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Abstract

The mechanics of how particles diffuse, interact, eject, etc. within a fluid is applica-

ble to numerous industrial and environmental applications. Unwanted products of

combustion, dust contamination of solar panels, pathogen transport during a cough

and ejections of particles during volcanic eruptions, are a few examples of flows in

which increased knowledge of particle dynamics could result in substantial reduc-

tion of negative environmental and economic impacts. To better understand the

tendencies of particles within shearing flows (such as jets), an extensive experimen-

tal campaign was conducted. Measurements of a turbulent round water jet were

performed within an icosahedral tank. Particle tracking velocimetry was employed

to create three-component, three-dimensional trajectories. Particles of varying size

and weight were used to seed the flow in order to provide a range of inertial effects

based on the particle interaction with the fluid. Numerous Eulerian and Lagrangian

parameters were characterized and most notable, a trajectory stationarization tech-

nique was successfully implemented to address the inhomogeneity of the flow field.

This approach could be extended to provide systematic methods to analyze compli-

cated flow fields, enhancing knowledge of their dynamics.

Alternatively, theoretical models of particle mechanics have been constructed,

contributing to the baseline understanding of Lagrangian dynamics. Stochastic

processes and phenomenological approaches are presented to accurately predict the

low-order statistics of tracers, point particles which follow the motion of the fluid, for

the idealized flow of homogeneous, isotropic and stationary turbulence (i.e. without
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the inclusions of external forces).

In comparison to previous models, the proposed process is infinitely differentiable

for finite Reynolds number and includes intermittent scaling properties. Further-

more, particle accelerations and velocities can be modeled based on the stochastic

processes, providing full temporal information of the flow dynamics.

The advancements made to homogeneous, isotropic and stationary turbulence

are then exploited and used as an input to generate an inhomogeneous flow field

based on self-similar relations within a jet to include, in a simple way, the intermit-

tent behavior of the turbulence. Specifically, a model is proposed to compensate a

stationary signal by the evolution of the Eulerian background properties of a jet to

transform Lagrangian velocities in order to build up an ensemble of turbulent jet tra-

jectories. The modeled jet, based on inputted signals from a stochastic process and

direct numerical simulation are compared against the experimental data. Statistics

show remarkable agreement for statistics of velocity increments and for higher-order

moments, accurately capturing dissipative behavior within the non-homogeneous

flow. With some additional study, the proposed model could be applied to modeling

of particle velocity statistics during volcanic eruptions, pathogen transport during

a cough and pollutant contamination from smokestacks.
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has cultivated. This is also noticed in the many students in our group that I have

been lucky enough to work with and learn from. Thanks to Naseem Ali, for helping

me get started in research and for patiently helping me on my first project in the lab

as an undergraduate. Also, I want to thank Betsy Camp and Nicholas Hamilton,

both of whom welcomed me into the lab, along with Naseem, and provided guidance

and resources when needed. In addition, many thanks are extended to Karl Cardin

and Facundo Cabrera, I always appreciate our discussions, both scientific and not.

Throughout my studies, I have been fortunate enough to collaborate with many

tremendous researchers. The additional guidance of Mickaël Bourgoin and Laurent
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Preface

Turbulence exists constantly around us, with endless examples of flows to visual-

ize, interpret and quantify. However the subject is vast and therefore we must be

thoughtful with our methods in order to make a targeted impact to progress our

understanding. The jet is essential to research of turbulent inhomogeneous flow due

to its well characterized behaviors and its relevance to many industrial and natural

flow phenomena. For these reasons, we decided to take this fundamental flow, the

turbulent round jet, and study it from an alternative perspective.

Despite being inhomogeneous in space, jets are well studied because, similar to

boundary layers and wakes, they present Eulerian self-similar behavior. Specifically,

as the flow develops, many pertinent quantities of the flow can be described by

a single spatial parameter, encompassing effects in the relevant spatial directions.

For a jet, this means that the averaged velocity, variance, covariance, etc. can be

quantified by η = f(r, z) which is a function of the radial, r, and axial, z, positions.

The self-similarity relations further imply that much is known about how jets behave

spatially as they develop downstream of the nozzle. With all this information, a

novel approach can be built to study the Lagrangian characteristics of a jet.

In implementation, this is the study of fluid tracer dynamics by tracking their

position in space and time. This Lagrangian approach gives an alternative perspec-
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tive to study the dynamics of a jet, providing additional methods and quantities

for characterization of the entrainment and mixing that jets induce. There has

been a delay in the study of such a flow from a Lagrangian perspective which is

primarily due to the slow development of measurement equipment capable of per-

forming particle tracking velocimetry, the tracking of tracer particles at sufficient

resolution in space and time. Furthermore, the inhomogeneous field translates to a

non-stationary Lagrangian flow which disallows the use of many necessary relations

which help to characterize important quantities such as the dissipation scales, time

and length scales of the flow, diffusion properties, etc.

This last point was remedied by Batchelor [1957] through manipulation of the

velocity along the trajectory to compensate for the turbulent decay and time step

compensation for the Eulerian background field as the jet develops downstream.

Using an extension of these methods allows us to characterize the trajectory dy-

namics within the jet. In turn, we can learn about entrainment, time scales and

we can identify the Lagrangian “universal” constant C0 (á la Kolmogorov), which

is essential to accurate stochastic modeling and has yet to be well understood as a

function of its location within an inhomogeneous field.

The lack of Lagrangian analysis of inhomogeneous flow fields provides an open-

ing, not only to the characterization of free shear flow phenomena (such as is the case

of a round jet), but also other non-homogeneous fields. Improved understanding of

quantities such as time scales and C0 can improve the modeling of inhomogeneous

flows, yet there remains a dependence on the boundary conditions and much more

experimental work is needed to fully characterize these variables.

Given a systematic approach to accurately analyze highly inhomogeneous flow
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through some form of homogenizing the field (stationarizing the trajectories), we

then aim to invert these relationships and build up a non-homogeneous flow based

on stationary turbulence. Specifically, a jet could be produced by applying non-

stationarity, based on well-known Eulerian relations of the jet, to a set of inputted

trajectories obtained a priori as homogeneous, isotropic and stationary turbulence

(HIST) velocity signals. This is appealing in that most classical perspectives have

considered these idealized (HIST) flows, with critical advancements made to turbu-

lent research. This allow us to make use of the major advancements that have been

made to HIST modeling and simulations to accurately include intermittent behav-

iors of the signal as they are perceived by fluid parcels within the non-stationary

flow.

If we can model a turbulent jet that exhibits intermittent behavior accurately,

the implications are far-reaching. First, with the ability to provide quick, low cost

and accurate representations of the fluid mechanisms within a turbulent jet, the

model can benefit the geophysical community through improved predictions of ash

distributions during an episode. Ash clouds formed as a result of eruptions can

severely damage aircraft engines, causing safety concerns as well as the disruptions

to air traffic and re-routing of flights. Furthermore, forecasting particle fallout is

essential to the prevention of water supply and sewerage system contamination.

Another highly benefited field could be epidemiology. The ability to model small

particle diffusion from a cough is advantageous to the reduction of disease spread.

This could be implemented through parametrization by only a few known inputs of

typical cough dynamics (i.e., velocity, angles of the expulsion). Directly applicable

to the effective reproduction number, R, used to quantify contagion levels of a



xxiv

virus, models could be built to quickly indicate safe distances and relative exposure.

Identifying distance and dispersal of minute pathogens during a cough can help

improve our knowledge of how to best mitigate long term spread of a disease.

Implications can reach beyond point diffusion problems and can be used to more

appropriately analyze a broader range of inhomogeneous flow fields seen in nature

and industry. One could use what we have built for generating a Lagrangian jet

to more accurately represent how the fluid elements behave within numerous flows,

such as atmospheric boundary layers and wind turbine wakes.

Outline of the thesis

The thesis is broken into three parts: Theoretical modeling of homogeneous and

isotropic turbulence, experimental findings from Lagrangian measurements in a

round jet and finally, we propose methods, using the homogeneous, isotropic ve-

locity signals generated in part one, to build up a turbulent jet. The statistics of

the model are compared to the experimental results of the jet from part two. Prior

to these sections, Chapter 1 is devoted to a general introduction to turbulence; the

equations of motion, statistical representations and particle dynamics.

Part one follows in Chapter 2, where an introduction to stochastic modeling is

presented in Section 2.1, followed by a highly detailed description of the procedures,

including an extension to inertial particle modeling, in Section 2.2. The results of

these numerical investigations are provided in Section 2.3 and concluding remarks

of the theoretic developments follow in Section 2.4.

Chapter 3 then discusses the jet experiments, first providing an introduction to

inhomogeneous flows in Section 3.1. Next, precise descriptions of pertinent turbulent
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quantities are presented systematically in Section 3.2. A detailed account of the

experiments follows in Section 3.3. Section 3.4 presents the initial findings of the

experimental analysis of the particle velocity and acceleration, including the applied

stationarization procedure, inspired by the Lagrangian self-similarity hypothesis of

Batchelor. Inertial particle dynamics in the jet are included in Section 3.5 and

conclusions of the experimental findings are included in Section 3.6.

The concluding part of the thesis combines the efforts of Chapters 2 and 3. A

model is proposed which is based on self-similarity relations to build up a jet from

homogeneous, isotropic and stationary turbulence. Motivations for the model are

presented in Section 4.1. A description of the model based on the self-similarity

profiles follows in Section 4.2. Resulting statistics of the model are included and

compared to those obtained from the experimental jet data in Section 4.3 and con-

cluding remarks are provided in Section 4.4.

The major conclusions from each part of the thesis are reiterated in Section 5.1

and finally the thesis closes with a brief explanation of the future/ongoing work in

Section 5.2.
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Chapter 1

General introduction

1.1 Equations of motion

The governing equations of fluid dynamics are highly complex as the internal motion

of individual fluid elements must be taken into account when studying bulk fluid

mechanics. Therefore, the laws of governing fluid motion must include the effect

that the fluid has on a surface or volume as well as what affects the fluid as it moves

through said space. The Reynolds transport theorem,

d

dt

∫
cv

ψdV– =

∫
cv

[
∂ψ

∂t
+∇ · (uψ)

]
dV– , (1.1)

captures the fact that the control volume is deformable and transportable. The

control volume cv is time dependent and u and ψ are respectively the velocity

vector and an arbitrary scalar or vector. This theorem provides the derivation of

the conservation of mass as well as the equation of motion of the velocity field by

inputting either the density ρ or momentum ρu as the input variable ψ. Notice

also that the theorem presents two ways to describe the dynamics. As previously

mentioned, this enables the fixed frame coordinates of a Eulerian approach as well

as the moving frame of reference, allowing the coordinates to be local to the fluid
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element in motion.

First, concerning the continuity equation, if mass is conserved than the rate of

change must be zero and therefore,

∂ρ

∂t
+ uj

∂ρ

∂xj
+ ρ

∂uk
∂xk

= 0. (1.2)

The continuity equation is simplified further for a incompressible fluid to

∂uk
∂xk

= 0, (1.3)

due to the fact that the density is temporally and spatially uniform. Here index

notation has been introduced and will be used for clarity when presenting the gov-

erning equations of motion.

Application of Newton’s second law of motion yields the equation of motion,

d

dt

∫
cv

ρuidV– +

∫
cv

ρ
Dui
Dt

dV– =
∑

Fext, (1.4)

where Fext are the applied external forces and the material derivative, D/Dt, is intro-

duced which measures the rate of change of a variable. It is defined mathematically

as

D( )

Dt
=
∂( )

∂t
+ uj

∂( )

∂xj
. (1.5)

Neglecting external forces and considering an incompressible Newtonian fluid, the

equation of motion (equation (1.4)) can be expressed as it is more commonly pre-

sented
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(
∂ui
∂t

+ uj
∂ui
∂xj

)
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (1.6)

where p is the instantaneous pressure and ν is the kinematic viscosity. The Navier-

Stokes equations (equations (1.3) & (1.6)) are nonlinear and therefore can only be

solved analytically for a few known scenarios of very simplified flows.

It has long been noted that flows can be laminar (uniform) or turbulent (chaotic)

and the transition is dictated by the Reynolds number Re = UL/ν, the ratio of

inertial to viscous terms, where the characteristic velocity U and length scale L are

chosen based on the type of flow. Most applications involve turbulent flow, the

dynamics of which are complex, resulting in complicated equations of motion when

compared to simpler laminar flow fields.

A statistical approach

This leads many to consider a statistical description of turbulence, formed on the

basis that although the details of a turbulent signal are unpredictable, their statistics

are reproducible. But turbulent descriptions can become even more complicated

through manipulation of the equations of motion. For example, by taking average

quantities into equations (1.3) & (1.6) one can obtain the Reynolds Averaged Navier-

Stokes (RANS) equations:

∂uk
∂xk

= 0, (1.7)

and (
∂ui
∂t

+ uj
∂ui
∂xj

)
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂

∂xj
(u′iu

′
j), (1.8)
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where the overbar denotes a time average and prime indicates the fluctuation from

the mean. Reynolds decomposition, ui = ui + u′i, is implemented to convert the

nonlinear term to the Reynolds stress, u′iu
′
j. This equation is the basis for simple

implementations of computational fluid dynamics and introduces the dilemma of

these models, the six unknowns that are produced by the Reynolds stress. This

underdetermined set of equations has commonly been referred to as the closure

problem.

1.2 Kolmogorov’s Hypothesis

A common approach to study turbulence is through probabilistic investigations into

the velocity signal. For an idealized flow field (i.e., homogeneous and isotropic tur-

bulence), a set of physically motivated hypotheses were put forth in the foundational

work of Kolmogorov [1941], referred to as K41 theory. Applying to homogeneous,

isotropic and stationary turbulence, the phenomenological model proposed that,

given a high Reynolds number flow, universality exists within the small scales of tur-

bulence. More specifically, indicating that the dissipation length scale, η = (ν3/ε)1/4,

dissipation time scale, τη = (ν/ε)1/2, and dissipation velocity, uη = (νε)1/4, are in-

dependent of large scale effects, where the mean dissipation rate is ε and ν is the

kinematic viscosity. The dynamics of the fluid at larger scales are dictated by in-

put/geometric parameters. Small scale flow was modeled by Richardson [1922] as a

cascade process in which eddies break up into smaller eddies which break up further

until a finite size is reached and the turbulent energy is converted into heat through

dissipation. This process is schematically represented in figure 1.1.

The inertial range, introduced in figure 1.1, also exists within the range of scales
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Injection

(Large scales)

Energy cascade

(Inertial range)

Dissipation

(Small scales)

Universal statistics

Energy input Energy dissipated 

through heat

Figure 1.1: Richardson cascade schematic of energy mechanics within turbu-
lent flow.

which are independent of input conditions (i.e., they only depend on the length

scale r and mean rate of change of turbulent kinetic energy, ε). But this range of

scales are too large to be dissipated and therefore fall between the large length scale

LE (injection) and small length scales η (dissipation), given as η ≪ r ≪ LE. The

subscript E denotes the Eulerian framework.

A description of the statistical behavior of turbulence within this framework is

obtained via the Eulerian velocity structure functions defined at a given time, t, as

the statistical moments of order, p, with r the spatial separations,

SE
p (r) = ⟨[(u(x+ r, t)− u(x, t)) · r/r]p⟩, (1.9)

where a bold symbol denotes a vector, i.e., u = (ux, uy, uz). According to the second

similarity hypothesis by Kolmogorov [1941] for homogeneous isotropic turbulence,

within the inertial range the structure functions become solely dependent on the
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energy dissipation rate ε and involve dimensionless universal constants Cp which

depend on the structure function order p, such that

SE
p (r) = Cp(ϵr)

p/3, for η ≪ r ≪ LE. (1.10)

For second-order statistics, which describe the energy distribution across the spa-

tial scales of turbulence, the constant C2 is empirically known (its value is of the

order of C
∥
2 = 2.1, where the ∥-superscript indicates that longitudinal velocity in-

crements and longitudinal spatial increments are considered [Pope, 2000]). In the

Eulerian framework, third order statistics are particularly important, as they can

be analytically calculated from the Navier-Stokes equation in connection with the

Karman-Howarth relation for the energy flux across scales, leading in the limit of

high Reynolds numbers to the celebrated constant C
∥
3 = −4/5, the minus sign in-

dicating a direct energy cascade [Batchelor, 1947]. At high orders (typically p > 4)

deviations are expected due to the intermittency phenomenon [Frisch, 1995].

1.3 Lagrangian framework

Previously touched on, turbulent flow properties can be described either in a fixed

frame of reference, the so-called Eulerian description, or alternatively by the La-

grangian description, where evolution of the flow is observed temporally through

the trajectories of the point particles. The trajectory of an ideal tracer, the so-

called Lagrangian path, can be determined from the first-order ordinary differential

equation (ODE):

dX

dt
(x, t) = u(X(x, t), t), (1.11)
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where u(x, t) is the fluid velocity field, X is the particle trajectory position with

the initial condition X(x, 0) = x and x = (x, y, z) in Cartesian coordinates. Fur-

thermore, the Lagrangian velocity along a particle trajectory X(x, t) is defined as

v(x, t) = u(X(x, t), t). (1.12)

Lagrangian and Eulerian velocity are respectively denoted by v and u, unless oth-

erwise noted, for the remainder of the thesis. The investigation of the behavior of

ideal tracer particles in turbulent flows, which is governed by equation (1.11), is one

of the main concerns of turbulence theory.

Taylor’s theory of turbulent diffusion

The Lagrangian description in turbulence provides a complete view of particle trans-

port and dispersion which can be traced back to the seminal work by Taylor who

set the diffusion problem in the context of fluid element trajectories [Taylor, 1922].

Taylor’s theory connects the mean square displacement (MSD) D2
x(τ) of particles

spreading from a point source in stationary homogeneous isotropic turbulence to the

Lagrangian two-point correlation function Cv(τ) = ⟨v(t+ τ)v(t)⟩, where the average

⟨·⟩ is taken over an ensemble of particle trajectories. Here, v(t) represents the veloc-

ity of individual tracer elements along their trajectory (note that for simplicity only

one velocity component is considered) and τ is the time lag. This is often called the

Taylor theorem and is explicitly expressed as:

d2D2
x

dτ 2
(τ) = 2Cv(τ). (1.13)
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Taylor’s theory is of utmost practical importance, as it reduces the prediction of

the spreading of tracer particles (and therefore of any passive substance spread by

turbulence with negligible molecular diffusivity) to the knowledge of the Lagrangian

two-point correlation function Cv(τ) at all times. The correlation at τ = 0, Cv(0), is

the mean square of the velocity fluctuations σ2
v .

The asymptotic regimes of the short and long time scales of turbulent diffusion

do not depend on the details of the dynamics of turbulence. In the limit of very short

times, the spreading follows trends of the trivial (purely kinematic) ballistic regime

where D2
x(τ) ≃ σ2

vτ
2. This can be retrieved from a simple one term Taylor expansion

of the particle displacement itself, or equivalently by applying equation (1.13) and

considering the limit at vanishing times for the Lagrangian correlation function,

Cv(τ) ≃ σ2
v for small times. In the limit of very long time scales, equation (1.13)

from Taylor’s theory predicts that due to the finite Lagrangian correlation time of

turbulence (TL = σ−2
v

∫∞
0

Cv(τ)dτ) the long term turbulent diffusion process behaves

as simple diffusion (where the MSD grows linearly with time, D2
x ∝ 2KT τ , for long

times) with a turbulent diffusivity KT = σ2
vTL. Note that the Lagrangian integral

time scale, TL, has been introduced.

Detail of the diffusion process at intermediate time scales requires a deeper

knowledge of the specific time dependence of Cv(τ) at all times, particularly in

the inertial range of scales of turbulence.

Kolmogorov extension to Lagrangian dynamics

In the Lagrangian framework, the multi-scale dynamics of turbulence is described

by the Lagrangian structure functions, defined as the statistical moments of the
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Figure 1.2: Schematic of the Lagrangian velocity increment in a Cartesian
coordinate system for a given time lag τ .

temporal velocity increments along particle trajectories, SL
p (τ), defined as

SL
p (τ) = ⟨|v(t+ τ)− v(t)|p⟩. (1.14)

Figure 1.2 provides a schematic of this approach, where for example, a particle

tagged a is traveling along its trajectory and the velocity difference would be

va(t + τ) − va(t) for a given time lag, τ . Note that for inhomogeneous flows, this

formula relies on the initial location but, for sake of keeping formulas compact, ex-

plicit reference to initial position will be omitted when exploring inhomogeneous

Lagrangian statistics.

Within the second similarity hypothesis by Kolmogorov [1941] for homogeneous,

isotropic turbulence these increments are expected to follow the scaling

SL
p (τ) = CL

p (ετ)
p/2, for τη ≪ τ ≪ TL. (1.15)
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The second-order structure function is of great importance as it relates to the

correlation function as SL
2 (τ) = ⟨[v(t + τ) − v(t)]2⟩ = 2(Cv(0) − Cv(τ)). Directly

tied back into the full description of the diffusion process, such dependency can be

inferred empirically from a Lagrangian second-order structure function with the now

provided relationship SL
2 (τ) = C0ετ . The universal constant C0 (the proportionality

constant used for CL
p when p = 2) plays a similar role in the Lagrangian framework

to the Kolmogorov constant in the Eulerian framework. As a consequence, a detailed

description of the turbulent diffusion process, including the inertial scale behavior,

relies on the knowledge of SL
2 (τ) (or equivalently of Cv(τ)) at all time scales and

specifically on the knowledge of C0 at inertial scales. Thereafter, stochastic models

can be built giving reasonable Lagrangian dynamics descriptions at all time scales

[Sawford, 1991].

As stated above, the similarity of velocity increments in the inertial range are

supposed to scale as τ p/2. But this is known to fail, as it does within the Eulerian

framework. This is evidenced by experimental and numerical which suggest that

moments exhibit multifractal scaling SL
p (τ) ∼ τ ζp which manifests itself in form of a

nonlinear dependence of the scaling exponents ζp on order p [Mordant et al., 2001a].

1.4 Finite inertia effects

Depending on the particle characteristics (size, density with respect to the carrier

fluid, volume fraction, etc.), its dynamics will follow that of the fluid (particles will

then be considered as tracers) or it may be affected by inertial effects, finite size

effects and couplings between the phases in highly seeded particle-laden flows [Berk

and Coletti, 2020].
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Once a particle gains inertia, either from its size or its density in comparison

to the surrounding fluid, the dynamics of the particle become increasingly compli-

cated. For example, there are now effects due to the Stokes drag force based on the

relative velocities of the fluid and the particles and an added mass force which is

caused by the displacement of the fluid from the motion of the particle, to name a

few. Assuming that the initial particle velocity at t = 0 matches the fluid velocity

vp(x, 0) = u(x, 0), this leads to an equation of motion defined as:

dvp(x, t)

dt
= β

Du(Xp(x, t), t)

Dt
+

1

τp
[u(Xp(x, t), t)− vp(x, t)] (1.16)

where vp(x, t) is the particle velocity, Xp(x, t) is the particle position, β is the

density ratio of the fluid ρf to the particle ρp where β = 3ρf/(ρf + 2ρp) and recall,

u(x, t) is the fluid velocity field and D/Dt is the material derivative, previously

defined. The particle response time, τp, is defined as τp = mp/3πµfdp where mp

and dp denote the mass and the diameter of the particle, respectively and µf is the

viscosity of the fluid. The value of β ranges from 3, very light particles, to 0, infinitely

heavy particles where the material derivative is neglected from equation (1.16).

Assuming heavy particles, inertial particle motion is governed by the following

system of first order ODEs

dXp(x, t)

dt
=vp(x, t) , (1.17)

dvp(x, t)

dt
=

1

τp
[u(Xp(x, t), t)− vp(x, t)] . (1.18)

In this simplified model, the Stokes number is the relevant parameter defined as St

= τp/τη. This quantity describes the ratio of the response time of the particle to
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the Kolmogorov time scale, the smallest temporal scales present in turbulent flow.

In particular, for St = 0 an adiabatic approximation yields equation (1.11) and the

particle behaves as an ideal Lagrangian tracer.
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Chapter 2

Modeling of particle dynamics in homogeneous isotropic and stationary

turbulence1,2

2.1 Introduction

Stochastic models are built to describe the known phenomena of turbulence and have

a long history in the literature of turbulent flows (see Pope [1990], Pope and Chen

[1990], Sawford [1991], Borgas and Sawford [1994a], Wilson and Sawford [1996],

Pope [2002], Mordant et al. [2003], Sawford et al. [2003], Beck [2003], Friedrich

[2003], Reynolds [2003], Reynolds et al. [2005], Lamorgese et al. [2005], Minier et al.

[2014a], and references therein). Typical modeling approaches consist of proposing a

random process in time for the velocity v(t) of a tracer particle advected by a turbu-

lent flow to reproduce the expected behavior given by the standard phenomenology

of turbulence. At very large Reynolds numbers, in a sustained, statistically sta-

tionary turbulent flow of characteristic large integral length scale L, (i) Lagrangian

velocity itself is a statistically stationary process of finite variance ⟨v2⟩ = σ2 and

is correlated over a large time scale T ∝ L/σ where σ is the standard deviation of

1Viggiano et al., 2020, Modelling Lagrangian velocity and acceleration in turbulent flows as
infinitely differentiable stochastic processes. J. Fluid Mech, 900:A27

2Friedrich et al., 2022, Single inertial particle statistics in turbulent flows from Lagrangian
velocity models. Physical Review Fluids, 7(1): 014303
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the velocity, (ii) it is non-differentiable (i.e. rough) such that the velocity increment

variance ⟨(δτv)2⟩, where δτv(t) = v(t + τ) − v(t), is proportional to τ as the scale

τ becomes smaller. This is the standard dimensional picture of Lagrangian turbu-

lence at infinite Reynolds numbers [Monin and Yaglom, 1975, Tennekes and Lumley,

1972]. At finite Reynolds numbers, v is regularized at small scales by viscosity, and

an appropriate modeling must produce differentiable kinematic quantities.

This leads to an interest in building up a random process v(t) with t ∈ R, and

its respective dynamics ensuring causality, with the capability of reproducing these

aforementioned statistical properties. More precisely, it is desirable to define such

a process v(t) as the solution of an evolution equation forced by a random force.

The simplest linear and Markovian stochastic evolution is given by the so-called

Ornstein-Uhlenbeck (OU) process that reads

dv(t) = − 1

T
v(t)dt+

√
2σ2

T
W (dt), (2.1)

where W (dt) is an instance of the increment over dt of a Gaussian Wiener process

(i.e., a white noise). It is noted that since v is defined as a linear operation on a

Gaussian random force, it is itself Gaussian. Furthermore, it is consistent with a

finite variance process such that ⟨v2⟩ = σ2 and the linear behavior of its respective

second-order structure function.

The stochastic evolution of v(t) using an OU process (Eq. 2.1) is typical of a non-

differentiable process and therefore does not reproduce proper statistical behaviors

for the acceleration a. To avoid this problem, the white noise termW (dt) entering in

Eq. 2.1 is replaced by a finite-variance random force, correlated over the dissipative
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Kolmogorov time scale, τη. Furthermore, assuming that this random force is itself

defined as the solution of an OU process of characteristic time scale τη, it recovers the

two-layered embedded stochastic model of Sawford [1991]. This model is appealing

since it incorporates the additional necessary time scale τη, and in turn, a finite

Reynolds number. Both velocity and acceleration are statistically stationary and of

finite variance in this framework, and the predicted acceleration correlation function

reproduces a zero-crossing in the vicinity of τη, before decaying towards 0 over T .

Nonetheless, although the model gives an appropriate description of the velocity

correlation function in both the inertial and dissipative ranges, further comparisons

to numerical data present its limitations, specifically the behavior of the acceleration

correlation function in the dissipative range, i.e. for time lags smaller than this zero-

crossing time scale [Sawford, 1991, Lamorgese et al., 2005].

In the model of Sawford [1991], velocity is once differentiable, leading to a fi-

nite variance acceleration process which is not twice differentiable (i.e., the obtained

acceleration process is not a differentiable random function). This observation has

strong implications on the shape of the acceleration correlation function which is

important for small scale phenomena of turbulence, in particular in the dissipative

range. This is observed in numerical data for both velocity and acceleration, and

expected from the physical point of view when viscosity is finite, in that correla-

tion functions of differentiable random functions are parabolic (or smoother) in the

vicinity of the origin. In contrast, the predicted acceleration correlation function

of Sawford [1991] behaves linearly, and therefore modeling Lagrangian velocity by

a two-layered embedded OU process appears to be too simplistic to reproduce the

correlation structure of acceleration in the dissipative range.
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For this reason, the model of Sawford [1991] is generalized in order to construct a

causal stochastic process which is infinitely differentiable at a given finite Reynolds

number, consistent with the standard aforementioned phenomenology of turbulence

in the inertial range (i.e., for scales τη ≪ τ ≪ T ), and that converges towards an

OU process at infinite Reynolds numbers (or equivalently as τη → 0).

2.2 Theoretical methods

2.2.1 Ordinary and embedded Ornstein-Uhlenbeck processes as statis-

tically stationary models for Lagrangian velocity and acceleration

Standard arguments developed in turbulence phenomenology [Tennekes and Lumley,

1972] lead to the consideration of, as a stochastic model for velocity of Lagrangian

tracers, the Ornstein-Uhlenbeck process. In particular, such a process reaches a sta-

tistically stationary regime in which variance is finite and exponentially correlated.

Single and two-layer models are first presented to provide terminology and context

for the subsequent introduction of the infinite layer process.

Ordinary single-layered Ornstein-Uhlenbeck process

Denoted as v1(t), the process is defined as the unique stationary solution of the

following stochastic differential equation, also called Langevin equation,

dv1(t) = − 1

T
v1(t)dt+

√
qW (dt), (2.2)

recall here T is the turbulence (large) turnover time, W (t) is a Wiener process, and

W (dt) its infinitesimal increment over dt (i.e., independent instances of a Gaussian
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random variable, zero-average and of variance dt). The variable q is the white noise

weight, defined to ensure v1 is a finite variance process. It obeys the following rule

of calculation (cf. Nualart [2006]), for any appropriate deterministic functions f and

g, which follow in particular integrability conditions such that;
〈∫

A f(t)W (dt)
〉
= 0

and
〈∫

A f(t)W (dt)
∫
B g(t)W (dt)

〉
=
∫
A∩B f(t)g(t)dt. Here ⟨·⟩ stands for ensemble

average, and A ∩ B is the intersection of the two ensembles A and B.

The unique statistically stationary solution of the stochastic differential equation

(SDE) provided in equation 2.2 can be written conveniently as

v1(t) =
√
q

∫ t

−∞
e−(t−t′)/TW (dt′) . (2.3)

Since v1 is defined as a linear operation on the Gaussian white noise W (dt), it is

Gaussian itself. Following the integrability conditions of f and g, it is thus fully

characterized by its average and correlation function. In particular, v1 is a zero-

average process, i.e. ⟨v1⟩ = 0, and is correlated as

Cv1(t1 − t2) ≡ ⟨v1(t1)v1(t2)⟩ = q

∫ min(t1,t2)

−∞
e−(t1+t2−2t)/Tdt =

qT

2
e−|t1−t2|/T . (2.4)

Notice that at t1 = t2, v1 is a finite variance process ⟨v21⟩ = qT/2 and behaves at small

scales as a Brownian motion, as it is required by dimensional arguments developed

in the standard phenomenology of turbulence at infinite Reynolds number [Tennekes

and Lumley, 1972]. Defining the velocity increment as δτv1(t) ≡ v1(t+ τ)− v1(t), it

can be noted that

〈
(δτv1(t))

2〉 = 2
[〈
v21
〉
− Cv1(τ)

]
∼

τ→0
q|τ |. (2.5)
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The scaling behavior, given in equation 2.5, is typical of non-differentiable processes

and therefore the respective acceleration process a1(t) ≡ dv1/dt is ill-defined. This

behavior was alleviated by Sawford [1991] by introducing the dissipative Kolmogorov

time scale τη into the model.

Embedded Ornstein-Uhlenbeck processes

Two layers: the Sawford model

Following the approach developed by Sawford [1991], the embedded OU process

v2(t) is considered as

dv2
dt

= − 1

T
v2(t) + f1(t), (2.6)

where f1(t), which replacesW (dt), is now an external random force that obeys itself

an ordinary OU process exponentially correlated over the small time scale τη and is

defined as the solution of:

df1(t) = − 1

τη
f1(t)dt+

√
qW (dt). (2.7)

It is a zero-average Gaussian process, and its correlation function is given by

Cf1(τ) ≡ ⟨f1(t)f1(t+ τ)⟩ = qτη
2
e−|τ |/τη . (2.8)

The unique statistically stationary solution of equation 2.6 is again given by

v2(t) =

∫ t

−∞
e−(t−t′)/Tf1(t

′)dt′,
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and correlated as

Cv2(τ) ≡ ⟨v2(t)v2(t+ τ)⟩ =
∫ t

−∞

∫ t+τ

−∞
e−(2t+τ−t1−t2)/TCf1(t1 − t2)dt1dt2. (2.9)

Assuming without loss of generality τ ≥ 0 (recall that the correlation function of

a statistically stationary process is an even function of its argument), splitting the

integral entering in equation 2.9 over the dummy variable t2 into the two sets [−∞, t]

and [t, t + τ ], and performing the remaining explicit double integral, the following

expression is obtained:

Cv2(τ) =
qτ 2ηT

2

2(T 2 − τ 2η )

[
Te−|τ |/T − τηe

−|τ |/τη
]
, (2.10)

which is in agreement with the formula given by Sawford [1991].

The respective acceleration process a2(t) ≡ dv2(t)/dt, obtained from equation

2.6, is a zero-average Gaussian process, and its correlation function is given by

Ca2(τ) ≡ ⟨a2(t)a2(t+ τ)⟩ = − d2

dτ 2
⟨v2(t)v2(t+ τ)⟩

=
qτ 2ηT

2

2(T 2 − τ 2η )

[
− 1

T
e−|τ |/T +

1

τη
e−|τ |/τη

]
. (2.11)

Notice that the function Cv2 is twice differentiable at the origin, contrary to the

function Cv1 from the single-layer model, and therefore a2 has finite variance given

by Ca2(0).
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Generalization to n layers

By iterating the previously described procedure, n additional layers can be consid-

ered. Acceleration is now a well-defined random process and the velocity derivatives

of order n. Once again, these additional layers will eventually be modeled as OU

processes. A similar type of procedure has been adopted in Arratia et al. [2014] in

a different context. The obtained embedded structure is defined using a set of n

coupled stochastic ODEs, with n ≥ 2, that reads

dvn
dt

= − 1

T
vn(t) + fn−1(t) (2.12)

dfn−1

dt
= − 1

τη
fn−1(t) + fn−2(t) (2.13)

... (2.14)

df2
dt

= − 1

τη
f2(t) + f1(t) (2.15)

df1 = − 1

τη
f1(t)dt+

√
q(n)W (dt) . (2.16)

The remaining free parameter q(n) can be chosen such that

⟨v2n⟩ = σ2, (2.17)

independent of τη and/or the number of layers n, as it is required by the standard

phenomenology of Lagrangian turbulence [Tennekes and Lumley, 1972].

The explicit computation of the correlation functions of velocity vn and the

respective acceleration an in the statistically stationary regime (obtained from the

set of equations 2.12 to 2.16 as t→ ∞) are presented in Appendix A.1 in Proposition
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A.1.1. Their expressions are especially simple in the spectral domain, and read,

considering n ≥ 2 to ensure that acceleration is a well-defined process,

Cvn(τ) = q(n)

∫
R
e2iπωτ

T 2

1 + 4π2T 2ω2

[
τ 2η

1 + 4π2τ 2ηω
2

]n−1

dω, (2.18)

and

Can(τ) = q(n)

∫
R
4π2ω2e2iπωτ

T 2

1 + 4π2T 2ω2

[
τ 2η

1 + 4π2τ 2ηω
2

]n−1

dω, (2.19)

where the multiplicative factor q(n) (defined in equation A.6) enforces the prescribed

value of velocity variance (equation 2.17). It is of note that taking n = 2 layers, the

correlation of the process v2 coincides with the one proposed in Sawford [1991].

It is interesting to consider the limiting process v or a when the number of layers

n goes toward infinity from a physical point of view, which would give an example

of a causal infinitely differentiable process, if such a process exists. It is possible to

show that the correlation function of vn loses its dependence on the time scale τ ,

resulting in Cvn(τ) → σ2 for any τ ≥ 0 as n → ∞. Therefore, asymptotically, the

limiting process does not decorrelate, which is at odds with the expected behavior.

By considering the re-scaled dissipative time scale τη/
√
n− 1 instead of τη, the

system of equations will converge towards a proper process with an appropriate

correlation function as n→ ∞.

With this in mind, the time scale must be compensated accordingly, resulting in
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the following set of embedded differential equations,

dvn
dt

= − 1

T
vn(t) + fn−1(t) (2.20)

dfn−1

dt
= −

√
n− 1

τη
fn−1(t) + fn−2(t) (2.21)

... (2.22)

df2
dt

= −
√
n− 1

τη
f2(t) + f1(t) (2.23)

df1 = −
√
n− 1

τη
f1(t)dt+

√
αnW (dt) , (2.24)

with

αn =

(
n− 1

τ 2η

)n−1
2σ2e−τ2η/T

2

T erfc (τη/T )
, (2.25)

where erfc(t) = 1 − erf(t) is introduced and the error function erf(t) =

(2/
√
π)
∫ t

0
e−s2ds. The chosen white noise weight αn ensures that the variance of

the limiting process v is finite with ⟨v2⟩ = σ2.

A derivation and summary of the statistical properties of the unique statistically

stationary solution of the set of embedded differential equations 2.20 to 2.24 are

provided in Appendix A.1 (see Proposition A.1.2). In the spectral domain, the

velocity correlation function now reads

Cvn(τ) =
2σ2e−τ2η/T

2

T erfc (τη/T )

∫
R
e2iπωτ

T 2

1 + 4π2T 2ω2

[
1

1 +
4π2τ2ηω

2

n−1

]n−1

dω. (2.26)

In contrast to the function provided in equation 2.18, this correlation function

does converge a well-behaved stochastic process as the number of layers goes to infin-

ity. In other words, through iteration of the set of embedded differential equations,
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2.20 to 2.24, over an infinite number of layers n → ∞, an infinitely differentiable

and causal Gaussian process is obtained, in which the velocity correlation function

reads, in the stationary regime,

Cv(τ) = σ2 e−|τ |/T

2 erfc(τη/T )

[
1 + erf

( |τ |
2τη

− τη
T

)
+ e2|τ |/T erfc

( |τ |
2τη

+
τη
T

)]
. (2.27)

It is of note that Cv(0) = ⟨v2⟩ = σ2 and taking the second derivatives of equation

2.27 and multiplying by the factor −1/2, the respective acceleration correlation

function is obtained

Ca(τ) =
σ2

2T 2 erfc(τη/T )

[
2T

τη
√
π
e
−
(

τ2

4τ2η
+

τ2η

T2

)
− e−|τ |/T

(
1 + erf

( |τ |
2τη

− τη
T

))
−e|τ |/T erfc

( |τ |
2τη

+
τη
T

)]
. (2.28)

2.2.2 An infinitely differentiable causal process, asymptotically multi-

fractal in the infinite Reynolds number limit

Herein, expansion of the system proposed in equations 2.20 to 2.24, in order to in-

clude intermittent (i.e. multifractal) corrections, is suggested. This requires more

elaborate probabilistic objects to do so in the spirit of the multifractal random walk

[Bacry et al., 2001], and since applied in a Lagrangian context by Mordant et al.

[2002, 2003]. To go beyond this Gaussian framework, equations 2.20 to 2.24, where

linear operations on a Gaussian white noise W (dt) are involved, a non-linear op-

eration while exponentiating a Gaussian field X(t) must now be considered. This

logarithmic correlation structure guarantees multifractal behaviors and the obtained

random field is “eγX”, where γ is a free parameter of the theory that encodes the
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level of intermittency. This can be seen as a continuous and stationary version

of the discrete cascade models developed in turbulence theory (see Meneveau and

Sreenivasan [1987], Benzi et al. [1993], Frisch [1995], Arneodo and Muzy [1998] and

references therein) and is known in the mathematical literature as a multiplicative

chaos [Rhodes and Vargas, 2009]. For recent applications of such a random dis-

tribution to the stochastic modeling of Eulerian velocity fields, see Pereira et al.

[2016] and Chevillard et al. [2019]. The application to OU infinite layer modeling

requires the generalization of a probabilistic approach to a causal context, and the

inclusion of finite Reynolds number effects that guarantee differentiability below the

Kolmogorov time scale τη.

A causal multifractal random walk

First, the stochastic modeling of the Lagrangian velocity proposed by Mordant et al.

[2002, 2003], which is based on the multifractal process of Bacry et al. [2001], is

reviewed. This process can be considered as an OU process forced by a non-Gaussian

uncorrelated random noise, and is called the multifractal random walk (MRW). Its

dynamics reads

du1,ϵ(t) = − 1

T
u1,ϵ(t)dt+

√
qeγX1,ϵ(t)−γ2⟨X2

1,ϵ⟩W (dt), (2.29)

where a new random field X1,ϵ is introduced and u1,ϵ is the Lagrangian velocity.

It is Gaussian, zero-average, and taken independent of the white noise instance

W (dt) and therefore fully characterized by its correlation function. To reproduce

intermittent corrections, as they have been observed in Lagrangian turbulence (see
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[Yeung and Pope, 1989, Voth et al., 1998, La Porta et al., 2001, Mordant et al., 2001b,

2002, 2003, Chevillard et al., 2003, Biferale et al., 2004, Toschi and Bodenschatz,

2009, Pinton and Sawford, 2012, Bentkamp et al., 2019], and references therein),

one must demand the Gaussian field X1,ϵ to be logarithmically correlated [Bacry

et al., 2001]. Such a correlation structure implies, in particular, that the variance of

X1,ϵ diverges as ϵ→ 0, making it difficult to give a proper mathematical meaning to

such a field. This divergence is amplified further when considering its exponential,

as it is proposed in equation 2.29. Instead, an approximation procedure is used,

at a given (small) parameter ϵ, that will eventually play, loosely speaking, the role

of the small time scale τη of turbulence. Such a logarithmic correlation structure

has to be truncated over the large time scale T in order to ensure a finite variance.

These truncations are well understood from a mathematical perspective [Rhodes

and Vargas, 2009], and a proper limit as ϵ → 0 leads to a well-defined, canonical,

random distribution.

Nonetheless, nothing is said in Bacry et al. [2001] about causality. In order to

include this important physical constraint, the field X1,ϵ is defined as the unique

statistically stationary solution of a stochastic differential equation, that will even-

tually be consistent with both truncations over the time scales ϵ and T , with loga-

rithmic behavior in between. Being Gaussian, and independent of the white noise

W (dt) entering in equation 2.29, dynamics has to be defined as a linear operation

on an independent instance of the Gaussian white noise, call it W̃ (dt), such that

⟨W (dt)W̃ (dt′)⟩ = 0 at any time t and t′. In this context, a linear stochastic evolution
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has been proposed by Chevillard [2017] and Pereira et al. [2018], and reads

dX1,ϵ(t) = − 1

T
X1,ϵ(t)dt−

1

2

∫ t

−∞
[t− s+ ϵ]−3/2 W̃ (ds)dt+ ϵ−1/2W̃ (dt), (2.30)

which can be perceived as a fractional Ornstein-Uhlenbeck process of vanishing Hurst

exponent [Chevillard, 2017, Pereira et al., 2018]. Notice also that the underlying

integration over the past with a rapidly decreasing kernel that enters in the dynamics

ofX1,ϵ implies that these are non-Markovian processes. A precise and comprehensive

characterization of the statistical properties of the fields X1,ϵ and its asymptotical

log-correlated versionX1 ≡ limϵ→0X1,ϵ can be found in Appendix A.1, Section A.1.3.

For the statistical properties of the MRW that include a causal definition

for the field X1, the process is built, as much as possible, in the asymptotic

regime (i.e., ϵ → 0). Keep in mind that the pointwise limit of such a process

u1(t) = limϵ→0 u1,ϵ(t), where u1,ϵ(t) is the unique statistically stationary solution of

the SDE given in equation 2.29, is not straightforward to acquire because the random

field eγX1,ϵ(t)−γ2⟨X2
1,ϵ⟩ becomes distributional in this limit [Rhodes and Vargas, 2009].

Therefore, the main concern is the statistical quantities of the asymptotic random

process u1, but standard calculations will be performed using the classical field u1,ϵ(t)

if necessary and convenient. Because quantification of the intermittent corrections

implied by the this random distribution is desired, computation of the structure

functions of the aforementioned stochastic model is proposed. Therefore, in the no-

tation presented, the velocity increment expressed as δτu1,ϵ(t) = u1,ϵ(t+ τ)−u1,ϵ(t),

and the respective asymptotic structure functions as

Su1,m(τ) = lim
ϵ→0

⟨(u1,ϵ(t+ τ)− u1,ϵ(t))
m⟩ . (2.31)
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Focusing now on the scaling properties of the structure functions of the causal

MRW u1. Recall that the log-correlated field X1 and the underlying white noise W

entering in the dynamics of u1,ϵ are taken independently. This implies that all odd

order structure functions vanish, namely Su1,2m+1 = 0 with m ∈ N. Regarding the

second-order structure function, it is the same as the one obtained from the OU

process v1 (equation 2.2), and given by,

Su1,2(τ) = Sv1,2(τ) = qT
[
1− e−

|τ |
T

]
∼

τ→0+
qτ. (2.32)

In contrast, the fourth-order structure function is impacted by intermittency, under

the condition 4γ2 < 1,

Su1,4(τ) ∼
τ→0

3

1− 6γ2 + 8γ4
q2τ 2

( τ
T

)−4γ2

e4γ
2c(0), (2.33)

where the constant c(0) is given in equation A.18. More generally, it is then possible

to obtain an estimation of the (2m)th order structure functions that reads, for

2m(m− 1)γ2 < 1,

Su1,2m(τ) ∝
τ→0

qmτm
( τ
T

)−2m(m−1)γ2

, (2.34)

indicating that the causal MRW exhibits a lognormal spectrum. Proofs of these

propositions are gathered in Appendix A.2.

An infinitely differentiable causal multifractal random walk

Finally, a causal stochastic process representative of the statistical behavior of La-

grangian velocity in homogeneous and isotropic turbulent flows at a given finite
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Reynolds number (equivalently for a finite ratio τη/T ) is proposed. The process is

statistically stationary, correlated over a large time scale T , infinitely differentiable,

acquiring rough and intermittent behaviors as the small time scale τη goes to zero,

i.e. in the infinite Reynolds number limit.

Assume n ≥ 2 and consider the following system of embedded differential equa-

tions

dun,ϵ
dt

= − 1

T
un,ϵ(t) + eγXn,ϵ(t)− γ2

2
⟨X2

n,ϵ⟩fn−1(t) (2.35)

dfn−1

dt
= −

√
n− 1

τη
fn−1(t) + fn−2(t) (2.36)

... (2.37)

df2
dt

= −
√
n− 1

τη
f2(t) + f1(t) (2.38)

df1 = −
√
n− 1

τη
f1(t)dt+

√
βnW (dt) , (2.39)

with

βn =

(
n− 1

τ 2η

)n−1 σ2
√

4πτ 2η

T
∫∞
0
e−

h
T e−h2/(4τ2η )eγ2CX(h)dh

. (2.40)

In the system above, the causal process Xn,ϵ obeys the set of stochastic differential
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equations

dXn,ϵ

dt
= − 1

T
Xn,ϵ(t) +

√
β̃nf̃n−1,ϵ(t) (2.41)

df̃n−1,ϵ

dt
= −

√
n− 1

τη
f̃n−1,ϵ(t) + f̃n−2,ϵ(t) (2.42)

... (2.43)

df̃2,ϵ
dt

= −
√
n− 1

τη
f̃2,ϵ(t) + f̃1,ϵ(t) (2.44)

df̃1,ϵ = −
√
n− 1

τη
f̃1,ϵ(t)dt−

1

2

∫ t

−∞
[t− s+ ϵ]−3/2 W̃ (ds)dt+ ϵ−1/2W̃ (dt), (2.45)

with

β̃n =

(
n− 1

τ 2η

)n−1

. (2.46)

where W and W̃ are two independent copies of the Wiener process.

Similar to the Gaussian infinitely differentiable process v established in the first

part, the Proposition A.1.5, in Appendix A.1 shows that the process u, obtained

once the set of embedded differential equations is iterated an infinite number of

times n → ∞, and when the small parameter ϵ goes to zero, converges to a well-

defined limit. Again, the choice made for the white noise weight βn ensures that

the variance of the limiting process u is finite with ⟨u2⟩ = σ2. Its value is precised

during computation of the correlation function Cf (τ) = ⟨f(t)f(t + τ)⟩ of the force

f when n→ ∞ (see equation A.29).

Similarly, the coefficient β̃n (equation 2.46) entering in the dynamics of Xn,ϵ

(equation 2.41) is dictated by the necessity that when ϵ → 0 and τη → 0, for any

number of layers n, Xn is logarithmically correlated in an appropriate manner. Note

that as far as the process Xn,ϵ is concerned, these limits can be taken in an arbitrary
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way since they commute. The small parameters ϵ and τη have a similar physical

interpretation, they mimic finite Reynolds number effects. They are defined a priori

as separate entities and independently seek limits for the sake of generality. More

precisely ϵ is taken finite to make sense of the dynamics of f̃1,ϵ as it is proposed in

equation 2.45. Finally, note that the multiplicative chaos entering in the dynamics

of un,ϵ (equation 2.35) is renormalized by a smaller constant exp
(

γ2

2
⟨X2

n,ϵ⟩
)
than

in its non-differentiable version u1,ϵ (equation 2.29), where there typically exists a

larger normalization constant exp
(
γ2⟨X2

n,ϵ⟩
)
. This is related to the finite correlation

of the term fn−1 entering in equation 2.35, contrary to the dynamics proposed in

equation 2.29 where a white noise W (dt) enters.

For clarity, Propositions are included in Appendix A.1, a few details of these

concerning the MRW infinite layers approach are provided here. A focus on the

statistical properties of Xn,ϵ is included in Proposition A.1.4. Keeping in mind that,

whatever the ordering of the limits n → ∞ and ϵ → 0, the correlation function of

Xn,ϵ converges towards a well-defined function CX(τ) (equation A.21), of which its

value at the origin diverges logarithmically with τη as τη → 0 (equation A.24). In this

limit of infinite Reynolds numbers, CX(τ) does converge towards CX1(τ) (equation

A.25), as expected.

Proceeding with the covariance structure of the limiting process u. Proposition

A.1.5 provides a summary of the main second-order statistical properties of velocity

u and acceleration a. The exact velocity correlation function Cu(τ) is first derived in

the joint commuting limit ϵ→ 0 and n→ ∞ (equation A.28). From this it is noted

that although Cu(τ) depends weakly on intermittent corrections in the dissipative

range, it loses this property as τη/T → 0 and coincides with the correlation function
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of the OU process Cv1(τ) (equation A.30). Similarly, the acceleration correlation

function Ca(τ) can be derived (equation A.32). From there, acceleration variance is

shown to diverge as T/τη as the Reynolds number increases (equation A.34).

It is of note that the proposed stochastic model of velocity u, that is claimed

to be intermittent in a precise way and defined in the following Proposition A.1.6,

predicts that, as far as the covariance of u is concerned, it is similar to an Ornstein-

Uhlenbeck process at infinite Reynolds number, independent of any intermittency

corrections. This is consistent with the standard phenomenology of Lagrangian

turbulence. The predicted acceleration variance (equation A.34) does not exhibit

either intermittent corrections: This precise behavior of acceleration variance with

respect to the Reynolds number is at odds with the extrapolations that can be made

from numerical simulations (see Ishihara et al. [2007]).

The intermittent, i.e. multifractal, properties of the velocity process u are pre-

sented, as they can be seen on higher-order structure functions in Proposition A.1.6.

As it was shown previously, the correlations of u and the OU process v1 equate as

τη → 0. Similarly, the second-order structure function (equation A.37) follows this

as well. Showing that the fourth-order structure function of u coincides with the one

of the causal MRW process u1 as first ϵ → 0 and then τη → 0 is obvious (equation

A.38), the reversed order of limits is more involved. Nonetheless, an approximation

procedure is proposed that confirms that u and u1 possess the same intermittent

properties (equation A.39). All statements and proofs can be found in Proposition

A.1.6 and Appendix A.3.
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2.2.3 Predictions of the multifractal formalism regarding the accelera-

tion correlation function

An alternative method of modeling the velocity and acceleration correlation func-

tions is by directly proposing their functional forms. As a second approach, to com-

pare with the infinite layer process, models of the statistical behaviors of velocity are

constructed, that will take into account the various range of scales pointed out by

the phenomenology of turbulence, namely the inertial and dissipative ranges (with

additional intermittent corrections). This results in an explicit form of the veloc-

ity correlation function (equivalently the second-order structure function) without

building up the underlying stochastic process. Specifically, this approach appears

only partial from a probabilistic point of view: The velocity correlation function is

modeled (from which the acceleration correlation function is formed) and higher-

order moments of velocity increments, although the velocity process itself is not fully

characterized. Therefore, the following probabilistic description is not complete, but

allows a better understanding of the rapid increase of the velocity increment flatness

across the dissipative range.

The Batchelor parametrization of the second-order structure function

Beginning with the proposition of a simple model for the velocity correlation func-

tion, or equivalently a model of the second moment of velocity increments. Con-

cerning the Eulerian framework, Batchelor [1951] proposed a simple form for the

second-order structure function that includes the inertial behavior ⟨(δℓu)2⟩ ∼ ℓ2/3

and the dissipative one ⟨(δℓu)2⟩ ∼ ℓ2, with an additional polynomial interpolation

relating these two behaviors across the Kolmogorov dissipative length scale [Mene-
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veau, 1996, Chevillard et al., 2006, 2012]. A similar procedure can be adapted to the

Lagrangian framework, that would include the respective inertial ⟨(δτv)2⟩ ∼ τ and

dissipative ⟨(δτv)2⟩ ∼ τ 2, behavior as it was considered by Chevillard et al. [2003],

Arneodo et al. [2008], Benzi et al. [2010], Chevillard et al. [2012]. Assuming τ ≪ T ,

it is explicitly given as

S2(τ) = ⟨(δτv)2⟩ = 2σ2
τ
T[

1 +
(

τ
τη

)−δ
] 1

δ

, (2.47)

where again, τη is the typical dissipative (Kolmogorov) time scale, and σ2 = ⟨v2⟩.

The additional free parameter δ governs the transition between the inertial and dis-

sipative ranges of scales. For instance, as far as the Eulerian framework is concerned,

the value δ = 2 was chosen by Batchelor [1951]. In the Lagrangian framework, the

value δ = 4 reproduces, appropriately, the behavior of the statistical quantities, as

it was chosen in Arneodo et al. [2008]. At large scales, τ of the order of T and

larger, equation 2.48 could be multiplied by a cut-off function of characteristic time

scale T , as it was proposed in Bos et al. [2012]. Such a procedure is necessary to

ensure a smooth transition towards decorrelation at large times. It is required that

S2(τ) goes to 2σ2 = 2⟨v2⟩ as τ → ∞, simultaneously causing the integral of the

velocity correlation function Cv(τ) ≡ σ2 − S2(τ)/2 to converge, as it is required

when assuming stationary statistics. Recall furthermore that the second derivative

of S2 is of interest, in order to describe the acceleration correlation, for which sta-

tistical stationarity implies that its integral over time lags τ vanishes. Therefore,

multiplying by a cut-off function of characteristic time scale T turns out to be too
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schematic and instead, the following ad-hoc form, for any time lags τ ≥ 0, is used

S2(τ) = ⟨(δτv)2⟩ = 2σ2 1− e−
τ
T[

1 +
(

τ
τη

)−δ
] 1

δ

, (2.48)

where the acceleration correlation function is given as

Ca(τ) ≡
1

2

d2S2(τ)

dτ 2
. (2.49)

Including intermittency corrections using the multifractal formalism

The multifractal formalism [Frisch, 1995] provides a convenient theoretical frame-

work to generalize the approach of Batchelor to include intermittent corrections.

Mostly developed in the Eulerian framework, it has since been adapted to the La-

grangian framework by several authors, showing great success when compared to

experimental and numerical data [Borgas, 1993, Chevillard et al., 2003, Biferale

et al., 2004]. Here, the approach reviewed in Chevillard et al. [2012] is followed,

where the smooth behavior at large scales is also implemented.

Arguments developed in this context concern the probabilistic modeling of the

Lagrangian velocity increment, recalling δτv(t) = v(t+τ)−v(t). Taking into account

expected behaviors in the inertial and dissipative ranges, similar to the Batchelor

parametrization, the following explicit expression for τ ≥ 0 can be obtained

S2(τ) = ⟨(δτv)2⟩ = 2σ2

∫ hmax

hmin

(
1− e−

τ
T

)2h[
1 +

(
τ

τη(h)

)−δ
] 2(1−h)

δ

P(τ)
h (h)dh, (2.50)
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which can be regarded as a generalization of the parametrization used in equation

2.48 to a non-unique exponent h, that fluctuates according to its probability density

P(τ)
h at a given scale τ . Notice also that a dependence of the dissipative scale τη(h)

on this fluctuating exponent h is now included.

Following the arguments developed for the Eulerian framework [Paladin and

Vulpiani, 1987, Nelkin, 1990], and adapted to the Lagrangian one in Borgas [1993]

(and reviewed in Chevillard et al. [2012] with corresponding notations), one can

assume that

τη(h) = T
(τη
T

) 2
2h+1

, (2.51)

where, to simplify notations, τη ≡ τη(1/2), the value of the fluctuating dissipative

time scale τη(h) at the very particular value h = 1/2. This fluctuating exponent h

is characterized by its probability density function at a given scale τ , namely

P
(τ)
h (h) =

1

Z(τ)

(
1− e−

τ
T

)1−DL(h)

[1 + ( τ
τη(h)

)−δ](DL(h)−1)/δ
(2.52)

and normalized in an appropriate manner using

Z(τ) =

∫ hmax

hmin

(
1− e−

τ
T

)1−DL(h)

[1 + ( τ
τη(h)

)−δ](DL(h)−1)/δ
dh. (2.53)

Besides the two free parameters T and τη of this model, the multifractal for-

malism [Frisch, 1995] requires the introduction of a parameter function DL(h). It

acquires the status of a singularity spectrum at infinite Reynolds number (i.e. when

τη goes to 0) and then at vanishing scales τ → 0. Less precisely stated, it dictates

the level of fluctuations of the exponent h around its average value, which is ex-
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pected to be ⟨h⟩ = 1/2. Several forms have been proposed in the literature [Frisch,

1995]. A simple quadratic form of DL(h) is chosen, which is known as a log-normal

approximation, parametrized by the intermittency coefficient γ2, that reads

DL(h) = 1− (h− 1/2− γ2)2

2γ2
, (2.54)

such that a linear behavior of S2(τ) is enforced with τ in the inertial range (in the

appropriate infinite Reynolds number limit).

Correspondingly, the correlation function of acceleration Ca(τ) can be defined,

using the following notations, as

S2(τ) =
1

Z(τ)

∫ hmax

hmin

Q(h, τ)dh, where Q(τ, h) =

(
1− e−

τ
T

)2h+1−DL(h)

[1 + ( τ
τη(h)

)−δ](2(1−h)+DL(h)−1)/δ
,

(2.55)

and therefore

Ca(τ) =
(Z ′(τ)2

Z(τ)3
− 1

2

Z ′′(τ)

Z(τ)2

)∫ hmax

hmin

Q(h, τ)dh− Z ′(τ)

Z(τ)2

∫ hmax

hmin

∂Q(h, τ)

∂τ
dh

+
1

2Z(τ)

∫ hmax

hmin

∂2Q(h, τ)

∂τ 2
dh. (2.56)

This form can be considered as a model for the correlation function of acceleration,

at a given Reynolds number, which includes intermittent corrections (using a non

vanishing value for γ2). Remaining integrals entering in equation 2.56 are evaluated

using standard numerical integration algorithms.
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Higher-order structure functions and their scaling behavior

The corresponding prediction for the structure function S2m(τ) of order 2m, that

will eventually enter in the expression of the velocity increment flatness is herein

provided. Note that the statistics of the increments are expected and observed to

be symmetric, making odd-order moments vanish. Specifically,

S2m(τ) = ⟨(δτv)2m⟩ = (
√
2σ)2m

(2m)!

m!2m

∫ hmax

hmin

(
1− e−

τ
T

)2mh[
1 +

(
τ

τη(h)

)−δ
] 2m(1−h)

δ

P(τ)
h (h)dh,

(2.57)

where the additional combinatorial factor originates from the moment of order 2m

of a zero-average unit-variance Gaussian random variable that enters in the more

complete probabilistic description detailed in Chevillard et al. [2012].

In the dissipative range, when τ ≪ τη, S2m(τ) = ⟨a2m⟩τ 2m+O(τ 2m). In the iner-

tial range, when τη ≪ τ ≪ T , the standard prediction of the multifractal formalism

is recovered, which relates the power-law behavior of the structure functions to the

functional shape of the parameter function DL(h) through a Legendre transform

[Frisch, 1995]. In the proper ordering of limits,

lim
τη→0

S2m(τ) ∼
τ→0

cγ,2m(
√
2σ)2m

(2m)!

m!2m

( τ
T

)minh[2mh+1−DL(h)]
, (2.58)

where the remaining multiplicative constant could be computed while pushing for-

ward the underlying steepest-descent calculation. Assuming a quadratic form for
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the parameter function DL(h), the following intermittent behavior is obtained

lim
τη→0

S2m(τ) ∼
τ→0

cγ,2m(
√
2σ)2m

(2m)!

m!2m

( τ
T

)(1+2γ2)m−2γ2m2

, (2.59)

which contains a power-law exponent ζ2m ≡ (1 + 2γ2)m−2γ2m2 which corresponds

exactly to the one obtained for the infinitely differentiable multifractal random walk

of Section 2.2.2.

Derivations of Reynolds number dependence based on the acceleration variance

is presented in Appendix A.4.

2.2.4 Extensions of Lagrangian velocity modeling to inertial particle

statistics

Theoretical arguments discussed up to this point are applicable to fluid tracer dy-

namics in homogeneous, isotropic and stationary turbulence. Although major ad-

vancements have been presented to Lagrangian modeling, the applications of tracer

flow only gives insight into the behavior of the fluid. When a flow contains particles

(i.e., volcanic eruptions, particulate from a cough), the particles then present alter-

native dynamics than those of the fluid, often dampened by their weight or size.

More applicable to real world circumstances, the model should attempt to include

some ability to predict these particle mechanics and therefore, a simple method is

presented herein.

Recall that particle dynamics is governed by additional forces [Gatignol, 1983,

Maxey and Riley, 1983] and that by assuming small, heavy particles, only the Stokes’

drag is retained and the velocity of the particle is determined by [Gatignol, 1983,
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Maxey and Riley, 1983, Pumir and Wilkinson, 2016]:

dXp(x, t)

dt
=vp(x, t) , (2.60)

dvp(x, t)

dt
=

1

τp
[u(Xp(x, t), t)− vp(x, t)] . (2.61)

Recall that Xp(x, t) is the particle position, vp(x, t) is the particle velocity, and

u(x, t) is the fluid velocity field and furthermore, that the Stokes number is the

relevant parameter used to characterize particles inertia in this simplified model.

Particle response based on the linear filter approximation

Finally, it is noted again that for an ideal tracer, the trajectory path can be deter-

mined from the following ODE

dX(x, t)

dt
≡ v(x, t) = u(X(x, t), t). (2.62)

The statistical description of ideal tracer particles in turbulent flows, which is gov-

erned by equation (2.62), is one of the main concerns of turbulence theory. Inertial

particle motion at low Stokes numbers, is determined by the system of first order

ODEs (2.60-2.61) and requires the knowledge of the full spatiotemporal (Eulerian)

fluid velocity field in equation (2.61).

Linear filtering of Lagrangian velocity

In order to model inertial particle statistics on the basis of the Lagrangian velocity,

an approximation of the coupled system of first-order ODEs is invoked which can

be termed “linear filtering of the particle velocity” due to its analogy to methods
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from signal processing [Cencini et al., 2006]. In this approximation, the particle po-

sition Xp(x, t) that enters the fluid velocity field in equation (2.61) is approximated

as the position of the ideal tracer X(x, t) whose temporal evolution governed by

equations (2.61) and (2.62), is approximated by

dvp(x, t)

dt
=

1

τp
[u(X(x, t), t)− vp(x, t)] . (2.63)

In this linear filter approximation, the particle velocity is effectively decoupled from

the particle position. Hence, the temporal evolution of the particle velocity is solely

determined by the Lagrangian velocity v(x, t) along the tracer trajectory starting

from the initial position of the inertial particle Xp(x, 0) = x. To some extent, the

linear filter neglects the spatiotemporal organization of the fluid velocity, and in turn

the segregation of inertial particles in regions of low vorticity, as is suggested by the

phenomenon of preferential concentration. Furthermore, under this approximation,

the evolution equation for the particle velocity (2.63) can be solved according to

vp(x, t) = v(x, 0)e−t/τp +
1

τp

∫ t

0

e−(t−t′)/τpv(x, t′)dt′, (2.64)

and the particle position can then be determined as

Xp(x, t) = x+ τpv(x, 0)(1− e−t/τp) +
1

τp

∫ t

0

∫ t′

0

e−(t′−t′′)/τpv(x, t′′)dt′′dt′. (2.65)

Herein, only a single component of the particle velocity vector and acceleration

are considered, denoted as vp and ap, respectively. The particle velocity is also

assumed to have reached a statistically stationary state, such that the dependence
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on its initial position can be neglected, resulting in:

vp(t) =
1

τp

∫ t

−∞
e−(t−t′)/τpu(X(t′), t′)dt′ =

1

τp

∫ t

−∞
e−(t−t′)/τpv(t′)dt′

=
1

τp

∫ +∞

−∞
gτp(t− t′)v(t′)dt′, (2.66)

where gτp(t) = e−t/τpH(t) and H(t) denotes the Heaviside step function.

The linear filter approximation for inertial particle velocities based on the tra-

jectory of individual tracer particles can also be applied to the correlation functions

of velocity,

Cvp(τ) =
1

τ 2p
(Gτp ⋆ Cv)(τ) =

1

τ 2p

∫ +∞

−∞
Gτp(τ + t)Cv(t)dt

=
1

τ 2p

∫ +∞

0

[
Gτp(τ + t) +Gτp(τ − t)

]
Cv(t)dt

=
1

2τp

∫ +∞

0

[
e−|τ+t|/τp + e−|τ−t|/τp

]
Cv(t)dt, (2.67)

where the kernel Gτp(t) = (gτp ⋆ gτp)(t) =
τp
2
e−|t|/τp is introduced and recall that the

convolution product is defined as (g1 ⋆ g2)(τ) =
∫∞
−∞ g1(t)g2(t− τ)dt. Note that the

Fourier representation of this correlation has been proposed previously by Tchen

[2013].

The determination for the inertial particle acceleration correlation function

Cap(τ) based on the filtering of the tracer acceleration Ca(τ) is performed in a similar

fashion, resulting in

Cap(τ) =
1

2τp

∫ +∞

0

[
e−|τ+t|/τp + e−|τ−t|/τp

]
Ca(t)dt. (2.68)
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The linear filter approximation allows for direct assessment of velocity and acceler-

ation correlation functions via the corresponding tracer correlation functions Cv(t)

and Ca(t).

Process for inertial particles subject to Gaussian infinitely differentiable

fluid velocity

In making use of the linear filter approximation discussed in the previous section,

the embedded OU process can readily be extended in order to allow for the effects of

finite particle inertia. The infinite layers approach provides guidance and therefore

the system of coupled stochastic differential equations can be described as

v̇p =
1

τ ∗p
(v − vp) , (2.69)

v̇ =− 1

T
v + fτη , (2.70)

where τ ∗p denotes the model particle response time, an input parameter, and τη is

a small-scale turbulence time scale of the order of the Kolmogorov dissipative time

scale. The forcing term fτη is a zero-average Gaussian random force, which is fully

determined by its covariance in the statistically stationary regime. The covariance

in both, physical and spectral space, reads

Cfτη (τ) ≡ ⟨fτη(t)fτη(t+ τ)⟩ = σ2e−τ2η/T
2

√
πTτη erfc (τη/T )

e
− τ2

4τ2η

=
2σ2e−τ2η/T

2

T erfc (τη/T )

∫
dω e2iπωτe−4π2τ2ηω

2

, (2.71)
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where, recall that erfc(x) = 1 − erf(x), the complementary of the error function

erf(x). Similar to the fluid tracer embedded OU process, each layer increases the

degree of differentiability of the Lagrangian velocity and thus improves modeling

proficiency at small time scales. Moreover, it is possible to perform the limit to an

infinite number of layers (and thus an infinitely differentiable Lagrangian velocity

v).

As observed in the structure of its covariance (2.71), the Gaussian forcing term

fτη is correlated over the dissipative time scale τη, the correlation function being

itself a Gaussian function. Moreover, this covariance structure shows that the ran-

dom process fτη(t) is infinitely differentiable, which is a direct consequence of the

smoothness of its Gaussian shape. As previously discussed, the remaining parame-

ter σ2 entering equation 2.71 corresponds to the variance of the Lagrangian velocity

v, that is the variance of the solution of equation (2.70) in the statistically steady

range σ2 = ⟨v2⟩.

Finally, the covariance function of the particle velocity vp, defined as successive

linear operations (equations 2.69 and 2.70) on the forcing term fτη , can be obtained

as

Cvp(τ) ≡ ⟨vp(t)vp(t+ τ)⟩

=
2σ2e−τ2η/T

2

T erfc (τη/T )

∫
e2iπωτ

1

1 + 4π2(τ ∗p )
2ω2

T 2

1 + 4π2T 2ω2
e−4π2τ2ηω

2

dω, (2.72)
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which can be calculated explicitly in physical space according to

Cvp(τ) =
σ2T

2(T 2 − (τ ∗p )
2) erfc(τη/T )

{
Te−|τ |/T

[
erfc

(
τη
T

− |τ |
2τη

)

+ e2|τ |/T erfc

( |τ |
2τη

+
τη
T

)]
− τ ∗p e

−|τ |/τ∗p e
τ2η

(τ∗p )2
−

τ2η

T2

[
erfc

(
τη
τ ∗p

− |τ |
2τη

)
+ e2|τ |/τ

∗
p erfc

( |τ |
2τη

+
τη
τ ∗p

)]}
. (2.73)

Herein, the dependence of the variance of the particle velocity on τ ∗p can be deter-

mined. Setting τ = 0 in equation (2.73) yields

σ2
vp =

σ2T 2

T 2 − (τ ∗p )
2

1− τ ∗p
T
e

τ2η

(τ∗p )2
−

τ2η

T2
erfc

(
τη
τ∗p

)
erfc

( τη
T

)
 . (2.74)

Therefore, in the limit τ ∗p → 0, the variance of the Lagrangian model, limτ∗p→0 σ
2
vp =

σ2, is recovered. The acceleration correlation function can be calculated from equa-

tion (2.73) yielding

Cap(τ) =
σ2T

2(T 2 − (τ ∗p )
2) erfc(τη/T )

{
1

T
e−|τ |/T

[
2T√
πτη

e
−
(

τη
T
− |τ |

2τη

)2

− erfc

(
τη
T

− |τ |
2τη

)

− e2|τ |/T erfc

( |τ |
2τη

+
τη
T

)]
− 1

τ ∗p
e−|τ |/τ∗p e

τ2η

(τ∗p )2
−

τ2η

T2

[
2τ ∗p√
πτη

e
−
(

τη
τ∗p

− |τ |
2τη

)2

− erfc

(
τη
τ ∗p

− |τ |
2τη

)
− e2|τ |/τ

∗
p erfc

( |τ |
2τη

+
τη
τ ∗p

)]}
. (2.75)
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The variance of the acceleration can be determined according to

σ2
ap =

σ2

T 2 − (τ ∗p )
2

 T
τ ∗p

e
τ2η

(τ∗p )2

e
τ2η

T2

erfc
(

τη
τ∗p

)
erfc

( τη
T

) − 1

 . (2.76)

In the limit of τ ∗p → 0, the reduced tracer model is recovered. The proposed model

possesses Gaussian properties, i.e., the particle velocity statistics is fully determined

by the correlation function (2.73). In the present model, the fluid properties enter

through the turnover time T and the small time scale τη, which can be parameterized

in order to match certain characteristics of Lagrangian tracers. This model includes

an additional parameter, the particle response time τ ∗p , which is determined in order

to match the zero-crossing of the acceleration correlation function for different Stokes

numbers.

Inertial particle statistics from Batchelor’s model for Lagrangian tracers

Additionally, the Batchelor parametrization can be used to model inertial particle

statistics directly at the level of the second-order structure function S2(τ) = 2σ2 −

2Cv(τ) and differentiability of the Lagrangian velocity is ensured by introducing the

correct dissipation range behavior at small τ . Recall, proper cutoff at large scales

lead to an alternative form of the second-order structure function equation,

S2(τ) = 2σ2 1− e−
τ
T[

1 +
(

τ
τη

)−δ
] 1

δ

, (2.77)

which entails a finite Lagrangian integral time scale. For the case of δ = 2 used here

in contrast to δ = 4 of the multifractal formalism, this time scale can be calculated
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explicitly

TL =

∫ ∞

0

dτ
Cv(τ)
Cv(0)

= τη

[
1− π

2
Y1

(τη
T

)
− π

2
H−1

(τη
T

)]
, (2.78)

where the Bessel function of the second kind, Yn(z), is introduced and Hn(z) the

Struve function, as it is provided by a symbolic calculation software. In this frame-

work, the acceleration correlation function for the tracer particle can be calculated

from the second-order structure function by Ca(τ) = d2S2(τ)/2dτ
2.

Finite particle inertia can again be included in using the linear filter approxima-

tion discussed in Section 2.2.4 where equation (2.67) has to be evaluated from the

Lagrangian velocity correlation Cv(τ) = σ2 − S2(τ)/2. A closed expression for the

integral could not be obtained and therefore a numerical evaluation is used.

2.3 Results

2.3.1 Illustrations of the stochastic processes for tracer particles

A numerical illustration of the Gaussian process is presented in order to observe

how the statistical characteristics for a given set of values of the parameters τη and

T go towards the limiting process v (and given in Proposition A.1.2) as the number

of layers n increases.

Numerical Illustration of a Gaussian stochastic process

Simulations are performed of the set of equations 2.20 to 2.24 using n = 9 layers,

and for τη = T/10. For instance, choosing T = 1, which is equivalent to dimen-

sionalized time scales in units of T . Time integration is performed with a simple

Euler discretization scheme. The choice for dt is dictated by the smallest time scale
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of the system, here τη/
√
n− 1. For n = 9, the value dt = τη/100 is found to be

small enough to guarantee the appropriate behavior. Choosing σ2 = 1, and the re-

spective weight α9 of the white noise is given in equation 2.25, trajectories are then

integrated over 104T and results are shown in figure 2.1. A simulation using more

layers is possible, although the simulation gets heavier, and as will be observed, the

statistical properties of the nine layer process are very close to the asymptotic ones

(as n → ∞). Also, recall that the white noise weight αn+1 increases as nn, so from

a numerical point of view, if n is chosen large, it may introduce additional rounding

errors related to the double-precision floating-point format.

Figure 2.1(a) displays time instances of the obtained processes v9(t) and its

derivatives a9(t), over 5T after numerically integrating the equations 2.20 to 2.24.

The first derivative of v9(t) , namely a9(t), is 7-times differentiable; resulting in a

smooth profile correlated over τη. In figure 2.1(b), three curves are presented: (i) the

estimated correlation function Cv9 (dots), (ii) its theoretical expression (solid line),

obtained when performing the integral entering in equation (2.26) using a symbolic

calculation software, and (iii) the asymptotic correlation function Cv given in equa-

tion (2.27) (dashed line). The profiles collapse making it difficult to distinguish

between these three curves. The velocity correlation functions Cvn depend weakly

on n (not shown), this can due to the fact that the dependence on n is only really

evident in the dissipative scales.

To observe the improvements obtained by including increased layers, figure 2.1(c)

provides the corresponding estimated and theoretical curves Can for n ranging from 2

to 9. quantifying the convergence of the acceleration correlation function towards its

asymptotic regime. Recall that Ca2 corresponds to the prediction of Sawford [1991],
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Figure 2.1: The numerical simulation of the Gaussian layered model, 2.20 to
2.24, for τη = T/10 and σ2 = 1. (a) Time series example of velocity v9(t) (dashed
line) and acceleration a9(t) (solid line) with n = 9 layers. (b) Respective corre-
lation function Cv9 , estimated from numerical simulations (dots), theoretically
derived from equation (2.26) (solid line), and the asymptotic process Cv (equa-
tion (2.27)) in dashed lines. (c) Acceleration correlation functions Can using n
layers, n ranging from 2 to 9 (from left to right), using σ2 = 1 and αn = α9

(equation (2.25)). Numerical estimations are displayed with dots, respective
theoretical expressions starting from equation (2.26) are represented with solid
lines, and the asymptotic correlation function Ca (equation (2.28)) is a dashed
line. For the sake of clarity, all curves are normalized by their values at the
origin.
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which is characteristic of the correlation function of a non-differentiable process

(Ca2 is not twice differentiable at the origin). A perfect agreement between the

numerical estimation based on random time series, and the theoretical expressions

is observed and also derivable from equation (2.26). As the number of layers n

increases, the acceleration correlation functions become more and more curved at

the origin, guaranteeing finite variance of higher order derivatives. The associated

asymptotic correlation function Ca is superimposed using a dashed line. Ca9 is very

close to Ca, as shown in figure 2.1(d), showing that considering n = 9 layers is

enough to reproduce the statistical behaviors of the asymptotic process, at least for

velocity and acceleration.

2.3.2 Numerical Illustration of the stochastic process with intermittency

corrections

An efficient algorithm under the periodic approximation

A numerical algorithm able to reproduce in a realistic and efficient fashion the

statistical behavior of the process u is proposed, the statistical properties of which

are detailed in Propositions A.1.5 and A.1.6. Recall, the process u, contrary to the

Gaussian process v, obeys non Markovian dynamics. More precisely, the process

X(t) at a given time t, the limiting solution, as the number of layers n goes to

infinity and the small parameter ϵ goes to 0, of the system of embedded stochastic

differential equations 2.41 to 2.45, requires the knowledge of its entire past. It is

appealing to use the discrete Fourier transform to solve its dynamics. Therefore

periodical solutions of the non Markovian dynamics are generated. Further, by

considering very long trajectories, of order 105 times the largest time scale T of the
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process, all aliasing effects will be negligible and thus, a periodic approximation is

well justified.

Consider first an estimator for the process X̂n,ϵ of the continuous solution Xn,ϵ

of the coupled system equations (2.41) to (2.45). Call N the number of collocation

points, Ttot the total length of the simulation, and ∆t the timestep. As already men-

tioned, require Ttot = N∆t ≫ T to prevent aliasing errors. In the aforementioned

periodic framework, the estimator becomes

X̂n,ϵ[t] =

√
β̃nDFT

−1
(
DFT (gT )DFT

n−1
(
g τη√

n−1

)
DFTc (hϵ)DFT

(
W̃
))

[t]×(∆t)n,

(2.79)

where the discrete Fourier transform (DFT) is introduced as well as a multi-

plicative constant β̃n given in equation (2.46). Also entering into the expres-

sion above are properly discretized and periodized forms of the continuous func-

tion gτ (t) = e−t/τ1t≥0 at the time scales T and τη√
n−1

. Similarly, a discretized

and periodized form of the continuous function hϵ(t) = −1
2
(t + ϵ)−3/21t≥0, and

DFTc(hϵ)[ω] = DFT(hϵ)[ω]− DFT(hϵ)[0] are included. Finally, W̃ [t] is an instance

of the white noise field, composed of N independent Gaussian random variables of

zero average and variance ∆t. It is of note that subtracting from the DFT of hϵ its

value at the origin is equivalent to adding the same white noise, as it is proposed

in a continuous version (equation (2.45)), but reducing additional numerical error

due to the finiteness of ∆t. The (∆t)n factor originates from the convolution by the

kernel gT (t) and (n− 1) convolutions by the kernel g τη√
n−1

.

In a similar manner, the numerical, discretized and periodized, estimator ûn,ϵ of
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the continuous solution un,ϵ of the coupled system equations (2.35) to (2.39) reads

ûn,ϵ[t] =
√
βnDFT

−1

(
DFT (gT )DFT

n−1
(
g τη√

n−1

)
DFT

(
eγX̂n,ϵ

e
γ2

2
⟨X̂2

n,ϵ⟩
W

))
[t]×(∆t)n−1,

(2.80)

where βn is provided in equation (2.40), and recall that the white noise W is inde-

pendent of W̃ from equation (2.79). The fact that (∆t)n−1 is used in 2.80, instead of

(∆t)n (as in equation (2.79)), originates from the white (i.e. distributional) nature

of W , whereas W̃ is already smoothed out by the kernel hϵ.

The timestep ∆t has to be chosen smaller than the smallest scale of motion,

which is τη√
n−1

. Furthermore, a realistic simulation of the limiting process u is of

interest, obtained in the limit ϵ → 0, at a given finite τη. A convenient choice for

ϵ is therefore, to take it proportional to ∆t, such that both of them go to 0 in the

continuous limit. In subsequent simulations, this relates to:

∆t =
τη

200
√
n− 1

and ϵ = 5∆t. (2.81)

This choice gives numerical stability and a proper illustration of the exact statistical

quantities provided in Propositions A.1.5 and A.1.6 for the range of investigated

values of τη. To prevent aliasing errors, a large number of collocation points N = 232

are used, such that Ttot = N∆t is always much larger than T .

Numerical results and comparisons to theoretical predictions

Again, taking the large timescale to be T = 1, the (discrete) Fourier transforms,

as they are detailed in equations (2.79) and 2.80, are numerically integrated using

T/τη = 10, 20, 50, 100, 200 and 500. Keeping in mind that τη is a fairly good
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representation of the Kolmogorov time scale, these values correspond to a range of

Reynolds numbers. Choosing for ∆t and ϵ the values depicted in equation (2.81), and

with N = 232 collocation points and n = 9 layers, the worst scenario corresponding

to the smallest τη a total time of simulation Ttot = N∆t ≈ 104T still prevents any

aliasing effects. The particular value,

γ2 = 0.085, (2.82)

is found to be representative of the level of intermittency as it is seen in numerical

simulations of the Navier-Stokes equations, consistent with previous estimations (see

Mordant et al. [2002], Chevillard et al. [2003], Biferale et al. [2004], Chevillard et al.

[2012] and references therein). The statistical quantities are averaged over three

independent instances of these trajectories.

For clarity, the hat is herein omitted on the simulated discrete version of u9,ϵ and

figure 2.2(a) and (b) display two instances of this stochastic process for the largest

τη = T/10 (lowest Reynolds number) and the smallest τη = T/500 (highest Reynolds

number) ratios of the small over the large time scales. Velocity is represented using a

dot-dashed line, and the acceleration with a solid line. All time series are divided by

their respective standard deviation for the sake of comparison. In the low Reynolds

number case (figure 2.2(a)), velocity is indeed correlated over t, while acceleration is

correlated over a shorter time scale τη. In the highest Reynolds number case (figure

2.2(b)), the scale decoupling between the large T and the small τη time scales is

observed. Also, the statistics of acceleration are observed to be non Gaussian.

This is a manifestation of the intermittency phenomenon, which is modeled by
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Figure 2.2: Numerical simulation, in a periodical fashion, of the set of equa-
tions 2.35 to 2.39 using n = 9 layers, for T/τη = 10, 20, 50, 100, 200, 500, and
σ2 = 1. (a) Typical time series of the obtained processes u9(t) (dashed line)
and a9(t) (solid line) for T/τη = 10, normalized by their standard deviation.
(b) Similar time series as in (a), but for T/τη = 500. (c) Respective velocity
correlation functions Cu9 for the six τη values, estimated from numerical simula-
tions (dots), and asymptotic theoretical prediction Cu (equation (A.28)) (solid
line). (d) Respective acceleration correlation functions Ca9 and compared to the
asymptotic correlation function Ca (equation (A.32)). All curves are normalized
by their values at the origin.

the multiplicative chaos that enters into the construction. These non Gaussian

fluctuations would be enhanced by a higher value for γ (data not shown) than the

one chosen presently (equation (2.82)).

Figure 2.2 also includes the velocity (c) and acceleration (d) correlation func-

tions. Results from the numerical simulation of equations (2.79) and (2.80) for the
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six values of τη are displayed using dots and the theoretical expressions provided

in equations (A.28) and (A.32) are superimposed. The velocity correlations (figure

2.2(c)) show striking agreement between the numerical estimation based on time

series of u9,ϵ and the limiting theoretical expression (equation (A.28)) as was ob-

served in the Gaussian case (figure 2.1). Furthermore, the dependence on τη is very

weak due to the fact that velocity is a large scale quantity, mostly governed by

the physics taking place at T . To this regard, acceleration correlation functions

will highlight the physics ruling phenomena which occur at τη and are displayed in

figure 2.2(d). All curves are normalized by the respective value at the origin (i.e.

the acceleration variance). The low Reynolds number case (largest τη) is the curve

going the most negative after the zero-crossing and as τη decreases, Ca(τ) is closer

to 0. This is consistent with the constraint that the integral of this curve has to

vanish as a consequence of statistical stationarity. Once again, the collapse of the

numerically estimated Ca9(τ) (dots) on the limiting theoretical expression given in

equation (A.32) (solid line) is excellent.

Figure 2.3(a) presents the scaling behavior of the second-order structure function

Su9,ϵ,2(τ) = ⟨(δτu9,ϵ)2⟩ (solid lines) for the 6 values of τη. In this representation,

Su9,ϵ,2(τ) is normalized by 2⟨u29,ϵ⟩, such that it goes to unity at large arguments

τ ≫ T . At small scales τ ≪ τη the dissipative behavior Su9,ϵ,2(τ) ∝ τ 2 is recovered,

a consequence of the differentiable nature of the process. In the inertial range

τη ≪ τ ≪ T , as expected by the theoretical prediction, a behavior similar to an

OU process is obtained, that is Su9,ϵ,2(τ) ∝ τ . Using a dashed line, the expected

behavior from an OU process, namely Su1,2(τ) = 2⟨u21⟩
(
1− e−|τ |/T ) is also included,

which describes with great accuracy the scaling behavior of Su9,ϵ,2(τ) in the inertial



55

-12

-10

-8 

-6 

-4 

-2 

0  

-10 -8 -6 -4 -2 0  2  

0  

0.4

0.8

1.2

1.6

2  

-15

-10

-5 

0  

-20 -15 -10 -5 0  5  10 15 20 

-15

-10

-5 

0  

Figure 2.3: Illustration of higher order statistics of the processes studied in
figure 2.2. (a) Logarithmic representation of the second-order structure function
of the six different values of τη (solid lines), and the asymptotical prediction pro-
vided in equation (A.37) (dashed line). (b) Estimation of the Probability density
Functions of velocity increment for τη/T = 1/10. (c) Logarithmic process of the
flatness of velocity increments with the theoretical prediction superimposed. (d)
Similar plot as in (b), but for τη/T = 1/500.

range and at larger scales. The second-order statistics of u9,ϵ are well described by

the asymptotic predictions in this range of scales. Similar conclusions were obtained

while describing velocity correlation function in figure 2.2(c).

To investigate intermittent behaviors, figure 2.3(c) presents the scaling behavior

of the flatness of velocity increments, that is Su9,ϵ,4/S2
u9,ϵ,2

(solid lines), and for the

6 different values of τη, in a logarithmic fashion. The flatnesses are normalized by

3, i.e. the value obtained for Gaussian processes. Flatnesses are observed close to 3
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at large scales τ ≥ T , and then increase in the inertial range as a power-law, before

saturating in the dissipative range τ ≤ τη. This saturation is typical of differentiable

processes: a Taylor series of increments makes the dependence on τ disappear. On

this plot, using a dashed line, the theoretical prediction is included that was made

for MRW (equation (2.33)) without the unjustified additional free parameter. The

power-law exponent is given by −4γ2, and the multiplicative constant is close to

the one derived for the non-differentiable MRW (equation (2.33)). This theoretical

prediction seems to be more and more representative of the intermittent properties

of u9,ϵ as τη gets smaller and smaller. This indicates that the constant cγ,4 which

is tedious to compute in an exact fashion for the infinitely differentiable MRW

(equation (A.39)) is the same as in the non differentiable case (equation (2.33)).

This shows that the limits ϵ → 0 and τη → 0 commute at the fourth-order too

(equations (A.38) and (A.39)).

Finally, to illustrate the intermittent behavior of the process u9,ϵ, figures 2.3(b)

and (d) display the probability density functions (PDFs) of velocity increments at

various scales, from large to small: (b) τη/T = 1/10 and (d) τη/T = 1/500. The

continuous shape deformation of these PDFS is observed as the scales τ decreases

in length, from Gaussian at large scales τ ≥ T to strongly non-Gaussian in the

dissipative range. This is consistent with the behavior of flatnesses (figure 2.3(c)),

becoming less and less Gaussian as τη diminishes in size.
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2.3.3 Comparison to Direct Numerical Simulations for tracer particle

modeling

To this point, only illustrations of the model based on input parameters have been

presented. A comparison to simulations will show the capabilities of the model.

Description of the datasets

Two sets of data are considered which have been made freely accessible to the

public. The data are statistically homogeneous and isotropic numerical flows ob-

tained by solving the Navier-Stokes equations in a periodic box. Lagrangian tra-

jectories are then extracted from the time evolution of the Eulerian fields while

integrating the positions of tracer particles, initially distributed homogeneously

in space. The first set is a direct numerical simulation (DNS) at a moderate

Taylor based Reynolds number Rλ = 185, referenced in Bec et al. [2006, 2011],

which can be downloaded from https://turbase.cineca.it/. The second dataset

has a higher Taylor based Reynolds number Rλ = 418, hosted at JHTDB (see

http://turbulence.pha.jhu.edu). Details on this DNS and how to extract La-

grangian trajectories can be found in Li et al. [2008], Yu et al. [2012]. Relevant

parameters of these datasets and of the Lagrangian trajectories are given in Table

2.1. It is of note that the Kolmorogov time scale from the DNS is denoted as τK to

differentiate from the modeling parameter of τη.

Definition and estimation of the Lagrangian integral time scale

A connection is required between the modeling approach and numerical investiga-

tions. This is achieved by considering quantities that can be extracted from DNS
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Origin Resolution Rλ τK TL Trajectories dt Duration

Turbase 5123 185 0.0470 0.7736 126720 4.10−3 17.063TL
JHTDB 10243 418 0.0424 1.3003 32768 2.10−3 7.692TL

Table 2.1: Summary of relevant physical parameters of the two sets of DNS
data.

data, and relating them to the free parameters entering in the definition of the

stochastic process u, namely τη, T and γ.

Call TL the Lagrangian integral time scale, defined as the integral of the velocity

correlation function, i.e.

TL =

∫ ∞

0

Cu(τ)
Cu(0)

dτ, (2.83)

where u stands for any Lagrangian velocity components extracted from DNS data,

or the present stochastic model.

The definition of TL (equation (2.83)) is appealing because it can be applied

to and estimated from velocity time series coming indifferently from DNS or the

model, but it requires proper statistical convergence of Cu(τ) which is especially

difficult to acquire from DNS. This becomes even more of an issue when considering

experimental data (see a recent discussion on this by Huck et al. [2019]) in which

the duration of trajectories are typically shorter. Moreover, on the entire accessible

statistical sample, made of a minimum of tens of thousands of trajectories for each

three velocity components, a non negligible level of anisotropy is observed for both

sets of data, the standard deviation of the variance of the three velocity components

is of order of 20% of the average variance. This level of anisotropy is surprising

given the isotropic and periodic boundary conditions of the advecting flow, forcing

the conclusion that in both DNSs, trajectories are not long enough to guarantee
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statistical isotropy. This has consequences on the estimation of TL. Nonetheless,

and because ultimate expectation is that the flow, and incidentally its Lagrangian

trajectories, is isotropic, the velocity correlation function is averaged over the three

components, keeping in mind that the lack of statistical convergence can induce an

error on the estimation of this large time scale. Findings are gathered in Table 2.1.

Notice that this observed anisotropy on the velocity variance has weak impact on

the acceleration correlation function once normalized by its value at the origin (data

not shown). This can be understood by realizing that acceleration is governed by

the small scales of the flow, whereas velocity by the large scales.

Statistical analysis of the DNS datasets

Figure 2.4(a) and (c) display the numerical estimation of velocity and acceleration

correlation functions based on the Lagrangian trajectories extracted from DNS, at

moderate Reynolds number Rλ = 185 (◦) and at high Reynolds number Rλ = 418

(2). Time lags τ are normalized for Cu(τ) by a large time scale T coming from

the adopted calibration procedure of the model. At this level of discussion, keep in

mind that T is very close to TL (equation (2.83)). Concerning Ca(τ) (figure 2.4(c)),

the time lags τ are normalized by the Kolmogorov time scale τK that reads

τK =

√
ν

⟨ε⟩ , (2.84)

where ν is the kinematic viscosity and ⟨ε⟩ the average viscous dissipation per unit of

mass. It is observed that, in this representation where scales are normalized by τK ,

Ca(τ) crosses zero at a Reynolds number independent time scale. Call such a scale τ0,
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thus defined by Ca(τ0) = 0, as has been observed in numerical and laboratory flows

[Yeung et al., 2007, Huck et al., 2019]: the zero-crossing time scale of acceleration

has a universal (i.e. Reynolds number independent) behavior with respect to the

Kolmogorov time scale τK (equation (2.84)), such that

τ0 ≈ 2.2 τK , (2.85)

in the range of investigated Kolmogorov time scales. For the DNS, a value of τ0 =

2.11 τK at Rλ = 185, and τ0 = 2.14 τK at Rλ = 418, similar to previous findings of

Yeung et al. [2007] (equation (2.85)). This can be used to fully calibrate the model

by relating the free parameter τη to the characteristics of the numerical flows.

Similarly, the scaling behavior of the second-order structure function Su,2 (fig-

ure 2.4(b)) and of the flatness of velocity increments (figure 2.4(d)) are displayed.

The three expected ranges of scales: the dissipative one with Su,2(τ) ∝ τ 2, the in-

ertial one with Su,2(τ) ∝ τ , and the saturation towards 2⟨u2⟩ at larger scales are

observed. The flatness, again shows saturation at the Gaussian value 3 at large

scales, and a power-law behavior in the inertial range, reminiscent of the intermit-

tency phenomenon. There are differences observed between the processes and their

respective DNS, for example, more rapid increase in the intermediate dissipative

range is observed, and then a Reynolds number dependent saturation towards the

flatness of acceleration. This is a known effect of the fine structure of turbulence,

linked to subtle differential action of viscosity that depends on the local regularity

of the velocity field [Chevillard et al., 2003, 2005, 2006, Arneodo et al., 2008, Benzi

et al., 2010, Chevillard et al., 2012]. This phenomenon is well reproduced by the
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Figure 2.4: Comparison of DNS data Rλ = 185 (◦) and Rλ = 418 (2)
to model predictions. Estimation of the (a) velocity correlation function with
theoretical predictions where time lags are normalized by the calibrated time
scale T and (b) the second-order structure function. DNS comparison with the
model for the acceleration correlation function, normalized by its value at the
origin (c) and the flatness (d) are also included. Theoretical predictions are
obtained via numerical estimation of velocity time series of the model (Section
2.3.2).

phenomenology of the intermittency phenomenon developed in the framework of the

multifractal formalism [Paladin and Vulpiani, 1987, Frisch, 1995].
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Reynolds number dependence of the zero-crossing time scale of the ac-

celeration correlation function

Model predictions of the zero-crossing time scales

The present model, both for the Gaussian version v (Proposition A.1.2 and fig-

ure 2.1(d)) and for its intermittent generalization u (Proposition A.1.5 and figure

2.2(d)), predicts this aforementioned zero-crossing time scale τ0 of the accelera-

tion correlation function, as a function of its parameters τη and T . At this level

of discussion, the influence of the intermittency parameter γ is neglected in this

picture, it has a weak influence on its overall shape, even in the dissipative range

(data not shown). Therefore, given the low value of γ2 = 0.085, making the pre-

dicted intermittent acceleration correlation function indiscernible from its Gaussian

approximation, further theoretical discussions are herein presented, which neglect

these non-Gaussian effects. It is moreover convenient since in this case, Ca(τ) has

an explicit form (equation (2.28)), that makes its dependence present on τη and T .

Further inspection of the numerical results presented in figure 2.2(d) when τη

is varying shows that this predicted zero-crossing time scale depends in a non triv-

ial way on τη. Keeping only the leading terms entering in equation (2.28) as τη,

asymptotically, this time scale behaves as

τ0 ∼
τη→0

2τη

√
log

(
T√
πτη

)
. (2.86)

Taking into account the empirical fact that the zero-crossing time scale is propor-

tional to the Kolmogorov time scale τK in a universal way (equation (2.85)), this

shows that τη, up to logarithmic corrections, has the same Reynolds number depen-
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dence as τK , and thus can be considered as a dissipative time scale. Interestingly,

for the process proposed by Sawford (Section 2.2.1), named here v2, such a zero-

crossing time scale can be exactly derived from equation (2.11). This case results

in τ0 = τη
log(T/τη)

1− τη
T

. The present prediction for τ0 (equation (2.86)) made with an

infinitely differentiable process can be seen as an improvement of the model by

Sawford, since the parameter τη is closer to τK .

The proposed calibration procedure of models parameters

As suggested, neglecting all possible intermittent effects in this discussion, devel-

opments are executed with the explicit second-order statistical properties of the

Gaussian process v (Proposition A.1.2). To determine the free parameters of the

model τη, given the characteristic scales of the DNS τK and TL, the nonlinear system

of coupled equations

TL = T
e−τ2η/T

2

erfc (τη/T )
(2.87)

Ca(ατK) = 0, (2.88)

are solved, where the exact expression of TL in equation (2.87) can be easily obtained

from equation (A.8), the explicit expression of Ca is provided in equation (2.28), and

α being equal to 2.11 at Rλ = 185, and 2.14 at Rλ = 418. This is the calibration

procedure. Using a standard numerical solver of nonlinear equations and the values

of (τK , TL) provided in Table 2.1, the solution of the system of equations 2.87 and

2.88 provides (τη/τK , T/TL) = (0.6335, 0.9562) for Rλ = 185, and (0.5759, 0.9791)

for Rλ = 418.
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2.3.4 Comparison of model predictions to DNS data

Having performed the calibration procedure depicted in Section 2.3.3, and obtained

the respective values for the free parameters τη and T , a comparison of the present

model predictions to data is performed. Theoretical second-order statistics are pre-

sented in figures 2.4(a) and (b) using solid lines where an almost perfect collapse

with the statistical estimations based on DNS data is shown.

The acceleration correlation function is shown in figure 2.4(c). At the moderate

Reynolds number, Rλ = 185, the agreement is excellent in the dissipative range, i.e.

for scales smaller that the zero-crossing time scale τ0. A slight disagreement above

τ0 is observed which could be due to the lack of statistical convergence at large

scales which overestimates the integral time scale TL, as previously discussed in

Section 2.3.3. At the current level of precision, overall agreement with second-order

statistics is satisfactory at this Reynolds number. At a higher Reynolds number

Rλ = 418, discrepancies can be seen in the dissipative range. This is very probably

due to intermittency effects, that are negligible in the model, but not in DNS. To

see this more clearly, the flatness of velocity increments is considered.

In figure 2.4(d) the theoretical predictions of the model for flatnesses using the

prescribed value γ2 are superimposed using solid lines. To get these theoretical pre-

dictions, additional numerical simulations of time series of the model are performed,

as it is done in Section 2.3.2, for the calibrated values of the parameters τη and T

obtained in Section 2.3.3. Good agreement is seen in the inertial range, showing

that the chosen value for the intermittency coefficient γ is realistic of DNS. Unfor-

tunately, the model is unable to reproduce the rapid increase of intermittency in the

dissipative range. To go further in this direction, the predictions of the multifractal
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formalism are presented to accurately depict the behavior of the flatnesses in this

range of scales.

2.3.5 Multifractal formalism calibration of the free parameters and com-

parisons to DNS data

The same calibration of the free parameters τη and T is adopted for the multifractal

formalism. The nonlinear problem is solved numerically, obtaining τη and T from

the empirical value of TL and the appropriate zero-crossing of acceleration time

scale given in unit of τK . It is very similar to solving the system of equations (2.87)

and (2.88), with the exception that the integral time scale TL predicted from the

model has to be computed numerically using a standard integration scheme of the

expression provided in equation (2.50). To give an initial estimate to the numerical

algorithm that looks for zeros of functions, as it is required to solve this nonlinear

problem, a initial prediction for the zero-crossing of acceleration time scale τ0 can

be made. Using the parametrization per Batchelor of the second-order structure

function (equation (2.48)), and the corresponding prediction of the acceleration

correlation function (equation (2.49)), a good approximation of τ0 is expected to be

τ0 ≈
τη→0

τη

(
δ − 1

2

)− 1
δ

, (2.89)

showing that the free modeling parameter τη is expected to be proportional to the

Kolmogorov dissipative time scale τK .

Using the physical parameters of the DNS data provided in Table 2.1, assuming

furthermore γ2 = 0.085 and δ = 4, the solution of this aforementioned nonlinear
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system of equations is pursued, resulting in (τη/τK , T/TL) = (2.7596, 0.9927) for

Rλ = 185, and (2.6106, 0.9983) for Rλ = 418.

With these calibrated inputs a comparison is made to DNS data. Figures 2.5(a),

(b) and (c) present the predictions of the velocity correlation function Cv(τ), the

second-order structure function S2(τ) and the acceleration correlation function

Ca(τ), all based on the multifractal parametrization of the second-order structure

function (equation (2.50)), and its second derivative (equation (2.56)). As far as

velocity is concerned, a perfect agreement between predictions and DNS data is

observed, for both correlation (figure 2.5(a)) and second-order structure function

(figure 2.5(b)).

Concerning the acceleration correlation function Ca(τ) (figure 2.5(c)), predictions

slightly overestimate the negative values after the zero-crossing, opposite to the

behavior seen by infinitely differentiable process (figure 2.4(c)). Below the zero-

crossing time scale, predictions overestimate the decrease of correlation. Compared

to the curves of the stochastic process, displayed in figure 2.4(c), the predictions

based on the multifractal formalism do not perform as well.

Focusing on the intermittency corrections, as it is quantified by the flatness of

velocity increments, figure 2.5(d) compares the flatness of increments, based on DNS

and on the current multifractal model using the expression given in equation (2.57).

The multifractal predictions accurately reproduce the overall shape of the flatness,

including the rapid increase in the intermediate dissipative range, for both Reynolds

numbers. Recall here that this dissipative behavior is not reproduced by the stochas-

tic approach. Furthermore, a slight shift between numerical and theoretical curves

is seen: this indicates that the large time scale associated with intermittent correc-
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Figure 2.5: Comparison of DNS data Rλ = 185 (◦) and Rλ = 418 (2) to
model predictions for multifractal predictions. (a) Estimation of the velocity
correlation function from DNS data and the theoretical predictions based on
the multifractal parametrization. Time lags are normalized by the calibrated
time scale T . (b) The second-order structure function. DNS comparison with
the multifractal formalism output for the acceleration correlation function, nor-
malized by its value at the origin (c) and the flatness (d). Theoretical predictions
are obtained from the expression given in equation (2.57).

tions is slightly larger that the one associated to the velocity correlation time scale.

This could be included in the expressions of structure functions (equations (2.50)

and (2.57)) at the price of introducing another ad-hoc free parameter of order unity,

without further justifications (data not shown). Nonetheless, overall, the present

multifractal model reproduces, in good agreement, the curves of DNS data, both in

the inertial and dissipative ranges.
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2.3.6 Illustrations of the stochastic processes for inertial particles

Resulting processes and statistics of a model, which includes the effects of finite

inertia, are herein presented.

Direct numerical simulations of Lagrangian trajectories of the inertial

particles

Utilizing the abilities of the DNS from JHTDB (dataset information provided in

Section 2.3.3, Table 2.1), in addition to the tracers, twenty datasets are created

containing the particle trajectories of varying Stokes numbers [Yu et al., 2012]. The

equation of motion of inertial particles equations (2.60-2.61) are solved by a second-

order Runge-Kutta scheme and each DNS subset of data contains 323 trajectories.

Here, in addition, the generated particles tracks contain a St = [0:0.2:2] to provide

a range of low to high Stokes for validating the model.

For a first look at the dynamics associated with inertial particles in comparison

to tracers, the temporal evolution of particle position Xp(t), a velocity compo-

nent vp(t), and the corresponding acceleration ap(t) for St= 0.2 are presented in

figure 2.6 for a time span of ≈ 110τK . For comparison, figure 2.6(b), shows the

three-dimensional trajectory of an ideal tracer X(x, t) starting from the same ini-

tial condition Xp(0) = x. While the tracer (yellow) velocity exhibits several strong

oscillations, the inertial particle (purple) velocity seems much less affected. From

figure 2.6(b), it is noted that, at already at such low Stokes numbers, the trajectory

of the particle follows a substantially different path. In the context of preferential

concentration [Cencini et al., 2006, Pumir and Wilkinson, 2016], one could interpret

this in terms of the inertial particle evading strong vortical flow structures. This
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might also be supported by the evolution of the acceleration whose amplitude (and

statistically speaking its variance) is significantly decreased in comparison to the

tracer particle.

Figure 2.6: (a) Velocity vx(t) (upper panel) and acceleration ax(t) (lower panel)
of tracers, filtered tracers with τp (St=0.2) and τ ∗P (St∗) and true inertial particles
for St = 0.2. (b) Trajectories of tracer, filtered tracers, and inertial particles.

Figure 2.6 also includes the trajectory modeled for St = 0.2 form the linear filter

approximation from equation (2.63) which remains very close to its determining

tracer trajectory. This is most visible by the temporal evolution of the acceleration,

suggesting that the linear filter overestimates the acceleration variance in comparison

to the ordinary inertial particle. Cencini et al. [2006] applied the same technique to

compare root-mean-squared accelerations and observed large discrepancies between

filtered and true arms at low St. Nonetheless, for larger Stokes numbers, true and

filtered arms-values seemed to approach one another. This suggests that non-trivial

effects of the preferential concentration, when inertia is introduced to the particles,

creates the gap between true and filtered results for St <1. To better understand
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these effects, the acceleration auto-correlation function which has been obtained

by averaging over all Np = 323 particle trajectories is depicted in figure 2.7(a).

Here, the dash-dotted curves correspond to the linear filter approximation (2.68) for

τp = StτK with St= [0.1, 0.2, 0.5, 1, 2] from left to right. The fluid velocity correlation

function Ca(τ) was integrated over the entire time range of the simulation T (see also

Table 2.1). In agreement with the findings by Cencini et al. [2006], the modeling

breaks down initially, drastically underestimating the correlation of the particle for

St ≤1, but recovers to generate meaningful statistics for St=2. It is noted that for

low Stokes, the correlations are similar to the ideal tracer (not shown in the figure),

therefore they decorrelate much faster.

These profound changes between inertial particle and tracers (or filtered trac-

ers) acceleration properties at low Stokes also manifest themselves in the root mean

square of acceleration. Figure 2.8 depicts the root mean square values of accel-

eration arms as a function of St for inertial particles and filtered tracer particles

according to equation (2.66). The arms-values of inertial particles decreases much

faster than their filtered counterparts. These strong discrepancies were interpreted

by Cencini et al. [2006] in terms of inertial particles which preferentially sample re-

gions of low turbulence intensity (or depleted vorticity regions) whereas the filtered

tracer particles are still impacted by strong acceleration events of tracer trajectories

trapped in vortical structures. In other words, by restricting itself to individual

tracer trajectories X(x, t), the filtering approach bears no information on the spa-

tial organization of the surrounding fluid velocity field, which apparently is crucial

for a better understanding of the dynamics of inertial particles.

Therefore, a modification of the linear filter is proposed, which is in better agree-
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Figure 2.7: (a) Acceleration correlation from DNS for inertial particles with
Stokes numbers St = 0.1, 0.2, 0.5, 1., 2. The dash-dotted lines correspond to the
linear filter approximation with τp = StτK . (b) Acceleration correlation function
for a filter with an effective Stokes number St∗ = τ ∗p /τK which has been deter-
mined from the zero-crossing of the acceleration correlation from DNS (dash-
dotted curves and DNS curves now possess the same zero-crossing).

ment with DNS but at the same time still is solely based on the Lagrangian velocity

v(x, t) of an individual tracer. This is accomplished by introducing an effective

particle response time τ ∗p in the linear filter approximation (2.63) which does not

necessarily obey the usual relation τp = StτK , but henceforward is considered as

a free model parameter. Similar to methods presented for tracer modeling, which

identified the zero-crossing of the acceleration correlation as a crucial ingredient for

model calibration, in a similar way. First, the zero-crossing τ0(St) of the acceleration

auto-correlation functions are determined from DNS curves. Subsequently, with the

help of a suitable roots-finding algorithm, the effective particle response time τ ∗p (St)

in equation (2.68) is determined in such a way that Cap(τ0(St)) = 0.

Figure 2.7(b) depicts the acceleration auto-correlation functions (dash-dotted

curves) after this calibration. By introducing an effective particle response time τ ∗p

based on matching zero-crossing of the acceleration correlation functions, a better



72

agreement with DNS has been achieved, particularly for low Stokes numbers. The

corresponding filtered trajectories with St∗ = τ ∗p /τK are also included in figure 2.6.

Due to the increased damping (τ ∗p > τp) in the filter, τ ∗p -filtered accelerations are

closer to their DNS counterparts.

Figure 2.8: Root mean square values of acceleration arms as a function of the
Stokes number for inertial particles in DNS and filtered tracer particles according
to equation (2.63). The arms-values from DNS exhibit a rapid decrease for small
but finite St whereas the linear filter approximation decays much slower.

2.3.7 Comparison to DNS

Presented modeling techniques are applied to the DNS. In order to connect these

approaches to the simulated data, recall that the parameters of the DNS must be

defined to properly calibrate the models, namely the integral length scale, T , the

dissipative scale, τη, and now in addition, the effective particle response time τ ∗p .

Recall that for the Lagrangian model (τ ∗p = 0), calibration suggests the values

(τη/τK , T/TL) = (0.5759, 0.9791). For the Batchelor model, the same calibration

has to be carried out, where now the Lagrangian integral time scale is given by
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equation (2.78) and (τη/τK , T/TL) = (1.7956, 0.9941) is obtained. It can be noted

that τη from the Batchelor model is larger than τK whereas the stochastic model

exhibits a τη smaller than τK after calibration.

With the inclusion of St, an additional free parameter of the models is available

for calibration, the effective particle response time τ ∗p . As discussed, the acceleration

correlation function for the stochastic Gaussian process is given by equation (2.75),

from which τ ∗p can be extracted based on the zero-crossing of the DNS data for each

Stokes number. In a similar fashion, the new model parameter τ ∗p is obtained from

the linear filtering of the acceleration correlation function of the Batchelor model

derived from equation (2.77).

Figures 2.9(a) and 2.9(b) depict the comparison of second-order structure func-

tion S2(τ) = ⟨(δτvp)2⟩ obtained using the stochastic and Batchelor model, respec-

tively (dash-dotted curves), to DNS for St=0-1 (solid curves). For the tracers,

St=0, the stohcastic Gaussian model from Section 2.2.1 and Batchelor model are

implemented.

For St >0, linear filtering of the velocity correlation function for tracer particles

agrees well with S2(τ) from DNS for both models. The stochastic approach, fig-

ure 2.9(a) shows agreement between the model and DNS at small scales and deviates

slightly as the time lag τ increases. Notably, slight deviations appear in the inertial

range and might be attributed to the Gaussianity of the stochastic model, which

thus neglects intermittency corrections. The application of the filtering technique

to the statistics of the Batchelor model, figure 2.9(b), shows similar tendencies. At

small scales, the model coincides with the DNS profiles for the given St presented. At

τ/τK >1, again a deviation occurs where the model begins to overestimate the struc-
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Figure 2.9: Comparison of the second-order structure function to DNS (solid
lines) from (a) the stochastic model (dash-dotted lines) and (b) the Batchelor
model (dash-dotted lines) for 5 St parameters in between 0 and 1. The structure
functions have been shifted vertically arbitrarily for clarity.

ture function of its corresponding DNS curve, the near-dissipative range seems to

extend further than the one present in the simulated data. These deviations slightly

increase with St. The application of the models to the acceleration correlation func-

tion is presented in figure 2.10. Here, the discrepancy between modeled correlations

and those obtained from the simulated data can be observed at all scales. The

stochastic modeling of the inertial particle correlations is presented in figure 2.10(a)

for the considered St range. The model over-predicts correlations in the dissipative

range. For increasing Stokes number, linear filtering of the model improves the abil-

ity to accurately describe small scale correlations and still the large scale variations

between the two curves are minimal, for example for St=0.2. As St increases further,

quickly the filtered model and the DNS show increased discrepancies between the

profiles, as the decorrelation of the acceleration occurs more rapidly than the model

predicts. Filtering of the Batchelor model, figure 2.10(b), shows similar tendencies

of the results of the stochastic approach, but with even greater variation. The corre-

lation of tracer velocity at St=0 is slightly over-predicted at small scales and slightly
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under-predicted at large scales. Comparable dissimilarity is observed between the

DNS and model at St=0.1. As the Stokes number increases, the linear filter of the

model breaks down and the predictions decorrelate slower when compared to the

simulated data responses.
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Figure 2.10: Comparison of acceleration auto-correlation function from (a) the
stochastic model (dash-dotted lines) and (b) the Batchelor model (dash-dotted
lines) to DNS for 5 different St parameters in between 0 and 1.

Figure 2.11: (a) zero-crossing τ0 of the acceleration correlation functions from
DNS (as partially shown in figure 2.7) as a function of St. The inset shows a
double-logarithmic representation with the black line indicating τ0 ∼ St0.35. (b)
Recalibrated particle response time τ ∗p expressed as St∗ = τ ∗p /τK based on the
zero-crossing τ0 as a function of St.

Due to the fact that the model calibration for finite St is based on the zero-
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crossing of the acceleration correlation, it is worth studying the St-dependence of

this quantity as well. Therefore, figure 2.11(a) depicts the zero-crossing τ0 from

DNS as a function of the Stokes number. For the case of Lagrangian tracers St = 0,

the zero-crossing is at around 2.2τK and increases sharply for St > 0. For St ≈ 1, a

new quantitative behavior sets in, and the zero-crossing exhibits a slower increase.

Furthermore, the zero-crossing becomes rather noisy, therefore, it is not entirely

clear whether the zero-crossing would saturate at even higher St. The inset of

figure 2.11(a) shows a double-logarithmic representation of τ0. For St < 1, the zero-

crossing appears to be a power law, whereas deviations from this power law appear

at St ≈ 1. For comparison, the black line shows a power law ∼ St0.35. However,

at this point, no clear phenomenological description could be provided that would

allow for the explanation of such a power law of the zeros of acceleration for inertial

particle motion.

Figure 2.11(b) depicts the calibrated effective Stokes number St∗ = τ ∗p /τK as a

function of the DNS Stokes number for both the stochastic and the Batchelor model

(violet). Interestingly, the curves strongly resemble figure 2.11(a) which suggests

a nearly linear relation between the zero-crossing τ0 and the effective (calibrated)

particle response time τ ∗p .

The arms values as a function of the Stokes number for all modeling techniques

are included in figure 2.12 for direct comparison of the statistic. The filtered accel-

eration, found directly from equation (2.68), and the stochastic model, based on τp,

quickly deviate from the DNS arms curve while the two models with the updated τ ∗p

for the stochastic process and Batchelor representation show improved agreement

at all St and good agreement between 0.2 ≤ St ≤ 1.1. Cencini et al. [2006] present
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Figure 2.12: (a) Comparison of root mean square values of acceleration for
DNS and the different models. (b) Semi-logarithmic representation of (a).

a similar comparison and suggest that the deviation between the profiles at small

Stokes numbers is due to preferential concentration captured which is not captured

by the linear filter approximation. The inclusion of the effective particle response

time τ ∗p in our model counteracts this discrepancy, providing accurate representa-

tions of acceleration statistics for the presented Stokes numbers.

2.4 Concluding remarks

Finally, to summarize the findings in the context of the stochastic modeling of La-

grangian velocity and acceleration. First, a stochastic dynamics model has been

proposed, which is causal, infinitely differentiable at a given Reynolds number, or

equivalently in a good approximation, for a given finite ratio of a dissipative time

scale τη over a large one T . The process, u, is defined as the limit n → ∞ of the

n-layered embedded process un. Furthermore, intermittent properties are included

in a causal and exact way through an intermittent coefficient γ. At infinite Reynolds

number, i.e., when τη → 0, both processes converge towards a statistically station-

ary and finite variance causal process, which is a (Gaussian) Ornstein-Uhlenbeck
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process and a multifractal random walk. For the multifractal version, the intermit-

tent behavior of the structure functions were computed in an exact fashion. Using

an efficient algorithm such processes were modeled and compared with success to

numerical simulations of the underlying dynamics.

Lagrangian trajectories extracted from a set of DNS of the Navier-Stokes equa-

tions were analyzed and their statistical properties were compared to those of the

multifractal process. Following a calibration procedure, the statistical properties

of the DNS trajectories were reproduced although some discrepancies below the

zero-crossing time scale of the acceleration correlation function and the flatness of

velocity increments at similar dissipative time scales were observed.

To better understand the observed rapid increase of the flatness in the inter-

mediate dissipative range, and to explore some new types of prediction for the

acceleration correlation function, a phenomenological procedure mostly based on

the multifractal formalism is recalled and developed. This alternative approach dif-

fers from building up a stochastic process, as it was done for u. Instead, it models

statistical properties directly such as structure functions. Nonetheless, it allows the

derivation of new predictions for the acceleration correlation function and flatness of

velocity increments, that reproduce in a very accurate way DNS data. In particular,

the theoretically predicted flatness reproduces its rapid increase in the intermediate

dissipative range, a phenomenon that is related to the differential action of viscosity

depending on the local singular strength of velocity.

Additionally, a second modeling technique for inertial particle statistics based

on a filtering approach for the Lagrangian fluid velocity has been proposed. The

introduction of an effective particle response time τ ∗p in the linear filter is motivated
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by the strong discrepancies in the dynamics of tracer and inertial particles at low

Stokes numbers. Both the stochastic and the Batchelor parametrization are capable

of reproducing this characteristic feature of inertial particles.

In these methods, using the effective particle response time, the “response of

particles to fluid structures” is modified. This has the advantage that the calibra-

tion is rather simple in comparison to evaluating fluid quantities on the basis of

individual inertial particle trajectories. In principle, in cases where zeroes of the ac-

celeration correlation are inaccessible, a phenomenological parametrization could be

implemented through a fit of the variances of acceleration. Therefore, the proposed

modeling approach might offer additional diagnostic tools, e.g., for a more accurate

determination of integral time scales whose estimation are usually limited by the

length of particle trajectories. This benefits the general community of modeling

particle dynamics with finite inertia, which facilitates modeling of a greater number

of real world applications (i.e., droplets, ash, pathogens)
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Chapter 3

Experimental findings of a turbulent round jet

3.1 Introduction

As mentioned in the motivations, the axisymmetric jet lends itself to research due

to its known characteristics as the flow becomes fully developed. The interface that

materializes between the turbulent and non-turbulent regions of the flow field is of

particular interest as it relates to entrainment and ejection of particles. Although

more experimentally taxing, these dynamics are innately Lagrangian due to the

importance of particle transport processes in the formation of this turbulent/non-

turbulent interface (TNTI), therefore the study of such flows from a Lagrangian

perspective provides significant advantages to enhance our understanding.

Previous studies of jets have been performed to analyze the TNTI from a La-

grangian perspective. Holzner et al. [2008] analyzed a turbulent/non-turbulent in-

terface realized by an oscillating planar grid, characterizing the enstrophy increase

across the interface as a function of viscous diffusion effects. Taveira et al. [2013]

used DNS to investigate the TNTI to study the enstrophy production and diffu-

sion. The study found that particles spend more time crossing the region near the

interface than traveling inside the turbulent region. An approach by Gervais et al.
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[2007] was able to accomplish Eulerian and Lagrangian measurements of a turbulent

jet of air at Reλ ≃ 320 through acoustic Doppler scattering. This study presents

a technique for performing simultaneous Eulerian and Lagrangian measurements in

a jet and compares main statistical properties of the flow in each framework. In

comparing scales in Eulerian and Lagrangian space, it becomes evident that these

scales differ from each other [Gervais et al., 2007]. This could be due to how charac-

teristics of the flow field affect the spatial shape of a coherent structure in a different

manner than the temporal evolution of that feature. Additional analysis should be

performed to compare these scales and quantify how these discrepancies affect un-

derlying mechanics in a jet. Insight is relevant to fluid transport and dispersion as

they relate to large scale dynamics.

Through the study of homogeneous turbulence it is known that the diffusion

process of fluid elements can be related to simple Lagrangian statistical properties

of the carrier flow. While this connection has been extensively investigated for this

idealized flow, in the spirit of Taylor’s turbulent diffusion theory [Taylor, 1922], the

case of inhomogeneous flows remains largely unexplored, despite an extension of

Taylor’s theory proposed by Batchelor [1957]. Due its dependence on knowledge

of the correlation function (or equivalently the second-order structure function) at

all time scales, the empirical determination of the constant C0 is critical in de-

scribing the turbulent diffusion process. Accurate characterization of this constant

has implications in modeling of free shear flow, such as volcanic episodes, pollutant

dispersion, COVID particle dynamics, etc., with greater accuracy. Such a deter-

mination requires accessing accurate inertial range Lagrangian statistics and has

received attention in the past two decades in several experimental and numerical
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studies [Sawford, 1991, Mordant et al., 2001a, Yeung, 2002, Ouellette et al., 2006c,

Toschi and Bodenschatz, 2009] as well as some field measurements in the ocean [Lien

et al., 1998]. This leads to a range of C0 estimates ranging from 2 to 7 (c.f. Lien

and D’Asaro [2002] and Toschi and Bodenschatz [2009] for a complete comparison of

theoretical, simulated and experimental results). The variability of reported values

in literature has been in part attributed to the relatively strong dependence of this

constant on Reynolds number [Sawford, 1991, Ouellette et al., 2006c] and to the

existence of large scale anisotropy and inhomogeneity [Ouellette et al., 2006c].

3.1.1 Batchelor’s extension of theory of turbulent diffusion

Despite this variability of the tabulated values for C0, the connection between tur-

bulent diffusion and Lagrangian statistics in homogeneous isotropic and stationary

turbulence is now well documented. The situation is more complex when it comes to

inhomogeneous and anisotropic flows. One strong hypothesis of Taylor’s turbulent

diffusion theory relies on the statistical Lagrangian stationarity of the particle dy-

namics, which requires not only a global temporal stationarity of the flow, but also

a statistical Eulerian homogeneity: a particle travelling across an inhomogeneous

field will indeed experience non-stationary temporal dynamics along its trajectory.

As previously stated, one such inhomogeneous flow field is the turbulent round

jet. Although limited Lagrangian experimental campaigns have been carried out

[Holzner et al., 2008, Wolf et al., 2012, Kim et al., 2017, Gervais et al., 2007], this

type of flow has received much attention in Eulerian studies, as mentioned, due to

the fact that turbulence is self-preserving [Corrsin, 1943, Hinze and Zijnen, 1949,

Hussein et al., 1994, Weisgraber and Liepmann, 1998]. More specifically, as the
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jet develops downstream of the nozzle, the turbulence properties (length, time and

velocity scales) evolve in such a way that the Reynolds number remains constant

at all downstream positions. Note that such self-similarity generally applies only

at sufficiently large downstream positions, typically z ≳ 20D, with D the nozzle

diameter [Pope, 2000].

In 1957, Batchelor proposed an extension of Taylor’s stationary diffusion theory

to the case of turbulent jets in a Lagrangian framework, exploiting the Eulerian

self-similarity property of these flows [Batchelor, 1957]. The approach by Batchelor

uses the Eulerian self-similarity to define a compensated time step dτ̃ and a com-

pensated Lagrangian velocity ṽ(τ̃) which exhibits statistically stationary Lagrangian

dynamics.

The idea of this stationarization is to compensate the effect of Eulerian inhomo-

geneity on the Lagrangian variables to retrieve Lagrangian dynamics which becomes

independent of the initial position and statistically stationary and in turn, to gener-

alize results originally established for stationary situations (such as Taylor’s theory

of turbulent diffusion). Based on the Eulerian self-similarity properties, Batchelor

considers the case of the dispersion of particles released at the origin of a turbulent

jet, whose Lagrangian dynamics is stationarized by considering the just mentioned

compensated variables. Explicitly, through consideration of the velocity at the po-

sition x(τ) reached by the particle at a given time τ since it has been released (at

τ = 0 and x = 0) as well as the time steps of the flow properties at this position

x(τ):

ṽ(τ) =
v(τ)− ue(x(τ))

σu(x(τ))
and dτ̃ =

dτ

TE(x(τ))
, (3.1)

where ue(x(τ)) represents the local (Eulerian) average velocity at the position x of
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the particle at time τ and TE(x(τ)) the local Eulerian time scale (only one veloc-

ity component is considered). Similarly, σu(x(τ)) is the local (Eulerian) standard

deviation of the velocity at the position x of the particle at time τ . The tempo-

ral transformation simply rescales the time in order to account for the evolution of

the Eulerian background properties as the particle moves downstream in the jet.

The transformation of the velocity intends to stationarise the effective dynamics

by: (i) subtracting the local average velocity, so that the average of ṽ is zero, and

(ii) the denominator σu(x(τ)) is chosen as a general compensation for the decay of

the turbulent fluctuations of the background Eulerian field as the particles moves

downstream. Note that the transformations, as they were presented by Batchelor

[1957], directly considered the Eulerian power-law dependencies (in space) of ue, σu

and TE in the self-similar region of the jet near its centerline. The transformations

as written in equations (3.1) are therefore more general, although Batchelor’s trans-

formations are eventually equivalent if such power-law dependencies are assumed.

The more general expression considered here allows one to explore the relevance

of the stationarization procedure not only in the centerline of the jet (as done by

Batchelor) but to also probe away from the centerline.

As a result of the stationarization procedure, compensated Lagrangian statistics

are expected to exhibit similar properties (time scales, correlations, etc.) at any

position in the jet and hence at any time along particle trajectories. Batchelor then

demonstrates that Taylor’s theory can be extended to the stationarized dynamics by

connecting the mean square displacement of the particles to Cṽ(τ̃), the Lagrangian

correlation function of ṽ(τ̃).

Three important aspects arise regarding Batchelor’s diffusion theory: (i) it ex-
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tends the Eulerian self-similarity to the Lagrangian framework, with this respect it is

often referred to as Lagrangian self-similarity hypothesis [Cermak, 1963], (ii) it con-

nects the turbulent diffusion process of particles in jets to the Lagrangian correlation

function (or equivalently to the second-order structure function) of the stationar-

ized velocity statistics and (iii) it proposes a systematic method of analyzing the

non-stationary data of the jet.

Largely based on measurements of the mean square displacements of particles

[Kennedy and Moody, 1998], only indirect evidence of the validity of Batchelor’s

hypothesis exists with respect to free jets. Direct Lagrangian measurements which

show the stationarity of the compensated velocity correlations are still lacking, as

well as the full characterization of the inertial scale Lagrangian dynamics in jets.

As previously noted, Lagrangian correlation functions in turbulent round jets have

been reported in experiments by Gervais et al. [2007], using acoustic Lagrangian

velocimetry [Mordant et al., 2001a], although the question of the Lagrangian self-

similarity has not been addressed, neither has the detailed characterization of the

inertial range dynamics, the estimation of the related fundamental constants such

as C0, and the relevance of simple Lagrangian stochastic models derived for ho-

mogeneous isotropic conditions as considered in the part one of the thesis. It can

be noted that the Lagrangian stationarization idea introduced by Batchelor is not

limited to the case of the jet. Implications of this characterization could extend to

provide a systematic analysis method of more complicated flow fields and in turn

enhanced comprehension of the dynamics as they relate to other self-preserving flows

[Batchelor, 1957, Cermak, 1963].
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3.1.2 Multi-particle diffusion

Another method to study turbulent diffusion in the jet is conducted through anal-

ysis of multi-particle dynamics. Pair dispersion has been studied in turbulence for

many years, with seminal works by Richardson [1926], Obukhov [1941] and Batche-

lor [1950]. These studies resulted in the Richardson-Obukhov regime and Batchelor

regime for pair dispersion which depend on a relative time step. In this comple-

mentary approach to studying diffusion, the local concentration fluctuations are

connected to the separation of pairs of fluid elements. The relevancy of the spread-

ing of fluid elements and if they are dependent on initial conditions (i.e., the initial

separation of the pairs), is consequential on the decay of concentration fluctuations

with applications to biological and chemical systems [Bourgoin et al., 2006]. For

example, this is directly related to the ozone destruction rate in our atmosphere

[Edouard et al., 1996].

This method also provides an alternative, and sometimes simpler, method to

obtain relevant parameters of the flow field, for example, from pair dispersion cal-

culations one can obtain the Eulerian second-order structure functions, and in turn,

the energy dissipation of a flow [Berk and Coletti, 2021, Ouellette et al., 2006b]. In

addition, pair dispersion has been investigated in detail to better understand how

pairs of inertial particles drift in a turbulent flow. Preferential concentrations of

particles has long been an area of interest for turbulent flows, where particles are

known to either expel from or concentrate towards the cores of vortical structures

depending on their Stokes number [Eaton and Fessler, 1994, Bec et al., 2010].
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3.2 Theoretical methods

Eulerian second-order structure functions

Recall that in homogeneous isotropic stationary turbulence, K41 theory [Kol-

mogorov, 1941] predicts for the second-order structure function in the inertial range,

scales between the Kolmogorov scale, η, and the integral length scale, L, that:

SE
2−∥(∆) = ⟨[δũ∥(x,∆)]2⟩ = C2

(ε∆)2/3

σ2
u∥

. (3.2)

Here, the structure function for a given separation, ∆, is expressed with respect

to the stationarized Eulerian velocity ũ, with ε the average energy dissipation rate

per unit mass and C2 ≃ 2.0 [Pope, 2000]. The σ2
u∥

denominator (the variance of

longitudinal velocity component) has been added here in the right hand term to

account for the fact that the stationarized velocity is considered.

Alternatively, the transverse structure function SE
2−⊥(∆) can be considered where

increments are taken for the velocity components perpendicular to the separation

vector. In HIST, within the inertial range, SE
2−⊥(∆) follows the same K41 scaling

but with a constant C2⊥ = 4
3
C2. Previous studies have found that these relations a

priori established for HIST, apply reasonably well to the inertial scales of turbulent

jets, despite the large scale inhomogeneity and anisotropy (see for instance Romano

and Antonia [2001]). Relation (3.2) is used together with the relation C2⊥ = 4
3
C2 to

analyze longitudinal and transverse structure functions in the jet.

Within cylindrical coordinates, the longitudinal second-order structure function
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is usually estimated based on the axial component of the velocity:

SE
2−z,∥(z, δz) = ⟨[ũz(z + δz, r)− ũz(z, r)]

2⟩, (3.3)

with ũz the fluctuating axial velocity (recall that stationarization is applied) and

δz the axial distance between the two considered points (the explicit z dependency

is kept here to emphasize the streamwise inhomogeneity of the jet centerline statis-

tics). This is, for instance, the quantity typically measured when using hot-wire

anemometry (sensitive to the streamwise velocity component) combined with the

Taylor frozen field hypothesis.

Lagrangian second-order structure functions

Recall that the application of the known K41 phenomenology for HIST, generally

applied to Eulerian inertial scaling, can be extended to the Lagrangian framework

[Toschi and Bodenschatz, 2009], where dynamics is investigated as a function of

temporal increments along particle trajectories. Namely, for the second-order La-

grangian structure function, this reads (for the stationarized velocity):

SL
2,i(τ) = ⟨[ṽi(t+ τ)− ṽi(t)]

2⟩ = C0i

εiτ

σ2
ui

, (3.4)

within the inertial range (τη ≪ τ ≪ TL), where i denotes a single velocity component

(i.e., no summation and i is simply x, y or z, by symmetry, statistics along x and

y are identical and equivalent to statistics of the radial r-component of velocity),

and TL is the Lagrangian integral time scale, which is expected to be related to the

Eulerian integral time. Note that while for the Eulerian structure functions, spatial
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velocity increments were computed between pairs of particles and then averaged,

now, for Lagrangian analysis, temporal velocity increments are computed on each

individual trajectories before being averaged.

Multiparticle dispersion

Pair dispersion can be classified into three regimes according to the time dependence.

Explicitly, there is the Batchelor (ballistic) regime, where the separation, D(t), is

dependent on the initial separation and it scales as t2, followed by the Richardson

(super diffusive) regime, which is said to only dependent on the time step and the

separation scales as t3 and finally the diffusion becomes diffusive (i.e., proportional

to t) at large time lags. Mathematically this is expressed as:

⟨[D(t)−D0]
2⟩ =


11/3C2(εD0)

2/3t2 t≪ t0

gεt3 t0 ≪ t≪ TL

t TL ≪ t,

(3.5)

where the initial separation is denoted as D0, C2 is again the scaling constant for the

Eulerian velocity structure function of the second-order and g is a universal constant

(Richardson constant). These expressions are time dependent as they pertain to t0,

a characteristic time scale of an eddy of size D0, defined as t0 ∝ ε−1/3D
2/3
0 in the

framework of K41.
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(a) (b)

Figure 3.1: (a) Three-dimensional CAD rendering of the Lagrangian Explo-
ration Module. (b) Schematic of the hydraulic setup. Cameras 1, 2 and 3 are
oriented orthogonal to the green faces labelled accordingly as 1, 2 and 3.

3.3 Experimental Setup

3.3.1 Hydraulic system

All experiments were performed in the Lagrangian Exploration Module (LEM) [Zim-

mermann et al., 2010] at École Normale Supérieure de Lyon. A vertically-oriented

jet of water is injected into the LEM, a convex regular icosahedral (twenty-faced

polyhedron) tank full of water, as seen in figure 3.1(a). The LEM is originally

designed to generate homogeneous isotropic turbulence when the twelve propellers

on twelve of its faces are activated, however, for this experiment, the LEM is only

used as a tank, its optical access makes it an ideal apparatus for three-dimensional

particle tracking of a jet.

The hydraulic system setup of the experiments is shown in figure 3.1(b). The

vertical jet is ejected from a round nozzle with a diameter D = 4 mm from an

external reservoir. This allowed for a variety of seeding configurations for the tracer
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particles. Specifically, seeding inside the tank only, seeding of both the tank and

the jet as well as only seeding of the jet (from the external reservoir alone). For

all cases when seeding from the external reservoir, the fluid was stirred to ensure

homogeneous seeding of the jet. An overflow valve releases the excess water from

the top of the tank at the same rate as injection from the nozzle. Experiments are

performed at ambient temperature.

A range of downstream locations are considered by moving the vertical position

of the nozzle. Namely, two locations are considered in order to study near-field (NF)

and far-field (FF) dynamics, with interrogation volumes spanning from 0 mm ≤ z ≤

120 mm (0 ≤ z/D ≤ 30) and 80 mm ≤ z ≤ 200 mm (20 ≤ z/D ≤ 50), respectively.

For both regions, the jet is sufficiently far from the walls of the tank and a free-jet

is observed [Hussein et al., 1994].

Particles can be classified into two categories; inertial particles and marked fluid

tracers. If particles do not follow the flow, i.e. they have their own dynamics and

can affect the flow dynamics, they are referred as inertial. It is the case for too big

particles with a different density than the fluid. Both tracer and inertial particles

are utilized in the experimental campaign. A comprehensive list of the experimental

parameters is presented in Table 3.1. The tracers, made of polystyrene, and inertial

particles, glass beads, have corresponding density ratios, ρp/ρf , of 1.06 and 2.3,

where ρp is the particle density and ρf is the fluid density. As previously mentioned,

for the tracers, the seeding was configured to only track fluid of the jet, the ambient

water and both fluids (the entire interrogation volume). Only the jet was seeded for

all experiments performed with glass beads. Adjustments to the particle diameter of

the beads as well as mass loading provided a range of effects of the inertial particles
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Tracers: polystyrene, ρp/ρf=1.06

mass loading particle diameter dp [µm] pump speed seeding configuration

0.1% 250 low jet
0.1% 250 high jet
0.05% 250 high jet
0.1% 250 high ambient
0.1% 250 high jet + ambient

Inertial: glass, ρp/ρf=2.3

mass loading particle diameter dp [µm] pump speed seeding configuration

0.1% 160 high jet
0.1% 250 low jet
0.05% 250 high jet
0.1% 250 high jet
0.1% 425 high jet

Table 3.1: Experimental parameters of the jet.

on the jet dynamics. Finally, for both tracers and glass beads, the jet speed was

adjusted to probe Reynolds number effects. At the nozzle exit, two flow rates are

considered, Q ≃ 2 L/min and Q ≃ 4 L/min, denoted in Table 3.1 as low and high,

respectively.

3.3.2 Optical setup

Three high speed cameras (Phantom V12, Vision Research), mounted with 100mm

macro Zeiss Milvus lenses, are used to track the particles. The optical configuration

is shown in figure 3.2. The top and side view present the locations of the three

cameras in space and the angles are related to the geometry of an icosahedron.

Each camera lens is parallel to its respective window. Also presented in the figure,

the interrogation volume is illuminated in a backlight configuration with three 30

cm square LED panels oriented opposite the three cameras. The spatial resolution
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LEM
•jet

Camera 1 Camera 2

Camera 3

θ

θ = 72◦

LED panels

LEM

jet

Camera 1/2

Camera 3

α

α = 11◦

β

β = 53◦

LED panels

Figure 3.2: Schematic of the optical setup: (a) top view and (b) profile view.

Figure 3.3: Measurement volume captured by the three camera setup for the
near-field measurements.
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of each camera is 1280× 800 pixels, creating a measurement volume of around 80 ×

100 × 130 mm3, hence one pixel corresponds to roughly 0.1 mm. By identifying the

locations of all particles within the interrogation volume, the extent of the volume

of interest can be visualized, as seen in figure 3.3. This represents the volume

attainable for the near-field conditions (a similar convex hull is found for the far-

field). The three cameras are synced via TTL triggering at a frequency of 6 kHz for

8000 snapshots, resulting in a total record of nearly 1.3 s. For each nozzle position

(NF and FF), a minimum of 50 runs are performed to ensure statistical convergence

of ensemble averaging.

3.3.3 Particle Tracking Velocimetry (PTV)

Particle detection

To create particle trajectories through PTV, two-dimensional images are first ana-

lyzed to measure the positions of the centers of the particles. The particle detection

procedure used in this study is an ad hoc process which uses classical methods of

image analysis. First a nonuniform illumination correction is applied to the images.

This is followed by morphological operations (opening), then thresholding of the

intensity permitted, binarization and finally the detection of the centroid. An ex-

ample of the raw camera image with detected particles is presented in figure 3.4. The

inset highlights the accuracy of the post-processed centerfinding scheme that was

employed. Here, the particles are well captured within the effective focal range of

the camera as seen by the red and blue (inset) tagged particles in the representation.
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Figure 3.4: Detection of 705 particles on camera 2 in the near-field jet (nozzle
in the top left-hand corner). Inset: zoom on the boxed zone.

Stereoscopic reconstruction

After the particle centers for all images and all cameras have been determined, the

actual three-dimensional positions of the particles can be reconstructed, knowing

that each camera image is a two-dimensional projection of the measurement volume.

More typically, methods based on optical models are used to achieve real particle

positions, but for this study a geometric method developed by Machicoane et al.

[2019] is used due to its increased precision and ease of implementation. This method

is based on an initial polynomial calibration, where each position on a camera image

corresponds to a line in real space (a line of possible positions in three-dimensional

space). The calibration has an accuracy of 1µm.

The rays for each detected center in the two-dimensional images are computed
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based on the calibration then those rays are matched in space for all three camera

locations to create a volume of particles in real space. specifically, the intersections of

the computed rays give the real particle coordinates. A simple diagram of matching

is given in figure 3.5 where the point of intersection represents a perspective match.

As a final result, the location of the particles in real space based on the calibration

coordinate system (figure 3.6) is obtained. The matching algorithm employed was

recently developed by Bourgoin and Huisman [2020].

Figure 3.5: Diagram of three-dimensional matching with two cameras
(adapted from Guezennec et al. [1994])

Figure 3.6: Matching of 3,229,762 particles (frame number in colorbar)
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Figure 3.7: Predictive tracking schematic where the solid line signifies the real
trajectory and the dotted line indicates the position extrapolation.

To create the largest convex hull possible, dictated by the orientation of the cam-

eras, the particle positions in real space are matched based on the intercept of only

two rays (i.e. two cameras) and, to take into account possible overlapping of parti-

cles in one dimension, two matches per ray are allowed. Intermediately this allows

the inclusion of non-existent “ghost” particles as observed in figure 3.6, where clear

rows of these particles are initially captured. Fortunately these “ghost” particles

cannot form a trajectory and therefore they are removed when the trajectories are

formed in the subsequent steps. The tolerance to allow a match is 50 µm (recall

that calibration accuracy is around 1 µm).

Tracking

The stereoscopic reconstruction gives a cloud of points for every time step. The

goal of the tracking is to transform this cloud into trajectories by following particles

through time. To track the position of a considered particle as it moves among nu-

merous other particles, the simplest algorithm is to consider the nearest neighbor: If

one considers a particle in frame n, its position in frame n+1 is the nearest particle

in frame n + 1 (c.f. Ouellette et al. [2006a]). But, for increased mass loading of
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particles, the trajectories are tangled, as observed in this study. Moreover, several

points are “ghost” particles and should not be tracked. Thus an advanced method

is employed, namely predictive tracking, presented in figure 3.7. The trajectories

are assumed to be relatively smooth and self-consistent, i.e. there are no severe

variations in velocity and therefore past positions give accurate indications of future

positions [Guezennec et al., 1994]. If one considers a particle at frame n, its position

in frame n+1 can be extrapolated and finally the nearest neighbor approach is em-

ployed based on the extrapolated position. For all data presented, the extrapolated

position is determined by fitting the previous five positions from frame n − 4 to n

with a simple linear relation (i.e. velocity), as is shown in figure 3.7. If there are

less than five positions, the available positions are used. A maximum distance of 1

mm between extrapolated position and real position to continue the trajectories is

applied in order to avoid the tracking of absurd trajectories. If the same particle is

the nearest neighbor for two different tracks, the nearest trajectory is chosen and

the other trajectory is stopped.

3.3.4 Post processing of the trajectories

The tracking of particles results in a set of trajectories for each of the 50 experimental

runs. A minimum trajectory length of 10 frames is required to remove presumably

false trajectories. Some real trajectories are also removed, but their statistical value

is negligible. Finally, the basis is adapted by coinciding the z-axis with the jet axis

and centering it in x and y directions. Positions and velocities are computed in

adapted cylindrical coordinates (z, r, θ) with z the axial coordinate, r the radial one

and θ the circumferential one. A visualization of tracks is shown in figure 3.8. For
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Figure 3.8: 41,032 trajectories longer than or equal to 10 frames (one color
per trajectory)

cases when only the jet is seeded, it can be noted that most trajectories come from

the nozzle (where they are injected) and very few come from the outside and are

entrained in the jet (visible in figure 3.8 as radial trajectories towards the jet).

3.4 Fluid tracer results1

Prior to analysis, noise reduction must be considered. The trajectories reconstructed

by the tracking algorithm always exhibit some level of noise due to errors eventually

accumulated from particle detection, stereo-matching and tracking. It is impor-

tant to properly handle noise, in particular when it comes to evaluating statistics

associated with differentiated quantities (particle velocity and acceleration). Two

techniques are implemented to do so. For all Eulerian statistical analysis requir-

1Viggiano et al., 2021, Lagrangian diffusion properties of a free shear turbulent jet. J. Fluid
Mech., 918:A25



100

ing the estimate of local velocity, the trajectories are convolved with a first-order

derivative Gaussian kernel with a length of 6 time instances and a width of 2 (ad

hoc smoothing parameters) [Mordant et al., 2004b]. For all two-time Lagrangian

statistical analysis (correlation and structure functions), an alternative noise reduc-

tion method, presented by Machicoane et al. [2017a,b], is implemented to obtain

unbiased statistics based on an estimation from discrete temporal increments of po-

sition, without requiring explicit calculation of individual trajectory derivatives. For

example, to compute the noiseless Lagrangian two-point correlation of velocity, Cv̂,

the first-order increments are considered as follows:

Cdxdx(τ, dt) = Cv̂(τ)dt2 + ⟨(db)2⟩+O(dt3), (3.6)

where dx is the temporal increment of the signal x over a time dt with dx =

x(t + dt) − x(t) = dx̂ + db. The circumflex signifies the real (noiseless) signal

and the noise is denoted as b (assumed to be a white noise). From the presented

relationship, the noiseless correlation function of velocity RL
v̂v̂(τ) can be extracted

from the correlation of measured position increments dx, exploring its polynomial

dependency with dt at the lowest (quadratic) order and neglecting higher-order

terms (i.e. O(dt3)), by applying a simple polynomial fit of c1dt
2 + c2. This method,

called “dt-method” in the following, allows the estimation, with increased accuracy

and less sensitivity to noise, of statistics of differentiated quantities (and hence to

explore small scale mechanisms), without actually requiring estimation of deriva-

tives, but by simply considering position increments at various temporal lags. More

information is provided in Machicoane et al. [2017a,b].
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Figure 3.9: (a) Vector field of the ue field for the normalized locations, in-
cluding the half-width of the jet (−−), r1/2, at all downstream locations for
the near-field. (b) Contour representations of the local standard deviations σuz

(left) and σur (right) for the axial and radial velocity components for near-field
locations.

As noted in the introduction, methods are taken to address the Lagrangian non-

stationarity (related to the Eulerian inhomogeneity) of the flow, according to the

proposed self-similarity of a turbulent jet by Batchelor [1957], i.e. based on the

transformation of the Lagrangian velocity and time scales of a particle at a given

time τ after it has been released from a point source. Equation (3.1) provides

a relationship to achieve proper stationarization. For this study, the fluctuating

stationarized velocity is obtained by subtracting the local Eulerian velocity (and

assuming cylindrical symmetry of the jet, hence neglecting the θ dependence on

spatially averaged quantities), uei (z, r), and scaled by the local standard deviation,

σui
(z, r). Explicitly,

ṽi(τ) =
vi(τ)− uei (x(τ))

σui
(x(τ))

=
vi(τ)− uei (z, r)

σui
(z, r)

. (3.7)
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The local standard deviation is an optimal choice for compensation as it generalizes

the methods presented in Batchelor [1957], where a specific decay rate (Batchelor

assumed a power-law) is required for stationarization. This velocity ṽ takes the

mean drift and decay into account although the term becomes dimensionless as a

result. For this reason, for all statistical calculations of dimensional quantities (such

as the turbulent dissipation rate) inferred from this analysis, velocity is redimension-

alized through multiplication with the average local standard deviation within the

considered measurement region or location. For transparency, the Eulerian mean

and standard deviation velocity fields used for the stationarization are presented

in figure 3.9 (figure 3.9(a) the mean velocity as a vector field and figure 3.9(b) the

standard deviation of the axial and radial velocity components). The half-width of

the jet, r1/2(z), where u
e
z(z, r = r1/2(z)) =

1
2
uez(z, r = 0), is included in the Eulerian

mean velocity field as the dashed line to provide clarity to the sampling methods

based on this quantity, as discussed in sections 3.4.1 and 3.4.2. Note that Lagrangian

velocity components are used for the Eulerian statistical characterization therefore

the stationarization technique described is required for all analyses presented in the

study.

3.4.1 Eulerian velocity statistical analysis

This section aims to extract flow parameters such as length scales and energy dis-

sipation rate from different Eulerian statistics: Second-order structure functions

and two-point correlation functions. The jet flow is inhomogeneous, therefore these

quantities depend on z and r. Focus is placed on centerline statistics for the Eulerian

characterization of the jet, limited to radial distances up to r1/2 and consideration
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of only the z-axis evolution is used to characterize the main property of the base

turbulence.

Eulerian second-order structure functions

To explore the streamwise evolution of Eulerian properties of the jet, a set of data

(particle velocities) is considered for a given z position, which falls within a short

cylinder (disk), Dz, of limited height (0.5mm in the z-direction) and a radius of

r1/2(z) for statistical analysis, see figure 3.10. The disk radius is chosen to include

sufficient particles for statistical convergence but, in being limited to the half-width,

the volume does not encompass particles from the turbulent/non-turbulent inter-

face. This gives a canonical description of turbulent properties representative of

the centerline of the jet. Consideration of statistics in a thin disk allows the more

detailed exploration of z dependence of statistical quantities, however this sam-

pling technique forbids exploration of δz values over a range relevant to estimate

SE
2−z,∥(z, δz) at inertial scales. To overcome this issue, two strategies are considered:

(i) Still based on the axial z-component of the velocity, SE
2−z,⊥(z, δr), the transverse

structure function of ũz (with the separation vector δr taken within the plane of the

disk) is estimated in lieu of SE
2−z,∥(z, δz); (ii) For radial velocities, the longitudinal

structure function is considered through use of the velocity components perpendic-

ular to the z-axis (i.e. within the sampling disk Dz), projected onto the increment

vector δr within the disk Dz. This is denoted as SE
2−rθ,∥(z, δr) (where the subscript

rθ recalls that only velocity components perpendicular to z are considered). For any

redimensionalization of a Eulerian quantity, the averaged standard deviation within

a respective disk, ⟨σui
⟩Dz , is employed. For brevity this is herein denoted as σui

for
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Figure 3.10: Schematic of the downstream locations of the disks, Dz, for
Eulerian analysis (not to scale).

all Eulerian calculations.

The discussions of this subsection (and in the two following) illustrate the extrac-

tion of the main Eulerian turbulent properties (and of their streamwise evolution)

based on SE
2−z,⊥(z, δr). The same analysis was also repeated based on SE

2−rθ,∥(z, δr).

Analysis follows the same recipe as is described for SE
2−z,⊥(δr).

The transverse structure function based on the Eulerian stationarized axial ve-

locity, ũz, at a given z position is estimated as

SE
2−z,⊥(z, δr) = ⟨[ũz(r + δr)− ũz(r)]

2⟩Dz , (3.8)

where the average is taken over pairs of particles within the disk Dz separated by a

vector δr. Note that, given the reduced height of the disk (not exceeding two particle

diameters), δr is within an acceptable approximation perpendicular to the z axis,
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(a) (b)

Figure 3.11: Eulerian second-order structure functions of the axial veloc-
ity on the axis, (a) uncompensated SE

2−z,⊥(z, δr)σ
2
uz

and (b) compensated

(SE
2−z,⊥(z, δr)σ

2
uz
/4
3
C2)

3/2/δr (the solid lines are the plateaus to extract εz), for
the four denoted downstream locations.

ensuring that equation (3.8) indeed corresponds to a transverse structure function

(except maybe for the smallest separations, comparable to the disk height).

SE
2−z,⊥(z, δr) is computed for different z positions (in the near and far-fields of

the jet) and shown in figure 3.11(a). While the stationarized (hence dimensionless)

velocity is used for all estimates, SE
2−z,⊥ is made dimensional by multiplying it by

the square of σuz , the standard deviation of uz within Dz (see Table 3.2). This

redimensionalization is required in order to extract the dimensional value of ε, and

the associated derived parameters (in particular the dissipation scales and Taylor

micro-scale). To this end, figure 3.11(b) includes the compensated structure function

(SE
2−z,⊥(z, δr)σ

2
uz
/4
3
C2)

3/2/δr (measurements by Romano and Antonia [2001] suggest

that at despite the large scale anisotropy, the isotropic relation C2⊥ = 4
3
C2 applies

reasonably well for the inertial scale dynamics of the jet). Well defined plateaus,

corresponding to inertial range dynamics, are observed from which the dissipation
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(a) (b)

Figure 3.12: Eulerian second-order structure functions of the radial veloc-
ity on the axis, (a) uncompensated SE

2−rθ,⊥(z, δr)σ
2
ur

and (b) compensated

(SE
2−rθ,⊥(z, δr)σ

2
ur
/4
3
C2)

3/2/δr (the solid lines are the plateaus to extract εrθ),
for the four denoted downstream locations.

rate εz can be extracted according to equation (3.2). The subscript z in εz simply

refers to the fact that this estimate is based on the axial component of the velocity.

It can be seen that, as the location downstream increases, the plateau of the second-

order structure function (and hence εz) decreases, due to the streamwise decay of

turbulence along the jet.

Figure 3.12 presents the uncompensated (a) and uncompensated (b) Eule-

rian structure functions of the radial component of velocity. Larger scales are

observed and noise is present within the small scales. From the plateaus of

(SE
2−rθ,⊥(z, δr)σ

2
ur
/4
3
C2)

3/2/δr, the radial-based dissipation rate is found. Here the

plateaus from figure 3.12(b) show a similar trend to those observed in the axial struc-

ture functions although the first plateau corresponds to a lower initial dissipation

rate.

It is noted that small scales (typically for δr < 1× 10−3m) are not statistically



107

Figure 3.13: Normalized two-point spatial correlation of the Eulerian axial
velocity on the axis, Cu−z,⊥(z, δr) = 1− SE

2−z,⊥(z, δr)/2.

well converged. This is due to the lack of statistics for pairs of particles with very

small separation due to the moderate seeding of particles used for the Lagrangian

tracking.

Eulerian two-point correlation functions

The second-order Eulerian statistics shown in the previous section from the struc-

ture functions can be equivalently investigated in terms of the two-point correla-

tion function. The correlation of axial velocity is obtained via the non-dimensional

second-order structure function, Cu−z,⊥(z, δr) = 1 − SE
2−z,⊥(z, δr)/2, to depict the

evolution of the velocity interactions through space. The results from the near-

field and far-field are presented in figure 3.13. The curves are ordered depending

on their downstream location z. The location nearest the jet exit, z/D = 15,

exhibits a rapid decorrelation. As the flow advances downstream, the turbulent

length scales grow, resulting in a dynamics which remains correlated over longer

distances, as seen by the z/D = 45 profile. This trend can be investigated
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Figure 3.14: Normalized two-point spatial correlation of the Eulerian radial
velocity on the axis, Cu−rθ,⊥(z, δr) = 1− SE

2−rθ,⊥(z, δr)/2.

quantitatively using the Eulerian correlation length (or Eulerian integral scale)

LEz,⊥(z) =
∫∞
0

Cu−z,⊥(z, δr) dδr. Recall that transverse and longitudinal correlation

lengths are kinematically related in HIST by LEz,∥ = 2LEz,⊥ [Pope, 2000]. Since

most studies in the literature refer to the longitudinal length, the present study

will then consider LEz(z) = 2
∫∞
0

Cu−z,⊥(z, δr) dδr, avoiding the ⊥ or ∥ subscripts.

However, it is noted that measurements by Burattini et al. [2005] suggest that the

ratio may actually be slightly lower than 2, and closer to 1.8 in free shearing jets

due to large scale anisotropy.

Similar to the axial component, the radial correlation functions are obtained

for the stationarized velocity and results are provided in figure 3.14. Here, noise

is observed at the very small scales but the curves exhibit trends similar to those

observed in the axial velocity two-time correlations with respect to downstream

dependency.
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Figure 3.15: Evolution of εz along the jet axis.

Evolution of Eulerian parameters

The evolution of εz, estimated from the plateaus of the compensated second-order

structure functions (figure 3.11(b)), is represented in figure 3.15. There exists a

tendency of 1/z4 (more clearly visible in figure 3.16(c)), as expected for canonical

self-similar jets. The observed consistency in the values and shape of the profiles

between the near and far-field experimental locations, validates the presented εz

values from the independent measurements carried over the overlapping region.

From the dissipation rate εz, other relevant parameters of the flow field can be

extracted, namely the Kolmogorov time scale, τηz = (ν/εz)
1/2, and length scale,

ηz = (ν3/εz)
1/4, as well as the Taylor microscale, λz = (15νσ2

uz
/εz)

1/2, and the

Taylor-based Reynolds number Reλ = σuzλz/ν, both of which assume HIST. Fur-

ther, large length and time scales are obtain from the two-point correlation profiles

in figure 3.13. For a more accurate estimate of the correlation length, LEz(z), the in-

tegral of the correlation functions is based on a fit of the curves shown in figure 3.13

using a Batchelor type parametrization [Lohse and Müller-Groeling, 1995]. Recall

that the factor 2 is the HIST correction that relates the transverse correlation (given
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z/D σuz εz ηz τηz λz Reλ LEz TEz

[m/s] [W/kg] [µm] [ms] [µm] [mm] [ms]

15 0.80 104.7 9.9 0.098 304 245 2.2 2.8
25 0.51 16.1 15.8 0.249 491 250 4.4 8.6
35 0.35 4.5 21.7 0.472 643 226 5.6 16.0
45 0.28 1.7 27.8 0.774 825 227 7.8 28.2

z/D σur εrθ LErθ
TErθ

[m/s] [W/kg] [mm] [ms]

15 0.57 63.9 1.7 2.9
25 0.38 14.6 2.0 5.3
35 0.28 5.7 3.6 13.0
45 0.22 2.4 5.1 23.2

Table 3.2: Eulerian parameters of the jet on the axis for different z/D positions.

by the integral of Cu−z,⊥) to the longitudinal one. The calculated LEz shall therefore

be interpreted as the longitudinal integral scale associated with the z component of

velocity. The integral time scale is then computed as TEz = LEz/σuz . All relevant

quantities of the jet have been accumulated for the considered streamwise locations

in Table 3.2. The streamwise evolution for the velocity standard deviation, dissi-

pation rate and integral scale are also shown in figure 3.16, where the well known

self-similar power-law profiles can be seen.

The characterization of basic Eulerian properties from the radial components

of velocity are also included in Table 3.2 to quantify anisotropy. The dissipation

rate for the radial velocity is lower than the axial component near the exit of the

jet, but declines more slowly as the jet develops, resulting in similar values for εrθ

and εz at z/D > 25. As a result, in this region dissipation scales are found almost

identical with both estimates. This supports the idea that small and inertial scales

are nearly isotropic. The large scales show however a certain degree of anisotropy,
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Figure 3.16: (a) The standard deviation averaged within the disk Dz, (b) the
dissipation rate and (c) the integral length scale for the axial component of
velocity for all downstream locations. Power-law relation is given as a dashed
line.

in particular regarding the integral length scale and in a lesser degree the integral

time scale which are found larger for the z-component than for the rθ-components.

3.4.2 Lagrangian velocity statistical analysis

In this section the Lagrangian statistics of the jet tracer dynamics are investigated

with a particular focus on second-order statistics (namely velocity second-order

structure function and two-point correlation function), which are key ingredients

to model turbulent diffusion, as discussed in the introduction. In particular, the

relevance of Batchelor’s Lagrangian self-similar stationarization idea is further as-

sessed.

Lagrangian second-order structure functions

Recall that in lieu of Gaussian filtering previously applied to the Eulerian structure

functions, the dt-method presented in section 3.3.4 is implemented, which has been

shown to better handle noise for Lagrangian velocity statistics estimates [Machicoane

et al., 2017a].
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The trajectory length now becomes important and therefore, for all Lagrangian

statistics presented in this section, methods are implemented to acquire sufficient

convergence of statistics. Explicitly, for each location z, the ensemble selected for

the Lagrangian statistics consists of all trajectories passing through a small sphere,

Sz, centered at downstream position z along the jet centerline, with a radius of

r1/2(z)/3, see figure 3.17. This volume allows sufficient particles for convergence

of statistics yet does not overlap in the axial direction as the half-width increases.

Similar to methods presented in the Eulerian framework, the averaged standard

deviation from within each respective sphere, ⟨σui
⟩Sz , is used for redimensionaliza-

tion of Lagrangian quantities when necessary (for calculation of C0) and denoted

simply as σui
. Figure 3.18(a) presents the corresponding curves for SL

2−z(τ) at the

four different downstream locations. All curves exhibit a transition from a dissi-

pative behavior at small time lags (where SL
2−z ∝ τ 2) to the inertial range (where

SL
2−z ∝ τ). The main figure shows the structure function in stationarized variables,

while the inset provides the same data but non-stationarized. Several interesting

points emerge:

(i) Effect of stationarization at inertial scales: The non-stationarized statis-

tics (inset of figure 3.18(a) are widely spread while the stationarized statistics (main

figure) collapse reasonably well, in particular in the far-field (z/D > 25). Similar-

ity between the curves is improved for the inertial range dynamics (which presents

similar trends even at distances z/D ≳ 20), but less adequate for the small scale

dissipative dynamics, for which the collapse becomes reasonable only at far down-

stream locations (z/D > 35). This suggests that the stationarization procedure

is efficient to retrieve self-similar inertial range Lagrangian statistics in the far-field
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Figure 3.17: Schematic of the downstream locations of the spheres, Sz, for
Lagrangian analysis (not to scale).
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Figure 3.18: Lagrangian second-order structure functions of the axial velocity
on the axis, estimated at four downstream locations (z/D = 15, 25, 35, and 45).
(a) Non-dimensional SL

2−z(τ) as a function of the non-dimensional time τ/TEz

(dimensional SL
2−z(τ)σ

2
uz

as a function of time τ in inset) and (b) compensated
SL
2−z(τ)σ

2
uz
/(τεz), for the denoted downstream locations. The universal scaling

constant, C0z , can be extracted from the plateau of the compensated structure
functions.
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(in Batchelor’s sense, meaning that Lagrangian statistics become independent of the

downstream position as particles travel along the jet), while discrepancies remain in

the small scales until the very far-field.

(ii) Small scale dynamics discrepancies: In the Lagrangian framework, the

small scale dynamics of structure functions is associated with particle acceleration

statistics. Figure 3.18(a) therefore suggests that stationarized acceleration statistics

eventually fall in line, but only in the very far-field (curves at z/D = 40 and 45

almost perfectly collapse). As will be observed in section 3.4.3, acceleration statistics

are strongly affected by the finite size of the particles, which in our study remains

much larger than the dissipation scale of the flow (dp/η = 25 at z/D = 15 and

9 at z/D = 45). Although further investigation focusing specifically on the small

scale dynamics would be required, it is probable that the observed discrepancy at

small scales reflects these finite size effects. This is supported by the fact that as

considered positions are farther downstream (where dp/η gets smaller and hence

finite particle size effects disappear), the stationarized acceleration dynamics seems

to better converge to a single curve.

(iii) Large scale dynamics: By construction, the second-order structure function

of the stationarized velocity should reach, in the large scales, an asymptotic constant

value of 2 as the Lagrangian dynamics becomes fully decorrelated. This asymptotic

regime is not reached in our data, where SL
2 reaches at best values of order 1, without

exhibiting an asymptotic decorrelated plateau. This is due to the lack of statistics

for long trajectories. One of the well-known difficulties of Lagrangian diagnosis is

indeed the capacity to obtain sufficiently long trajectories allowing to explore the

large scale dynamics. In the present study, most trajectories are efficiently tracked
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over a few tens of frames at most (very few are over hundreds of frames). At the

operating repetition rate of 6000 frames per second, this corresponds to trajectories

at most 10ms long, what represents (according to Table 3.2) a few Eulerian integral

times scales in the near-field, and only a fraction of this integral scale in the far-field,

where only a part of the inertial range dynamics is accessible. In subsection 3.4.2, it

is demonstrated that large scale behavior (and the effect of stationarization on it),

can still be addressed by estimating the Lagrangian correlation time scales.

(iv) Estimate of C0 constant: Figure 3.18(b) shows the compensated structure

functions, SL
2−z(τ)σ

2
uz
/(τεz), built with εz values found in the Eulerian analysis

(for consistency regarding possible anisotropy effects, the estimate of dissipation

rate based on Eulerian statistics of corresponding components is used). Based on

relation (3.4), within the inertial range the value of C0z can be extracted from

the plateau of the curves. The value of the plateau is observed to saturate, as

considered positions reach farther towards the far-field, at a value of C0z ≃ 3.2. The

downstream evolution of C0z will be further discussed in the coming sections.

All observations also apply to estimates of SL
2−r, based on the radial component

of velocity with the curves of the Lagrangian structure functions presented in fig-

ure 3.19. Here the velocity and time lag are stationarized, figure 3.19(a) and the in-

set provides dimensional representations of SL
2−z(τ)σ

2
ur
. The compensated structure

function, figure 3.19(b) is included to extract the constant C0r from the plateaus of

the curves. This quantity is compared with the axial C0z for insight into anisotropy.
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Figure 3.19: Lagrangian second-order structure functions of the radial velocity
on the axis, estimated at four downstream locations (z/D = 15, 25, 35, and 45).
(a) Non-dimensional SL

2−z(τ) as a function of the non-dimensional time τ/TErθ

(dimensional SL
2−r(τ)σ

2
ur

as a function of time τ in inset) and (b) compensated
SL
2−r(τ)σ

2
ur
/(τεrθ), for the denoted downstream locations. The universal scaling

constant, C0z , can be extracted from the plateau of the compensated structure
functions.

(a) (b)

Figure 3.20: Normalized Lagrangian correlation of the axial velocity for the
compensated time lag τ/TEz . Inset provides the Lagrangian correlation as a
function of the dimensional time lag τ for the same seven downstream locations
previously considered. Locations are (a) along the centerline (r = 0) and (b) at
the jet half-width (r = r1/2) for all downstream positions.
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Lagrangian two-point correlation functions

The two-point correlation functions of the Lagrangian axial velocity as a func-

tion of the compensated time lag, τ/TEz , are presented in figure 3.20(a) where

Cv−z(τ) = ⟨ṽz(t + τ)ṽz(t)⟩. It can be seen that, as for the structure functions

previously discussed, the stationarization results in a remarkable collapse of the cor-

relation functions, in particular at z/D > 20. Note that the small scale discrepancy

observed for SL
2−z is also expected to be present for the correlation function, which

carries essentially the same information; it is however less emphasized due to the

linear (rather than logarithmic) scale used to represent the correlation function. The

observed agreement between the two-point correlation functions confirms again the

Lagrangian self-similarity hypothesis at inertial scales, resulting in two-point correla-

tion functions of the stationarized variables which do not depend on the downstream

position of the particles as they evolve along the jet (beyond z/D ≳ 20).

Although the shortness of the trajectories does not allow to directly explore the

large scale, fully decorrelated, regime (where Cv,i vanishes), the observed collapse at

intermediate scales allows speculation that the self-similarity hypothesis may also

extend to the large scales. This would lead, in particular, to a univocal relation

between the Lagrangian correlation time (defined as TLi
=
∫∞
0

Cv,i(τ) dτ) and the

Eulerian timescale at all positions along the jet (except in the very near-field, where

Lagrangian two-point correlation clearly deviates). This point will be further tested

in the subsequent section where we estimate TL based on appropriate fits (exponen-

tial or double exponential [Sawford, 1991]) of the Lagrangian two-point correlation,

supporting the validity of self-similarity in the large scales and the univocal link

between TL and TE.
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A test of the Lagrangian self-similarity hypothesis when off-axis dynamics is

considered is provided in figure 3.20(b). The original stationarization proposed by

Batchelor [1957] used centerline power-laws for a self-similar jet to compensate the

Lagrangian velocity and time. As discussed, these formulas have been generalized

(compatible with Batchelor’s approach in the centerline), using actual local mea-

surements of Eulerian properties rather than prescribed centerline power-laws. The

stationarization transformations can therefore be applied at any arbitrary position

along particle trajectories. Figure 3.20(b) explores the application of the proposed

stationarization considering trajectories passing through a ball centered off-axis, at

a radial location of r = r1/2(z), instead of r = 0. As for the centerline analy-

sis, the correlation functions of the stationarized variables collapse for all locations

z/D > 20. This substantiates the generalized stationarization technique, and its

application to locations beyond the centerline. Although the present study focus on

diffusion of particles near the jet centerline, this result motivates future dedicated

studies to explore more deeply the generalized Lagrangian stationarization for off-

axis statistics as well as for other inhomogeneous flows (such as von Kármán flows,

which are widely used for Lagrangian studies of turbulence).

Finally, for completeness, the stationarized radial correlation of velocity is shown

as a function of the stationarized time lag in figure 3.21. The collapse seen by all pro-

files (expect the nearest location) is indicative of the validity of the stationarization

methods. The dimensionalized functions are provided in the inset.
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Figure 3.21: Normalized Lagrangian correlation of the radial velocity along the
centerline for the compensated time lag τ/TErθ. Inset provides the Lagrangian
correlation as a function of the dimensional time lag τ . Downstream locations
denoted in the legend.

z/D C0z TLz [ms] TEz/TLz C0r TLr [ms] TErθ
/TLr

15 1.4 4.5 0.6 1.9 1.4 2.1
25 2.7 5.3 1.6 3.2 2.3 2.3
35 3.2 11.1 1.5 3.0 5.3 2.5
45 3.0 15.9 1.8 2.8 8.9 2.6

Table 3.3: Lagrangian parameters of the jet on the axis for different z/D
positions.

Evolution of Lagrangian parameters

This subsection provides the estimates of C0 and TL, their streamwise evolution

along the jet centerline, their connection to Eulerian properties of the jet and the

reliability of Lagrangian stochastic models derived for HIST [Sawford, 1991] to ad-

dress the stationarized Lagrangian dynamics of the jet. Investigations are made into

these quantities for both axial and radial components of the velocity.

Table 3.3 presents these Lagrangian parameters of the jet for different z locations

in the near and far-fields. The scaling constant C0z is observed in the compensated

Lagrangian structure functions, figure 3.18(b). The Lagrangian integral time scale
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Figure 3.22: Evolution of the scaling constant C0 (left) and the ratio of the
integral time scales TE/TL (right) as a function of downstream location within
the jet center. The axial (−) and radial (-·-) components are both presented.

TLz is estimated based on an exponential fit of the velocity correlation curves, due

to the lack of experimental data for large time lags, figure 3.20(a). Lagrangian

correlation functions are indeed known (at least in HIST) to be well fitted by double

exponential functions, and even simple exponential functions at sufficiently large

Reynolds number, if the focus is on the estimate of inertial and large scales behavior

[Sawford, 1991]. In the present case, the fit by a simple exponential (e−τ/TLz ) leads to

very similar estimates of TLz compared to a more sophisticated double exponential

fit. Corresponding radial quantities are extracted in the same way by considering

SL
2−r(τ) and Cv−r(τ).

C0z is found to converge to a constant value C0z ≃ 3.2 at z/D > 30. This is

more easily observed in figure 3.22 which provides the evolution of the Lagrangian

parameters as a function of the downstream position z. The asymptotic far-field

value of C0z can be compared to values reported in the literature for C0. A relation-

ship presented by Lien and D’Asaro [2002] accounting for finite Reynolds number

effects on C0 suggests an altered C∗
0(Reλ) = C∞

0 [1− (0.1Reλ)
−1/2] where according

to Sawford [1991], C∞
0 ≃ 7.0. This gives an estimated C∗

0 of 5.6 for the Reynolds
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number corresponding to the present study as a benchmark value. As previously

mentioned, discrepancies exist between numerous studies of this parameter, for ex-

ample a C∗
0 of 4.8 was extracted for direct numerical simulation data with Reλ = 240

by Sawford and Yeung [2001], while experimental data taken between two counter-

rotating disks at Reλ = 740 produced a C∗
0 of 2.9 [Mordant et al., 2001a]. Ouellette

et al. [2006a] found in a similar flow at Reλ ≃ 200 an anisotropic behavior, with

C∗
0 ≃ 3.5 for the velocity component aligned with the axis of rotation of the disks

and C∗
0 ≃ 5.5 for the transverse components. It is therefore difficult to be fully

conclusive regarding the expected value of C0 in our case, as it appears to be non-

universal and not only dependent on the Reynolds number, but for a given Reynolds

number to also depend on specific geometrical properties of the considered flow. It

is observed however that the measured value of C0z in the jet is in the same range

of magnitude as other studies in different flows at a similar Reynolds number. With

regard to anisotropy, Table 3.3 and figure 3.22 suggest that C0z and C0r behaves

almost identically along the jet, C0z converging to a value of 3.0 and C0r to a value

of 2.8. This indicates, on one hand, that Lagrangian dynamics exhibit a level of

isotropy, and on the other hand that at a specific location downstream, C0 becomes

independent of axial location and hence supports the idea that inertial Lagrangian

statistics reaches self-similarity.

Regarding the Lagrangian correlation time scale both TLz and TLr increase with

increasing axial distance, with TLz being however significantly larger (about dou-

ble) than TLr , see Table 3.3. Large scale Lagrangian dynamics therefore exhibits

a persistent anisotropy, somehow more pronounced than the anisotropy previously

reported for the Eulerian integral time scales (see for instance TEz and TErθ
in Ta-
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ble 3.2). To further compare Lagrangian and Eulerian large scales properties, the

ratio of the Eulerian to Lagrangian integral time scales, for both the axial and the

radial components of velocity is provided in Table 3.3 and figure 3.22. For all lo-

cations, the Eulerian to Lagrangian time scale ratio for the radial component is

notably larger (about double) that of the axial component. The axial component

trends are consistent with similar results reported by Gervais et al. [2007], wherein

TEz/TLz was found to be less than one in the near-field, and to evolve towards a

value greater than one (between 1.3 and 1.8) as the jet develops. Interestingly, in

the well developed region, the Lagrangian dynamics decorrelates significantly faster

compared to the Eulerian dynamics, as originally intuited by Kraichnan [1964]. This

relation between Eulerian and Lagrangian time scales has been examined numer-

ically by Yeung [2002] where a ratio of TE/TL = 1.28 was found for HIST. This

value is slightly lower than the value found in the present experiments, but is still

consistent with a Lagrangian dynamics decorrelating faster than the Eulerian.

Since the study by Kraichnan [1964] who suggested that TE/TL > 1, a similar

prediction has been made by Sawford [1991] based on simple Lagrangian stochastic

modeling. In this approach, Eulerian and Lagrangian time scales can be simply

related to each other via the scaling constant C0:

TE/TL = C0/2. (3.9)

As observed in figure 3.22, this relation is tested against the experimental results

for the axial and radial velocity components. Note that the limits of the axis for

TE/TL on the right of the figure are half the limit of the axis for C0 on the left
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of the figure, therefore if TE/TL = C0/2 holds, the curves for TE/TL and for C0

shall superimpose). For the axial component, the agreement is almost perfect at all

locations, including in the near-field. This is not observed for the radial component,

while the two curves exhibit proportionality, the ratio of time scales is nearly equal

to the scaling constant C0 at all presented locations.

3.4.3 Lagrangian tracer acceleration statistical analysis

This section explores the statistics of the Lagrangian acceleration, to further elu-

cidate small scales dynamics and its evolution along the jet. Particularly, the role

of finite particle size effects (which evolve along the jet, and therefore may be to

blame for preventing self-similarity to be recovered until the very far-field and the

associated dimensionless constant a0 (appearing in the Heisenberg-Yaglom relation

[Monin and Yaglom, 1975]) are addressed. At the same time, investigation into the

connection between Eulerian and Lagrangian dissipative time scales can be carried

out to further probe the applicability of stochastic models. All analysis is performed

on trajectories that pass through a sphere of radius r1/2(z)/3, as it was done for the

Lagrangian velocity analysis. Only the axial component of velocity is considered for

the acceleration discussion (radial component gives almost identical conclusions).

Acceleration variance

The variance of acceleration components is traditionally characterized by the scaling

constant a0 through the Heisenberg-Yaglom relation [Monin and Yaglom, 1975]:

⟨a2z⟩ = a0ν
−1/2ε3/2, (3.10)
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Figure 3.23: Evolution of the scaling constant of acceleration a0 along the
centerline as a function of the finite particle size dp/η.

where ν is the fluid viscosity and ε is the dissipation rate. The acceleration variance

is taken directly from the trajectories with the dt-method implemented to find the

noiseless values of ⟨a2z⟩ [Machicoane et al., 2017a]. This is done for different z

positions along the jet. a0 is then deduced at the different positions as ⟨a2z⟩ν1/2ε−3/2
z ,

where εz is the estimate of the dissipation rate at the considered position, based on

the considered acceleration component.

Acceleration variance, and therefore the dimensionless constant a0, is known to

be highly sensitive to particle finite size effects and to converge to the value expected

for actual tracers only when the normalized particle diameter dp/η ≲ 5 [Voth et al.,

2002, Qureshi et al., 2007, Calzavarini et al., 2009, Volk et al., 2011], where η is the

Kolmogorov length scale (see Table 3.2). In the present study the ratio dp/η varies

typically between 9 and 25 depending on the distance to the nozzle. Therefore, the

constant a0, as a function of the normalized particle size dp/η (bottom axis) and



125

of the downstream normalized location z/D (top axis), is provided in figure 3.23.

Included is a power-law fit of -1.75 and a red dashed line of the expected value

(from numerical simulations of HIST), atheory0 ≃ 4.2, calculated from Sawford [1991].

The power-law of -1.75 provides the expected atracer0 value of a true tracer through

extrapolating the trend as dp/η → 5, from which a value of atracer0 ≃ 3.0 is found, in

reasonable agreement with values reported in previous experimental studies in von

Kármán flows [Voth et al., 2002] and numerical simulations in HIST [Sawford, 1991,

Vedula and Yeung, 1999] for a similar Reynolds number. Furthermore, the power-

law fit intersects with the theoretical value of atheory0 at dp/η ≲ 5, what is generally

considered as the diameter for which finite size effects become noticeable. These

observations suggest that acceleration statistics in the jet should eventually behave

for tracers as in HIST, without a major influence of large scale inhomogeneity of the

jet. With the present considered particles (with dp ≃ 250 µm) the tracer behavior

is expected to be reached at a downstream distance z/D ≃ 65, which is out of

reach of the present data set. To deepen this question, it would be interesting to

perform further experiments specifically dedicated to acceleration measurements, by

considering either smaller particles or further downstream distances.

Regarding finite size effects, previous studies have reported in HIST a power-law

dependency of a0 on particle size, with a0 ∝ (dp/η)
−2/3 [Qureshi et al., 2007, Brown

et al., 2009], while a study by Volk et al. [2011] of von Kármán dynamics report a

slightly steeper decay with an exponent -0.81. In the present study, an even steeper

decrease of constant a0 is observed with particle size, with an exponent -1.75, about

double of the values reported previously. This stronger dependence of a0 on particle

size remains to be elucidated. It is likely due to a coupling between the finite size
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effects and the streamwise dependence of turbulent properties in the jet, although

further investigation would be necessary to further explore this point.

Acceleration two-point correlation

Beyond the value of a0, acceleration statistics are also of great interest as they

reflect the Lagrangian dissipative dynamics of the particles. In particular, they give

access to the dissipative timescale of the Lagrangian dynamics, traditionally defined

based on τ0, the zero-crossing time of the acceleration two-point correlation function,

Raa,z(τ) = ⟨az(t+ τ)az(t)⟩ with Raa,z(τ0) = 0. Acceleration two-point correlation is

estimated with a variant of the dt-method [Machicoane et al., 2017a]. Briefly, the

acceleration two-point correlation is obtained from second-order position increments

d2x according to the relation

Rd2xd2x(τ, dt) = Rââ(τ)dt
4 +Rd2bd2b(τ, dt) +O(dt6), (3.11)

where Rd2bd2b represents the contribution of noise. A polynomial fit of dt4 is imple-

mented to extract the true correlation values of Rââ, eliminating the noise contribu-

tion. This method is extended, herein, to more accurately describe the correlation

of acceleration of the given data set.

The two-point correlation of acceleration is presented in figure 3.24 for four down-

stream locations along the centerline, where the time lag has been normalized by τη.

It has been noted in previous studies that for tracers τ0 ≃ 2.2τη [Yeung and Pope,

1989, Calzavarini et al., 2009, Volk et al., 2008]. For the current study, the zero-

crossing time is not unequivocally close to τη and therefore the ratio τ0/τη depends
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Figure 3.24: Normalized axial acceleration correlation on the axis as a function
of time lag normalized by the Kolmogorov time scale.
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Figure 3.25: The zero-crossing of the acceleration correlation normalized by
the Kolmogorov time scale as a function of the downstream location along the
center of the jet. Three estimations are presented based on the acceleration
correlation Raa, the derived second-order structure function dSL

2 /dτ , and the
model driven values obtained from C0/a0.
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on the location of the measurement. The expected value of 2 is only approached

in the farthest downstream locations within the jet. The solid line in figure 3.25

shows the downstream evolution of the zero-crossing time τ0. As for a0 the observed

streamwise dependency of τ0/τη is likely due to finite size effects, which have been

reported in HIST to be affected by finite size effects [Volk et al., 2008, Calzavarini

et al., 2009]. It shall be noted though, that τ0/τη seems to eventually approach the

expected value of nearly 2 for the farthest positions (and hence for the smallest dp/η

ratios), presented in the inset of figure 3.25. Following the considerations previously

discussed on the trends of a0, it could then be expected that the actual tracer be-

havior (free of finite size effects) would be fully recovered for τ0 near z/D ≃ 65, with

a ratio τ0/τη of the same order of what is usually reported for HIST.

Beyond the discussed finite size effects, acceleration correlation is also insightful

to shed further light on the Lagrangian properties of the jet of relevance for the

application to diffusion problems, as motivated in the introduction.

First, the stationarization of velocity à la Batchelor can be tested further tested

by recalling that for any random stationary signal ξ, the two-point correlation of the

derivative of ξ, Rξ̇ξ̇, is simply related to the second derivative of the two-point cor-

relation of ξ: Rξ̇ξ̇ = −R̈ξξ (derivatives are denoted in dot notation). In the present

case, this relation gives that the zero-crossing of acceleration correlation corresponds

to an inflection point of the velocity two-point correlation. If Lagrangian station-

arity holds, τ0 can therefore be simply extracted from the peak of the derivative

of the second-order structure function, dSL
2 /dτ (figure not included). The corre-

sponding values are presented in figure 3.25 (dot-dashed line) which exhibit a fair

agreement with the direct estimate of τ0 from Raa. This observation supports the
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validity of the proposed stationarization procedure at each explored location inde-

pendently. Although, finite size effects influence the streamwise dependence of τ0

therefore impeding the validation of the small scale Lagrangian self-similarity based

on streamwise evolution of τ0 (or a0).

Second, the relevance of stochastic models to characterize the Lagrangian dy-

namics (and therefore to predict diffusion properties) can be further tested from the

acceleration timescales. As presented in section 3.4.2, simple (Langevin) stochastic

models accurately predict large scale properties, such as the connection between

Lagrangian and Eulerian integral timescales and C0. Two-time stochastic models

[Sawford, 1991] also predict a similar relation for the small Eulerian and Lagrangian

timescales, involving the constant C0 and a0 (see Huck et al. [2019]). Namely, the

prediction from such models can be written as

τa =

∫ τ0

0

Raa(τ) dτ =
C0

2a0
τη. (3.12)

Neglecting the curvature of Raa at the origin, the integral
∫ τ0
0
Raa(τ) dτ can be

approximated as τa ≃ 1
2
τ0 (because of the curvature, it is actually slightly larger

than that). It is therefore expected from stochastic models that τ0/τη ≃ C0/a0.

The dashed line in figure 3.25 represents the downstream evolution of the ratio

C0z/a0z extracted from the measurements. Neglecting the near-field locations of

z/D < 25, it can be seen that the agreement is also adequate when compared to

the two previously presented independent estimations of τ0/τη.
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3.5 Inertial particle results

3.5.1 Eulerian velocity statistical analysis

It has been noted that a jet shows a self-similar behavior as a function of downstream

location. First, the centerline statistics provide power law representations as was

evidenced in figure 3.16, where the axial velocity standard deviation, dissipation rate

and integral length scale are presented as a function of z/D. The mean velocities,

variance and covariance all exhibit self-similar relations within the fully-developed

region of the jet and show collapsing curves when normalized by the centerline

velocity. To assess how inertia affects these statistical quantities, the time-averaged

axial and radial velocity, the covariance and the concentration of the particles are

presented in figure 3.26 as a function self-similarity variable η = r/(z−z0). Here, all

profiles are taken at z/D = 25 for comparison. The tracer particles are compared

against the inertial particles with dp = 160µm and dp = 250µm. Note that the

length and time scales are dependent on location and therefore the diameter of the

particle is used for notating between the three cases. The four self-similar profiles

are compared to understand if the particles are impeding or advancing the flow in

this region, adding to stresses or subduing them.

First, for figure 3.26(a), typically, a Gaussian profile is observed for fluid tracer

dynamics and this is captured well by the tracer experimental results. This signifies

that the axial velocity decays as a function of its axial and radial position, leading

to near zero values by η = 0.3, which agrees well with canonical results [Pope,

2000]. Although similar, the two inertial particles with St ∼ 10,∼ 30 for I160 and

I250, respectively, show a slower decay as η → 0.3. This is caused by the inertia,
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(a) (b)

(c) (d)

Figure 3.26: Self-Similarity profiles for the tracers, inertial particles with
dp = 160µm and dp = 250µm at x/D = 25. Profiles include (a) the axial mean
velocity, (b) the radial mean velocity, (c) the Reynolds stress and (d) the con-
centration profile, all as a function of the self-similarity variable η = r/(z − z0).

inducing greater speeds of the jet, relative to the centerline velocity, at slightly larger

η values in comparison to the fluid tracer dynamics. The axial velocity has known

characteristics of its velocity deficit B ∼ 5.8 and spreading rate S ∼ 0.094 [Pope,

2000, Lipari and Stansby, 2011]. These parameters are based on the streamwise

velocity and are calculated as B = U0(z−z0)/UJD where UJ is the exit speed of the

jet and S = r1/2/(z − z0). Table 3.4 provides the B and S values obtained for the
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three considered cases. This quantifies the fact that the centerline is decaying more

slowly for the inertial particles and that the spreading rate is slightly increased. The

larger glass (250µm) particles tend to decay more slowly although the difference

is minimal when compared to the tracer results and the spreading rate is nearly

identical between the two inertial particles.

The radial velocity profile is provided in figure 3.26(b) which again exhibits

increased values for the two inertial cases in comparison to the tracer particles.

Here it has been noted that the radial velocity is highly effected by the seeding of

the particles only from the nozzle and the lack of seeding of entrained fluid [Basset

et al., 2022]. A typical radial self similarity curve would show a more gradual increase

of u′r/U0 from η = 0, with peak values of ∼ 0.02 and would become negative near

η ∼ 0.1. Very different trends have been noted by Basset et al. [2022] which is

attributed to the lack of tagged particles from the outside (ambient) fluid. All

three cases presented follow these newly quantified trends of the jet and are actually

amplified by the I160 and I250 particles. This result is similar to the relations of the

axial velocity where the glass particles have greater inertia and therefore slightly

higher rates of velocity for both components.

The second-order statistics observed by the Reynolds shear stress in figure 3.26(c)

present the now expected amplified turbulence of the glass beads in comparison to

the tracer particles. Although time averaged statistics would be expected to increase,

the fact that the fluctuations provide greater values for 0.08 < η < 0.3, indicate that

the variance of the signals for the inertial particles is also intensified. Recall that

this is all relative to the centerline velocity. Not only is the magnitude of the stress

larger for the glass particles but the location of the maximum is at a greater value
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Particle type B (centerline decay) S (radial spreading)
tracer 5.9 0.103
inertial dp = 160µm 4.93 0.126
inertial dp = 250µm 4.78 0.121

Table 3.4: Axial velocity parameters of the jet.

of η, possibly due to the decreased B and increased spreading rate and in turn

slower onset of the turbulent/non-turbulent interface of those cases. Here minimal

differences are observed between the two types of inertial particles.

Finally, the concentration profile is also investigated because boundary-layer

equations for a scalar field (i.e., the concentration of particles) are similar to those

of the mean axial velocity and therefore the self-similar profile is similar but typically

wider [Pope, 2000]. This is observed in the experimental tracer data as well as the

inertial particle data which shows even wider concentration profiles. Again, this ties

into the increased spreading of the particles and decreased B, leading to a wider jet.

From the Lagrangian perspective, the interaction of the particles within the

centerline and at the shear layer can be quantified by multi-particle statistics. Recall,

that when considering pair dispersion, three regimes are expected in turbulent flows

depending on the time scale of dispersion relative to a characteristic scale. To

quantify the effects of inertia on these regimes, the scaled mean-squared particle

separation, (D(t) − D0)
2/(11/3)C2(εD0)

2/3τ 2η is presented in figure 3.27 for the

tracer particles and the two glass beads of diameter dp = 160µm and 250µm. The

data are probed at two locations, along the centerline, figure 3.27(a), and at r = r1/2,

figure 3.27(b). The dispersion is taken for particles that fall within a sphere of size

r1/2/3 at z/D = 15.

Along the centerline, the near-field of the jet shows a well described Batchelor
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regime then then no super-diffusive Richardson scaling at t/τη increases. Instead,

due to the magnitudes of the initial separation and the dissipation rate, the charac-

teristic time scale, t0 of pair dispersion is actually larger than the largest scale of the

flow, TL and therefore the dispersion appears to transition from a scaling of t2 in the

ballistic regime, directly to t, a diffusive regime. The onset of the diffusion regime

is later for the most inertial particles in comparison to the smaller, dp = 160µm

particles and the tracers. For the off-axis dispersion, a longer Batchelor regime

for all particle types is observed in comparison to the centerline possibly due to

the increased turbulent activity and increased integral time scale at that location.

Again, the I250 particles contain the longest ballistic regime. Previous studies of

inhomogeneous flow have applied techniques of pair dispersion to characterize the

diffusion processes [Pitton et al., 2012, Watanabe et al., 2016]. Both Pitton et al.

[2012], Watanabe et al. [2016] use DNS and are able to extract larger and smaller

time scales than those presented here, although tendencies of the inertial particles to

surpass the scaling behaviors of the tracers was observed in the channel flow DNS

of Pitton et al. [2012]. As the jet develops and the integral time scale increases,

recall that T ∝ z2, pair dispersion is again applied to the centerline trajectories as

well as those off-axis at z/D = 35, and resulting curves are provided in figure 3.28.

Note that the particle time has decreased for figure 3.28(a) and 3.28(b) due to the

slowed particle motions relative to the Kolmogorov time scale, τη. Similar behaviors

are present as those from near the jet exit (figure 3.27) with the exception that the

Batchelor scaling is extended in time t/τη for all considered cases at all radial loca-

tions for the far-field. Likely due to the larger structures developed and therefore

smaller relative t values in comparison to TL. It is of note that the largest and most
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inertial particles show increased scaling for each considered location in comparison

to the smaller glass beads, I160, as well as the tracer particles.

(a) (b)

Figure 3.27: Mean-square particle separation, (D(t) − D0)
2, scaled by

(11/3)C2(εD0)
2/3τ 2η is plotted for 16 different initial separations, ranging from

0–1 mm to 39-40 mm. Two initial locations of the dispersion calculations are
presented: (a) z/D = 15, r = 0 and (b) z/D = 15, r = r1/2. A t2 power law is
also included as a solid line.

3.5.2 Acceleration

Acceleration statistics are highly sensitive to the size of the particle, providing an

opportunity to understand how the Stokes number effects acceleration when the

density of the particle is also a factor. Three data sets are compared for a variety of

flow conditions in figure 3.29. Two sets of data from the jet experiment are included,

the tracer particle data along the centerline of the jet as well as the inertial data

for particles with dp = 160µm. St evolves in the jet and therefore high values are

reached very near the nozzle and lower values are obtained in the far-field. Other

data included are the direct numerical simulations of Bec et al. [2006] using particle
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(a) (b)

Figure 3.28: Mean-square particle separation, (D(t) − D0)2, scaled by
(11/3)C2(εD0)

2/3τ 2η is plotted for 16 different initial separations, ranging from
0–1 mm to 39-40 mm. Two initial locations of the dispersion dynamics are pre-
sented: (a) z/D = 35, r = 0 and (b) z/D = 35, r = r1/2. Again, a t

2 power law
is also included as a solid line.

trajectories experiencing homogeneous, isotropic and stationary turbulence. Reλ for

all cases are within 180-240.

General trends between all cases show nice agreement with minimal scattering

observed between the various methods. Slight increases in the a0 values are ob-

served for experimental tracers in comparison to the DNS but a similar power law is

observed between the two. This difference in magnitude could be due to the added

mass of the two cases, while the DNS present data with an added mass, β = 0, the

tracer particles in the jet are neutrally buoyant, i.e., β ∼ 1, possibly causing the

offset [Huck, 2017]. In contrast, the inertial particles show different trends, with

a more gradual decay in acceleration variance in comparison. This could also be

due to the added mass, which is closer to 0.5 for the glass beads. Furthermore,

the dampened magnitudes could also be due to the convergence of the acceleration

variance as it reaches zero, although lower St values would be required to observe if
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the curve regains the power law observed in the LEMtracer and DNS data.

DNS

LEMtracer

LEMI-160

Figure 3.29: Heisenberg-Yaglom coefficient (a0) of the tracer and inertial par-
ticle data from the LEM as well as DNS of isotropic homogeneous turbulence
[Bec et al., 2006].

3.6 Concluding remarks

Particle tracking velocimetry was implemented to create three component jet trajec-

tories in three-dimensional space. Generation of such a large scale database facili-

tates the study of how fundamental Lagrangian parameters behave when exposed to

a highly anisotropic and inhomogeneous flow field. The Lagrangian self-similarity

theory of turbulent diffusion by Batchelor [1957] has been applied to account for

the Lagrangian non-stationarity of the flow field due to the spatial Eulerian in-

homogeneity. The stationarization technique leading to Lagrangian self-similarity

is validated in the far-field of the jet for Lagrangian inertial scales dynamics by

the collapse of the Lagrangian velocity structure functions and correlation profiles

(after a given location downstream) for the stationarized variables. Lagrangian self-

similarity is also validated for the large scales, as the Lagrangian and Eulerian time
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scales are found to be univocally tight in the far-field of the jet. For the small scale

Lagrangian dynamics, self-similarity is only observed in the farthest downstream

locations explored. This is attributed to the impact of particle finite size effects

which evolve along the jet axis and therefore influence the small scale Lagrangian

dynamics differently depending on the downstream position, as confirmed by the

acceleration statistics. Further studies, with experiments specifically dedicated to

small scale (acceleration) measurements of small tracers would be required to draw

final conclusions concerning the small scale Lagrangian self-similarity. In turn, this

confirmation of the validity of the Lagrangian self-similarity at inertial and large

scales is an important element supporting Batchelor’s extension of Taylor’s station-

ary theory of turbulent diffusion to the case of self-similar jets and wakes where

particles have a non-stationary Lagrangian dynamics.

Regarding the inertial scales of the Lagrangian dynamics, results indicate that

the Lagrangian scaling constant, C0, is a function of downstream location in the

near-field and eventually converges (around z/D = 30) to a value of the order of

3, with a small (∼ 10%) difference between axial and radial components, indicating

a weak role of anisotropy on inertial scale Lagrangian dynamics in the jet. It is

noted that this value may be Reynolds number dependent (its order of magnitude

is consistent though with HIST simulations and experiments carried in other flows

at similar Reynolds number), and further studies in a jet configuration at different

Reynolds number will be required to explore this dependence.

The evolution of the Eulerian to Lagrangian integral time scale ratio shows con-

vergence towards TE/TL ≃ 1.8 around z/D = 25 for the axial velocity timescales and

TE/TL ≃ 2.6 by the same location downstream for the radial based timescale ratio.
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This points towards three interesting observations: (i) In the well developed region

of the jet, the Lagrangian dynamics decorrelates faster (about twice faster) than

the Eulerian (as predicted for HIST by Kraichnan [1964]); (ii) The ratio between

Lagrangian and Eulerian integral scales is about 40% larger for the radial compo-

nent compared to the axial, what is to be related to the large scale anisotropy of

the jet; (iii) In spite of this difference, sufficient agreement is found between the

measured ratio for these time scales and the prediction from simple stochastic mod-

els for HIST, TE/TL ≃ C0/2 (the agreement is favorable between the axial based

parameters while the value predicted by the model underestimate the actual time

scale ratio for in the radial direction).

Considering the small scale dynamics, the normalized acceleration variance shows

a strong dependence on the downstream location from the nozzle, presumably asso-

ciated to finite particle size effects, which are known to influence acceleration when

dp/η > 5 typically. This presumably explains why self-similarity is not fully re-

covered at small scales in the present study, as tracer-like behavior for acceleration

would only be recovered around z/D ≃ 65. Besides, the power-law slope of a0 as a

function of dp/η found in the current study is larger than in previous studies in HIST

and von Kármán flows, suggesting that the jet dynamics interplay with finite size

effects. The zero-crossing of the acceleration correlation also demonstrates a strong

dependence on the downstream location from the nozzle, converging towards typi-

cal values (τ0/τη ≃ 2) only at the farthest position explored (z/D ≳ 40). Although

the actual value of τ0 is likely also altered due to finite size effects, the agreement

between several independent estimates of τ0 supports on the one hand the validity

of the proposed stationarization method and on the other hand the relevance of
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simple stochastic approaches to link (in the far field) the Eulerian and Lagrangian

dissipative time scales to the experimentally determined constants C0 and a0.

The ability of the implemented stationarization technique provides adequate

methods for calculating the scaling constant, a non-trivial task within an inhomoge-

neous flow field. Overall, after a proper stationarization, the Lagrangian properties

for the jet are interestingly found to match reasonably well the behaviors previously

reported for HIST. From the perspective of building simple and practical diffusion

models, the success of the method validates Batchelor’s extension of Taylor’s the-

ory, providing estimates of turbulent diffusion properties based on the Lagrangian

second-order structure function (or two-point correlation function) of velocity. Fur-

ther, the relations presented between the Eulerian and Lagrangian time scales (both

integral and dissipative) suggests that simple stochastic modeling is well suited to

find reasonable estimates of such correlation functions. Actually, based on these

models, the simple knowledge of the constants a0 and C0 may be sufficient to build

reasonable proxies (with exponential or double exponential functions) of these cor-

relations to be used for estimating turbulent diffusion properties.

Investigations into inertial particle dynamics in the jet revealed that the spread

of the jet is faster for the glass beads in comparison to the neutrally buoyant tracer

particles, as observed in Eulerian self-similarity profiles. Between the two finite

inertia particles with varying diameters, minimal differences were observed for the

spatial analysis. Pair dispersion displayed the ability of the particles to diffuse

as a function of the separation time. A ballistic regime is present for all cases

and locations explored. The span of the regime depended on the axial and radial

location within the jet as well as the type of particle. Explicitly, as the jet developed
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downstream, the ballistic regime, t2 scaling, extended into larger scales. Similarly

the ballistic behavior was also present for off-axis pairs at larger separations. Finally,

it was noted that the particle inertia effected the onset of the diffusive regime as

well, increasing the ballistic regime at a given location with increased St.

Acceleration was investigated for the tracer particles and the small sphere inertial

particles, namely I160. The scaling constant, a0, demonstrated a power law as a

function of St. The tracers, which contain finite size effects due to their diameter

in comparison to the small scale dynamics of the flow, present inertial affects when

considering small scale phenomena such as acceleration. Similar power law scaling

is presented for the tracers and a set of homogeneous, isotropic and stationary

simulated turbulence, although an offset is present. This is likely due to the added

mass of the tracers, where a density ratio β ∼ 1 is present in comparison to the DNS

which evaluates heavy point particles and therefore β = 0. The inertial particle

dynamics (glass beads with β ∼ 0.5) extracted from the jet show a more gradual

decay of a0 as a function of Stokes, possibly due to the magnitude of the universal

constant converging towards zero at St∼ 70.
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Chapter 4

Jet modeling based on homogeneous, isotropic and stationary

turbulence

4.1 Introduction

In practice, for both Eulerian and Lagrangian approaches, the complicated dynamics

of turbulence often require (or simplify greatly when considering) homogeneous,

isotropic and stationary turbulence (HIST) and therefore, an overwhelming amount

of research has been concentrated on this simplified flow. Although more accessible,

HIST does not generally equate to real world applications in which inhomogeneity

and anisotropy are commonly observed. This predicament leads us to question if the

progress that has been made for homogeneous turbulence research could somehow be

exploited to characterize inhomogeneous flow fields? Moreover, could it be used in

modeling inhomogeneous flow with higher accuracy than current efforts, in particular

regarding subtle properties such as intermittency?

Regarding HIST, advancements in experimental techniques have improved the

phenomenological understanding and the accurate characterization of the full multi-

scale dynamics of turbulence. Moreover, the increased computational power leads

to a rise in the precision and detail feasible for simulations and numerical modeling.
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The study of turbulence relies on statistical descriptions due to the non-repeatable

nature of instantaneous descriptions. This is often achieved through the use of

correlation functions and velocity increment analysis (through the so-called struc-

ture functions for instance, which correspond to the statistical moments of velocity

increments in space for the Eulerian approach and in time for the Lagrangian).

Along this line, crucial to the developments in HIST research, Taylor [1922] pro-

vided a connection between diffusion rate of a cloud of fluid parcels and two-time

Lagrangian correlations of velocity, an important advancement to model turbulent

diffusion. On the Eulerian side, Kolmogorov [1941] postulated that within inertial

scales statistics of turbulence could be characterized by the mean energy dissipation

rate ε, leading the well-known K41 self-similar scalings for the structure functions,

which accurately predict for instance the energy spectrum and the asymmetry of

velocity increment associated to the turbulent energy cascade.

Extensions to include deviations from scale invariance, such as intermittency

have been since proposed [Kolmogorov, 1962, Vassilicos et al., 2001, She and Lev-

eque, 1994] and although its physical origin has not yet been fully unveiled, accurate

statistical descriptions such as the multi-fractal formalism [Chevillard et al., 2012]

have been developed to account for such peculiar multi-scale dynamics. These statis-

tical relations presented by Kolmogorov [1941] and others have since been developed

for Lagrangian structure functions by Obukhov and Landau [Falkovich et al., 2012].

It therefore is appealing, regarding the ongoing efforts to study HIST, to under-

stand fundamental aspects of this flow because theoretical relations are often well

defined and therefore greater amounts of analysis can be executed. Experimentally,

this manifests itself in the study of decaying turbulence in wind tunnels (experi-
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ments with approximately HIST conditions) using spatial (Eulerian) measurements

[Comte-Bellot and Corrsin, 1971, Gad-el Hak and Corrsin, 1974, Warhaft and Lum-

ley, 1978, Kang et al., 2003, Krogstad and Davidson, 2010]. Similarly, substan-

tial work has been done to strengthen our understanding of turbulence though La-

grangian approaches in experiments, theory and numerics using HIST. Experimen-

tally, the Lagrangian exploration module provides near HIST conditions though the

use of counter-positioned motors within an icosahedron tank [Zimmermann et al.,

2010]. Otherwise, near HIST conditions are again often observed though decaying

turbulence behind a grid and have been extensively explored through tracer particle

dynamics [Snyder and Lumley, 1971, Sato and Yamamoto, 1987].

Computationally, HIST is also often employed to better understand turbulence.

For example, in direction numerical simulations (DNS) [Orszag, 1969, Siggia, 1981,

Jiménez et al., 1993, Gotoh and Fukayama, 2001], which have improved characteri-

zation of passive scalars, pressure and vorticity in HIST. Furthermore, homogeneous

turbulence is often an assumption to decrease complexities to simulate flow fields via

large-eddy simulations (LES) [Chollet, 1985, Fureby et al., 1997, Hughes et al., 2001]

and by Reynolds-Averaged-Navier-Stokes (RANS) [Torrano et al., 2015]. Again, ex-

tensions to these Eulerian based approaches have been proposed to characterize

Lagrangian HIST by tracking particles through the computed field and extract-

ing the tracer velocities and velocity gradients for analysis [Yeung and Pope, 1989,

Kimura and Herring, 1996, Anderson and Meneveau, 1999, Ishihara and Kaneda,

2002, Biferale et al., 2005, Ishihara et al., 2009]. It is noted that the use of LES

and RANS provides faster, and therefore and lower cost computations but at the

expense of resolving all scales. This has been noted and alleviated at times with
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various methods to introduce small scale intermittency [Byggstøyl and Kollmann,

1981, Rogallo and Moin, 1984, Lesieur and Metais, 1996].

Touched on previously, despite the abundance of research, past and present,

devoted to HIST, the majority of turbulent flows observed in industry and nature

do not fall into this category. For example, urban boundary layers, plumes, jets and

wakes are all non-homogeneous flow fields due to walls, blunt bodies or free-shearing

with ambient fluid. Moreover, when a flow is inhomogeneous in a Eulerian (spatial)

sense, it is therefore non-stationary in a Lagrangian (temporal) sense, and tracers of

the flow become dependent on their location within the flow, constantly interacting

with ever-changing large-scale development in the background flow.

Based on observations and relations of how particles behave within turbulence,

additional advancements to turbulent research, for (temporally) stationary and non-

stationary flows, have been made through the development of Lagrangian modeling,

e.g. multifractal models, stochastic dispersion processes and random walk models

[Sawford, 1991, Borgas, 1993, Borgas and Sawford, 1994b, Bacry et al., 2001, Chevil-

lard et al., 2003, Mordant et al., 2003]. These models have been proposed to predict

and explain fluid element behavior within turbulent flow. Multifractal formalism is

used to predict the highly non-Gaussian statistical representations of the particle ve-

locity and acceleration increments through phenomenological approaches [Borgas,

1993, Chevillard et al., 2003]. Fluid tracer trajectories can be obtained through

stochastic approaches [Sawford, 1991, Borgas and Sawford, 1994b, Mordant et al.,

2003] and the inclusion of intermittency effects can employed in these models as

presented in Section 2.3 as well as according to Bacry et al. [2001], Mordant et al.

[2003]. Again, HIST simplifies the modeling requirements, such as symmetries of the
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flow field and stationarity of the signal, but stochastic processes have shown success

in accounting for inhomogeneities or anisotropy through model modifications. Non-

homogeneous modeling of plumes [Weil, 1994, Franzese, 2003] and boundary layer

fluid dispersion [Aylor and Flesch, 2001, Shnapp et al., 2020] have found success

although many criteria must be satisfied to provide accurate trajectory behaviors

[Thomson, 1987]. Examples include, well-mixed condition, small scale behavior

of particles from point sources and forward and reverse diffusion, to name a few

[Thomson, 1987]. Another noted issue is the required knowledge of parameters for

these flow, for example the Kolmogorov scaling constant (C0) which is critical to

Lagrangian stochastic modeling. Although said to be constant, it has been observed

that this parameter is dependent on Re [Du et al., 1995] as well as location within

inhomogeneous flows as observed in Section 3.4.

The difficulties in analytical descriptions of inhomogeneous flow fields are most

evident when trying to quantify times scales and calculate dissipation or diffusion

rates. As previously mentioned, most known relations, for example statistical tech-

niques such as those presented by Kolmogorov [1941] or kinematic relations, the

diffusion theory of Taylor [1922], require the flow field to be HIST. As noted previ-

ously, Batchelor [1957] proposed methods to mitigate this dilemma by stationarizing

flows which experience inhomogeneity but also exhibit self-similarity through a novel

modification of the theory of diffusion presented by Taylor [1922]. The previous

chapter shows successful application of this method to an experimental turbulent

jet, and furthermore provides a simple and clear approach of the methods, which

can be applied to any self-similar flows, e.g. wakes, jets, boundary layers [Ouellette,

2021].
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The technique [Batchelor, 1957] requires only a few parameters of the flow field

to create a HIST signal and associated time lag. If such a simple model can be

built to mimic HIST, can these same relations be used to generate a non-stationary

Lagrangian flow (e.g. a jet) based on a HIST signal alone? This leads one to wonder

if all the advancements that have been made to DNS and Lagrangian modeling of

particle trajectories can be exploited to accurately model self-similar flows, e.g.,

wakes, jets and boundary layers. More generally, can the modeled intermittency of

the HIST signal continue to be captured by the pseudo jet velocity signal to produce

true dynamics at small scales without high computational costs?

Implementations of this modeling technique have been attempted in numerous

ways within the past [Minier et al., 2014b], specifically regarding the compensations

suggested by Batchelor [1957]. In the three part article, Wilson et al. [1981a,b,c]

presents methods to build up a turbulent boundary layer flow based on stochastic

processes. This work provides a framework to apply these non-stationarity tech-

niques to atmospheric flows, but some assumptions are required due to the com-

plexity of the flow and furthermore, the implementation methods are not straight-

forward. A method to build up a jet has also been attempted by Lipari et al. [2007],

presenting an adequate model for dilute suspensions, where they use two separate

steps to work out solutions of the carrier and dispersed phase.

This lead us to propose an initial pathway using very simple equations to build

a jet with a given Reynolds number. The methods are based on the known Eulerian

self-similarity relations of a jet. In addition to simplifying application of the model

based on previous attempts, it is able to take any set of HIST trajectory velocities an

input to produce the jet, i.e., a HIST signal created by a stochastic process (models
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presented in Chapter 2 and trajectories extracted from DNS). It is also relevant

to the study to further investigate the capabilities of the OU process (presented in

Chapter 2). The Batchelor transformation can be applied to any modeled HIST

signal and therefore, the number of layers as well as the level of intermittency

correction included can be varied to understand the benefits and drawbacks of a

given HIST signal depending on its simplicity or complexity. Finally, it is noted

that this method could be applied to any flow field as long as knowledge of the

time-averaged velocity, standard deviation and integral time scale are known.

4.2 Theory

Inspired by the work of Batchelor [1957], a stationarization scheme was presented

and tested in Chapter 3 wherein the tracer velocity and time increment are rescaled

to account for Eulerian properties that evolve in the background.

Reversal of the stationarization process leads to methods of creating non-

homogeneous flow fields through the transformation of the equations provided by

Batchelor [1957]. Therefore given a HIST velocity signal, ṽ, and a respective time

step, dτ̃ , a non-stationary velocity signal along a trajectory can be generated by,

v(τ) = u(x(τ)) + ṽ(τ̃)σu(x(τ)) and dτ = TE(x(τ))dτ̃ . (4.1a,b)

HIST trajectories of the tracer particles are created using two separate modeling

techniques: i) stochastic processes of Chapter 2 or ii) extracted from direct nu-

merical simulations, as discussed in Section 2.3. The inputs into the proposed

non-stationarization methods need to be nondimensionalized to be used in equa-
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tions (4.1a,b). This is accomplished by using parameters from the DNS and the OU

model to normalize the velocity and time lag to obtain respectively, ṽ = v
HIT

/σuHIT

and dτ̃ = dτ
HIT

/TLHIT
.

Equations (4.1a,b) require knowledge of the spatial distribution of the veloc-

ity and integral timescale. Here, a set of self-similarity relations are proposed to

generate a jet from a point source. Based on relations presented in Hussein et al.

[1994] and So and Hwang [1986], the mean streamwise velocity can be described

by a Gaussian approximation for first order analysis and through continuity of an

incompressible fluid the radial velocity is defined as:

uz(r, z)

U0(z)
∝ e−A1η2 and

ur(r, z)

U0(z)
∝ ηe−A1η2 − 1− e−A1η2

2A1η
, (4.2a,b)

where U0(z) is the centerline velocity and η is a self-similarity variable defined as

r/(z − z0) and z0 is the virtual origin of the jet. It has been noted that U0(z) ∝

(z − z0)
−1. The circumferential velocity does not contain a mean velocity, but

fluctuations are relevant and must be considered.

The velocity variance, and therefore standard deviation for each component, also

follows self-similarity relations obtained experimentally and defined as:

σ2
uz
(r, z)

U2
0 (z)

∝ e−A2(η−B2)2 ,
σ2
ur
(r, z)

U2
0 (z)

∝ e−A3η2 and
σ2
uθ
(r, z)

U2
0 (z)

∝ e−A4(η−B4)2 .

(4.3a,b,c)

where σ2
ui

= u′2i and u′i is introduced as the fluctuating Eulerian velocity of compo-

nent i provided by the Reynolds decomposition, u′i(r, z, t) = ui(r, z, t)− ui(r, z).

The relation of TE can be directly linked to the linear relations found for length
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scales within the developing jet, specifically L ∝ z. Then, defining the integral

length scale L ≈ σuTE and σu ∝ 1/z, the Eulerian integral time scale evolves in the

jet as:

TEz(z) ∝ z2, (4.4)

and is consistent with the experimental trends observed in Section 3.4. Constants

are found empirically by fitting the experimental data, explicit values are provided

in the Appendix B.1.

4.3 Results

For the presentation of the results, HIST data modeled from Ornstein–Uhlenbeck

are referred to as OU, HIST data which is extracted from the simulation is denoted

with DNS. If the data has then been converted (ie., from HIST to non-stationary

turbulent jet flow) it is prefaced with as Bachelor transformation (BT) prior to the

acronym which describes whether it is acquired from OU or DNS. All experimental

data will be denoted with EXP.

A first look at the trajectories that are generated by the non-stationarization

process is included in figure 4.1. A detailed algorithm of the modeling process is in-

cluded in Appendix B.2. For reference, a subset of HIST trajectories is presented in

figure 4.1(a) prior to the transformation. Figure 4.1(b) provides the modeled trajec-

tories based on the stochastic process HIST signals, BT-OU, and 4.1(c) presents the

experimentally measured trajectories for visual comparison. Note that the trajecto-

ries originate from a point source to form the jet for the model and the experiment.
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Qualitatively there are noticeable similarities between the two jets shown, the gen-

eral spread of the jet as well as the decay of streamwise velocity are both captured

well by the model, but differences are observed. The length of the trajectories ob-

tained from the experiment are much shorter, resulting in the ending of trajectories

at the turbulent/non-turbulent boundary layer while the model continues to track

those particles that fall into the ambient and are often recaptured into the fast

moving jet.

(a) (b) (c)

→

Figure 4.1: (a) HIST trajectories extracted prior to the Batchelor transforma-
tion, (b) the modeled trajectories from the Ornstein–Uhlenbeck process and (c)
the experimental data. The colorbar denotes the axial velocity (same colorbar
is used for both representations).

4.3.1 Eulerian statistics

A quantitative verification of the mean velocities and standard deviations can be

obtained through Eulerian evaluations of the flow field. In this regard, the modeled

Lagrangian trajectories, which are in cylindrical coordinates, are binned in z and η =

r/(z−z0) every step of 0.5mm and 0.01, respectively, to compute the time-averaged

first and second-order statistics of particle velocities inside each bin. Figure 4.2
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presents self-similarity profiles of streamwise, radial and concentration statistics

for the outputs of the Batchelor transformed Ornstein–Uhlenbeck trajectories (BT-

OU) at four locations downstream, z/D = 15, 25, 35 and 45. The statistics are

normalized by a respective centerline axial velocity, U0, or centerline concentration,

ϕ0. Additionally, the self-similarity profile for the experimental data is provided for

comparison.

The time-averaged normalized streamwise velocity profiles, figure 4.2(a), collapse

nearly perfectly, indicating that the modeled jet spreads and decays with similar

behavior to the experimental data. For the radial velocity, there are small deviations

observed in the mean velocity profiles, figure 4.2(b). There is good agreement with

the experimental data in overall trends, although noise is observed at large η due

to the minimal data available at the edges of the jet. It is important to note here

that this agreement for the radial velocity is critical and indicates the ability of

the model to capture the unique dynamics of the jet when seeded only within the

jet. This is evidenced by the fact that the model matches the experimental data

but inputs into the model are different than what is obtained from the trajectories.

Specifically, for the incompressible jet, the known profile has an initial slope of 1/2

and the velocity becomes negative near η ∼ 0.12, different than what is observed

in figure 4.2(b) for the model and for the experiment. This is due to the entrained

fluid which causes negative radial velocity at large η, which is not captured by the

experiment because only the particles exiting the nozzle are tagged and equally not

captured by the BT-model because particles are intentionally seeded only within

the jet. This behavior was previously noted in Basset et al. [2022] and is validated

here where the model is fed with the incompressible jet model but due to the input
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to the model of particles from a point source, the true profiles observed by the data

are recovered.

Figures 4.2(c) and 4.2(d) present the variance of the streamwise and radial ve-

locity in self-similarity variables, where generally, a decay is observed in the variance

as a function of η. Again, a collapse is observed for the two sets of profiles, signify-

ing that the model is capturing the second-order trends present in the experimental

data. This already demonstrates that the model can capture the variance of the jet

and that it retains the self-similarity as the jet develops. Covariance is provided in

figure 4.2(e), which, similar to the normal variances, shows a collapse. It is noted

here that the HIST trajectories are not correlated (prescribed by the modeling tech-

niques) and therefore a diagonalization of the covariance is imposed to correlate the

two signals, see Appendix B.3 for details.

Finally the concentration profile is provided in figure 4.2(f) to see the diffusion

of the jet into the quiescent surrounding fluid. No input into the model is associ-

ated with the jet concentration therefore all dynamics presented in the figure are

purely from the particle motions indicated by the velocities of the model. Here, the

resulting curves of the BT-model still present similar trends to those observed in the

experimental data, although the parabolic behavior is not captured and the curves

depict an almost linear relation for most values of η.

4.3.2 Lagrangian statistical model comparisons to experimental data

Due to the non-stationarity of the trajectories, conditions need to be applied to

accurately characterize and compare statistics of the model output and the experi-

mental results. As depicted in the schematics of figure 4.3, one method to accurately
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(a) (b) (c)

(d) (e) (f )

Figure 4.2: Self-Similarity profiles for the model vs. data. For each figure
mean values are presented by the solid lines and the colored bands provide an
additional standard deviation for a given η position.

compare the signals is to look at velocity differences of the trajectories conditioned

on an initial location within a small sphere with a radius rmax. The given ensem-

ble is created based on the trajectories that fall within the sphere, namely Xb and

Xc from figure 4.3. The sphere radius, rmax, is set to the jet half-width divided

by two, 1
2
R1/2, to ensure convergence of the statistics while still sampling near the

given axial location of interest. Next, statistics are calculated based on the t0 (at

the location close to the center of the interrogation sphere), i.e., the trajectories are

now given a pseudo origin at t0b and t0c, for Xb and Xc, respectively. In an attempt

to accurately average over the non-stationary trajectories, each time step is taken
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from t0, explicitly.

(a) (b)

tb0

rmax

tc0

rmax

xa
xb

xd xc

tb0 tc0

tb3
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tb1

tc4

tc3

tc2

tc1

xb
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Figure 4.3: Schematic of the conditioning for statistical analysis of the non-
stationary trajectories.

4.3.3 One-time statistics

Probability density functions (PDF) for the normalized axial and radial velocity

(zero mean and unit variance) are given in figure 4.4. Four downstream positions

z/D = 15, 25, 35 and 45 are included for comparison of the non-stationarity of the

jet and the ability of the model to reproduce at a given location axial location. For

each subsequent figure, all locations show the experimental data (△), the outputs

of the Batchelor transformation applied to the OU (-) and DNS (- -). In figure 4.4,

the PDFs are shifted for clarity of the fits and a Gaussian curve is also included in

a dash-dotted line.

The axial velocity, figure 4.4(a), presents good agreement between the modeled

data and the experimental PDF near the mean velocity. Both models and the

experimental data show near Gaussian profiles, as is expected for this large scale
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quantity. Small deviations start to occur around vz − ⟨vz⟩ ≈ ±3.5σz, when the

experiment appears to be sub-Gaussian, possibly due to limitations in experimental

interrogation volume and ability to obtain sufficient data with large velocities. The

resulting curves also show very little dependence on the location, with the data

following the Gaussian curve for all downstream locations. Trends observed here

are similar to those in Gervais et al. [2007] for the longitudinal (vz) component of

velocity of the jet.

Similar to the streamwise velocity, the experimental radial component PDFs,

figure 4.4(b), also demonstrate a Gaussian profile that is well captured by the mod-

eling techniques until about vr − ⟨vr⟩ ≈ ±3σr. Here, the modeled data and the

experimental data results still show fair agreement, both becoming over-Gaussian,

presenting intermittent behaviors. Again, the curves fall nearly on top of each other,

with minimal distinction between the z/D location. Furthermore, these profiles also

agree with the PDFs of normalized traverse velocity from Gervais et al. [2007].

(a) (b)

Figure 4.4: PDF of the axial and radial velocity from the model at 4 locations
downstream.
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4.3.4 Two-time statistics

Further information is gained from two-time statistics of the flow and therefore

the correlation of velocity for the axial and radial component are presented in fig-

ure 4.5(a) and 4.5(b), respectively, where Cvi(τ) = ⟨vi(t0 + τ)vi(t0)⟩ and i is the

component of velocity. The timescale is compensated by D/VJ , where D is the di-

ameter of the nozzle and VJ is the exiting jet velocity. All of the following Lagrangian

statistics are based on the conditioned trajectories as describe above. Finally, it is

noted that the time-scale is adjusted at each location to collapse temporally with

the experimental data, these adjustments could be due to the global differences of

TE and TL, which has been previously shown to depend on location within the near-

field of the jet (Section 3.4). Both axial and radial time shifts converge to a value

of 0.8 and 1 within the considered locations.

The correlation of velocity gives information on accuracy of large scale model-

ing. For the axial velocity correlation function, figure 4.5(a), the model provides a

very good agreement with the results from the experiment in shape at small and

large time scales, τD/VJ , for each of the considered locations. The radial velocity,

figure 4.5(b), also demonstrates remarkable agreement, with the model presenting

small deviations from the experimental curves only at large time scales, likely when

the experiment has low convergence due to track length deficiencies. Furthermore,

the model shows an ability to obtain better statistics at great τD/VJ values, and

therefore large scale information can be extracted from the data with greater ease.

Velocity increment statistics of the modeling technique and the experiment are

presented in figure 4.6 at four downstream positions z/D = 15, 25, 35 and 45. The

structure functions used for the analysis are defined as Sn−i(τ) = ⟨[vi(t0 + τ) −
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(a) (b)

Figure 4.5: Two-time velocity correlations for the (a) axial and (b) radial
components for the considered locations of z/D = 15, 25, 35 & 45.

vi(t0)]
n⟩, where n is the moment and i is the velocity component. In addition to the

modeling outputs, the second-order structure function of the HIST-OU data (dash-

dotted) is included to better understand the transformation of the statistics. Again

the timescale is non-dimensional, compensated by D/VJ . The axial component

results, figure 4.6(a), show a collapse of the two models and the experimental data

for all considered locations. There is a slight overestimation of the z/D = 15

profiles for the two models, likely due to the fact that the jet is not completely

self-similar at the location. In general, the BT-OU trajectories provide both an

extended dissipative range and large scale plateau in comparison to the trajectory

statistics from the experiment. The BT-DNS also provides increased small scale

information at the farthest downstream locations, but due to the time step of the

DNS, as well as the length of the dataset, some small scale information and the

large scale plateau are not recovered.

The radial velocity Lagrangian statistics can also be investigated and compar-

isons between the models and the experimental results are presented in figure 4.6(b).
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(a) (b)

Figure 4.6: Second-order structure function for the (a) axial and (b) radial
velocity component.

Similar to the axial velocity statistics, collapses are seen for the second-order struc-

ture function. Here the nearest-field location, z = 15D, shows a poor collapse for

the structure functions although the behavior of the curves are similar in their ten-

dency, which may be expected due to the overestimation of the velocity observed in

the Eulerian statistics, figure 4.2(b). It is noted that large differences are observed

between the outputs of the axial and radial components (most easily observed by

comparing the jet curves to the HIST-OU curve) which is well captured globally by

the models.

To better understand the ability of the model to include intermittent effects,

small scale dynamics must be analyzed. It has been previously noted that La-

grangian velocity has Gaussian statistics but Lagrangian acceleration is strongly

non-Gaussian in its behavior [Mordant et al., 2004a,b]. Therefore, expectations are

that the velocity increments will present the intermittent behavior through non-

Gaussian distributions as the time scale approaches the dissipative range. For this

reason, the evolution of the Lagrangian velocity increments are presented as PDFs

in figure 4.7 and figure 4.8 as a function of the time scale separation τ . The com-
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pensated velocity difference (unit-variance), are presented for the time separation τ

varying from τη to 20τη for the four considered downstream locations, as denoted in

their title. Note that the Kolmogorov time scale, τη, obtained from the experimental

results, is dependent on location and velocity component. τη ranges from 0.098ms

to 0.774ms for the axial time scale at the nearest to farthest downstream locations

respectively and for the radial time scale, 0.125ms at z/D = 15 and 0.646ms at

z/D = 45. As τ approaches 20τη, the integral time scale, TL, is nearly reached

at each axial location. Note that there is no experimental data available for the

smallest time scale (and 5τη at z/D = 15) due to temporal resolution. The DNS

also presents challenges at these small time steps and are therefore only curves for

τ ≥ τη are provided.

For the normalized axial velocity increments in figure 4.7, the profiles show ex-

pected results for Lagrangian turbulence, similar to those observed in homogeneous

and isotropic turbulence [Mordant et al., 2004a] where the small scale separations

show longer tails, indicating intermittency of the signal, which dissipates and the

profiles become near Gaussian as τ → 20τη. Minimal differences are visible between

the sets of PDFs for the four presented locations. Comparing the ability of the two

presented models, the model is incredibly accurate and near perfect agreement is

observed across the four locations for the PDFs, at the largest time scale separa-

tions the modeled PDFs also show Gaussian behavior and as the time separations

decrease, non-Gaussian behavior increases. The most prominent feature of these fig-

ures is the accuracy at which both the BT-OU and BT-DNS modeled PDFs collapse

with those from the experiments. This highlights the ability of the model to pick up

the highly specific behavior at small and large scales and at all locations within the
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jet. There appears to be a minimal difference at the tails of the PDFs for the two

models and the experiments. The BT-OU model under predicts the experimental

data for rare events, for example, for z/D = 25, the model provides smaller values

at δτ ∼ ±5σz, not quite capturing the complete intermittent behavior of the rarest

of events. The BT-DNS appears to provide better agreement with the data for these

extreme events.

Figure 4.7: PDF of the axial velocity increment of the model and experiment
for τ values provided in the legend at 4 locations downstream.

The normalized radial velocity difference at varying time scales is presented in

figure 4.8. Here, noticeable differences are observed in comparison to the axial veloc-

ity increment PDFs (figure 4.7), most prominent is the observed positive skewness

for all considered locations and time separations. The positive skewness is most

amplified at the nearest jet exit location of z/D = 15 but persists within the range

of downstream locations. This skewness is extremely well described by the model

for both the OU and the DNS signals, providing indications of the acute ability of

the model to accurately capture the multifractal behavior of the trajectories, over

a range of scales, as they develop in the jet. It is of note that again, a minimal dif-

ference is observed for the tails of the PDFs for the BT-OU modeling (most easily

observed in the negative velocity increments at the farthest downstream locations).
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Figure 4.8: PDF of the radial velocity increment of the model and the exper-
iment for τ values at 4 locations downstream.

Higher-order incremental analysis

The tails of the PDFs give indications of the accuracy of the model to capture

true intermittency of the jet, but higher-order moment analysis will more distinctly

highlight the behaviors present at the tails of the PDFs and the ability or inability of

the modeling technique to replicate. This is important as differences in the BT-OU

and BT-DNS models have already been noted, in a subtle way, from the tails of the

velocity increment PDFs.

The flatness, S4−z/S
2
2−z/3, shown in figure 4.9(a), provides these multifractal jet

dynamics effects and those achievable from the models. There are clear differences

between the far-dissipative (small timestep) tendencies. Here it is important to note

that known deficits in the Ornstein–Uhlenbeck embedded modeling are observed in

these scales as discussed in Section 2.3. In comparisons to DNS, it cannot capture

this steep increase and this is again observed here by the differences in the BT-OU

and BT-DNS curves.

For both the velocity components (axial in figure 4.9(a) and radial in fig-

ure 4.9(b)), for the near-field locations, the BT-DNS overestimates the EXP, but as
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the jet develops, the model with the most accurate depiction of intermittency (BT-

DNS) shows very good agreement. The BT-OU model shows fair comparisons to the

EXP within the near-dissipative and inertial range, but the very small timescales

are not well captured for the axial velocity kurtosis. The radial component of ve-

locity shows better agreement for all curves, but no plateau is observed within the

probed timescales for the model or the experiment. Overall, global trends are ob-

served, it is a remarkable statistic that the model captures is the large rise in the

flatness. Again the HIST-OU model is included and here, the extent of the highly

non-Gaussian behavior of the radial velocity increments at small scales are observed

in the experiment and reproduce with high accuracy by the modeled jet for both

the BT-OU and BT-DNS.

The BT-OU and BT-DNS model provides information that cannot be achieved

from the experimental data due to time resolution at small scales and interrogation

volume limitations at large scales. This is observed in figure 4.9, where the modeled

jet statistics present results that span larger and smaller τD/VJ than EXP. Further-

more, the time scale and number of trajectories are inputs into the OU modeling and

therefore, greater convergence of statistics is also attainable. The convergence can

also be achieved with the DNS trajectories although, as previously noted, limitations

exist on the observable time scales and the small scale resolution.

Evaluation of model

To characterize the abilities of the OU modeling to capture true statistics of the

jet, an investigation into the effects of the finite number of layers is presented in

figure 4.10, where only one location is considered (z/D = 25) for clarity. Here, an



164

(a) (b)

Figure 4.9: Kurtosis of the (a) axial velocity and (b) radial velocity as a
function of τD/VJ for the given locations.

Ornstein–Uhlenbeck model built with one-layer (BT-OU-1), two-layers (BT-OU-2)

[Sawford, 1991], and nine-layers (BT-OU-9) (Section 2.3) are compared for previ-

ously presented statistics of the flow. Note that the single-layer model contains only

a single time scale input and thus presents statistics for an infinite Re flow. The

two-layer model by Sawford [1991] alleviates this by including a small scale into the

second layer and thus creating a once-differentiable correlation of velocity.

Figure 4.10(a) provides the correlation function, which, due to the dominating

large scale dynamics, shows good agreement between the three OU models and

the experiment. The single layer model fails immediately once small scales become

relevant, as seen in figure 4.10(b). Although there is not perfect agreement, the two-

layer model shows more true dynamics with a τ 2 scaling in the dissipative range and

τ scaling in inertial range. Even for these second-order statistics, there is the best

agreement observed for the nine-layer model, at dissipate, inertial and even large

scales, where the plateau can be observed. Considering higher-order moments, the

flatness further emphasizes these differences between the models. Fair comparisons

between all of the models and the experiment are seen in the inertial range, but the
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known plateau at small scales for the flatness (observed in the nine-layer model)

is not obtained in BT-OU-1 and BT-OU-2. The large scale should also converge

(ideally to S4−z/S
2
2−z/3) = 1, this turn to a constant flatness at large time scales is

somewhat observed in BT-OU-9 while the single and double layer models continue

to decay with a power-law.

(a) (b) (c)

Figure 4.10: Comparison of output statistics for z/D = 25 for the OU model
built with one, two or nine layers.

Another important factor of the modeling is the inclusion of intermittency to

capture the true multifractal behavior of the velocity signals obtained via Orn-

stein–Uhlenbeck modeling. Similar to the investigations into the significance of

the number of layers (i.e., the differentiability of the modeled trajectories), conse-

quences of alteration to the intermittency coefficient γ are explored in figure 4.11

for the z/D = 25 location within the jet. Specifically, the nine-layer OU model is

built with intermittency corrections of γ2 =0, 0.085 and 0.17, where good agree-

ment between modeling and true behaviors has been observed for γ2 = 0.085 in

Section 2.3. The correlation functions and the second-order structure functions

are provided in figure 4.11(a) and 4.11(b). All curves collapse for the correlation

function as intermittency does not play a crucial role in the large scale dynamics

of the flow. Furthermore, the second-order structure function also collapse with
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almost perfect agreement between the three models. True scaling behavior across

all time scales are observed and again intermittency deficit or abundance is not

causing discrepancy within this second-order statistic. Intermittency is crucial to

the far-dissipative range dynamics and this is evident in the flatness representations

presented in figure 4.11(c). Here, the performance of the model to accurately in-

clude multifractal behaviors is evident. The γ = 0 curve, severely under-represents

the intermittent habits of the signal at small times but it should be noted that this

curve shows no intermittency (i.e., (S4−z/S
2
2−z/3) = 1 for the HIST output of the

signal and therefore, the modeling of the trajectories instills some corrections to this

Gaussian model, but is insufficient still. On the other end, if an over-estimation of

intermittency is employed into the model, γ2 = 0.17, the curve does not show the

true inertial range and near-dissipative dynamics of the jet. Only when the well

known γ2 = 0.085 is applied does the most accurate depiction of the flatness, in

comparison to the experimental data, occur. This only further acknowledges the

intermittency coefficient to be γ2 = 0.085.

(a) (b) (c)

Figure 4.11: Comparison of output statistics for z/D = 25 for the OU model
built with γ2 = 0, 0.085 and 0.17.
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4.4 Concluding remarks

A model is proposed which uses simple methods to transform a turbulent velocity

signal which is homogeneous, isotropic and stationary to create Lagrangian trajec-

tory velocities within a jet. The model is built using HIST velocity signals obtained

from stochastic modeling and direct numerical simulations. Comparisons are made

between the model and experimental data obtained from a water jet seeded with

tracers. A number of statistics are analyzed, all show good agreement.

Notably, spatial first and second-order statistics are presented in their self-similar

form and very good agreement is observed for all available statistics obtained from

the experiment. Using techniques to compare Lagrangian statistics of non-stationary

signals, both modeled jets and the experiment show similar velocity correlations.

Velocity increment analysis is applied as well to study the second-order structure

functions and the flatness. As expected, based on the velocity correlations, the

second moment statistics again show nice trends, with minor differences observed

within the nearer field of the jet, z/D = 15, for the radial component of velocity.

The flatness presents a fair collapse of the profiles within the inertial range (i.e.,

where the higher-order statistics are more reliable from the experiment).

Most remarkable though, is the ability of the model to pick up the intermittent

behaviors at varying time scales and locations, as it observed in the PDFs of the

velocity increments for the axial and radial components. Specifically, the skewness

of the radial velocity increments, which is non-trivial behavior observed in the radial

velocity, is very accurately described by the model for both the OU and the DNS.

Finally, notes are made on the accuracy of less robust modeling techniques.

Comparisons between the nine-layer embedded OU model and processes built with
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a single or double-layer provide the reader with knowledge of what statistical ad-

vantages are present due to the higher level of differentiability of the inputted HIST

velocity signal. Results show that large scales are unaffected (i.e., the correlations of

velocity collapse) but the single-layer model, which suggest an infinite Re, fails for

small scale representations. The two-layer model, although more accurate, presents

discrepancies when compared to the nine-layer model in the far-dissipative range

(as τ → 0) and also at very large scales. Intermittency corrections based on the

input parameter γ are also compared to provide an idea of the necessity of an ac-

curate coefficient to describe the sharp build up of the flatness as the time scale

decreases. These effects are noted and convergence to the well known γ2 = 0.085 is

found to most accurately describe the inertial range and near-dissipative scales of

the experimental data. The second-order structure function and the correlation of

velocity show negligible dependence on the coefficient.
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Chapter 5

Conclusions and Perspectives

5.1 Review of findings

The goal of this work was to improve the state of Lagrangian based modeling and

analytics in order to enhance our understanding of flow mechanisms from this per-

spective and in turn possibly impact broader communities in turbulence. This was

first accomplished by improving stochastic processes through the inclusion of more

realistic behaviors at small scales. Specifically, this was achieved through increased

differentiability of the velocity and acceleration processes and multifractal correc-

tions, defined in the model in a causal way. Additionally, a simple filtering scheme

was suggested to include non-tracer particle dynamics, which shows accurate results

for inertial particle statistics based on Gaussian modeling efforts.

To investigate multi-scale phenomena in non-homogeneous flow, an experimental

campaign was then performed where a jet of water was vertically injected into a

tank and particle tracking velocimentry was invoked. Many relevant quantities

were extracted from the experimental data, increasing our knowledge of large and

small scale quantities and their dependence on location within the jet. This was

possible due to the large interrogation volume of the experiment as well as the
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ability to obtain adequate spatial and temporal resolution for both Eulerian and

Lagrangian analysis of the particles. Most notable from the experimental findings

was the stationarization technique (á la Batchelor) applied to the particle velocities

and time steps. This not only enables the jet to be more easily characterized, but

these techniques provide methods for any inhomogeneous flow to be analyzed with

more ease. The successes found with this stationarization application led us to

consider the modeling of inhomogeneous turbulence based on the transformation of

the relations of Batchelor.

Specifically, this manifests itself as a set of simple equations which take a ho-

mogeneous, isotropic and stationary signal (obtained from stochastic modeling or

simulations) to build up a jet with inputs of well known jet characteristics, such

as spreading rate and centerline decay. This model was tested against trajectory

statistics from the experimental jet and results show remarkable agreement in al-

most all statistical quantities. Most striking is the ability of the model to include the

intermittency of the inputted signal, observed at varying time scales and locations

by the PDFs of the velocity increment for both axial and radial components.

5.2 Outlook

Many open perspectives are left for ongoing studies from this project. First, the

modeling of inertial particles is still in its infancy as far as the abilities of the

processes to create realistic dynamics of the signals when dampened by the particle

weight or size. Simple additions to the proposed model could entail updating the

current filtering technique to include intermittency corrections, from which high-

order moments could be captured and compared to simulations. The multifractal
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formalism could also be used to model statistics with intermittency and could in

turn be used in a similar fashion to the Batchelor parametrization presented for

inertial particles.

The capability of the proposed Batchelor transformation of a set of homogeneous

signals into an inhomogeneous flow leads to possible advancements in numerous

fields. Within jets alone, the ability to track particle velocities is important to

the entrainment and fallout during of volcanic episodes. Inputs can be tailored to

accurately depict various real world circumstances, allowing the long dispersal of

the fluid to be analyzed with greater accuracy.

In addition, this transformation will be extended to wind turbine wake dynam-

ics to better model the underlying fluid mechanical processes. Current models for

turbine wakes have difficulty including intermittency, which leads us to believe the

Batchelor transformation we have proposed can benefit the wind power community.

More specifically, this model, which can provide Lagrangian trajectories and Eule-

rian fields, is based on simple equations and contains the true multifractal behaviors

of turbulence. Including intermittent behavior in the flow field is highly relevant to

wind power as it is directly associated with causes of turbine component fatigue and

needs to be taken into consideration in an accurate way.
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J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo. The structure of intense

vorticity in isotropic turbulence. Journal of Fluid Mechanics, 255:65–90, 1993.

H. S. Kang, S. Chester, and C. Meneveau. Decaying turbulence in an active-grid-

generated flow and comparisons with large-eddy simulation. Journal of Fluid

Mechanics, 480:129–160, 2003.

I. M. Kennedy and M. H. Moody. Particle dispersion in a turbulent round jet. Exp.

Therm. Fluid Sci., 18(1):11–26, 1998.

J.-T. Kim, A. Liberzon, and L. P. Chamorro. Characterisation of the eulerian and

lagrangian accelerations in the intermediate field of turbulent circular jets. Journal

of Turbulence, 18(1):87–102, 2017.



181

Y. Kimura and J. R. Herring. Diffusion in stably stratified turbulence. Journal of

Fluid Mechanics, 328:253–269, 1996.

A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid

for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30(4):301–305, 1941.

A. N. Kolmogorov. A refinement of previous hypotheses concerning the local struc-

ture of turbulence in a viscous incompressible fluid at high reynolds number.

Journal of Fluid Mechanics, 13(1):82–85, 1962.

R. H. Kraichnan. Relation between Lagrangian and Eulerian correlation times of a

turbulent velocity field. Phys. Fluids, 7(1):142–143, 1964.
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correlations in lagrangian dynamics: a key to intermittency in turbulence. Physical

review letters, 89(25):254502, 2002.
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Appendix A

Propositions, properties and derivations concerning the

Ornstein-Uhlenbeck and mutifractal formalism

A.1 Propositions concerning infinitely differentiable causal stochastic

processes

Proposition A.1.1 Assume n ≥ 2. Then the correlation functions of velocity and

acceleration are given by

Cvn(τ) = q(n)

(
GT ⋆ G

⋆(n−1)
τη

)
(τ), (A.1)

and

Can(τ) = −d
2Cvn(τ)
dτ 2

, (A.2)

where the correlation product ⋆ is introduced, which is defined as, for any two func-

tions g1 and g2,

(g1 ⋆ g2) (τ) =

∫
R
g1(t)g2(t+ τ)dt,

with the corresponding short-hand notation,

g⋆n = g ⋆ g ⋆ · · · ⋆ g︸ ︷︷ ︸
n

,
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and the response function of the OU process at a given time scale τ (here τ = T or

τ = τη)

t ∈ R 7→ Gτ (t) =
τ

2
e−|t|/τ . (A.3)

For the sake of completeness, the spectral view of the correlation functions of velocity

and acceleration (Eqs. A.1 and A.2) are included, which is especially useful when

seeking their explicit expression for a given layer n, once injected into a symbolic

calculation software. Resulting in

Cvn(τ) = q(n)

∫
R
e2iπωτ

T 2

1 + 4π2T 2ω2

[
τ 2η

1 + 4π2τ 2ηω
2

]n−1

dω, (A.4)

and

Can(τ) = q(n)

∫
R
4π2ω2e2iπωτ

T 2

1 + 4π2T 2ω2

[
τ 2η

1 + 4π2τ 2ηω
2

]n−1

dω. (A.5)

To finish with this proposition, the implied expression for the constant q(n) is stated to

ensure the physical constraint on velocity variance (Eq. 2.17) by Parseval’s identity,

σ2

q(n)
=

∫
R

T 2

1 + 4π2T 2ω2

[
τ 2η

1 + 4π2τ 2ηω
2

]n−1

dω. (A.6)

Proof. Rephrased in the language of linear systems theory (see for instance

Popoulis and Pillai [1991]), the system of equations Eqs. 2.12 to 2.16 defines a

series of linear filters with a stochastic input. This explains the expression given for

the velocity correlation of vn (Eq. A.1).

The correlation function of vn is computed, as it was done in Eq. 2.9 in a more

straightforward manner, and drawing a connection with the approach adopted to
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present the model of Sawford (Section 2.2.1), obtaining

Cvn(τ) =
∫ 0

−∞

∫ τ

−∞
e−(τ−t1−t2)/TCfn−1(t1 − t2)dt1dt2,

which can be formally rewritten as

Cvn(τ) =
∫
R2

gT (τ + t2)gT (t1)Cfn−1(t1 − t2)dt1dt2

=

∫
R2

gT (τ + t1 + t2)gT (t1)Cfn−1(t2)dt1dt2

=

∫
R
(gT ⋆ gT ) (τ + t2)Cfn−1(t2)dt2

=
(
gT ⋆ gT ⋆ Cfn−1

)
(τ),

where gT (t) = e−t/T1t≥0. Noticing that GT (t) = (gT ⋆ gT ) (t), one can arrive at the

proposition made in Eq. A.1 after iterating the procedure for the n − 1 remaining

layers. The equivalent form of the velocity correlation in the spectral space (Eq.

A.4) is a consequence of the convolution theorem, and that the Fourier transform

of GT is a Lorentzian function. End of proof.

Proposition A.1.2 Take n ≥ 2. Using the results of Proposition A.1.1,

Cvn(τ) =
2σ2e−τ2η/T

2

T erfc (τη/T )

∫
R
e2iπωτ

T 2

1 + 4π2T 2ω2

[
1

1 +
4π2τ2ηω

2

n−1

]n−1

dω, (A.7)

such that

Cv(τ) ≡ lim
n→∞

Cvn(τ) =
2σ2e−τ2η/T

2

T erfc (τη/T )

∫
R
e2iπωτ

T 2

1 + 4π2T 2ω2
e−4π2τ2ηω

2

dω. (A.8)
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This results in

Cv(τ) = σ2 e−|τ |/T

2 erfc(τη/T )

[
1 + erf

( |τ |
2τη

− τη
T

)
+ e2|τ |/T erfc

( |τ |
2τη

+
τη
T

)]
, (A.9)

with the particular value Cv(0) = ⟨v2⟩ = σ2. Concerning the acceleration correlation

function, take (minus) the second derivative of Cv (Eq. A.9) and obtain

Ca(τ) =
σ2

2T 2 erfc(τη/T )

[
2T

τη
√
π
e
−
(

τ2

4τ2η
+

τ2η

T2

)
− e−|τ |/T

(
1 + erf

( |τ |
2τη

− τη
T

))
−e|τ |/T erfc

( |τ |
2τη

+
τη
T

)]
. (A.10)

Proof. By Lebesgue’s dominated convergence, one can safely commute limn→∞

and the indefinite integral that enter in the expression given in Eq. A.7. Recall that

(1 + x/n)n tends to ex as n→ ∞, and get to Eq. A.8. Express then Eq. A.8 in the

physical space as a convolution, and perform the remaining integral to arrive at Eq.

A.9. The expression in Eq. A.10, the acceleration correlation function, also follows.

End of proof.

Proposition A.1.3 (On the statistical properties of the fields X1,ϵ and its asymp-

totical log-correlated version X1 ≡ limϵ→0X1,ϵ)

Recall first the definition of the OU-kernel gτ (t) = e−t/τ1t≥0, where 1t≥0 stands

for the indicator function of positive reals, and the associated response function

Gτ (t) = (gτ ⋆ gτ )(t) =
τ
2
e−|t|/τ (Eq. A.3). Its derivative is also required, which reads

as G′
τ (t) = − t

2|t|e
−|t|/τ .

The unique solution X1,ϵ of the dynamics given in Eq. 2.30 is a zero-average

Gaussian process, that reaches a statistically stationary regime at large time t, inde-
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pendently of the initial condition. In this statistically steady state, X1,ϵ is thus fully

characterized by its correlation function that reads

CX1,ϵ(τ) = −
∫ ∞

0

[G′
T (τ + h)−G′

T (τ − h)]
dh

h+ ϵ+
√
ϵ(h+ ϵ)

(A.11)

= −e−|τ |/T
∫ |τ |

0

sinh (h/T ) dh

h+ ϵ+
√
ϵ(h+ ϵ)

+ cosh(|τ |/T )
∫ ∞

|τ |

e−h/Tdh

h+ ϵ+
√
ϵ(h+ ϵ)

.

(A.12)

In particular,

CX1,ϵ(0) = ⟨X2
1,ϵ⟩ =

∫ ∞

0

e−h/Tdh

h+ ϵ+
√
ϵ(h+ ϵ)

(A.13)

=
ϵ→0

log

(
1

ϵ

)
+O(1). (A.14)

In the asymptotic regime ϵ→ 0, whereas the variance of X1,ϵ diverges, its correlation

function at a given time lag |τ | > 0 remains a bounded function of ϵ. This defines an

asymptotic zero-average Gaussian process X1 of infinite variance, but with a bounded

covariance for |τ | > 0, obtaining

CX1(τ) = lim
ϵ→0

CX1,ϵ(τ) = −
∫ ∞

0

[G′
T (τ + h)−G′

T (τ − h)]
dh

h
(A.15)

= −e−|τ |/T
∫ |τ |

0

sinh (h/T )
dh

h
+ cosh(|τ |/T )

∫ ∞

|τ |
e−h/T dh

h

(A.16)

= log+
(
T

|τ |

)
+ c(|τ |), (A.17)

where log+(x) = log (max(x, 1)) and c(|τ |) is a bounded function of its argument
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such that it goes to 0 as |τ | → ∞. Of special interest is the value of c at the origin,

c(0) =

∫ ∞

0

e−y log(y)dy ≈ −0.577216, (A.18)

and is known as (minus) the Euler-Mascheroni constant.

The corresponding spectral representation of the correlation function of the lim-

iting process X1 is given by

CX1(τ) =

∫
R
e2iπωτ2π2|ω| T 2

1 + 4π2T 2ω2
dω. (A.19)

Proof.

Arguments developed in Chevillard [2017] can be easily adapted to show the

expression of the correlation function of X1,ϵ at a given finite ϵ (Eqs. A.11 and

A.12) (see Pereira et al. [2018] for full derivation). The expression of its variance

(Eq. A.13) is a consequence of Eq. A.12. To see the logarithmic divergence with

respect to ϵ (Eq. A.14), split the integral entering in Eq. A.13 in two over [0, ϵ]

and [ϵ,∞] and observe that the first term tends to a bounded constant as ϵ → 0.

Subtract then from the second term the quantity
∫∞
ϵ
e−h/Tdh/h and observe that the

overall quantity remains bounded as ϵ → 0. This shows the logarithmic divergence

since this is the case for this subtracted quantity (performing an integration by parts

over the dummy variable h).

Similarly, expressions for the correlation function of the limiting processX1 (Eqs.

A.15 and A.16) are shown in Chevillard [2017] and Pereira et al. [2018]. Remark

that the first integral on the RHS of Eq. A.16 vanishes as τ → 0, and observe (again

by integration by parts) that the second integral diverges logarithmically with τ ,
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showing the small scale diverging behavior depicted in Eq. A.17. To prove the

overall shape of CX1 as it is given in Eq. A.17, the function c has to be shown to

indeed be bounded and go to 0 at large arguments. It is easy to see that once the

logarithmic diverging behavior is subtracted to the full expression, only bounded

terms remain, which makes c bounded too. At large arguments, re-organize the

terms in a proper way to see the convergence towards 0.

To show the spectral representation of the correlation function (Eq. A.19),

use G′
T (t) =

∫
e2iπωt2iπωT 2/(1 + 4π2ω2T 2)dω and inject into Eq. A.15. Perform

then the remaining integral over the dummy variable h using the known result∫∞
0

sin(u)/u du = π/2, and get Eq. A.19. As a final remark, whereas the regu-

larization procedure over ϵ used in Eq. 2.30 may appear somehow arbitrary, and

has some impact on the functional form of the correlation function CX1,ϵ(τ) (Eqs.

A.11 and A.12), this dependence disappears in the limit ϵ→ 0. In other words, the

same correlation function CX1(τ) (Eqs. A.15 and A.16) would have been obtained

using another regularization procedure as long as the divergent behaviors of variance

(Eq. A.14) and covariance (Eq. A.17) are ensured. This canonical behavior of the

limiting process X1 is consistent with the conclusions of Rhodes and Vargas [2009].

End of proof.

Proposition A.1.4 (On the statistical properties of the fields Xn,ϵ and its asymp-

totical behavior)

The unique solution Xn,ϵ of the dynamics given in Eq. 2.41 is a zero-average

Gaussian process, and reaches a statistically stationary regime at large time T , in-

dependent of the initial condition. In this statistically steady state, Xn,ϵ is thus fully
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characterized by its correlation function, conveniently expressed in spectral space as

CXn,ϵ(τ) =

∫
R
e2iπωτ4πω

T 2

1 + 4π2T 2ω2

[
1

1 +
4π2τ2ηω

2

n−1

]n−1(∫ ∞

0

sin(2πωh)dh

h+ ϵ+
√
ϵ(h+ ϵ)

)
dω,

(A.20)

such that

CX(τ) ≡ lim
n→∞

lim
ϵ→0

CXn,ϵ(τ) = lim
ϵ→0

lim
n→∞

CXn,ϵ(τ) (A.21)

=

∫
R
e2iπωτ2π2|ω| T 2

1 + 4π2T 2ω2
e−4π2τ2ηω

2

dω. (A.22)

In particular,

CX(0) = ⟨X2⟩ =
∫
R
2π2|ω| T 2

1 + 4π2T 2ω2
e−4π2τ2ηω

2

dω (A.23)

=
τη→0

log

(
T

τη

)
+O(1), , (A.24)

where the O(1) constant is equal to minus one-half the Euler-Mascheroni constant

(≈ −0.288), and

lim
τη→0

CX(τ) = CX1(τ), (A.25)

where X1 is the single-layer fractional Ornstein-Uhlenbeck process depicted in Propo-

sition A.1.3.

Concerning the expression of this correlation function in the physical space, it
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can be written for numerical purposes as

CX(τ) =
T

4τ 3η

∫
R
e−

|τ−t|
T

[
τη − tF

(
t

2τη

)]
dt, (A.26)

where the so-called Dawson integral F(x) = e−x2 ∫ x

0
ey

2
dy enters.

Proof.

The correlation function CXn,ϵ (Eq. A.20) corresponds to the successive linear

operations made on a white noise W̃ (dt): an OU process for a large time scale T ,

n− 2 OU processes at the small time scale τη/
√
n− 1, and a fractional OU process

of vanishing Hurst exponent at τη/
√
n− 1 (and defined in Proposition A.1.3). Ex-

pressions A.21 to A.25 follow from this spectral representation. The physical form

of CX (Eq. A.26) is obtained through inverse Fourier transformation of Eq. A.22.

End of proof.

Proposition A.1.5 (Concerning the covariance structure of the infinitely differen-

tiable causal MRW u and the corresponding acceleration process)

Assume γ2 < 1. The unique statistically stationary solution un,ϵ of the set of

equations Eqs. 2.35 to 2.39 converges, as far as the average and variance are con-

cerned, when both ϵ → 0 and n → ∞ (the limiting procedure commutes) to a zero-

average process that is noted as u.
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Its correlation function reads

Cu(τ) =
∫
R
GT (h+ τ)Cf (h)eγ

2CX(h)dh (A.27)

= Te−
|τ |
T

∫ |τ |

0

cosh

(
h

T

)
Cf (h)eγ

2CX(h)dh+ T cosh
( τ
T

)∫ ∞

|τ |
e−

h
T Cf (h)eγ

2CX(h)dh,

(A.28)

where CX corresponds to the correlation function of the infinitely differentiable Gaus-

sian process X depicted in Proposition A.1.4, and Cf the correlation function of the

Gaussian force f entering in the dynamics of un (Eq. 2.35) once the limit n → ∞

has been taken, and given by

Cf (τ) =
σ2

T
∫∞
0
e−

h
T e−h2/(4τ2η )eγ2CX(h)dh

e
− τ2

4τ2η . (A.29)

In the limit of infinite Reynolds numbers, i.e. as τη/T → 0, the correlation function

Cu of u coincides with the one of the single-layered MRW u1, which was shown in

Section 2.2.2 to coincide itself with the one of the single-layered OU process v1 (Eq.

2.2) of variance σ2, and,

lim
τη→0

Cu(τ) = Cu1(τ) = Cv1(τ) = σ2e−
|τ |
T . (A.30)

Rephrased in terms inherited from the phenomenology of turbulence, the asymptotic

behavior of the correlation function (Eq. A.30) says that intermittent corrections

observed at finite Reynolds numbers (Eq. A.27), and governed by the coefficient

γ, disappear at infinite Reynolds numbers. In a similar spirit, these intermittent

corrections only affect the dissipative range (i.e. τ of the order and smaller than
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τη), and disappear in the inertial range τη ≪ τ ≪ T .

Going back to finite Reynolds number predictions, i.e. keeping τη finite and

smaller than T , the expression of the Lagrangian integral time scale TL is of special

interest and is expressed as

TL =

∫ ∞

0

Cu(τ)
Cu(0)

dτ =
T 2

σ2

∫ ∞

0

Cf (h)eγ
2CX(h)dh →

τη→0
T. (A.31)

The corresponding expression for the acceleration correlation function Ca is then

obtained while taking (minus) the second derivatives of Cu (Eq. A.28), and reads

Ca(τ) = Cf (τ)eγ
2CX(τ) − 1

T 2
Cu(τ). (A.32)

Incidentally, the acceleration variance, and its behavior in the infinite Reynolds limit

(i.e. while looking at the limit τη/T → 0), reads

Ca(0) = ⟨a2⟩ = Cf (0)eγ
2CX(0) − σ2

T 2
(A.33)

∼
τη/T→0

σ2

√
πTτη

, (A.34)

consistent with standard dimensional predictions, with no further intermittent cor-

rections.

Proof.

Start with showing the form of the asymptotic correlation function Cf (Eq. A.29)

of the force term f , when the number of layers n goes to infinity. Consider first this

correlation at a finite n. One has, seeking for the stationary solution of Eq. 2.36
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and computing its correlation function in the statistically steady regime,

Cfn−1(τ) = βn

∫
R
e2iπωτ

 τ2η
n−1

1 +
4π2τ2ηω

2

n−1

n−1

dω.

Remark that for all positive x and integers n, by the binomial formula, (1+x/n)n is

bounded from below by 1 + x, such that (1 + 4π2τ 2ηω
2/(n− 1))1−n is bounded from

above by (1 + 4π2τ 2ηω
2)−1, which is an integrable function. This allows the use of

dominated convergence to conclude on the convergence of Cfn−1 as n→ ∞, once βn

is taken as the expression in Eq. 2.40. Taking then the limit n → ∞, the inverse

Fourier transform of the obtained Gaussian function is computed to arrive at Eq.

A.29.

Looking for the stationary solution of u (Eq. 2.35), once the limit n → ∞ has

been taken and keeping in mind that the log-correlated field X is independent of the

forcing term f , the velocity correlation function reads Cu(τ) = (gT ⋆gT ⋆Cfeγ2CX )(τ).

This corresponds to the expression provided in Eq. A.27.

Whereas it is straightforward to show the convergence of the correlation function

of the process as τη → 0 and then ϵ → 0, the convergence as ϵ → 0 and only then

τη → 0, as it is stated in Eq. A.30, deserves attention. In any case, both ordering

of limits give the same convergence towards the one of the OU process (Eq. A.30).

The full demonstration of this is developed in Appendix A.3, where the respective

convergence of the second order structure function is studied.

Other assertions of Proposition A.1.5 follow from the expression of Cu.

End of proof.

Proposition A.1.6 (Concerning the scaling of the higher-order structure functions



205

of the infinitely differentiable causal MRW u)

Without loss of generality, consider an infinite number of layers n → ∞, and

call uϵ the respective process. Define the velocity increment of the process uϵ as

δτuϵ(t) = uϵ(t+ τ)− uϵ(t). (A.35)

Accordingly, define the respective asymptotic structure functions as

Su,m(τ) = lim
ϵ→0

⟨(uϵ(t+ τ)− uϵ(t))
m⟩ . (A.36)

As seen when presenting the correlation structure of u in proposition A.1.5, for

γ2 < 1,

Su,2(τ) = lim
ϵ→0

Suϵ,2(τ) = 2
[
σ2 − Cu(τ)

]
−→
τη→0

2σ2
[
1− e−

|τ |
T

]
. (A.37)

With respect to the convergence of the fourth-order structure function Suϵ,4, a more

subtle behavior related to the ordering of the limits is observed. It can be shown that,

taking first the limit τη → 0 and keeping ϵ finite, Suϵ,4 coincides with the fourth-

order structure function of the single-layered MRW u1 for which scaling properties

are listed in Section 2.2.2. More precisely, for 4γ2 < 1

lim
ϵ→0

lim
τη→0

Suϵ,4(τ) = Su1,4(τ), (A.38)

which exhibits an intermittent behavior (see Eq. 2.33, with q = 2σ2/T such that

u and u1 have same variance). In the reverse order of the limits, calculations get
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intricate, but under an approximation procedure, the following scaling behavior is

obtained

lim
τη→0

lim
ϵ→0

Suϵ,4(τ) = cγ,4Su1,4(τ), (A.39)

where cγ,4 is a constant that depends only on the intermittency coefficient γ which

can be computed. It can be observed that, in this approximation, the ordering of the

limits has a consequence only on the value of the multiplicative constant entering in

the power-laws (Eqs. A.38 and A.39), whereas the power-law exponent is the same

in both cases, and exhibits an intermittent correction.

In a similar way, whereas taking the limit τη → 0 and then ϵ → 0 has no

difficulties, it can be asserted that

lim
τη→0

lim
ϵ→0

Suϵ,2m(τ) = cγ,2mSu1,2m(τ), (A.40)

showing that u exhibits a lognormal spectrum (take a look at 2.34 with again q =

2σ2/T ) when the Reynolds number becomes infinite.

All proofs are gathered in Appendix A.3.
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A.2 Scaling properties of the causal multifractal random walk structure

functions

To set notations, various quantities that will enter in following calculations are first

defined. The velocity increments read

δτu1,ϵ(t) = u1,ϵ(t+ τ)− u1,ϵ(t) (A.41)

=

∫
R
gτ,T (t− s)eγX1,ϵ(s)−γ2⟨X2

1,ϵ⟩W (ds), (A.42)

where gτ,T corresponds to the OU-kernel associated to velocity increments, that is

gτ,T (t) =
√
q
[
e−

t+τ
T 1t+τ≥0 − e−

t
T 1t≥0

]
. (A.43)

Therefore,

〈
(δτu1,ϵ)

2〉 = ∫
R2

gτ,T (t− s1)gτ,T (t− s2)
〈
eγ(X1,ϵ(s1)+X1,ϵ(s2))−2γ2⟨X2

1,ϵ⟩W (ds1)W (ds2)
〉

(A.44)

=

∫
R2

gτ,T (t− s1)gτ,T (t− s2)
〈
eγ(X1,ϵ(s1)+X1,ϵ(s2))−2γ2⟨X2

1,ϵ⟩
〉
⟨W (ds1)W (ds2)⟩

(A.45)

=

∫
R
g2τ,T (t− s)

〈
e2γX1,ϵ(s)−2γ2⟨X2

1,ϵ⟩
〉
ds (A.46)

=

∫
R
g2τ,T (s)ds, (A.47)

where the independence of the fields X1,ϵ and W is used, as well as the fact that

⟨ex⟩ = e
1
2
⟨x2⟩ for any zero-average Gaussian random variable x. It is then observed
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that the result (Eq. A.47) would have been the same with the standard Ornstein-

Uhlenbeck process v1 (Eq. 2.2), which shows that the asymptotic process u1 has no

intermittent corrections up to second order. Performing the remaining integral that

enters in Eq. A.47 leads to the result obtained in Eq. 2.32.

Similarly concerning the fourth-order structure function,

〈
(δτu1,ϵ)

4〉 = 3

∫
R2

g2τ,T (t− s1)g
2
τ,T (t− s2)

〈
e2γ(X1,ϵ(s1)+X1,ϵ(s2))−4γ2⟨X2

1,ϵ⟩
〉
ds1ds2

(A.48)

= 3

∫
R2

g2τ,T (t− s1)g
2
τ,T (t− s2)e

4γ2CX1,ϵ
(s1−s2)ds1ds2 (A.49)

= 6

∫ ∞

0

(
g2τ,T ⋆ g

2
τ,T

)
(s)e4γ

2CX1,ϵ
(s)ds, (A.50)

where Isserlis’ theorem is implemented to factorize the four-time correlator of W in

terms of products of its correlations, which gives rise to 3 symmetrical terms of equal

contribution, an appropriate change of variables, and finally exploits the parity of

the functions
(
g2τ,T ⋆ g

2
τ,T

)
and CX1,ϵ . Dominated convergence ensures that

Su1,4(τ) = lim
ϵ→0

〈
(δτu1,ϵ)

4〉 (A.51)

= 6

∫ ∞

0

(
g2τ,T ⋆ g

2
τ,T

)
(s)e4γ

2CX1
(s)ds. (A.52)

At this stage, remark that the integral provided in Eq. A.52 makes sense only if the

singularity ∼ s−4γ2
implied by e4γ

2CX1
(s) (as easily seen in Eq. A.17) is integrable in

the vicinity of the origin. This explains the bound on γ required by the existence
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on the fourth order structure function, that is

4γ2 < 1. (A.53)

Compute then the function
(
g2τ,T ⋆ g

2
τ,T

)
(s), namely, for s ≥ 0 and τ ≥ 0,

(
g2τ,T ⋆ g

2
τ,T

)
(s) = q2e−

2s
T

∫
R
e−

4x
T

[
e−

τ
T 1x+τ≥0 − 1x≥0

]2 [
e−

τ
T 1x+τ+s≥0 − 1x+s≥0

]2
dx,

(A.54)

which integrand is made up of simple exponentials over intricated domains, and get

in an exact fashion (with the help of a symbolic calculation software),

(
g2τ,T ⋆ g

2
τ,T

)
(s) =

q2T

4

[(
1− e−

τ
T

)3 (
2 + e

τ
T + e2

τ
T

)
e−2 s

T (A.55)

+2
(
2e−

τ
T − 1

)
sinh

(
2
τ − s

T

)
1τ−s≥0

]
, (A.56)

and inject it into the expression of Su1,4 (Eq. A.52). Observe that the decrease of

Su1,4 as τ → 0 is governed by the second term
(
g2τ,T ⋆ g

2
τ,T

)
(Eq. A.56), since the

first term (Eq. A.55) implies a decrease towards 0 as τ 3. Thus, only considering

the leading contribution entering in Eq. A.56), using
(
2e−

τ
T − 1

)
≈ 1, in good
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approximation as τ → 0,

Su1,4(τ) ≈ 3Tq2
∫ τ

0

sinh

(
2(τ − s)

T

)
e4γ

2CX1
(s)ds (A.57)

= 3Tq2
∫ 1

0

sinh

(
2τ(1− s)

T

)
e4γ

2CX1
(τs)τds (A.58)

∼
τ→0

6q2τ 2
( τ
T

)−4γ2

e4γ
2c(0)

∫ 1

0

(1− s) s−4γ2

ds (A.59)

=
3

1− 6γ2 + 8γ4
q2τ 2

( τ
T

)−4γ2

e4γ
2c(0), (A.60)

where the constant c(0) is explicitly known, and given in Eq. A.18. This entails Eq.

2.33.

Finally, to generalize former calculations up to any order:

〈
(δτu1,ϵ)

2m〉 = (2m)!

2mm!

∫
Rm

m∏
k=1

g2τ,T (t− sk)
〈
e2γ

∑m
k=1 X1,ϵ(sk)−2mγ2⟨X2

1,ϵ⟩
〉 m∏

k=1

dsk

(A.61)

=
(2m)!

2mm!

∫
Rm

m∏
k=1

g2τ,T (t− sk)e
4γ2

∑m
k<p=1 CX1,ϵ

(sk−sp)
m∏
k=1

dsk (A.62)

=
ϵ→0

(2m)!

2mm!

∫
Rm

m∏
k=1

g2τ,T (t− sk)e
4γ2

∑m
k<p=1 CX1

(sk−sp)

m∏
k=1

dsk. (A.63)

Once again, the exponential entering in Eq. A.63 gives both the condition of exis-

tence on γ, and intermittent corrections. The strongest singularity is encountered

along the diagonal, that is when all dummy variables sk coincide. It is equivalent

to say that it is necessary to take

2m(m− 1)γ2 < 1, (A.64)
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to guarantee the existence of the integral given in Eq. A.63. Similarly, it implies

an intermittent correction of order (τ/T )−2m(m−1)γ2
, as stated in Eq. 2.34, which

concludes the proofs of Section 2.2.2.
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A.3 Scaling properties of the infinitely differentiable causal multifractal

random walk structure functions

Again, to set notations, definitions of various quantities that will enter in following

calculations are provided. The velocity increments read

δτu(t) = u(t+ τ)− u(t) (A.65)

=

∫
R
gτ,T (t− s)eγX(s)− γ2

2
⟨X2⟩f(s)ds, (A.66)

where gτ,T corresponds to the OU-kernel associated to velocity increments, that is

gτ,T (t) = e−
t+τ
T 1t+τ≥0 − e−

t
T 1t≥0. (A.67)

The following expressions is obtained

〈
(δτu)

2〉 = ∫
R2

gτ,T (t− s1)gτ,T (t− s2)Cf (s1 − s2)
〈
eγ(X(s1)+X(s2))−γ2⟨X2⟩

〉
ds1ds2

(A.68)

=

∫
R2

gτ,T (t− s1)gτ,T (t− s2)Cf (s1 − s2)e
γ2CX(s1−s2)ds1ds2 (A.69)

=

∫
R
(gτ,T ⋆ gτ,T ) (s)Cf (s)eγ

2CX(s)ds (A.70)

= 2

∫
R+

(gτ,T ⋆ gτ,T ) (s)Cf (s)eγ
2CX(s)ds, (A.71)

where the independence of the fields X and f is used, and the fact that ⟨ex⟩ = e
1
2
⟨x2⟩

for any zero-average Gaussian random variable x. This shows that, contrary to the

MRW case u1 (Eq. 2.32), the asymptotic process u (once the limit ϵ → 0 has been

taken) has an intermittent correction up to second order when τη/T is finite. For
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τ ≥ 0 and s ≥ 0,

(gτ,T ⋆ gτ,T ) (s) = T

(
e−s/T − e−τ/T cosh(s/T ) + sinh

(
s− τ

T

)
1s−τ≥0

)
, (A.72)

which shows that once injected in Eq. A.71, one can recover, in a consistent manner

〈
(δτu)

2〉 = 2
(
σ2 − Cu(τ)

)
. (A.73)

To see the behavior of the second-order structure function in the (non-commuting)

limit τη → 0 (i.e. the infinite Reynolds number limit) and then τ → 0 (i.e. the limit

at small scales), regroup terms in Eq. A.72 and obtain, using the definition of Cf
(Eq. A.29),

〈
(δτu)

2〉 = 2σ2
[
1− cosh

( τ
T

)]
+ 2σ2

∫ τ

0
sinh

(
τ−s
T

)
e
− s2

4τ2η eγ
2CX(s)ds∫∞

0
e−

s
T e

− s2

4τ2η eγ2CX(s)ds

. (A.74)

Rescale then the dummy variable entering the second term by τη and obtain

〈
(δτu)

2〉 = 2σ2
[
1− cosh

( τ
T

)]
+ 2σ2

∫ τ/τη
0

sinh
( τ−sτη

T

)
e−

s2

4 eγ
2CX(sτη)ds∫∞

0
e−

sτη
T e−

s2

4 eγ2CX(sτη)ds
, (A.75)

such that the simple result is obtained

lim
τη→0

〈
(δτu)

2〉 = 2σ2
[
1− e−

τ
T

]
, (A.76)

showing that, up to second-order statistics, the infinitely differentiable causal mul-

tifractal walk u coincides with the underlying OU process (Eq. 2.2) in the infinite
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Reynolds number limit τη → 0.

Concerning the fourth-order structure function, in a similar manner

〈
(δτu)

4〉 = 3

∫
R4

4∏
k=1

gτ,T (t− sk)
〈
eγ

∑4
k=1 X(sk)−2γ2⟨X2⟩

〉
Cf (s1 − s2)Cf (s3 − s4)

4∏
k=1

dsk

(A.77)

= 3

∫
R4

4∏
k=1

gτ,T (sk)e
γ2

∑4
k<p=1 CX(sk−sp)Cf (s1 − s2)Cf (s3 − s4)

4∏
k=1

dsk (A.78)

= 3

∫
R4

gτ,T (s)gτ,T (s− h1)gτ,T (s− h2)gτ,T (s− h3) (A.79)

× eγ
2(CX(h1)+CX(h2)+CX(h3)+CX(h1−h2)+CX(h1−h3)+CX(h2−h3)) (A.80)

× Cf (h1)Cf (h3 − h2)ds
3∏

k=1

dhk (A.81)

= 3

∫
R3

Gτ,T (h1, h2, h3)Cf (h1)Cf (h2 − h3)e
γ2(

∑3
k=1 CX(hk)+

∑3
k<l,1 CX(hk−hl))

3∏
k=1

dhk,

(A.82)

where it is noted

Gτ,T (h1, h2, h3) =

∫
R
gτ,T (s)gτ,T (s+ h1)gτ,T (s+ h2)gτ,T (s+ h3)ds. (A.83)

The exact expression of the function Gτ,T (Eq. A.83) could be obtained using a

symbolic calculation software, although it is intricate. Instead, an approximative

calculation is used, based on an ansatz for the correlation function CX entering in the

expression of the moment of velocity increments (Eq. A.82), get then an equivalent

at infinite Reynolds number (i.e. τη → 0), from which the scaling behavior as τ goes

to zero is deduced.
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As has been observed, the correlation function CX(τ) of X (Eq. A.22) has

several obvious limiting behaviors. First, it goes to zero at large arguments τ ≫ T .

Secondly, as τη → 0, its value at the origin blows up logarithmically with τη (Eq.

A.24), and in the same limit, point-wise, for strictly positive arguments τ > 0, it

behaves logarithmically with τ as τ → 0. A simple ansatz for CX(τ) consistent with

these limiting behaviors could be written in an approximative and simple way as

CX(τ) ≈
1

2
log

T 2

τ 2η + τ 2
1|τ |≤T + dτη(τ), (A.84)

where dτη(τ) is a bounded function of τ and τη, that goes to zero at large arguments.

Furthermore, it is known that dτη(0) → d(0) coincides with minus one-half the

Euler-Mascheroni constant (i.e. ≈ −0.288) as τη → 0 (Eq. A.24). Henceforth,

calculations will not be performed in a rigorous way since the ansatz (Eq. A.84) in

only an approximative, although realistic, form of CX .

Find now the point-wise behavior of the correlation function Cf of f (Eq. A.29).

Looking for an equivalent of the multiplicative factor entering in Eq. A.29 and using

the ansatz proposed in Eq. A.84, the following is obtained

T (T/τη)
γ2
eγ

2d(0)g(γ)

σ2
Cf (τ) ∼

τη→0

1√
4πτ 2η

e
− τ2

4τ2η , (A.85)

where

g(γ) =
1√
4π

∫ ∞

0

e−h2/4 1

(1 + h2)γ2 dh. (A.86)

From the equivalent derived in Eq. A.85, one can see that Cf , properly weighted,

will participate to the fourth-order moment of increments (Eq. A.82) similar to a
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distributional Dirac function, and will greatly simplify its expression. Check the

realism of the ansatz (Eq. A.85) on the second-order structure function (Eq. A.70)

and obtain
〈
(δτu)

2〉 ∼ σ2

Tg(γ)
(gτ,T ⋆ gτ,T ) (0) = σ2

g(γ)
(1 − e−τ/T ) as τη → 0. The

approach based on the ansatz (Eq. A.84) introduces an error compared to the exact

result given in Eq. A.76: instead of the exact factor 2 entering in Eq. A.76, the

factor 1/g(γ) ≈ 2.1388 is used as the empirical intermittency coefficient given in

Eq. 2.82, corresponding thus to an overestimation of order 1/(2g(γ)) ≈ 7% of the

multiplicative constant, the remaining power-law dependence on τ being correct.

Having justified the good performance of this approximative procedure, inject

then Eq. A.85 into Eq. A.82, use the limiting behavior of CX as τη → 0 (Eq. A.25),

and obtain, in a heuristic fashion, the following expression

〈
(δτu)

4〉 ∼
τη→0

6
σ4

g2(γ)T 2

∫ ∞

0

Gτ,T (0, h, h)e
4γ2CX1

(h)dh. (A.87)

Noticing that Gτ,T (0, h, h) =
(
g2τ,T ⋆ g

2
τ,T

)
(h), the fourth-order structure function of

the MRW process (Eq. A.52) is recovered using q = 2σ2/T in Eq. A.43 (to make

sure that two processes of same variance σ2 are compared) up to a multiplicative

factor such that 〈
(δτu)

4〉 ∼
τη→0

1

4g2(γ)

〈
(δτu1)

4〉 . (A.88)

The numerical value of this factor is 1
4g2(γ)

≈ 1.1436 working with the empirical value

for γ (Eq. 2.82), saying that
〈
(δτu)

4〉 is very similar to
〈
(δτu1)

4〉 at large Reynolds

number, in particular its (intermittent) scaling behavior with τ (see Eq. A.60).

This appendix is finished by computing, under the same approximation based
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on Eq. A.84, higher-order structure functions. This results in

〈
(δτu)

2m〉 (A.89)

=
(2m)!

2mm!

∫
R2m

2m∏
k=1

gτ,T (t− sk)
〈
eγ

∑2m
k=1 X(sk)−mγ2⟨X2⟩

〉 m∏
k=1

Cf (s2k−1 − s2k)
2m∏
k=1

dsk

(A.90)

=
(2m)!

2mm!

∫
R2m

2m∏
k=1

gτ,T (t− sk)e
γ2

∑2m
k<l,1 CX(sk−sl)

m∏
k=1

Cf (s2k−1 − s2k)
2m∏
k=1

dsk (A.91)

∼
τη→0

(2m)!

2mm!

(
σ2

g(γ)T

)m ∫
Rm

m∏
k=1

g2τ,T (t− sk)e
γ2

∑m
k<l,1 CX1

(sk−sl)

m∏
k=1

dsk, (A.92)

showing that

〈
(δτu)

2m〉 ∼
τη→0

1

2mgm(γ)

〈
(δτu1)

2m〉 , (A.93)

which entails Eq. A.40.
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A.4 Derivation of the Reynolds number dependence of the acceleration

variance

The Reynolds number dependence, or equivalently the dependence on the free pa-

rameters τη and T , of the acceleration variance, and the scaling behavior of S2m(τ)

with τ at infinite Reynolds number (i.e. for τη → 0) is herein provided. As it

is detailed in Chevillard et al. [2012], or simply deduced from Eq. 2.57 using

S2(τ) = ⟨a2⟩τ 2 + o(τ 2), one obtains

⟨a2⟩ = 2σ2

T 2

1

Z(0)

∫ hmax

hmin

(τη
T

)2 2(h−1)+1−DL(h)
2h+1

dh, (A.94)

with

Z(0) =

∫ hmax

hmin

(τη
T

)2 1−DL(h)
2h+1

dh. (A.95)

Follow then a steepest-descent procedure. Compute first the minimum and the min-

imizer of the exponents entering in Eqs. A.94 and A.95, using for DL the expression

provided in Eq. 2.54. Notice that minh
1−DL(h)
2h+1

= 0 and assume γ2 < 2 −
√
3 to

guarantee the positivity of these real-valued minimizers, a condition which is ful-

filled by the empirical value of the intermittency coefficient (Eq. 2.82). To get an

estimation of the remaining multiplicative constant following this steepest-descent

calculation, perform a Taylor series of the exponents entering in Eqs. A.94 and A.95

around their respective minimizer up to second order, and finally approximate the

remaining Gaussian integrals extending the integration range over h ∈ R. Even-

tually, the following exact equivalent is obtained as the Reynolds number goes to
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infinity:

⟨a2⟩ ∼
τη→0

2σ2

T 2

[1− 4γ2 + γ4]
1
4√

1 + γ2

(τη
T

) γ2−1+
√

1−4γ2+γ4

γ2

. (A.96)

The multifractal prediction of acceleration variance (Eq. A.96) does exhibit an

intermittent correction, as it was already derived in a very similar way by Borgas

[1993], Sawford et al. [2003].
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Appendix B

Batchelor modeling algorithms

B.1 Tabulation of constants used for the Batchelor transformation based

on fits of the experimental data

uz(r, z)

U0(z)
= e−A1η2

ur(r, z)

U0(z)
=

(
ηe−A1η2 − 1− e−A1η2

2A1η

)

σ2
uz
(r, z)

U2
0 (z)

= C2e
−A2(η−B2)2

σ2
ur
(r, z)

U2
0 (z)

= C3e
−A3η2

σ2
uθ
(r, z)

U2
0 (z)

= C4e
−A4(η−B4)2

TEz(z) = C5z
2
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A1 A2 A3 A4 B2 B4 C2 C3 C4 C5

79.0 57.4 32.3 72.9 0.027 0.039 0.073 0.044 0.039 0.84

Parameters inputted into the model based on fits of the experimental self-
similarity profiles.

B.2 Mathematical algorithm of the Batchelor transformation

Data obtained from the HIST-OU or HIST-DNS, denoted with a tilde, is created in

Cartesian grid and converted to cylindrical coordinates to build up the jet. First,

the first-order ordinary differential equation for the Lagrangian path of a tracer fluid

element is presented as:

dX(t)

dt
≡ v(X(t)),

where v(X(t)) is the Lagrangian velocity. The homogeneous, isotropic and station-

ary turbulent velocity signal in Cartesian coordinates (x, y and z) is herein denoted

as:

ṽ(t) =


ṽx(t)

ṽy(t)

ṽz(t).

Therefore, initial condition must be converted for ṽr and ṽθ such that:

ṽr,0 = ṽx,0 cos (θ0) + ṽy,0 sin (θ0)

ṽθ,0 = −ṽx,0 sin (θ0) + ṽy,0 cos (θ0).

Next initial velocities are obtained for the jet based on a given initial cylindrical
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location (r0, θ0, z0),

vr,0 = ṽr,0σur(r0, z0) + ur(r0, z0)

vθ,0 = ṽθ,0σuθ
(r0, z0)

vz,0 = frz(r0, z0)
ṽr,0

σvr(r0, z0)

+
√
σvr(r0, z0)

2σvz,0(r0, z0)
2 − f 2

rz(r0, z0)
ṽz,0

σvr(r0, z0)
+ uz(r0, z0),

recalling that the vz component requires special attention to produce the true stress

behaviors of the jet.

Finally, the domain must return to Cartesian coordinates to obtain the following

position of the jet. This is found by

vx,0 = vr,0 cos (θ0)− vθ,0 sin (θ0)

vy,0 = vr,0 sin (θ0) + ṽθ,0 cos (θ0).

Given all previously defined initial conditions as well as the initial time τ0 = 0, the

jet can be built such that

τn = τn−1 + dτ̃TEz(r(τn−1), z(τn−1))

xn = xn−1 + vx,n−1dτn

yn = yn−1 + vy,n−1dτn

zn = zn−1 + vz,n−1dτn,

where, dτn = τn − τn−1.
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At each time step, a corresponding location in cylindrical coordinates is found

to continually convert the HIST signal from Cartesian to cylindrical coordinates to

utilize the known self-similarity properties of the jet. Therefore,

rn =
√
x2n + y2n

θn = arctan (yn/xn)

and

ṽr,n = ṽx,n cos (θn) + ṽy,n sin (θn)

ṽθ,n = −ṽx,n sin (θn) + ṽy,n cos (θn).

and the velocity at the given location of the jet for a given trajectory is obtained

by,

vr,n = ṽr,nσur(rn, zn) + ur(rn, zn)

vθ,n = ṽθ,nσuθ
(rn, zn)

vz,n = frz(rn, zn)
ṽr,n

σvr(rn, zn)

+
√
σ2
vr(rn, zn)σ

2
vz,n(rn, zn)− f 2

rz(rn, zn)
ṽz,n

σvr(rn, zn)
+ uz(rn, zn).

Last, the velocities are converted to Cartesian coordinates to acquire the follow-
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ing position of the jet,

vx,n = vr,n cos (θn)− vθ,n sin (θn)

vy,n = vr,n sin (θn) + ṽθ,n cos (θn).

B.3 Diagonalization of the covariance - inclusion of the v′rv
′
z correlation

Recall that a first-order ordinary differential equation is solved,

dX(t)

dt
≡ v(X(t)),

where v(X(t)) is the Lagrangian velocity and the HIST velocity signal is in Cartesian

coordinates (x, y and z). Restrictions on the model cause unit variance and zero-

average velocities, mathematically:

⟨ṽx(t)⟩ = ⟨ṽy(t)⟩ = ⟨ṽz(t)⟩ = 0

and

⟨ṽ2x(t)⟩ = ⟨ṽ2y(t)⟩ = ⟨ṽ2z(t)⟩ = σ2,

where for simplicity, σ2 = 1. Next obtain the HIST velocity signals in cylindrical

coordinates, where θ is known a prior by X(t). Explicitly

ṽcyl =


ṽr = ṽx cos (θ) + ṽy sin (θ)

ṽθ = −ṽx sin (θ) + ṽy cos (θ)

ṽz = ṽz
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The transformed velocity field continues to be zero-average with unit variance.

The jet is then built up based on this cylindrical HIST signal, ṽcyl. First, denoted

vcyl as the jet velocity, the outcome of the model predicts that:

⟨vcyl⟩ =


vr(r, z)

vθ(r, z)

vz(r, z)

 ,
and

⟨(vcyl − ⟨vcyl⟩)(vcyl − ⟨vcyl⟩)T ⟩ =


σ2
vr(r, z) frθ(r, z) frz(r, z)

frθ(r, z) σ2
vθ
(r, z) fθz(r, z)

frz(r, z) fθz(r, z) σ2
vz(r, z)

 = C(r, z),

where C is a symmetric positive-definite matrix by calculation. The elements of the

diagonal, i.e., the variance, should be known a prior by the self-similarity relations.

Then, consider a matrix L such that LLT = C and take

vcyl = Lṽcyl.

Experimental results dictate that frθ(r, z) = fθz(r, z) = 0 and therefore

C(r, z) =


σ2
vr(r, z) 0 frz(r, z)

0 σ2
vθ
(r, z) 0

frz(r, z) 0 σ2
vz(r, z).

 ,
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The solution for L is given as

L =


σvr(r, z) 0 0

0 σvθ(r, z) 0

frz(r,z)
σvr (r,z)

0
√
σ2
vz(r, z)−

f2
rz(r,z)

σ2
vr

(r,z)

 .
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