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Abstract

A new, three-dimensional, analytical, steady state wake model is presented which

includes local flow acceleration near the rotor improving wake description compared

to existing models. Wake structures such as the momentum deficit and regions

of accelerated flow are concisely described with compound and normal Gaussian

functions. Large-eddy simulations (LES) are used as training data to develop the

model using two, inline turbines under various inflow conditions parameterized by

hub height wind speed and turbulence intensity. Mass conservation is considered

by fixing two components of the wake velocity model and optimizing the third to

best satisfy continuity; after which, the model performs comparably if not better

than existing work with regards to both relative error and mass consistency. The

final model demonstrates a high degree of flexibility making use of empirical cor-

relations to scale across different inflow conditions. This work will be transitioned

into the open source, flow redirection and induction in steady state (FLORIS) wind

farm modeling toolbox where it will be used to predict wake velocities in wind plant

optimization processes. The inclusion of these effects is capable of revealing unuti-

lized opportunities for enhanced power generation by aligning wake trajectories with

these regions of accelerated flow.
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Chapter 1

Introduction and Motivation

With the increasing effects of climate change, the push to adopt renewable energy

sources is heightened [34]. Global temperatures have increased nearly 0.85◦C since

1880 while sea levels have risen more than 100 mm over just the past three decades,

seen in Fig. 1.1. These worldwide effects pose great threats to both the environ-

ment and global markets. Renewable energies have been popularized as efforts are

made to phase out fossil fuels. These zero emission alternatives make use of natural

resources to generate clean energy [38]. Different resources have advantages and dis-

advantages corresponding to their abundance, energy content, method of collection,

and other factors. Of the these renewable energies, wind power has recently seen

large investments and a reduction in the cost per generated power [1]. The avail-

ability of this resource has also been well characterized through multiyear averages

of wind speed measurements.

Fig. 1.2 shows the average wind speeds across the Unites States at 100 m above

the ground. There are many regions where the natural topography of the terrain

is conducive to generating favorable wind patterns; an example of which spans the

eastern portion of the Rocky mountain range [19]. Further measurements reveal

an increase in wind speed with gains in elevation, due to the interactions between
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Figure 1.1: Top: Change in global surface temperature compared to average
temperatures between 1951 and 1980 [2]. Bottom: Rise in sea level relative to
measurements made in 1993, via satellite imagery [3].

the ground and atmospheric boundary layer [15]. The distribution of this resource

forces the technology used to harvest it to adapt favoring taller, larger devices.

There are many variations of technologies which exploit the wind resource yet

they all act upon the simple premise of extracting kinetic energy from the flow. This

is done by using the wind to rotate a shaft connected to a generator which in turn

produces power. An assortment of different blade designs and configurations are



3

Figure 1.2: Average wind speed at 100 m above surface level across the United
States (US), measured between 2007 and 2013. Chart taken from NREL [11].

used to translate the kinetic energy from the flow into a torque on the shaft [35].

Throughout the development of wind energy sciences a three bladed, horizontal axis

wind turbine (HAWT) has become the best suited design for large scale applications

[7]. This comes from a number of factors, the largest being performance, mechanical

loading, cost of production, and scalability. A three bladed design was achieved

through a balance between the economics of manufacturing blades and an increase in

design complexity [29]. Installation of wind energy does come with a large overhead

cost [12], however, paired with their performance and efficiency they are best used in

large numbers requiring tremendous investments to develop [8]. As these machines

grow in size and begin operating in relatively close proximity, the effects on their
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surroundings becomes significantly important.

Wind energy development has grown significantly, with the power capacity of

turbines increasing 284% over the past two decades paired with the coupled growth

in adjacent technologies this trend seeks to continue [43]. In 2020, nearly 17 GW of

new wind energy capacity was added to the United States (US) electrical infrastruc-

ture with a cumulative contribution of 122 GW across all installed wind plants [43].

With its large overhead costs, impressive energy potential, and enormous growth,

the need for forecasting tools has risen in order to best design these wind farms and

optimize their power productions.

Figure 1.3: Depiction of the various length and times scales seen in wind
energy. Mesoscale weather structures supply the resource. Wind farm flows
include interactions between turbines and the atmospheric boundary layer. The
single turbine length scale involves understanding the generated wake as its
individual components interact with the flow at the smallest relevant scale. From
left to right photographs are taken from: [17], [39], [40], [42].

These models exist at varying scales and fidelity. Fig. 1.3 shows the degree

of length scales seen in wind energy applications, spanning the large mesoscale,
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meteorological flows which dictate the behavior of this resource, down to the flow

past the turbine blades. The relevance of each is dictated by which characteristic

of the wind plant is being considered. Large scale meteorologic models are used

to asses the wind energy potential of a location, typically used to determine the

efficacy of a proposed wind plant [13]. Component scale modeling is used in the

design of turbines blades and other aerodynamic features. This scale experiences

the greatest overlap between fluid mechanics and solid mechanics; where material

selection affects the longevity of a turbine whilst influencing its performance [27].

The length scales of greatest interest lie between the individual turbine and

the full wind farm. Kinetic energy extracted from the flow results in a reduction

in wind speed behind the turbine. Defined as wakes, these momentum deficient

regions decrease the incident velocity seen by downstream turbines reducing their

power generation [41]. Wind turbine generated wakes are among the greatest source

of losses in wind plant operations [25]. Power estimates are sensitive to wind speed,

driving the need for accurate wake velocity models [16].

Similar to the range of length scales found in wind energy, there are a variety

of modeling techniques available, each with differing degrees of fidelity, Fig. 1.4.

Shown are direct numerical simulations (DNS), large-eddy simulations (LES), and

engineering models. The fidelity and complexity of these techniques varies greatly

with DNS solving the full Navier-Stokes equations while engineering models are sim-

ply analytic approximations based on correlations. However, each method has merit

and ties back into the discussed length scales. The complexity of DNS limits its use

to the smallest scales, such as modeling the flow past individual blade segments [30].

LES is a mid-tier fidelity technique which truncates and neglects the smallest length
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scales. Its balance between fidelity and complexity makes it an efficient tool for wind

farm modeling and a practical substitute for field measurements [14]. Engineering

models are low fidelity, analytical, time-averaged predictions developed to estimate

wind turbine wake flows using empirical correlations. These simple models are used

to obtain quick and applicable results in the wind plant design process [5]. Packages

like the flow redirection and induction in steady state (FLORIS) toolbox are used

to generate and perform wind farm optimization using these models [33]. FLORIS

is an open source wake modeling resource used in controls oriented design and is

maintained by the National Renewable Energy Laboratory (NREL).

Figure 1.4: Description of different flow modeling techniques of varying fi-
delity and computational complexity. Shown are direct numerical simulations
(DNS), large-eddy simulations (LES), and engineering models, decreasing in
both fidelity and computational cost. From left to right photographs are taken
from: [30], [14], [5].

These tools are needed to support the suite of engineering processes in wind plant

design, optimization, and control [9]. Existing models are proven to be reliable in the

far wake but typically do not accurately describe the distinctive physics in the near
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wake where flow is accelerated through induction by the turbine rotor [44]. These

effects are important to capture as regions of increased velocity become favorable

during wind plant design. Integration of these effects is essential if the objective is

to best describe the flow field. The design of horizontal axis wind turbines favors

the streamwise velocity, leading to an abundance of streamwise yet lack of spanwise

and vertical wake models. This results in the need for a near wake focused, three-

dimensional wake model to better represent wake flows and aid in the development

and optimization of wind plants.

An early wake model poses the momentum deficit as a uniform, top-hat profile

whose magnitude is defined to conserve mass, as seen in Jensen [21]. Linear wake

expansion is introduced, becoming canon in future models. The assumption of a uni-

form wake velocity is an idealization of wake behavior yet its simplicity has secured

its continued use in industry [36]. New models have since been developed, intro-

ducing a Gaussian wake profile as shown in Bastankhah et al. [4]. This distribution

better represents the time-averaged momentum deficit by diffusing the wake into the

surrounding flow. This profile is an appropriate representation of the self-similar far

wake but is not suitable to depict flows near the turbine. Variations of a Gaus-

sian profile are introduced to better describe the near wake. The super-Gaussian,

as introduced by Blondel and Cathelain [6], is a parameterized Gaussian function

which can vary the breadth of its profile; broadening the distribution in the near

wake creating a top-hat profile and transitioning to a normal Gaussian downstream.

Other models describe the near wake by modifying the amplitude function of the

Gaussian profile as done in Ishihara and Qian [20]. A summary for the performance

of the discussed models in wind farm validation has been conducted by Hamilton et
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al. [18].

More current models take to describing the near wake by varying the shape

function, keeping with a Gaussian base. A radially displaced Gaussian profile is

introduced by Keane [23], revolving about the wake center to depict accelerated flow

about the turbine hub. This displacement approaches zero as the wake progresses

downstream converging upon a normal Gaussian profile. Most recent is work by

Soesanto et al. [37] who further expands double-Gaussian wake models by accounting

for anisotropic wake expansion. Spanwise and vertical wake velocity models are

also important but are not as well studied since the streamwise velocity contains

the majority of the available kinetic energy. The currently accepted spanwise and

vertical velocity model is introduced by King [24] and was developed to describe the

flow fields of yaw-misaligned turbines. This again presents the need for spanwise

and vertical wake velocity models dedicated to non-misaligned turbines.

Current models attempt to describe flows near the turbine using assumptions

only valid in the far wake. Obstructions generated by the turbine rotor induces flow

acceleration through less constricted regions; this being through the hub (hub jet)

and rotor circumference (tip acceleration) [41]. A non-uniform distribution of thrust

along the blades channels flow through these regions generating a local acceleration

in wake velocity. These effects have been observed in previous work, where under

relatively low turbulence can penetrate a considerable distance into the wake [10].

This work details the development of a mass-consistent, three dimensional model

for onshore, horizontal axis wind turbines that better describes near wake flows

compared to existing work by introducing a novel wake profile. LES is used to train

the model through a suite of optimization process; developing empirical relations
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which express the model parameters as functions of local turbulence intensity and

thrust coefficient. The resultant model is to be used in the design of wind farm

layout, control algorithms, and power predictions.

Inclusion of local accelerated flow is a significant feature when optimizing wind

plant layout as these regions become favorable to intersect along the wake trajectory.

Neglecting these effects could lead to a suboptimal wind plant design, generating

less power than it otherwise could be. The theory and definitions of the streamwise,

spanwise, and vertical velocity models are described in their concurrent subsections

within chapter 2. Specifications regarding the LES and training data are discussed

in chapter 3. Chapter 4 details the wake modeling techniques and methodology.

Results regarding the performance of each model, in addition to mass consistency,

is found in chapter 5 with the conclusion and future work followed in chapters 6 and

7.
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Chapter 2

Theory

2.1 Streamwise Velocity

From here the suite of models being introduced will be referred to as the Sadek

model. The streamwise component of the proposed model is defined in a velocity

deficit sense and subsequently transformed into absolute velocities, given by

û =
u∞ − u
u∞

, (2.1)

where û is the normalized velocity deficit and u∞, u are the inflow and wake ve-

locities, respectively. This can be interpreted as the percentage reduction in wake

velocity relative to the inflow. The proposed shape function uses a primary Gaus-

sian curve is used to generate the main momentum deficit while the compound and

secondary Gaussian are used to describe flow acceleration.

û = AMW

(
e
−
(

r
2σMW

)2
)
− ATA

((
r

σMW

)2

e
−
(

r
2σMW

)2
)
− AHJ

(
e
−
(

r
2σHJ

)2
)
. (2.2)

Equation 2.2 is the formulation for the streamwise velocity deficit model. The
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coordinate system used places x, y, z in the streamwise, spanwise, and vertical direc-

tions, respectively with the origin is placed at the ground, aligned with the tower,

Fig. 2.1. Being a radially symmetric model, r =
√
y2 + (z −H)2 is the distance

from the wake center where H is the turbine hub height. The wake center line is

fixed at the hub height as wake meandering is neglected in this work. This shape

function uses five model values: three amplitudes and two widths.

Figure 2.1: Schematic of the coordinate system used and characteristic turbine
lengths. Left: Isometric view of turbine depicting the Cartesian coordinate
system used. Right: Frontal view of turbine indicating the dimensions of rotor
diameter (D) and hub height (H).

Subscripts MW, HJ and TA are used to denote model components, corresponding

to ‘Main Wake’, ‘Hub Jet’, and ‘Tip Acceleration’, respectively. To capture the wake

morphology as it evolves downstream, each model value is defined as a function of

downstream position. The main wake half-width σMW and hub jet half-width σHJ are

defined as linear functions of downstream position, consistent with existing models.
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σMW(x̃) = D (kMWx̃+ εMW) . (2.3)

σHJ(x̃) = D (εHJ) . (2.4)

In this definition all length scales are normalized by the turbine rotor diameter D,

where x̃ = x/D, wake growth rate k, and initial size ε are expressed as dimensionless

quantities.

A(x̃) =
(
a+ bx̃+ c(1 + x̃)−2

)−2
. (2.5)

Three amplitudes are used in this model, taking the form of equation 2.5, devel-

oped by Ishihara and Qian [20] and based off work by Bastankhah et al. [4]. This

formulation was designed to describe near wake behavior and features a sudden rise

and fall in the velocity deficit magnitude. Both the main wake and hub jet am-

plitudes (AMW, AHJ) take this form where each component has unique coefficients

a, b, c, used to tune the wake behavior.

AMW(x̃) =
(
aMW + bMWx̃+ cMW(1 + x̃)−2

)−2
. (2.6)

AHJ(x̃) =
(
aHJ + bHJx̃+ cHJ(1 + x̃)−2

)−2
. (2.7)

ATA(x̃) = aTAe
(−bTAx̃). (2.8)

Introducing these parameters increases the model performance yet introduces diffi-

culty when balancing model flexibility to complexity. This is justified as this function
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better describes the momentum deficit near the turbine, aligning with the aim of this

work. Since tip acceleration occurs at the rotor plane and diminishes downstream,

its amplitude is modeled by an exponentially decaying function, Equation 2.8. Here

aTA, bTA, denote the maximum reduction in velocity deficit and decay rate, respec-

tively. Tip acceleration contributes the least compared to the other components.

Despite its lesser contribution it is still a phenomena which is not included in other

models and may affect farm design processes since it acts on the outer most portion

of the wake.

Wake superposition becomes significant when modeling multiple turbines. Ex-

isting models use a sum of squares combination model, forcing a positive definite

velocity deficit. The Sadek model uses linear superposition to maintain its flow ac-

celeration features. Induction effects accompany the physical presence of a turbine

which acts as an obstruction, reducing the upstream wind speed. This work neglects

these upstream flows by artificially masking the wake ahead to the rotor for each

turbine. Ground flows are modeled after the no-slip condition by applying a mirror

condition. This is done by inverting the vertical axis and sign of the model, then

summing with the original flow field. Applying this about the ground (z = 0) forces

zero velocity, maintaining the no-slip condition [26].

2.2 Spanwise and Vertical Velocities

The spanwise and vertical components are described as absolute velocities given

the lack of a suitable reference velocity for a deficit definition. These components

share similar wake structures and are described using variations of the same shape

function. Both profiles display dipole-like behavior with distinct regions (nodes) of
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positive and negative velocity. The behavior of these nodes lead to a clear distinction

between the near and far wake. The near wake is dominated by bulk rotation induced

by the motion of the rotor. This region has the nodes configured 90◦ out of alignment

from their final position, rotating counter-clockwise as they evolve downstream.

In the far wake, the node orientation becomes independent of downstream lo-

cation leaving the amplitudes to decay until the wake has fully recovered. The far

wake is modeled by two equally sized, Gaussian distributions of equal and opposite

amplitudes. The nodes are aligned vertically and horizontally for the spanwise and

vertical velocity models, respectively. These nodes are radially offset from the wake

center by D/4. The widths are set to a constant value given their negligible growth

and the amplitudes are modeled as exponentially decaying functions of downstream

position.

Afar = Cfare
−βfar(x̃). (2.9)

σfar = D (µfar) . (2.10)

vfar = wfar = Afar

(
e
−
(
rpos
σfar

)2

− e−
(
rneg
σfar

)2
)
. (2.11)

Equation 2.11 is the governing shape function for the far wake component of the

spanwise and vertical velocity models, where equations 2.9, 2.10 represent the node

amplitude and node width, respectively. The maximum velocity Cfar occurs at the

rotor and decays at a rate, βfar. The node width µfar is expressed in terms of rotor

diameter. The difference between the two formulations are the definitions of rpos

and rneg which position the nodes in space.
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rv,pos =
√
y2 + (z − (D/4)−H)2. (2.12)

rv,neg =
√
y2 + (z + (D/4)−H)2. (2.13)

rw,pos =
√

(y + (D/4))2 + (z −H)2. (2.14)

rw,neg =
√

(y − (D/4))2 + (z −H)2. (2.15)

To capture the interaction between the near and far wake components, the far

wake model is subtracted from the training data, leaving the near wake contribution.

This is modeled with a compound Gaussian function containing either a spanwise

or vertical dependence, producing distinct positive and negative distributions which

when combined with the far wake model capture near wake rotation.

Anear =
(
anear + bnearx̃+ cnear(1 + x̃)−2

)−2
. (2.16)

σnear = D (αnearx̃+ µnear) . (2.17)

vnear = Anear(y)

(
r

σnear

)2

e−( r
σnear

)
2

. (2.18)

Shown above are the general formulations for the near wake component of the

spanwise and vertical velocity models. Parameters are distinguished by subscripts

(v, near) and (w, near) corresponding to the spanwise and vertical components

respectively. The amplitude function shown in equation 2.16 adopts the Ishihara

formulations with terms anear, bnear, cnear used to capture induction upstream of the

rotor while the width develops linearly with growth rate, αnear, and initial width,
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µnear, Equation 2.17.

Equation 2.18 is the complete, near wake contribution for the spanwise model

with the vertical sharing a similar formulation. The flow field is created by linearly

superimposing the near and far wake components: v = vnear + vfar and w = wnear +

wfar. Equations 2.19, 2.20 are the full expressions for the spanwise and vertical

velocity models.

v = Av,near(y)

(
r

σv,near

)2(
e
−
(

r
σv,near

)2
)

+ Av,far

(
e
−
(
rv,pos
σv,far

)2

− e
−
(
rv,neg
σv,far

)2)
.

(2.19)

w = Aw,near(z −H)

(
r

σw,near

)2(
e
−
(

r
σw,near

)2
)

+ Aw,far

(
e
−
(
rw,pos
σw,far

)2

− e
−
(
rw,neg
σw,far

)2)
.

(2.20)

Similar to the streamwise model, the spanwise and vertical wakes are linearly

superimposed and a mirror condition is applied. The vertical velocity model does

not include any prescribed inflow as it contains no coherent structures. However,

the spanwise inflow is significant and is modeled as a function of the incident veer

and streamwise inflow. Wind veer φ(y, z) is defined as the angle misalignment in

wind direction from the streamwise direction.
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φ(y, z) = − tan−1(v∞, u∞). (2.21)

∆φ = φ (0, H +D/2)− φ (0, H −D/2) . (2.22)

τ = ∆φ

(
z −H
D

)
. (2.23)

v∞,model = u∞ tan (−τ) . (2.24)

This is calculated using equation 2.21 by taking the inverse tangent between

the spanwise v∞ and streamwise u∞ inflows. The sign is inverted to align the veer

quantity with the spanwise coordinate. A difference in veer is found across the rotor

diameter (Equation 2.22) and used to generate a vertically varying, linear model

seen in Equation 2.23. The spanwise inflow is constructed by solving Equation 2.21

for v∞ while substituting in the newly solved linear veer model, resulting in Equation

2.24.
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Chapter 3

Simulation Setup

Models are developed using a suite of large-eddy simulations provided by the Na-

tional Renewable Energy Laboratory (NREL) conducted using the Simulator for

On/Offshore Wind Farm Applications (SOWFA) framework. The SOWFA frame-

work is a high-fidelity simulator for wind turbine dynamics used to test and imple-

ment new controls strategies. All simulations contain the NREL 5 MW reference

turbine with a rotor diameter of D = 126 m and hub height of H = 90 m [22]. The

simulation domain is 4 km×1 km×0.3 km in the streamwise, spanwise, and vertical

dimensions, respectively with 10 m resolution in all dimensions. A precursor sim-

ulation was run for 20,000 seconds to generate turbulent inflow. The turbines are

then placed in the domain where time averaged statistics are recorded for the next

1,700 seconds. Note that a 300 second delay is used between the placement of the

turbines and collection of data. The data set used is comprised of eight different

simulations featuring identical farm layouts with two 5 MW turbines placed inline,

10D downstream from each other.

A smaller domain is used during analysis to focus on the wake and remove

superfluous background flow, indicated by white dashed lines in Fig. 3.1. By using

two turbines, the number of values used to develop empirical relations is doubled



19

while also expanding the range of operating conditions considered by forcing higher

turbulence intensities onto the trailing turbines.

Figure 3.1: Hub height, horizontal contour through full LES domain. Region
used during analysis is outlined by the dashed white lines. Two NREL 5 MW
turbines are placed inline with a downstream spacing of 10 rotor diameters
(1260 m).

Shown in Fig. 3.2 is the distribution of thrust Ct and power Cp coefficients

for each turbine in the data set. The dashed line is the characteristic curve for

both quantities of the 5 MW turbine, which are functions of incident wind speed.

Values are determined by taking the rotor averaged wind velocity 1D upstream of the

turbine and referencing the respective characteristic curve. Sampling at this distance

supplies the representative wind speed experienced by the turbine by avoiding the

effects of both induction and the previous turbine’s wake.

Table 3.1 is a breakdown of the flow conditions for each simulation. Included

are the case names, mean inflow velocity, and local turbulence intensities and thrust

coefficients for each turbine. Local turbulence intensities are obtained from the

LES. Ambient turbulence intensity is modified by altering the surface roughness of

the simulation domain with low intensity cases prescribed a surface roughness of

0.0002 m and high intensity 0.15 m.
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Figure 3.2: Distribution of thrust (Top) and power coefficients (Bottom) for
each turbine across all simulations. Leading turbines and following turbines
are denoted by circles and diamonds, respectively, sharing the same infill color
across different cases. The black dashed lines are the characteristic thrust and
power curves for the NREL 5 MW turbine.

Turbine 1 Turbine 2
Case Inflow [m/s] Ct Ti Ct Ti

08 highTI 8 0.0928 0.7723 0.1289 0.8290
08 lowTI 8 0.0665 0.7673 0.0973 0.8467
09 highTI 9 0.1226 0.7620 0.1834 0.7922
10 highTI 10 0.1812 0.7593 0.1766 0.7626
11 lowTI 11 0.0605 0.7423 0.1053 0.7641
12 lowTI 12 0.0081 0.6572b 0.1402 0.7619
13 highTI 13 0.0158 0.3938 0.0844 0.6869
13 lowTI 13 0.0027 0.4254 0.0445 0.7334

Table 3.1: Table with a summary of specifications for each simulation used
in analysis. This includes the case name, average inflow wind speed, and local
turbulence intensity and thrust coefficient for each turbine in the array. Turbine
1 is leading while turbine 2 is trailing.
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Chapter 4

Wake Modeling

In order to maximize the utility of the model a suite of optimization methods are

used to generate best fit, empirical relations. Dependence is placed on local turbu-

lence intensity and thrust coefficient. This is applied to every model parameter by

introducing three empirical values, shown by

κ = C0Ti
C1Ct

C2 . (4.1)

Equation 1.1 is a formulation developed by Ishihara and Qian [20] to describe a

model parameter κ as a function of local turbulence intensity Ti and thrust coef-

ficient Ct. This uses a coefficient C0, turbulence intensity exponent C1, and thrust

coefficient exponent C2; all of which are determined through optimization oper-

ations. Dual dependence on turbulence intensity and thrust coefficient gives the

model greater tuning abilities by considering both the ambient flow conditions and

turbine operational state. While this definition creates a more flexible model, the

total parameter space explodes three-fold since each single parameter requires three

empirical values. It is to be noted that the main wake growth rate kMW is modeled

as a linear function of turbulence intensity,
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kMW = C0Ti+ C1, (4.2)

consistent with Niayifar and Porté-Agel [31].

To assist the optimization process, an initial empirical model set it first created.

Constructing the streamwise model a Downstream Marching Algorithm (DMA) is

used which passes through each spanwise-vertical crossplane in the data set and

fits a Gaussian profile at each instance. Initial statistics are derived by using this

process, determining values for the wake amplitude and widths of each model com-

ponent. Each value is then fit with their defining function, shown in Fig. 4.1. Wake

superposition is taken into account by processing the leading turbine and extrapo-

lating the modeled parameters, then subtracting this from the wake of the following

turbine. This is repeated for each case in the data set. Parameters derived from

fitting are plotted as functions of local turbulence intensity and thrust coefficient

for each turbine and used to produce an initial empirical model using Equation 1.1.

The downstream marching algorithm is favorable since the independence between

crossplanes best depicts the behavior of each model value as the wake progresses

downstream.

A large scale minimization scheme is used to consider all cases simultaneously,

where the target value being minimized is

ζ =

(
N∑
n=1

η2n

)1/2

, (4.3)

where ζ is the sum of squares of the individual domain-wide, L2 norm errors given

by
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Figure 4.1: Demonstration of the downstream marching algorithm (DMA)
for a single case. Top: Wake amplitudes and growth rate for both turbines
plotted against normalized downstream position. Leading turbine quantities are
shown in solid lines while the trailing turbine is dashed. Black values are the
result from DMA and the colored curves are from corresponding fits. Bottom:
Superposition of wake amplitudes to generate a prediction for the wake center
line velocity deficit.

η =
||Data−Model||
||Data||

. (4.4)

Double vertical bars indicate the L2 norm of an array. Equation 4.3 takes the sum

of squares of the domain-wide errors across a data set of size N , where in this work

N = 8. This optimization uses the quasi-Newton method of Broyden, Fletcher,

Goldfarb, and Shanno (BFGS) as the minimization algorithm [32].

To apply this minimization in a computationally feasible manner different com-
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ponents of the model are optimized while constraining the rest. This is first applied

to the main wake component while all other parameters are fixed. The empirical

values needed to describe the three amplitude parameters aMW, bMW, bMW and main

wake width growth rate kMW are left to be optimized. The initial main wake εMW

and hub jet widths εHJ are left as constant values which do not vary as a function of

ambient and operational conditions. Defining constant values aids in reducing the

model parameter space; becoming a thirteen degree-of-freedom optimization.

Comparing the errors between the main wake optimized model to the initial in-

puts shows the process produced beneficial results, reducing error across all cases.

The process of optimizing and comparing is repeated for the remaining wake com-

ponents until the final streamwise model is achieved. Given the smaller parameter

space of the spanwise and vertical models, only large scale minimization is consid-

ered. Initial values are derived by independently optimizing each case rather than

using DMA. The optimized parameters from each case are again plotted against the

ambient conditions for each turbine and used to generate initial inputs for the larger

process.

Applying conservation principles can only be done by considering all three models

simultaneously. Mass conservation for an incompressible flow is expressed by the

continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= γ, (4.5)

where in an entirely mass consistent system γ = 0. While difficult to achieve with

analytic models, the objective instead becomes reducing the remaining residuals γ

to approach zero. Tuning all parameters within the Sadek suite would prove to be
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computationally intensive and risk forfeiting the performance of each model. To

avoid this, only one of the three models is left to be optimized while the remaining

were fixed. This reduces the computational power required yet grants a considerable

portion of the parameter space to the minimization process. The vertical component

is chosen to be the tuning basis while the streamwise and spanwise are fixed. This

process again considers all cases in the data set, where the target objective ζ is

instead the sum of squares of the L2 norm of residuals generated in each case, given

by

ζ =

(
N∑
n=1

||γn||2
)1/2

. (4.6)

This preserves prior work in developing the fixed models and shuttles all the

variability into the less utilized velocity model. Absolute mass conservation is not

guaranteed but model flexibility is utilized to acknowledge conservation principles.
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Chapter 5

Results

5.1 Streamwise Model

Comparisons are drawn between the Sadek, Bastankhah, Ishihara, Blondel, and

Jensen wake models for each case in the data set. The domain-wide L2 norm, rel-

ative error is used as a comparative metric to judge model performance. Local

turbulence intensities are provided for each turbine across all models, eliminating

the use of auxiliary turbulence models and solely examines the capabilities of the

wake velocity models. The dependence of thrust coefficient on incident wind speed

leads to variation based on the employed model; this is left to vary and is de-

termined within FLORIS. Corresponding combination methods are used with the

Sadek model linearly superimposing its wakes while the remaining use a sum of

squares combination model. Equivalent inflow profiles are provided for each flow

field.

Figure 5.1 shows the domain-wide, L2 norm error of each streamwise FLORIS

model across the training data set. Generally all models are performing well, oper-

ating under 10% error. However, for every case the Sadek model out performs all

existing models with the lowest computed error. This demonstrates its adaptability
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Figure 5.1: Domain-wide, L2 norm, relative error comparing the streamwise
Sadek, Bastankhah, Ishihara, Blondel, and Jensen models for each LES case in
the data set.

and flexibility to a range of operating conditions. There is a shared trend to pre-

dict lower error in cases with wind speeds greater than 10 m/s. This is attributed

to the fact that these models are not optimal for predicting flows below the rated

operating wind speed, which for the NREL 5 MW is 11.4 m/s [22]. Ordering of

errors from largest to smallest appears to be consistent for wind speeds below the

rated range. The Jensen model produces the highest error while Blondel, Ishihara,

and Bastankhah are comparable to one another whereas the Sadek model reports

the lowest error of the group. An exception to this is the 08 lowTI case where the

Ishihara model performs dissimilarly to Bastankhah and Blondel with larger error.

At higher wind speeds disparities between models increases, shown in the 11 lowTI

and 13 lowTI cases. In this region, there are also instances where all models are

performing seemingly uniformly, as seen in the 13 highTI case. This shows the

varying degrees of sensitivity to operational conditions across all models, especially
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turbulence intensity as the low intensity cases display larger variations in model

performance compared to the high intensity cases.

Figure 5.2 shows hub-height, horizontal contours for each model, taken from

a representative case. All contours share the same color range determined by the

extreme values found across all six plots. Here, the Bastankhah model is responsible

for extending the color range by severely under predicting the near wake velocity.

Being a far wake model, the FLORIS implementation of this work addresses the

near wake with the same formulation used to describe the far wake. The behavior

of these two regions are not alike and it is this repurposing of descriptions that is

responsible for under predicting the near wake velocity. Further, these regions are

combined with a sum of squares creating a non-physical transition between the two.

The Ishihara model is the only flow field which includes the effects induction

however, the amplitude function used to include this effect distorts the downstream

portion of the wake. The super-Gaussian function used by Blondel over predicts the

wake width yet shows good agreement in the wake velocity. The Jensen model is

the only non-Gaussian model being evaluated leading to a sharp separation between

the wake and surrounding flow. Even so, this model accomplishes its target of

producing a simplified wake structure, forfeiting any flexibility and detail in favor

of a simplicity.

Figure 5.3 is a direct comparison between hub height contours of the SOWFA

training data and corresponding Sadek model with both plots again sharing the

same color range. The near wake hub jet is captured by the model with the leading

turbine matching well while the wake velocity of following turbine is under predicted,

obscuring the hub jet. Empirical relations do not produce an exact match for each
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Figure 5.2: Hub height, horizontal contours of the streamwise velocity taken
from the SOWFA training data, Sadek model, and existing FLORIS models for
the 08 hightTI case.

case used to train them. This is causing the differences seen in wake velocity between

the proposed work and reference data. Nonetheless, a domain-wide L2 norm error
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Figure 5.3: Hub height, horizontal contours of the streamwise velocity directly
comparing the SOWFA training data and Sadek model for the 08 hightTI case.

of only 6.1% is computed for this case. The non-physical masking of the wake

becomes evident with a sharp discontinuity appearing at the rotor plane of each

turbine. Masking is done in the velocity deficit space since within the free steam it

is zero. This does not affect the flow field upstream of the turbine when transformed

into absolute velocities.

5.2 Spanwise Model

The King model is the only spanwise/vertical model being compared against in this

analysis. Due to the magnitudes of the these flows relative error was not a suitable

performance metric. Small differences between the model and training data are

reported as large errors due to the magnitude of the normalizing velocity. Here,

a Symmetric Mean Absolute Percentage Error (SMAPE) is introduced. This new

performance metric remedies the issues found when dealing with the zero-centered

spanwise and vertical velocities. Expressed as,



31

SMAPE =
1

n

n∑
t=1

|Mt −Dt|
|Mt|+ |Dt|

, (5.1)

n is the total number of points in the wake volume andMt, Dt are the model and data

values sampled at point n in the domain, respectively. Single vertical bars signify

absolute values. Relative error values were reported over 100% for both models

while SMAPE bounds this between 0% and 100%. To compare the performance of

the proposed Sadek model to the King model the SMAPE is calculated for both

across the training data set. Shown in Fig. 5.4 are the domain-wide SMAPE for

both the Sadek and King spanwise velocity models across every case in the data set.

Even by incorporating SMAPE, it is exceptionally difficult to characterize the

performance of a model with a single scalar value. Still, the Sadek model dramat-

ically out performs the King model, averaging less than half the error for the King

model. This is further demonstrated when comparing contours of the predicted

Figure 5.4: Domain-wide SMAPE comparing the spanwise Sadek and King
models.



32

wakes generated by each model. Shown above in Fig. 5.5 are horizontal, hub-height

contours of the LES data and Sadek model of the spanwise components for a repre-

sentative case. The King model is not included since it does not depict any rotation

and produces a zero velocity flow field in this view.

Figure 5.5: Hub height, horizontal contours of the spanwise velocity directly
comparing the SOWFA training data and Sadek model for the 08 hightTI case.

Within this contour, near wake effects are shown as the two characteristic nodes

reorient themselves. The Sadek model captures this properly, even describing the

induction occurring upstream of the rotor. However, this effect is slightly exagger-

ated as it penetrates farther into the wake and over predicts the magnitude of each

node compared to what is shown in the data. The depiction of these features has

them expand linearly in order to align and merge with the far wake components.

While not accurate to the data this implementation is done to better convey bulk

rotation and is sufficient to describe the general behavior of this region. The King

model does not portray this, simply arranging the two nodes in there final position

from the start of the wake.

More meaningful comparisons are drawn by examining planes which reveal the
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Figure 5.6: Tower centered, vertical contours of the spanwise velocity taken
from the SOWFA training data, Sadek, and King models for the 08 hightTI
case.

far wake behavior. Figure 5.6 shows vertical, tower-centered contours of the SOWFA

training data, Sadek, and King vertical velocity models. The SOWFA data shows

the trailing nodes which make up a majority of the wake structure. In application,

the King model consistently under predicts the wake velocity for every case in the

data set. The Sadek model includes inflow using a linear veer model expressed in

Equation 2.24, seen in the background of Fig. 5.6. This matches well with the

SOWFA data and contributes to the reduction in error compared to the King model

which omits background flow. Not depicted by either models is the asymmetric

behavior of the nodes as they decay downstream. The negative velocity distribution

decays slightly faster than the positive region, highlighted by the second turbine in

the SOWFA data.
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5.3 Vertical Model

Repeating our analysis with the vertical velocity, the SMAPE for both the Sadek

and King models is shown in Fig. 5.7.

Figure 5.7: Domain-wide SMAPE comparing the vertical Sadek and King
models.

The difference between these two models is minimal compared to the large dis-

parity seen in the spanwise comparison however, both errors are exceptionally large,

likely due to the magnitude of the surrounding flow in the training data. Unlike the

streamwise and spanwise models, there is no prescribed inflow profile for the vertical

component being set uniformly to zero velocity.

Examining the far wake behavior reveals the shortcomings of each model. Figure

5.8 shows horizontal, hub-height contours of the LES data, Sadek model, and King

model of the vertical components for the same representative case. This view shows

the far wake nodes decaying as they evolve downstream. The Sadek model appro-

priates predicts the wake velocity while the King model again is under predicting.



35

Figure 5.8: Hub height, horizontal contours of the vertical velocity taken from
the SOWFA training data, Sadek, and King models for the 08 hightTI case.

Asymmetric behavior of the decay between the positive and negative velocity nodes

is shown by the SOWFA data where the negative velocity distribution decays more

quickly than the positive. This is highlighted by the second turbine in this array.

The Sadek model does not depict this behavior as both nodes are defined to have

equal and opposite amplitudes, simplifying the model.

Addressing the near wake, Fig. 5.9 shows vertical, tower-centered contours of the

LES training data and Sadek vertical velocity model. This again highlights the near

wake component of the Sadek model which the King model omits. Implementation

of the mirror condition to create a no-slip surface is seen affecting the wake in

the Sadek model. The negative velocity in the near wake is clipped by the mirror

condition, preventing it from penetrating into the ground.
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Figure 5.9: Tower centered, vertical contours of the vertical velocity directly
comparing the SOWFA training data and Sadek model for the 08 hightTI case.

Mass conservation capabilities are considered by computing the residuals of the

continuity equation as shown in Equation 4.5. To interpret this in a one dimensional

sense each spanwise-vertical crossplane in the volume of residuals is averaged and

plotted as a function of downstream position, shown in Fig. 5.10. This description

of mass conservation serves as a concise way to compare all the models. The Sadek

suite designed all three of its model simultaneously with the aim of mass conservation

in mind. However, existing streamwise FLORIS models were not constructed with

accompanying spanwise and vertical components; here the King model has become

the default FLORIS spanwise/vertical surrogate and will be used to supply the

spanwise and vertical components during analysis.

Figure 5.10 shows the average residuals of each spanwise-vertical plane as a

function of downstream position for all models. The inset figure is a focused view

of the near wake of the leading turbine to better distinguish the response of each

model. Residuals from the SOWFA data serve as a baseline comparison shown in

solid black. The largest residuals for all models occurs at the rotor plane of each
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Figure 5.10: Continuity residuals averaged across each spanwise-vertical plane,
plotted against normalized downstream distance for the 08 highTI case.

turbine where even in the SOWFA data there is violation of mass consistency. There

are vastly different responses amongst all the models; The non-physical wake edge

of the Jensen model is seen here, granted a non-physical feature is not expected

to comply with conservation principles. Shown in decreasing order of residuals at

either rotor plane are Jensen, Bastankhah, Blondel, Sadek, and Ishihara. Here, the

Sadek model performs nominally displaying neither the highest or lowest residuals

at this point. Conversely, the Ishihara model produces residuals comparable to the

SOWFA data. This is surprising given that the Ishihara and King models are not

designed to optimally conserve mass together.

The far wake behavior of the models converge to zero. Recovery from the initial

rotor plane discontinuity to steady residuals is an additional metric to consider.

Despite the large spikes seen in the Jensen model, the mean recovery after the rotor

plane appears to occur quickly. Worth noting is that the growth rate of the first

turbine can be seen in the second turbine’s residuals in Fig. 5.10 as a series of

staggered discontinuities. The Blondel model recovers immediately while the Sadek
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and Bastankhah converge within the first rotor diameter downstream. Additionally,

the Ishihara, Sadek, and Blondel models all appear to be nearly negative definite,

while the SOWFA data, Bastankhah, and Jensen models all contain both positive

and negative residual values. This is only a comparison of mass conservation and

does not depict the accuracy of the models with relation to the flow field. Despite

the performance seen by the paired Ishihara, King models, the individual accuracy

of each component does not sufficiently recreate the flow field.
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Chapter 6

Conclusion

A set of new, three-dimensional, analytical wake models is developed to better de-

pict near wake flows for onshore, non-misaligned turbines. Conservation of mass

is considered in a residual minimizing optimization process. This model improves

upon existing work by better predicting the wake flows across multiple inflow condi-

tions, demonstrated by producing the lowest relative error compared to all existing

FLORIS models across the entire training data set. Preferential behavior towards

wind speeds within the rated range is shown as a reduction error. Despite having

better performance across each individual component, the combined mass conserva-

tion capabilities are not supreme amongst the considered models. The Sadek model

did not perform in either extreme with regards to mass consistency, performing nom-

inally amongst the considered works. Decreasing residual magnitudes at the rotor

plane are found to be Jensen, Bastankhah, Blondel, Sadek, and Ishihara, respec-

tively. The Ishihara model paired with the King model was able to better conserve

mass than both the Sadek model and LES. This reveals one of the many balances

which occur during wake modeling: individual component performance as against

concurrent mass consistency. In the case of the Sadek model each component fairs

better when compared directly to its counterparts, qualitatively. When assembled
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for mass conservation this advantage disappears, performing only moderately in

comparison to its counterparts; highlighting the importance of choosing the appro-

priate error metric depending on the application for a model. With the Sadek model

being designed to better depict near wake flows the domain-wide, L2 norm stands

as a better performance metric than a one dimensional interpretation of mass con-

servation. In the matter of model adaptability, the streamwise Sadek model shows a

high level of flexibility across all the cases, performing the best in every case. Given

the scale with which wind energy operates, being able to produce increases in per-

formance on the scale of single digit percentages translates into tremendous earnings

in power production. Every gain in performance is needed to phase out fossil fuels

and introduce renewables as an equivalently capable alternative. Introducing a new,

low fidelity model which includes previously disregarded physics stands to advance

wind energy by producing better representations of farm-wide flows during controls

and performance oriented design of wind turbine arrays.
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Chapter 7

Future Work

Future work includes porting the Sadek model into the latest installment of FLORIS.

Joining this established, open source framework would allow anyone to use this tool,

further developing and improving upon this work. Additionally, incorporating a cou-

pled wake added turbulence (WAT) model would be beneficial given the dependence

the Sadek wake model places on local turbulence intensity. Not included in this work

are the effects of yaw-misalignment on wake trajectory. To maximize the utility of

the Sadek model incorporating these effects is needed to expand the design oppor-

tunities available during wind plant optimization. Lastly, model validation is to be

conducted using full size, field measurement. This is an excellent opportunity for

this work to carry into the American wake experiment (AWAKEN) which is an in-

ternational field campaign focused on studying and measuring the effects of onshore

turbine generate wakes [28].
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Appendix A

Empirical Values

A.1 parameter values

All parameters follow the generic form,

κ = C0Ti
C1Ct

C2 (1.1)

Parameter C0 C1 C2

aMW 7.93× 10−1 −4.97× 10−2 −5.00× 10−1

bMW 2.83× 10−1 4.58× 10−1 −8.27× 10−1

cMW 1.23 4.10× 10−1 −1.94× 10−1

kMW 1.57× 10−2 1.53× 10−2 NA
εMW 3.22× 10−1 0 0

aHJ 2.71× 10−1 −4.06× 10−1 5.28× 10−1

bHJ 2.06 4.74× 10−1 −1.73
cHJ 2.23 1.98× 10−1 −1.18
εHJ 1.5× 10−1 0 0

aTA 2.58× 10−2 −4.07× 10−1 1.91
bTA 7.91 9.30× 10−1 −9.68× 10−1

Table A.1: Streamwise velocity deficit model empirical constants
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Parameter C0 C1 C2

av,near 112.2 6.90× 10−1 13.2
bv,near 21.4 5.84× 10−2 −3.83× 10−1

cv,near 6.05 3.42× 10−3 −2.67× 10−1

αv,near 3.43× 10−1 1.71× 10−1 −3.62× 10−1

µv,near 3.47× 10−1 0 1.88× 10−1

Cv,far 5.06× 10−1 −6.47× 10−2 −6.72× 10−2

βv,far 1.73× 10−1 1.23× 10−1 0
µv,far 3.46× 10−1 0 4.87× 10−1

Table A.2: Spanwise velocity model empirical constants

Parameter C0 C1 C2

aw,near 4.12× 10−2 −2.02× 10−1 −4.33
bw,near 26.79 −1.16× 10−2 5.98× 10−1

cw,near 9.46 −3.10× 10−2 1.18
αw,near 3.34× 10−1 −9.25× 10−3 3.11× 10−1

µw,near 3.29× 10−1 −6.91× 10−3 5.39× 10−2

Cw,far 4.34× 10−1 −6.65× 10−2 −1.68× 10−1

βw,far 1.77× 10−1 1.31× 10−1 4.35× 10−3

µw,far 3.11× 10−1 −4.70× 10−4 3.31× 10−1

Table A.3: Vertical velocity model empirical constants
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