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Chapter 2. Hybrid Control Theory Preliminaries

f q(-. k(-, q)), is locally asymptotically stable.

We also need to consider a hybrid control system where only one of the variables x  

or q has a control input. We consider examples of such hybrid control systems in the 

next chapter.
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Chapter 3

HYBRID CONTROL SYSTEMS

We begin our qualitative study of hybrid control systems with the application of the hy­

brid control system formulation proposed in Chapter 2 to several existing hybrid control 

problems. The aim is to present all these systems under a unifying general theory. In 

this chapter we list the main classes of hybrid control systems studied in various sci­

entific fields, and also give some particular examples of hybrid control systems. For 

each example given, we will point out which part of the system can be controlled. For 

some systems there is no control input, for others only the continuous component of the 

system can be controlled, and for more complex systems both the continuous and the 

discrete components are allowed to be controlled.

3.1 Hybrid Control Systems Models

Hybrid systems have been studied in the context of piecewise linear systems [54, 56], 

hybrid automata [26, 56], hybrid dynamical systems [43, 44], switching systems [13, 

27, 41, 42], and mixed logic dynamical (MLD) systems [7, 8, 20, 45, 46]. Research of 

each type of hybrid model above has been concerned mainly with studying fundamental
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Chapter 3. Hybrid Control Systems

properties for these classes of hybrid systems such as controllability, stabilizability and 

observability. Table 3.1 contains a summary of some of the current research per category 

in this area. This research may or may not include solutions to the posed problems. We 

include all these references here to show which problems have been investigated. Also, 

some of the papers referenced include work for several of these categories. The types 

of systems considered are: switching systems, hybrid systems (no control), piecewise 

linear control systems (PL-control systems), mixed logic dynamical systems (MLD- 

systems), hybrid automata (some of the hybrid automata problems are equivalent to 

PL-systems problems), affine hybrid systems, and hybrid control systems. The classes 

of PL-control systems and MLD-systems have been shown to be equivalent. The class 

of hybrid control systems class includes the PL-systems as a subclass, however we do 

not repeat the references in this case, unless the paper cited considers hybrid control 

systems in general as well as PL-systems.

Systems / 
Properties

Introduction / 
Reachability

Stability / 
Stabilizability

Observability Optimal
Control

Complexity

Switching [42] [1, 10, 28,41] n/a n/a [10, 12]
Hybrid [43, 44] [44] n/a n/a [11,22]
PL [16, 20, 54, 56] [20] [7, 8] [6, 7] [31,57]
Hybrid Automata [37, 56] [36]
Affine Hybrid [2]
Hybrid Control [56, 57] [20, 53, 72] [9] [7]

Table 3.1: Hybrid Control Systems Research Areas

In the specific examples that follow later in this section, we illustrate how Definition

2.3 can be used to present systems that are of interest in current literature. Further ex-

21



Chapter 3. Hybrid Control Systems

ploration of the nonlinear control systems field may lead to connections between Hybrid 

Control Systems as presented above, Fuzzy Control Systems [61, 62, 70], and Multiple 

Model Systems [39, 47].

3.1.1 Discrete Time Switching Systems 

Discrete Time Switching Systems are of the form:

x(k  +  1) =  A ax(h)

where a  : R —> Q  is a piecewise constant function, called a switching signal, and for 

each q £ Q, A q £ A,  a. finite set of matrices. A possible question that arises for this type 

of system is: for what switching signals o  is the system is stable? Another question is: 

what properties should the matrices A a have in order to ensure stability of the system 

under various switching signals? In [ 10] the authors show that if the set of matrices A  

generates a solvable Lie algebra, then the system is stable, regardless of the switching of 

the matrices A q. The equivalent result for continuous-time systems is given in Theorem 

1 of [41], In [12] a related problem is addressed: for the example above, the problem of 

determining if, for any two given matrices, such a switching system is absolutely stable 

is not decidable.

3.1.2 Piecewise Linear Control Systems

The class o f piecewise linear control systems, or piecewise affine control systems has 

first been introduced by [54]. The systems are defined as follows:
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Chapter 3. Hybrid Control Systems

Definition 3.1. Piecewise linear control systems. Let

x  = p(x( t ) ,u( t ) )

This system is piecewise linear i fp  : X  x U X  is a piecewise linear map, and. where

xi t )  6  X i f o r i  6 I, denotes the state o f  the system, u(t)  € U  C Rm is the control input, 

and the disjoint sets X i  C Mn have the properties that:

1. \JieIX i = MP.

2. X, is a finite union o f open convex polyhedrafor every i.

The author introduces the concepts of controllability and feedback stability for such 

systems. In an accompanying paper, [55], the author discusses the properties of the 

domain of such systems. These sets are partitioned into open convex polyhedra X t, and 

the author introduces the notion of a label, an object used for classifying open convex 

polyhedra under isomorphism. More details concerning this are found in Chapter 5.

3.1.3 Mixed Logic Dynamical Systems

The Mixed Logic Dynamical systems considered in the literature are of the following 

form (for the purpose of this illustration, we ignore the dimensions of the spaces we are
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Chapter 3. Hybrid Control Systems

working with; it suffices to say that all spaces are finite dimensional):

x ( t  +  1) =  A x ( t ) +  B\u(t)  +  B 25{t) T  B 3z(t)

y(t) = C x ( t ) +  D xu(t) +  D25(t) + D 3z(t)

g (6 ( t ) , z ( t ) ,u ( t ) , x ( t ) )  <  0

g(8(t), z ( t ), u(t), x(t)) = E 26(t) -  E 3z ( t ) -  Eiu(t)  -  E Ax(t)  -  E 5

where x  is the input of the hybrid system, containing both continuous and binary states, 

u is the control input, y  is the output, 6 and 2 represent auxiliary binary and continuous 

variables. The auxiliary variables are introduced when translating the propositional logic 

statements given by a question into linear inequalities. Such MLD systems are analyzed 

for controllability and observability properties in [7, 8].

3.2 A Hybrid System Formulation for Autonomous Systems

In some applications it is of interest to consider interactions between various autonomous 

“agents”, represented by dynamical systems. We illustrate here how these problems can 

be formulated as hybrid control system problems. The interaction between the differ­

ent dynamical systems is modeled using an interaction graph, whose evolution will be 

incorporated in the dynamics for the discrete component of the resulting hybrid control 

system. We first identify the continuous and the discrete components of such a hybrid 

control system.
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Chapter 3. Hybrid Control Systems

3.2.1 The Continuous Component

Suppose we are given N  autonomous control systems of the type

Xi = f i(xi ,Ui) i  = l , . . . , N  

or as discrete-time dynamical systems,

Xi(k +  1) =  f i (x i(k) ,Ui(k ) )  i  = 1 , . . .  , N

From now on we will assume that we are given discrete-time systems. We further as­

sume the structure of each control system to be of the form:

Xi(k +  1) =  AijXi(k) +  BijUi(k) for ay (A;) e

whert (Aij , Bjj) G { (A tj ,B i j ) \ j  — 1 , . . .  , n,} and the disjoint union U^X',-, =  X t, 

the state space for system i .  These are piecewise linear, discrete time-invariant control 

systems. The continuous component consists of all N  systems, which form a larger 

system:

(£) x (k  +  1) =  M ax(k)  +  Pau (k )

for appropriate matrices M a and Pa, where the state space for x  is denoted by X .  Here, 

X  is the Cartesian product of all X i ,  X 2, . . . ,  X N, the state spaces of the components of 

x. Let D — {{Ma, P ^ ,  <7 =  1,..., n£L i denote the set of possible pairs (M, P). 

The control function for this large system is «(•) with components n, which are
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Chapter 3. Hybrid Control Systems

the control functions for the individual sub-systems. These local control functions are 

allowed to depend on the states of the other systems. Although we allow for such de­

pendencies of the controls, the system as a whole is still autonomous - in the sense that 

there are no external influences on the control laws. Such interaction between systems 

(between states and control functions) is captured by a graph G, the “interaction graph”. 

The vertices of G  represent the N  given systems, and each edge ( i , j )  represents an in­

teraction link between systems i and j .  Such interaction may be directed, in which case 

if the graph has a directed edge ( i , j )  we say that the control inputs for system j  depend 

on the state of system i, or that system j  receives information from system i. In this 

case we will call % the neighbor of j .  Figure 3.1 gives an example of such an interaction 

between 4 systems.

S2

Figure 3.1: Interaction graph between 4 generic autonomous systems.

3.2.2 The Discrete Component

The interaction graph G  is either fixed, or time-variant: at each instant of time k, it 

depends on the state of the entire system at time k, according to some well-defined 

decision rule. Let P  = {Gk}k-_i denote the set of all possible graphs on N  vertices.
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Chapter 3. Hybrid Control Systems

The map q : R  —> Q = P  x D, captures the discrete transitions between the different 

communication graphs, as well as the transitions between the different dynamics of the 

given N  systems. Given a time t, q(t) =  (G ( t ) ,D ( t )) identifies the communication 

graph between the systems at time t, and the configuration of the dynamical systems at 

time t.

3.2.3 Autonomous Systems as Hybrid Control Systems

We illustrate how the system described above can be formulated as a hybrid control 

system, as per Definition 2.3, via the following example. This is an example of a hybrid 

control system with only one component having a control input.

Consider two control systems of the form:

Let us set X i  — X n  U X 12, X 2 =  X 2i U X 22 and Ui E Ut, for i = 1,2. We allow the 

controls for each system to depend on the controls of the other system. There are four 

different possibilities of how the dependency can occur, therefore there are four possible 

interaction graphs between these systems. To illustrate this idea we allow only the two 

graphs in Figure 3.2.

AnX\{k )  T  B n ui(k)  if X\ € X u

A \ 2X i { k )  +  B i 2u \ ( k )  if xi  €  X±2
(3.2)

x 2 ( k  +  1 )
A 2iX2{k) +  B 2iu2(k ) if x 2 £  X 2i

(3.3)
A 22x 2 (k) +  B 22u2(k) if x 2 £ X 22

27



Chapter 3. Hybrid Control Systems

The empty graph GO The complete graph G1

Figure 3.2: Interaction graphs between 2 autonomous systems.

At each instant of time, the interaction between the systems is captured by one of 

the above graphs. The actual graph that occurs at any particular instant of time, de­

pends on the evolution dynamics of the interaction graphs, and the laws that deter­

mine that. Let q : R —> Q x D  be the decision function, where Q =  {Go. G \} and 

D  =  {D u, D 1 2 , D 2\ ■ D -22} is the set of possible configurations for the systems 3.2 and 

3.3. At time t, in the case of q(t) =  (Go, D 12), the controls for each system are indepen­

dent of each other, and system 3.2 is in configuration case x x £ X xx, and system 3.3 is 

in configuration case x 2 £ X 22. In the case of q(t) = ( G'i, D 12), the controls for system

3.2 depend on the controls for system 3.3, and vice-versa.

Let x ( k ) =  . The evolution of the system at

any given time is governed by one of the following systems:
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Chapter 3. Hybrid Control Systems

x{k  +  1) =  M 1x(k)  +  Piu(k)  

Go

x (k  + 1) =  M 3x ( k ) +  P3u{k) 

G\

x (k  +  1) =  M ix(k )  +  Piu(k)  

Gx

x (k  +  1) =  M 3x{k)  +  P3u ( k ) 

G q

x (k  +  1) =  M 2x(k)  +  P2u(k)  

G q

x (k  +  1) =  M 4x(k)  +  P4u(k)  

G\

x (k  +  1) =  M 2x(k)  + P2u ( k ) 

Gx

x (k  +  1) =  M 4x(k)  + P4u(k)  

Go

where

Mi

M n

M-x =

M a

- A n 0

0 A 2 x

A x i 0

0 a 22

A i 2 0

0 A 2 x

to 0

0 A 22

A

P s  =

P a

Bn 0

0 P 21

Bn 0

0 B22

Pl2 0

0 B21

P\2 0

0 b 22

\

X 1 — X x i  X X 2 x

X 2 =  X u  X X 22

X 3 =  xu X X21

X 4 — X12 X X 22

and x(A: +  1) =  M ax(k)  +  Pau(k)  if (x1( k ) , x 2(k)) e  X a k̂\  Notice that the domain 

sets satisfy Lrf=1X* =  X 1 x X 2.
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Chapter 3. Hybrid Control Systems

The dynamics of the system are given by:

x (k  +  1) =  M ax(k)  +  Pau(k )

where u(k) — {ui(k), U2 {k)) is the control input for x, a : N —* (1 ,2 ,3 ,4 }  is a piece- 

wise constant function and a(k)  =  i if x(t') € I(i).  The system becomes a hybrid 

control system H  =  {X , Q, U, X ().U, F, I , E, G, R},  where

•  I  =  I 1 x I 2,

.  Q = {(1, 0), (1,1), (2, 0), (2,1), (3, 0), (3,1), (4,0), (4,1)}.

•  X 0 C X x Q .

• U = {Ur x U2}.

•  F  =  { f a =  M ax  +  Po-ti}.

• I(q)  =

•  U =  {U q } q € Q  is the family of sets with vq e  if vq : N —>• Ui x U2-

•  E  C Q x  Q, represents the possible transitions between the different domain 

partitions of x.

.  G ( ( i , k ) , ( J J ) ) = X i x { ( i , k ) } .

•  R((qi ,<l2) ,x)  =  {a:} X f e }
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Chapter 3. Hybrid Control Systems

3.3 The Hybrid Control System Representation

Let each location of the system be modelled as a vertex in the hybrid control graph. 

The transitions between such locations will form the edges in this graph. The possible 

transitions are determined by the admissible control inputs of the hybrid control system. 

We illustrate a possible such graph in Figure 3.3.

M1 P1 GO M2 P2 GO M3 P3 GO M4 P4 GO

M3 P3 G1 M4 P4 G1M2 P2 G1M1 P1 G1

Figure 3.3: Possible hybrid system representation for the example in section 3.2.3

For the general autonomous systems problem, the maximum number of possible 

vertices for the resulting hybrid control graph is given by:

max no. of modes for each system x no. of systems x no. inter, graphs
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Chapter 3. Hybrid Control Systems

3.4 The Vehicle Formation Problem

A non-trivial example of an autonomous dynamical system formulated as a hybrid con­

trol system is the vehicle formation problem. The references for the general problem, 

or subproblems investigated in literature were omitted from the table above and will be 

mentioned here. We introduced this problem in Chapter 1, where we gave a brief history 

and explained the motivation behind the recent focus of the control theory community 

on this problem. We now present the vehicle formation problem as a hybrid control 

problem. In the next chapter we obtain a new stability result for this problem.

Definition 3.4. [38] A  moving formation o f N  vehicles is given by a vector h =M
G R 2nN. The N  vehicles are said to be in formation i f  there are Rnhp

V 0 /
valued functions q f )  and w f )  such that (xp)i(k) — (hp)i — q(k ) and (x v)i(k) =  w(k),  

i =  1 ,2 , . . .  ,N,  where the subscript p  refers to the position components o f  x* and the 

subscript v refers to the corresponding velocities.

Definition 3.5. The Autonomous Vehicle Formations Problem.

We are given N  homogeneous vehicles with dynamics modeled by either

x f h  T  1) — AyefoXifkf T  ByefoUiiJf}

or the corresponding continuous-time model, where x t € M2n is the state o f  vehicle i 

that consists o f the n configuration variables fo r  vehicle i and their derivatives, A vefl 

is a 2n x 2n matrix, B veh is a 2n x n matrix and Ui is the control input fo r  vehicle i.
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Chapter 3. Hybrid Control Systems

vehicles

h3

h4

,h5

Figure 3.4: Formation arrangement with the corresponding offset vectors. 

Grouping all N  systems together we obtain:

x (k  +  1) =  A x ( k ) +  Bu(k)

where x  denotes the augmented vector o f all vehicle states, A  and B  are the appropriate 

size block diagonal matrices, and u is the entire system input. The vehicles are assumed 

to be able to receive/transmit information from/to a subset o f the other vehicles. The 

problem is: find a decentralized control u{k) so that all vehicles converge to a pre­

specified vehicle formation.

Definition 3.6. An admissible control u fo r  the (entire) vehicle system is called decen­

tralized i f  it consists o f  control inputs which depend only partially on the rest o f  the 

system and act as the only controls fo r  each individual vehicle system, and the simulta-
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neous operation o f  the local controls achieves the global specification.

The communication between vehicles is captured by a directed communication graph, 

G — (V,E) ,  where vertex i, represents vehicle i respectively, and the edge ( i , j )  denotes 

the fact that vehicle j  receives information from vehicle i. As before, we call i a neighbor

1 <  >  2

Figure 3.5: A possible interaction graph for 4 vehicles.

of vehicle j .  This relationship does not necessarily imply a certain proximity relation 

between vehicles i and j .  In general, the interaction graph is not assumed to depend 

on the distance between vehicles, unless specified. We denote the set of neighbors of a 

vehicle i by ,/,.

The discrete component of the hybrid system comes from the discrete switches in 

the communication graph. This communication graph switching can be state dependent, 

or in the more general case, it can be the output of a specified switching function. For 

example, an edge ( i , j )  could be present between vehicles i and j  at time t, if at that time 

the distance between the vehicles i and j  is less than or equal to some specified neighbor 

detection radius £j corresponding to vehicle j .  Note that for this example, a state x  can
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Chapter 3. Hybrid Control Systems

simultaneously satisfy more than 1 communication graph, since if Gk is admissible at 

time k, then any subgraph of Gk is also an admissible communication graph at time k. 

The dynamics of the entire vehicle system are captured by:

x (k  +  1) =  Ax(k)  + B u ( k ) •

Definition 3.7. The autonomous vehicle hybrid control system is defined as the tuple 

H  -  {X ,  Q, U, X Q,U, F, I, E,  G, R},  where

m X  = R 2nN.

•  Q — {1 ,2 , . . .  N } where N  denotes the number o f  possible graphs on N  vertices.

•  X 0 C X  x Q .

•  U — {Uq}qeQ is the family o f control inputs.

•  F  =  {A x  + Bu}.

•  I(q) = X .

•  U =  {Uq}qeQ is the family o f  sets given by the control input maps vq : N --> Uq 

where vq{k) = u q{k).

•  E  C Q x  Q represents the possible transitions.

•  G{ {(j\ pp  ) ) indicates the sets o f states at which graphs can be switched and will 

depend on specific switching rules.

•  R{(Qi,Q2 ) ,x )  {x}  x  {q2}.
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