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ABSTRACT

In this dissertation we present the RICE optimizing compiler for the functional

logic language Curry. This is the first general optimizing compiler for a functional

logic language. Our work is based on the idea of compiling through program

transformations, which we have adapted from the functional language compiler

community. We also present the GAS system for generating new program trans-

formations, which uses the power of functional logic programming to provide a

flexible framework for describing transformations. This allows us to describe and

implement a wide range of optimizations including inlining, shortcut deforestation,

unboxing, and case shortcutting, a new optimization we developed specifically for

functional logic language. We show the correctness of these optimizations and

demonstrate their effectiveness. In particular, we show that RICE outperforms

previous compilers by 2 or 3 orders of magnitude on standard benchmarks.
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CHAPTER 1

INTRODUCTION

With all of the chaos in the world today, sometimes it is nice to just relax and make

a nice Curry. But people today are impatient. They cannot wait; they want their

Curry fast. This is a problem, because Curry implementations have historically

been considered slow. Some have considered it unusably slow, which is a shame,

because Curry is actually a great language, and can solve many problems well.

In this dissertation we aim to rectify the problem of Curry taking too long. We

present the RICE Curry compiler, and show how it can deliver a fast, satisfying,

Curry.

1.1 WHY CURRY?

Functional logic programming is a very powerful technique for expressing compli-

cated ideas in a simple form. Curry implements these ideas with a clean, easy to

read syntax, which is similar to Haskell, a well known functional programming lan-

guage. It is also lazy, so evaluation of Curry programs is similar to Haskell as well.

Curry extends Haskell with two concepts from logic programming. First, there are

non-deterministic functions, such as “?”. Semantically a ? b will evaluate a and b

and will return both answers to the user. Second, there are free, or logic, variables.

A free variable is a variable that is not in the scope of the current function. The

value of a free variable is not defined, but it may be constrained.

These features are very useful for solving constraint problems. Consider the
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problem of scheduling a test for a large class of students. Since the class is so large,

the students cannot take the test at the same time. To solve this problem we allow

each student to choose all times that they are available to take the test. After they

have selected their times we partition the students into groups, where each group

corresponds to a testing time, and each group is less than a given capacity.

This is a solvable problem in any language, but the solution in Curry is both

concise and easily understood.

type Time = Int

type Name = String

type Student = (Name, [Time ])

type Test = [Name ]

schedule :: [Test ]→ [Student ]→ [Test ]

schedule tests = foldr takeTest tests

takeTest :: Student → [Test ]→ [Test ]

takeTest (name, times) tests = anyOf (map (testAt name tests) times)

testAt :: Name → [Test ]→ Time → [Test ]

testAt name tests k

| length test < capacity

= ts1 ++ [name : test ] ++ ts2

where (ts1 , test : ts2 ) = splitAt k

The students are scheduled one at a time. Each student has a name, and a list

of times that they are available to test. We non-deterministically place the student

in one of the times they marked as available. To place a student in the kth test, we

split the list into the tests before k, which we call ts1 , and the lists after k, which

we call ts2 . Finally, we check that after putting the student in test k, That test

will still be below the capacity.

We give a fuller account of the semantics in chapters 1.5 and 2.7,
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1.2 CURRENT COMPILERS

There are currently two mature Curry compilers, Pakcs [38] and Kics2 [28]. Pakcs

compiles Curry to Prolog in an effort to leverage Prolog’s non-determinism and

free variables. Kics2 compiles Curry to Haskell in an effort to leverage Haskell’s

higher-order functions and optimizing compiler. Both compilers have their advan-

tages. Pakcs tends to perform better on non-deterministic expressions with free

variables, where Kics2 tends to perform much better on deterministic expressions.

Unfortunately neither of these compilers perform well in both circumstances.

Sprite [19], an experimental compiler, aims to fix these inefficiencies. The strat-

egy is to compile to a virtual assembly language, known as LLVM. So far, Sprite

has shown promising improvements over both Pakcs and Kics2 in performance,

but it is not readily available for testing at the time of this writing.

Similarly Mcc [78] also worked to improve performance by compiling to C.

While Mcc often ran faster than both Pakcs or Kics2, it could perform very slowly

on common Curry examples. It is also no longer in active development.

One major disadvantage of all four compilers is that they all attempt to pass off

optimization to another compiler. Pakcs attempts to have Prolog optimize the non-

deterministic code; Kics2 attempts to use Haskell to optimize deterministic code;

Sprite attempts to use LLVM to optimize the low level code; and Mcc simply did

not optimize its code. Unfortunately none of these approaches works very well.

While some implementations of Prolog can optimize non-deterministic expressions,

they have no concept of higher-order functions, so there are many optimizations

that cannot be applied. Kics2 is in a similar situation. In order to incorporate

non-deterministic computations in Haskell, a significant amount of code must be

threaded through each computation. This means that any non-deterministic ex-

pression cannot be optimized in Kics2. Finally, since LLVM does not know about

either higher-order functions or non-determinism, it loses many easy opportunities
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for optimization.

Curry programs have one last hope for efficient execution. Recently, many

scientists [87, 88] have developed a strong theory of partial evaluation for func-

tional logic programs. While these results are interesting, partial evaluation is not

currently automatic in Curry. Guidance is required from the programmer to run

the optimization. Furthermore, the optimization fails to optimize several common

programs.

1.3 THE NEED FOR OPTIMIZATIONS

So far, none of these approaches have included the large body of work on program

optimizations [1, 2, 4–6, 21, 22, 41, 43–46, 60, 64, 68, 77, 96, 100, 101]. This leads to

the inescapable conclusion that Curry needs an optimizer. We propose a new

compiler environment for developing and testing optimizations, which we call the

Reduction Inspired Compiler Environment (RICE) Curry compiler. This compiler is

intended to make developing new optimizations for Curry as simple as possible. We

test this idea by developing several common optimizations for the RICE compiler.

Furthermore we implement three specific optimizations for Curry, Unboxing [91],

Case Shortcutting [18], and Deforestation [46]. While Unboxing and Deforestation

are well known in the function languages community, the techniques have not been

applied in a function logic setting. Case Shortcutting is a unique optimization

for functional logic programs. We chose these optimizations specifically because

they focus on reducing the amount of memory consumed by programs, which is a

common problem for Curry programs [75].

1.4 CONTRIBUTIONS

This work focuses on the construction of an efficient compiler for the Curry pro-

gramming language. The main contributions of this dissertation are as follows.
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• We build an efficient implementation of the Curry language. (Section 3.2.2)

• We identify aspects of existing Curry compilers, Kics2 and Pakcs, that lead

to inefficiency. Specifically:

– We show that compilation of Curry does not require converting all pro-

grams to Uniform Programs [26], which is more efficient than Kics2’s

compilation scheme. (Section 3.2.3)

– We give a new backtracking algorithm that omits backtracking deter-

ministic expressions, which is more efficient than backtracking in Pakcs.

(Section 3.2.6)

• We state and prove the Path Compression Theorem, which justifies several

of our transformations, as well as improvements to the run-time system.

(Section 3.2.6)

• We introduce the GAS system, which is a library for constructing program

transformations. This is not a new idea [61], but we show how using func-

tional logic ideas can improve the implementation. (Section 5.1.1)

• We show that, after converting programs to A-Normal Form, important op-

timizations that are valid for lazy functional programs are also valid for

lazy functional logic programs. Specifically, we show that both inlining and

reduction remain valid for Curry programs, which is not true without the

conversion to A-normal form. (Section 7.1)

• We implement three memory optimizations that have not been previously

implemented for functional logic programs. (Chapter 7.3.5)

– We implement unboxing by making boxes first class values in our lan-

guage [91], and justify its correctness. (Section 8.1)
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– We show a new optimization for functional logic programs called case

shortcutting. We show the problems with trying to elide constructing

a node that is evaluated in a case expression, then we show how this

problem can be solved with a new node. (Section 8.2)

– We implement shortcut deforestation [46], and show that, under suitable

conditions, it remains correct for functional logic programs. In order to

get decent performance out of this optimization, we develop a scheme

for outlining and optimizing partial applications. (Section 8.3)

• We show that programs compiled with RICE are anywhere from 10 to 1000

times faster than those compiled with the Kics2 compiler, which is the current

state of the art. (Section 9.1)

• We show that programs compiled with optimizations are almost always at

least twice as fast as those compiled without, and sometimes up to twenty

times as fast. (Section 9.1)

1.5 OVERVIEW

The rest of this dissertation is organized as follows. Chapter 1.5 presents the math-

ematical background of Term and Graph Rewriting. Notions from rewriting will

be used throughout this dissertation, both because the operational semantics of

Curry were first described using rewriting, and because our optimizing engine is

based on constructing rewrite rules. Chapter 2.7 presents the Curry Language and

its semantics. We introduce the Curry language and describe the IR FlatCurry

as well as some conceptual hurdles with implementing a functional logic language.

We also introduce two novel approaches to improving the performance of eval-

uation, case function and fast backtracking. Case functions can be applied to

any evaluation model for Curry, while fast backtracking is specific to backtracking
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implementations. Chapter 3.2.7 discusses the target code for this compiler. We

describe, by example, the generated code for simple functions, then we describe the

changed needed to add additional features of Curry. Chapter 4.3 introduces the

GAS system for implementing optimizations. This is arguably the most important

contribution to this paper, as it showcases how Curry can improve the process of

writing large pieces of software like optimizing compilers. We describe the system,

its implementation, and show how to construct optimizations with it. Chapter

5.1.5 overviews the compiler pipeline, and the translation to C. We show the com-

piler pipeline, and how GAS simplifies several of the transformations. Chapter

6.3 discusses the implementation of several common optimizations. We show sev-

eral common optimizations including inlining, reduction, and case canceling. We

also introduce A-Normal form, which is required for the correctness of these opti-

mizations. Chapter 7.3.5 discusses the implementation of Unboxing, Shortcutting,

and Deforestation. Chapter 8.3.5 shows the results of our optimizations. Finally,

Chapter 9.1 concludes and discusses future work.
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CHAPTER 2

MATHEMATICAL BACKGROUND

When cooking, it is very important to follow the rules. You do not need to stick

to an exact recipe, but you do need to know the how ingredients will react to

temperature and how different combinations will taste. Otherwise you might get

some unexpected reactions.

Similarly, there is not a single way to compile Curry programs, however we

do need to know the rules of the game. Throughout this compiler, we will be

transforming Curry programs in many different ways, and it is important to make

sure that all of these transformations respect the rules of Curry. As we will see, if

we break these rules, then we may get some unexpected results.

We review the theory of term Rewriting following the style of Ohlebusch [85],

along with the more specific Term and Graph Rewriting. We give a basic intuition

about how to apply these topics, and show several examples using a small, but not

trivial, example of a rewrite system for Peano Arithmetic 2.9. We will use these

concepts to define the semantics of Curry, as well as develop optimizations.

2.1 REWRITING

In programming language terms, the rules of Curry are its semantics. The seman-

tics of Curry are generally given in terms of rewriting. [11, 14, 50] While there are

other semantics [3, 49, 97], rewriting is a common formalism for many functional

languages, and the general theory of Curry grew out of this discipline [11], a good

fit for Curry [37]. We will give a definition of rewrite systems, then we will look at
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two distinct types of rewrite systems: Term Rewrite Systems, which are used to im-

plement transformations and optimizations on the Curry syntax trees; and Graph

Rewrite Systems, which define the operational semantics for Curry programs. This

mathematical foundation will help us justify the correctness of our transformations

even in the presence of laziness, non-determinism, and free variables.

An Abstract Rewriting System (ARS) is a set A along with a relation →. We

use a → b as a shorthand for (a, b) ∈→, and we have several modifiers on our

relation.

• a→n b iff a = x0 → x1 → . . . xn = b.

• a→≤n b b iff a→i b and i 6 n.

• reflexive closure: a→= b iff a = b or a→ b.

• symmetric closure: a↔ b iff a→ b or b→ a.

• transitive closure: a→+ b iff ∃n ∈ N.a→≤n b.

• reflexive transitive closure: a→∗ b iff a→= b or a→+ b.

• rewrite derivation: a sequence of rewrite steps a0 → a1 → . . . an.

• a is in Normal Form (NF) if no rewrite rules can apply.

A rewrite system is meant to invoke the feeling of algebra. In fact, rewrite

system are much more general, but they can still retain the feeling. If we have an

expression (x ·x+ 1)(2 +x), we might reduce this with the reduction in Figure 2.1.

We can conclude that (x · x + 1)(x + 2) →+ x3 + 2x2 + x + 2. This idea of

rewriting invokes the feel of algebraic rules. The mechanical process of rewriting

allows for a simple implementation on a computer.

It is worth understanding the properties and limitations of these rewrite sys-

tems. Traditionally there are two important questions to answer about any rewrite

system. Is it confluent? Is it terminating?
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(x · x+ 1)(2 + x)

→ (x · x+ 1)(x+ 2) by commutativity of addition

→ (x2 + 1)(x+ 2) by definition of x2

→ x2 · x+ 2 · x2 + 1 · x+ 1 · 2 by FOIL

→ x2 · x+ 2x2 + x+ 2 by identity of multiplication

→ x3 + 2x2 + x+ 2 by definition of x3

Figure 2.1: reducing (x · x+ 1)(2 + x) using the standard rules of algebra

A confluent system is a system where the order of the rewrites does not change

the final result. For example, consider the distributive rule. When evaluating

3 · (4 + 5) we could either evaluate the addition or multiplication first. Both of

these reductions arrived at the same answer as can be seen in Figure 2.2.

3 · (4 + 5)

→ 3 · 4 + 3 · 5

→ 12 + 15

→ 27

(a) distributing first

3 · (4 + 5)

→ 3 · 9

→ 27

(b) reducing 4 + 5 first

Figure 2.2: Two possible reductions of 3 · (4 + 5). Since this is a confluent

system, they both can rewrite to 27.

In a terminating system every derivation is finite. That means that eventually

there are no rules that can be applied. The distributive rule is terminating, whereas

the commutative rule is not terminating. See Figure 2.3.

Confluence and termination are important topics in rewriting, but we will
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a · (b+ c)

→ a · b+ a · c

x+ y

→ y + x

→ x+ y

. . .

Figure 2.3: A system with a single rule for distribution is terminating, but any

system with a commutative rule is not. Note that x+ y →2 x+ y

largely ignore them. After all, Curry programs are neither confluent nor terminat-

ing. However, there will be a few cases where these concepts will be important. For

example, if our optimizer is not terminating, then we will never actually compile

a program.

Now that we have a general notation for rewriting, we can introduce two im-

portant rewriting frameworks: term rewriting and graph rewriting, where we are

transforming trees and graphs respectively.

2.2 TERM REWRITING

As mentioned previously, one application of term rewriting is to transform terms

representing syntax trees. This will be useful in optimizing the Abstract Syntax

Trees (ASTs) of Curry programs. Term rewriting is a special case of abstract

rewriting. Therefore everything from abstract rewriting will apply to term rewrit-

ing.

A term is made up of signatures and variables. [85][Def 3.1.2] We let Σ and V be

two arbitrary alphabets, but we require that V be countably infinite, and Σ∩V = ∅

to avoid name conflicts. A signature f (n) consists of a name f ∈ Σ and an arity

n ∈ N. A variable v ∈ V is just a name. Finally a term is defined inductively. The

term t is either a variable v, or it is a signature f (n) with children t1, t2, . . . tn, where
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t1, t2, . . . tn are all terms. We write the set of terms all as T (Σ, V ). If t ∈ T (Σ, V )

then we write V ar(t) to denote the set of variables in t. By definition V ar(t) ⊆ V .

We say that a term is linear if no variable appears twice in the term [85][Def.

3.2.4].

This inductive definition gives us a tree structure for terms. As an example

consider Peano arithmetic Σ = {+2, ∗2,−2, <2, 00, S1, T rue0, False0}. We can

define the term ∗(+(0, S(0)),+(S(0), 0)). This gives us the tree in Figure 2.4.

Every term can be converted into a tree like this and vice versa. The symbol at

the top of the tree is called the root of the term.

∗

+

0 S

0

+

S

0

0

Figure 2.4: Tree representation of the term ∗(+(0, S(0)),+(S(0), 0)).

A child c of term f(t1, t2, . . . tn) is one of t1, t2, . . . tn. A subterm s of t is either

t itself, or it is a subterm of a child of t. We write s = t|p where p = [i1, i2, . . . in] to

denote that t has child ti1 which has child ti2 and so on until tin = s. Note that we

can define this recursively as t|[i1,i2,...in] = ti1|[i2,...in], which matches our definition

for subterm. We call [i1, i2, . . . in] the path from t to s [85][Def 3.1.5]. We write ε

for the empty path, and i:p for the path starting with the number i and followed

by the path p, and p · q for concatenation of paths p and q.

In our previous term S(0) is a subterm in two different places. One occurrence

is at path [0, 1], and the other is at path [1, 0].
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We write t[r ← p] to denote replacing subterm t|p with r. We define the

algorithm for this in Figure 2.5.

t[r ← ε] = r

f(t1, . . . ti, . . . tn)[r ← i:p] = f(t1, . . . ti[r ← p], . . . tn)

Figure 2.5: algorithm for finding a subterm of t.

In our above example t = ∗(+(0, S(0),+(S(0), 0))), We can compute the rewrite

t[∗(S(0), S(0)) ← [0, 1]], and we get the term ∗(+(0, ∗(S(0), S(0))),+(S(0), 0)),

with the tree in Figure 2.6.

∗

+

0 S

0

+

S

0

0

⇒
∗

+

0 ∗

S

0

S

0

+

S

0

0

Figure 2.6: The result of the computation t[S(0)← [0, 1]]

A substitution replaces variables with terms. Formally, a substitution is a

mapping from σ:V → T (Σ, V ), such that σ(x) 6= x [85][Def. 3.1.7]. We write σ =

{v1 7→ t1, . . . vn 7→ tn} to denote the substitution where s(vi) = ti for i ∈ {1 . . . n},

and s(v) = v otherwise. We can uniquely extend σ to a function on terms by

Figure 2.7
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σ′(v) = σ(v)

σ′(f(t1, . . . tn) = f(σ′(t1) . . . σ
′(tn))

Figure 2.7: Algorithm for applying a substitution.

Since this extension is unique, we will just write σ instead of σ′. Term t1 matches

term t2 if there exists some substitution σ such that t1 = σ(t2) [85][3.1.8],. We call

σ a matcher . Two terms t1 and t2 unify if there exists some substitution σ such

that σ(t1) = σ(t2) [85][3.1.8],. In this case σ is called a unifier for t1 and t2.

We can order substitutions based on what variables they define. A substitution

σ 6 τ , iff, there is some substitution ν such that τ = ν ◦ σ. The relation σ 6 τ

should be read as σ is more general than τ , and it is a quasi-order on the set of

substitutions. A unifier u for two terms is most general (or an mgu), iff, for all

unifiers v, v ≤ u. Mgus are unique up to renaming of variables. That is, if u1 and

u2 are mgus for two terms, then u1 = σ1 ◦ u2 and u2 = σ2 ◦ u1. This can only

happen if σ1 and σ2 just rename the variables in their terms.

As an example +(x, y) matches +(0, S(0)) with σ = {x 7→ 0, y 7→ S(0)}. The

term +(x, S(0)) unifies with term +(0, y) with unifier σ = {x 7→ 0, y 7→ S(0)}. If

τ = {x 7→ 0, y 7→ S(z)}, then τ ≤ σ. We can define ν = {z 7→ 0}, and {σ = ν ◦ τ}

Now that we have a definition for a term, we need to be able to rewrite it. A

rewrite rule l→ r is a pair of terms. However this time we require that V ar(r) ⊆

V ar(l), and that l 6∈ V . A Term Rewriting System (TRS) is the pair (T (Σ, V ), R)

where R is a set of rewrite rules.

Definition 2.2.1. Rewriting: Given terms t, s, path p, and rule l → r, we say

that t rewrites to s if, l matches t|p with matcher σ, and t[σ(r) ← p] = s. The

term σ(l) is the redex , and the term σ(r) is the contractum of the rewrite.

There are a few important properties of rewrite rules l → r. A rule is left or
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right linear if l or r is linear respectively [85][Def. 3.2.4]. A rule is collapsing if

r ∈ V . A rule is duplicating if there is an x ∈ V that occurs more often in r than

in l [85][Def. 3.2.5].

Two terms s and t are overlapping if t unifies with a subterm of s, or s unifies

with a subterm of t at a non-variable position [85][Def. 4.3.3]. Two rules l1 → r1

and l2 → r2 if l1 and l2 overlap. A rewrite system is overlapping if, and only if,

any two rules overlap. Otherwise it is non-overlapping. Any non-overlapping left

linear system is orthogonal [85][Def.4.3.4]. Orthogonal systems have several nice

properties, such as the following theorem [85][Thm. 4.3.11].

Theorem 1. Every orthogonal TRS is confluent.

As an example, in Figure 2.8 examples (b) and (c) both overlap. It is clear

that these systems are not confluent, but non-confluence can arise in more subtle

ways. The converse to theorem 2.1 is not true. There can be overlapping systems

which are confluent.

g(0, y)→ 0

g(1, y)→ 1

(a) A non-overlapping

system

g(0, y)→ 0

g(x, 1)→ 1

(b) A system that

overlaps at the root

f(g(x, y))→ 0

g(x, y)→ 1

(c) A system that

overlaps at a subterm

Figure 2.8: Three TRSs demonstrating how rules can overlap. In (a) they

do not overlap at all, In (b) both rules overlap at the root, and in (c) rule 2

overlaps with a subterm of rule 1.

When defining rewrite systems we usually follow the constructor discipline; we

separate the set Σ = C ] F . C is the set of constructors, and F is the set of

function symbols. Furthermore, for every rule l → r, the root of l is a function
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symbol, and every other symbol is a constructor or variable. We call such systems

constructor systems. As an example, the rewrite system for Peano arithmetic is a

constructor system.

R1 : 0 + y → y

R2 : S(x) + y → S(x+ y)

R3 : 0 ∗ y → 0

R4 : S(x) ∗ y → y + (x ∗ y)

R5 : 0− y → 0

R6 : S(x)− 0 → S(x)

R7 : S(x)− S(y) → x− y

R8 : 0 ≤ y → True

R9 : S(x) ≤ 0 → False

R10 : S(x) ≤ S(y) → x < y

R11 : 0 = 0 → True

R12 : S(x) = 0 → False

R13 : 0 = S(y) → False

R14 : S(x) = S(y) → x = y

Figure 2.9: The rewrite rules for Peano Arithmetic with addition, multiplica-

tion, subtraction, and comparison. All operators use infix notation.

The two sets are C = {0, S, T rue, False} and F = {+, ∗,−,≤}, and the root

of the left hand side of each rule is a function symbol. In contrast, the SKI system

is not a constructor system. While S,K, I can all be constructors, the Ap symbol

appears in both root and non-root positions of the left hand side of rules. This

example will become important for us in Curry. We will do something similar

to implement higher-order functions. This means that Curry programs will not
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directly follow the constructor discipline. Therefore, we must be careful when

specifying the semantics of function application.

Ap(I, x) → x

Ap(Ap(K, x), y) → x

Ap(Ap(Ap(S, x), y), z) → Ap(Ap(x, z), Ap(y, z))x

Figure 2.10: The SKI system from combinatorial logic.

Constructor systems have several nice properties. They are usually easy to

analyze for confluence and termination. For example, if the left hand side of

two rules do not unify, then they cannot overlap. We do not need to check if

subterms overlap. Furthermore, any term that consists entirely of constructors

and variables is in normal form. For this reason, it is not surprising that most

functional languages are based on constructor systems.

2.3 NARROWING

Narrowing was originally developed to solve the problem of semantic unification.

The goal was, given a set of equations E = {a1 = b2, a2 = b2, . . . an = bn}, to solve

the equation t1 = t2 for arbitrary terms t1 and t2. Here a solution to t1 = t2 is a

substitution σ such that σ(t1) can be transformed into σ(t2) by the equations in

E.

As an example let E = {∗(x+ (y, z)) = +(∗(x, y), ∗(x, z))} Then the equation

∗(1,+(x, 3)) = +(+(∗(1, 4), ∗(y, 5)), ∗(z, 3)) is solved by σ = {x 7→ +(4, 5), y 7→

1, z 7→ 1}. The derivation is in Figure 2.11.

Unsurprisingly, there is a lot of overlap with rewriting. One of the earlier

solutions to this problem was to convert the equations into a confluent, terminating

rewrite system. [71] Unfortunately, this only works for ground terms, that is, terms
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σ(∗(1,+(x, 3))) =

∗(1,+(+(4, 5), 3)) =

+(∗(1,+(4, 5)), ∗(1, 3)) =

+(+(∗(1, 4), ∗(1, 5)), ∗(1, 3)) =

σ(+(+(∗(1, 4), ∗(y, 5)), ∗(z, 3)))

Figure 2.11: Derivation of ∗(1,+(x, 3)) = +(+(∗(1, 4), ∗(y, 5)), ∗(z, 3)) with

σ = {x 7→ +(4, 5), y 7→ 1, z 7→ 1}.

without variables. However, this idea still has merit. So we want to extend it to

terms with variables.

Before, when we rewrote a term t with rule l→ r, we assumed it was a ground

term, then we could find a substitution σ that would match a subterm t|p with l,

so that σ(l) = t|p. To extend this idea to terms with variables in them, we look

for a unifier σ that unifies t|p with l. This is really the only change we need to

make [85]. However, now we record σ, because it is part of our solution.

Definition 2.3.1. Narrowing: Given terms t, s, path p, and rule l → r, we say

that t narrows to s if, l unifies with t|p with unifier σ, and t[σ(r) ← p] = s. We

write t p,l→r,σ s. We may write t σ s if p and l→ r are clear.

Notice that this is almost identical to the definition of rewriting. The only

difference is that σ is a unifier instead of a matcher.

Narrowing was first developed to solve equations for automated theorem provers

[94]. However, for our purposes it is more important that narrowing allows us to

rewrite terms with free variables. [51]

At this point, rewrite systems are a nice curiosity, but they are completely

impractical. This is because we do not have a plan for solving equations in them.

In the definition for both rewriting and narrowing, we did not specify how to find
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σ the correct rule to apply, or even what subterm to apply the rule.

In confluent terminating rewrite systems, we could simply try every possible

rule at every possible position with every possible substitution. Since the system

is confluent, we could choose the first rule that could be successfully applied, and

since the system is terminating, we would be sure to find a normal form. In a

narrowing system, this is still not guaranteed to halt, because there could be an

infinite number of substitutions. This is the best possible case for rewrite systems,

and we still cannot ensure that our algorithm will finish. We need a systematic

method for deciding what rule should be applied, what subterm to apply it to, and

what substitution to use. This is the role of a strategy.

2.4 REWRITING STRATEGIES

Our goal with a rewriting strategy is to be able to find a normal form for any term.

Similarly our goal for narrowing will be to find a normal form and substitution.

However, we want to be efficient when rewriting. We would like to use only local

information when deciding what rule to select. We would also like to avoid unnec-

essary rewrites. Consider the following term from the SKI system defined in Figure

2.10 Ap(Ap(K, I), Ap(Ap(S,Ap(I, I)), Ap(S,Ap(I, I)))). It would be pointless to

reduce Ap(Ap(S,Ap(I, I)), Ap(S,Ap(I, I)))) since Ap(Ap(K, I, z) rewrites to I no

matter what z is. In this particular case, sinceAp(Ap(S,Ap(I, I)), Ap(S,Ap(I, I))))

reduces to itself, we have turned a potentially non-terminating reduction to a ter-

minating one.

A Rewriting Strategy S:T (Σ, V ) → Pos × R is a function that takes a term,

and returns a position to rewrite, and a rule to rewrite with [70]. Furthermore we

require that if (p, l → r) = S(t), then t|p is a redex that matches l. The idea is

that S(t) should give us a position to rewrite, and the rule to rewrite with.

For orthogonal rewriting systems, there are two common rewriting strategies
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that do not run in parallel,1 innermost and outermost rewriting [70,79]. Innermost

rewriting corresponds to eager evaluation in functional programming. We rewrite

the term that matches a rule that is the furthest down the tree. Outermost rewrit-

ing correspond roughly to lazy evaluation. We rewrite the highest possible term

that matches a rewrite rule.

A strategy is normalizing if, when a term t has a normal form, then the strategy

will eventually find it. While outermost rewriting is not normalizing in general, it is

for left-normal systems, which is a large subclass of orthogonal rewrite systems [70].

This matches the intuition from programming languages. Lazy languages can

perform computations that would run forever with an eager language.

While both of these strategies are well understood, we can actually make a

stronger guarantee. We want to reduce only the redexes that are necessary to find

a normal form. To formalize this we need to understand what can happen when

we rewrite a term. Specifically for a redex s that is a subterm of t, how can s

change as we rewrite t. If we were rewriting at position p with rule l → r, then

there are 3 cases to consider.

Case 1: we are rewriting s itself. That is, s is the subterm t|p. Then s disappears

entirely.

Case 2: s is either above t|p, or they are completely disjoint. In this case s does

not change.

Case 3: s is a subterm of t|p. In this case s may be duplicated, or erased, moved,

or left unchanged. It depends on whether the rule is duplicating, erasing, or right

linear.

These cases can be seen in Figures 2.12 and2.13. We can formalize this with the

notion of descendants with the following definition from [85][Def. 4.3.6].

1we avoid discussing parallel strategies, because our work is focused on sequential execution
of Curry programs. That has been a lot of work done on parallel execution of Curry programs
elsewhere [52,53].
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S

+

S

0

+

S

0

0

⇒ S

+

S

0

S

+

0 0

(a) rewrite R1 at position [0, 1] does not affect t|[0].

∗

.+

0 0

∗

0 0

⇒ ∗

.+

0 0

0

(b) rewrite R4 at position [1] does

not affect t|[0].

Figure 2.12: Four cases for the descendants for a term after a single rewrite.

The boxed term is either left alone, duplicated, or erased, or moved. The rules

are defined in Figure 2.9

Definition 2.4.1. Descendant: Let s = t|v, and A = l →p,σ,R r be a rewrite step

in t. The set of descendants of s is given by Des(s, A)

Des(s, A) =


∅ if v = u

{s} if p 66 v

{t|u·w·q : r|w = x} if p = u · v · q and t|v = x and x ∈ V

This definition extends to derivation t→A1 t1 →A2 t2 →A2 . . .→An , tn+1.

Des(s, A1, A2 . . . An) =
⋃
s′∈Des(s,A1)

Des(s′, A2, . . . An).

The first part of the definition is formalizing the notion of descendant. The sec-

ond part is extending it to a rewrite derivation. The extension is straightforward.

Calculate the descendants for the first rewrite, then for each descendant, calculate

the descendants for the rest of the rewrites. With the idea of a descendant, we can
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S

∗

S

0

+

0 0

⇒
S

+

+

0 0

∗

0 +

0 0

(a) rewrite R3 at position [0] duplicates t|[0,1].

S

−

0 +

0 0

⇒ S

0

(b) rewrite R5 at position [0]

erases term at t|[0,1].

S

+

0

S 0

⇒
S

S

+

0 . 0

(c) rewrite R2 at position [0] moves t|[0,1]
to position [0, 0, 1].

Figure 2.13: Four cases for the descendants for a term after a single rewrite.

The boxed term is either left alone, duplicated, or erased, or moved. The rules

are defined in Figure 2.9
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talk about what happens to a term in the future. This is necessary to describing

our rewriting strategy. Now we can formally define what it means for a redex to

be necessary for computing a normal form.

Definition 2.4.2. Needed: A redex s that is a subterm of t is needed in t if, for

every derivation of t to a normal form, a descendant of s is the root of a rewrite.

This definition is good because it is immediately clear that, if we were going

to rewrite a term to normal form, we need to rewrite all of the needed redexes. In

fact, we can guarantee more than that with the following theorem [67].

Theorem 2. For an orthogonal TRS, any term that is not in normal form contains

a needed redex. Furthermore, a rewrite strategy that rewrites only needed redexes

is normalizing.

This is a very powerful result. We can compute normal forms by rewriting

needed redexes. This is also, in some sense, the best possible strategy. Every

needed redex needs to be rewritten. Now we just need to make sure our strategy

only rewrites needed redexes. There is only one problem with this plan. Determin-

ing if a redex is needed is undecidable in general. However, with some restrictions,

there are rewrite systems where this is possible [70][def. 3.3.7].2

Definition 2.4.3. Sequential A rewrite system is sequential if, given a term t with

n variables v1, v2 . . . vn, such that t is in normal form, then there is an i such that

for every substitution σ from variables to redexes, σ(vi) is needed in σ(t).

If we have a sequential rewrite system, then this leads to an efficient algorithm

for reducing terms to normal form. Unfortunately, sequential is also an undecidable

property. There is still hope. As we will see in the next section, with certain

restrictions we can ensure the our rewrite systems are sequential. Actually we can

2The original definition used the notion of a context in normal form.



24

make a stronger guarantee. The rewrite system will admit a narrowing strategy

that only narrows needed redexes.

2.5 NARROWING STRATEGIES

Similar to rewriting strategies, narrowing strategies attempt to compute a normal

form for a term using narrowing steps. However, a narrowing strategy must also

compute a substitution for that term. There have been many narrowing strategies

including basic [57], innermost [42], outermost [102], standard [39], and lazy [81].

Unfortunately, each of these strategies are too restrictive on the rewrite systems

they allow.

(x+ x) + x = 0

(a) This fails for eager narrowing, be-

cause evaluating x+x can produce in-

finitely many answers. However This

is fine for lazy narrowing. We will

get (0 + 0) + 0 = 0, {x = 0} or

S(S(y +S(y)) +S(y)) = 0{x = S(y)}

and the second one will fail.

x ≤ y + y

(b) With a lazy narrowing strategy we

may end up computing more than is

necessary. If x is instantiated to 0,

then we do not need to evaluate y + y

at all.

Figure 2.14: Examples of where eager and lazy narrowing can fail using the

rewrite system if Figure 2.9.

Fortunately there exists a narrowing strategy that is defined on a large class

of rewrite systems, only narrows needed expressions, and is sound and complete.

However this strategy requires a new construct called a definitional tree.

The idea is that since we are working with constructor rewrite systems, we

can group all of the rules defined for the same function symbol together. We will
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put them together in a tree structure defined below, and then we can compute a

narrowing step by traversing the tree for the defined symbol.

Definition 2.5.1. T is a partial definitional tree if T is one of the following.

T = exempt(π) where π is a pattern.

T = leaf(π → r) where π is a pattern, and π → r is a rewrite rule.

T = branch(π, o, T1, . . . Tk), where π is a pattern, o is a path, π|o is a variable,

c1, . . . ck are constructors, and Ti is a pdt with pattern π[ci(X1, . . . Xn)]o where n

is the arity of ci, and X1, . . . Xn are fresh variables.

Given a constructor rewrite system R, T is a definitional tree for function symbol f

if T is a partial definitional tree, and each leaf in T corresponds to exactly one rule

rooted by f . A rewrite system is inductively sequential if there exists a definitional

tree for every function symbol.

The name “inductively sequential” is justified because there is a narrowing

strategy that only reduces needed redexes for any of these systems. We show an

example to clarify the definition. In Figure 2.15 we show the definitional tree for

the +,≤, and = rules. The idea is that, at each branch, we decide which variable

to inspect. Then we decide what child to follow based on the constructor of that

branch. This gives us a simple algorithm for outermost rewriting with definitional

trees. However, we need to extend this to narrowing.

In order to extend the strategy from rewriting to narrowing we need to figure out

how to compute a substitution, and we need to define what it means for a narrowing

step to be needed. The earliest definition involved finding a most general unifier for

the substitution. This has some nice properties. There is a well known algorithm

for computing mgus, which are unique up to renaming of variables. However, this

turned out to be the wrong approach. Computing mgus is too restrictive. Consider

the step x ≤ y + z  2·ε,R1,{y 7→0} x ≤ z. Without further substitutions x ≤ z is a
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0 + y → y

S(x) + y → S(x+ y)

x+ y

0 + y

y

S(x) + y

S(x+ y)

0 ≤ y → True

S(x) ≤ 0 → False

S(x) ≤ S(y) → x < y

x ≤ y

0 ≤ y

True

S(x) ≤ y

S(x) ≤ 0

False

S(x) ≤ S(y)

x ≤ y

0 = 0 → True

S(x) = 0 → False

0 = S(y) → False

S(x) = S(y) → x = y

x = y

0 = y

0 = 0

True

0 = S(y)

False

S(x) = y

S(x) = 0

False

S(x) = S(y)

x = y

Figure 2.15: Definitional trees for +, ≤, and =.
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normal form, and {y 7→ 0} is an mgu. Therefore this should be a needed step. But

if we were to instead narrow x, we have x ≤ y + z  ε,R8,{x 7→0} True. This step

never needs to compute a substitution for y. Therefore we need a definition that

is not dependent on substitutions that might be computed later.

Definition 2.5.2. A narrowing step t  p,R,σ s is needed, iff, for every η ≥ σ,

there is a needed redex at p in η(t).

Here we do not require that σ be an mgu, but, for any less general substitution,

it must be the case that we were rewriting a needed redex. So our example,

x ≤ y + z  2ε̇,R1,{y 7→0} x ≤ z, is not a needed narrowing step because x ≤

y + z  2ε̇,R1,{x 7→0,y 7→0} 0 ≤ z, Is not a needed rewriting step.

Unfortunately, this definition raises a new problem. Since we are no longer

using mgus for our unifiers, we may not have a unique step for an expression. For

example, x < y  ε,R8,{x 7→0} True, and x < y  ε,R9,{x→S(u),t7→S(v)} u ≤ v are both

possible needed narrowing steps.

Therefore we define a Narrowing Strategy S as a function from terms to a set

of triples of a position, rule, and substitution, such that if (p,R, σ) ∈ S(t), then

σ(t)|p is a redex for rule R.

At this point we have everything we need to define a needed narrowing strategy.

Definition 2.5.3. Let t be a term rooted by function symbol f , T be the defini-

tional tree for f , and “?” be a distinguished symbol to denote that no rule could
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be found.

λ(t, T ) ∈



(ε, R,mgu(t, π)) if T = rule(π,R)

(ε, ?,mgu(t, π)) if T = exempt(π)

(p,R, σ) if T = branch(π, o, T1, . . . Tn)

t unifies with Ti

(p,R, σ) ∈ λ(t, Ti)

(o:p,R, σ ◦ τ) if T = branch(π, o, T1, . . . Tn)

t does not unify with any Ti

τ = mgu(t, π)

T ′ is the definitional tree for t|o

(p,R, σ) ∈ λ(t|o, T ′)

The function λ is a narrowing strategy. It takes an expression rooted by f ,

and the definition tree for f , and it returns a position, rule and substitution for a

narrowing step. If we reach a rule node, then we can just rewrite; if we reach an

exempt node, then there is no possible rewrite; if we reach a branch node, then we

match a constructor; but if the subterm we were looking at is not a constructor,

then we need to narrow that subterm first.

Theorem 3. λ is a needed narrowing strategy. Furthermore, λ is sound and

complete.

It should be noted that while λ is complete with respect to finding substitutions

and selecting rewrite rules [11], this says nothing about the underlying complete-

ness of the rewrite system we were narrowing. We may still have non-terminating

derivations.

This needed narrowing strategy is important in developing the evaluation strat-

egy for Curry programs. In fact, one of the early stages of a Curry compiler is
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to construct definitional trees for each function defined. However, if we were to

implement our compiler using terms, it would be needlessly inefficient. We solve

this problem with graph rewriting.

2.6 GRAPH REWRITING

As mentioned above term rewriting is too inefficient to implement Curry. Consider

the rule double(x) = x + x. Term rewriting requires this rule to make a copy of

x, no matter how large it is, whereas we can share the variable if we use a graph.

In programming languages, this distinction moves the evaluation strategy from

“call by name” to “call by need”, and it is what we mean when we refer to “lazy

evaluation”.

As a brief review of relevant graph theory: A graph G = (V,E) is a pair of

vertices V and edges E ⊆ V × V . We will only deal with directed graphs, so

the order of the edge matters. A rooted graph is a graph with a specific vertex r

designated as the root . The neighborhood of v, written N(v) is the set of vertices

adjacent to v. That is, N(v) = {u | (v, u) ∈ E}. A path p from vertex u to

vertex v is a sequence u = p1, p2 . . . pn = v where (pi, pi+1) ∈ E. A rooted graph

is connected if there is a path from the root to every other vertex in the graph.

A graph is strongly connected if, for each pair of vertices (u, v), there is a path

from u to v and a path form v to u. A path p is a cycle 3 if its endpoints are

the same. A graph is acyclic if it contains no cycles. Such graphs are referred to

as Directed Acyclic Graphs, or DAGs. A graph H is a subgraph of G, H ⊆ G if,

and only if, VH ⊆ VG and EH ⊆ EG. A strongly connected component S of G

is a subgraph that is strongly connected. We will use the well-known facts that

strongly connected components partition a graph. The component graph, which

is obtained by shrinking the strongly connected components to a single vertex, is

3Some authors will use walk and tour and reserve path and cycle for the cases where there
are no repeated vertices. This distinction is not relevant for our work.
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a DAG. To avoid confusion with variables, we will refer to vertices of graphs as

nodes.

We define term graphs in a similar way to terms. Let Σ = C]F be an alphabet

of constructor and function names respectively, and V be a countably infinite set

of variables. A term graph is a rooted graph G with nodes in N where each node

n has a label in Σ ∪ V . We will write L(n) to refer to the label of a node. If

(n, s) ∈ E is an edge, then s is a successor of n. In most applications the order of

the outgoing edges does not matter, however it is very important in term graphs.

So, we will refer to the first successor, second successor and so on. We denote this

the same way we did with terms ni is the ith successor of n. The arity of a node

is the number of successors. Finally, no two nodes can be labeled by the same

variable.

While the nodes in a term graph are abstract, in reality, they connected using

pointers in the implementation. It can be helpful to keep this in mind. As we

define more operations on our term graphs, there exists a natural implementation

using pointers.

We will often use a linear notation to represent graphs. This has two advan-

tages. The first is that it is exact. There are many different ways to draw the

same graph, but there is only one way to write it out a linear representation [36]

The second is that this representation corresponds closely to the representation in

a computer. The notation these graphs is given by the following grammar, where

the set of nodes and the set of labels are disjoint.

Graph → Node

Node → n : L (Node, . . .Node)

| n

We start with the root node, and for each node in the graph, If we have not en-

countered it yet, then we write down the node, the label, and the list of successors.
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1.

+1

/2 /4

x3

2.

double1

x2

⇒
+3

x2

3.

+1

42

4.

+1

S4

S2

03

⇒

S5

+6

S4

S2

03

Figure 2.16: 1. 1: + (2:/(3:x, 3), 4:/(3, 3)),

2. 1:double(2:x)⇒ 3: + (2:x, 2)

3. 1: + (2:4, 1)

4. 1: + (2:S(3:0), 4:S(2))⇒ 5:S(6: + (3:0), 4:S(2:S(3)))
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If we have seen it, then we just write down the node. If a node does not have

any successors, then we will omit the parentheses entirely, and just write down the

label.

A few examples are shown in Figure 2.16. Example 1 shows an expression

where a single variable is shared several times. Example 2 shows how a rewrite

can introduce sharing. Example 3 shows an example of an expression with a

loop. These examples would require an infinitely large term, so they cannot be

represented in term rewrite systems. Example 4 shows how reduction changes from

terms to graphs. In a term rewrite system, if a node is in the pattern of a redex,

then it can safely be discarded. However, in graph rewriting this is no longer true.

Definition 2.6.1. Let p be a node in G, then the subgraph G|p is a new graph

rooted by p. The nodes are restricted to only those reachable from p.

Notice that we do not define subgraphs by paths like we did with subterms.

This is because there may be more than one path to the node p. It may be the

case that G|p and G have the same nodes, such as if the root of G is in a loop.

Definition 2.6.2. A replacement of node p by graph u in g (written g[u ← p])

is given by the following procedure. For each edge (n, p) ∈ Eg replace it with an

edge (n, rootu). Add all other edges from Eg and Eu. If p is the root of g, then

rootu is now the root.

It should be noted that when implementing Curry, we do not actually change

any of the pointers when doing a replacement. Traversing the graph to find all of

the pointers to p would be horribly inefficient. Instead we change the contents of

p to be the contents of u.

We can define matching in a similar way to terms, but we need to be more

careful. When matching terms the structure of the term must to be the same.

That is, both terms must have exactly the same tree. However, when matching

graphs the structure can be wildly different. Consider the following graph.
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and

True

Here the graph should match the rule and(True, True)→ True.

But and(True, True) is a term, so they no longer have the same structure. There-

fore we must be more careful about what we mean by matching. We define match-

ing inductively on the structure of the term.

Definition 2.6.3. A graph K matches a term T if, and only if, T is a variable, or

T = l(T1, T2 . . . Tn), the root of K is labeled with l, and for each i ∈ {1 . . . n}, Ki

matches Ti.

Now, it may be the case that we have multiple successors pointing to the

same node when checking if a graph matches a pattern, but this is OK. As long

as the node matches each sub pattern, then the graph will match. We extend

substitutions to graphs in the obvious way. A substitution σ maps variables to

Nodes. In this definition for matching σ may have multiple variables map to the

same node, but this does not cause a problem.

Definition 2.6.4. A rewrite rule is a pair L → R where L is a term, and R is

a term graph. A graph G matches the rule if there exists subgraph K where K

matches L with matcher σ. A rewrite is a triple (K,L→ R, σ), and we apply the

rewrite with G[σ(R)← K].

From here we can define narrowing similarly to how we did for terms. We do

not give the definitions here, because they are similar to the definitions in term

rewriting. At this point we have discussed the difference between graphs and terms,

and how a replacement can be done in a graph. For our purposes in this compiler,

that is all that is needed, but the definition of narrowing and properties about

inductively sequential GRSs can be found in Echaned and Janodet [36]. They also

show that the needed narrowing strategy is still valid for graph rewriting systems.
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2.7 PREVIOUS WORK

This was not meant to be an exhaustive examination of rewriting, but rather an

introduction to the concepts, since they form this theoretical basis of the Curry

language. Most work on term rewriting up through 1990 has been summarized by

Klop [70], and Baader and Nipkow [24]. The notation and ideas in this section

largely come from Ohlebusch [85], although they are very similar to the previous

two summaries. The foundations of term rewriting were laid by Church, Rosser,

Curry, Feys, Newman. [32, 34, 84] Most of the work on rewriting has centered on

confluence and termination. [70] Narrowing has been developed by Slagle [94]. Se-

quential strategies were developed by Huet and Levy [55], who gave a decidable

criteria for a subset of sequential systems. This led to the work of Antoy on induc-

tively sequential systems [8]. The needed narrowing strategy came from Hanus,

Antoy, and Echahed [11]. Graph rewriting is a bit more disconnected. Currently

there is not a consensus on how to represent graphs mathematically. We went with

the presentation in [36], but there are also alternatives in [24,70,85]

Here we saw how we can rewrite terms and graphs. We will use this idea in the

next chapter to rewrite entire programs. This will become the semantics for our

language. Now that we have some tools, it is time to find out how to make Curry!
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CHAPTER 3

THE CURRY LANGUAGE AND IMPLEMENTATION

The Curry language grew out of the efforts to combine the functional and logic pro-

gramming paradigms [51]. Originally there were two approaches to combine these

paradigms, adding functional features to logic languages, and adding logic features

to functional languages. The former approach was very popular and spawned sev-

eral new languages including Ciao-Prolog [54], Mercury [95], HAL [35], and Oz [92].

The extension of functional languages led to fewer new languages, but it did lead

to libraries like the logict monad in Haskell [69].

Ultimately the solution came from the work on automated theorem proving [94].

Instead of adding features from one paradigm to another, it was discovered that

narrowing was a good abstraction for combining the features from both paradigms.

This spawned the Curry [50] and Toy [30] languages.

In this chapter we explore the Curry language syntax and semantics. We give

example programs to show how programming in Curry differs from Prolog and

Haskell. Then we discuss the choices we made in our implementation compared

to previous implementations. Finally we give an example of generated code to

demonstrate how we compile Curry programs.

3.1 THE CURRY LANGUAGE

In order to write a compiler for Curry, we need to understand what sets Curry apart

from other programming languages. We will start by looking at some examples of

Curry programs. We will see how Curry programs differ from Haskell and Prolog

programs. We start with a simple first order functional language, and show how
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adding higher-order functions, non-determinism, and free variables all affect the

semantics. Then we discuss an improvement to backtracking that can increase

performance significantly. Finally we discuss the effect of collapsing functions,

that is functions that may return a single variable.

Curry combines the two most popular paradigms of declarative programming:

Functional languages and logic languages. Curry programs are composed of defin-

ing equations like Haskell or ML, but we are allowed to have non-deterministic

expressions and free variables like Prolog. This will not be an introduction to

modern declarative programming languages. The reader is expected to be famil-

iar with functional languages such as Haskell or ML, and logic languages such as

Prolog. For an introduction to programming in Curry see [15]. For an exhaustive

explanation of the syntax and semantics of Curry see [37].

To demonstrate the features of Curry, we will examine a small Haskell program

to permute a list. Then we will simplify the program by adding features of Curry.

This will demonstrate the features of Curry that we need to handle in the compiler,

and also give a good basis for how we can write the compiler.

First, let us consider an example of a permutation function. This is not the

only way to permute a list in Haskell, and you could easily argue that it is not

the most elegant way, but we chose it for three reasons. There is no syntactic

sugar, and the only two library functions are concat and map, both very common

functions, and the algorithm for permuting a list is similar to the algorithm we

will use in Curry.
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perms :: [a ]→ [ [a ] ]

perms [ ] = [[ ]]

perms (x : xs) = concat (map (insert x ) (perms xs))

where

insert x [ ] = [[x ] ]

insert x (y : ys) = (x : y : ys) : map (y :) (insert x ys)

The algorithm itself is broken into two parts. The insert function will return

a list of lists, where x is inserted into ys at every possible position. For example:

insert 1 [2, 3] returns [[1, 2, 3], [2, 1, 3], [2, 3, 1]]. The perms function splits the list

into a head x and tail xs . First, it computes all permutations of xs , then it will

insert x into every possible position of every permutation.

While this algorithm is not terribly complex, it is really more complex than it

needs to be. The problem is that we need to keep track of all of the permutations

we generate. This does not seem like a big problem here. We just put each

permutation in a list, and return the whole list of permutations. However, now

every part of the program has to deal with the entire list of results. As our programs

grow, we will need more data structures for this plumbing, and this problem will

grow too. This is not new. Many languages have spent a lot of time trying to

resolve this issue. In fact, several of Haskell’s most successful concepts, such as

monads, arrows, and lenses, are designed strictly to reduce this sort of plumbing.

We take a different approach in Curry. Instead of generating every possible

permutation, and searching for the right one, we will non-deterministically generate

a single permutation. This seems like a trivial difference, but its really quite

substantial. We offload generating all of the possibilities onto the language itself.

We can simplify our code with the non-deterministic choice operator ?. Choice

is defined by the rules:
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x ? y = x

x ? y = y

Now our permutation example becomes a little easier. We only generate a single

permutation, and when we insert x into ys , we only insert into a single arbitrary

position.

perm :: [a ]→ [a ]

perm [ ] = [ ]

perm (x : xs) = insert x (perm xs)

where

insert x [ ] = [x ]

insert x (y : ys) = x : y : ys ? y : insert x ys

In many cases functions that return multiple results can lead to much simpler

code. Curry has another feature that is just as useful. We can declare a free

variable in Curry. This is a variable that has not been assigned a value. We

can then constrain the value of a variable later in the program. In the following

example begin, x , and end are all free variables, but they are constrained by the

guard so that begin ++ [x ] ++ end is equal to xs . Our algorithm then becomes: pick

an arbitrary x in the list, move it to the front, and permute the rest of the list.

perm :: [a ]→ [a ]

perm [ ] = [ ]

perm xs

| xs==(begin ++ [x ] ++ end) = x : perm (begin ++ end)

where begin, x , end free

Look at that. We have reduced the number of lines of code by 25%. In fact,

this pattern of declaring free variables, and then immediately constraining them is
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used so often in Curry that we have syntactic sugar for it. A functional pattern is

any pattern that contains a function that is not at the root.4 We can use functional

patterns to simplify our perm function even further.

perm :: [a ]→ [a ]

perm [ ] = [ ]

perm (begin ++ [x ] ++ end) = x : perm (begin ++ end)

Now the real work of our algorithm is a single line. Even better, it is easy to read

what this line means. Decompose the list into begin, x , and end , then put x at the

front, and permute begin and end . This is almost exactly how we would describe

the algorithm in English.

There is one more important feature of Curry. We can let expressions fail. In

fact we have already seen it, but a more explicit example would be helpful. We have

shown how we can generate all permutations of a list by generating an arbitrary

permutation, and letting the language take care of the exhaustive search. However,

we usually do not need, or even want, every permutation. So, how do we filter out

the permutations we do not want? The answer is surprisingly simple. We just let

expressions fail. An expression fails if it cannot be reduced to a constructor form.

The common example here is head [ ], but a more useful example might be sorting

a list. We can build a sorting algorithm by permuting a list, and only keeping the

permutation that is sorted.

4This is not completely correct. While the above code would fully evaluate the list, a functional
pattern is allowed to be more lazy. Since the elements do not need to be checked for equality,
they can be left unevaluated.
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sort :: (Ord a)⇒ [a ]→ [a ]

sort xs | sorted ys = ys

where

ys = perm xs

sorted [ ] = True

sorted [x ] = True

sorted (x : y : ys) = x 6 y ∧ sorted (y : ys)

In this example every permutation of xs that is not sorted will fail in the guard.

Once an expression has failed, computation on it stops, and other alternatives are

tried. As we will see later on, this ability to conditionally execute a function will

become crucial when developing optimizations.

These are some of the useful programming constructs in Curry. While they are

convenient for programming, we need to understand how they work if we are going

to implement them in a compiler.

3.2 SEMANTICS

As we have seen, the syntax of Curry is very similar to Haskell. Functions are

declared by defining equations, and new data types are declared as algebraic data

types. Function application is represented by juxtaposition, so f x represents the

function f applied to the variable x . Curry also allows for declaring new infix

operators. In fact, Curry really only adds two new pieces of syntax to Haskell,

fcase and free. However, the main difference between Curry and Haskell is not

immediately clear from the syntax. Curry allows for overlapping rules and free

variables. Specifically Curry programs are represented as Limited Overlapping

Inductively Sequential (LOIS) Rewrite systems. These are is indicatively sequential

systems with a single overlapping rule. On the other hand, Haskell programs are

transformed into non-overlapping systems.
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To see the difference consider the usual definition of factorial.

fac :: Int → Int

fac 0 = 1

fac n = n ∗ fac (n − 1)

This seems like an innocuous Haskell program, however It is non-terminating for

every possible input for Curry. The reason is that fac 0 could match either rule.

In Haskell all defining equations are ordered sequentially, which results in control

flow similar to the following C implementation.

int fac(int n)

{

if(n == 0)

{

return 1;

}

else

{

return n * fac(n-1);

}

}

In fact, every rule with multiple defining equations follows this pattern. In the

following equations let pi be a pattern and Ei be an expression.

f p1 = E1

f p2 = E2

. . .

f pn = En

Then this is semantically equivalent to the following.
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f p1 = E1

f not p1 ∧ p2 = E2

. . .

f not p1 ∧ not p2 ∧ . . . ∧ pn = En

Here not pi means that we do not match pattern i . This ensures that we will only

ever reduce to a single expression. Specifically we reduce to the first expression

where we match the pattern.

Curry rules, on the other hand, are unordered. If we could match multiple

patterns, such as in the case of fac, then we non-deterministically return both

expressions. This means that fac 0 reduces to both 1 and fac (−1). Exactly how

Curry reduces an expression non-deterministically will be discussed throughout

this dissertation, but for now we can think in terms of sets. If the expression

e → e1 and e → e2, e1 →∗ v1 and e2 →∗ v2, then e →∗ {v1, v2}.5

This addition of non-determinism can lead to problems if we we are not careful.

Consider the following example:

coin = 0 ? 1

double x = x + x

We would expect that for any x , double x should be an even number. However, if

we were to rewrite double coin using ordinary term rewriting, then we could have

the derivation.

double coin ⇒ coin + coin ⇒ (0 ? 1) + (0 ? 1)⇒ 0 + (0 ? 1)⇒ 0 + 1⇒ 1

This is clearly not the derivation we want. The problem here is that when we

reduced double coin, we made a copy of the non-deterministic expression coin.

5This should really be thought of as a multiset, since it is possible for v1 and v2 to be the
same value.
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This ability to clone non-deterministic expressions to get different answers is known

as run-time choice semantics. [58].

The alternative to this is call-time choice semantics. When a non-deterministic

expression is reduced, all instances of the expression take the same value. One

way to enforce this is to represent expressions as graphs instead of terms. Since

no expressions are ever duplicated, all instances of coin will reduce the same way.

This issue of run-time choice semantics will appear throughout the compiler.

3.2.1 FlatCurry

The first step in the compiler pipeline is to parse a Curry program into FlatCurry.

The definition is given in Figure 3.17. The FlatCurry language is the standard

for representing Curry programs in compilers [19,26,28,38], and has been used to

define the semantics of Curry programs [3].

The semantics of Curry have already been studied extensively [3], so we infor-

mally recall some of the more important points. A FlatCurry program consists of

datatype and function definitions. For simplicity we assume that all programs are

self contained, because the module system is not relevant to our work. However,

the Rice compiler does support modules. A FlatCurry function contains a single

rule, which is responsible for pattern matching and rewriting an expression. Pat-

tern matching is converted into case and choice expressions as defined in [3]. A

function returns a new expression graph constructed out of let , free, fk ,Ck , ?, l , v

expressions.

Our presentation of FlatCurry differs from [3] in three notable ways. First,

function and constructor applications contain a count of the arguments they still

need in order to be fully applied. The application fk e1 e2 . . . en means that f

is applied to n arguments, but it needs k more to be fully applied, so the arity

of f is n + k . Second, we include let {v } free to represent free variables. This

was not needed in [3,28] because free variables we translated to non-deterministic
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generators. Since we narrow free variables instead of doing this transformation,

we must represent free variables in FlatCurry. Finally, we add an explicit failure

expression⊥ to represent a branch that is not present in the definitional tree. While

this is meant to simply represent a failing computation, we have also occasionally

found it useful in optimization.

3.2.2 Evaluation

Each program contains a special function main that takes no arguments. The

program executes by reducing the expression main to a Constructor Normal Form6

as defined in Figure 3.18. Similar to Kics2, Pakcs, and Sprite, [19, 28, 38] we

compute constructor normal form by first reducing the main to Head Constructor

Form. That is where the expression is rooted by a constructor. Then each child

of the root is reduced to constructor normal form.

Most of the work of evaluation is reducing an expression to head constructor

form. Kics2 and Pakcs are able to transform FlatCurry programs into an equiv-

alent rewrite system, and reduce expressions using graph rewriting [28, 38]. The

transformation simply created a new function for every nested case expression.

This created a series of tail calls for larger functions.

To see this transformation in action, we can examine the FlatCurry function

== on lists 3.19. This function is inductively sequential, however both Pakcs and

Kics2 will transform it into a series of flat function calls with a single case at the

root. Since this would drastically increase the number of function calls, we avoid

this transformation. It would also defeat much of the purpose of an optimizing

compiler if we were not allowed to inline functions.

6This is constructor normal form, and not simply a normal form, because a failing expression,
like head [ ], is a normal form, since it can not be rewritten, but it contains a function at the
root.
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f ⇒ f v = e

e ⇒ v Variable

| l Literal

| e1 ? e2 Choice

| ⊥ Failed

| fk e Function Application

| Ck e Constructor Application

| let v = e in e Variable Declaration

| let v free in e Free Variable Declaration

| case e of p → e Case Expression

p ⇒ C v Constructor Pattern

| l Literal Pattern

Figure 3.17: Syntax definition for FlatCurry

This is largely the same as other presentations [3, 16] but we have elected to

add more information that will become relevant for optimizations later. The

notation e refers to a variable length list e1 e2 . . . en .

n ⇒ l literal

| Ck n constructor

Figure 3.18: constructor normal forms in FlatCurry.

A CNF is an expression that contains only constructor and literal symbols.

All CNFs are normal forms in our system.
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Original FlatCurry representation of == on lists.

(==) v2 v3 = case v2 of

[ ]→ case v3 of

[ ]→ True

v4 : v5 → False

v6 : v7 → case v3 of

[ ]→ False

v8 : v9 → v6==v8 ∧ v7==v9

Transformed FlatCurry representation of == on lists.

(==) v2 v3 = case v2 of

[ ]→ eqListNil v3

v6 : v7 → eqListCons v3 v6 v7

eqListNil v3 = case v3 of

[ ]→ True

v4 : v5 → False

eqListCons v3 v6 v7 = case v3 of

[ ]→ False

v8 : v9 → v6==v8 ∧ v7==v9

Figure 3.19: Transformation of FlatCurry == function into a flat representa-

tion for Pakcs and Kics2.
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3.2.3 Non-determinism

Currently there are three approaches to evaluating non-deterministic expression

in Curry: backtracking , Pull-Tabbing [7], and Bubbling [9]. At this time there are

no complete strategies for evaluating Curry programs, so we have elected to use

backtracking. It is the simplest to implement, and it is well understood.

In our system, backtracking is implemented in the usual way. When an ex-

pression rooted by a node n with label by f is rewritten to an expression rooted

by e, we push the rewrite (n, nf ,Continue) onto a backtracking stack, where nf is

a copy of the original node labeled by f . If the expression is labeled by a choice

e1 ? e2, and it is rewritten to the left hand side e1, then we push (n, n?, Stop) onto

the backtracking stack to denote that this was an alternative, and we should stop

backtracking.

Unfortunately, while backtracking is well defined for rewriting systems, our rep-

resentation of FlatCurry programs is not a graph rewrite system. This is because

we do not flatten our FlatCurry functions like Pakcs and Kics2. As an example of

why FlatCurry programs are not a graph rewriting system, consider the FlatCurry

function weird 3.20. This function defines a local variable x which is used in a

case expression. If this were a rewrite system, then we would be able to translate

the case expression into pattern matching, but a rule can not pattern match on a

locally defined variable. We show the reduction of weird in Figure 3.21.

We have entered an infinite loop of computing the same rewrite. The problem is

that when we were backtracking, and replacing nodes with their original versions,

we were going too far back in the computation. In this example, when backtracking

weird , we want to backtrack to a point where x has been created, and we just want

to evaluate the case again.

We solve this problem by creating a new function for each case expression in

our original function. Figure 3.22 show an example for weird and == which were

defined above. This is actually very similar to how Pakcs and Kics2 transformed
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weird = let x = False ? True

in case x of

False → True

True → False

Figure 3.20: The function weird

This can not be expressed as rewrite rules, because the expression we are

pattern matching on is defined locally.

their programs into rewrite systems by flattening them. The difference is that we

do not need to make any extra function calls unless we are already backtracking.

There is no efficiency cost in either time or space with our solution. The only cost

is a little more complexity in the code generator, and an increase in the generated

code size. This seems like an acceptable trade off, since our programs are still

similar in size to equivalent programs compiled with GHC.

As far as we are aware, this is a novel approach for improving the efficiency

of backtracking in rewriting systems. The correctness of this method follows from

the redex contraction theorem, which is proved later.

3.2.4 Free Variables

Free variables are similar to non-deterministic expressions. In fact, in both Kics2

and Sprite [19,28] they are replaced by non-deterministic generators of the appro-

priate type [12]. However, in Rice, free variables are instantiated by narrowing.

If a free variable is the scrutinee of a case expression, then we push copies of the

remaining patterns onto the stack along with another copy of the variable. If the

free variable is replaced by a constructor with arguments, such as Just , then we
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• We start with a root r labeled by weird .

• Node n1 labeled by ? is created with children [False,True ].

• n1 is rewritten to False and (n1,True, Stop) is pushed on the backtracking

stack.

• r is rewritten to True and (r ,weird ,Continue) is pushed on the back-

tracking stack.

• r is a constructor normal form.

• backtracking to the closest alternative.

• The backtracking stack is [(r ,weird ,Continue), (n1,True, Stop)].

• reduce r .

• Node n2 labeled by ? is created with children [False,True ].

• . . .

Figure 3.21: Evaluation of weird
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weird = let x = False ? True

in case x of

False → True

True → False

weird1 x = case x of

False → True

True → False

(==) v2 v3 = case v2 of

[ ] → case v3 of

[ ]→ True

v4 : v5 → False

v6 : v7 → case v3 of

[ ]→ False

v8 : v9 → v6==v8 ∧ v7==v9

eqList1 v3 = case v3 of

[ ]→ True

v4 : v5 → False

eqList2 v6 v7 v3 = case v3 of

[ ]→ False

v8 : v9 → v6==v8 ∧ v7==v9

Figure 3.22: Functions at case for weird and == for lists.
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instantiate the arguments with free variables.

data Light = Red | Yellow | Green

change x = case x of

Red → Green

Green → Yellow

Yellow → Red

Figure 3.23: A simple traffic light program

This is easier to see with an example. Consider the traffic light function in

Figure 3.23. The change function moves the light from Red to Green to Yellow .

When calling this function with a free variable, we have the derivation below in

Figures 3.24 and 3.25.

3.2.5 Higher Order Functions

Now that we have a plan for the logic features of Curry, we move on to higher-

order functions. This subject has been extensively studied by the function lan-

guages community, and we take the approach of [62]. Higher-order functions are

represented using defunctionalization [90]. Recall that in FlatCurry, an expression

fk represents a partial application that is missing k arguments. We introduce an

apply function that has an unspecified arity, where apply fk e1 e2 . . . en applies fk

to the arguments e1 e2 . . . en .

The behavior of apply is specified below.
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• We start with root r labeled by change, with a child x labeled by free.

• x is rewritten to Red and

(x ,Green, Stop), (x ,Yellow , Stop), (x , free,Continue)

are all pushed on the stack

• r is rewritten to Green, and (r , change,Continue) is pushed on the stack

• r is a constructor normal form

• backtracking to the closest alternative

• backtracking stack is

[(r , change,Continue), (x ,Green, Stop),

(x ,Yellow , Stop), (x , free,Continue)].

• reduce r

• x is labeled by Green

• r is rewritten to Yellow , and (r , change,Continue) is pushed on the stack

• r is a constructor normal form

• backtracking to the closest alternative

Figure 3.24: Evaluation of change x where x free
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• backtracking stack is

[(r , change,Continue), (x ,Yellow , Stop), (x , free,Continue)]

• reduce r

• x is labeled by Yellow

• r is rewritten to Red , and (r , change,Continue) is pushed on the stack

• r is a constructor normal form

• backtracking to the closest alternative

• backtracking stack is [(r , change,Continue), (x , free,Continue)]

• Both rewrites are popped, and the stack is empty with no alternatives.

Figure 3.25: Evaluation of change x where x free continued
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apply fk x1 . . . xn

| k > n = fk−n x1 . . . xn

| k==n = f x1 . . . xn

| k < n = apply (f x1 . . . xk) xk+1 . . . xn

If the first argument f of apply is not partially applied, then evaluate f until it

is, and proceed as above. In the case that f is a free variable, then we return ⊥,

because we do not support higher-order narrowing.

3.2.6 Backtracking Performance

Now that we have established a method for implementing non-determinism, we

would like to improve the performance. Currently we push nodes on the back-

tracking stack for every rewrite. Often, we do not need to push most of these

rewrites. Consider the following code for computing Fibonacci numbers:

fib n = case n < 2 of

True → n

False → fib (n − 1) + fib (n − 2)

main = case fib 20==(1 ? 6765) of

True → putStrLn "found answer"

This program will compute fib 20, pushing all of those rewrites onto the stack as

it does, and then, when it discoverers that fib 20 6≡ 1, it will undo all of those

computations, only to redo them immediately afterwards! This is clearly not what

we want. Since fib is a deterministic function, we would like to avoid pushing

these rewrites onto the stack. Unfortunately, this is not as simple as it would

first seems for two reasons. First, determining if a function is non-deterministic

in general is undecidable, so any algorithm we developed would push rewrites for

some deterministic computations. Second, a function may have a non-deterministic
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argument. For example, we could easily change the above program to:

main = case fib (1 ? 20)==6765 of

True → putStrLn "found answer"

Now the expression with fib is no longer deterministic. We sidestep the whole issue

by noticing that while it is impossible to tell if an expression is non-deterministic

at compile time, it is very easy to tell if it is at run time.

As far as we are aware, this is another novel solution. Each expression contains

a Boolean flag that marks if it is non-deterministic. We called these nondet flags,

and we refer to an expression whose root node is marked with a nondet flag as

nondet. The rules for determining if an expression e is nondet are: if e is labeled

by a choice, then e is nondet; if e is labeled by a function that has a case who is

scrutinee is nondet, or is a forward to a nondet, then e is nondet; if e ′ →∗ e and

e ′ is nondet, then e is nondet.

Any node not marked as nondet does not need to be pushed on the stack because

it is not part of a choice, all of its case statements scrutinized deterministic nodes,

and it is not forwarding to a non-deterministic node. However proving this is a

more substantial problem.

We prove this for the class of limited overlapping inductively sequential graph

rewriting systems, with the understanding our system is equivalent. This proof

is based on a corresponding proof for set functions in Curry [13][Lemma 2]. The

original proof was concerned with a deterministic derivation from an expression to a

value. While the idea is similar, we do not want to necessarily derive an expression

to a value. Instead we define a deterministic redex, and deterministic step below,

and show that there is an analogous theorem for a derivation of deterministic steps,

even if it does not compute a value.

Definition 3.2.1. Given a rewrite system R with fixed strategy φ, a computation

space [13] of expression e, C(e) is finitely branching tree defined inductively the
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rule C(e) = 〈e, C(e1), C(e2) . . . C(en)〉.

We now need the notions of a deterministic redex and a deterministic rewrite.

Ultimately we want to show that if we have a deterministic reduction, then we

can perform that computation at any point without affecting the results. One

implication of this would be that performing a deterministic computation before a

non-deterministic choice was made would be the same as performing the compu-

tation after the choice. This would justify our fast backtracking scheme, because

it would be equivalent to performing the computation before the choice was made.

Definition 3.2.2. A redex n in expression e is deterministic if there is at most

one rewrite rule that could apply to e|n. A rewrite e→n e
′ is deterministic if n is

a deterministic redex.

Next we rephrase our notion of nondet for a LOIS system.

Definition 3.2.3. let e→ e1 → . . . v be a derivation for e to v. A node n in ei is

nondet iff

1. n is labeled by a choice.

2. A node in the redex pattern [10] of n is nondet.

3. There exists some j < i where n is a subexpression of ej and n is nondet.

The first property is that all choice nodes are nondet. The second property is

equivalent to the condition that any node that scrutinizes a nondet node should be

nondet. Finally, the third property is that nondet should be a persistent attribute.

This corresponds to the definition we gave for nondet nodes above.

If n is a redex that is not marked as nondet, then n ca not be labeled by a

choice. Since choice is the only rule in a LOIS system that is non-deterministic, n

must be a deterministic redex. We recall a theorem used to prove the correctness

of set function. [13][Def. 1, Lemma 1]
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Lemma 4. Given an expression e where e→n1 e1 and e→n2 e2, if n1 6= n2, then

there exists a u1 and u2 where t1 →= u1 and t2 →= u2 and u1 = u2 up to renaming

of nodes.

This leads directly to our first important theorem. If n is a deterministic redex

in a derivation, then we can move it earlier in the derivation.

Theorem 5 (Redex Compression Theorem). if n is a deterministic redex of e

where n→ n′, and e→ e1 →n e2. Then there exists a derivation e[n→ n′]→= e′

where e2 = e′ up to renaming of nodes.

Proof. By definition of rewriting e→n e[n→ n′]. Since n is a deterministic redex,

it must be the case that the redex in e→ e1 was not n. So by the previous lemma,

we can swap the order of the rewrites.

Finally we show that if a is a subexpression of e and a→∗ b using only deter-

ministic redexes, then e[b← a] rewrites to the same values.

Theorem 6 (Path Compression Theorem). if a is a subexpression of e and a→∗ b

using only deterministic rewrites, and e→ e1 → . . . en is a derivation where b is a

subexpression of en, then there is a derivation e[b← a]→∗ en.

Proof. This follows by induction on the length of the derivation. In the base

case a = b, and there is nothing to prove. In the inductive case a →p a
′ →∗ b.

Since a→p a
′ is deterministic by assumption, we can apply the path compression

theorem and say that e[a′ ← a] →∗ en. By the inductive hypotheses we can say

that e[a′ ← a][b ← a′] →∗ en. Therefore e[b ← a] →∗ en. This establishes our

result.

3.2.7 Collapsing Functions

While the result of the previous section is great, and it allows us to avoid creating

a large number of stack frames, there is a subtle aspect of graph rewriting that
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gets in the way. If a node n1 labeled by function f is rewritten to n2, then the

definition of applying a rewrite rule [36][Def. 8, Def. 10, Def. 19] would require us

to traverse the graph, and find every node that has n1 as a child, and redirect that

pointer to n2. This is clearly inefficient, so this is not done in practice. A much

faster method is to simply replace the contents, the label and children, of n1 with

the contents of n2. This works most of the time, but we run into a problem when

a function can rewrite to a single variable, such as the id function. We call these

functions collapsing functions . One option to solve this problem is to evaluate the

contractum to head constructor form, and copy the constructor to the root [23].

This is commonly used in lazy functional languages, however it does not work for

Curry programs. Consider the expression following expression.

f = let x = True ? False

y = id x

in not y

When y is first evaluated, then it will evaluate x , and x will evaluate to True. If

we then copy the True constructor to y , then we have two copies of True. But,

since y is deterministic, we do not need to undo y when backtracking. So, y will

remain True after backtracking, instead of returning to id x . While constructor

copying is definitely invalid with fast backtracking, it is unclear if it would be valid

with a normal backtracking algorithm.

We can solve this problem by using forwarding nodes, sometimes called indi-

rection nodes [59]. The idea is that when we rewrite an expression rooted by a

collapsing function, instead of copying the constructor, we just replace the root

with a special forwarding node, FORWARD(x), where x is the variable that the

function collapses to.

There is one more possibility to address before we move on. One performance

optimization with forwarding nodes is path compression. If we have a chain of
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forwarding nodes

FORWARD(FORWARD(FORWARD(x))), we want to collapse this to simply

FORWARD(x). This is unequivocally invalid in non-deterministic backtracking

systems. Consider the following function.

f = let x = True ? False

y = id x

in case y of

False → case x of

False → ()

When reducing this function, we create two forwarding nodes that are repre-

sented by the variables x and y. We refer to these nodes as FORWARDx and

FORWARDy respectively. So x is reduced to FORWARDx(True), and y is re-

duced to FORWARDy(FORWARDx(True)). If we contract y to FORWARDy(True),

then when we backtrack we replace x with FORWARDx(False), and y is replaced

with id(True). The reason that y does not change to id(False) is because y has

lost its reference to x. Now, not only do we fail to find a solution for f , we have

ended up in a state where x and y have different values.

In this chapter we have discussed the Curry language, and overviewed the

semantics of Curry programs. We have shown different approaches to implementing

a system for running Curry programs, and we have discussed the choices that we

made. When a decision needed to be made, we prioritized correctness, then efficient

execution, and then ease of implementation. In the next chapter we discuss the

implementation at a low level. This will give us an idea of what the code we want

to generate should look like.



60

CHAPTER 4

THE CODE GENERATOR

Now that we have examined all of the different choices to make in constructing

a compiler, we can start to design the generated code and run-time system for

the compiler. In this chapter we give examples of generated code to implement

Curry functions, and discuss the low level details of the Rice run-time. We start

with a first order deterministic subset of Curry, then we add higher-order function,

finally we add non-determinism and free variables. Throughout this section we will

use teletype font to represent generated C code to distinguish it from Curry or

FlatCurry code.

We will introduce the generated code by looking at the not function defined

below. We choose this function, because it is small enough to be understandable,

but it still demonstrates most of the decisions in designing the generated code and

run-time system.

not x = case x of

False → True

True → False

Before we discuss generated code, we need to discuss expressions and the run-

time system for programs.

When a FlatCurry module is compiled, it is translated into a C program. Every

function f defined in the FlatCurry module is compiled into a C function that can

reduce an expression, rooted by a node labeled with f , into head constructor form.

These functions are called f hnf for historical reasons [38].
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We chose C specifically for a few reasons. C is low level enough that the

optimizations we apply to Curry are going to be distinct to the optimizations we

apply to C. However, C is high level enough that we have several useful tools such

as functions, and structs. We expect a modern optimizing compiler to remove

most, if not all, of the abstractions that we use in the generated code. Finally C

is easy to generate compared to a lower level language such as x86. An alternative

would be to generate IR code for either LLVM, or java bytecode. We did not

generate java bytecode, because the JVM is optimized for java like languages, and

our compiled code doesn’t fit that model. LLVM-IR would be a good candidate

for future work.

An expression in our compiled code is a rooted labeled graph. nodes in the

graph are given the definition in Figure 4.26.

typedef struct Node

{

int missing;

bool nondet;

Symbol* symbol;

field children[4];

} Node;

Figure 4.26: C Definition of a Node

A field is a union of a Node* and the representations of the primitive types

Int, Float, and Char, as well as a field* to be described shortly. The use of

fields instead of nodes for the children will be justified when we discuss primitive

values and unboxing in chapter 7.3.5 The children field contains an array of

children for this node. If a node could have more than three children, such as
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a node representing the (, , , , , , ) constructor, then children[3] holds a pointer

to a variable length array that holds the rest of the children. We chose to allow

three children specifically, because in practice there are relatively few function

with more than three arguments. Although, we have not tried to confirm that

this is the optimal size for a node. This leads to non-uniform indexing into nodes.

For example n->children[1] returns the second child of the node, but the sixth

child must be retrieved with n->children[3].a[2]. We use a child at macro to

simplify the code, so child at(n,5) returns the sixth child. The symbol field is a

pointer to the static information of the node. This includes the name, arity, and

tag for the node, as well as a function pointer responsible for reducing the node to

head constructor form. We include a TAG macro to access the tag of a node. This

is purely for convenience. For a node labeled by function f , this is a pointer to

f hnf. Because the calling convention is complicated, we hide this detail with an

HNF macro, so HNF(f) evaluated the node labeled by f to head constructor form.

The missing field represents a partial function application. If missing is greater

than 0, then f is partially applied. The nondet field represents the nondet marker

described in the fast backtracking algorithm.

Each function and constructor generates a set and make function. For the not

function, we would generate

void set_not(field root, field x);

field make_not(field x);

The set not function sets the root parameter to be a not node. This is ac-

complished by changing the symbol and children for root. The make not function

allocates memory for a new not node.

Each program in our language defines an expression main, and runs until main

is evaluated to constructor normal form. This evaluation is broken up into two

pieces. The primary driver of a program is the nf function, which is responsible
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for evaluating the main expression to constructor normal form. The nf function

computes this form by first evaluating an expression to head constructor form.

When an expression is in head constructor form, nf evaluates each subexpression

to constructor normal form, producing the loop in Figure 4.27.

void nf(field expr)

{

HNF(expr);

for(int i = 0; i < expr.n->symbol->arity; i++)

{

nf(child_at(expr, i));

}

}

Figure 4.27: An algorithm for reducing a node to constructor normal form.

All that is missing here is the hnf functions. We give a simplified version of

the not hnf function in 4.28, and we will fill in details as we progress.

We can see that the main driver of this function is the while(true) loop. The

loop looks up the tag of x, and if it is a function tag, when we evaluate it to head

constructor form. If the tag for x is FAIL, which represents an exempt node, then

we set the root to FAIL and return. If the tag is Prelude True or Prelude False,

we set the root to the corresponding expression, and return from the loop. Finally,

in order to implement collapsing functions, we introduce a FORWARD tag. If the tag

is FORWARD, then we traverse the forwarding chain, and continue evaluating the x.

Finally, while we are evaluating the node stored in the local variable x, we

introduce a new variable scrutinee. This is because if x evaluates to a forwarding
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void Prelude_not_hnf(field root) {

field x = child_at(root, 0);

field scrutinee = x;

while(true) {

switch(TAG(scrutinee)) {

case FAIL_TAG:

fail(root);

return;

case FORWARD_TAG:

scrutinee = child_at(scrutinee,0);

break;

case FUNCTION_TAG:

HNF(scrutinee);

break;

case Prelude_True_TAG:

set_Prelude_False(root, 0);

return;

case Prelude_False_TAG:

set_Prelude_True(root, 0);

return;

}

}

}

Figure 4.28: Initial implementation of not
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node, we need to evaluate the child of x. If we were to update x, and then return

an expression containing x later, then we would have compressed the forwarding

path. As mentioned previously, this is not valid.

At this point we have a strategy for how to compile first order deterministic

Curry functions. Next we show how we handle partial application and higher-order

functions.

4.1 HIGHER ORDER FUNCTIONS

Earlier we gave an interpretation of how to handle apply nodes, but there are still

a few details to work out. Recall the semantics we gave for apply nodes:

apply fk [x1, . . . xn ]

| k > n = fk−n x1 . . . xn

| k==n = f x1 . . . xn

| k < n = apply (f x1 . . . xk) [xk+1, . . . xn ]

If f is missing any arguments, then we call f a partial application. Let us look

at a concrete example. In the expression foldr2 (+2), foldr is a partial application

that is missing 2 arguments. We will write this as foldr (+2) • • where • denotes a

missing argument. Now, suppose that we want to apply the following expression.

apply

foldr

+ • •

0 :

1 . . .

Remember that each node represents either a function or a constructor, and

each node has a fixed arity. For example, + has an arity of 2, and foldr has an arity

of 3. This is true for every + or foldr node we encounter. However, it is not true

for apply nodes. In fact, an apply node may have any positive arity. Furthermore,

by definition, an apply node can not be missing any arguments. For this reason,
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we use the missing field to hold the number of arguments the node is applied to.7

The algorithm for reducing apply nodes is straightforward, but brittle. There

are several easy mistakes to make here. The major problem with function appli-

cation is getting the arguments in the correct positions. To help alleviate this

problem we make a non-obvious change to the structure of nodes. We store

the arguments in reverse order. To see why this is helpful, let us consider the

foldr example above. But this time, decompose it into 3 apply nodes, so we have

apply (apply (apply foldr3 (+2)) 0) [1, 2, 3]. In our innermost apply node, which

will be evaluated first, we apply foldr3 to +2 to get foldr2 (+2) • •. This is

straightforward. We simply put + as the first child. However, when we apply

foldr2 (+2) • • to 0, we need to put 0 in the second child slot. In general, when

we apply an arbitrary partial application f to x , what child do we put x in? Well,

if we are storing the arguments in reverse order, then we get a really handy result.

Given function fk that is missing k arguments, then apply fk x reduces to fk−1 x

where x is the k − 1 child. The missing value for a function tells us exactly where

to put the arguments. This is completely independent of the arity of the function.

apply (apply (apply (foldr3 • ••) (+2)) 0) [1, 2, 3]

⇒ apply (apply (foldr2 • •(+2)) 0) [1, 2, 3]

⇒ apply (foldr1 • 0 (+2)) [1, 2, 3]

⇒ foldr0 [1, 2, 3] 0 (+2))

The algorithm is given in Figure 4.29. There are a few more complications to

point out. To avoid complications, we assume arguments that a function is being

applied to are stored in the array at children[3] of the apply node. That gives us

the structure apply f ••an . . . a1. This is not done in the run-time system because it

would be inefficient, but it simplifies the code for this presentation. We also make

7In reality we set missing to the negative value of the arity to distinguish an apply node from
a partial application.
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use of the set child at macro, which simplifies setting child nodes and is similar

to child at. Finally, the loop to put the partial function in head constructor form

uses while(f.n->missing <= 0) instead of while(true). This is because our

normal form is a partial application, which does not have its own tag.

We reduce an apply node in two steps. First get the function f, which is the

first child of an apply node. Then, reduce it to a partial application. If f came

from a non-deterministic expression, the save the apply node on the stack. We

split the second step into two cases. If f is under applied, or has exactly the right

number of arguments, then copy the contents of f into the root, and move the

arguments over and reduce. If f is over applied, then make a new copy of f, and

copy arguments into it until it is fully applied. Finally we reduce the fully applied

copy of f and apply the rest of the arguments.

4.2 IMPLEMENTING NON-DETERMINISM

Now, we that we can reduce a higher-order functional language, we would like to

extend our implementation to handle features from logic languages.

The implementation does not change too much. First we add two new tags

CHOICE and FREE to represent non-deterministic choice and free variable nodes

respectively. The choice nodes are treated in a similar manner to a function. We

call the choose function to reduce a choice to HCF, and push the alternative on

the stack.

The choose function in 4.30 reduces a choice node to head constructor form.

Since choice is a collapsing rule, we return a forwarding node. The function is also

responsible for keeping track of which branch of the choice we should reduce, and

pushing the alternative on the backtracking stack. We accomplish this by keeping

a marker in the second child of a choice node. This marker is 0 if we should reduce

to the left hand side, and 1 if we should reduce to the right hand side.

Free variables are more interesting. To narrow a free variable we pick a possible



68

void apply_hnf(field root) {

field f = child_at(root,0);

field* children = root.n->children[3].a;

while(f.n->missing <= 0) { // Normal HNF loop }

int nargs = -root.n->missing;

int missing = f.n->missing;

if(missing <= nargs) {

set_copy(root, f);

for(int i = nargs; i > 0; i--, missing--) {

set_child_at(root, missing-1, children[i-1]);

}

root.n->missing = missing;

if(missing == 0) { HNF(root); }

} else {

field newf = copy(f);

while(missing > 0) {

set_child_at(newf, missing-1, children[nargs-1]);

nargs--;

missing--; }

newf.n->missing = 0;

HNF(newf);

set_child_at(root,0,newf);

root.n->missing = -nargs;

apply_hnf(root);

}

}

Figure 4.29: The apply hnf function
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void choose(field root)

{

field choices[2] = {child_at(root,0), child_at(root,1)};

int side = child_at(root,2).i;

field saved;

saved.n = (Node*)alloc(sizeof(Node));

memcpy(saved.n, root.n, sizeof(Node));

child_at_i(saved,2) = !side;

stack_push(bt_stack, root, saved, side == 0);

set_forward(root,choices[side]);

root.n->nondet = true;

}

Figure 4.30: Implementation of choose
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constructor, and replace the scrutinee node with that constructor. All arguments

to the constructor are instantiated with free variables. Then, we push a rewrite on

the stack to replace scrutinee with a free variable using the push frame function.

This is because after each possible choice has been exhausted, we want to reset this

node back to a free variable in case it is used in another non-deterministic branch

of the computation. Finally, for every other constructor, we push an alternative

on the backtracking stack using the push choice function.

The only other necessary change is to push a rewrite onto the backtracking stack

when we reach either a fail, or constructor case. The Prelude not 1 function is

a function at a case expression discussed in section 3.2.3. The changes to the not

function are give in Figure 4.31. Due to space constraints not all sections are show.

The pieces of code that do not changed are omitted and replaced with ....

4.3 FAST BACKTRACKING

Finally we show how we implement the fast backtracking technique described ear-

lier. The implementation actually does not change much, we simply make use of

the nondet flag in each node. While we are evaluating scrutinee, we keep track

of whether or not we have seen a non-deterministic node in a local variable, and if

we have, we push the root on the backtracking stack. If we have not seen a non-

deterministic node, then we can simply avoid pushing this rewrite. The generated

code for not is given in Figure 4.32.

In the last two chapters we have discussed the choices we have made with our

generated code, and given an idea with what the generated code should look like.

In some sense, we have given a recipe of how to translate Curry into C. In the

next chapter we introduce the tools to make this recipe. We introduce a system

for implementing transformations as rewrite rules. We then show how this system

can simplify the construction of a compiler, and use it to transform FlatCurry

programs into a form that is easier to optimize and compile to C.
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void Prelude_not_hnf(field root) {

field x = child_at(root, 0);

field scrutinee = x;

while(true) {

switch(TAG(scrutinee)) {

case FAIL_TAG:

push_frame(root, make_Prelude_not_1(x));

fail(root);

return;

...

case CHOICE_TAG:

choose(scrutinee);

break;

case FREE_TAG:

push_frame(scrutinee, free_var());

push_choice(scrutinee, make_Prelude_False(0));

set_Prelude_True(scrutinee, 0);

break;

case Prelude_True_TAG:

push_frame(root, make_Prelude_not_1(x));

set_Prelude_False(root, 0);

return;

... } } }

Figure 4.31: Non-deterministic Implementation of not
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void Prelude_not_hnf(field root) {

...

bool nondet = false;

while(true) {

nondet |= scrutinee->nondet;

switch(TAG(scrutinee)) {

case FAIL_TAG:

if(nondet) push_frame(root, make_Prelude_not_1(x));

fail(root);

return;

...

case CHOICE_TAG:

choose(scrutinee);

nondet = true;

break;

case FREE_TAG:

push_frame(scrutinee, free_var());

push_choice(scrutinee, make_Prelude_False(0));

set_Prelude_True(scrutinee, 0);

nondet = true;

break;

case Prelude_True_TAG:

if(nondet) push_frame(root, make_Prelude_not_1(x));

set_Prelude_False(root, 0);

return;

...} } }

Figure 4.32: Full Implementation of not
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CHAPTER 5

GENERATING AND ALTERING SUBEXPRESSIONS

In this chapter we introduce our engine for Generating and Altering Subexpres-

sions, of the GAS system. This system proves to be incredibly versatile and is the

main workhorse of the compiler and optimizer. We show how to construct, com-

bine, and improve the efficiency of transformations, as well as how the system in

implemented.

5.1 BUILDING OPTIMIZATIONS

Throughout this dissertation we look at the process of developing compiler opti-

mizations. For our purposes we are concerned with compile time optimizations .

These are transformations on a program, performed at compile time, that are in-

tended to produce more efficient code. Most research in the Curry community has

been done on run time optimizations , which are improvements to the evaluation

of Curry programs. This can include the development of new rewriting strategies,

or improvements to pull-tabbing and bubbling [19, 20]. These improvements are

important, but they are not our concern for this compiler.

Developing compile time optimizations is usually considered the most difficult

aspect of writing a modern compiler. It is easy to see why. There are dozens of

small optimizations to make, and each one needs to be written, shown correct, and

tested.

Furthermore, there are several levels where an optimization can be applied.

Some optimizations apply to a programs AST, some to another intermediate rep-

resentation, some to the generated code, and even some to the run-time system.
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There are even optimizations that are applied during transformations between

representations. For this chapter, we will be describing a system to apply opti-

mizations to FlatCurry programs. While this is not the only area of the compiler

where we applied optimizations, it is by far the most extensive, so it is worth

understanding how our optimization engine works.

This is a perfectly fine Curry program, Generally speaking, most optimizations

have the same structure. Find an area in the AST where the optimization applies,

and then replace it with the optimized version. As an example, consider the code

for the absolute value function defined below.

abs x

| x < 0 = −x

| otherwise = x

This will be translated into FlatCurry as

abs x = case (x < 0) of

True → −x

False → case otherwise of

True → x

False → ⊥

While this transformation is obviously inefficient, it is general and has a straight-

forward implementation. A good optimizer should be able to recognize that

otherwise reduces to True, and reduce the case-expression. So for this one ex-

ample, we have two different optimizations we need to implement. We need to

reduce otherwise to True, then we can reduce the second case expression to x .

There are two common approaches to solving this problem. The first is to make

a separate function for each optimization. Each function will traverse the AST and

try to apply its optimization. The second option is to make a few large functions

that attempt to apply several optimizations at once. There are trade-offs for each.
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The first option has the advantage that each optimization is easy to write

and understand. However, is suffers from a lot of code duplication, and it is not

very efficient. We must traverse the entire AST every time we want to apply

an optimization. Both LLVM and the JVM fall into this category [73, 86]. The

second option is more efficient, and there is less code duplication, but it leads to

large functions that are difficult to maintain or extend.

Using these two options generally leads to optimizers that are difficult to main-

tain. To combat this problem, many compilers will provide a language to describe

optimization transformation. Then the compiler writer can use this domain specific

language to develop their optimizations. With the optimization descriptions, the

compiler can search the AST of a program to find any places where optimizations

apply. However, it is difficult or impossible to write many common optimizations

in this style [66].

In our solution we want the convenience and readability of writing standalone

optimizations; the efficiency of conglomerate optimizations; and the ease of writing

optimizations in a DSL. We have developed an approach to simplify Generating

and Altering Subexpressions (GAS) . Our approach was to do optimization entirely

by rewriting. This has several advantages, and might be the most useful result of

this work. First, developing new optimizations is simple. We can write down new

optimizations in this system within minutes. It was often easier to write down the

optimization and test it, than it was to try to describe the optimization in English.

Second, any performance improvement we made to the optimization engine would

apply to every optimization. Third, optimizations were easy to maintain and

extend. If one optimization did not work, we could look at it and test it in isolation.

Fourth, this code is much smaller than a traditional optimizer. This is not really a

fair comparison given the relative immaturity of our compiler, but we were able to

implement 16 optimizations and code transformations in under 150 lines of code.

This gives a sense of scale of how much easier it is to implement optimizations
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in this system. Fifth, since We are optimizing by rewrite rules, the compiler can

easily output what rule was used, and the position where it was used. This is

enough information to entirely reconstruct the optimization derivation. We found

this very helpful in debugging. Finally, optimizations are written in Curry. We

did not need to develop a DSL to describe the optimizations, and there are no new

ideas for programmers to learn if they want to extend the compiler.

We should note that there are some potential disadvantages to the GAS system

as well. The first disadvantage is that there are some optimizations and transfor-

mations that are not easily described by rewriting. The second is that, while we

have improved the efficiency of the algorithm considerably, it still takes longer to

optimize programs than we would like.

The first problem is not really a problem at all. If there is an optimization

that does not lend itself well to rewriting, we can always write it as a traditional

optimization. Furthermore, as we will see later, we do not have to stay strictly

in the bounds of rewriting. The second problem is actually more fundamental to

Curry. Our implementation relies on finding a single value from a set generated by

a non-deterministic function. Current implementations are inefficient, but there

are new implementations being developed [17]. We also believe that an optimizing

compiler would help with this problem [76].

5.1.1 The Structure of an Optimization

The goal with GAS is to make optimizations simple to implement and easily read-

able. While this is a challenging problem, we can actually leverage Curry here.

Remember that the semantics of Curry are already non-deterministic rewriting,

so we can make each optimization a rewrite rule of a FlatCurry expression. We

represent the rewrite rule as a function from Expr to Expr .

type Opt = Expr → Expr
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For readability we use the FlatCurry syntax defined in Figure 3.17, While this

version of FlatCurry is easier to read, we will need the actual representation of

FlatCurry programs to implement the compiler. This representation is given in

Figure 5.33, and the transformation from the FlatCurry syntax to the FlatCurry

representation is given in Figure 5.34. We can describe an optimization by simply

describing what it does to each expression. As an example consider the definition

for floating let-expressions:

float (Comb ct f (as ++ [Let vs e ] ++ bs)) = Let vs (Comb ct f (as ++ [e ] ++ bs))

This optimization tells us that, if an argument to a function application is a

let expression, then we can move the let-expression outside. This works for let-

expressions, but what if there is a free variable declaration inside of a function?

We can just define that case with another rule.

float (Comb ct f (as ++ [Let vs e ] ++ bs)) = Let vs (Comb ct f (as ++ [e ] ++ bs))

float (Comb ct f (as ++ [Free vs e ] ++ bs)) = Free vs (Comb ct f (as ++ [e ] ++ bs))

This is where the non-determinism comes in. Suppose we have an expression:

f (let x = 1 in x ) (let r free in 2)

This could be matched by either rule. The trick is that we do not care which

rule matches, as long as they both do eventually. This could be a problem if

both variables have the same name, so we enforce the condition that expressions

contain no shadowing variables. We discuss this further in Chapter 5.1.5. This

will be transformed into one of the following:

let r free in let x = 1 in f x 2

let x = 1 in let r free in f x 2

Either of these options is acceptable. In fact, we could remove the ambiguity

by making our rules a confluent system, as shown by the code below. However, we

will not worry about confluence for most optimizations.
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float (Comb ct f (as ++ [Let vs e ] ++ bs)) = Let vs (Comb ct f (as ++ [e ] ++ bs))

float (Comb ct f (as ++ [Free vs e ] ++ bs)) = Free vs (Comb ct f (as ++ [e ] ++ bs))

float (Let vs (Free ws e)) = Free ws (Let vs e)

Great, now we can make an optimization. It was easy to write, but it is not

a very complex optimization. In fact, most optimizations we write will not be

very complex. The power of optimization comes from making small improvements

several times.

Now that we can do simple examples, let us look at a more substantial trans-

formation. Let-expressions are deceptively complicated. They allow us to make

arbitrarily complex, mutually recursive, definitions. However, most of the time

a large let expression could be broken down into several small let expressions.

Consider the definition below:

let a = b

b = c

c = d + e

d = b

e = 1

in a

This is a perfectly valid definition, but we could also break it up into the three

nested let expressions below.
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let e = 1

in let b = c

c = d + e

d = b

in let a = b

in a

It is debatable which version is better coding style, but the second version is

more useful for our optimizer. With the second version each let binding corresponds

to a minimally sized group of variable bindings. This tells us by inspection if the

bindings are mutually recursive. There are several optimizations that can be safely

performed on a single, non-recursive, let bound variable. Unfortunately, splitting

the let expression into blocks is not trivial. The algorithm involves making a

graph out of all references in the let block, then finding the strongly connected

components of that reference graph, and, finally, rebuilding the let expression

from the component graph. The full algorithm is given below in Figure 5.35

While this optimization is significantly more complicated than the float exam-

ple, We can still implement it in our system. Furthermore, we are able to factor out

the code for building the graph and finding the strongly connected components.

This is the advantage of using Curry functions as opposed to strict rewrite rules.

We have much more freedom in constructing the right-hand side of our rules.

Now that we can create optimizations, what if we want both blocks and float

to be able to run? This is an important part of the compilation process to get

expressions into a canonical form. It turns out that combining two optimizations

is simple. We just make a non-deterministic choice between them.

floatBlocks = float ? blocks

This is a new optimization that will apply either float or blocks . The optimizations
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type QName = (String , String)

type Arity = Int

type VarIndex = Int

data Visibility = Public | Private

data FuncDecl = Func QName Arity Rule

data Rule

= Rule [VarIndex ] Expr

| External String

data CombType = FuncCall | ConsCall

| FuncPartCall Arity | ConsPartCall Arity

data Expr

= Var VarIndex

| Lit Literal

| Comb CombType QName [Expr ]

| Let [(VarIndex ,Expr)] Expr

| Free [VarIndex ] Expr

| Or Expr Expr

| Case Expr [BranchExpr ]

data BranchExpr = Branch Pattern Expr

data Pattern = Pattern QName [VarIndex ]

| LPattern Literal

data Literal = Intc Int | Floatc Float | Charc Char

Figure 5.33: Curry Representation of FlatCurry programs

This is the standard representation of FlatCurry programs as defined in [3], We

have removed CaseType and Typed from Expr , and TypeExpr and Visibility

from FuncDecl , because they are not used in our translation.
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Jf v = eK = FuncDecl f n (Rule v JeK)

JvK = Var v

JlK = Lit JlK

Je1 ? e2K = Or Je1K Je2K

J⊥K = Comb ConsCall ("", "FAIL") [ ]

Jfk eK | k==0 = Comb FuncCall f [JeK ]

| otherwise = Comb (FuncPartCall k) f [JeK ]

JCk eK | k==0 = Comb ConsCall f [JeK ]

| otherwise = Comb (ConsPartCall k) f [JeK ]

J let v = e in e ′K = Let (v , JeK) Je ′K

J let v free in eK = Free v JeK

J case e of altsK = Case e JaltsK

Jl → eK = Branch (LPattern JlK) JeK

JC v → eK = Branch (Pattern C v JeK

JlK | isInt l = Intc l

| isFloat l = Floatc l

| isChar l = Charc l

Figure 5.34: Translation from FlatCurry syntax to the Curry representation

of FlatCurry.
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blocks (Let vs e) | numBlocks > 1 = e ′

where (e ′, numBlocks) = makeBlocks es e

makeBlocks vs e = (letExp, length comps)

where letExp = foldr makeBlock e comps

makeBlock comp = λexp → Let (map getExp comp) exp

getExp ( ++ [(n, exp)] ++ ) = (n, exp)

comps = scc (vs >>= makeEdges)

makeEdges (v , exp) = [(v , f ) | f ← freeVars exp ∩map fst vs ]

Figure 5.35: Transformation for splitting let expressions into mutually recur-

sive blocks.

engine that follows will keep applying this optimization until it either cannot be

applied, or we reach a user specified number of iterations. We choose an opti-

mization to apply at each iteration arbitrarily using oneValue function from the

FindAll library. The ability to compose optimizations with ? is the heart of the

GAS system. Each optimization can be developed and tested in isolation, then

they can be combined for efficiency.

5.1.2 An Initial Attempt

Our first attempt is quite simple, really. We pick an arbitrary subexpression with

subExpr and apply an optimization. We can then use a non-deterministic fix point

operator to find all transformations that can be applied to the current expression.

We can define the non-deterministic fix point operator using either the Findall

library, or Set Function [13,27]. The full code is given in Figure 5.36.
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fix :: (a → a)→ a → a

fix f x

| f x==∅ = x

| otherwise = fix f (f x )

subExpr :: Expr → Expr

subExpr e = e

subExpr (Comb ct f vs) = subExpr (foldr1 (?) es)

subExpr (Let vs e) = subExpr (foldr1 (?) (e : map snd es))

subExpr (Free vs e) = subExpr e

subExpr (Or e1 e2) = subExpr e1 ? subExpr e2

subExpr (Case e bs) = subExpr (e : map branchExpr bs)

where branchExpr (Branch e) = e

reduce :: Opt → Expr → Expr

reduce opt e = opt (subExpr e)

simplify :: Opt → Expr → Expr

simplify opt e = fix (reduce opt) e

Figure 5.36: A first attempt at an optimization engine. Pick an arbitrary

subexpression and try to optimize it.
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While this attempt is short and readable, there is a problem with it. It is unus-

ably slow. While looking at the code, it is pretty clear to see what the problem is.

Every time we traverse the expression, we can only apply a single transformation.

This means that if we need to apply 100 transformations, which is not uncommon,

then we need to traverse the expression 100 times.

5.1.3 A Second Attempt: Multiple Transformations Per Pass

Our second attempt runs much faster. Instead of picking an arbitrary subexpres-

sion, we choose to traverse the expression manually. Now, we can check at each

node if an optimization applies. We only need to make two changes. The biggest

is that we eliminate subExpr and change reduce to traverse the entire expression.

Now reduce can apply an optimization at every step. We have also made reduce

completely deterministic. The second change is that since reduce is deterministic,

we can change fix to be a more traditional implementation of a fix point operator.

The new implementation is given in Figure 5.37

This approach is significantly better. Aside from applying multiple rules in one

pass, we also limit our search space when applying our optimizations. While there

is still more we can do, the new approach makes the GAS library usable on larger

Curry programs, like the standard Prelude.

5.1.4 Adding More Information

Rather surprisingly our current approach is actually sufficient for compiling FlatCurry.

However, to optimize Curry we are going to need more information when we apply

a transformation. Specifically, we will be able to create new variables. To simplify

optimizations, we will require that each variable name can only be used once. Re-

gardless, we need a way to know what is a safe variable name that we are allowed

to use. We may also need to know if we are rewriting the root of an expression.

Fortunately, all we need to change is to define Opt to accept more parameters. For
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fix :: (a → a)→ a → a

fix f x

| f x==x = x

| otherwise = fix f (f x )

reduce :: Opt → Expr → Expr

reduce opt (Var v) = runOpts opt (Var v)

reduce opt (Lit l) = runOpts opt (Lit l)

reduce opt (Comb ct f es) = runOpts opt (Comb ct f (map (reduce opt) es))

where es ′ = map (reduce opt) es

reduce opt (Let vs e) = runOpts opt Let (map runLet vs) (reduce opt e)

where runLet (v , e) = (v , reduce opt e)

reduce opt (Free vs e) = runOpts opt (Free vs (reduce opt e))

reduce opt (Or a b) = runOpts opt (Or (reduce opt a) (reduce opt a))

reduce opt (Case e bs) = runOpts opt (Case (reduce opt e) bs ′)

where runBranch (Branch p e) = Branch p (reduce opt e)

bs ′ = map runBranch bs

runOpts :: Opt → Expr → Expr

runOpts opt e = case oneValue (opt e) of

Nothing → e

Just e ′ → e ′

simplify :: Opt → Expr → Expr

simplify opt e = fix (reduce opt) e

Figure 5.37: A second attempt. Traverse the expression and, at each node,

check if an optimization applies.
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each optimization, we will pass in an n :: Int that represents the next variable vn

that is guaranteed to be fresh. We will also pass in a top :: Bool that tells us if we

are at root of a function we are optimizing. We also return a pair of (Expr , Int)

to denote the optimized expression, and the number of new variables we used.

type Opt = (Int ,Bool)→ Expr → (Expr , Int)

If we later decide that we want to add more information, then we just update

the first parameter. The only problem is, how do we make sure we are calling

each optimization with the correct n and top? We just need to update reduce and

runOpt . In order to keep track of the next available free variable we use the State

monad. We do need to make minor changes to fix and simplify , but this is just to

make them compatible with State. The full implementation is in Figures 5.38 and

5.39.

5.1.5 Reconstruction

Right now we have everything we need to write all of our optimizations. How-

ever, we’ve found it useful to be able to track which optimizations were applied

and where they were applied. This helps with testing, debugging, and designing

optimizations, as well as generating optimization derivations that we will see later

in this dissertation. It is difficult to overstate just how helpful this addition was

in building this compiler.

If we want to add this, then we need to make a few changes. First, we need

to decide on a representation for a rewrite derivation. Traditionally a rewrite

derivation is a sequence of rewrite steps, where each step contains the rule and

position of the rewrite. We describe paths in Figure 5.40. To make reconstruction

easier, we also include the expression that is the result of the rewrite. This gives

us the type:
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reduce :: Opt → Bool → Expr → State Int Expr

reduce opt top (Var v) = runOpts opt top (Var v)

reduce opt top (Lit l) = runOpts opt top (Lit l)

reduce opt top (Comb ct f es) = do es ′ ← mapM (reduce opt False es)

runOpts opt top (Comb ct f es ′)

reduce opt top (Let vs in e) = do vs ′ ← mapM runVar vs

e ′ ← mapM reduce opt False e

runOpts opt top (Let vs ′ in e ′)

where runVar (v , e) = do e ′ ← reduce opt False e

return (v , e ′)

reduce opt top (Free vs e) = do e ′ ← reduce opt False e

runOpts opt top (Free vs e ′)

reduce opt top (Or a b) = do a ′ ← reduce opt False a

b ′ ← reduce opt False b

runOpts opt (Or a ′ b ′)

reduce opt top (Case e bs) = do e ′ ← reduce opt False e

bs ′ ← mapM runBranch bs

runOpts opt (Case e ′ bs ′)

where runBranch (Branch pat e) = do e ′ ← reduce opt False e

return (Branch pat e ′)

Figure 5.38: A third attempt. Keep track of the next fresh variable, and if

we’re at the root.
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runOpts :: Opt → Bool → Expr → State Int Expr

runOpts opt top e = do v ← get

case opt (v , top) e of

Nothing → return e

Just (e ′, dv)→ do put (v + dv)

return e ′

fix :: (a → State b a)→ a → b → a

fix f x s = let (x ′, s ′) = runState (f x ) s

in if x==x ′ then x else fix f x ′ s ′

Figure 5.39: A third attempt. Keep track of the next fresh variable, and if

we’re at the root. Continued.

type Path = [Int ]

type Step = (String ,Path,Expr)

type Derivation = [Step ]

This leads to the last change we need to make to our Opt type. We need each

optimization to also tell us its name. This is good practice in general, because it

forces us to come up with unique names for each optimization.

type Opt = (Int ,Bool)→ Expr → (Expr , String , Int)

We only need to make a few change to the algorithm. Instead of using the State

monad, we use a combination of the State and Writer monads, so we can keep

track of the derivation. We have elected to call this the ReWriter monad. We add

a function update :: Expr → Step → Int → ReWriter Expr that is similar to put

from State. This updates the state variable, and creates a single step. The reduce
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ndpath e = [ ]

ndpath (Comb ct f es) = anymap argPath es

where argPath (i , e) = i : ndpath ei

ndpath (Or e0 e1) = 0 : ndpath e0 ? 1 : ndpath e1

ndpath (Let vs e−1) = anymap letPath es

?−1 : ndpath e−1

where letPath (i , ( , e)) = i : ndpath e

ndpath (Case e of alts) = −1 : ndpath e

? anymap altPath alts

where altPath (i ,Branch e) = i : ndpath e

anymap f = anyof ◦map f ◦ zip [1 . . ]

Figure 5.40: The definition of a path for Curry expressions.

This function non-deterministically returns a path to a subexpression.
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function requires few changes. We change the Boolean variable top to a more

general Path. Because of this change, we need to add the correct subexpression

position, instead of just changing top to False. The RunOpts function is similar.

We just change top to a Path, and check if it is null. Finally fix and simplify are

modified to remember the rewrite steps we have already computed. We change the

return type of simplify so that we have the list of steps. The full implementation

is in Figures 5.41 and 5.42.

Now that we have computed the rewrite steps, it is a simple process to recon-

struct them into a string. The pPrint function comes from the FlatCurry Pretty

Printing Library.

reconstruct :: Expr → [Step ]→ String

reconstruct [ ] = ""

reconstruct e ((rule, p, rhs) : steps) = let e ′ = e[rhs ← p]

in "=>_" ++ rule ++ " " ++ (show p) ++ "\n" ++

pPrint e ′ ++ "\n" ++

reconstruct e ′ steps

Now that our optimization engine is running and printing out optimization

derivations, there are a few tricks we can use to improve the efficiency. Remember

that our optimizing engine is going to run for every optimization, so it is worth

taking the time to tune it to be as efficient as possible. The first trick is really sim-

ple. We add a Boolean variable seen to the ReWriter monad. This variable starts

as False, and we set it to True if we apply any optimization. This avoids the linear

time check for every call of fix to see if we actually ran any optimizations. The

second quick optimization is to notice that variables, literals, and type expressions

are never going to run an optimization, so we can immediately return in each of

those cases without calling runOpt . This is actually a much bigger deal than it

might first appear. All of the leaves are going to either be variables, literals, or
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reduce :: Opt → Path → Expr → ReWriter Expr

reduce opt p (Var v) = return (Var v)

reduce opt p (Lit l) = return (Lit l)

reduce opt p (Comb ct f es) = do es ′ ← mapM runArg (zip [0 . . ] es)

runOpts opt p (Comb ct f es)

where runArg (n, e) = reduce opt (n : p) e

reduce opt p (Let vs e) = do vs ′ ← mapM runVar (zip [0 . . ] vs)

e ′ ← mapM reduce opt (−1 : p) e

runOpts opt p (Let vs ′ e ′)

where runVar (n, (v , e)) = fmap (λx → (v , x )) (reduce opt (n : p) e)

reduce opt p (Free vs in e) = do e ′ ← reduce opt (0 : p) e

runOpts opt p (Free vs e ′)

reduce opt p (Or a b) = do a ← reduce opt (0 : p) a

b ← reduce opt (1 : p) b

runOpts opt (Or (a ′ ? b ′))

reduce opt p (Case e bs) = do e ′ ← reduce opt (−1 : p) e

bs ′ ← mapM runBranch (zip [0 . . ] bs)

runOpts opt (Case e ′ bs ′)

where runBranch (n, (Branch pat e)) = fmap (Branch pat) (reduce opt (n : p) e)

Figure 5.41: The final version of GAS with reconstruction.
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runOpts :: Opt → Path → Expr → ReWriter Expr

runOpts opt p e = do v ← get

case oneValue (opt (v , null p) e) of

Nothing → return e

Just (e ′, rule, dv)→ do update (e ′, rule, p) dv

return e ′

fix :: (a → ReWriter a)→ a → Int → [Step ]→ (a, [Step ])

fix f x n steps = let (x ′, n ′, steps ′) = runRewriter (f x ) n

in if x==x ′ then x else fix f x ′ n ′ (steps ++ steps ′)

Figure 5.42: The final version of GAS with reconstruction. Continued.

constructors applied to no arguments. For expression trees the leaves are often the

majority of the nodes in the tree. Finally, we can put a limit on the number of

optimizations to apply. If we ever reach that number, then we can immediately

return. This can stop our optimizer from taking too much time.

Now that the GAS system is in place, we can move onto compiling FlatCurry

programs. In this chapter we have introduced the GAS system that allows us to

represent transformations in a simple form that is easy to extend and test. We

have seen how we can represent an optimization as a function from expressions to

expressions. Then we showed that we can extend this idea to create more powerful

optimizations, and automatically generate optimization derivations. In the next

chapter we put this system to work. Specifically, We will use the GAS system to

implement several transformations to turn FlatCurry code in to a form that can be

more easily compiled. Then we show how to generate efficient C code for FlatCurry

programs.
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CHAPTER 6

THE COMPILER PIPELINE

In the last chapter we developed the GAS system for representing transformation.

In this chapter we show an extended example of using the GAS system to transform

FlatCurry programs into a canonical form. We then show how to translate these

canonical programs to the ICurry intermediate representation. Finally, we compile

the ICurry programs to C code, as discussed in Chapter 3.2.7.

This compiler, unsurprisingly, follows a traditional compiler pipeline. While

we start with an AST, there are still five phases left before we can generate C

code. First, we normalize FlatCurry to a canonical form. Second, we optimize the

FlatCurry. Third, we sanitize the FlatCurry to simplify the process of generating C

code. Fourth, we compile the FlatCurry to ICurry, an intermediate representation

that is closer to C. Finally, we compile the ICurry to C. These steps are referred to

as pre-process, optimize, post-process, toICurry, and toC within the compiler [74].

We give an example of a function as it passes through each of the stages of

the compiler below. After pre-processing, the let expression has been floated to

the top, and the missing branch has been filled in. After optimization, code is

organized into blocks, and functions have been reduced. After post processing,

let bound variables with a case expression have been factored out into their own

functions. At this point the code is ready to be translated into ICurry and then

C.

While there are several small details that are important to constructing a work-

ing Curry compiler, we will concern ourselves with the big picture here.

Let’s look at a simple Curry function defined below.
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f True = False

f x = not (let y = not x in not y)

The FlatCurry representation of the above function is:

f v1 = (case v1 of True → False) ?

(not (let v2 = not v1 in not v2))

After applying th Preprocessing transformations we have:

f v1 = let v2 = not v1

in (case v1 of

True → False

False → ⊥) ? (not v2)

After optimizing the function we have:

f v1 =

let v4 = case v1 of

True → False

False → ⊥

in let v5 = case v1 of

True → False

False → True

in v4 ? v5

Finally, after applying the Post-processing transformations we have:
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f v2 = let v3 = f0 v2

in let v4 = f1 v2

in v3 ? v4

f0 v2 = fcase v2 of

True → False

False → ⊥

f1 v2 = fcase v2 of

True → False

False → True

6.1 CANONICAL FLATCURRY

The pre-process and post-process steps of the compiler make heavy use the of GAS

system, and transform the FlatCurry program in to a form that is more amenable

to C, including removing case and let expression from inside function applications.

We will discuss the optimization phase in the next section, but for now we can see

how transformations work.

Let us start with an example:

1 + let x = 3 in x

This is a perfectly fine Curry program, but C does not allow variable declarations

in an expression, so we need to rewrite this Curry expression to:

let x = 3 in 1 + x

We do not reduce let x = 3 in x yet, because that would be an optimization.

However, this will be reduced later. We can translate the new expression to C in

a direct manner. This is the purpose of the pre-process and post-process steps.

We rewrite a Curry expression that does not make sense in C to an equivalent
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f v = b

s = case e of C v → s

| let v = e in s

| let v free in s

| e

e = v

| l

| fk e

| Ck e

| e1 ? e2

Figure 6.43: Canonical FlatCurry.

We split expressions into statement-like expressions s , and expressions e.

Statement like expressions roughly correspond to control flow, and are trans-

lated to variable declaration and control flow statements in C.
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Curry expression that we can translate directly to C. Most of the transformations

consist of disallowing certain syntactic constructs. Canonical FlatCurry is defined

in Figure 6.43.

Examples of the pre-processing transformations are presented in figures 6.46

and 6.47. We use the symbolV for the optimization relation. The implementation

is presented in Figures 6.44 and 6.45. We only show the initial implementation

of an optimization that excludes the name and path, but it can be extended to

the full optimization in a straightforward manner. The full implementation can be

found in the src/Optimize/Preprocess.curry file at [74].

In practice several of these rules are generalized and optimized. For example

let-expressions may have many mutually recursive variables, and when floating a

let bound variable inward, we may want to recursively traverse the expression to

find the innermost declaration possible. However, these extensions to the rules are

also included in the repository [74].

While most of these transformations are simple, a few require some explana-

tion. First we address a possible concern from the last chapter. Since we make no

attempt to ensure confluence of our rewrite rules, can we be sure that our trans-

formations are even valid? In general, no we cannot. GAS does nothing to enforce

the validity of rewrites, it just applies them as it encounters an opportunity. This

is a problem, because our rules as they are stated may not be valid. For example,

consider the following program.

f (let x = 1 in x ) (let x = 2 in x )

This could be transformed into on of the following.

let x = 1 in let x = 2 in f x x

let x = 2 in let x = 1 in f x x

Unfortunately, neither of these are correct. The solution in this case is very

simple. We always enforce that variable names are unique. This is the purpose
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float (Let (as ++ [(x ,Let vs e1)] ++ bs) e2) = Let ((x , e1) : vs ++ as ++ bs) e2

float (Let (as ++ [(x ,Free vs e1)] ++ bs) e2) = Free vs (Let ((x , e1) : as ++ bs) e2)

float (Or (Let vs e1) e2) = Let vs (Or e1 e2)

float (Or e1 (Let vs e2)) = Let vs (Or e1 e2)

float (Or (Free vs e1) e2) = Free vs (Or e1 e2)

float (Or e1 (Free vs e2)) = Free vs (Or e1 e2)

float (Comb ct n (as ++ [Let vs e ] ++ bs)) = Let vs (Comb ct n (as ++ [e ] ++ bs))

float (Comb ct n (as ++ [Free vs e ] ++ bs)) = Free vs (Comb ct n (as ++ [e ] ++ bs))

float (Case (Let vs e) alts) = Let vs (Case e alts)

float (Case (Free vs e) alts) = Free vs (Case e alts)

flatten (apply (apply f as) bs) = applyf f (as ++ bs)

flatten (apply (Case e bs) xs) = Case e bs ′

where bs ′ = [Branch p (applyf e ′ xs) | (Branch p e ′)← bs ]

flatten (Case (Case e alt2 ) alt1 ) = Case e bs (map addCase alt2 )

where addCase (Branch p e ′) = Branch p (Case e ′ b1 )

Figure 6.44: The Curry implementation for the pre-processing transformations.
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blocks (Let vs e) | changed = e ′

where (e ′, changed) = makeBlocks vs e

alias (Let (as ++ [(v ,Var y)] ++ bs) e)

| v==y = Let (as ++ [(v , loop)] ++ bs) e

| otherwise = suby (Let (as ++ bs) e)

where loop = Comb FuncCall ("Prelude", "loop") [ ]

suby = sub (λx → x==v then Var y else Var x )

fillCases dt (Case e bs)

| not (null exempts) = Case e (bs ++ exempts)

where exempts = [Branch (Pattern b [ ]) exempt

| b ← missingBranches dt bs ]

Figure 6.45: The Curry implementation for the pre-processing transformations

continued.

In fillCases , dt is a DataTable, which holds information about data types.

The missingBranches takes a list of branches and a DataTable and returns the

names of the branches that are not present. In alias the sub function applies

a substitution to an expression.
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Let Floating

let x = let y = e1

in e2

in e3

V

let y = e1

in let x = e2

in e3

let x = let y free

in e1

in e2

V

let y free

in let x = e2

in e3

(let x = e1 in e2) ? e3 V let x = e1 in (e2 ? e3)

(let x free in e1) ? e2 V let x free in (e1 ? e2)

f (let x = e1 in e2) V
let x = e1

in f e2

f (let x free in e) V
let x free

in f e

case let x = e1

in e2 of

alts

V
let x = e1

in case e2 of alts

case let x free

in e of

alts

V
let x free

in case e of alts

Figure 6.46: GAS rules for putting FlatCurry programs into canonical form



101

Case in Case

case (case e of

b2 → e2) of

b1 → e1

V

case e of {b2 →

case e2 of

b1 → e1}

Double Apply

apply (apply f [x ]) [y ] V apply f [x , y ]

Case Apply

apply (case e of

pat → f ) x
V

case e of

pat → f x

Blocks
let a = b

b = c

c = d + e

d = b

e = 1

in a

V

let e = 1

in let b = c

c = d + e

d = b

in let a = b

in a

Alias
let x = y in e V e [x → y ]

let x = x in e V let x = loop in e

Case Fill

case e of

True → e
V

case e of

True → e

False → ⊥

Figure 6.47: GAS rules for putting FlatCurry programs into canonical form

(continued)

The notation {e } refers to a vector of expressions, similar to e.
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being the fresh variable provided to optimizations by GAS. If we ever need to create

a new variable, then that is one that is guaranteed to be unique. However, it is up

to the compiler writer to ensure that this constraint is enforced.

We may also have a condition of missing or extraneous case branches. This

will become more of an issue when we discuss case cancelling in the next chapter,

but we can sidestep the whole problem by enforcing a simple constraint. All cases

must be full, that is they must contain a branch for every possible constructor,

and they must not contain duplicates. The second constraint is already enforced

by the front end of the Curry compiler. Duplicate cases are converted into choice

expressions, however, we must fill in missing cases manually. This is the purpose of

the Case Fill transformation, which completes the definitional tree. If we have a

case with branches for constructors C1,C2 . . .Ck , then we look up the type T that

all of these constructor belong to. Next we get the list Ctrs of all constructors that

belonging to T . This list will contain C1,C2, . . .Cn , but it may contain more. For

each constructor not represented in the case-expression, we create a new branch

Ci → ⊥.

The blocks transformation takes a let block with multiple variable definitions,

and rewrites it to a series of let blocks where all variables are split into strongly

connected components. These are the smallest components that contain mutual

recursion. This is not strictly necessary, but it removes the need to check for

mutual recursion during the optimization phase. It will often transform a block of

mutually defined variables into a cascading series of let expressions with a single

variable, which will allow more optimizations to run throughout the compiler.

Finally the alias transformation will remove any aliased variables. If one vari-

ables is aliased to another, then it will do the substitution, but if a variable is

aliased to itself, then it cannot be reduced to a normal form, so we can replace it

with an infinite loop.

After running all of these transformations, our program is in canonical form,
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and we may choose to optimize it, or we may skip straight to the post-processing

phase. At this point we only need two transformations for post-processing however,

we will need to add more to support some of the optimizations. If we ever have

an expression of the form let x = case . . ., then we need to transform the case-

expression into a function call. We do not do this transformation in pre-processing

because we do not want to split functions apart during optimizations. The Let-

Case transformation has a single rule given in Figure 6.48.

Let Case

f v

= let x = case e of

pi → ei

in e ′

V

f v = let x = f1 x

in e ′

f1 x = case e of

pi → ei

Where x are free variables of e

and ei.
Var Case

case e of alts V let x = e in case x of alts

Figure 6.48: Rule for moving a let bound case out of a function, and eliminating

compound expressions in case-expressions.

Every let with a case-expression creates a new function f #n where n is incre-

mented every time.

Finally, in our post-processing phase we simply factor out the scrutinee of a

case-expression into a variable. The transformation is straightforward. An example

of a pre-process derivation is given in 6.49. At this point we are ready to transform

the canonicalized FlatCurry into ICurry.
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powaux v1 v2 v3 = case (==) v3 0 of

True → v1

False → let v4 = square v2

v5 = halve v3

in case (==) (apply (apply mod v3) 2) 1 of

True → powaux ((∗) v1 v2) v4 v5

False → powaux v1 v4 v5

V Double Apply [1,−1,−1, 0]

powaux v1 v2 v3 = case (==) v3 0 of

True → v1

False → let v4 = square v2

v5 = halve v3

in case (==) (apply mod v3 2) 1 of

True → powaux ((∗) v1 v2) v4 v5

False → powaux v1 v4 v5

V Blocks [1]

powaux v1 v2 v3 = case ((==) v3 0) of

True → v1

False → let v4 = square v2

in let v5 = halve v3

in case (==) (apply mod v3 2) 1 of

True → powaux ((∗) v1 v2) v4 v5

False → powaux v1 v4 v5

Figure 6.49: Reducing the powaux function defined in the standard Float

library.
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6.2 COMPILING TO ICURRY

ICurry is meant to be a bridge between Curry code and imperative languages like C,

Python, and Assembly. The let and case-expressions have been transformed into

statements, and variables have been explicitly declared. All mutually recursive

declarations are broken here into two steps: Declare memory for each node, then

fill in the pointers. This allows us to create expression graphs with loops in them.

Each function is organized into a sequence of blocks, and each block is broken up

into declarations, assignments, and a single statement. A statement can either fail,

return a new expression graph, or inspect a single variable to choose a case.

After we have finished transforming the FlatCurry, the transformation to ICurry

is much easier to implement. The algorithm from [16], given in Figure 6.51, can

be applied directly to the translated program. We show an example of translating

the function f from the start of the chapter into ICurry below.

The algorithm itself is broken up into 6 pieces. First F Compiles a FlatCurry

function into an ICurry function. Then B takes the function arguments, the ex-

pression, and the root, and compiles it into a block. We factor out B instead of

leaving it a part of F because we will be able to recursively call it to construct

nested blocks. This is also why we pass in a root parameter. In subsequent calls,

the scrutinee of a case expression will be set as the root. While this is not explicit

in the algorithm here, in our implementation, the root of any block under a case

expression is always v1. This will become the variable scrutenee from the C code

in Chapter 3.2.7. Next we declare variables with the D function. Each variables

bound by a let or free expression must be declared. We also declare a variable for

the scrutinee of the case statement, if this block has one. Then, R generates code

for the return value. If the expression is a case, then examine the case variable and

generate code for the associated blocks, otherwise we return the expression. Finally

E generates code for constructing a piece of the expression graph. If the expression
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p ⇒ t f program

t ⇒ C datatype

f ⇒ name = b function

b ⇒ d block

a

s

d ⇒ declare x variable declaration

| declfree x free variable declaration

a ⇒ v = e

s ⇒ return e return statement

| ⊥ failure

| case x of case statement

C → b

e ⇒ v variable expression

| NODE (l , e) node creation

| e1 ? e2 choice expression

v ⇒ x local variable

| v [i ] variable access

| ROOT root variable

l ⇒ Ck constructor label

| fk function label

Figure 6.50: Abstract Syntax of ICurry
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contains choices, function calls, or constructor calls, then the corresponding nodes

are generated. If the expression is a variable, then it is returned. If the expression

is a let or a free expression, then the principal expression is generated.

Let’s consider the function defined at the start of this chapter. After the Post-

processing transformation, we had the following function.

f v2 = let v3 = f0 v2

in let v4 = f1 v2

in v3 ? v4

f0 v2 = fcase v2 of

True → False

False → ⊥

f1 v2 = fcase v2 of

True → False

False → True

After translating to ICurry, we have a new function were the scructure is the

same, but the code is in a more imparitive style.
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F (f x = e) : = f = B (x , e,ROOT )

B (x ,⊥, root) : =⊥

B (x , e, root) : = declare x

D (e)

xi = root [i ]

A (e)

R (e)

D (let x free in e) : = free x

D (let x = e in e ′) : = declare x

D (case e of p → e ′) : = declare xe

A (let x = e in e ′) : = x = E (e)

[xi [p ] = xj | xi ∈ x ,

xj ∈ x ,

ei |p = xj ]

A (case e of ) : = xe = E (e)

R (case of C (x )→ e) : = case xe of B (x , e, xe)

R (e) : = return E (e)

E (x ) : = x

E (Ck e) : = NODE (Ck , E (e))

E (fk e) : = NODE (fk , E (e))

E (e1 ? e2) : = E (e1) ? E (e2)

E (let x = e in e ′) : = E (e)

E (let x free in e) : = E (e)

Figure 6.51: Algorithm for translating FlatCurry into ICurry
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f / 1 : {

declare x2

declare x3

declare x4

x2 = ROOT [0]

x3 = f0 (x2)

x4 = f1 (x2)

return (x3 ? x4)

}

f0 / 1 : {

declare x2

x2 = ROOT [0]

case x2 of

True / 0→ {

return False ()

}

False / 0→ {

exempt

}

}

6.3 GENERATING C CODE

Now that we have a program in ICurry, we can translate this to C. We already

have a good idea of what the C code should look like, and our ICurry structure fits

closely with this. The difference is that we need to be sure to declare and allocate

memory for all variables, which leads to a split in the structure of the generated

code. The code responsible for creating expression graphs and declaring memory
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will go in the *.h file, and the code for executing the hnf function will go in the

*.c file. This is a common pattern for structuring C and C++ code, so it is not

surprising that we take the same approach.

For each Data type D , we generate both a make D function and a set D. The

difference is that make D will allocate memory for a new node, while set D takes

an existing node as a parameter, and transforms it to the given type of node. We

do the same thing for every ICurry function f , and produce a make f and set f

function in C. Each node contains a symbol, that denotes the type of node, and

holds information such as the name, arity, and hnf function of the node. Along

with setting the symbol from Chapter 3.2.7, the make and set functions reset the

nondet flag to false, and set any children that were passed into the node.

The code to generate the C source file is given in Figures 6.52, 6.53, and 6.54.

This is a standard syntax directed translation. We hold of on showing the gener-

ated code for literal cases until Chapter 7.3.5 where we discuss our implementation

of unboxing. We also skip over the generation of the functions for case expressions

discussed in section 3.2.3. The code for this is largely the same. We just be-

gin generating code at each block inside the function, after the declarations and

assignments.

The translation is similar to how we translated from FlatCurry to ICurry.

Figure 6.52 is the main entry point. We translate the function, blocks, declarations,

and assignments. F translates an ICurry function to a C function. B translates

an ICurry block. Along with the block to translate, we also pass in the function

name, and current path to the block. This allows us to generate unique names

for each of the functions for case expressions. We will use this information in the

call to save, which pushes a rewrite onto the backtracking stack. The D function

translates a variable declaration, and A translates an assignment.

Figure 6.53 generates code for translating statements. The S function trans-

lates an ICurry statement. Both return and ⊥ just set the root of the expression
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to the appropriate value, but case statements require us to generate the switch

case loop from Figure 4.28. Most of the loop is largely identical to the example,

but to simplify the code generation process, we introduce a function save, which

takes the root node, and a copy of the current function at this particular case, and

pushes it on the backtracking stack. The notation f |p is read as the function with

symbol f at the position p, and is just a unique identifier for this particular case

statement. We also use a helper function FV to find all of the free variables in the

rest of the body, since those will be needed to construct f |p.

Finally Figure 6.54 translates free variables, case branches, and expressions

to C. The V function generates code to translate free variables. The final free

variable, and the constructors containing free variables are pushed on the stack in

reverse order. Then we set the root to be the first constructor. The C function

translates a case branch to a C case statement. We insert the check and call to

the save function, and generate code for the block. We split the generation of

expressions into two functions. The ES function sets the root to an expression.

The EM function creates nodes for a new expression.

In this chapter we used this library to transform FlatCurry programs into a

canonical form that we could then translate to ICurry. We also showed how to

translate ICurry program to C. In short we wrote the back end of a compiler in a

simple, clear, and short implementation. This shows the power of the GAS system

for applying simple transformations to Curry programs. In the next chapter we

will see how we can use it to write an Optimizer. Now we’re cooking with GAS!
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F(f(v) = b) := void f hnf(field root)

{

B(b, f, ε)

}

B({d; a; s}, f, p) := D(d)

A(a)

S(s, f, p)

D(declare x) := field v x;

D(declfree x) := field v x = free var();

A(x = e) := v x = EM(e);

A(x[i] = e) := child at(v x, i) = EM(e);

S(return e, f, p) := ES(root,e)

return;

S(⊥, f, p) := fail(root);

return;

Figure 6.52: Code for generating Programs, declarations, and assignments.
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S(case x of C → b, f, p) :=

bool nondet = false;

field scrutinee = x ;

while(true)

{

nondet |= scrutinee.n->nondet;

switch(scrutinee.n->symbol->tag)

{

case FAIL TAG:

if(nondet)

save(root, make f |p(FV (e)));

fail(root);

return;

case FUNCTION TAG:

HNF(scrutinee);

break;

case CHOICE TAG:

choose(scrutinee);

break;

case FORWARD TAG:

scrutinee = scrutinee.n->children[0];

break;

V(C)

C(Ci → bi, f, i:p)

}

}

l

Figure 6.53: Code for generating statements.
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C(C → b, f, p) :=

case C:

if(nondet)

save(root, make fp(FV (e)));

B(b, f, p)

V(C:CS) :=

case FREE TAG:

push frame(scrutinee, free var());

push choice(scrutinee, make CS free();

set C free(scrutinee);

nondet = true;

break;

ES(v) := set forward(root,v v)

ES(NODE(Ck, e)) := set C(root,EM(e), k);

ES(NODE(fk, e)) := set f(root,EM(e), k);

ES(e1?e2) := set choice(EM(e1), EM(e2));

EM(v) := v v

EM(NODE(Ck, e)) := make C(root,EM(e), k);

EM(NODE(fk, e)) := make f(root,EM(e), k);

EM(e1?e2) := make choice(EM(e1), EM(e2));

Figure 6.54: Code for generating cases, free variables, and expressions.
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CHAPTER 7

BASIC OPTIMIZATIONS

In the last chapter we saw how the GAS tool let us write transformation rules as

rewrite rules in Curry. The power of this tool came from two aspects. The first is

that it is easy to write rules syntactically. The second is that the rules are written

in Curry, so we are not limited by our rewriting system. We will put this second

part to use in optimizing Curry expressions.

In this chapter we outline a number of optimizations that were necessary to

implement in order for unboxing, deforestation, and shortcutting to be effective.

We start by introducing a new restriction on FlatCurry expressions called Admin-

istrative Normal Form, or A-Normal Form. This is a common form for functional

program optimizers to take, and it provides several benefits to Curry too. We

describe the transformation, and why it is useful, then we detail a few smaller

optimizations that move let-expressions around. The goal is to move the let-

expression to a position just before the variable is used in the expression. Finally

we discuss four optimizations that will do most of the work in the compiler: Case

canceling, dead code elimination, inlining, and reduction. These optimization are

an important part of any optimizing compiler, but they are often tricky to get

right. In fact, with the exception of dead code elimination, It is not clear at all

that they are even valid for Curry. We show an effective method to implement

them in a way that they remain valid for Curry expressions.

In this chapter we discuss one of the major hurdles to optimizing FlatCurry

programs, we then present a solution in A-Normal form, We do on to develop

some standard optimizations for FlatCurry including dead code elimination, case
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canceling, and inlining. Finally, we show these optimizations at work optimizing

the implementation the implementation 6 for the Bool type.

7.1 A-NORMAL FORM

Before we discuss any substantial optimizations, we need to deal with a significant

roadblock to optimizing Curry. Equational reasoning, in the sense of replacing

expressions with their derived values, is not valid when optimizing FlatCurry pro-

grams. The reason is that expressions in FlatCurry are not referentially transpar-

ent [56]. The evaluation of Curry programs is graph rewriting, which maintains

referential transparency, but since FlatCurry is composed of terms, and not graph,

we can not substitute expressions with their values.

While there have been graph intermediate representation proposed for lan-

guages [25, 48] FlatCurry is not one of these. We do think that incorporating the

graph based IR might improve the optimization process, and we believe it is a

promising area of future work.

To see an example of why this an issue, let us consider the following program.

double x = x + x

main = double (0 ? 1)

In pure lazy functional languages, it is always safe to replace a function with its

definition. So we should be able to rewrite main to (0?1)+(0?1), but this expression

will produce a different set of answers. This is the primary problem with optimizing

functional logic languages, but exactly why this happens is a bit tricky to pin down.

The non-determinism is not the only problem, for example evaluating id (0 ? 1)

at compile time is fine. We can even duplicate non-deterministic expressions with

the following example.
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double x = x + x

main = let y = (0 ? 1)

in double y

Here y is a non-deterministic expression, because it produces two answers when

evaluated, but the expression let y = (0 ? 1) in y + y is still equivalent to our

example. The real problem with our first example is a bit more subtle, and we

have to step back into the world of graph rewriting. If we construct the graph for

the first expression we see:

double •

? •

0 • 1 •

⇒ + •

? • ? •

0 • 1 •

double •

?y •

0 • 1 •

⇒ + •

?y •

0 • 1 •
Now the real issue comes to light. In the second example, while we copied a

non-deterministic expression in the code, we did not copy the non-deterministic

expression in the graph. This gives us a powerful tool when reasoning about

Curry expressions. Even if a variable is duplicated in the source code, it is not

copied in the graph. Since this duplication of non-deterministic expressions was

the main concern for correctness, the solution is pretty straightforward. If we

copy an expression in FlatCurry, then we should instead store that expression in

a variable and copy the variable.

We can enforce this restriction by disallowing any compound expressions. Specif-

ically, all function calls, constructor calls, choices, and case expression must either

be applied to literal values or variables. Fortunately we are not the first to come
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up with this idea. In fact this restricted form is used in many functional compil-

ers, and is known as Administrative Normal Form (ANF) [41]. The idea originally

was to take CPS, another well known intermediate representation for functional

languages, and remove common “administrative redexes”. After removing the ad-

ministrative redexes, we can remove the continuations, and rewrite the program

using let-expressions. Flanagan et al. showed that these transformations can be

reduced into a single A-Normal form transformation. We give the definition of

A-Normal Form for Curry programs in figure 7.55 and we implement the transfor-

mation using GAS in figure 7.56 with the Curry implementation in Figure 7.57.

ANF:

a ⇒ v Variable

| l Literal

| ⊥ Failed

e ⇒ a1 ? a2 Choice

| fk a Function Application

| Ck a Constructor Application

| let (v = e) in e Variable Declaration

| let v free in e Free Variable Declaration

| case a of alt Case Expression

Figure 7.55: Restricting Curry expressions to A-Normal Form.

An atom is either a variable, a literal, or a failure. Compound expressions are

only allowed to contain atoms.

As long as we enforce this A-Normal Form structure, we restore equational

reasoning for Curry programs. We do not even need to enforce A-Normal Form

strictly here. During optimization, it is often useful to be able to replace variable
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case e of alts V let x = e in case x of alts

f a1 a2 . . . ek . . . en V let x = ek in f a1 a2 . . . x . . . en

C a1 a2 . . . ek . . . en V let x = ek in C a1 a2 . . . x . . . en

e1 ? e2 V let x = e1 in x ? e2

a1 ? e2 V let x = e2 in a1 ? x

Figure 7.56: Rules for transforming Curry expression to A-Normal Form.

a is used for atoms, e is used for arbitrary expressions, and x is a fresh variable

name.

toANF :: Opt

toANF (n, ) (Case ct e bs)

| not (trivial e) = Let [(n, e)] (Case ct (Var n) bs)

toANF (n, ) (Comb ct f (as ++ [e ] ++ bs))

| all trivial as ∧ not (trivial e) = Let [(n, e)] (Comb ct f (as ++ [Var n ] ++ bs))

toANF (n, ) (Or e1 e2)

| not (trivial e1) = Let [(n, e1)] (Or (Var n) e2)

| not (trivial e2) = Let [(n, e2)] (Or e1 (Var n))

Figure 7.57: Curry implementation of A-Normal Form transformation.
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bound to constructors and partial applications with their definitions. Since these

nodes have no rewrite rules that can apply at the root, we can do this replacement

without fear of problems with non-deterministic expressions. This will be referred

to as limited A-Normal Form.

In fact, this is exactly how the operational semantics were defined for FlatCurry.

In [3] FlatCurry programs are translated into a normalized form before evaluation

begins. We choose to flatten these expressions as well because it produces more

uniform programs, and more optimizing transformations become valid. Some ex-

amples of programs in ANF are given in Figure 7.58.

7.2 CASE CANCELING

Finally, we come to our first example of an optimization. In fact, this is arguably

our most important optimization. It is a very simple optimization, but it proves

to be very powerful. Consider the following code:

notTrue = case True of

True → False

False → True

Expressions like this come up frequently during optimization. This is fantastic,

because it is clear what we should do here. We know that the True branch will be

taken, so we might as well evaluate the case expression right now.

notTrue = False

This transformation is called Case Canceling, and it is the workhorse of all of

our other optimizations. The transformation is given and 7.60 and examples of

the transformation are given in 7.61. If the scrutinee of a case is labeled by a

constructor, then we find the appropriate branch, and reduce to that branch. The

only real complication is that we need to keep the expression in A-Normal form.



121

fib n = case n < 1

True → n

False → fib (n − 1) +

fib (n − 2)
V∗

fib n = let x = n < 1

in case x of

True → n

False → let n1 = n − 1

n2 = n − 2

f1 = fib n1

f2 = fib n2

in f1 + f2

sumPrimes = foldr (+) 0

◦ filter isPrime

◦ enumFromTo 1

V∗

sumPrimes = let v1 = (+)

in let v2 = foldr v1 0

in let v3 = isPrime

in let v4 = filter v3

in let v5 = enumFromTo 1

in let v6 = v4 ◦ v5

in v2 ◦ v6

Figure 7.58: Examples of Curry programs translated to A-Normal Form.
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However, we can simply add let-expressions for every variable that the constructor

binds.

We also include two other optimizations. These optimizations are really about

cleaning up after Case Canceling runs. The first is Case Variable elimination.

Consider the expression from the optimization of compare for Bool in Figure 7.59.

The use of Case Variable elimination allows us to set up a situation where a

case can cancel later. This occurs a lot in practice, but this optimization may

raise red flags for some. In general it is not valid to replace a variable with an

expression in FlatCurry. That variable could be shared, and it could represent a

non-deterministic expression. Fortunately, this is still viable in Curry.

We give a short sketch of why Case Variable elimination is viable in Curry

with the following example. Suppose I have the following FlatCurry definition for

notHead . This function will look at the first element of a list, and return not True

if the head of the list evaluates to True.

notHead xs = case xs of

x : → case x of

True → not x

We use a key fact from Brassels work [26][Lemma 4.1.10]. Lifting a case into it

is own function Does not change the set of values an expression evaluates to. We

can use this to lift the inner case into it is own function.

notHead xs = case xs of

x : → notHead1 x

notHead1 x = case x of

True → not x

Since uniform programs can be viewed as inductively sequential rewrite sys-

tems. The function notHead1 should be equivalent to the following Curry program.
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in case v2 of

True → LT

False → case v2 of

True → EQ

False → case v1 of

True → GT

False → EQ

V Case Var [−1, 0,−1]

in case v2 of

True → LT

False → case False of

True → EQ

False → case v1 of

True → GT

False → EQ

V Case Cancel [−1, 0,−1, 1]

in case v2 of

True → LT

False → case v1 of

True → GT

False → EQ

. . .

Figure 7.59: a piece of the optimization derivation for the implementation of

compare for Bool .
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notHead1 True = not True

notHead1 False = ⊥

Now this program could be compiled into the following semantically equivalent

FlatCurry program.

notHead1 x = case x of

True → not True

False → ⊥

Finally, by the path compression theorem we can reduce the call in notHead to

get the following result.

notHead xs = case xs of

x : → case x of

True → not True

This gives us a general procedure for converting FlatCurry programs to the

same program after performing Case Variable elimination. While we do not per-

form these steps in practice, each one has already been shown to be valid on their

own, so our transformation is also valid.

Finally we have Dead Code Elimination. This is a standard optimization. In

short, if we have an empty let or free expression, then we can remove them. This

may happen due to the aliasing rule from last chapter. Furthermore if a variable

is never used, then it can also be removed. Finally, if we have let x = e in x ,

then we do not need to create the variable x . These are correct as long as we are

careful to make sure that our variable definitions are not recursive.

Now that we have finally created an optimization, we can get back to moving

code around in convoluted patterns. In the next section we look at how we can

inline functions. Unlike Case Canceling, It is harder to determine the correctness

of Inlining. In fact, we have to do a lot of work to inline functions in Curry.
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caseCancel :: Opt

caseCancel (Case (Comb ConsCall n es) ( ++ [Branch (Pattern n vs) e ] ++ ))

= foldr Let e (zip vs es)

caseCancel (Case (Lit l) ( ++ [Branch (LPattern l) e ] ++ )) = e

caseCancel (Case ⊥ of ) = ⊥

caseVar (Case (Var x ) bs)

| x ∈ vars bs = Case (Var x ) (map (repCaseVar x ) bs)

repCaseVar x (Branch (Pattern n vs) e) = Branch (Pattern n vs) (sub f e)

where f v = if v==x then Comb ConsCall n (map Var vs) else Var v

repCaseVar x (Branch (LPattern l) e) = Branch (LPattern l) (sub f e)

where f v = if v==x then Lit l else Var v

deadCode (Free [ ] e) = e

deadCode (Let [ ] e) = e

deadCode (Free (as ++ [v ] ++ bs) e)

| not (hasVar v e) = Free (as ++ bs) e

deadCode (Let [(v , )] e)

| not (hasVar v e) = e

deadCode (Let [(x , e)] (Var x ))

| not (hasVar x e) = e

Figure 7.60: The code for Case Canceling, Case Variable Elimination, and

Dead Code Elimination.
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Case Cancel

case Ci e of

Ci x → e ′
V

let x = e

in e ′

case li of

li → e ′
V e ′

case ⊥ of alts V ⊥

Case Var

case v of

C x → e ′
V

case v of

C x → e ′[C x ← v ]

Dead Code

let free in e V e

let in e V e

let v free in e | v 6∈ e V e

let v = e ′ in e | v 6∈ e V e

let v = e in v | v 6∈ e V e

Figure 7.61: Case Canceling, Case Variable, and Dead Code Elimination op-

timizations.
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7.3 INLINING

As mentioned at the start of this chapter, inlining is not generally valid in Curry.

So, we need to establish cases when inlining is valid, determine when it is a good

idea to inline, and ensure that our inlining algorithm is correct. This work is

largely based on [29,64].

Similarly to [64], we need to make a distinction between inlining and reduction.

When we use the term inlining we are referring to replacing a let bound variable

with it is definition. For example let x = True in not x could inline to not True.

When we use the term reduction, we are referring to replacing a function call with

the body of the function where the parameters of the function are replaced with

the arguments of the call. Again, as an example let x = True in not x could

reduce to:

let x = True

in case x of

True → False

False → True

The first problem with inlining and reduction we encounter is recursion. Con-

sider the expression:

let loop = loop in . . .

If we were to inline this variable, we could potentially send the optimizer into

an infinite loop. So, we need to somehow mark all recursive variables and func-

tions. The next problem follows immediately after that. So far we have done

transformations with local information, but reduction is going to require global

information. In fact, for reduction to be effective, it will require information from

different modules. Consider the function:

sumPrimes = foldr (+) 0 ◦ filter isPrime ◦ enumFromTo 1
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Aside from the fact that sumPrimes contains mostly recursive functions, we would

not be able to optimize it anyway, because ◦ is defined in the standard Prelude. If

we can not reduce the definition of ◦, then we are fighting a losing battle.

This brings us to our third problem with inlining. The sumPrimes function

is actually partially applied. Its type should be sumPrimes :: Int → Int , but

sumPrimes is defined in a point-free style. Point-free programming causes a lot

of problems, specifically because FlatCurry is a combinator language. In IRs like

Haskell’s Core, we could solve this problem by inlining a lambda expression, but

it is not clear at all that inlining a lambda expression is valid in Curry. Instead,

to solve this problem, we convert functions to be fully applied.

In order to solve these problems, we keep a map from function names to several

attributes about the function. This includes: if the function is defined externally;

if the function is known to be deterministic; if the function contains cases; the

parameters of the function; the current number of variables in a function; the

size of the function; and the function definition. This map is updated every time

we optimize a new function, so we can reduce all functions that we have already

optimized. We will use this map to determine when it is safe and effective to reduce

a function.

7.3.1 Partial Applications

Dealing with partial applications is a bit more tricky. In fact, we can not use

the GAS system to solve this problem because we may not know if a function is a

partial application until we have optimized it. Consider the sumPrimes function

again. It does not look like a partial application because the root function, ◦, is

fully applied. Let us look at the definition for ◦. In Curry it is defined using a

lambda expression.

f ◦ g = λx → f (g x )



129

However, when translated to FlatCurry, this lambda expression is turned into a

combinator.

f ◦ g = compLambda1 f g

compLambda f g x = f (g x )

So, when we try to optimize sumPrimes we end up with the derivation in Figure

7.62.

The Reduce Base and Reduce Let transformations will be described later.

At this point there is no more optimization that can be done, because everything

is a partial function. But this is not a great result. We have created a pipeline,

and when we pass it a variable, then everything will be fully applied. So, how do

we solve the problem?

The key is to notice that if the root of the body of a function is a partial appli-

cation, then we can rewrite our definition. We simply add enough variables to the

function definition so the body of the function is fully applied. The transformation

Add Missing Variables

f v = g k e V f v x = apply (g k e) x

The sumPrimes functions is transformed with the derivation in 7.63 and we

can continue to optimize the function.

7.3.2 The Function Table

In order to keep track of all of the functions we have optimized we create a function

lookup table called FF . The function table is just a map from function names to

information about the function. We use the following definitions for lookups into

the function table. IF f returns true if we believe that f is a good candidate for

reduction. We have designed the compiler so that whatever heuristic we use to

decide if a function can be inlined, it is easy to tweak, but at the very least f should
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let v1 = p2

in let v2 = foldr1 v1 0

in let v3 = isPrime1

in let v4 = filter 1 v3

in let v5 = enumFromTo1 1

in let v6 = v4 ◦ v5

in v2 ◦ v6

Reduce BaseV [−1,−1,−1,−1,−1,−1]

let v1 = p2

in let v2 = foldr1 v1 0

in let v3 = isPrime1

in let v4 = filter 1 v3

in let v5 = enumFromTo1 1

in let v6 = v4 ◦ v5

in compLambda1 v2 v6

Reduce LetV [−1,−1,−1,−1,−1]

let v1 = p2

in let v2 = foldr1 v1 0

in let v3 = isPrime1

in let v4 = filter 1 v3

in let v5 = enumFromTo1 1

in let v6 = compLambda1 v4 v5

in compLambda1 v2 v6

Figure 7.62: Initial optimization of sumPrimes
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in let v2 = foldr1 (+1) 0

in let v3 = isPrime1

in let v4 = filter 1 v3

in let v5 = enumFromTo1 1

in let v6 = compLambda1 v4 v5

in compLambda1 v2 v6

V Add Missing Variables

apply (in let v2 = foldr1 (+1) 0

in let v3 = isPrime1

in let v4 = filter 1 v3

in let v5 = enumFromTo1 1

in let v6 = compLambda1 v4 v5

in compLambda1 v2 v6) x1

V Let Floating

in let v2 = foldr1 (+1) 0

. . .

in let v6 = compLambda1 v4 v5

in apply (compLambda1 v2 v6) x1

V Unapply

in let v2 = foldr1 (+1) 0

. . .

in let v6 = compLambda1 v4 v5

in compLambda1 v2 v6 x1

Figure 7.63: Adding a missing variable to sumPrimes
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not be external, nor too big, and inlining f should not lead to an infinite derivation.

UF x f e attempts to determine if reducing the function f in the expression

let x = f . . . in e would be useful. Again this heuristic is easily tweakable, but

currently, a function is useful if x is returned from the function, it is used as the

scrutinee of a case expression, or it is used in a function that is likely to be reduced.

SF f returns True if f is a simple reduction with no case expressions. It is always

useful to reduce these functions. CF f [e1, . . . en ] returns true if reducing f with

e1 . . . en will likely cause Case Canceling.

7.3.3 Function Ordering

The problem of function ordering seems like it should be pretty inconsequential,

but it turns out to be very important. However, this problem has already been

well studied [29, 64], and the solutions for other languages apply equally well to

Curry.

The problem seems very complicated at the start. We want to know what is

the best order to optimize functions. Fortunately there is a very natural solution.

If possible we should optimize a function before we optimize any function that calls

it. This turns out to be an exercise in Graph Theory.

We define the Call Graph of a set of functions F = {f1, f2, . . . fn } to be the graph

GF = (F, {fi → fj |fi calls fj }). This problem reduces to finding the topological

ordering of GF. Unfortunately, if F contains any recursion, then the topological or-

dering is not defined. So, instead, we split GF into strongly connected components,

and find the topological ordering of those components. Within each component,

we pick an arbitrary function, called the loop breaker , which is removed from the

graph. This is done with a heuristic based on the number of incoming edges in the

graph, and how likely we think it is to be inlined. We then attempt to find the

topological order of each component again. This process repeats until our graph

is acyclic.
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These loop breakers are marked in FF , and they are never allowed to be re-

duced. Every other function can be reduced, because all functions that it calls,

except for possibly the loop breakers, have been optimized.

Consider the program:

f x = g x

g x = h x

h x = case x of

0→ 0

→ 1 + f x

f •
��

g • // • h

]]
⇒ f •

��
g •
��

h •

The graph for this function is a triangle, because f calls g which calls h which

calls f . However, if we mark h as a loop breaker, then suddenly this problem is

easy. When we optimize h, we are free to reduce f and g . We can see the derivation

in Figure 7.64.

7.3.4 Inlining

Now that we have everything in order, we can start developing the inlining trans-

formation. As mentioned before, we need to be careful with inlining. In general,

unrestricted inlining is not valid in Curry. This is a large change from lazy lan-

guages like Haskell, where it is valid, but not always a good idea. The other major

distinction is that FlatCurry is a combinator language. This means that we have

no lambda expressions, which limits what we can even do with inlining.

Fortunately for us, these problems actually end up canceling each other out.

In Peyton-Jones work [64] most of the focus was on inlining let bound variables,

because this is where duplication of computation could occur. However, we have

two things working for us. The first is that we can not inline a lambda since they

do not exist. The second is that we have translated FlatCurry to A-Normal Form.
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h x = case x of

0→ 0

→ let y = f x

in 1 + y

V Reduce Let

h x = case x of

0→ 0

→ let y = g x

in 1 + y

V Reduce Let

h x = case x of

0→ 0

→ let y = h x

in 1 + y

Figure 7.64: Optimization of Strongly Connected Functions.
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While Haskell programs are put into A-Normal Form when translating to STG

code [60], this is not the case for Core. Certain constraints are enforced, such as

the trivial constructor argument invariant, but in general Core is less restricted.

Translating to A-Normal form gives us an important result. If we inline a

constructor then we do not affect the computed results. This same result holds

for literal values, but we will discuss how we handle literals in Curry in the next

chapter.

Theorem 7. If let x = e1 in e is a Curry expression in limited A-Normal Form,

and e1 is rooted by a constructor application, or partial application, then e[e1 ← x]

computes the same results.

Proof. First note that given our semantics for partial application, a partially ap-

plied function is a normal form. There are no rules for evaluating a partial appli-

cation, only for examining one while evaluating an apply node.

If e1 is a constructor, or partial application, then it is a normal form. Therefore

it is a deterministic expression by definition 3.2.6. Since e1 is deterministic by the

path compression theorem, e evaluates to the same values as e[e1 ← x ]

Now we have enough information to inline variables as long as we restrict

inlining to literals, constructors, variables, and partial applications, although the

case for variables is already subsumed by the Alias rule 6.47. We add two new

rules. Let Folding allows us to move variable definitions closer to where they

are actually used, and Unapply allows us to simplify expressions involving apply .

Both of these are useful for inlining and reduction. The GAS rules are given in

Figure 7.65. Note that the Unapply rule corresponds exactly to the evaluation

step for application nodes in our semantics. The inlining rules correspond to the

cases discussed above. We add one more rule. We inline a variable bound to

a case expression, if that expression occurs once in a needed position. Since we

can not determine if the variable occurs in a needed position at compile time, we
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can use check if it occurs in a strict position [82]. This is usually good enough.

The implementation of Inlining in the GAS system is given in Figure 7.66. The

combinator (x , e) @>σ is used to build up substitutions. It means that we add we

add x→ e to the substitution σ. The idSub substitution is just the identity. In the

letFold rule, hasVar checks is expression e contains variable v . In the fist Inlining

rule, the strict and uses functions are just to ensure that x is a in a strict position,

and that it is only at one position in e. These are not required for correctness, we

have found that these restrictions generate better code.

7.3.5 Reduce

Finally we come to reduction. While this was a simpler task than inlining in GHC,

it becomes a very tricky prospect in Curry. Fortunately, we have already done the

hard work. At this point, in any given function definition, the only place a function

symbol is allowed to appear in our expressions is as the root of the body, as the root

of a branch in a case expression, as the root the result of a let expression, or as

a variable assignment in a let-expression. Furthermore our functions only contain

trivial arguments, so it is now valid to reduce any function we come across.

Theorem 8 (reduction). Let e be an expression in limited A-Normal Form, let

e|p = f e, where f is a function symbol with definition f v = b, and let σ = {v 7→

e}. Then e[σ b ← p] has the same values as e.

Proof. First note that There is only one way to replace an expression where the

root has symbol f , with the body of the definition for f . Therefore This is a

deterministic step, and by the path compression theorem e and e[σ b ← p] have

the same values.

We give the GAS rules for reduction in Figure 7.67. These rule make use of the

function table We make sure that BF f replaces the definition with fresh variables.

Therefore, we avoid any need to deal with shadowing and name capture. This
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Let Folding

let v = ev

in case e of Ci x → ei
| v 6∈ e V

case e of

Ci x → let v = ev in ei

Unapply

apply fk (a1 . . . ak . . . an) V
let x = f0 a1 . . . ak

in apply x ak+1 . . . an

apply fn (a1 . . . an) V f (a1 . . . an)

apply fk (a1 . . . an) | k > n V fk−n (a1 . . . an)

Inlining

let x = case e of alts

in e ′

| x ∈1
e ′

V e ′[ case e of alts ← x ]

let x = C v in e | x 6∈ e V e[C v ← x ]

let x = fk v in e | x 6∈ e V e[fk v ← x ]

let x = l in e V e[l ← x ]

Figure 7.65: Rules for variable inlining.

We need to ensure that x is not used recursively before we inline it. Guards

indicate that the rule fire only if the guard is satisfied. The notation ∈1
indicates that the variable x occurs exactly once in a strict position in e′, so

the case will be evaluated.
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unapply :: Opt

unapply (v , ) (apply (Comb (FuncPartCall k) f es) as)

= case compare k n of

LT → Let [(v ,Comb FuncCall f (es ++ as1))] (apply (Var n) as2)

EQ → Comb FuncCall f (es ++ as)

GT → Comb (FuncPartCall (k − n)) f (es ++ as)

where n = length as

(as1, as2) = splitAt (n − k)

letFold :: Opt

letFold (n, ) (Let [(v , ev)] c@(Case e bs))

| not (hasVar e v)

= Case e (zipWith addVar [1 . . ] bs)

where addVar k (Branch p e) = Branch p (Let [(n + k , σ k ev)] (σ k e))

σ k = sub ((v , n + k) @> idSub)

inline :: Opt

inline (Let [v@(x ,Case )] e)

| strict x e & uses x e==1 = sub (v @> idSub) e

inline (Let [(x , f @(Comb ct ))] e)

| (isCons ct ∨ isPart ct) & nonRecursive x f = sub ((x , f ) @> idSub) e

inline (Let [v@( ,Lit )] e) = sub (v @> idSub) e

Figure 7.66: GAS implementation of the inlining rules.
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strategy was taken from [64] and it works very well. Although, since FlatCurry

uses numbers exclusively to represent variables, we do not get the same readable

code.

Reduce Base:

f e
| top ∧

IF(f )
V BF(f )[e ← v ]

Reduce Branch:

case e ′ of Ctr → f e | IF(f ) V case e ′ of BF f [e ← v ]

Reduce Let:

let vi = ei in f e | IF(f ) V let vi = ei in BF f [e ← v ]

Reduce Useful:

let x = f e in e ′ | UF(f ) V let x = BF f [e ← v ] in e ′

Reduce Simple:

let x = f e in e ′ | SF(f ) V let x = BF f [e ← v ] in e ′

Reduce Cancels:

let x = f e in e ′ | CF(f ) V let x = BF f [e ← v ] in e ′

Figure 7.67: The rules for reduction.

All expressions are kept in A-Normal Form. Reduce Base is only run at the

root of the body. While the last three rules are very similar, It is useful to

keep them separated for debugging reduction derivations.

We end by giving a couple of examples of reductions to see how they work in

practice. The first example returns from the start of this chapter. We see that

double (0 ? 1) is reduced so we do not make a needless call to double, but we have
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reduce :: FunTable → Opt

reduce funs = reduce base funs ? reduce branch funs

? reduce let funs ? reduce useful funs

? reduce simple funs ? reduce cancels funs

reduce base funs (n,True) b@(Comb FuncCall f )

| inlinable funs f = makeReduce funs n b

reduce branch funs (n, ) (Case ct e

(as ++ [Branch p b@(Comb FuncCall f )] ++ bs))

| inlinable funs f = Case ct e (as ++ [Branch p b ′ ] ++ bs)

where b ′ = makeReduce funs n b

reduce let funs (n, ) (Let vs b@(Comb FuncCall f ))

| inlinable funs f = Let vs (makeReduce funs n b)

reduce useful funs (n, ) (Let [(x , b@(Comb FuncCall f ))] e)

| inlinable funs f ∧ useful funs False x e = Let [(x , b ′)] e

where b ′ = makeReduce funs n b

reduce simple funs (n, ) (Let [(x , b@(Comb FuncCall f ))] e)

| simple funs f = Let [(x , b ′)] e

where b ′ = makeReduce funs n b

reduce cancels funs (n, ) (Let [(x , b@(Comb FuncCall f es))] e)

| inlinable funs f ∧ cancels funs f (map isConsExpr es) = Let [(x , b ′)] e

where b ′ = makeReduce funs n b

Figure 7.68: GAS code for the Reduce optimizations.

The makeReduce function corresponds to BF . The function inlinable, useful ,

simple, and cancels correspond to IF ,UF , SF and CF respectively.
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avoided the problem of run time choice semantics.

Our next function comes from a possible implementation of 6 for Boolean

values. In fact, this is the implementation we chose for the instance of the Ord class

for Bool . The example is a bit long, but it shows how many of these optimizations

work together to produce efficient code.

In the next chapter we discuss three more optimizations, Unboxing, Case Short-

cutting, and Deforestation. While Unboxing and Deforestation are in common use

in lazy function compilers, they have not been used for functional-logic languages

before. Case Shortcutting is a new optimization to Curry.

double x = x + x

main = double (0 ? 1)

double 0 ? 1

V ANF App

let v1 = 0 ? 1

in double v1

V Reduce Let

let v1 = 0 ? 1

in v1 + v1

Figure 7.69: Derivation of double (0 ? 1)
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not v1 = case v1 of

True → False

False → True

v1 ∧ v2 = case v1 of

True → v2

False → False

v1 ∨ v2 = case v1 of

True → True

False → v2

v1 6 v2 = not v1 ∨ v2

Figure 7.70: Definition of 6 for Bool .
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(not v1) ∨ v2

V ANF App [ ]

let v3 = not v1

in v3 ∨ v2

V Reduce Useful [ ]

let v3 = case v1 of

True → False

False → True

in v3 ∨ v2

V Reduce Let [ ]

let v3 = case v1 of

True → False

False → True

in case v3 of

True → v3

False → v2

V Case Var [−1]

let v3 = case v1 of

True → False

False → True

in case v3 of

True → True

False → v2

Figure 7.71: Derivation of 6 for Bool 1
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V Inline Case in Case [ ]

case (case v1 of

True → False

False → True) of

True → True

False → v2

V Case in Case [ ]

case v1 of

True → let v7 = False in case v7 of

True → True

False → v2

False → let v8 = True in case v8 of

True → True

False → v2

V Inline Constructor [0]

case v1 of

True → case False of

True → True

False → v2

False → let v8 = True in case v8 of

True → True

False → v2

Figure 7.72: Derivation of 6 for Bool 2
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V Case Cancel Constructor [0]

case v1 of

True → v2

False → let v8 = True in case v8 of

True → True

False → v2

V Inline Constructor [1]

case v1 of

True → v2

False → case True of

True → True

False → v2

V Case Cancel Constructor [1]

case v1 of

True → v2

False → True

Figure 7.73: Derivation of 6 for Bool 3
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CHAPTER 8

MEMORY OPTIMIZATIONS

In this chapter we develop three new optimizations for Curry. First, Unboxing is

an attempt to remove boxed values from our language. We discuss our implemen-

tation of primitive values and operations, and how explicitly representing the boxes

around these values leads to optimizations. Second, we look at an entirely new

idea for removing node constructions that are quickly evaluated by case expres-

sions that we call Case Shortcutting. Finally, Deforestation, specifically Shortcut

Deforestation, is a optimization for removing intermediate lists. This has been

studied extensively in functional languages, but it has not been shown to be valid

in the presence of non-determinism. We prove its validity in Curry, and give a

formulation that can apply to combinator languages.

8.1 UNBOXING

So far we have avoided talking about operations in Curry for primitive data types

Int , Char , and Float . This is primarily because in all current implementations of

Curry, primitive values are boxed. A box for a primitive value is a node in the

expression graph that holds the primitive value. This is done primarily to give a

uniform representation of nodes in our expression graph. There are many reasons

why we would want to box primitive values. It makes the implementations of run-

time systems, garbage collectors, and debugging software much easier. The choice

of how we represent boxes has a pervasive effect on the compiler. Since we knew

how we intended to implement Unboxing, we decided to use our representation

from the beginning.
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We chose to follow the style of Unboxing from Launchbury et al. [91] and

represent all boxes explicitly in FlatCurry, as opposed to other system which may

represent the boxes at run-time, but do not mention the boxes at compile time.

This has several advantages, but one of the most important is that we can apply

optimizations to the boxes themselves.

8.1.1 Boxed Values

Before we get into the process of unboxing values, we need to look at how we

represent boxed values. The idea of boxing primitive values is common in higher

level languages, since it allows us to simplify the run-time system. This is especially

true in lazy languages where expressions such as 3 + 5 are represented by an

expression graph that will eventually hold the value 8 after it is evaluated. It is

important that every node that points to the expression graph of 3+5 at run-time

will then point to the expression graph of 8 after it is evaluated. This update is

difficult if 8 is the literal C integer 8. However, if 8 is instead a constructor node

containing the value 8, then this is fine. We just replace the contents of the node

labeled by + by a node labeled by Int with one child, which is the C integer 8.

The purpose of unboxing is not to remove boxes entirely. Instead we try to

find cases where we replace the creation of new nodes in the expression graph with

primitive arithmetic operations. The idea from Launchbury [91] is that we can

find these cases where we can remove boxes more easily if the boxes are explicitly

represented in the intermediate representation. In order to represent boxes we

need to make three changes to our FlatCurry programs.

The first is that every primitive value, a literal value of type Int , Float , or

Char is replaced with a constructor of the appropriate type. For example 5 + 6 is

transformed into the expression (Int 5) + (Int 6).

Second, we need to wrap cases of literal values with cases that remove the box.

This can best be demonstrated with the example in Figure 8.74. The value x is
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evaluated down to an Int node, then we extract the unboxed integer xprim and

proceed with the primitive case statement. We also add one dummy branch to the

unboxing case for each branch in the primitive case. These branches are there to

instruct the code generator on what values a free variable could take on.

case x of

0→ False

1→ True

V

case x of

Int xprim → case xprim of

0→ False

1→ True

0→ free case

1→ free case

Figure 8.74: Wrapping a primitive case with a case to remove the box.

Finally we need to give new definitions for primitive operations such as + and

6. All of the operators fit the same pattern, so we only give the definitions for

+ and 6 for integers in Figure 8.75. In order to evaluate a + node, we evaluate

the first argument to its box, then we unbox it with the case statement. We do

not have any dummy branches for free variables. This represents the fact that

+ is a rigid operation. We proceed to evaluate and unbox the second argument.

Finally, we return the result inside of a new box. The +prim operation performs

the addition, and is translated to an add expression in C. The 6prim operation

performs a comparison between two integers, and returns either True or False

based on the result.

Before we even look at trying to remove these boxes, it is worth taking a second

to see if we can optimize literal values. There are actually a couple of significant

improvements we can make that apply more broadly.
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(+) :: Int → Int → Int

x + y = case x of

Int xprim → case y of

Int yprim → let v = xprim +prim yprim

in Int v

(6) :: Int → Int → Bool

x 6 y = case x of

Int xprim → case y of

Int yprim → xprim 6prim yprim

Figure 8.75: Definitions for + and 6 taking boxed integers.

The first is that for any constructor with no arguments, such as True or

Nothing , we can create a single static node to represent that constructor. This

eliminates the need to allocate memory for each instance of True. While this is

great, we might expect to go further. For example, if we could turn case state-

ments of Boolean expressions into simple if statements in C. We could compare

the scrutinee to True, and if it is, then we evaluate the true branch, otherwise

we evaluate the false branch. Unfortunately, this does not work for two reasons.

First, not all instances of True can be the static True nodes. As an example, at

run-time not False will evaluate to True, but the node is going to be in the same

location as the original not node. Second, even if we have a Boolean expression

that has been evaluated to a value, it could still be a FAIL or FREE node.

The next optimization we can make is for the primitive types Int , Char , and

Float . Since these constructors have an argument, namely the primitive value, we

cannot make a single static node for them. We might try to create a single static
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node for every literal value used in the program. Unfortunately this does not tend

to help us that much. Consider the standard factorial program:

fac n = case n of

0→ 1

n → n ∗ fac (n − 1)

Now if we evaluate fac 42, we will allocate memory up front for 0, 1, and 42.

This will certainly save some memory, but not as much as we would hope. We will

still construct every number between 2 and 41.

A better solution is to employ the flyweight pattern similar to the JVM. The

idea is that small integers are likely to come up often. So, we statically allocate all

of the integers between −128 and 128. We do a similar allocation for characters.

Unfortunately, this patterns did not show improved performance for floating point

numbers.

Now that we have seen how to represent boxes, we can work on removing them,

and see what we actually gain from it.

8.1.2 Unboxed Values

In order to get an idea of the effectiveness of unboxing, let us look at an example.

Consider the function to compute Fibonacci numbers if Figure 8.76. We will work

with this example extensively in the next couple of optimizations, in an attempt

to see how much we can optimize it.

Unfortunately, using the optimizations we have already discussed, this function

can not be optimized any further. The fib function is recursive, so we can not

reduce it, and n − 1 contains a primitive operation. However, we allocate a lot of

memory while evaluating this function. We create 5 nodes for each recursive call,

cont , n1, f1, n2, f2. We do not create a node for f1+ f2 since that will replace the root

node during evaluation. We can statically allocate a node for each integer, because
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fib :: Int → Int

fib n = case n 6 1 of

True → n

False → fib (n − 1) + fib (n − 2)

After translating to A-Normal Form:

fib :: Int → Int

fib n = let cond = n 6 1

in case cond of

True → n

False → let n1 = n − 1

in let f1 = fib n1

in let n2 = n − 2

in let f2 = fib n2 in f1 + f2

After adding boxes:

fib :: Int → Int

fib n = let cond = n 6 Int 1

in case cond of

True → n

False → let n1 = n − Int 1

in let f1 = fib n1

in let n2 = n − Int 2

in let f2 = fib n2 in f1 + f2

Figure 8.76: A program for generating Fibonacci numbers translated to ANF,

and adding boxes.
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the integers are constant. However, there is still no need for this much allocation.

The problem is that each of our primitive operations and recursive calls must be

represented as a node to fit in with our definition of an expression graph.

However, after explicitly representing the boxes, and using our new definitions

for + and 6, we can optimize fib to the program given in Figure 8.77.

fib n = case n of

Int v2 → let cond = v2 6prim 1

in case cond

True → n

False → let n1 = v2 −prim 1

in let f1 = fib (Int n1)

in case f1 of

Int p1 → let n2 = v2 −prim 2

in let f2 = fib (Int n2)

in case f2 of

Int p2 → let r = p1 +prim p2

in Int r

Figure 8.77: Optimized fib after Unboxing

As we can see, the code is significantly longer, but now we have included the

primitive operations in our code. The variables v2, n1, n2, p1, p2 are all primitive

values, so we do not need to allocate any memory for them, so they will not be

represented as nodes in our expression graph. This seems like a big win, but it is

a little deceptive. We are still allocating 1 node for cond , f1, f2 and 2 nodes for the

Int constructors. So, we are still allocating 5 nodes, which is just as much memory
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as before. This is an improvement in efficiency, but we can certainly do better.

8.1.3 Primitive Conditions

The first optimization is that we really do not need to allocate memory for cond .

x 6prim y should compile down to an expression involving the primitive <=

operation in C, and return a Boolean value. However, right now there is no way

to signal that to the code generator, so we introduce the pcase construct.

The primCond must be a primitive condition expression, which is either ==prim

or 6prim, and the arguments must be primitive values. Perhaps surprisingly, these

are the only primitive relational operators in Curry. All other relations opera-

tors are converted to combinations of ==prim, 6prim, and not . The semantics of

pcase are exactly what be expected, but now we can translate it into a simple if

statement in C, as shown in Figure 8.78.

This has several advantages. First we do not construct a node for the Boolean

value. Even if we are statically allocating a single node value for True and False,

we avoid the cost of switch case loop, and the cost of checking if primcond is non-

deterministic. It must be deterministic, because both of its operands are primitive

values. After implementing this construct, the new version is in Figure 8.79. Now

we are down to 4 nodes, but we can still do better. The next challenge is unboxing

the arguments in the call to fib.

8.1.4 Strictness Analysis

The problems with eliminating boxes from arguments of function calls is strongly

related to the run-time system and how we represent nodes in our expression graph.

Recall that our expression graph is made up of node structs that point to other

node structs. If we have a fib node, then the argument to this node is expected

to be another node. In C we can get around this by using a union. We created a

union field, defined in Figure 8.80 that can either represent an Int , Char , Float ,
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pcase primCond of

True → et

False → ef

B(pcase primCond of {True → et ; False → ef }) :=

if(EM(primCond))

{

B(et)

}

else

{

B(ef )

}

Figure 8.78: The pcase Construct
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fib n = case n of

Int v2 → pcase v2 6prim 1

True → n

False → let n1 = v2 −prim 1

in let f1 = fib (Int n1)

in case f1 of

Int p1 → let n2 = v2 −prim 2

in let f2 = fib (Int n2)

in case f2 of

Int p2 → let r = p1 +prim p2

in Int r

Figure 8.79: The fib function with primitive cases.
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Node, or an array of Node* in case a node has more than 3 children.

typedef union field

{

struct Node* n; //normal node child

union field* a; //array child

unsigned long c; //primitive character

long i; //primitive int

double f; //primitive float

} field;

Figure 8.80: Definition of field Type.

The problem with storing a primitive value in a node, instead moves to iden-

tifying when a value is primitive. There is no way to distinguish between Node*

and unsigned long. Instead of trying to figure out when a child of a node is

supposed to represent a primitive value at run-time. We need to keep track of this

information at compile time. Fortunately, this is a well studied problem [72,82,93].

Lazy functional languages often try to remove laziness for efficiency reasons.

We do not want to create an expression for a primitive value if we are only going

to deconstruct it, so it becomes useful to know what parameters in a function must

be evaluated, A parameter that must be evaluated by a function is called strict .

Formally, a function f is strict in its parameter if f ⊥ = ⊥.

We use ⊥ here to mean that the value of its parameter does not evaluate to a

value, this can come from a call to the error function, or an infinite computation.

It does not mean that f failed to return a value. We explicitly exclude that case,

because that can change the results of some Curry programs. For example consider

the function:
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f x = head [ ]

If we were to mark x as strict, then we may try to evaluate x before computing f .

This could cause an infinite loop in the following program:

loop = loop

main = (f loop) ? 1

This should return a single result, and never try to evaluate loop. For this

reason we consider failing computations to be similar to expressions rooted by

constructors for the purposes of strictness analysis.

We implemented an earlier form of strictness analysis described by Peyton

Jones et al. [65]. This is a very limited form of abstract interpretation. The idea is

that we start by assuming every function is strict in all its parameters. Then as we

analyze a function we determine which parameters can be relaxed. For example

consider the following function:

f x y z = case x of

True → y

False → y + z

It is clear that x must be strict, but we do not know about y or z . After

analyzing the case branches, we see that since y appears in both branches, and +

is strict in both of its arguments, y must be strict as well. Finally, since there is a

branch that z does not appear in, z may not be evaluated, so it is not strict.

This syntactic traversal of an expression is useful, but it fails when working with

a recursively defined function. Consider the factorial function with an accumulator:

faca n acc = case n==0 of

True → acc

False → n ∗ faca (n − 1) (n ∗ acc)
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We can see with a syntactic check that n is strict, but what about acc. acc

does appear in both branches, but it is the argument to the recursive call of faca.

Therefore we have acc, the second parameter of faca, is strict if, and only if, the

second parameter of faca is strict. We can solve this problem by iteratively running

the strictness analyzer on faca until it converges to a single set of strict parameters.

Formally, since a variable can be either strict or not strict, we can represent it with

a 2 element set {0, 1}, and our strictness analyzer is a monotonic function, so we

are computing a least fixed point in the strictness analyzer over the set 2n where

n is the arity of the function.

There are much more sophisticated implementations of strictness analysis. We

do not analyze deeper than a single pattern, and we are very conservative in re-

gard to recursive functions. Mycroft’s original work was to interpret functions as

Boolean formulas [82]. This can find several cases of strict parameters that our

implementation does not. There has also been a lot of work on projection based

strictness analysis [72]. The current state of the art for Haskell is backwards pro-

jection analysis [93]. Studying the validity and implementation of these strictness

analyzers in regard to Curry would all be great candidates for future work.

Once we know which arguments are strict we can split the function into a

wrapper function and a worker function [93]. We can see this with fib. We take

the current optimized version in Figure 8.79, and apply the worker/wrapper split

in Figure 8.81. This creates two functions, fib, which simply evaluates and unboxes

the parameter, ,and fib#worker , which does the rest of the computation. Then

we optimize the function again resulting in Figure 8.82. Notice that since fib is no

longer recursive we can inline it.
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We can inline the call to fib in the following code:

let f1 = fib (Int n1)

This results in:

let f1 = case (Int n1) of

Int v2 → fib#worker v2

Which can be optimized to:

let f1 = fib#worker n1

We are down to allocating 2 nodes. We only need to allocate nodes for the

calls to fib#worker . This means that we have reduced our memory consumption

by 60%. That is a huge improvement, but we can still do better. With the next

optimization we look at how to remove the remaining allocations.

8.2 CASE SHORTCUTTING

In the last section were able to optimize the fib function from allocating 5 nodes

per recursive call to only allocating 2 nodes per recursive call. However, we were

left with a problem that we can not solve by a code transformation.

let f1 = fib#worker n1

in case f1 of

Int p1 → . . .

In this section we aim to eliminate these final two nodes. However, in order to

do this, we will have to step outside of compile-time optimizations, and look into

previous work on run-time optimizations for Curry. Specifically we are going to

use an idea inspired by the shortcutting optimizations [18]. However, shortcutting



160

fib n = case n of

Int v2 → fib#worker v2

fib#worker v1 =

let n = Int v1

in case n of

Int v2 → pcase v2 6prim 1 of

True → n

False → let n1 = v2 −prim 1

in let f1 = fib (Int n1)

in case f1 of

Int p1 → let n2 = v2 −prim 2

in let f2 = fib (Int n2)

in case f2 of

Int p2 → let r = p1 +prim p2

in Int r

Figure 8.81: The fib function after strictness analysis.
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fib#worker v2 =

pcase v2 6prim 1 of

True → Int v2

False → let n1 = v2 −prim 1

in let f1 = fib#worker n1

in case f1 of

Int p1 → let n2 = v2 −prim 2

in let f2 = fib#worker n2

in case f2 of

Int p2 → let r = p1 +prim p2

in Int r

Figure 8.82: The fib function after strictness analysis and optimization.
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was designed for rewrite systems, and the idea doesn’t quite match how our run-

time evaluates expressions. However the goal of shortcutting was to eliminate the

construction of nodes using a systematic transformation of the rewriting system.

In this spirit, we have transformed the generated code to eliminate nodes that are

constructed, only to be quickly evaluated and deconstructed by case statements.

This “case shortcutting” has proven to be very effective in eliminating many mem-

ory allocations.

We will often find examples of expressions that are constructed, and immedi-

ately evaluated by a case statement, after which, the results are never used again.

Both f1 and f2 in Figure 8.82 are excellent examples of such expressions. Typi-

cally a compiler for a lazy language would recognize this situation, and instead of

generating a node only to evaluate it, the compiler would produce a function call

that would return the value of that node.

It is worth looking at an attempt to try to replace the node with a function call.

One possibility would be to try to statically analyze a function f and determine

if it is deterministic. This is a reasonable idea, but it has two major drawbacks.

First, determining if a function is non-deterministic is undecidable, so the best we

could do is an approximation. Second, even if f is deterministic, the expression

f x could still be non-deterministic if x is. This is going to be very restrictive for

any possible optimization.

In the example in Figure 8.82 we need a node to hold the value for fib#worker n1,

but this value will only be used in the case expression. In fact, it is not possible for

this node to be shared with any part of the expression graph. If this expression is

only ever scrutinized by the case expression, then we only need to keep the value

around temporarily. The idea here is simple, but the implementation becomes

tricky. We want to use a single, statically allocated, node for every variable that

is only used as the scrutinee of a case.

There are two steps to the optimization. The first step is marking every node
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that is only used as the scrutinee. The second step happens during code generation.

Instead of dynamically allocating memory for a marked node, we store all of the

information in a single, statically allocated, node. We call this node RET for return.

This effectively removes the rest of the dynamically allocated nodes from our

fib function, but before we celebrate, we need to make sure that code generated

using this transformation actually produces the same results. There are a few

things the can potentially go wrong.

First, let us look at the case where the scrutinee is deterministic. In that case,

there is only one thing that could go wrong. It is possible that in order to reduce

the scrutinee we need to reduce another expression that could be stored in RET.

For example, consider the following program:

f x = case g x of

True → False

False → True

main = case f 3 of

True → 0

False → 1

In the evaluation of main, f 3 can be stored in the RET node, then we can

evaluate f 3 to head constructor form, but while we are evaluating f 3, we store

g 3 in the same RET node. While this is concerning, it is not actually a problem.

As shown in Chapter 3.2.7, at the beginning of f hnf, we store all of the children of

root as local variables, and then when we have computed the value, we overwrite

the root node. In our case the root node in our function is RET. However, aside

from the very start and end of the function, we never interact with the root node,

so even if we reuse RET in the middle of evaluating f , it does not actually affect

the results.

A portion of the generated code for f can be seen in Figure 8.83. As we can
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see, the only time that we use the root node is at the very start of the function to

store the variables, and right before we return. Even if root happens to be RET,

this does not actually affect the evaluation. The RET node is overwritten with the

contents of g x , then it is evaluated, and finally it is overwritten with the result of

f right before returning.

void f_hnf(Node* root)

{

field x = root->children[0];

set_g(RET, make_int(3));

field scrutinee = RET;

bool nondet = false;

while(true)

{

nondet |= scrutinee.n->nondet;

switch(TAG(scrutinee))

{

...

case True:

if(nondet) push_frame(root, make_Prelude_f_1(x));

set_Prelude_False(root, 0);

return;

}

}

}

Figure 8.83: Generated Code with RET Nodes
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It seems like we should be able to store these marked variables in the RET node,

and then just call the appropriate hnf function. In fact this was the first idea we

tried. The generated code for main is given in Figure 8.84.

void main_hnf(Node* root)

{

set_f(RET, make_int(3));

field scrutinee = RET;

bool nondet = false;

while(true)

{

nondet |= scrutinee.n->nondet;

switch(TAG(scrutinee))

{

...

case True:

if(nondet) ...

set_int(root, 0);

return;

...

}

}

Figure 8.84: main with Shortcutting First Attempt

This initial version actually works very well. In fact, for fib#worker we are

able to remove the remaining 2 allocations. This is fantastic, and we will come

back to this point later, but we need to deal with a looming problem.
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8.2.1 Non-deterministic RET Nodes

The problem with the scheme we have developed so far is that if RET is non-

deterministic, then the rewrite rule we push on the backtracking stack may contain

a pointer to RET. This is a major problem with this optimization, because RET will

almost certainly have been reused by the time backtracking occurs.

This optimization was built on the idea that RET is only ever used in a single case

expression. Therefore, it is important that we never put RET on the backtracking

stack. We need rethink on our idea. Initially, we wanted to avoid allocating a

node if a variable is used in a single case. Instead, we will only allocate a node

if RET is non-deterministic. This means that for deterministic expression, we do

not allocate any memory, but for non-deterministic expression, we still have a

persistent variable on the stack. This lead to the second implementation in Figure

8.85.

8.2.2 RET hnf Functions

In the last section we copied RET nodes before pushing them onto the backtracking

stack, this is an improvement on our first approach, because the backtracking stack

does not include any RET nodes, but it’s still not quite correct. Three things can

still go wrong here. These are very subtle errors that are very easy to overlook,

and even harder to track down the real cause of the errors.

The first problem is that RET might have been reduced to a forwarding node, so

it might be deterministic, but forward to a non-deterministic node. For example,

in case id (0 ? 1) of . . . there is clearly non-determinism, but the id node is not

the cause of it, so that rewrite should not be pushed on the backtracking stack.

Another problem is that, if RET is a forwarding node, when evaluating the node

it forwards to, we might have reused RET. Consider the following program:
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void main_hnf(Node* root)

{

set_f(RET, make_int(3));

field scrutinee = RET;

bool nondet = false;

while(true)

{

nondet |= scrutinee.n->nondet;

switch(scrutinee.n->tag)

{

...

case True:

if(nondet)

{

Node* backup = copy(RET);

stack_push(bt_stack, root, main_1(backup));

}

set_int(root, 0);

return;

...

}

}

Figure 8.85: main with Shortcutting Second Attempt
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h x = case x > 3 of

False → 3

True → 4

main = case (h 4 ? h 2) of

4→ True

Here main evaluates h 4 ? h 2. Since ? is non-deterministic, and reduces to a

forwarding node, we need to make a copy of RET as part of the rewrite we push on

the backtracking stack. However, before we can even do that, we need to evaluate

h 4, and the expression x>3 will be stored in RET. Now we have lost the information

in RET before we can copy it. Finally, we still have not avoided putting RET on the

backtracking stack. Recall our program from before:

f x = case g x of

True → False

False → True

main = case f 3 of

True → 0

False → 1

If the expression g x is non-deterministic, then the node containing f will be

marked as non-deterministic. However, f 3 was stored in the RET node, so the

root parameter will be RET. Now RET is still pushed on the backtracking stack,

but this time it is on the left hand side of the rewrite.

This is starting to seem hopeless, when we fix one problem, 3 much more subtle

problems pop up. How can we avoid creating nodes for deterministic expressions,

but still only create a single node that the caller and callee agree on if the expression

is non-deterministic?

The answer is that we need to change how RET nodes are reduced. Specifically,
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we create a new reduction function that only handles nodes stored in RET. In the

case of f , we would create a f hnf, a f 1 hnf and a f RET hnf. The third function

only reduces f that has been stored in a RET node.

The difference between f hnf and f RET hnf is that instead of passing the root

node, we pass Node* backup. The backup node is where we will store the contents

of RET if we discover evaluating the expression rooted by f is non-deterministic.

Finally we return backup. Now both the caller and callee agree on backup. Fur-

thermore, since backup is a local variable, it is not affected if f reuses RET over

the course of its evaluation. We can see the final implementation of shortcutting

for main in Figure 8.86. We also give the definition for f RET hnf in Figure 8.87.

Now, we finally have a working function. We only allocate memory if the scru-

tinee of the case is non-deterministic. If the expression is non-deterministic in

multiple places, then the same backup node is pushed on the stack, so our expres-

sion graphs stay consistent. This also works well if we have multiple reductions in

a row. Suppose we have the following Curry code:

main = case f 4 of

True → False

False → False

f n = case n of

0→ True

→ f (n − 1)

In this case f is a recursive function, so when we reduce f 4, we need to reduce

f 3. This is no problem at all, because we are reducing f 4 with f RET hnf. Ignor-

ing the complications of Unboxing for the moment, we can generate the following

code for the return of f .
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void main_hnf(Node* root) {

set_f(RET, make_int(3));

field scrutinee = RET;

Node* f_backup = f_RET_hnf(NULL);

bool nondet = false;

if(f_backup != NULL) {

nondet = true;

memcpy(f_backup, RET.n, sizeof(Node));

} else if(RET.n->tag == FORWARD_TAG) {

f_backup = RET.n->children[0];

}

while(true) {

nondet |= scrutinee.n->nondet;

switch(scrutinee.n->tag) {

...

case True:

if(nondet)

{

stack_push(bt_stack, root, main_1(f_backup));

}

set_int(root, 0);

return;

... } }

Figure 8.86: main with Shortcutting
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Node* f_RET_hnf(Node* backup) {

Node* v1 = RET->children[0];

set_g(RET, v1);

field scrutinee = RET;

Node* g_backup = g_RET_hnf(NULL);

bool nondet = false;

if(g_backup != NULL) {

nondet = true;

memcpy(g_backup, RET.n, sizeof(Node));

} else if(RET.n->tag == FORWARD_TAG)

g_backup = RET.n->children[0];

while(true) {

nondet |= scrutinee.n->nondet;

switch(RET_forward->tag) {

...

case True:

if(nondet) {

if(!backup)

backup = (Node*)malloc(sizeof(Node));

set_False(backup);

stack_push(bt_stack, backup, g_backup);

}

set_False(RET);

return backup;

... } }

Figure 8.87: Compiling f with Shortcutting
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field v2 = make_int(n-1)

set_f(RET, v2);

return f_RET_hnf(backup);

8.2.3 Shortcutting Results

Before we move onto our next optimization, we should look back at what we

have done so far. Initially, we had a fib function that allocated 5 nodes for every

recursive call. Then, through Unboxing, we were able to cut that down to only 2

allocations per call. Finally, using Shortcutting, we were able to eliminate those

two allocations. We would expect a substantial speedup by reducing memory

consumption by 60%, but removing those last two allocations is a difference in

kind. The fib function runs in exponential time, and since each step allocates some

memory, the original fib function allocated an exponential amount of memory on

the heap. However, our fully optimized fib function only allocates a static node

at startup. We have moved from exponential memory allocated on the heap to

constant space. While fib still runs in exponential time, it runs much faster, since

it does not need to allocate memory. Surprisingly, fib is still just as efficient with

non-deterministic arguments. If the argument is non-deterministic, the wrapper

function will evaluate it before calling the worker.

Now that we have removed most of the implicitly allocated memory with Un-

boxing and Shortcutting, we can work on removing explicitly allocated memory

with a technique from functional languages.

8.3 DEFORESTATION

We now turn to our final optimization, Deforestation. The goal of this optimization

is to remove intermediate data structures. Programmers often write in a pipeline

style when writing functional programs. For example, consider the program:
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sumPrimes = sum ◦ filter isPrime ◦ enumFromTo 2

While this style is concise and readable, it is not efficient. First, we create a list of

integers, then we create a new list of all of the integers in our list that are prime,

and finally we sum the values in that list. It would be much more efficient to

compute this sum directly.

sumPrimes n = go 2 n

where go k n

| k > n = 0

| isPrime k = k + go (k + 1) n

| otherwise = go (k + 1) n

This pipeline pattern is pervasive in functional programming, so it is worth

understanding and optimizing it. In particular, we want to eliminate the two

intermediate lists created here. This is the goal of Deforestation.

8.3.1 The Original Scheme

Deforestation has actually gone through several forms throughout its history. The

original optimization proposed by Wadler [100] was very general, but it required

a complicated algorithm, and it could fail to terminate. There have been various

attempts to improve this algorithm [98] and [40] that have focused on restricting

the form of programs.

An alternative was proposed by Gill in his dissertation [46,47] called foldr-build

Deforestation or short-cut Deforestation. This approach is much simpler, always

terminates, and has a nice correctness proof, but it comes at the cost of generality.

Foldr-build Deforestation only works with functions that produce and consume

lists. Still, lists are common enough in functional languages that this optimization

has proven to be effective.

Since then foldr-build Deforestation has been extended to Stream Fusion [33].
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While this optimization is able to cover more cases than foldr-build Deforestation,

it relies on more advanced compiler technology.

The foldr-build optimization itself is actually very simple. It relies on an obser-

vation about the structure of a list. All lists in Curry are built up from cons and

nil cells. The list [1, 2, 3, 4] is really 1 : 2 : 3 : 4 : [ ]. One very common list processing

technique is a fold, which takes a binary operation and a starting element, and

reduces a list to a single value. In Curry, the foldr function is defined as:

foldr :: (a → b → b)→ b → [a ]→ b

foldr ⊕ z [ ] = z

foldr ⊕ z (x : xs) = x ⊕ foldr f z xs

As an example, we can define the sum function as sum xs = foldr (+) 0. To

see what this is really doing we can unroll the recursion. Suppose we evaluate

foldr (+) 0 [1, 2, 3, 4, 5], then we have:

foldr (+) 0 [1, 2, 3, 4, 5]

⇒ 1 + foldr (+) 0 [2, 3, 4, 5]

⇒ 1 + (2 + foldr (+) 0 [3, 4, 5]))

⇒ 1 + (2 + (3 + foldr (+) 0 [4, 5]))

⇒ 1 + (2 + (3 + (4 + foldr (+) 0 [5])))

⇒ 1 + (2 + (3 + (4 + (5 + foldr (+) 0 [ ]))))

⇒ 1 + (2 + (3 + (4 + (5 + 0))))

But wait, this looks very similar to our construction of a list.

1 : (2 : (3 : (4 : (5 : ([ ])))))

1 + (2 + (3 + (4 + (5 + (0)))))

We have just replaced the : with + and the [ ] with 0. If the compiler can find

where we will do this replacement, then we do not need to construct the list. On

its own, this is a very hard problem, but we can help the compiler along. We
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just need a standard way to construct a list. This can be done with the build

function [46].

build :: (∀ b (a → b → b)→ b → b)→ [a ]

build g = g (:) [ ]

The build function takes a function that constructs a list. However, instead of

construction the list with : and [ ], we abstract this by passing the constructors in

as arguments, which we call c and n respectively. Now, with build , we can define

what we mean by deforestation with a simple theorem from [46].

Theorem 9. For all f :a → b → b, z :b, and g :(∀ b (a → b → b)→ b → b)→ [a ],

foldr f z (build g) = g f z

So, if we can construct standard list functions using build and foldr , then we

can remove these function using the above theorem. As an example, let us look at

the function enumFromTo a b that constructs a list of integers from a to b.

enumFromTo a b

| a > b = [ ]

| otherwise = a : enumFromTo (a + 1) b

We can turn this into a build function.

enumFromTo a b = build (enumFromTo build a b)

enumFromTo build a b c n

| a > b = n

| otherwise = a ‘c‘ enumFromTo build (a + 1) b c n

We can create build functions for several list creation functions found in the

standard library. In fact, for this optimization we replace several functions in

both the Prelude and List library with equivalent functions constructed with foldr
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and build . Now we are ready to apply Deforestation to Curry. Unfortunately

there are two problems we need to solve. The first is an implementation problem,

and the second is a theoretical problem. First, while we can apply foldr/build

Deforestation, we can not actually optimize the results. Second, we still need to

show it is valid for curry.

8.3.2 The Combinator Problem

Let us look back at the motivating example, and see how it could be optimized

in Haskell, or any language that can inline lambda expressions. The derivation in

Figure 8.88 comes from the original paper [46].

This looks good. In fact, we obtained the original expression we were trying

for. Unfortunately we do not get the same optimization in Rice. The problem is

actually the definition of filter .

filter f = build (λc n → foldr (λx y → if f x then x ‘c‘ y else y) n)

Functions that transform lists, such as filter , map, and concat , are rewritten

in the standard library as a build applied to a fold. Unfortunately our inliner can

not produce this derivation. We do not inline lambda expressions, and reductions

can only be applied to let bound variables, so we simply can not do this reduction.

Instead we need a new solution.

8.3.3 Solution build fold

Our solution to this problem is to introduce a new combinator for transforming

lists. We call this build fold since it is a build applied to a fold.

build fold :: ((c → b → b)→ (a → b → b))→ (b → b)→ [a ]→ b

build fold mkf mkz xs = foldr (mkf (:)) (mkz [ ]) xs

The idea behind this combinator is a combination of a build and a fold. This
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sumPrimes m = sum (filter isPrime (enum 2 m))

V

sumPrimes m = foldr (+) 0

(build (λc n → foldr (λx y → if isPrime x then x ‘c‘ y else y) n)

(build enum build 2 m))

V

sumPrimes m = foldr (+) 0

(build (λc n → enum build 2 x (λx y → if isPrime x then x ‘c‘ y else y) n))

V

sumPrimes m = enum build 2 m (λx y → if isPrime x then x + y else y) 0

V

sumPrimes m = enum build 2 m (λx y → if isPrime x then x + y else y) 0

where enum build k m c z = if k > m then z

else c k (enum build (k + 1) m c z )

V

sumPrimes m = enum build 2 m

where enum build k m = if k > m then 0

else (λx y → if isPrime x then x + y else y)

k (enum build (k + 1) m)

V

sumPrimes m = enum build 2 m

where enum build k m = if k > m then 0 else if isPrime k

then x + (enum build (k + 1) m c z )

else (enum build (k + 1) m)

Figure 8.88: Optimization derivation for short-cut Deforestation
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function was designed to be easily composable with both build and fold. Ideally,

it could fit in the middle of build and fold and still reduce. As and example:

foldr (+) 0 (build fold filter mkf filter mkz (build enumFromTo build))

Ideally, this function should reduce into something relatively efficient, Furthermore

we wanted build fold to compose nicely with itself. For example, map f ◦ map g

should compose to something like map (f ◦ g).

We achieve this by combining pieces of both build and foldr . The two functions

mkf and mkz make the f and z functions from fold, however they take c and n

as arguments similar to build . The idea is that mkf takes an f from foldr as a

parameter, and returns a new f . The map and filter implementations are given

below.

map f = build fold (map mkf f ) map mkz

map mkf f c x y = f x ‘c‘ y

map mkz n = n

filter p = build fold (filter mkc p) filter mkz

filter mkf p c x y = if p x then x ‘c‘ y else y

filter mkz n = n

The purpose of the convoluted definition of build fold is that it plays nicely with

build and foldr . We have the following three theorems about build fold , which we

will prove later. These are analogous to the foldr / build theorem.
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Theorem 10. For all functions of the appropriate type that evaluate no ? expres-

sions, the following qualities hold.

build fold mkf mkz (build g) = build (λc n → g (mkf c) (mkz n))

foldr f z (build fold mkf mkz xs) = foldr (mkf f ) (mkz z ) xs

build fold mkf 1 mkz 1 (build fold mkf 2 mkz 2 xs)

= build fold (mkf 2 ◦mkf 1) (mkz 2 ◦mkz 1) xs

The proof of this theorem will be given in the next section. Now that we have

removed all of the lambdas from our definitions, we can look at the implementation.

8.3.4 Implementation

Deforestation turned out to be one of the easiest optimizations to implement. The

implementation is entirely in GAS, and it proceeds in two steps. First we find any

case where a build or build fold occurs exactly once in either a build fold or fold .

If this is the case, we inline the variable that build is bound to into it is single use.

This temporarily takes our expression out of A-Normal Form, but we will restore

that with the second step, which is the actual Deforestation transformation, which

applies either the foldr / build theorem, or one of the three build fold theorems

from above. The definitions for the deforest transformation are given in Figure

8.89 The optimization derivation for sumPrimes is in Figures 8.90 and 8.91. The

unused variables will be removed at a later time by dead code elimination.

So far we have done a decent job. It is not as efficient as the Haskell version,

but that is not surprising. However, we can still improve this. The main prob-

lem here is that we can not optimize a partial application. This is unfortunate,

because the build fold function tends to create large expressions of partially ap-

plied functions. Fortunately we have already solved this problem earlier in our

compiler. We already have a way to detect if an expression is partially applied,

so, in the post processing phase, we do a scan for any partially applied functions.
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Inline foldr/build:

let x = build g in e

| e|p = foldr x
V e[build g ← [p, 2]]

let x = build g in e

| e|p = build fold x
V e[build g ← [p, 2]]

let x = build fold mkf mkz in e

| e|p = foldr f z x
V e[build fold mkf mkz ← [p, 2]]

let x = build fold mkf mkz in e

| e|p = build fold x
V e[build fold mkf mkz ← [p, 2]]

Deforest foldr/build:

foldr f z (build g) V g f z

Deforest build fold/build:

build fold mkf mkz (build g) V build (λc n → g (mkf c) (mkz n))

Deforest foldr/build fold:

foldr f z (build fold mkf mkz xs)V

let f1 = mkf f

in let z 1 = mkz z

in foldr f1 z 1 xs

Deforest build fold/build fold:

build fold mkf 1 mkz 1

(build fold mkf 2 mkz 2 xs)
V

let f1 = mkf 2 ◦mkf 1

in let z 1 = mkz 2 ◦mkz 1

in build fold f1 z 1 xs

Figure 8.89: The Deforestation Optimization.

The lambda in the build rule is a call to a known function.

The lets are added to keep the expression in A-Normal Form.

The expression e | cond V e ′ should be read as “e rewrites to e ′ given that

cond holds.”
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let v1 = enumFromTo 2 n

in let v2 = filter isPrime v1

in sum v2

V Reduce Useful

let v1 = build enumFromTo build 2 n

in let v2 = build fold (filter mkf isPrime) id v1

in foldr (+) 0 v2

V Inline foldr/build fold

let v1 = build enumFromTo build 2 n

in let v2 = build fold (filter mkf isPrime) id v1

in foldr (+) 0 (build fold (filter mkf isPrime) id v1)

Figure 8.90: Derivation of sumPrimes 1
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V Deforest foldr/build fold

let v1 = build enumFromTo build 2 n

in let v2 = build fold (filter mkf isPrime) id v1

in let z = id 0

in let f = filter mkf isPrime (+)

in foldr f z v1

V Inline foldr/build

let v1 = build enumFromTo build 2 n

in let v2 = build fold (filter mkf isPrime) id v1

in let z = id 0

in let f = filter mkf isPrime (+)

in foldr f z (build enumFromTo build 2 n)

V Deforest foldr/build

let v1 = build enumFromTo build 2 n

in let v2 = build fold (filter mkf isPrime) id v1

in let z = id 0

in let f = filter mkf isPrime (+)

in enumFromTo build 2 n f z

Figure 8.91: Derivation of sumPrimes 2
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If we find one, then we move the code into a newly created function, and attempt

to optimize it. We call this function outlining, since it is the opposite of inlining.

If we can not optimize the outlined function, then we do nothing. Otherwise, we

make a new function, and replace the call to the partially applied function with a

call to the outlined function. This would actually be worth doing even if we did

not implement Deforestation. With function outlining our final optimized code is

given below.

sumPrimes n = enumFromTo build 2 n f ′ 0

f ′ x y = if isPrime x then x + y else y

enumFromTo build a b c n

| a > b = n

| otherwise = a ‘c‘ enumFromTo build (a + 1) b c n

This certainly is not perfect, but it is much closer to what we were hoping for.

Combining this with Unboxing and Shortcutting gives us some very efficient code.

While these results are very promising, we still need to know if Deforestation is

even valid for Curry.

8.3.5 Correctness

First we show that the build fold theorems are valid for a deterministic subset

of Curry using the same reasoning as the original foldr-build rule. Without non-

determinism and free variables, we can apply the same arguments as the original

paper on shortcut deforestation [46].
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Theorem 10. For any deterministic f , z , g , mkf , and mkz , the following equations

hold.

build fold mkf mkz (build g) = build (λc n → g (mkf c) (mkz n))

foldr f z (build fold mkf mkz xs) = foldr (mkf f ) (mkz z ) xs

build fold mkf 1 mkz 1 (build fold mkf 2 mkz 2 xs)

= build fold (mkf 2 ◦mkf 1) (mkz 2 ◦mkz 1) xs

Proof. Recall that the free theorem [99] for build is for all h, f , and f ′ of the

appropriate type:

(∀ (a : A) (∀ (b : B) h (f a b) = f ′ a (h b)))⇒

∀ (b : B) h (gB f b) = g ′B f ′ (h b)

We substitute build fold mkf mkz for h, (:) for f and mkf (:) for f ′. From the defini-

tion of build fold we have build fold mkf mkz (a:b) = (mkf (:)) a (build fold mkf mkz b)

and build fold mkf mkz [ ] = mkz [ ]. Therefore we have build fold mkf mkz (g (:) b) =

g (mkf (:)) (build fold mkf mkz b)

This gives us the following result.

build fold mkf mkz (build g) = g (mkf (:)) (mkz [ ])

Finally, working backwards from the definition of build we have our theorem.

build fold mkf mkz (build g) = build (λc n → g (mkf c) (mkz n))

Again with foldr we have the free theorem

if ∀ (a : A) (∀ (b : B) b (x ⊕ y) = (a x ) ⊗ (b y) and b u = u ′

then b ◦ foldr ⊕ u = foldr ⊗ u ′ ◦ (map a)

Here we take b = build fold mkf mkz , ⊕ = f , and ⊗ = mkf f a = id

then the statement becomes:
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if build fold mkf mkz (f x y) = (mkf f ) x (build fold mkf mkz y)

and build fold mkf mkz [ ] = mkz [ ]

then build fold mkf mkz ◦ foldr f z = foldr (mkf f ) (mkz z )

Since both conditions follow directly from the definition of build fold we are left

with

build fold mkf mkz ◦ foldr f z = foldr (mkf f ) (mkz z )

which is exactly what we wanted. Free theorems are fun!

Finally for build fold / build fold rule suppose we have the expression

foldr f z (build fold mkf 1 mkz 1 (build fold mkf 2 mkz 2 xs))

From the previous result we have:

foldr (mkf 1 f ) (mkz 1 z ) (build fold mkf 2 mkz 2 xs)

= foldr (mkf 2 (mkf 1 f )) (mkz 2 (mkz 1 z )) xs

= foldr ((mkf 2 ◦mkf 1) f ) ((mkz 2 ◦mkz 1) z ) xs

= foldr f z (build fold (mkf 2 ◦mkf 1) (mkz 2 ◦mkz 1) xs)

which establishes our result:

build fold mkf 1 mkz 1 (build fold mkf 2 mkz 2) = build fold (mkf 2 ◦mkf 1) (mkz 2 ◦mkz 1)

While this gives us confidence that Deforestation is a possible optimization,

we have already seen that referential transparency [56], and therefore equational

reasoning, does not always apply in Curry. We need to show that both expressions

will evaluate to the same set of values in any contest. In fact, as they are currently

stated, These theorems do not actually hold for Curry. However, with a few
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assumptions, we can remedy this problem. First, we need to rewrite our rules so

that the reduced expression is in A-Normal form.

build fold mkf mkz (build g) = let g ′ = (λc n → let f = mkf c

z = mkz n

in g f z )

in build g ′

foldr f z (build fold mkf mkz xs) = let f ′ = mkf f

z ′ = mkz z

in foldr f ′ z ′ xs

build fold mkf 1 mkz 1 (build fold mkf 2 mkz 2 xs) = let mkf = mkf 2 ◦mkf 1

mkz = mkz 2 ◦mkz 1

in build fold mkf mkz xs

Now we are ready to state our result.

Theorem 11. suppose f , z , g, mkf , and mkz are all FlatCurry functions whose

right had side is an expression in A-Normal form, then the following equations are

valid.

build fold mkf mkz (build g) = let g ′ = (λc n → let f = mkf c

z = mkz n

in g f z )

in build g ′

foldr f z (build fold mkf mkz xs) = let f ′ = mkf f

z ′ = mkz z

in foldr f ′ z ′ xs

build fold mkf 1 mkz 2 (build fold mkf 2 mkz 2 xs) = let mkf = mkf 2 ◦mkf 1

mkz = mkz12 ◦mkz 1

in build fold mkf mkz xs
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Proof. We show the result for foldr-build, and the rest are similar calculations. We

intend to show that for any f , z , and g that the following equation holds.

foldr f z (build g (:) [ ]) = g f z

That is, we show that fold f z (build g (:) [ ]) reduces to the same values as g f z .

We proceed in a manner similar to [31]. First, notice that build g (:) [ ] is

constructing a list. However, since g is potentially non-deterministic, and it might

fail, we may have a non-deterministic alternation of lists when evaluating this

expression. After evaluating build g (:) [ ] we will produce an alternation of several

lists.

build g (:) [ ] = g1,1 : g1,2 : g1,3 : . . . end1

? g2,1 : g2,2 : g2,3 : . . . end2

. . .

? gk,1 : gk,2 : gk,3 : . . . endk

Where, for all i , endi = [ ] ?⊥.
Here we have a alternation of k lists, and each list ends either with the empty

list, or the computation may have failed along the way. Therefore, endi may be

either [ ] or ⊥. In fact, it might be the case that an entire list is ⊥, but this is

fine, because that would still fit this form defined above. We can generalize this

by passing arbitrary arguments to build. The expression build g ⊕ z evaluates to

the following alternation of values.

build g ⊕ z

= (g1,1 ⊕ g1,2 ⊕ g1,3 ⊕ . . . zend1) ?

(g2,1 ⊕ g2,2 ⊕ g2,3 ⊕ . . . zend2) ?

. . .

(gk,1 ⊕ gk,2 ⊕ gk,3 ⊕ . . . zendk)

Where, for all i , zendi is ⊥ if endi is ⊥ and z otherwise.
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Now, let us see what happens when we normalize the entire expression. Recall

that if f is a dominator of a ? b, then f (a ? b) = f a ? f b [9]. Therefore if all

arguments are in A-Normal form, then function application distributes over choice.

Since foldr is a dominator of everything in foldr ⊕ z (build g (:) [ ] we have the

following derivation.

foldr ⊕ z (build g (:) [ ])

= let fold = foldr ⊕ z

in fold (build g (:) [ ])

= let fold = foldr ⊕ z

in fold (g1,1 : g1,2 : g1,3 : . . . end1 ?

g2,1 : g2,2 : g2,3 : . . . end2 ?

. . .

gk,1 : gk,2 : gk,3 : . . . endk)

= let fold = foldr ⊕ z

in fold (g1,1 : g1,2 : g1,3 : . . . end1) ?

fold (g2,1 : g2,2 : g2,3 : . . . end2) ?

. . .

fold (gk,1 : gk,2 : gk,3 : . . . endk)

= (g1,1 ⊕ g1,2 ⊕ g1,3 ⊕ . . . zend1) ?

(g2,1 ⊕ g2,2 ⊕ g2,3 ⊕ . . . zend2) ?

. . .

(gk,1 ⊕ gk,2 ⊕ gk,3 ⊕ . . . zendk)

= g ⊕ z

Where, for all i , zendi is ⊥ if endi is ⊥ and z otherwise.
This proves the result.

Note that while this does prove the result, there are still some interesting points
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here. First, we never made any assumptions about f or z . In fact, we did not really

make any assumptions about g , but we did at least give an explicit form for its

values. This form is guaranteed by the type. This line of reasoning looks like a

promising direction for future explorations into parametricity for functional-logic

programming.
Second, it should be noted that branches in g that produce ⊥ do not necessarily

fail when evaluated. If f is strict, then any failure in the list will cause the entire

branch to fail. Consider the following expression:

foldr (λx y → 1) 0 (build (λc n → 0 ‘c‘ 1 ‘c‘⊥))

Evaluating the expression rooted by build to constructor normal form would

produce a failure, since the tail of the list is ⊥. However, since the first parameter

in the expression rooted by foldr never looks at either of it is arguments, this

branch of the computation can still return a result.

In this chapter we have developed three optimizations to help reduce the mem-

ory allocated by Curry programs. These optimizations seem effective, and we have

shown why they are correct, but we still need to find out how effective they are.

In the next chapter we show how well our compiler compares to Pakcs, Kics2, and

MCC on the benchmarking suite provided by Kics2. We also show the results for

each optimization individually, and then combined.
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CHAPTER 9

RESULTS

Now that we have finally implemented all of the optimizations, we need to see if

they were actually effective. Before we can look at the results, we need to discuss

methodology. The test suite is based on the test suite from the Kics2 compiler [28].

We have removed some tests, and added others in order to test specific properties

of our compiler.

Specifically, we removed all of the tests that evaluated the functional pattern

operator =:<<=. since this is an extension of Curry. While the RICE compiler does

support this operation, it was not a focus of this work, and we have not tested it

enough to be confident in its implementation.

Furthermore, we added a few tests to demonstrate the effectiveness of defor-

estation. The benchmark suite for Kics2 contained very few examples of code with

multiple list operations.

In order to characterize the effectiveness of our optimizations, we are interested

in two measurements. First, we want to show that the execution time of the

programs is improved. Second, we want to show that optimized programs consume

less memory. The second goal is very easy to achieve. We simply augment the

run-time system with a counter that we increment every time we allocate memory.

When the program is finished running, we simply print out the number of memory

allocations.

Execution time turns out to be much more difficult to measure. There are many

factors which can affect the execution time of a program. To help alleviate these

problems, we took the approach outlined by Mytkowicz et al. [83]. All programs
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were run multiple times, and compiled in multiple environments for each compiler.

We took the lowest execution time. We believe these results are as unbiased as

we can hope for; however, it is important to remember that our results may vary

across machines and environments. For most of our results the RICE compiler is

a clear winner.

9.1 TESTS

Our test suite is based on the Kics2 test suite [28]. We split the functions into

three groups: Numeric computations meant to test Unboxing; non-deterministic

computations; and list computations meant to test Deforestation. We do not have

any specific tests for shortcutting, because it applies in almost every program.

• Numeric computations:

– fib is the Fibonacci program from Chapter 6.3.

– fibNondet This is the same program, but we call it with a non-deterministic

argument.

– tak computes a long, mutually recursive, function with many numeric

calculations.

• Non-deterministic computations:

– cent attempts to find all expressions containing the numbers 1 to 5 that

evaluate to 100.

– half computes half of a number defined using piano arithmetic by trial

and error starting from 0.

half n | x + x==n = x

where x free
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– ndTest computes a variant of fib that non-deterministically returns

many results.

fib n

| n < 2 = 0 ? 1

| otherwise = fib (n − 1) + fib (n − 2)

– perm computes all of the permutations of a list by computing a single

permutation non-deterministically.

– queensPerm Computes solutions to the n-queens problem by permut-

ing a list, and checking if it is a valid solution.

– primesort non-deterministically sorts a list of very large prime num-

bers.

– sort sorts a list by finding a sorted permutation.

– last A program to compute the last element in a list using free variables.

– schedule The scheduling program from the introduction.

• Deforestation:

– queensDet computes solutions to the n-queens problem using a back-

tracking solution and list comprehension.

– reverseBuiltin reverses a list without using functions or data types

defined in the standard Prelude.

– reverseFoldr reverses a list using a reverse function written as a fold.

– reversePrim reverses a list using the built-in reverse function and

primitive numbers.

– sumSquares computes sum ◦map sqaure ◦filter odd ◦ enumFromTo 1.

– buildFold computes a long chain of list processing functions.
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– primes computes a list of primes.

– sumPrimes computes sumPrimes from Chapter 5.

The results of running the tests are given in Figure 9.2 for timing, and 9.3 for

memory. All times are normalized. In Figure 9.1 the times are normalized to RICE,

and in Figure 9.2 all results normalized to the unoptimized version in order to see

the improvement of optimizations. Memory results are measured in the number

of allocations of nodes. We also include a comparison all of 3 prominent Curry

compilers, Pakcs, Kics2, and Mcc, against RICE in Figure 9.1. We optimized

these compilers as much as possible to get the best results. For example Kics2

executed much quicker when run in the primitive depth first search mode. We

increased the input size for tak, buildFold, and sumPrimes in order to get a better

comparison with these compilers. However, we were not able to run the buildFold

test, or the reverseBuiltin test, for the Pakcs compiler. They were both killed by

the Operating System before they could complete. We timed every program with

Kics2 [28], Pakcs [38], and the Mcc [78] compiler. Unfortunately we were not able

to get an accurate result on how much memory any of these compilers allocated,

so we were unable to compare our memory results.

We also show how our compiler compares against GHC in Figure 9.4. Since

most examples include non-determinism or free variables, we are unable to run

those. We run our optimized code against unoptimized GHC and optimized GHC.

There are a lot of interesting results in tables 9.1, 9.2, and 9.3 that we feel are

worth pointing out. First, it should be noted that the Mcc compiler performed

very well, not only against both Kics2 and Pakcs, but it also performed well against

RICE. In most examples it was competitive with the unoptimized code, and ahead of

it in several tests. It even outperformed the optimized version in the cent example.

We are currently unsure of why this happened, but we have two theories. First,

the code generation and run-time system of Mcc may just be more efficient than
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Pakcs Kics2 Mcc RICE

fib 2,945 16 7 1

fibNondet 2,945 839 8 1

tak 7,306 14 19 1

cent 152 62 0.65 1

half 1,891 49 3 1

ndtest 491 18 2 1

perm 73 6 2 1

queensPerm 5,171 27 1 1

primesort 9,879 3 7 1

sort 923 35 1 1

last ∞ 42 1 1

schedule 5,824 20 2 1

queensDet 4573 5 5 1

reverseBuiltin ∞ 3 2 1

reverseFoldr 13,107 8 4 1

reversePrim 1,398 9 3 1

sumSquare 140 10 22 1

buildFold ∞ 24 9 1

primes 10,453 51 12 1

sumPrimes 2,762 3 4 1

Table 9.1: Comparison of execution time for Pakcs, Kics2, Mcc, and RICE.

All times are normalized to RICE.
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unopt basic unbox shortcut deforest all

fib 1.00 0.94 0.34 0.75 1.00 0.13

fibNondet 1.00 1.07 0.33 0.73 1.07 0.13

tak 1.00 0.94 0.24 0.33 0.96 0.07

cent 1.00 0.90 0.74 0.91 0.94 0.43

half 1.00 0.95 0.94 1.08 0.90 0.59

ndtest 1.00 0.86 0.86 0.73 0.84 0.51

perm 1.00 1.01 0.99 1.04 1.00 0.76

queensPerm 1.00 0.63 0.28 0.50 0.62 0.18

primesort 1.00 0.72 0.55 0.58 0.77 0.37

sort 1.00 0.66 0.56 0.66 0.70 0.38

last 1.00 0.99 0.66 0.90 1.02 0.63

schedule 1.00 0.93 0.80 0.85 0.93 0.80

queensDet 1.00 0.64 0.20 0.10 0.55 0.08

reverseBuiltin 1.00 1.06 0.96 0.92 1.00 0.56

reverseFoldr 1.00 1.33 0.50 1.17 1.17 0.33

reversePrim 1.00 1.33 0.33 0.83 1.33 0.33

sumSquare 1.00 1.10 0.42 1.02 0.82 0.16

buildFold 1.00 0.81 0.56 0.76 0.44 0.08

primes 1.00 0.74 0.49 0.60 0.76 0.32

sumPrimes 1.00 1.11 0.48 0.99 0.67 0.17

Table 9.2: Results for execution time between the RICE compiler at several levels

of optimization. unopt is the compiler without optimizations, basic is the opti-

mizations described in Chapter 6.3, unbox is the unboxing optimization, shortcut

is the shortcutting optimization, deforest is the deforestation optimization, and

all is the compiler with all optimizations turned on. All values are normalized to

unopt, so they are the ratio, of the execution time over unopt ’s execution time.
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unopt basic unbox shortcut deforest all

fib 1,907K 1,906K 635K 1,271K 1,906K 0

fibNondet 1,907K 1,906K 635K 1,271K 1,906K 5

tak 94,785K 94,784K 28,435K 267 94,784K 0

cent 22,644K 21,358K 18,304K 21,358K 21,358K 18,304K

half 25,165K 25,179K 25,120K 25,164K 25,179K 25,120K

ndtest 14,282K 14,282K 17,005K 14,282K 14,282K 17,005K

perm 2,041K 2,041K 2,041K 2,041K 2,041K 2,041K

queensPerm 19,362K 11,899K 4,122K 7,543K 11,899K 2,940K

primesort 10,546K 8,458K 6,344K 6,375K 8,454K 6,340K

sort 20,295K 14,332K 11,949K 11,949K 14,332K 11,949K

last 13,000K 14,000K 8,000K 13,000K 14,000K 8,000K

schedule 54,386K 53,650K 42,083K 43,776K 53,650K 40,390K

queensDet 96,894K 53,781K 16,599K 33,385K 48,360K 9,372K

reverseBuiltin 16,819K 16,819K 16,819K 16,819K 16,819K 16,819K

reverseFoldr 2,883K 3,407K 1,572K 3,145K 3,145K 1,310K

reversePrim 2,621K 3,145K 1,310K 2,883K 3,145K 1,310K

sumSquare 2,500K 2,899K 1,199K 2,499K 2,499K 599K

buildFold 120,000K 99,999K 71,999K 95,999K 67,999K 3

primes 40,705K 32,589K 24,442K 24,477K 32,585K 24,438K

sumPrimes 96,622K 109,936K 48,235K 102,998K 82,231K 21K

Table 9.3: Results for amount of memory consumed while running programs com-

piled at each optimization level.
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RICE GHC Unoptimized GHC Optimized

fib 1.00 4.60 0.32

tak 1.00 4.07 0.35

queensDet 1.00 0.94 0.07

reverseFoldr 1.00 2.33 0.66

buildFold 1.00 2.77 0.31

primes 1.00 0.36 0.20

sumPrimes 1.00 1.17 0.15

Table 9.4: Comparison of RICE and GHC on deterministic programs.

RICE. While we worked to make the run-time system as efficient as possible, it

was not the focus of this compiler. Mcc also translated the code to Continuation

Passing Style [22] before generating target code. This may be responsible for the

faster execution times. Our other theory is that Mcc supports an older version of

Curry that does not include type classes. Mcc may have performed better simply

by not having to deal with that overhead.

Aside from the surprising performance of Mcc, we found a couple of results in

our optimizations that surprised us as well. First, the half program used more

memory with basic optimizations turned on then it did with no optimizations.

This is because strictness analysis created a worker function, but it was not able

to cancel out any of the new Int constructors. While this did cause memory usage

to go up a little, it did not effect the execution time. However, we could disable

strictness analysis unless unboxing is turned on. Second, the ndtest used a bit

(about 0.05%) more memory with the unboxing optimization. This is because

of a confluence of two side effects of the optimization. Without unboxing we

can not determine that the parameters to primitive operations are needed, so

we can not force evaluation. This means that instead of evaluating each piece
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of the Fibonacci function separately, we need to construct the entire contractum

fib (n − 1) + fib (n − 2) and evaluate it. Because of this, the optimized code

only contains a single case expression. The other factor is our solution to the non-

determinism problem from section 3.2.3. Since we are returning several results, and

the unboxed fib function contains several cases, we have to push more case functions

onto the backtracking stack. While this does allocate a little more memory, we

believe that the 2x speed-up in execution time is worth the sacrifice.

In terms of effectiveness, unboxing seemed to be the clear winner. Deforestation

did not seem to be nearly as effective, but we believe this is more related to the

test suite than anything else. These are all small programs that do not include

many list processing operations. We believe that, on larger programs, deforestation

would have more opportunities to fire. Shortcutting typically performed well, and

compensated for the lack of unboxing in several situations. We think the most

interesting part of these results is the effect of combining these optimizations. In

particular, unboxing and shortcutting work very well together, often reducing the

amount of memory consumed more than either optimization alone. this can be

seen in Perm, there node of the optimizations seemed to help, but combining all

of them produced a significant speedup.

Generally RICE compares very favorably with all of the current compilers, only

losing out to Mcc on the cent example. We focus on the Kics2 compiler, because

that was the best performing compiler that is still in active development. With this

comparison RICE performs very well, showing anywhere form a 2x to 50x execution

speed-up on all of the non-deterministic programs, and a 3x to 50x improvement

on the deterministic programs. Even comparing against Mcc, we typically see a 2x

speed-up. The only excepts are cent, and programs that cannot be optimized, such

as perm. We also see a very impressive speedup on fibNondet compared to Kics2.

However, this is a known issue with the evaluation of non-deterministic expressions

with functions with non-linear rules. We do believe that this is important to note,
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because these programs are common in Curry, and is the reason that we could not

use Kics2 to develop RICE.

This is a very impressive speed-up, but we have already discussed the reason

for it. After we applied Unboxing and Shortcutting, we were able eliminate all but

a constant number of heap allocations from the program. This would be a great

result on its own, but it gets even better when we compare it to GHC. Compiling

the same fib algorithm on GHC produced code that ran about three times as fast

as our optimized RICE code, and when we turned off Optimizations for GHC we

ran faster by a factor of 8. It is not surprising to us that our code ran slower

than GHC. The run time system is likely much faster than ours, and there are

several optimization in GHC that we have not implemented. In fact, we would be

shocked if it managed to keep up. What is surprising, and encouraging, is that

we were competitive at all. It suggests that Curry is not inherently slower than

Haskell. We believe that a more mature Curry compiler could run as fast as GHC

for deterministic functions. This would give us the benefits of Curry, such as non-

determinism and free variables, without sacrificing the speed of modern functional

languages.

In this chapter we have justified the benefit of these optimizations to Curry. In

the next chapter we look at possible future directions to take this work, and we

conclude.
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CHAPTER 10

CONCLUSION

These results were honestly significantly better than we ever expected with this

project. Initially, we hoped to compete with Kics2, since it was leveraging GHC’s

optimizer to produce efficient code. However, we found that could we beat Kics2

in all cases, and in some cases the results were simply incomparable. In some

cases we were even able to compete with GHC itself. Furthermore, we have shown

that the memory optimizations really were effective for Curry programs. This is

not much of a surprise. Allocating less memory is a good strategy for improving

run-time performance. It is good to know that the presence of non-determinism

does not affect this commonly held belief.

It is a little more surprising that these optimizations all turned out to be valid

in Curry. In fact, a surprising number of optimizations are valid in Curry under

suitable conditions. This might not seem very significant until we look at what

optimizations are not valid. For example, common sub-expression elimination was

not included in this compiler, because it simply is not a valid Curry transformation.

It introduces sharing where none existed. If the common sub-expression is non-

deterministic, then we will change the set of results. On the other hand, common

sub-expression elimination is fairly innocuous in most other languages.

10.1 CONTRIBUTIONS

In this dissertation we built an efficient implementation of the Curry language. We

discussed the evaluation and run-time system for our implementation, and showed
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that we can fix some of the inefficiencies in Pakcs and Kics2 with case functions and

fast backtracking. We justified these changes with the path compression theorem.

We introduced the GAS system for easily constructing program transformations

in Curry. Then we showed that, after converting programs to A-Normal Form,

many optimizations still remain valid. Specifically, we showed that both inlining

and reduction remain valid for Curry programs, which is not true in general.

We then showed 3 memory optimizations that have not been implemented for

functional logic programs. For the first optimization, we implemented unboxing

via [91], and justified its correctness. For the second optimization, we showed

a new optimization for functional logic programs called case shortcutting. We

showed the problems with trying to elide constructing a node that is evaluated in

a case expression, then we showed how this problem can be solved with a new node.

For the final optimization, we implemented shortcut deforestation [46], and showed

that, under suitable conditions, it remains correct for functional logic programs. In

order to get decent performance out of this optimization, we developed a scheme

for outlining partial applications, and optimizing them.

Finally, we showed that using an optimizing compiler, we can improve the speed

of Curry programs significantly. With our optimizations, programs ran anywhere

from 10 to 1000 times faster than Kics2, which is the current state of the art. We

also saw that programs compiled with optimizations are almost always at least

twice as fast as those compiled without, and sometimes up to twenty times as fast.

10.2 FUTURE WORK

Most curries are made from curry powder and coconut milk, however our Curry

was mostly made from low hanging fruit. As nice as our results are, we would

like to see this work extended in the future. We believe that a better inliner and

strictness analyzer would go a long way to producing even more efficient code.

In fact, a general theory of inlining in Curry would be hugely beneficial. One
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of the biggest drawbacks to this compiler is that we can not represent lambda

expressions in FlatCurry, and inline them. Before we could even attempt this, we

would need to know when it is safe to inline a lambda in Curry.

We would also like to move from short-cut Deforestation to Stream Fusion. This

should be possible, but it would require a more sophisticated strictness analyzer,

and we may not be able to get away with our combinator approach.

We would also like to see the development of new, Curry specific, optimizations.

Right now the ? operator acts as a hard barrier. We can move let-bound variables

outside of it, but we can not move the choice itself. However, there may be an

option for using pull-tabbing or bubbling to move the choice to make room for

more optimizations.

For personal reasons we would also like to bootstrap RICE with itself. This

would significantly decrease the time it takes to compile large Curry programs.

Right now, RICE is compiled using Pakcs. Currently Kics2 is not a feasible option

for compiling RICE, because of performance issues with non-deterministic func-

tion. So, compiling RICE in itself would significantly improve the performance

of the compiler. There are still several hurdles to overcome before this can be

achieved. First, we would need an implementation of either the FindAll library

or the SetFunctions library. Both of these libraries rely on external functions that

aren’t a part of standard Curry, and would need to be implemented.

We would also like to move from C to LLVM. This would allow for more op-

timizations including Tail Call Optimization. We currently are limited by the

recursion depth of the machine, and TCO could allow us to compile more pro-

grams. Moving to LLVM would also greatly help in the development of a garbage

collector. Initially LLVM was rejected because we were more familiar with C.

Finally, developing a better run-time system would also be an important im-

provement. While we did work to make sure our run time system was efficient,

it could certainly be better. Integrating this work with the Sprite [19] compiler
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might solve this issue.

10.3 CONCLUSION AND RELATED WORK

We have presented the RICE Optimizing Curry compiler. The compiler was pri-

marily built to test the effectiveness of various optimizations on Curry programs.

While testing these optimizations, we have also built an efficient evaluation method

for backtracking Curry programs, as well as a general system for describing and

implementing optimizations. The compiler itself is written in Curry.

This system incorporated a lot of work from the functional language community,

and the Haskell community in particular. The work on general optimizations [65],

Inlining [64], Unboxing [91], Deforestation [46], and the STG-machine [60,63] were

all instrumental in the creation of this compiler, as well as the work by Appel and

Peyton-Jones about functional compiler construction [21,22,59].

While there has been some work on optimizations for functional-logic programs,

there does not seem to be a general theory of optimization. Peemöller and Ramos

et al. [87, 89] have developed a theory of partial evaluation for Curry programs,

and Moreno [80] has worked on the Fold/Unfold transformation from Logic pro-

gramming. We hope that our work can help bridge the gap to traditional compiler

optimizations.

The implementation of the GAS system was instrumental in developing opti-

mizations for this compiler. It not only allowed us to implement optimizations

more efficiently, but also to test new optimizations, and through optimization

derivations, discover which optimizations were effective, which were never used,

and which were wrong. This greatly simplified debugging optimizations, but it

also allowed us to test more complicated optimizations. Often we would just try

an idea to see what code it produced, and if it fired in unintended places. It is

difficult to overstate just how useful this system was in the compiler.

While the run-time system was not the primary focus of this dissertation, we
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were able to produce some useful results. The path compression theorem, and the

resulting improvement to backtracking, is a significant improvement to the current

state-of-the-art for backtracking Curry programs.

When starting this project, Shortcutting was already known to be valid for

Inductively Sequential Rewrite Systems. It was developed for them specifically,

so it is not too surprising that the idea can be translated to Curry programs.

However, it was a nice surprise to find that Unboxing and Deforestation were both

valid in Curry. It was even more remarkable that, with some simple restrictions,

we could make inlining and reduction valid in Curry as well.

We believe that this work is a good start for optimizing Curry compilers, and

we would like to see it continue. After having a taste of optimized Curry, we want

to turn up the heat, and deliver an even hotter dish. But for now, we have made

a tasty Curry with RICE.
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APPENDIX

RICE MANUAL

This document is a guide to the structure of the RICE compiler, and an explanation

of the various files. The compiler is split up into 4 sections: the root folder contains

code for I/O and a few utility modules; the FlatUtil folder contains convenience

functions for FlatCurry programs, as well as the implementation of the GAS system;

the Optimizations folder contains code for transforming FlatCurry into a canonical

form and optimizing FlatCurry; and the Compile folder contains modules used for

code generation, which include the transformation to ICurry as well as the C code

generator.

A.1 THE RICE COMPILER

The first section is the root of the project. Here we have 4 notable files: Main.curry,

which is responsible for parsing arguments, and general control flow; File.curry,

which is responsible for reading files, and getting absolute paths to directories;

Util.curry, which contains some general utility functions; and Graph.curry, which

is an implementation of “Structuring Depth-First Search Algorithms in Haskell”.

A.1.1 Main.curry and I/O

This file dictates the general flow of the compiler. The compiler has a few command

line arguments, and can be run in two different modes. If the -g argument is passed,

then the compiler will assume that the program has already been optimized, and

that ICurry has been generated. It will only attempt to generate C code. This
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mode is useful for testing changes to the code generator. Any other changes really

need the full optimization of the code.

The arguments are defined below, The format is flag, longName, description.

-d datatable print the table of Data Type definitions

-f flatcurry print the FlatCurry code before optimization

-o optimized print the Optimized FlatCurry code

-i icurry print the ICurry Code

-c does nothing

-g codegen only generate code from ICurry

-p noprelude do not include Prelude (used for testing)

-x gcc Use Gcc instead of clang

A.1.2 File.curry

File has a number of useful utility functions for manipulating FlatCurry/ICurry/C

files. The most important of these is readFlatCurryWithImports . This function

performs a topological sort on the files based on their imports, and returns a list of

FlatCurry .Prog objects in topological order. It also marks each file with whether

or not the file has already been compiled and optimized. This prevents us from

recompiling files. This file also contains functions to determine the absolute paths

for the FlatCurry, optimized FlatCurry, ICurry, C, and H files for each program.

A.1.3 Util.curry

This file contains several useful utilities including instances of Functor for both IO ,

and Maybe, as well as fork , mapFst and mapSnd from the Haskell Arrow library.

It also contains the definitions for the sorted list combinators. These functions

perform set union, set difference, and set intersection.

(+ +−), (\\−), (&&−)
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For the implementation we assume the set is a sorted list. So, we can do union

and intersection cheaply by just maintaining the sorting. This is not useful is you

want to look something up in a set, but it gives you O(n) time construction of the

set of variables in an expression.

This is also the implementation of the State and ReWriter Monad. State.

follows the usual construction. Any efficiency improvement here would be be ben-

eficial for the whole compiler. ReWriter is effectively StateT Writer . It is used in

the GAS system, so any efficiency improvements have a pervasive effect on perfor-

mance.

We also include a wrapper for computing strongly connected components, since

that operation comes up a lot.

A.1.4 Graph.curry

This module contains a lot of useful Graph Theory utilities. The ideas are lifted

directly from “Structuring Depth-First Search Algorithms in Haskell”.

A.2 THE GAS SYSTEM

The GAS system is really the heart of this compiler. The idea is described in

Chapter 4. The FlatUtils folder contains two files related to GAS. First The FlatU-

tils.Curry file contains several utility functions for working with FlatCurry pro-

grams. Next, Gas.Curry contains the implementation of the GAS system.

A.2.1 FlatUtil.curry

FlatUtils contains a number of functions to get general information about FlatCurry

expressions. It also includes functions for constructing and applying substitutions.

We represent a substitution as a function from VarIndex to Expr . We can con-

struct a substitution with an identity function λx → Var x . This is the purpose
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of idSub. We can add a new variable to a substitution with the @> combinator,

as shown by the (x , e) @> s . This will extend the substitution s with {x 7→ e}.

We can apply a substitution with the sub function. A renaming is a special sub-

stitution where we just change the names of variables. We can do this with the

rename function. Finally, we define functions for getting the type and constructor

name for primitive types.

A.2.2 Gas.curry

The GAS library is built around the idea of an optimization. For our compiler, an

optimization is a function of type (Int ,Bool)→ Expr → (Expr , String ,VarIndex ).

We provide each optimization with the next fresh variable,, and whether or not

optimization is being applied to the root of the function. We return the transformed

expression, the name of the optimization that was applied, and the number of new

variables that were created.

The two functions that the user can call are simplify and showWork . simplify

will run the optimization until it no longer applies, and return the resulting ex-

pression. showWork will run the optimization while it can, but it will also build

up an optimization derivation. It returns the transformed expression, the opti-

mization derivation as a String , and the number of optimizations that it was able

to apply. Both of these functions allow the user to pass in a maximum number of

optimizations to apply. The run function does the real work of optimizing, and it

is described in Chapter 4.

We also include loop and loopIO functions for applying a transformation at the

function level. This is useful for transformations that need to create new functions.

An example of this is moving a case inside of a let expression into its own function.

Finally, we include a few functions for quickly building up common FlatCurry

expressions. These include function composition, apply nodes, and partial ap-

plications. We also include FlatCurry definitions for build and foldr , which are
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functions discussed in chapter 7.

A.3 OPTIMIZATION

The optimization folder is, unsurprisingly, the largest folder. Several modules are

small, but they all serve a unique purpose. The files are ordered by the use in the

optimization pipeline.

DataTable.curry provides functions for constructing and inspecting a table of

data type definitions. FunTable.curry is similar. Optimize.curry contains the con-

trol flow code for managing the entire optimization process. Preprocess.curry man-

ages the code for converting FlatCurry programs into canonical form. ANF.curry

contains the code for transforming into Administrative Normal Form. Order-

ing.curry contains code for sorting the functions into an optimal ordering for opti-

mization. Strictness.curry contains code for performing strictness analysis. Prim-

itives.curry contains optimizations for primitive values, such as constant folding.

Inline.curry contains optimizations for inlining, reduction, and dead code elimina-

tion. Postprocess.curry contains code to clean up functions after optimizations,

and move let bound cases out into their own functions.

A.3.1 Flags.curry

This is a simple file to set which optimizations are run. This was designed for

testing different optimizations, and will be moved into the compiler flags at some

point.

A.3.2 DataTable.curry

A DataTable is a bidirectional mapping from Data Types to Data Constructors.

This is stored as a pair of tables tmap and cmap. The tmap table takes a type,

and returns the list of all constructors for that type, and the cmap table takes a



225

constructor name, and returns the type returned by constructor. This is primarily

used by the Case Fill transformation, but it is also used in the code generator.

A.3.3 FunTable.curry

The Function Table contains a number of useful properties about functions, which

are described in chapter 6. Specifically, we can query the following: nondet , is

the function possibly non-deterministic; loopbreaker , was the function marked as a

loopbreaker while ordering the functions; arity , what is the arity of the function;

params , what are the parameter names; freshVar , what is the next fresh variable

name; bodySize, how large is the syntax tree for the function; inlinable, do we

consider the function a good candidate for inlining? There are also two composite

queries we can make: simple, is the function trivially inlinable; cancels , is the

function likely to cause case canceling if we inline it?

A.3.4 Optimize.curry

Optimize.curry handles the control flow for optimizations. There are two modes

that a program can be optimized in. The optimize function will transform a

FlatCurry program into canonical form, and run optimizations on it. The optimizeT

function will do the same thing, but it also produces output. The optimize function

has trouble completing with longer functions. We suspect that this is a problem

with laziness, but it is hard to pin down.

A.3.5 Preprocess.curry

This module contains several transformations to put a FlatCurry function into

canonical form. Specifically, it contains Let Float, Case in Case, Double Ap-

ply, Case Apply, Blocks, Alias, Case Var, Fix Partial, and Unapply from

chapter 5. It also contains the String Const transformation for transforming

literal strings into string constants which take less memory at run-time.
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A.3.6 ANF.curry

This file contains code to put a canonical FlatCurry expression into A-Normal

Form. The transformation almost directly mirrors “The Essence of Compiling

with Continuations” [41].

A.3.7 Ordering.curry

This file contains code for ordering a list of functions based on their call graph.

Ideally we would topologically sort the call graph, and process the list in reverse

order. However, the call graph may not be acyclic. To deal with this possibility

we compute the strongly connected components, then we score each function in a

component based on how useful we think it would be to inline that function. We

take the least useful function, and mark it as a loop breaker. Then we remove it

from the graph, and compute the strongly connected components again. We repeat

this process until we are left with a DAG, which we can process in topological order.

All loop breakers are processed at the end since they cannot be inlined.

A.3.8 Strictness.curry

This file runs a simple strictness analysis on FlatCurry functions. This analysis is

simple abstract interpretation, and it builds a StrictTable. Which is just a mapping

from function names to the variables that we are sure are strict. We also include

the splitWorker function which will attempt to apply the wrapper/worker split to

any function that has a strict parameter and is recursive.

A.3.9 Primitives.curry

This file contains the code for the Prim Cond optimization for replacing boolean

case expressions with pcase, as well as the code for constant folding.
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A.3.10 Inline.curry

This file contains the majority of the optimizations. Specifically, it includes the

following: Inline Literal which will inline let v = l in e where l is a literl;

Inline Constructor which will inline let v = C vs in e; Inline Case which

will inline let v = case x of bs1 in case v fo bs2 ; Inline fold/build and

variants inline the build and build fold functions; Let Folding which moves let

bound variables closer to where they are used; Case Canceling which is described

in chapter 6; Reduce Base for if the reducible function is at the root of the

expression; Reduce Useful for if we think that reducing the expression will lead

to more optimizations; Reduce Simple for if the body of the reducible function

is small; Reduce Cancels for if reducing this function will lead to more case

canceling; Reduce Let for if the reducible function is not a let bound variable,

but the result of a let expression; Reduce branch for if the reducible function

is in the branch of a case; Dead Code Elimination removes unused variables

and trivial expression like let in e; Fold/Build and variants perform the shortcut

deforestation optimization described in chapter 7; and Case Folding which applies

the following transformation.

CaseFolding

let t = case e of

C1 x → e1

C2 y → e2

in case e of

C1 a → e11

C2 b → e22

V

case e of

C1 a → let t1 = e1 [x → a ] e11 [t → t1 ]
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C2 b → let t2 = e2 [y → b ] e22 [t → t2 ]

This seems like it would not be useful, but it actually crops up several times because

of inlining functions defined in typeclasses.

A.3.11 Postprocess.curry

This file is responsible for a few areas of cleanup. First, we attempt to outline any

large partial applications. The goal here is that when we create a new function

for partial application, we can optimize it. If we fail to find any optimizations, we

ignore that outline. Otherwise, we replace the partial application with a call to the

outlined function. Next, we move any let bound variable defined with a case into

its own function. Then we fix any partial applications that might have changed

due to outlining, convert every function to a more strict version ANF, look for

any aliasing problems, and mark all case expressions where case shortcutting from

chapter 7 can apply. Finally, we rename all of the variables in a function so they

are consecutive integers.

A.4 CODE GENERATION

The final component of the compiler is the code generator. This includes both the

translation from FlatCurry to ICurry, and the generation of C code. Due to the

size of the files generated, we don’t construct the .c or .h files as a single string.

Instead, we pass in a file writer object, and continuously append to the files.

A.4.1 IUtil.curry

IUtil.curry is a library of utility function for working with ICurry. It is similar to

the FlatUtil.curry library, but not as full featured.
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A.4.2 ToICurry.Curry

ToICurry.curry contains the code for translating from FlatCurry to ICurry. The

process is described in chapter 3. The algorithm follows that chapter pretty closely,

but we do add a case for translating the pcase construct.

A.4.3 C.curry

C.curry is a library for constructing C code. Instead of constructing an AST of a

C program, and writing a pretty printer, we opted to write functions that produce

formatted C strings. This works very well in practice, and is similar to creating

an EDSL. As an example, we may write code like the following:

cIfElse (x .! = 2)

[

scall "function1" [x , 2]

]

[

scall "function2" [x , 3]

]

to generate the code

if(x != 2)

{

function1(x,2);

}

else

{

function2(x,3);

}

There are several small functions and operations which

should not be too difficult to understand, but some of the more useful ones include:
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call and scall which produce an expression and statement function call respectively;

cblock which contains a block of C code; cIf , cElse, cIfElse, cWhile, cSwitch, and

cCase which all generate control flow statements; cFunDefn, cFunDecl for declar-

ing and defining function; hFunDefn for defining functions in a header file; and

several others. We also include several functions that define C code that is specific

to our compiler. For example, the nondet function takes a variable x , and returns

x.n->nondet. While this is not a piece of general C syntax, it is an expression we

need to generate frequently.

A.4.4 PrimOps.curry

This file contain a table of functions for generating code to handle primitive op-

erations. There are two functions for each primitive, a set function and a make

function. Both of these are described in chapter 5.

A.4.5 ToH.curry

This file contains the code for generating Header files. Each header file is broken

up into several sections. We #include the relevant files, generate a unique tag for

every constructor in a type that is declared in the module, generate the symbols for

each constructor and function, check for any constructors with no arguments and

declare them as constants as described in chapter 5, declare the set functions for

data constructors and functions, declare the make functions for data constructors

and functions, and declare the set/make functions for free variables of each type.

A.4.6 ToC.curry

This file handles the majority of the work of code generation. Theoretically, it is a

straightforward syntax directed translation, but there are a few more complexities.

The funSource function generates the source code for each ICurry function. It is

split into 3 parts. First funSource base generates the source code for the function.
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Then funSource case generates a separate function for each case statement in the

ICurry program. This is described in chapter 3 as a technique to handle non-

determinism without having to flatten every function to a single case statement.

Finally, the funSource RET handles the generation of the RET functions described

in the case shortcutting optimization in chapter 7. If any case expression is marked

for case shortcutting (with a negative variable) then we normalize the scrutinee

for that case using the global RET node. We call the RET hnf function, which is

responsible for normalizing the expression. It also returns a backup node if the

expression in RET was found to be non-deterministic.

In fact, there are a few variables that have a specific meaning in this com-

piler. Any positive variable is just a normal variable, 0 is the root variable, and

-1 represents a primitive case expression. All other negative variables represent

expressions placed in the RET node.

The debug and debug expr macros are there to help with debugging at run-

time. They have 4 different levels, NONE, LOW, MID, and HIGH.

The showIfCase, showConsCase, and showLitCase do a majority of the work

for generating the code. In particular, showConsCase is responsible for generat-

ing the loop described in chapter 5. Each case block is handled by a separate

function. If the constructor we are reducing to is a primitive constructor, (one of

Int ,Char ,Float) then binding free variables is a little different. Instead of trying to

bind the free variable to an Int constructor with a free variable inside, we instead

take the possible branches in the inner case, and bind our variable to one of those.
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