, and

several tree extension strategies for each ordering. The type of tree is defined by two

generators: the generator that creates the descriptors, and the generator that generates

330

the tree. A full tree is a tree created by the generators only, ignoring constraint

conditions, quality functions, dominations, etc. Full trees of the following types exist:

Tj - a tree of all subsets of a given set,

• T2 - a tree of all permutations of a given set,

T3 - a tree of all one-to-one functions from a set A to set B.

and many others.

{1} -

{2}-

r ^ — {1,2}

L^— {1,3}

- ^ - { 2 , 3 }

-{3}

C«)

{1,2,3} •{15- U,2}-

{1,3}-

{2,1}-

{2,3}-

-{1,2,3}

-{1,3,2}

-{2,1,3}

-{2,3,1}

2 _ { 3 } 1 _ { 3 , 1 > _ 1 — { 3 , 1 , 2 }

3-{3,2} * {3,2,1}

(b)

-{0}-

-{!}•

-{0,0>

1
{0,ih

{0,0,0}
L{0-,0,1>

0 {0,1,0}

Ll_{o,i,i}
-{1,0}, ° {1.0,0}

{1,0,1}
1

{Ui-

Cc}

{1,1.0}

{1,1.1}

a 234} —{1,234}- {12,34} fj>,1234}

— {14,23}

• ^ { 2 J 3 4 }

{4,123}

(d)

—{1,234 W—i- {1 J2!34}-1{iJ2,3,4}
M-(U,2_4}

*?._._. 1-^ 4 2 4 y^ -"—" • ' • • • • \£ -3 : 1 •+ /

12

-{3,124}-
-{4,123}

-{3,12,4}

W-{12,34}
13 {13,24}

-^-{14,23}

(e)

-{1}

-{2}

12
-{3}

-f-0,2}-
.{1,3}

23 {1.2,3}
{2,3}

-{1,2,3}

— {1,13}
— {3,12} „„
13 ' . 1 . ' , 2 3

{12}-1-^^{12,13-p™~{12,13,23}

— {12.23}

23 i l _ { 1 3 } _ i y _ {13,23}
23 -{23}

(f>

Figure 6.4.10.1: Examples of tree generators.

331

111- -211- -311- -411
-321
-312
•231
-22^

-212—=-231

{U,3>

-221-

-121- -131

-112-
-122-
-1.13-

141
132

-123
-114

A C ^KTY
^ .{ACh~{AC,BD}
—{ADJ IAD,BC>

BD
'{BC}
{BD}

m

-03j- 4 5

-15}
4 5

—{3,4HH3,4J}

^ { 2 , 5 }
{2,3,4^123,4,5}

(2.4J1

—5ADh| |{AD,BC}

1 {AC.BD}
5BC}
{BD}

-0,3)
-rjwfc 11,4}—{1,4,5}

-UA4^-{l ;3A5}
-{1,3,5}

—{L2V-|-{l,2,4}-i{l,2,4,5}

4 L y < 1 A s >
—{I,23,4f-{1,2,3,4,5}

•t:,-,3,>} m

AC { A C h — {A.CD}™

-{A,D}

{(A,C)(B,C)h
«A;C)CB,D}}
{(AJ»(B,C)F

-{(AJ»(B,D)}
- { B , Q — {B.CD}
-|B,D}

(c)

"{(A,CBXB,C)h—• {(A,CD)(B,CD)}
-{{A,CD){i,D}}

-|(A,G)(B,CD)}

-{(AJ)XB,CD)}

Figure 6.4.10.2: More examples of tree generators.

The type Tj tree generator of the full tree of the set of all set's {1, 2, 3} subsets, as

shown in Figure 6.3.1, can be described as follows.

1. Initial node} (root) is described as:

QS{NQ) = (/>- Equation 6.4.10.1

GS(N0) = {1,2,3}; Equation 6.4.10.2

where (/> is an empty set, and No is the root of the tree.

2. In a recursive way, the children of any node N are described as follows:

332

(Vr € GS(N))[QS(NN) = QS(N) u {r};GS(NN) = {rx e GS(N) | r, > r}]

Equation 6.4.10.3

where AW is some child of node N, and r is the descriptor of the operator that creates

the new nodes in this tree. Set GS is either stored in the node or its elements are

generated one by one in accordance with the ordering relation > while calculating the

children nodes.

Figure 6.4.10.1 and Figure 6.4.10.2 present examples of full trees for many important

combinatorial problems. They show the partial solutions in nodes and the descriptors

near arrows.

The trees in Figure 6.4.10.1 are:

(a) the tree of all subsets of set,

(b) the tree of all permutations of a set,

(c) the tree of all binary vectors of length 3,

(d) the tree of all two-block partitions of set {1, 2, 3, 4},

(e) the tree of all partitions of set {1, 2, 3, 4},

(f) the tree of all covers of set {1, 2, 3, 4} with its subsets.

The trees in Figure 6.4.10.1 and 6.4.10.2 are the following. Figure 6.4.10.1 a presents

the tree for all 3-element numerical vectors, such that they sum is a constant in every

level. In the first level the sum is 3, in the second level the sum is 4, in the third level

333

the sum is 5, in the fourth level the sum is 6. Figure 6.4.10.2 presents the tree of all

subsets of set {1, 2, 3, 4, 5}.The tree generates levels of equal distance from the subset

{1, 2, 3}, in the second level there are subsets that differ by one from {1, 2, 3}. All

descriptors from set {1, 2, 3, 4, 5} are checked in the first level. If the descriptor is in

the subset, it is subtracted, if the descriptor is not in the subset, it is added. In all next

levels, the sets of descriptors for each node are created in exactly the same way as in

the standard tree for all subsets, that have been shown in detail in Figure 6.4.2. Others

can be explained in a similar way.

6.4.11. Encoding for GA and Search Algorithms to synthesize quantum circuits.

Genetic algorithm is used as a component in our general search framework. We do not

explain it as it is popularly known.

As an illustration, in this section we introduce a notation that will be useful to explain

not only genetic algorithm but also search and other algorithms to synthesize quantum

circuits in a systematic and uniform way. Let us denote the whole column of a 3x3

quantum array by a symbol. For instance, symbols A, B and C are used in Figure

6.4.11.1 below to denote the Feynman gate with EXOR down, the Feynman gate with

EXOR up and the Toffoli gate with lowest bit as the target (the bit with exoring),

respectively.

334

•e-

B
^

Figure 6.4.11.1: Symbols for columns of a Quantum array used to encode genes in a
chromosome of a GAfor 3*3 quantum arrays synthesis. For instance the Toffoli gate
controlled from two top qubits is denoted by capital letter C.

a
b
c

-m-
^ £ t

p
Q
R

Figure 6.4.11.2: Circuit corresponding to the Chromosome BCB, which is the
quantum circuit for the Fredkin gate composed from two Feynman gates and the
Toffoli gate.

The functional circuit from Figure 6.4.11.2 (the phenotype) corresponds to the

Chromosome BCB (genotype).

Figure 6.4.11.3 illustrates hypothetical operation of the Genetic Algorithm to find the

circuit from Figure 6.4.11.2. The analysis/simulation method as in Chapter 2 is used

to calculate the fitness function and to verify the correctness of the solution genotype

circuit from Figure 6.4.11.2. Figure 6.4.11.4 illustrates the operation of the exhaustive

breadth-first search algorithm for the same task. As we see, the GA and the tree are

just two different strategies to search the same space of character strings. Our

intelligent learning algorithm from this chapter 6 uses these two "pure" search

methods, many other methods and also combined search methods as its special cases.

335

Initial
Population of

parents

Crossovers

Children

Mutations A->C

Next
generation | ^
mutated

A B

A B

C

s?
B^C

A B c

c

C^

C B

A B

C^A

A A 1 B

C

^
^

A B

C B

C^B

B C 1 B

Solution

Figure 6.4.11.3: Operation of the Genetic Algorithm to find the chromosome BCB
leading to the phenotype circuit from Figure 6.4.11.2.

Solution

Figure 6.4.11.4: Operation of the exhaustive breadth first search algorithm to find
the circuit from Figure 6.4.11.2. The fitness function uses as its component the
circuit's cost function which is the same as in the GA.

336

6.5. Creating Search Strategies

A number of search strategies can be specified for the tree search procedure along

with the quality functions. Beginning with the initial node, the information needed to

produce the solution tree can be divided into global information, that relates to the

whole tree, and local information, that is concerned only with local subtrees. Local

information in node N refers to subtree TREE(N). The developer-specified search

strategies are, therefore, also divided into a global search and a local search. The

selection of the strategy by the user of the Universal Search Strategy from section 6.6

is based on a set of strategy describing parameters. By selecting certain values, the

user can, for instance, affect the size of subsequent sets of bound variables or the types

of codes in the encoding problem. We assume also that in the future we will create

smart strategies that will allow to dynamically change the strategy parameters by the

main program during the search process. Such strategies, that for instance search

breadth-first and after finding a node with certain properties switch to depth-first

search, have been used with successes in Artificial Intelligence. Let us distinguish the

complete search strategies that guarantee finding all of the optimal solutions from the

incomplete strategies that do not. Both the complete and the incomplete search

strategies can be created for a complete tree search method. A tree searching strategy

that is created for a complete tree search method and includes certain restricting

conditions or cutting-off methods that can cause the loss of all optimal solutions is

referred to as an incomplete search strategy for a complete search method. By

removing such conditions a complete search strategy is restored, but it is less efficient.

337

This approach offers the following advantages:

6.5.1. The quasi-optimal solution is quickly found and then, by backtracking, the

successive, better solutions are found until the optimal solution is produced.

This procedure allows to investigate experimentally the trade-offs between the

quality of the solution and speed of arriving at it.

6.5.2. The search in the state-space can be limited by including as many heuristics as

required. In general, a heuristic is any rule that directs the search. It will be

more on the heuristics in the sequel.

6.5.3. The application of various quality functions, cost functions, and constraints is

possible.

6.5.4. The problem can be described within several degrees of accuracy. The direct

description is easy for the designer to formulate, even though it produces less

efficient programs. It is created in the early prototype development stages, on

the basis of the problem formulation only, and the heuristics are not yet taken

into account. The only requirement is that the designer knows how to

formulate the problem as a state-space problem using standard mathematical

objects and relations. Only the standard node coordinates are used. The

detailed description of the tree search method, on the other hand, provides the

best program that is adequate for the specific problem but it requires a better

understanding of the problem itself, knowledge about the program structure,

and experimentation.

338

6.5.5. By using macro-operators along with other properties, the main strategies

require less memory than the comparable, well-known search strategies

[Nilsson71, Perkowski76].

6.6. General Strategies for search.

The search strategy is either selected from the general strategies, of which the

following is a selection, or it is created by the developer's writing of the sections

codes, and next the user assigning values to the strategy describing parameters.

6.6.1. Breadth-First. With this strategy, each newly created node is appended to the

end of the so called open-list which contains all the nodes remaining to be

extended: open nodes. Each time the first node in the list is selected to be

extended, it is removed from the list. After all the available operators for this

node have been applied, the next node in the open-list to be extended is

focused on.

6.6.2. Depth-First. The most recently generated node is extended first by this strategy.

When the specified depth limit SDmax has been reached or some other cut-off

condition has been satisfied, the program backtracks to extend the deepest

node from the open-list. This newly created node is then placed at the

339

beginning of the open-list. The consequence is that the first node is also

always the deepest.

6.6.3. Branch-and-Bound. The temporary cost B is assigned which retains the lowest

cost of the solution node already found. Whenever a new node NN is

generated, its cost CF(NN) is compared to the value of B. All the nodes whose

costs exceed the value of B will be cut off from the tree.

6.6.4. Ordering. This strategy, as well as the next one, can be combined with the

Branch-and-Bound strategy. A quality function Q(r, N) is defined for this

strategy to evaluate the cost of all the available descriptors of the node being

extended. These descriptors are applied in the operators in an order according

to their evaluated cost.

6.6.5. Random. With this strategy, the operator or the open node can be selected

randomly for expansion, according to the probability distribution specified.

6.6.6. Simulated annealing. This strategy transforms nodes from open list using the

respective algorithm. This strategy is known from literature and will be no

further discussed here.

6.6.7. Genetic algorithm. This strategy uses open list as a genetic pool of parents'

chromosomes.

6.6.8. Quantum Grover Search. This is exhaustive strategy presented in Chapter 5. It

can be simulated in standard software by exhaustive search based on standard

combinational oracle.

340

(In case of ECPS which is the special case of QSPS all the strategy creating tools

should be defined as C++ classes.)

The strategy describing subroutines and parameters are outlined in section 6.7 below.

6.7. Conditions in QSPS.

There are two types of conditions for each node of the tree: by-pass condition and cut

off condition. The cut-off condition is a predicate function defined on node N as an

argument. If the cut-off condition is met in node N, the subtree TREE(N) is prevented

from being generated and backtracking results. The by-pass conditions do not cause

backtracking and the tree will continue to extend from node N. The following cut-off

conditions exist:

6.7.1. Bound Condition. This condition is satisfied when it is found (possibly from

information created in node N) that there exists node Nj (perhaps not yet

constructed) such that CF(Ni) < CF(N) and QS(Nj) is a solution.

6.7.2. Depth Limit Condition. This condition is satisfied when SD(N) is equal to the

declared depth limit SDmax.

6.7.3. Dead Position Condition. This condition is satisfied when no operators can be

applied to N, i.e. GS(N) = (/>.

341

6.7.4. Restricting Conditions. Each of these conditions is satisfied when it is proved

that QS(N) does not fulfill certain restrictions, i.e. no solution can be found in

TREE(N), for one or another reason.

6.7.5. Solution Conditions of the Cut-Off Type. Any of these conditions is satisfied

when the property of the problem is that if QS(N) is a solution, then for each M

e TREE(N), CF(M) > CF(N) (or CF(M) > CF(N)). Therefore, node Mmay

be not taken into account.

6.7.6. Branch Switch Conditions and Tree Switch Condition. Satisfaction of

Switch Condition causes modification of the actual search strategy to another

strategy, resulting from the search context and previous conditional declaration

of the user. This leads to the so-called Switch Strategies that dynamically

change the search strategy during the process of search. For instance, the depth

first strategy can be changed to breadth-first if certain condition is met.

6.7.7. Other types of conditions. They are formulated for some other type

restrictions special to problems (selected by the user by setting flags in the

main algorithm).

A value that interrupts the search when a solution node N is reached such that CF(N) =

CFmin min is denoted by CFmi„ mi„. This is a known minimum cost of the solution. This

value can be arrived in many ways, usually it comes from a calculated guess, or is

derived by some calculation or by mathematical deduction. It may also be a known

optimal cost. In most cases the value is a "guessed value", that may be incorrect.

Therefore, it will serve here only as one more control parameter.
342

When all the solution conditions are met in a certain node N, QS(N) is a solution to the

given problem. This is then added to the set of solutions and is eventually printed. The

value of CF(N) is retained. If one of the solutions is a "cut-off type solution", then the

program backtracks. Otherwise, the branch is extended.

Similar strategies are used in case of parallel quantum programs/oracles. The only

difference is that in quantum the granularity of search is with accuracy to whole

subtrees and not to single nodes with their successors. In theory, the granularity in

quantum search can be also to small trees of a nodes with all its successors. For

instance, the quantum computer may find all Boolean functions created from some

function Fi by exoring it with all possible products of literals of some type. This will

be illustrated in examples.

6.8. Relations on Operators and States

Determining some relations on operators (descriptors) is often very useful. Similarly,

the developer may determine certain relations on states of the solution space, or on the

nodes of the tree.

Having such relations allows to cut-off nodes. It allows also to remove dispensable

descriptors from the nodes. Specifically, in many problems it is good to check solution

conditions immediately after creating a node, and next immediately reduce the set of

descriptors that can be applied to this node.

343

The following relations between the operator descriptors (so called relations on

descriptors) can be created by the program developer to limit the search process:

• relation of domination,

• relation of global equivalence,

• relation of local equivalence.

We will define local and global domination relations. Operator 0\ is locally

dominated in node N by operator O2 (or descriptor t2 is locally dominated by r i) when:

01,02 e DOML(N) Equation 6.8.1

while relation DOML satisfies the following conditions:

DOML is transitive Equation 6.8.2

and

(0,, 02) € DOML => f(Ox (N) < f(02)) Equation 6.8.3

We will apply the notation:

>-
define -

{0{,02)e DOML d>OlL02 Equation 6.8.4

We will define operator O2 as locally subordinated in node TV with respect to operator

O] (where n, r2 e GS(N)), if

01L02A02L01 Equation 6.8.5

344

This will be denoted by

>-
Ox L 02 Equation 6.8.6

If OlL02 in node TV , then tree TKEE(02(N)) can be cut-off without sacrificing

optimal solutions, since

f(Oi (N)) < f(02 (N)) Equation 6.8.7

It is easy to check that relation L , defined as

> - > •

« define - -

OxL02 <=> 01L02A02LOX Equation 6.8.8

is an equivalence relation, which we will call the Local Relation of Equivalence of

Descriptors in node N. Relation L partitions set GS(N) into classes of abstraction [r,-].

It is obvious from these definitions, that when one wants to obtain only a single

optimal solution being a successor of N, then from each class of abstraction [>,•] only

one element should be selected. All remaining elements should be removed from

GS(N).

The relation of global domination gives better advantages than the local domination,

in cases that such a relation of global domination can be defined. Operator O2 is

globally dominated in tree TREE(N) by operator Oj when

345

(Ox,02) e DOML(N) cz 0(TREE(N)) x 0(TREE(N) Equation 6.8.9

By 0(TREE(N)) we denote the set of operators to be applied in tree TREE(N). Relation

DOMG satisfies the following conditions:

DOMG is transitive Equation 6.8.10

and

(Ou02) e DOMG(N) => (VMj e NO(TREE(N)))

[n e GS{M{) A r2 e GS(A/j) A f(Ox {Mi) e / (0 2 (itf i)) v r2 g GS{MX)]
Equation 6.8.11

Similar to local relations, one can define relation G of global subordination in tree

TREE(N), and relation G of global equivalence in tree TREE(N).

Relation G partitions every set GS (Mi) for each My e NO(TREE(N)) into classes of

abstraction.

If we have no intention to find all optimal solutions, then from each class of

abstraction we take just one element, and the remaining operators are removed from

GS (MO.

The following theorem can be proven.

Theorem 6.8.1. Let us denote by [ri\ the global equivalence class of operator Oi in

node N. If for each branch N, Nj, N2 Nk of tree TREE(N) it holds

GS(N) 3 GS(N2) 3 GS(Nk) then the descriptors from set [>,] \ rt can be immediately

removed from all sets GS in all nodes in TREE(N).
346

When we want to use the relation of global equivalency in certain node N, and the

property from this theorem does not hold, then it is necessary to calculate the

descriptors, which should be not applied in node N (sometimes it can be easily done

from an analogous set for the node being the parent of this node).

Node M is dominated by node N if f(N) < f(M)

(N,M) e DOMS o f(N) < f(M) Equation 6.8.12

>•

Similarly as before, we can introduce relations s,s and s .

If STj and ST2 are two strategies, which differ only in their domination relations Di

and D2 (these can be relations of domination of any of the presented types) and if

Dx 3 D2 then k) < kf for each of the introduced coefficients kj.

Observe, that by incorporating the test for the relation of domination (or equivalence)

to an arbitrary strategy that generates all optimal solutions, there exists the possibility

of sacrificing only some optimal solutions (or all the optimal solutions but one). This

decreases the number of generated nodes, which for many strategies is good both with

respect to the reduced time, and reduced memory. On the other hand, if evaluating

relations is very complex, the time of getting the solution can increase. The stronger is

the domination relation, the more complicated is its evaluation, or the larger is its

domain. Therefore, the time for testing domination would grow. In turn, the more gain

from the decreased number of generated nodes. Often it is convenient to investigate

347

relation of domination only in nodes of the same depth, or on operators of some group.

Theoretical analysis is often difficult and experimenting is necessary.

Finally, observe that domination relations are not based on function / because the

values off are not known a'priori, while creating the levels of the tree. The domination

relations are also not based on costs, but on some additional problem-dependent

information of the program, about the nodes of the tree. These relations come from

certain specific problem-related information. In most cases, the implication symbol in

Equation 6.8.3 cannot be replaced by the equivalence symbol, since this would lead to

optimal strategies with no search at all, and each branch would lead to optimal

solutions.

6.9. Component Search Procedures of C++ realization of ECPS.

The Main Universal Search subroutine of a search program is in charge of the global

search. It takes care of the selection of strategies, the arrangement of the open-list and

the other lists as well as the decision making facilities related to the cut-off branch,

and the configuration of the memory structures to store the tree. The lines of code that

realize the strategies of breadth-first, depth-first, or branch-and-bound are built into

the main search routine. Subroutines RANDOM! and RANDOM! are selectively

linked for the random selection of the operator or the open node, respectively. The role

of the subroutines linked to the Universal Search subroutine is as follows:

348

• GENER is responsible for the local search that extends each node. GENER cuts

off the nodes which will not lead to the solution node when the description for

the new node is created.

• GEN carries out the task of creating nodes.

Other subroutines, offered to create local search strategies, are the following:

• MUSTAND and MUSTOR are subroutines that serve to find two types of the

so-called indispensable operators. (The indispensable operators are the

operators that must be applied). All operators found are indispensable in the

MUSTAND subroutine, and only one of operators is indispensable in case of

the MUSTOR subroutine. The set of indispensable operators is next substituted

as the new value of coordinate GS(N).

• subroutine MUSTNT deletes subordinate operators. Subordinate operators are

those that would lead to solutions of higher costs, or to no solutions at all. The

set MUSTNT(N) is subtracted from set GS(N).

Domination and equivalence conditions for the tree nodes can also be declared as

follows:

• EQUIV cancels those nodes that are included in other nodes.

• FILTER checks whether the newly created node meets the conditions.

• SOLNOD checks the solution condition.

349

• REAPNT is used to avoid the repeated applications of operators when the

sequence of operator applications does not influence the solution.

These local strategies, as well as the global strategies listed above, can be selected by

reading the parameter values as input data. ORDER sorts the descriptors, QF

calculates the quality function for the descriptors, and CF calculates the cost of the

nodes.

6.9.1. Universal Search Strategy

In this section we will present the universal search strategy. First we will explain the

meaning of all variables and parameters. Next the pseudo-code of the main strategy

subroutine will be given, followed by the pseudo-code of its GENER subroutine.

6.9.1.1. Meaning of Variables and Parameters

CFmin - cost of the solution that is actually considered to be the minimal one. After a

full search, this is the cost of the exact minimum solution.

SOL - set of solutions actually considered to be minimal. If parameter METHOD = 1,

then this set has always one element. When a full search has been terminated, this set

includes solutions of the exact minimal cost.

OPERT - list of descriptors, which should be applied to the actual state of the tree.

OPEN - list of open and semi-open nodes.

350

TV-actual state of the space.

AW - next state of the space (this state is actually being constructed from node N).

OUTPUT - a parameter that specifies the type of the currently created node;

• when OUTPUT = 0, the created node AW is a branching node;

• when OUTPUT = 1, the created node AW is an end of a branch;

• when OUTPUT = 2, a quasioptimal solution was found,

whereby by a quasioptimal solution we understand any solution

that has the value of the cost function not greater than the user-

declared parameter CFmi„ min.

CFmi„ mi„ - a parameter assumed by the user, determined heuristically or methodically,

the value that satisfies him.

QFmin - the actually minimal value of the quality function.

OPT- a parameter. When OPT = 1, then any solution is sought, otherwise the minimal

solution.

PP9 - a parameter. When PP9 = 1, then the subroutine "Actions on the Selected Node"

is called.

EL - actual descriptor from which the process of macro-generation starts (this is the

first element of list OPERT).

DESCRIPTOR - actual descriptor during the macrogeneration process.

351

MUST - list of descriptors of operators, which must be applied as part of the

macrooperator.

PG5 - a parameter. If PG5 = 1, then it should be investigated, immediately aftear the

creation of node NN, if there exists a possibility of cutting-off node NN.

PG6 - a parameter. If PG6 = 0, then it should be investigated if node NN can be cut

off with respect to the monotonically increasing cost function CF, and in respect to

satisfaction of CFmin = CF(NN).

PG6D - a parameter. If PG6D = 1, then value CFmin should be calculated with respect

to a subroutine of a user, otherwise CFmin is calculated in a standard way as CF(NN).

PG6E - a parameter. \iPG6E = 1, then the learning subroutine is called.

PG6F - a parameter. If PG6F = 1, then after finding a solution the actions declared by

the user are executed.

PG7 - parameter; if PG7 = 1 then descriptors defined by other parameters are removed

from GS(NN).

6.9.1.2. The Main Search Strategy

1. Set the parameter variables to the values that will determine the search

strategy.

2. CFmi„:= oo, SOL := 0, OPERT := 0, OPEN =0.

352

file:///iPG6E

3. Call the macrogeneration subroutine GENER for the user-declared initial state

No.

4. If the value of variable OUTPUT (this value is set by subroutine GENER) is 1

or 2 then, according to the declared parameters, return to the calling program

for the problem, or select a strategy corresponding to the declared data.

5. State No has been (possibly) transformed by subroutine GENER.

Store the new state in the tree. OPEN := N'o.

6. If OPEN = 0 then either return to the calling program, or change the search

strategy, according to the parameters and the strategy change parameters for

trees (Tree-Switch), (see section 6.2.8).

7. If the threshold values for the tree have been exceeded (size, time, etc) then

return to the calling program, or change strategy, as in step 6. If the Stopping

Moment Learning Program decides termination of the search, then this search

process is terminated. Return to the calling program, that will decide what to

do next (see section 2).

8. TV := selected node from list OPEN. This step is executed on the basis of

Strategy Selecting Parameters, including minimal values QF or CF. If

parameters specify A* Strategy of Nillsson and QF(N) > QFmin, then return to

the calling program (since all minimal solutions have been already found).

9. If parameter PP9 = 1, then call subroutine "Actions on the selected node" (this

subroutine can, for instance, declare such actions as: (1) cutting-off a node

353

upon satisfying some condition, (2) sorting GS(N), (3) assigning GS(N) :=

0,(4) deleting redundant or dominated operators). OPERT := GS(N). Remove

from list OPEN all closed nodes.

10. If OPERT = 0 then go to 6.

\\.EL:= OPERT\0], remove EL from list OPERT. (OPERT[0] selects the first

element of list OPERT)

12. Call subroutine GENER.

13. If a Branch Switch Strategy has been declared and a respective switch

condition is satisfied then execute the Branch Switch type modification of the

search strategy.

14. If OUTPUT = 0, then store the node NN (created earlier by subroutine

GENER) in the tree (if a tree data structure is used in addition to list OPEN).

Insert this node in certain position in list OPEN. This position depends on the

selected strategy. If OUTPUT = 2, then (if parameter OPT = 2 then return to

the calling program, else go to 11).

15. Go to 11.

6.9.1.3. Subroutine GENER

1. If GENER is executed in step 13 of the main search strategy then MUST: = EL

(value of EL has been previously set in the main search routine).

354

2. If MUST = 0, then set OUTPUT: = 0, return.

DESCRIPTOR := MUST[0].

3. Call subroutine OPERATOR written by User. We denote this by 0(N,

DESCRIPTOR). This call generates the new state NN, for the DESCRIPTOR

selected in step 3. GS(N) := GS(N) \ DESCRIPTOR (i.e.

DESCRIPTOR is removed from GS(N)).

4. If parameter PG5= 1

and

(node NN satisfies on of the Branch Cut-Off Conditions or NN is dominated

by another node), then cut-off node NN. OUTPUT := 1. Return.

(the above condition means that node NN is equal to another node, or node NN

is dominated by another node based on one of the relations: Node Domination,

Node Equivalence, Node Subordination).

If CF(NN) > CFmin (while looking for all minimal solutions)

or

If CF(NN) > CFmin (while looking for a single minimal solution),

then

cut-off node NN. OUTPUT := 1, return.

5. If parameter PG6 = 0 then

If CFmin = CF(NN) and the parameter specifies that CF is monotonically

increasing and node AW does not satisfy all the user-declared Solution

Conditions, then cut-off node NN, OUTPUT := 1,
355

return. If

node AW satisfies all the user-declared Solution Conditions, then

A. If CF(NN) < CFmin and the A* Strategy of Nillsson is realized, then

store QFmin := QF(NN).

B. IfCF^VA9 = CFmi>7,then

i. if all optimal solutions are sought,

then append QS(NN) to the list of solutions SOL else do

nothing.

C. lfCF(NN) < CFmin then set SOL := QS(NN).

D. If parameter PG6D = 1, then calculate CFmin using the User

Subroutine Calculating CFmin, else CFmin := CF(NN).

E. If parameter PG6E = 1, then call the subroutine "Parametric Learning

the Quality Function for Operators".

F. If parameter PG6F = 1, then call the subroutine "Actions after Finding

a Solution". This is a subroutine used to specify the actions to be

executed after the solutionis found. These actions can be: printout,

display, storage, etc.)

G. \fCF(NN)= CFmin, then OUTPUT := 2, return.

H. If CF(NN) ± CFminmin, then OUTPUT := 1, return.

356

6. If PG7 = 1, then remove the indispensable descriptors from GS (NN).

Depending on the values of parameters, the following types of descriptors are

being removed:

(2) Inconsistent Descriptors,

(3) Descriptors that result from:

(3 a) Local Subordination Relation,

(3b) Local Domination Relation,

(3 c) Local Equivalence Relation,

(3d) Local Equivalence Relation,

(3e) Global Subordination Relation,

(3f) Global Domination Relation,

(3g) Global Equivalence Relation.

Use subroutine MUSTNT.

If a Condition of Node Expansion Termination is satisfied then set

GS(NN) := 0. If the set of Indispensable Operators

of MUSTOR type is declared

and

respective Condition of operators of MUSTOR type is satisfied,

then set GS(NN) := MUSTOR(GS(NN)).

1. N:=NN.

357

2. If MUST + 0 , then go to 2.

else MUST := set of Indispensable Descriptors of MUST AND type in GS(N).

Go to 2.

The first call of subroutine GENER is intended to check if the indispensable operators

of type MUSTAND exist in the initial state given by the user. These operators are

applied to the successively created states, until a solution is found, or a node is found,

in which no longer exist any indispensable descriptors. When subroutine GENER is

returned from, the state No may have been transformed. The condition to find the

minimal solution is to terminate with empty list OPEN. In steps 8 and 9, with respect

to the strategy determining parameters, the node for expansion is selected, together

with the operators that will be applied to this node. This node can be the open or semi-

open type. Open means all possible operators have been applied to it. Semi-open,

means some operators (descriptors) were applied but other descriptors remain, ready

to be applied in a future. Selected descriptors are successively applied to the node,

until list OPERT is cleared.

The value of parameter OPT is determined by the user. If OPT = 1, then the subroutine

will return to the calling program after finding the first quasi-optimal solution.

Subroutine GENER is used to find and apply macro-operators. Descriptor EL, selected

in the main search program, is put to list MUST of indispensable descriptors (except of

the call in step 3).Such approach has been chosen in order to check if some

indispensable descriptors exist in the initial state. It is known for all subsequent nodes
358

that there are no indispensable descriptors, since if there were an indispensable

descriptor in a node created by GENER, it would be immediately applied. Therefore,

the result of subroutine GENER is always a single child, that has no indispensable

operators.

In a general case, pure branch-and-bound strategy (discussed below) will terminate in

steps 4 and 6 of the main search strategy. The A* strategy of Nilsson will terminate in

step 8.

Of course, in lists OPEN, OPERT and other lists, not objects are stored, but pointers to

them.

6.10. Pure Search Strategies

In this section we present the so-called pure search strategies. They will not require

strategy-switching. Many of these strategies are known from the literature. Pure

strategies are the following.

1. Strategy STQF is defined as follows:

. QF(SEL1QF (OPEN)) = min Nie OPEN QF(Ni), SEL2(x) = x

Equation 6.10.1

359

SEL1 is the node selection strategy and SEL2 is the descriptor selection strategy.

In this strategy, all children of node N are generated at once. This corresponds

to the "Ordered Search" strategy, as described in [Nilsson71, Ibaraki76].

If, in addition to the above formula 6.10.1 function QF satisfies conditions

6.4.8, 6.4.9, 6.4.10, 6.4.11, 6.4.12 then it corresponds to the well-known^*

strategy of Nilsson.

2. Strategy STCF (strategy of equal costs), in which:

CF(SELlCF(OPEN)) = minmeoPEN CF(Nt), SEL2(x) = x

Equation 6.10.2

3. This is a special case of the strategy from point 1.

4. Depth-first Strategy SELlj (OPEN) = the node that was recently opened,

SEL2(x) =x

5. Breadth-first Strategy

SELh(OPEN) = the first of the opened nodes, SEL2(x) = x

6. Strategy ST^k (depth, with sorting and selection of k best operators)

SELldsk(NON-CLOSED) = the node that was recently opened,

SEL2dAk(GS(SELl(NON - CLOSED))) = set that is created by selecting the

first k elements in the set GS(SEL1 (NON-CLOSED)) sorted in nondecreasing

order according to function {qN}i. A particular case of this strategy is STd,sj,

called the Strategy of Best Operators (Best Search Strategy).

360

7. Strategy STd,SyS,k (i.e. the depth-search strategy, with the selection of anode,

sorting, and the selection of the k best operators).

SEL1 d,s,s,k(NON-CLOSED) = a node of minimum value of function QF among

all nodes that are created as the extension of the recently expanded node (not

necessarily of the recently opened node).

SEL2d,s,s,k = similarly to SEL2dAk •

Similarly, one can define "k-children" strategies STQF^, STCFM STd,k-

8. Strategy STRS of Random S earch.

SELlRS(NON-CLOSED) = randomly selected node from NON-CLOSED.

SEL2RS (GS(SEL1RS (NON - CLOSED))) = randomly selected subset of

descriptors.

9. Strategy STRSJ of Random Search Depth.

SELlRS,d(NON-CLOSED) = recently opened node from NON-CLOSED.

SEL2RS (GS(SEL1RSJ (OPEN))) = randomly selected descriptor.

Similarly, one can specify many other strategies by combining functions SEL1 and

SEL given above.

Let us now introduce few measures of quality of strategies.

ki = CARD(B^, where Ba is the set of all closed and semi-open nodes that were

created until all minimal solutions have been found.

k.2 = CARD(Bs), where Bs is the set of all closed and semi-open nodes that were

created until one minimal solution has been found.

361

k3 = CARD(Va), where Va 3 Ba is the set of all closed, semi-open, and open

nodes that were created until all minimal solutions have been found.

k4 = CARD(VS), where Vs =5 Ba is the set of all closed, semi-open, and open

nodes that were created until one minimal solution has been found.

k5 = CARD(Ta), where Ta z> Ba is the set of nodes that were created until

proving the minimality of solutions, it means the total number of nodes that

have been created by a strategy that searches all the minimal solutions.

&<j = CARD(TS), similarly to £5, but for a strategy that searches a single solution.

£7 = max SD(N;) - the length of the maximal path (branch) in the tree.

The advantage of the ordered search strategy is the relatively small total number of

generated nodes (coefficients ks and &<j). The following theorem is true, similar to the

theorem from Nilsson [Nilsson71].

Theorem 6.10.1. If QF satisfies equations 6.4.8, 6.4.9, 6.4.10, 6.4.11, 6.4.12 and the

ordered search strategy has been chosen (i.e. the strategy A* of Nilsson is being

realized) and when some solution of cost QF' has been found, such that all nodes of

costs smaller than QF' have been closed, then this solution is the exact minimal

solution.

362

It is important to find conditions, for which this algorithm finds the optimal solution,

generating relatively few nodes. The theorem below points to the fundamental role of

function h. The way in which function h is calculated, can substantially influence the

quality of solutions in approximate version, or efficiency of the algorithm in exact

version.

Let ST] and ST2 be two A * Nilsson strategies, and h\ and h\ their heuristic functions.

We will define that strategy 5*72 is not worse specified than strategy ST2 when for all

nodes N it holds:

h(N) > h\ (N) > h2 (N) > 0 Equation 6.10.3

which means, both functions evaluate h from the bottom, but function h\ does it more

precisely than h2 .

Theorem 6.10.2. If STi and ST2 are A* Nilsson strategies, and STi is not worse

specified than ST2, then, for each solution space, the set of nodes closed by STj

(before the minimal solution is found) is equal to the set of closed nodes of ST2, or is

included in it.

This theorem says, in other words, that if we limit ourselves to A * Nilsson strategies

only, then there exists one strategy, not worse than all remaining strategies, since it

closes not more nodes of the tree than any other strategy. This is the strategy that most

precisely evaluates the function h, preserving of the equations 6.4.9, 6.4.10, 6.4.11.

363

For many classes of problems the ordered search strategy is very inefficient because it

generates its first solution only when very many nodes have already been created.

Next it proves its optimality relatively quickly. In cases, when the user wants to find

quickly some good solution, but the exactness of the solution is only of secondary

importance, it is better to use one of the variants of the branch-and-bound strategies

that search in depth.

Figure 6.10.1: The example of the lattice with three maximum and two minimum
elements. Arrows show the partial order relation.

6.10.1. Properties of branch-and-bound strategy.

Many properties can be proven for the branch-and-bound strategy presented above.

We assume that

for each N, NN, QF(N) + QF(NN) and QF(NN) > QF(N) for NN e

SUCCESSORS(N) Equation 6.10.1.1

6.10.1.1. The branch-and-bound strategy is convergent, independent on function

QF. Also the specific strategies included in it (such as "depth-first",

364

"ordered search", etc,) are therefore convergent as well, if the user has not

declared some additional cut-off conditions (that may cause the loss of the

optimal solution). Some of these strategies do not require calculating

function QF satisfying certain conditions. This property is an advantage of

the given above universal search strategy, when compared with the A*

Nilsson Strategy.

6.10.1.2. If the user is able to define the quality function QF* such that

<yNt,Nj)[QF * (N,) <QF* (Nj) => / (# ,) < / (#, .)] , Equation 6.10.1.2

then the strategy STQF is optimal in the sense of the number of opened nodes.

Only the nodes that are on the paths leading to solutions are extended (other

nodes are also opened).

6.10.1.3. If additionally the user succeeds to find a quality function for operators

q*^ that is consistent with/

(VN,Ov02)[q*N (0,) >q*N (02) => / (0 ,) < f(02(N))], Equation 6.10.1.3

then the strategy is optimal in the sense of the number of generated nodes. Only

those nodes are expanded, that lay on those paths that lead to minimal solutions.

In addition, no other nodes are opened (this concerns the 1-child strategies).

6.10.1.4. It is possible to introduce the relation of partial ordering « on the set

of all possible strategies STQF. It can be proven that the strategies that are

adjacent in the sense of this order have also similar behavior:

365

*/ STQF1«STQF2 thenk]< k\ fori = 1,2,...,6.

Equation 6.10.1.4

6.10.1.5. The best strategy with respect to relation « (the minimal element of

the lattice), is the strategy STQF*. The "adjacent" strategies are defined. Next

it can be proven, that if QFo, QFj, ,QFq is a sequence of such adjacent

functions, then the corresponding strategies, STQF,STQF, ,STQF , are

adjacent in the lattice of strategies. Therefore, in the class of the ordered

search strategies function ST is in a sense a continuous function of function

QF: small changes of QF cause small changes ofSTQF. If QF ~ QF * then

behavior of STQF is close to optimal. If the user is able to make choices

among all functions QF, then by the way of successive experimental

modifications he can approach the STQF* strategy.

6.10.1.6. Since strategies "depth-first" are very sparsely located in the lattice

(they have high distances from one another), small changes of QF can cause

a "jump" from STQF* to a lattice element that is located far from it.

Similarly, small modification of QF in the direction of QF* do not

necessarily lead to the improvement of the algorithm's behavior.

6.10.1.7. It can be shown, that in the sense of some of the measures introduced

above, the proposed algorithm is better than the branch-and-bound

algorithms investigated by Ibaraki [Ibaraki76].

366

Usually, the user should always try to find function QF close to QF*. With better

functions QF, the program will find good solutions sooner, where by good solution we

understand those with small values of CFmin (the decrease of coefficients ki - £4).

Therefore, the cut-off of subsequent branches will be done with a smaller value, which

will in turn decrease the values of k$ and k<s. When the depth-first strategy is selected,

the changes in behavior can occur in jumps. In addition, with respect to 3), the user

has to select function q. With respect to equations 6.8.3 - 6.8.12, respectively, he has

to define relations on descriptors and states.

When constructing the strategies, the user has also to keep in mind the following.

6.10.1.8. Generally, for those branch-and-bound strategies that search in depth, it

is necessary to define that every branch of the tree terminates with a

solution found. In addition the branch is determined with certain

constructive conditions of cutting-off (for instance, the cutting-off occurs

when certain depth of the tree was reached, or when there are no more

operators to apply). The lack of these conditions may lead to the danger of

infinite depth-search, or a very long depth-search. For instance, in case of

strategy STJJ. This condition is not necessary for A* Nilsson strategy,

which is a special case of the strategy.

6.10.1.9. With respect to parameters kj - k4, the strategies that combine

properties of strategies STdiS,s,k, A * Nilsson Strategy, and STdyS,k, have the

best performance.
367

6.10.1.10. With respect to parameter k.7 the 1-child strategies are the best, and the

STd,s,i, strategy in particular.

6.10.1.11. When the user looks for a solution with the minimal depth in the tree,

the breadth-search strategy creates theoretically the exact solution as the

first solution generated, which is sometimes good. However, the tree can

grow often so rapidly, that the strategy cannot be used. Yet in other

problems, it is good to use the disk memory. The strategy is useful when the

problem is small, or when one can define powerful relations on descriptors

or relations on states of the search space.

6.10.1.12. When the depth is limited or when good upper bounds can be found,

the depth-first strategies allow to find the solutions faster. Depth-first

strategies are good when there are many solutions. They are memory

efficient. These strategies are not recommended when the cost function

does not increase monotonically along the branches, allowing thus to use

the cutting-off.

6.10.1.13. Strategies STQF, and STd,s,k, often require the shortest times of

calculations. The second strategy requires a smaller memory.

6.10.1.14. By constructing strategies that use quality functions one has to take into

account that the evaluation of a more complex function allows to decrease

the search. It takes, however, more time. Therefore, the trade-offs must be

experimentally compared.

368

6.10.1.15. It is possible to combine all presented strategies, and also to add new

problem-specific properties to the strategies. The user can, for instance,

create from the depth-first strategy and breadth-first strategy a new strategy

that will modify itself while searching the tree, and according to the

intermediate solutions found. Another useful trick is to cut-off with some

heuristic values, for instance some medium value of CFmin and CFmin min.

6.10.1.16. An advantage of random strategies is a dramatic limitation of required

space and time. These strategies are good, when used to generate many

good starting points for other strategies, and these other strategies find next

the locally optimum solutions.

6.11. Switch Strategies

6.11.1. Principles

There are two types of Switch Strategies:

• switch strategies for branches,

• switch strategies for trees.

Below, we will present them both.

A Switch Strategy is defined by using the conditional expression:

[sc ; -> (MM}, TREE]), ,scn -> (MM„, TREEn)] Equation 6.11.1.1

where

369

1. sci, , scn are switch conditions,

2. MMt = (Mi, ST) are methods to solve problems by Universal Strategy,

3. Mi are tree methods,

4. ST are pure strategies,

5. TREEi are initial trees of methods MMt (trees after strategy switchings).

The meaning of formula 6.11.1.1 is the following. If condition sci is satisfied, then use

method MM] with initial tree TREEi. Else, if condition sc2 is satisfied, then use

method MM} with initial tree TREE2. And so on, until scj is encountered.

In practice, Mt, ST and TREEi are defined by certain changes to the actual data.

These can be some symbolic transformations, or numeric transformation. They can be

also the selections of new data structures. Therefore one has to declare the initial data:

Mo, Sf and TREE0.

• In Switch Strategy for a Branch, the conditions sct i, i = 1 ,..., n are verified

when a new node is created. These conditions can be also verified in one of the

following cases:

(1) a new node being a solution is created,

(2) a node is found, being a solution better than the previous solution.

The type of the node is specified by the parameters.

• In the Tree Switch Strategy, the conditions are checked after a full tree search

of some type has been completed.

370

In both types of strategies, the conditions of switching strategies can be defined on:

• nodes NN,

• branches leading from No to NN,

• expanded trees.

There can exist various Mixed Strategies STM, defined as follows

STM = (SSTT, SSTB) Equation 6.11.1.2

where

SSTT - is a Tree Switch Strategy,

SSTB - is a Switch Strategy for a Branch.

For both the Switching Strategies for Tree, and Switching Strategies for Branches,

there exist eight possible methods of selecting changes. These methods are specified

by one of the subsets of the set < Mt, ST , TREEt > In a special case, by selecting

an empty set, changes of Mi, ST or TREEt are not specified. This corresponds to a

pure strategy ST0 (which was declared as the first one). Pure strategies are therefore a

special case of the switch strategies.

Similarly, complex methods, defined as CM = (Mi,....,Mr, STM) are generalizations

of methods MMt.

Changes of TREEt, Mt, and ST will be now presented.

1. The following changes of TREEt has been considered.

371

• change of coordinates of nodes (locally, or in a branch, or in the whole

tree),

• adding or removing some coordinates (locally, or in a branch, or in the

whole tree),

• cut-off the tree.

2. Changes of Mt by use of a switch strategy can be executed by specifying new

components of the solution space. The strategy for Graph Coloring from new

text found in chapter is an example of a switching strategy that changes both

TREE and M.

3. Strategy is modified by determining the Change of Strategy Parameters. For

instance, the modification of the strategy consists in:

(1) a permutation of list OPEN,

(2) a selection of some its subset,

(3) some modification to list OPERT.

Since the entire information about the solution tree is stored in list

OPEN, the new strategy can start working immediately after the Branch

Switch. The Main Universal Search Subroutine is constructed in such a

way, that even by applying the switch search strategy it is still possible

to obtain the exact solution.

372

6.11.2. Examples of Switch Strategies

6.11.2.1. The Far-Jumps Strategy. This strategy finds solutions with high mutual

distances in the solution space. At first, the Breadth-First Strategy with macro

operators and dominance relations is used to develop a partial tree. Together with

each node TV of the tree also its level in the tree, SD(N), is stored. A node from

OPEN that has the smallest level is selected. Next the "depth-first" strategy is

used until the first solution is found. The program evaluates, using some

additional method, whether this is a minimum solution, or a satisfactory solution.

When program evaluates that this was not the minimum solution, the "strategy

switch" is executed. The strategy switch is executed as follows.

(1) the node with the lowest level in the actual list OPEN is selected;

(2) this node is added at the beginning of list OPEN. Starting from this node, the

tree is expanded again using the depth-first strategy, until the next solution

is found, etc. With each solution, the order of nodes in OPEN can be

modified.

6.11.2.2. The Distance Strategy. An advantage of this switch strategy is that the

successively generated solutions are placed far away one from another. This gives

the possibility of "sampling" in many parts of the space, which can lead to

quicker finding of good cut-off values (this happens thanks to the jumping-out of

the local minima of the quality function). It may be useful, that the "sampling"

property is the opposite to the "depth-first" or other pure search strategies.

373

6.11.2.3. The Strategy of Best Descriptors. The principle of this strategy is that it

stores, for some pure strategy (for instance the depth-first, or the ordered-search),

all the descriptors that proved to be the most useful in finding the previous

solution. Sometimes, only some of these descriptors are stored. For instance, the

dominating descriptors, or the descriptors with the highest values of cost or

quality functions are stored. After switch, these descriptors are placed at the

beginning of list OPERT, and are therefore used as the first ones in the next tree

expansion. The switch strategies of this type can be applied to find quickly good

cut-off values in branch-and-bound strategies.

6.11.2.4. Strategy of Sequence of Trees. This is an example of a strategy that switches

trees. It expands some full tree, or a tree limited by some global parameters (time,

number of nodes). Next, using some additional principles, it selects few nodes,

SELNODES, of the expanded tree (for instance, the nodes with the minimum

value of the cost function). Finally, the strategy expands new trees, each starting

from those that start from SELNODES nodes. It usually uses a different set of

components of the space, and/or pure strategy in these new trees. In particular,

one of the strategies selects a new set of descriptors. Another strategy of this type,

calculates the value of CFmin as some function of CFmin and other parameters,

including the probabilistic evaluations of CFmin , min during the moment of

switching. This strategy is not complete, but it can substantially limit the search

by backtracking from smaller depth values.

374

6.12. Standard versus Quantum Searches.

The methods discussed in sections 6.1 - 6.11 are general and applicable to any parallel

processor. For instance, in several problems the best bound search can be realized

using repeatedly a single (quantum) Grover processor with oracles modified at every

search run.

Example 6.12.1:

Let us analyze for example the PPRM minimization for an incompletely specified

function from Figure 6.12.1a. The first quantum search is extended among 2n positive

polarity groups (groups being all products of variables and a group "1").

The positive polarity groups are represented in the Positive Polarity Exor Map from

Figure 6.12.1b. Each of these groups (product terms) is realized by one cell of this

map. The quantum oracle evaluates the quality function to be maximized being the

ratio of ones to zeros in each group. The group c from Figure 6.12.1a is selected as the

cheaper one of two groups with the same ratio (circled on top right in Figure 6.12.1b).

This selection is done using the first run of Grover with the oracle. After exoring the

group c, Figure 6.12.2, the second call to Grover is extended which returns the group

ab with ratio 2/0. Exoring this group from function from Figure 6.12.2b creates a

function "0" (Figure 6.12.2b) so the search is completed. A general search pattern for

this kind of "sequential quantum algorithms" is presented in Figure 6.12.3.

375

Although this particular example is trivial, it illustrates well the principle of parallel

search that uses Grover-based quantum computers.

.cd
a b \

00

01

11

10

00

-

-

1

-

01

-

0

-

0

11

1

1

0

1

10

-

-

-

-

vcd
a b \

00

01

11

10

00

4/3

2/2

< , M S

0 /1y
1/1

01

3/3

1/2

0/1

1/2

#"17#0

y\ 10

3/1 3/1

1/1

0/1

1/1

1/1

0/1

1/1

Select

Positive

Polarity
Exor Map

(a) (b)

Figure 6.12.1: (a) Incomplete function to be realized as a PPRM, (b) Positive Polarity
Exor Map with costs of product terms.

a D \ 00 01 11 10

oo

01

11

10

vcd

-

-

1

-

-

0

-

0

1

1

0

1

-

-

-

aiK
00

c (3/1) 0 1

11

10

00

-

-

1

-

01

0

-

0

11

Is
1"
I 1

V

10

\

J
" 1

J

a b \ 00 01 11 10

00

ab(2/0) 0 1

•
11

10

f(1)

-

-

^sl
-

-

0

-

0

0

0

0

0

-

-

2>
-

f(2)
Solution c© ab

(a) (b) (c)

Figure 6.12.2: Exhaustive/greedy strategy based on repeated calls of quantum Grover
Algorithm, (a) The original incomplete function to be minimized as a PPRM circuit,
(b) the function f (1) to be realized after exoring the best group c with one-to-zero
ratio 3/1, (c) the function f (2) to be realized after exoring the best group ab with ratio
2/0 selected in the second call of Grover. As this function f(2) is "0" the search is
completed and solution f = c e ab is returned as the best PPRM for ffrom Figure
6.12.1a. Of course, only one branch of the search tree is shown here for
simplification.

376

Best group found

group group group
goooo-1 9ocm - cd gooio-c

(4/3) (3/1) (3/1)

group
gnn
(0/1)

t •
One-to-zero

ratio for group
91111 = abed

group ab

Figure 6.12.3: Visualization of search space of an exhaustive/greedy strategy
extended by sequential calls to the quantum Grover accelerator. At each stage Grover
Algorithm Accelerator is called to execute exhaustive search of the best product term
to be chosen. This visualization illustrates the search from Figures 6.12.1 and 6.12.2.

The multi-strategy search algorithm can be applied to both classical and quantum

computing. For instance the heuristics to find a good lower or upper bound in graph

coloring are useful in all of the following: classical software, Grover oracle

construction and in a hybrid hierarchical parallel search system. In case of classical

377

search the set of descriptors is at the beginning equal to the number of nodes N. When

a solution with k < N nodes is found the search is repeated with only k color

descriptors and possibly other strategy is chosen. The same principle is used in

quantum search. The Optimizing Oracle assuming N colors would be in most cases

very wasteful, so we run a Decision oracle with few iterations probabilistically. The

repeated (or parallel) measurements after few Grover Loop iterations will find some

solution candidates which are verified on classical computers. This way a good upper

bound k colors is found that is next used to construct a smaller oracle. Similarly,

finding a maximum clique of a graph can be used to find the lower bound of a

chromatic number and next run Grover from it increasing the number of expected

colors (see chapter 12).

Example 6.12.2:

Figure 6.12.4 presents application of tree searching for ESOP minimization with

"more ones than zeros" heuristics to an incompletely specified function. The function

is different than in the previous Example 6.12.1. The single literal groups are: a, "a , b,

b , c, e ,d , d . The 1/0 ratios for these groups are the following:

a - 2/2, a - 2/2, b - 2/1, b - 2/3, c - 2/3, c - 2/1, d - 4/2, d - 0/2.

378

Fun1

aD\ 00 01 11 10

00

01

11

10

0

-

-

-

1

-

1

-

0

1

0

1

-

-

-

-

c (2/1)
-*• Fun 4

Literal
cost = 1

b(2/1)

\cd
ab\ 00 01 11 10

00

01

11

10

/
1.

\'

V

\ _ \

"1 J

0

1

0

1

-

-

-

0

vcd

Id (4/2)

ab\ 00 01 11 10

00

Literal cost = 1

Fun 2 01

11

10

0

-

-

f 1

\°
V

\
A
li
y

-

-

-

-

\cd
ab\ 00 01 11 10

00

Literal
cost = 1

01

Fun 3 n

10

0

^

v̂
-

1

-

0

-

0

0

1

1

-

^ N ,

^

- Literal cost = 1

vcd
I abc(\IQ)

ab\ 00 01 11 10

00

ad (2/1)

vcd

01

Fun 5 11

10

0

-

-

-

0

-

0

-

'o
0

1

0

>

-

-

0

ab\ 00 01 11 10

00

01

ac(2/1)

,cd

Fun 7

Literal
cost = 4

11

10

0

-

-

1

-

A
\

0

0

o\

V

-

-

-

0

ab\ 00 01 11 10

00

01

Fun 9

Literal
cost = 3

11

10

0

-

-

-

1

-

0

-

0

0

f V

-

-

^

)

vcd

I abc(1/0)

aD\ 00 01 11 10

00

vcd

b

Fun 6 01

11

10

0

-

-

-

0

-

0

-

0

0

c»
0

-

-

>
0

I cd(2/0)

ab\ 00 01 11 10

00

Literal
cost = 7

01

Fun 8 11

10

0

-

-

-

(°\
0

\-

0

0

0

0

-

-

-

-

Literal
cost = 3

Cut-off as the literal
cost plus expected

cost exceeds the literal
cost of solution Fun 8

Literal
cost = 5

Solution

0 —(.

Solution

d®abc®abc = d®c<fi@b
Final cost: seven 2 x 2 gates

3— Final cost: seven 2 x 2 gates

Figure 6.12.4: ESOP minimization search for an incomplete function Fun l(a, b, c, d).
This search is based on "more-ones-than-zeros " heuristics, which can however lead
to various subtrees and different hybrid quantum strategies. We recall that the 3 x3
Toffoli gate costs five 2x2 gates. This is how the final costs are calculated.

379

Thus groups b, c and d are evaluated as the best choices, as reflected in the first level

of search from Figure 6.12.4. Now this search is done exhaustively on a parallel

quantum processor from Figure 6.12.5. From function Funl the functions are created:

Fun2 by exoring group d, Fun3 by exoring b and Fun4 by exoring c . Out of these

functions Fun2 has 2 true minterms while Fun3 and Fun4 have 3 true minterms each.

Nodes Fun 2, Fun 3 and Fun 4 are added to the OPEN List of the Master Serial

Processor. Node Fun2 of the tree is therefore selected for expansion by Best Bound

Tree Search Algorithm as it has the smallest value of the evaluation function. Now the

two Slave Processors with quantum co-processors are used to execute parallel

quantum search. One is allocated the node Fun 2 and another is allocated the node Fun

3. Node Fun 4 remains in list Open in Master for future expansion. Using the method

as in the previous example 6.12.1 the first quantum processor finds the solution

d®c(a@b) with the cost of seven 2 x 2 gates and the second processor finds solution

b®d(a®c) with the same cost. After backtrack in the standard processor of second

quantum processor (the Slave Processor 2) function Fun 9 is found which has a literal

cost of 3. But as the groups to cover minterms have at least Literal cost 3 each, 3 + 3 =

6 > 5 which was a literal cost of the solution from node Fun 8. This search branch is

thus cutted-off. As both Slave Processors are now finished the Master decomposes

Fun 4 and allocates new tasks (not shown) to both Slaves. The process goes on until

the final solution is found.

380

Quantum co
processor 1

Quantum co
processor 2

Figure 6.12.5: Master Slave Processor with quantum co-processors used in Example
6.12.2.

Observe that this search method can be applied to PPRM, KRM, GRM, affine

extensions, etc. Virtually every problem from this dissertation can be solved like this.

Observe also that this method is heuristic, because it uses approximate quality

functions and incomplete search in Master. This method can be improved in many

ways, using analysis and methods as discussed in sections 6.12 - 6.16 and next

chapters. For instance, the search strategy from Example 6.12.2 can be improved by

adding a special method to analyze linear variables. This is illustrated below.

Theorem 6.12.1. Function can be represented in the form: f (a, b, c, d) = a ® g(b, c, d)

iff f © a does not depend on a, i.e.

da
•- o or ga®ga = o . In such case variable a is called the linear variable of

function f. It is always worthy to extract first all linear variables from the function that

is minimized and next perform the search. This linearization applies to every search

sub-problem.

381

(a)

(b)

a r j \ 00 01 11 10

00

01

11

10

/
' l

f
\

\
s
°l J

0

^11
0

0

\°A
1 ^y

vcd \
g (a, b, c, d)

a b \ 00 01 11 10

00

h = g(a, b, c, d) ®a
h does not depend on a

Figure 6.12.6: Verifying if variable a is a Linear Variable of function g(a, b, c, d). (a)
the original function g(a, b, c, d), (b) the function h = g(a, b, c, d) ® a. The arrows

dh
illustrate the graphical (mirror) verification if ~z 0. In this case it is so as the

minterms on both ends of each arrow are the same. Thus h does not depend on a .

Example 6.12.3:

Figure 6.12.6a illustrates a function of 4 variables, g (a, b, c, d), to be minimized as

ESOP. To check if this function has a linear variable a we create function h = g (a, b,

c, d) e a (Figure 6.12.6b). As illustrated in Figure 6.12.6b function h does not depend

on variable a, thus g (a, b, c, d) = a e h (b, c, d).

382

vcd
a b \ 00 01 11 10

00

01

11

10

0

-

^

v̂

1

-

1

-

0

1

0

-

-

" " ^

1 jy*

f (a , b, c, d) = F U N 1 (a, b, c, d)

.cd
a b \ 00 01 11 10

00 £
01

11

10

V-

fc

r
pi

Ko
i7

%

hi

W
| fi (b, c, d)

| folding for a

0

-

1

0

0

1

1

-

f i (b , c,d)

0 A) ^1 ^0 h

1 :<C~*i^o v "

folding for b I

scd *

h (c, d)

00 01 11 10

0 1 0 1

f 2 (c , d)

v.cd
00 01 11 10

f 3 (d)

0 1 Solution

0 1 3 S —*" 0 1) CD Q Q
f (a , b, c, d)

Final cost: four 2 x 2 gates

Figure 6.12.7: Tree search with additional linearity test. There is no branching as the
function f(a, b, c, d) happens to be linear so the exact solution f (a, b, c, d) = a
@b®c®d is found directly by a sequence of extracting linear variables.

383

Thus variable a is a linear variable of g(a, b, c, d) which should be used in ESOP

minimization. We will repeat therefore now the search from previous Example 6.12.2

trying first to extract all linear variables. The process of extracting all linear variables

from function Fun 1 from Figure 6.12.4 is presented in Figure 6.12.7. At first it is

verified that a is a linear variable of f(a, b, c, d) thus fi(b, c, d) is created such that f(a,

b, c, d) = a © fi(b, c, d). It is found next by exoring and folding for b that fi(b, c, d) =

b © f2(c, d). Finally it is found that f2(c, d) = c e f3(d) = c e d. Thus f(a, b, c, d) =

ae b e c e d and the solution is found without any branching, with the final cost of only

four 2x2 gates.

This example, together with the previous ones illustrate the power and ease of creating

various search strategies using a hybrid hierarchical quantum computer.

6.13. Example of Application: The Covering Problem

The following examples of some partial problems will illustrate the basic ideas

involved in the state-space search.The examples will show also the methods that are

used to formulate problems for multi-purpose search routines like those proposed in

previous sections of this chapter.

6.13.1. The Formulation of the Set Covering Problem

This problem is used in Column Minimization for decomposition. It is also widely

encountered in logic design (among others, in PLA minimization, test minimization,

384

multilevel design - see many recent examples in [Perkowski87]. As an example, let us

consider the covering table shown in Figure 6.13.1.

1
2
3
4
5

1
1
0
0
0
1

2
1
1
0
0
1

3
0
0
1
1
0

4
0
1
1
0
1

5
0
1
0
1
0

6
1
1
0
0
0

1 2 3 4 5 6
X X X

X X X X
X X
X X

X X X

Figure 6.13.1: A Covering Table With Equal Costs of Rows

Each row has its own cost indicated by the value to the right of it. In this example,

they are all equal. An X at the intersection of row r, and column Cj means that row r,

covers column c,. This can be described as:

(Tt ,cj)e COV c i ? x C ,

or briefly, by COV(n, Cj).

Equation 6.13.1.1

A set of rows which together cover all the columns and have a minimal total cost

should be found.

The direct problem formulation is as follows:

1. Given:

a. the set R= { r, , r, ,..., r,•} (each rt is a row in the table)

385

b. the set C = { c; , C2 ,..., c„ } (each 9 is a column in the

table)

c. the costs of rows fl (/)•) , j = 1, ..., k

d. the relation of covering columns by rows is COV cz R x

C.

2. Find

Set SOL a R

3. Which fulfills the condition:

(Vc, e C)(3rt e 50Z[COF(^.,c;.)] Equation 6.13.1.2

4. And minimizes the cost function

y2 = ^ / l (^) Equation 6.13.1.3
rt sSOL

It results from the above formulation that the state-space S = f. This means that

SOL a R. Hence, it results from the problem formulation that all the subsets of a set

are being sought. Then, according to the methodology, the standard generator, called

Tj, that generates all the subsets of a set is selected. Operation of this generator can be

illustrated by a tree.

The previously mentioned relation RE on the set S x S can be found for this

problem and used to reduce searching for a respective search method. It can be

defined as follows:

386

sj RE S2 <=> S2 3 si Equation 6.13.1.4

Therefore, when a solution is found, a cut-off occurs in the respective branch.

There exists for each element c, e C an element rt e SOL , such that their relation

COV is met. In other words, rt covers c, which means that the predicate COV(rt, Cj

) is satisfied. The cost function F assigns the cost to each solution. In this case, this

means that F =f2 is the total sum of flirt)$; the costs of rows rt that are included

in set SOL . Thus, using the problem definition from section 6.2, the covering

problem is formulated as the problem

P = if , {pi},f2), Equation 6.13.1.5

where

PliSOL)= iVCj eC)(]/-; e SOLLCOVfoCj)] Equation 6.13.1.6

In case of classical search this problem was formulated using logic equations, Lists or

binary matrices. In case of quantum search the most natural is to have variables

corresponding to rows of the table, but it still gives freedom in oracle construction.

387

6.13.2. Tree Search Method 1

The initial tree search method based on the direct problem formulation is then the

following

1. The initial node N0 : (QS, GS, F) := (0 , R, 0).

2. The descriptors are rows rt . The application of the operator is then specified

by the subroutine 0(N, r{) =

[GS(NN) := GS(N) \{rt}

QS(NN) := QS(N) u { n }

CFfMV; := CF(N) +fi(n)

]

3. Solution Problem and Condition (cut-off type)

pi(NN) = (Vc;. e C)(3rt e g,S(AW)[C(9F(^,cy.)] Equation 6.13.2.1

Comments.

1. MV denotes a successor of node iV.

2. QS(N) is the set of rows selected as the subset of the solution in node N.

3. F(N) is the cost function for node N. This is the total sum of costs of the

selected rows from QS(N).

As we can see in this problem, the formulation of the additive cost function

is possible.

388

An example of the cover table is shown in Figure 6.13.1. In this example, to simplify

calculations, we assumed equal cost of rows. However, the method can be easily

extended to arbitrary costs of rows. The solution tree obtained from such a formulation

is shown in Figure 6.13.2.

my J—CFt

I „ 2 m J — m y
I "• '

-nJEO
00

. 0 0

CJD

{1,2}

UQuT):

uQuT)
—±J {2,3} l l

•KmJ

jufwi *>n&n
"GO

±S~vJji]

14 {U,4})•

{1,2,5}

±4 {U,S}] g

-1 -Q^S}) 3 .

JU({2,4}) j _ S_4 {2,4,5} 7T\3

JEED'

Figure 6.13.2: First Search Method for the Table from Figure 6.13.1.

This method is the simplest and the most natural for quantum oracles. Remember

oracle for graph coloring and SAT. But it is not much knowledge-based and thus

expensive. It can be used however in each quantum processor to deal with intelligently

decomposed problems.

389

The nodes of the search tree are in the ovals. The arrows correspond to the

applications of operators, and each descriptor of operator stands near the

corresponding arrow. The solution nodes are shown in bold ovals. The costs of nodes

are outside the ovals, to the right. The sets inside the ovals correspond to partial

solutions in the nodes. Since the entire tree has been developed here, the sets GS for

each node can be reconstructed as the sets of all descriptors from the outpointing

arrows.

The cutting-off uses the fact that the cost function increases monotonically along the

branches of the tree; this is the cut-off condition. The nodes that are the solutions are

therefore not extended. If the cut-off conditions were not defined, for example, the

nodes {1, 2, 3} and {1, 2, 4} would be extended. Otherwise, the tree is produced under

the assumption that the cutting-off is not done for the solutions with cost function

values worse than for those nodes previously calculated. The values of function / for

nodes are shown to the right of these nodes.

Observe that some nodes of the tree are created (for example, node {3}) in a way that

does not allow any solutions to be produced in their successor nodes. Because each

column must be covered by at least one row in the node, the generation of such nodes

can be avoided. This is done by storing the columns c, that are not yet covered in set

AS. The branching for all rows rt that cover the respective column for each

390

individual column is also generated. These are such rows r, that COV(rt , Cj). We can

now formulate a new tree search method

6.13.3. Tree Search Method 2

1. Initial node No

(QS, GS, AS, CF) := (0, { rk e R | COV(rk, cj)},C, 0) Equation 6.13.3.1

The first element of C is denoted by c; above.

2. Operator

0(N, rO = [

QS(NN) := gS^u {n}

AS(NN) := AS(N) \{cj\ e C \ COV(n, cj)}

cj := the first element of AS(NN)

GS(NN) : = { ^ R\ COV(rk, Cj)}

CF(NN) := CF(N) + fj (n)

]

3. Solution condition (cut-off type)

pj(NN) = (AS(NN) = 0) Equation 6.13.3.2

391

The corresponding tree is shown in Figure 6.13.3.1.

Two disadvantages to this method become apparent from Figure 6.13.3.1. The first

disadvantage is creating the redundant descriptor 4 in GS(Ns). This descriptor cannot

be better than the descriptor 2. This disadvantage can easily be overcome by writing a

new code for this section, that would define and use the domination relation on

descriptors. The second disadvantage is due to the repeated generation of the solution

{1, 3, 4}, the second time as {1, 4, 3}. If the optimal solution is desired, then there is

no way to avoid the inefficiency introduced by the Tree Search Method 2.

1

2

3

4

5

1 2

X X

X

X X

3 4

X

X X

X

X

5 6

X

X X

X

Nn

1

2

3

4

5

3

X

X

4 5

X X J
X J

X J
x J

3
a*

N,

3 5 6

™gp*. 3

5 6

N7

{1A2}) ^

QlA3}) N10,

{5.3,2} >}2

X

X

N 1 3

1

2

repeated

{5,3,4,11 N. N16

N«

-^("{5,4.1*^ N l 4

({5,4,3,2) N1 7

Figure 6.13.3.1: Second Search Method for the Table from Figure 6.13.1.

392

This method is good for a Master Processor that decomposes a problem to smaller

problems and sends these smaller problems to Slave Quantum Processor. Assume as

an example that at most 4 x 4 matrices, or smaller, can be handled by a quantum

processor. Then the initial matrix from Figure 6.13.3.1 can not be handled but each of

smaller matrices after initial decomposition can be handled and solved in parallel on 2

quantum processors. Of course, the example is trivial and does not require quantum

search, it serves only the concept explanation.

6.13.4. Tree Search Method 3

Another method to avoid generating nodes for which / = <x> is the application of the

first method (the generation of the Tj type of tree) and an additional filtering

subroutine to check nodes to verify if the set of rows from GS(N) covers all the

columns fxomAS(N). In addition, the following code of type "Actions on the Selected

Node" is created:

If

AS(N) c£ {Cj e C)(3rt e GS(iV))[C0F(/;.,c,.)] Equation 6.13.4.1

then

GS(N) := 0

393

This means, that the cut-off is done by clearing set GS(N) when the set of all the

columns covered by the available descriptors from GS(N) does not include the set

AS(N) of columns to be covered. For example, at the moment of generation shown by

the arrow in Fig. 6.13.2, the set of GS(No) = {3,4,5} and it does not cover AS(No) =

C. Therefore, it is assigned GS(No) := 0, and the generation of the subtree

terminates. This forms the Tree Search Method 3.

6.13.5. Tree Search Method 4

The generated tree can be decreased even further when the second method is used and

it is declared in the operator that:

GS(NN) := {rke GS(N) \ {n} | COV(rk, Cj)} Equation 6.13.5.1

Let us recall that symbol \ denotes operation of set difference.

However, this approach can cause losing the optimal solution. It is then a typical

heuristic directive and not a methodic directive like those discussed previously. In

both trees, the cutting off condition based on the cost function has been not yet

considered. If the solution {1, 2, 3} in the tree shown in Figure 6.13.2 were first found,

node {2, 3, 4} could be cut off, and the non-optimal solution {2,3,4,5} would not be

generated. However, until now, only the methods of constructing the generator of

complete and non-redundant trees have been presented. These are the trees calculated

394

for the worst case of certain rules and heuristics that will be discussed in sections

6.13.5 and 6.13.6.

Search Strategies

Various search strategies can be illustrated using this example, to give the reader an

intuitive feeling for the concepts and statements introduced in the previous sections.

This has application in classical software and serial pre-processing/decomposition in a

hybrid quantum system.

The node enumeration order from Figure 6.13.3.1 corresponds to the Breadth-First

strategy, and to the strategy of Equal Costs (with respect to the equal cost of rows

applied in this example).

Eight nodes were generated in node N7 to find the optimal solution {1, 3, 2}. The

optimality of the solution {5, 4, 2} was proven after creating node N15, which means,

after generating 16 nodes. Nodes N7 to TV; 5 were temporary. Cost-related backtracking

occurs in node NJS and, therefore, nodes Ni6 and Nj7 are not generated.

The strategy Depth-First generates the nodes in the order No , Nj , N2 , Ns , Ne , N14 ,

N]5 , N12 , N13 ,N3 ,N4,N9, N10 , Nn ,N7,N8. After finding N14, i.e., generating six

nodes, the optimal solution {5, 4, 1} is found. As in the previous strategy, after

generating 16 nodes, the optimality of the solution {1, 3, 4} is determined. We can

state - "// is proven", since the method is exhaustive, and we have generated all nodes.

395

The strategy Depth-First-With-One-Successor, generates the nodes in the order: No ,

Nj ,N3,N7, Na, N4,N9, Nio, Nn ,N2,N5, Nn, N6, NJ4 , Nis . The optimal solution

{1, 3, 2} is found after creating four nodes. After generating 16 nodes, the optimality

of the solution {5, 4, 2} has been proven. Because the selection of the descriptor

depends on the row order among the rows covering the first column, the selection is

arbitrary. Hence, in the worst case, the order of generation could be No , N2 , N5, Nn,

Ni6 (the temporary solution {5, 4, 3, 1} of cost 4 has been found), Nn, Nn, A^ , N14 ,

N15 , Ni , N3 , N7, Ns , N4 , Ng , Nio , Nn. A tree of 18 nodes would be generated to

prove the optimality of {1, 4, 5}. This illustrates, that good heuristics are very

important to limit the size of the solution tree.

6.13.6. Tree Search Method 5

Subsequent advantages will result from the introduction of the heuristic functions that

control the order in which the tree is extended, with regard to the method 2 presented

above. The introduction of such functions will not only lead to finding of the optimal

solution sooner, but also to expediting the proof of its optimality. This is due to fuller

use of the cutting-off property, which results in a search that is less extensive when the

optimal solution is found earlier.

396

The quality function for the operators with regard to the selection of the best

descriptors in the branching nodes, as well as the quality function for nodes with

regard to the selection of the nodes to be extended is defined below.

Quality function for nodes:

QF(NN) = CF(NN) + h (NN) Equation 6.13.6.1

where

h(NN) = CARD(AS(NN)) . CARD(GS(NN)) . K, Equation 6.13.6.2

and

^firJ.CARDiCj 6 AS(NN) | COV(rliCj)}
K = r'eGS(1™] __ Equation 6.13.6.3

(£ c ^ { c , e ^ (i W) | C t f r (/ ; , c ,) }) 2

r, eGS(NN)

Such a defined function h is relatively easy to calculate. As proven in the experiments,

it yields an accurate evaluation of the real distance h of node NN from the best

solution. It is calculated as an additional coordinate of the node's vector. The

function's form is an outcome of the developer trying to take into account the

following factors:

1. The nodes N are extended for which the fewest columns need to be covered in

the AS(Ni). There is a higher probability that the solution is in the subtree D(Nt

) at the shallow depths for such nodes. Hence, the component CARD(AS(NN)).

397

2. The nodes, for which the fewest decisions need to be made, are extended. This

is a general directive of tree searching. It is especially useful when there exist

strong relations on descriptors, as happens in our problem. Hence, the

component CARD(GS(NN)).

3. The coefficient K was selected in such a way that, with respect to the

properties of the strategies discussed previously, the function h is as near to h

as possible.

The quality function for operators is defined by the formula

q (rt) = cjfifn) + 02/2 (n) + c3f3(ri), Equation 6.13.6.4

where c;, C2, c$ are arbitrarily selected weight coefficients of {\em partial heuristic

functions}/;,/, and/3 defined as follows

fi has previously been defined as the cost function of rows

Equation 6.13.6.5

f2(rt) = CARD {cje AS(NN)\ COV(ri,Cj) } Equation 6.13.6.6

fs (n) =^—fJCARD[re I c, e AS(NN) A COV(rt,c.) Aree GS(NN) A COV(re,Cj)]

Equation 6.13.6.7

where n is number of columns. Function/(h;) defines the "resultant usefulness factor

of the row" rt in node NN. Let us assume that there exist k rows covering some

398

column in the set GS(NN). The value of the usefulness factor of each of these rows

with respect to this column equals k. When k= 1, the descriptor is indispensable (or

with respect to Boolean minimization, the corresponding prime implicant is essential).

The resultant usefulness factor of the row is the arithmetical average of the column

usefulness factors with respect to all the columns covered by it. Then, one should add

an instruction in the operator subroutine to sort the descriptors in GS(NN) according

to the non-increasing values of the quality function for descriptors qNN.

The next way of decreasing the solution tree is by declaring new section code that

checks the relations on descriptors. If the descriptors n and rj are in the domination

relation in the node N (such relation is denoted by r, > r7-), r; can be removed from

GS(N) with the guarantee that at least one optimal solution will be generated. If the

descriptors r,- and r, are in the global equivalence relation in node JV, any one of

them can be selected. The other descriptor is removed from GS(N), as well as from

GS(M) where Mis any node in the sub-tree TREE(N). The equivalence class [r] of

some element r from GS(N) is replaced in this coordinate by r itself. Descriptors

declared as locally equivalent are treated similarly. The only difference is that the

descriptors are then removed from GS(N) only. Observe, that these relations are not

based on costs, but on some additional problem-dependent information about the

nodes of the tree that is available to the program. The covering problem may be a good

example of this property.

399

The descriptors ri and 7*2 are globally equivalent in node NN when they have the

same cost and cover the same columns

r, s r2 <=> / (r ,) = /j(r2) A (V e AS(AW))[C0F(7i,c) = COV(r2,c)] Equation 6.13.6.8

Descriptors (rows) r} and 7*2 are locally equivalent in node NN when, after removing

one of them from the array, the number of columns covered byy rows is the same for

each j = 1,..., CARD(GS(NN)) - 1 as after removing the second one.

r{ =r2 » (V / = 1, ,CARD(GS(NN))-l)[LK(j,r1) = LK(j\r2)]

Equation 6.13.6.9

where LK(j,r) is the number of columns covered by j rows in the array that originates

from M(NN) after removing row r.

LK(j,r) = CARD {ck e AS(NN) \ CARD(Xk) = j } Equation 6.13.6.10

where Xi is the set of rows covering the column c*

Xk = { x e GS(NN) \ {r} | COV(JC, c*)} Equation 6.13.6.11

Descriptor n is dominated by descriptor rj when: (1) it has larger cost than 7*2, and (2)

ri covers at most the same columns as r ,̂ or when (3) rj has the same cost as r2, and

covers the subset of columns covered by 7-2,

n*r2 <*m=fx{r2)*Wck eAS(NN))[COV(rl,ck) = COV(r2,ck)]

400

v / (r 1) = / (r 2) A { c J t GAS(NN)\COV(r},ck)<z{ck eAS(NN)\COV(r2,ck)}

Equation 6.13.6.12

The developer can program all of the relations given above or only some of them. If

all the relations have been programmed and parameterized, the user can still select any

of their subsets for execution using parameters. The solution process is shown in

Figure 6.13.6.1. The decomposition like this is obviously useful in any parallel

processing.

1 2 3 4 5 6

X X X

X X X X

X X

X X

X X X

N l

3 4 5 3 4 5

2

3

2D5 4

X X

X X

X X

X

•X X

X X

X X

QS{NjKi}

3

LR{2J;4)

^

1" 011(2,4} QS(Np

1

2

3

4

3 5 6

X

X X

X

X X

ID!
4D3 (

2

4

QS<

J 3 0

X X

X X

N^5)

2'4 ,
1N(2,4)

f*m*m».

N i
QS0f,HU4!

Figure 6.13.6.1: Final Search Method for the Table from Figure 6.13.1.

401

Column 1 and rows 1 and 5 are selected at the beginning (GS(No) ={1,5}). After the

selection of row 1 to QS(Nj), row 5 becomes dominated by 2 (or 3) and is removed.

The domination of descriptor 5 by descriptor 2 is denoted in the Figure 6.13.6.1 by

2D5. Now descriptors 2, 3, 4 are locally equivalent, denoted as LR(2, 3, 4). One of

them, say 3, is selected. Descriptors 2 and 4 then become globally equivalent in node

N'i, denoted as Gi?(2,4). One of them, say 2, is selected. This leads to the solution

QS(N"i) = {1, 3, 2}.Now the backtracking to the initial node, No, occurs and

descriptor 5 is selected. Next, descriptors 1 and 3 are removed since they are

dominated and then descriptors 2 and 4 are selected as indispensable descriptors in

node N'2 that is denoted as IN(2, 4) in Figure 6.13.6.1. This produces the solution QS(

N'2) = {5, 2, 4}. After backtracking to the initial node GS(N0) = 0 , node No is

removed from the open-list. The open-list = 0 completing the search of the tree.

The last solution of the minimal cost 3 is then proven to be the optimal solution.

1 2 3 4 5 6 7

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

Figure 6.13.6.2: A Covering Table with Costs of Rows that are not Equal.

402

Figure 6.13.6.3: A Search Method for the Table from Figure 6.13.6.2.

6.13.7. General Ideas about Covering and Mapping Problems

In section 6.13.6 we showed few of many strategies for the unate covering problem.

Similar approaches can be created to binate covering, SAT, even-odd covering and

graph-coloring.

Note the following facts

• not all of the minimal solutions were obtained but more than one was

produced,

• only node No is permanently stored in the tree, J

• if the user declared parameter Fmin min = 3, the program would terminate after

finding the solution {1, 3, 2}. In some problems, guessing or evaluating the

cost of the function is not difficult.

403

If all of the above relations, except the most expensively tested local descriptor

equivalence,

were declared, the complete tree consisting of 8 rows and 3 solutions would be

obtained.

As illustrated in PPRM, FPRM, GRM and ESOP search examples from chapters 2, 3,

4, 6, 7, 8, 9 and 10 the same properties exist for other problems. In some problems

very good results are found using Branch-and-Bound and Ordering as global strategies

and MUSTO, EQUIV, REAPNTto define the local strategy. EQUIVonly checks for the

global equivalence of descriptors. The covering table shown in Figure 6.13.6.2 will be

solved in this example. The cost of each row is entered next to its respective

descriptor. The costs of the rows are now not equal. The tree structured state-space for

this problem is shown in Figure 6.13.6.3. The details concerning the node descriptions

for this tree are also illustrated in Table from Figure 6.13.6.4. (By pred(N) we denote

the predecessor node of node JV).

The search starts from node 0 where no column is covered, so set AS consists of all the

columns. All rows are available as descriptors. Initial QS is an empty set, since no

descriptor has been yet applied. After being processed by EQUIV, it is found that

descriptor B is dominated by the another descriptor D. Therefore, descriptor B is

deleted from the descriptor list. MUSTO finds that descriptor C is indispensable (with

404

respect to column 7), and it is then immediately applied by GEN to create the new

node 1. The descriptor list is then ordered by ORDER using the quality function

mentioned above. Assuming the coefficients cj = 0.5, C2 = 0, and c$ = 1, the costs of

descriptors are

Q(A) = 2 + 4/2 = 4.0, Q(D) = 1.5 + 4/4 = 2.5, Equation 6.13.7.1

Q(E) = 1 + 3/3 = 2.0, Q(F) = 2 + 4/3 = 3.3. Equation 6.13.7.2

The descriptor list is arranged according to the descriptor costs as {E, D, F, A}. The

descriptors are applied according to this sequence.

There is no difference between the application of the descriptors in the sequence of E,

D or D, E for the solution in this problem. Therefore, if descriptors E and D have

already been applied, it is not necessary to apply them again in another sequence. This

is why descriptor E is cancelled for node 3; E and D for node Do ; as well as E, D and

F for node Dj. This cancellation is done by REAPNT. The above procedure prevents

node D0 from finding the descriptor to cover column 5. Therefore, this node is not in

the path to the solution and should be cut off by GENER. This phenomena also happen

for nodes Dj, D3, and D5. The cost of node D2, which is 13, exceeds the temporary

cost B which is the cost of solution node 4 that has already been found. It was,

therefore, cut off by the Branch-and-Bound strategy. So was node D4. The whole

405

search procedure in this example deals with 11 nodes but only stores the descriptions

of 5 nodes in the memory structure. A total of two optimal solutions were found in the

search.

Observe that PPRM, FPRM, SOP, ESOP etc problems are covering problems with

various constraints. They are all "subset selection problems", i.e. they are all

formulated like that: "select such subset of a set of all sub-functions of certain kind

that some constraints are satisfied and some cost is minimized". The SAT problem is

also a subset selection problem, we have to select some subset of elements

{xi,x2,x2,x2,... .., xn, xn) that a formula is satisfied SAT (xi, —, xn) — 1.

The mapping problem is to find such mapping X-> Y where X and Y are arbitrary

sets that some constraints R; (X, Y) are satisfied and some cost function on X and Y is

minimized. Thus the subset selection problem in which Y = {0, 1} with meaning: 0 -

not selected, 1 - selected is a special case of the mapping problem. This very powerful

metaphor for problem solving helps to have a unified view to many practical CAD and

Al/robotics problems that will be illustrated in next chapters with several examples,

particularly for problems of interest to quantum CAD.

406

N
SD
pred(NN)
OP
F
NAS
NQS
NGS
AS
QS
GS

n
0
0
-
-
0
7
0
6
1-7
-

A~F

1
1
0
0

c
3
6
1
4
1-6
C

E.D,F,A

2
2
1
1
E
5
3
2
3
1,23
CE
D,F,A

3
-**

1
1
D
6
2
2
2

4,6
C,D
F,A

4
4
2
2
D
8
0
3
0
-

C R D
-

Figure 6:13.7.1: Node Descriptions for the Tree from Figure 6.13.6.2.

The methodology presented in this chapter and illustrated with many examples in next

chapters explains the characteristic trade-off relationship between the knowledge-

based reasoning and the exclusively intrinsic search already mentioned in previous

sections. The direct description of the problem allows us to find a solution based

strictly on the generation of all possible cases that are not worse than the solutions

generated previously (quantum or not). The successive addition of the information in

the form of new heuristic directives and methodic directives that are based on the

analysis of the problem and the solution process (e.g. quality functions, domination

relations, equivalences, Fmi„ min, etc.) allows for the search to be decreased. Adding a

piece of information can decrease search dramatically, which especially important in

quantum.

407

Until now, we have not focused on how the relation COV is represented. This could

be an array, a list of pairs (rit cj), a list of lists of columns covered by rows, a list of

lists of rows covering the columns, various oracles, etc. The selection of the

representation is independent from the selection of the method and from the strategy,

but various combinations of these can have different effects. At some stage in creating

the program or oracle, the user decides on the selection of, for example, the binary

array and writes the corresponding functions. The user can then work on the

representation of the array next: using words, or using bits. The arrays M(N) also do

not necessarily need to be stored in nodes as separate data structures, they can be re

created from AS(N) and GS(N). The local strategy parameters should also be matched

to the representation. This is related to such factors as the total memory available for

the program as well as the average times needed to select the node, to generate the

node, to extend the node, to select the descriptor, and to check the solution condition.

Let us analyze one more example of a real-time system based on a parallel quantum

computer.

6.14. Real-Time based Parallel Quantum Computer. A Hypothetical

Scenario for QSPS

Assume we want to build a parallel quantum computer that calculates a trajectory for

the US defense land-to-air missile from the received in real time data about the

408

approaching enemy missile. US counter missile should be fired in no more than 5

minutes to destroy the enemy missile. Otherwise it would be too late. If we use the

optimizing Grover Algorithm on a single quantum computer the time of 0(JN) may be

longer than 5 minutes. So the calculated trajectory of US counter-missile result will be

optimal but useless because it would be too late to destroy the enemy missile. Having

however a parallel system with several Grover processors we can allow each of them to

work with a different oracle and with a different number of Grover Loop iterations,

making measurement in each processor after 10 seconds, 20 seconds, etc. Thus in the

first 10 seconds we already have some trajectory solutions for the US missile, after 20

seconds we can get a better one for which to reprogram the counter missile, and so on.

When the time to shoot comes after 5 minutes, we have already a solution selected

among thousands of gradually improved solutions with more and more optimal

trajectories. This is definitely practically better than to keep waiting for the

forthcoming "optimal solution" while the enemy rocket is threatening to destroy US. In

many situations like this an approximate solution available now is better than the exact

solution obtained too late.

Several similar scenarios can be invented which demonstrate how to use the trade-off

between the time of obtaining a solution on a parallel quantum computer and the

quality of this solution. An optimal real-time system should take these trade-offs into

account. This is a well-known problem from real-time control but it is applied here in a

new way to a parallel quantum computer.

409

Let us also observe that in practice all problems are "real-time problems" when the

computer technology has a flexible scale of providing solutions in time intervals from

seconds to tens of years. Quantum technology is the only conceivable technology that

will have this property. Let us give an example. Suppose that we want to factorize a big

integer (related to the cracking of secret codes) using the Shor algorithm. If we use a

standard computer working probabilistically the expectation of a correct guess would

be some time longer than our Universe exists. So nobody would even try this approach.

On the other hand, there exist integer factorization problems that a Shor Algorithm

would solve in few minutes. Increasing these integers as problems given to Shor

algorithm would increase the time of Shor algorithms solution times to hours, days,

years and finally to the life-span of the human organization (like CIA) that requested

this problem to be solved on the quantum computer. The probabilistic way of using

Grover algorithm can find or not a solution in say 3 years when the optimal search

would require 20 years. This situation may resemble catastrophic movies where some

comet approaches the Earth and may crash so we need a supercomputer to find a

necessary action to avoid the catastrophe. In case of the Grover Algorithm we would be

thus, as a whole humanity, at the mercy of quantum measurements, which means at the

mercy of probability. This is unfortunately a realistic situation similar to the metaphoric

joke of the half-dead, half-alive cat of Schrodinger [Schrodinger26].

410

6.15. Variants of Quantum Computing in QSPS.

Standard Grover algorithm should iterate the Grover Loop of JN number of times.

There is however another possibility to use Grover, a probabilistic one. Let us take the

graph coloring problem as an example. When the graph is very large, K nodes, and

there is no any additional information about it, the number of colors should be assumed

to be equal to the number of graph's nodes which gives N = log K • K qubits for input

variables. In such case vN is a very big number and the Optimizing Oracle that uses

the sorting/absorbing circuit (chapter 13) is both very complex and repeated very many

times. In such case a better approach is to build a simpler graph coloring oracle

composed only from the decision part - the Decision Oracle (Figure 6.15.1a). This

oracle will generate randomly many solutions for each measurement. Running this

simple oracle several times produces a solution with small cost (statistically). Next we

can design the optimizing oracle with Ni = K • ni qubits where ni « logK , thus

reducing the time of running the Optimizing Oracle for Grover (Figure 6.15.1b).

Finally instead of using the Optimizing Oracle one can build an oracle for predicted

number of colors (we will call it the Predictor Oracle). Suppose that the Decision

Oracle for a Maximum Clique Problem found a solution with k] colors. Then we can

design a new oracle with the decision function as in Figure 6.15.1c.

411

ni

n2

n3

nn

Decision
is { nn, ni2 riij}

a clique?"

T
(a)

ni

n2

n3

nn

Decision if this is a clique?
Calculate the

number of ones

ni

n2

n3

Expected
n value tr
1 'n

t t

Is cost < tr?

(b)

{nn nik} is the solution with
number of elements smaller or

equal the expected value

412

ni

n2

nk

Decision
Oracle

Symmetric function
Sk"1 (m, ..., n„)

Set is a clique

ni

n2

nk

Set has k-1
elements

The solution
has k-1 colors

(c)

Figure 6.15.1: The oracles for the maximum clique problem, (a) the Decision Oracle ,
(b) the Optimizing Oracle, (c) the Cost-Predicting Oracle.

The given in this sections two examples of the sequence of oracles in Grover for "graph

coloring" problem and "maximum clique" illustrate that the Grover algorithm that is

normally used as a "decision maker" or "optimizer" can be also used as a "good

guesser", at least for those problems that have many solutions. It can be also done for

decision problems if the solution time is very critical, as in section 6.14.

There are many methods to combine the Decision Oracle, the Optimization Oracle and

the Predictor Oracle with different number of Grover iterations. They can be all used in

a general search system based on master-slave parallel processors, as the

QSPSpresented in this chapter.

413

6.16. Heuristic Search versus Quantum Search

Above we discussed various aspects of search and its link to representation - how

general are the search ideas, how related to quantum or non-quantum realization?

Observe that every CAD problem from our thesis has two aspects:

1. The concept of certain type of logic circuit type (such as structure, ancilla bits,

types of gates, number of levels, etc) and the data structures in the synthesizing

program that represent this circuit.

2. The method to search the space of solutions for the given specification of

Boolean function and for the assumed type of the circuit.

Several concepts contributed to the search methods presented in this dissertation. The

thesis is based on 20 years of experience of PSU group in optimizing AND/EXOR

logic and reversible design as well as on recent papers from other groups. The thesis

takes ideas from many previous papers and books: on one hand it expands on the

optimization methods from [DillOl] and on the other hand on the quantum search

paper [Li06] to build a uniform approach to quantum circuit synthesis based on search.

This experience was reflected in the circuit types and search strategies for them.

414

The methodology of our previous software was applicable to traditional computer-

automated digital design and synthesis, as well as for off-line Evolvable Hardware,

including quantum hardware. The methodology from [Li06] is. applicable to any

problem described by an oracle. Our new methodology that was presented in this

chapter is more general and incorporates the previous approaches as just its special

cases.

The dissertation presents new search approaches:

1. The simplest is the classical Iterative Deepening Depth First search applied to

logic synthesis of AND/EXOR reversible cascades based on affine gates. This

is presented in chapter 7.

2. The second and more advanced is the ECPS search from chapter 6, more

broadly applicable for general learning and solving combinatorial logic

problems. It is used in chapter 8 for the minimization of GRM forms for

incompletely specified Boolean functions.

3. The third is the quantum search QSPS (chapters 5, 6, 11 - 15), which is the

main topic of this dissertation.

415

The Extended Cybernetic (Multi-Strategic Learning) Problem-Solving (ECPS)

Algorithm was created based on my previous experiences with search algorithms. It

expands on ideas from [Perkowski78, Perkowski82, Perkowski92, Perkowski99e,

Perkowski02, Dill97, Dill97c] implemented in Multicomp and its next variants

[Perkowski92, Software 1, Software2]. Our new approach aids humans in designing

application-specific solutions for binary and multi-valued logic synthesis and

minimization problems. Most fundamentally, a more powerful state-

space/evolutionary approach to solution derivation is employed in QSPS, for

simplicity, generality and most importantly - to make a general link to quantum

computing. When a problem is formulated as a search in some space, then it is next

relatively easy to make variants of this search through evolutionary, quantum and

probabilistic methods. The problem formulation, the cost function, constraints,

heuristics, and other components of the specification are more important than the final

representation of the search in one or another software, hardware or even type of

computing (classical versus quantum, sequential versus parallel).

Our fundamental philosophy starts from the assumption that any combinatorial logic

problem (or constraints satisfaction problem) can be solved by searching some space

of known states (for instance, these states are the circuit structure instances being

optimized). Solutions in this approach are achieved with an intelligent strategy using

both human-designed heuristics and state-space search mechanisms [Nilsson98,

Lugar02]. Our method includes evolutionary ideas but they are different from previous

416

Darwinian and Lamarckian learning approaches implemented in our group by Karen

Dill, Martin Lukac, Normen Giesecke, Mozammel Khan and others. This is also in

contrast to conventional evolutionary methods, that most often do not use the concepts

of "search in state space". One of our innovations is that of the two-level search

which is based on the concept of polarity of spectral expansion of a Boolean Function.

The upper level of the search performs the global exploration in the space of polarities,

while the lower-level local search searches the best circuits for the given polarity. This

lower level search can use any other method including evolutionary, A* search or

simulated annealing. Therefore our approach from this chapter can be categorized as a

memetic algorithm. The quantum search is presented in the general framework of

sequential/parallel search as a sequence of exhaustive searches in reconfigurable

systems with quantum Grover Algorithm based accelerators.

It is well-known that in the field of logic synthesis the researchers have several

decades of experience producing useful human-designed software systems based on

decision functions, butterflies and search, which we inherit to be used for the quantum

CAD methodologies developed here. Thus, the search methods expertise must be

combined with known quantum search algorithms, to make further progress, rather

than to "re-invent the wheel".

The previous experience of the PSU group with genetic methods [Dill97, Dill97a,

Dill98, Perkowski99e] has shown that the evolutionary approach has both practical

417

solution time, quality of solution, and problem size limitations. For larger problems

this approach creates only quasi-minimal solutions. It has just no means to achieve

100% convergence and the exact minimum of the cost function. Although the Genetic

Algorithm (GA) and Genetic Program (GP) have the ability to adapt well to a

particular function, they produce no explanation of design methodology and no rules

of generalization for solving other problems. The GA/GP software does not learn a

problem-solving strategy. Neither does it learn a general method for approaching a

class of problems. For example, as the GA is applied to logic minimization [Dill97,

Dill97a, Dill98] , after finding a good solution to one Boolean function, it approaches

the next Boolean function to be minimized with no general learned knowledge. The

same circumstance is also found in the application of the GP to logic synthesis [Dill97,

DillOl]. On the other hand, the research on functional decomposition

(Ashenhurst/Curtis decomposition and bi-decomposition) in the PSU [Files97,

Files98, Files98a, Perkowski05], while creating good solutions, is not easily tunable to

reversible and quantum technologies (at least we were not able to find a solution).

Traditional exhaustive search mechanisms (breadth first, depth first, branch-and-

bound, etc.) guarantee an optimal solution from the solution space, but are (often)

prohibitively time consuming [Lukac04, Giesecke06]. Thus, both complete (searching

the entire state-space) and incomplete (evolutionary and rule-based) search strategies

may be unsatisfactory for producing a general problem solving technique for practical

applications.

418

In contrast, the ECPS algorithm incorporates both pure and heuristic search strategies,

and problem solving/learning paradigms, into a synergistic system. All learning

methods are combined to form an intelligent, superset, "toolbox" of solution search

space methodologies. This algorithm builds on the strengths of different search

methodologies. First, within this new problem-solving algorithm, the problem-class-

specific search strategies for logic minimization are built, for which the type and

number of rules are selected. Then, within this training phase, a solution "pattern"

(describing the search methods) is automatically designed for a problem class. This is

done from analysis of the network, time available, stage of the design process, and

limited user input. After the meta-algorithm has developed the solution pattern for a

class of problems, any problem within this class may be applied. Finally, as the

outputs are circuits, the combinatorial logic may also be depicted graphically as

circuit, equation, truth table, K-map, or algebraic form, aiding the user in

modifications of strategies, heuristic development, visualization of data, and the

optimization process [Perkowski99e] (see also chapter 7). The visualization helps the

intuition of the software developer.

For the purpose of comparison to other researches, the ECPS is applied to the GRM

minimization problem in chapter 8. The results are given showing a comparison to

those of Dill [Dill97a] and of Debnath and Sasao [Debnath95, Debnath96] for the

minimization of completely specified GRM logic. Further, as the ECPS is capable of

minimizing incompletely specified GRMs, its results are compared with that of Dill

419

and Perkowski [DillOl], the only other software designed for this purpose. Finally, the

three search programs can be compared on other problems from this dissertation: in

theory all three search approaches are applicable to all search-based methods from this

thesis.

Concluding, here is the main philosophy related to search and developed in my

dissertation:

1. A realistic quantum implementation technology has been selected and briefly

presented (NMR) for which our circuits will be optimized on four levels: pulses,

permutative gates, circuits and oracles (blocks, systems). The methods above the

first level apply also to any type of reversible circuit realization (as illustrated in

section 2.3 on cellular automata). Therefore, our circuit synthesis methods are very

general and can be possibly applied for many new (reversible) technologies in

addition to quantum. To the circuits on all levels and in all technology variants we

can use the same universal search methods, which are however tuned to each of

the problems by the problem-specific cost functions.

2. Powerful logic algebras have been generalized and invented to synthesize

circuits optimized for the realistic cost functions. They combine the properties of

linear independence, linear/affine decomposition, and the Reed-Muller logic

hierarchy. Although these methods can be applied to non-reversible logic as well,

420

they are especially good for quantum realization since they are based on the

assumption that NOT and CNOT gates are inexpensive with respect to multi-input

Toffoli gates, which assumption was shown in Chapter 2 to be good for known

quantum logic (NMR). (It may be not necessarily true for future quantum

technologies, other reversible technologies (optical, CMOS adiabatic) and

especially for standard VLSI where EXOR operator is not that cheap comparing to

AND operator). Uniformity of these concepts allows to create uniform search

algorithms for all of them.

3. The usefulness of these new invented by us approaches will be illustrated on

several practical circuits realized for the selected NMR technology model. The

cost differences for some types of functions are already quite high on small

examples that we tested.

4. A number of synthesis methods and techniques are invented and realized. Not

just one method.

5. Further, an analogy and extension of the entire sub-area of AND/EXOR logic

is made to the Affine generalizations of the AND/EXOR circuits. Thus the

Zhegalkin Hierarchy is extended.

421

6. A new type of meta-alsorithm for search on classical computer was ultimately

invented. This is referred to as the Enhanced Cybernetic (Multi-Strategic

Learning) Problem-Solver (ECPS) Algorithm. Our software is compared to those

of other authors.

7. The quantum oracles are shown for several combinatorial problems of CAD

and used for synthesis of classical and quantum circuits. This leads to a systematic

general development methodology that uses Grover algorithm to accelerate CAD

algorithms (chapters 12 - 14). Based on these ideas the QSPS quantum problem-

solver was proposed and simulated. Its practical power cannot be evaluated since

quantum computers are now available for toy problems only. This approach can be

also used for several constraint satisfaction problems in robotics (Chapter 15).

422

CHAPTER 7

Affine Binary Gates and Affine Circuit Structures

7.1. Introduction to the Concept of Affine Gates

In this chapter I will introduce the fundamental concept of this thesis - the affine

gates. There are three basic types of such gates:

1. Affine Root of Not gates (ARNG) (chapter 7),

2. Affine Toffoli gates (chapter 7),

3. Affine Complex gates (chapter 9).

We can create big quantum gates more efficiently from these new primitives. These

gates are next used in generalized cascades that include both Toffoli gates and new

inexpensive interval quantum gates that are built from ARNGs.

Currently quantum cascades are built from CNOT gates (Feynman, 1-Controlled

NOT) and n * n Toffoli gates (k-controlled NOTs, here k < n - 1). These realizations

include very expensive gates when k is large [Maslov03]. Therefore we propose in this

chapter some families of k-input gates that have inexpensive realizations in terms of

the number of (truly quantum realizable) 2 * 2 gates. Each family has different

interesting properties and should be used in conjunction with other families. For

instance some of these families allow realizing every reversible single-output function

of "even type" (with even number of true minterms) and should be used together with

423

standard k-controlled Toffoli gates to realize the so-called "odd type" functions

(binary odd functions have odd number of true minterms).

It is well known that AND gate in classical standard logic is irreversible. Given the

output, one can not obtain the definite input states. The input variables a and b can be

00, 01 or 10 and produce an output B of 0. Therefore a reproduction of the inputs is

not feasible. The Feynman gate in Figure 7.1.1 preserves all information from the

input to the output. Checking the truth table of this 2*2 gate, it can be observed that

the input values can be constructed uniquely from the output values. This gate is

inexpensive in all known to me quantum technologies and should therefore be a base

of synthesis, which means, it should be used as often as possible by every reversible

logic synthesis algorithm. The Feynman gate is linear because of its EXOR and is also

affine as each linear function is affine.

&
B

Figure 7.1.1: Feynman Gate; example for reversibility. This gate is a fundament of
affine gates.

Besides the popular NMR quantum computers, Ion trap computers have become

increasingly an attractive alternative [NielsenOO, DiVincenzoOO]. Nature magazine

424

[Britton06] recently published an article where scientists (C. Monroe et al.) fabricated

a micrometer-scale ion trap on a monolithic chip using semiconductor micro-

electromechanical systems (MEMS) technology. They confined a single '"Cd+ ion in

an integrated radiofrequency trap etched from a doped gallium-arsenide hetero

structure. If this steady progress marches on, then even skeptics will be convinced

about this new way of executing quantum computation. A limitation on the number of

qudits is not known yet, but is currently predicted to be much higher than in NMR

[NielsenOO, DiVincenzoOO]. Both NMR and ion trap allow realizing the so-called

"Controlled Quantum Gates". The gate functionality is similar to that of a multiplexer.

Additionally, it is not the input that the multiplexer selects (as there is only one input

besides the select), but the function applied to this input. Concluding, all gates

introduced below can be practically and inexpensively built in at least two quantum

technologies, NMR and ion trap and in both these technologies CNOTs and CV/CV1'

gates were realized. Now we will present families of affine gates.

7. 2. Affine Root-of-NOT Gates (ARNG)

7. 2.1. Design of 3 * 3 gates and circuits using controlled gates.

Let us first look at the well-known Toffoli gate circuit from Fig. 7.2.1. It includes only

2 * 2 quantum realizable gate primitives. This decomposition is therefore close to real

quantum hardware and allows good quantum cost approximations. Calculating the

425

number of 2 * 2 quantum gates as a pulse cost approximation is a good heuristic.

Many circuits of this type were generated by Hung et al [Hung06], they use only 1-

qubit gates - inverters and 2-qubit gates-controlled-V, Controlled-V* and Controlled-

NOT. Observing these circuits one can appreciate that all controls of V, Y^ are linear

or affine functions of variables or outputs of other macros. Affine binary function is a

linear function or its negation. Analyzing these types of circuits and appreciating small

relative cost of NOT and Feynman gates, we assume in this section that all controls

are affine functions, which means, linear functions or their negations. It is easy to

make "in-line" mirrors for affine gates.

\a)

*>-\v\-\\

\m

-®- = M

Ft |d) -\NOT\-

\b)

\ab © d)

Figure 7.2.1: The cost of a 3*3 Toffoli gate is five 2-qubit gates. On the right we see
the symbol of Toffoli gate as a double-controlled NOT. Hence the another name of
Toffoli gate as CCNOT gate.

ri — *

\b)

IdMvt-wvJHW

•^—4

cb T d

w
\h)

\c)

\F)

Figure 7.2.2: Realization of "double-cube "function \ F) = (abc + abc) ffi d

426

file://-/NOT/-

We do not care at this time how the upper part of the circuit, the control, is realized -

we have developed elsewhere efficient methods for synthesis of such affine functions.

The controlled (target) single qubit functions are inverters, V and V* gates in one

, variant and only V, V+ in another variant. This way the 3-qubit Peres gate can be also

created, as well as many other known gates. Peres is perhaps the least expensive

universal binary permutative quantum gate (no proof exists yet, but nobody found a

counterexample). This gate can be used instead of Toffoli in all our methods below.

As we see, the principle of our approach is simple. Knowing a powerful pattern of

creating Peres and Toffoli gates, we use this pattern to systematically (or

stochastically) generate new families of "interesting gates" under certain constraints of

binary (permutative) realizability discussed below. Next these gates are used as

macros in quantum circuits minimization. New gates are created by surrounding these

macros with affine functions (CNOT, NOT). In the presented here variant of our

CircuitSearch minimization program we use all affine functions as control functions

and we use V, V* (and NOT in some variants) in the data path (target) qubits. In case

of 3 * 3 circuits it is relatively easy to use this approach to generate affine controls in

variables a, b and c to generate the full Toffoli-like, Peres-like of "Fredkin-like" gates,

in particular the gate from Figure 7.2.1. The question of course arises, "what is an

interesting gate?" We will try to answer this question below, but let us observe first

that interesting is a gate that reduces quantum costs when applied in synthesis of

general or special types of Boolean functions. Gate patterns from Figure 7.2.1 and

Figure 7.2.2 are "interesting". They create families of many useful affine gates by

427

inserting all possible combinations of V, V+ to target boxes. Let us now analyze the

problem of synthesizing the 4 * 4 Toffoli-like (Toffoli family) gates and circuits.

7.2.2. Design of 4 * 4 gates and circuits using controlled root gates

CircuitSearch was created to aid development of "interesting" gates. Playing with our

CircuitSearch program we create, for instance, the circuit from Figure 7.2.2 and find

that it realizes the function (abc + ab c)®d which is a sum of minterms of Hamming

distance 3 in three variables a, b, c exored with variable d. This is an interesting

function with respect to the criteria mentioned above. We call it a dual-cube function.

Using CircuitSearch in a smart way and critically analyzing the generated by it circuits

and their truth tables we find more interesting functions that become the base of new

circuit structures and our new synthesis algorithms for these structures. An interesting

observation can be made by analyzing Figure 7.2.1. All component primitives (gates)

used there are 2-qubit and the function realized on the lowest bit is ab © d. Each of

controls can be multiplied by variable c to obtain solution abc © d. But now, gates V

and V+ need two controls. It means, that these gates should be rewritten again to 2*2

gates, but now the gates G = square-root-of (V) will be used instead of gates V and the

gates square-root-of(V)-adjoint gates G^ will be used instead of gates V1" (Figure

7.2.3). Observe that this way we not only extend the Toffoli gate to 3 inputs in AND,

but we create a general-purpose recursive method to generate Toffoli gates with any

number of inputs, assuming availability of 2k-root-of-V gates.

428

Each of controls in Figure 7.2.1 can be multiplied by variable c to obtain solution abc

© d realized in Figure 7.2.3a. But now, gates V and V+ need two controls. It means,

that these gates should be rewritten to 2x2 gates, but the gates G = square-root-of (V)

will be used instead of gates V and the gates square-root-of(V)-adjoint gates G^ will

be used instead of gates V1" (recall the G and Ĝ gates from chapter 2). We extended

the Toffoli gate to 3 inputs in AND, but we have a new problem, "how to design the

controlled gate controlled by two inputs ?". But this problem is similar to the one we

already solved in Figure 7.2.1. Therefore, we deal here with certain type of recursion

that we want to use generally in synthesis. Observe also that the control of each multi-

controlled gate is an affine function (in this case it is even linear).

a 1

i
0

J T

'

r i
(J V C

1 i 1

P *•

-4
V <

i

b

c

ahc(&d

Figure 7.2.3: (a) Extension of standard Toffoli gate to 4*4 Toffoli gate by multiplying
by signal c.

iV-fc

m
?-T

- f f r

-<©-

"i : t i~

14 - ^ ' H G f

«

Gt

itt- - # -&

•4

^ : : f

y i h
(jt GtHGt.

• &

\\j .

- $ -

+ 4

a © c b © c a © b c a © b

l*>

Ia6c.:+ <

Figure 7.2.3: (b) Realization of the 4*4 Toffoli gate from Figure 7.2.3a using
controlled-root-of-order-four-of-NOT gates, CG. Linear controls are written for all
G/G? gates under them to simplify the analysis. The blocks shown with interrupted lines

429

show the initial gates drawn according to the design from Figure 7.2.1 with additional
multiplication by c (from Figure 7.2.3a).

To realize abc®d we have to realize each double-controlled V gate using 2*2 gates.

This is done as in Figure 7.2.3b, each gate G represents square-root-of-V and thus the

fourth-order-root-of-NOT. Similarly, the controlled hermitian gates CCV are built in

Figure 7.2.3b using CG and CG^ gates. The circuit from Figure 7.2.3b using quantum

simplification rules can be transformed to a simpler circuit from Figure 7. 2.4. This

way our method re-invented the CCCNOT circuit found by Barenco (the triple-

controlled NOT gate).

m

14
x
-RTM-

•nt- A

a®b

G* \G*

"" W " m

ibc + d)

Figure 7.2.4: Simplified circuit from Figure 7.2.3b. Rule GG* = I was used for gates
G, G^ controlled by c in Fig. 7.2.3b. Two gates from Fig. 7.2.3b have been thus
reduced. Observe that this circuit has only 6 controlled G/G gates, each controlled by
a linear function. This is one more example ofAffine Root of NOT gate.

W

\b)

\c)-—&

VHV

4^- < & - & •

vt

1°/

\b)

\C)

, {b © c) (B d)

Figure 7.2.5: Realization of function a(b 0 c) (D d using linear controls of V/V* gates.

430

1°) H v H v H v

\\J

Q O t CD

Ft

\a td h © c)

afetftabe

Figure 7.2.6: Realization of function f = ab c@abc using affine-controlled target
gates V, Vf and NOT.

Figure 7.2.5 shows example of a set of linearly-controlled V/V1" gates which together

realize the factorized Positive Polarity Reed-Muller (PPRM) form functionally

equivalent to a sequence of Toffoli gates. As we see, we do not need to find the PPRM

and next factorize it to find this circuit. We can just control gates V and V+ using

linear (in general, affine) gates and next restore the original input values by the use of

mirror gates. This method can be generalized to use arbitrary affine controlled gates

and arbitrary mirror circuits.

Figure 7.2.6 realizes a double cube function. This is a pair of Hamming-distance-3

minterms on variables a, b, c but the minterms are different than in Figure 7.2.2

because of using other affine functions directly controlling the output target qubit d=0.

Figure 7.2.7 presents the realization of function (ab+ac+bc)®d = ab®ac®bc®d . Many

variants of the CircuitSearch program can be created for various types of controlled

gates, controlled gates and realizability constraints. The control functions may be for

instance all products of literals like a.b c f or all functions of 3 variables. Similar

431

circuits can be build using controlled-square-root-of-NOT, controlled-fourth-order-

root-of-NOT and in general controlled 2k-root-of-NOT for k = 2, 3, 4, 5...

| a)

W.-\v\-\v\-\v

-4b

J f fft

Ft

\a)

\c)

Figure 7.2.7: With d=0 we realized here a symmetric function of variables a, b, c.
Observe that + can be replaced with e in the formula for S> (a, b, c). maj (a,b,c) =
Sr (a, b, c) = 5> (a, b, c) + 5> (a, b, c) is a totally symmetric function of a, b, c.

7.2.3. Design of big gates using ControIled-root-of-NOT gates

By big gates we will understand gates with 5 or more qubits. The costs of such gates

increase, sometimes even exponentially, so their efficient design is very important.

Such gates are very expensive in quantum realization so we will try to find

inexpensive big gates and use them as much as possible as macros in synthesis. For

instance, the 5 * 5 Toffoli gates are very expensive as quantum circuits since the

realization of AND with many inputs requires many auxiliary gates and their mirror

gates. We will illustrate this fact below. An arbitrary 3-controlled operator U can be

realized using two 2-controlled Toffoli gates and a 2-controlled U gate as in Figure

7.2.8. Next each of the 2-controlled Toffoli gates is replaced as in Figure 7.2.1 and the

2-controlled U gate is realized similarly as in Figure 7.2.1, leading to the circuit from

Figure 7.2.9.

432

o ; — t -

D T CD

*

14

Id)

I*)

14

|(7(a6c,(/)}

Figure 7.2.8: Realization of 3-controlled U.

Wi -P-

0 T q

0)iMbrE J i f-Hv

Vff

VtHKt

|J7[«M) - [£] -

Figure 7.2.9: Realization of 3-controlled operator U from Fig. 7.2.8 with CV, CV*

and Controlled -Ju, 4u+ gates. Pay attention to the mirror circuit top right.

Concluding, the realization of the 3-controlled U using quantum-realizable primitives

in the space of 5 qubits is shown in Figure 7.2.9. Assuming U=NOT, the single

product of 3 literals costs 15 2x2 gates while on the other hand two such products in

Figure 7.2.2 cost only 8 2x2 gates. The method illustrated in Figure 7.2.8 and Figure

7.2.9 allows to design recursively any Toffoli-like multi-input gate building a structure

from quantum-realizable 2*2 primitives. This way, any quantum circuit built in PPRJVI,

FPRM, GRJVI or ESOP styles using Toffoli gates, CNOT gates and inverters is

converted to a quantum realizable quantum array. But this method may create

unnecessarily expensive circuits. Thus we will concentrate now on cheaper

433

realizations of gates for quantum cascades. The methods given in sections 7.2.2 and

7.2.3 are however still necessary for odd functions, such as a single minterm in the full

space of products of literals.

7. 2.4. Design of 2-interval gates

An important subgroup of ARNGs are the 2-interval gates introduced for the first time

in this section. Barenco et al [Barenco95] in their paper (which is one of the most cited

papers in quantum literature) introduced the method to build 3 * 3 Toffoli gates using

controlled V/V1" and 4 * 4 Toffoli gates using controlled G/G^ gates. They verified the

solutions but they did not present a general approach to build arbitrary functions of

this type. Also they did not discuss how to design those big functions that are

especially inexpensive. We achieve these two tasks in this thesis.

1

2

3

4

5

6

7

2

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

5

5

5

5

6

6

6

7

2 8

Sz(a,b)

S^(a,b,c)

S^(a,b,c,d)

S^(a,b,c,d,e)

Sw(a,b,c,d,e,f)

S2'w(a,b,c,d,e,f,g)

S^A7(a,b,c,d,e,f,g,h)

Barenco's Toffoli gate

New gate

New gate

New gate

New gate

New gate

New gate

Table 7.2.1: The schematic explaining construction of 2-interval functions of positive
literals. Observe that all these functions are symmetrical. The table can be continued
for any number ofqubits.

This section has the main inspiration from the basic Barenco Smolin circuit from

Figure 7.2.1. We started from this circuit but we also generalized our ideas to create a

434

theory for synthesizing arbitrary multi-input, multi-output functions using controlled

root gates. As the first generalization, we extended, for more inputs, the Barenco

circuit keeping the same structure of the circuit. Here in Table 7.2.1 we list the first

seven of these circuits which we will call from now on the "2-interval circuits", as

their structure is that of symmetric interval functions with two indices present and next

two indices absent, and so on, as shown in Table 7.2.1. Unfortunately not all

symmetric functions can be realized that way, so we will have to add more

components to our cascades to create larger families of component functions to realize

arbitrary functions. This concept is new not only in the realm of quantum circuit

design but it is in general a new logic synthesis concept. Observe please, that the

circuit from Figure 7.2.7 does the same to four qubits as the Barenco circuit from

Figure 7.2.1 does to 3 qubits. Both these circuits have the same pattern. The first

circuit realizes S2 (a,b) © d in its lowest bit, while the second circuit realizes

S2'3(a,b,c) © d. Our program generates all the functions from Table 7.2.1 as truth tables,

among many others. Patterns of 2-interval and double-cube gates can be proved for an

arbitrary number of inputs. Amazingly, the 2-interval functions are exactly the same as

the so-called "eigenvalue functions" introduced independently by T. Sasao [Sasao07].

In addition, from each function from Table 7.2.1 we create a family of functions

represented as gate macros by inserting symbols V, V+ in all possible ways to target

boxes (represented by small rectangles in Figures). An interesting example of

inexpensive function of five variables is presented in Figure 7.2.10. Observe that all

controls are affine and all controls are restored to input variables by using mirror

435

CNOT gates. The whole function from this Figure is a permutative function that can

be used as a component (subfunction) of an arbitrary function realized by a quantum

cascade.

®—f-

e) H F H Z H J M H Z

1—fc

'•4^ *—&

CJj cp

vt

Figure 7.2.10: Realization of S>' (a, b, c, d)® e usingARNGs. Observe the same
general pattern of connections as in Figs. 7.2.1 and 7.2.7.

If we would realize functions from Table 7.2.1 using standard multi-output Toffoli

gates and next macro-generate them to 2*2 quantum primitives as in section 7.2.3 the

costs would be very high. The 2-interval and similar functions (and their derivative

families) we call "cheap functions" because we use only CNOTs, CVs and CV^s in

them, and we achieve these designs only by controlling single gates. Whenever we

have to control with non-affine controls, it becomes more expensive, we have to add

mirrors, sometimes ancillas and so on.

A question may arise, given an arbitrary function, how can I use my inexpensive

special circuits to realize some functions to be used as components of arbitrary

functions. The following theorem is of help.

436

Theorem 7.2.1;

Assume that:

1. A binary n-input, m-output Boolean function F is to be realized in a quantum

cascade.

2. We assume the width n+m of the cascade. The cascade has n input qubits (that

can be factorized and reuse) and m output qubits (that can be factorized and

reused) and no more intermediate qubits.

3. We assume that mirror circuits can be used, multiple times if necessary, for

every qubit to restore its value to the input value or some intermediate value.

4. A finite set of 2n binary base (Linearly Independent, orthogonal) functions on n

variables are given.

Then function F can be realized in a quantum cascade using only Toffoli, Feynman

and NOT gates where each output of F is realized as an EXOR of subfunctions

selected from the base functions and a constructive method of selecting these

functions exists.

Proof. It has been proved by Marek Perkowski [Perkowski95] that for every 2n * 2n

orthogonal binary matrix M representing a set of 2n binary base functions there exists

exactly one expansion of arbitrary n-argument Boolean function F in this base where

the coefficients of the inverse matrix M"1 give the values of spectral coefficients of

these base functions. The operations of multiplying rows by columns of such matrices

and multiplying rows by column vectors are number-by-number EXORs (Modulo 2

437

additions). Thus for every set of orthogonal (Linearly Independent) functions we can

find one unique solution in the form of an EXOR of those base functions that the

spectral coefficients are equal 1 (look for examples in chapter 9). However, if base

functions are arbitrary, then:

1. They can be very expensive to realize

2. They may require more ancilla bits than n+m.

Therefore we restrict ourselves only to those base functions that:

1. Are inexpensive as built from affine gates of this chapter

2. Allow to be realized without more than n+m ancilla bits.

Of course, the theorem and based on it synthesis method can be extended to all base

functions of all families but this would lead to many ancilla bits and also the number

of families of base functions is extremely large so it is more reasonable to restrict our

method only to some families. Thus considering only inexpensive families is a good

idea.

Affine gates are very useful to create gates for base functions to be used in new

extensions of MMD algorithm [Miller03] or any other algorithm for quantum array

synthesis, because our method creates affine gates for any number of inputs. Observe

that in circuits minimized using standard ESOP (Exclusive Or Sum of Products

circuits) minimization techniques only the Toffoli-like gates are used, i.e. k*k Toffoli,

CNOT and NOT. But in the proposed method there are many more base functions

438

which in addition have small quantum costs. For instance, based on the sections

covered so far we can use as base functions all the new double-cube, 2-interval gates

and other cheap gates built from macros. With next sections and chapters we will add

more inexpensive base functions to be used as new base families. This idea is new and

specific to quantum circuits, because cost functions based on 2*2 primitives did not

exist in classical and reversible logic.

7.2.5. Affine Toffoli Gates.

The second class of the (binary) affine gates that we invented are the Affine Toffoli

Gates (ATG). Example of such a gate is shown in Figure 7.2.11. As we see, the Toffoli

gate is surrounded with Feynman gates in such a way that the original argument

variables a, b, c, d are restored on the outputs of the entire affine Toffoli gate. Thus

these input variables can be reused directly be the next gates in the cascade. The

Feynman gates on the left serve to create local linear preprocessors and the Feynman

gates on the right are mirror circuits to restore the original argument values. This

construction method is very general. The same types of gates are used in Polarity-

Based Affine Forms. The gate from Figure 7.2.11 can be for instance treated as a

special case of such a form with the first column as the affine preprocessor and the last

column as the mirror affine postprocessor. This ATG gate is a very powerful

generalization of a Toffoli gate for any number of inputs. It should replace Toffoli

gates in all future synthesis algorithms. Observe that Fredkin and Miller gates are also

439

special cases of ATGs as they are created by surrounding Toffoli gate with Feynman

gates.

a

b
c

d

F
Figure 7.2.11: Binary Affine Toffoli Gate for function from Figure 7. 2.12.

a -— i

O ••--]

J
a
e. -

i

l i

— e

— I * —

')

cd
ab\

00
01
11
10

00 01 11 10
0
0
0
0

0

fi
Ic
VI

0
^

^
<)

0
>

>

>

Figure 7.2.12: Graphical Analysis of the affine Toffoli gate from Figure
7.2.11.

As we see in Figure 7.2.12, four minterms of four variables each are realized in just a

single gate with quantum cost 5 of 2*2 gates (for the Toffoli gate) plus 4 (for four

Feynman gates). The total cost 9 is very small when compared to the cost of 4 Toffoli

gates to realize minterms separately (which are 2-input, 3-input or 4-input, depending

on quality of AND/EXOR minimizer applied). Such AND/EXOR circuit uses product

groups that are created by flattening of the formula originating for F directly from

Figure 7.2.11. The KMap from Figure 7.2.12 shows a characteristic pattern of true

minterms for this kind affine Toffoli gates. Our synthesis software finds such patterns,

but they can be also found from KMaps in "hand synthesis method". Figure 7.2.12 can

440

be explained algebraically as in Figure 7.2.13. As we see the Affine Toffoli gate is the

cheapest of all realizations of the KMap from Figure 7.2.12.

(a © b)(c ®d) = ac@ad®bc@bd (2 - controlled Toffoli)

= abd®abc®abd®abc (3 - controlled Toffoli)

= a be d®d bcd©ab c d©ab cd (4 -controlled Toffoli)

Figure 7.2.13: Derivation of various non-optimal circuits for the minimum gate from
Figure 7.2.11.

Concluding this chapter so far: we can create many types of inexpensive gates to be

used in quantum cascades, they are all based on the concept of affine gates which are

used in various ways to control other gates, such as classical permutative gates and

truly quantum gates such as V.

7.3. More on Affine Gates

Now that we explained briefly the main ideas of our approach, more details will be

given necessary to understand our methods used in this and next chapters.

7.3.1. Design of 3 * 3 gates and circuits using controlled gates.

Let us first look again to the well-known Tofoli gate circuit from Figure 7.3.1.1. It

includes only 2 * 2 quantum realizable gates. It is close to real quantum hardware. So

calculating the number of 2 * 2 quantum gates (primitives) as the "quantum pulse

441

cost" approximation is a good heuristic. We will use this heuristic in many examples

that follow. Many circuits of this type were generated by Hung et al [Hung06], they

use only 1-qubit gates - inverters and 2-qubit gates - controlled-V, Controlled-V+ and

Controlled-NOT. Observing these circuits one can appreciate that all controls are

linear or affine functions. Although the method given by Hung et al gives exact

minimum solution, it is very time consuming and thus restricted to small circuits. The

methods that will be presented in this thesis can solve all examples from [Hung06]

with much less effort and find approximate solutions for big functions quickly. These

new methods are however all not exact, they do not give guarantee of the minimal

cost. However, in all small examples that we considered (including those from

[Hung06] the costs were very close to minimal.

Analyzing these types of circuits and appreciating small relative costs of NOT and

Feynman gates, we assume below that all controls in our approach will be affine

functions - linear functions and their negations. Let us observe in Figure 7.3.1.1 that

the last CNOT on the right has no effect on the output in qubit c. It serves the only role

of restoring the input b to its original state. This is not always necessary (as shown in

Figure 7.3.1.3). Figure 7.3.1.2 illustrates two points of view on a macro. Its internal

view with 2*2 quantum primitives and its external view as a permutative gate.

Remember that in all next examples we will use these views and we should

macrogenerate larger gates to the level of 2 x 2 primitives. To save the time and space

we will not do this in most figures, however doing this would allow the reader to

442

appreciate the real gain in terms of quantum costs of the circuits designed by us in this

and next chapters.

a <

i.
0

c —

t < i —

V V T+
V

o

! § C

Figure 7.3.1.1: Realization ofToffoli gate with output logic equations. Only 2 x2 gates
are used.

m

Hi;H^

- $ -

Ft -\ NOT \—

Figure 7.3.1.2: The cost ofToffoli gate is five 2-qubit gates. On the right we see the
symbol ofToffoli gate as a double-controlled NOT. Hence the another name ofToffoli
gate as CCNOT gate.

a

c-^VHV

1 * 1 Q7 tt

V t — abtfi c

Figure 7.3.1.3: Peres gate has a cost of four 2-qubit gates.

443

7.3.2. Design of 4 * 4 gates and circuits using controlled root gates

d) -I VHVHV V't — (a&#ac3)fc)§J\

Figure 7.3.2.1: With d=0 we realized here a symmetric function of variables a, b, c.
Observe that + can be replaced with © in the formula for S> (a, b, c). S> (a, b, c) =
S2 (a, b.cJ+S3 (a, b, c) is a totally symmetric function of a, b, c.

\b)

m

1*0

1

I T
V *

1 i

\
1 M/

\s 'i
V •

\
\ ' — V- V

<4J

v-t

I a iB b)

\ah)

\ab ® y)

\abiBy ©s)

ID)

Figure 7.3.2.2: Realization of function D = maj (x,y,z) ®d = f(ab)y + (ab)z +yz] ® d.
Please note the role of the ancilla bit |o) in the third qubit from top. This entire circuit

requires just one ancilla bit.

Figures 7.3.2.1 and 7.3.2.2 shows arrays with more than 3qubits build efficiently with

affine-root-of-NOT gates. Similar circuits can be build using controlled-square-root-

of-NOT, controlled-fourth-order-root-of-NOT and in general controlled 2k-root-of-

NOT for k = 2, 3, 4, 5....

444

file:///abiBy

It is well known that an arbitrary two-controlled operator U can be realized as shown

in Figure 7.3.2.3. Here the operator U = W2, where W is an arbitrary unitary operator.

This circuit assumes that W * W1" = I and W * W = U. The circuits like in Figure

7.3.2.3 is a general prototype that can be further generalized in two ways:

1) to binary permutative circuits with more than two control wires (this chapter),

2) to multiple-valued permutative circuits, such as multiple-valued Toffoli, SWAP

or Feynman gates (chapter 10).

\a)

\b)

kMc/h

\&)

\o) — w

i

Kit

I,? H~|

n.

C

• 1

K\j>

V

i

W- |—

\a)

\U[ab,t§

Figure 7.3.2.3: Realization of 3-input double-controlled U gate with use of two-qubit
gates.

Let us first observe that all existing synthesis/optimization methods for quantum and

reversible (permutative quantum) circuit synthesis (Cosine-Sine decomposition, De

Vos, Miller and MMD, Perkowski et all) use Toffoli gates with more than 2 controls.

These gates are often counted as having the cost of one, but in reality they are very

expensive when realized with 2-qubit gates and we know that only 2-qubit gates are

truly quantum realizable. Gates with many controls can be recursively decomposed as

shown in Figure 7.3.2.4. In this figure the 4-controlled U is replaced with two 3-

controlled NOT gates and a single 2-controlled U. The 2-controlled U can be next

445

realized as shown in Figure 7.3.1.2 and the 3-controlled NOT gates can be

decomposed again as in Figure 7.3.2.4. This solution requires adding one ancilla bit.

|a) f

\4 -

I c l) -

[/

— 1

—i

i ,

^

[

i —
/ ̂

i

>

c)

<I)

U[abed,e]}

0)

Figure 7.3.2.4: Realization of n-controlled U with 2-controlled U and two (n-1)
controlled inverters. This approach requires only one ancilla bit.

Theorem 7.3.3.1

Every single-output Boolean function of n variables can be realized with n + 1 bits

(One ancilla bit) using only 2x2 quantum gates.

Proof.

Every function of 2 variables can be realized in 3 qubits as an ESOP or similar form

using 3*3 Toffoli gates with 2 controls. Next each Toffoli gate can be transformed to a

combination of 2*2 primitives as in Figure 7.3.1.1. Similarly any function of 3

variables can be realized as an ESOP using 4*4 Toffoli gates, each realized as in

Figure 7.2.3. When function has more than 3 variables it can be recursively macro-

generated to smaller blocks using methods from Figures 7.2.8, 7.2.9, 7.3.2.3 and

7.3.2.4.

446

I a)

\b)

\c)

\d)

\e)

l/>-0
\

c)

d)

abce S /)

|a6ce©/) \abc®d) & d

Figure 7.3.2.5: Realization of(n-1) controlled NOT for a (n + 1) * (n + 1) width of
quantum register. Pay attention to smart use of two mirrors.

To illustrate this theorem, for instance, the 4-controlled Toffoli in the space of 6 qubits

can be realized as shown in Figure 7.3.2.4. Two 3-controlled and two 2-controlled

Toffoli are introduced. Next each of the 3-controlled Toffoli gates is replaced with a

structure of 2-controlled Toffoli gates. Finally all 2-controlled gates are converted as

in Figure 7.3.2.3 to quantum-realizable 2 * 2 primitives.

Similarly, arbitrary 3-controlled operator U can be realized using two 2-controlled

Toffoli gates and a 2-controlled U gate as in Figure 7.2.8. Next each of the 2-

controlled Toffoli gates is replaced as in Figure 7.3.1.2 and the 2-controlled U gate is

realized as in Figure 7.3.2.3.

The methods illustrated in section 7.3 allow to design recursively any Toffoli-like

multi-input gate using a structure of quantum-realizable 2x2 primitives. This way, any

of PPRM, FPRM, GRM, ESOP or factorized ESOP circuits could be converted to a

447

quantum realizable quantum array. However, as shown in this, previous and next

sections of this chapter, the designs of many functions can be improved.

7.4. Design of symmetric functions

Designing symmetric functions is useful in many practical problems. Symmetric

functions are also easier to analyze than arbitrary functions. Therefore we analyzed

design of symmetric functions using our methods.

We will use various definitions of symmetry of Boolean functions.

Definition 7.4.1: A Partially Symmetric function with respect to variables a and b is a

function f(a, ... b,) that if you replace in the formula a with b, you get the same

function. If a function is symmetric with respect to every possible pair of its input

variables then this function is called totally symmetric.

This is the simplest classification of symmetric functions which definition we use in

this chapter. But there are many definitions of more powerful symmetries in functions

that we do not use yet. For instance when any subset of variables can be negated or not,

we have polarity concept which has 2n symmetric polarities. Then we have the

generalized Lattice Symmetries [Perkowski97]. We create exors of two cofactors,

exors of three cofactors, exors of four cofactors, etc and compare them for equality.

448

We are comparing exors of cofactors in all possible ways: this is the most general

classification of symmetric functions. All these symmetry based methods are basically

related to restricting search. If we have a symmetric function, or a unate function or

some special function type then it becomes possible to use mathematics to somehow

restrict the search to find the minimal circuit for this function. We want to minimize

these types of functions and we want to minimize the numbers of ancilla bits for

various choices of quantum costs. That means we want to do everything possible to

avoid using standard large Toffoli gates: the more inputs, the more expensive these

gates are. These ideas can be useful to create gates, gate libraries and circuits. Below

we use only some subset of these ideas.

7.4.1. Methods to analyze totally symmetric functions.

The interval functions from section 7.2.4 are all symmetric. Let us think what is the

function S ' of (a,b,c)? Let's show for three control variables a, b, c. First, we will

generalize this pattern, we take every argument input variable to control separate V

gates and we create an EXOR of all these controls to control V*. We can reconstruct

the original signals in input variables but we do not care about this issue in general

when we discuss single-output gates. We care only about the data path qubit: how it is

controlled. We can analyze this circuit to learn more (Figure 7.4.1). We can

generalize this pattern from Figure 7.2.10 to Figure 7.4.1 and next to Figure 7.4.2.

449

Figure 7.4.1: Realization of£>' (a, b, c, d, e) ® f using ARNGs. Observe the general
pattern of connections.

\b) -

\c) -

\ d } -

\e) -

1/)-
-*-

-&

Figure 7.4.2: Realization of S>' ' (a, b, c, d, e, f) © g using ARNGs. Observe the
general pattern of connections.

3b\ 0

00

01

11

10

0

V

v.v
V

V

v.v
v.v.v
v.v

(a)

a b \ 0 1
00
01
11
10 ^

'(b)

I

\T
I

v+

\T
I

\r
i

a b \
00
01
11
10

0 1
I

I

NOT

I

I

NOT

NOT

NOT

(c)

Figure 7.4.3: KMaps for the lowest qubit of the circuit from Figure 7.2.7. (a) For
controlled V, (b) For controlled V , (c) the result of the composition of quantum maps
7.4.3a and 7.4.3b for the entire circuit from Figure 7.2.7.

Each, a, b and c contribute V's in KMaps (Figure 7.4.3a). Combining them with V1"

from linear control, we get majority function (Figure 7.4.3c). Now, we can create

those patterns for any number of qubits to get cheap realizations. If we would realize

450

these functions using standard multi-output Toffoli gates and next macro-generate

them to 2x2 quantum primitives the cost would be very high. These 2-interval

functions we call "cheap functions" because we use only CNOTs, CVs and CV^s here,

and we achieve this design only by controlling single gates. Whenever we have to

control with more than two controls, the circuit becomes more expensive, we have to

add mirrors, sometimes ancillas and so on. So this gate construction method produces

very cheap gates, we showed here that all these gates are cheap although they look

more complex than Toffoli gates in KMaps. This is shown for three other 2-interval

functions in Figures 7.2.10, 7.4.1 and 7.4.2. So, if we have a complex synthesis

problem with many inputs, if we find any of theses gates be useful in the circuit, this

will be the cheap part of the circuit. Recursive formula can be derived comparing

those functions in formal way using my examples in Figures 7.2.10, 7.4.1 and 7.4.2.

Unfortunately from these functions, we can not build every possible logic function, we

need some other gates. But this idea was a good beginning.

Now, we will do the following. One generalization will be to take all possible linear

functions, or affine functions as controls, this is the topic of section 7.5. Then we

found that, it is even more interesting when these control functions were reversible not

only linear. That would be another generalization. But before we started working with

these controls which are not affine, we were still using affine functions but in more

complex ways.

451

A possible approach is to implement a software simulator of these structures, one

should have some kind of scripting methods that will generate all these problems

automatically in a smart way. Again, this is a new topic, solved by nobody before,

how to build the above presented type control which is only linear or affine, in the

most efficient way. For instance, we may simulate all functions which will be created

in the above Figures by replacing target V and V1" gates in all possible ways by gates V

and V . Functions obtained this way are all permutative and they can be all used as

cheap functions in our synthesis methods.

Controlling with affine functions is always doable with no ancilla bits, because it uses

only CNOT and NOT gates which can be next mirrored after using them to control

some subcircuits, in the same collecting qubit to restore the original value of the

function (such as an input). For instance, whatever the affine control, like a © b © c',

one can create this control signal

"in place" (with no ancilla bits) using only CNOT and NOT gates. And next we can

always concatenate mirror circuits, thus restoring the original inputs a, b, c. This is one

more strong argument for affine gates - the simplicity of mirroring.

In addition, each linear function can be negated. We can substitute 4 order square

roots of NOT in place of V, V . We can systematically build gates of the types from

Figures 7.2.10, 7.4.1 and 7.4.2 using any order roots of NOT. What is the difference

with the V/ V1" circuits? Now we can rotate in the target qubit by half smaller angles,

452

etc. Therefore, we can prove that we can build any gate but we use always half of the

angles. There is a danger of using this method in some quantum technologies. Because,

if we have very many input variables to the array, these angles will be very small, may

be it will be susceptible to noise or decoherence.

Now the open question is, "Should we build Toffoli gates with restricting the angles,

or should we rather add ancilla bits?"

The problem formulation is: we want to add minimum ancilla bits and restrict angles

may be only to 90, 45 and 22.5 degrees, then we are able to build every Toffoli gate.

The possibility of doing this was demonstrated in examples above. But how to do this

best for each function is an open problem and is technology-related.

But now, when we have made this decision, we can analyze the cheap functions for

these constraints. However the problem to be solved complicates, as when we want to

realize arbitrary symmetric functions we have very many ways to combine the above

two approaches and many choices of selecting the rotation angles. Maslov published a

paper recently [Maslov07], he only proved the heuristic method for symmetric

functions with standard k-input Toffoli gates. He does not take into account the

inexpensive functions and the quantum realization aspects discussed here.

453

When one uses standard multi-input Toffoli gates, one either has to use the method

from previous sections to make it quantum realizable or one needs to add ancilla bits.

The methods presented here can find less expensive quantum realizations for several

symmetric functions of few variables. But we. still do not present a method to

synthesize arbitrary symmetric functions to be realized systematically with interval

gates from Table 7.2.1 and other affine gates. Approaches to solve this problem will

be discussed in the sequel but the general problem is left unsolved in the thesis.

Here is some helpful theorem.

Theorem 7.4.1:

Any binary symmetric function can be built by Exoring a subset of symmetric base

functions.

Proof.

It can be easily proved that S u e v = S u © S v . The idea would be thus to realize all

possible symmetric functions S x as base functions and calculate the quantum cost of

each of these base functions. All orthogonal bases can be then created from these base

functions and their matrices can be created. Next every symmetric function can be

decomposed in each base and the total cost can be calculated for this base. Repeating

this calculation for each base will give the minimal solution (these methods are

454

illustrated in detail in chapter 9 for general functions but symmetric base functions are

just a useful special case).

Example 7.4.1:

In case of 3 variable functions, the following symmetric functions are inexpensive

1 1 "\

base functions: S (a,b,c) from Figure 7.4.4a, S ' (a,b,c) from Figure 7.4.4b (a linear

function), S 2'3 (a,b,c) from Figure 7.4.4c (an Affine Root of Not Gate). Creation of

single-index function S 2 (a,b,c) = S {2'3}® {3> (a,b,c) = S 2'3 (a,b,c) 0 S 3 (a,b,c) is

shown in Figure 7.4.4d. Creation of single-index function S x (a,b,c) = S {1'3*® {3}

(a,b,c) = S ' (a,b,c) © S (a,b,c) is shown in Figure 7.4.4e. Creation of double-

index function S u (a,b,c) = S {1,3>® {2'3} (a,b,c) = S u (a,b,c) © S 2'3 (a,b,c) is

shown in Figure 7.4.4g. Explanation of the composition using a Kmap is given in

Figure 7.4.4f. Using the transformations from Figure 7.4.4h the circuit is finally

optimized to the form from Figure 7.4.4i. As we see, all single-index and double-index

symmetric functions of three variables are inexpensively realized with our methods

(remember the macro-generation to CV and affine gates for products of variables).

Similarly function S l'1'i (a,b,c) and other triple-index symmetric functions are

inexpensively realized.

455

a —

b —

(a) 0—(D-
c - —

0

a 1-

&

(b) b—0-
S3(a,b,c) e-«i. S''J(a,b,c)

(c)

a 1

b -

c -

0 - V V
A ^
V \r

S2'3(a,b,c)

a f—

(e) c 0
0

° — e • &

r
S1.3

e-«i S'(a,b,c)

>2,3

(f)

a b \ 0 1

oo r w s

01

11

10

abN

r
&r r^

^

I vkJ

0

1

1

1

1

1

0

1

g1,2 = s 1,3 0 S2,3

456

(g)

a f
b -
c -
0 - V

•e

v
dtr-Shn
V

^ ^ " S 1 ' 2 (a , b , c)

(h)
vMvMv

- • • •

VMvMv^ V

(i)

a

b

c

0 V H V
s^
V V .1,2 S''(a,b,c)

Figure 7.4.4: Synthesis of symmetric base functions and symmetric index-functions to
illustrate the concept of symmetric bases, (a) Function S (a,b,c), (b) Linear function S
' (a,b,c), (c) an Affine Root of Not Gate function S ' (a,b,c), (d) Creation of single-

index function S (a,b,c), (e) Creation of single-index function S (a,b,c), (f) Kmaps
to analyze the method, (g) Function S ' (a,b,c) created by EXORing base functions,
(h) auxiliary equivalence transforms, (i) Optimized realization of function S ' (a,b,c)
based on applying transformations from (h) and representing CNOT as CV'CV..

When we try to extend this method to functions of four and next five variables we see

that the realizations of not all symmetric functions using our method are cheaper than

the solutions from Maslov. However, a significant fraction of symmetric functions has

smaller quantum costs than in Maslov's designs. Thus, in the worst case one may use

the method from Maslov never obtaining worse results.

457

The presented here research on symmetric functions will also be very useful to create

gates for MMD algorithm [Miller03] or arbitrary other algorithm for quantum

synthesis, because we can create the inexpensive symmetric gates for any circuit width.

We can build arbitrary quantum functions from these gates and using the methods

from chapters 7, 8 and 9. Observe that in the standard ESOP minimization we use

only Toffoli-like gates, but we see that in quantum we have all these majority gates, 2-

interval gates and other gates which are all very cheap gates. Nobody has proposed

this idea of using other gates in the framework of ESOP synthesis so far, because

problems like this did not exist in classical logic.

When a reversible function is to be realized, every output of it is a balanced function

which has equal number of ones and zeros. This property is extremely useful to limit

the search. Every reversible gate like Toffoli, Miller, Fredkin has the property that

every output function of each of these gate is balanced: half zero's and half ones. This

property immediately decreases the space of search very much. Also any kind of

symmetry limits the search extremely. In our basic Barenco-extended circuits, with V

and Vf, if we do every possible permutation between V and V^ like a binary order,

W W , WW 1 " , VW f V, , v V W e a c h of them will generate some new gate.

Because we randomly combine these gates, we create many gates that are not

permutative, as we have single V, then it will have half probability of ones and half

zeros. Always we create a new design and the program CircuitSearch will verify if the

created circuit is permutative. This approach is based on analysis, first our search

458

method was naive. Based on analysis and generalization we created next

systematically new improved library of gates for small numbers of variables. The

hierarchical design methods of blocks shown in Chapter 11 demonstrate the practical

use of such gates.

If the single-output function is balanced then we can realize the function directly and

with no ancilla bits. Our methods generalize therefore the Maslov's method

[Maslov07]. Although Maslov deals only with Toffoli gates and we deal with many

types of controlled gates, the properties of layers of the quantum circuits are very

similar. A new definition of symmetry is possible. If we substitute in the structure the

controlled-V and controlled-V1^ gates in all possible ways, we will obtain many

quantum gates. So we can now introduce the concepts of the quantum circuit

symmetry. By introducing the rotation here, we will introduce many quantum

functions, some of them will be binary, other will be not binary. Everything that we

invent here is basically a generalization of classical binary symmetry. Now we have to

use these symmetries in quantum circuits with minimum number of ancilla bits and

use also Toffoli gates with the minimum number of inputs. Every component of this

function can be reused to build other function. These general ideas are detalized and

illustrated in next sections.

459

7.4.2. Conclusions on 2-interval and symmetric functions.

We recall Toffoli gate circuit from Figure 7.2.1, basically many ideas of my

dissertation start from this circuit [Barenco95]. V is the square root of NOT. Most

important that we can change the V gate from square root of NOT to the 4 order root

of NOT, the 8th order root of NOT and so on. Again NOT . NOT = I (identity or wire

or same as before or can be cancelled). The rules are V.V = NOT, NOT.NOT =

V.V^ = I (means identity or wire or goes through or can be cancelled or omitted).

Next the rules are G.G = V, G . G ^ I a n d so on. The idea occurred therefore to create

the software which will generalize all these quantum identities for arbitrary root gates,

extend for more inputs, etc, keeping the structure.

Figure 7.2.1 is just one example; our exhaustive search program CircuitSearch

generates all such combinations or structures. When the program works for 3 inputs

from which a, b are the control bits and c is the controlled bit, we search for all

possible affine function with V, V* and NOT.

affine

V

affine

1
Ft

Figure 7.4.5: Example of a structure with affine controls of V/VT gates.

460

Our generalization will be here to take all possible linear functions (or affine

functions) or some subsets of them, randomly generated as the controls of root gates in

the target qubit. See an example in Figure 7.4.5. This is a new approach to synthesis

again. Instead of checking by hand and trying to prove facts to invent new useful gates

for synthesis, I decided to write a simulator/generator to help me in this analysis.

Observing next all these new circuits generated by my program Circuitsearch, I found

many new circuits and more importantly we got new circuit realization ideas. The

circuit types from chapters 3, 7 were generated and more generalized circuits and

gates from chapters 8 and especially 9 were next generated. This program, a fast

prototyping tool, stimulated much my mind. One can appreciate that all controls are

linear, affine or reversible (balanced) functions. Thus all controls in our basic blocks

will be of these types.

As we see above, the principle of our approach is very simple. Knowing a powerful

pattern of creating circuits from this chapter, we use this pattern to systematically or

stochastically generate new gate families of interesting gates. In our first variant of the

generator we have all affine functions as control functions and we use V, Vf and NOT

in the data path. It is next relatively easy to generalize this approach using three

methods:

1) generate non-affine controls in variables a, b and c to generate such circuits.

2) add ancilla bits,

461

3) extend the set of root gates in the target qubit.

7.5. The Program Generator to Synthesize Quantum Arrays with

"Affine Root of NOT" Gates

7.5.1. Introductory ideas

My idea at first was to allow my computer to spend much time, even days and weeks,

to find the exact minimum solutions (to useful gate) and next to use such "inventions"

as higher level "building blocks" in quantum circuits. Exhaustive search [Lukac05,

Miller04] has been already used before in reversible logic design, but there are many

ways how the exhaustive search can be organized, and they differ in processing time

and memory usage. We investigated several types of exhaustive search strategies

applied to particular quantum circuit structures (chapter 6). We found that for this kind

of problems the A* algorithm known from AI [Nilsson71] operates very similarly to

the breadth first search. Our IDDFS [Giesecke07] search is similar but it is easy to

program and uses less memory, thus allowing to minimize larger circuits. In chapter 6

we proposed even more general search strategies that I used already for other

problems (chapter 8). We use search strategies also in this chapter.

462

d 1

S\ &

r 1 -
7n

•
•

Sn

Figure 7.5.1.1: Generalized structure to explain the operation of the CircuitSearch
generator program.

Basic explanation of our software follows. The CircuitSearch program creates (as per

our specification that means using affine control function and taking all possible

combination of V, V* and NOT, it can be with all V's or combinations) one possible

circuit (next its function) for 3 input variables (a, b, c) as Figure 7.5.1.2. In Figure

7.5.1.2 all inputs a, b, c are the same as the outputs A, B, C. That means, in the

program a, b, c lines are only for activation of gates in the target line. At first, we only

care about single output function f.

a

HFHF

^ — f

A

B

C

y\ — output

Figure 7.5.1.2: The circuit given to test our program CircuitSearch. The truth table of
this permutative circuit is the program's input.

463

A

B

C

output f

Figure 7.5.1.3: Partitioning of the quantum circuit from Figure 7.5.1.2 for Genetic
Algorithm used by previous authors.

Now let us present the inner loop of our program. Here the program verifies the

generated by it circuit comparing its truth table with the table of a specification

function, as explained below. This can be a binary KMap, it can be a truth table as

well. Program will compare the stored KMap (the binary function) with this function

generated and simulated from the circuit's structure, cell by cell. If the two functions

completely match in all 2n cells, then the program declares that it found such circuit

after exhaustive search. Below KMap is for the inner loop of the program. In this case

the program will say that after exhaustive search it found this data (Figure 7.5.1.5). It

is for 3 input variables. Program works for 4, 5 and as many as possible input

variables. As CircuitSearch is memory intensive, how many input variables are

possible depends on the problem size. I tried to use my program for the maximum

number of variables. Thus, we have two loops in our program, outer loop will create

all binary functions (as their circuits) using exhaustive search and our problem-

defining methodology and constraints specification (with all possible affine functions

of input variables and applying all possible V, V1" and NOT in the target qubit). The

program's inner loop compares the circuit found with the function specification in the

464

a —F- -=M=—=u=—n rwi n i 1
! I !

41-
i i

I ! I

fr
V

i i
l l l i

1=1—tdT y\

form of a truth table or a KMap. With this specific function, my program verifies

whether this specific function is generated by the program by comparing all minterms.

Suppose one wants to use the Circuits earch program to create the structure of f =

majority (a, b, c)©0 = majority (a, b, c). The circuit from Figure 7.5.1.2 is expected to

be found. However, because of the way how circuits are partitioned in our generator

(Figure 7.5.1.1), the circuit is not partitioned as for Genetic Algorithm (Figure

7.5.1.3) but it is partitioned as in Figure 7.5.1.4. It is more efficient.

r«T—=uz—n-j*

c —t-
Ii

vmv

it)—*

• # •

±J L
Ft

A

B

C

output f

Figure 7.5.1.4: An example of created circuit for 4 segments, a®b® c is one possible
affine function from Figure 7.5.1.3 but generated directly for a single control,
found by my program.

This is a circuit that contains 3 inputs and 4 segments. The first segment has the

control "a" and the target 0 as inputs. While the fourth segment takes a®b®c as its

control input. One possible circuit for 3 input variables (a, b, c) is presented in Figure

7.5.1.2. In this Figure, all inputs a, b, c are the same as outputs A, B, C. That means,

in the program a, b, c qubits are only for the activation of the target qubit.

465

The only care is given to output f. The program calculates the KMap for output f. If

any non binary value shows up in the simulated symbolically QMap output f, such as

any single value like V, V1" in the QMap, then the output f is not binary. Such output is

not useful as we synthesize only permutative circuits. The "Affine CircuitSearch"

system omits those non binary outputs and searches for the next possible circuit which

will hopefully correspond to the binary specification function.

a b ^ 0 0
00

01

11

10

Figure 7.5.1.5: Example KMap Specification of binary values in Affine Circuit Search
method for the target qubit ffrom Figure 7.5.1.2.

Hence the specification as in Figure 7.5.1.5 is finally matched in every cell, of course

if sufficient time and memory space is allotted to CircuitSearch.

0

0
1

0

0
1

1

1

7.5.2. Reduction of circuits to binary

Reduction of general quantum circuits to binary circuits is done according, to the
following rules:

CircuitSearch uses only V, V, NOT gates with affine function. It uses the following
formulas:

a) V = square root of NOT,

b) V® V = NOT

466

c). V® Vf =1

d) NOT © NOT = I

A step by step example:

Example 7.5.2.1:

Figure 7.5.1.2 shows a typical quantum circuit that can be found by the program. It is

explained below how Quantum Map rules are used to calculate the final QMap of the

circuit model shown in Figure 7.5.1.4. Inputs a, b, c control the gates. So that when the

control input to the controlled gate is 1, then that gate becomes active. Input d is

assumed to be a 0.

1. The QMap for input a controlling a V gate is shown in Figure 7.5.2.1.

a b \ 0 1
0
0
V
V

0
0
V
V

Figure 7.5.2.1: QMap 1 (symbolic) for V controlled by input a in circuit from Figure
7.5.1.4.

467

2. The QMap for b controlling a V gate is shown in Figure 7.5.2.2.

0 1
0
V

V
0

0
V
V
0

a b \
00
01
11
10

Figure 7.5.2.2: QMap 2 for V controlled by input b.

3. The QMap for the V gate controlled by input qubit c is shown in Figure 7.5.2.3.

0 1 a b \
00
01
11
10

Figure 7.5.2.3: QMap 3 for Vcontrolled by input c.

0
0
0
0

V
V
V
V

4. The QMap for combined QMaps 1, 2, 3 for Figure 7.5.1.4 is shown in Figure

7.5.2.4.

a b \ 0
00
01
11
10

1
0
V

v.v
V

V

v.v
v.v.v
v.v

Figure 7.5.2.4: The combined QMap for 3 V's controlled by inputs a, b and c each.

468

5. For the fourth gate: QMap for a©b © c becomes KMap for a © b © c, Figure

7.5.2.5.

a b \ 0
00

01

11

10

0

1
1©1

1

1
1 .© 1

i © i © i
l © l

ab^V 0

00

01

11

10

0

1

0

1

1

0

1

0

Figure 7.5.2.5: QMap for a®b®c is a KMap.

6. QMap for {a®b®c) controlling V t gate is shown in Figure 7.5.2.6.

a b \ 0 1
00
01
11
10

Figure 7.5.2.6: The QMap of V^ controlled by control function a®b®c.

0

v+

0

v+

v+

0

v+

0

7. QMap 6 and QMap 4 are combined to become QMap 7, as shown in Figure

7.5.2.7.

469

ab^V 0
00
01
11
10

0
V

v.v
V

V

v.v
v.v.v
v.v

ab \
00

^ 01
© 11

10

0 1
0

v+

0

v+

v+

0

v+

0

a b \
00
01
11
10

0

v.v+

v.v
v.v+

v.v+

v.v
v.v.w+

v.v

Figure 7.5.2.7: Combining QMaps with composition operator for the entire
circuit from Figure 7.5.1.4.

8. Using our formulas the QMap can be reduced as in Figure 7.5.2.8.

a b \

00

01

11

10

0

v.v*
v.v
v.v*

v.v*
v.v

v.v.w"
v.v

atD\ 0

00

01

11

10

I

I

NOl

I

I

NOT

NOT

NOT

abN

00

01

11

10

0 1

0
0
1
0

0
1
1
1

Figure 7.5.2.8: Reduction of the symbolic QMap to the standard KMap of the function
realized by the exhaustively generated circuit. I = I (d) = d = 0 and NOT = NOT (d) =
NOT(0) = 1.

1. Since the final QMap has value 0s, 1 s, I (identity) and NOT. Then this circuit is a

binary circuit. It is accepted by the program as the solution to the formulated

specification function from Figure 7.5.1.5. It can be printed as soon as it is found.

If the search is completed for all circuits within given constraints, then we know

that this solution is the exact minimum.

The current system is intended to generate all possible QMaps using the exhaustive

search.

470

7.6. Using Cheap Quantum Gates (CQG) in general AND/EXOR

synthesis.

7.6.1. From Affine Root of NOT Gates to Affme Toffoli Gates and

Affine Complex Gates.

The cheap gates are based on symmetric composition of CV and CV+ gates. Another

cheap gates realize affine functions. Compositions of these two types of inexpensive

gates allow to realize other functions with reduced costs. This section discusses some

of the composition and universality problems.

Example 7.6.1.1:

a)

a 1

j
0

0 —

j

V

f. f

V
""

V

^
u

—i

r
M

i

•N ~
V

T'+
V

b)

a b \

00

01

11

10

0 1

0

0

0
0

0

^

^

\V

©

a b \

00

01

11

10

0 1
0

1

0

1

0

1

0

1

a b \ 0 1
00

01

11

10

0
^

3
vV

0

0

5
0

ab@ac@bc a@b ab ® be® ac

All

at^v 0
00

01

11

10

0

0

0

0

(1)

0;
c)

e

ab®ac@ be

a b \

00

01

11

10

0 1
0

0

1

1

1

1

0

0

a b \ 0 1

00

01

11

10

0

0

0

0

0)
a ab®ac®bc

Figure 7.6.1.1: Re-use of the basic majority pattern: (a) The function of the basic
circuit with target qubit Set to 0, (b) exoring the basic majority with another cheap
function, linear a®bfunction, leads to another majority, (c) exoring one cheap
function leads to another cheap function being one more majority function (polarity
shift only).

Now, we know that the realization of the three-input majority is cheap and the

realization of CNOT is also cheap, we ask ourselves the question "what other

functions can be inexpensively realized by combining these two types of gates?"

Figure 7.6.1.1b shows that by EXORing with a®b we obtain another majority

function, but this time with a different polarity. The same is true while EXORing with

a®c- Figure 7.6.1.1c.

However, as illustrated in Figure 7.6.1.2, when EXORing with variable c we obtain a

new pattern of dual minterm functions known to be difficult to realize in AND-EXOR

logic (see chapter 3). Similarly, the realization of the majority functions with all their

possible polarities is cheap (Figure 7.6.1.1). Other dual minterm functions (called also

minterm pair) for 3 variables are shown in Figure 7.6.1.3 a,b.

472

a b \
00

01

11

10

0
0

0

<5
0

ab

1
0

^

^

\li

a b \
00

01

0 11
10

®ac®bc

0 1

0

0

0

0

1

1

1

1

a b \
00

01

11

10

0
0

0

' 1 s

w
0

1

s V
0

0

0

<2& c® abc

Figure 7.6.1.2: Shows that by exoring with variables we create dual-minterm
functions of Hamming distance 3.

a)

a b \

00

01

11

10

a b ^

00

01

11

10

0

0

0

a
0

1

0

'i\
H)
lv

ab®a

0 1

0

0

3
0

ab

0

^

(D
vV
©a

0

c 0 6 c

0

c®bc

a b \

00

01

11

10

a b \

00

01

11

10

0

0

0
0

0

1

^ 5
1 w

0 1

(\ C°
1

& /

£

0

t>
0

p
?Z>6

a b \

00

_ 0 1

11

10

dab®c

ab^x

00

_ 0 1

11

10

B~ab@c

0

0

3
n
±

1

fA 1

(N

W
abc ®a®c

0 1

0

0

0

0

0

'0
0

aZ>< c® abc
b)

Figure 7.6.1.3: Exoring the cheap functions, a) Presents that by exoring with a linear

function of 3 variables we obtain the negation of the dual function a be® abc . b)

Shows that exoring with the affine function a@b®c®\ we obtain the dual-minterm

function a be® abc .

Concluding, by combining all ARNGs of 3 variables with all affine functions we can

create all dual-minterm functions. Therefore every even function of 3 variables, i.e. a

473

function having an even number of minterms can be realized with reduced price using

our approach. If the function to be realized is odd, then all its minterms but one are

realized using this approach, so the improvement is also substantial. The remaining

minterm (full product of all variable literals) has to be however realized as a standard

3x3 Toffoli gate, which is expensive. This needs to be done however only for one

minterm, so in general only one multi-input Toffoli gate of the highest complexity is

used in the entire circuit.

Example 7.6.1.2:

0 1

00

01

11

10

0

0

0

3

0

\0)

F(a,b,c)

Figure 7.6.1.4: The Even HD3 function to be synthesized in Example 7.6.1.2.

Given is function F(a,b,c) from Figure 7.6.1.4. As we see, this is an even function as it

has 2 true minterms. It is also a "minterm pair" function of HD = 3. Thus we expect

that there is an inexpensive realization of this function. Using standard AND/EXOR

logic we obtain GRM F = be © ac © ab = o © b)c © db which leads to the realization from

Figure 7.6.1.5.

474

a

h^$—f (p Cp f

-A -A- (a 6? b) c S »&

Figure 7.6.1.5: Standard method to realize the function from Figure 7.6.1.4. It uses
GRM and factorization.

a b \
00
01
11
10

0
0
0
0
1

1
0
1
0
0

F

a b \
00
01

© 11
10

0
1
0
1
0

1
0
1
0
1

a@

=

b® c

a b \
00
01
11
10

0

w
0

h\
ffl_

1
0
0
0

t
oc 0 a& 0 ac

Figure 7.6.1.6: Analysis to be used in our new method to realize the function from

Figure 7.6.1.4. Because F © {a® b ®c) = maj(a,b,c) then

F = maj(a,b,c)®{a@b®c) .

-e-
c — ^ -

0 VHVHV

t — 9 ^ - # t&-

yt -<£

Figure 7.6.1.7: Quantum Circuit for F based on equation F®(a®b®c) = maj(a,b, c).

475

The solution from Figure 7.6.1.7 requires seven 2x2 gates and three inverters. The

solution from Figure 7.6.1.5 requires two 3x3 Toffoli, two CNOT and one inverter,

which means (2x5 + 2) = 12 2x2 gates and one inverter. Both these solutions are

clearly better than the direct circuit realization with two 4x4 Toffoli gates. This

suggests that every even function with 2 r minterms can be represented by exoring r

dual-minterm function. Every odd function can be realized as an EXOR of a minterm

and an even function. Therefore, our method improves the cost of every Boolean

function. (We discussed only the single-output case so far). The principle is : "the

function with 2r minterms should be partitioned to r "minterm pairs"."

We proved therefore the following theorem.

Theorem 7.6.1.1.

Every function of three variables that has more than one minterm can be realized with

reduced cost using the introduced earlier ARNG gates.

Proof.

Every function is either even or odd. Every odd function of 3 variables that has more

than one minterm can be decomposed to an even function and a minterm.

This property is also true for even functions of arbitrary number of argument variables.

To prove this fact let us first consider functions of four variables.

476

tp—tp- -fB- Q Q) CD

(a) oHv'HFHv'Hv Ft - $ -

(b)

ab^OO 01 11 10

00

01

11

10

0
0
1
0

0
1
1
1

1
1
0
1

0
1
1
1

ab^OO 01 11 10

00

e 01
11
I O N J I

ITfl
u^

ab'NOO 01 11 10

00

01

11

10

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

Figure 7.6.1.8: Function £>' (a, b, c, d)@a . (a) The Circuit (b) KMap analysis of this
circuit.

The even function realized with ARNGs always brings gain and larger groups are

always better (Figure 7.6.1.9, Figure 7.6.1.10).

Boolean function for the circuit from Figure 7.6.1.8 can be calculated from

composition as S ' (a, b, c, d)e a. Figure 7.6.1.8b shows the analysis of this function.

477

Example 7.6.1.3:

ab\
00

01

11

10

0

0

1

0

0

1

1

1

c
ab\
00

01

11

10

0

0

0

^\

0

1

0

f ' \
f̂

w

c
a b \
00

01

11

10

S2'3 (a, b, c)

0

0

0

CO

1

0

(l \

\y
0 1

f

(a) (b) (c)

(d)
-4VHVHV

i # -

Ft

No interest

1— f = S • (a, b, c)

(e)

a
b
c

-&

-A

No interest

/ = hc@a(h® c)

Figure 7.6.1.9: For function ffrom Figure 7.6.1.9a the symmetric grouping is shown
in Figure 7.6.1.9b, while a non symmetric grouping is shown in Figure 7.6.1.9c. The
grouping from Figure 7.6.1.9b is realized in Figure 7.6.1.9 d while the grouping from
Figure 7.6.1.9c is realized in Figure 7.6.1.9e.

478

abx cd

1

1

1

1

(a)

abN cd

vV

(o\ ,,.f5

/ ^

to
W

(b)

abN cd

abx cd

abx cd

©
; i ;

r^

k
ro

ac(b®d)

abx cd

\
,

\

o;
bc(a®d)

(a®b)(c®d)

v
v
cd{a®b)

Figure 7.6.1.10: Realizing bigger groups is always better, (a) decomposition to 2 -
minterm group and a 2 -minterm group, (b) decomposition to two 2 -minterm groups
has a higher quantum cost.

a)

ab^OO 01 11 10

00

01

11

10

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

0

ab^OO 01 11 10

00

01

11

10 s /

e

ab^OO 01 11 10

00

01

11

10

' s
v y

s /

b)

ab^OO 01 11 10

00

01

11

10

0

0

1

0

0

1

1

1

1

1

0

1

0

1

1

1

ab^OO 01 11 10

00

0 01
11

10

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

ab^OO 01 11 10

00

01

11

10

0

0

0

' 1 s

0

<5
0

0

^
1

w
0

0

5
0

0

479

c)

\cd
a b \ 0 0 01 11 10

00

01

11

10

0
0
0
1

0
1
0
0

1
1
1
0

0
1
0
0

e

ab^OO 01 11 10

00

01

11

10

0
1
1
0

0
1
1
0

0
1
1
0

0
1
1
0

ab^OO 01 11 10

00

01

11

10

0

f^
1

\V

0
0

t
0

'0
0
0
0

0
0

<?
0

d)

ab^OO 01 11 10
00
01
11
10

0
0
1
0

0
1
1
1

1
1
0
1

0
1
1
1

ab^OO 01 11 10
00

0 01
11
10

1
0
1
0

0
1
0
1

1
0
1
0

0
1
0
1

ab^OO 01 11 10
00
01
11
10

0
0
0

0
0

3
0

0

^
1

vV

0
0

5
0

e)

ab^OO 01 11 10

00

01

11

10

0
0
1
0

0
1
1
1

1
1
0
1

0
1
1
1

e

ab^OO 01 11 10

00

01

11

10

1
0
1
0

1
0
1
0

0
1
0
1

0
1
0
1

ab x \00 /6 l \11 10

00

01

11

10

1

0

1

°MJQ

oTn

1 0
0

0

Figure 7.6.1.11: Examples of four variables functions that can be generated from 2-
interval and affine functions.

ab
vcd

a)

\
00
01
11
10

00 01
0
0
0

' 1 s

0

<x
0
0

11

^

1

KV
0

10
0

c
0
0

ab^OO 01 11 10

00

01

11

10
',< 0

/
/

s • e

ab^OO 01 11 10

00

01

11

10

d
^

vV
S

480

b)

a
^

®
0/

t

c)

ab^XOO 01 11 10

00

01

11

10

ab^XOO 01 11 10

00

01

11

10 ?) w
Q ty s

acd © bed © «Z)t/ © a&c

= {a © Z>)cd © a6(c © J)

d)

b
c

d

0

• *

-fft—m-

-g^

-©

Figure 7.6.1.12: (a) EXOR decomposition of function from Figure 7.6.1.8. (b) £> fa ,
b, c, d), (c) realization of HD4 function of 4 variables using the crosslink synthesis
operator of cube calculus, (d) its realization.

a)

a b ^ O O 01 11 10

00

01

11

10

3
^

Ko)
a

^

vp)

abd © acd © abc © bed

= ad{b © c) © bc{a © J)

481

a —9-
b —f
c —

b)
0 -4

-ffi-

-©-

d

h U

(J

n
u

Figure
7.6.1.8a

Figure
7.6.1.13b

c)

Figure 7.6.1.13: (a) S> (a , b, c, d) and its factorized equation withAffine Toffoli gates,
(b) corresponding quantum array, (c) realization of function from Figure 7.6.1.12c as
a composition of inexpensive circuits.

Concluding. Figure 7.6.1.10 proved that any HD3 minterm pair function of 4 variables

can be realized with reduced cost using affine Toffoli gates. Figure 7.6.1.12 proved

that any HD4 minterm pair function of 4 variables can be realized with reduced cost

using Affine Toffoli gates. Thus any minterm pair function of 4 variables has reduced

cost.

Using this decomposition one can prove that every even function of 4 variables can be

decomposed to a set of pair of minterms (with Hamming distances HD1, HD2, HD3,

.... , etc) and often can be reduced to cheap affine and 2-interval functions of other

types.

482.

The function F with more than one minterm can be realized with affine gates with cost

savings when compared to a solution of this function with multi-input Toffoli gates.

The single-minterm functions can not be improved by using affine functions. While

grouping 2k minterms to affine functions, the symmetric realizations are always better.

7.7. Affine Polarities.

Affine preprocessor is any vector of affine functions. Every function can be realized

into standard polarity preprocessor Pj, affine polarity preprocessor APi, PPRM, mirror

of AP; and mirror of Pi.

Algorithm 7.7.1:

For all polarities P; do:

For all affine APj polarities do:

a) transform function F to ¥ in this combined polarity P; »A Pj

b) calculate PPRM for Pi • A Pj

c) realize the circuit of the polarity preprocessor P; and its mirror post processor

Pf1

d) realize affine polarity pre-processor A Pj and its post-processor A Pj"1, insert

this pair between P; and Pj,

e) insert PPRM in the middle between A Pj and A Pj"1.

483

The same is true for every single gate, as shown in Figure 7.7.1 and Figure 7.7.2.

Affine Tbffoli Affine Tbffoli

I
&—£-

IIJ

d—t-

/
0

n-j
Vj7

i û

4K
- $ - j i

i i
-f—0
l i
l i

J L

LU

! !
-d—tz-

- #

a? i

a
6
c
d
e

f

•(a®b®c)(e®f)®(c®d)(b®e)

Polarity A Pi Polarity A P2

Figure 7.7.1: Oracle being a composition of two Affine Tojfoli gates with different
affine polaritie.

First Big Affine Toffoli gate Second Big Affine Toffoli gate

•a rQp. 1+1

e

/

<£

tfi [q)~! n ri ~ n

TM
i,i

tJJ

"ffl~

0 - t :

-W-4 — i -
I l

TT

I ! ff-P

«—n-

tp ' (p1 i i i 0
M ' ' M I ^.i
t1~i r n i *tt
-L ja_ j—' m i
M l ! I I I

I I I

UJ

T T T

1—H-

1 ^ I I !
J 1_L
I ! I

a
b
c

d
e

f
-i u I I <P I I—a— F (a, b, e, <2, e. /)

Standard polarity Affine polarity Toffoli gate

Figure 7.7.2: Realization of quantum arrays with affine gates realized according to
Algorithm 7.7.1.

The idea of combining standard and affine polarities leads therefore to two new

concepts:

484

a) Affine Toffoli gates, ARNG gates and other affine gates that can be used

individually in synthesis methods (for instance to synthesize circuits that

generalize ESOP).

b) The generalization of the concept of PPRM. A PPRM with a standard polarity

preprocessor and postprocessor is an FPRM. Thus our new concept of new

AND/EXOR family generalizes the FPRMs.

RAR APi1 pr

r i

i"+' i

4=^3-

- ^ -

X

r i n

- ^ 7 7 ^

=*-

I J l i L J

r i i r n

m
! I ^ !

3H-
t) " Q '

(a) (b)

« M = - »~i Ffl
i l l I

ttM-
i i i

- f f l - r

• ^f

r i
• t e -

tfc^

ft

c

d

0

n-rH tp r»nr I . 4 . j

-ffi-
1 I' ,
1CP1I T '
' c p •' CD

I/+-
L) cp 0

r^ri T"T<P
"I

I "̂ I
« -

+ r #

i^j

00 (d)

Figure 7.7.3: (a) Preprocessor and postprocessor for Standard polarities, (b) Pairs of
the Preprocessor and postprocessor for arbitrary circuits, (c) example of simple linear
affine preprocessor for a PPRM be ® ac, (d) example of an FPRM generalization
created by adding linear pre- and post- processors.

485

Figure 7.7.3 shows Standard polarity gates and affine polarity gates together with their

mirror to create an oracle for kernel PPRM function

bc®ad®c®a = (d®b)c ®a(c®d)c®a .

7=8= Program CircuitSearch

7.8.1. Introduction to CircuitSearch

CircuitSearch realizes a new approach to design quantum circuits using different

search strategies. Here are some of its properties:

1. Visualization. The user can visualize the circuits. This helps the user in

investigating new search algorithms and the solution space. This research is the

first application of the visualization of circuits in the classical reversible and

quantum forms (QMaps).

2. Exhaustive Search. A CircuitSearch algorithm finds solutions using the state-

space search mechanisms. Human-designed expert systems often work well,

but are limited in application. Traditional pure search strategies are

comprehensive, but memory and time intensive. The heuristic search methods

of Genetic Algorithms/Genetic Programs have limitations of size, computation

time, and solution optimality and further, give no explanation of design

methodology or transferable rules for generalization. Human expertise must

therefore combine with search mechanisms, for the development of efficient
486

problem-solving methods. Thus the human can control and modify the

CircuitSearch program.

3. Affine CircuitSearch represents a rich example for a problem that has a very

large search space. I created a system that can enumerate logical circuits with

specific characteristics and optionally matching function signatures (QMaps).

It can use two different search techniques - exhaustive and iterative deepening

- which are both blind (no heuristics are used). Using exhaustive search or

iterative deepening search consumes a lot of resources. It takes longer CPU

time and sometimes more memory (according to the implementation details).

The user can interact and reduce the search.

In order to design a circuit that performs a desired quantum computation, it is

necessary to find a decomposition of the unitary matrix that represents that

computation in terms of a sequence of quantum gate operations. The initial search idea

of our research is very naive, we want to visualize the quantum circuit constructed

from very basic quantum gates which comprise V, V\ and NOT gates. The purpose of

CircuitSearch is to enumerate circuits using a variety of methods for the user that can

control the search by additional parameters as a result of his visual inspection. To

abstract this idea of searching, the CircuitGenerator interface is introduced. Different

search methods can implement this interface, and the rest of the program, more or less,

doesn't care how actually the search is working.

487

CircuitSearch is a C# .NET application, developed with Visual Studio 2005, and

designed for enumerating logical circuits with specific characteristics and optionally

matching function signatures (KMaps). It uses two different search techniques -

exhaustive and iterative deepening - which are both blind (no heuristics are used).

7.8.2. Affine Circuit Search Implementation

The two main methods are Advance() and GenerateCircuit().

AdvanceQ: steps the generator so the next circuit is evaluated. GenerateCircuitQ:

will configure the passed Circuit object to reflect the current state of the generator.

GetProgressQ: method can provide an estimation of the percentage of complete

enumeration.

The front end program writes all binary circuits out to file for future use - either by the

browser, or as a saved search to match against KMaps.

Three generators are currently implemented: ExhaustiveCircuitGenerator,

CircuitDatabase, and IterativeDeepeningCircuitGenerator.

Description of Main Methods:

1. ExhaustiveCircuitGenerator:

This is the constructor that is Responsible for creating the segment generators.

2. GenerateCircuit: Responsible for creating and configuring new circuit.

488

3. Advance: At each AdvanceQ call, the generator advances the rightmost

S egmentGenerator.

4. SegmentGenerators Object: represent the state of each segment.

Pseudo code:

This generator acts like a big counter. A list of SegmentGenerator objects are created.

At each Advance() call, the generator advances the rightmost SegmentGenerator. If

that is at its end, it advances the next SegmentGenerator in line and resets the first.

This happens to the entire array iteratively. The enumeration is exhausted when all

SegmentGenerators are at their end.

The SegmentGenerators represent the state of each segment: which inputs are sampled,

whether the affine function includes negation, and which function is applied (V, V* or

NOT). Each advance call on the SegmentGenerator will 'tick' the state so that the next

circuit is generated. First the negation is toggled, then the function is advanced, and

then the input sample counter is advanced.

The following Figure 7.8.2.1 shows the 18 circuits generated for a simple 2 input, 1

segment specification. This shows that negation (the +1 in the affine function box) is

toggled during every advance, the segment function is advanced after that (V, then V ,

then NOT). Finally the input sampling is advanced - first only a, then only b, and then

a and b. Note that sampling zero inputs is not a valid configuration.

489

Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5 Circuit G

;a*liL

Hi

Circuit 7
u

i
<\-

"» r —
I^Wilfl

-r 1
4 -

l.^foy; a+1

ffif[; j H j ^ S I —t ^ j -1 —| HOT | —[HOT |

Circuit 8 Circuit 9 Circuit 10 Circuit 11 Circuit 12

Si— -EH—. -SIT}— -F""T— H]

-[12-
a+b+1 ;a-b;: a+b a+b+1

—| V | • ' —| V* j f • —[• \ I V » y —| MOT j '-:- —| MOT "|

Figure 7.8.2.1: CircuitSearch generated 18 circuits for a simple 2 input, 1 segment
specification.

This process scales up to any number of inputs. When additional segments are added,

SegmentGenerators can be cascaded. When one reaches the end, the later ones are

copied and advanced one after the other. In this way, the generator has the ability to

skip large areas of the search space that would result in circuits that are functionally

identical (e.g. segments are identical but in a different order).

Description of Main Methods:

IterativeDeepeningCircuitGenerator: This is the constructor that is Responsible for

creating the segment generators.

GenerateCircuit: Responsible for creating and configuring new circuit.

490

Advance: At each advance of the generator, the configuration is tested for validity.

If the configuration has no inputs it is invalid. If the functional gate has two flags,

it is invalid, as there is no mapping for that. Finally, the first segment of a circuit

can require that the functional gate is V, anything else is rejected.

Pseudo code:

The algorithm works by dividing each segment up into arrays. Each element of each

array represents some configuration of the circuit. Each input line represents one

element each, negation of the affine function is one element, and the functional gate

(V, V1^ and NOT) is represented by two elements. Two elements are required because

it must represent 3 values. The fourth state (when both elements are flagged) is invalid.

Flags indicate which elements are switched on. Initially there is only one flag, and it

steps through all elements. Once that reaches the end, a second flag is introduced, and

they start from the left. The second flag is stepped through, and then they start from

the second element. This process continues until there are as many flags as there are

elements and there are no more circuit configurations to find.

At each advance of the generator, the configuration is tested for validity. If the

configuration has no inputs it is invalid. If the functional gate has two flags, it is

invalid, as there is no mapping for that. Finally, the first segment of a circuit can

491

require that the functional gate is V, anything else is rejected. For multi-segment

circuits, the process is identical. The arrays are concatenated so that flags can iterate

over all elements in all segments. The Figure 7.8.2.2 shows the process, with arrays,

flags, generated circuits, and reasons for invalidation.

| LINE A

t

| LINE A

LINEB |NEGATE|

LINEB- |NEGATE|

GATE|-TYPE: 1

00 = V

GATEJ-TYPE'. 1

LINE A LINEB NEGATE GATETYPE

LINE A :[LINE B [NEGATE | : G A T ^ T Y P E T

LINEA LINEB NEGATE ' 'GATI "EJTYPE ;:: | :

1
LINE A ; ;LINE B NEGATE : GATB-TYPE w
m \::f

LINEA ;UNE B NEGATE :; :GATEH~YPE:::

i-LINEA |: LINEB JNEGATEl': GATEfTYPE^

I I :iD=V+

LINEA | UNE.B |NEGATE| : GATE|-TYPE

1 : rn-Mfvr I

" rm
Circuit 2 •

b 1
t » 1

Invalid no input .--.

Invalid - no input

; Invalid - no input.;;.

| a+fr j

-Tv I—

[9*1

— | " t f

; DfCUJt 5

LINEA LINEB NEGATE GATE-TYPE <• -

T I 0=V+ -gg
Circuit 14

LINEA LINEB NEGATE GATE-TYPE

01=NOT i

LINEA I LINEB |NEGATE| GATE|-TYPE | l n v a l i d ,negate mapping
A . . . A A for combination

LINEA | LINEB'[NEGATE]. . GATE|-TYPE. | b

UNE A;: ;LINE B: NEGATE : GATE TYPE

f ;\ m 0t=NOT'

;LINEA;:| :;;LINE;B::|NEGATE| ;;:;GArE|TYPE : | invsiid-nogatertia^ihfl:
' A A > . '• A- -• •-':-• for.combinatian'::::;:;:;:;.

| LINEA

| LINE A

LINEB |NEGATE|

. -m
LINEB|NEGATE|

GATE|TYPE;;;;|

:t 4<

GATEJ-TYPE |

Invalid -;no gate mapping
for combination:

t:- A '-J ::j 4-

Cscuit 17

i

-. [:
:i#«iii.

Figure 7.8.2.2: (a) the process, with arrays, flags, generated circuits, and reasons for
invalidation in CircuitSearch Program.

492

I LINE A | LINE B |NEGATE| GATE|-TYPE~

' t t oo = v;

I LINE A | LINEB |NEGATE| GATE|-TYPE

t | 10=V+

LINE A LINEB NEGATE GATE-TYPE

01=NOT '

LINE A LINEB NEGATE GATE-TYPE

t t

t 1

r V

LINEA LINEB NEGATE GAJE|TYPE ,"

•;t; :t: ; . t 00 = v

LINE A LINE B NEGATEL GATEfTYRE

::t:VL + ODJ?V|

UNE A; KUNE B: NEGATE :GATE|ftYPE^

t ^ :t ::0.i=NOT f

Invalid - no input

LINE A LINE B; NEGATE GATE-TYPE Invalid - no input

LINEA LINEB NEGATE GATE-TYPE . Invalid-nb input

| LINEA

t

| LINE A

t
| LINEA

t

| LINEA

| LINE A

LINE B

t

LINEB

t
LINEB

LINEB

t
LINEB

NEGATE|

t

|NEGATE |

|NEGATE|

t

|NEGATE |

t
|NE3ATE|

GATE|-TYPE 1

01=NOTI

GATE|-TYPE I

t t
GATE|-TYPE I

t t

GATE|-TYPE I

t t
GATE|-TYPE I

—[mat | —

A ^ "f ^ î

Invalid - no gate mapping
for combination

Invalid - no gate mapping
for combination

for combination

Invalid - no gate mapping,
for combination

Figure 7.8.2.3: (b) the process, with arrays, flags, generated circuits, and reasons for
invalidation in CircuitSearch Program.

7.8.3. How the Iterative Deepening Algorithm Works?

This is similar to exhaustive search, but it varies in the order or circuit generation. It

enumerates all circuits at a particular level of complexity before advancing to the next

level. Even within a short time you can survey many useful, but perhaps simple,

circuits. Because of the way the search space is enumerated, it is unable to skip the

493

areas mentioned above that exhaustive can. This means that it will, if left to run to

completion, generate more circuits, some of which will be functionally identical.

The algorithm works by dividing each segment up into arrays. Each element of each

array represents some configuration of the circuit. Each input line represents one

element each, negation of the affine function is one element, and the functional gate

(V, V* and NOT) is represented by two elements. Two elements are required because

it must represent 3 values. The fourth state (when both elements are flagged) is invalid.

Flags indicate which elements are switched on. Initially there is only one flag, and it

steps through all elements. Once that reaches the end, a second flag is introduced, and

they start from the left. The second flag is stepped through, and then they start from

the second element. This process continues until there are as many flags as there are

elements and there are no more circuit configurations to find.

At each advance of the generator, the configuration is tested for validity. If the

configuration has no inputs it is invalid. If the functional gate has two flags, it is

invalid, as there is no mapping for that. Finally, the first segment of a circuit can

require that the functional gate is V, anything else is rejected.

For multi-segment circuits, the process is identical. The arrays are concatenated so that

flags can iterate over all elements in all segments.

494

7.8.4. Searching.

7.8.4.1. What happens when the Search button is hit?

i Exhaush e Search g File Search 1 Iterative Deepening Search 1

Inputs j ^ _ _ ^ 3 L Fast reduce F~ Don't force w on hrst'segmeht

Segments h '-=j IT Skip duplicate segments

,- liiaLUiiliy -

KMap to.-lVfa.tch '

r*l! .iSeartch' l i t Matches

1

I MeW'jfMjipi I

:!;-:f- |jSait

••-utlljjClL-

Eifnary-jbiriedtory' I

Binary Prfefix fbinary

Match Djre'ctofy |

~ '

... . fl-3
<\ 1. Sto.r^B'inayy'eirEuits,.. Sfere Nori-B|hary.^ir£ujts.

___ _ 3:3
Match feelix patch ij

research
Tutdl Circuits 0

SearrhRdte 0 Circuits's

Estimated Time Remaining 0 00

Time Eldp^ed 0 OU

Estimated Total Time: 0:00
jea'rch Cancel

"respts.""—**

BinarysCirciliitlf B-

:MatchlnaAeuits;^ff i ViewMatches

Figure 7.8.4.1.1: Browser of CircuitSearch Program.

This corresponds to the CircuitSearchFrontEnd.Forml.ActionButton_Click() method.

This method prepares for the search, locks the user interface from making changes to

the configuration during the search, and then kicks off the background worker called

495

http://to.-lVfa.tch

'searcher'. The application must be multithreaded to avoid blocking the user

interface, as searching is very processor intensive.

The main work loop is in searcher_DoWork, where the appropriate generator is

created and configured.

For all types of search ExecuteSearch method is implemented:

ExecuteSearch(worker, mGenerator);

Which loops over the GenerateCircuit() and Advance() for the generator,

ExecuteSearch tests and writes circuits to file, one file is to record matching circuits,

and the other is to record binary circuits.

The search can be paused and saved before completion. A saved search can be loaded

and resumed.

7.8.4.2. Abstract algorithm:

- generate all circuits that have given number of segments and given number

of inputs

- loop on each circuit

call "calculateKmaps"

if current Kmap can not be simplified to a binary Kmap

then ignore it

else store the circuit into array of circuits.

496

7.9. Comparison of Search Techniques and discussion of results.

The two search techniques perform a similar job, but have different strengths.

Exhaustive search tends to be faster, as it can skip useless circuits that iterative

deepening can't, and does not generate invalid configurations requiring validation.

Iterative deepening, however, can quickly discover useful circuits of moderate

complexity without bogging down looking at circuits that have some complex

segments, and others simple. Both will take vast amounts of time and drive space to

complete for non-trivial circuits, but the iterative deepening search will give a broader

scan in a reasonable amount of time.

A sample run on a 4 input, 4 segment circuit produced the following timings:

Exhaustive: 2 minutes, 16 seconds. 21870000 binary circuits found.

Iterative: 4 minutes, 24 seconds. 20441521 binary circuits found.

The output circuits file was above 700MB both cases.

Example 7.9.1:

For single input a, there will be 2 => 22 = 4 possible functions to check(in KMap,

single cell) (so, we should take away the constraint of CircuitSearch that first segment

will start with only V, it will search for all possible V, V\ NOT, that means for three

option, only NOT gate will generate binary results and will be counted as output

function). For 2 input (a, b) single output functions (2 x 1), there will be 2 x2 => 24 =

497

4 x 4 = 16 possible functions . Same for 3 input (a, b, c) single output (3><1)

functions there will be 2 x 2 x 2 => 28 = 16 x 16 = 162 = 256 possible functions.

For 4 input single output (4 x 1) functions there will be 2 x 2 x 2 x 2 => 216 = 256 x

256 = 2562 = 65536 possible functions. For 5 input single output (5 X 1) functions,

there will be 2 x 2 x 2 x 2 x 2 => 232 = 65536 x 65536 = 655362 = 42,94,967,296

possible functions. Means astronomical.

We know for 3 * 3 reversible functions we that have a total of 8!(=40,320) functions,

but we examined the target bit output, means single output functions which generates

relatively less circuits as it is seen from the above example. In our Software, the

maximum number of inputs is set to 30, due to the use of 32 bit integers to represent

the input masks. Circuits with this number of inputs would be impractical to search

using these techniques anyway - as the search space would be astronomical. Here we

developed Libraries for Quantum Circuit restricting our primitive gates to V,V1' and

NOT. Practically, it depends on technology, but in present most viable quantum

circuits are basically with these three gates (V, v\ NOT). However, we use affine

function to realize our Quantum circuits which gives us many advantages to build

practical Quantum Circuits. The advantages are that it is simple and it is technology

independent. It is also similar to its classical counter part. In our program, the

synthesis of algorithm based on the principle that in each step algorithm perform a

498

choice of a gate (our defmedV, V,NOT) to be added with any possible affine

function of inputs.

Example 7.9.2:

Tofolli Gate Search Matching:

In Exhaustive Search: It needs 5 segments, total circuits searched is 43,563,744,

404,278 Circuits searched and total time required 60 seconds. Total binary Circuits

found for that 1,758,456 circuits and total matched Circuits 4,584.

a) ' b)

c) • d)

Figure 7.9.2.1: Examples of Circuit simulator interface.

Iterative Search: Same for 5 segments, total circuit searched unknown. Search rate

1,080 Circuits/s and total time needed is 3 minutes 52 seconds, almost 4 times more

time than exhaustive search. Total binary circuits found is 801,444 means search space

is much less than exhaustive search and matching circuit found is 2,952 which is 50%

499

of the circuits found in Exhaustive search. Here for iterative deepening, we used fast

reduce option.

aaaa
File

flJtffiMM
Edit

Input Vector

000
100
010
110
001
101
011

is@n
, Value'

T "
0.
0
1

1

1
1

E L m j m

a)

b)

1 -»•' II •• II » II « II « 1

^ r ^ i r ^ n m F n

Show K-Map

E
A — r

100%

-b^l

V

II

-

• II- I I ••
w 1 1 v\ 1 v* 1—

i «•• i

c)
•Wftfftlfflfflffff
Show K-Mao '0»%

1 ,.„.,., 11 M 11 „ 11 .* , 11 ̂ 1

d) e)

Figure 7.9.2.2: More corcuits found automatically by CircuitSearch.

500

Test

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

No. of
inputs

2

2

2

2

2

2

2

2

3

3

3

3

No. of
segments

1

2

3

4

5

1

2

3

4

5

6

7

8

1

2

3

4

Total
Circuits
tested

12

78

364

1365

4368

24

300

2,600

17,550

98,280

475,020

2,035,800

7,888,725

48

1,176

19,600

249,900

Total
Circuits
found

6

30

115

387

1,148

10

76

461

2,461

11,782

51,512

207,184

772,235

18

216

2,097

18,025

Search time
in sec

0.203

0.015

0.006

0.016

0.062

0.0013

0.0024

0.031

0.25

0.985

4.844

21.984

95.594

0.031

0.016

0.188

1.953

Search rate
Circuits/ sec

59.1133

5200
-

85,312.5

70,451.6

-

-

83,871

70,200

99,776.6

98,063.6

92,603.7

82,523.2

1,548.39

73,500

104,255

127,957

Table 7.9.2.1: Complexity evaluation for some results of CircuitSearch.

Test

1

2

3

4

5

6

7

8

9

10

No. of
inputs

3

3

3

3

2

2

2

2

2

2

No. of
segments

2

3

4(Peres)

5(Toffoli)

2

3

4

5

6

7

Total
Circuits
tested
588

24,696

1,037,232
43,563,744

108

1,944

34,992

629,856
11,337,408

204,073,344

Total Binary
Circuits
found

28

1,288

48,566

1,758,456

12

216

3,486

56,040

910,356
14,958,456

Matched
Circuits

-

-

P-612

T-4,584

CN-1

CN-12

CN-220

CN-3,736

-

Search rate
Circuits/ sec

294

12,348

518,616

85,312.5

54

972

17,496

314,928

246,414

234,477

Table 7.9.2.2: Generating matched circuits CircuitSearch Program using exhaustive
search.

501

Test

1

2

3

4

5

6
7

8
9

No. of
inputs

3
3

3

3
3

3
3
3

3

No. of
segments

2,mx

2,3

2,5
2,7

2,9

2,mx
3,4
3,5

3,6

Total
Circuits
tested

Unknown
Unknown

Unknown

Unknown

Unknown
Unknown

Unknown
Unknown
Unknown

Total Binary
Circuits
found

15
4

10

14

15

700
18
45

159

Search rate
Circuits/ sec

189

26
128

185

189

7,500
84

494

1,535

Table 7.9.2.3: Generating matched circuits CircuitSearch Program using iterative
deepening search.

Minimum cost: Approximation: all V, v\ NOT gates cost same = 1. Gates (V, \ \

NOT) with single EXOR cost = 2, EXOR of 2 (Like a EXOR b with any gates V, Vf,

NOT) cost = 3 and so on.

When we analyzed the results of the CircuitSearch program (Tables 7.9.2.1 and

7.9.2.2) we found the following:

1. When the circuits become larger, the higher proportions of them are not

permutative, thus the method wastes a lot of time to find nothing useful. We

noted the patterns (explained earlier) in these functions.

2. There are very many circuits for the same function. When the numbers of

variables grows, the same functionality is obtained in extremely many circuits.

502

Again this means that there is no need to use this software for large functions.

These patterns for small functions that we found are the fundaments of our

methods.

3. Analyzing our designs found by the software we found however interesting

properties and patterns that are independent on the numbers of variables (see

for instance the interval functions).

4. We found that a very interesting property, Property 7.9.1, is true.

Property 7.9.1:

1. Given is a quantum array built with only CV, CV1 ,̂ NOT and CNOT gates

2. We replace all CV and CV^ gates with CV and CV1' gates in all possible

ways

3. We remove or add any number of NOT and CNOT gates in arbitrary way

to the structure

4. Then the function realized by this modified array remains permutative.

5. Any other transformation (replacement, addition or removal) leads to a

non-permutative circuit.

Based on the above Property 7.9.1, the CircuitSearch program proved to be a very

useful prototyping tool as it allowed to find a general property which was not known

503

earlier. This property allowed me to create a library of inexpensive gates to be used in

hierarchical synthesis methods.

7.10. Library based design

7.10.1. Design of library of reversible blocks for single-output

functions.

a

(a) b

0

v_

3r&n:

V/V*

(b)
a

b

0 € ^
l/NOT

Figure 7.10.1.1: Patterns of the least expensive realizations of functions of 2 variables,
(a) Empty block can be any V or F , (b) empty block can be any of identity or inverter.

a —

b —

c —

d —

0 —

F

-4-\ -

LL.

— a

-— b

— c

— d

— F F(a,b,c,d)

Figure 7.10.1.2: Pattern of all gates in 5*5 library of 4-argument functions. F is an
arbitrary 4x4 reversible function.

504

All single output functions of 2 variables can be implemented in library cells from

Figure 7.10.1.1 a,b. The idea of all cells for 2,3 and 4 variables is shown in Figure

7.10.1.2. The classification (NPN classification) of switching functions is an important

problem in logic design used for the development of universal logic modules and for

cell library binding [Perkowski95, PerkowskiOl]. The key to such an approach is to

determine that two functions are equivalent relative to a permitted set of operations.

Here we consider two functions to be matchable if they are equivalent relative to

permitted set of operations. Cell library binding, also frequently called technology

mapping, is the process of transforming arbitrary free logic circuits where the

interconnection of components are the instances of basic elements from a given library.

The cell library binding uses some type of classification of switching functions as a

tool to match efficiently the library instances with free logic circuits [Perkowski95,

PerkowskiOl]. The principal algebraic classification method [Harison65] considers the

following operations, taken individually or collectively: negation (N) of one or more

input variables of the functions, permutation (P) of two or more of the input variables

of the functions and negation (N) of the output of the functuions. Boolean functions

that are equivalent under negation of inputs are N-equivalent, under permutation of

inputs are P-equivalent, and under both stated conditions, are NP-equivalent

[Harison65]. If the complementation of the output is also considered the Boolean

functions are NPN-equivalent. The canonical forms of NP-equivalent Boolean

functions are identical. In other words, two Boolean functions are NP-equivalent

exactly if they share the same canonical forms, called the representative functions.

505

It is well known that NP and NPN matching are useful techniques for synthesis of

combinational functions with gate libraries.We use the concept of NPN classification

to develop our library. It is explained in Figures 7.10.1.3, 7.10.1.4, 7.10.1.5 and

7.10.1.6.

ab^v 0

00

01

11

10

0

0
0
0

0

0
^

W

a b \ 0
00
01
11
10

F= ab®ac

0

0
0

0

\V
0
0

r^
F=bc®ab

a b \
00

01

11

10

0

0

^

vv
0

1

0

o
0

0
F = b c © ab

Figure 7.10.1.3: Shows patterns of 3x3 Fredkin-Like gates. They are all NPN
compatible.

We can also say that they are all in the same category of classification. Each of them

can be a representative function of this category.

a b \
00

01

11

10

0

0

0

cr
0

1

0

T\ (d
vV

F =

a b \

00

01

11

10

= maj{ a, b, c)

= ab®ac®bc

0

^ 0 w
0

1

0

0
0

0

F =

a b \

00

01

11

10
maj(a,b,c)

=ab®ac@bc

0

OX
\jj

0

A \

1

"p
0

0

0

F =

_
maj(a,b,c~)

=ab®ac(Bbc

Figure 7.10.1.4: This figure illustrates patterns of majority function of 3 variables

with 3polarities, abc, abc and abc resepectively.

506

a b \
00
01
11
10

0 1
0
0

0
0

/A
1

c
Vv

a b \
00
01
11
10

0
0

0
0
0

1
/ 1 \

c
1 1 w

a b \
00
01
11
10

0
0

1
/ i \

A A
1

\̂ L
0 w

a b \
00
01
11
10

A IN

<Q> Jy
v°y

0
0
0

abi ab®c •fa+b)®c f = a® be

Figure 7.10.1.5: Shows pattern of Toffoli-Like 3x3 gates. They are all in the same
NPN class.

ab^v 0

00

01

11

10

0

A
<§
vj.

0
^
0>

V

a b \ 0

00

01

11

10

m
^

a b \

00

01

11

10

0

0

A

/ A
1

6\
VL W

a b \ 0

00

01

11

10

1

0

FT
K
hL

1

1R

\oJ\
a®b F= b®c F = a®c a® b®c

Figure 7.10.1.6: Patterns of qffine (Feynman-Like) 3*3 gates. Three first are in the
same NPN class.

The library is to be used in conjunction with the decomposition algorithm. Therefore

all cells (reversible blocks) from the library are reversible and return the original

inputs a, b, c to their outputs. All additional ancilla bits in the cells are returned to |0).

This way, all the cells from the library can be stacked as tiles in a reversible layout for

larger functions. This is shown in Figure 7.10.1.7 below. This way, every large

function is decomposed to cells from our library.

507

a

b

c

0

0

d

e

f

0

0

ri

CelM

1 FF

Cell 5

1 FG

1 FH)
i r n u /

b
c

d
e
f

0

i)

r
U

• ^

J

Cell 2

1 FF2

Cell 6

IFG

b
c

)

d

e
f
0

2>

r u ^
J

Cell 3

Cell 7

0
a
b
c

d
e
f

0

IFG3)

r

- Cell 4

r\

h

\\J

H

f

n

" \ !
^u

FH)

Figure 7.10.1.7: A general method to realize a single-output function of many
variables \FH) using cells of 3-variable library.

a —

b —

c —

d —

e —

f —

FF

FG

FF1

FF2

FH3

FGi'

FG2

FG3

FH • FH

Figure 7.10.3.8: The original decomposition of non-reversible function FH to be next
realized as a reversible function using our library of reversible cells. It is just an
example of decomposition.

508

The reversible circuit from Figure 7.10.1.7 is created from a non-reversible

decomposition presented in Figure 7.10.1.8.

Let us explain now the method how all the cells of the reversible library were created.

It was first necessary to find a representative function from each NPN classification

category of 3-variable functions. We selected always the least expensive function (in

terms of the number of inverters).

a b \ 0 1
00

abx

' >

o;

HD = 1

F2

1 minterm

F1

| HD = 2
abN

' 1 s

' 1 s

F 3
3

ab
c H D 1 , H D 2 ^ ^ ^ c ^ H D 2 H D 3 c JHD2, HD2

Ffl
abN

F5

f ^
v ^

:-o
F6

4^ -

D2, HD2, HD3

" ^ " F7

HD2, HD2, HD3

MJ

2 minterms

F 4

3 minterms

NPN(F6)

4 minterms

F8 MJF9

v ;
^-

' ^

^

V
^

)

/v
F10 L .̂ ̂

TN F 11

-&>-
- ^

^rr
F12

Majority Fredkin Fredkin = NPN (F9) Toffoli a®b a®b®c

Figure 7.10.1.9: Creation of NPN equivalent functions of three variables.

Figure 7.10.1.9 shows the systematic tree search method to find the representative

function for each NPN class. The levels of the tree correspond to functions with the

509

increased number of true minterms. We know that each minterm can be represented by

a product a1 b1 c , i, j , k £ {0, 1} so each minterm is a representative of the NPN class

a1 b1 c . We select minterm abc=a b c as the representative function of the class

of single-minterm functions a1 b1 c .

The KMap corresponding to this function is on top of the tree of all representatives. It

is denoted by Fl. Now we have to add another minterm in all possible ways to create

representatives of all 2-minterm (and 2 3 - 2 = 8 - 2 = 6 minterm) classes. Second row

of the tree has all such functions. Function F2 is representative of all functions in

which the second added minterm (shown as " 1 " in KMap for F2) is in Hamming

Distance 1 (shown as arrow with HD = 1 that points from Fl to F2). Other minterms

in HD = 1 (HD1) from m0 = « b c are shaded as not to be considered further on this

level of the tree. By adding the second minterm with HD2 the representative function

F3 is created. All minterms not to be considered for addition in this level of the tree

are shaded (KMap right to F3). Thus the only remaining representative of the 2-

minterm class is F4.

Using the same method the next level of the tree is created. F5 has distances HD1 and

HD2 to true minterms of F2 from the previous level of the tree. For didactic reasons

function NPN(F6) is shown at right but other representatives of the same NPN class

are not given. This way all NPN representatives F5, F6 and F7 of functions with 3 and

23-3 = 5 minterms were exhaustively found.

510

Next level of the tree creates functions F8, F9, F10, F l l and F12, all with 4 true

minterms - these are all balanced functions that are not literals.

Observe that:

F8=ac+bc+ab=ac®bc®ab

= majority (a,b,c) = NPN (majority (a, b,c))

= ab®ac®bc = a(b®c)®bc

Thus function a(b® c)®bc can be realized as a NPN class representative.

Observe that: F9 is half non-variable outputs of Fredkin gate (outputs that are not

variables).

F9 = a c ® b c = mux(c;a,b)

= NPN (mux (c;a,b)) = a c © a b

(another NPN(F9) is drawn next to F9).

Observe that variable output of Toffoli gate is:

F\0 = a®bc = NPN(a@bc)

Now that all NPN equivalent classes have been found we will realize a library cell for

one representative, the one with the smallest number of inverters. All other functions

from this class can be created by 4 methods:

1. permuting inputs

2. negating inputs

511

3. negating the output

4. replacing V -> V^ and V^ -> V, or any combination of these four methods.

Ia>-
Ib >-

(a) ! 0) — V
£

V*
l c>-

V
• &

V*
£ v*

Cost =13 2 ancilla bit

(b)

la >-

lb>-
0)- V V

CDJLCD
v+

a)
b>

F2) = lab)
Cost = 5 1 ancilla bit

(c)

a
b
c
0

•O-

V

0 t CD
V

a)
b)

V+

v

la >
lb)
10)

Ic)

F1) = I abc

F3 > = | (NPN (a • (b © c));

Cost = 6 1 ancilla bit

Figure 7.10.1.10: Example realization of library cells for all NPN equivalent functions
of three variables, (a) function \Fx) = \abc) , (b) function \F2) = \ab) , (c) function

\F3) = \a(b®c)).

Figure 7.10.1.10a presents the library cell for NPN(Fl) class = \abc). It has cost 13

2x2 quantum primitives and 2 ancilla bits. Observe again that a product which is

considered an expensive function in classical PLA logic is here one of the most
512

expensive functions. Figure 7.10.1.10b presents the library cell for NPN(F2) class =

\ab). It has cost 5 and 1 ancilla bit. Figure 7.10.1.10c presents the library cell for

NPN(F3) = a (b e c). It has cost 6 and one ancilla bit. Figure 7.10.1.11 shows the NPN

class representative of NPN (|F4)). It realizes function

abc + abc = ac®bc®ab = c (a ®b)®ab. it has cost 10 of 2x2 primintives

and additional 4 inverters and one ancilla bit. Another realization of NPN (| ̂ 4)) is

shown in Figure 7.10.1.12. It has cost 8 and one ancilla bit.

la)-

lb>-

lc>-

10)- V

&

V v+
V V

CD T (D
v+

Cost = 10 (2x2) gates + 4 NOT gates 1 ancilla bit

-f la >

Ic>

|F4> abc + ab c

Figure 7.10.1.11: Realization of NPN class of Function \FA)

• & &

0 T 0
0 v+ V V v+

Cost = 8 1 ancilla bit

Figure 7.10.1.12: Another realization of NPN (\FA)).

513

(a) a®abc=a(Wbc)=a(b+c) « a(b+c)
NPN

l a >-

(b) I c) — - j
I 0)—| V+

10)-
V

e-3r&
V V

CD T CD io>
v+

-la)
-lb)
-Ic)

F5) =|NPN(a(b+c"))>
Cost =10 2 ancilla bits

Figure 7.10.1.13: Realization of NPN (\F 5)).

Figure 7.10.1.13 presents synthesis of NPN(\F5)). Figure 7.10.1.13a has logic

transformation and Figure 7.10.1.13b has the final circuit with cost 10 and 2 ancilla

bits. Figure 7.10.1.14a explains using KMaps the decomposition of |F6). Its circuit

realization is presented in Figure 7.10.1.14b. This has cost 14 and two ancilla bits.

Figure 7.10.1.15a explains using KMaps the decomposition of \FI) . Formulas for

NPN representative are given in Figure 7.10.1.15b. The final circuit has cost 15 and 2

ancilla bits and is shown in Figure 7.10.1.15c.

a b \ 0 1

(a)

00

01
11

10

^

V
\

V

a b \ 0 1
00
01
11
10

^

V / "->
^ SN

V J

e

a b \ 0 1
00
01
11
10

s y

F6)=a®c@abc=NPN(.a@b®abc)

514

(b)

la)

lb) — - j -

10)—{x_
Ic)

10)

• & •

v v+

^
T 0 T Q)

v+ ̂
V V

- l a >

- l b >

- 1 0 >

v+
I F6)=\a®b®abc)

Cost =14 2 ancilla bits

Figure 7.10.1.14: Realization of NPN class offunction\F6). (a) Exor decomposition:

illustrated using KMaps, (b) the final quantum array.

(a)

ab\f 0
00
01
11
10

-4-
V -

ab\C 0

00
01
11
10

M^
e

a b \
00
01
11
10 ^ N

k V

(b)

Fl) = {a®b®c)®abc

= NPN[a®b®c®abc]

= NPN[a®b®c®abc]

la >-

l b > -

(C) | 0 > — V

lc>-

I0>-

&
\r

&® v
T (D T Q)

V"

V*
0

- la)

- lb)

Cost =15 2 ancilla bits

V | — 1 0)

- I c)

I F7) = a@b®c®abc)

Figure 7.10.1.15: Realization of the library cell for NPN (\Fl)) . (a) Exor
decomposition using KMaps, (b) step by step transformations leading to the cheapest
representative circuit of NPN (\Fl)), (c) the final quantum array.

515

a
b
c zc

-e-
v v

—la)

^ ® - ' b)

d) T CD ' c> v+ NPN (F8)

Cost = 8 1 ancilla bit

Figure 7.10.1.16: Realization of NPN class function of\F&).

Figure 7.10.1.16 presents the circuit realization of the library cell for NPN(|F8)). It

has cost 8 and one ancilla bit. This cell was found directly by program CircuitSearch

and was the base of the whole idea of the least expensive NPN representatives.

(a)

same gate

F9=bc+ab

= NPN(ab + ac)

= NPN{ab®ac)

516

(b)

same gate

1—e—o
v

° (D 1

V

(c)

la>-

Ib)-

lc>-

oMv

CD T db
V v+ V

JL C D J L (D
v+

Cost = 8 1 ancilla bit

a >

b)

c)

INPN(F9)>

Figure 7,10.1.17: Realization of NPN class function ofNPN(\F9)). (a) initial, non-
optimized circuit, (b) equivalent circuit transformations used in optimization of the
circuit from Figure 7.10.1.17a, (c) the final optimized cell for the library.

Figure 7.10.1.17 presents the algorithmic design of NPN(|^9)). Observe that using the

transformations from Figure 7.10.1.17a the circuit from Figure 7.10.1.17b is reduced

to the equivalent circuit from Figure 7.10.1.17c which has the cost of 8 2x2 primitives

and one single-qubit operator (V) and one ancilla bit. This circuit was also found

directly by my program CircuitSearch after its modification to include non-controlled

gates V. Figure 7.10.1.18a explains the realization of NPN(|^io)) = \ab®c) as a

library cell. Observe that this realization has the same cost as another realization

517

obtained from standard Toffoli gate given in left of Figure 7.10.1.18c. But in order to

have proper order of outputs in the cell to make it compatible with other cells in the

library a SWAP gate is added in Figure 7.10.1.18c which makes our design from

Figure 7.10.1.18b the least expensive. It has cost 6 and one ancilla bit. In some designs

the standard Toffoli gate can be used as well as the library cell. We do not need to

restore the input \c) at the output.

ab\? 0

(a)

00

01

11

10
Cj

r\
1]

^

V1/
(b)

la>-
lb>-
Ic >-

l°>-© V

-O- e-ib)
I c >

V+

NPN(F10) > = | a b 0 c)
Cost = 6 1 ancilla bit

(C)

a >-
b >-
c) -

0>^©
^ X

b)
c)
| abec >

Figure 7.10.1.18: Realization of NPNfunction in library.

Figure 7.10.1.19a shows the library cell for N P N (| F H)). It has cost 2 and one ancilla

bit. It is one of the cheapest cells, no doubt as it is a pure affine function. Similarly

inexpensive is the realization of N P N (| F I 2)) from Figure 7.10.1.19b with cost 3 and

one ancilla bit. It is also an affine function.

518

(a)

la>-
lb>-
lc>-
10)- ^ ^

la)
l b)
Ic)

NPN(F11)

(b)

a)-
ib>-
lc>-
|0>-

la >.
l b)

CD CD CD ' N P N (F 1 2 > >

Figure 7.10.1.19: Realization of affine functions NPN(F11) and NPN (F12) as the
library cells.

Function
NPN#

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

NPN class

abc

ab

a (b © c)

abc + - 7 -

a(b + c)

a © b © abc

a ® b ® c ® a b c
ab + ac + be

ab + fl c

ab © c

a © c

a © b © c

ANC

2

1

1

1

2

2

2

Cost 2x2
gates

13

5

6

10

10

14

15

8

8

6

2

3

Cost NOT
gates

0

0

0

4

0

0

0

0

1

0

0

0

#o f
minterm

1,7

2,6

2,6

2,6

3,5

3,5

3,5

4

4

4

4

4

comments

Most expensive

Most expensive

Most expensive

least expensive

least expensive

Even/odd

odd

even

even

even

odd

odd

odd

even,balanced

even,balanced

even,balanced

even.balanced

even.balanced

Table 7.10.1.1: Costs of gates (cells) in our library (in terms of the number of ancilla
bits ANC and the number of 2 x2 quantum primitives, as well as the number of
inverters.

Table 7.10.1.1 compares the library gates. It is interesting that it confirms numerically

our intuition that odd functions are more expensive that even functions and that

balanced functions are less expensive on the average then the non-balanced functions.

These observations are used in our algorithms from this chapter and will be further

used in next chapters.

519

7.11 New Methodology for Synthesis of Quantum Circuits

7.11.1. General Recursive Decomposition of arbitrary non-reversible

Boolean functions to hierarchical quantum circuits with ancilla

qubits.

Based on the concepts of affine gates and the results presented in previous sections of

this chapter I created a new general methodology to synthesize quantum circuits with

greatly reduced quantum costs.

This recursive methodology can be summarized as follows:

Algorithm Decompose

1. If the function F has four or less variables, select the gate from the library of

gates presented in section X.

2. If the function F can be represented as a single affine gate AG (of any type)

then realize function F according to the synthesis algorithm of gate AG.

3. If F can be represented as F = EXORSUM AG;, i.e. as an EXOR of affine

gates, then realize EXOR of recursively realized gates AGi, adding mirror

gates AG"1;, if necessary.

4. If F can be represented as F = EXORSUM G;, i.e. as an EXOR of functions

G; of smaller number of variables each, or of simple functions, then realize

EXOR of recursively realized gates G;, adding mirror gates G"1;, if necessary.

520

5. If one affine gate AGi of any type has high correlation with F (i.e. small

Hamming Distance of F and AGi) then realize F = AG; © Frem where Frem, the

remainder function, is next realized recursively.

6. In all other cases, apply Ashenhurst/Curtis decomposition, bi-decomposition,

or any other type of standard classical combinational logic decomposition of

function F, leading to new subfunctions Fj, to be realized recursively by

Algorithm Decompose. For each gate (circuit) that realizes Fj mirror gates are

created, if necessary.

Below I will present components of this new methodology and I will illustrate them

with examples.

7.11.2. Ashenhurst-Curtis Decomposition

It is well-known that the best and most general logic synthesis methods for classical

combinational circuits such as Ashenhurst-Curtis decomposition are global and do not

depend on gates that are used in the decomposition. These methods should then be

also applied to reversible circuits. Example of Ashenhurst-Curtis decomposition is

shown in Figure 7.11.2.1.

521

<J

h

u

-

G

r—•
H

Figure 7.11.2.1: Symbolic representation of Ashenhurst Decomposition. The original
function F with inputs a, b, c is decomposed to two subfunctions, G and H. Function G
is called the predecessor block and function H is called the successor block. There is
only one signal connecting blocks G andH.

b

c

•

G

0

a

r
\\

>i
V

G-1

H

0 -

b

c

-i y-

H-1

- f

Figure 7.11.2.2: Realization of Ashenhurst decomposition from Figure 7.11.2.1
trasformed to a reversible circuit. As can be seen, there are blocks G~ and FT added
to the circuit. Block G is a mirror circuit (inverse) ofG and block FT is an inverse
circuit (mirror circuit) of block H. This way, the entire circuit has all its primary
inputs restored at its outputs, as necessary in Grover oracles. Some ancilla bits are
added, initialized to constant and, with exception of output f, restored to these
constants. Here G is reversible, so no ancilla bit was added to G. In general an
ancilla bit should be added.

The decomposition method illustrated in Figure 7.11.2.2. is applicable to any types of

specifications of blocks and functions. It does also not determine how the gates inside

blocks G and H are realized. Observe that this method decomposes a function with

many inputs to few blocks of smaller size to which other synthesis methods can be

applied. This way, after Ashenhurst-Curtis decomposition applied to a many-input

522

function, the reversible synthesis methods proposed here which are not applicable to

very large functions can be successively applied. Moreover, when recursive

decompositions create finally small enough functions, the best realizations of these

functions can be found in the library of gates. This method creates one ancilla bit for

each block pair G/G"1 and H/FT1. All except of the last one, these bits terminate with

constants which allows to fold more signals to the same qubits. Also, all primary

inputs of function F are restored, which can be used in several synthesis methods for

circuits in which function F was only one of several functions on arguments a, b, c.

G

H

9

Figure 7.11.2.3: Ashenhurst Decomposition with non-disjoint sets of bound and free
variables. Free variables are {a, bj and bound variables are {b, cj. This means that
variable c, called the shaded variable is used in both free and bound sets of input
variables to blocks H and G, respectively.

523

0

k

G

b

(

l-I

:3-

-•—

H"1

f

u
b

c 3

G-1

Figure 7.11.2.4: The realization of circuit from Figure 7.11.2.3 in a reversible
cascade with reversible blocks G and H and their mirror blocks. Observe that variable
b is a go-through variable in blocks G and G~ . Observe also two ancilla bits added,
one for the output f and one for intermediate signal g. This ancilla bit is initialized
and terminated with constants zero. This figure explains the most general pattern of
applying recursively the Ashenhurst-Curtis decomposition to arbitrary (multi-input,
multi-output) Boolean function to be realized as a quantum oracle with quantum gates.

Reversible circuits similar to those from Figures 7.11.2.2 and 7.11.2.4 can be designed

for any numbers of bits in free and bound sets. The presented here general method

works regardless of sizes of sets of shared variables in these sets, possibly empty sets.

Bigger examples analyzed by me show also that even if the decomposition is used

recursively to every block G or H, again and again, the above decomposition method

will still work. In the worst case it may create too many ancilla bits, but their number

is usually smaller than using other synthesis methods.

We are not interested in this section 7.11 in the details of decomposition algorithms,

many such particular algorithms exist and can be used as a pre-processing step in

524

reversible logic synthesis methods presented in this thesis. Please understand that each

signal a, b, c etc above may represent any number of binary wires.

In contrast to the algorithms from literature [Maslov05] the algorithm from section

7.10.1 can transform a non-reversible function to a reversible one during the synthesis.

The presented algorithm solves a non-reversible function by adding ancilla qubits to

the input and output to make the entire function reversible. The algorithm can be used

to create good solutions for these problems if proper assignments are made to the

ancilla qubits, however finding the proper assignment is in general not a trivial

exercise.

525

7.11.3. Using symmetry and regularity to select "simple gates" for

generalized Decomposition

inputs c Restored inputs at outputs

3. i—A

c-1

:•* si

Linear

b a

^ ^ outputs

Figure 7.11.3.1: Reversible Net structure to generate all multi-output symmetric
functions of variables a, b, c. SI is the net of symmetric indices from which all
symmetric functions can be created. Block C is the inverse (mirror) of block C.

In step 4 of Algorithm Decompose is section 7.11.1 we referred to simple functions.

This definition is not precise and it may depend on algorithm's implementation. For

instance, regularly realized and symmetric functions may be regarded as simple. For

instance the structure called Reversible Net in Figure 7.11.3.1 realizes arbitrary multi-

output symmetric function in a regular pattern of connections and restores all inputs to

their orginal values at the circuit's outputs.

526

oHe
0

c

0

0

0

0

0

a.b

CD CD CD
a + bl

B
CD CD CD

fe
CD CD CD

linear/affine

CD CD CD

Figure 7.11.3.2: Standard quantum array (with dimension of time from left to right)
for part of the reversible Net Figure 7.11.3.1. The blocks C are shown, the mirror
circuit with C are not shown.

Each block C is the (non-reversible) min/max block where local output min = a • b and

local output max = a + b. The reversible realization of the structure from Figure

7.11.3.1 is presented in Figure 7.11.3.2 (only half of the circuit, the mirrors are not

drawn).

The mirror circuits in Figure 7.11.3.2. were not shown for simplification but they

restore all primary inputs and constants in ancilla bits. The circuit in block "linear" in

Figure 7.11.3.1 is in general an arbitrary multi-input and multi-output affine circuit

which we will call "affine composition".

527

7.11.4. Realization of single minterm functions for functions of many

variables.

In this section we will present realization of single minterm functions for functions of

many variables. This topic is important as in each odd function a single one-minterm

function has to be still realized in each of our synthesis methods.

Figure 7.11.4.1a presents the pattern of realizing all minterms (NPN class of | abc)) of

three variables. As we see two ancilla bits are necessary. Two methods of realizing

NPN (|abed)) are shown in Figure 7.11.4. lb and Figure 7.11.4.1 c.

(a)

la>-
lb>-
10)-
lc>-
10 >-

•e- -e-

^ >

a)
b)
0 }
c>
abc)

la
lb

=
Ic
10

- la)
- lb)

^ F » = I abc)

(b)

la)-
lb>-
lc>-
10 >-
ld>-
10)-

• &

la)
l b)
I c)

e-io>
d)

®-iFl-l abed!

528

(c)

10 >-

mirrors

-© IF > = I abed>

Figure 7.11.4.1: Recursive realization of big Toffoli gates, (a) Realization ofF = abc
using two ancilla bits and 3 x3 Toffoli gates (next macro-generated to 2 *2 quantum
primitives), (b) realization of F = abed using two ancilla bits, two 4x4 Toffoli is
macro-generated as in Figure 7.11.4.1a, (c) another way to realize F = abed using
Toffoli gates. Although more expensive it may have some advantages as bits abed
are neighbors.

(a)
c — r ^ y -

(b)

\ j

529

(c)

a
b

10
c
0

Id
10
le
10
f
0

g
o
h
0

-e- ^ ~

-e- &

^ ~ -e-
-e- •e-

-e- &

^ > &

•e-

a
b
0
c

10
Id
10
le
10
f
0

g
o
h
F

Figure 7.11.4.2: (a) Classical one-dimensional circuit for AND of many inputs, (b)
classical tree circuit for AND of many inputs, (c) quantum circuit corresponding to
circuit from Figure 7.11.4.2a has 13 3 x 3 Toffoli gates and 7 ancilla qubits.

mirrors >

b >-
c >-

d >-

h >-

0 >-©
0 >-
0>-
0>-
0 >-

€>-e &
€ ^ e- e #

a)
b >
c>
d >
e >
f)
g)
h >
0)
0 >
abed)
efgh)
abedefgh >

Figure 7.11.4.3: Reversible Folded variant of the circuit from Figure 7.11.4.2b. In
general, the garbages \abcd) and \efgh) need mirrors to restore their qubits to constant

530

-e-
•e-

file:///abcd
file:///efgh

The circuit from Figure 7.11.4.3 has 10 3x3 Toffoli gates and 5 ancilla bits but it has

2 garbages, \abcd) and \efgh). To remove these garbages the mirror of this circuit is

necessary leading thus to the total of 20 3x3 Toffoli gates. Comparing to the circuit

from Figure 7.11.4.2c we gain 2 ancilla bits at the cost of 20-13 = 7 3x3 Toffoli gates.

What is better depends on the technology and on the fact if intermediate functions are

reused in this or another output.

) 1

\ r
' (J

i 1

~\
0

) VJ
> •

V
VJ

^ K)
 VJ

S ,

^

, r

^

r
^

r
^

r
^

1

^
V

V
V

V
IF

a)

b)

c)

d)

e>

f)

g>
h)

0)

0)

0)

0)

) = I abcdefgh]

Figure 7.11.4.4: The quantum circuit for \F) = \abcdefgh) wjth 5 ancilla bits, 8 3*3

Toffoli gates and one 5 x5 Toffoli gate. No mirror circuit is needed in this variant.

7.11.5. Minterm Pair Functions.

Minterm pair functions are important starting points to affine complex gates and are a

worst case solution to even functions of any number of variables. It is easy to prove

531

file:///abcd
file:///efgh

that every minterm pair in a function of 4 variables is realized in an affine Toffoli gate

cheaper than realizing its both minterms separately (Figure 7.11.5.1).

,cd

(a)

a b \ 00 01 11 10

00 V l T

11

10

01 £ZT =̂

la>-0-
I b)

(b) I c > —

Id > —

I 0 > —
4>

•e-

&
• & •

-la)
- lb)
-lc>
-Id)
- IF)

(c)
acd@abc

=ac(d®b)=F

a b \ 00 01 11 10

(d)

00
01
11
10

(^
()

o
' - • *

l a)
lb)

(e) lc>—(J)-
Id)-

10 >-

e-
&

e-
^ — &

^ l a >

lb >

-IO (f) cd(a®b)®abc=F
- Id >

- I F)

.cd

(g)

00
01
11
10

ro
o
c, CO

la)-

lb)-

(h) IO0-
l d > ^ -

I 0 > -

^
&

^ ^

e — i b)
l c> (i)

Id)

I F)

a^(c©rf)ecJ(aeZ))

=F

Figure 7.11.5.1: Chains in functions of 4 variables realized with affine Toffoli gates,
(a) KMap for Hamming Distance = 2, (b) the circuit for HD = 2, (d) the KMap with
HD = 3, (e) the circuit with HD = 3, (f) the formula with HD = 3, (g) the circuit with
HD = 4, (i) the formula with HD = 4.

Next, because every function of 4 variables with 4 minterms can be built from pairs of

minterms we prove that same for all functions with 4 minterms. Because of negation,

the same result is true for function with 24- 4 = 12 minterms. Similarly it can be

proved for all functions with 6 and 24- 6=10 minterms, see Figure 7.11.5.2.

532

a b ^ 00 01 11 10

00

01

11

10

'O
^ •>

\
>

: ; :
< :o

^ 1 s

vcd
a b \ 00

00

01

11

10

01 11 10
,cd

^ 1 s

' 1 s

" 1 N

(a)
Fi (a,b,c,d)

(b)

F2 (a,b,c,d)
= F3(a,b,c,d)

abN

00

01

11

10

(c)

00
' 0 s)

1

01
1

:o:
:°\1

1 ' 0 ^

11
1

v l

x
1

10
x

1
1
1

F3 (a,b,c,d)

Figure 7.11.5.2: Functions with 6 and 10 minterms. Different decompositions of sets
ofminterms to minterm pairs, (a) decomposition to Affine Toffoli gate of 4 minterms
and a minterm pair, (b) decomposition to three pairs of true minterms, (c)
decomposition to three pairs of false minterms.

Finally the same is proven for functions (balanced) with 8 minterms.

\Cde
a b \ ooo 001 011 010 110 111 101 100

00

01

11

10

ro a
O 0

f=cde(a@b)®ab(cd®ce@de)

Figure 7.11.5.3: HD5 minterm pair function of 5 variables realized with 4 Toffoli
gates and 2 Feynman gates.

Realization of NPN class representative function f for minterm pair functions of 5

variables is shown in Figure 7.11.5.3.

533

(a)

la>-
lb>-
lc>-

Id >-
1 0) - ^

- la)
- lb)

c) _

- Id)
-IF,)

la>-
l b) -
lc>-
10 >-
Id >-
10)-

£̂- &

4K

-la)
- lb)
- Ic)
-10)
-Id)

l a) -

lc>-
10)- ^

-abc

'«> 0 VCD
^W

10)-
(abed)c

- ^

10

l a)

-lc>
-10)

(D T CD id>
I F,) = | abed)

\cd
a b \ 0 0 01 11 10

00

(b) 01
11
10

0
0

0
0

o
^

1

0

ft\
1

m
1

0
^

1

u

la)-
lb >-
lc>-

(c) |0>-

o H v w v H v

e a eb

e a eb® c

V

a e b e c e d .

: t—CD J L CD
v+

- ^

-la)

e-'b>
0 >

F2>

Figure 7.11.5.4: Explanation to composition (EXORing) of an irreversible function F
to reversible functions Fj and F2, (a) realization of single-minterm" function
Fi(a,b,c,d) - its initial schematic and stages of circuit realization with smaller Toffoli
gates. The gates at the right in Figure 7.11.5.4a should be further decomposed to 2^2
quantum primitives, (b) the original function F and its components Fl (shaded) and F2
(in a loop), (c) realization of F2(a,b,c,d) = a ' (a,b,c,d) using only 2x2 quantum
primitives.

Observe the same order of qubits in \F{) and \F2) , a, b, c, 0, d, 0 that allows to ab at |^)

and 1̂ } without using SWAP gates. Example of using our decomposition method is

shown in Figure 7.11.5.4. Function \F\ was decomposed as \F} = \F1)®\F2) and next

534

each of its component functions was realized and they were composed to one quantum

array.

ab^C

00
(a) 01

11
10

00

C3

0 1 /

' 1 >

M
O :o

/ 93

11 10

CL
- / •

/

F = g

r;
^ 1 N

^ 1 N
s

1 © C

^— 9i

*—g2

)2 ©g 3

g\ -ab c®abc = maj(a,b,c)®c

(b) S2 = abcd®abcd®abc d®ab cd

= ab(c®d)®ab(c®d) = (a®b)(c®d)

g2 =ac d

(c)

abN? 0
00

01

11

10

/

^ 1 N

/

a b \

00

01

11

10

0 1

c
' ^

\ /

a b \

00

©?;
10

0 1

/ \

,

V ;

(d)

la

lb
Ic
Id
0

93

^ ©

9i

V VHV

^ e-
v+

92

O 4>
€>

gi © ga

• #

4)

-la)
-lb)
- Ic)
4d>
-IF)

Figure 7.11.5.5-.Example of decomposition to two ARNGfunctions and standard
Toffoli gates, (a) the original function F - g\ © #2 © £3 where gi is an ARNG, g2 is an
Affine Toffoli gate andgs is standard Toffoli gate, (b) formulas for functions gi, g2, g3,
(c) realization of double-cube (minterm-pair) function gi, (d) realization of\F } by

composition of gi, g2 and g3.
535

.cd

(a)

a b \
00

01

11

10

00 01 11

\

V
>9y ̂

10

s

vT11^

(b)

HD=2

HD=2

m9

HD=2

,m1 0

HD=2

HD=4

HD=4

Figure 7.11.5.6: Visualization of affine patterns in KMaps of four variables, (a) 4
minterms of an affine group, (b) Hamming distances between all pairs of minterms
from the pattern in Figure 7.11.5.6a.

.cd

(a)

a b \

00

01

11

10

00

. m ° .
01

N

11

-v

10

\
jmj

HD=4

(b)

HD=4

Figure 7.11.5.7: Visualization of affine patterns in KMaps of four variables, (a) four
minterms from an affine group abcd®abcd® abcd®abcd = dc(b d®bd)®ac{bd®b d)

= {ac®ac)(bd®bd) = a®c »b®d , (b) Hamming distances between all pairs of minterms
from the pattern in Figure 7.11.5.7a. Please note isomorphism of graphs in Figure
7.11.5.6b and Figure 7.11.5.7b.

Another example of decomposition to ARNG and Toffoli is presented and explained

in details in Figure 7.11.5.5. Visual patterns of Affine Toffoli gates are given and

compared in Figures 7.11.5.6 and 7.11.5.7.

536

Concluding:

1. My method improves on 3/4 of Toffoli-like functions of 2 variables (3 out

of 4).

2. Balanced functions of 3 variables. There are the following function classes:

Exors of 2 literals (6 functions), Exors of 3 literals (2 functions), majority

(8 functions), Toffoli-like/Davio-like (24 functions), multiplexers

(Shannon-like) - 24 functions. A total of 64 out of 70 balanced functions

(there are 3*2 = 6 binary literal functions which are balanced but not

interesting). My method improves majorities (8 functions), 3/4th of Toffoli-

like functions (18) and 3/4th of Shannon like functions (18). Thus 44 out of

64 balanced functions are improved by having a smaller quantum cost.

3. There are 8!/(2! 6!) = 28 functions (non-balanced) functions of 3 variables

with 2 minterms. They can be all realized by double-minterm gates thus

there is an improvement on 28 functions with 2 minterms.

4. There are 8 non-balanced functions being single minterms. No

improvement exists on these functions.

5. There are 28 functions of 3 variables with 6 minterms. They are negations

of functions from point 3 above. There is improvement on all of them.

6. Similar results exist for functions of four and five variables but there is no

space here to perform a complete analysis.

537

Concluding on this method, please note, that our method uses special functions and

gives special advantages for special functions but in real-life problems such functions

rather than random function, frequently occur. This fact was observed for the first time

by the developers of the very successful SOP minimizer Expresso.

7.12. Conclusions on affine concepts and decompositions.

Because this chapter is the core of innovative ideas from this thesis, and its

conclusions are important to the entire dissertation, we will write these conclusions in

points.

1. Designing an optimized cascade of reversible ("quantum permutative") gates is

one of the fundamental problems in quantum computing, because such

cascades are used in logic blocks in oracles of Grover algorithm, in the

arithmetic part of the Shor algorithm and in other quantum circuits and

algorithms. Therefore designing a method to improve on cost and speed related

factors of such cascades has a fundamental importance to quantum circuit

design.

2. In this chapter we introduced the concept of affine Rates, and we showed

examples of applications of this concept to design binary quantum gates called

538

affme root-of-NOT gates and affine Toffoli gates. This way the realization

costs of some permutative functions are dramatically reduced.

3. We introduced also the concepts of affine polarity and canonical affine forms

that generalize the Fixed Polarity Reed-Muller forms. This way the concept of

affine functions is extended to the minimization of arbitrary functions,

(although not necessarily the optimal results are always obtained). This is a

theoretical contribution with possible practical applications.

4. We showed also other ways of using our new concepts in Boolean logic

synthesis. The examples were able to show always the reduced quantum costs.

5. Combinations of various binary permutative gates and synthesis methods can

be used to create the new types of quantum cascades as introduced in this

chapter. The choice of the gate types and their realization using quantum-

realizable primitives are thus of basic importance to binary quantum logic

synthesis algorithms.

6. We wrote the program generator CircuitSearch for exact minimization of

affine-controlled V, V^ and NOT gates and circuits to be used in various types

of reversible cascades. Because this program is based on exhaustive search, we

tried several search strategies to make the program as efficient as possible. The

539

iterative deepening depth-first search method is more practical for these tasks

than the biology-mimicking methods such as the genetic algorithm. The full

potential of Iterative Deepening has been not yet fully recognized in quantum

circuit's community. It can be combined with A* search algorithm by adding a

heuristic evaluation function. There are further possibilities of improving

CircuitSearch which were not yet investigated.

7. The combination of CircuitSearch and circuit decompositions presented here

for many benchmark functions dramatically reduces quantum costs of

reversible cascades. It is important to observe that in all classical technologies

many-input AND gates can be built rather inexpensively. However in quantum

technologies, because of the necessity to build from only 2*2 primitives, the

multi-input AND gates belong to the most expensive functions to realize.

Therefore the synthesis methods should not be based on exoring ANDs, but on

exoring some other basic functions, that are inexpensively realizable in

quantum technology. Some of such functions were introduced in this chapter.

8. The methods presented in this chapter allow to investigate trade-offs between

the number of gates and the number of the ancilla bits. For instance, a circuit

without ancilla bits may be theoretically realizable but would likely be much

longer than a circuit with one ancilla bit. The related question of synthesis is a

difficult one and open to future research.

540

9. An interesting open problem is to extend these ideas and search methods to

arbitrary radix logic, for instance ternary. The first attempt to do this can be

found in Chapter 10.

10. When we get experience with CircuitSearch we found the properties of

functions that can be minimized by this approach efficiently. This experience

suggested us to design the library of inexpensive gates and to create the new

methodology of decomposing large functions to small functions that use affine

methods (in one or another way).

Although the synthesis of multi-output quantum arrays is beyond the scope of this

thesis, we found that the methods presented in this chapter are useful in several

practical multi-output function minimization problems. Thus we used these methods

for every output separately and we tried to reuse some subfunctions such as affine

Toffoli or affine other types of gates in the synthesis processes of multi-output

functions. There will be more designs of this type in Chapter 11 but now let us realize,

as a multi-output function, the comparator (A=B), (A>B), (A<B) of two two-bit

numbers. The same method as explained below can be used to any size of this type of

a comparator.

541

Example 7.12.1:

We will be designing a comparator realizing together three predicates (A = B), (A >

B), (A < B). Such comparators have many applications (Chapters 11,13 and 14). We

assume that both signals A and B have two bits each. The KMap of functions (A = B),

(A > B), (A < B) are given in Figure 7.12.1 a, b and c, respectively. Observe (as

shown in Figure 7.12.2) that these signals are disjoint and complete, which fact

suggests the synthesis method to be selected. We assume thus to realize two of the

three functions and create the third one by subtracting their sum from the logic unity

of four variables a, b, c and d. Because of symmetry of functions (A > B) and (A < B)

any of them can be selected for realization; we select (A > B). It is found that function

(A = B) is the Affine Toffoli gate, realized as in Figure 7.12.3. Any subfunction of this

function can be now reused to synthesize other functions. The function (A > B) can be

decomposed to an EXOR of a product " a c' " and a double-minterm function 0100 ©

1110 = a' b c' d' © a b c d' . The double minterm is realized as an Affine Toffoli gate

and the term ac' is realized as a classical Toffoli gate. However, in the next stages the

Toffoli gates and the Affine Toffoli gates are replaced with their realizations based on

synthesis of big gates and on CV/CV* based synthesis methods. This allows to

decrease the quantum costs. Synthesis of the predicate function (A>B) is using Toffoli

and Affine Toffoli gates is shown in Figure 7.12.4.

The final circuit, that reuses block (a © c)' and uses mirror gates to restore initial

states of input variables, is shown in Figure 7.12.5. Finally, by replacing all 3*3 and

542

4*4 Toffoli gates with 2*2 quantum primitives we obtain the circuit from Figure

7.12.6. This example showed the essence of methods from this chapter and how they

can be combined in multi-output quantum circuit synthesis.

Although the final circuit with 2*2 quantum primitives may look expensive, its

quantum cost in terms of 2*2 quantum primitives is dramatically smaller than that of a

circuit synthesized using traditional methods of quantum synthesis such as MMD,

Agrawal/Jha or Mishchenko/Perkowski approaches. In these approaches every output

function would be realized separately as an ESOP. This would require four 5*5

Toffoli gates for (A=B), one 3*3 Toffoli gate and two 4 *4 Toffoli gates for (A>B),

and one 3*3 Toffoli gate and two 4 *4 Toffoli gates for (A<B) (even if the best EXOR

cover solutions were found for the (A<B) and (A>B) predicates. Observe that the

circuit from Figure 7.12.5 has only one 4*4 Toffoli gate and two 3*3 Toffoli gates.

These gates in any case constitute much higher part of the total quantum cost of this

circuit than the NOT and CNOT gates being the affine components.

00

01

11

10

00

CO
&

0

0

01

o

CO
0

0

11

0

o

>v
0

10

0

0

^o)

CO

scd

00

01

11

10

00 01 11 10

0

CO
/

yi

0

0

A
y

0

0

o
0

0

0

f1N

0

(a) A = B

Xd 00 01 11 10
abx

00

01

11

10
I _l ^

A < B

o

0

0

0

CO
0

0

0

* •

^
0

CO

i \

V
0

o

(b) A > B

Figure 7.12.1: Specification of the problem of designing a comparator with three
predicates, (a) Kmapfor two-bit arguments for function (A=B), (b) Kmapfor two-bit
arguments for function (A>B), Kmapfor two-bit arguments for function (A<B).

543

am° 00 01 11 10

(A = B) 0 (A>B) e (A<1) = 1

Figure 7.12.2: Specification of the problem of designing a comparator with three
predicates. Kmap illustrates the disjointness and completeness of predicate functions
(A =B), (A >B), and (A <B).

f
K

^

J

r
^

^

j •

\)

' \

r
K

^

y

\ J

\ -

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

a@c b®d

Figure 7.12.3: Graphical illustration for the realization of Affine Toffoli gate (a (Be)'
*(b®d)' for predicate function (A=B).

544

\ed

00

01

11

10

00 01 11 10 \ed 00 01 11 10

1

;o
ft
^

0

< ,

*

V

0

0

V
0

0

0

CO
0

abN

00

01

11

10

(A > B) = aF® {~abc~d 0 abed)

= ac~® b d (a~F® a c)

0

0

ft
\A

0

0

1 \

iy

0

0

0

0

0

0

0

0

b*d»a®c

= a F® b d a® c

Figure 7.12.4: Graphical illustration for the realization of composition ofToffoli and

Affine Toffoli gates ac Q b d (a €D c)' for predicate function (A > B).

a® c b®d mirrors

& &
€ K ^

^

HTF~.

-ffirffH

4> &.

(D..(D:0

< ^

€^

m

a
b
c
d
(A = B)
(A>B)
(A<B)

' T, T2 T3

Figure 7.12.5: The quantum array for the complete three-output comparator circuit
realized in Example 7.12.1. Please note the role of mirror gates used to restore
original input values to be reused in other gates and the order of gate realizations to
allow multi-output design with the reduced number of gates and ancilla bits. The
lowest ancilla qubit is initialized to value 1 to make use of disjointness and
completeness of functions (A=B), (A>B), and (A<B).

545

h

c C

• T i •

A rv\
c Uy \U , A m : - /^ - ^ : n\ r\
° W U^ : T V > T W : U^ V.

n
1 — Q-

... !,_._._._,

: !
• O • O ^ i
" KlJ W : J

V V \ / + : 1

J

0
0

1 l 2
r i

i * r - - :

i • ^ ^ ^

1 : T
1 : V \

^ . r~\ \
' KU '

r ^ r^ • '• v *' *

u^ :
r+ . o • r̂ i • t v. ; ? i ;

\/ \/ \/+

a
b
c
d
0
0
1

&j£m

V H V

-3> ^

v+

^

^

b
c

d

(A=B)

(A>B)

(A<B)

Figure 7.12.6: The quantum array for the complete three-output comparator circuit
realized in Example 7.12.1 and in Figure 7.12.5. Please note the use of only 2*2
quantum primitives and inverters. Observe how expensive is the quantum realization
of the 4*4 Toffoli gate T2.

The example above assumed several tricks used together to minimize the function.

This leads to dramatic improvements. However we found that many arithmetic and

546

other functions from real oracles have the desired properties that allow to synthesize

them with small quantum costs even without executing a lot of search.

Concluding on affine functions and gates introduced in this chapter. Although the new

methods presented in this chapter cannot improve the synthesis of every function, they

improvejhe designs of many functions, including the practically important_functions

used in arithmetic, logic, predicate, comparison, spectral and other blocks used as

parts of oracles in Grover Algorithm and in Shor Algorithm (see Chapter 11). For

instance, the methods do not improve realization of a single product of many variables,

but in such cases the methods, as shown in this chapter, can be used together with

well-known methods to decompose big gates to 2*2 quantum primitive gates. Thus,

combining the new methods with the synthesis methods developed previously but not

used in automatic synthesis algorithms so far, the combined methods proposed in this

chapter improve on the realization of every single-output or multi-output Boolean

function evaluated using quantum costs that were introduced in chapter 2.

547

CHAPTER 8

Minimization of Incompletely Specified Boolean Functions for

Generalized Reed-Muller Forms realized in Quantum Arrays

8.1. Introduction

Past experience has shown the GA applied to logic minimization had limitations of

size, computation time, and solution optimality [Dill97, Dill97a]. In comparison,

several decades of research have contributed to the current human understanding and

efficient implementation of systems for logic design and minimization. As presented

in literature the AND-EXOR circuits have been shown economical and easily testable

[Biamonte05, Pradhan87]. They have the nice property of the "more ones than zeros"

group selection heuristic that can improve sequential choices of terms in greedy and

search algorithms. AND-EXOR circuits have another nice property of extracting

linear variables, finding linear pre- and post-processors, and polarity selection for

canonical expansion forms. As discussed in Chapters 3, 4 and 7 the AND-EXOR

circuits are also a natural match to quantum arrays and require much smaller number

of ancilla qubits than the AND-OR logic. Hence in this manner, the minimization

techniques presented in Chapters 3, 4 and 7 may be expanded, in the future, for multi

valued logic hardware or data mining applications (some preliminary ideas can be

found in Chapter 10).

548

As we remember, practically all problems of our interest can be solved by search, and

thus can be solved either by a special search algorithms like in Chapter 7 or by our

general search mechanism from Chapters 5 and 6. Thus the extended cybernetic

search approach from the Chapter 6 can be applied to several applications in quantum

circuit design. It is also the base of quantum search algorithms from chapter 6

illustrated practically in chapters 12 - 15. This method is applied in Chapter 8 to the

minimization of incompletely specified functions in the quantum array that realizes

the Generalized Reed-Muller Forms (single and multi-output). In contrast to most

methods from the literature (except for Bruce Yen [Yen05]) this algorithm not only

minimizes the reversible circuit but also performs the conversion from a non

reversible to a reversible circuit. The presented work improves on several previously

published papers in the area, especially on the heuristic search-based work of Sasao

and Debnath [Sasao94] and the GA-based work of Dill and Perkowski [Dill97,

Dill97a]. The developed in Chapter 8 original automated technique for logic

minimization of incompletely specified data Generalized Reed-Muller Forms is based

on generalized search processes presented earlier and a multi-strategic approach is

taken. Human expertise is combined with the extended cybernetic search mechanism,

for the development of an efficient problem-solving expert system. This method

formalizes the "hand and eye" minimization methods outlined in Chapters 2, 3, 4, 6

and 7.

549

8.2. Generating systematically all product terms for all GRMs of all

polarities and related problems.

There are 3n products of literals for a function of n variables. All these products can be

visualized by ternary hypercube, using Ternary Gray Code. This is a new

representation idea that has been not investigated so far. The space of all literal

products for functions of 2 variables is presented in Figure 8.2.1. The Hamming

Distance One (HD1) path through this space which is shown in Figure 8.2.2. This path

is not closed.

00 01

Figure 8.2.1: Space of generalized polarities for 2 variables using Ternary Gray
Code. Every edge is for Hamming Distance 1 nodes.

550

Figure 8.2.2: A Hamming-Distance-1 path in the generalized polarities space
corresponds to ternary Gray code counting (this is an open path).

oo
01

*- 01

"-]
11

OX '

1X

10

11

— /
XX /
xo J

Figure 8.2.3: A Hamming-Distance-1 path in the generalized polarities space
corresponds to ternary Gray code counting (Closed Ternary path). The path is
generated as the ternary Gray counting sequence shown at the right of the Figure.

Figure 8.2.1 presents the space that represents the Generalized polarity. The path of

through this space in which all subsequent nodes have Hamming Distance of 1 is

shown in Figure 8.2.2. In the graph from Figure 8.2.2 we can start from a node with

551

polarity 00, then go to node with polarity 01 and then to node OX. Here X polarity

means non existence polarity or no polarity (as a variable not taken into account to

this generalized polarity). Our algorithm works as an incremental counter as shown at

the right of Figure 8.2.3. This variant shows another path that is a loop. A loop is a

path that is closed, it is presented at the left of Figure 8.2.3.

Example 8.2.1:

All literal product groups of all GRM forms generated for two variables are the

following: l, b ,b ,a ,a ,ab , ab ,ab ,ab . Of course, one can calculate that

there are 3n = 32 = 9 such products.

(a)

0 1

J^
(b)

Figure 8.2.4: (a) Hamming-Distance-1 path of all groups generated for all GRM
polarities for two variables, (b) All groups generated for GRM polarities using a
KMap.

552

Figure 8.2.4(a) shows all groups generated systematically as the path follows a b ,

ab , a , a, ab, <*b , Z> , b, 1. Figure 8.2.4(b) presents two 2-variable KMaps of all

possible groups; that means we are creating all possible products of literals. For GRM,

we have 3n of all possible groups. Now, if we have GRM for 2 variables, we have 1, a,

b and ab. We can negate or NOT and it can be omitted in the group. So, it is either

omitted, which is X or a' for 0 and 1 for a, for this one. For instance, if we go from ab

to ab, we are changing the polarity of one variable. Every variable, we can negate or

NOT. This is the way in which we systematically generate all possible product term

groups which exist in all possible GRMs.

553

1XX

^xoo *- X01

Figure 8.2.5: Three Dimensional Space of generalized polarities for functions of 3
variables using Ternary Gray code.

000

001

oox
01X

011

010

0X0

0X1

oxx
1XX

1X1

1X0

110

110

111

11X

10X

101

100

xoo
X01

xox
X1X
X11

X10

XXO

XX1
XXX

Figure 8.2.6: Ternary Gray Code counting for generalized polarities. This way of
counting corresponds to Figure 8.2.5.

554

Figure 8.2.6 illustrates the way of counting, 000, 001, 00X, etc. The counting is done

by increasing by one a number contained in a Ternary Counter. The order of

enumeration in every bit of the counter is here 0, 1, X. The counting sequence assumes

that X is the highest value. Thus reaching X we have to increase in the next bit, hence

00X will increase to the polarity of 01X. The counting should be from node to node in

the whole space, all counting should be in Gray code, in HD distance one and has

edge. This is called the Ternary Gray code counting for generalized polarities. This is

just one way of systematic generation of all product groups. In Figure 8.2.5 given is

the three dimensional visualization for the algorithm that will create systematically all

possible generalized polarities in certain (Gray code) order.

Observe that the literal product groups generated as explained in this section can be

used not only in GRM but also in ESOP and other circuit types.

8.3. The Extended Cybernetic Search used to solve the GRM

minimization problem

In this research, the ECPS system from chapter 6 was employed. The general structure

of search is shown in Figure 8.3.1. Next sections of this chapter will present some

details and variants of implementation of this general idea.

555

In known algorithms, polarity strings are generated for GRM forms. Following the

generation of a population of polarity strings, several iterations using the heuristic

logic minimization method construct some of the possible GRM expressions (which

have the polarity described by their associated polarity string) that represent the

incompletely specified data set.

The polarity is the binary string representing the genotype in an evolutionary

algorithm. The GRM form is the expression representing the phenotype. Note that for

a completely specified function there is a one-to-one mapping from the polarity to the

GRM form. In contrast, for the incompletely specified function, there are many GRM

expressions corresponding to any given polarity. Thus, our "two layer search" ECPS-

like algorithm heuristically selects one of many phenotypes corresponding to the given

genotype. The best results (i.e. the GRM equations with the fewest terms) from

several iterations of the heuristic method are then selected.

What does it mean "the best results"? The best results are those that minimize the

value of the cost function.

The cost function for our algorithm is one of the following:

1. The total number of terms, in each of the best GRMs, for each of the multiple

outputs of the function. Thus each output cost is calculated separately.

2. Any of the quantum costs introduced in Chapter 2.

556

The summation of the cost functions from each of the output functions (counting the

duplicate terms only once) is then associated with the polarity as the fitness value for

this polarity in the GA. The second cost function is NMR-technology-related. It can

be a number of 2x2 gates or a number of NMR pulses.

Following the assignment of fitness values to choices based on the logic minimization

heuristics, the GA proceeds with the standard search process (see Figure 8.3.1).

Pure GA

(polarity, .fitness.,)

(polarityr,fitnessr)

GA
learning
polarity

Heuristic

PHENOTYPE
GRM,

GRM 1,n

Min
Cost

GRH.i"

GRM,

Min
Cost

J
GRM Expressions

learning
product terms

Figure 8.3.1: The general idea of hierarchical search applied to GRM forms for
incompletely specified functions. The upper level - a GA selects the polarity and the
lower level - the heuristic search selects the best circuit for the given polarity.

The polarity strings genotypes are similar to chromosomes in a standard GA. These

strings are essentially the constraints for the selection of the explicit GRM solutions

557

(phenotypes). The GRM phenotypes, which describe the complete problem solution,

are learned in the environment of GRM expressions. In this model, the learned

behavior is simulated by the application-specific heuristic. There are several

heuristics that we tested, but they are all based on the well-known "more ones than

zeros" group selection principle. Herein, the ECPS minimization algorithm acts as a

local heuristic search mechanism, deriving optimum GRM circuits given their polarity

vectors. Because the fitness function is related to the total final cost of the multi-

output circuit, the parameters of the polarity vector chromosome (genotype) and the

fitness are indirectly linked to each of the GRM forms (the phenotypes). In the

ECSPS search environment in the algorithm that creates new minimal GRMs, the

polarity vector "chromosomes" remain unaltered during the local cost-minimizing

search. (This remark about ECPS relates particularly to the ECPS-GRM variant

presented here. ECPS can be also used in a different way). Then through the upper

layer search process, new polarity vectors are created. This hierarchical and heuristic

search process is illustrated in Figure 8.3.1. The reader should keep in mind that this is

only a general scheme, out of which many detailed variants of search in ECPS can be

created.

The systematic way to create all generalized polarities for a GRM of 3 variables a, b, c

is given in Figure 8.3.2 (few polarities only shown).

558

Variants that can be programmed.

Concluding, based on the above ideas, the following different new approaches are

possible to minimize incompletely specified functions using canonical forms such as

FPRMs, GRMs and other canonical AND/EXOR forms.

• Method 1. Go through all polarities, use search for the best subset of product

terms in each polarity.

• Method 2. Use GA to find the polarities and next use the greedy probabilistic

search for each polarity (this is implemented in our approach from section

8.4).

• Method 3. Generate all GRM product terms as in section 8.2 in the order from

the least expensive to the most expensive terms. For each group calculate the

ratio of true minterms to false minterms (this ration is just a one particular

variant of the "more ones than zeros" heuristic). Select the best groups, one

from each polarity, and iterate with other choices to improve the result.

• Method 4. To find the best GRM, first find the best FPRM and next generate

GRMs from it (see Figure 8.3.3 for the explanation). The search is not

exhaustive.

All these methods can be programmed within the ECPS framework and compared.

Only a partial comparison was done in this thesis.

559

a b ab c ca cb cab

0 0 00 0 00 00 000

11
a b a& C ca c6 cab

V

0 0 00 0 00 00 001

• l i
a b a& c

\

0 0 00

ca cb ca6

7

0 00 00 011

11
a 6 ab c ca c6 cab

Pattern of
generalized

polarity

> Polarity 0

I Polarity 1

Polarity 2

Figure 8.3.2: A systematic way to create all polarities for a function of three
variables: a, b, c. Each generalized (GRM) polarity is represented by a binary string
and the Gray code (HD1) enumeration is used. Generation of only 3 polarities is
given here. This method can be used to generate all polarities or any subset of them to
be used in an algorithm from algorithms in "Variants that can be programmed"
above.

560

1

a

b

0">
I

1

a

6

Oby
1

1

a"

i

1
1

a"

b

ab

1

a

b

1

a

*

5A

1

a"

b

1

a"

b

v b y

1

a

b

ab

1

a

6

\aby

1

a"

Z>

~ab

1

a"

b

1

a

6
FPRM

1

a

b

1

a"

b
GRM

1

a

b

ab

Figure 8.3.3: Maps for another approach (Method 4) for systematic creation of all
GRMs for functions of two variables. This graph realizes the entire space of all
GRMs. It can be also searched in a greedy way by first going horizontally through all
FPRMs to find the best one and next start from it and go vertically down.

8.4 Illustrative Example of Minimization for Incompletely Specified

Fuction Specification with GRM Forms

8.4.1. Introductory Examples

An example of the minimization heuristic for incompletely specified data with the

GRM form of selected polarity is first given, followed by the complete algorithm

description in Section 8.5. The principle of this algorithm is to consecutively select
561

product groups, denoted as gi, and exor them from the function. Thus, recursively

using the logic principle, f = g; © ftaii => ftaii = gi © f, the realization of the function f is

obtained as an EXOR of all selected gi product groups. This algorithm belongs to the

"subset selection" family of algorithms with the "more ones than zeros" heuristics.

This algorithm uses the well-known from Chapters 2, 3, and 6 greedy method of

solving the even-odd covering problem that works well when a good heuristic for

selecting consecutive product groups (gi) is provided. Herein, the heuristic selection

of cubes is based on minimizing the cost function using the variant of the "more ones

than zeros " heuristics. In this particular approach the additional constraint also exists

that all product groups g; are consistent with the polarity vector (i.e. with the

genotype). It means the group of a polarity different that the current polarity vector

cannot be selected.

The basic principles will be explained in three introductory examples.

562

Example 8.4.1:

aft
00

01

11

10

1

0

0

0

0

0

0

0

aft
00

01

11

10

aft
00

01

11

10

0

o
0

0

0

ri\
vV

0

T 1

N8

abc

^
^

be

aft
00

01

11

10

0

1

1

1

1

1

1

1

â N
00

01

11

10

0

0

0

0

0

1

0

1

(°)
W

ac

N7

aft
00

01

11

10

1

1

1

1

^
0

0 w
aft
00

01

11

10

N 3

> c

0

0

C<L
0

0

1

~T^
1

N6

aft
00

01

11

10

0 1

0

1

/o
\o

0

0

iN

y

aft
00

^ 0 1

11

10

N 4

1 © c

K
o 1
0

V!
0

0

V
1

N5

1® c © a© b©ab©ac 1© c © a© beabe... 1 f f i c©a©b©

1© c © affib©ab © ac©bc© abc _ j

Figure 8.4.1: Minimization of single-output function f = abc, assuming the PPRM
polarity.

To demonstrate the counterintuitive nature of the choice of groups for the given

polarity let us discuss the minimization of function f = abc, assuming the PPRM

polarity. One branch of the search tree is shown in Figure 8.4.1. The natural first

choice would be abc but this group is not allowed, as all polarities should be

563

positive by the PPRM polarity assumption. We see in this example that branching is

useless because of symmetry of this function. The solution for PPRM can have a very

high cost, as in this example where the PPRM for f = 1 e c © a © b © ab © ac © ab e abc.

However, if the search starts from a good starting point polarity, or if the search uses

a good bound of cost, then the algorithm can execute the cut-off early. For instance in

this case knowing a literal cost of 3 from solution abc would allow to cut-off after

reaching node N5. This example taught us the importance of good starting point,

heuristics and bounds in any type of polarity-related minimization such as FPRM or

GRM.

Example 8.4.2:

Given is the 2-output function (fi (a, b, c), f2 (a, b, c)) from Figure 8.4.2a.

Assuming polarity [a , b, c , a b, ac , be , abc] the possible product groups for

exoring are only 1, « , b , c , a b , a c , b c and ab c and other groups cannot be used

according to the assumption of this search method. The partial tree of search is shown

in Figures 8.4.2b and 8.4.2c. The nodes of the tree correspond to the remainder

functions of [fi, fy] after Exoring.

Figure 8.4.2b shows the branch of the solution tree to find first solution - "solution 1".

The order of expansions N; is shown at right of all nodes in Figures 8.4.2b and 8.4.2c.

Arrows between nodes are labeled with the selected group symbols and with the costs

564

of literals cost that correspond to each partially created circuit for the corresponding

output function.

Observe that only those product groups allowed for the assumed polarity can be used,

thus in the middle branch node N5 (Figure 8.4.2c) where the best choice for minterm

011 is the product group ac, the algorithm cannot choose it directly as only b e , « b

and a c are the 2-literal products that can be used. Thus the algorithm has to select the

group a b for fi although this group is of the "equal ones and zeros" type of a group

(see node N6). This comes with the selection of good group b c and next propagates

to Solution 2. After backtrack, the Solution 3 is generated. And after the next

backtrack the Solution 4 is generated. We did not discuss expansion a bf, b c f and

c f from node N2 as they have low values of quality function. This example shows

how the algorithm can withdraw from bad choices by using the backtracking. Other

types of withdraw is by the change of polarity on a higher level of search,

implemented by evolutionary methods.

Observe also, that in this example we deal with three cost functions:

1) one-to-zero ratio (heuristic quality function),

2) number of literals (more accurate quality function),

3) number of 2x2 gates (final cost function to be minimized).

565

& 0 1
00
01
11
10

1
0
1
-

-

1
0
-

a
00
01
11
10

r£° 1
0
1
0
-

-

-

1
0

Figure 8.4.2: (a) The 2-output function (fi (a, b, c), f2 (a, b, c)) used in Examples
8.4.2, 8.4.3 and section 8.4.2.

Example 8.4.3:

We use the same 2-output function as in Example 8.4.2.

In this example we assume that the minterms are represented in the ON/OFF set in the

Comparison Table (Table 8.4.2.1). The columns of the Comparison Table correspond

to polarity coefficients, thus the table from Table 8.4.2.1 corresponds to the polarity

(1, (a), (b), (c), (a, b), (a, c), (b, c), (a, b, c)). Comparison Table is built by the

algorithm for each polarity that it reaches. The basis functions of the given polarity

(called also standard trivial functions, cubes, or coefficient functions) correspond to

the columns of the table. The care minterms in column abc correspond to the rows in

the table (See Table 8.4.2.1). The second column has all care minters as headers of

rows. These minterms may be negated multiple number of times during the synthesis

as the "select a group with more ones than zeros" process is iteratively executed for

each GRM polarity. Sections 8.4.2, 8.4.3 and 8.4.4 will explain this search method in

full detail.

566

abs

00

01

11

10

0

1

0

1

-

1

-

1

0

-
fl

0

1

0

-

-

-

1

0
f2

[b-cfx,a-cf2] j (2/0,1/0)

Nn

ab\
00

01

11

10

[a/l,*>/2]

0 1

M)

V
1

-

>)

0/

0

-

1 (2/1,2/1)

fi

0

/o

V

-

^ I
0/

0
f2

N2

N5

N3

I
N10

Nh N8

N6

I N7

N9

N4

Solution 1 f2 = b@ac

Quantum cost
twelve 2 X 2 gates

Figure 8.4.2: (b) Partial search tree for 2-output function (fi,f2)from Figure 8.4.2a.

567

[l / i , 6 / 2] (3/2,2/1

aK
00

01

11

10

0 1
1

0

1

-

-

1

0

-
fl

0

1

0

-

-

-

1

0 h No

[cfi,bf2]

00

01

11

10

[1

lo

\

0 I
11

0

/6
S\

-

^

°/
0

[bfhacf2]

N2

00
1

01

11

10

" \
1

°, J

-

1

0

- fl

0

^

^
-'

-

^

y

(2/2, 1/0) [7fbfx,a-cf2]l (2 /0 ,1/0)

aKA

N,

aK_0
00

01

11

10

0

1

1

-

-

0

0

-

0

0

0

-

-

-

0

0

0

0

^ J

-

-

0

0 h N 10

Solution 4 fi=c®ab

f2= b® a~c

[be ft, (2/0, p)

an\
00

01

11

10

0 1
0

(^

VP>

-

0

0

- fl

0

0

0

-

-

-

0

0 h

Solution 2 f\=\®b®ab®bc

fl = b®ac

Solution 3 fx=\®b®a®c

f2 = b®ac

Figure 8.4.2: (c) Partial search tree for function (fufz) from Figure 8.4.1. These two
branches were shown symbolically.

568

8.4.2. Detailed description of building the Table (Table 8.4.2.1)

To calculate the quasi-minimum GRM form for a given polarity, the ECPS-GRM

minimization algorithm creates a table like one in Table 8.4.2.1 with all GRM

coefficients for this polarity as columns and all ON/OFF minterms as rows. This table

is build for any GRM polarity found by the polarity searching genetic algorithm. The

cubes in various output functions of the specification are repeated as separate rows,

one for each function (this is illustrated for [fi, f2] from example 8.4.3 as in Table

8.4.2.1). The set of the selected columns represents the EXOR realization of all the

product terms for the output functions.

The table uses the concept of ON-minterms and OFF-minterms. The ON minterms are

marked as active by setting the value of flag ON to " 1 " . Minterms with flag ON = "0"

are treated as OFF-minterms. Initially the cells of the table are set to "0". Wherever a

minterm matches a coefficient, a " 1 " is set in a cell at the intersection of the minterm's

row and the coefficient's column in the table. The coefficient is the product of literals,

represented as a cube of "Cube Calculus" formalism. The matching of the minterm

and the coefficient indicates a relation in which all literals from the coefficient have

the same polarity as their corresponding literals in the minterm. For instance, for our

example, coefficient b c matches minterm 001X1 = a b ce. For all columns that

have at least one " 1 " in some of the rows, the cost is calculated. The column Cbest

with the highest ColumnCost is selected. The coefficient cube Coef(Cbest)

569

corresponding to Cbest is next exored from these output functions f, j=l, ...,r for which

exoring the minterm corresponding to this column with function f would bring an

improvement in its estimated cost. This is done based on the numbers of " l ' s " and

"O's" in f. If there are no better groups available, any matching cube is applied. The

cost of the cube selected for the solution is calculated across all output functions f.

The Column_Cost(columns) is defined as Column_Cost(columns) = a * (Nj - No) +

, where a is a weighting coefficient and Ni/o indicates the number of "1 's" or

Nx+N0

"O's". Note that this formula was chosen as a heuristic means for selecting efficient

groups. The (Ni - No) portion assigns a better cost to cubes with many " l ' s " and few

"O's". Whereas following the selection of these groups, the selection of small groups

is encouraged with the fractional portion of the Column Cost formula. The a term

serves as a balance between these two goals. Herein the even/odd covering problem is

heuristically attacked, first selecting the largest groups of l's, then selecting smaller

cubes for the remainder of the terms to be covered. This process aims to iteratively

select the best groups, selecting cubes and then successively exoring them with the

original function, to create more "O's" (simpler functions) for the remaining necessary

cover.

The exoring operation converts some of the ON-minterms to OFF-minterms, and vice

versa. This is done by activating and deactivating the flags for each cube (see Table

570

8.4.2.1). Each ON-minterm covered by a Coef(Cbest) cube in the header of the selected

column Cbest is converted to an OFF-minterm. Each OFF-minterm covered by a

selected column is converted to an ON-minterm (flag ON is set to 1). All cubes

selected for the output function $,j = l, ..., r, are triggered for this function. It means

that in the first selection, the cube is recorded for this function by triggering the

respective bit from 0 to 1. Any next selection of the same cube triggers the respective

bit in CoefjSet. An even number of selections means no selection and an odd number

of selections means a single selection.

For every new selected product group, the contents of the table's cells are modified

accordingly. The procedure is repeated until no more ON-minterms remain in the

table. The cost of the solution_Coef_Set is calculated incrementally with the selection

of new product groups.

Observe that the "more-ones-than-zeros" heuristics is only a general principle. This

heuristic allows to create various rules to choose "best" groups within search

strategies. For instance the opening of a node can be done using several methods:

1. with all groups,

2. with only those groups that satisfy the "more-ones-than-zeros" rule,

3. with only those groups that satisfy the "more-or-equal-ones-than-zeros".

571

Fl

ON/OFF

1^0

l->0

l-»0->l->0

0->l-»0

0

minterms

abc

000

Oil

110

010

111

1

1

1

1

a'

1

1

1

b

1

1

1

1

c'

1

1

1

ab

1

1

ac

1

be'

1

. 1

abc'

1

Iterations 1-3:

Cost-1

Cost-2

Cost-3

Cost-4

1.20

-0.80

-2.80

-2.80

1.33

1.33

-0.66

-2.66

0.25

-1.75

-1.75

-1.75

1.33

-0.66

-0.66

-0.66

0.50

-1.50

-1.50

0.50

0.00

0.00

0.00

0.00

0.50

-1.50

0.50

0.50

2.00

0.00

0.00

2.00

F2

ON/OFF

l-»0

l-»0

0

0->l->0

0

minterms

abc

010

111

000

110

101

1

1

1

a'

1

1

b

1

1

1

c'

1

1

1

ab

1

1

ac

1

1

be'

1

1

abc'

1

Iterations 1-3:

Cost-1

Cost-2

-0.80

-2.80

0.50

-1.50

1.33

-0.66

-0.66

-0.66

0.50

0.50

0.50

-1.50

0.50

0.50

0.00

2.00

Table 8.4.2.1: The Comparison Table illustrating the optimization process for a
selected polarity genotype for function [fhfi]from Example 8.4.2 and example 8.4.3.

572

8.4.3. Iteration Process

8.4.3.1. Selection.

• Select the cube (column) with the highest cost, indicating the best

grouping for cube selection. In the case of cubes with equal cost, the

selection among these cubes is random. (Note that larger problems

often have many choices with equal costs.)

• Include the cube as an EXOR term in the function. (If the cube has

been consecutively selected two times (cancelled-out) within the

current iteration, then a new cube is randomly selected from the set of

all cubes. This allows for the algorithm to jump out of a repetitive

selection (loop) of the local maximum within the iteration, and thus

continue working towards a solution, while adding some diversity.)

8.4.3.2.Complementation.

In the table (Table 8.4.2.1 in our case), we complement the elements of the

ON/OFF set (minterms) that are associated with the selected cube. (These are

the ON/OFF set elements in the rows where a " 1 " exists in the column of the

selected cube.) This corresponds to exoring this cube with the data and

appending it to the solution.

573

8.4.3.3.Iteration.

• If all terms (minterms) in the ON/OFF set are "0", then the function

construction is completed.

• Otherwise, calculate the new costs and repeat steps 8.4.3.1 - 8.4.3.3.

8.4.4. Repetition and New Polarity Vectors

For a given polarity vector, (i.e. a , b, c , ab, ac, b c , ab c), n iterations for each

function (fi and fi) are conducted. (For this research n = 3.) If the total function cost

(number of terms in both functions) has not improved, then a new polarity vector is

selected by the GA. The iterative heuristic minimization process from section 8.4.2 is

then repeated again for the new polarity. The new polarity can be also selected by a

mutation in GA suggested by the results of applying the EXOR logic simplification

rules as in Example 8.4.2, presented in Figure 8.4.2.

Although our final version of ECPS-GRM performs more sophisticated search than

those from the previous examples, the main principles have been explained in

sufficient detail.

574

8.5. The Detailed description of the ECPS Algorithm Applied to the

Approximate Minimization of the Generalized Reed-Muller Form for

Incompletely Specified Data

The goal of the presented ECPS-GRM minimization algorithm is to develop a method

for minimizing the number of terms, quantum cost or other cost function for the GRJVI

expression. The minimization search space, examining the different polarities, is very

large, since for a binary (completely specified) n-variable function there are

n2n"l literals and 2n^ polarities.

The incompletely specified function case has the same number of literals and

polarities, but the minimization is more difficult and the problem must be viewed

differently. This is because for a given polarity of GRM, there exists only one

expression (form) for a completely specified function, but many expressions for

incompletely specified functions.

The ECPS-GRM minimization algorithm performs the GRM minimization; it finds the

Coef_Setv and fitnessv of the offspring's polarity Polarityv and stores them together in

the GRM-triplet. Details of the minimization algorithm are presented below. New

polarities are generated by the GA.

575

Algorithm 8.5.1: ECPS-GRM (Polarityv, ON/OFF sets ofminterms)

1. Create a table with coefficients of polarity as columns and all ON/OFF

(minterms) cubes of the multi-output function (fi, ...,fr} as rows, (repeated for

each function in which they stand). Set all cells of the table to zeros.

2. New_ON_minterms := ON. solution_Coef_Set := 0.

solution_cost(solution_Coef_Set) := 0. For every new minterm from

New_ON_minterms mark with a value of " 1 " in the table every intersection of

a column that matches this minterm.

3. For each column Q that has at least one " 1 " , calculate Column_Cost(Ci).

4. Select column Chest with the highest value of ColumnCost. If several columns

have equally high cost, Cbest, then select randomly from this set of columns.

5. Mark for Cbest those cubes in output functions f (marked functions) that have

the highest ColumnCost.

6. For each output function f that includes a cube marked in step 5 do:

?:=$®Coef(Cbest)

The exoring creates sets NewJDNjninterms and New_OFFjninterms.

Activate

and modify sets ON and OFF in the table accordingly.

7. Update the solutionjCoefSet by triggering the bit of cube Cbest in the marked

output functions f of the solution_Coef_Set.

576

min_cost := cost(solution_Coef_Set)

If the same cube is selected consecutively, randomly choose a new cube

from the set of all cubes and goto step 3. (The probabilistic selection is done

to avoid looping and also creates more diversity in the search.)

8. If there still exist some minterms with a value of " 1 " in the ON/OFF set goto

step 3.

9. Using the ECPS general search mechanism iterate steps 2 to 8 for n iterations.

10. Apply Exor logic rules. If they find new polarity then randomly execute Pv : =

new polarity resulting from these rules.

11. Return a GRM-triplet: (Coef_Setv, Polarityv, Fitnessv).

8.6. Results of Testing on Benchmarks

A test suite was constructed utilizing MCNC benchmark set, completely specified,

binary benchmarks. As no incompletely specified benchmarks were readily available,

the benchmarks were adapted for these purposes. Using a random selector, 25%,

50%, 75%, and 95% of the benchmark output data was changed to don't cares. These

test files are available at

www.ee.pdx.edu/polo/function/MCNC_incompletely_specified.

The ECPS-GRM software selects the initial GRM polarity partially from the

CGRMIN program run on the completely specified benchmark. (The CGRMIN
577

http://www.ee.pdx.edu/polo/function/MCNC_incompletely_specified

program is restrictive, as it minimizes only FPRM logic equations. As the GRM form

is less restrictive, the GRM equations should always be reduced to less than or equal

the number of terms of an equivalent FPRM equation.) The remainder of the initial

polarity vector is specified randomly. The search produces all subsequent GRM

polarities through the evolutionary process.

In the iGRMMIN software implementation, a simple Genetic Algorithm was executed,

to act on the polarity strings, described as vector strings.

The ECPS-GRM combined program was tested with the benchmark test suite utilizing

25%, 50%, 75%, and 95% don't cares. The results of testing the software, over a test

suite of benchmarks are given in Tables 8.6.1 - 8.6.2. The best results for the

conducted tests are given and the experimental conditions are noted. Also, when

equivalent results were obtained with different population sizes, the test with the

shortest run-time is given. The format lists the number of terms after minimization,

the generation g; in which the results were obtained, and the run-time

(hours:minutes:seconds). Although better than the previous results from PSU, these

results are still worse than those from Sasao and Debnath on few benchmark

functions. In contrast to their approach, however, our cost function takes into account

also the quantum costs.

578

Benchmark

5x01

5x7

bwOl

bwl9

£21

f56

misex22

misex42

misex56

newcwp

rd53

squar5

Inputs

7

7

5

5

4

8

6

4

6

4

5

5

Outputs

5

3

8

Format: terms, generations, run-time (hours, minutes, seconds)

Don't Cares

25%

6, g2, 00:03:30.22

2, gl, 00:03:26.43

5, gl, 00:00:10.79

2, gl, 00:00:10.13

2, gl, 00:00:02.97

2, gl, 00:11:19.65

4, gl, 00:00:44.49

2, gl, 00:00:02.6

3, gl, 00:00:43.29

10, g2, 00:00:11.87

25, g5, 00:00:32.21

23, gl, 00:01:23.25

50%

4, gl, 00:02:44.26

2, gl, 00:02:42.29

2, g4, 00:00:07.17

2, gl, 00:00:07.08

U_gl, 00:00:00.91

2, gl, 00:09:21.97

4, g2, 00:00:34.44

1, gl, 00:00:0.84

2, gl, 00:00:30.33

7, gl, 00:00:03.84

12, gl, 00:00:17.22

21, g2, 00:00:41.62

75%

3, gl, 00:00:58.32

2, gl, 00:01:05.96

l ,g l , 00:00:0.91

l ,g l , 00:00:0.99

l ,g l , 00:00:0.20

2, gl, 00:05:35.27

1, gl, 00:00:01.76

1, gl, 00:00:0.14

2, gl, 00:00:03.08

3, gl, 00:00:0.48

4, gl, 00:00:02.26

10, gl, 00:00:06.41

95%
2, gl,
00:00:02.
01
1, gl,
00:00:01.
77
1, gl,
00:00:0.1
6
1, gl,
00:00:0.1
4
1, gl,
00:00:0.0
7
2, gl,
00:00:16.
90
1, gl,
00:00:0.4
7
1, gl,
00:00:0.1
5
1, gl,
00:00:0.4
9
2, g4,
00:00:0.1
6
2, g3,
00:00:0.3
5
5, g2,
00:00:0.8
0

Table 8.6.1: Benchmarking on incompletely specified functions with various percents
of don't cares. The program is very fast for most test functions.

579

Comparison for multi-output results are in Table 8.6.2.

Benchmark
conl75

con195

rd7375

rd7395

5xpl75

5xpl95

rd8475

rd8495

log8mod75

log8mod95

misexl95

dc295

clip95

rd84275

rd84295

rd84475

rd84495

9sym95

sao2175

sao2195

misex6475

misex6495

Table 8.6.2

Inputs
7

7

7

7

7

7

8

8

8

8

8

8

9

8

8

8

8

9

10

10

10

10

' Resu

Outputs
2

2

3

3

10

10

4

4

5

5

7

7

5

Us for la

terms, gen., run-time
10, g1, 00:02:01.56

4, g1, 00:04.67

23, g1, 00:03:39.83

4, g1, 00:00:07.50

62, g1, 00:08:44.08

11, g1, 00:00:26.75

79, g2, 00:20:30.71

9, g1, 00:00:36.16

88, g1, 00:30:12.22

13, g1, 01:08.73

15, g1, 00:04:08.0

9, g2, 00:00:48.15

19, g1, 00:08:40.06

19, g2, 00:06:23.65

3, g1, 00:00:09.24

10, g1, 00:06:12.33

2, g1, 00:00:18.79

2, g1, 00:03:02.78

7, g2, 01:53:55.23

1,g1, 00:15:39.01

1,g1, 01:38:08.4

1,g1, 00:07:56.95

irger and multi-outpu

580

8.7. Discussion and Comparison

Few authors [Green91, Mckenzie93, Reige92, Varma91, Zilic95] have considered the

problem of PPRM (Positive Polarity Reed-Muller form) minimization for single-

output incompletely specified functions. However, with the exception of Zilic and

Vranesic [Zilic95], the algorithms are very inefficient for functions that have a large

number of don't cares, as the algorithm complexity increases with the amount of

unspecified data. Moreover, all these algorithms cannot be adapted to the GRM form,

which is quite different from that of the PPRM forms.

For completely specified data, the GRM form has been proven difficult to minimize.

The minimization of incompletely specified functions is well known to be more

difficult than the minimization of completely specified functions, even for FPRM. For

instance, Chang and Falkowski [Chang98] developed a FPRM minimization algorithm

for a small percentage of don't cares. In an independent research, Zakrevskij

[Zakrevskij95] developed a minimization algorithm for FPRMs that is efficient only

for a high percentage of don't cares.

Previous research has shown the GRM Form to be difficult to minimize for the case of

completely specified data, both using heuristics [Debnath95, Debnath96] and Genetic

Algorithms [DM98, DillOl]. The iGRMMIN software [DM01], was the only

application of the evolutionary or other methods to minimize GRM forms for

581

incompletely specified functions. An application combining heuristic search and GAs

has not been previously applied to the GRM minimization problem.

It is most difficult to minimize incompletely specified functions with ESOPs that have

5-95% don't cares. It can thus be predicted, for GRMs also, that the minimization of

few (<5%) or very many (>95%) don't cares is easier than the case of a medium

amount of don't cares. Our results are that program is faster with more don't cares -

the higher percent of don't cares, the smaller the processing time. But we do not know

and can not know how much quality of results has been sacrificed. Thus to evaluate

the quality of our search an exhaustive program should be written which would be

very inefficient, as we know from Chapter 7. Therefore it was not done.

8.8. Conclusions

The ECPS-based tool ECPS-GRM has been applied to incomplete GRM minimization

and compared to iGRMMIN, the previous algorithm that minimizes incompletely

specified data with Generalized Reed-Muller forms. The Generalized Reed-Muller

(GRM) forms were selected for this research since they are a good trade-off between

cost and high testability [Kalay99]. As much of previous research has presented, the

GRM form of AND-EXOR logic has its merits for its high density and testability. This

thesis research is the first application of the GRM (a canonical AND-EXOR form) to

582

the minimization of incompletely specified multi-output functions for the quantum

NMR related cost functions.

The software implementation of the ECPS-GRM minimization algorithm was tested

over a number of benchmarks. Incompletely specified benchmarks were taken from

the iGRMMIN data set [DillOl]. Starting with completely specified MCNC

benchmarks, a given percentage of outputs were randomly selected for changing to

don't cares. These new benchmarks are available from our PSU research group's web

site at www.ee.pdx.edu/polo/function/MCNC_incompletely_specified. Minimization

test results are given for benchmarks containing 25%, 50%, 75%, and 95% don't

cares.

The future extension of this new algorithm to multi-valued logic, using Galois Field

algebra [Batisda84, Stewart89], is possible.

Summarizing on background of this work, several concepts have contributed to the

results from this chapter. The GRM is a powerful form, because of its canonical,

economical (compact logic), and high testability properties. The AND-EXOR logic

should be applied to not only completely specified data, but to incompletely specified

data as well, which is the more typical case for real-world applications, especially

when realizing finite state machines. Together, all of these approaches utilize logic

minimization heuristics which are based on human experience. This methodology is

583

http://www.ee.pdx.edu/polo/function/MCNC_incompletely_specified

implemented with software. This approach is applicable to traditional computer-

automated digital design and synthesis, as well as quantum search (chapters 4, 6, 12 -

15). But, it is also notable that, as this minimization technique is equally applicable

for a large number of don't cares (strongly unspecified data) that are characteristic to

real-world machine learning problems, it is also applicable to software applications

such as Knowledge Discovery/Data Mining and Evolvable Hardware (see chapters 15

and 16).

Observe also that ECPS-GRM can be run after calculating first the best affine

preprocessor and its mirror postprocessor, as illustrated in Figure 8.8.1. This is another

innovative focus point idea resulting from the overall philosophy of the new approach

to quantum arrays presented in this dissertation.

c

4

GRM

• v

Optimal affine
preprocessor for

best affine polarity

£ 4-

w™

~Y~

f(a,h,c)

Mirror affine
postprocessor

Figure 8.8.1: Illustration of enhancing any GRM synthesis method by using the
concept of the affine preprocessor and its mirror postprocessor. The postprocessor is
required only in the case when the circuit should be an oracle.

584

CHAPTER 9

Affine Extensions to Linearly Independent Logic

First part of this chapter is based on literature. Affine extensions and applications of

this theory to quantum circuits are new. The introductory material is given for

completeness and also to introduce new research results presented in the second part

of this chapter.

9.1. Binary ESOP Logic and Affine Extensions

While not as widely utilized for classical integrated circuit design as the AND-OR

Sum-of-Product (SOP) logic, the exclusive-or sum-of-product (ESOP) form offers

high flexibility paired together with the benefits offered by AND-EXOR logic. This

analysis was made, encouraging future design development with ESOP logic, as

follows [Song93]:

Functions realized by such circuits can have fewer gates, fewer

connections, and take up less area in VLSI and especially, FPGA realizations. They

are also easily testable [Fujiwara86, Pradhan87]. It was shown, both theoretically

and experimentally [Sasao90c, Sasao91d, Sasao91e, Sarabi92, Salmon89] that

ESOPs have on average smaller numbers of terms for both "worst case" and

"average" Boolean functions. It was also shown that ESOPs and all their sub

families have their counterparts in logic with multiple-valued inputs: Multiple-valued

585

Input ESOPs (MIESOPS) [Perkowski89, Sasao94], Multiple-valued Input Generalized

Reed-Muller forms [Schaefer91], Multiple-valued Input Kronecker Reed-Muller forms

(MIKRMs) [Schaefer93], Multiple-valued Input Generalized Reed-Muller Trees

(MIGRMTs) [Perkowski91] and others [Perkowski92]. Logic with multiple-valued

inputs (mv logic, for short) generalizes the classical Boolean logic and finds many

important applications in logic design [Sasao78, Sasao81, Sasao86, Rudell85J.

MIESOPs are never worse than ESOPs, and they were shown to be superior on

several classes of functions [Sasao90c, Sasao91d, Sasao91e].

Previously, one of the major drawbacks to utilizing AND-EXOR logic was that

function minimization was very difficult. Exact algorithms are intensively time

consuming, while heuristic approaches have been limited in both application and

quality. All ESOP algorithms for incomplete functions are weak. With the

development of EXORCISM-MV-2, a software package providing "efficient

minimization of arbitrary ESOP expressions for multiple-output, multiple-valued

input, incompletely specified functions" [Song93], the technology mapping to several

quantum libraries was made more practical for functions with very small percent of

don't cares. In addition to having a very general form, the ESOP has a two-level

circuit implementation, which is easily testable. Functions expressed in ESOP

equations usually require fewer gates than those of other AND-EXOR forms and can

never require more. It is especially true for multi-output functions. They may have

however higher quantum costs.

586

Example 9.1.1: An example of multi output ESOP realized as a quantum cascade is

shown in Figure 9.1.1

o — < $ •

-®-

- $ •

- $ -

4>—&
-Q-

-®

d

x
y

z

Figure 9.1.1: The quantum array for 3-output ESOP: x = ab®bcd, Y = c®cad,
Z = \®ab®d.

The advantage of ESOP is a total freedom of selecting product groups. This can be

however dangerous in terms of cost. As we know only one group with the maximum

number of literals is necessary in GRM. As the quantum cost grows exponentially

with the number of inputs, these product groups are expensive to be realized in

Toffoli gates. On the other hand, the ESOP minimizer can create a very large number

of such groups. In chapter 8 we showed how pushing the minimizer to look for

specific GRM groups avoided the problem of having many groups with the largest

literal costs. Another approach to solve this problem is just to organize the search for

the largest (cheapest) groups first, in order to satisfy the "more-ones-than-zeros"

heuristics. In our approaches, however, the situation is even better, because we can use

not only gates that realize product terms but additionally we can use all kinds of affine

gates. This gives a higher probability to find inexpensive groups (not necessarily

products) that cover many ones and few zeros. This is simply because now our

587

repertoire of patterns of cells to be selected is much larger than for ESOP, FPRM or

other similar circuit types.

In Chapter 7,1 introduced two new basic ideas to quantum logic synthesis: affine gates

and 2-interval symmetric gates. Both these types of gates can be scaled up to many

inputs and they do not show an unpleasant characteristics of Toffoli gates that the

quantum cost goes quickly up with the number of inputs.

Thus, using the new gates, the design choices for the synthesis algorithms are as

shown in Table 9.1.1.

3x3 functions

4x4 functions

5x5 functions

Traditional

NOT, Toffoli, Feynman

New introduced by this thesis

NOT, Toffoli, Feynman, Affine Toffoli,
2-input controls Figure 9.1.1.2

Figure 9.1.1.3

Figure 9.1.1.4

Table 9.1.1: Comparison of old and new permutative gate libraries.

— ^

(a)

588

-e

(b) •e-

G

&

etc

• &

9—*-

(P " Cp

0

w Û '

-®- -9- -©-
B * - A A J) i A

(c)

cp

-ffi-

-4—9

^ " ^ -

2 • -

-9-
-©- -m-

-&—n-

S—•-

-

a

-®-

c — V —I V I 1 i/t
~z—i i„„."„„„„i {

_ 1

tffftftfrnt \ f f ir«»»riii \ /

i 1

Hv h
(d)

Figure 9.1.2: All gates to be used for synthesis of 3x3 permutative functions, (a)
traditional gates, (b) 2-controlled gates, examples, (c) Affine Toffoli gates, examples,
they include Fredkin and Miller gates as special cases, (d) Peres family gates,
examples.

-* * -

Q) Q

(a) H v H v H v IrM

589

(b)

(c)
d

-£V

B—«—ffi-

a
b

c

d

a — •

b^k
e —Q f-

-e-

i—*-

vHv Ft

VL/

CD CD

-m-

Fh

Figure 9.1.3: Examples of all types of 4x4 gates used in our synthesis algorithms, (a)
S2'3 (a, b, c) ® d, (b) Affine Toffoli gates, (c) Affine Peres family gates.

a

6—0
c —

#—e

d-i$
e — - #

ffi-

3-

&-

-w- ® - »

vp

Figure 9.1.4: Some examples of (affine) inexpensive 5*5 gates that are used in our
synthesis algorithms.

9.2. Possible approaches of selecting functions to be EXOR-ed

In section 9.1 it was shown that each output in the quantum array can be realized not

only as an ESOP but also as an EXOR of certain inexpensive functions. The following

possibilities exist:

590

1. These inexpensive functions are pre-specified as an Linearly Independent

Logic family base functions. Examples are base functions of PPRM, FPRM or

GRM.

2. These functions are pre-specified but they are not sets of base functions but

union of sets of all base functions. For instance, the set of all GRM literal

products as found in section 8.1 is the unions of all sets of GRM base

functions. The problem of selecting the best groups becomes thus more

difficult.

3. These functions not considered now as base functions. They are arbitrary and

are selected dynamically to minimize the number of patterns in AND/EXOR

decomposition.

All these methods are related on one hand to the material presented in chapters 7 and 8

and on the other hand to the concepts of the Linearly Independent Logic. We have

first to review some minimal background of LI logic. LI logic can be discussed in

relation to decision diagrams and matrices. We will cover both approaches.

9.3. Linearly Independent Zhegalkin Logic

Reed-Muller Logic Theory was expanded with the introduction of the Generalized

Kronecker Expansions to the Zhegalkin Hierarchy [Perkowski97a, Perkowski97c].

591

For instance, the Zhegalkin Kronecker Reed-Muller Form is one of items from this

hierarchy.

Zhegalkin Expansions are linearly independent, AND/EXOR canonical forms. The

Zhegalkin Kronecker Reed-Muller Form is obtained when a single expansion from the

set of all possible Zhegalkin Expansions is applied in every level of the expansion tree

(a variable). Additionally, "the GRM expansion with functional coefficients is a

special case of the LI (Linearly Independent) Expansion with functional coefficients"

[Perkowski97b]. Thus a method was presented in chapter 8 such that an expansion

can be determined, enabling a valid GRM with linear independence to be found, given

its defining logic table. With this understanding, the Reed-Muller Logic Hierarchy

can be related to the Zhegalkin Hierarchy, as described by forms, trees, and decision

diagrams [Perkowski97a, Perkowski97c]. The Zhegalkin Hierarchy is a subset of the

Linearly Independent Logic Hierarchy [Perkowski97b]. The linearly independent

logic and the LI hierarchy include the Reed-Muller Hierarchy of Green and Sasao and

all other known and future AND/EXOR forms. It is a very general and powerful

approach and our chapter here only scratches the surface of the problem. But we give

the first applications of LI to quantum circuit synthesis.

In this section, first the relations between the Reed-Muller, Zhegalkin, and Linearly

Independent Hierarchies will be addressed. An example will be given to present a

method to compute a multi-variable GRM Expansion in terms of LI theory. As this is

592

an important component in Zhegalkin Logic, in this manner, Zhegalkin Logic is first

informally introduced. Following which, a formal presentation of the Zhegalkin Logic

Family is given, with an example. As was previously alluded to, the Reed-Muller

Logic Hierarchy can be related to the Zhegalkin and Linearly Independent Hierarchies

by demonstrating that all expansions from the set of expansions for a given function

are linearly independent. Since the GRM Form in the RM Hierarchy is most central to

this research, the analogous form in the Zhegalkin Hierarchy will be here examined.

A method to compute these multi-variable GRM Expansions assuming that the

coefficients of the variables are sub-functions of the group of the remaining input

variables is here given. First, the GRM Expansion is calculated from the given

function f(xi, ... , xn) for a subset of variables (xi, .,., xm). The sub-functions SF; are

derived from the original function and shown to be linearly independent. This process

is described by the following theorem:

Theorem 9.3.1: [Perkowski97b] "Given is a function f(xj,, xm,, Xy) such that the

set of input variables {xj, ..., XyJ includes properly the set {xj ,...., XyyJ. There exists a

unique expansion, f(xj.-.-x^ =fg(xj,...., xm)SFQ(xm+],...,xn) (D

fi(xi,....,xm)SFi(xm+i,...,xn) efs(xi,....,xm)SFs(xm+i,...,xn)e... e

f2n-l(xl>----> xm)^2n-l(xm+l'---'xn) wnere functions f are the given linearly

independent (LI) functions ofm variables and the coefficient functions (also called the

593

"data input functions ") SF/, of the remaining input variables, are determined from the

coefficient vector,

CV = M-! *FV

where FV(xm+j, ..., x^) is afunctional vector of all 2m cofactors ofF, with respect to

variables from the set {xj, ..., x ^ . In general, M is the matrix of 2m cofactors of F

with respect to variables from the set {xj, ..., x ^ . Thus, when m=n, the cofactors

with respect to variables xj, ..., xm become minterms on these variables (and CV is

the vector of coefficients for some given canonical form) " [Perkowski97b].

The "GRM Universal Module " can be used functionally as a new type of expansion,

by selecting a GRM expression from all possible GRM expressions to expand about

(in contrast to the conventional Shannon and Davio Expansions from Chapter 3). This

technique is illustrated in Example 9.3.1 below.

Example 9.3.1: The KMap in Figure 9.3.1 presents function f(A,B,C,D). We

arbitrarily decide to take GRMs of 2 variables. Choosing one GRM Expansion, out of

sixteen possible GRM Expansions for two variables provides a unique expansion for

f(A,B,C,D).

594

\CD
ABX 00 01 11 10

00

01

11

10

0

0
1

1

1

0
1

0

0
1

0
0

1
1

0
1

Figure 9.3.1: Function of four variables to Example 9.3.1.

Our goal is to calculate the spectral coefficients by using the equation,

CV = M-! *FV.

First, the functional vector (FV) of cofactors is derived as shown in Figure 9.3.2 from

the rows of the given KMap from Figure 9.3.1. The vector FV is as follows:

FV

— —
f A 'B ' (C,D)

f A ' B (C , D)

f A B ' (C , D)

^ A B (C . D)

1

—
C @ D

C
C

D'

Figure 9.3.2: Developing the Vector FV from the K-map of Figure 9.3.1. The vector
of functions on the right represents the cofactors for respective double-variable
cofactors f A,BJ

{C'D)from the left. Cofactor fjj (C,D) corresponds to row A = 0, B = 0

of the KMap in Figure 9.3.1., etc.

The matrix M can be determined by selecting a GRM (from the sixteen possible GRM

forms) and solving for all values of (A,B). Demonstrating this process step-by-step,

let the selected GRM be as follows.

595

f(A,B,C,D) = AB.SF7I(C, D) 0 BSFB(C,D) 0 ASFA(C,D) © SFi(C,D)

Substituting A and B values to the above equation for AB = (0,0), (0,1), (1,0), and

(1,1) results in four equations. These are:

A=0, B=0: f = 1 * SF7I (C, D) © 0 * SFB(C, D) © 0 * SFA(C, D) © 1 * SFi(C, D)

A=0, B=l: f = 0 * SFJB (C, D) © 1 * SFB(C, D) © 0 * SFA(C, D) © 1* SFi(C, D)

A=l, B=0: f = 0 * SFAB(C, D) © 0 * SFB(C, D) © 1* SFA(C, D) © 1* SFi(C, D)

A=l, B=l: f = 0* SFJB(C, D) © 1* SFB(C, D) © 1* SFA(C, D) © 1* SF,(C, D)

Equations 9.3.1

We see that the coefficients of the above four equations 9.3.1 can be rewritten to a

non-singular matrix M that is given in Figure 9.3.3.

A'B'B A 1

SF AB"(C,D)

* SFB(C,D)
SFA(C,D)
SF i (C,D)

(a) (b)

Figure 9.3.3: (a) Matrix M, (b) The matrix equation for Figure 9.3.1. The Rows of
matrix M correspond to minterms and the columns correspond to the base functions
AB,A and 1.

M =
1 0 0 1

0 1 0 1

0 0 1 1

0 1 1 1

M*CV:
A'B'
A"B
AB'
AB

1 0 0 1
0 1 0 1
0 0 1 1
0 1 1 1

596

Using matrix algebra notation we obtain M * CV = FV , thus M"1 FV = CV. This

leads to the matrix equation from Figure 9.3.4.

fA'B<C,D)
fA'B(C,D)
fAB'(C,D)
fAB(C,D)

SF r 5 (C,D)
SFB(C,D)
SFA(C,D)
SF ! (C,D)

Figure 9.3.4: Matrix equation using the inverse matrix M where M FV = CV is the
vector of spectral coefficient functions.

Our main equation is thus now given in Figure 9.3.5.

P
©
U U U Q

SFAB.(C,D)
SFB(B,D)
SFA(A,D)
SF ! (C,D)

1 1 1 1
0 0 1 1
0 1 0 1
0 1 1 1

*

Figure 9.3.5: Calculation of spectral coefficients. In general, the base functions on
variables A and B are of arbitrary type, and the linear combinations of cofactors on
variables C and D are also of arbitrary type. Thus LI extends from AND/EXOR logic
to arbitrary operators.

To verify matrix M"1, it must be that M * M"1 is a unity matrix. This is demonstrated

in Figure 9.3.6.

M"1FV = CV =
1 1 1 1
0 0 1 1
0 1 0 1
0 1 1 1

c
C © D
1
D

597

M M"
1 0 0 1
0 1 0 1
0 0 1 1
0 1 1 1

X

1 1 1 1
0 0 1 1
0 1 0 1
0 1 1 1

1 1+1=0 1+1=0 1+1=0
0 1 1+1=0 1+1=0
0 1+1=0 1 1+1=0
0 1+1=0 1+1=0 1+1 + 1=1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

Figure 9.3.6: Verification of matrix equation for matrices MandM .

Now substituting the data into the previous function in the GRM Form,

f(A,B,C,D) = AB .SFjz (C, D) © B * SFB(C, D) ©

A * SFA(C, D) 0 1 * SFi(C, D)

^ AB (Q 0 B(C © D) © A(l) © 1(D)

AB C®BC®BD ©A©D

This solution expression corresponds directly to the circuit shown in Figure 9.3.7a.

The circuit on the left of this figure comes directly from the above expansion and the

circuit on the right is obtained from this first circuit using the flattening operation (X

© Y) Z = XZ © YZ. The general pattern for this kind of LI expansions without

flattening is given in Figure 9.3.7b. An LI pattern that is even more general is given in

Figure 9.3.7c.

598

(a)

A'

B'q

B
C
B _r
D

A'
D

>

-e- -e- - A

- B

- C

- D

I— 0

B - ^ •e-

c

D

0

0

S F _
A B

SF1

•e-

SFB SF' SFA SF1
A

& • e

SF, SF1 ,

^ A T B, C, D)

(b)

A -

B -

0 -

C -
D -
0 -

n

(A,B)

SF,
(C,D)

V.

•

•4 > —

"\

Ll"1i
(A,B)

SF1,
(C,D)

V

Ll2
(A,B)

SF2
(C,D)

V

-•—

- i i —

' ^

u-1
2

(A,B)

SF"12
(C,D)

V

Ll3

(A,B)

SF3
(C,D)

(
\

m

*\—

'>,

Ll"13
(A,B)

SF13
(C,D)

V

(A,B)

SF4
(C,D)

(
\

HI

-1 I

' >

(A,B)

SF14
(C,D)

V

(c)

Figure 9.3.7: Realizations of LI expansions based circuits (a) Flattening of the circuit
obtained from LI spectral expansion. Flattening sometimes simplifies the circuit, but
not always, (b) The general pattern of LI expansion with base functions {1B, A, B, 1},
(c) Another general pattern of LI spectral expansion. Note that M is an arbitrary
nonsingular matrix. Note also the regularity of this and previous circuit.

599

The quantum array for the circuit from Figure 9.3.7a before flattening is shown in

Figure 9.3.8.

A -
B -
C -
D -
0 — $ •

W T

?—©•

- $ - .4

c

I

Figure 9.3.8: The quantum array directly corresponds to the circuit from the left part
of Figure 9.3.7. No mirror circuit is created here to restore input D and the circuit has
only one ancila bit. If one wants to use this circuit as an oracle with input variables A,
B, C, D, the mirror circuit to restore D must be added as in previous examples.

Let us observe now few very important facts:

1. The basis functions in the Linearly Independent Logic are not only products of

literals as in Reed-Muller Logic but arbitrary linearly independent Boolean

basis functions.

2. The basis functions include thus functions and component operators such as a

+ b, a + b , a e b, a • b, their combinations and other functions presented in

Chapters 3, 4, 7 and 8.

3. All kinds of new functions (gates) that are introduced in this thesis because of

their low quantum cost can be included to sets of basis functions of LI

expansions. This explains the enormously high power of LI logic in quantum

array synthesis that is only partially investigated in my dissertation.

4. Basis functions can be created dynamically for a given function or created and

pre-specified once for all for the synthesis algorithms.

600

5. Unions of sets of basis functions are also useful in synthesis, but using them

makes choices of groups more difficult.

A brief description of the Zhegalkin Logic definitions and hierarchy is next given. We

will define concepts useful to create sets of base functions.

1. First observe that certain decomposition of an arbitrary function is possible in

which, similarly to the Ashenhurst-Curtis Decomposition, the set of all input

variables is partitioned into several, disjoint and non-empty subsets, such that

the union of all these subsets equals the initial set of variables.

2. Now if the subset of variables from this decomposition has only a single

variable then the Shannon Expansion, the Positive Davio Expansion, or the

Negative Davio Expansion can be applied to the function for that variable.

This creates a standard expansion node as in Chapters 3 and 4, with two edges

going out.

3. If the set of variables has more than one variable the expansion node is called

the multi-variable node and then the GRM Expansion of certain polarity is

applied to this node. It is called the block expansion.

Definition 9.3.1: The Zhegalkin Single Polarity Reed-Muller Form is obtained when

the expansion is an arbitrary Zhegalkin Expansion (linearly independent, AND/EXOR

601

canonical form). The expansion must be the same in all levels of the tree and the input

variables must be ordered.

The Zhegalkin Single Polarity Reed-Muller expansion is a counterpart (a powerful

generalization) of the Positive Davio, Negative Davio, and Shannon Expansions.

Definition 9.3.2: The Zhegalkin Kronecker Reed-Muller Form (ZKRM) is obtained

when a single expansion, from the set of all possible Zhegalkin Expansions, is applied

in every level. Thus, in every level of the tree the expansion type is the same, but

various expansion types can be used on different levels of the tree.

This expansion is a generalization of FPRM expansions.

Definition 9.3.3: The Zhegalkin Pseudo-Kronecker Reed-Muller Form (ZPKRM) is

obtained when any subset of expansion types is applied, with any subset of expansion

types per level, for ordered variables.

This expansion is a generalization of Pseudo-Kronecker expansions which use Davio

expansions.

602

Definition 9.3.4: The Zhegalkin Free Kronecker Reed-Muller Form (ZFKRM) is

obtained when any expansions, from the set of all possible Zhegalkin Expansions, are

applied with any ordering of variables. This is also called free order of variables.

This expansion is a generalization of Free-Kronecker expansions which use Davio

expansions and free variable orderings in branches.

As an example of the application of decision diagrams from the Zhegalkin Hierarchy,

a Generalized Kronecker Decision Diagram is shown in Figure 9.3.9. (This same

general method may be applied for all other canonical forms.) In Figure 9.3.9, the

first level describes a Shannon Expansion with respect to xi and the second level gives

an arbitrary GRJVI expansion with respect to variables X2 and X3. The GRM polarities

applied to both the expansion components should be the same. The branches of every

node are labeled by linearly independent base functions.

GRM for GRM for
x 2x 3 X2X3

JVJV - JVJV
Figure 9.3.9: The principle of mixing single variable expansions (in this case -
Shannon applied to variable x; on top) and the GRM expansions on bottom.

603

Example 9.3.2:

Given f(xi, x2, X3) = *i © *2x3 © *ix2 © 1, perform the expansions shown in the

decision diagram in Figure 9.3.9.

To begin, the Shannon Expansion in level 1 must be applied to the given function.

Recall that the Shannon Expansion is given as f = x f0 © xfi. First the cofactors for

level one are calculated for fx=0 and fx=i with respect to xi.

fx=o = 1 © *2 x3 © x2 © 1 = x2 x3 © x2

fx=i = 0 © x2 x3 © 0 © 1 = x2 x3 © 1

The decision diagram with the Shannon cofactors shown (in dashed lines) is given in

Figure 9.3.10. These are not ordinarily shown in diagrams and are only given here for

convenience of explanation.

x l ^

x2x-$®x2

1
GRM for

x2x3

s

^ C i

*2X3©1

1
GRM for

x2x3

JVJl WJS
Figure 9.3.10: Calculating of cofactors of xj to be further expanded in GRMs.

604

Next, an arbitrarily selected GRM for the variables x2 and x3 is given as f(xi, x2, X3) =

X2 © *3 © x2 X3 © 1. This GRM is applied for all branches of level two of the

decision diagram. This is shown in Figure 9.3.11. Obviously, as in DDs the

exhaustive or intelligent search is necessary to find the best decompositions and

polarities.

Figure 9.3.11: GRM is applied for all branches of level two of the decision diagram.
Note that the unmarked terminals have a coefficient of zero and the dashed boxes are
not ordinarily shown.

The algebraic expression can be built from the decision diagram by combining the

cofactors and expansion variables in the standard way. Observing Figure 9.3.11, this

is done as follows:

f(Xi,X2,X3) =(X2©^2X 3)^ l©(^2X3©l)Xi

= xi x2 © *i x2 x3 © xi x2 x3 © xi

605

= *i x2 © x2 x3(*l © xi) ffi xi

= *1 X2 © *2 X3 © X!

= xi x2 © x2 x3 © *l © 1

Thus, in this particular case the original given function is re-built.

The corresponding quantum oracle is presented in Figure 9.3.12. Note the use of

inverters and the ancilla bit set to 1 initially.

x\ — ^ — i -

a?2

X-3

1

r ^
-̂ —r

i i -
—£p— input restoration

- * - / (X1 ,2T2 ,X3)

Figure 9.3.12: The final quantum oracle calculated for the function from Example
9.3.2.

Observe that only the simplest concept from Definitions 9.3.1 - 9.3.4 was illustrated

in our Example 9.3.2.

The methods presented in this section allow creating multi-level AND-EXOR

decomposed structures based on trees and DAGs. They allow also creating families of

base functions. The methods of obtaining matrices of base functions efficiently are of

our interest in the remaining part of this chapter.

606

In next sections we will present some families of LI base functions and their

corresponding circuits.

9.4. Family of LI base functions using AND and OR operators.

One example of LI circuits are the AND-OR circuits in which the base functions are

cascades of AND and OR gates. The family of functions of this type for 3 variables is

shown in Figure 9.4.1. Figure 9.4.1a presents symbolically all gates which have either

AND or OR gate for every variable, starting with constant 0 on the top. The equation

for each gate g; i = 1, ...8 is written below the gate. Figure 9.4.1b presents the

enumeration of minterms. The KMaps corresponding to all g; functions of certain

AND-OR orthogonal family of base functions are given in Figure 9.4.1c. Each

minterm present in gk but absent in gk-i is shown in grey. Equations relating g; and mi

are presented in Figure 9.4.Id. LI Matrix is given in Figure 9.4.le.

Based on Linear Independent (LI) equations from Figure 9.4.Id we obtain the

following set of linear equations.

607

m7 = gi

m3 = gi © g2

m5 = 92 © g3

mi = g3 © g4

me = g4 © gs

m4 = ge © g?

mo = g7© gs

These equations can be used to find canonical expansions of every function in form

Of course, like in Chapters 7 and 8, we can create affine circuits based on this LI

family. An example of a circuit with affine polarity and standard polarity as

preprocessors and postprocessor and the AND-OR circuit in the middle between them

is presented in Figure 9.4.2.

(a + 0) be (a*° + b) c (a+0 + b)c (a*0)»b +c (a+0)«b +c (a«0)+b+c a+0+b+c
= be = (a+b)c = c = ab+c = b+c =a+b+c

9i 92 93 94 9s 96 97

(a)

608

at) 0 1

00
01
11
10

m0

rri2

m6

ITI4

mi

1TI3

m7

m5

(b)

v y

m

V7
\ J

f N

V J

/""

m

Y 'N

J
92 93 94 95 96 97 9s

(c)

g i = m 7

g2 = m7 e m3

g3 = m 7 © m 3 © m5

g4 = m 7 © m3 © 1115 © mi

gs = m 7 © m6 © 1H5 © 1113 © mi

g6 = m 7 © m6 © ms © m3 © m2 © mi

g7 = m 7 © m6 © ms © 1114 © m 3 © m2 © mi

gg = m 7 © m6 © ms © mi. © 1113 © rri2 © mi © mo

(d)

609

mo
m1

nri2

m3

(TI4

m5

m6

m7

gi
0

0

0

0

0

0

0

1

92

0

0

0

1

0

0

0

1

93

0

0

0

1

0

1

0

1

94

0

1

0

1

0

1

0

1

95

0

1

0

1

0

1

1

1

96

0

1

1

1

0

1

1

1

97

0
98

(e) •" ' I -

Figure 9.4.1: The AND/OR orthogonal family, (a) Schematic diagram of all base
functions in AND/OR orthogonal LI family, (b) notation for minterms, (c) KMaps of
base functions, new minterms introduced by each successive function gi are given in
grey color, (d) equations for some functions gt, (e) LI Matrix.

•e-

-e-
Standard
polarity

& -e-
• &

° 0 CD Affine
polarity AND-OR

kernel circuit

^ > ^ ~

•e-

Affine
polarity
mirror

•e-

^

Standard
polarity
mirror

F (a, b, c)

Figure 9.4.2: A general pattern of a complex LI affine circuit that is composed of
layers from left to right: the standard polarity layer - a preprocessor, the affine
polarity preprocessor, the AND-OR kernel circuit with some subset of base functions
from Figure 9.4.1, the affine polarity postprocessor being a mirror of the affine
polarity preprocessor and the standard polarity postprocessor being a mirror of the
standard polarity preprocessor.

610

a.
b
c

a

b

c

444-

a

a®b

f jCP

-i-i—
a | a

a©Z>©c]tf©Z©C|

a

b
a ®c\

a

a©Z>

affic

0-
a

ia86
I

b®c

a i a

b i b

ifc © a c

4ft-

tf © c

b

Figure 9.4.3: Part of the pattern for creating all linear combinations of inputs for the

affine preprocessor of 3 variables.

It is important in the synthesis of such circuits to be able to generate all 3><3 linear

functions for affine preprocessors without ancilla bits. This procedure is illustrated in

Figure 9.4.3 and can be a base of the affine polarity generation algorithm. This type of

expansions is good to create the interval functions [my, , m;k] of segments of

successive minterms which have applications in cryptography.

Concluding, this section showed another example of LI family of basis functions that

can be well realized in a quantum array and finds some useful applications. We

showed also how every LI expansion can be enhanced with standard and affine

polarities. Combination of these two methods allows to create very efficient quantum

arrays, when we know what base family to select or when we can pay time to consider

several base families.

611

9.5. How to Create Inexpensive LI Families?

In the first part of this chapter I introduced LI logic as a logic with linearly-

independent (orthogonal) matrices describing families of base functions. Next I

showed one illustrative example for several particular families of functions

represented as gates and proved that the matrix for each of them is orthogonal. In

sections 9.3 and 9.4 I gave more examples of LI families. This constitutes a

fundament of creating and using base functions which will be used in this and next

sections of this chapter.

The practical question is this:

1. We know some set SI of inexpensive gates on a set of variables and

the functions of these gates are not a base family

2. We want to add to SI some set SA of additional gates so that SI u SA

is certain base family

3. The set SI u SA of gates should be not more expensive than the known

base families of gates.

This way, we can create new LI families to be used in efficient synthesis algorithms.

Some tricks that we can use to create such sets SI u SA are the following:

612

1) SI is a set of affine gates of all types including the 2-interval gates.

2) SI is built from few gates of a set of root gates other than square-root-of-NOT.

For instance gate G = UNOT .

3) SI u SA is created by performing certain operations on known LI matrices

such as matrices of any canonical AND-EXOR logic families (PPRM, FPRM,

KRM, GRM, etc) or any other family such as those from previous sections of

this chapter.

Some other methods of this type will be illustrated below.

For instance in case of 3-variable functions we know that functions a, b, c, ab, ac, be,

and ab e ac © be can be realized in expensively using only CV, CV ,̂ CNOT base (

see Figure 9.5.1.1 and 9.5.1.4).

Unfortunately the set of functions SI(PB) = { 1, a, b, c, ab, ac, be, g = ab © ac © be }

is not a base family as it does not allow to realize odd functions. Moreover, g is

redundant as g = ab © ac © be. However, using pseudo-base SI(PB) as above (and

inverters) we can realize all even functions efficiently. We just need to add the

function abc to realize all odd functions. In every odd function we will use however

only one gate realizing minterm a1 b* ck (Figure 9.5.1.2).

613

9.5.1. Use of Various Controlled Primitives to create inexpensive gates

for set SI.

y/V HVF

- R ^

^
LT-J

rf —^v

Figure 9.5.1.1: Realization of double-controlled V gate from single-controlled G and
G^ gates. This is a fundamental approach to synthesize big Toffoli and Peres gates.
Peres family gates are created when the input-restoring circuits from the dotted boxes
at right are removed (one gate here).

a —F-

d-^vHvHn1*]^

• = H = -

vv7

* -

v ^

4h^

w

• J !

- I I

J l

-I

Figure 9.5.1.2: Realization of CCCNOT using double-controlled-V, single controlled
G, Gf and CNOT.

<

— \

i

' - \ '" - \

i

r

u_o_ ai
00

01

11

10

V

V

vvv
V

fr\ 0 al
00

01

11

10

V

V

N V

V

(a) (b)

Figure 9.5.1.3: The first auxiliary Circuit (at left in Figure 9.5.1.2) to calculate the 3-
controlled Toffoli (a) Circuit, (b) QMap analysis.

614

rfH ^ /T7tN,/|7t

^ ^

vV\-

00

01

11

10

VF
M/F

VF

VF
VF/F
vVF
VF/F

a t \
00

01

10

VF

VF

VF

VF

(a) (b)

Figure 9.5.1.4: The analysis of the second auxiliary circuit from Figure 9.5.1.2. (a)
the circuit, (b) its QMap analysis.

00

01

11

10

V

V

V N

V

ab^ 0
00

01

© , 1

10

v+

v+

V+N

V+

a b ^ 0 _

00

01

11

10

N

Figure 9.5.1.5: The final QMap analysis of the circuit from Figure 9.5.1.2.

Figure 9.5.1.1 shows how to build the double-controlled-V gate from G and G^ gates.

Having now such a gate we can create a triple-controlled Toffoli gate with no ancilla

bits (Figure 9.5.1.2). This way, we can create large families of SI base functions.

In my research I created many function candidates for inexpensive SI sets. To create

such functions I needed a method to verify my solutions. Examples of using such

analysis method for component subfunctions to verify the correctness of our

generation method are presented in Figure 9.5.1.3, Figure 9.5.1.4 and Figure 9.5.1.5.

615

As a result of this generation process, we dispose a 3-controlled Toffoli gate with no

ancilla bits to be used in odd functions of a, b, c and potentially in pair functions

(Figure 9.5.1.6). The same circuit can be built with the CV-based 3x3 Toffoli gates

(Figure 9.5.1.7) which method requires however an ancilla qubit.

a

h

c

d

-&

-9 — #

LP

QU -y? abc 60 abc © d

Figure 9.5.1.6: The (inefficient) quantum array for ESOP with 4*4 Toffoli gates.
This is a minterm pair function of 3 variables.

0
c

m—*—m

-®

• &

^ ^

- $ -

vp

^

• ^

ibc^aMiBd

Figure 9.5.1.7: 2-inputs Toffoli for 3 variable ESOP. Realization of the circuit from
Figure 9.5.1.6 using 3*3 Toffoli. When we replace all 3*3 Toffoli gates with their
CV/Cr 2x2 gates we can understand how complex is in reality the quantum
sequence of NMR pulses to realize the seemingly "simple" gate from Figure 9.5.1.6.

a — $ — # •

c —$-
0 - $

-®-
-m-
±—-$-

?P— a (&©c) ©a

Figure 9.5.1.8: Using factorized GRM for the function of the circuit from Figure
9.5.1.6. This is the least expensive circuit for a "minterm pair" function of 3
variables.

616

$ -a
b

c — $ -

0 - #

w ~

cp
w

• ^ -

'JJ - ^ -

a (6$c) S a c

Figure 9.5.1.9: Modification of the circuit from Figure 9.5.1.8 to make it an oracle.

0

.0
e

-m

T—Q-

-® -ff

• # •

vjj

- $ -

& ^
- ^

-©-

- #

- $ -

^-

i j j

-̂ î

4fr- afcJ®5ferf©e

Figure 9.5.1.10: Realization of the "minterm pair" function of 4 variables

abed® ab cd®e using 3x3 Toffoli and two ancilla qubits.

0

a

b

c

d CP Cp f 0

-©
.̂JJ

T Cp •

CD » CD Cp

sXT" -ft

^ -

'ip

ah(c®d)ecd(a&)ee

Figure 9.5.1.11: Naive factorization for the oracle type circuit for

abed® abcd®e = ab(c®d)®cd(d®b)®e two ancilla qubits for the "minterm
pair" function of 4 variables. This is the least expensive realization of the "minterm
pair"function of 4 variables.

617

No. of
Variables

3

3

4

4

How
Calculated?

ESOP

GRM

ESOP

GRM

To

6

2

10

5

Fe

0

2

0

4

N

5

6

8

6

ANC

2

1

3

2

Total Cost
2x2 in gates

30

11

50

29

Table 9.5.1.1: Cost calculations for minterm pair gates for three and four variables
Table for minterm pair functions. To = number of standard Toffoli gates, Fe =
number ofFeynman gates, N = number of inverters, ANC = number ofamcilla bits.

- ^ - $

- $ - «—©

• # •

-&

(a © fr) cd ® afc f c ® d j

d
a& fc ® d J garbage

Figure 9.5.1.12: The circuit for f = ab{c@d)®c d {a®b) with one ancilla bit which is
not designed to be an oracle.

Using the above techniques I generated several candidates for base LI functions. Some

examples of them are given in Figures 9.5.1.7 - 9.5.1.12. It is hard to say if the design

of these functions based on CV/CV^ or based on CG/CG^ 2x2 quantum primitives is

better. It depends on technology and functions to be constructed:

1. Observe that every circuit can be rewritten to another function and re-

synthesized (Figure 9.5.8) which may again affect the choice of the component

gates.

618

2. The CV and CG gates can be mixed within a single gate (Figure 9.5.1.2).

3. The solution may depend also on the requirements for our circuit: is this circuit

supposed to be an oracle or not necessarily an oracle (see Figure 9.5.1.9).

4. Finally, the answer may depend on the size of the gate - Figure 9.5.1.11 has a

case of a HD4 pair in a 4 wire space of qubits a, b, c, d - adding one ancilla

qubit was necessary.

As every function can be decomposed to dual-cube functions (chapter 7) it is

interesting to know the quantum costs of minterm pairs functions versus single

minterm functions. Table 9.5.1.1 shows that for functions of 3 and variables synthesis

with dual-cube gates leads always to smaller quantum costs. Such functions should be

then included to the base function families.

9.5.2. Symmetric Base Functions.

Another topic related to the generation of base functions sets SI or SI u SA is the

generation of the inexpensive circuits to realize symmetric functions. Figure 9.5.2.1a

presents the realization of some symmetric functions. Observe that all single-index

symmetric function can be obtained by exoring these inexpensive symmetric

functions. For instance S1'2 = S2'3 © S1'3 (Figure 9.5.2.1b), S2 = S3 ® S2'3, S1 = S3 e

S1'3.

619

0 — $ •

(a)

•w—t

V H V ' H I

s—*

a —<£-

6—®-

1

^23 0 3 »123

b

e

(b)

Tl
V

c • — f

0

* - © — t

12

V H F H F

s2
F h

Figure 9.5.2.1: Examples of inexpensive arrays for symmetric functions of three
variables with only one ancilla qubit each.

9.5.3. Big Base Functions.

When creating base functions for functions with many variables the typical questions

are of the following types:

a) What is the best cost of group abed in the space of four quantum wires?

b) What is the best cost of group abed in the space of five wires?

c) What is the best cost of the "minterm pair" functions such as abed ffi ab cd in

the space of four wires? In the space of five wires? Etc.

Some design principles to illustrate these questions are given in Figure 9.5.3.1.

620

a -

I. 0

j
a
f!
u

—o

f ^ 1
'4̂ 1

N

1 | —

t /""i
H"1

\
V

O
V

a
b

c

d

f

(a)

L*U

'"P""1© '""

-m

LT*U

-©-

a
h
c

d
e

(b)

ab ® e

d®c(ab@e)=d®abcBce

d®c(ab§e)=d®ab(&cdS>ce=d®abc

(c)

Figure 9.5.3.1: Typical tricks to realize large gates, (a) gate f= abd realized in the
space of 5 qubits (wires), (b) gate f = abce realized in the space of 6 qubits. Each of
the 4x4 Toffoli gates can be realized with G, G^ gates and no ancilla or V, V' gates
and no ancilla as in Figure 9.5.3.1c. (c) realization of 4x4 Toffoli gate in the space of
5 wires with no ancilla bits.

We can prove the following Theorem.

621

Theorem 9.5.3.1: The (n - 1) x (n - 1) Toffoli gate can be build in the space of n

wires.

Proof. See Figure 9.5.3.1.

Based on Theorem 9.5.3.1 every function of n - 1 variables can be realized with n + 1

qubits and every even function of n - 1 variables can be realized with qubits.

Tables similar to Table 9.5.3.1 can be created for the following categories of

functions:

a) Odd functions of single minterm for n = 3, 4, 5, etc.

b) 2-interval functions,

c) Symmetric functions.

Such tables help to create libraries of inexpensive gates for re-use as the base

functions in LI families.

9.5.4. Creating LI matrices from LI matrices by operating on them.

Rows of a LI matrix represent functions of the LI basis functions family described by

this matrix. For instance Figure 9.5.4.1 presents a LI matrix of FPRM with base

functions 1, a, b and a b . Because when we exor rows of LI matrix we obtain another

622

LI matrix, by exoring functions corresponding to rows we obtain a new LI family of

(new) base functions. This exoring can be done one at a time, as shown at the right of

the matrix in Figure 9.5.4.1 (b ®ab =(l®a)b =ab). The new family of base functions

is {1, a,b and a b }. So we obtain certain GRM expansion from an FPRM

expansion, nothing new conceptually, but this is only one example of creating bases.

Applying this method to larger matrices in all possible ways we can however create

(in theory) any new LI family based on binary logic (for instance Figure 9.5.4.2

creates base functions that do not exist in GRM).

a b

1

1

1

1

a b

1

1

0

0

a b

1

0

1

0

a b

1

0

0

0

1

a

b~\
—

a b

1

a~

b~

a b

Figure 9.5.4.1: Spectral Matrix with minterms as columns and basis functions as rows
- this is a change of basis matrix.

1
a
b
c

abN

ac
be"
abc

1
a
b
c
ab

be
abc

1
a
b
c

a b
a(b©c)

be
be a

1
a
b
c

ab
a(b©c)

be -
be a

a b
c

ab
a(b0c)
bca

be a

Figure 9.5.4.2: Step-by-Step generation of a sequence of families of Linearly
Independent base functions using exoring and starting from PPRM base. Many types
of butterfly diagrams and recursive (tree search) algorithms can be adapted to perfom
this kind of processing to create new orthogonal bases.

623

Figure 9.5.4.2 gives example of generating families of base functions. The exoring

operations are drawn as arrows from two arguments of the EXOR operator. Thus for

instance the new base function a (b © c) is created by Exoring base function ab and

ac. This new base function replaces base function ac.

• & •

' — * 1 %r-\V_

^Hn—05
• &

0

Figure 9.5.4.3: Realization of oracle f = abc with two ancilla bits and 2 x 2 quantum
primitives. Observe mirror at right. The increased cost of this recursive expansion can
be realized when we look to the right part of this figure. This helps to appreciate the
methods to reduce the cost of "big gates ".

S2'3 (a, b, c, d, e) (a © b © c)(d © e) © S2'3 (a, b, c, d, e)

Figure 9.5.4.4: An Oracle for function o ' (a, b, c, d, e) ® (a@b®c)* (d®e). This
complex affine circuit is a composition of circuit for the 2 — interval function S>' (a, b,
c, d, e) and the affine Toffoli gate (a®bee)* (d®e). Observe mirrors. The linear
circuit in qubits a, b, c, d, e can be optimized, for instance by removing two dashed
CNOTgates.

624

(

When all base functions are created, we can design and optimize their quantum gates,

calculate costs and store in a library. For instance, the cost of f = abc from Figure

9.5.5.3 can be calculated as 15 2x2 quantum primitives. Figure 9.5.4.4 presents an

oracle for a more complex function realized with complex affine gates and drawn here

to calculate the cost with 2x2 quantum primitives.

9.5.5. Finding AH (or some) Affine Functions to Construct Base

Functions.

Another issue when realizing affine LI circuits with reduced costs is how to find all

affine functions to be used as affine polarities. We will prove that if standard polarities

are used as a preprocessor together with a linear preprocessor there is no need to take

negations in the affine preprocessor. Similarly no pairs of groups included in one

another should be considered for a preprocessor. For instance, (a©b©c© d) and

(a e b) are equivalent to and (c © d) and (a © b), as proved below.

(a® b® c® d)(a® b) = a® ab® ba® b® ca® cb® da® db

= \{a® b)® c(a® b)® d(a® b)

= (1© c® d)(a® b)

= (c® d)(a® b)

625

Thus the gate from Figure 9.5.5.1a can be realized as in Figure 9.5.5.1b. And vice-

versa.

a —*#»

Linear
preprocessor

(a)

Linear
postprocessor
r— - - a—

*-+-

i «

k i

i

fr-—i-

w (a®b VlfCi i) {a €? I»)

(b)

Standard Linear Linear Standard
polarity (affine) (affine) polarity

preprocessor preprocessor postprocessor postprocessor

(f (

' l I €&

c

d
^—h
1 !

I
<&-

I ! I
t I I

I *•
-H$* i i

>Qt-

b

c

d
(.c ® cl") (a ® b)

Figure 9.5.5.1: Illustration to general construction methods of affine gates with pre-
and post-processing, (a) Realization of non-optimal affine Toffoli gate with {a,
bj ^ {a, b, c, d}, (b) The optimal circuit replacing the circuit from Figure 9.5.5.1a.

This observation reduces the search to generate all affine functions. We can now avoid

repeated generations of the same affine function and reduce the cost of affine gates.

Figure 9.5.5.2 shows how to systematically generate groups of product groups that are'

not mutually included (part of the tree is shown only). Methods from chapter 6 can be

626

used to generate such groups. Note that some subsets of correct groups are not usable

for Toffoli gate. For instance the node of the tree {(ab, ac, be)} which corresponds to

set of linear functions {(a©b) ,(a®c)> (bee) } is useless because (a©b) (a©c) (bee)

(a©ac©ab©bc) (b©c) = 0.

(abed) (abc, abd)

— (abc, bed)

1 — (abc, acd)

(ac, abd)

— (be, abd)

(be, abd)

(be, abd)

(abc, cd)

(ab, bed)

(ac, bed)

(ab, acd)

(be, acd)

(abc, cd)

(ac, ab, d)

(ac, ab, d)

(ac, ab, d)

(be, ab, d)

(be, ad, b)

(be, bd, a)

Figure 9.5.5.2: The complete tree method (chapter 6) to create all possible affine
preprocessors to gates on four input variables. Each string of variables corresponds
to a linear function of these variables, for instance bed <->• b © c © d.

627

9.5.6. KRM-Like and Other Mixed Forms.

Figure 9.5.6.1: Realization ofKRMform in a quantum array with separate functions
fj and f2. where f=fi ® f2 .

KRM-Like expansions can be realized in quantum arrays as in Figure 9.5.6.1. The first

(from left) block includes negative polarity and mixed product literals and the second

block the positive and mixed product literals.

9.5.7. Creating Base Functions Based on Bi-decomposition.

One more method to create quantum array is to use the classical bi-decomposition

method. After this decomposition the circuit can be partitioned to node combinations

and each node combination is realized by a quantum gate. Assume an arbitrary tree of

2-input gates that results from the bi-decomposition procedure [ref]. All possibilities

of gate adjacencies of different types of gates are presented in Figure 9.5.7.1. Next all

these small quantum gates are composed to larger arrays. Mirrors and copiers may be

added. Some node combinations are given in Figure 9.5.7.1. An Example of

pos -i a

L b

e — $ -

mixed-J / —$-
L o

negmtxea

X

pasmtxe

-9 -

ted

%

628

realization of quantum array using this method is presented in Figure 9.5.7.2, and the

final circuit is given in Figure 9.5.7.3.

(a)

a
b
c-

a -

o

— a —

f l
kjJ

(b)

a —

b-

c —

0 —<£•

- $ H -Q-

abN

00

01

11

10

? 0

r
ab + c = abc © c

a
b
c

"

c

a »b = a • 6 © c = (a + Z?) © c

(c)

Figure 9.5.7.1: Pieces of Quantum arrays corresponding to typical gate connections
in classical bi-decomposition. (a) AND-EXOR node combination, (b) AND-OR node
combination, (c) OR-Exor combination.

629

OR -EXOR

W

(a)

/ y

AND -EXOR

AND - OR

c

d
0 — ©

a -
i 0

X -

— 1

—C

>

•\

-4ft

• # - - # -

y
V

(b)

Figure 9.5.7.2: From Boolean bi-decomposition to quantum array, (a) Covering of a
bi-decomposed circuit with patterns of node combinations, (b) each pattern is
converted to its reversible equivalent.

Base on repeated decompositions of a function a set of base functions can be created

and next enhanced to base families as in previous sections.

630

b

0

r # i i

f^
4fe-
CVJ i ^ m—g C*L „+U

J 3 i

•Ki
J i

m
L ? L _ _ _

1 1

a

c

d

v

e

i
garbage,

garbage

F

Figure 9.5.7.3: The final step of converting a bi-decomposed circuit to a quantum
array. This circuit is created by laying out (the so-called quantum layout problem
[Vijaya05]) of little reversible patterns into a large quantum array. This stage
requires in general addition of SWAP gates and copying (Feynman) gates.

9.5.8. Composing Gates for Base Functions.

d

o

- * ^ & \

"KF

1_ _

If
t-ri-

$>-

JI
€&

_J

\cd
a b \ 00

00

01

11

10

a c

ri 11 10

1 N

m
H

X
S>

Affine

M J (> © 6) (C 0 G O

(a) (b)

Figure 9.5.8.1: Realization of complex gates by composition, (a) Composition of
Affine Toffoli gate and Toffoli gate, (b) the corresponding KMap. Note a "0" at the
intersection of the a c and the (a®b) (c®d) patterns (groups of cells).

631

Complex gates can combine affine gates with standard Toffoli gate as illustrated in

Figure 9.5.8.1. This way "more ones than zeros" heuristics and search methods from

chapter 6 can be used to synthesize with LI bases.

9.5.9. Creating LI matrices for "all polarity search" algorithms from

other LI matrices.

In Chapter 3, 4, 7 and 8 we discussed the algorithms of "all polarity search" types. A

quantum algorithm for such search will be presented in Chapter 15. A question arises

how to create base functions for this type of algorithms. We will present one possible

answer to this problem below. This material relates also much to section 9.3.

Assume that matrix Ml transforms function F represented as a vector of minterms to

its spectrum vector CVi. Similarly, other matrix M2 transforms F to another spectrum

vector CV2.

F-» Ml-> CVX

F-> M2-> CV2

Thus we have:

CV,= MUF .„ . . . _ ,.
(Equation 9.5.9.1)

CV2=M2*F

From where we get:

Ml"1 • CV1 = F
(Equation 9.5.9.2)

CV2= M2» MVl • CVX

632

CVX = M\a • Ml4 • F
CV2-N2a.M2b.F (Equation 9.5.9.3)

• L,r, = ivnh • r
(Equation 9.5.9.4)

Ml;1 • CF, = Mlft • F

Ml',1 • CF2 = M\b # F

Ml^1 • Ml;1 »CVX = F

CV2 = M2a • M\b • (Ml;1 • Ml;1 • CVX) (Equation 9.5.9.5)

Ml •MVl»CV,
a a 1

Base on above equations one is able to create matrices such as M2a • Mia"1. Such

matrices can be calculated once for all future uses. This approach allows next to find

directly realizations for all polarities and this is done by just multiplying some

matrices stored in the data base of matrices.

The algorithm based on this approach is the following.

Algorithm 9.5.9.1.

1. For functions of n variables given are all matrices M_i where each M_i

corresponds to a family of base functions.

2. Find all matrices of type M_i2a • M_ila" and store them in data base MM.

3. Given is vector F

4. By multiplying the first of matrices from MM by F calculate CVi.

633

5. By multiplying the second of matrices from MM by CVi calculate CV2.

6. Etc. iterate through all polarity matrices or their subset.

7. Find the solution with the smallest cost, i.e. the CV with most zero

coefficients.

This method is easy to program in Matlab and very general. This method can be

therefore applied to all families of base functions from chapters 3, 4, 7, 8 and 9.

The only drawback of Algorithm 9.5.9.1 is its relatively low speed.

634

CHAPTER 10

Affine Multiple-Valued Galois Gates and Their Circuit Structures

10.1. From Binary Affine Toffoli Gates to Affine Toffoli Galois Gates.

Binary affine functions are of a form LF e C where LF is a binary linear function and

C is a binary constant (0 or 1). The same is true for ternary affine functions, but C = 0,

1, or 2. LF is a ternary linear function built from Ternary Feynman gates. The gate

from Chapter 7, Figure 10.1.2, can be treated as a special case of an affine gate with

the first column as the affine preprocessor and the last column as an affine

postprocessor mirror. This kind of gate is a very powerful generalization of the binary

Toffoli gate for any number of inputs. Can this design be further generalized to a new

gate in Multiple Valued logic?

a
b

c.
H

n

e

FG

FG

a
aeb r

C0d

Galois
Product

FG

(Galois
Product)"1

FG1

FG"1

a
h

n
d

0

F = f (a,b,c,d)ee

Figure 10.1.1: New (Affine Ternary) Toffoli gate which is a multiple-valued
generalization of affine binary Toffoli gate for any radix tC" . FG stands for Feynman
Galois gate (a ternary affine gate). This gate can be in particular realized in ternary
quantum logic. Observe that one ancilla qubit initialized to |o) is necessary for Galois

product gates for radix higher than 2 (the same number as in Boolean GF(2) case).

635

KMap of function f(a,b,c,d) realized by the gate F = f(a,b,c,d) (B e, symbol Q means
Galois addition.

To answer this and similar questions, we will generalize now methods from Chapter 7

and other chapters to the ternary logic. We remember from the multiple-valued logic

theory that standard AND/EXOR Boolean logic is the special case of the Galois Field

Logic. In particular, in case of Galois Field (3) the addition operation is modulo 3

addition and the multiplication operation of this algebra is the modulo 3

multiplication. Therefore, our binary structure from Figure 10.1.1 has a direct

counterpart in the Galois Field(3) circuit from Figure 10.1.2. Every Feynman Gate in

binary (i.e. GF(2)) logic is replaced with the Feynman Gate (using modulo 3 addition)

in ternary GF(3) logic. This is obvious since all axioms for GF(2) and GF(3) are the

same. Similarly, every Boolean AND is replaced with the Galois 3 multiplication (the

Galois Product). This leads directly to the circuit from Figure 10.1.2. This structure is

very similar to its binary counterpart structure, thus allowing to re-use of all our ideas

from previous chapters to synthesize ternary circuits. However, one should note that

an ancilla bit was added to realize the Galois Product which is not a reversible

operation. The question arises, is this ancilla bit absolutely necessary? If not, can we

create a ternary Toffoli gate with no ancilla bits? Even if such gate would be created

for 3 * 3 circuits, is this construction expandable with no ancilla bits for k * k ternary

Toffoli Gates? This and similar questions will be the subject of considerations in

Chapter 10. Another question is how to generalize these results from ternary logic to

other radices, using either Galois Field circuit or some other type of multiple-valued

636

reversible circuits. Observe for instance, that the multiple-valued counterpart KMap

of function^a, b, c, d) (Figure 10.1.3) can be realized using the gate F = f(a, b, c, d) ©

e for any radix K , with K being a prime number, multiplication modulo K and

addition modulo K.

a
b

c
m t Q

d—& -w-

a
h

c

d

F

Figure 10.1.2: Binary Affine Toffoli Gate for function from Figure 10.1.3.

ab\
00
01
11
10

00 01 11 10
0

"ol
0
Oj

0
/f
<

0

0
^

4
v?

0
?N

)

-v
Figure 10.1.3: Graphical Analysis of the affine Toffoli gate from Figure 10.1.2. It uses
product groups that are created by flattening of the formula originating for F directly
from Figure 10.1.2.

637

10.2. Ternary Gates and Affine Ternary Gates.

10.2.1.Ternary Quantum Technology and Circuits

Classical computing has always been practically binary, although much research on

ternary and general multiple-valued logic has been performed and experimental

circuits have been fabricated. Quantum computing, among many other advantages, is a

way to overcome the problem of the increasing percent of substrate (chip) area that

must be devoted to connections only when the size of the design grows. This is

because practical quantum computing can be multiple-valued and thus one wire (a

qudit - ternary quantum bit) can transmit more information than a qubit.

The power of the binary affine gates is that they can be easily generalized to ternary

affine gates and in general to multiple-valued quantum logic. This is done by just

generalizing the binary Feynman gate to multiple-valued logic by replacing the EXOR

operator with its multiple-valued counterpart. Because of the reversibility requirement

this must be a group-based operation (in a sense of algebra), for instance the modulo-

addition or the Galois Addition. While the Modulo Addition can be realized for any

number (radix), the Galois Addition can be realized only for Kn where K is a prime

number and n > 2 is a natural number. This may seem to be advantage of Modulo

Addition as a base of MV logic, Galois Fields have however some other nice

properties.

638

In [Giesecke07] we presented gates for ternary quantum logic. Synthesis of such gates

and especially of larger circuits is still an open problem. We created exact minimum

cost ternary reversible gates with quantum multiplexers using the method of iterative

deepening depth-first search (IDDFS). Such exhaustive search approach is better for

small problems than evolutionary algorithms or other heuristic search methods.

Several new gates that have the provably exact minimum costs have been discovered.

These gates are next used as library building blocks in the minimization of larger

ternary quantum circuits like the highly testable GFSOP cascades [Khan03, Khan05]

that generalize the binary ESOP cascades. These new gates can be also used as well in

ternary circuits that generalize the so-called wave cascades [Mischenko02] from

binary to ternary. These cascades were generalized by me in this chapter to ternary

logic. The new gates are also useful to design oracles for multi-valued algorithms such

as Deutsch-Jozsa [Fan07] and Grover [Fan07]. The optimally designed MV gates

presented in this thesis can be next used as building blocks of larger gates in

systematic synthesis methods which are extensions and generalizations of other

previous logic synthesis methods that are now used in binary reversible and quantum

circuits (Chapter 11 and [Miller06, Miller04, Al-RabadiOl, Khan05, DubrovaOl, Al-

Rabadi02, Lukac02, Khan03, Khan05 , Khan07, Denler04, Mishchenko02]).

Alternately, one can use the exhaustive method to synthesize small circuits.

Exhaustive search can be also used as a part of more sophisticated hybrid synthesizers

[Lukac05]. The method searches exhaustively until the given circuit is found for

639

which it is next proven that within certain design constraints (like the size and the gate

types) it is not possible to find a better realization of the given function F.

Ternary quantum macros - conceptual gates - can be implemented using quantum

multiplexers [Perkowski02] as primitives. Quantum multiplexers are themselves

composed from the Muthukrishnan-Stroud gates (M-S gates) invented by

Muthukrishnan and Stroud and popularly used in designs [MuthukrishnanOO]. The

quantum multiplexer concept [Perkowski02] (called also the quantum mux) invented

in [Perkowski02] and used also by several other authors, is a convenient intermediate

notation to synthesize both binary and multiple-valued (mv) quantum circuits.

Therefore, the synthesis in this chapter will be performed in terms of quantum

multiplexers and their argument single-qudit functions. (Recall that qudits are

quantum bits with radices higher than 2. Qutrit is a qudit used in ternary logic). Here I

will introduce several different more or less regular structures that describe how these

gates can be cascaded. We will find exact minimum solutions for some well-known

logic operators and also for new gates in order to form libraries of universal gates for

mv quantum circuit synthesis. The exhaustive search creates the gate as a cascade

starting from input signals of the function and next adds sequentially quantum mux

after quantum mux to create the logic outputs of the cascade. The first practical goal of

the exhaustive search approach proposed here is to find the realizations of all 2-qudit-

gates and determine their minimum costs and the best efficiencies. Efficiency can be

defined in terms of how many ancilla qudits are used to realize a given functional

640

specification. Ternary quantum logic notation is based on the same principles as the

binary Heisenberg and Dirac notations. The base vectors for ternary quantum logic are

|o) =
1

0

0
> ! ') =

"o"
1

0

and |2) =
"o"
0

l

Figure 10.2.1.1: Example of implementation with ternary multiplexers. All additions
are modulo 3. Operations +1, +2, (01) and (12) are single qutrit permutations. Please
find the intermediate signal X.

A \ 0 1 2
0
1
2

1
1
2

1
1
2

1
1
2

\B
A \ 0 1

1
1
2

A

0
0
1
/"

0
2
1
T

x+2

R

12)

Figure 10.2.1.2: Graphical analysis based on ternary quantum multiplexers for the
Example from Figure 10.2.1.1. The first map is for signal X. The second second map is
for signal R. It has columns corresponding to single-qutrit operations: I (identity), +2
and (12), executed on single qutrit intermediate signal X from Figure 10.2.1.1.

Figure 10.2.1.1 shows a cascade implementation with two ternary quantum

multiplexers. The small boxes at the left of the mux symbol (the symbol itself was

taken from classical logic) represent arbitrary single qutrit unitary operators f, but in

this thesis these operators are in addition permutative. The quantum multiplexer

641

operates as follows: depending on a value 0, 1, and 2 of the control qutrit, the

respective input with number 0, 1 and 2, respectively (counted from top) is selected

and sent to the output. Thus respective operator^ is executed on the controlled qutrit.

Figure 10.2.1.1 is a cascade of two multiplexers where A is the controlling qutrit of the

first mux and B is the controlling qudit of the second mux. The target qudit C is

initalized to |o). C is the controlled data qudit (qutrit in this particular case) on which

the functions are applied. Operations +1 and +2 are implemented as cyclical shifts by

1 and by 2, respectively in one-qutrit operations. In Figure 10.2.1.1 let us look at the

first multiplexer. Assume functions fo, fi, f2, fo, /? andfs to be defined as fo = +l,fi

= 01,^2 = +2,f3 = 02,f4 = +2,f = 12. For circuit from Figure 10.2.1.1 the resulting

ternary maps are shown in Figure 10.2.1.2. Operation (01) is a permutation of values

0 and 1 in a single qutrit, the operations (12) and (02) are implemented analogously.

(These operations are realized internally by combinations of X, Y and Z Pauli

quantum rotation operators [Giesecke07, Bae07] in data inputs of M-S gates

[MuthukrishnanOO]. They are inexpensive).

The motivation for the approach presented here is the realization of an arbitrary logic

function through a series of cascaded gates. The synthesis goal is to minimize the

number of ancilla qudits, while introducing greater freedom in the number of

necessary stages. The number of ancilla qudits can only be hypothesized and depends

always on the function to be realized. Muthukrishnan and Stroud [MuthukrishnanOO]

formulated a relation between the amount of data qudits and number of ancilla qudits

642

for M-S gates only. To reuse the ancilla qudits the circuits for our gates require in

general mirror circuits (called mirrors for short). The implementation of mirror gates

has the goal to restore the ancilla qudit to the initial state, |o), |i)or |2). The mirror

gates Gf1 use the inverse operations to their respective gates Gj. Thus Gf1 G; = Gi Gf1

= I. Table 10.2.1.1 shows the corresponding inverse functions to the single-qutrit

functions. Mirrors are used in MV wave cascades [Mischenko03]. They are also used

in quantum realizations of GFSOP with various kinds of Toffoli-like and Feynman-

like gates [Khan03, Khan05, Khan07]. They allow also to fold wires that start and end

(thanks to mirror) with constants. Wire folding is based on graph coloring and similar

algorithms known from classical logic/layout design. The mirror quantum

multiplexers X and X"1 have inverse single-qudit functions ̂ in all their data inputs.

Single qudit
functions

Inverse
single qudit
functions

+ 1 ^ + 2

+ 2 ^ + 1

+ 01 + 01
+ 02 + 02

+ 12 + 12

Table 10.2.1.1: Inverse functions for each single qutr it function.

643

10.2.2. Ternary Galois Field Logic, Reversible Gates.

As it is known, the Galois Toffoli gate together with the single qubit rotations

(permutations) create a universal ternary logic system [Kerntopf04, BrylinskiOl]. It is

also convenient, using an analogy to binary reversible logic, to add the Ternary

Feynman gate to this system.

Any unitary matrix represents a quantum gate (this property is true for any radix of

logic). As we remember, if a unitary matrix has only one "1" in every column and the

remaining elements are "0"'s, then such a matrix is called a permutation matrix. The

set of output vectors of such a permutation gate is simply a certain permutation of the

set of input vectors. A practical realization of MV Feynman gate was shown in

[MuthukhrishnanOO]. Our exhaustive algorithm found first the minimal realization

based on the quantum multiplexer structure for 2-qudits (+ 1 ancilla qudit) gates. The

cost function for mux cascades was defined by the total number of single-qubit

operations used. For the ternary Feynman realization only two multiplexers and 4

single-qudit-functions are needed as well as one ancilla qudit. Since the Feynman gate

is a permutation gate, based on results from [Yang06] the algorithm was used to

search for a solution without any ancilla qudits. Figure 10.2.2.1 illustrates such a

solution. Instead of using two quantum multiplexers and 4 single-qudit operations,

only one mux and 2 single-qudit operations (+1 and +2) are required. The mux

number is one and the cost is 2 operations. Interestingly, the number of muxes of the

ternary Feynman gate, which is one, is the same as for the binary Feynman gate.

644

Figure 10.2.2.1: Realization of the Ternary Feynman gate using one quantum
multiplexer and two single qudit operations. An important fact is that no ancilla bits
are required which makes it a great gate for affine extensions.

In addition we used adaptations of exhaustive methods (similar to those from chapter

7) to find useful ternary circuit solutions. These methods gave no assurances of circuit

minimality, but they took into account certain important practical constraints such as

the user-specified limited number of ancilla qudits.

Ternary Feynman is used in all ternary gates and circuit structures (forms) in place of

binary Feynman gates in binary gates and circuits. This way linear ternary circuits are

created and with constants 1 and 2 affine ternary circuits are created. Let us observe

that Ternary Feynman gate is our name - Richard Feynman did not invent this gate.

We gave this name by analogy based on Galois Field similarity of binary and ternary

circuits. This analogy is an obvious result from the structural/algebraic similarity of

GF(2) and GF(3) fields. The ternary Feynman gate can be viewed as a Galois Field 3

Addition in which both inputs A and B are added up. The Ternary Galois Field (we

call it also TGF, or GF(3)) consists of the set of elements T = {0,1,2} and two basic

operations - addition (denoted by +) and multiplication (denoted by • or absence of

any operator). Muthukrishnan and Stroud [MuthukrishnanOO] found a relation between

645

the number of qudits and the number of required ancilla qudits. This formula is based

on the MS gates, which are different from the universal quantum multiplexer used in

the present thesis, r = [(« - 2) l{d - 2)] (d > 2). The number of ancilla qudits is r,

whereas n is the number of data qudits and d is the radix of the logic. For ternary logic

d is 3. For example a system with 7 qudits needs 5 ancilla qudits to perform its logic

function.

Efficient methods for representing and minimizing Ternary Galois Field Sum of

Products (TGFSOP) expressions are very important. Such expression can be either

realized directly in quantum cascades or it is a starting point of factorization processes

leading to factorized cascades and wave cascades [Mishchenko02, Khan03]. These

methods are not a subject of this dissertation and can be studied for example in

[Khan05, Al-Rabadi01]. It should be stressed however, that the results of this

dissertation contribute the cheapest gates to be used in both the Galois Field Sum of

Product (GFSOP) architecture and the factorized GFSOP cascades. We invented also

their ternary affine generalizations.

The other GF(3) operation is the Galois (Field) Multiplication (Figure 10.2.2.2) (called

also Galois Product - Figure 10.1.1). While the Galois addition replaces EXOR, the

Galois multiplication can replace the Boolean AND operation in the multivalued

domain [Curtis04] and is therefore a very important operator in quantum circuit

design. But it is only one method of AND operator generalization to ternary logic and

not a unique ternary gate that must be used for this task.

646

B~

S = A

R = A®B

(a)

A \ 0 1 2
0
1
2 ^

(b)

0
0

0

0
1
2

0
2

1

R

Figure 10.2.2.2: Galois Field (3) multiplication; a) a symbol, b) the ternary map
which shows that GF multiplication is not a Latin Square.

If input A = 2 and B = 2 then the output R yields to R = 2 ® 2 = 1 as the result of

modulo 3 product. The realization of the Galois multiplication in our approach is

given in Figure 10.2. 2.3.

Figure 10.2.2.3: Realization of Galois field multiplication using quantum
multiplexers. Note that one ancilla qutrit is used. It is not possible to have no ancilla
qudits as the GF multiplication is not a group operator.

For the realization of the Galois Field multiplication operation 4 multiplexers with 6

single-qudit operations are needed. One ancilla qutrit is needed.

An interesting Toffoli-like ternary gate in Galois Logic [Khan03, Khan05,

Perkowski02] that uses both the Galois multiplication and Galois addition was found
647

by our software and presented in Figure 10.2.2.4. We call it the Ternary Galois

Toffoli gate.

(a)

AB\^
00
01
02
10
11
12
20
21
22

0
0
0
0
0
1
2
0
2
1

2
0
1
0
2

2
2
2
2
2
0
1
2
1
0

A»B
0
0
0
0
1
2
0
2
1

(b)

Figure 10.2.2.4: Ternary Galois Toffoli (2-controlled-NOT) gate; minimal solution
using quantum multiplexers. No ancilla audits are used. Note only 4 single qutrit
operators. This gate is a natural and elegant generalization of binary Toffoli to the
ternary quantum logic found by software, (a) the Ternary Map and the product AB, (b)
the circuit.

This way, our software proved exhaustively that a universal system for Galois Field(3)

logic can be created with 5 single-qutrit permutation gates, Galois Feynman and

Galois Toffoli gates and Galois multiplication as an additional gate. Every ternary

function (reversible or not) can be realized in our system, using ancilla bits for ternary

non-reversible functions. The minimum universal systems [BrylinskiOl, Kerntopf04]

for ternary quantum permutative logic are still an open but not very practical problem.

648

This is because non-minimal sets of gates can be easily created which improve the

quality of results.

10.2.3. Ternary SWAP Gates.

The importance of SWAP gates is known in binary quantum logic. Based on examples

of ternary quantum oracles that I considered I found that these gates play the same

useful role in the ternary quantum logic. Such gate when added to any universal

system allows to reduce the size of the circuits, sometimes dramatically. Therefore we

asked our software to design the SWAP gate. The result is shown in Figure 10.2.3.1a.

The graphical analysis is shown in Figure 10.2.3.1b. The analysis confirms that the

automatically designed circuit is correct. The 2-qudit SWAP gate exchanges two

qudits. It has no counterpart in the classic electrical domain, because the swapping is

simply done by crossing wires within two layers of metalization. In the domain of

quantum computing a "crossing" of wires is not possible. If the prototype of a SWAP

gate for 2 qudits is developed, it can be used for circuit with «-qudits. The swapping is

then just performed between 2 qudits within this circuit. A general approach to swap a

given number of qudits might be an interesting research subject. There are, for

example, 6 possible input/output combinations for a 3-qudit SWAP. Only 2

combinations are real 3-qudit SWAP gates and all swaps can be build with only two

SWAP gates. Binary counter part of such gates are used excessively in quantum

oracles (see Chapters 11, 12, 13, 14 and 15).

649

More realizations of the SWAP gate can be found in [Giesecke06]. Khan et al. found a

solution for the 2-qudit SWAP gate in [Khan07], our solution made with the

exhaustive search algorithm is the same and we proved that it could not be improved

(assuming the design with muxes). Interestingly, both in binary and ternary cases the

SWAP gate has three muxes.

A \ 0 1 2
0 | 0 | 1 | 2~|0
1 jTT]F 1
2 ~0~T~2~ 2

2
1
0

0
2
1

1
0
2

a)

b)

0 1 2 \ ' 0 1 2
0 | 0 | 1 | 2 | 0
1 jTTT^ 1
2 ~0~T~2~ 2

0
1
2

0
1
2

0
1
2

Figure 10.2.3.1: (a) The structure of the Ternary SWAP gate and (b) the graphical
analysis using ternary logic maps. The ternary maps (generalizations ofKMaps) are
drawn to help the Reader to analyze this circuit.

Based on this gate, I found some general properties which I used next to built SWAP

gates also for other radices, especially for radix 4, but I do not discuss this in the thesis.

650

10.2.4. Realization of classical MIN/MAX multiple-valued logic and

their generalizations circuits in ternary quantum circuits.

In classical binary logic AND gate and OR gate are the well-known gates. As a

standard, in multiple-valued logic domain the AND gate is replaced by the MIN gate

and the OR gate is replaced by the MAX gate. The MIN gate is the arithmetic

minimum and the MAX gate is the arithmetic maximum of integers being their

arguments. When the respective maps were entered into our exhaustive search

algorithm the results were that both these quantum gates need 6 single-qudit

operations. The algorithm found these solutions with the order "DCDC" of the control

variables. An interesting fact to notice is that the order can also be switched to

"CDCD" order and no changes are made on the single-qudit operations and the gate

outputs the same result. This results from the symmetry of maps (order of arguments

can be changed) and from the reversibility (see Figs 10.2.4.1, 10.2.4.2 and 10.2.4.3).

Figure 10.2.4.1: Realization of the Ternary Min gate with control order of "DCDC".

651

Figure 10.2.4.2.: Realization of the Ternary Min gate with control order of "ABAB".

Figure 10.2.4.3: Realization of the Ternary Max gate with control order of "CDCD ".

We have found an efficient way to implement all two-qudit ternary quantum gates by

having at most one ancilla qudit. The ancilla qudit is the only drawback of this type of

synthesis. For all ternary functions (operators) that are originally not reversible the

ancilla qudit is needed in any case, and thus should not be viewed as a weakness of

our approach. Simply nothing better can be found than found by the exhaustive search

software.

The MIN gate together with gates that are the controlled single-qudit permutations

produce powerful circuits for any radix. Figure 10.2.4.4 realizes a simple cascade in

which the MIN/MAX ternary logic is combined with controlled ternary gates which

652

control single qutrit permutations in the lowest qutrit with symbol d. The target gates

in the lowest bit d are controlled with some selected value of the control bit, for

instance 2. If the qutrit is in this state, then the target operation is executed. Otherwise

the gate is an identity. In this way, because of using ancilla bits, any ternary control

function can be created. The target gate operation can be any single-qutrit (reversible)

operation that it available. This is for instance one of five single-qutrit permutations in

case of the ternary logic. (There are six permutations but identity is useless).

The gate design process as presented in this section is very general and applies to any

radix of logic, since the MIN, MAX, and MODSUM gates and the controlled

permutations can be realized for any radix of logic. Moreover, ternary affine polarity

and standard (ternary) polarity pre- and post-processors can be added in MV logic in

exactly same way as they were added in binary cases and discussed previously in

Chapters 7, 8 and 9.

1 i 1

mm

j - 1

i

miri1 n
U min _

/ni\
I1 ' ' /

min1

Figure 10.2.4.4: A cascade of two 2-controlled Toffoli-like gates for ternary logic that
uses the ternary minimum operator. The controlled target can be any single-qutrit
permutation. The use of the inverse (mirror) circuits returns the ancilla qubit to zero
and thus decreases the width of the circuit. Therefore only one ancilla qutrit is used.

653

Less than one ancilla audits is not possible because the MINgate is not reversible as
MIN operator is not a group operator.

a — < h

b ± JT T I D

0—1 min|— f f—I mirTT—Q—| max|—f j—1 max1 l-S,^/ c

0- y | max | 1 mini f

X
0

d | modsum] | modsuni]

Figure 10.2.4.5: Ternary Wave Cascade. This circuit uses Ternary-Controlled
Ternary-Target Gates, where MODSUM operator is used as the addition operator
(using all ternary values). Ternary SWAP gates are also added to have a required
order of outputs in the oracle.

Figure 10.2.4.5 illustrates a way of combining MIN/MAX and MODSUM logic using

also mirror gates and SWAP gates. It is a Modsum-based cascade of ternary Maitra

cascades. This circuit generalizes the well-known binary Maitra cascades and Wave

Cascades. In addition the use of SWAP gates is illustrated. This circuit, not known

from literature, generalizes to ternary quantum logic the well-known concept of the

binary Maitra cascades and also the reversible wave cascades of Mishchenko and

Perkowski [Mishchenko02].

Figure 10.2.4.6 presents a classical MIN/MAX logic realization (one stage only) using

ancilla qudits in target MAX gates. This is a ternary quantum generalization of the

standard classical binary SOP-like logic for which much is published and for which

available software exists.

654

II II

min
^

min

max

min"1

min1

0

Figure 10.2.4.6: Classical MIN/MAX logic realization (one stage only) using ancilla
bits in target MAX gates.

Figure 10.2.4.7 presents the affine generalizations of these cascades (one segment and

affine processor only). Section 10.3 will discuss the generalization of these types of

circuits to hybrid quantum circuits in which qudits may have different radices.

Affine
polarity

pre
processor

a

b

o
Q

o
d

9

(01)

(13 '

(02)

_

'

min

min

min"1

(01)

03

min"1

(02)

Figure 10.2.4.7: Affine generalizations of reversible cascades for MIN/MAX logic
(one segment and affine pre- processor shown only).

655

Although in this dissertation we will not work on the synthesis algorithms for these

new structures, one should stress that all methods and algorithms from this thesis can

be generalized to them in a straightforward way. The universality of these circuit

structures results directly from fundamental results and properties of ternary logic.

Gates MEN, MAX, Galois Product, Galois Sum and Toffoli can be freely mixed in

ternary cascades.

(a) (b)

a

b

(c)

Figure 10.2.4.8: Creation of mirror circuits in ternary logic, (a) Galois Toffoli gate
and its (b) "Inverse Galois Toffoli" gate that multiplies additionally by constant 2, (c)
verification that Inverse Galois Toffoli gate is an inverse of Galois Toffoli gate. (ab
mod ab * 2 mod c = ab • 3 mod c = c).

656

a \
0

1

2

0

0

0

0

1

0

1

2

2

0

2

1

a \
0

1

2

0

0

0

0

1

0

2

1

2

0

1

2

a »b a »b»2

Figure 10.2.4.9: Ternary maps of the a* b and a • b • 2 operators.

Inverse
Galois
product

[(a • b) + c] • d abd + cd + 2 cd = abd
= abd + cd

Figure 10.2.4.10: Using of mirrors in ternary Galois cascades that realize big ternary
Galois Tojfoli gates.

a • b + mod3 c a b + m o d c + m o d 2 • ab

a — ? •

h

C—k

i —
e • • — -

*-t—:

• #
+ 2

f
abd +mod3 cd

d
F =aH

Figure 10.2.4.11: Simplified schematics with ternary notation for the circuit from
Figure 10.2.4.10.

657

The design of mirror circuits for ternary logic is slightly more complicated than in

binary logic where F"1 = F for every NOT, Feynman and Toffoli gate. In ternary logic

the mirror must be such F"1 that F • F 1 = I . Thus the inverse of gate from Figure

10.2.4.8a is shown in Figure 10.2.4.8b. The matrices of a • b and 2 • a • b are given in

Figure 10.2.4.9. Thus ab +mod3 2 ab = 3 ab = 0, hence the identity from Figure

10.2.4.8c. Thus the circuit from Figure 10.2.4.10 can be rewritten to a simplified

notation from Figure 10.2.4.11.

Concluding, Galois Logic circuits are very similar to binary circuits discussed in this

thesis. This result is not accidental since from the beginning it was my intention to

work on affine gates, because they have cheap group group-theoretical extensions in

multi-valued logic. The beauty of the developed by me methods is they can be all

extended to Galois Field Circuits and many of these methods can be extended to

MIN/MAX and hybrid circuits.

10.2.5. Synthesis of Polynomial Circuits Based on Galois Field Gates.

In.this section I present my new algorithm for ternary cascades based on Galois Field

Logic. I use GF Toffoli, GF Feynman and five single-qutrit permutations.

658

1 CD CD (D ilCDCD! 0 C b i i (D (b
1 a2 2a 2b f(a,b) = a2 + 2a + 1+2b

Figure 10.2.5.1: Example of Realization of a ternary polynomial in a quantum
cascade with mirrors.

The algorithm of Agrawal and Jha can be extended to MV logic and in particular to

ternary logic, which I have done. Let us first look at Figure 10.2.5.1 where the

realizations of several simple ternary polynomials are given. Observe repeating qubits

for the same variable and using mirrors which are duplicated original gates.

659

a

°a
1a
2a

a.a = a2

a+1 = a2+1

a+2 = a2+2

(a2+1).(a2+2)

a2(a2+1)

a2(a2+2)

2a = a + a

2a + a = 3a

2a + 1

2a+ 2

0

1

0

0

0

1

2

1

0

0

0

0

1

2

1

0

1

0

1

2

0

0

1

0

2

0

0

1

2

0

0

1

2

0

1

0

0

1

1

0

0

0

Figure 10.2.5.2: Some Ternary polynomials of single variable.

Figure 10.2.5.2 illustrates some basic functions - ternary polynomials of a single

variable. They are represented as ternary polynomial expressions (column one) and as

ternary maps of universal Post Literals (column two, three and four).

660

a ^ 0

0
2
2

0
2
2

0
2
2

0
1
2

1
0

0

0
2
2

0
2

2

0
0
0

0
1

1

0
1
1

R = ab + c

G1
a \ 0 1

0
1
2

0
0

0

1
1

1

2
2
2

0

0
0

0
1
2

0
1
2

0
0
0

0
1
2

0
2
1

=a.b

Figure 10.2.5.3: Analysis/Synthesis of Galois Field(3) Toffoli using single-controlled
ternary quantum multiplexers with 2 ancilla qubits.

My first challenge was first to design the GF(3) Toffoli gate. I first built it from

ternary quantum multiplexers as in Figure 10.2.5.3. This first hand design was worse

than the result from Figure 10.2.2.4 which was found subsequently by our exhaustive

software. In some insight I found next by hand a better than the first one solution

which is shown and explained in Figure 10.2.5.4. It is difficult to calculate the exact

costs of circuit from Figure 10.2.2.4 and Figure 10.2.5.4 without calculating pulses,

but we have no easy method to do this.

661

a

(a)b

+2 W +2

dxtdxbb

+1

(b)
b " ^

(c)

\
0
1
2

0
0

y

1 2

>-?
'2/

fr'*
"0
1

0 1

(d)

a ^ 0

+2 +2

+2

+2

+1

0

+ 1

2

0

0

+1

0

+1

0

+1

0

0

a < 0

0

1

2

0

0

0

0

+1

+2

0

+2

+1

Figure 10.2.5.4: (a) Realization of Ternary GF Toffolifrom MS gates and Ternary
Feynman gates, (b) Ternary Fey nman from ternary mux, (c) Ternary KMap of ternary
Feynman gate, (d) realization of Galois product as a composition of "+2 "controlled
gates (left map) and controlled "+ " gate (middle).

a f f-

•• 0 0
• &

2a + b + a = b

e-e
a+(a+b)=2a+b

* 2 h r

(2a+b)+b+b=2a

2*(2a)=4a=3a+a=a

Figure 10.2.5.5: Realization of ternary SWAP using ternary Feynman gates, single
qubit operators and ternary GF(3) polynomials. The solution is analyzed and
synthesized using ternary GF polynomials.

662

(a)

a + (2a + 2b)=3a +2b = 2b

(b)

a + b 2a + 2b 2a + 2b+ 3a +2b = 5a+ 4b 2a + b +2b = 2a
= 2a + b

Figure 10.2.5.6: (a) Symbol of ternary Swap gate, (b) its realization with annotated
expressions showing stages of analysis or synthesis based on ternary GF polynomials.

Playing with gates and their ternary maps, I found next the realization of SWAP gate

from Figure 10.2.5.5 using ternary Feynman gates. I found that *2 gate is needed.

Next using M-S gates I found a better solution for ternary SWAP, illustrated in Figure

70.2.5.6b.

663

A = b
B = a

>r

A1 = 2b
B1 = 2a

A^=2b
B2 = 2a - 2b

Output functions

A1=2b
B1=2A

A2=A1

2 _ D 1 A 1 B' = B1 - A

A3 = A2

B3 = B2 - A1

A J=2b
B3 = (2 a - 2 b) - 2 b = 2 a - 4 b

= 2 a - b = 2a + 2b

^4_ A* = 2b - (2a + 2b) = - 2a = a
B*=2a + 2b

A4 = A3 - B3

B4 = B3

A5= a
B5=2a + 2b

A5 = A4

B5 = 2B4

A 6 =a
B6=b

A6=A5

B6 = B5 - A5

identity

identity

Figure 10.2.5.7: Synthesis of Ternary SWAP gate from outputs to inputs using ternary
polynomials.

This last invention and its schematics annotated with GF(3) polynomial expressions

lead me to the generalization of the Agrawal/Jha's algorithm for the case of ternary

logic, as illustrated in Figure 10.2.5.7.

664

Figure 10.2.5.7 presents the process of synthesizing the ternary SWAP gate from

outputs to inputs. The idea of the Agarwal/Jha algorithm has been here extended to

ternary logic and also generalized to all ternary single-qutrit gates and SWAPs.

2a + a + 2b =2b

A3

(a)

v * /

a +

j I.

Ii

B

2b
2

<*>

A1

I

i

*2

. *
I

a + 2b
B1

A = b

Q — B= (a + 2b) + b = a + 3b =

(b)

A = b
B = a

A1=2b
B1=a+2b

Output

A1=2A=2b
B1=B-A=a-b=a+2b

A2=2.(A1-B1)
B2=B1

^ - r
A'=2.(2b-a-2b)=2(-a)=a

B2=a+2b

AJ=A"
B3=2.(B2-A2)=2.(a+2b-

a)=4b=b

A3=A2

B3=2.(B2-A2)

Identity

Figure 10.2.5.8: Using polynomials to synthesize ternary SWAP gate (second search
process for the same gate), (a) the annotated ternary GF circuit, (b) the branch of the
search tree.

665

Using my new theory extensions of Agrawal/Jha I found a better solution to Ternary

SWAP, illustrated in Figure 10.2.5.8.

A2 = a

(a) u B2 = b
b

C2 = c

A1 = a + be

&

B1 = b

C1 = c

A = a + be

Q B = ac + b + be2

C = c

(b)

A = a + be
B = ac + b + be2

C = c

H

B1 = B - A C
be2) - (a + be

be2 - ac -
r

A1 = a + be
B1=b
C1 = c

>
A2= a
B2=b
C2 = c

Output funct

= (ac+ b +
)c = ac + b +
• b c 2 = b

2=A 1 -B 1 C 1 = (a +
be)-be = a

Identity

Figure 10.2.5.9: Using factorization method of Galois Field expressions for synthesis
of a GF(3) reversible circuit.

666

Figure 10.2.5.9 b presents the synthesis process of another ternary circuit from outputs

to inputs using this extended method. The resulting circuit using Ternary GF Toffoli

gates obtained from this process is shown in Figure 10.2.5.9 a.

10.2.6. Realization of new type of Toffoli gates in ternary quantum

logic.

Here we will design a Toffoli-like ternary gate that is not a Toffoli Galois Field gate.

While in binary permutative logic there exists only one 2x2 gate which is CNOT,

there are many its counterpart 2x2 gates in the ternary logic. So which ones are good?

The exhaustive algorithm produced for instance the realization of the new ternary

Controlled-NOT gate shown in Figure 10.2.6.1. Here the controlling value has been

selected to 2, but similar gates with arbitrary control values can be created. Observe

that this gate is also a generalization of the binary Feynman gate, but it is different

from the group-based generalization of the Feynman gate used in both the Modulo-

Addition logic and the Galois-Addition logic. Obviously, this gate is easy to

generalize to arbitrary radix and is very similar to the well-known

Muthurkrishnan/Stroud gate. There exist very many gates similar to this one, with

other 1-qudit operations on inputs to the quantum mux.

667

A R

5 + 1, if A = 2

B otherwise

Figure 10.2.6.1: Realization of the Ternary Controlled-!^OTgate. Value 2 of audit A-
R is selected here as the activating value.

Can one derive from the structure of the Toffoli gate or Toffoli-like gate a quantum

circuit that might not require an ancilla qudit? With our exhaustive algorithm an

implementation of the Toffoli as the Controlled-Controlled-NOT gate with 3 data

qudits and without any ancilla qutrits is possible. Binary Toffoli is known as universal

[Yang06, Miller06] and is therefore another important gate. The same should be in

ternary. Yang et al. [Yang06] show that a system of SWAP, NOT and Controlled-Not

is universal for the realization of arbitrary ternary «-qudit reversible circuits without

an ancilla qudit. From the Toffoli gate, which is a 2-Controlled-NOT, it is possible to

build up an n-qudit Controlled-NOT. The Toffoli gate is a controlled-controlled-(+l)

gate and its diagrammatic representation is presented in Figure 10.2.6.2.

668

A

B '

C
+1

P

R

Q
UC + 1) mod 3, if A = 2 A B = 2

[C otherwise

Figure 10.2.6.2: Symbol of Ternary Tojfoli of "if-then-else " type gate and its function.
Observe that this gate is different from the ternary Galois Tojfoli gate from section
10.2.2. This is also denoted by A B (+ 1C) where A is the post literal.

This gate activates "+1" operations in target qudit C, if and only if the qudits A and B

are both "2 " and leaves C alone if they aren't (i.e, it is an identity in such case). The

controlling qudits "A" and "B" remain unchanged and are simply mapped to the

output. The exhaustive search algorithm found 7128 ways to realize various variants

of ternary Toffoli gates. One of the minimal solutions is shown in Figure 10.2.6.3.

The cost of this realization is 4; meaning only four single qudit operations are needed.

Interestingly, in terms of the number of quantum multiplexers this gate needs only 4

muxes, while the binary Toffoli gate needs 2 Feynman gates, 2 Controlled-V and one

Controlled-V1" for a total of 5 muxes (Controlled-V is also called Controlled-Square-

Root-of-NOT, Controlled-V^ is its Hermitian [Bae07, NielsenOO]). It should be

obvious that two affine generalizations (as previously) can be done as well for this

type of gates. Moreover, any of 5 1-qutrit permutation gates can be controlled by A

and B in Figure 10.2.6.2. There are therefore five new generalizations of Toffoli (non-

Galois) to ternary logic. Analysis of circuit from Figure 10.2.6.3 is in Figure 10.2.6.4.

669

Figure 10.2.6.3: Ternary Toffoli (2-controlled-NOT) gate for the symbol from Figure
10.2.6.2. This is the minimal solution using quantum multiplexers.

ABX

00

01

02

.10

11

12

20

21

22

0

0

0

0

0

0
0

2

2

2

0

0

0

2

2

2

2

2
2

2

1

1

1

A B \
00
01
02
10
11
12
20
21
22

0

0
0

1

0

0
1

2

2

2

1

1

1

0

1
1

0

0
0

1

2

2
2

2
2

2

2

1

1

0

A B \
00
01
02
10
11
12
20
21
22

0

0

0

1

0
0

1

0

0

0

0

0

2

2

2

2

2

2

2

2
2

2

A B \

00

01

02

10

11

12

20

21

22

0

0

0

0

0
0

0

0

0

2

2

2
2

2
2

2

2

2

2

0

Figure 10.2.6.4: Analysis of the first new Toffoli gate which has a "+1" operator in
target bit.

670

10.3. Affine Hybrid Gates with Binary Outputs.

Hybrid gates are similar to the above ternary gates but can have a different logic radix

in every quantum wire (qudit). The special case of such gates which are of interest in

oracle design are gates with multiple-valued inputs and binary outputs. The outputs of

these gates can be used directly in certain Boolean logic functions (usually global

AND realized in multi-input Toffoli) in oracles. Figure 10.3.1 presents some hybrid

gates with control qudits that are ternary and target qubits that are binary. Synthesis

with such gates should be similar to the synthesis with ternary gates from section 10.2

since because the hybrid gates are special cases of the ternary gates. Also, replacing in

the lowest bit of the cascades the general MODSUM gate with the EXOR gate will

produce hybrid circuits of this type (Figure 10.3.4). Both types of affine

generalizations can be also applied to these circuits. Examples of these types of

circuits are given in Figures 10.3.2, 10.3.3 and 10.3.4.

Figure 10.3.1: Realization of ternary-control binary-target hybrid quantum circuit
using quantum multiplexers. Control qubits A and B are ternary and qubit with output
R, the target, is binary. As we see, the circuit is very similar to ternary circuits, the
only difference is that the target single-qudit operators on the target qudit (qubit in
this case) are only binary operators, wire and +l(mod2) operator which is equivalent
to binary NOT.

671

R

s =
5 + 1, if A = 2

B otherwise

Figure 10.3.2: Realization of the Ternary Controlled-NOT gate with binary target.
Observe that this is exactly the same diagram as in Figure 10.3.1 above but here the
qudit B is binary. Because qubit B is binary B + 1 (mod 2) = NOT (B).

Ternaryl
controls "I

Binary
target qubitJ ^

mm mm mm

+1

mm

(01)

Figure 10.3.3: A cascade of two 2-controlled Tojfoli-like gates for Modulo sum of
minima type of circuits. Observe that this is exactly the same diagram as in Figure
10.3.4 earlier in text but the interpretation of operators in the target qubit with input
d is different. Now the signals in qubit d are binary, so both operation +1 and (01) are
interpreted as standard binary inverters, activated by any non-zero control value.

Ternary
bits

Binary
bit " Td

•< o —I min 1-—±r
0—1 max \

-&- -®-

y-10 garbage const.

Figure 10.3.4: Ternary-Controlled Binary-Target Hybrid Wave Cascade structure.

672

Observe that some gates, such as SWAP, are not realizable in hybrid technology.

Hybrid SWAP is just not possible to exist, because if the lower qudit has only two

values how can it swap values with the upper qudit that is ternary?

10.4. Extending Zhegalkin Hierarchy.

The expansions, trees, decision diagrams, and forms in the Zhegalkin Hierarchy are

tabulated in Table 10.4.1. Diagrams and forms can be created from trees in the

standard way [Perkowski97a]. For each of these structures a quantum array can be

created, as we illustrated by many examples in chapters 3, 7, 8 and 9. In chapters 7, 8

and 9 we introduced also affine gates that lead to new "Affine Forms". I add therefore

the column of Affine Forms (the last column, at right) to the Hierarchy Table as my

original contribution to the Zhegalkin Hierarchy.

673

Expansion

Single Polarity RM
Expansion

Any subset of
Zhegalkin Expansions,
but only one type in
every level

Any subset of
Zhegalkin expansions
in a level, for ordered
variables

Any subset of
Zhegalkin expansions
with any order of
variables in each
branch

Tree
Zhegalkin Single
Polarity Tree
(ZRMT)

Zhegalkin
Kronecker RM
Tree (ZKRMT)

Zhegalkin
Pseudo
Kronecker RM
Tree (ZPKRMT)

Zhegalkin Free
Kronecker RM
Tree (ZFKRMT)

Diagram

Zhegalkin
Decision
Diagram

Zhegalkin
Kronecker RM
Decision Diagram

Zhegalkin Pseudo
Kronecker
Decision Diagram
(ZPKDD)

Zhegalkin Free
Kronecker
Decision Diagram
(ZFKDD)

Form

Single Polarity
Zhegalkin Forms

Zhegalkin
Kronecker Reed-
Muller Forms
(ZKRM)

Zhegalkin
Pseudo
Kronecker Reed-
Muller Forms
(ZPKRM)

Zhegalkin Free
Kronecker
Reed- Muller
Form (ZFKRM)

Affine Forms
Single Polarity
Zhegalkin
Affine Forms

Zhegalkin
Kronecker
Reed-Muller
Affine Forms

Zhegalkin
Pseudo-
Kronecker Reed-
Muller Affine
Forms

Zhegalkin Tree
Kronecker Reed-
Muller Affine
Forms

Table 10.4.1: Extended Zhegalkin Hierarchy table with new "Affine Forms ".

Finally, let us observe that all concepts introduced in this thesis are based on algebraic

axioms. Axioms and algebras related to this dissertation are given in Table 10.4.2 and

Table 10.4.3. These formulas demonstrate the generality of all shown here Linearly

Independent Logic methods for various MV logics. They are useful to derive

expressions and design synthesis algorithms. Quaternary circuits were not included in

the thesis.

674

Boolean
algebra
GF(2) =

AND/EX
OR

GF(3)

Min
modsum 3

GF(4)

Ring 4

Min/max

a+0=a

+

+

+

+

+

+

+

a.l=a

+

+

+

+

+

+

+

ab=ba

+

+

+

+

+

+

+

Flattening
ab+ac=a(b

+

+

+

+

+

+

+

a+l=l

+

no

no

no

no

no

+

a+a'=l

+

+

+

+

+

+

+

a+a=0

+

+

no

no

+

+

no

a'=l-
X

a.a'=
0
+

+

no

no

no

+

+
a'=l-

X

De
Mor
gan

+

no

no

no

no

no

+

Table 10.4.2: Comparison of basic algebra axioms used in various algebras related to
this dissertation. Columns correspond to axioms and rows to algebras. Symbol +
means that given axiom belongs to given algebra. Bold 1 is the unity symbol of logic.

675

ALGEBRAS

Boolean
algebra
GF(2) =

AND/EXOR

GF(3)

Min modsum 3

GF(4)

Ring 4

Min/max

Expansion

Shannon
(this thesis)

Davio
Shannon

(this thesis)
Davio

Shannon
(this thesis,

[Mozammel])
(this thesis,
Dipal Shah)

[Mozammel]

[Dipal Shah]

[Dipal Shah]

Unity 1

1=1

1=1

1=1

1=2

1=1

1=3

l=radix -1

a+-a=0
axiom

no
for +

yes for +

yes
for mod 3
addition

-a = (0-a)
yes

for mod 3
addition

yes
for Galois

addition
yes for

modulo 4
addition

no
for max

a.a"1=l for a ̂ 0
axiom

yes

yes

yes for GF (3)
multiplication

a ^ a

no for min

yes for GF (4)
multiplication

no for ring multiplication

no
for min

Table 10.4.3: This table illustrates relations between algebras and expansions used in
LI logic. The third column compares the 1 element in various logics. The fourth and
fifth columns compare the use of group axioms for the addition and multiplication
operations, respectively, in all these algebras. This table teaches us that because of
axioms, most of the introduced in chapter 10 synthesis concepts are applicable only to
Galois Fields.

10.5. Conclusions.

In this chapter we introduced the concept of multiple-valued affine functions and

operators, and we showed examples of applications of this concept to design ternary

and hybrid gates called affine MV Toffoli gates. These concepts can be expanded to

676

quaternary and general multiple-valued logic, and also to the hybrid logic of mixed

radices proposed for the first time in this dissertation.

In standard Grover Algorithm the cascade is binary. It will be shown in Chapter 11

however, on certain arithmetic blocks for oracles that the cascades can have also

multiple-valued inputs and binary outputs. Finally, even binary input - binary output

oracles can have some restricted multiple-valued sub-blocks inside them (like the

"Count Ones" block from Chapter 11). Therefore, it was important to create general

concepts of affine gates that extended to ternary the binary affine concepts from

sections 7.1- 7.4 in Chapter 7.

Various ternary and hybrid permutative gates and synthesis methods can be used to

create the quantum cascades as introduced in this chapter. The choice of the gate types

and their realization using quantum-realizable primitives are thus problems of basic

importance to both binary and multiple-valued quantum logic synthesis algorithms. In

this chapter we introduced affine gates, first ternary and next hybrid - ternary/binary

as a starting point to create gates, polarized expansions and general-purpose circuit

structures.

We showed in this chapter that exhaustive search makes it possible to generate all

possible ternary two-variable output functions, using, at worst, one ancilla qudit and

only four quantum multiplexers. Exact minimum solutions have been found in

677

particular for the ternary MIN, MAX, Feynman, Galois addition and Galois

multiplication, Toffoli, and SWAP gates. Many more such generalizations are possible

[Giesecke06, Giesecke07]. We found two ternary generalizations of Feynman and two

generalizations of Toffoli, Galois, new Toffoli (not Galois), both useful as building

blocks for various types of quantum cascades. Using this method, the ternary (new)

Toffoli gate (not Toffoli Galois) has been realized with 4 quantum muxes equipped

with four single-qudit operations. The program proved also that all 2-qudits gates can

be realized within at most 4 quantum muxes and only one ancilla qudit. The method

allows to investigate trade-offs between the number of gates and ancilla bits. For

instance, a circuit without ancilla bits may be theoretically realizable but would likely

be much longer than a circuit with one ancilla qudit. The related question of synthesis

is a difficult one and open to future research. For instance, in [Yang06] it was proved

that ternary SWAP, NOT and 1-Controlled-NOT gates are universal for realization of

arbitrary ternary «-qudit reversible circuits without ancilla qudits. Can these results be

extended to our new gates? Paper [Yang06] also demonstrated that all even ternary n-

qudit reversible circuits can be constructed by ternary NOT and ternary 1-Controlled-

NOT. Moreover the method from [Yang06] is constructive, which means that it can be

programmed to obtain the circuit for any number of qudits. However, the circuits

according to [Yang06] seem to be unnecessarily long. Our new method from this

chapter allows to compare circuits with the minimum number of ancilla bits with those

that have few more ancilla bits. Other approaches, not referenced here for a lack of

space were based on various evolutionary and Nature-mimicking paradigms [Yang06,

678

Bae07]. Although these methods found several large circuits as well as circuits

presented here, they were not able to find any new realization of a universal quantum

gate of the smallest cost. For instance, none of these methods did deliver results for 3

qudit gates like the 3-qudit SWAP and ternary Fredkin gates yet. The iterative

deepening depth-first search method is more practical for these tasks than the biology-

mimicking methods. The full potential of Iterative Deepening has been not yet fully

recognized in quantum circuits community. It can be combined with A* search

algorithm by adding a heuristic evaluation function as discussed in chapter 6. An

interesting open problem is to extend these search methods to arbitrary radix logic.

Affine gates

Affine new
Toffoli gates

other

With

•JNOT

2-
interval

With
UNOT

other

Figure 10.5.1: Partial Classifications of affine gates (for Binary and Ternary logic).

Finally all the structures discussed in chapters 3, 4, 7, 8, 9 and 10 can be enhanced by

adding affine gates and their pre-, post-processors. Figure 10.5.1 gives the

679

classifications of affine gates, both binary and ternary. Similar classification can be

done for hybrid gates.

Concluding this chapter, we showed very powerful generalizations to Reed-Muller

logic that encompass very large spaces of circuit structures. This requires even more

sophisticated search algorithms to find high quality solutions.

Observe that there are several unifying and generalizing design themes in this thesis:

1) from search to quantum parallel search,

2) from standard oracles to quantum oracles,

3) from classical logic circuits to AND/EXOR circuits to reversible circuits to

quantum circuits,

4) from affine binary circuits to affine multiple-values circuits,

5) from standard polarity to affine polarity,

6) from LI families to affine LI families.

The themes related to gate and circuit design culminated in this chapter. This

completes the circuit-related part of my dissertation.

680

CHAPTER 11

Design of Blocks for Oracles and Quantum Computers using

Permutative Circuits

11.1. Introduction

In this chapter we show how the synthesis methods introduced in chapters 3, 4, 6, 7, 8,

9 and 10 can be used to design useful blocks for reversible and quantum oracles. We

design binary and multiple-valued-input circuits. In some cases, we use synthesis

methods developed by us in previous chapters. We will introduce also less formalized

methods that are however useful in hand synthesis of quantum oracles. This chapter is

a link between the methods of circuit design (chapters 2, 3, 7, 8, 9, 10) with the

methods of algorithms (oracles) design (chapters 12-15). Below, the quantum blocks

are presented in the order that emphasizes their mutual connections, rather than in

groups of circuits of the same type or application.

11.2. Simple Adder Circuits.

The Quantum implementation for half-adder is shown in Figure 11.2.1a. Circuit for

full-adder is shown in Figure 11.2.1b. The circuit from Figure 11.1a can be obtained

using any method from chapters 3, 4, 6 - 9 and the circuit from Figure 11.2. lb can be

obtained by the method from chapter 3 that creates sequentially outputs of a multi-

output function converting at the same time the irreversible function to a reversible

function in the process.

681

a

b

4)
Sum

c

Carry Q- & &

Sum

Carry

(a) (b)

Figure 11.2.1: Quantum Adders, (a) Half-adder HA realized using Toffoli and
Feynman gates, (b) Full adder FA realized using two Toffol gates, one Feynman and
one inverter gates. Sum = a e b e c, Cany = a (b e c) © be.

The synthesis process of the half-adder is illustrated in Figure 11.2.1.C - g. Figure

11.2.1c has KMaps of sum and carry functions. The Carry output is realized first from

left in the array because it requires an ancilla bit anyway as an irreversible function

and it does not affect the state of inputs. Thus, after the realization of carry, the circuit

looks as in Figure 11.2.Id. Now, Figure 11.2.1e presents a truth table for the new

synthesis problem with inputs a,b,c and output sum. When converted to a KMap

(Figure 11.2.If) we can observe don't care's. This is one of the reasons that we

consider don't cares in this thesis, and especially in chapters 7 - 9 . The function from

Figure 11.2.If is next realized as a linear function Sum = a®b in Figure 11.2.1g

which completes the synthesis process of the circuit from Figure 11.2.1a. After

realizing first the carry output as c (Figure 11.2. Id) the outputs of the gate become

new variables a = a, b = b, c = ab © 0 = ab for the next stages of synthesis. Thus the

circuit from Figure 11.2. la has been realized.

682

(c)

3 \
0

1

0

0

1

1

1

0

\ b

1
0

1

0

0

0

1

0

1

sum carry
(d)

a

b
0

(e)

ab

00

01

11

10

fl

0

0

1

1

z>
0

1

0

1

c
0

0

0

1

Sum

0

1

1

0
(f)

<2&
0

00

01

11

10

0
1
—

1

—

~

0
—

ab

(g)

00
01
11
10

0
0

^r
X
VL

1
0

^ S

3X
Sum= a@b= a@b

Figure 11.2.1: (c) KMaps for sum and carry of the half-adder, (d) creation of

intermediate variables a,b,c , (e) Sum as function of intermediate variables

a,b,c created in step d, (f) The incompletely specified KMap for SUM (a,b,c)t (g)
Realization of SUM from incomplete specification.

Based on the full-adder and half adder, we can build by hand a block scheme of an

adder that adds three 2-bit numbers as shown in Figure 11.2.2. This will lead to a

circuit with k ancilla bits. The full adder circuit can be realized also directly from

KMap by any reversible synthesis method that converts a non-reversible function to a

683

reversible function. In Figure 11.2.2 the ancilla bits initialized to 0 (as in Figure

11.2.1a) are not shown. It is easy to rewrite Figure 11.2.2 to a quantum array (Figure

11.2.2b), so from now on we will not show details of lower stages of design for adder

blocks of quantum oracles.

S2 Si So

i 11
FA

(a)

1

— •

'

C2 C<\ Co

111
FA

V

HA

!

— •

1 '

HA

1 i

Co

C1 —

C2 —

n f u

So

Si

S2

n
n

L3

. O .
J . \.

r
3 J

i O i
• C D •
J Vs.

, r
' k

> I
) I

> '
) . '

, r
-)

> ;

y :

J
u

0

r

L_£
t t]

, r
<J

>
V

^
LL , -k

, r
<J

^
U

) — (b)

Figure 11.2.2 Block diagram of an adder of three 2-bit numbers, (a) a block diagram,
(b) a corresponding quantum array.

Design of quantum adders is a well-developed area of research with relatively many

publications available [Khan05a, Li06]. We will however not go deeper into adders

design in this dissertation as our concern is on one hand on the automated design of

684

general-purpose reversible functions from irreversible specifications and on the other

hand, on the specific methods for the design of oracles.

11.3. "COUNT ONES" Circuit.

The "Count Ones" circuit is one of the most useful circuits in oracle building. It will

appear in many oracles from this dissertation, and also in some other oracles that I

built but that are not included into the thesis. This circuit is always a part of the cost

function calculation block of the oracle. It occurs in nearly all oracles that we have

already built for problems in which the solution cost is being optimized. This circuit is

useful in every case when one wants to calculate the number of bits "one" in a binary

vector, it is thus used in many cost function blocks being parts of oracles. There are

many methods to design this block. The simplest method is to create a specification of

the block as a truth table, KMap or netlist and next use respective software from

previous chapters or other software that converts irreversible logic specification to

reversible logic and next designs a quantum array. Another approach is hierarchical.

The Hierarchical design style we found useful in many cases while designing oracles.

In the hierarchical approach the circuit is composed from smaller blocks, as shown in

Figure 11.3.1. Finally, the "Count Ones" quantum array is shown in Figure 11.7.2 (left

up). The circuit has two-levels. The first level consists of two full-adders and one half-

adder which add 8-bit number in parallel and forms three 2-bit numbers. The second

685

level is an adder that adds the three 2-bit values which are the result of the previous

adder.

J r I
HA

-
C 2 S 2

ill
FA

' ""
C, S1

n i
FA

^
C0

 s o

3 2-bit Adder

1 ' T T T

Figure 11.3.1: Block "Count Ones" realized using binary Half-Adders and Full-
Adders. The block at the bottom is the adder from Figure 10.2.2. Ancilla qubits are
not shown.

The design approach simplifies the circuit design process and the number and

complexity of gates, at the price of increasing the number of ancilla qubits.

Now we will show a systematic method for deriving the "Count Ones" circuit for three

inputs. The point here is not only to derive this particular circuit but to show a method

to synthesize any circuit specified as a truth table. In theory, this method can be used

for any binary circuit presented in this thesis.

In order to derive the circuit for the "Count Ones" block, the first thing to do would be

to draw the Karnaugh map. The design here is assuming that there are at most three

"ones" in order to make the circuit simpler and more cost-effective. The better designs

of "Count Ones" circuit were presented earlier, but the method here is the most

686

general as it is based on a tabular representation of the function (Figure 11.3.2) and

uses the general purpose ANDVEXOR synthesis.

0

0

1

2

1

1

2

3

2

00

01

11

10

Figure 11.3.2: Karnaugh map for "Count Ones " circuit without binary encoding. The
number in each cell corresponds to the number of input values "1" in its argument.

For instance, in the case of the graph coloring oracle, every variable a, b, c is 1 if it is

representing a color. It is 0 otherwise. The circuit calculates the number of ones in the

input. Figure 11.3.3 is the most basic form that our notation can take. It simply takes

all possible values of the three "colors", and then has the amount of one's in each

value listed in each cell. In order to convert the Karnaugh map into a form that can be

used to design the circuit, we must convert it to a binary encoding (Figure 11.3.3).

a b \
00
01
11
10

0 1
00
01
10
01

01
10
11
10

0 ^ 2

Figure 11.3.3: Karnaugh map for "Count Ones" obtained from Figure 11.3.2 after
binary encoding.
The cells in the Karnaugh map have two-bit values within them, as there are up to

three ones (colors). Again, we must separate this KMap into two one-bit Karnaugh

687

maps to derive the circuit for each output bit Oi and O2. The separated KMaps are

shown in Figures 11.3.4 and 11.3.5.

ar>\ 0

00
01
11
10

1
0
0
1
0

0
1
1
1

Oi

Figure 11.3.4: Karnaugh map for "Count Ones"qubit O/.

The product groups in Figure 11.3.4 for an AND/EXOR circuit is:

Oi = ab®bc®ac

=b(a®c)@ac

This equation is our familiar majority function equation for which we found very

efficient solutions using CV/CVVCNOT gates in previous chapters, especially in

chapter 7.

a b ^ 0
00

01

11

10

0

1

0

1

1

0

1

0

Figure 11.3.5: Karnaugh map for "Count Ones" qubit O2.

688

The product groups in Figure 11.3.5 are

02 = ab c®abc®abc®abc

= a(c®b)®a(c®b)

= a®b®c

This is a linear circuit, thus it is also inexpensive. The combined logic functions from

Figure 11.3.4 and 11.3.5 each form their own quantum circuit, illustrated in Figure

11.3.6. We can observe that it is the familiar Quantum Adder that we have already

synthesized (more optimally) in Figure 11.2. lb.

b

c C
0

>——*

^
\7*

<

, r

5 -

>-—<

> ,
V {

— e

\ :

~N 0 !

-̂e
^ >

Figure 11.3.6: Separate Quantum Arrays for the "Count Ones" circuit from Figure
11.3.3.

11.4. Binary Equality, Inequality and Order Comparators.

Figure 11.4.1 is the Karnaugh map (inverted) of the binary equality comparator that

finds many applications as the decision block in oracles.

689

bob
ao3 i \

00

01

11

10

1

00

1

0

0

0

01

0

1

0

0

11

0

0

1

0

10

0

0

0

1

Figure 11.4.1: Inverted Karnaugh map of the C block, the binary equality/inequality
comparator. This KMap realizes the Equality Comparator. Its negation realizes the
Inequality Comparator.

The function realized by the KMap from Figure 11.4.1 can be written as follows:

M= «Q aj bQ b\ ® OQ «i &0 h ® a0 a\ 0̂ h ® a0 &l ^0 &1

= (aj b\ ®ax b[)(a0 b0 ®a0 b0)

= (alebl)(a0®b0)

=«1 © b\ • QQ © &o

Where © denotes the equivalence operator (equivalence is a negation of EXOR).

Figure 11.4.2 is the classical schematic of this comparator for two bits in each of the

compared inputs. It uses 2 EXNOR gates (equivalence gates) leading to a NAND gate (

as the KMap in Figure 11.4.1 was inverted). Extension of this circuit for arbitrary

length n of words A = (ao, ai, ..., a„) and B = (bo, bi,..., bn) is trivial and can be found

using our synthesis methods or by hand as a bit-by-bit extension of the circuit from

Figure 11.4.2.

690

a0

ai

bo :

bi

(a0ai) ^ (bobO

(a0ai) = (b0bi)

Figure 11.4.2: Classical representation of the equality/inequality comparator (C
block) for two 2-qubit words.

Now we use the Toffoli gate to implement the circuit, creating the quantum

comparator (Figure 11.4.3). The Toffoli is a universal gate, and can be used to

represent any basic classical function in a reversible manner. Also note the presence of

the EXOR function (in Feynman gate) and the NOT gates (the inverters). Observe the

NAND realized by initializing the bottom qubit in Figure 11.4.3 to the value of " 1 " .

a0

bo

ai 8"©-
bi

®-&
& (aoaO ^ (bob,)

Figure 11.4.3: Quantum Inequality Comparator (C Block) for 2 qubits in a word using
one ancilla qubit. This circuit can be easily extended to any length of words (ao a„)
and (bo bn). Inputs bo and bj are not restored at outputs as this circuit is not an
oracle.

Observation.

The comparator finds, for instance, application in graph coloring. All the graph's

adjacent node color encodings should go through such comparators. Since each node

represents a country then any nodes connected to it (adjacent countries) should not use

691

the same color. The comparator is designed to test whether any single node-node

connection violates the coloring rules. If it does, it will come out logic 0, as can be

inferred from the Karnaugh map. This 0 will affect the other comparators' result since

the output from every comparator is ANDed together to provide the answer for the

question "does this entire graph coloring configuration obey the coloring rules?"

Comparators are very useful blocks for many other oracles as well. There are many

types of comparators that calculate values of various relations such as >, >, < or *, but

in this section I was first concerned with the simple equality (=) comparator which

finds most applications in oracles. We designed binary and multiple-valued-input

comparators of various types for quantum oracles. Here we will build the "Greater

Than" Comparator using the hierarchical equation method. We first derive the

Boolean function for comparator that compares two 4-bit numbers (s^s^s^ and

B = b^bfy). We first compare the Most Significant Bit (MSB), if s3 and b} has

different value (s3@bJ=l) and b3 =1, then we know B>S. If s3 and Z>3 are the same

(s3 ®b3 = 0), then we need to move to the next significant bit. This can be carried out

until the Least Significant Bit (MSB) is reached. Based on that, we can write the

Boolean function as follows:

out = (s3 © b3)b3 © (s3 © b3)(s2 © b2)b2 ©

(s3®b3)(s2®b2)(sj ©bx)bx ©(s3©Z>3)•

{^®b2){sl®bl)(s0®b())b0

692

Based on the above formula, we can directly draw the quantum array presented in

Figure 11.4.4. The equations are given in some points of the circuit to help the reader

analyse this design. Observe that the number of ancilla qubits was reduced to just one.

This design, extended to more qubits, is used in many oracles to compare costs of

potential solutions with bounds (threshold values). For instance, it is used in Graph

Coloring Optimizing Oracle in Chapter 13. Observe that another method to synthesize

the circuit would be based on automated design starting from a truth table.

(b3es3)b3= s3b:

(b3^Q(b2$ s2)b2^3b3

5 ^ 3

^

4>

(b"^s;)(b"^s2)(b~^s1)(b0e s0)b0$
(baes3j(b2es2)(b1es1)b1e

(b 3 0 s3)(b2$ s2)b2€>s3b3

^M^
-e-

-e-
&T-

b0<fes0

m
B^s2

b=^s1

(b3es3)(b2®s2)(b ie s ^ e
b ^ s , (b3es3)(b2es2)b2es3b3

Figure 11.4.4: Binary Implementation of Quantum Comparator for 2 words of length
4. Please observe the Toffoli gate with 5 inputs in AND. This 6x6 Toffoli gate is
expensive and its internal realization is not shown in Figure 11.4.4. This design
requires only one ancilla qubit.

693

11.5. Ternary Adder and its Use in the "COUNT ONES' Circuit.

I showed above some binary realizations of few arithmetic/logic circuits. Interestingly,

arithmetic design often simplifies when using multiple-valued or multiple-valued-

input binary-output hybrid circuits. Below we will discuss ternary realizations.

Ternary quantum logic is now the most discussed among MV logics in quantum

circuits, but it is only because this area of research is so new. In [Khan05a] Khan and

Perkowski invented a ternary full-adder TA, shown below in Figure 11.5.1. Observe

that the symbol that was used for Feynman gate in binary quantum logic is used now

for ternary Feynman gate which implements GF(3) rather than GF(2) addition.

Figure 11.5.1: The ternary full-adder TA invented by Khan and Perkowski
[Khan05aJ.

Observe that this is a hand design created by two experienced designers and

researchers in the field. My formalized method from chapter 10 (section 10.2.5) found

exactly the same solution. The question is, can this circuit be improved? We are not

solving this problem here, instead, we use their design TA. Based on the Ternary full-

adder TA, we can implement the "Count One", the number of ones circuit, as in

694

Figure 11.5.2. In Figure 11.5.2, the TA block stands for the ternary adder from Figure

11.5.1. Since the first from left TA block has only two inputs, its carry output is

always zero. A 2-digit output sosi is enough for the result. The detailed analysis of the

TA circuit is shown in Figures 11.5.3, 11.5.4, 11.5.5 and 11.5.6.

e7 e6

1 1
TA

S

e5 e4 e3

111
TA

S

v

c

^

TA

S(

•

e2 ei e0

111
TA

S

V

c

V

TA

Si
1 '

Figure 11.5.2: Block diagram of the Ternary Implementation of the "Count
Ones "circuit. Ancilla qubits are not shown. The contents of blocks TA is shown in
Figure 11.5.1.

vAi
Bi-i Q \

00

01

02

10

11

12

20

21

22

0

0

1

2

1

2

0

2

0

1

1

1

2

0

2

0

1

0

1

2

2

2

0

1

0

1

2

1

2

0

Figure 11.5.3: The Ternary KMaps for output Si of the ternary adder TA from Figure
11.5.1.

695

Bj-i Cj
.A,.

0 1

00

01
02

10

11

12

20
21

22

0
0

0
0

0

0

0
0
0

0
0

0
0

0

^
1

w

0

0

0

^

w r\
w

A M Bj_i

A M B|-i

yx.
Aj-i Bj_t

Figure 11.5.4: Ternary KMaps of signal Xt from Figure 11.5.1.

0

0

0

A i
BM C j \ 0

00
01
02

10
11

12

20

21

1
1

1

1

0
2

22 ^ 2 ^

7
Y,= 2

2

2

o

.0 1

Yi = A M © Bn

1Y,1Ci

•Vc ,

Z, = f(Y,,C,)
= 1Yi2Ci 2 Y 1 Ci Y 2 Ci 2

Figure 11.5.5: Ternary KMaps for signals Y{ and Z, from Figure 11.5.1.

696

AM

BM (K
00

01

02

10

11

12

20

21

22

0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0

^
1

Vv

2
0
0
0

p\ 1

\ 1 / r\
1 w

X

AM
3-1 Q \ 0

00

01

02

10

11

12

20

21

22

0

0

0

0

0

1

0

1

1

0

0

1

0

0

2

Xi + Z i=C i +

Figure 11.5.6: Ternary KMaps for signals Xt and Ct +1 from Figure 11.5.1.

11.6. Ternary Logic "GREATER THAN" Comparator.

Ternary logic comparator is conceptually more complex than the binary logic

comparator. But it is more powerful. For instance, the similar ternary equivalent

inequality comparator allows to improve the color comparison in graph coloring by

reducing the block's complexity. The additional advantage of such circuits is that I can

implement them in the way similar to the binary comparator. Such generalizations are

very useful when creating logic synthesis algorithms and possibly our synthesis

methods from previous chapters can be in future extended to general-purpose

multiple-valued-input multiple-valued output logic.

697

Applying the ternary logic, the 2-digit comparator is sufficient for my circuit design.

Below I will thus focus on the 2-digit ternary comparator (5 = 5^ and 5 = 6,Z>0). First

we compare the Most Significant Digits. There are three possible assignments to make

B > S . They are \ = 2 ands, = 1, bx = 2 ands, = 0, or bx = 1 ands} = 0. If bx = 5,, then we need

to compare b0 ands0 with the similar manner. Based on the above ideas, the 2-digit

ternary "Greater Than" Comparator can be designed, see Figure 11.6.1. Observe that

this circuit is in essence hybrid as qubits biSi bo and so are ternary and qubit out is

binary.

out

Figure 11.6.1: The Ternary Implementation of "Greater Than" Comparator.

Analysis of this circuit can be performed in a very similar way to the circuit from

Figure 11.5.1. Again, this quantum array was built on hierarchical reasoning but can

be also designed from hybrid truth table specification using automated tool.

698

11.7. The Binary Compressor Tree.

The binary Compressor Tree idea is used to generate the "Count Ones" circuit from

section 11.3 using a more powerful synthesis method. There are two tasks to be

accomplished by the "Compressor Tree" block:

1) To count the number of ones in the input data (this can be for instance the number

of non-zero spectral coefficients in the FPRM minimization problem (see Chapter

15).

2) To compare the number of ones with the threshold value. If the number of ones in

the coefficients is less than the threshold value, the circuit will output a one,

otherwise the circuit produces a zero.

The "Count Ones" function can be accomplished using a tree of half-adders and full-

adders and is also known in the arithmetic design community as the 10:4 compressor.

The quantum implementation for the half-adder is shown in Figure 11.2.1a and the

full-adder is shown in Figure 11.2.1b. The 8:4 compressor based on a tree of full-

adders and half adders is shown in Figure 11.7.1. The compressor circuit includes two

levels, with the first level consisting of two full-adders and one half-adder which add

two 3-bit values and one 2-bit value parallel and form three 2-bit numbers. The second

level is an adder tree that compresses the 6-bit value from the first stage into a 4-bit

value. The detailed implementation as a quantum array is shown in Figure 11.7.2 (in

699

the leftmost box). We see here that the result S0S1S2S3 along with the threshold value

bobib2b3 serve as the inputs to the comparator.

Figure 11.7.1: Block diagram of the 8:4 Compressor Tree. The binary FA and HA
adder blocks were explained in section 11.2.

We build the comparator as in section 11.4, we first derive the Boolean function for a

comparator that compares two unsigned 4-bit numbers (s = s3s2sls0andB=b3b2blb0). We

first compare the Most Significant bit (MSB), if s3 and b3 have different value

(s3®b3 = 1) and&3 = 1 , then we know 5 > 5. If ^3 and 3̂ are the same (s3 © b3 = 0),

then we check the next significant digit. This can be carried out until the Least

Significant bit (LSB) is reached. Based on that, we can write the Boolean function as

the following:

out = 0 3 © b3)b3 © 0 3 0 b3)(s2 0 b2)b2 © (s3 0 b3)(s2 © b2) •

(sx © bx)Z>, © 0 3 ©6 3) • 02©Z>2 X^eftiXs,, © b0)b0

700

Based on the formula derived there, we design the quantum circuit as shown in Figure

11.7.2 (in the rightmost box at the bottom). The inverse circuits are just mirror

reflections of their basic circuits, and thus the inverse butterfly is drawn by mirroring

in inverse order all gates from the butterfly. This is because in binary reversible logic

the generalized Toffoli gates, Toffoli gates, Feynman gates, Fredkin gates and NOT

gates are their own inverses.

Gates are not their own inverses in the ternary logic, but designing inverse circuits is

also straightforward in ternary logic [Khan05a]. Let us observe that this circuit has 8

ancilla bits. In theory the number of ancilla bits can be reduced to one.

Count ones

|0>
e,

|0>

|0>-

|0>-

IO-
|0>

b 3 •

b2

£
<M>

&

$
&^>
~? r

®

CD 2 (D

<M>
e &

&

-e* -e-#

• & •

- ^

0
e

e
e

cbcb cb cb

e

Comparator

Figure 11.7.2: Binary Quantum Array for the 8:4 Compressor from Figure 11.7.1
and Comparator for 8-bit data (eo, ej, e2 , es , e*, e$, e&, ej) and 4 bit data (bo, bi,
b2,bi).

701

11.8. Multiple-Valued Logic Realization of the Compressor Tree.

As described in section 11.7, the (binary) "Compressor Tree" circuit consists of a

compressor and a comparator. The compressor will have a delay and cost proportional

to the number of stages in, the compressor tree. In the small 3-variable example

described previously, 3:2 and 2:2 binary compressors are used. For larger functions,

the compressor tree can be optimized by using larger compressors and compressors

that are based on the signed binary digit set (a kind of multiple-valued logic system).

The signed binary number system still uses a radix-value of 2 but allows for a digit set

of {1,0,1}, where I represents the value of-1 (a negative unity). This is redundant in

that some values may be expressed with two-different digit strings (eg. +1= 01= l l) .

Efficient compressors may be designed using the signed binary adder as a component.

Because three distinct digits are used, it is convenient to implement the signed digit

adder as a quantum-ternary-valued circuit. We also note that these types of adders

have the desirable property of constant delay regardless of the word-length and can be

used as the basis for other high-speed arithmetic circuits. Table 11.8.1 first appeared

in [Harata87] and illustrates how the redundant digit set is exploited to prevent long

carry ripples.

702

SIGNED BINARY ADDITION TABLE USED TO PREVENT LONG CAHRY PROPAGATION CHAINS

Addend + A u g e n d Digits
in Posi t ion i

AiB i

"T-hT
1 -i-O
"T-i-o
O-i -O

1-1- 1

1 4 - 0

1 4- 0

1 4- 1

Sign Informat ion of
of Digits in Posi t ion /— 1

Precondition AM B^

Not Used
Either is Negative

Neither is Negative
Not Used
Not Used

Either is Negative
Neither is Neqative

Not Used

Intermediate
Carry Digit,

CH-1

T
1
0
0
0
0
1
1

Intermediate

Sum Digit, s.

0
1

T
0
0
1
T
0

Table 11.8.1: Signed Binary table used to prevent long carry propagation chain. The
values 5, and c, occur when either of the digits at next position to the right are
negative while s2 and c2 occur when neither of the digits to the right are negative.
The portion of the circuit that performs this computation is called the pre-condition.

Our implementation of this adder as a ternary-quantum circuit is shown in Figure

11.8.1 where we use the following encoding scheme: 0 <-» 0, 1 <-» 1, 1 <-> 2. To build the

signed-digit adder, logic to differentiate between ^ and s2 is necessary. The subcircuit

for computing the pre-condition that "either input is negative" is based on the ternary

GF Toffoli gates as shown the in upper-left box in Figure 11.8.1.

Based on above Table 11.8.1, the sum and carry values are:

0A+0B+0A°B = 2S2

2»s2=sx

C M = S(2*(Ai®Bi)) = S@(2*(Ai®Bi))

where ©,• are GF(3) addition and multiplication, respectively. °A, °B are post literals.

703

From the formulas, the entire adder can be implemented as shown in Figure 11.8.1.

The lower-left box shows the implementation for the sum digit and the lower-right box

indicates the portion for the for the carry digit. This circuit can be formally obtained

using methods from chapter 10.

J3 j_i

A M
0 1

0

0

2

0

0

2

2

2
2

Pre-condition

^2) (2

A e B, 2 • (A: © B|)

Sum Carry

3 i
\
i

0

1

2

0 1

0
2
2

2

0
0

2

0
0

N

Figure 11.8.1: Quantum Array for the Ternary Sign Adder Circuit.

704

Observe the use of two ternary Feynman gates that realize modulo-3 addition.

Analysis of this circuit can be done similarly as of the circuit from Figure 11.5,1.

11.9. The Sorting / Absorbing Circuit.

The sorting/absorbing block exists in oracles when there is a need to convert the set

with repeated elements to the set with non-repeated elements. This is an iterative

algorithm, which works by exposing the data to a number of butterfly iterations of SAP

(sorting/absorbing processor) blocks. The simplified design to sort/absorb four 3-bit

numbers is presented in Figure 11.9.1. It can be used for instance in those variants of

Graph Coloring algorithms that try to find the coloring with the minimum (chromatic

number) number of colors (in the so-called optimizing oracle).

1

2

8

null

Figure 11.9.1: Butterfly iterative circuit for sorting/absorbing to be used as a block in
cost optimizing oracles.

SAP

SAP

8

null

1

2

\
SAP

\

8

1

null

2

SAP

SAP
\

SAP

705

Figure 11.9.1 presents an example of the circuit (algorithm) for four numbers. Here it

is acting on the unsorted set of numbers 8, 8, 2 and 1. As one can see, repeated

iterations end in the set being sorted from the smallest to the largest number, with

repeating entries reduced to nulls (i.e. absorbed). Figure 11.9.2 is the diagram of the

single SAP block with 3-bit inputs a and b, 3-bit outputs c and d, binary outputs z and

v. In multiple-valued design the qudits a and b can be of radices higher than 2.

a
X

b

V

SAP

c
z

d

V

Figure 11.9.2: The symbolic schematics of the SAP processor with notation used for
its inputs and outputs.

Each SAP block can sort two input numbers a and b such that the smaller one will be

output from the output port c and larger one will be output from port d. If two inputs to

SAP are equal, then one of them will become null/absorbed. However, here we run

into a problem. In this quantum circuit, there cannot be a notation for an absorbed bit.

Initially, all of the inputs in Grover algorithm are put through Hadamard gates. This

means that for instance in the graph coloring problem the number of "colors" is

always a power of 2. This does not affect the performance of the equality comparator;

however, the Sorter/Absorber will be severely affected. Colors that should not exist

(i.e. larger than worst case number of colors) would be sorted alongside colors that

should exist, and thus decrease the efficiency. In order to compromise this problem, I
706

have added the tagged bits x, y, z and v. These tagged bits are bits that are attached to

the color encodings. Those that have the tag value of 1 are colors. Those with tag 0 are

colors that were absorbed in the SAP, and are considered nulls. After all color

encodings pass through this "butterfly" sorter/absorber, the output will sort these color

encoding from the "smallest" to the "largest" and the last qubits at the bottom will be

occupied with nulls.

The SAP involves the interaction between the tag inputs and the data inputs. The

circuit for sorting/absorbing the tags can be represented as a series of maps (these are

not standard Karnaugh maps). From these maps, we will derive the classical notation

of the circuit and then convert it to the quantum form. The first map is a general map

that denotes the outputs c, d, z, v given the state of word a compared to state of word

b, as well as the states of the input tag signals x, y (Figure 11.9.3). The determination

of whether a=b, a>b, or a<b is defined by multiplexers, which will be shown later. We

found these new maps that combine logic variables together with arithmetic predicates

very useful in some oracle synthesis problems.

707

xy a=b a>b a<b

00

01

11

10

c=null
d=null
2=0
v=0

c=b
d=null
z=1
v=0

c=a
d=null
z=1
v=0

c=a
d=null
z=1
v=0

c=null
d=null
z=0
v=0

c=b
d=null
z=1
v=0

c=a
d=b
z=1
v=1

c=a
d=null
z=1
v=0

c=null
d=null
z=0
v=0

c=b
d=null
z=1
v=0

c=b
d=a
z=1
v=1

c=a
d=null
z=1
v=0 C d, z, v

Figure 11.9.3: The map for cdzv the output signals c, d, z, v as the functions of their
inputs x, y, and values of predicates (a = b), (a > b), (a < b). This quantum map
generalizes the input data from bits to words a, b and is thus a new concept in
synthesis.

The Figure 11.9.3 map specifies the action of the SAP. In order to derive the circuitry,

we have to separate the map from Figure 11.9.3 into 4 different maps:

xy\a=b
00

01

11

10

a<b a>b

f l"
a

a

-

b

a

a

fl
r
,K
b

Figure 11.9.4: The KMapfor c. Observe that c is in general a k-input word, not a bit.
Columns (a = b), (a < b) and (a > b) are Boolean predicates with 2 k-bit arguments
each. They are realized as comparators =,<>>, respectively. The design of the

708

"equivalence" and "Greater Than" operators was already discussed. The detailed
design is presented in section 11.10.

Figure 11.9.5 below represents the classical circuit for a, b, c of k bits. Observe that c

is equal to b if control of multiplexer is 1. This means that a>b and y=l when x=0.

a

b 7 A > \-i

-o-

T

Figure 11.9.5: Classical circuit for qubit bus c of k bit-width. This circuit was
calculated from the KMap in Figure 11.9.4. For k = 1 the circuit can be easily directly
converted to a quantum array.

xy\a=h a<b a>b
00

01

11

10

-

-

-

-

-

-

b

-

-

-

a

-

Figure 11.9.6: The KMap for bus d of arbitrary width.

709

Figure 11.9.7 below presents the classical circuit for d. We assume here width k of

signals a, b, c. So, strictly speaking it is not a circuit but a block diagram.

a l^k bi k

Figure 11.9.7: The classical circuit for bus dfor k width of qudits in data.

x y \ a = b a<b a>b

oc

01

11

10

0

0

0

0

0

0

0

0

M 1,

0- 0

v =(a^b)*x*y

Figure 11.9.8: The KMapforv.

Figure 11.9.9 below represents the classical circuit for the tag qubit v.

rH

Figure 11.9.9: Classical circuit for the tag qubit v. Words a and b are of width k.

710

From the classical circuit, we can derive our quantum circuit for finding v. This is

given in Figure 11.9.10.

at

h —$•

h —
&2

-4
-9-
~-£JX-

$^$-
1
x

y

o

- $ -

v— v

Figure 11.9.10: The quantum circuit for the tag qubit v. In this particular example
words a and b have three qubits each.

xy
\Z„_ a=b a<b a>b

00

01

11

10

0

1

1

1

0

1

1

1

0

1

1

1

Figure 11.9.11: The KMap for z.

Figure 11.9.12 below represents the classical circuit for z.

X
y

Figure 11.9.12: Classical circuit for the tag qubit z

711

From the classical circuit, we can derive the quantum circuit for z (Figure 11.9.13). De

Morgan's Theorem was used.

^ ^ D *
-^©-'
-*-©

Figure 11.9.13: Quantum circuit for the tag qubit z.

What remains is to design the arbitrary comparators of width k using quantum arrays.

This will be done in section 11.10.

11.10. The Iterative Comparator of A = B, A > B and A < B.

To design an iterative circuit to compare the two numbers (for instance color

encodings) a and b, we can use a state machine approach. Bit streams a and b may

contain k bits each (are buses of width k). By putting a; b; into the state diagram,

depending on their value, the next state Qi+ and Q2+ will change. The comparison will

act on the qubits of the inputs from the LSB (least significant bit) to the MSB (most

significant bit). The last state of Qi and Q2 represent the results of this two-bit stream

comparison.

712

We used a Karnaugh map to define the circuit. In our case, we used 2-digit bitstring

(encoding) representing a > b, b > a, and a = b. Notice that since there are only 3

different outputs, there's "too much" room when we simplify the Karnaugh map, so an

entire row will be turned into "don't cares" which can be changed to suit the circuit.

The encoding for a=b was 00, a > b: 10 and a < b: 01. Since 11 has no corresponding

encoding value, its row is struck off as a "don't care".

We designed the structure of the Karnaugh map (pre-encoding) based on a state

machine that defined how the different states a > b, a < b, and a = b are changed

depending on whether the entry is 00, 01, 11, or 10. Those values are placed at the top

(columns) of the Karnaugh map, and the encodings were placed as the rows. The state

machine told how each of the states would react to an entry, and so we copied it down

onto the Karnaugh map. We then simplified it into 2 bit encodings, and then 1-bit

values (00s and 01 's were considered 0's, see above for what they represent). Figure

11.10.1 presents the Finite State Machine diagram.

713

Oibi OjbA

a=b

k Oik

a>b

<Hk

<H>
djbi Ojbj Ojbj Ojbj cifbi Ojbi

Figure 11.10.1: State machine for predicates.

We rewrite the graph from Figure 11.10.1 into KMap form, as shown in Figure

11.10.2.

\a;bi

(a=b) 00

(a<b) 01

not used - 11

(a>b) 1 0

00 01 11 10

a=b

a<b

—

a>b

a<b

a<b

—

a<b

a=b

a<b

—

a>b

a>b

a>b

—

a>b

Qi+Q2
+

Figure 11.10.2: The Karnaugh map representation of the state machine graph from
Figure 11.10.1.

Using the state encoding of a = b, a > b, and a < b as at the left of Figure 11.10.2, we

transform the Figure 11.10.2 into the usable standard form Figure 11.10.3.

714

00

01

—

10

01

01

—

01

00

01

—

10

10

10

—

10

\ a j b i

Q i Q 2 \ 00 01 11 10

(a=b) 00

(a<b) 0 1

not used -

(a>b)10

Figure 11.10.3: The Karnaugh map after state encoding as shown in left. We found
this to be the best encoding by exhaustive search.

We can separate the map from Figure 11.10.3 to two maps to represent each output bit

separately.

Figure 11.10.5 represents the Karnaugh map and the groups for ESOP minimization

for Q!+.

Ql Q:

aibi
+ ^ + x 00 01 11 10

1 ^ 2

00

01

11

10

0

0

("

ll

0

0

•pj

l°J

0

0

-N

ij

R
1

—

J
Q /

Figure 11.10.4: Karnaugh map for output Qi . The groups are for ESOP synthesis.

Q? = 0! at ® Qx bt 0 at bt = Q\ {at ®bf)® at bt

715

file:///ajbi

Figure 11.10.5 illustrates the Karnaugh map and ESOP groups for output Q2+.

\ a j b j

Q I Q \ 00 01 11 10

00

01

11

10

0

p
V "

0

D
7

^

W

0

X
J

0

0

0

-

0

Q2
+

Figure 110.10.5: Karnaugh map for Q2 .

From Figure 11.10.5 we obtain ESOP expression

Q2
+=Q2(«i©*i)©«i*i

Figure 11.10.6 illustrates the final quantum circuit for qubits gj1" Q\ of the iterative

circuit. Observe the SWAP gates added at the right to have Qi+ be in the same qubit

(layer) as Qi, and Q2
+ be in the same qubit as Qi .

716

file:///ajbj

Qi

0

bi

ai

0

Q 2

ai®bi

- &

^
^ >

Q i +

garbage

garbage

garbage

garbage

Q2
+

Figure 11.10.6: Circuit for Q; Q2 . Please observe garbage qubits G, and the use of
SWAP gates to provide the outputs Qt in the same qubitfrom top as the next expected
qubit Qi+. This is a requirement of iterative circuit.

The Qn values will continually change as the values are "read" from the least

significant bit to the greatest significant bit. After no more bits remain to be read, the

values of Qn will be compared to receive the judgment of a compared to b. The iterative

nature is shown in Figure 11.10.7.

from Figure 11.10.6

\- Q o - • • • — Qr»

L<V-»«« -CW-1

(a>b)

(a = b)

(a<b)

Figure 11.10.7: The iterative action of the n-bit comparator circuit. Ancilla bits not
shown.

Ill

11.11. Arithmetic Reversible Blocks: Adders, Subtracters and

Kernels.

It is obvious from theory in Chapter 3 that every arithmetic, counting, encoding,

predicate transform or other irreversible function can be realized as a quantum circuit

by adding some number of ancilla bits. The number of ancilla bits may be however

excessive in some designs so we always want to find a way to reduce the number of

ancilla bits. Partially it can be done by good design using automated tools. This way

the number of ancilla bits can be reduced to at most m where m is the number of

outputs. However, in some problems one can invent another architecture on high level,

an architecture that uses reversible high level blocks.

Let us discuss one example. Suppose that I want to design a k-bit adder of two

numbers as in Figure 11.11.1a. Obviously this circuit is not reversible. But I can make

it reversible by repeating one of its K-word-width input words as in Figure 11.1 Lib.

"7
\L A

B

P = A

Q = A + B

(a) (b)

Figure 11.11.1: (a) Irreversible modulo adder, (b) the same adder made reversible by
replicating its k-width input A to output. This is, in essence, the same trick as one
applied to design the Feynman gate.

718

Using reversibility on word level we obtain the following equations.

P = A

Q = A + B J

A = P

B = Q - P

Which shows that logically the inputs can be derived in a unique way from the

outputs.

However in some problems it is better to have another method to achieve reversibility.

For instance design from Figure 11.11.2 is better when one uses the A - B block as

well.

A

B — <

+

- Q

Figure 11.11.2: The reversible adder/subtracter used in Hadamard/Walsh butterflies
and its notations.

This design (known as a Kernel of Walsh Transform) is used in a reversible design of

Walsh Transform based on Butterflies, see Figure 11.11.4.

Before we discuss Walsh Butterfly in more detail let us observe that the Kernel block

from Figure 11.11.2 is reversible, as results from solving equations in Equation

11.11.1.

719

P=A+B] P+Q=2A) 2

Q=A-B J ̂ P-Q=2B J ̂ B=-^Q-
Equation 11.11.1

Observe that in some technologies (such as reversible CMOS Optical and quantum)

the logical reversibility of the circuit corresponds also to its physical reversibility,

which means that by providing input data P, Q to outputs of the circuit we will obtain

the output data A, B (as in Equation 11.11.1) at the inputs of the circuit. The role of

inputs and outputs can be thus completely reserved. This circuit behavior is something

entirely impossible in standard CMOS circuits as used now in VLSI.

The Walsh transform is described by a Kernel matrix
1 1

1 -1 (we omit coefficients

for simplification). By using Kronecker product (tensor product) I can build the matrix

for two variables (variables corresponds to columns of kernel blocks in butterflies) and

next the Butterfly Circuit using standard DSP methods [Stankovic97, Miller02,

Li06]. This Butterfly circuit is shown in Figure 11.11.3.

720

Figure 11.11.3: The butterfly of 4 kernels for 2 variables. It would require SWAP
gates in quantum realization.

The schematic diagram from Figure 11.11.3 can be rewritten to the more detailed

block diagram from Figure 11.11.4.

X

Y

Z

V

\

/-

p
R

S

T

Figure 11.11.4: The butterfly from Figure 11.11.3 in another notation. This diagram
shows the buses of width k, identical blocks for realization of kernels and the necessity
of SWAP gates for crossing buses with width k.

Next, the circuit from Figure 11.11.4 can be rewritten to the even more detailed

diagram from Figure 11.11.5 that explains the role of the adder and subtractor blocks

inside the Kernels.

The Truth table of the Kernel (the + and - operations are mooU) is given in Table

11.11.1.

721

X1X2 y^y2

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

+ mod4

Si S2

0
0
1
1
0
1
1
0
1
1

0
0
1
0
0
1

0
1
0
1
1
0
1
0

0
1
1
0
1
0
1
0

- mod4

di d 2

0
1
1
0
0
0
1
1
1
0
0
1
1
1
0
0

0
1
0
1
1
0
1
0
0
1
0
1
1
0
1
0

Table 11.11.1: The truth table of the Walsh Transform kernel for width of registers k

= 2.

The quantum array for the Walsh Butterfly for 2 variables (matrix 4 x 4) is shown in

Figure 11.11.5.

1 variable level

R

Figure 11.11.5: The quantum array for the circuit specified in Table 11.11.1
emphasizes "quantum layout" of blocks.

ni

n2

mi

m2

di

d2

Si

s2

(a) (b)

d-2

s i

S-2

* W

-©

CD * CD T CD

d*-

-*#-

•4 m-

ft'2

m i

ni2

(c)

Figure 11.11.6: The detailed design of the switching network for Walsh Transform
from Figure 11.11.5. (a) The symbolic switching, (b) symbolic switching rewritten to
SWAP gates, (c)Quantum circuit realization of the circuit from Figure 11.11.6b
using CNOT gates.

723

There are many spectral transforms that are based only on addition and subtraction

operations. These transforms include all the family of Fixed Polarity RM, GRM etc,

but also the Arithmetic Transforms used in Artificial Intelligence [Falkowski03b] and

the Adding transform used in Logic Design and Image Processing [Falkowski97].

The Kernel of the Adding Transform is shown in Figure 11.11.7a. Observe that the

wires are of width k. This is the generalization of the PPRM Kernel from Chapter 3. A

Butterfly circuit for the Adding Transform, can be build similarly as for the Walsh

(Hadamard) Transform (see Figure 11.11.7 for more details).

Finally, let us find the inverse transform to the Adding Transform. For the Kernel we

obtain the equation as in Figure 11.11.7c. Solving this equation we obtain the Kernel

matrix from Figure 11.11.7d which is the same as the (redrawn) Kernel of the

Arithmetic Transform, Figure 11.11.7e. The reversible butterfly for this transform can

be build in the same way as we have done it for the Walsh and Adding Transforms.

Observe that all these circuits are perfectly reversible without any ancilla bits.

A
1
1

B
0
1

p
Q

k /
A '

k X
B 7 ^ +

v
1 0

1 1
X

x y

Z V
=

1 0

0 1

(a) • (b) (c)

724

x = 1
y = 0

x + z = 0
y + v= 1

(d) (e)

Figure 11.11.7: The reversible butterfly architectures for Adding and Arithmetic
Spectral Transform, (a) The kernel of the Adding Transform, (b) The circuit for the
kernel of the Adding Transform with k-bit words, (c) Matrix Equation to find the
inverse Adding Transform, (d) solving the equation determines the matrix of the kernel
that happens to be the kernel of the well-known Arithmetic Transform, (e) Realization
of the kernel of the Arithmetic Transform with a single subtractor (it needs SWAP in
quantum realization).

Observe that because Adding Transform is the inverse of Arithmetic Transform, the

same circuit can be used for both, just by providing the data either at one end or the

another. Again, this is not possible in classical CMOS or any known standard

technology.

11.12. Circuits for other Spectral Transforms

Other known transforms include Fourier Transform, Haar Transform and Hough

Transform. There is much published on Quantum Fourier as it is the fundament of the

Shor algorithm for quantum factoring. It is also much published on Haar Transform

which is the simplest Quantum Wavelet. We did not find anything on Quantum Hough

Transform but this subject is very complicated, so we will drop it here. However, we

would like to show the reversibility of some operations that can be used to design

725

z = -1
v= 1

x y

Z V

1 0
-1 1

A

B

various kinds of known and new spectral transforms. The general Kernel pattern for

all Generalized Transforms is presented in Figure 11.12.1.

(a)

c2*A - B

(b)

Figure 11.12.1: The Generalized Transform Kernel for Butterflies: (a) The schematic
with 2 multipliers, an adder and a subtractor, (b) The quantum array on block level
emphasizes hierarchical design with reversible blocks and the role of SWAP gates for
quantum buses.

When coefficient Ci and C2 are constants, and operations +, - and * are done in a

Galois Field algebra, then the generalized Kernel can also rewritten directly to a

quantum array, as shown in Figure 11.12.1b. This result is not known from literature,

although it is obvious. It is interesting what may be some practical applications of this

fact. Using this design we can design a quantum oracle to find some certain transforms

from the families of transforms; this would be a generalization of the paper by Lin,
726

Thorton and Perkowski [Li06]. As seen, the generalized transform from Figure

10.12.1 is a generalization of both Kernels corresponding to positive Davio and

negative Davio expansions from [Li06] and Chapter 15. Similar architectures have

application in Adaptive Filtering for Image Processing and Array Signal Processing.

The circuit from Figure 11.12.1b can be redrawn to the circuit from Figure 11.12.2 by

adding SWAP gates.

c2*A - B

Garbage

— A + Ci*B

00"

Figure 11.12.2: Realization of the kernel block for the Generalized Transform
Butterfly, (a) the location ofqubit buses in the diagram, (b) Another variant ofSWAPs
for the circuit obtained from Figure 11.12.1b by removing SWAPs from the right. The
left part shows symbolic SWAPs, the right part the rewritten diagram, allowing to map
crossing connections to sequences of SWAP gates, similarly as it was done in Figure
11.11.6.

727

a

b

P = a

Q = a*b

P=a 1 a = b

Q = a*b]=>b = ^.

(a) (b)

Figure 11.12.3: Reversible multiplier/divider and the derivation of its equations.

a

b

P

Q

P = a

Q = a

log a a = b

b = \ogpQ

(a) (b)

Figure 11.12.4: Reversible power/logarithm circuit and the derivation of its
equations.

shl (b, 2a
Q

~n ~n 1 P 2~P.Q=2-p.2P.b=b
Q=shl{b,2a)=2a*b[p=a ^

p e = 2 P * 6 =>b=Tp.Q^shlQTp)=sMQf)

(a) (b)

Figure 11.12.5: Reversible shift circuit and derivation of its equations.

Figures 11.12.3 - 11.12.5 present new reversible word-level blocks. They all

generalize the principle of CNOT gate, used also in Figure 11.11.1b and Figure

11.11.7.

728

bo-

b i -

b2-

b3-

(a)

a = 1

(b)

bo

bi

b2

b3

a = 0

(c)

Figure 11.12.6: Cyclic "Shifter To Right" circuit for 4 bits, (a) the quantum array
with Fredkin gates, (b) its operation for control qubit a = 1, (c) its operation for
control qubit a = 0.

Figure 11.12.6a shows a reversible shifter that shifts to right in forward and shifts to

left in backward (output -> input) direction or operations. Figure 11.12.6b illustrates

its behavior for control a = 1. Figure 11.12.6c illustrates its transparent behavior for

control a = 0. Figure 11.12.7 shows right/left cyclic shifter from inputs controlled by

two inputs a and b.

729

b
a

Co

Ci

c2

c3

c4

c5

X X
X X

X
Figure 11.12.7: Left/right reversible cyclic shifter.

The operation of this general shifter is described with the following equations:

a = 0, b = 0 o r a = l , b = 1 - no shift,

a = 1, b = 0 Cyclic shift right,

a = 0, b = 1 Cyclic shift left.

Similarly, all kinds of barrel shifters can be considered to create their reversible

(quantum) counterparts.

a y a /

b 3 /
b /

+ p c
T ^ -" (8)

V /

V /

(a)

%

f

1

1
V

r \

— £

>• a + « b

(b)

Figure 11.12.8: (a) The schematic ofGF(8) adder realized in Binary, (b) The quantum
array for GF(8) adder.

730

Finally, Figure 11.12.8 presents the simplicity of GF(k) adder for k = 2r- and r = 3.

Such circuits are used in DSP, communication and cryptography.

11.13. Low Level Realization of FPRM Transforms. FPRM Processor

The butterfly diagrams described in previous chapters for the "fast" calculation of the

FPRM spectral coefficients may be represented as quantum logic circuits comprised of

cascades of generalized Toffoli gates. Furthermore, all possible butterfly diagrams for

any given polarity may be described as a single quantum logic circuit with the polarity

number provided as an input to the circuit. Figure 11.13.1 contains the butterfly

diagrams for all functions of one variable. The diagram on the left (Figure 11.13.1a)

represents the polarity-0 transform while the diagram on the right (Figure 11.13.1b)

represents the polarity-1 transform. Values dl and d2 represent binary truth vectors

for all possible functions of 1-variable. The right side of each butterfly expresses the

RJVI spectral coefficients in terms of the original function values. The quantum logic

circuit (Figure 11.13.1c) is a realization of the composite function formed using the

polarity value p to select which of the two sets of coefficients are requested as shown

in the expressions on the right side of the quantum logic circuit.

Just as butterfly diagrams representing RM transforms of more than 1-variable can be

formulated based on the Kronecker product, so can the quantum logic circuit also be

731

expanded for larger functions. Figure 11.13.2 depicts an expanded FPRM processor

for 3-variable functions.

D=1
d i — - — 7 d i ® d2 6v^- d i

(b)
d. -di $ d2

P-

di_

da-

^

^ -p'di+p(di^d2)

(j)—pXd^dzJ+pdz

(c)

Figure 11.13.1: RM Transformation Butterflies and Corresponding Quantum Logic
Circuit, (a) the simple butterfly for polarity 0, (b) the simple butterfly for polarity 1,
(c) the circuit for both polarities, polarity is selected by assigning a binary value to
variable p.

The FPRM processor accepts a vector corresponding to the Boolean function and a

polarity vector and outputs FPRM spectral coefficients. The core part of the FPRM

processor is the "butterfly" quantum circuit. The polarity of the "butterfly" is

controlled by the polarity bits. Figure 11.13.1 shows the 1-variable FPRM processor

which has a 2-bit function input ([rf,,rf2]) and a 1-bit polarity input (p). lfP — 0 , the

2-bit output corresponds to positive polarity coefficients, otherwise, if p = 1 the 2-bit

output corresponds to the negative polarity coefficients.

Figure 11.13.2 shows the 3-variable FPRM processor. There are 3 polarity bits and 8

input lines for 3-variable processor. Again, I would like to point out that this diagram

732

is only one example of many possible realizations of various polarity transforms that

may be designed based on the "polarity controlled Kernel" concept that was outlined

in this section.

d.

3 bit for polarity

- ^

" ^

-& t - T

-&

"4>

e-
&

4>
^

^

4-

&

• e
- ^

Qr

&

Jfr
&

•to

&

" ^

^ ~

-b
&

^

-a
- 23 bit for data -
Boolean Function

23 bit for spectrum of
this Boolean function

for given polarity

Figure 11.13.2: 3-variable FPRM Processor using butterfly of blocks from Figure
11.13.1.

733

CHAPTER 12

Quantum Search for Satisfiability, Petrick Function Minimization

and Related Problems

In this chapter we discuss how to construct binary and multiple-valued-input oracles

for software and hardware realized reconfigurable, tree search, quantum algorithms.

We analyzed several algorithms for solving combinatorial problems and we found

certain similarities. These similarities were next used to construct general concepts of

algorithms based on oracles. These algorithms cover a very wide class of problems.

They can be realized in software or in hardware and can model both binary and

multiple-valued logic. There is also a didactic value in comparing these algorithms and

building oracles for them. We want to create a system for prototyping quantum

algorithms and compare them with evolutionary, tree search and other classical

algorithms.

In this chapter we show a class of problems that are reduced to a class of oracle-based

algorithms: genetic and tree search in case of classical algorithms and Grover

algorithm in case of truly quantum algorithm. We hope that our analysis shown in this

chapter will allow creating and analyzing various classes of algorithms quickly and

with little effort. In contrast to searching an unstructured database application of

Grover which is of questionable use, all these applications are practical. They are all

734

based on creating oracles for Grover algorithm. The first task is then to be able to

design oracles systematically and for any problem.

Our first main task is to create quantum oracles for various satisfiability types of

problems. This is the topic of chapter 12. We will start from the simplest of these

problems and continue towards explanation of a large class of still unsolved problems.

Working in a systematic way on designing quantum oracles for many problems, I

realized that there are certain categories of problems for which oracles are very similar.

Therefore, we tried to categorize all oracles to certain types. Such characterization will

allow next to design oracles with less effort, systematically and by reusing reversible

blocks for typical circuits.

Based on the solved problems, there exist the following types of oracles:

1. Satisfiability oracles: These oracles are based on creating a single-output

satisfiability formula. The formula can use various gate types and logic

structures, depending on the problem.

2. Constraint satisfaction oracles: These type of oracles are for constraint

satisfaction problems such as graph coloring, image matching or cryptographic

puzzles. These oracles use logical, arithmetical and relational blocks and have

often the decision oracle and the optimization oracle as their components. The

decision oracle is a global AND of several partial decision sub-oracles. The
735

Constraint Satisfaction Oracles can be treated as generalizations of

Satisfiability Oracles. This understanding helped me to build Constraint

Satisfaction oracles and I believe it should be always used when new oracles

for CS problems are being build.

3. Path problems: These are problems to find certain path in a graph, for instance

an Euler path or Hamiltonian path. Many games and puzzles such as "Man,

wolf, Goat and Cabbage" belong to this category. The oracles include decision

sub-oracles for each move(edge) in the graph of the problem(game). These can

be also treated as constraint satisfaction problems in which constraint variables

are repeated for units of time. When we know how many time units we need in

a sequence of moves to solve the problem, the problem can be reduced to the

constraint satisfaction problem.

4. Problems related to spectral transforms: Walsh, Reed-Muller, Haar, Fourier,

etc.

5. The mapping problems, including their special class, the subset selection

problems. These problems are also constraint satisfaction problems, but they

have special properties which makes them easier to solve based on analogies to

similar problems.

736

The Satiliability oracles include the following:

1. POS satisfiability,

2. Solving the unate covering problem by Petrick Function,

3. Solving binate covering problem,

4. Solving various multi-level SAT formulas, especially the generalized SAT of

the

form YlJJl*.

5. Solving the even-odd covering problem for ESOP, PPRM, FPRM and similar

logic minimization problems,

6. Solving the AND-OR Directed Acyclic Graphs (DAGs) from robotics and

Artificial intelligence.

The constraint satisfiability oracles include:

1. Proper graph coloring

2. Compatible graph coloring

3. Graph coloring problems with non-standard cost functions

4. Waltz algorithm for image matching

5. Cryptoarithmetic puzzles such as SEND + MORE = MONEY

The Mapping oracles include:

1. Maximum cliques (used in Maghoute algorithm for graph coloring),

2. Maximum independent set,

737

3. Finding prime implicants of a Boolean Function.

Path oracles include:

1. Euler path,

2. Hamiltonian path,

3. Shortest path,

4. Longest path,

5. Traveling salesman path,

6. Missionaires and cannibals logic puzzle,

7. Man, Wolf, Goat and Cabbage logic puzzle.

Exhaustive solving of equations includes:

1. an + bn = c

12.1. Solving the Satisfiability Class of Problems

12.1.1. Product of Sums SAT (POS SAT)

a
b
c
d

fl=(a + c + d)(a + c)(c + b + d)

Figure 12.1.1.1: Classical oracle for POS Satisfiability f\ =(a + c + d)(a + c)(c + b + d)

738

The fundamental role of satisfiability to computer science, algorithm design, CAD and

complexity theory is well-known. In our ECE-572 and ECE-573 classes at PSU we

make many uses of it.

In this section we will present examples of building quantum oracles for various

satisfiability problems. Let us build first the oracle for function

fx=(a+c + d){a+c)(c+~b+~d) . The classical oracle is presented in Figure 12.1.1.1. The

formula can be transformed as follows, using De Morgan rules:

(a + c + d) • (a + c) • (c + b + d) Equation 12.1.1.1
acd • ac* cbd

Using Equation 12.1.1.1 the quantum oracle can be build as shown in Figure 12.1.1.2.

Unfortunately this method requires many ancilla qubits and nothing can be done about

those qubits if the designer is not performing some deeper transformations of function

fi-

-^~

d—Q-

- $ -

J $-

4fr-
l L -

o -

•^^1

ancilla bits

i r^hr-J

*P-

Figure 12.1.1.2: Realization of oracle for POS SAT

f = (a + c.+ d)»(a + c)»(c + b + d) using quantum NANDs and a quantum AND.

739

Mirrors to restore ancilla bits to "1" are not shown. These mirrors are not necessary
in some applications.

Observe that as many intermediate ancilla bits are required as there are sum terms in

the POS formula. This way, every POS SAT formula can be converted to a quantum

array with ancilla bits in Figure 12.1.1.2.

12.1.2. Generalized SAT.

In some problems the satisfiability formula is not in POS form. It can be either

converted to a POS form, which is often very inefficient, or it can be designed as a

multilevel circuit of other structure than that from Figure 12.1.1.2.

For example, given is a SAT formula:

f2 = [(ab + cd) • (ac + b)] © [(abed) • (a + b + c)] Equation 12.1.1.2

The formula is transformed to the following form

f2 = [(ab© cd® abed)• (b© bad)}© [abed»(a® ab®abe)] Equation 12.1.1.3

and realized as in Figure 12.1.1.3. As we see, the mirror circuit has been used to

decrease the number of ancilla bits. The mirror circuit shown in Figure 12.1.1.3

740

creates zeros in ancilla bits 2 and 3 from bottom. Another way to realize (a + b + c)

would be to use a b c. These types of formulas allow for various trade-offs with

respect to numbers of ancilla bits.

Mirr

0 — $ -

0 &

<P T $

- 0

Q) T $

r 4

"3>"

- * -

9-

-$-

-fc

- $ - b Working
y input

qubits

0 "(auxiliary
Q J " qubits

Output of
' 2 the oracle

Figure 12.1.1.3: Oracle for function f2 = [(ab+ cd)» (ac+ b)]® [(abed)* (a+ b+ c)]
using mirror circuits to decrease the number of ancilla bits. The circuit is not
minimized.

The number of ancilla bits can be reduced by using mirrors when the circuit can be

drawn in a layered form of type OR-AND-OR-AND etc. For instance, the circuit from

Figure 12.1.1.4a has (from the output) layers of OR, next AND and next OR gates.

Using De Morgan rule the circuit is transformed to the form from Figure 12.1.4b and

next to the structure from Figure 12.1.1.4c. In this final structure all gates are NANDs.

Signals a; corresponds to ancilla bits. Transforming each gate separately one obtained

the (non-optimized) quantum array from Figure 12.1.1.5. As we see, there are 6 ancilla

bits (output qubit is mandatory, so it is not counted as an ancilla bit). Mirrors can be

used to restore all 6 ancilla bits to constant 1. The question is now the following: Can

we decrease the number of ancilla bits? The answer depends on the particular multi

level structure to be realized.

741

(a) £> (b)

a
b ^ >

Pi
?=o

tt>

(c)

Figure 12.1.1.4: Step-by-step transformations of large classical oracle with many
levels to a quantum oracle, (a) Initial oracle with sandwiched layers of OR and AND
gates, (b) Converting first K-l layers to NANDs, (c) converting the last layer to
NANDs.

This example illustrates that one can convert an arbitrary formula of Boolean logic to

a quantum oracle by adding some number of ancilla bits.

742

o

b

1

"c

d

1

1

~e

7
i

&

Ti

l

l

l

tir

4-

-4

-fft

- *

- &

*— a

"—. b

ancilla 1

ancilla 2

— ancilla 3

- $ — e

• ^ - /

— ancilla 4

- $ — *?

ancilla 5

ancilla 6

/

-® m-

Figure 12.1.1.5: Non optimized quantum array of the classical oracle from Figure
12.1.1.4c. Mirrors can be added to return to constants 1 in all ancilla bits.

Figure 12.1.1.6: Incompability graph for the ancilla bits from Figure 12.1.1.5.
Symbol al corresponds to ancilla 1 in Figure 12.1.1.5 and so on. Pairs of
Incompatible qubits (those that can not be merged into single qubit) are linked using
full edges in the graph. Some pairs of compatible qubits are marked by interrupted
lines for illustration.

743

Figure 12.1.1.6 presents the incompatibity graph for the non-optimized circuit from

Figure 12.1.1.5. Every two ancilla bits (nodes) that can not be combined are linked by

a solid edge. The graph shows that there are the following maximum independent sets:

{ai, a^}, {ai, as}, {a2, as}, {a2, a4 , among others. We select pairs {ai, a^ and {a2, as}

for folding. Thus ancilla bits ai and a4 are folded to one qubit and ancilla bits a2 and

as are folded to another qubit. This leads to the quantum array with mirror circuit,

presented in Figure 12.1.1.7. As we see from this example, the graph coloring,

maximum clique and maximum independent set problems are also useful in quantum

layout. The maximum clique and maximum clique problems are discussed in details in

section 12.3 below.

d

•Q 3 — *

h—$-
k|J «—ff>

4 — f

f — i -

-&

V t CD
L

&

& •

TTI

Q>

•<£-

S>-

- #

-®-
<£ ffi—*• - $ -

4$-

J ^ -

$-

t&-

4-

a
h
c

d
e

f
9

h
{a-i, 04}

{02,05}

Figure 12.1.1.7: Quantum array for netlist from Figure 12.1.1.4 with mirror a circuit
designed based on folding that was found from graph from Figure 12.1.1.6. More
mirror circuits can be added to restore bits 2, 3, 4 and 5, counted from the bottom, to
constants 1.

744

12.1.3. AND/OR DAGs.

There are several problems in Artificial intelligence, CAD, planning and scheduling

that can be represented by trees or DAGs (directed acyclic graphs). These structures

can be converted to satisfiability formulas in classical logic which are next converted

to quantum arrays.

GXD
Figure 12.1.3.1: AND/OR DAG for certain Artificial Intelligence Task (such as robot
planning). Nodes represent tasks. Leafs represent trivial actions: Arrows represent
task dependence. Nodes c and d are AND-nodes. Others are OR-nodes. Node e is
implication node and nodes h, i, g and fare terminal nodes (leafs).

Given is for instance a DAG from Figure 12.1.3.1, called the AND-OR graph—the

data structure used in AI. There are two types of nodes in Figure 12.1.3.1 - the AND

nodes, denoted by an angle symbol between outgoing edges. This means that to satisfy

the parent node, all its children nodes must be satisfied, see Figure 12.1.3.2.

745

(a) (b)

Figure 12.1.3.2: Example of the AND node in the AND/OR graph, (a) the subgraph,
(b) the logical transformation to remove the implication operator.

The other type of nodes are OR nodes. They mean that to satisfy the parent node, any

of its children should be satisfied, see Figure 12.1.3.3.

(a)

(«! + n2 + «3 + «4)

(b)

Figure 12.1.3.3: Example of the OR node in the AND/OR graphs, (a) the subgraph,
(b) the logical transformation to remove the implication operator.

From the graph from Figure 12.1.3.1 the following logic equation is written:

(a -» b + c)(b -> d + e)(c -» e• /) (e -> g)(d -^h»i)

By using the logic transformation rule

(A^>B)o(A+B)

Equation 12.1.3.1

Equation 12.1.3.2

746

Equation 12.1.3.1 is converted to Equation 12.1.3.3 below

a + b + c)(b + d + e)(c + e • f)(e + g)(d + A • i) Equation 12.1.3.3

Applying the OR-to-EXOR transformation (A + B) o (A e AS) the following Equation

12.1.3.4 is created:

(a®ab® abc) •(b®bd® bde){c 0 cef) •{e® eg)(d ® dhi) Equation 12.1.3.4

It is now easy to create an oracle for the function from Equation 12.1.3.4, using in

general the methods already outlined in this thesis; including mirrors and

factorizations, and possibly, ancillabits.

12.2. Solving the Unate Covering Problem.

Given is a function from Figure 12.2.1. All its prime implicants are marked as

ovals(loops). Using the minterm compatibility graph G all primes are found as

maximum cliques. They can be also found as maximum independent sets of graph G

(G complement). Based on KMap and primes we can create the covering table from

Figure 12.2.2.

747

ab \ .

00

01

11

10

00

0

0

<T~
0

01

^

W
3i?

0

11

0

~<3xl
i'H
\]J

10

0

m>
0

0

Figure 12.2.1: Finding graphically all prime implicants for minimal Covering of a
SOP circuit.

A

B

C

D

E

acd

abc

acd

abc

bd

0001

X

0101

X

X

0111

X

X

0110

X

1100

X

1101

X

X

1111

X

X

1011

X

Figure 12.2.2: Covering table for function from Figure 12.2.1.

From the table, denoting rows A, B, C, D, E we compile the Petrick function in a

standard way:

1 = A • (A + E) • (B + E) • B • D(D + E)-(C + E)-C

This function can be simplified using the Boolean law as follows :

1 = A » B « D » C

Therefore,

f = A + B + C + D = acd + abc + acd + abc + bd

Another search method for (another) unate covering table from Figure 12.2.4 is

illustrated in Figure 12.2.3. Figure 12.2.3 shows the branching tree for the unate

covering problem from Figure 12.2.4. All leafs are solutions, as showed in Figure

12.2.3. Both these methods can be used to build search oracles, as well as hybrid

parallel searches.

,4 = 0 J^ ^ \ . ^ A = l
C(B+D+F)8(8+DXE+F) (B + D+FKB+D)

j c = l 8 / \ D

E+F AB AD
E=l / X F = ! f = A + B f = A+D

C-B-E C-B-F
f=C+B+F f=C+B+E

Figure 12.2.3: Solving the Petrick Function from the unate covering table in Figure 1
2.2.4.This method can be combined with oracle methods using the mixed parallel appr
oaches from chapter 6.

A

B

C

D

UJ

F

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

Figure 12.2.4: Another example of an unate covering problem represented by a table.

749

12.3. Finding Maximum Independent Sets in a graph

12.3.1. The Maximum Independent Set Problem

Finding all Maximum Cliques of a graph and finding all maximum Independent Sets

of a graph are two fundamental problems for which creating oracles is relatively easy,

so we start from these problems. The complement graph of graph G is a graph with N

nodes that when added (set theoretical union of edges) to graph G make a complete

clique graph on N nodes.

<Z)

Figure 12.3.1: Maximum Clique in graph G . There are other maximum cliques but
this is the only one maximum clique with four nodes. {3, 4, 6} is a maximum clique
with 3 nodes. {4, 5, 6} is another maximum clique with 3 nodes. {5, 7} is a maximum
clique with 2 nodes.

The standard reversible oracle for finding all independent sets of graph G (the

complement of the graph G) is given in Figure 12.3.2. It is modified to a quantum

oracle for Grover Algorithm in Figure 12.3.3. This method based on mirrors is used

always for Grover's Oracle, so the complete quantum oracles with both the base oracle

and its mirror will be usually not shown. More details and explanations how to create

the oracle from Figure 12.3.2 are given in section 12.3.2.

IV Ar> v i f V » i irv"» / " ^ I i n • ir^

750

1 — <
o

3

A i

fr

*
1^ r
v A
i \
l /
i \

i ;

\\ Li

1 *
v
1>

.?

r-1 /
1^ 1/
1^ Ll

1^
V
1^

1} —

> 1

"1

c
y

> <

<

"1
J

f
M

1

(1

"1

J
f
M

t

"1
J

f

1

C"
U

1 1

•*,

J
f

1

'•J
•"i

J
f
v|

^
J

, •

* s

\

ry '

*\
J

£ ; cp

Figure 12.3.2: Quantum Oracle for finding all independent sets of the graph from
Figure 12.3.1. All maximum independent sets are found by adding the set size
calculating circuit similar to the circuit to calculate the number of colors in a graph
from chapter 13.

| 1> -

Figure 12.3.2 Figure 12.3.2"1

r—.H>

Hi*
^

Figure 12.3.3: Using mirror circuit in the oracle for finding all independent sets.
751

12.3.2. Finding Prime implecants of Boolean Function.

Prime implicants are found from the cliques of the graph G of compatibility of true

minterms or from the maximum independent set of its complement graph G .

fn2J

Xv ®
vv

Graph G Graph G

Figure 12.3.2.1: Graph G and its complement graph G . The maximum independent
sets of graph G are the maximum cliques of graph G , and vice versa. For instance
{ n2, ns, n4, nsj is a maximum clique with four elements.

The Grover algorithm will produce all cliques of size n, next all cliques of size n + 1,

etc.

Oracle for the decision part of the maximum independent set for graph from Figure

12.3.2.2 is shown in Figure 12.3.2.3. The optimization Oracle finding all independent

sets with more than val nodes is given in Figure 12.3.2.4. This circuit uses the "Count

Ones" circuit and "< comparator" and is explained in full detail in chapters 11 and 13.

752

Figure 12.3.2.2: Example of a graph to find the maximum independent set.

Independent-set

Figure 12.3.2.3: The classical oracle to find all maximum independent sets of graph
from Figure 12.3.2.2. Each AND-gate is for an edge of this graph.

753

1

2

3

4

Decision
oracle for

independent
set

Independent-set

Calculating
the number
of nodes in

the
independent

set

Number-of-ones

, val

>

IX

Maximum-independent-set

Figure 12.3.2.4: The optimizing Oracle to find all independent sets in a graph that
have more than val nodes each.

Another approach to Petrick function minimization is to create an oracle as in Figure

12.3.2.5. One more approach is given in Figure 12.3.2.6. Both these examples use

realization of single-index symmetric functions realized as reversible blocks. These

way optimization problems such as Petrick Function are converted to decision

problems.

754

9i-

92'

9s-

9u-

POS
formula

Single-index k<N
symmetric function

}• Input bits

V Oracle bit

Figure 12.3.2.5: An oracle to solve Petrick Function. Value ofk is set by the user.

#of
variables

ni -

n2-

n r -

9i-

92-

9s-

9n

0

0

POS
formula

®-

Controlled K
single-index
symmetric
function

•b
-&

> Input bits

• J

} garbage

Oracle bit

Figure 12.3.2.6: One more alternative approach to solving Petrick Function.

755

12.4. Classes of Satisfiability Problems.

We showed in sections 12.2 and 12.3 examples of problems that belong to the

"satisfiability class of problems". In this section we analyze the satisfiability class of

problems in more detail.

12.4.1. Variants of reducing various problems to SAT.

Satisfiability type of problems are the simplest problems for which oracles can be built.

Formulating the oracles is quite straightforward from the SAT formula. In the most

general case the Satisfiability Decision Function problem is formulated as an arbitrary

binary or multiple-valued-input binary-output discrete single-output function, for

instance, a product of sums of literals. (The literals are variables negated or not).

Another example may be EXOR of products of literals, or product of EXORs of

literals, or product of sums of products of literals. These functions are created by

transforming some natural-language or mathematical decision problems, such as for

instance cryptographic puzzles. The question is to find out for which values of

variables the formula is satisfied. In some problems one has to find all solutions, in

some other problem just one solution or only some solutions, Often only one solution

is enough. An example of oracle for unate function f from section 12.3.2 is shown in

Figures 12.3.2.3 and 12.3.2.4. Let us observe that this is a purely logic oracle that

gives yes/no answer only. There is a single wire for each variable of the formula.

When the function is satisfied the output variable has value " 1 " . The input values may

be:

756

(1) given in exhaustive way by counting,

(2) generated randomly,

(3) generated according to Genetic Algorithm, or

(4) given in a superposition as in quantum algorithms.

Below we will formulate systematically several satisfiability types of problems,

starting from the simplest ones.

Given is a product of terms, each term being a Boolean sum of literals, each literals

being a Boolean variable or its negation. We are interested in the following problems.

Problem 12.4.1.1 (Satisfiability):

Answer Yes if there exists a product of literals that satisfies all terms or No if such

product does not exist.

Problem 12.4.1.2 ^Optimization of the Generalized Petrick function):

Find a product with the minimum number of literals that satisfies all terms or (option)

prove that such product does not exist.

Problem 12.4.1.3 (Optimization of the Generalized Petrick function-non-negated

literal variant):

757

Find such product of literals that satisfies all terms and in which a minimum number

of literals is not negated or prove that no such product exists. (The not negated literals

will be also called positive literals).

Problem 12.4.1.4 (Partial Satisfiability):

Find such set of literals that satisfies the maximum number of terms.

Problem 12.4.1.5 (Complementation of Boolean function):

Given is a Boolean function in a Sum of Products Form. Find its complementation in

the same form.

Problem 12.4.1.6 (Tautology Checking):

Verify whether a function is a Sum of Product Form is a Boolean tautology.

Problem 12.4.1.7 (Convertion from Sum of Product Form (SOP) to Product of Sums

Form (POS)):

Convert a Boolean function from a Sum of Products to the Product of Sums Form.

Problem 12.4.1.8 (Convertion from Product of Sums Form to Sum of Products

Form):

Convert a Boolean function from a Product of Sums to the Sum of Products Form.

In problems 12.4.1.2, 12.4.1.3 and 12.4.1.4 we can look for all solutions, all optimal

solutions, some optimal solutions or for a single optimal solution. Problem 12.4.1.2 in
758

which all solutions are looked for corresponds to the well-known Boolean

Complementation Problem that occurs in the minimization of Boolean functions.

Other problems such as Tautology Checking, Convertion from Sum of Product Form

to Products of Sums Form and Convertion from Product of Sums Form to Sum of

Products Form are also mentioned.

The central role of the first problem in Computer Science is well established. Many

reductions of practically important problems to problems 12.4.1.2 and 12.4.1.3 were

shown, including problems from VLSI Design Automation, especially in logic design

and state machine design. It has many applications also in logistics, scheduling, AI

and robotics.

Ashenhurt/Curtis Decomposition of Boolean functions can be done in an algorithm

that repeatedly applies Satisfiability, Tautology and Complementation. These

operations are also of fundamental importance in most algorithms for Boolean

minimization, factorization, and multi-level design.

The problem of Partial Satisfiability and its applications are discussed by K.

Lieberherr [Lieberherr81, Lieberherr83]. Many other reductions to the formulated

above problems are discussed in papers [Garey79, Perkowski 80, Perkowski 86,

Perkowski87]. Professor Marek Perkowski created a design automation system

[Perkowski85] in which many problems were first reduced to the few selected
759

"generic" combinatorial optimization problems. These problems include the eight

problems introduced above. He was looking to various methods to implement these

generic combinatorial algorithms with the goal of finding ones that are as efficient as

can be realistically achieved for NP-hard problems with software and hardware

technologies of that time. Systolic processors, hardware accelerators and classical

oracles were proposed for these problems.

The covering problem is reduced to the minimization of Petrick Function. An example

of Petrick function for a covering table from Figure 12.2.4 was shown in Figure 12.2.3.

All NP- complete combinational decision problems are equivalent to the Satisfiability

Problem [Garey79]. The reductions of many practically important NP-hard

combinatorial optimization problems can be also found in the literature. For instance

the minimization of the Sum of Products Boolean functions can be reduced to the

Covering Problem [Breuer72, Perkowski80] and Covering Problem can be further

reduced to the Petrick Function Optimization Problem (PFOP) [Slagle70]. Many other

problems, like test minimization can be also reduced to the Covering Problem

[Kohavi78, Breuer72, Perkowski80].

The problem of minimization of Finite State Machines includes: (1) the Maximum

Clique Problem and (2) the problem of finding minimum closed and complete

subgraph of a graph (Closure/Covering Problem) [Perkowski 76]. The first of these

problems, (1), can be reduced to the Petrick Function Optimization Problem (PFOP).

760

The problem of optimum output phase optimization of PLA [Sasao84] can be reduced

to PFOP.

The second problem, (2), can be reduced to the Generalized Petrick Function

Optimization Problem (GPFOP), introduced above. Many other problems, like

AND/OR graph searching [Nilsson71] or TANT network minimization [Gimpel67]

were reduced to the Closure/Covering Problem.

A number of problems (Including Boolean Minimization [Perkowski80], [Nguyen87],

Layout Compaction [Perkowski80], and minimization of the number of registers in

hardware compilation [Perkowski80] can be reduced to the Minimal Graph Coloring

Problem. The Minimal Graph Coloring can be reduced to the Problem of Finding the

Maximum Independent Sets and next the Covering Problem (Maghoute algorithm).

The Problem of Finding the Maximum Independent Sets can be reduced to PFOP. The

PFOP is a particular case of the GPFOP. As we then see, all the above problems can

be reduced to the Generalized Petrick Function Optimization Problem for which we

will create a Grover-based quantum Oracle. A role and importance of

Complementation [Sasao85], Tautology [Sasao84b] and Convertions from SOP to

POS and vice versa in logic design are well known.

In this chapter we systematically introduce the methods to design Grover oracles and

parallel quantum computers (algorithms) for these problems. The conversion of all

761

these oracles to quantum oracles can be done using methods from this and previous

chapters.

12.4.2. Quantum Computers for Solving Satisfiability and Petrick

Function Problems

12.4.2.1. A General Characteristics of the Existing Algorithms.

The analysis of various algorithms for satisfiability can be found in the papers of

Davis and Putnam [Davis85], Goldberg, Purdom and Brown [Goldberg82], Franco

[Franco85], Lieberherr [Lieberherr81, Lieberherr82]. Although it is not generally

acknowledged, the Boolean complementation problem [Sasao85, Brayton84] is

basically the same as the Problem 12.4.1.2 with all solutions looked for. Various

algorithms for solving the Covering Problem and Boolean minimization [Slagle70],

[Schmidt74] are basically the algorithms to solve the PFOP, and can be easily adapted

to solve the GPFOP.

Most algorithms for these problems from literature known to us are sequential, few are

parallel. One is quantum. All the above problems are strongly interrelated. The

algorithms to solve them can be basically divided into the following categories:

tree searching algorithms (ex. Slagle, Schmidt, Purdom, Davis)

array algorithms (ex. Quine - McCluskey algorithm to solve the covering

problem)

762

transformational algorithms (ex. Original method to solve the Petrick

functions)

The tree search can be differently organized and various tree searching strategies were

proposed (chapter 6). We will use the terminology from Nilsson [Nilsson71]. The tree

is composed of nodes and arrows. New nodes are created from the nodes by

application of operators. Arrows are labeled by operators. In our case operators

correspond to literals or sets of literals. Various search strategies are used to expand

trees, they use the cost and heuristic functions to select the nodes for expansions and

for the ordering of operators. We assume that the order of expanding the tree in the

figures is from left to right.

12.4.2.2. Tree-Search Algorithms for Basic Boolean Problems

12.4.2.2.1. A General Characteristics of the Existing Approaches

The non-optimum algorithms for these problems can be divided into the following

categories:

1. Greedy algorithms,

2. Random search algorithms,

3. Incomplete tree-search algorithms (they search only a subset of the

solution space),

4. Simulated annealing algorithms,

5. Genetic algorithms.

763

6. Particle Swarm and Bacteria Foraging algorithms,

7. Hardware simulators,

8. SAT-solvers

9. Quantum.

In all these approaches three representations of a General Petrick Function (GPF) are

applied, as well as three basic methods of branching. This gives many basic algorithm

variants, out of which only few have been investigated in the literature. In this

dissertation only few of these categories are illustrated for QSPS, but the careful

reader has now enough knowledge to investigate all possible variants and trade-offs,

as illustrated in chapter 6.

Let us take the POS form of a GPF:

Fl = (a+ b + c + d) (a + d + e) (b + c + e)

The first representation is a list of terms. A term is a Boolean sum of literals. Each

term can be also represented as a list. Function Fl can be then represented as a list:

Fl = ((a(b)(c)d) ((a)de) ((b) (c) e))

The same representation will be used for a Sum of Products Form:

F2 = a b c d + a d e + b c e

764

The possible methods of tree branching for our problems are the following:

1. a non-balanced binary tree, where each branching is done for a single variable

and its negation. Various variables can be selected for branching in different

nodes of the same depth of the tree [Purdom83] and additional rules are used

for terms being single literals [Davis62].

2. an arbitrary number of successors in each node, branching is done according to

the selected term in this node, all literals from this term lead to some successor

nodes [Breuer72], [Perkowski 80].

3. a method based on a standard tree of subsets of a set of all literals used in the

function [Perkowski80]. This method modifies the standard tree by removing

literals that are not present in each current node of the tree.

The method can lead to different problem decompositions of a large SAT problem to

many smaller SAT problems with respect to sets of support variables. This can have

application in parallel SAT solvers or in quantum SAT solver accelerators with a

limited width of the quantum register.

Let us now concentrate on the first branching method only. The following decisions

affect speed and quality of solutions obtained from this method.

765

1. How to select the branching variable?

2. What other rules (like Davis-Putnam) can be applied for creating the

operators?

3. How to order the branches of the tree?

4. How to terminate the branches of the tree?

5. What parts of tree are expanded in series and which in parallel?

The modification of the first branching method is shown in Figure 12.4.2.2.1.1. Nodes

of the tree correspond to the function and simplified functions that are created after

substitutions. The leafs of the tree are the solutions. Usually they correspond to

products of operators along the branches. This method is used when all solutions are

searched for.

766

(a+b+c+d) (a+d-te)(b-K:+e)

a = 0 X \ a = 1

(b+c+d)(b+c+e)

b = 0 / ^ X b = 1

(c+d)(c+e)

Solution ab

(d+e)(b+c+e)

e = 0 / \ e= 1

d (b + c)

d = 1
Solution ae

Solution a 6c (6+5)-

(a)

_ 1. 1 c
Solution abode - _ I F = 1

Solution a 6 « e I

1
Solution a he'd J

a b c <(b+-c+e) _

abede
010 110 111/101 100

(a+6+c+t/)

_ Z ^ — (a+J+e)

(b) ae abede abde

Figure 12.4.2.2.1.1: The variant of the first branching method as the general
approach to find all solutions to a SAT, (a) the tree with variable branching and
solutions being product groups, (b) the KMap with Sum groups and product groups
shown.

767

(a+x+y)(a+x+z)(a+x+y+v)(a+r+s)(a+r+t+v)

(x+y)(x+z)(x+y+v) (r+s)(r+t+v)

Figure 12.4.2.2.1.2: Smart selection of a decomposition variable in the first branching
method.

A variable is selected for branching according to some rule. For instance, a variable

can be selected that occurs most often (in both affirmative and negative forms) in the

POS formulas of the function. The branching with operators variable = 0 and variable

= 1 is done by substituting in the formula the values 0 and 1 for this variable,

respectively. Two new nodes are created, in which the corresponding functions are

simplified by removing terms with selected literal and removing the negations of the

selected literal from other terms. Whenever a term being a single literal is created, it is

immediately used for substitution, as in the Davis-Putnam procedure and the

algorithms based on it. Figure 12.4.2.2.1.2 illustrates the application of the branching

decomposition. The initial function has the support set of 9 variables. After branching

for variable a we create two smaller SAT problems, the first with the support set of 4

variables, and the second with the another support set of 4 variables. This way a

smaller quantum computer can be build to solve in an exact way each sub-problem in

a parallel quantum computer from chapter 6.

768

From chapters 5 and 6 it should be now perfectly clear that this discussion is general

and applies to all kinds of search software, oracles, quantum oracles, and parallel

quantum systems such as QSPS.

12.4.2.2. Selection of a Branching Variable

The rules for selecting a variable are:

1. Select a variable that occurs in most terms, in both positive and negative forms.

2. If there are more than one such variables selected in step 1 then select among

them variables that occur in the shortest term. If there is only one variable

selected in step 2 then return it.

3. If there are more than one variable selected in step 2 then select among them a

variable v that maximizes the value of the function:

_ , „ number of terms in which variable v occurs
CV(y) = ••

total number of literals in these terms

4. Otherwise return random variable from step 3.

These rules to be used in master processors for hybrid quantum search.

12.4.2.2.3. Additional Operator Selecting Rules

All literals from terms consisting of single literals are selected and no branching is

done.

769

12.4.2.2.3.1. Ordering of Branches

For each variable v selected according to section 12.4.2 we can apply one of two

operators: v and v as the first operator in branching. The literal that occurs more

often in the terms is applied. This leads to solutions being generated earlier when the

depth-first search strategy with successors ordering is used, in which the successors of

a node are ordered according to the above rule.

These rules are good for sequential parts of parallel algorithms, those that produce

initial decompositions of SAT formulas on top of trees (see chapter 6).

12.4.2.2.3.2 Termination of Tree Branches

12.4.2.2.3.3. First variant of branches terminating.

Two new additional rules are used:

1. When a function in a node consists of a single term, the solutions are created

for all literals from this term. No branching is done and the current branch is

terminated.

2. When all terms in a function include the same literals Ll,....Ln and only

single other literal each, then the solutions are created for Ll,...,Ln and the

product of the remaining literals from the terms.

3. No branching is done and the current branch is terminated. When all terms in

a function include the same literals LI ,...., Ln and one or more from these

terms include only those literals and no other literals, then the solutions are

770

created for Ll,....,Ln. No branching is done and the current branch is

terminated (this is unlike in the well-known procedures).

12.4.2.2.3.4. Second variant of branches termination.

In the optimization problems when only a single optimum solution or some optimum

solutions are looked for with a minimum number of positive literals a speed-up can be

obtained by using the rules:

[1A.] When a function in a node consists of a single term any literal from this term

is selected to the solution. No branching is done and the current branch is

terminated.

[2A.] When all terms in a function include the same literals LI,, Ln and only

single other literal each then the solution is created for LI . No branching is done

and the current branch is terminated. When all terms of the function include the

same literals LI,..., Ln and one or more from these terms include only those

literals and no other literals then the solution is created for LI. No branching is

done and the current branch is terminated.

Additionally, in this type of optimization search problems the cut-off rules are used to

backtrack in master processors of parallel systems when the costs of partial solutions

771

are equal or higher than the current minimum cost (cost of the best solution found until

now).

12.4.2.2.3.4. Discussion

The created solutions (so-called implicants of Fl) are all different. Comparison of the

created products with the Karnaugh map of Fl from Figure 12.4.2.2.1.1b allows us

to observe the following properties of this branching method:

1. the complemented function has products which are not neccessarily prime

implicants,

2. the implicants in the complemented function are overlapping (are not

disjoint)

3. the number of implicants is smaller than the number of all prime implicants of

the function (all prime implicants are generated in many methods).

It results from the above that this branching method is well suited for

complementation of Boolean functions and for finding of single solutions to the

optimization problems. This method is not able to find all optimal solutions to such

problems, however, it can produce a subset of quasi-optimal solutions, which in

practice can be quite sufficient.

772

The advantage of this method is that some good solutions can be found with very

limited search (using for instance the depth-first tree-search strategy [Nilsson71], and

the cut-off in the tree can be applied soon. Another advantage is that each solution is

generated only once in the search process.

The main disadvantage of this method is that it may not produce the optimal solution

to Problem 12.4.1.2, when the variables are selected in a wrong order. Although in the

investigated by us practical examples the solutions were always optimal, they

depended on heuristics. It does however provide optimum solution to Problem

12.4.1.3, which has more practical applications.

The solution to Problem 12.4.1.2 is with this branching variant not necessarily

optimum since not all combinations of literals are created as branches of the tree. The

solution to Problem 12.4.1.3 is optimal since all combinations of positive literals are

generated as branches. The other branching methods are compared in [Perkowski87].

Only the implementations of the above two variants of the first method will be

discussed below.

12.4.2.2.3.5. Reductions

In this section we will show how some of the problems investigated by us can be

reduced to other problems, in order to decrease the number of necessary generic

programs in our library of useful CAD routines.

773

12.4.2.2.3.6. Reduction 1.

Let us assume that we dispose an algorithm Find_Solutions (Product_of_Sums,

Number_of_Solutions, Type_of_Solutions) that finds solutions (the solutions are

products of literals) to ProductofSums. ProductofSums is a Boolean function in

product of sums form (GPFOP). Number_of_Solutions and Type_of_Solutions are

some user-specified parameters.

When

1. Number_of_Solutions = all, then all solutions are generated

2. NumberofSolutions = all_optimal, then all optimal solutions are generated.

3. Number_of_Solutions = some_optimal, then some optimal solutions are

generated.

4. Number_of_Solutions = one_optimal, then one optimal solution is generated.

When

1. Type_of_Solutions = literals, the solutions to minimize the number of literals

are looked for

2. Type_of_Solutions = positive_literals, the solutions to minimize the number

of positive literals are looked for.

When this parameter equals nil (empty) the type of the function is irrelevant.

To find a complementation of a Boolean function in a Sum of Products Form it is

sufficient to find all solutions to a dual function.

774

With respect to the representation of Boolean functions shown above the finding of the

dual function is trivial. It consists only in negating of all literals in the Sum of

Products Form.

F = ab + cd + a b

• f - ab + cd + ab = (ab) (cd) (ab)

= (a + b)(c + d)(a+b)

= (d+b)(ca + cb + da + db) Equation 12.4.1

= (acb + adb+bca+b da

Function fin SOP form is represented as ((a b) (c d) ((a) (b))).

(Dual f) in POS form is:

(((a) (b)) ((c)(d)) (a b)) Equation 12.4.2

When we generate all solutions for Equation 12.4.2 using the first branch terminating

variant and next the set of solutions generated by the program is treated as a SOP then

the returned by it complement function will be the same as in Equation 12.4.1.

775

12.4.2.2.3.7. Reduction 2.

To convert a Sum of Products to Product of Sums Form it is sufficient to find all

solutions to this sum of products treated as a product of sums. The result is treated as a

sum of products.

Example 12.4.2.2.3.7.1:

Let us take the function from the previous example: f = ab + cd + a b . Applying de

Morgan Theorem to the right side of the formula Equation 12.4.1 we get:

f = (abc) (abd) (abc) (abd) = (a+b + c)(a+b + d)(a + b+d) Equation 12.4.3

This is a POS of function f. We treat the SOP of f = ((a b) (c d) ((a) (b))) as a POS

and find solutions with the first branch terminating variant. Later we treat the set of

solutions as the product of sums. The same solution as in Equation 12.4.3 is found.

Let us verify this. POS corresponding to SOP is:

(a + b) (c + d) (a +b) = a b c + a b d + aA c+ a i d Equation 12.4.4

The result Equation 12.4.4 must be treated as POS, then we have:

(a + b + c) (a + b + d) (a + b + c) (a + b + d) - Equation 12.4.5

776

This is the same result as in Equation 12.4.3 .

12.4.2.2.3.8. Reduction 3

Let us assume now that we dispose an algorithm Satisfiability (Product_of Sums) that

answers YES or NO , depending if there is a solution to a Product_of Sums. Let us

assume now that we want to check whether some SOP is a tautology. SOP is a

tautology when its complement is zero or in other words when the answer to the

Satisfiability Problem for the complement is NO.

Example 12.4.2.2.3.8.1:

SPF of function f is:

F= ab + a£ + ab+ a b Equation 12.4.6

f is represented as ((a b) (a (b)) ((a) b) ((a) (b))) . It can be easily checked that

Equation 12.4.6 is a tautology:

/ = ab+ab+ab +ab =(ab) (ab) (ab) (ab)

= (a+b)(a + d)(a+b)(a+b)

The right side of Equation 12.4.7 can be calculated by

(Dual Sum_of_Products) = (((a) (b)) ((a) b) (a (b)) (ab))

Equation 12.4.7

111

This is given as an argument to program Satisfiability. Now searching the tree shows

that there is no product of literals that satisfies this function. The answer for function

from Equation 12.4.7 produced by the Satisfiability program will be NO. Therefore the

answer to the corresponding Tautology problem will be YES.

In conclusion, we will need only three programs to solve all eight problems:

- Satisfiability(ProductofSums),

- Find_Solutions(Product_of_Sums, Number_of_Solutions, TypeofSolution,

- Partial_Satisfiability(Product_of_Sums, Number_of_Solutions, Type_of_Solutions)

These SAT programs can be of any type, including the single oracle system (quantum

or classical), and the parallel quantum system.

12.4.2.2.3.9. Other data structures

Let us take the GPF (POS):

Fl = (a+ b + c +d)(a + d + e)(b + c + e)

The first representation is a list of terms. A term is a Boolean sum of literals. Each

term can be also represented as a list. Function Fl can be then represented as a list:

Fl = ((a(b)(c)d) ((a)de) ((b) (c) e))

Its variants use computer words or Boolean cubes [Ulug 74] to represent terms.
778

The second representation uses an array of symbols 0 and 1 to describe the GPF Fl,

Figure 12.4.2.2.3.9.1:

a

a"

b

b

c

c~

d

7
e

e~

1

0

0

1

0

1

1

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

1

0

0

1

0

Figure 12.4.2.2.3.9.1: Tabular Representation of Function F1.

This representation uses often arrays of binary words to store rows or columns of the

array. The variant of this representation uses half the number rows, but more symbols

to be stored in an array are now required. Two bits per symbol (0 , 1 , X , auxiliary

E) are used.

779

a

b

c

d

e

CI

1

0

0

1

X

C2

0

X

X

1

1

C3

X

1

0

X

1

Fl

Figure 12.4.2.2.3.9.2: Second Method for Tabular Representation of Function Fl.

The third representation uses lists corresponding to rows of the above arrays:

La = {CI},

La ={C2},

Lb = {C3},

LF = {C1},

Lc = {},

L r = {C1,C3},

Ld= {C1.C2},

L,- = {},

Le = {C2, C3},

Le={},

780

The possible methods of tree branching are the following:

irregular binary tree, where branching is done for a variable and its negation.

Various variables can be selected in different nodes of the tree on the same

search depth [Purdom, Haralick],

arbitrary number of successors in each node, branching is done according to

the selected term in this node ,

all literals from this term lead to successors [Breuer72, Perkowski80],

standard tree of subsets of a set of all literals used in the function

[Perkowski87].

This method modifies the standard tree by removing literals that are not present in

each current node of the tree.

12.4.3. Discussion on branching and parallelism.

The first branching method is shown in Figure 12.4.2.2.1.1a. Whenever terms of

single literals are created, they are immediately used for substitution, as in the Davis-

Putnam procedure and all its successors. The created solutions (implicants of Fl) are

all different. Comparing the created products with the Karnaugh map of the Fl

function (Figure 12.4.2.2.1.1b) permits us to note two properties of this branching

method:

the complemented function has products which are not prime implicants,

the implicants in the complemented function are not overlaping.

781

It results from the above that this branching method is well suited for

complementation of Boolean function and for finding of single solutions to problems.

It is not able to find all optimal solutions, however it can produce a subset of quasi-

optimal solutions, which in practice can be quite sufficient.

The advantage of this method is that some good solutions are found with small search

(using for instance the depth-first tree-search strategy (Nilsson, [Nilsson71]) and the

cut-off in the tree can be applied soon. Another advantage is that each solution is

generated only once.

The main disadvantage of this method is that it can produce not the optimal solution,

when variables are selected in wrong order. Although in the investigated by us

practical examples the solutions were always optimal, they depended on the heuristic.

The optimum solution {a} is found (Figure 12.4.2.2.1.1) when variable a is selected in

the first level (it is selected because variable a occurs most often). When variable c is

selected on the first level the best solution found has two literals and is not optimum.

782

(a+b+c+d) (a+d+e)(b+c+e)

Solution

ab d

b d

• N k

\

1

1
Solution d e

Solution
cd

(repeated;

Solution

Id
(repeated)

Figure 12.4.3.1: The second branching method applied to function from Figure
12.4.2.2.1.1. Observe that the groups ab d, abe,acd and ace are included in other
solutions thus they can be never generated if the search would be executed in another
order (like from right to left) and any branch with a group included in the existing
group being a solution would be cutted-off

The second branching method is presented in Figure 12.4.3.1. At each node of the tree

one term is selected

according to some heuristic,

- randomly,

as the first one.

The literals from this term are taken for branching. This method can incorporate not

only Davis-Putnam heuristics but also many methods used to solve the covering

problem, like dominance of rows or symmetry. As we see in the corresponding

Karnaugh map (Figure 12.4.3.2) the created products are prime implicants of the

function and they also overlap. The method is then good to generate all prime
783

implicants while complementing a Boolean function and to generate all optimal

solutions to a Boolean function. The disadvantage of this method is that some

solutions are generated many times (like in our example). The advantage of this

method is that it can generate all optimum solutions.

ce ae cd be

Figure 12.4.3.2: The groups obtained from search in Figure 12.4.3.1 that are not
included in other groups generated at the left in Figure 12.4.3.1.

784

Ni

(a + b+c + d)(a + d + e)(b+c + e)

literals = \a,a,b,c,d,e j

N2

(d+e)(b+c+e)

literals = ui,b,c,d,e

(b+c+d)(b+c+e)

literals = \b,c, d,e

(d + e)

literals = {?, d, t

•fad

Figure 12.4.3.3: Part of the tree of all subsets of literals applied to function from
Figure 12.4.3.1. Observe that solutions included in other solutions are generated and
there are solution repetitions. Thus finding new solutions can be speed-up by
changing the order of node expansions. Davis-Putnam and other rules can be used to
select good expansion nodes. This is shown in nodes Nil andN12.

The third branching method uses the standard method of generating subsets of a set of

all literals (see Figure 12.4.3.3). Some literals, like a in node Ni are cancelled because

of search model. However implicants included properly or not into other implicants

are generated, which makes this method applicable only if the implicants with costs

higher than the cost of the actually minimum solution are cutted-off. This method can

generate quickly some product solutions with the minimum number of literals. This

method cannot be used to generate all optimum solutions or to complement a Boolean

function.

785

Observe that because of wide branching, the breadth first strategy generates many

simple nodes in the first level branching, thus solutions in nodes Nio, N12, N B and N14

are generated that may be cut-off by earlier finding of node N7. Similarly node N14

can be removed as included in N7 (ade c ae) when we look for all solutions. The tree

from Figure 12.4.3.3 is an excellent illustration of various search trade-offs typical for

SAT, unite covering, binate covering, even-odd covering, graph-coloring, some

mapping and constraint satisfaction problems.

The approximate methods expand some subset of the described above trees. The

greedy algorithms find one depth-first path in the tree and if necessary, iterate. The

random search algorithms find single random depth-first path and (sometimes) iterate.

The incomplete search algorithms search with some heuristic strategy, that searches

only a subspace of the entire solution space. The search strategies include:

depth-first with limited number of backtracks,

ordered-search with not-admissible quality function (Nilsson [Nilsson71]),

- branch-and-bound with no-admissible quality function,

any combination of the above.

This analysis is only a beginning. More work should be done to create good search

strategies for hybrid parallel quantum computers for SAT and related problems (see

QSPS—chapter 6).

786

Concluding on SAT realized on QSPS. In theory, every NP problem can be

polynomially reduced to SAT. A parallel hybrid Grover-based quantum computer with

oracles tuned to solve only SAT problems would be a tremendous asset to all these

problems. Here we showed only subset of these problems.

12.5. Oracle for the Exact ESOP Minimization Problem.

12.5.1. Binary Case

In 1988 Martin Helliwell, a PSU student, introduced a decision function for exact

ESOP minimization which was later on named the Helliwell Function [Perkowski-

Jeske90]. He implemented a GAL-based circuit courtesy Lattice Corporation for

hardware minimization of exact ESOPs for single-output 5 variable functions. The

generating functions were the all possible products of terms of n-variable function F;

there existed thus N = 35 = 243 of such generating functions. There were 25 flip-flops

corresponding to every minterm of the function, set initially to the value of a function

to be minimized. The problem was to find by an exhaustive hardware search such

choice of the generating functions that the EXOR of them would make the states of all

flip-flops equal to zero (F = Zg iff F © £ g = 0). A 243 bit binary counter in natural

code was used to exhaustively search all combinations of the generating functions so

the search was generating worse solutions after already finding a solution with a

smaller cost such as generating candidate 00011 after already finding that combination

000011 was a solution. This was the first hardware accelerator for EXOR logic

787

problem and its performance was much superior to IBM PC AT but the limited size of

functions discouraged the PSU team at this time to continue this research. Searching

with a binary counter is not a depth-first or a breadth-first method and its only

advantage is the simplicity and regularity of hardware.

In 1990 Professor Perkowski and Professor Jeske found several generalizations of the

Helliwell's Method to multi-output multiple-valued functions to Positive Polarity

Reed-Muller Forms to Fixed Polarity Reed-Muller Forms GRJVI forms and other

[Green91, Perkowski]. The method was implemented in software using depth-first

search but unfortunately the limit of 5 variables was not exceeded. However it was

observed that the search algorithms can be made much more efficiently for strongly

unspecified functions and by using more sophisticated tree search strategies. A tree is

pruned by finding equivalent operators on each level.

Now I will formulate the quantum oracle to solve the ESOP Minimization Problem.

Given

(Dl) the set of care minterms of a single output function F with the corresponding

binary output values of a single output function for each care minterm d.

(D2) The set d of the generating (or basis) functions to be used.

788

Find

The minimum solution i.e. the expression being an EXOR of generating functions G;

with the minimum number of inputs to the output EXOR gate (i.e. in other words the

minimum number of EXORed functions selected from the set of the generating

functions from D2).

The algorithm.

For function F of n variables create an arbitrary number C of all generating functions

Gj stored in hypothetical registers C = 2 n for any canonical AND/EXOR form, 3 n for

ESOP, C = 2n for any LI form C =3 n for non-canonical expressions being

generalizations of canonical Maitra LI forms, C = v *2n for a combination of

generating functions from various canonical forms, LI forms, etc. To every generating

function G; corresponds one binary decision variable g; in the oracle.

Exoring all selected group variables equals the original function F. The decision

function from formula F is a generalization of the Helliwell Function. Its

generalization for multi-output case is trivial. The cares of each output must be

separately repeated in the vectors. Figure 12.5.1 explains the principle of our approach.

This particular example minimizes a completely specified function as an ESOP but

very similar oracles can be build for PPRM, FPRM, Maitra, etc, complete and

incomplete algorithms. In theory, any method based on LI families can be reduced to

these types of oracles.

789

Create oracle as shown in Figure 12.5.1 and Figure 12.5.2.

3oo goi 9io 9i i gXo 9xi 9ox g1 x g"xx
*=^ Decision variables for all

!^H^>

generating functions
moo = 0 •<-

©V^o
m0i = 1

m1o= 1

mn = 1

i®y^y^

: ^ > ^ < J > - 1

minterms of
the function

Oracle
bit=l

(a)

0

1

(b)

ab

ab

ab

ab

00

\ b 0
01

10 11

ox

> <

^ \
1X

\ b 0
aN

XX

Figure 12.5.1: Oracle for ESOP to be minimized using the Helliwell's Function, (a)
The construction of the oracle for all ESOPs of 2 variables. The first from left level
are EXOR gates, the next are EQUIVALENCE gates and the next is the global AND.
(b) The minterms of the 2-variable KMap and all generating functions for an ESOP
Generating functions are product terms encoded by respective decision variables. For
instance, the variable gox encodes product term OX = a and the decision variable goo
encodes the product term 00 = ab . The circuit in (a) is simulated for gxi * gix = 1,

790

thus for expression a e b that has value 0 for minterms a b and ab and value 1 for

minterms a b and a ° .

m0o

m0i
m 1 0

goo — '

Qui

9io
911

gxo

gxi

gox

gix
gxx —

1 -C-1 ^ j
1

«

i

a

Y
zAJ

Y
tAj

—•—

Y^
\XDr

-i

•

— i

Y
C7d

i

Y
C7d

— I

Y
LAJ

I —

• ^

Dr 1 vj
1

—• »

Y:
7Z

—•

Y
tAj

— i

Y
LAJ

i —

>
Dr

— i

Y
LAJ

i

—•

Y
tAJ

1

Y
LAJ

i —

— i

i

Y ^
U r

VJ

i —

— i

">
0

» —

——i

^ ^r v u
0

1

"̂ ,
J

Q-

garbage

decision
variables

J

ab •

ab
ab

ab.

>- garbage

Figure 12.5.2: Quantum Oracle for the oracle from Figure 12.5.1 (Mirror circuit not
shown).

Several variants of this algorithm were developed which speedup the operation in

some special cases. When no upper bound is known the algorithm with increasing the

value of m can be used instead of the above algorithm with decreasing the value of m.

In the increasing variant the first solution is the minimum one but usually more

iterations are needed. In this variant it speeds the algorithm when we calculate a lower

bound of the cost as the starting value of m.

791

12.5.2. Binary Generalizations.

This section introduced a software/hardware approach to all "even-odd" covering

problems using the quantum computer of standard type (a quantum array model) based

on Grover. The Boolean decision function to be satisfied with minimum nonzero

arguments is a generalization of the Helliwell's function. The incomplete function first

simplified in software to disjoint cubes. ON and OFF cubes corresponds now to

minterm m; from Figure 12.5.1 and the oracle reflects the structure of the even-odd

covering problem with any generating functions. The search is executed where m is an

expected solution cost and N is the number of classes of equivalent generating

functions. The method is more efficient when for incomplete functions m is small

even for large N.

Helliwell Function has been used for exact solution to incomplete Exclusive-Or Sum

of Products (ESOP) and Fixed Polarity Reed-Muller FPRM forms. Next this method

has been extended to other similar problems. Another method investigated for similar

applications was the Zakrevskij's Staircase method. Basically, from the deeper

theoretical point of view these two methods are the same. We will call them GHF,

Generalized Helliwell Function. It can be observed that these methods can be

generalized to all problems where the function sought is the canonical form of an

EXOR of arbitrary linearly independent (LI) generating functions (chapter 9). Next it

can be observed that the EXOR expression can be not necessarily canonical so that

arbitrary functions are used instead of LI functions. Finally the methods can be

792

extended to a non-canonical EXOR expression of arbitrary generating functions. If

the matrix of these functions is singular-many (all) solutions are found. If these

functions are not Linearly Independent, no solution is found.

Concluding, the presented method is in theory so general that every problem discussed

in this thesis in chapters 3, 4, 6, 7, 8, 9 and 10 can be solved. It would require,

however, a quantum computer with an exponential number of qubits.

12.5.3. Multiple-valued Generalizations.

Our main idea from section 12.5.1 can be generalized to MV-input binary-output logic

(chapter 10) and in case of exhaustive search can be summarized as follows: every

multi-output incomplete (multiple-valued) k-nary input, k-nary output function

realized in the form of a GF(k) addition of arbitrary functions from a well defined set

of functions over GF(k) can be minimized exactly or approximately using quantum

oracle for Grover. This may be done in a system that realizes a generalized Helliwell

function in the oracle (with hybrid quantum gates as discussed in chapter 10).

Very similar generalized "hybrid" approaches to solving arbitrary hybrid Boolean/MV

equations, Generalized Satisfiability Functions, variants of Graph Coloring, MV

Maximum Clique Set Covering, MV Petrick Functions and MV Clique Partitioning

using oracles can be created, as should be obvious from chapters 10, 11 and 12. In

each of them the essence is to perform the enumeration of all subsets and checking

793

some logical conditions using complete enumeration using quantum superposition.

Using a parallel quantum computer various Sequential/parallel Generations that

correspond to Depth-First, Breadth-First and other Tree Search methods can be

created. Most generally the main contribution of section 12.5 is to propose a very

general method to perform arbitrary tree search for NP-complete problems using

quantum and parallel quantum computers.

12.6. Conclusion to Chapter 12.

In this chapter, based partially on literature but mostly on our own analysis, I

presented a simple and intuitive explanation of basic SAT-like quantum algorithms

based on Grover. Using diagrams KMaps, trees and exemplary matrices allowed, I

hope to explain these complex subjects in a simple way. Next, I showed SAT family

of oracles for very many classical CAD and quantum CAD problems. Figure 12.6.1

presents the reduction graph of just some basic CAD problems. We build quantum

oracles for sufficient number of nodes in this graph to be able to solve (in theory)

every CAD problem reducible to them. As it can be seen, SAT and graph coloring

occupy important place in this graph. So is the maximum clique problems. Some of

our oracles have two parts: decision part and cost function minimization, as shown in

Figure 12.6.2. Chapters 13-15 will illustrate these and new principles of building

oracles for more types of problems for Grover. Reductions for more CAD problems

and also for other problems will be given.

794

POS

SOP minimize

Compatible
graph coloring

Ancilla
minimization

Prime generation

Register
allocation

Bus
minimization

Max.
independent

set

Boolean
complementation

FSM minimizer

Generalized
SAT

TANT minimizer

AND/OR Tree

ESOP minimizer

FPRM minimizer

GRM minimizer

KRM minimizer

Even/odd
covering

Figure 12.6.1: The reductions of basic CAD and Quantum CAD problems discussed in
this dissertation. It should be obvious to the reader familiar with Garey and Johnson
seminal book [Garey] that there are hundreds of practical problems efficiently
reducible to the problems from this graph, especially to the SAT problem.

795

r
Mapping of
the problem
to decision "̂
variables

Modify for
new

members
of dbase

Modify for
new

problem
constraints

Oracle for
problems

constraints

Oracle for
cost

functions
<tr

Modify for
new cost
functions

Oracle qubit

Figure 12.6.2: Schematic representation of Grover oracles for all problems from
Figure 12.6.1. Every problem is represented by mapping to decision variables that are
given in superposed form to the Grover Loop. The user or an automatic system
modifies the decision oracle of the given problem for new instances by modifying the
metaphorical "data base" of Grover or a Boolean function model used in this
dissertation. The problem itself can be modified by adding or removing some
constraints - another redesign of this Boolean function. Finally the optimization part
of the oracle is modified by changing the cost function or the way how this cost
function is calculated.

796

CHAPTER 13

Oracle for the Graph Coloring Problems.

13.1. The Graph Coloring Problem.

i?p^—••_ ;aw*«»-;

Figure 13.1: Map of Europe.

Graph coloring is a relatively easy problem to formulate in principle, but large amounts

of nodes in the graph would result in an extremely large amount of combinations

making the problem extremely difficult to solve exactly on a standard computer. Thus

this problem is a great candidate for quantum computing. I became interested in the

problem of using a quantum computer to find the minimum solution to the graph

coloring problem when I found that there is no literature on this subject, although much

is known about graph coloring and related problems on standard computers. This gave

me the idea to may-be adapting standard graph-coloring approaches in quantum

797

computing. The main result to be expected from Grover was that the optimal (exact)

solution could be found in a number of steps proportional to the square root of N,

where N is 2n*log c , where n is the number of nodes and c is the upper bound of the

number of colors. The classical algorithm would require an order of N amount of steps.

Thus, while a classical computer would take 10,000 hours to solve a complex graph

coloring problem, the quantum device would take 100 hours. Quantum computing's

relative speedup is only quadratic in this case, but in any case it is dramatic in real-life

situations like military image recognition. For instance; South Korea installed robots

soldiers on its frontier with North Korea that are equipped with image recognition

abilities. In this case the quadratic speedup is very important, 5 seconds versus 25

seconds may make a life-or-death difference. There are many other problem instances

like this.

In the simplest formulation of graph coloring, a graph is denoted as a standard graph

(not a multi-graph) with a certain number of edges and nodes. Every node is connected

to at least one other node, by means of an edge. Every node may also obtain a color,

which is represented as a bit string. A solution to a graph coloring problem consists of

having no uncolored nodes, and having no edges connecting 2 nodes of the same

color. We want also to minimize the number of colors used (this leads to finding the

chromatic number of the graph). A rather popular branch of graph coloring is called

"Map Coloring". Maps, for easy distinction between countries in them, tend to have

different, adjacent countries colored differently. For those whose eyesight is not

798

perfect, the distinction between 2 shapes of different colors is far more easily

recognized than a thin black borderline. In graph coloring, each country is represented

as a node, and borders are represented as graph edges, (see Figure 13.1). The interest

in Map Coloring was started by Francis Guthrie, who in the 1850's formulated a

problem involving coloring a map with only 4 colors. The problem remained unsolved

until 1976, when after hundreds of computer-hours of calculation, Kenneth Appel and

Wolfgang Haken proposed a solution that, as of yet, has not been disproven and

mathematicians agree that the solution is correct. Map coloring is thus the first and

easy variant of graph coloring and constraint satisfaction problems that I explain and

simulate in this thesis. Since it was proved that every map can be colored with 4

colors, our oracle is greatly simplified, especially if one would try to apply it to a very

big map.

13.2. Proposed Architecture for Graph Coloring Problem using
Grover's Algorithm

In this section, we introduce the proposed architecture for finding the minimum

coloring using Grover Algorithm.

799

All good

VtllA'l

0'
B.-:s •..
Slate--.

'0> •

Vector
Of

Hadamard
s

Work

bits :

colorings are
encoded by
negative phase

Oracle with
Comparators,

Global AND gate

Outf

Illlli*-

Think this
as a very
big Kmap
with-1 for
every
good
coloring

>utofAND

ppr-

Figure 13.2.1: Block Diagram of creating superposed quantum states with negative
phase for all good colorings of a map. Observe that information if a given coloring is
good is seen by the output of AND in oracle, but the argument for which the oracle is
satisfied is shown in negative phase of the respective minterm of the color encoding
variables (recall chapter 4).

Figure 13.2.1 gives the idea of using Grover for graph coloring. Nodes(countries) are

represented as groups of neighbor input variables. Coloring of a node is represented as

a binary encoding of the set of qubits corresponding to this node. All possible

colorings are created at the oracle's inputs by the vector of Hadamard gates on each

input. As always, they are all initialized to state |o).

Figure 13.2.2 gives the example of coloring a particular map (left top corner) with

inequality comparators and a global AND. The global AND produces a logic one

when all neighbor nodes have different nodes. Observe that although the graph is 3-

colorable, a coloring with 4 colors is given here as a good coloring because this simple

oracle is not trying to minimize the number of colors used for the coloring i.e., (this is

a Decision Oracle, not an Optimization Oracle). The first solution out of many can
800

terminate if the standard Grover algorithm is run. This figure shows also that all

primary inputs are repeated to the outputs and forwarded to the next stages together

with the output bit(yes/no) of the oracle. The details of Hadamard gates and their

initializations are presented in Figure 13.2.3.

We need to give all
possible colors
here

I Two wires for color of node

I Two wires for color of node «f—~ w-

^ ^ r e ^ o T c o ^ f ^ d ^ H ^

GSves "1" when nodBS 1
and 2 haves different colors

*o-
Value 1 for good

Figure 13.2.2: A simple graph coloring problem: the color comparators correspond to
the borders of the countries or the edges of the graph. Observe that this oracle can be
used not only in quantum but also in reversible and classical technologies, but in such
cases it would require sequential inputs and not parallel superposed inputs as created
by Hadamard gates in quantum oracles.

801

Give
Hadamard for
each wire to
get
superposition
of all state,
which means
the set of all
colorings

I O - H »JU ML

We need to give all
possible colors
here

tt>
Value 1 for good

Figure 13.2.3: A simple quantum graph coloring problem: here all the input states are
created using zero-initialized Hadamard gates in all variable qubits.

The blocks for the complete Oracle for Graph Coloring and how they are connected
together are illustrated in Figure 13.2.4. This oracle is quantum due to the fact that it is
comprised solely of quantum gates. Thus all the gates from Figure 13.2.3 are replaced
with their quantum counterparts, as discussed in Chapter 11, with all gates build from
quantum primitives as discussed in chapters 2 and 3.

-Output-

Figure 13.2.4: Simplified schematic of our optimization Graph Coloring Oracle. All
blocks have been explained in chapter 11. This oracle is composed from the Decision
Oracle on the left (Figure 13.2.6) and color number minimization scheme at the right
(Figures 13.2.5 - 13.2.8 and 13.3.1 - 13.3.8), combined with the global AND.

The rough explanation of blocks from Figure 13.2.4 follows.

802

The C blocks:

These are the Inequality Comparators discussed in chapter 3 and chapter 11. As we

know, they act upon sets of two inputs. _ Those two inputs are representative of

connected nodes' color encoding. If these two inputs binary strings are the same, then

they violated coloring rule and output of the C block will be "0". The quantum oracle

is to run through every possible color configuration of inputs (see Figures 13.2.2 and

13.2.3); only a few are solutions. In order to determine whether it is a solution, we run

the representative inputs through the comparators. The C comparators outputs are then

forwarded into an AND gate at the bottom left to determine whether the configuration

is a solution.

The Sorter/Absorber:

Here, the inputted color encodings are sorted. If two inputs are the same for different

nodes (same color used more than once), then only one will be outputted and all other

same input will be "absorbed" (removed). This circuit sorts and absorbs colors such

that all inputs will be sorted from the "smallest" to the "largest" and each color only

has one output. We can observe that this is a general circuit to convert a list of items

with repetitions to a set with no repeated elements. Again, we designed this circuit in

full detail in chapter 11.

The entire circuit is very big and it is difficult to put it on paper. Here we give only

some of the blocks and we do not show the complete layout that includes CNOT gates

for copying and SWAP gates to be able to combine all blocks together.

803

a0

-0-

-©-
• & -

-&-
-0-
-©-

-0-0-

-0-
-e-
-e-
-0-

-^-

-00-
-&

000
£ -^-

-^ -
-0

-0

-0
£
£

• 0 -

00-
4>

-&

W
-0

-0-

0^

-^-

• a0©b0

•a i eb !
- a , A 0 * l =A

- «0 *0 = C

- A + B + C

-7
- x"

- ^)0[*1

- Co~l

- c j
- * o "o

- Z>0 a j />!

- Z

- do

- d,
- v

Output
MIN

Output
MAX

(a)

(b)
Sorter/

Absorber
Processor Tag bits for sorting

and absorbing

Figure 13.2.5: (a) One block of sorter absorber. We call it sorter/absorber processor.
This block is repeated two times in the odd column, one time in the even column, and
next these two columns are repeated 2 times. Many mirror circuits are also necessary
as will be discussed in section 13.3. Order of inputs a, b should be changed according
to the order from oracle. This is done using SWAP gates.(b) The schematics
illustrating the use of SWAP gates.

804

a0

- & -
Co

do

a^ —+-

bi - 0 -
Ci

di

1

1
1
1

- &

• #

0 T CD CD

& •

- & -

• &

-6̂
H£-

^

- ^

3HK£

<£€>

-€>

— a0->

— b0

— c0

— do

ai

bi

ci

- e - — d^

>

Inputs
forwarded to

outputs

^

M a b ->,

Mac

M b c

Mca J
|\y| j - Decision bit "good

coloring" of the oracle

Garbage's for
mirror

(a)
Figure 13.2.6: (a) Graph coloring oracle — decision part. Order of inputs a, b should
be changed according to the order from oracle. This is done using SWAP gates.

(b)

a0

ai

bo

bi

X
a0

bo

ai

bi

(c)
0 '—

n

Figure
13.2.6a M.

r
\s

^
V

Inverse
circuit of
Figure
13.2.6a

n

— • o

Decision oracle bit

Figure 13.2.6: (b) Preprocessing of the circuit from Figure 13.2.6a using SWAP gates
to change order of variables, (c) Inverse circuit-mirror for the decision oracle part.

The color numbers counter:

This counts the number of ones that are in the result that came out of the

Sorter/Absorber. The one count can be considered a count of the number of colors. We

designed this circuit in Chapter 11 and called it the "Ones Counter". This circuit

occurs in most of the optimizing oracles.

805

From sorter/absorber butterfly

r v -

\

0

0

0

0

0

1

0

1

• &

&-
-&

• ^ -

- ^

ee-

- ^

-e-

-e-

CP CD CD (D

•e -
•e-

• ^ •

•e -

•e -

- &

-e-
0̂ -

- &

-©-
• X

• y

• (v x © z)

xyzv=Si

• z

• y (v * © z) = G

• v(y®z) = H

• X V Z = I

• ~z~x y = J

G + H + I + J=S2

4— x y z
(J) M + xyz = S3

Figure 13.2.7: (a) Graph coloring oracle - counter of ones circuit. Order of inputs x,
y, z, v, should be changed according to the order of sort/absorb blocks from
sorter/absorber. This is done using SWAP gates.

Xi

x2

Y2

1

2

Zi

Vi = X3

z 2
 _ Y 3

v2

3

X4

z3 = y4

v3 = x5

ys

4

5

t

z4

v4 = x6

z5 = y6

v5

6

z4

z6

v6

v5

Counter of
ones

Sorter/absorber
processor number 5

Figure 13.2.7: (b) Explanation of symbols of signals for six blocks of the
sorter/absorber butterfly to Figure 13.2.7a.

The Cost Comparator circuit:

This gate acts upon the "number" of colors that was generated by the counter. By

using a greater/equal predicate (relation), it can repeatedly compare the input to

806

desired amounts of numbers to achieve a budget goal. We designed this circuit in

Chapter 11. This circuit occurs in all optimizing oracles.

v —r
X -

y -

o-4
o—e
0 -

0 -

0 -

0 -

1 -

0 -

1 -

&

Cost
bound

a -e-
92

&-
• &

1 T — C D CD CD CD

e^
- $ -

-€>-

•e -

-e-

• ^ -

• ^ -

-c*
• &

•e -
•e -

H &

-e-
ee-

-e-

- $ -

• &

- & -

• # -

• v(StjEffltyz<Br3«z=A/

X

— y
(vx f f i z)

0 T CD T x y z v = s < 1

ee-

-©-
- &

- ^ (vx©z)=G
• v (^ e z) = i /
• i v z = / } ones

Outputs
of

counter

• i - G + H + I+J^S

— M +~x~y z=S^

— 9i
— 92

- & •

- O

- P

- Q

4— R
- s

0 — OP*CHR+S

Figure 13.2.8: Graph coloring oracle - complete right part of the oracle optimization
part. It includes counter of ones and cost comparator circuits. Order of inputs x, y, z,
v, should be changed according to the order of sort/absorb blocks from
sorter/absorber. This is done using SWAP gates. The useful qubits are denoted. Other
are garbages.

The output of the Cost Comparator Circuit will be AND-ed with "color rule checker"

output (output from a big AND gate). This AND gate output is our Oracle output. If it

is "1 "means that both coloring rules are followed and the number of colors in the

configuration is lower than the desired cost threshold (cost bound). This is the search

result that we are looking for. If it is zero means that either color rule (no two adjacent

notes in same color) is violated, or that the desired color number is not achieved or

that both these conditions violated. Then the new coloring arrangement should start

807

until we get this "oracle" output one, thus solving the problem of "proper" Graph

Coloring. The question still remains however, how the inputs are generated. The

answer is: all colorings are generated with Hadamard-based superpositions and the

desired values are generated in a decreasing order by an external standard computer

for which the Grover Algorithm quantum computer is an accelerator.

All these blocks were designed by me already in Chapter 11, so I will not repeat their

descriptions here.

13.3. Problems that exist to design the Quantum Layout.

For explanation of the quantum layout problem let us assume four stages of

sorter/absorber circuit from figure 13.3.1. Only the question of combining these blocks

together is of our interest in section 13.3.

8

8

2

1

Figure 13.3.1: Butterfly iterative circuit for sorting/absorbing to be used as a single
regular block in cost optimizing oracles from Figure 11.9.1 in chapter 11. The
registers (rectangles with numbers) in the Data flow Graph are shown for the
explanation purpose only. SAP is the sorter/absorber processor.

808

SAP

SAP

8

null

1

2

^ SAP

8

1

null

2

SAP

SAP

1

8

2

null

SAP ^

1

2

8

null

Layout of the butterfly, which is a completely combinational logic is shown in

Figure 13.3.2:

mm

Figure 13.3.2: Butterfly iterative circuit for sorting/absorbing to be used as a block in
cost optimizing oracles from Figure 11.9.1 in chapter 11 and in Figure 13.3.1. Circles
represent sorting absorbing blocks described as in chapter 11. The reader has to
appreciate the regularity of connection patterns in this butterfly combinational logic.

To simplify the explanation of the final quantum layout creation process, we assume

that we use a sorting block instead of a sorting/absorbing block and that this is only a

one-bit circuit. So MIN becomes AND gate and MAX becomes OR gate in the sorter

block.

Non
reversible

block

— a .b

— a + b

a —
b —

0 —
1 —

Reversible
block

— a . b min (a, b)

— a + b max (a, b)
— a

— b

Figure 13.3.3: Single non-reversible block of the Butterfly iterative circuit for
sorting/absorbing. External view of a non-reversible and reversible versions of this
block to be used in quantum layout of the reversible sorter circuit with mirror circuits.

809

Figure 13.3.3 presents a simplified non-reversible block of the sorter and next its

reversible counterpart. The internals of the block from left in Figure 13.3.3 are

redrawn, assuming the width of one bit for every color, to the diagram from Figure

13.3.4. The circuit from Figure 13.3.5 shows classical circuit for the first and second

column of the sorter.

min(a,b)

max(a,b)

Figure 13.3.4: Single non-reversible block of the Butterfly iterative circuit for
sorting/absorbing that shows the internals of the block at left from Figure 13.3.3.

min(a,b)

min{ max(a,b).min(c,d)}

max{ max(a,b).min(c,d)}

max(c,d)

1 column 2nd column

Figure 13.3.5: Three non-reversible blocks of the Butterfly iterative circuit for
sorting/absorbing that together correspond to the first and second columns of
processors SAP from Figure 13.3.1.

810

o ^

1

• ^

•e-
• &

• &

&

a.b

a + b

a.b

a + b

a

b

Figure 13.3.6: The single reversible block of the Butterfly iterative circuit for
sorting/absorbing with its order of inputs and outputs as required for quantum layout
created by adding four SWAP gates at the right.

The final quantum array for the single block of sorter is shown in detail in Figure
13.3.6. Now we can draw the rough schematic of the first three columns of the sorter
in block notation - Figure 13.3.7. Mirror circuit for the first two columns is added in
Figure 13.3.8.

min(a,b)

max(a.b)

Reversible
block 2

min (c, d)

Reversible
block 3

Reversible
block 4

min{ max(a,b).min(c,d)}

,d)}

min(c,d)

max (c, d)
Reversible

block 5 I—

Figure 13.3.7: The block diagram of the first three columns of sorter architecture with
its order of inputs and outputs as required for the final quantum layout. It was created
by adding SWAP gates, but without final delineation of every qubit of the layout. The
mirror circuits of all blocks are also not yet created. Each block's internals should be
replaced by the circuit from Figure 13.3.6.

811

Block
A

min(a,b) a .b
max(a.b)

a + b
c .d

Block
B

mirac.d)

Block
K

minR max(a,b).min(c,d)}

k{ max

c + d max(c.d)

• e

garbage

garbige

a,b).min(c,d)}
: f

&

Block
K-1

a + l
~c7d

Block
A"1

e-

Block
B-1

e-

Output 1

Output 2

Output 3

Output 4

Figure 13.3.8: The final reversible blocks of the Butterfly iterative circuit for
sorting/absorbing with 2 columns and with its order of inputs and outputs and mirror
circuit. This circuit can be now rewritten to the form of standard quantum array. Each
block A, B and K should be replaced by the circuit from Figure 13.3.6. Each block A'
, B~ and K should be replaced by the mirror of the circuit from Figure 13.3.6.

The final circuit as a quantum array with 14 qubits can be created by redrawing Figure

13.3.8 to a standard quantum array format with standard notation of SWAP gates and

the same distances between any two neighbor qubits. The circuit from Figure 13.3.8 is

for simplification drawn for only the first two columns from Figure 13.3.1.

If we replace now the circuit from Figure 13.3.6 with the circuit from Figure 13.2.5

(with added SWAP gates) we will obtain the entire quantum array of the oracle, which

is a circuit of a very large size and difficult to draw. This points out to the necessity to

create some software that would create, draw and simulate such arrays of large size.

812

As the next stage we can draw in similar way the complete circuit from Figure 13.2.4

but this results in a very big quantum array diagram. I hope that I presented however

the idea of creating quantum layout for multi-level (iterative) circuits by adding

mirrors, SWAP gates and Feynman gates.

813

CHAPTER 14

Oracles for Constraint Satisfaction Problems

Constraints Satisfaction Problems have many applications in computer science,

physics, engineering, astronomy, biology and other areas. The problem is formulated

by a set of constraints and a cost function.

The problem is formulated as a graph G = <NO, ED> with NO being a set of nodes

and ED cz NO x NO x ... NO being a set of constraints. Constraints can be on any

subset of nodes from NO. The nodes can have values such as symbolic or numeric.

Any node can have some set of values V(Ni). The simplest constraints are edges from

NO x NO. The constraints can be of any type, for instance EQUAL (Nl, N3), NOT-

EQUAL (N2, N5), SMALLER-THAN (N3, NO).

There are two formulations: Constraints_Only and Constraints_And_Cost_Function.

Problem 1. Given is Graph G of constraints. Find such assignment of values to

variables that all constraints are satisfied.

Problem 2. Given is Graph G of constraints. Given is cost function defined on G with

integer of real values. Find such assignment of values to variables that all constraints

are satisfied and the cost function is maximized.

In this chapter we will show few applications of Constraint Satisfaction.

814

14.1. Constraints Satisfaction Problems that are also Equational

Logic Problems.

Many Constraint Satisfaction problems can be reduced to a set of logic equations and

next to a single equation. This idea comes from Raymon Lullus who lived in thirteen

century and was next generalized and formalized by Descartes and finally applied to

"Boolean data" by George Boole. The operators in these equations can be of many

types such as: arithmetic (+,*,/,-, etc), relational (predicates <.>, = , <, ^, >, etc) and

logic (AND, OR, EXOR, etc). The cryptographic puzzle belong to this category of

problems. SEND + MORE = MONEY is the famous cryptographical puzzle—see

Figure 14.1.1. The letters should be replaced with unique digits 0,....9 to make the

equation valid. Directly from Figure 14.1.1 one can compile the Equation from Figure

14.1.2.

S E N D

+ M O R E

M O N E Y

Figure 14.1.1: Cryptographic problem example. Substitute digits for letters to make
the equation to be true.

815

D + E=10Ci + Y Ci e {0, 1 }

N + R + Ci = 10C2 + E C 2 G { 0 , 1 }

E + O + C 2 = 1 0 C 3 + N C 3 G { 0 , 1 }

S + M + C3 = 10 C4 + O C4 e { Q, 1 }

C4 = M

Figure 14.1.2: Equations compiled from the problem formulation from Figure 14.1.1.

The specification of nodes is given in Figure 14.1.3. Observe that the carries Ci are

binary single-qubit signals but all letters require four qubits in binary encoding, as

shown in Figure 14.1.3. This Figure explains also that only some 4-bit strings are

allowed, namely the strings 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000,

1001.

S £ { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }

EG {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}

N e {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}

D e {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}

M € { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }

O £ { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }

R G {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}

Y G {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9}

Figure 14.1.3: Constraints for nodes in the graph. Each node is a 4-qubit string.
Because we need 4 qubits to represent letters S, E, ..., Y, we need additional constraint
to restrict the domain to digits.

816

S^E, S^N, S^D, S^M etc.

Figure 14.1.4: Inequalities for unique encoding of nodes of the graph. One inequality
is created for every pair of letters.

The equations from Figure 14.1.2 correspond directly to the rules of arithmetic

addition with carry. Carry signals are denoted by C\, C2 , C3 and C4 ; Q £ { 0 , 1 }.

The equations in Figure 14.1.3 state that each symbol S, E, Y is a digit from 0 to 9.

The equations in Figure 14.1.4 mean that all mappings of symbols S, E,Y to digits

are unique, i.e. that they are one-to-one mappings. These are all typical equations that

lead to typical arithmetic, predicate, logic circuits for a wide class of problems.

C4 = M C4 e { 0,1 }

M = l

S + M + C3 = 10C4 + O

S + M + C3 = 10M + O

S + C3 = 9M + 0

S + C3 = 9 + 0

Figure 14.1.5: Simplified Equations compiled from Figure 14.1.2.

817

Equations from Figure 14.1.2 can be simplified to the form from Figure 14.1.5. This

would simplify the oracle and speed-up the Grover Algorithm but we will not discuss

this "intelligent preprocessing" variant here. '

Figure 14.1.6: Graph of constraints for the SEND+MORE=MONEY problem.

Figure 14.1.6 presents the part of the oracle to verify the equations from Figure 14.1.2.

The operations of addition, multiplication and equality checking are replaced by logic

blocks. Every variable S, E,Y has 4 bits. The global AND has output 1 when all

equations from Figure 14.1.2 are satisfied. The output of this AND gate is denoted by

all-equations-ok. As we see in Figure 14.1.6 we use only the following blocks:

arithmetic adder with 2 inputs, arithmetic adder with 3 inputs, multiplier by 1 and 0,

equality comparator and AND. Chapter 11 shows how to design all these blocks.

818

b3b4

b i b X 00 01 11 10

00

(a) 01

11

10

0

4

12

8

1

5

13

9

3

7

15

11

2

6

14

10

b3b4

b i b 2 \ 0 0 01 11 10
00 HTi

(b) 01
11
10

NUl
0

fci j)| 0

Figure 14.1.7: (a) Enumeration of cells in the M-map, (b)Groups of true minterms in
the KMapfor the circuit to check each equation from Figure 14.1.3.

•h — $ -

03

0 - *

-$»-

B—4

-$ -

-rpr-
<T1

-4x

62

good — number

Figure 14.1.8: Realization of circuit GN that checks if an argument is a binary-
encoded digit, i.e. that checks if the binary argument is a Good Number, i.e., a digit
0,...,9.

Figure 14.1.7a presents the method to calculate the circuit to verify that the argument

01020304 is a binary encoding of a digit 0, 9. Figure 14.1.7a presents the numbers

of cells of KMap — all cells with values 0,.. ..9 have output 1. This leads to the KMap

will loops b\ and \b2b1 from Figure 14.1.7b and finally to the circuit from Figure

14.1.8 being a part of the oracle GN. When the binary input combination bib2b3b4

corresponds to a digit 0, 9 then the output good-number = 1.

819

file:///b2b1

f̂
/I3 4-5 43 4-a -Is * - l i 'K

GN GN GN GN GN GN GN GN

_D

u

E

-C3
C4

all-good-numbers

Figure 14.1.9: The remaining part of the oracle All-Good-Number for the
SEND+MORE=MONEYproblem. This checks the encoding of each symbol S, E, ...,
Y. It has 8 GN blocks from Figure 14.1.8 and the global AND.

The part of the oracle that checks all numbers used in equations from Figure 14.1.2 is

shown in Figure 14.1.9. GN is the block from Figure 14.1.8. Each such block uses

only 3 qubits out of 4 qubits encoding every symbol S, E, , Y. This is marked with

symbol "3" in vertical buses on inputs to each block GN in Figure 14.1.9. The output

of this sub-oracle is denoted by all-good-numbers. All equations from Figure 14.1.3

are verified in the sub-oracle from Figure 14.1.10. The AND gate produces the signal

all-different = 1 meaning that the mapping is a one-to-one mapping. The circuits from

Figure 14.1.9 and Figure 14.1.10 are typical for many oracles for extended logic

equations.

820

(a)

1«
*
*
2-

1 #

Sife S4N S#D S4M <

-S

.D
M
R

-Y

C3
C4

all-different

SE

(b)

SN
EN

SD
ED
ND

SM
EM
NM
DM

SO
EO
NO
DO
MO

SR
ER
NR
DR
MR
OR

SY
EY
NY
DY
MY
OY
RY

\ ^

Figure 14.1.10: (a) The part of an oracle All-Different for the
SEND+MORE=MONEY problem that checks if the mapping is a one-to-one mapping,
(b)systematic method to create all pairs of symbols for pair wise comparisons.

Finally, Figure 14.1.11 shows the entire oracle for the SEND + MORE = MONEY

problem that is composed of 3 oracles. The final global AND is the logic AND

(conjunction) of answers from the partial oracles:

solution = all - equations -ok* all - good - numbers • all - different

We just need a single 4x4 Toffoli gate with target bit initialized to 0 to realize this

final global AND, see at the bottom of Figure 14.1.11.

821

s
E
AT

D
M
O
R
Y

Ci
c2:

c 3

c4

o
o
o
o

-4=—=1—r~ ~ i — r ~ ~i y- 4 A

- ^
y Inputs transmitted to

outputs

-/-
-*
y ^

all-equations-ok
all-good-numbers
all-different

Auxiliary or "work"
qubits of the oracle

4?— solution Output to the oracle

all — equation — ok all — good — numb&rs

Figure 14.1.11: The complete quantum oracle for the SEND+MORE=MONEY
problem. The output is the "solution " qubit at the bottom.

The complete detailed quantum array for the all-good-numbers predicate is given in

Figure 14.1.12. It is the checker of All-Good-Numbers from 8 GN blocks. Similarly

the whole oracle and HZH circuit is designed.

822

s

E

N

D

M {

O

R

Y

Si

S2

S3

S4

0

E i -

E2-

E3-

E4-
0 •

N1-

N2-

N3-

N4-

0 -

D i -

D2-

D3-

D4-

0 -

M-, -

M2 -

M3 -

M 4 •

0 -

O1 -

0 2 -
0 3 -
o 4 -
0 -

R1 -
R2 -

R3 -

R4 -

0 -

Y1 -

Y 2 -

Y 3 -

Y 4 "

0 -

• e -

-e-

-0-
-©-
-e-

cb cb
-e-
-©-
-e-

-e-

-e-

-e-

-&-

-&

-e-
-e-
-e-

(D cb -e--e--e-
cb el)

-0-
-e-
-©-

(b .cb
-0-
-0-
-0-

-0-
-0-

-̂0-
-0-

-0-

-0-

-e-

-e-

-0-
-©-
-0-

d) cb
-0-
-0-
-e-

-0-
-0-

-0-

^

garbage

garbage

garbage

garbage

garbage

garbage

garbage

garbage

all-good-numbers

Figure 14.1.12: The part of oracle to calculate the all-good-numbers predicate.

823

CHAPTER 15

Towards Grover-Based Parallel Quantum Computers for Robotics

and Adiabatic Quantum Computing

15.1. Introduction.

In previous chapters we discussed oracles for various applications but these were

mostly toy problems (like the SEND+MORE=MONEY problem) or problems of

classical and quantum CAD. It should be however observed that the general problem

formulations based on oracles, such as satisfiability, mapping problems, path problems

and constraint satisfaction problems occur in many other areas. Because I am

interested in teaching robotics when I will return to Bangladesh where I am a

professor, I looked to potential applications of quantum computers in robotics.

15.2. Constraint Satisfaction Model for Robotics.

Based on literature and what I learned from my PSU experience and robotics classes,

one weakness of contemporary robotics is the insufficient speed of robot's image

processing, pattern recognition, reasoning and motion planning algorithms. Also in

other areas related to perception and reasoning the contemporary computers are just

too slow for both the requirements and the existing mechanical abilities of modern

robots. This problem can be solved by using special processors which are usually

824

multiprocessors, and thus expensive and difficult to use. Another approach is using

Digital Signal Processors (DSP processors) which have applications especially in

image and sonar processing, sometimes also in intelligent motion planning and

generation. Finally, highly parallel, sometimes dynamic (adaptable) Field

Programmable Gate Array (FPGA) architectures are also used in robotics, and

especially in robot vision. The PSU group experimented already with some of these

approaches in their past research and found them difficult to use and restricted in

applications. The trouble is that designing parallel systems or programming the multi

processing or DSP algorithms is very time consuming. On the other hand, it is well-

known that there exist the concepts of the "universal problem solvers"; as an example

one can give "automatic theorem proving" programs based on resolution, or logic

programming languages such as Prolog. They find applications in CSP. These

universal problem solvers allow to write all kinds of such highly complex rule-based

hierarchical search programs very quickly, but their practical applications are limited

because they just run too long on contemporary computers. It is still fascinating to be

able to formulate and solve many different problems using the same general model.

This model may be predicate calculus, Satisfiability, Artificial Neural Nets or the

Constraints Satisfaction Model. We showed in chapters 12 and 13 that Grover

algorithms with the ability of designing oracles for this algorithm are in a sense such a

"universal problem-solving algorithm in the quantum world". This approach, as

illustrated in chapter 6 has also a natural synergy with parallel processing. In previous

825

chapters we showed thus two strongly interrelated general purpose problem-solving

models:

1. the general search on a standard (serial architecture) computer and on a parallel

computer (using any parallel architecture, such as pipelined processor, systolic

processor, Single Instruction Multiple-Data architecture (SIMD), etc).

2. the quantum search algorithm by Grover with user-designed problem-specific

oracles.

These two models can be combined when a high-level standard computer with search

algorithm calls many quantum accelerators for specific sub-problems to be solved

independently (possibly in parallel) with Grover-like speedup each.

What may be then the general purpose model for robotics? It is well-known from

published robotic research that many known and practical algorithms, for instance the

well-known "Waltz algorithm" for "blocks world model vision" (and its derivative

algorithms) can be reduced to the general purpose constraint satisfaction problem

which in turn can be reduced to the generalized satisfiability problem. For instance,

Huffman and Clowes created an approach to polyhedral scene analysis, scenes with

opaque, trihedral solids, next improved significantly by Waltz [Waltz75], which

popularized the concept of constraints satisfaction and its use in problem solving,

especially in image interpretation. Objects in this approach had always three plane

826

surfaces intersecting in every vertex. Thus there are 18 possible trihedral vertices in

this problem out of 64 possible.

There are only three types of edges that are possible between these blocks:

1. Obscuring edge is a boundary between objects or objects and background.

Boundary lines are found using outlines with no outside vertices,

2. Concave edges are edges between two object's faces forming an acute angle

when seen from outside,

3. Convex edges are those between two faces of an object forming an obtuse

angle as seen from outside.

There are only four ways to label a line in this Blocks World Model. The line can be

convex, concave, a boundary line facing up and a boundary line facing down (left, or

right). The direction of the boundary line depends on the side of the line corresponding

to the face of the causing it object. Waltz created the famous algorithm which for this

world model always finds the unique correct labeling if a figure is correct. Moreover,

the algorithm handled also shadows and cracks in blocks. Mackworth and Sugihara

extended this work to arbitrary polyhedra and Malik extended it to smooth curved

objects. The extended approach becomes a well-known approach to image recognition

based on constraint satisfaction and a prototype of many similar approaches to vision

and planning problems in robotics.

827

Waltz algorithm is an example of constraints satisfaction and the Constraint

Satisfaction Model is one of few fundamental models used in robotics [Beach03,

Minton90, FromherzOl, Gualandi04, HuangOl, Pai96]. Constraint Satisfaction is used

in main areas of robotics and especially in vision, knowledge acquisition, knowledge

usage, etc., including in particular the following:

• planning, including motion planning, gesture planning, assembly planning,

spatial and temporal planning for robot groups, experiment planning,

• scheduling, combined planning and scheduling, multi-robot task planning and

scheduling,

• allocation, including resource allocation in AI, graph theoretical problem

formulations of robotic problems including graph coloring, graph matching,

floor-plan design,

• temporal reasoning,

• assignment and mapping problems,

• arc and path consistency,

• general matching problems,

• belief maintenance,

• satisfiability and Boolean/mixed equation solving,

• machine design and manufacturing,

• diagnostic reasoning,

• qualitative and symbolic reasoning,

828

• decision support,

• computational linguistics,

• hardware design and hardware verification for robotic applications,

configuration of robot systems and factory automation systems,

• real-time systems related to robot planning,

• implementation of non-conflicting sensor systems,

• man-robot and robot-robot communication systems and protocols,

• contingency-tolerant motion control, multi-robot motion planning,,

• coordination of a group of robots,

• and many others.

Oracles for some of the above problems are either identical or similar to those

discussed by us in Chapters 12, 13 and 14. Universal components for these and

other algorithms were presented in Chapter 11. We created thus a general approach

to solve many of these problems. Moreover our approach can be applied to all

constraint satifaction problems, at least in theory, as they can be all reduced to

satisfiability, as known from Garey and Johnson [Garey79]. There are however

better ways than reduce everything to SAT. For instance the "robot guard

problem" is the problem of placing the minimum number of robot guards to watch

certain territory of a given shape. This problem is reduced to the unate set covering

problem from Chapter 6 for which we built a quantum oracle in Chapter 12. As

829

another example, the problem of robot scheduling can be reduced to the binate

covering problem with costs, also discussed in Chapter 12 of this dissertation.

Now we will rephrase the main methodology of this thesis from the robotics point

of view:

1. Reduce robotic problems that need speed to the problem of building a quantum

oracle, possibly using a unified constraint satisfaction framework. (Because of

fundamental role of basic combinatorial problems, this step can be applied to

both CAD and robotics problems.)

2. If there exists a quantum computer based on the "classical quantum circuit

model" (which we so far assumed to exist in this thesis) then use this computer

to solve the problem.

3. If there is a quantum adiabatic computer available, reduce the problem from

the quantum circuit model to the adiabatic quantum model and solve it using

the adiabatic quantum model. The match of the constraints satisfaction and the

adiabatic quantum computing seems to be perfect. This synergy determines

thus the future area of quantum robotics, at least in the coming years, because

as of 2008 very likely adiabatic quantum computing will be available first.

830

15.3. Adiabatic Quantum Computing to Solve Constraint Satisfaction

Problems Efficiently.

It is quite possible that the date of February 13 2007 will be remembered in annals of

computing. DWAVE Company demonstrated their 16-qubit Orion quantum

computing system in Computer History Museum in Mountain View, California. It was

the first time in history that a commercial quantum computer was presented, although

it was only a prototype model, needed scaling up, and there is also a doubt among

some researchers if the computer really gives the quadratic speedup. On November 27,

2007 a 28-qubit Orion was demonstrated. The Orion system is a hardware accelerator

designed to solve in principle a particular NP-complete problem called the two-

dimensional Ising model in a magnetic field (for instance quadratic programming). It

is built around a 28-qubit superconducting adiabatic quantum computer (AQC)

processor. The system is designed to be used together with a conventional front-end

for any application that requires the solution of an NP-complete problem. The first

application that was demonstrated was pattern matching applied to searching

databases of molecules. The second was a planning/scheduling application for

assigning people to seats subject to constraints. This is an example of applying Orion

to constraint satisfaction problems. The third was Sudoku. The company promises to

provide free access by Internet in 2008 to one of their systems to those researchers

who want to develop their own applications.

831

The plans in 2007 were that by the end of year 2008 the Orion systems will be scaled

to more than 1000 qubits. It is even more amazing that the company plans to build in

2009 new processors specifically designed for quantum simulation, which represents a

huge commercial opportunity. Interesting information can be found on the company's

webpage. These problems include protein folding, drug design and many other in

chemistry, biology and material science. Thus the company attempts to dominate

enormous markets of NP-complete problems and quantum simulation. If successful,

the arrival of adiabatic quantum computers will create a need for the development of

new algorithms and adaptations of existing search algorithms (quantum or not) for the

DWAVE architecture. The arrival of Orion systems is certainly an excellent news for

any research group that is interested in formulating problems to be solved on a

quantum computer. I hope that in forthcoming projects some next Ph.D students at

PSU will concentrate on robotic applications of the Constraint Satisfaction Model and

will use the ORION computer according to the method specified below.

Adiabatic Quantum Computing was proved equivalent [Aharonov03, Mizel07] to

standard QC circuit model that we illustrated in previous chapters and used in [Bae07,

Giesecke07, Giesecke06, Hung06, Khan06, Khan05a, Khan05b, Kumer07, Lee06,

Lukac07, Lukac07a, Lukac07b, Li06, Perkowski05, Perkowski07a, Perkowski07b,

Raghuvanshi07, Song06, Yang06, Yang05e]. Therefore, at least in theory, each of the

developed by us oracles together with the Grover's Algorithm problem-independent

circuits in the Grover Loop create together a very large quantum circuit that in

832

principle can be transformed to an equivalent adiabatic quantum program and run on

the Orion computer. In previous chapters we developed both: the algorithms for

problems and the methods to design oracles for them. Thus the final description can be

created by hand. I hope that in future some PSU students will develop automatic

software for "quantum layout" to compile a composition of small circuits to one big

circuit and its matrix.

We want to solve at first the relatively simple problems such as Maximum Clique or

SAT. This programming would be now like on the "assembly level" or "machine

language" but with time more efficient methods will be developed in the PSU

quantum group. DWAVE gives API in XML as an interface for remote running of

their computer. This is conceptually similar to programming the contemporary Field-

Programmable Gate Arrays. The processor is programmable for a particular graph

abstracting the problem. I think that one can safely predict that in future the

adaptations of many methods developed for FPGAs will be used for quantum

computers, including the adiabatic quantum computers.

Several aspects presented below should be used in further research and can be

considered while creating "software API" for the Orion AQC:

15.3.1. One method of creating software for AQC is by formulating an oracle for

Grover algorithm and next converting it to the AQC model [Aharonov03,

Mizel07]. As discussed in previous two chapters, the quantum oracle is a

833

quantum permutative circuit that has a mapping given to oracle's input

qubits. The oracle answers only yes/no at its output. For instance, building

a graph-coloring quantum computer requires constructing an oracle that

gives answers only like this: "this mapping of nodes to colors is a proper

coloring" while a proper coloring is one that every neighbor nodes are

mapped to different colors. Another quantum oracle may answer "this

coloring is proper and the number of colors used is smaller than 5".

Designing practical oracles for Grover algorithm [Li06] is not a well

researched area yet and this dissertation is the first that tries to contribute to

it, but the interface to DWAVE is not yet completed. Oracles for famous

fundamental NP problems in robotics, CAD and other areas should be built

to practically evaluate the synthesis methods that are known or proposed in

this thesis. Building an oracle requires the ability to synthesize a complex

permutative circuit from universal binary gates such as Toffoli or Fredkin

[Lukac03] and new gates, such as the affine gates proposed in this

dissertation. It helps also to know and reuse standard quantum logic blocks

(see chapter 11 and [Khan05a, Khan05c]).

15.3.2. The Adiabatic equivalent of Grover algorithm is implemented in Orion

system and Hamiltonians for 16-qubit oracles can be built for the Orion

system. Twenty eight qubits is still a "toy problem" for some problems and

is not enough for many practical robot-related constraint satisfaction

834

problems. It is however a good starting point for self-education, software

development and to prove a point of quantum computing. The created in

our group minimization methods (chapters 7, 8 and 9 of this dissertation,

[Alhagi08], and [Kumar07]) can be used to synthesize complete oracles or

their parts for incomplete functions. Thus the approach of Parallel

Quantum Computing can be also used as the machine learning method

based on learning oracles.

15.3.3. To practically design oracles for Grover algorithm as quantum circuits the

researcher has first to formulate various NP-complete problems and NP-

hard problems as oracles or sets of oracles. Some robotic problems,

especially in vision (such as convolution, matching, applications of

Quantum Fourier Transform and other spectral transforms [Curtis04,

Fan07, Breazeal02, NielsenOO, Perkowski07b, Waltz75, Wong89]) require

quantum circuits that are not permutative but use truly quantum primitives '

like the controlled phase gate. The methods to convert these circuits to

AQC model should be investigated and the problems should be converted

to AQC model and executed on Orion. This material is beyond the present

thesis because it is related to synthesis of non-permutative quantum gates,

while this dissertation focuses on permutative circuits synthesis only.

Hopefully, some methods developed here will be useful in the future

835

research of new students in the PSU quantum research group. Faisal Khan

from our group is already working on a Ph.D dissertation on this topic.

15.3.4. Our group proposed an algorithm to find the best polarity Fixed-Polarity-

Reed-Muller transform [Li06]. Several extensions to this method are

presented in section 15.4 of this chapter. The presented general approach of

representing unknown values as superposed values is very general and it

can be used as another machine learning method when a function with

don't cares (i.e. a set of "examples") is given at the inputs. Similarly the

method presented in [Kumar07] is a general purpose machine learning

method from examples which can be used in many robotics, Data Mining

and learning applications.

15.3.5. In another approach, Quantum Neural Networks or Quantum Associative

Memories can be used [Perkowski05]. There is already research at PSU on

this topic by David Rosenbaum. In a non-published research the PSU

group extended also the Quantum Fourier Transform based

convolution/matching methods to Haar Transform, Complex Hadamard

Transform and other spectral transforms [Perkowski07b]. Several image

processing algorithms can be created for quantum computers with

significant complexity reduction [Beach03, Curtis04]. These algorithms

use not only the constraint satisfaction, SAT and search subroutines but

also quantum spectral transforms and solving general purpose

836

Schroedinger equations. It is an open problem how they can be transformed

to specifications for the Quantum Adiabatic computer.

15.3.6. In Chapters 12, 13 and 14 of this thesis, I developed oracles for classical

problems such as SAT, maximum clique, exact ESOP minimization,

maximum independent set, general constraint satisfaction problems such as

cryptographic puzzles, and other unate/binate/even-odd covering problems,

non-Boolean SAT solvers and equation-solvers. For all these problems we

built oracles: in principle all these oracles can be converted to the AQC

model of DWAVE. However in practice the Hamiltonians are so complex

that the software should be developed to do this. It should be pointed that

all our problems for oracles in Chapters 12, 13 and 14, although have

simple formulations, are either used in practical applications or are very

similar to more complex problems of this type that are used in practical

applications. For instance, the logic puzzles are simplifications of certain

logistics problems that have important applications in military operations

and transportation planning.

15.3.7. The development of new quantum algorithms based on extensions and

adaptations of Grover Algorithm, Hogg Algorithm and other quantum

search and Quantum Computational Intelligence models is perhaps also

possible. Generalizations of Grover, Simon and Fourier transforms to

multiple-valued quantum logic [Fan07, Khan05a, Khan05b, Perkowski05]

837

as implemented in the circuit model of quantum computing should be

considered. Analysis and comparison with binary quantum algorithms and

their circuits should be performed. Methods of converting these problems

to the AQC model should be investigated. This work is beyond the scope

of this thesis, but I believe many quantum logic blocks and methods

developed in this dissertation but specifically in Chapters 11-14 will be of

extended use.

15.3.8. Generalizing the well-known quantum algorithms to multiple-valued

quantum logic. For instance, in paper [Fan07] Yale Fan from our group

generalized the historically famous algorithm by Deutsch and Jozsa to

arbitrary radix and he proved that affine functions can be distinguished by

this algorithm in a single measurement. Moreover, functions that can be

described as "affine with noise" can be also distinguished. This can be used

for very fast texture recognition in robot vision. Work on generalization of

Grover to multiple-valued quantum circuits is also possible and will find

applications in quantum robotics. Affine functions in general have

interesting applications beyond those presented in this thesis. Moreover,

using Chrestenson transform properties Yale Fan generalized [Fan07] the

Deutsch-Jozsa algorithm [NielsenOO] for other texture recognition

problems in robot vision tasks. PSU Group uses also the Grover algorithm

838

[NielsenOO] for robot action planning [Dong05, Dong06], problem solving

and vision [Beach03, Curtis04].

15.3.9. Many problems listed above are useful in robotics to solve various vision

and pattern recognition path-planning, obstacle avoidance and motion

generation problems. Many NP problems from robotics and vision can be

found in literature [Garey79]. Observe that every NP-complete problem

can be reduced to Grover algorithm by building the respective oracle, and

the Grover algorithm with its oracle can be further reduced to the AQC

model that can be run on Orion. Similarly the classes of quantum

simulation algorithms will be run using future DWAVE architectures.

Although the speedup of the Grover class of problems is only quadratic, it

will be still a dramatic improvement over current computers. It is also well-

known and was demonstrated in previous chapters, that if some heuristics

are known for an NP problem, one of several extensions and

generalizations to Grover can be used, which may provide better than

quadratic speedup. This approach is problem-dependent. Since however all

classical solvers of NP-Complete problems that are used now in industry

are heuristic and are usually more useful than their exact versions, I believe

that the same will be observed when quantum programming becomes more

advanced. It is not known yet what will be the speedup of problems from

the "quantum simulation" class - it is an area of active research now.

839

15.3.10. The ideas proposed here in the framework of "Quantum Robotics" are new.

They are different from the "quantum robots" proposed by Benioff

[Benioff98] where a robot operates in structured quantum mechanics

environment rather than in standard mechanics environment. Similarly, the

robots from [Dong05, Dong06] are limited to only one aspect of mobile

robotics, while the robots from Martin Lukac [Lukac07] are limited to

emotional learning behaviors. The PSU model of a quantum robot, which

may use quantum sensors but operates on normal effectors in standard

environment is a generalization of the model from [Dong05, Dong06]

rather than the original model from [Benioff98]. The PSU model of a

quantum robot applies quantum concepts to sensing, planning, learning,

knowledge storing, general architecture and movement / behavior

generation [Lukac07, Lukac07a, Perkowski07a]. It uses quantum mappings

as in [Raghuvanshi07, Brawn05], quantum automata [Raghuvanshi07,

Lukac07a], Deutsch-Jozsa-based texture recognition [Fan07], Grover-

based image processing, emotional behaviors [Lukac07], quantum learning

based on logic synthesis [Fan07] and other models [Kumar07,

Perkowski05a, Lukac03, Lukac07], motion planning and spectral

transforms as its special cases. It is however this thesis that discussed for

the first time how Grover algorithm can be used in selected robotics

840

applications, in particular to robot learning, including the learning of

symbolic formulas as a special case of learning (section 15.5).

The algorithms and oracles introduced so far in this dissertation use the so-called

classical "circuit" model of quantum computing. There are however also other models

which may be implemented soon by physicists who work on new quantum

technologies, and that may be will be even more practically successful than the

"classical" quantum circuit model. The adiabatic model is only one of these new

models. Although now we can only simulate quantum circuits using standard

simulators such as QUIDDPRO on a standard computer, soon it will be possible to use

the commercial prototype quantum computer from DWAVE Corporation

[DWAVE07] to test at least some of our algorithms on a model of adiabatic quantum

computer.

Concluding, when coupled with the truly quantum computer [DWAVE07], the

quantum robots based on Grover oracles introduced here would speed-up all NP

problems quadratically. Using variants of Deutsch-Jozsa and Bernstein-Vazirani

generalized to multiple-valued logic some vision tasks would be speeded up

exponentially, thus allowing to solve in real-time certain problems that are several

orders of magnitude more complex than those solved by the existing computers

[Fan07, Perkowski07a].

841

15.4. Machine Learning Using Spectral Approach.

15.4.1. General remarks about Machine Learning

As shown in chapter 5, the quantum algorithm for searching unstructured databases

invented by Grover finds a number (or a set of numbers) that satisfies a certain

constraint expressed by an "oracle". Here we describe a generalization of Grover's

algorithm that finds the simplest expression of a certain form among all possible

expressions for all possible solutions. The innovation of this approach is in finding

(learning) a symbolic specification of a problem. The work presented in this section is

an extension of paper by Lin et al [Li06]. This paper has motivated my entire

dissertation. Our particular transform type used here is the Fixed Polarity Reed-Muller

transform for which the number of non-zero spectral coefficients should be below

certain threshold value. Thus our approach finds the particular FPRM form (among all

2n FPRM forms) that has the minimum number of terms. In contrast to [Li06] where

the completely specified function was considered, I observed that it is relatively easy

to extend the approach from [Li06] to the incompletely specified functions.

Using this trick, in a standard way, the logic synthesis approach from [Li06] is made

applicable to Data Mining and Machine Learning. Moreover and most importantly, the

used by me representation of "unknown value" as the superposition is very logical. It

is applicable to all other synthesis methods and Data Mining/Machine Learning

842

methods that include incomplete sets of examples. Observe that in next applications

the data are incomplete.

In the most fundamental terms, our design here is based on a generator of all formulas

for the problem specified as follows:

1. Given is a set of positive and negative examples (positive examples are true

minterms, negative examples are false minterms)

2. All other minterms are treated as don't cares (unknown, or not presented

examples).

3. This generator is controlled by a binary word, each selection of bit values for

the control word creates another formula candidate (i.e. another FPRM

transform from the family of all polarity transforms).

4. The generator is a quantum circuit so that the controls and the formulas can be

superposed.

5. The cost of the formula is calculated as the number of terms (spectral

coefficients of FPRM) that are non-zero.

6. The Grover algorithm is run to find such controls that the formula is as simple

as possible (i.e. has as many zero coefficients as possible). In other words,

Grover is run to find such input polarity vector that the cost of the solution

expression is smaller than some threshold value NX and the solution does not

exist for value NX -I.

843

15.4.2. Oracle for completely specified FPRM.

The Quantum Oracle for the entire "Grover Architecture for FPRM Minimization",

called the "FPRM Oracle" is implemented as a quantum permutative circuit that

contains a subcircuit (butterfly) that expresses all possible FPRM solutions of a given

function. This approach illustrates how butterfly circuits for fast transforms, as known

from the spectral theory, can be combined with quantum computing ideas as a part of

a Grover Oracle.

The original quantum search algorithm of Grover finds a single solution. This solution

is a binary vector that satisfies the quantum oracle F. A quantum oracle can be

considered as a Boolean function F with a solution minterm m,- that satisfies F

(i.e.F{mi) = \). Finding a solution can be thus visualized as finding a single number

(cell) with value " 1 " (a true minterm) in a Karnaugh Map of function F in which all

other cells have values 0. Obviously, when one solves this problem in the classical

world and no additional information is available, the classical SAT algorithms can be

employed. These SAT algorithms have worst-case exponential complexity. When

there are M> 1 solutions, in the quantum search case one of many variants of the

Grover's Algorithm can be employed to find all solutions {SAT-ALL).

As we remember from chapter 3, a generalization of PPRM is called the Fixed Polarity

Reed-Muller (FPRM) form where every variable is either negated or not consistently
844

in the same polarity in every term of the expression. Thus, FPRM F = a'b' has the

polarity number 0 (a = 0,b = 0) and the equivalent PPRM F = \®a®b®ab has the

polarity number 3 (a = l,b = l). As illustrated in chapter 3, in binary form, each FPRM

represents a two-level circuit consisting of a set of conjunctions of literals (AND

operations) followed by a multi-input addition modulo-2 operation (EXOR operation).

Several heuristic methods have been formulated in the past for both ESOP

minimization [Sasao93, MishchenkoOl] and for FPRM minimization (chapter 7 and

[Sasao96, Dreschler96]). Here, however, I present a fundamentally new approach to

FPRM minimization (with incomplete data) that is based on quantum logic and the use

of Grover's algorithm. This approach can be extended to several canonical EXOR

forms [Sasao96] as well as to the non-canonical ESOPs; however, in this section only

the FPRM case is discussed. It can be observed that the method is based on controlling

stages of butterfly diagrams and thus similar approaches can be applied to any spectral

transform that can be described by some kind of a butterfly diagram. We present the

binary case here, but the ternary case [Cheng05] is very similar. We will use the

general blocks developed in chapter 11 (Figure 15.4.2.1). The FPRM Processor and

the "Ones Counter" (Cost Counter) are built as in Chapter 11. The "Inverse Cost

Counter and Comparator" is just the mirror circuit of the "Cost Counter and

Comparator" circuit so it can be easily created by reversing order of inverse gates (a

845

standard method of "mirrors" discussed in chapters 3 and 7). Similarly the Inverse

FPRM processor is designed as a mirror circuit.

Let us discuss this complex oracle in more detail. The entire proposed oracle, part of

the Grover Loop, for finding minimum FPRM is shown in Figure 15.5.2.1. There are

four blocks in this oracle architecture: the FPRM processor, the Cost Function and

Comparator, and the corresponding inverse blocks Inverse FPRM processor, Inverse

Cost Function and Comparator.

Pa |0>
Pb IO
Pc |0>

constants)

Polarity
vector

0>-

IE
Working l 0 >

qubits | Q >

I d0-

di
d 2

d 3

d4

d5

d 6

d 7

constants

function

FPRM
Processor

-ffi-

Cost Counter
and

Comparator

Inverse
Cost Counter

and
Comparator

en

ei

e2

e3

e4

e5

e6

e7

spectrum
oracle qubit

Figure 15.4.2.1: Quantum Architecture for FPRM Oracle for Grover's Algorithm.
This is the case of 3-variable functions, there are thus eight minterms do to dj and
three qubits forpolaritypa, pb andpc (on top left).

846

Whether we solve the completely or incompletely specified function case, the inputs

of the FPRMprocessor (see Figure 15.4.2.1) are:

(1) the binary values - the "vector of minterms" for a given Boolean function, and

(2) the polarity vector.

In case of complete functions only the care minterms, i.e. true minterms or false

minterms are given as d;. These values are constants: 0 for false minterm and 1 for a

true minterm. Minterms are denoted as d;, i = 0, ..., 7 at the left of Figure 15.4.2.1.

The output of the FPRM processor is the binary vector of the FPRM spectrum

coefficients for the given Boolean function and the polarity specified by binary (pa, Pb,

pc). Observe however that this value is available only in quantum inside the Grover

Loop. The measured output of the entire "Grover Architecture for FPRM

Minimization" is only the polarity specified by binary (pa, pb, pc). From these data a

standard computer has to recalculate the vector of coefficients (eo,.. ey), but this can be

done fast as no search is involved and the process is completely algorithmic as was

discussed while presenting butterflies in chapter 3.

There are two input busses for the Cost Function and Comparator block, the threshold

value and the polarity vector. The FPRM processor requires the 2" sized truth vector

of the Boolean function and produces binary values of the 2" FPRM spectral

coefficients corresponding to the function and polarity vector. Two tasks are

847

accomplished in the Cost Function and Comparator block. First, the number of ones

in the vector of spectral coefficients is counted. Second, a comparison of the number

of ones with the threshold value is accomplished. If the number of ones in the

coefficients is less than the threshold value, the Cost Function and Comparator block

will output a one, otherwise zero. The corresponding inverse blocks, Inverse FPRM

processor, Inverse Cost Function and Comparator, accomplish the inverses (mirrors)

of these functions.

The FPRM processor accepts:

1) a vector corresponding to the Boolean function and a

2) polarity vector

FPRM Processor outputs the FPRM spectral coefficients.

The core part of the FPRM processor is the "butterfly" quantum circuit. The polarity

of the "butterfly" is controlled by the polarity bits. Figure 11.13.1 in chapter 11 shows

the 1-variable FPRM processor which has a 2-bit function input {[dx,d2~\) and a 1-bit

polarity input (p). Ifp = 0 , the output is positive polarity coefficients, otherwise, it is

negative polarity coefficients. To understand this oracle in detail the careful reader

should analyze the constructions of all blocks used in this oracle, as they are explained

in chapter 11.

848

15.4.3. Oracle for incompletely specified FPRM.

In the case of incompletely specified datac the oracle is exactly the same as in Figure

15.4.2.1 but it is differently controlled. The qubits do to d7 are now set not only to

Boolean values zero or one (for negative and positive minterms, respectively). These

qubits must now correspond also to don't cares. The don't cares are created as shown

in Figure 15.4.3.1 by using Hadamard gates. Every input qubit that corresponds to a

minterm being a don't care goes through the individual Hadamard gate. Qubit d7 in the

Figure can be an example.

Po
ve

Pa
Pb
Pc

|0>

bn
Threshold fc>i

value £2
b3

Working '
qubits , 0 >

larity
ctor

• • •

d| |o
d"* n

d3 io>—LiLr
d4

 |L

d5 |O>-[JL|-"

06 in> —L£LI—
H in- 1 H 1

FPRM
Processor

Cost Counter
and

Comparator

1

^
[A
J

• • •

en
e i

e2

e3

e4

e5

e6

, e 7

Inverse
Cost Counter

and
Comparator

1

• • •

Inverse
FPRM

Processor — -

Pa
Pb
Pc
Yes/No

30
31
32
&3
0>

|0>

do
di

d2

d3

d4

d5

d6

d7

function spectrum

Figure 15.4.3.1: Quantum Architecture for FPRM Oracle for Grover's Algorithm.
This is the case of incompletely specified function so all don't cares go through
Hadamard gates. The circuit illustrates the incomplete function for which do = 0, dj =
0, d2 = 1, d3 = -, d4 = 1, d5 = -, d6 = -, d7 = -.

849

The architecture from Figure 15.4.3.1 finds the cheapest solution for a given polarity

pa, pt>, pc when the input of polarity qubits is fixed to a binary vector.

However, when the polarity is not assumed, which means the inputs pa, Pb, pc are

provided through Hadamards (as in Figure 15.4.2.1), and the minterm data qubits are

still as presented above, then the entire quantum architecture finds both: the best

FPRM polarity and the best assignment of values to data minterms.

Polarity
vector

Constants

Constants

Pa|0>
Pbll>
Pc Pc|0>

|0>

If?
Working
qubits |o>

d0 |o> — | H
dilo>
d2|0>

H
H

d3 |o> — I H
d4 JO>

d5|o>
d6 |0> 1 H
d7 |o> — H

H

FPRM
Processor

Unknown function

3-4
Cost Counter

and
Comparator

Inverse
Cost Counter

and
Comparator

en

ei

e2

e3

e4

e5

e6

L-*LA

-Pa
"Pb
-Pc
•Yes/No

Pi
2
3

Inverse
FPRM

Processor

— |0>

^\o>
do

• d i

d 2

d 3

d4

d 5

d 6

d 7

spectrum

Figure 15.4.3.2: Quantum Architectures for spectral-based Oracle for Grover's
Algorithm for the problem 15.4.3.2 from section 15.4.3.

Concluding on variants of search problems solvable with FPRM oracles, let us observe

that we can formulate four different search problems. All these problems use exactly
850

the same oracle. Each of these four cases is selected by some specific way of

providing input values to all inputs of the Graver's Oracle.

Problem 15.4.3.1.

1. Given are:

a) a completely specified function/ specified by the vector of its minterms.

b) the integer number bound B on the cost C(S(f)) of the solution S(f) being a

binary vector.

2. The cost C(S(f)) is the number of non-zero spectral coefficients in vector S(f).

3. Find the FPRM polarity Pi for which the cost of spectrum S(f) is below the value

of the bound B.

This problem is illustrated in Figure 15.4.2.1. It was discussed in section 15.4.2 and in

the original paper by Lin et al [Li06].

Problem 15.4.3.2.

1. Given are:

1) The polarity Pi as a binary vector

2) The integer number bound B on the cost C(S(f)) of the solution S(f) being a

binary vector.

3) The cost C(S(f)) is the number of non-zero spectral coefficients in vector S(f).

851

2. Find the function/such that the FPRM in this polarity Pi has the cost C(S(f)) of

spectrum S(f) that is below the bound value B.

This approach can be used to automatically invent new gates with small costs. This

case is illustrated in Figure 15.4.3.2.

Problem 15.4.3.3.

1. Given are:

c) The polarity Pi as a binary vector

d) The function/ specified by the vector of its minterms.

2. The cost is the number of non-zero spectral coefficients.

3. Find the bound such that this function/in this FPRM polarity Pi has the cost of

the spectrum vector that is below the bound that is found.

This problem makes no particular practical sense but is added here for completeness

and to show our general methodology of asking different questions to an oracle.

Problem 15.4.3.4.

Given are:

1. an incompletely specified function/ specified by its care and don't care minterms.

2. The cost is the number of non-zero spectral coefficients.

852

3. Find the FPRM polarity Pt for which the cost of the spectrum vector is the

minimum. Find this binary spectrum vector and the assignments of cares to don't care

minterms.

This is the most important and useful generalization that we found. It is illustrated in

Figure 15.4.3.1 with additional Hadamard gates on bits pa, pb, pc.

Unknown values

When in
loop !

Input
variables^

When
fixed

values 10

H

H
O
R
A
C
L
E

H

H

H

H H
H

E>

Grower Loop

Oracle qubit

Figure 15.4.3.3: Explanation of using inputs for known and unknown values on inputs

to extended Grover Algorithm. The known values are initialized to basis states |0) or

| l). The unknown values are initialized to state -=|o)+-^|i) .
V2 V2

Concluding, the same oracle can be used to answer several questions, depending

which data to it are fixed and which are unknown. Figure 15.4.3.3 shows the general

way to create preprocessing circuits to oracles in Grover algorithm. Every input, for

every subset of inputs with different meanings can be set to value |o) if this data bit is

853

negative, to 11/ if this data bit is positive and to superposed value

-=|o)+-7=|i) = [#]®|o) representing an unknown value that its definite value is searched

for. This principle of creating oracles and formulating data for them is very general

and I applied it to other problems not discussed in the thesis.

This principle can be summarized as:

"Create such an oracle that

(1) the care data inputs are fixed to binary values

(2) the don't care data inputs are set to ~j=\(!l)+~j=v) = \H\ ® |°)

and next measure all don't care qubits. "

15.4.4. Generalizations and Applications of Spectral Learning Model.

15.4.4.1. Generalizations and applications of methods from sections

15.4.2 and 15.4.3.

Let us observe that the selection of FPRM spectrum as the spectral transform in the

section 15.4.3 was purely incidental. As we know the FPRM is just one family of

AND/EXOR spectral transforms. Because it has the simplest butterflies, the FPRM

forms are practically the most popular. Therefore the authors of [Li06] selected this

854

family of spectral transforms. The approach illustrated in section 15.4.3 can be

however applied to any family of spectral transforms, especially the transforms related

to AND/EXOR logic. It can be also used to other transforms for which butterflies can

be built as permutative quantum circuits, see Chapter 11, section 12. Hadamard,

Fourier, Cosine and other transforms are for instance possible. This is because one

can build in principle the oracles like in sections 15.4.2 and 15.4.3 for every family of

expansions controlled by certain parameters. I tried to build oracles for such

AND/EXOR spectral transforms as GRM and GPMPRM [Zhang99]. I found it

possible to build such oracles, but very complicated. However, I make here a point

that this is possible in principle. We can thus formulate the following generalized

problems, each problem below generalizes the concept of an oracle from the FPRM

oracle to every imaginable polarity-based (parameter-based, parameterized) spectral

transform oracle.

Problem 15.4.4.1.

Given are:

1. The function F: I -> O defined as a mapping (Boolean, Multiple-Valued or

hybrid)

2. The bound B on the cost of realization of this function

3. The function is realized as an expression based on selecting some subset of

non-zero coefficients of some spectral transform ST of this function.

855

Find

the polarity of this expansion (or equivalently, the value of the parameter)

for which the cost of the spectrum (number of non-zero coefficients) is below

the given bound B.

Problem 15.4.4.2.

Given are:

1. The function F: I -> O defined as a mapping (Boolean, Multiple-Valued or

hybrid)

2. The cost of realization as the number of non-zero spectral coefficients.

3. The bound B on the cost of realization of this function

4. The function is realized as an expression based on selecting some subset of

non-zero coefficients of some spectral transform ST of this function.

5. The spectrum

6. The polarity Pi

Find

the function F such that the given instance of the family of transforms in this polarity

P has the cost of the spectrum that is below the bound B.

856

Problem 15.4.4.3.

Given are:

1. The function F: I -^ O defined as a mapping (Boolean, Multiple-Valued or

hybrid). The function is realized as an expression based on selecting some

subset of non-zero coefficients of some spectral transform ST of this

function.

2. The cost of realization as the number of non-zero spectral coefficients.

3. The bound B on the cost of realization of this function

4. The spectrum

5. The polarity Pi

Find

the bound B such that this function F in this family of spectra in this polarity P has the

cost of spectrum that is below the bound B.

Problem 15.4.4.4.

Given are:

1. The incompletely specified function F: I -> O defined as a mapping

(Boolean, Multiple-Valued or hybrid). The function is realized as an

expression based on selecting some subset of non-zero coefficients of some

spectral transform ST of this function.

857

2. The cost of realization as the number of non-zero spectral coefficients.

3. The bound B on the cost of realization of this function

4. The spectrum

5. The polarity Pi

Find

the polarity of the expression within the family of transforms for which the cost of

spectrum (the number of non-zero coefficients) is the minimum.

This is the most important and useful generalization of generalizations, as it relates to

quantum, Grover-based machine learning with arbitrary spectral transforms.

Applications of methods from section 15.4.2 and 15.4.3 can be in all those areas of

research and practical- technology in which the spectral transforms are now being used.

This includes the following:

1) General Logic design (also logic minimization for reversible and quantum circuits

themselves),

2) Logic Design for Test, highly testable circuits,

3) Image processing and DSP,

4) Data compression,

5) Communication,

6) Cryptography,

858

7) Error detecting and error-correcting codes,

8) Machine Learning.

In section 15.4.2 and 15.4.3 only a particular approach was illustrated because as the

spectrum transform we used the family of FPRMs, the reader remembers however

from chapters 3, 7, 8, 9 and 11 that there are many parameterized AND/EXOR forms

such as GRM, GKRM, KRM and also many other spectral transforms such as adding,

arithmetic, generalized, Haar Transform, Fourier Transform, etc. Each of these

families can be used to build the generator being the part of the oracle. We found the

way to build generators for all these forms. By the way, each of these generators can

be created similarly to the generators for FPRM in this chapter, based on the

knowledge of the butterfly structures [Perkowski97a, Perkowski97b, Zeng95]. What is

most important is that we found a general method to create quantum oracles for all

problems described by families of spectral transforms. The Zhegalkin hierarchy finds

therefore one more practical application. Such families include not only the classical

AND/EXOR transforms but also the entire (some new, some old) families of Haar

transforms and wavelets, polarized Walsh, complex Walsh, complex Haar,

multivalued Haar and Walsh (Hadamard, Paley, Karczmarz), Chrestenson and Fourier.

Some problems in signal processing and image processing use adaptive filters that

change dynamically the transform applied in real-time as an approach to adopt to the

changing environment. Our approach is applicable directly to all these problems with

no any modification. This is a very general method with many new applications.

859

15.4.4.2. Applications in Quantum Game Theory.

It is difficult to predict future of technology but one can observe that general methods

to represent data such as the spectral methods find applications in very many areas and

are used in many commercial products, the Cosine Transform with applications in

JPEG and MPEG can be just one convincing example. Slant and Haar transforms were

used by Intel and other companies. Reed-Muller codes are used in interplanetary

communications. The list goes on. In addition, there is also a quickly developing area

of quantum game theory where many known results from quantum algorithms were

assigned very interesting new interpretations. All problems represented above as the

design, construction, mapping problems are interpreted as games between two or more

participants. This will have applications in economy and Internet gambling with future

quantum internet. For instance, the learning problem discussed above is more general

than the known quantum game of finding the conjunctive formula of literals for a

given set of data. Our machine from previous sections could be just set to the

threshold of two (limit to a single product of literals) to obtain a product of literals (not

necessarily a minterm like in many games) that satisfies the input data being

formulated as a set of minterms. In quantum games the number of players is the

number of qubits and the number of strategies per player is the radix of logic used in

the respective qudit. Therefore, all circuits presented here can be generalized to

ternary quantum gates [Khan05, Kalay99c], allowing to create ternary butterflies

[Cheng05] and more efficient arithmetic for larger counters and comparators. Next

860

they can be generalized to arbitrary radix of logic and applied to respective games.

The Classical Game Theory finds many applications in robotics, especially to military

and social robotics. We can speculate that the same will happen to the Quantum Game

Theory.

15.4.4.3. Advances in the design of quantum arithmetics.

There is one more aspect which should be discussed at this point. In this and previous

chapters we showed how Grover's algorithm can be extended to practical problems in

classical logic minimization and Machine Learning. Thus our examples illustrated also

the design of practical reversible circuits using quantum gates for blocks that will be

normally incorporated inside oracles. In many oracles that we tried, always exist

arithmetic blocks such as adders, subtractors, comparators, counters of ones

(compressors), butterfly transforms and logic blocks. In chapters 10 - 14 we showed

usefulness of some of these blocks. I see that much more work can be done on

arithmetic of quantum computers, but this is beyond this thesis. Dr. Mozammel Khan

from Dhaka published several papers with Prof. Perkowski on these topics and several

authors from Bangladesh were included. Hopefully this new research area will be

expanded worldwide.

861

15.4.4.4. Quantum oracles for learning based on non-spectral

approaches and types of transforms.

The next goal of research in the area of Machine Learning and Data Mining can be to

design and simulate algorithms similar to those listed above that would use

representations based on Galois Fields other than the GF(2) field [Kalay99c]. The goal

of these algorithms would be to create ESOP-based and GFSOP-based optimized

quantum arrays and quantum state machines. In terms of Machine Learning the above

methods would be characterized as classical "Occam Razor" learning methods.

We look in them for a formula of certain type (like a GFSOP expression) that has a

cost as low as possible and has either no error or an error smaller than some Error

Threshold Value. The desired cost is the smallest possible number of non-zero spectral

coefficients. The type of the circuit synthesized is the learning bias of the method.

To my knowledge this kind of learning algorithm was never proposed to be

implemented in a quantum circuit. So far only learning of DNF formulas and Neural

Nets was applied in the area of Quantum Computational Intelligence [Ventura98,

Ventura99, Behrman96, Hopfield82, Perus96].

When one discusses the choice of the spectral transform in the oracle, special attention

must be paid to Karhunen-Loeve transforms [Thornton05] because these transforms,

although difficult to implement, allow for the best approximation for a wide set of

base functions and are therefore the optimal spectral transforms. Wavelet transforms

862

should be also analyzed as a candidate for transforms used in quantum oracles. The

PSU Group intends also to build quantum oracles for other spectral transforms,

especially those used in robotics, and particularly in robot vision. One of the aims of

the entire work of PSU group is to discover practical and efficient methods of

designing binary, multi-valued and hybrid quantum circuits, blocks and algorithms not

for random benchmarks but for practical blocks and architectures that have practical

applications in quantum oracles of algorithms that speed-up very time consuming

algorithms. The work presented in this thesis can contribute to this broad task by

delivering several practical circuits, re-usable blocks (such as sorters or comparators),

quantum algorithms (such as graph coloring) and partial methodologies. The proposed

approach can be also applied to any problem (like filter design or processor design)

described by:

1. certain discrete parameters (encoded to binary for our algorithms)

2. there exists a cost function based on the complexity of the output data (the

number of the FPRM transform coefficients in case of sections 15.4.2 and

15.4.3)

We created thus, particularly in this chapter, a general quantum method to solve many

classical problems in image and signal processing, filtering, matching and learning. In

particular, every problem for which there exists a Linearly Independent Transform can

be solved this way, which includes wavelets, Fourier transforms and other "orthogonal

transforms".
863

CHAPTER 16

CONCLUSIONS

16.1. What can be found in this concluding chapter

Initially, the main goal of the dissertation was to develop quantum oracles for many

interesting problems to be able to evaluate the Grover algorithm. Simulations using

QUIDPRO and Matlab proved that small oracles that I designed using my new

methods can be verified and that they are correct. I used also the new simulator from

Professor Miller. This simulator allows simulating also multiple-valued quantum logic

and larger circuits than QUIDPRO. With respect to technology I selected NMR as it is

confirmed by many experiments and the one that is most well-known.

When we were sure that the concept of quantum oracle works well and we were able

to simulate our oracles for Grover Algorithm, a new problem appeared "how to design

the oracles" as my first oracles were not designed systematically. This design problem

exists on many levels:

1. designing oracles on level of logic blocks,

2. conversion of non-reversible blocks to reversible,

3. synthesis of blocks (circuits),

4. synthesis of gates for circuits on level of their quantum realizable components,

5. synthesis of small gates and components on level of quantum pulses for a given

realization technology.

864

I found that the existing CAD software even for reversible or quantum circuits is not

specialized to design oracles. Therefore I decided to create software for exact solutions

and software with visualization.

The previous chapters included some new ideas for future work that result from the

ideas and methods of the thesis. There are also some other general ideas that came to

my mind while writing the thesis, but were too general or too broad to be included in

the thesis. Therefore in this chapter I will conclude and evaluate the main ideas of my

thesis and I will discuss certain very general approaches that result from the research

material presented in the thesis.

16.2. Evolutionary Darwinian algorithms versus Evolution of

Quantum States

As discussed in the thesis, one of my synthesis methods was evolutionary computing.

A question may arise that I permanently keep asking myself: "is GA a good approach

to the design of quantum circuits?" Let us first observe that natural systems are

extremely well adapted to their environments. In a sense, the systems result from their

environments. It is found in Nature that the structure of all organisms has been

designed to provide the capability of solving a multitude of complex problems for both

survival and growth, through instinctual, experiential, and.intellectual means. Over

the millennia, it is these capabilities that have proven an effective method of sustaining

865

the existence and the propagation of natural organisms. Even as environmental

conditions change, it is the continuous adaptation process of natural organisms

adjusting to their environment, through evolutionary processes, which sustains life.

As Nature itself has proven its development of robust system design, we decided to

use the biologically inspired evolutionary processes in the thesis, as a part of our

approach to design quantum circuits. In the process of my learning and experimenting,

I found that other approaches are possible, but GA was a good starting point. It lead

also to some philosophical questions.

It remains an interesting and fundamental question if the quantum-mechanical search,

which is used by Nature to solve physics problems, is also used by Nature in the living

organisms for optimization and "problem-solving". Positive answer would be a great

discovery but would be not surprising in the light of a common belief that Nature uses

"Genetic Algorithm" to improve species [Drechsler93, Dill97, DeGaris92,

Goldberg98, Holland92, Higuchi97, Higuchi97a]. We formulate in the thesis the

problem "what is the relation between the evolution of quantum systems and evolution

of living organisms" but we do not attempt to answer this difficult question in this

dissertation. This is left for future work. Let us only observe that some recent

published research treats evolution of the early Universe as an evolution of a quantum

computer.

866

The Genetic Algorithm technique provides a means for applying the evolutionary

process within an artificial system, in our case, within a quantum circuit of certain

type. The Genetic Algorithm is a process that evolves problem parameters directly or

through the evolutionary process of natural selection. An artificial evolution is applied

to (software) data structures, consisting of functions (mathematical operations) and

terminals (variables), to develop algorithms (rather than particular solutions) capable

of problem solving. Through a process of emergent intelligence, the GA and its

Quantum counterpart evolutionary algorithms formulate engineering solutions based

on an accumulated knowledge of the problem and the merit of potential solutions. In

my opinion, based on my experiences gained while writing the thesis, the designer

should be not dogmatic about using the GA algorithm "taken from books" but rather

he should treat evolutionary ideas as well as quantum ideas as powerful "computing

metaphors" to create his own problem solving and learning approaches. This was an

approach presented in this dissertation and it lead to solutions better than using only a

purely GA-based method. Further work of combining algorithmic and (GA) search

methods should be continued with applications not only to quantum circuits but also to

quantum automata and quantum algorithms.

A question may arise what is new in my approach to using GA in quantum circuits

design. It is well-known that in recent years, the Genetic Algorithms, as machine

learning techniques, have been successfully applied to a wide range of engineering

867

problems as diverse as graph coloring [Lewandowski94], traveling salesman

[Kruska56], quantum circuits design [Perkowski04, Lukac02, Lukac02a], Neural

Network design, economic trend prediction, control theory, and firmware

development, to list just very few. They have been successfully used also to quantum

circuits design [Giesecke06, Khan03, Lukac02, Lukac02a, Lukac05]. In my opinion a

new asset of this dissertation was to combine the GA with other search types. Another

new aspect is the concept of parallel quantum search that uses GA as one of its

methods.

Another question that people asked me is this: "with the possibility of realization of

quantum algorithms in all kinds of reconfigurable quantum computer hardware, why

you think that the Darwinian evolution principles should be used in the quantum

world". One can think that may-be quantum evolution mechanisms are sufficient and

that the evolutionary and neural quantum concepts become superfluous. This idea was

suggested recently by the inventor of Evolvable Hardware, Dr. Hugo De Garis. He

believes that quantum search is sufficient and GA will be useless in quantum

computers, despite he wrote himself many papers about quantum genetic search. There

were also no good examples of using evolutionary methods on practical quantum

circuit synthesis problems. Such practical illustrations are entirely missing from the

literature on the subject [DeGaris92, Coon94, Drechsler97, Drechsler99, Disman96].

(This remark does not concern the research of our group, but was a starting point of

868

my work in 2004). Concluding, it is not certain what will be the role of genetic

algorithms in quantum area, although several authors work recently on "Quantum

Genetic Algorithms".

In any case, regardless of future works of humans, Nature used already both "quantum

evolution" and "Darwinian evolution". The Darwinian evolution was "invented" very

late by Nature, so it is perhaps subsumed by some more general types of evolution.

The Universe was able to evolve much before the first living species arrived. So, if we

believe in Darwinian Evolution, how the Darwinian Evolution evolved from some

earlier evolution which could be only chemical and physical? Did Darwinian

Evolution exist before the first living cell arrived? Can something be created from

nothing? Therefore I believe that Darwinian Evolution results from Quantum

Mechanical Evolution and may be other evolutions (chemical, physical) that were

created in between.

Virtually no research papers to date have applied any of these "combined evolutions"

concepts to logic design and optimization, as well as to the closely related machine

learning methods based on logic synthesis approaches [DillOl, Lukac08]. We also did

not discuss these issues in the dissertation. The future research should include relations

between quantum and Darwinian evolutions and my "engineering research" should use

these results to the synthesis of quantum circuits and algorithms.

869

16.3. Links of our methods to Machine Learning and Data Mining

In current and forthcoming "Age of information", Data Mining is and will become

even more so a necessary and ever increasingly important technological tool with very

wide applications areas. These techniques will be for example built into home robots

that will predict behaviors of children, elderly and non-sophisticated users to

communicate safely and fully with them by using natural language and human-like

gestures. Development of future Data Mining methods will require very powerful

computers, orders of magnitude more powerful than any computers currently in

existence. In general, as the current trends in both business and machine learning

databases demonstrate increased size and complexity, it is even more critical to

delineate useful information, or knowledge, from raw data (like camera, microphone,

chemical sensors and quantum sensors in future) by automatic means. The

recognition, discovery, and analysis of rules or patterns within real-life-data-created

databases and information streams of extremely high bandwidths will become critical

to all these processes. Again, nothing has been published so far about data mining

using quantum computers, although it is obvious that Data Mining of extremely large

automatically created data bases will become a very powerful application of future

quantum computers.

This thesis is the first one to propose these ideas (but with no details). Here we

speculate that:

870

1. Quantum computers will collect large amounts of small pieces of information

that are now not possible to be analyzed in current technologies by standard

computers (or humans). These types of data would require the complexity of

analysis that is currently impossible, in order to create extremely complex

models. These complex models will allow to better explain some phenomena

or processes (like those in quantum mechanics, stock market, or weather

prediction).

2. Quantum computer can analyze certain minimally different statistical results

like the influence of heat on a given roulette wheel in a particular casino and

thus, it will be able to make the real-time predictions which will be superior to

any human or classical computer. Modern computers have no ways to acquire

or process such extremely high volumes of data. And they never will as the

capacities of quantum associative memories are exponentially larger than

those of standard computers.

3. Quantum Data Mining will be thus a fruitful research area in coming years,

together with Quantum Game Theory [Khan05, Khan06, Eisert99, Meyer99]

and Quantum Markets [Pakula06]. It is expected that they will be much

applied to study market behaviors and predict moves of competing companies.

4. Those societies without quantum computers will loose the battles in economy

and in real war battlefields, as "our" soldier robots with quantum brains will

871

outsmart "their" soldier robots with classical computer brains [Perkowski's

slides for Intelligent Robotics class Fall 2007].

The requirements of Data Mining (DM) and Knowledge Discovery in Databases

(KDD) can be compared to those of the traditional logic synthesis. In common, both

applications share the goal of fully describing the system with a minimal rule set (or

formula), as required by the Occam's Razor Principle [Gamberger97]: "If two theories

explain the set of facts equally well, the simpler theory is better". However, the system

specifications in the DM/KDD field and the logic synthesis field differ much. While

the DM/KDD approaches seek to discover new patterns and rules from the data, the

logic synthesis describes circuits minimized by the number of gates, levels, and literals

utilized. Finally, "the biggest difference is that most circuit-related multi-valued logic

problems are nearly completely specified, while functions in machine learning tend to

be 99.9% unspecified in their respective learning domains" [Files97]. A number of

methods of data analysis have been demonstrated in recent years, including Neural

Networks [Hagan96], decision tree generators such as C4.5 [Quinlan93], Function

Decomposition [Files97, Files98, Files98a, Burns98] and others [Berry97, Alexits61,

Perkowski95a, Kosko94]. While these methods are effective for machine learning,

they are not readily applicable to both circuit design and Data Mining. This is

apparent since the requirements for quantum circuit design are much more stringent

than that of machine learning; an implementation must be constructed so that the logic

872

function is always 100% correct (although it may be not true for some applications of

oracles where quantum computer only proposes a solution with high probability of

success but standard computer is still necessary to verify precisely the correctness of

what was guessed by the quantum accelerator). This degree of certainty is not

necessary for machine learning applications. Recently proposed Quantum

Computational Intelligence techniques such as Quantum Neural Networks and

Quantum Decision Trees [Farhi98] obtain in theory good results, but cannot guarantee

convergence to error-free solutions. There are also other quantum Computational

Intelligence approaches proposed, for instance some use other network types or

concepts. All these approaches together suggest certain future convergence of the

research areas of Machine Learning, Quantum Mechanics and Logic Design/Evolvable

Hardware. I believe that much work will appear soon in the area of Quantum

Computational Intelligence and that the ideas introduced in this thesis may become a

starting point to at least some of them.

16.4. Links of our methods to Evolvable Hardware. Towards

Quantum FPGA

Recent interest in the field of Evolvable Hardware (EHW) [DeGaris93, Hemmi94,

Higuchi93, Higuchi94, Higuchi97, Higuchi97a, Thompson95, Thompson95a,

Thompson03, Sipper97] has been demonstrated in the area of Computational

Intelligence, in the FPGA IC design community, in the FPGA user community and in

873

the robotics research community. The EHW field has emerged as an outgrowth of the

development of computational and artificial intelligence learning techniques, as well

as advances in Artificial Life theories. The ultimate goal of the evolvable hardware

research is to automatically produce highly complex electronic hardware circuits that

can architecturally adapt (either "on-line" or "off-line") to environmental variables, as

deemed necessary. The promises of this new technology, once mature, are that

evolvable hardware will dramatically reduce the traditional engineering development

time and further, that the developed circuits will be highly fault tolerant, quick to

implement (eliminate device reprogramming and re-design time), operate at higher

speeds than software learning technologies, and produce highly advanced

architectures. It is believed that these architectures will be quite different from the

traditional design synthesis, optimization, and partitioning schemes (a combination of

synchronous and asynchronous designs, different types of "module" divisions, etc.).

When the EHW theory is fully developed, this new technology should allow a

completely automated creation of highly complex circuits. Circuits requiring

thousands of man-hours of development time, or perhaps, circuits even more

sophisticated in design will be created with no human intervention at all. These

circuits will be self-learning, highly robust, gracefully degradable, and can be modified

as needed. It has been hypothesized [DeGaris92, Buller03] that in the future, as

electronic circuits become increasingly complex, and will perhaps consist of billions

874

of nodes and internal interconnections, the evolvable hardware approach may be the

only design tool possible for practical development.

The implications for such a powerful technology, which is capable of self-directed

learning and adaptation, will also present some interesting philosophical questions for

our understanding of life and intelligence. The genetic evolution of machine learning,

knowledge discovery/data mining, and circuit design is the first step in the

development of this powerful scientific trend and industrial technology towards

quantum technologies of the future [Perkowski99c, Negotevic02]. Again, very little, if

anything, has been published about quantum evolvable (reconfigurable, adaptable,

learnable) hardware which is proposed in this thesis for the first time (although similar

concepts appeared in the literature in the course of writing this thesis (successors to

[Nielsen97]). Observe that evolvable hardware currently exists in the domain of Field

Programmable Gate Arrays (and their analog equivalents called FPAAs - Field

Programmable Analog Arrays). On the other hand, it is recently believed that quantum

computing will be more similar to building accelerating co-processors for standard

computers and realized in something like "quantum FPGAs", rather than similar to

mainframe microprocessors. Observe that this is exactly the approach that has been

developed and illustrated in my dissertation.

875

It is obvious that the concept of quantum evolvable hardware that could theoretically

find exact minimal solutions to problems that classical computer would be never able

to solve is not possible with traditional software GA approaches. The quantum speed

up is in the sense "given for free" in Grover algorithms once the correct setup is

achieved. Therefore future evolvable hardware should use both Darwinian and

Quantum Evolutions, where the Grover algorithm is only one example of a quantum

evolution and the "Quantum GA" of Hugo De Garis is the only one example of

combining quantum and biological evolutions.

All these considerations led us to the model of this thesis in which the future quantum

computer will be a parallel system of hardware-programmable units, both classical and

quantum, while quantum units will use Grover algorithm. This model is different from

De Garis model, Han/Kim model, or any existing model of quantum computing. Let us

stress again that when compared to the two existing standard computing technologies,

a general-purpose processor and FPGA, the quantum computer is much more similar

to the last one. This powerful similarity was used in this dissertation to develop new

methods. These methods were innovative especially in light that even in standard

computing the research community is still not sure about all capabilities of adaptable

reconfigurable massively parallel architectures based on multiple FPGAs. Much

further research in this area is possible, and this thesis is only the "beginning of

beginning" to investigate combining quantum evolutionary and other methods.

876

16.5. Our approaches do not belong to the family of "quantum

inspired algorithms"

Another comment seems appropriate at this place. The so-called "quantum-inspired"

algorithms originating from KAIST in Korea (Dr. H. Han and Professor J. H. Kim)

are performing better than the classical GA in some scheduling and other practical

problems [HanOO]. One can consider using these algorithms for our applications.

However, let us make a point that I did not work on this topic in my dissertation. First,

because we believe that better methods can be found, second that I wanted to develop

my own method, which in future may be compared with the approach of the Korean

team from KAIST.

The "quantum-inspired" algorithms still belong to the classical evolutionary paradigm,

with chromosomes, crossovers and mutations, etc. This is contrast to other Quantum

GA algorithms recently published which are more similar to our approach. However,

certainly the comparison of my work to the works of Han and Kim would be useful in

the future.

The issue of the interrelation of Darwinian and Quantum Evolutions in many of its

possible aspects remains a fascinating research topic. For what reason should anybody

believe that the Darwinian evolution, as based on chromosomes, crossovers and

mutations and simulated in GA software, is the only evolutionary process created by

877

Nature? The answer is not known. The software simulations so far prove that the

quantum evolution can play the same role as mutation and crossover in some software

applications. The question is then this "may be quantum evolution contributes also to

species evolution in our real world? " Thus, quantum evolution of not only the

inanimate Universe but also the living Universe?

May be there is also a quantum component in the evolution of animals? Some new

theories speculate that quantum mechanics is a part of neural processes in humans

(works of Penrose and Hameroff [Hameroff96, Hameroff98] and [Lukac PhD thesis]).

We believe that similarly, quantum components will be added in future to immune

system modeling, fuzzy systems and evolutionary/reinforcement mechanisms that are

used now in "Computational Intelligence" research area to describe decision and

optimization processes. My belief is based on the fact that it is just the quantum

physics (or even some more complex physics like the string theory physics), and the

logic based on this physics, that really exist in Nature. The classical logic and classical

(Newtonian) physics are just early human approximations which simplify models for

user convenience or because of creators' ignorance. They do not represent the logic of

Nature. An imprecise model may be thus a Neural Network or Darwinian Evolution,

while the precise model must include quantum nature of everything. (Just one citation

from Hameroff about quantumness of microtubules: "Microtubule based cilia in rods

and cones directly detect visual photons and connect with retinal glial cell

878

microtubule via gap junctions", http://www.quantumconsciousness.org/penrose-

hameroff/quantumcomputation.html). Researchers like Roger Penrose and Stuart

Hameroff speculate that all intelligent behavior uses the quantum mechanics as its

physical aspect, rather than using the classical physics only. They believe that quantum

mechanics is responsible for our conscience. Regardless whether the human brain is

quantum or not, future robots will have quantum brains and future computers will use

quantum mechanics. It will be so, simply because only a quantum computer will allow

solving problems of many orders of magnitude higher complexity that will be

necessary for these robots to operate and survive.

Observe also that the quantum logic is different from the classical logic (the classical

logic is the logic of Aristotle formalized by Boole) on which modern computers and all

software modeling human reasoning are built. Several attempts to create more useful

logic like multiple-valued logic of Lukasiewicz and Post or fuzzy logic by Zadeh

[Zadeh83, Zadeh96] proved useful in some applications. But it is only now, with the

arrival of quantum computers, that we are learning and trying to understand the logic

that is used by Nature. When we will learn the "logic of Nature", we will be able to

build and program totally different, more Nature-like, computers. This is the main

principle of the dominating recently research direction known under several names:

"Physics is Computing", "Universe is a computer", "Natural computing", "Nature-

inspired computing" and "Building computers modeled after Nature". Thus, we

879

http://www.quantumconsciousness.org/penrose-

believe that it is interesting to look for a new approach to quantum logic rather than

just apply known evolutionary ideas to the quantum domain [Lukac02, HanOO] (their

approach by the way is the research standard now). Again, these new approaches can

be hopefully built on top of some ideas of my thesis.

16.6. Are our search models from this thesis realistic

Coming back to our way of modeling quantum phenomena in CAD computers, some

of our methods like the FPRM minimization assumed that the computer has at least as

many quantum wires (qubits or qudits) as there are all minterms of the function (their

number is exponential). This is a huge number, so even when quantum computers will

become available and practical for other problems like secure communication and

cryptography, only small CAD problems will be solvable with the approach proposed

in my dissertation. This may be a valid criticism of my work, but first, this criticism

can be applied to many other published quantum algorithms, and second with time

progression even larger quantum computers will be built. It is now difficult to predict

how many qubits will exist in a quantum computer 200 years from now. Like nobody

would predict in year 1850 the power of standard microprocessors of year 2005. In

nineteen century, when Babbage and Boole speculated on power of "future computers"

and all the London's elite treated Lady Lovelace, the first computer programmer ever,

as an eccentric if not crazy person because of her opinions about the possible power of

880

computer programs, how can the philosophers know that it was Babbage and Boole

and Lovelace who were right!

Therefore, this whole thesis is based on an optimistic speculation of existence of very

powerful quantum computers (i.e. with very many qubits). We accept therefore a

potential criticism that this dissertation relates to the kind-of "science fiction"

technology, but we observe that all quantum computing research other than building

small prototypes was science fiction in this sense in year 2005, when I started to work

on this thesis. There was a dramatic flurry of new fundamental developments in

quantum computing in years 2006, 2007, 2008 [Wikipedia]. I believe therefore that

this research is very important because it analyzes which problems that are unsolvable

now, will become potentially solvable with the arrival of more powerful quantum

computers.

16.7. The main idea of quantum search in this dissertation.

Let us now try to conclude in few words the very basic, central idea of this dissertation

and its potential continuation. The basic principle of our approach is very simple but

therefore extremely general. First, the logic function representing solutions to some

problem (an oracle or its part to be synthesized) is specified using a truth table. All

true and false minterms are encoded as quantum wire states initialized to basis

quantum states |l) and |0), respectively. All don't care minterms are created using the

881

well-known quantum Hadamard gates as all possible superpositions (details explained

in chapter 2). Every "for all" loop of the algorithm goes through all "don't cares"

calculated as full superpositions. This way the quantum algorithm combines

constraints (the cares) with free choice (the don't cares) using quantum evolution

controlled by the (configurable, quantum) processor according to the design

construction and the parametrical choices of the oracle/algorithm designer. The

fundamental difficulty of standard logic synthesis algorithm for don't cares is solved

automatically in this approach from my dissertation. It is a byproduct of the

superposition principle of quantum mechanics, i.e. our method uses Hadamard gates

that create the equal superposition of all possible basis quantum states - the

synthesized logic expression is derived for the cares and don't cares of the

specification. This solution expression results from the quantum evolutionary process

in which superposed states are propagated, and next the quantum amplitudes are

amplified and measured (as in the Grover algorithm and its variants). Observe that

treating don't cares in classical logic synthesis algorithm was always very difficult. In

quantum it is easy, because a don't care is just a "logic one" in one quantum Universe

and "logic zero" in another quantum Universe, so the exhaustive nature of quantum

superposition itself (all binary combinations after parallel Hadamard gates -

[Nielsen97]) solves the problem automatically. This is a very powerful general

principle of formulating and solving optimization problems with incomplete

882

information using quantum circuits. This approach can be used to any constraint

satisfaction problem.

It is this broad application of the Quantum Search to Logic Synthesis/Minimization

and automation of the design process, which differentiates our research philosophy

from all other circuit design methods known so far (with the sole exception of the

Lin/Thornton/Perkowski paper, the source of my inspiration in this thesis).

This outlined above quantum hardware search/design technique is also a multi-purpose

design approach, offering great flexibility. In contrast to other approaches to logic

synthesis, this method of circuit design can be completely customized to optimize for

virtually any cost function, i.e. circuit area, power, delay, number of gates, number of

inputs, circuit speed, etc. Everything depends on how the part of oracle that calculates

the cost function is constructed from quantum gates, circuits and blocks. Therefore,

after our explanations and illustrations in previous chapters, everybody who

understands classical logic design and disposes reversible synthesis CAD tools can

design such circuits. It is the designer who can take into account any conditions,

constraints or parameters by building a respective oracle. The synthesis problem

becomes the oracle design problem. This requires the ability to design large

hierarchical oracles efficiently. In far future, the desired optimization goals and their

relative importance will need only be described to the Quantum Search Problem

883

Solver by a numerical judgment of the proposed solution's merit. Now the designer has

to design in full detail all the specific quantum circuits (as it was explained in

sufficient details in chapters 10, 11, 12, 13, 14 and 15).

16.8. Brute force Search versus human-like intelligence

Another comment seems appropriate in this conclusion as it also relates to the general

philosophy of my dissertation. At the early phase of building chess programs it was

believed that mimicking the thinking processes of the chess grandmasters is the "way

to go". It was however shown in 50 years of chess computer research that a massive

parallelism with no "human" intelligence is a better approach. IBM just needed a

massively parallel classical hardware Deep Blue with exhaustive search implemented

in it to win with the world chess champion Kasparov. The non-informed ("stupid")

search is what the quantum computer can do better than any existing computer, as the

Grover algorithm can speed-up this search from 0(N) to O(VN) [Grover96]. On some

problems the speedup can be even exponential, but the science knows so far only very

few such problems. Thus, may be many problems will be solved in future just be the

sole power of exhaustive search made possible through quantum parallelism.

Is however quadratic speedup enough? Of course all quantum researchers have

ambitions to find new algorithms with exponential speedup, but even quadratic

speedup is a revelation.

884

One may say "Grover algorithm has not a great speed-up", but critics forget that this

speedup is only when we want to have 100% probability of success. Much smaller

number of steps may be sufficient to generate a good guess that is next verified by a

standard computer. For instance, Professor Julian Miller shows recently that a constant

complexity 0(1) is obtained for quantum SAT problem with many solutions

[Miller94a, Miller94b]. Remember that for NP problems we can always verify any

guess made by a quantum computer with the classical computer quickly, and we do not

need the exact minimum solutions in most cases. (It is well-known that for all NP-

complete problems the solution correctness verifying is much easier than finding the

solution). Moreover, quadratic speedup is sufficient in many areas such as when

compiling a software program or playing robot soccer—there is a big practical

difference between 23 = 8 seconds and 26 ~ 1 min. For example, this quadratic speedup

becomes extremely useful and efficient when the algorithm works for longer period of

time such as that when a classical algorithm takes 10 hours, it will take for Quantum

Grover Search ~ 24 minutes. If for classical algorithm 100 hours, for Quantum Search

it may take ~ 77 minutes only. So, we can easily see the difference and appreciate the

tremendous speed up of Quantum Computing (the above example was for Grover

Algorithm case only).

885

16.9. Exact versus approximate methods

The goal of the circuit design research developed in this thesis is to concurrently

achieve both correct logic functionality and utilize a minimal number of logic gates.

Since the proposed approach evaluates expressions based on user definitions, any type

of logic i.e. the multiple-valued or Boolean logic, could be implemented (theoretically)

with ease. Only limited Boolean logic applications by evolutionary learning methods

have been demonstrated by other authors [Coon94, Koza92, Koza94, Koza99]. This

will change with the creation of quantum computers, where an arbitrary GA-like

problem or Constraint Satisfaction Problem would be directly solvable in hardware,

using our proposed here approach (or possible improved future approaches that will be

derived in future from our approach or competing approaches of Hugo De Garis or

Han and Kim).

In addition to the exact quantum synthesis meta-algorithm, we created a heuristic

search algorithm variant ECPS to be simulated in software. This simulator has only a

limited potential. It is well-known that the simulation of quantum computers in

standard computers is, from its very principle, very inefficient [Feynman]. With the

limitations of the current computers, the experimental results of one preliminary

version show that the logic expressions from this technique can produce better than

88% coverage of minterms in the given truth tables, but unfortunately the method

cannot guarantee complete (100%) coverage. Thus, the method cannot be used for the

886

design of arbitrary quantum circuits, but can still be 100% convergent for some

functions and is useful for Data Mining, Machine Learning, Knowledge Discovery,

and robotics applications. The same method implemented in a future quantum

computer may reach 100% convergence. There is another point here. Normally we

assume 100% correct hardware but it is not sure at this time that the future self-

repairing fault-tolerant computers will require 100% coverage for many problems.

This means a quantum system composed of incorrect (faulty) components may operate

correctly as the entire system. The grateful degradation allows the system to work

correctly even if some percent of logic gates do not work correctly. Concluding on this

aspect, the requirement for logic synthesis may change in future, making our

algorithms useable with even less than 100% convergence.

16.10. Search with many strategies and heuristics

The approach to develop the QSPS/ECPS software/hardware uses a limited amount of

humanly-designed, application specific heuristics. (The goal was for instance to

develop the best GRM minimizer, producing minimizations better than those of a

highly optimized human-designed algorithm by Debnath and Sasao [Debnath95,

Debnath96].) In this algorithm design, the heuristics are used basically as generators

of many good starting points for searches. Thus, logic heuristics are utilized to

intelligently limit the size of the search space, while the search utilizes the quantum

mechanics properties as a model from which the detailed logic minimization

887

algorithms are determined. This is an evolutionary mechanism but it is unlike the

Darwinian, Lamarckian or Baldwinian variants of evolution. The heuristics applied

here include the following: the addition of a "best-bounds" local heuristic search,

logic theory applied in an expression specific manner which limits the minimization

search space [Csanky93], starting with a population of expected good (rather than

randomly generated) solutions (such as various "seeds" of ESOP circuits), and

simultaneously investigating multiple solution trajectories per expression (all minimal

cost expansion trees). We have simulated over 110 MCNC benchmarks [MCNC91],

to check if these heuristics combined with evolutionary approaches show equal or

reduced performance with that of the pure Genetic Algorithm. The ECPS (Extended

Cybernetic Problem Solver) Algorithm was invented on base of comparisons as a

better learning technique, as it incorporates a number of human and automated

learning mechanisms and is more widely applicable. It was done even without utilizing

the real power of quantum computing. I believe that ECPS can be further improved

when more applications will be investigated.

16.11. The implemented "Extended Cybernetic Problem Solver"

versus the general quantum search model from the thesis

The development of the Extended Cybernetic (Multi-Strategic Learning) Problem-

Solving (ECPS) Algorithm design was based on the assumption that "any

888

combinatorial problem can be solved by searching some space of states . Many

algorithms in this thesis confirm this assumption.

The solutions in ECPS are achieved with state-space-based serial-parallel search

mechanisms. All software implemented by me in this thesis is only serial. Similarly

only single-processor quantum computers were simulated by me, not parallel quantum

computers. This task remains for the future work. The search mechanisms discussed

are so general that they apply to both normal and quantum search domains. Herein,

any type of search methodology may be employed and enhanced with corresponding

learning mechanisms with which the search can find better solutions in less time,

within the given state space size. The Human-designed Expert Systems often work

well, but are limited in their practical applications. The traditional pure search

strategies (breadth first, depth first, branch-and-bound, etc.) are comprehensive,

guaranteeing an optimal solution from the solution space, but are (usually)

prohibitively memory- and time- consuming. Quantum search combined with

classical search in multi-level hierarchical game-like strategies gives the promise to be

superior both to classical blind search, classical heuristic-dominated search and

quantum "non-informed" search.

As the previous researches have shown, the heuristic search methods of Genetic

Algorithms/Programs, while providing a less thorough search of solution space, may

find quasi-optimal solutions as local optima in the search space. These algorithms are

however unable to find other, better solutions. Further, the GA/GP approaches have

limitations of size, computation time, and solution optimality. They give also no

explanation of the design methodology or transferable (scalable) rules of

generalization. But they have two great assets: generality and ease of creation and use.

Another general approach is functional decomposition such as Ashenhurst Curtis

decomposition. The Functional Decomposition research in our group [Files97, Files98,

Files98a, Perkowski97d], while creating good solutions, is not easily tunable to all

technologies and specifically I do not know how to adopt it to reversible circuits. It

can be however observed that the Ashenhurst-Curtis decomposition can be used itself

as the learning method in the space of search parameters [Slagle70, Samuel59,

Samuel67] in ECPS. This has been not implemented but is a possible future research

direction.

Based on previous literature one can thus state that both the complete and incomplete

search strategies are generally unsatisfactory for producing a multi-purpose problem

solving technique for practical applications. Therefore, human expertise must be

combined with search mechanisms, for the development of efficient problem-solving

methods, rather than as expert tools (search methods) to re-invent new problem-

solving mechanisms "from scratch". The ECPS Algorithm was designed to use

890

synergism to incorporate any type of learning, including both pure and heuristic search

strategies. The techniques are combined to form a superset, intelligent "toolbox" of

various learning methodologies into a single algorithm. (The search methods currently

implemented are a GA, random search, "simple" (bit-flipping) search, breadth-first,

A*, best bound and depth-first strategies. However, any other methods can be easily

added.)

This ECPS Algorithm has the capability of automatically producing customized,

problem specific solutions which may combine a number of different solution search

strategies for problem solution. Further, ECPS builds on the strengths, and thus

reduces the weaknesses, of different well-known search methodologies. Elements of

game theory were introduced into the ECPS Algorithm, as the different search

methods first compete for efficiency and then cooperate to produce the most direct

route to producing a quality solution. As the standard input and output formats are

netlists (input may be a truth table, output may be a quantum array), the combinatorial

logic may also be depicted graphically as a tree, decision diagram, K-map, or algebraic

form, aiding the user in modifications of strategies, heuristic development,

visualization of data, and the optimization process [Perkowski99c] (see chapter 7).

By combining search strategies through game theory [Samuel59, Samuel67], involving

both competition and cooperation, as well as adding feedback to traditional methods,

891

the technique can be further improved. It should always produce results no worse than

the standard techniques and often much better, as the strengths of all extended

methods will be utilized. In contrast to standard "Darwinian" genetic/evolutionary

methods, this approach learns (at least in theory) from problem to problem by

generalizing successful problem-solving strategies.) We should however further study

these aspects of ECPS design.

Even in the current ECPS the experienced human designer/problem-solver is not out

of the loop. He can collaborate with the systematic and evolutionary components of

the program, providing high-level feedback. The applications of the ECPS Algorithm

indicate, on some problems, substantial performance improvements with this new

algorithm versus other methods. For instance, the results of the GRM minimization

may be compared to those of Debnath and Sasao [Debnath95, Debnath96]. Thus,

Debnath and Sasao developed software which can minimize GRM functions with a

larger number of variables and multi-outputs, but this software is only applicable to

the minimization of completely specified functions. In contrast, the ECPS software is

a general solution search method that can be employed for any logic problem,

complete or not. Applying the ECPS to the GRM minimization problem, it is capable

of solving both completely and incompletely specified functions. The minimization of

incompletely specified functions is well known to be more difficult than the

minimization of the completely specified forms [DillOl]. Our goal was that the

892

application of the ECPS to the incompletely specified GRM minimization problem

will produce results that are superior to those previously achieved by Dill and

Perkowski [DillOl] with the iGRMMIN software, the first and only other software

designed for this application. The ECPS utilizes both a human designed heuristic and

a genetic algorithm, and it employs many different non-quantum search techniques.

QSPS adds quantum searches.

16.12. Arguments for AND/EXOR logic in binary quantum

applications

One may ask why I used AND/EXOR logic as the fundament of all designs and

software in this thesis? The answer was partially given in previous chapters and can be

concluded as follows:

1. AND/EXOR logic is more natural for reversible and quantum circuits than

other types of logic.

2. Some ideas of previous authors who worked on AND/EXOR logic can be used.

3. The AND/EXOR logic is relatively easily generalizable to Multiple-Valued

logics - from GF(2) to GF(n).

4. The AND/EXOR logic is highly testable.

893

16.12.1. Galois Fields Logic for quantum circuits

It is interesting to note that the binary AND-EXOR logic represents a special case of

the Galois Field Logic [Batisda84, Stewart89, Winter74, Edward93, Bell66] GF(k),

where the radix k=2. Thus, Galois Field (Galois for short) logics can be viewed as a

generalization of a subset of Boolean Logic because the Galois Field mathematical

operations are applicable for multiple-valued logic values, over any finite field. Using

of Galois logic allows us to have a mathematically beautiful synthesis theory and apply

mathematics. It allows also to create a general theory for every finite field GF(N).

Thus, as the quantum logic is based on Pauli X, Y and Z rotations, the concept of

rotation is the most natural for quantum logic at the low level. Rotation leads to

modulo counting and modulo addition and is the operation used for add operator in

every radix of MV logic being a prime number. Composition of rotations in various

axes X, Y, Z leads to algebraic structures called rings. Realization of GF operations for

GF(3) and GF(4) has been shown to be not too complex in the literature. All these are

good arguments for AND/EXOR logic and its generalizations such as Modulo-based,

ring-based and Galois Field based logics.

But it is still questionable if Galois Logic is the best logic from the low-level quantum

circuit realization point of view. This problem is left open in my dissertation as it is a

subject of the Ph.D. of Dipal Shah [Shah07]. Let us only observe that the Galois logic

is only one of many possible extensions of AND/EXOR logic for d-level quantum

894

circuits, extensions that proved to be dominant in quantum circuits in year 2007. The

other is the Controlled-Gate-Logic (our own name as this logic is not known from

literature) which seems to be the best offer of current technologies. We did not

discuss all generalizations of all methods proposed in this dissertation to the multiple-

valued logics in chapter 10. We can refer the interested reader to the literature on the

subject [Shah07, Giesecke07]. I agree, however, that these are only heuristic and

analogy-based arguments for AND/EXOR logic to be used in quantum. Further

research is still necessary. Hopefully it is being done in PSU quantum group of PSU

Mathematics and ECE departments in dissertations of Faisal Khan, Ahmed Aden,

Martin Lukac, Dipal Shah and Nouraddin Alhagi.

16.12.2. Highly Testable Quantum Circuits

It is well-known that the AND-EXOR logic, especially two-level logic, is the most

highly testable of all digital logic structures [Perkowski97a] used in classical logic. In

EXOR cascade [Reddy72] any stuck-at-1 or stuck-at-0 fault changes the polarity of

signal seen at the output. It makes EXOR logic perfect for testability. Although the

stuck-fault model is not good for quantum circuits [Biamonte04], the rotation model

(like inserting an inverter to a quantum wire) also changes the output polarity. So, high

testability methods can be rather easily adapted from classical to quantum logic

[Biamonte05d, Perkowski07]. Therefore I believed that the AND-EXOR logic is a

good candidate for permutative quantum design, where the fault-tolerance and high

895

testability issues are especially important [Kalay99, Kalay99a, Drechsler99,

Perkowski99a, Reddy72, Sarabi93].

The recent top results in testing ESOP circuits (these circuits include the GRM,

FPRM, and PPRM forms as special cases) were given by Kalay et. al [Kalay99a] as:

"...a simple, universal test set which detects all single stuck-at faults in the internal

lines and the primary inputs/outputs of the realization... (the) circuit realization

requires only two extra inputs for controllability and one extra output for

observability. The cardinality of our test set for an n input circuit is (n + 6)... "

The test set developed by Kalay et al [Kalay99a] can also be very successfully applied

to Built-in Self-Test (BIST) applications, and the concept of quantum BIST has been

developed by Biamonte and Perkowski. It was then a hope, while developing the

AND/EXOR reversible circuits in this dissertation that the methods from [Kalay99c]

and Biamonte and Perkowski [Biamonte04, Biamonte05, Biamonte05a, Perkowski05]

can be expanded to a wider category of quantum oracles. It is evident that the two-

level AND-EXOR logic family is highly testable with a very limited number of test

vectors assuming the classical "stuck-at" fault model. Again, because of the similarity

of these circuits to quantum circuits (specially some structures) and because of the

current understanding of fault models for quantum computing research of (Biamonte

and Perkowski [Biamonte05c], Hayes and Ralf [Ralf05]), I believed when starting the

work on this dissertation, that all these methods can be extended to multiple-valued

896

Galois and Controlled-Gate Quantum Logics. These other results can be found in

[Shah07]. The high-testable EXOR-logic based circuits that originate from Reddy and

were next extended by Sasao [Sasao95g] and Kalay et al [Kalay99c] were further

extended in classical logic by Bhattacharya et al [Bhattacharyal] to bridging faults

and to other AND/EXOR structures. The general idea is, the more EXORs and group-

based operators, the more is the circuit testable.

Concluding, currently the basic research and CAD tool development for various AND-

EXOR forms is increasingly at the forefront of the classical logical research as

documented by many papers in RM, ISCAS, ULSI, ISMVL symposia and DAC

conferences. The existing development in quantum circuit design area is dominated by

this kind of logic, but so far there have been no any work besides book by Anas Al-

Rabadi [Al-Rabadi04] based on his Ph.D. from PSU [Al-Rabadi02a] that would try to

unify all the existing AND/EXOR approaches with respect to reversible logic

synthesis, and especially for quantum realized oracles and not just the reversible logic

oracles.

All together I believe that I solved most of the problems that I originally proposed to

be done in this thesis. However, in the course of writing the thesis several new

problems appeared and only some of them have been solved. The other problems will

be further developed and solved in PSU Quantum Computing group and by me with

my students in Bangladesh.

897

References

[Abe02] E. Abe , T. D. Ladd, J. R. Goldman, F. Yamaguchi, Y. Yamamoto, K. M.
Itoh, "All-Silicon Quantum Computer", Phys. Rev. Lett. 89, 017901 (2002).
[Agrawal04] A. Agrawal and N. K. Jha. "Synthesis of reversible logic," in
Proc. DATE, Paris, France, pp. 710-722, February 2004.
[Aharonov03] Aharonov D., A. Ta-Shma A.: Adiabatic Quantum State Generation
and Statistical Zero Knowledge. In: Proceedings of the 35th Annual ACM
Symposium on Theory of Computing. ACM Press, New York, 2003, pp. 20-29.
[AhnOO] J. Ahn, T.C. Weinacht, P. H. Bucksbaum, "Information Storage and
Retrieval through Quantum Phase", Science 287, 463 (2000).
[Akers59] S.B. Akers, "On a Theory of Boolean Functions," J. of SIAM, vol. 7,
pp. 487-498, 1959.

[Akers88] S.B. Akers, "On the use of linear assignment algorithm in module
placement," 25 Years of Electronic Design Automation, 1988, pp. 218-223.

[Alexits61] G. Alexits, Convergence Problems of Orthogonal Series, (New York:
Pergamon Press, 1961).

[Alhagi08] Alhagi, N., "Synthesis of Hybrid Reversible Cascades for Relational
Input-Output Specifications", Phd Thesis, preparation, 2008, Portland State
University, USA.

[Allen05] J. Allen, J. Biamonte and M. Perkowski, "ATPG for Reversible Circuits
using Technology-Related Fault Models," Proc. International Symposium on
Representations and Methodologies for Emergent Computing Technologies,
Tokyo, Japan, September 2005.
[Almaini89] A. E. A. Almaini., Electronic Logic Systems, second edition
(Englewood Cliffs, NJ: Prentice-Hall), Chap. 12, 1989.

[AlRabadiOl] A. Al-Rabadi, and M.A. Perkowski, "Multiple-Valued Galois Field
S/D Trees for GFSOP Minimization and Their Complexity". Proc. ISMVL 2001,
pp.159-166
[AlRabadi02] A. Al-Rabadi, L. Casperson, M. Perkowski, and X. Song,

"Canonical representation for Two-Valued Quantum Computing", Proc. Fifth
Intern. Workshop on Boolean Problems, pp. 23-32, September 19-20 2002,
Freiberg, Sachsen, Germany.

[Al-RabadiOl] A. Al-Rabadi, and M.A. Perkowski, "Multiple-Valued Galois Field
S/D Trees for GFSOP Minimization and Their Complexity". Proc. ISMVL 2001,
pp.159-166

[Al-Rabadi02] A. Al-Rabadi, "Novel Methods for Reversible Logic Synthesis and
Their Application to Quantum Computing", Ph. D. Thesis, PSU, Portland, Oregon,
USA, October 24, 2002.

898

[AlRabadi04] A.N. Al-Rabadi, "Reversible Logic Synthesis", 2004, Springer,
ISBN 3-540-00935-3

[AlRabadi05] A. N. Al-Rabadi and M. Perkowski, "New Families of Reversible
Expansions and their Regular Lattice Circuits," Journal of Multiple-Valued Logic
and Soft Computing (MVLSC), U.S.A., Volume 11, Number 3-4, 2005.

[Bae07] J. H. Bae, Ch. B. Bae, G. B. Lee, D. H. Kim, M.A. Perkowski, M.H.A.
Khan "Minimization of Ternary and Mixed Binary-Ternary Permutative Quantum
Circuits". Report PSU, 2007.
[Banks71] E. Banks. Information Processing and Transmission in Cellular
Automata. MIT PhD. Thesis (1971)
[Barenco95] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and W. H., "Elementary gates for quantum
computation," The American Physical Society, no. 5, pp. 3457-3467, 1995.
[Batisda84] J.R. Batisda, Field Extensions and Galois Theory, (New York:
Cambridge University Press, 1984).
[Beach03] Beach G., Ch. Lomont, Ch. Cohen, Quantum Image Processing. In:
Proc. 32nd Applied Imagery Patter Recognition Workshop (AIPR'03), Washington
DC, 2003, p. 39.
[Behrman96] E. Behrman, J. Niemel, J. Steck, S. Skinner, " A Quantum Dot
Neural Network", Proceedings of the Workshop on Physics of Computation, pp.
22-24, 1996.
[BrassardGalois03] S. Beauregard, G. Brassard, J. M. Fernandez, Quantum
Arithmetic on Galois Fields, quant-ph/0301163.
[Bell66] A. W. Bell, Algebraic Structures, (New York: John Wiley & Sons, Inc.,
1966).
[Bennett73] C. H. Bennett, "Logical Reversibility of Computation", IBM Journal
of Research and Development, 17, 1973, pp. 525-532.
[Benioff98] Benioff P., Quantum Robots and Environments. Phys. Rev. A 58,
Issue 2, August 1998, pp. 893-904.
[Bennett73] C. H. Bennett, "Logical Reversibility of Computation", IBM Journal
of Research and Development, 17, 1973, pp. 525-532.
[Bennett82] CH. Bennett. The thermodynamics of computation - a review. IJTP,

21(12):905—940, 1982.
[Bennett89] CH. Bennett. Time/space trade-offs for reversible computation.
SIAM Journal on Computing, pages 766 - 776, 1989.
[Bennett93] CH. Bennett, G. Brassard, C Crepeau, R. Jozsa, A. Peres and W. K.
Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels" Phys Rev Lett, Issue 13 - March 1993, pp. 1895-1899.
[Bennett96] Bennet CH, Brassard G, Popescu B, Smolin JA, Wotters WK (1996)
Phys Rev Lett 76:722
[Beers98] G. E. Beers, K. L. John, "Novel Memory Bus Driver/Receiver
Architecture for Higher Throughput", Proc. of the IEEE Int. Conf. On VLSI
Design, pp. 259-264, 1998.

899

[Bentlet99] Bentlet and J. Bentley, Evolutionary Design by Computers, (San
Francisco, California: Morgan Kaufmann Publishers, 1999).
[Berry97] J. A. Berry and G. Linoff, Data Mining Techniques: For Marketing,
Sales, and Customer Support, (New York: John Wiley & Sons, Inc., 1997).
[Bhattacharyal] I Bhattacharyya, K Verma, GK Andagunda, A Sethi, "Reversible
Computation and Quantum Computing", http://home.iitk.ac.in/~dgoswami/notes .
[Biamonte04] J. Biamonte, M. Perkowski, Principles of Quantum Fault
Diagnostics, McNair research Journal, Issue 1, Volume 1, 2004
[Biamonte05] J. Biamonte, M. Perkowski, "Automated Test Pattern Generation for
Quantum Circuits," McNair Research Journal, Vol. 1, Issue 1,10 pages, 2005
[Biamonte05a] J. Biamonte, M. Perkowski, "Tricks to validate quantum switching
networks", poster and presentation, Proc. of KIAS-KAIST 6th Workshop on
Quantum Information Science, Seoul, Korea, pp. 9, August 22nd - 24th, (2005)
[Biamonte05b] J. Biamonte, M. Jeong, J. Lee, M. Perkowski, "Extending Classical
Test to Quantum," Proceedings of SPIE "Fluctuations and Noise in Photonics and
Quantum Optics, Editors: P.R. Hemmer, J.R. Gea-Banacloche, P. Heszler, Sr., M.
S. Zubairy, Vol. 5842, pp. 194-205, May (2005), doi: 10.1117/12.623715. III.
[Biamonte05c] J. Biamonte, J. Allen, D. Pierce, F. Khan and M. Perkowski,
"Automated Test Set Generation for Quantum Circuits," Proc. International.
Symposium on Representations and Methodologies for Emergent Computing
Technologies, Tokyo, Japan, September 2005.
[Biamonte07] J. Biamonte and M. Perkowski, "A Quantum Test Algorithm,"

Submitted to IEEE Transactions on Computers and quant-ph/0501108.
[BlaisOO] A. Blais, A. M. Zagoskin, "Operation of universal gates in a solid-state
quantum computer based on clean Josephson junctions between d-wave
superconductors", Phys. Rev. A 61, 042308 (2000).

[Boole54] G. Boole, An Investigation of the Laws of Thought, (London: Walton,
1854). (Reprinted by Dover Books, New York, 1954.)
[Boyer96] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, "Tight bounds on
quantum searching," Proceedings ofPhysComp, 1996.
[Breazeal02] Breazeal C, Designing Sociable Robots. MIT Press, 2002.
[Bronco95] A. Bronco et al., "Elementary Gates For Quantum Computation",
Physical Review A 52, 1995, pp. 3457-3
[Britton06] J. Britton, D. Leibfried, J. Beall, R. B. Blakestad, J. J. Bollinger, J.
Chiaverini, R. J. Epstein, J. D. Jost, D. Kielpinski, C. Langer, R. Ozeri, R. Reichle,
S. Seidelin, N. Shiga, J. H. Wesenberg, D. J. Wineland , "A microfabricated
surface-electrode ion trap in silicon", 2006, arXiv:quant-ph/0605170v 1.
[Brown90] F.M. Brown, Boolean Reasoning: The Logic of Boolean Equations,
(Boston, Massachusetts: Kluwer, 1990).
[Bruce02] J.W. Bruce, M.A. Thornton, L. Shivakumaraiah, P.S. Kokate, and X. Li,
"Efficient Adder Circuits Based on a Conservative Reversible Logic Gate", Proc.
of the IEEE Computer Society Annual Symposium on VLSI, Pittsburgh,
Pennsylvania, April 2002, pp. 83-88.

900

http://home.iitk.ac.in/~dgoswami/notes

[BrylinskiOl] J. L. Brylinski, and R. Brylinski, "Universal Quantum Gates,"
arXiv: Quant-ph/0108062
[Buller03a] A. Buller, M. Perkowski, "Cellular Automata realization of Regular
Logic", Booklet of 12th International Workshop on Post-Binary ULSI Systems,
May 16, 2003, Meiji University, Japan, pp. 53 — 60.
[Buller03] A. Buller, M. Perkowski, "Evolved Reversible Cascades Realized on
the CAM-Brain Machine", IEICE Proceedings of NASA\DoD conference on
Evolvable Hardware,2003, pp. 246-251.
[Bullock05] S.S. Bullock, D.P. O'Leary, and G.K. Brennen, "Asymptotically
Optimal Quantum Circuits for d-level Systems, " Phys. Rev. Lett. 94, 230502,
2005.
[Burns98] M. Burns, M. Perkowski, L. Jozwiak, and S. Grygiel, "An Efficient
and Effective Approach to Column-Based Input/Output Encoding in Functional
Decomposition", Proc. of the 3rd International Workshop on Boolean Problems,
Freiberg University of Mining and Technology, Institute of Computer Science,
September 17-18, 1998, pp. 19-29.

[Brassard04] G. Brassard, "Quantum Communication Complexity: A Survey",
34th International Symposium on Multiple-Valued Logic (ISMVL'04), 2004,
Canada, pp.56.

[Brassard97] G. Brassard, P. Hoyer, " An exact quantum polynomial-time
algorithm for Simon's problem", Proceeding of the Fifth Israeli Symposium on
Theory of Computing and Systems, IEEE Computer Society Press, June 1997, pp.
12—23.
[Brassard98] G. Brassard, "New horizons in quantum information processing",
Proceedings of this ICALP Conference, 1998.
[Brassard98a] G. Brassard, P. Eteyer, A. Tapp, "Quantum counting" Lecture Notes
in Computer Science 1443 (1998), 820+.

[Brayton87] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. R. Wang,
"MIS: A Multiple-Level Logic Optimization System", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, CAD-6, pp. 1062-
1081, Nov. 1987.

[Chang98] C. H. Chang and B. J. Falkowski, "Adaptive Exact Optimisation of
Minimally Testable FPRM Expansions", IEE Proc. - Computers and Digital
Techniques, Nov. 1998, Vol. 145, Issue 6, p. 385

[Chang99] C.H. Chang, and B.J. Falkowski, " NPN Classification using weight
and literal vectors of Reed-Muller expansion" IEEE Electronics Letters, 13th May
1999, Vol. 35 No. 10

[Chen02] G. Chen, S.A. Fulling, and J. Chen, Generalization of Grover's
Algorithm to Multi-object Search in Quantum Computing, Part I: Continuous
Time and Discrete Time, quant-ph/0007123. Also in Chapt. 6 of" Mathematics of
Quantum Computation", edited by R. K. Brylinski and G. Chen, CRC Press, Boca
Raton, Florida, 2002, pp. 135-160.

901

[Cheng05] Cheng Fu, and B.J. Falkowski, "Ternary Fixed Polarity Linear
Kronecker Transforms and their Comparison with Ternary Reed-Muller
Transform," Journal of Circuits, Systems, and Computers, Vol. 14, No. 4 (2005)
pp. 721-733.
[Chuang95] I. Chuang, R. Laflamme, P. Shor, W. Zurek "Quantum Computers,
Factoring, and Decoherence", Arxiv preprint quant-ph/9503007, 1995 - arxiv.org.

[Chuang98] I. Chuang, N. Gershenfeld, M. Kubinec, "Experimental
Implementation of Fast Quantum Searching" ,Physical Review Letters, Issue 15 -
April 1998, pp. 3408-3411.

[Cleve98] R. Cleve, W. van Dam, M. Nielsen, A. Tapp, "Quantum Entanglement
and the Communication Complexity of the Inner Product Function",International
Conference, QCQC'98, Palm Springs, California, USA, February 1998.
[Cohn62] M. Cohn, "Inconsistent Canonical Forms of Switching functions", IRE
Trans. On Electr. Comp., Vol. EC-11, pp. 284-285, 1962.

[Coon94] B. W. Coon, "Circuit Synthesis through Genetic Programming", Genetic
Algorithms at Stanford 1994, Compiled by John R. Koza, (Stanford, California:
Stanford University, 1994).

[CordoneOl] R. Cordone, F. Ferrandi, D. Sciuto, R. W. Calvo, "An efficient
heuristic approach to solve the unate covering problem", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Volume 20, Issue 12,
Dec 2001, pp. 1377-1388

[Cory97] D.G. Cory, A.F. Fahmy, and T.F. Havel, Nuclear magnetic resonance
spectroscopy: an experimentally accessible paradigm for quantum computing, in
Proc. of the 4th Workshop on Physics and Computation (Complex Systems
Institute, Boston, New England) 1996 Science 275, 350 (1997).

[Csanky93] L. Csanky, M. Perkowski, I. Schaefer, "Canonical Restricted Mixed-
Polarity Exclusive-Or Sums of Products and the Efficient Algorithm for their
Minimization," IEE Proceedings, Pt.E, Vol. 140, No. 1, pp. 69 - 77, January 1993.

[Curtis04] Curtis, E., Perkowski, M. "A transformation based algorithm for ternary
reversible logic synthesis using universally controlled ternary gates", Proc. IWLS
2004, Tamecula, California, USA, 2-4 June 2004. pp. 345 - 352.

[Curtis07] E. Curtis, and M. Perkowski, Minimization of Ternary Reversible Logic
Cascades using a Universal Subset of Generalized Ternary Gates, accepted to
International Journal on Multiple-Valued Logic and Soft Computing, Svetlana
Yanushkevich, editor. ISSN 1542-3980. ISI.
[Das03] R. Das, A. Mitra, V. Kumar and A. Kumar, "Quantum information
processing by NMR: Preparation of pseudo pure states and implementation of
unitary operations in a single-qutrit system", arXiv-quant-ph/0307240vl, 31 July
2003.

[Davio78] M. Davio, J. P. Deshamps, A. Thayse, "Discrete and Switching
Functions", McGraw Hill International, 1978

902

http://arxiv.org

[Debnath95] D. Debnath and T. Sasao, "GRMIN: A Heuristic Simplification
Algorithm for Generalized Reed-Muller Expressions", IFIP WG 10.5, Proc. of the
Workshop on Applications of the Reed-Muller Expansion in Circuit Design, 27-29
August 1995, Makuhari, Chiba, Japan.

[Debnath96] D. Debnath and T. Sasao, "GRMIN2: A Heuristic Simplification
Algorithm for Generalized Reed-Muller Expressions, IEE Proc. Comput. Digit.
Tech., 143 (6) (1996).

[Debnath98] D. Debnath, "On the Minimization of AND-EXOR and AND-OR-
EXOR Networks", Diss. Kyushu Institute of Technology, Japan, March 1998.

[DeGaris92] H. de Garis, "Artificial Embryology: The Genetic Programming of
an Artificial Embryo", Dynamic Genetic, and Chaotic Programming, Branko
Soucek and the IRIS Group, (New York: John Wiley & Sons, Inc. 1992).

[Denler04] N. Denier, B. Yen, M. Perkowski and P. Kerntopf, "Synthesis of
Reversible Circuits from a Subset of Muthukrishnan-Stroud Quantum Realizable
Multi-Valued Gates", Proceedings oflWLS 2004, Tamecula, California, USA, 2-4
June 2004.
[Denler04a] N. Denier, B. Yen, M. Perkowski, and P. Kerntopf, "Minimization of
Arbitrary Functions in a New Type of Reversible Cascade built from Quantum-
Realizable Generalized Multi-Valued Gates" , Proc. IWLS 2004. pp. 321 - 328.
[Deutsch89] Deutsch, D. Quantum Computational networks. Proc. R. Soc. Lond.
A 425 (1989) 73-90.
[DeVos02] A. De Vos, B. Raa, and L. Storme, "Generating the Group of
Reversible Logic Gates", Journal of Physics A: Mathematical and General, vol.
35, 2002, pp. 7063-7078.

[Dill97] K. M. Dill, Growing Digital Circuits: Logic Synthesis and Minimization
with Genetic Operators", M. S. Thesis, Department of Electrical and Computer
Engineering, Oregon State University, June 1997.

[Dill97a] K. M. Dill, K. Ganguly, R. J. Safranek, and M. A. Perkowski, "A New
Linearly Independent, Zhegalkin Galois Field Reed-Muller Logic", Portland State
University Department of Electrical and Computer Engineering Report, 1997.

[Dill97b] K.M. Dill, J. Herzog, and M. Perkowski, "Genetic Programming and its
Application to the Synthesis of Digital Logic", Proc. of the PACRIM '97
Conference, Victoria, Canada, Aug. 20-22, 1997, (Piscataway, New Jersey: IEEE
1997).

[Dill97c] K. M. Dill and M. A. Perkowski, "Minimization of Generalized Reed-
Muller Forms with a Genetic Algorithm", Proc. of Genetic Programming '97, July
1997, Stanford University, California.

[Dill98] K. M. Dill and M. A. Perkowski, "Evolutionary Minimization of
Generalized Reed-Muller Forms", Proc. of the International Conference on
Computational Intelligence and Multimedia 1998 (ICCIMA'98), Monash
University, Churchill, Vic, Australia, 9-11, February 1998.

903

[DillOl] K.M. Dill, and M. Perkowski, "Baldwinian Learning utilizing Genetic and
Heuristic for Logic Synthesis and Minimization of Incompletely specified data
with Generalized Reed-Muller (AND-EXOR) forms", Journal of System
Architecture 47, Issue 6, 2001, pp. 477-489.

[Dong05] D. Dong , Ch. Chen, Ch. Zhang, Z. Chen, "An Autonomous Mobile
Robot Based on Quantum Algorithm", Springer Berlin / Heidelberg , Volume
3801/2005.
[Dong06] D. Dong , Ch. Chen, Ch. Zhang, Z. Chen, "Quantum robot: structure,
algorithms and applications", Robotica, Cambridge University Press(2006), 24, pp.
513-521

[Disman96] M. Disman, "Stalking the Chameleon Computer", Computer &
Communications OEM Magazine, Vol. 3, No. 23, (December/January 1996), pp.
67-73.

[Drechsler96] Rolf Drechsler, Bernd Becker, Nicole Gockel, "A Genetic
Algorithm For Minimization Of Fixed Polarity Reed-Muller Expressions," In IEE
Proceedings Computers and Digital Techniques, Vol. 143, pp. 364-368, 1996
[DiVincenzoOO] D. P. DiVincenzo, "The Physical Implementation of Quantum
Computation", Experimental Proposals for Quantum Computation, (2000),
arXiv:quant-ph/0002077

[Drechsler97] R. Drechsler, "Evolutionary Algorithms for Computer-Aided
Design of Integrated Circuits Tutorial", Genetic Programming 1997 Conference,
Stanford University, July 13, 1997

[Drechsler99] R. Drechsler, H. Hengster, H. Schaefer, J. Hartmann, and B. Becker,
"Testability of 2-Level AND/EXOR Circuits", Journal of Electronic Testing,
Theory and Application, (JETTA), 1999

[Dubrova96] E. V. Dubrova and J. C. Muzio, "Testability of Generalized Multiple-
Valued Reed-Muller Circuits", Proc. of the 26th International Symposium on
Multi-Valued Logic, IEEE, 1996, pp. 56-61.

[Dubrova97] E. V. Dubrova, "Boolean and Multiple-Valued Functions in
Combinational Logic Synthesis", Ph.D._Thesis, University of Victoria, Canada,
1997.

[DubrovaOl] E. Dubrova, Y. Jiang, R. Brayton, "Minimization of Multiple-Valued
Functions in Post Algebra", Proc. IWLS01, pp. 132-138, June 2001.
[Dueck03] G. W. Dueck and D. Maslov, "Reversible function synthesis with
minimum garbage outputs," in Proc. 6th International Symposium on
Representations and Methodology of Future Computing Technologies, Trier,
Germany, pp. 154-161, March 2003.
[Dueck03a] G.W. Dueck and D. Maslov, "Garbage in Reversible Designs of
Multiple-Output Functions," Proc. RM 2003, pp. 162 - 170.

904

[Dueck86] G. W. Dueck and D. M. Miller, "A 4-Valued PLA Using the
MODSUM", Proc. of the 16th International Symposium on Multi-Valued Logic,
May 1986, pp. 232-240.

[Dueck03b] G. W. Dueck, D. Maslov, and D. M. Miller, "Transformation-based
synthesis of networks of Toffoli/Fredkin gates," in Proc. IEEE Canadian Conf.
Electrical and Computer Engineering, May 2003, pp. 211-214.

[Durf03] Durt, N. J. Cerf, N. Gisin and M. Zukowski, "Security of Quantum
Key Distribution with Entangled Qutrits," Phys. Rev. A 67, 012311, 2003, also
quant-ph/0207057.

[Dwave07] http://dwave.wordpress.com/2007/01/19/quanram-computing-demo-
announcement/. Look also to many materials linked from this webpage.

[Edward93] H. M. Edward, Galois Theory, (New York: Springer-Verlag, 1993).

[Einstein35] A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical
description of physical reality be considered complete?" Phys. Rev., vol. 47, no.
10, pp. 777-780, May 1935.

[Eisert99] J. Eisert, M. Wilkens, M. Lewenstein, "Quantum Games and Quantum
Strategies" Physical Review Letters 83, 3077 - 3080 1999.

[Falkowski97] B.J. Falkowski and C.H. Chang, "Properties and Methods of
Calculating Generalized Arithmetic and Adding Transforms," IEE Proc. Circuits,
Devices, and Systems, vol. 144, no. 5, pp. 249-258, Oct. 1997.
[Falkowski97a] B.J. Falkowski, V.P. Shmerko, and S.N. Yanushkevich,
"Arithmetical Logic—Its Status and Achievements," Proc. Int'l Conf. Applications
of Computer Systems, pp. 208-223, Szczecin, Poland, Nov. 1997.
[Falkowski03] B.J. Falkowski, C.C. Lozano, "Generation and properties of fastest
transform matrices over GF (2)", Circuits and Systems, 2003. ISCAS'03, Volume:
4, pp.IV-740- IV-743 vol.4, ISBN: 0-7803-7761-3
[Falkowski03a] B.J. Falkowski, C.C. Lozano, "Polynomial expansions over
GF(3) based on fastest transformation", Proceedings. 33rd International
Symposium on Multiple-Valued Logic, 2003, pp. 40- 45, ISBN: 0-7695-1918-0
[Falkowski03b] B. J. Falkowski, F. Cheng, "Fast linearly independent ternary
arithmetic transforms", Proceedings of the 2003 International Symposium on
Circuits and Systems, ISCAS 03, Volume 4, Issue , 25-28 May 2003, pp. IV-560 -
IV-563 vol.4
[Falkowski05] B.J. Falkowski, C. Fu, "Fastest classes of linearly independent
transforms over GF(3) and their properties", Computers and Digital Techniques,
IEE Proceedings, 2005, Volume: 152, Issue: 5, pp. 567- 576, ISSN: 1350-2387.
[Fan07] Fan Y., "Generalization of Deutsch-Jozsa algorithm to Multiple-Valued
Quantum Logic", Proc. ISMVL 2007, http://ismvl07.ifi.uio.no/.
[Farhi98] E. Farhi, S.Gutmann, "Quantum computation and decision trees", Phys.
Rev. A 58, 915-928 (1998).
[Fei02] X. Fei, D. Jiang-Feng, S. Ming-Jun, Z. Xian-Yi, H. Rong-Dian, and W. Ji-
Hui, "Realization of the Fredkin gate by three transition pulses in a nuclear

905

http://dwave.wordpress.com/2007/01/19/quanram-computing-demo-
http://ismvl07.ifi.uio.no/

magnetic resonance quantum information processor," Chinese Phys. Lett., vol. 19,
no. 8, pp. 1048-1050,2002.
[Feynman65] R. Feynman, R. Leighton, M. Sands, " The Feynman Lectures on
Physics", v3, Addison-Wesley, 1965.
[Feynman82] R. Feynman, "Simulating physics with computers", Int. J. Theor.
Phys., 21:467, 1982
[Feynman96] R. Feynman, "Feynman Lectures on Computation", Addison
Wesley, 1996
[Files97] C. Files, R. Drechsler, and M. Perkowski, "Functional Decomposition of
MVL Functions Using Multi-Valued Decision Diagrams", Proc. of the
International Symposium on Multi-Valued Logic 1997, St. Francis Xavier
University, Antigonish, Nova Scotia, Canada, May 28-30, 1997, (Piscataway, New
Jersey: IEEE, 1997).
[Files98] C. Files and M. Perkowski, "An Error Reducing Approach to Machine
Learning Using Multi-Valued Functional Decomposition", Proc. of the
International Symposium on Multi-Valued Logic 1998, Fukuoka, Japan, May 26,
1998, (Piscataway, New Jersey: IEEE, 1998), pp. 167-172.

[Files98a] C. Files and M. Perkowski, "Multi-Valued Functional Decomposition
as a Machine Learning Method", Proc. of the International Symposium on Multi-
Valued Logic 1998, Fukuoka, Japan, May 26, 1998, (Piscataway, New Jersey:
IEEE, 1998), pp. 173-178.

[Files02] A. P. Flitney, and D. Abbott, "Quantum version of Monty Hall
problem,"Phys. Rev. A. Vol. 65, 062318, 2002.

[Fredkin82] E. Fredkin and T. Toffoli, "Conservative logic", Intern. J. Th. Physics,
21, pp. 219-253, 1982.

[Fredkin03] E. Fredkin: "An introduction to Digital Philosophy", International
Journal of Theoretical Physics, Volume 42, Number 2, pp 189-247 (2003).

[Fujiwara86] H. Fujiwara, "Logic Testing and Design for Testability", Computer
Science Series, (Cambridge, Massachusetts: The MIT Press, 1986).
[Gamberger97] D. Gamberger and Nada Lavrac, "Conditions for Occam's Razor
Applicability and Noise Elimination", Proc. of the 9th European Conference on
Machine Learning, Prague, Czech Republic, April 23-25, 1997, (Berlin, Germany:
Springer-Verlag, 1997).

[Gamst96] A. Gamst, " Some lower bounds for a class of frequency assignment
problems", IEEE Transactions of Vehicular Technology, 35(1):8- 14, 1996.
[Garey77] M. Garey and D. Johnson. The rectilinear Steiner tree problem is NP-
complete. SUM J. Appl. Math., 32:826-834, 1977.
[Garey79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the theory ofNP-completeness. W. H. Freeman, San Francisco, 1979.
[DeGaris92] H. de Garis, "Artificial Embryology: The Genetic Programming of
an Artificial Embryo", Dynamic Genetic, and Chaotic Programming, Branko
Soucek and the IRIS Group, (New York: John Wiley & Sons, Inc. 1992).

906

[DeGaris93] H. de Garis, "Evolvable Hardware: Genetic Programming of a
Darwin Machine", Artificial Neural Nets and Genetic Algorithms: Proc. of the
International Conference in Innsbruck, Austria, 1993, (New York: Springer-
Verlag, 1993).

[Gershenfeld97] N.A. Gershenfeld and I.L. Chuang, Bulk Spin-Resonance
Quantum Computation, Science 275, 350 (1997).

[Giesecke06] Giesecke N.: Ternary Quantum Logic. M.S. thesis, PSU, Dept ECE,
2006.
[Giesecke07] N. Giesecke, D.H. Kim, S. Hossain, M. Perkowski, (2007). Search
for universal ternary quantum gate sets with exact minimum costs. 37th IEEE Int.
Symp. On Multiple-Valued Logic (ISMVL 2007), Oslo, Norway, 14-15 May 2007.
http://ismvl07.ifi.uio.no/
[Giesecke08] Giesecke, N., Hossain, S. Kim, D.H., Perkowski, M., " Search for
Universal Ternary Quantum Gate Sets with Exact Minimum Costs," Embedded
Software Design (Journal of System Architecture), 2008, The EUROMICRO
Journal—Accepted with conditional revision.
[Gisin02] Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Rev Md Phys 74:145
[Goldberg89] [Goldbergl Kl] [si] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison Wesley, 1989.

[Green91] D. H. Green, "Families of Reed-Muller Canonical Forms", International
Journal of Electronics, 70 (1991), pp. 259-280.

[Greentree04] A. D. Greentree, S. G. Schirmer, F. Green, L. C. L. Hollenberg, A.
R. Hamilton and R. C. Clark, "Maximizing the Hilbert Space for a finite Number
of Distinquishable States," Phys. Rev Lett. 92, 097901, 2004.

[Grover96] L. Grover, "A fast quantum mechanical algorithm for database
search," Proceedings of the 28th Annual ACM Symposium on Theory of
Computing 1996, pp. 212-219 1996.

[Grover98] L. Grover, "A framework for fast quantum mechanical algorithms",
Proceedings of the thirtieth annual ACM symposium on Theory of computing, ,
Dallas, Texas, United States, pp. 53 - 62 ,1998 ,ISBN:0-89791-962-9

[Gruska99] J. Gruska, Quantum computing. Osborne/McGraw-Hill,U.S., 1999.
[Hagan96] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design,
(New York: PWS Publishing Company, 1996).

[Hameroff96] S.R. Hameroff, R. Penrose, "Conscious events as orchestrated
space-time selections", Imprint Academic, Journal of Consciousness Studies,
Volume 3, Number 1, 1996 , pp. 36-53(18).

[Hameroff98] S.R. Hameroff, "Quantum computation in brain microtubules? The
Penrose-Hameroff 'Orch OR model of consciousness Philosophical Transactions",
Volume 356, Number 1743/August 15, 1998, pp. 1869-1896.
[Hanson93] J. E. Hanson, Computational Mechanics of Cellular Automata. PhD
Thesis, Physics Department, University of California, Berkeley, CA, 1993.

907

http://ismvl07.ifi.uio.no/

[Harata87] Y. Harata, Y. Nakamura, H. Nagese, M. Takigawa, and N. Takagi,"A
High-Speed Multiplier Using a Redundant Binary Adder Tree,"IEEE J. Solid-State
Circuits, vol. 22, pp. 28-34, Feb. 1987.
[Harison65] M.A.Harison, Introduction to Switching and Automata Theory,
McGraw-Hill, 1965.
[HarodeckiOl] Horodecki P, Horodecki R (2001) Quant Inf Comp 1(1):45

[Hayward02] M. Hayward, Quantum Computing and Grover's Algorithm, 2002,
http://alumni.imsa.edu/~matth/quant/473/473proj/nodel.html
[Hemmi94] H. Hemmi, J. Mizoguchi, and K. Shimohara, "Development and
Evolution of Hardware Behaviors", Artificial Life IV: Proc. of the Fourth
International Workshop on the Synthesis and Simulation of Living Systems,
Editors: Rodney A. Brooks and Pattie Maes, (Cambridge, Massachussetts: The
MIT Press, 1994).

[HighesOO] R.J. Highes, C. P. Williams, "Quantum Computing: The Final
Frontier?" IEEE Intelligent Systems, Volume 15, Issue 5 (September 2000), pp.
10-18, ISSN 1541-1672

[Higuchi93] T. Higuchi, Niwa, Tanaka, Iba, de Garis, and Furuya, "Evolving
Hardware with Genetic Learning: A First Step Towards building a Darwin
Machine", From Animals to Animats 2: Proc. of the Second International
Conference on Simulation of Adaptive Behavior, Editors: Jean-Arcady Meyer,
Herbert L. Roitblat, and Stewart W. Wilson, (Cambridge, Massachusetts: The
MIT Press, 1993).

[Higuchi94] T. Higuchi, H. Iba, and B. Manderick, "Evolvable Hardware",
Massively Parallel Artificial Intelligence, Chapter 12, Editors: Hiroaki Kitano and
James A. Hendler, (Menlo Park, California: AAAI Press / The MIT Press, 1994).

[Higuchi97] T. Higuchi, Evolvable Hardware Tutorial, Genetic Programming 1997
Conference, Stanford University, July 13, 1997.

[Higuchi97a] T. Higuchi and M. Iwata, Editors, Evolvable Systems: From
Biology to Hardware, (Berlin, Germany: Springer-Verlag, 1997).

[HirvensaloOl] M. Hirvensalo, " An introduction to quantum computing", Current
trends in theoretical computer science: entering the 21st centuary, 2001,World
Scientific Publishing Co.,Inc. River Edge, NJ, USA, pp 643-663, ISBN 981-02-
4473-8

[Hochbaum82] D. S. Hochbaum, "Approximation algorithms for the weighted set
covering and node covering problems," SIAM J. Comput, Vol. 11, 1982, pp. 535-
556.

[Holland92] J. H. Holland, "Genetic Algorithms", Scientific American, July 1992,
pp. 66-72.

908

http://alumni.imsa.edu/~matth/quant/473/473proj/nodel.html

[Hopfield82] J.J. Hopfield, "Neural Networks and Physical Systems with
Emergent Collective Computational Abilities", Proceedings of the National
Academy of Scientists, v79, pp. 2554-2558, 1982.

[Hossain04] Hossain, S., Monirul Islam, Rezaul Bashar and Alamgir "Logical
Reversibility Based on Reversible Computing Technology" Asian Journal of
Information Technology, Volume 3 Number 4, 2004, pp. 241-244, ISSN: 1638-
8831
[Hossain08] Hossain, S., Perkowski, M., "The affine gates and affine polarities for
quantum arrays with small costs", 17th International Workshop on Post-Binary
ULSI Systems, May 24, 2008, Dallas, Texas, USA.
[Hossain09] Hossain, S., "Classical and Quantum Search Algorithms for Quantum
Circuits and Optimization of Quantum Oracles", Ph.D. Thesis, 2009, Portland
State University, USA.
[HuangOl] Huang Q., Yokoi K., Kajita S., Kaneko K., Arai H., Koyachi N., Tanie
K.: Planning Walking Patterns for a Biped Robot. IEEE Trans. Rob and Autom,
Vol. 17, No. 3, June 2001. pp. 280-289.
[Hung04] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski, "Provably
optimal reversible quantum logic synthesis via symbolic reachability analysis," in
Proceedings ofDAC, 2004.
[Hung06] W. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski, "Optimal
synthesis of multiple output boolean functions using a set of quantum gates by
symbolic reachability analysis," IEEE Transaction on Computer-Aided Design of
Integrated Circuits and systems, vol. 25, no. 9, pp. 1652-1663, 2006.
[Hurst85] S. L. Hurst, D. M. Miller and J. Muzio, "Spectral Techniques in
Digital Logic", Academic Press, London, 1985.

[Hollenberg04] L.C.L. Hollenberg, A. S Dzurak, C Wellard, A. R Hamilton,
"Charge-based quantum computing using single donors in semiconductors",
Physical Review B 69, 2004 .

[Ibaraki76] T. lbaraki, "Theoretial comparisons of search strategies in branch-and
bound algorithms," Intern. Journal. Comp. Sci., 5, 1976, pp. 315-344.

[IlachinskiOl] A. Ilachinski. Cellular Automata: A Discrete Universe. World
Scientific publishing, Singapore, 2001.

[Iwama02] K. Iwama, Y. Kambayashi, S. Yamashita, "Transformation rules
for designing CNOT-based quantum circuits," in Proc. DAC, New Orleans, LA,
pp. 419-424, June 10-14, 2002.
[Jones98] J.A. Jones and M. Mosca, Implementation of a Quantum Algorithm on a
Nuclear Magnetic Resonance Quantum Computer, J. Chem. Phys., 109, (1998)
1648

[Jones98a] J. Jones, R. Hansen and M. Mosca, "Quantum Logic Gates and
Nuclear Magnetic Resonance Pulse Sequences," J.Magn.Resonance 135, pages
353-360, (1998), quant-ph/9805070.

909

[Jou93] Jer-Min Jou, Shiann-Rong, K. R. Chen, "Clique partitioning based
integrated architecture synthesis for VLSI chips", Proceedings of International
Symposium on VLSI Technology, Systems, and Applications, 1993, pp. 58-62,
ISBN: 0-7803-0978-2

[Julstrom99] B. A. Julstrom, "Comparing Darwinian, Baldwinian, and Lamarckian
Search in a Genetic Algorithm for the 4-Cycle Problem", Late Breaking Papers at
the 1999 Genetic and Evolutionary Computation Conference, GECCO'99, (S.
Brave and A. S. Wu, Eds.), July 14-17, 1999, Orlando, Florida, pp. 134-138.

[Kalay98] Kalay, U., Hall, D., Perkowski, M. (1998). A minimal and universal test
set for multiple-valued Galois field sum-of-products circuits. Proc. 7th Workshop
on Post-Binary ULSI Systems, Fukuoka, Japan, May 1998, pp. 50-51.
[Kalay99] U. Kalay, N. Venkataramaiah, A. Mishchenko, D. Hall, and M.
Perkowski, "Highly Testable Finite State Machines Based on Exor Logic", Proc.
of the 7th IEEE Pacific Rim Conference on Communications, Computers, and
Signal Processing, Victoria, B.C., Canada, August 23-25, 1999.

[Kalay99a] U. Kalay, M. Perkowski, and D. Hall, "A Minimal Universal Test Set
for Self Test of EXOR-Sum-of-Products Circuits", IEEE Transactions on
Computers, July 1999.

[Kalay99b] U. Kalay, M. A. Perkowski, and D. V. Hall, "Highly Testable Boolean
Ring Logic Circuits", Proc. of the International Symposium of Multi-Valued Logic
1999, (ISMVL'99).
[Kalay99c]U. Kalay, D. V. Hall, and M. A. Perkowski, "Easily Testable Multiple-
Valued Galois Field Sum-of-Products Circuits", Journal of Multiple-Valued Logic,
January 1999.

[Kalay99c] U. Kalay, D. V. Hall, and M. Perkowski "Easily Testable Multiple-
Valued Galois Field Sum-of-Products Circuits". Journal on Multiple Valued
Logic, 2000, Vol. 5, pp. 507-528.

[Kari94] J. Kari, Reversibility and surjectivity problems of cellular automata.
Journal of Computer and System Sciences, 48(1): pp. 149—182, 1994.
[Kari96] J. Kari. Representation of reversible cellular automata with block
permutations. Mathematical System Theory, 29: pp. 47—61, 1996.

[Karp72] Karp, R.M.: "Reducibility Among Combinatorial Problems".
Complexity of Computer Computation, Plenum Press, ed. Miller, pp. 85-103, New
York, 1972.(One of most important early papers in complexity theory).

[Kempe02] J. Kempe, K.B. Whaley, "Exact gate-sequences for universal quantum
computation using the XY-interaction alone," Phys. Rev. A. Vol. 65(5), 05230,
2002.

[Kerntopf04] P. Kerntopf, M. Perkowski and M.H.A. Khan, "On Universality of
General Reversible Multiple-Valued Logic Gates"_Proceedings of ISMVL 2004,
pp. 68-73.

910

[Kerntopf04b] P. Kerntopf. "A new heuristic algorithm for reversible logic
synthesis," in Proc. DAC, pp. 834-837, June 2004.
[Kerntopf06] P. Kerntopf, M. Perkowski, M.H.A. Khan, Universality of ternary
reversible gates. Accepted to special issue of International Journal on Multiple-
Valued Logic and Soft Computing, Svetlana Yanushkevich, editor . ISSN 1542-
3980.
[Khan05] F. Khan, and M. Perkowski, "Decomposition of Ternary Quantum
Gates," Proceedings of RM 2005.

[Khan06] F. Khan, M. Perkowski, "Synthesis of multi-qudit hybrid and d-valued
quantum logic circuits by decomposition" , Theoretical Computer Science
,Volume 367, Issue 3, 1 December 2006, pp. 336-346.
[Khan03] M.H.A. Khan, M. Perkowski, and P. Kerntopf, "Multi-Output Galois
Field Sum of Products Synthesis with New Quantum Cascades," Proceedings of
33rdInternational Symposium on Multiple-Valued Logic, ISMVL 2003, 16-19 May
2003, Meiji University, Tokyo, Japan, pp. 146-153.

[Khan04] M. A. Khan, M. Perkowski, Ternary Galois field expansions for
reversible logic and Kronecker decision diagrams for ternary GFSOP
minimization. Proc. of 34th IEEE Int. Symp. on Multiple-Valued Logic (ISMVL
2004), Toronto, Canada, 19-22 May 2004, pp. 58-67.
[Khan04a] M. H. A. Khan and M. A. Perkowski, "Genetic Algorithm Based
Synthesis of Multi-Output Ternary Functions Using Quantum Cascade of
Generalized Ternary Gates", Proc. 2004 Congress on Evolutionary Computation,
Portland, OR, USA, 19-23 June 2004, pp. 2194-2201.

[Khan05a] M.H.A. Khan and M. Perkowski, "Quantum Realization of Ternary
Parallel Adder/Subtractor with Look-Ahead Carry," Proc. International
Symposium on Representations and Methodologies for Emergent Computing
Technologies, Tokyo, Japan, September 2005. pp. 15-22.

[Khan05b] M.H.A. Khan, and M.Perkowski, "Quantum Realization of Ternary
Encoder and Decoder," Proc. International Symposium on Representations and
Methodologies for Emergent Computing Technologies, Tokyo, Japan, September
2005. pp. 23-27 .

[Khan05c] M.H.A. Khan, M. Perkowski, M.R. Khan, and P. Kerntopf, Ternary
GFSOP minimization using Kronecker decision diagrams and their synthesis with
quantum cascades. Journal of Multiple-Valued Logic and Soft Computing, ISSN
1542-3980.11, 2005, pp. 567-602.
[Khan06] Khan F., Perkowski M.: Synthesis of Hybrid and d-Valued Quantum
Logic Circuits by Decomposition. Theoretical Computer Science. Vol. 367, Issue
3, 2006, pp. 336-346.
[Khan07]M. Khan, M. Perkowski, D.H. Kim and K. Dill, Investigating Learning
Search Strategies for Exploring the Space of Local Equivalence Transformations
for Optimization of Quantum Circuits, in preparation.

911

[Khlopotine02] A. Khlopotine, M. Perkowski, and P. Kerntopf, "Reversible logic
synthesis by gate composition," Proceedings of IWLS 2002, pp. 261 - 266.

[KimOO] J. Kim, J-S. Lee and S. Lee, "Implementing unitary operators in quantum
computation, Physical Review A, 032312, 2000.

[Kim06] D. H. Kim, Ch. Brawn, M. Sajkowski, T. Stenzel, T. Sasao, J.Allen, M.
Lukac, and M. Perkowski, "Artificial Immune - Fuzzy System to control walking
robot Hexor," submitted to ISMVL 2006.
[Kim06a] D. H. Kim, J. I. Park, M. Perkowski, "Intelligent Tuning of a PID
Controller Using a Hybrid GA-PSO Approach", submitted to Conference on
Intelligent Control, 2006.
[Klimov03] A. B. Klimov, R. Guzman, J. C. Retamal and C. Saavedra, "Qutrit
quantum computer with trapped ions," Phys. Rev. A 67, 062313, 2003.
[Knill04] E. Knill, "Fault-tolerant postselected quantum computation: schemes,"
quant-ph/0402171, 2004.

[Knill05] E. Knill, "Quantum computing with realistically noisy devices", Nature
434, pp. 39-44 , 3 March 2005.

[Kohavi70] Z. Kohavi, "Switching and Finite Automata Theory," Mc Gruw-Hill,
1970.

[Kosko94] B. Kosko, "Fuzzy Systems as Universal Approximators", IEEE
Transactions on Computers, Vol. 34, No. 11, 1994, pp. 1329-1333.

[Koza92] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, (Cambridge, Massachusetts: The MIT Press,
1992).

[Koza94] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs, (Cambridge, Massachusetts: The MIT Press, 1994).

[Koza99] J. R. Koza, F. H. Bennett, and D. Andre, Genetic Programming III:
Darwinian Invention and Problem Solving, (San Francisco, California: Morgan
Kaufmann Publishers, 1999).

[Kruskal56] J. B. Kruskal, Jr. "On the Shortest Spanning Subtree of a Graph and
the Travelling Salesman Problem", Proceedings of the American Mathematical
Society, Vol. 7, No. 1 (Feb., 1956), pp. 48-50.

[Kumer07] Kumar M., Year B., Metzger N., Wang, Y., Perkowski M., Realization
of Incompletely Specified Functions in Minimized Reversible Circuits. Proc. RM
2007.

[Kumar07] M. Kumar, B. Year, N. Metzger, Y. Wang, and M. Perkowski,
Realization of Incompletely Specified Functions in Minimized Reversible Circuits.
Proc. RM 2007. http://ismvl07.ifi.uio.no/
[Kwiat99] P.G. Kwiat, J. R. Mitchell, P.D.D. Schwindt, and A. G. White, Grover's
Search Algorithm : An optical approach, J. Mod. Optics 47, 257 (1999).

912

http://ismvl07.ifi.uio.no/

[Landauer61] R. Landauer, "Irreversibility and Heat Generation in the
Computational Process", IBM Journal of Research and Development, 5, 1961, pp.
183-191.
[Lee99] J. Lee, Y. Kim, S. Lee, " A practical method of constructing quantum
combinational logic circuits", Los Alamos physics preprint archive, quant-
ph/9911053.
[Lee06] S. Lee, S.J. Lee, T. Kim, J-S. Lee, J. Biamonte, and M. Perkowski, The
Cost of Quantum Gate Primitives, Journal of Multi-valued Logic and Soft
Computing, Vol. 12, No. 5-6. 2006.
[Lee76] S.C. Lee, "Digital Circuits and Logic Design," Prentice Hall, Englewood
Cliffs, New Jersey, 1976.
[Lee86] Lee, M. Kaveh, M. , "Fast Hadamard transform based on a simple
matrix factorization", IEEE Transactions on Acoustics, Speech, and Signal
Processing, Dec 1986, Volume: 34, Issue: 6, pp. 1666- 1667, ISSN: 0096-3518.
[Leibfried03] D. Leibfried, R. Blatt, C. Monroe, D.Wineland, "Quantum dynamics
of single trapped ions", Review of Modern Physics, volume 75, 281 (2003).
[Lewandowski94] G. Lewandowski, "Practical Implementation and Applications
Of Graph Coloring", PhD thesis, University of Wisconsin-Madison, August 1994.
[Li06] L. Li, M.A. Thornton, M.A. Perkowski, "A Quantum CAD Accelerator
Based on Grover's Algorithm for Finding the Minimum Fixed Polarity Reed-
Muller Form," Proc. ISMVL 2006, pp. 33.
[Lomont03]Ch. Lomont, "Quantum Circuit Identities," arXiv:quant-ph/0307111vl
16 July 2003.
[Luger02] G. F. Luger, Artificial Intelligence: Structures and Strategies for
Complex Problem Solving, (San Francisco, CA: Addison-Wesley / Pearson
Education Limited, 2002).
[Lukac02]M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski,
"Automated Synthesis of Generalized Reversible Cascades using Genetic
Algorithms", Proc. Fifth Intern. Workshop on Boolean Problems, pp. 33-45,
September 19-20 2002, Freiberg, Sachsen, Germany.
[Lukac02a]M. Lukac, and M. Perkowski, "Evolving Quantum Circuits Using
Genetic Algorithms", Proc. of 5th NASA/DOD Workshop on Evolvable Hardware
2002, pp. 177-185.
[Lukac03]M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, Ch-. H. Yu, K.Chung,
H. Jee, B. Kim, Y.D. Kim, "Evolutionary Approach to Quantum and Reversible
Circuits Synthesis", Artificial Intelligence Review Journal, Special Issue on
Artificial Intelligence in Logic Design, S. 2003.
[Lukac05]M. Lukac, M., Perkowski, M., "Combining Evolutionary and
Exhaustive Search to Find the Least Expensive Quantum Circuits", Proceedings of
the 14th International Workshop on Post-Binary ULSI Systems, May 18, 2005,
Calgary, Canada
[Lukac05a] Lukac, M., Perkowski, M., "Using exhaustive search for the discovery
of new families of optimum universal permutative binary quantum gates," Proc.
International Workshop on Logic and Synthesis, June 2005.

913

[Lukac07] Lukac, M., Perkowski, M., "Quantum mechanical model of emotional
robot behaviors," in Proceedings of the ISMVL 2007, 2007.
[Lukac07a] Lukac , M. and M. Perkowski, "Quantum mechanical model of
emotional robot behaviors," in Proceedings of the ISMVL 2007, 2007.

[Lukac07b] Lukac, M., Giesecke, N, Hossain, S. Kim, D.H., Perkowski, "
Quantum Behaviors: Synthesis and Measurement", Proceedings of the Reed-
Muller Conference, 2007, Oslo Norway.
[Lukac08] Lukac, M., PhD Thesis, 2009, Portland State University, USA.
[Manin99] Y. Manin, "Quantum computing and complexity", lecture, April 20,
1999, Johns Hopkins University, Baltimore, MD.
[Margolus03] N. Margolus, Universal cellular automata based on the collision of
soft spheres. New construction in Cellular Automata, Oxford Press, 2003.

[Margolus87] N. Margolus, Physics and Computation, MIT PhD Thesis (1987).
Reprinted as Tech. Rep. MIT/LCS/TR415, MIT Lab. for Computer Science,
Cambridge MA.

[Maslov03] D. Maslov and G. Dueck, "Improved quantum cost for k-bit Toffoli
gates," IEEElectron. Lett., vol. 39, no. 25, pp. 1790-1791, Dec. 2003.

[Maslov03a] D. Maslov and G. W. Dueck, "Garbage in reversible design of
multiple output functions," in Proc. 6th Int. Symp. Representations and
Methodology of Future Computing Technologies, Mar. 2003, pp. 162-170.

[Maslov04] D. Maslov and G. W. Dueck. "Reversible cascades with minimal
garbage," IEEE Transactions on CAD, 23(11): pp.497-1509, November 2004.
[Maslov04a] D. Maslov, N. Scott, and G. W. Dueck. (2004, Aug.) Reversible logic
synthesis benchmarks page. [Online]. Available: http://www.cs.uvic.ca/~dmaslov/

[Maslov05] D. Maslov, G.W. Dueck, and D.M. Miller, "Synthesis of Fredkin-
Toffoli Reversible Networks, IEEE Trans. On Very Large Scale Integration, Vol.
13, No. 6, June 2005, pp. 765-769.

[Maslov05a] D. Maslov, G.W. Dueck, D.M. Miller, "Tofffoli Network Synthesis
with Templates," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2005.

[Maslov05b] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck. "Quantum
circuit simplification using templates," in Proc. DATE, Munich, Germany, pp.
1208-1213, March 2005.
[Maslov06]D. Maslov, G.W. Dueck, and D.M. Miller, "Fredkin/Toffoli Templates
for Reversible Logic,"

[MATLAB] http://www.mathworks.com/
[McHugh05] D. McHugh and J. Twamley, "Trapped-ion qutrit spin molecule
quantum computer," http://arxiv.org/abs/quant-ph/0506031

914

http://www.cs.uvic.ca/~dmaslov/
http://www.mathworks.com/
http://arxiv.org/abs/quant-ph/0506031

[McHugh05a] D. McHugh and J. Twamley, "Quantum Computer Using a
Trapped-ion Spin Molecule and Microwave Radiation," Phys. Rev. A 71, 012315,
2005.

[McCluskey97] E. McCluskey and Ch-W. Tseng, Stuck-Fault Tests vs. Actual
Defects, 1997.

[McKenzie93] L. McKenzie, A. E. A. Almaini, J. F. Miller, and P. Thompson,
"Optimization of Reed-Muller Logic Functions", International Journal of
Electronics, 75 (3) (1993), pp. 451-466.

[Merkle93] R. C. Merkle. "Reversible electronic logic using switches,"
Nanotechnology, 4:21-40, 1993.
[MCNC91] MCNC, Benchmark Functions, ftp://mcnc.mcnc.org/, MCNC, 1991

[Meyer99]D.A. Meyer, "Quantum strategies", Physical Review Letters 82(Feb.
1): 1052,1999

[Miller02] D.M. Miller, Spectral and Two-Place Decomposition Techniques in
Reversible Logic, IEEE Midwest Symposium on Circuits and Systems,
proceedings on CD-ROM, Tulsa, OK, August, 2002.
[Miller03] D. M. Miller and G.W. Dueck, "Spectral Techniques for Reversible
Logic Synthesis," Prpc. RM2003, pp. 56-62.
[Miller03a] D. M. Miller, D. Maslov and G. W. Dueck, "A Transformation Based
Algorithm for Reversible Logic Synthesis", Proc. Design Automation Conference,
Anaheim, pp. 318-323, June 2003.
[Miller03] D. M. Miller, D. Maslov, and G. W. Dueck, "A transformation based
algorithm for reversible logic synthesis," in Proc. DAC, Anaheim, CA, p. 318,
June 2-6,2003.
[Miller04] D. M. Miller, G. W. Dueck, and D. Maslov, "A Synthesis Method for
MVL Reversible Logic", Proc. 34th Int. Symp. On Multiple-Valued Logic, Toronto,
Canada, 19-22 May 2004, pp. 74-80.
[Miller04a]D. M. Miller, D. Maslov, and G. W. Dueck, "Synthesis of Quantum
Multiple-Valued Circuits", submitted to Journal of Multiple-Valued Logic and Soft
Computing.
[Miller05] D. Miller, and E. Fredkin, Two- state, Reversible, Universal Cellular
Automata in Three Dimensions. Proceedings of the 2n Conference on Computing
Frontiers, Ischica, Italy, pp. 45—51, 2005.
[Miller05] D. Maslov, G. W. Dueck, and N. Scott, "Reversible Logic Synthesis
Benchmarks," [Online document], Available HTTP:
http://www.cs.uvic.ca/~dmaslov/, November 15, 2005 [cited December 5, 2006].
[Miller06] D. M. Miller, D. Maslov, and G. W. Dueck, "Synthesis of Quantum

Multiple-Valued Circuits", J. MVL., Vol. 12, No. 5-6, 2006.
[Miller94a] J. F. Miller and P. Thomson, "A Highly Efficient Exhaustive Search

Algorithm for Optimizing Canonical Reed-Muller Expansions of Boolean
Functions", Int. J. of Electron., 76 (1994), pp. 37-56.

915

ftp://mcnc.mcnc.org/
http://www.cs.uvic.ca/~dmaslov/

[Miller94b] J. F. Miller, H. Luchian, P.V.G. Bradbeer, and P.J. Barclay, "Using a
Genetic Algorithm for Optimizing Fixed Polarity Reed-Muller Expansions of
Boolean Functions", Int. J. Electron., 76 (1994), pp. 601-609.
[Miller97] J. F. Miller, P. Thomson, and T. Fogarty, "Chapter 6 - Designing
Electronic Circuits using Evolutionary Algorithms. Arithmetic Circuits: A Case
Study", in Genetic Algorithms and Evolution Strategies in Engineering and
Computer Science: Recent Advancements and Industrial Applications. Editors:
D. Quagliarella, J. Periaux, C. Poloni, and G. Winter. New York: John Wiley &
Sons, Inc., 1997.
[MintertOl] F. Mintert and C. Wunderlich, Ion-Trap Quantum Logic Using Long-
Wavelength Radiation, Phys. Rev. Lett. 87, 257904, 2001. Also quant-ph/0104041
[MishchenkoOl] A. Mishchenko and M. Perkowski, "Fast heuristic minimization
of exclusive-sums-of-products", Proc. Reed-Muller Workshop 2001, pp. 242-250.
[Mishchenko02] A. Mishchenko and M. Perkowski, "Logic Synthesis of
Reversible Wave Cascades", Proc. IEEE/ACM International Workshop on Logic
Synthesis, June 4-7 2002, pp. 197 - 202.
[Mizel07] Mizel A., Lidar D., Mitchell M.: Simple proof of equivalence between
adiabatic quantum computation and the circuit model. APS March Meeting,
Denver, Colorado, 2007. http://www.aps.org/meeting/march
[Moore65] G. E. Moore, (1965) Electronics 38:8
[Morita92] K. Morita, S. Ueno, Computation—Universal Models of Two—
Dimensional 16-state Reversible Cellular Automata, IEICE Trans. Inf. & Syst ,
E75-D, 1, pp.141—147, 1992.
[Morita94] K. Morita. Reversible cellular automata. J. Information Processing
Society of Japan, 35: 315—321, 1994.
[Muller54] D.E. Muller, "Applications of Boolean Algebra to Switching Circuit
Design and to Error Detection," IRE Trans. Electronic Computers, vol. 3, pp. 6-12,
1954.
[MuthurkrishnanOO] A. Muthukrishnan, and C. R. Stroud, Jr., "Multivalued logic
gates for quantum computation", Physical Review A, Vol. 62, No. 5, Nov. 2000,
052309/1-8.
[Negotevic02] G. Negotevic, M. Perkowski, M. Lukac, and A. Buller, "Evolving
quantum circuits and an FPGA based quantum computing emulator", Proc. Fifth
Intern. Workshop on Boolean Problems, September 19-20 2002, Freiberg,
Sachsen, Germany.

[Newton86] A.R. Newton, and A.L.Sangiovanni-Vincentelli, "Computer-Aidded
Design for VLSI Circuit," IEEE Computer, Apr. 1986.
[VonNeumann66] J.von Neumann. The Theory of Self-Reproducing Automata. A.
W. Burks (ed.), University of Illinois Press, Urbana, IL, 1966.

[Nguyen87] L. Nguyen, M. Perkowski, N. Goldstein, "PALMINI - Fast Boolean
Minimizer for Personal Computers", Proceedings of 24th Design Automation
Conference, June 28 - July 1, 1987, Miami, Florida, Paper 33.3.
[Nielsen97] M. A. Nielsen and Isaac L. Chuang , "Programmable Quantum Gate
Arrays", Phys. Rev. Lett. 79, 321 - 324 (1997).

916

http://www.aps.org/meeting/march

[Nielsen98] MA Nielsen, E Knill, R Laflamme, "Complete quantum teleportation
using nuclear magnetic resonance", Arxiv preprint quant-ph/9811020, 1998 -
arxiv.org

[NielsenOO] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2000.

[Nielsen02] M. A. Nielsen, M. J. Bremner, J. L. Dodd, A. M. Childs and C. M.
Dawson, "Universal simulation of Hamiltonian dynamics for quantum systems
with finite-dimensional state spaces," Phys. Rev. A 66, 022317, 2002

[Nilsson65] N. J. Nilsson, Learning Machines, McGraw-Hill, New York, 1965.

[Nilsson71] N.J. Nilsson, "Problem-Solving Methods in Artificial Intelligence,"
Mc Gram Hill, New York, 1971.

[Nilsson98] N. J. Nilsson, Artificial Intelligence: A New Synthesis, (San
Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998).

[Pakula06] I. Pakula, E.W. Piotrowski, J. Sladkowski, "Quantum market games:
implementing tactics measurements" Journal of Physics: Conference Series 30
(2006) pp. 56-59.

[Pai96] Pai D.K., Barman R., Constraint Programming for Platonic Beast Legged
Robots. In: Proc. Intern. Conf. on Robotics and Automation, Minneapolis, 1996.
[Paul90] W. Paul /'Electromagnetic traps for charged and neutral particles", Rev.
Mod. Phys, 62, 531,(1990).

[Peres85] A. Peres, "Reversible Logic and Quantum Computers," Physical Review
A, 32:3266-3276, 1985.

[PeresOO] A. Peres, H. Bechmann-Pasquinucci, "Quantum Cryptography with 3-
State Systems", Phys. Rev. Lett. 85, 3313, 2000.
[Perkowski78] M. Perkowski, "The state-space approach to the design of
multipurpose problem-solver for logic design," Proceedings of the IFIP WG.5.2
Working Conference "Artificial Intelligence and Pattern Recognition in Computer-
Aided Design", Grenoble, France, 17-19 March 1978, J. C. Latombe (ed.) North
Holland, Amsterdam, pp. 124-140, 1978.

[Perkowski82] M. Perkowski, "Digital Devices Design by Problem-Solving
Transformations," Journal on Computers and Artificial Intelligence (Pocitace a
umela intelligencia), Vol. 1, No. 4, August 1982, pp. 343-365.

[Perkowski89] M. Perkowski, M. Helliwell, and P. Wu, "Minimization of
Multiple-Valued Input Multi-Output Mixed-Radix Exclusive Sums of Products for
Incompletely Specified Boolean Functions", Proc. of the 19th International
Symposium on Multiple-Valued Logic, May 1989, pp. 256-263.

[Perkowski91] M. Perkowski and P. Johnson, "Canonical Multi-Valued Input
Reed-Muller Trees and Forms", Proc. of the 3rd NASA Symposium on VLSI
Design, University of Idaho, Oct. 30-31, 1991, pp. 11.3.1-11.3.13.

917

http://arxiv.org

[Perkowski92] M. Perkowski, "Generalized Orthonormal Expansion and Some of
Its Applications", Proc. of the International Symposium On Multiple-Valued
Logic, Sendai, Japan, May 1992, pp. 442-450.

[Perkowski92a] M. Perkowski, L. Csanky, A. Sarabi, and I. Schafer,
"Minimization of Mixed-Polarity AND/XOR Forms", Proc. of the IEEE
International Conference on Computer Design, ICCD'92, October 11-13, 1992,
Boston, Massachusetts, pp. 32-36, 1992.

[Perkowski95] M. Perkowski, A. Sarabi, and F.R. Beyl, "Universal XOR
Canonical Forms of Boolean Function and its Subset Family of AND/OR? XOR
Canonical Forms", IEEE workshop on Logic Synthesis, 1995.

[Perkowski95a] M. A. Perkowski, T. Ross, D. Gadd, J. A. Goldman, and N. Song,
"Application of ESOP Minimization in Machine Learning and Knowledge
Discovery", Proc. of the Second Workshop on Applications of the Reed-Muller
Expansion in Circuit Design, Chiba City, Japan, August 27-29, 1995, pp. 102-109.

[Perkowski97] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S.
Grygiel, M. Nowicka, R. Malvi, Z. Wang, and J. S. Zhang, "Decomposition of
Multiple-Valued Relations", Proc. of the International Symposium on Multi-
Valued Logic 1997, St. Francis Xavier University, Antigonish, Nova Scotia,
Canada, May 28-30, 1997, (Piscataway, New Jersey: IEEE 1997).

[Perkowski97a] M. Perkowski, L. Jozwiak, and R. Drechsler, "A Canonical
AND/EXOR Form that Includes both the Generalized Reed-Muller Forms and
Kronecker Reed-Muller Forms", Proc. of the Reed-Muller 1997 Conference,
Oxford University, U.K., Sept. 1997, pp. 219-233.

[Perkowski97b] M. Perkowski, L. Jozwiak, R. Drechsler, and B. Falkowski,
"Ordered and Shared, Linearly Independent, Variable-Pair Decision Diagrams",
Proc. of the First International Conference on Information, Communications and
Signal Processing, ICICS'97, Singapore, September 9-12, 1997, Session 1C1:
Spectral Techniques and Decision Diagrams.

[Perkowski97c] M. Perkowski, L. Jozwiak, and R. Drechsler, "New Hierarchies of
AND/EXOR Trees, Decision Diagrams, Lattice Diagrams, Canonical Forms, and
Regular Layouts", Proc. of the Reed-Muller 1997 Conference, Oxford Univ., U.K.,
Sept. 1997, pp. 115-132.

[Perkowski97d] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S.
Grygiel, M. Nowicka, R. Malvi, Z. Wang, and J. S. Zhang, "Decomposition of
Multiple-Valued Relations", Proc. of the International Symposium on Multi-
Valued Logic 1997, St. Francis Xavier University, Antigonish, Nova Scotia,
Canada, May 28-30, 1997, (Piscataway, New Jersey: IEEE, 1997).

[Perkowski99] M. Perkowski, R. Malvi, S. Grygiel, M. Burns, and A.
Mishchenko, "Graph Coloring Algorithms for Fast Evaluation of Curtis
Decomposition", Proc. of the Design Automation Conference, (DAC'99), June 21-
23, 1999.

918

[Perkowski99a] M. Perkowski, U. Kalay, D. Hall, and A. Shahjahan, "Rectangular
Covering Factorization of ESOPs into Scan-Based Levelized Circuits with
Universal Test Set", Proc. of Reed-Muller '99, University of Victoria, Victoria,
B.C., Canada, August 20-21, 1999.

[Perkowski99b] M. Perkowski, U. Kalay, D. Hall, and A. Shahjahan, "Rectangular
Covering Factorization of ESOPs into Scan-Based Levelized Circuits with
Universal Test Set", Proc. of Reed-Muller '99, University of Victoria, Victoria,
B.C., Canada, August 20-21, 1999.

[Perkowski99c] M. Perkowski, A. Chebotarev, and A. Mishchenko, "Evolvable
Hardware or Learning Hardware? Induction of State Machines from Temporal
Logic Constraints", Proc. of the First NASA/DOD Workshop on Evolvable
Hardware, Jet Propulsion Laboratory, Pasadena, California, July 19-21, 1999.

[Perkowski99d] M. Perkowski, P. Keratopf, A. Buller, M. Chrzanowska-Jeske, A.
Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, B. Massey,
"Regular realization of symmetric functions using reversible logic," Proceedings
of EUROMICRO Symposium on Digital Systems Design, 2001, pp. 245-252.

[Perkowski99e] M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al-
Rabadi, A. Coppola, A. Buller, X. Song, M. M. H. A. Khan, S. Yanushkevich, V.
Shmerko, and M. Chrzanowska-Jeske, "A general decomposition for reversible
logic," Proceedings of RM 2001. pp. 119 - 138.

[PerkowskiOl] M. Perkowski, et al, "Regularity and Symmetry as a base for
efficient Realization of Reversible Logic Circuits", Proc. Intel Workshop on Logic
Synthesis, June 2001.
[Perkowski02] M. Perkowski, A. Al-Rabadi, and P. Kerntopf, "Multiple-Valued
Quantum Logic Synthesis," Proc. of 2002 International Symposium on New
Paradigm VLSI Computing, Sendai, Japan, December 12-14, 2002, pp. 41-47.
[Perkowski03] M. Perkowski, M. Lukac, M. Pivtoraiko, P. Kerntopf, M.
Folgheraiter, D. Lee, H. Kim, H. Kim, W. Hwangboo, J.-W. Kim, and Y.W. Choi,
"A Hierarchical Approach to Computer Aided Design of Quantum Circuits,"
Proceedings of 6th International Symposium on Representations and Methodology
of Future Computing Technology, RM 2003, Trier, Germany, March 10-11, 2003,
pp.201-209

[Perkowski04] M. Perkowski, "From Quantum Gates to Quantum Learning:
recent research and open problems in quantum circuits", invited paper,
Proceedings of 6th International Workshop on Boolean Problems, Freiberg
University of Mining and Technology, Germany, September 23-24, 2004, pp. 1-
16.

[Perkowski05] M. Perkowski, "Multiple-Valued Quantum Circuits and Research
Challenges for Logic Design and Computational Intelligence Communities,"
Invited Paper, IEEE ConneCtlonS, IEEE Computer Intelligence Society,
November 2005, pp. 6-12.

919

[Perkowski05a] Perkowski M., Sasao T, Kim J-H., Lukac M., Allen J., Gebauer
S.: Hahoe KAIST Robot Theatre: Learning Rules of Interactive Robot Behavior as
a Multiple-Valued Logic Synthesis Problem. In: Proc. ISMVL 2005, pp. 236-248.
[Perkowski07] M. Perkowski, J. Biamonte and M. Lukac, "Test Generation and
Fault Localization for Quantum Circuits," Proceedings of the 35th International
Symposium on Multiple-Valued Logic, May 19-May 21, 2005 at Calgary, Canada.
[Perkowski07a] M. Perkowski, Quantum Robotics for Teenagers, book in
preparation. 2007.

[Perkowski07b] Perkowski M.: Quantum Algorithms for Robot Vision. Report,
PSU Intelligent Robotics Laboratory, 2007.
[Perus96] M. Perus, "Neuro-Quantum Parallelism in Brain-Mind and Computers",
Informatica, v20, pp. 173-183, 1996.

[Pierce05] D. Pierce, J. Biamonte and M. Perkowski, "Test Set Generation and
Fault Localization Software for Reversible Circuits," Proc. International
Symposium on Representations and Methodologies for Emergent Computing
Technologies, Tokyo, Japan, September 2005.
[Pojak95] S. Pojak , Z. Tuza, " Maximum cuts and largest bipartite subgraphs",
DIMACS:Series in Descrete Mathematics and Theoretical Computer Science,
1995, Volume 20.

[Pradhan87] D. K. Pradhan, Fault-Tolerant Computing: Theory and Techniques,
Vol. 1, (Upper Saddle River, New Jersey: Prentice-Hall, 1987).

[Pradhan78] D. K. Pradhan, "Universal Test Sets for Multiple Fault Detection in
AND-EXOR Arrays", IEEE Trans. On Comp., Vol. 27, No. 2, pp. 181-187, Feb.
1978.

[Price99] M.D. Price, S.S. Somaroo, C.H. Tseng, J.C. Core, A.H. Fahmy, T.F.
Havel and D.Cory, "Construction and Implementation of NMR Quantum Logic
Gates for Two Spin Systems," Journal of Magnetic Resonance, 140, pp. 371-378,
1999

[Price99a]M.D. Price, S.S. Somaroo, A.E. Dunlop, T.F. Havel, and D.G. Cory,
"Generalized methods for the development of quantum logic gates for an NMR
quantum information processor," Physical Review A, Vol. 60, No. 4, October
1999, pp. 2777-2780.

[Quinlan93]J. R. Quinlan, C4.5: Programs for Machine Learning, (Palo Alto,
California: Morgan Kaufmann, 1993).
[QuIDDPro] QuIDDPro: High-Performance Quantum Circuit Simulation,
http://vlsicad.eecs.umich.edu/Quantum/qp/
[Raghuvanshi07] A. Raghuvanshi, Y. Fan, M. Woyke, A. Kumar, and M.
Perkowski, "Quantum robots for teenagers," in Proceedings of the ISMVL 2007,
2007.
[RaussendorfOl] R. Raussendorf and H. J. Briegel. A one-way quantum computer.
Phys. Rev. Lett, 86:5188-5191, 2001.

920

http://vlsicad.eecs.umich.edu/Quantum/qp/

[Reddy72] S. M. Reddy, "Easily Testable Realizations for Logic Functions", IEEE
Trans. On Comp., Vol. 21 (1972), pp. 1183-1188.
[Reed54] I.S. Reed. A class of multiple-error-correcting codes and their decoding
scheme. IRE Trans. Of Inf. Theory, 3:6-12, 1954.
[Riege92] M. W. Riege, P. W. Besslich, "Low-Complexity Synthesis of
Incompletely Specified Multiple-Output Mod-2 Sums", IEE Proc. E., 139 (4)
(1992), pp. 355-362.
[Rudell85] R. L. Rudell and A. L. Sangiovanni-Vincentelli, "ESPRESSO-MV:
Algorithms for Multiple-Valued Logic Minimization", Proc. of the IEEE Custom
Integrated Circuits Conference, 1985
[RubinsteinOl] B.I.P. Rubinstein, "Evolving quantum circuits using genetic
programming", Proceedings of the 2001 Congress on Evolutionary Computation
(CEC2001), pp. 144-151, 2001.
[Salmon89] J. V. Salmon, E. P. Pitty, and M. S. Abramson, "Syntactic Translation
and Logic Synthesis in Gatemap", IEE Proceedings, Vol. 136, Part E, No. 4, July
1989, pp. 321-328.

[Samuel59] A. L. Samuel, "Some Studies in Machine Learning Using the Game of
Checkers," IBM J., Vol. 3., 1959, pp. 210-129.

[Samuel67] A. L. Samuel, "Some Studies in Machine Learning Using the Game of
Checkers II, Recent Progress", IBM Journal of Research and Development, Vol.
11, (1967), No. 6, pp. 601-617.

[Sarabi92] A. Sarabi and M. A. Perkowski, "Fast Exact and Quasi-Minimal
Minimization of Highly Testable Fixed-Polarity AND/XOR Canonical Networks",
Proc. 1992 IEEE Design Automation Conference, June 1992, pp. 30-35

[Sarabi93] A. Sarabi and M. Perkowski, "Design for Testability Properties of
AND/XOR Networks", IFIP WG10.5, Proc. of the Workshop on Applications of
the Reed-Muller Expansion in Circuit Design 1993, pp. 147-153.

[Sasao78] T. Sasao, "An Application of Multiple-Valued Logic to a Design of
Programmable Logic Arrays", Proc. of the 8l International Symposium on
Multiple-Valued Logic (ISMVL'78), May 1978, pp. 65-72.

[Sasao91] T. Sasao, "A Transformation of Multiple-Valued Input To-Valued
Output Functions and its Application to Simplification of Exclusive-Or Sum-of-
Products Expressions", Proc. of the International Symposium of Multi-Valued
Logic 1991 (ISMVL-91), May 1991, pp. 270-279.

[Sasao90] T. Sasao and P. Besslich, "On the Complexity of MOD-2 Sum PLAs",
IEEE Transactions on Computers, Vol. 39, No. 2, (February 1990), pp. 262-266.

[Sasao91a] T. Sasao, "On the Complexity of Some Classes of AND-EXOR
Expressions", IEICE Technical Report FTS 91-35, October 1991.

[Sasao81]T. Sasao, "Multiple-Valued Decomposition of Generalized Boolean
Functions and the Complexity of Programmable Logic Arrays", IEEE
Transactions on Computing, Vol. C-30, September 1981, pp. 635-643.

921

[Sasao86] T. Sasao, "MACDAS: Multi-level AND-OR Circuit Synthesis using
Two-Variable Generators", Proc. of the 23rd Design Automation Conference, Las
Vegas, June 1986, pp. 86-93.

[Sasao90a] T. Sasao, "EXMIN: A Simplification Algorithm for Exclusive-Or-
Sum-of-Products Expressions for Multiple-Valued Input Two-Valued Output
Functions", Proc. of the International Symposium on Multi-Valued Logic,
(ISMVL-90), May 1990, pp. 128-135.

[Sasao90c] T. Sasao and P. Besslich, "On the Complexity of MOD-2 Sum PLAs",
IEEE Transactions on Computers, Vol. 39, No. 2, (February 1990), pp. 262-266.

[Sasao91d] T. Sasao, "A Transformation of Multiple-Valued Input To-Valued
Output Functions and its Application to Simplification of Exclusive-Or Sum-of-
Products Expressions", Proc. of the International Symposium of Multi-Valued
Logic 1991 (ISMVL-91), May 1991, pp. 270-279.

[Sasao91e] T. Sasao, "On the Complexity of Some Classes of AND-EXOR
Expressions", IEICE Technical Report FTS 91-35, October 1991.

[Sasao93] T. Sasao, "EXMIN2: A simplification algorithm for exclusive-OR-Sum-
of-products expressions for multiple-valued input two-valued output functions,"
IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, vol.
12, No. 5, May 1993, pp. 621-632.
[Sasao93e] T. Sasao, Logic Synthesis and Optimization, (Norwell, Massachusetts:
Kluwer Academic Publishers, 1993)

[Sasao94] T. Sasao and D. Debnath, "An Exact Minimization Algorithm for
Generalized Reed-Muller Expressions", Proc. of the IEEE Asia-Pacific
Conference on Circuits and Systems, (APCCAS'94), Taipei, Taiwan, pp. 460-465,
Dec. 1994.

[Sasao95f] T. Sasao and M. Perkowski, EXOR Logic Synthesis (Boston: Kluwer
Academic Publishers, 1995), pp. 19-32.

[Sasao95g] T. Sasao, "Easily Testable Realizations for Generalized Reed-Muller
Expressions", IEEE Trans. Comp., Vol. 46, No. 6, pp. 709-716, 1997.

[Sasao96] T. Sasao, M. Fujita, Representations of Discrete Functions, Kluwer
Academic Publishers, 1996
[Saul92] J. Saul, "Logic Synthesis for Arithmetic Circuits using the Reed-Muller
Representation", Proc. of the European Conf. on Design Automation 1992, pp.
109-113.

[Schaefer91] I. Schaefer and M. Perkowski, "Multiple-Valued Input Generalized
Reed-Muller Forms", Proc. of the International Symposium on Multi-Valued
Logic, (ISMVL'91), May 1991, pp. 40-48.

[Schaefer93] I. Schaefer and M. Perkowski, "Synthesis of Multi-Level Multiplexer
Circuits fo Incompletely Specified Multi-Output Boolean Functions with Mapping

922

Multiplexer Based FPGAs", IEEE Transactions on Computer Aided Design, Vol.
12, No. 11, November 1993, pp. 1655-1664.

[Schrodinger26] E. Schrodinger, "Quantisierung als Eigenwertproblem", Annalen
derPhysik 79, 361(1926).

[ScullyOl] M.O.Scully and M.S. Zubairy, Quantum Optical Implementation of
Grover's Algorithm, Proc. Natl. Acad. Sci. USA 98,9490(2001).
[Shah09] Shah, D., "Synthesis of Binary and Multi-valued Quantum Circuits with
Regular Structures", PhD Thesis, preparation, 2009, Portland State University,
USA.

[Shannon49] C. E. Shannon, "The Synthesis of Two-Terminal Switching
Circuits", Bell System Technical Journal, Vol. 28, pp. 59-98, January 1949.

[Shende02] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
"Reversible logic circuit synthesis", in Proc. Int. Conf. Computer-Aided Design,
San Jose, CA, pp. 125-132, November 10-14, 2002.
[Shende02a] V.V. Shende, A.K. Prasad, I.L. Markov, J.P. Hayes, "Reversible
Logic Circuit Synthesis," Proc. IIth IEEE/ACM Intern. Workshop on Logic
Synthesis (IWLS), 2002, pp. 125-130.

[Shende03] V.V. Shende, A.K. Prasad, I.L. Markov and J.P. Hayes, Synthesis of
Reversible Logic Circuits, IEEE Trans, on CAD 22, 710 (2003).

[Shende03a] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes,
"Synthesis of reversible logic circuits," IEEE Trans. Computer-Aided Design
Integr. Syst, vol. 22, no. 6, pp. 723-729, Jun. 2003.

[Shende04] Shende et al new 2004 and 2005 matrix decomposition papers.

[Shivgand05] V.S. Shivgand, A.Aulakh, and M. Perkowski, "Quantum Circuit
Layout," Proc. International Symposium on Representations and Methodologies
for Emergent Computing Technologies, Tokyo, Japan, September 2005.
[Shor94] P. Shor, "Algorithms for quantum computation: discrete logarithms and
factoring" in Proc. 35th Annu. Symp. On the Foundations of Computer Science
(ed. Goldwasser, S.) 124-134 (IEEE Computer Society Press, Los Alamitos,
California, 1994).

[Shor97] P. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput. 26, 1484-1509 (1997).

[Sipper97] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, and
A. Stauffer, "A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired
Hardware Systems", IEEE Transactions on Evolutionary Computation, April 1997,
Vol. 1, No. 1, pp. 83-97.

[Smolin96] J. Smolin, D. P. DiVincenzo, "Five two-qubit gates are sufficient to
implement the quantum Fredkin gate." Physical Review A, Vol. 53, no. 4, April
1996, pp. 2855-2856.

923

[Song05] X. Song, G. Yang, and M. Perkowski, "Algebraic Characteristics of
Reversible Gates," Accepted to Theory of Computing Systems (Mathematical
Systems Theory), Springer Verlag. First published on Online Test, ISSN 1432-
4350.2005.
[Slagle70] J. It. Slagle, "Artificial Intelligence: the Heuristic Programming
Approach," McGraw Hill, New York 1970.

[Simon97] D. Simon, "On the Power of Quantum Computation", SIAM Journal of
Computation, v26, pp. 1474-83, 1997.

[Software 1] Software may be run at PSU from the directory:
/stash/polo/benchmarks/MCNC.

[Software2] Portland State University. Electrical Engineering Computer System.
Online Manuals, /stash/polo/man/man 1, files: cgrmin.l, espresso. 1, and
exorcism. 1. Information regarding CGRMIN, ESPRESSO, and EXORCISM
software.

[Song93] N. Song, "Minimization of Exclusive Sum of Products Expressions for
Multiple-Valued Input Incompletely Specified Functions", Master of Science
Thesis, Portland State University, 1993.

[Song06] Song X., Yang G., Perkowski M.: Algebraic Characteristics of
Reversible Gates. Theory of Computing Systems (Mathematical Systems Theory),
Springer Verlag. 39(2), 2006, pp. 311-319.
[Spector99] L. Spector, H. Barnum, H.J. Bernstein, and N. Swamy, "Finding a
better-than-classical quantum AND/OR algorithm using genetic programming,"
Proc. 1999 Congress on Evolutionary Computation, Vol. 3, pp. 2239-2246,
Washington DC, 6-9 July 1999, IEEE, Piscataway, NJ.

[Stankovic97]R. Stankovic and R. Drechsler, "Circuit Design from Kronecker
Galois Field Decision Diagrams for Multiple-Valued Functions", Proc. of the
International Symposium on Multi-Valued Logic 1997, St. Francis Xavier
University, Antigonish, Nova Scotia, Canada, May 28-30, 1997, (Piscataway, New
Jersey: IEEE, 1997).

[Steane97] A. Steane, "The ion trap quantum information processor", Appl. Phys.
B. 64, 623 (1997).

[Stedman05] Ch. Stedman, B. Yen and M. Perkowski, "Synthesis of Reversible
Circuits with Small Ancilla Bits for Large Irreversible Incompletely Specified
Multi-Output Boolean Functions" Proceedings of the 14th International Workshop
on Post-Binary ULSI Systems, May 18, 2005, Calgary, Canada.
[Stewart89] I. Stewart, Galois Theory, 2nd Edition, (New York: Chapman & Hall,
1989).

[Styer02] D. F. Styer et al, "Nine formulations of quantum mechanics",
American Journal of Physics 70, 288 (2002).

924

[Syore04] K. Svore, T.G. Draper, S.A. Kutin, and E.M. Rains, "Logarithmic-depth
Quantum Carry-lookahead Adder, quant-ph/04061 42.

[Thompson03] A. Thompson, I. Harvey, and P. Husbands, "Unconstrained
Evolution and Hard Consequences", School of Cognitive and Computing Sciences,
University of Sussex, Brighton BN1 9QH, UK (Electronically available from:
http://www.cogs.susx.ad.uk/users/adrianth.).
[Thompson95] A. Thompson, "Evolving Electronic Robot Controllers that Exploit
Hardware Resources", Advances in Artificial Life: Proc. of the Third European
Conference on Artificial Life, Granada, Spain, June 4-6, 1995, F. Moran, A.
Moreno, J. J. Merelo, and P. Chacon, Editors, (Berlin, Germany: Springer-Verlag,
1995.)
[Thompson95a] A. Thompson, "Evolving Fault Tolerant Systems", First
IEE/IEEE International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, (GALESIA'95), Sheffield, September.
[Toffoli90] T. Toffoli and N. Margolus. Invertible cellular automata: A review.
Physica D, 45:229—253, 1990.
[Thornton05] M. Thornton "The Karhunen-Loeve Transform of Discrete MVL
Functions," IEEE International Symposium on Multiple- Valued Logic (ISMVL),
May 18-21,2005.
[Tran89] A. Tran, "Tri-state map for the minimisation of exclusive-OR switching
functions", IEE Proceedings on Computers and Digital Techniques, - Jan 1989,
Volume: 136, Issue: 1, pp.16-21.
[Tsai96] C. Tsai and M. Marek-Sadowska, "Multilevel Logic Synthesis for
Arithmetic Functions", Proc. of the 33rd Design Automation Conference (DAC),
Las Vegas, NV, 1996.
[Ventura98] D. Ventura, T. Martinez /'Quantum Associative Memory", IEEE
Transactions on Neural Networks, 1998.

[Ventura99] D. Ventura, T. Martinez /'Initializing the Amplitude Distribution of a
Quantum State", Foundations of Physics Letters, 1999 - Springer, pp. 547-559.

[Viamontes04] G. F. Viamontes, I. L. Markov and J. P. Hayes, "Improving Gate-
Level Simulation of Quantum Circuits" (quant-ph/0309060'), to appear in Quantum
Information Processing, 2004.
[Varma91] D. Varma and E. A. Trachtenberg, "Computation of Reed-Muller
Expansions of Incompletely Specified Boolean Functions from Reduced
Representations", IEE Proc. E., 138 (2) (1991), pp. 85-92.

[Vedral96] V. Vedral, A. Barenco, and A. Ekert, "Quantum Networks for
elementary arithmetic operations," Phys. Rev. A. 54:147, 1996

[Waltz75] Waltz D.L, "Understanding Line Drawings of Scenes with Shadows",
In: P. H. Winston ed. Psychology of Computer Vision. McGraw-Hill, N.Y., 1975.
pp.19-91.

925

http://www.cogs.susx.ad.uk/users/adrianth

[WeissOl] P.S Weiss, J. Tersoff, A. M. Chang, K. Likharev, J. Van,
"Programmable and autonomous computing machine made of biomolecules",
Nature, nature.com, 2001.

[Williams99] C.W. Williams, A.G. Gray, "Automated Design of Quantum
Circuits", ETC Quantum Computing and Quantum Communication, QCQC 1998,
Palm Springs, California, February 17-20, Springer-Verlag, pp. 113-125, 1999.

[Winter74] D. J. Winter, The Structure of Fields, (Berlin, Germany: Springer-
Verlag, 1974).

[Wineland94] Wineland DJ, Bollinger JJ, Itano WM, Moore FL (1992) Phys Rev
A 46:R6797; Wineland DJ, Bollinger JJ, Itano WM (1994) Phys Rev A 50:67
[Wineland98] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King,
and D. M. Meekhof, "Experimental Issues in Coherent Quantum-State
Manipulation of Trapped Atomic Ions", Journal of Research of the National
Institute of Standards and Technology 103, 259 (1998).

[Wireworld 1] http://mathworld.wolfram.conVWireWorld.html

[Wolfram02] S. Wolfram. A new kind of Science. Wolfram Media, 2002.

[Wong89]Wong A.K.C., Lu S.W., Rioux M.: Recognition and shape synthesis of
3D objects based on attributed hypergraphs. IEEE Trans, on Pattern Anal, and
Mach. Intel., 1989. 11. pp. 279-290.
[Wu96] H. Wu, M. Perkowski, X. Zeng, and N. Zhuang, "Generalized Partially-
Mixed-Polarity Reed-Muller Expansion and Its Fast Computation", IEEE
Transactions on Computers, Vol. 45, No. 9, September 1996, pp. 1084-1088.

[Yang04] G. Yang, W. Hung, X. Song, and M. Perkowski, "Exact synthesis of 3-
qubit quantum circuits from non-binary quantum gates using multiple-valued logic
and group theory," InternationalJournal of Electronics, 2004.
[Yang04a] G. Yang, W. Hung, X. Song, and M. Perkowski, "Depth Limited
Realization of Reversible Logic," Microelectronics, March 2004.
[Yang04b] G. Yang, X. Song, and M. Perkowski, "Minimal Universal Library,"
Discrete Applied Mathematics, 2004.
[Yang05] G. Yang, W. N. N. Hung, X. Song and M. Perkowski, "Exact Synthesis
of 3-qubit Quantum Circuits from Non-binary Quantum Gates Using Multiple-
Valued Logic", IEEE/ACM Design Automation and Test in Europe (DATE),
Munich, Germany, March 2005.

[Yang05a] G. Yang, X. Song, W. N. N. Hung, and M. Perkowski, "On Realization
of 3-qubit Reversible Circuits with the minimum number of non-linear gates", 7th
International Symposium on Representations and Methodology of Future
Computing Technologies (RM2005), Tokyo, Japan, September 2005.

[Yang05b] G. Yang, W. Hung, X. Song, and M. Perkowski, "Majority-Based
Reversible Logic Gates", Theoretical Computer Science C. 334(1-3), pp. 259-274,
April 15, 2005. ISSN 0304-3975.

926

http://nature.com
http://mathworld.wolfram.conVWireWorld.html

[Yang05b] G. Yang, X. Song, M. Perkowski, Fast Synthesis of Exact Minimal
Reversible Circuits using Group Theory, ACM/IEEE ASP-DAC (Asia and South
Pacific Design Automation Conference), Shanghai, People's Republic of China,
January 2005.
[Yang05c] G. Yang, X. Song, M. Perkowski, "Bi-direction synthesis for reversible
circuits," Proc. IEEE Computer Society Annual Symposium on VLSI, 2005.
[Yang05d] G. Yang, X. Song, M. Perkowski, and W.N.N. Hung, "Minimal
Universal Library for n*n Reversible Circuits," Proc. International Symposium on
Representations and Methodologies for Emergent Computing Technologies,
Tokyo, Japan, September 2005.
[Yang05e] G. Yang, X. Song, M. Perkowski, and J. Wu, "Realizing ternary
quantum switching networks without ancilla bits," Journal of Physics A.
Mathematical and General, 2005.
[Yang05f] G. Yang, X. Song, W. Hung and M. Perkowski, "Bi-directional
synthesis for reversible circuits," IEEE Transactions on VLSI Systems, 2005
[Yang05g] G. Yang, X. Song, and M. Perkowski, "On realization of 3-qubit
reversible circuits," Journal of Circuits, Systems, and Computers (JCSC), World
Scientific Publishers, 2005.
[Yang05h] G. Yang, X. Song, M.A. Perkowski, W.N.N. Hung, and J.Biamonte,
"The Power of Large Pulse-Optimized Quantum Libraries: Every 3-qubit
Reversible Function can be Realized with at Most Four Levels," Proc.
International Workshop on Logic and Synthesis, June 2005.
[Yang06] G. Yang, F. Xie^ X. Song and M.A. Perkowski, "Universality of two-
qudit ternary reversible gates", J. Phys. A: Math. Gen., 2006, Vol. 39, pp. 7763-
7773.
[Yen05] B. Yen, P. Tomson, and M. Perkowski, "Sum of Non-disjoint Cubes
Covering Generation for Multi-Valued Systems of base 2, for use in
Muthukrishnan-Stroud Quantum Realizable Gates: An Extension of the EXOR
Covering Problem", Proceedings of IWLS 2005. June 2005.
[Younes03] A. Younes, J. Miller, "Automated method for building CNOT based
quantum circuits for Boolean Functions", Technical report CSR-03-3, University
of Birmingham, Los Alamos physics preprint archive, quant-ph/0304099.

[Zadeh83] L.A. Zadeh, "A Fuzzy-set-theoretic approach to the compositionality of
meaning:propositions,dispositions and canonical forms", Journal of Semantics
1983 2(l):253-272

[Zadorozhny78] V.N. Zadorozhny, "Realization of Logic Functions by
Arithmetical Expressions," Automatization for Computer Structure Analysis and
Synthesis, Novosibirsk: Engineering Building Inst., Russia, 1978 (in Russian).

[Zakrevskij95] A. Zakrevskij, "Minimum Polynomial implementation of Systems
of Incompletely Specified Boolean Functions", IFIP WG 10.5, Proc. of the
Workshop on Applications of the Reed-Muller Expansion in Circuit Design,
August 27-29, 1995, Makuhari, Chiba, Japan.

927

[Zalka99] Ch. Zalka, "Grover's Quantum Searching algorithm is optimal", Phys.
Rev. A 60, pp. 2746-2751, 1999.

[Zeng95] X. Zeng, M. Perkowski, K. Dill, and A. Sarabi, "Approximate
Minimization of Generalized Reed-Muller Forms", IFIP WG 10.5, Proceedings of
the Workshop on Applications of Reed-Muller Expansion in Circuit Design, 27-29
August 1995, Makuhari, Chiba, Japan, pp. 221-230.

[Zhang99] W. Zhang, State Space Search. Algorithms, Complexity, Extensions,
and Applications, Springer, 1999.
[Zhegalkin29] I. L. Zhegalkin, "Arithmetization of Symbolic Logic", (in Russian),
Mathematiceskij Sbornik, Vol. 35, pp. 311-373, (1928), Vol. 36, pp. 205-338
(1929).

[Zhirnov03] V. V. Zhirnov, R. K. Kavin, J. A. Hutchby, and G. I. Bourianoff,
"Limits to Binary Logic Switch Scaling - A Gedanken Model", Proc. of the IEEE,
91, no. 11, 2003, pp. 1934-1939.

[Zilic93] Z. Zilic, Z. G. Vranesic, "Multiple-Valued Logic in FPGAs", Proc. of the
Midwest Symposium on Circuits and Systems, Vol. 2, pp. 1553-1556, 1993.
[Zilic95] Z. Zilic and Z. Vranesic, "A Multiple-Valued Reed-Muller Transform for
Incompletely Specified Functions", IEEE Trans. On Comput., 44 (8) (1995), pp.
1012-1020.

[Zilic93a] Z. Zilic, Z. G. Vranesic, "Current-mode CMOS Galois Field circuits",
Proc. of the International Symposium on Multi-Valued Logic 1993, (ISMVL'93),
pp. 245-250, 1993.

[Zilic02] Z. Zilic and K. Radecka, "The Role of Super-Fast Orthogonal
Transforms in Speeding up Quantum Computations," ISMVL 2002.

END.

928

	Classical Search and Quantum Search Algorithms for Synthesis of Quantum Circuits and Optimization of Quantum Oracles
	Let us know how access to this document benefits you.
	Recommended Citation

	Classical Search and Quantum Search Algorithms for Synthesis of Quantum Circuits and Optimization of Quantum Oracles

