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Abstract

Modern power systems characterized by complex topologies require accurate situational

awareness to maintain an adequate level of reliability. Since they are large and spread over

wide geographical areas, occurrence of failures is inevitable in power systems. Various

generation and transmission disturbances give rise to a mismatch between generation and

demand, which manifest as frequency events. These events can take the form of negligible

frequency deviations or more severe emergencies that can precipitate cascading outages,

depending on the severity of the disturbance and efficacy of remedial action schema. The

impacts of such events have become more critical with recent decline in system inertia as

they tend to exhibit larger frequency deviations and higher Rate of Change of Frequency in

low inertia systems. The susceptibility of different Balancing Authorities to these events

varies depending on their inertia levels. Due to the repercussions, it is indispensable to arrest

such disturbances on time by activating responsive frequency control measures.

This study developed a configurable event detection framework using linear regression-

based event detection algorithm with tunable parameters. Two swarm intelligence-based

optimization algorithms, Grey Wolf Optimization (GWO) and Particle Swarm Optimization

(PSO), were developed to dictate the algorithm parameter adjustments and make it adaptable

to system conditions. The optimization algorithms tune the detection parameters according

to the definition of frequency events specified by experts and enable event detection as
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desired by system operators. The performance of GWO and PSO algorithms are analyzed

using actual Phasor Measurement Unit (PMU) data, and the efficacy of the proposed system

is demonstrated using a set of performance evaluation metrics. The proposed event detection

framework is shown to be capable of detecting events with high accuracy and speed.
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1 Introduction

1.1 Problem Statement

The primary goal of system operators has always been to maintain stability of the power

system and ensure continuity of supply to consumers in the event of disturbance [1]. As

power systems are spread widely over large areas and exposed to weather conditions, they

are vulnerable to faults and failures, which pose threats to system stability and security.

Modern power systems are more vulnerable to experiencing critical situations since they

are operated close to steady-state stability limits to maximize use of capital [2]. Therefore,

modern power systems require sophisticated monitoring and control schemes to identify

and mitigate such disturbances at an early stage. The ubiquitous unpredictability prevailing

in power systems, such as loss of generation and/or transmission line outage, engenders

an imbalance between supply and demand and creates hurdles for reliable operation. It is

indispensable for preventing unforeseen collapse to efficiently curb every imbalance. Stable

operation of power systems is dictated by maintaining frequency within permissible limits

as close as possible to nominal value of 50/60 Hz, around ±0.2%. Frequency, therefore, is

a key reliability aspect of power systems and failure to maintain it within predetermined

limits may lead to disruption in consumer supply, outage of generators and possibly a system

breakdown [3]. Disturbances in power systems can be initiated by numerous factors such
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as generator outage, transmission line tripping, lightning strike, equipment failure, human

error, and substandard maintenance [4]. Table 1.1 summarizes cascading events and major

blackouts that occurred globally from 2011 to 2018.

Table 1.1: Major power outages across the globe from 2011 to 2018 [5]

Region Date Duration

(hours)

People

Affected

(million)

Causes

Mexico & USA 8 September 2011 12 2.7 Transmission line tripping

Brazil 4 February 2011 16 53 Transmission line fault and fluctuated

power flow

India 30 July 2012 15 620 Transmission line overload

Bangladesh 1 November 2014 24 150 HVDC station outage

Pakistan 26 January 2015 2 140 Plant technical fault

Holland 27 March 2015 1.5 1 Bad weather

Turkey 31 March 2015 4 70 Power system failure

Ukraine 23 December 2015 6 230 Cyber-attack

Kenya 7 June 2016 4 10 Animal shorted the transformer

South Australia 28 September 2016 6.1 1.7 Storm and bad weather

US (NY) 1 March 2017 11 21 Cascading tripping of transmission sys-

tem

US (Southeast) 10 September 2017 5 7.6 Cascading tripping of transmission sys-

tem

Brazil 21 March 2018 1 10 Transmission line failure

Canada (BC) 20 December 2018 4 0.6 Heavy wind
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1.2 Impact of Renewable Integration

The complexities and uncertainties associated with managing reliability of power systems

have increased to an unprecedented level with the growing adoption of distributed power

sources into the ever expanding power network. The primary concern in these modern

power systems is the introduction of new challenges in maintaining frequency stability and

grid resilience due to a reduction in the amount of reserve power. The rapid decline in

system rotational inertia due to replacement of synchronous generators with inverter-based

generators has further aggravated the situation [6]. The new system configuration requires

advanced situational awareness capable of providing intelligent and automated actions for

real-time monitoring and control of the grid. The inability to implement state-of-the-art

techniques for modern problems will result in imposing conservative caps on allowable

renewable energy capacity to preserve system security, hindering the transition to a more

modern infrastructure. Figure 1.1 depicts an example of a frequency event.

Frequency control in a power system is the ability to normalize frequency to its rated

value after a disturbance by keeping a balance of active power in the system. From a

reliability perspective, frequency control capabilities are significant assets in power systems

and have attained critical importance lately. Remarkable research efforts are put in this

area with the recent large-scale adoption of renewable energy and Distributed Energy

Resources (DER). In conventional power systems, synchronous generators were responsible

for exertion of frequency control through their inertial response and governor actions.

However, with major changes in the modern system topology driven by substitution of
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Figure 1.1: A frequency deviation measured within the U.S. Western Interconnection on January 20, 2020 at
0658. Frequency decreased from 60.01 Hz to 59.89 Hz (0.2%) in 5.9 seconds, then recovered to 59.95 Hz
around 40 seconds later. Data sample rate is 60 frames per second.

synchronous generators by Renewable Energy Sourcess (RESs), it is not viable to control

frequency with fewer number of conventional generators. With the decline in system

rotational inertia engendered by the significant share of RESs, frequency control is becoming

more of a decentralized task. To alleviate the need for conventional frequency regulation in

modern power systems, attention has been drawn towards new sources of frequency control

such as aggregation of demand side devices [7, 8, 9] and DER [10].

1.3 Events in Power Systems

Generally, cascading events in power systems have two stages and are not sudden events

that cannot be prevented. In the first stage, there is a slowly evolving process of consec-

utive events, which deteriorates system operating conditions with every new successive

disturbance. After occurrence of several disturbances, a transient action in the second stage

4



results in cascading events and ultimately system collapse. In most cases, it is too late to

stop system breakdown at this point after cascading event is triggered. A possible cascading

event can be averted by detecting it and taking proper control actions at an early stage [11].

The recent large-scale deployment of PMUs have enabled operators to have real-time

insight into the operational state of power systems and a better situational awareness. PMUs

are equipped with Global Positioning System (GPS) clocks, facilitating synchronization of

multiple PMUs dispersed over a wide are.

PMU-based event detection methods can be classified into 1) signal analysis and 2)

machine learning [12]. Signal analysis technique leverage signal processing methods, e.g.

Wavelet Transform [13], Swing Door Trending [12]. Signal processing methods reported in

literature can perform event detection but lack the ability to efficiently determine fault type,

location, and are not tunable. The application of statistical feature extraction techniques

by many PMU-based machine learning methods for event detection make them non-robust

and ineffectual [14]. Other machine learning methods employ supervised learning and

require large historical data sets with accurate labeled instances, such as Long Short-term

Memory [15], Decision Trees [16], Support Vector Machines [16] and Artificial Neural

Networks [17]. However the performance of supervised learning techniques depends highly

on learning data and deteriorates with improper and insufficient selection of data [18].

This project aims to develop a configurable event detection framework for power systems

whose parameters can be adjusted to produce results as desired by system operators. The

proposed algorithm can be implemented for real-time event detection to monitor phasors

5



obtained from PMUs and trigger dispatchable frequency response assets upon inception of a

frequency disturbance.

1.4 Objectives of the Project

High resolution measurement devices such as PMUs can contribute to numerous applications

in modern power system concerning dynamic monitoring and control such as state estimation,

load modeling, wide area protection, and event detection which is the focus of this project.

Event detection refers to identifying occurrences of power system disturbances caused by

outages or switching operations. For managing the health of critical infrastructure and

maintaining stability of the power system, accurate detection of events plays a vital role to

timely trigger remedial courses of action and successfully restore service. Requirements

for primary frequency response (PFR) vary by jurisdiction. In Great Britain, PFR needs

to activate within two seconds of the triggering event, with full provision of the requisite

power within ten seconds [19]. Australian Energy Market Operator (AEMO) mandates a

5% increase in active power achieved within ten seconds of the frequency deviation from

deadband, which is ±1.5 Hz around the nominal value [19]. Therefore, detection of an event

should be ensured within two seconds of its onset.

The definition of an event is not absolute; it varies for different systems depending upon

critical stability limits. The North American Electric Reliability Corporation (NERC) has

published Frequency Response Standard Background Document BAL-003 [20] wherein

frequency events are extensively discussed but no standard definition is provided as to what
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qualifies as a frequency event. Large stable interconnects with enormous synchronous inertia

are less sensitive to frequency deviations. On the other hand, in smaller isolated powers

systems or if the system stability is already compromised, Balancing Authorities (BAs) may

be interested in arresting even minor frequency deviations to prevent unforeseen system

collapse. Therefore, the detection algorithm may need to be configured for each BA to meet

their specific system requirements. Contemporary event detection algorithms reported in the

literature are not able to be configured and operated according to the system conditions.

The work done for this thesis facilitates the customization of the event detection algo-

rithm by using an optimization algorithm [21]. The project has two parts. In the first part, an

event detection algorithm based on calculation of frequency slope using least-sum-of-squares

linear regression was developed to detect abnormal events [22]. The detection algorithm

has five tunable parameters that can be adjusted to enable desired performance and has

the capability to be implemented in an automation controller for online decision support

using streaming PMU data. In the second part, swarm intelligence optimization was used

to optimize the parameters of the detection algorithm to match the definition of frequency

events as specified by experts from a BA. Two optimization algorithms were applied to this

problem: Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO). Both

algorithms were tested and evaluated using a set of performance evaluation metrics.

The PMU installed in Portland State University Power Engineering Lab measures

synchrophasors and archives them in a database as csv files. A set of frequency files

from the archive comprised of events, non-events, and quasi-events, was presented to a

7



group of experts to evaluate each of the frequency plot as either an under-frequency event,

over-frequency event, or non-event. The assessment took into consideration the expertise

level of each expert to weigh their response for a final decision about each frequency plot.

The assessment results were stored in a csv file, referred to as the human validation file,

containing experts’ information and a final classification for each candidate frequency plot.

The human validation file defines the type of events that a BA is interested to detect. Such a

human validation file can be easily created for each BA reflecting the specific needs and

stability limits of that BA, and can be updated owing to the seasonal variations or changes

in the system topology. Each optimization algorithm takes this human validation along with

the original frequency files recorded by PMU as inputs and produces optimized parameters

of the detection algorithm as output which are used for detection of events as desired by the

experts. This framework facilitates the configuration of the detection algorithm to enable

its operation according to the detection requirement of a BA. Once tuned, the algorithm

can then monitor streaming PMU data. Performance of the optimization algorithms was

validated by evaluating event detection accuracy and speed using the optimized parameters.

Figure1.2 depicts the process flow diagram.
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Figure 1.2: Process flow diagram for event detection and optimization framework
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2 Literature Review

2.1 Event Detection

Frequency is an essential aspect of system reliability. The inability to arrest any frequency

disturbance may lead to catastrophic events in power systems. The effects of these events are

amplified in modern power systems characterized by large-scale renewable and distributed

generation. As discussed earlier, NERC has put special emphasis on BAs to respond to

frequency events but has not provided a defining criteria for frequency events [20]. In fact,

frequency event is a relative term that varies for every power system. During a disturbance,

a power deficit is corrected instantaneously by the inertial response of system generators,

which comes from the kinetic energy stored in rotating mass. Governor response has an

inherent time delay resulting from the adjustment of equipment and conversion of energy at

turbine blades. Thus, the availability of large amounts of balancing inertia in a power system

makes it less susceptible to be adversely affected by frequency deviations, as compared to a

system with lower rotational inertia. As a real life example from the perspective of a control

room engineer, the author has witnessed a situation when the system voltages increased to an

unsafe level due to a sudden drop in load owing to bad weather condition. After energizing

available shunt reactors for voltage control, the last resort was to disconnect parallel circuits

and force the load to flow on a single circuit. This reduced the system contingency level. In
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such a situation when system stability is already compromised, the system operator may

want to capture even minor deviations to avoid a catastrophic event. Therefore, a detection

algorithm should be able to be tuned for each BA to perform as per their specific system

requirements.

Automatic event detection in power systems has engaged researchers lately and an

extensive work is reported in literature about this topic. Online event detection systems

take phasor measurements and provide decision support for protection and control schemes.

The contemporary work on power system event detection reported in literature is divided

into three main categories: Signal Processing methods, Statistical Analysis methods, and

Machine Learning methods.

2.1.1 Signal Processing based methods

Event detection techniques based on signal processing often use Discrete Wavelet Transform

(DWT) to decompose frequency and voltage signals for detection of active and reactive

disturbances in a network. DWT involves the correlation of a measured signal with a mother

wavelet at a discrete set of scales and translations. Anshuman et al. [23] used DWT to

differentiate between transient events followed by oscillatory events. The method derives

detail coefficients by applying DWT to the voltage and frequency signals. A novel indicator

is proposed to calculate energy of the normalized signals and record the peak at all PMUs

affected by an event. Peak values of the signals are compared to classify the event as an

active or reactive power event. For the analysis of oscillatory events following a transient

event, the proposed method uses approximate coefficient obtained after applying DWT to

11



PMU data. The method can identify the oscillatory frequencies that have the ability to lead

to an instability. The method requires two seconds of PMU data at 60 Hz sampling rate to

properly detect a transient event.

Kim et al. presented a wavelet-based algorithm to detect power events using frequency

and voltage measurements from a PMU [24]. Wavelet analysis is a tool used to investigate

transient behavior in a signal by transforming a one-dimensional function into a two-

dimensional series of coefficients. Wavelet-based detection methods monitor coefficient

energy over a moving window and identify a disturbance when the energy exceeds a certain

threshold. To reduce the effect of variability in PMU data and nonevent disturbance, the

proposed method uses a normalized wavelet energy function to calculate RMS of detail

coefficients. The result of normalized wavelet energy function applied to PMU data is shown

to be one in normal condition, and greater than one during an event.

An online event detection method is presented by Konakalla and Callafon using syn-

chrophasor data [25]. This signal processing-based technique applies discrete time filtering

to real-time phasors from a PMU for estimation of optimal filtered rate of change (FRoC)

signals and detects an event using dynamic response of the output signal. The filtering

of phasor data leads to a signal with a minimum variance. The parameters of the linear

discrete time filter are estimated by formulating least square optimization. The proposed

event detection algorithm monitors the number of times for which consecutive samples of

filtered signals outstripped the variance limits.

Data obtained in low voltage networks can be used to study system dynamics since

12



major events that occur at high voltage levels have their effects propagated downwards to

the distribution network. Vaz et al. proposed an event detection scheme using measured

data at low voltage [26]. The DWT-based approach monitors the extracted energy from the

wavelet detail coefficients of a PMU signal to detect an event. Certain parameters such as

levels of signal decomposition, threshold and decision variables dictate the performance of

the algorithm. PSO is used to optimize and select the parameters.

The above schemes [23, 24, 26] need measurement data from every bus in the network

for reliable operation. Moreover, since the range of coefficient energy depends on window

size, the results are highly susceptible to noisy PMU data and variations in window size.

The performance of many signal processing based methods [23, 24, 25, 26] is also affected

by the requirement of a user-defined threshold for proper event detection. The threshold

values depend on the quality and nature of PMU data and need to be configured for each

PMU in the network, which is a challenging issue. Furthermore, filtering or discrete Fourier

transform based approaches require a sufficient sampling data for proper operation.

2.1.2 Statistics based methods

Principal Component Analysis (PCA)-based approaches have been widely used for event

detection recently. Xie et al. proposed a dimensionality reduction method using PCA to

handle large-scale data from multiple PMU deployed in a power system [27]. The method is

based on dimensionality analysis of PMU data to enable power system anomaly detection

using the concept of a change in core subspaces of measured data during an event. Initially

in offline mode, the model gets a linear basis from PCA. In online implementation, the
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event detection algorithm uses data from a few pilot PMUs to estimate system conditions for

all other PMUs. The algorithm uses prediction error between actual and projected data to

identify events and update models using an adaptive training mechanism. A similar work was

carried out by Rafferty et al. using a moving window PCA for detection and classification of

multiple events [28]. PCA-based frequency data analysis is used to compute two statistical

variables representing disparity in recorded data, and a dissimilarity between measurements

and its lower dimensional PCA representation. The adaptive learning mechanism allows

the proposed algorithm to update the statistical variables with every new sample of normal

data over a window. Event detection is carried out when the variables overshoot pre-defined

confidence limits. As opposed to [27], this method uses a sliding window to adapt to

the varying behaviors of a power system. Similarly, Xu and Overbye presented an event

detection scheme using measurements from multiple buses [29]. The techniques uses PCA to

analyze dynamic behavior of the system and highlight dominating buses after a disturbance.

Derived system information is efficiently presented with the adoption of a visualization

technique. However, the proposed technique does not specify a method for selection of the

dominating buses. Detection methods based on PCA are heavily dependent on training data.

For PCA-based supervised learning techniques, if an improper and insufficient sample space

is selected, the performance of the resulting ill-trained model will be negatively affected.

An ensemble technique for event detection was presented by Pandey et al. using statistics

and clustering techniques [30]. The proposed work uses a Density-based spatial clustering

of applications with noise tool for detection of events. The problem with this scheme is that
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it detects events based on multifarious phasor data such as frequency, current, voltage, active

and reactive power from all PMUs, which adds to the complexity of the algorithm.

Recently, the challenge of event detection in weakly damped power systems was ad-

dressed by Zhu and Hill using spatial-temporal data analysis based method [31]. From

the perspective of spatial-temporal correlations between multiple bus PMU data engen-

dered by an event, the proposed data-driven approach features the similarities in regional

PMU measurements by profiling spatial temporal nearest neighbor of time series data from

multiple buses to detect occurrence of events. This method requires manual threshold

tuning to be applied to different systems and thus needs an intelligent scheme for adaptive

threshold adjustment. The online performance is also adversely affected by missing PMU

data. Furthermore, this method relies on measurements from multiple buses in the system.

Statistical indices such as mean, variance, minimum, maximum, and correlation are used

over a window to reduce computational complexity, but these values may vary even during

the same event and hence it is very challenging to define a threshold.

2.1.3 Machine Learning/Deep Learning based methods

With the recent development of advanced data processing resources such as Graphics

Processing Units (GPU) and machine learning techniques, Deep Learning has been widely

employed for solving various power system problems. Due to the remarkable feature

extraction capability of Convolution Neural Networks (CNN), Miranda et al. used this

sophisticated image recognition tool for classification of various power system events such

as generation loss, load loss, line tripping, and inter-area oscillations [32]. The work builds
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upon the idea of transforming time-series frequency data from PMUs into two-dimensional

images to be subject to a CNN for extracting knowledge of the type of event. A CNN has

the capability to identify features in images by exploiting correlation among adjacent pixels.

Motor loads have an inherent frequency response capability in a power system. Due to

insufficient frequency response from motor loads in a lightly-loaded system, the frequency

may continue to ramp down even in the absence of an event. The proposed method is

incapable of distinguishing such a condition from an actual event due to reliance on only

frequency data for image recognition. A frequency ramping event in a power system is the

sudden change in frequency caused by a scheduled increase or decrease in generation in

an interconnected grid. Therefore, frequency data cannot be used as the only input to a

CNN for event detection in a power system since it will limit the capability of the model

to differentiate a ramping event from an actual event. To overcome this difficulty, Wang

et al. introduced a method that uses a Relative Phase Angle (RAS) signal in addition to

Rate of Change of Frequency (ROCOF) to be transformed to images [33]. Any event in

a power system generates an electromechanical wave that travels through the grid and

creates angle shifts in the network. The authors used this idea and combined it with the

transformation of frequency data into ROCOF to improve efficiency and accuracy. The work

used a classifier fusion to combine the results from the ROCOF model and the RAS model

to give a final decision about event detection. Results of proposed model were compared

with the ROCOF-only model and frequency-only CNN model for generator trips and load

loss. A significant improvement in accuracy was observed. FDR data from the U.S. Eastern
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Interconnection was used for model validation.

Yufie et al. presented a deep learning technique, Stack Auto-Encoders (SAE), for event

monitoring using PMU data [34]. The method is based on capturing the features of a

dynamic event from PMU data. In the first step of the event detection framework, an energy

function is formulated with construction of each of the components such as generation,

transmission line, and load. Each energy function component is sensitive to a specific type

of event that involves that component. For example, transmission line energy is sensitive to a

fault. Similarly, generator energy is sensitive to an event that involves rotor speed deviation.

From the system point of view, these components are invoked simultaneously upon the

occurrence of an event due to high inherent correlation among them. In the second step,

SAE is employed as a feature learning tool to learn dynamic signatures from the components.

An SAE is comprised of multiple autoencoders working together to find highly complex and

nonlinear data patterns. In the final step of supervised classifier training, a simple neural

network is used to train in offline mode and then detect events in real-time by calculating

energy function components from PMU data. Like other machine learning based techniques,

the performance of this methods depends on the amount and quality of labeled historical

data available.

Wang et al. integrated a quickest-change detection framework with a time series predic-

tion model for event detection [35]. A recurrent neural network LSTM-model is adopted to

capture the trend in power system measurements. Temporal evolution in PMU measurements

can be captured by training the LSTM model with historical data and using the trained
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model to predict system states in real-time. The model uses training data to learn about the

normal distribution of prediction error under normal conditions. In online implementation

mode, the trained LSTM model cannot predict the system parameters during occurrence of

an event and hence the prediction error will change its distribution. The dramatic change

in the statistics of the prediction error is tracked by using a cumulative sum (CUSUM)

approach. The performance of this method depends on historical data.

Kesici et al. presented an online power system monitoring scheme by using a sliding

window-based CNN model for identification of various phases of a power system: pre-

fault, fault inception, fault duration, and post-fault [36]. Although CNN is an image

recognition tool, the motive behind using CNN in this work is its capability of processing

high dimensional data. Voltage magnitude measurements from a PMU represented as time

series data are directly used as input to a CNN without transforming them to images to

avoid loss of data. Positive sequence voltage magnitude data from the simulation of a three

phase fault are used to generate a dataset for training a CNN. The model was validated by

considering two scenarios for PMU placement. The first scenario takes data from all buses,

whereas the second scenario takes data from optimally place PMUs.

The problem with these supervised learning methods is that they mostly suffer from

inadequate amount of labeled training data. Some rare and uncommon events are not

reflected in recorded PMU data. Secondly, utility event logs also miss many events. The

irregular labelling of learning data may result in a biased model. The inappropriate and

inadequate selection of training data adversely affect the efficiency and accuracy of these
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models. Moreover, the number of recorded events is also restricted by the limited installation

of PMUs. Finally, these models cannot be run without the aid of software tools and

computers in control centers.

2.2 Optimization

Optimization involves modeling a problem in terms of an evaluation function called the

objective function, and then using a search algorithm to minimize or maximize that objective

function. Over the last two decades, meta-heuristic optimization algorithms have gained

popularity. Some of these techniques such as Particle Swarm Optimization (PSO) [37],

Genetic Algorithms (GA) [38], and Ant Colony Optimization (ACO) [39] are widely known

in many fields. Most of the meta-heuristics are inspired by some aspect of nature. Nature has

acquired solutions for almost every problem through the process of evolution over billion of

years. Every meta-heuristic algorithm involves randomization at initial stage, and choosing

the best solution. Randomization allows avoidance of local optima, and choosing the best

enables convergence towards an optimal solution.

The problem solving mechanism of meta-heuristics is divided into two phases: ex-

ploration and exploitation. Exploration refers to the maximally broad and global search

for promising regions to find the best solution in solution space. Exploitation refers to

a local search to further explore those promising regions for a better solution. The vast

applications of meta-heuristic, especially for this project, is due to four reasons: simplicity,

derivation-free solutions, global optimality, and flexibility [40].
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Meta-heuristic techniques are simple because they have been inspired by simple phenom-

ena. Typically, they are inspired by animal behaviors, physical phenomena, or evolutionary

concepts. Due to their simplicity, meta-heuristics can be easily understood and applied to

different problems. Moreover, the simplicity enables scientists and researchers to imitate

different natural processes and improve current methods, hybridize different methods, or

proposed new ones.

Meta-heuristics adopt stochastic approaches to optimize problems as opposed to gradient-

based optimization, which characterize them with a derivation-free mechanism. Finding

an optimal solution does not require calculation of the derivative of search spaces as the

process is initiated with random solutions. This gives meta-heuristics superiority over other

methods for problems where derivatives of search space are unknown or difficult to get.

Meta-heuristics have better performance as compared to classical optimization methods

for avoiding local optima. The ability of avoiding stagnation and extensively searching the

search space come from the stochastic behavior of these methods. Meta-heuristics are highly

suitable for optimization of real problems, which usually have unknown and complex search

spaces with numerous local optima.

Owing to their flexibility, meta-heuristics do not need significant changes in the algorithm

before application to different problems. Due to their superior ability of handling problems

as black boxes, they can be conveniently used for optimization of different problems. Since

inputs and outputs are the only parameters that signify, researchers just need to model their

problems to apply meta-heuristics.
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Meta-heuristics can be divided into three main classes: evolutionary algorithms, physics-

based algorithms, and Swarm Intelligence algorithms.

2.2.1 Evolutionary Algorithms

The first main branch of meta-heuristics are Evolutionary Algorithms (EA), which mimic

the idea of biological evolution. GAs are a widely-known technique in this branch. Holland

first proposed GAs in 1992 by emulating Darwin’s evolutionary theory [41]. Based on the

concepts of survival of the fittest, GAs use the principles of reproduction, crossover, and

mutation. The applications of GAs to engineering problems were substantially analyzed by

Goldberg [42].

Generally speaking, EAs solve optimization problems by commencing with a random

initial population, which evolves with time. The population at each stage is used to create a

new generation of population by mutation. A fitness value is calculated for each individual

in a population to evaluate its probability to participate in creating new generation. This

process enables the enhancement of population at every iteration and guarantees convergence

of the process.

The biogeography-based optimizer is an example of EA, which was pioneered by Simon

in 2008 [43]. The development of this algorithm has been motivated by biogeography,

which is the study of the geographical distribution of biological organisms. The motivation

was to combine biogeography with engineering to see the benefits of the its applications to

optimization problems. Biogeographic studies involve geographical distribution over space

and time - different geographic locations over different time periods. It investigates different
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ecosystems and spatial patterns of biodiversity to understand the patterns of variation

concerning migration and mutation. The mathematical representation of biogeography

explains the migration, creation, and extinction of species. The main inspiration of this

algorithm was the evolution of biological habitats and territories over migration and mutation

to achieve stability.

2.2.2 Physics-based Algorithms

Physics-based algorithms are the second subclass of meta-heuristics, which are inspired by

physics rules. This branch of meta-heuristics came into existence with Richard Feynman’s

work on quantum computing in 1982, which was motivated by quantum mechanics [44].

This work paved the way for developing the concept of quantum computing. With this, the

evolution of physics-based optimization commenced with the proposal of Quantum-inspired

Genetic Algorithms (QGA) by Narayanan and Moore in 1996 [45]. As opposed to EAs

inspired by Darwin’s theory of survival of the fittest, these methods follow physics rules

to solve optimization problem with a random set of search agents that communicate and

explore the search space. The movement of these search agents throughout the search space

is dictated by a physics concept such as gravity, electromagnetism, shifting of asteroids in

space, nuclear collision reactions, gravitational radiation, inertia, and weight.

Some of the famous physics-based algorithm are Gravitational Search Algorithm (GSA)

[46], Central Force Optimization (CFO) [47], Galaxy-based Search Algorithm (GbSA) [48],

and Big-Bang Big-Crunch (BBBC) [49]. GSA is based on universal gravitational law and

mass interactions. Every search agent is considered an object with a mass in an imaginary
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universe represented by a solution space. Performance of objects, interacting with each

other according to Newton’s law of gravity and law of motion, is measured by their masses

with the heaviest mass representing the best solution. Convergence is achieved with the

concept of a gravitational constant, the value of which increases in every iteration. CFO

is inspired by the theory of gravitational kinematics. Applying law of gravitation, which

states that bigger masses exert a larger force of attraction as compared to smaller masses, a

global optimum can be represented by the biggest mass in the context of optimization. A set

of solutions, modeled as probes, moves in the search space according to the equations of

particle motion in a gravitation field. Each probe gradually moves towards the probe that has

gained the highest mass and thus arrives at a global optimum solution. GbSA mimics the

spiral arm nature of the galaxies to search its surrounding. The algorithm avoids local optima

by introducing chaos into the spiral movement-based search space exploration. Along the

exploration process, if a better solution is obtained, a local search mechanism is initiated to

search for a better solution near the newly obtained solution, which ensures exploitation.

BBBC, inspired by the expanding and shrinking phenomenon of big bang and big crunch

respectively, solve the optimization problem in two phases. During big bang phase, a new

population of search agents is generated and scattered randomly within a search space. After

exploring the search space, these agents gather at a point of best solution during big crunch

phase.
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2.2.3 Swarm Intelligence-based Algorithms

Swarm Intelligence (SI)-based techniques, the third branch of meta-heuristics, are fashioned

on the collective intelligent behavior of entities in nature, especially insects and animals

known for self-organization and forming of clusters. The social intelligence of these

creatures in nature has fascinated scientists and researchers to simulate these behaviors by

formulating advance algorithms. SI algorithms use a similar search process as physics-based

methods, but the movement of search agents in SI methods is characterized by simulated

knowledge swarming behavior of these entities. SI methods are characterized by two basic

natural concepts: self-organization and division of labor. Self-organization allows the search

agents to converge to an optimum without any external interference. Division of labor,

defined as the simultaneous execution of different tasks by sub-populations, ensures tackling

of complex problems.

Some of the well-known SI optimization techniques are Particle Swarm Optimization

(PSO) [37], Ant Colony Optimization (ACO) [39], and Grey Wolf Optimization (GWO)

[40]. PSO was introduced by Kennedy and Eberhart in 1995 to simulate the swarm behavior

of birds flocking. Multiple particles move through the search space and evolve towards an

optimum by taking into consideration the position of the best particle and the best position of

the swarm obtained so far. ACO was proposed by Dorigo et al. and inspired by the foraging

behavior of ants. Ants use indirect communication by depositing pheromone on the trails to

mark a favorable path between a food source and their nest. The intensity of this chemical

changes with time. ACO obtained its main inspiration from the social behavior of ants to
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mark the shortest path to be followed by the other ants. In ACO, pheromones represent the

intensity of a path in the search space explored by the search agents. A pheromone matrix

evolves with each iteration and search agents follow the path with the highest intensity.

GWO is another SI method proposed by Mirjalili et al. in 2014. It is inspired by the

social behavior and leadership hierarchy of grey wolves. Among the SI-based algorithms,

GWO and PSO have been widely used for various applications [50, 51, 52, 53] due to their

simplicity and superior results. This project used GWO and PSO for parameter adjust of

the detection algorithm. The inspiration and mathematical modeling of GWO and PSO are

discussed in Chapter 3 and 4, respectively.
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3 Grey Wolf Optimization Algorithm

3.1 Inspiration

Grey Wolf Optimization is an SI method introduced by Mirjalili et al. in 2014 [40]. The

main inspiration of this algorithm was the hunting approach and social hierarchy of grey

wolves. The social behavior of grey wolves is characterized by formation of packs with

a strict hierarchy in descending order of dominance as shown in Figure 3.1. The social

hierarchy has four types of wolves: alpha, beta, delta, and omega. This social hierarchy is

simulated in the GWO algorithm.

Alphas are the leaders, with a male and a female, who make decisions for the pack such

as hunting, sleeping, and waking. Mostly, alphas are responsible for making decisions,

which are followed by the entire pack, but in some cases democracy is followed. Although

the dominant wolves, alphas are not necessarily the strongest in the pack but have best

managerial skills, which shows that discipline of pack is more important than strength.

The beta wolf, either a male or female, lies on the second level in the hierarchy and is

the best replacement for an alpha in case of emergency. It acts as an advisor to the alpha to

help with decision making, and as a commander to the pack to enforce the decisions.

Omegas have the lowest dominance in the hierarchy and obey all other dominant wolves.

They seem to be the least important wolves in the pack with the role of a scapegoat but their
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absence cause internal fighting in the pack because they are used for venting frustration of

the pack. Thus, they have a role in maintain the dominance structure of the pack.

A wolf that does not belong to any of the mentioned hierarchies is called a delta wolf.

They are subordinate to alphas and betas, but dominate omegas. They include sentinels,

hunters, scouts, and elders.

The search space modeling in GWO is inspired by the interesting group hunting behavior

of grey wolves, which involves the following phases [40]:

• Searching and approaching the prey

• Encircling and harassing

• Attacking

Exploration of the search space is inspired by the first two phases, whereas, the last

phase is simulated for exploitation.

Figure 3.1: Social hierarcy of grey wolves [40]
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3.2 Mathematical Modeling

This section presents the mathematical modeling and representation of social hierarchy and

hunting behavior of grey wolves. In the context of GWO algorithm, prey represents the

optimum (maximum or minimum depending upon the problem). Wolves are the the search

agents, tracking and encircling represents exploration of the solution space, and attacking

the prey represents exploitation process.

In the mathematical representation of social hierarchy of grey wolves, the best solution

in the solution space is considered as alpha (α). The second and third best solutions are

called beta (β) and delta (δ) respectively. α, β, and δ explore the search space during the

optimization process and the rest of the candidate solutions, represented as omega (ω),

follow these search agents.

The hunting process of a pack is carried out by alpha, beta, and delta, with alpha being

the leader who guides the pack. They have the ability to locate and hunt the prey in real life.

To simulate this behavior in an abstract search space, we designate alpha, beta, and delta

as the best candidate solutions obtained so far with the assumption that they are close to

the prey (optimum). The positions of these wolves (search agents), representing the three

best solutions, are saved in each iteration and rest of the search agents update their positions

according to them. The following mathematical equations simulate the encircling behavior

of grey wolves in an abstract search space [40]:

D⃗ = |C⃗X⃗p

t
− X⃗ t| (3.1)

X⃗ t+1 = X⃗p

t
− A⃗D⃗ (3.2)
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A⃗ = 2a⃗r⃗1 − a⃗ (3.3)

C⃗ = 2r⃗2 (3.4)

Where X⃗p indicates position vector of the prey (optimum), X⃗ represents the position

vector of a wolf (search agent), A⃗ and C⃗ represents coefficient vectors for adjusting position

of search agents, t indicates current iteration, r⃗1 and r⃗2 are random vectors between 0 and

1, and a⃗ is an important parameter whose values is linearly decreased from 2 to 0 over the

optimization process.

Values of the coefficient vectors A⃗ and C⃗ can be adjusted to move the search agent in

the search space with respect to the current position. The random vectors r⃗1 and r⃗2 help

simulate the natural encircling behavior of a grey wolf so that it may take any random

position within a boundary around the prey. As depicted by the 2D illustration in Figure 3.2,

the position of a grey wolf given by (X, Y ) can be updated with respect to the position

of the prey (X∗, Y ∗). This concept can be extended to an n-dimensional solution space.

Equations 3.1 and 3.2 can be translated to simulate the hunting behavior wherein the rest of

the wolves update their positions according to the three best positions. Following equations

illustrate that the a wolf will move randomly within a circle around the prey whose position

is estimated by alpha, beta, and delta.

D⃗α = |C⃗1X⃗α − X⃗|, D⃗β = |C⃗2X⃗β − X⃗|, D⃗δ = |C⃗3X⃗δ − X⃗| (3.5)

X⃗1 = X⃗α − A⃗1D⃗α, X⃗2 = X⃗β − A⃗2D⃗β, X⃗3 = X⃗δ − A⃗3D⃗δ (3.6)

X⃗ t+1 =
X⃗1 + X⃗2 + X⃗3

3
(3.7)

Where:
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• X⃗α, X⃗β, and X⃗δ are the position vectors of alpha, beta, and delta, which represent

three best solutions during the search.

• X⃗ is the position vector of all other wolves, which represents other candidate solutions.

• D⃗α, D⃗β, and D⃗δ calculates the distance of alpha, beta, and delta from the rest of the

wolves respectively.

• X⃗1, X⃗2, and X⃗3 are the position vectors calculated with respect to the positions of

alpha, beta, and delta respectively. Each of these vectors reflects a closer position for

omega in reference to alpha, beta, and delta respectively. Mean of the three calculated

positions gives an optimal new position for an omega wolf.

Figure 3.3 shows position update of rest of the wolves with respect to alpha, beta, and delta.

Figure 3.2: 2D illustration of encircling the prey and position vector of grey wolf [40]
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Figure 3.3: Position update of omega or any other wolf with respect to alpha, beta, and delta [40]

3.3 Exploration

GWO algorithm uses two coefficient vectors, A⃗ and C⃗, to mimic the divergence of grey

wolves and realize a global search in the solution space. The values of A⃗ fluctuate randomly

within a range that depends on a⃗. The fluctuation range of A⃗ decreases when a is linearly

decreased from 2 to 0 during the optimization process. Divergence of search agents in the

solution space is simulated when A⃗ is used with random values outside the range [-1,1].

In other words, search agents will diverge to find a better prey when |A| > 1 as shown in

Figure 3.4(b).

C⃗ is used to achieve exploration and avoid local optima stagnation. The random values in

vector C⃗ are used to assign weights to the prey for calculating distance in Eq. 3.1. This also
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simulates the effect of obstacles in nature, which prevent a quick and convenient attack. As

opposed to A, the value of C is not linearly decreased in order to emphasize randomization

during exploration and avoid local optima. This randomization ensures exploration even in

the final iterations.

3.4 Exploitation

The convergence of grey wolves to attack the prey is mathematically modeled when A⃗ has

random values in the range [-1,1]. As discussed earlier, the linear decrease in the value of

a⃗ over the course of iteration simulates approaching the prey and allow both exploration

and exploitation. When |A| < 1, a search agent will move close to the prey as shown in

Figure 3.4(a). In other words, |A| < 1 will ensure that a search agent approaches the prey in

the next iteration by taking a closer position to the prey with respect to its current position.

To summarize the whole process, GWO begins with a random population of search

agents. Alpha, beta, and delta, being the best solutions, estimate the position of the prey.

Other search agents update their positions with respect to these best solutions to get closer to

the prey. A⃗ and a⃗ guarantee exploration and exploitation when a⃗ is decreased linearly from

2 to 0. The search agents diverge in the search space for half of the iterations when |A| > 1

and then converge towards the prey for the other half when |A| < 1. Satisfaction of an end

criteria terminates the algorithm. The reduced number of parameter adjustments in GWO

(only a and C) make it favorable for various applications, including maximum power point

tracking of wind turbine [50], optimal reactive power dispatch [54], and blackout prevention
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in smart grids [51].

Figure 3.4: (a) Exploitation, (b) Exploration [40]

3.5 Pseudo Code

Previous sections discussed the mathematical modeling of encircling, hunting, and attacking

mechanism of grey wolves along with some important components such as a, A, and C.

This section presents the pseudo code for GWO algorithm [40].

——Start——

1: Initialize a random population of search agents in D-dimensional search space.

2: Initialize a, A and C.

3: main loop

4: for every search agent

5: Define limits of the search space in each dimension.

6: Evaluate fitness function in D dimensions.

7: Compare fitness score with α, β, and δ score. Update Xα, Xβ , and Xδ based on
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the current fitness value.

8: Update a, A, and C.

9: Update position of every search agent according to Eq. 3.7.

10: end for

11: If end criteria is met (acceptable fitness score or maximum iterations), terminate loop.

12: end main loop

13: return Xα

——End——
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4 Particle Swarm Optimization Algorithm

4.1 Inspiration

Particle Swarm Optimization was proposed by Kennedy (a social psychologist) and Eberhart

(an electrical engineer) in 1995 [37]. The idea was to produce computational intelligence by

simulating collective and social intelligence of creatures, as inspired by the social interactions

in birds flocks and fish schools. These swarms are characterized by complex synchronous

dynamic movements such as dispersing, suddenly changing direction, and reassembling,

despite having only local knowledge of each individual. The underlying reason for the

synchrony was considered to be the birds’ tendency to keep a distance between each other.

The displacement of each individual is determined by exploiting their local knowledge

and memory. Swarm behaviors of avoiding crowded flock regions, moving in the same

direction, and staying close to the flock are used by PSO to simulate separation, alignment

and cohesion respectively. PSO has been employed for various applications, including tuning

power system stabilizers [52], improving battery autonomy in photovoltaic systems [53], and

increasing electric vehicle autonomy [55], due to its simplicity and superior performance.

In PSO, a number of search agents, called particles, are randomly placed in the search

space of a problem. Each particle, representing a solution to the problem, is characterized

by three vectors: position x⃗i, velocity v⃗i, and previous best position ⃗pBesti. Each of
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the vectors has a dimension equal to the dimension D of the search space. The current

position of each particle is evaluated as a solution to the problem in each iteration. If current

position produces better results than any previous solution, ⃗pBesti is updated with the

current position and fitness is stored in a vector called pBestScorei. The movement of each

particle in the search space is then determined by using its current and previous best position

with the best position obtained in the swarm so far, along with a random deviation. The

movement is realized by adding v⃗i to the current position of each particle, and the algorithm

moves to the next iteration after movement of all particles. v⃗i, effectively seen as a step size,

is adjusted in each iteration to allow exploration and exploitation of the search space. The

swarm moves eventually as a flock of birds in search of an optimum.

An individual particle cannot solve a problem by itself, therefore interaction is necessary

to make progress. Similar to birds flocking, some sort of communication mechanism is

required to enable social interaction that lies at the core of problem solving. As discussed

earlier, each particle interacts with the neighboring particles and its velocity is influenced

by the best position achieved in its neighborhood denoted by ⃗gBest. The individual best

and swarm best are stored by each particle in its memory. Over the course of iterations, the

velocity of each particle is adjusted to enable its movement around ⃗pBesti and ⃗gBest. In

short, the movement of each particle is governed by the following three components.

1. Inertia - influence the particle to move along its current direction.

2. Cognitive - influence the particle to move towards the region where previous best is

achieved.
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3. Social - influence the particle to move towards the region where best is achieved by

its neighbors.

The above three forces dictating the movement strategy of a particle are illustrated in

Figure 4.1.

Figure 4.1: Movement of a particle in the search space [53]

4.2 Mathematical Modeling

Each particle of the swarm in a D-dimensional search space has a position vector x⃗i =

(xi1, xi2, ..., xiD) and a velocity vector v⃗i = (vi1, vi2, ..., viD). The quality of particle position

is determined by the fitness value at that position. The best position achieved by a particle i

is stored as ⃗pBesti = (pBesti1, pBesti2, ..., pBestiD) and the best position of any particle

in the swarm is denoted by ⃗gBest = (gBest1, gBest2, ..., gBestD).

The algorithm begins with random initialization of a population of particles in the search
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space. At each iteration, the objective function is evaluated for each particle and the best

positions are updated. pBesti and gBest at iteration t + 1 are given by Equation 4.1 and

4.2.

⃗pBesti
t+1

=


x⃗i

t+1, if F itness > ⃗pBesti
t

⃗pBesti
t
, if F itness ≤ ⃗pBesti

t

(4.1)

⃗gBest
t+1

= ⃗pBesti(Max Fitness), for 1 ≤ i ≤ N (4.2)

Where N is the swarm size.

After updating the best positions, particles are moved in the search space by adding

a velocity term to its current position. A velocity vector is calculated for each particle at

iteration t+ 1 according to Equation 4.3. The particles are then moved as per Equation 4.4.

v⃗i
t+1 = wv⃗i

t + c1.r
t
1 ⊗ ( ⃗pBesti

t
− x⃗i

t) + c2.r
t
2 ⊗ ( ⃗gBest

t
− x⃗i

t) (4.3)

x⃗i
t+1 = x⃗i

t + v⃗i
t+1 (4.4)

Where w is termed as inertia weight, c1 and c2 are two constants known as acceleration

coefficients, r1 and r2 are random numbers between 0 and 1, and ⊗ is element-wise

multiplication since the velocity is calculated for every particle in each dimension.

Equation 4.3 is a linear sum of three components, which represent each of the above

mentioned forces (inertia, cognitive, and social) that influence the movement of a particle.

"wv⃗it" represents the inertial component that influence the particle to continue movement

in the current direction. w controls the amount of the inertial influence.
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"c1.rt1 ⊗ ( ⃗pBesti
t
− x⃗i

t)" represents the cognitive component, whose magnitude is

controlled by c1.

"c2.rt2⊗ ( ⃗gBest
t
− x⃗i

t)" represents the social component, whose magnitude is controlled

by c2.

In Eq. 4.3, the value of coefficient of inertia w does not remain constant over the course

of iterations. For better performance, researchers have found that w should be set to a

higher value initially (e.g. 0.9) to enable exploration of the search space. Its value should be

gradually reduced to a lower value to allow exploitation of the search space, where particles

converge to a local optima. Starting the algorithm with w > 1 will induce instability in the

system, which will then require sufficiently minimized value of w to stabilize the swarm.

4.3 Pseudo Code

Previous sections discussed the inspiration and mathematical modeling of PSO. The process

for implementing PSO is as follows.

——Start——

1: Initialize a population of particles in D-dimensional search space with random positions

and velocities.

2: main loop

3: for every particle

4: Define limits of the search space in each dimension.

5: Evaluate fitness function in D dimensions.
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6: Compare current fitness score with pBestScorei. Update ⃗pBesti and pBestScorei

if current fitness is better than the previous best.

7: Update ⃗gBest with the best position in the neighborhood.

8: Update w, calculate velocities, and move the particles according to Eq. 4.3 and

4.4.

9: end for

10: If end criteria is met (acceptable fitness score or maximum iterations), terminate loop.

11: end main loop

12: return ⃗gBest

——End——
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5 Design Methodology

This work aims at developing a configurable event detection framework for power systems,

which can be tuned to perform in accordance with system requirements. The detection

algorithm can be implemented in an automation equipment such as SEL-3555 Real-Time

Automation Controller (RTAC) for real-time monitoring of power system events. As

discussed in chapter 2, most of the existing work on event detection either requires data

from multiple buses, which suffer from communication latency, or have computational

complexities. A linear regression-based event detection model was developed by a previous

study [22]. The event detection algorithm presented here builds on that model and modifies

it to improve its performance. Two swarm intelligence-based optimization algorithms -

GWO and PSO - are then applied to optimize its parameters in accordance with a human

validation file, and enable it to perform as desired by the system operator. The performance

of both optimization algorithms are compared.

5.1 Event Detection Algorithm

The event detection algorithm uses a least-squares linear regression method. It is a statistical

procedure widely used for many application including data forecasting, time series data

analysis, and determining causal effect dependencies between variables. This method
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expresses the relationship between dependent and independent variables by generating a

line of best fit. This regression line is placed by minimizing the square of vertical distance

from the data points, also known as variance.

Y = a+ bX + u (5.1)

Where, Y represents dependent variable, X represents independent variable, a is intercept,

b is slope, and u is regression residual.

In our case, the dependent variable is frequency and the independent variable is time.

Since we are interested in determining a smoothed ROCOF, referred to as the slew rate, we

just take the slope of the regression line for our calculation, given by:

Slope(Slewrate) =
N

∑
(xy)−

∑
x
∑

y

N
∑

(x2)− (
∑

x)2
(5.2)

Where, x is independent variable, y is dependent variable, and N is the number of data

points.

Slew rate is preferred over ROCOF for event detection. ROCOF data calculated by PMUs

undergo continuous variation and are prone to noise. Fluctuations in frequency increase

with the increase in sampling rate of PMUs, which amplifies the noise level. Derivative of

frequency data, (ROCOF), does not provide a smooth estimation of frequency trend and

suffers from fluctuations and uncertain values. It requires a filter to smooth out the waveform,

which increases computational complexity and introduces additional time delay. Linear

regression provides a better estimation of frequency deviation and has superior performance

over ROCOF in case of noisy data. Deviation in slew as an indication of frequency instability

is shown in Figure 5.1, lower plot.
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Figure 5.1: Frequency instability (blue) and the corresponding drop in slew rate (red)

5.2 Detection Algorithm Parameters

The detection algorithm calculates slew rate of frequency data obtained from PMUs over

a moving window using Eq 5.2. Under normal system conditions, frequency is within a

permissible band around a nominal value of 50 or 60 Hz and slew rate is almost constant.

In case of an event, frequency changes abruptly and thus slew rate experiences a sudden

rise or fall. Based on the this sudden change in slew rate, the detection algorithm identifies

an event. The algorithm has five tunable parameters, which dictate its performance and are

adjusted using the swarm intelligence optimization algorithms.
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Parameter 1: Window Size

Slew rate of the frequency is calculated over a moving window using Eq 5.2. If N is the

total number of data samples in the sliding window, then the sampling time over which slew

rate is calculated is given by dividing N over the sampling rate of PMU (30 samples/sec

in our case). The sliding window moves forward in steps of one sample. Selection of an

appropriate windows size is important as it affects the detection speed and immunity to

noise. A large window is immune to noise and can produce a smooth trend of frequency but

has a slower detection speed.

Let x1, x2, x3...xN represent the timestamps of PMU frequency measurements and y1,

y2, y3...yN represent frequency measurements, then the slew rate λ calculated over a window

of length N is given by:

λk =

N∑
i=1

xiyi −
N∑
i=1

xi

N∑
i=1

yi

N∑
i=1

x2
i − (

N∑
i=1

xi)2
(5.3)

Parameter 2: Point Separation

The slew rate calculated over a window represents a slope value. With every new frequency

data point recorded by the PMU, the window moves forward in one sample step and

calculates slew rate (λk) for the new window. To detect a rise or fall, two slew points are

compared with each other. These compared values are separated at a distance defined by

this parameter. Although adjacent slew points can be compared, testing showed that a gap

of more than one improves the detection speed.
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Let λ1, λ2, λ3...λn represent slew calculated over each sliding window, then slew vector is

given by:

λ⃗ = [λ1, λ2, λ3...λn] (5.4)

The difference of slew is calculated between two values that are separated by a number of

points defined by nps.

Di = |λi+nps − λi| (5.5)

Calculation of λ and D are performed in run time. In offline testing, frequency measurements

are read from archived files, whereas in online testing, streaming PMU data is used.

Parameter 3: Slew Difference Threshold

The magnitude difference between any two slew points is compared with a threshold (Thsd)

to detect sudden rise or fall in a frequency trend. This threshold will only be exceeded in

case of an event.

if Dslew,i > Thsd

frequency deviation has started

Parameter 4: Series Over

Slew threshold can not be used as the only parameter for event detection because every

frequency instability does not lead to an event. Therefore, series over value is incremented

with every consecutive slew difference that exceeds slew threshold.

if Dslew,i > Thsd

Series Over = Series Over + 1
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The algorithm declares an event when series over value exceeds series over threshold (Thso),

which implies that there is a constant rise or fall in frequency trend. This variable is reset

before it exceeds its threshold if frequency goes back to normal. Thus, it also guards against

false detection signals.

Parameter 5: Event Threshold

Unlike minor frequency instabilities, frequency changes rapidly during an event, which is

reflected by the steep slew rate curve. The slew deviation from the normal value achieved in

a given time in case of an event is greater than in case of a non-event frequency deviation.

Event threshold (Thev) is another parameter which checks if, after series over threshold is

exceeded, slew deviation has reached a certain level indicative of an event. This parameter

provides an additional level of scrutiny for event detection. Testing showed that adding this

parameter in the algorithm improves its performance.

if Series Over > Thso

check for Thev

5.3 Expert Evaluation

This section discusses the human validation file that is created by presenting a set of

frequency plots to industry and academic experts, and recording their assessment. This forms

the basis for optimization of algorithm parameters in order to enable it to perform according

to the system requirements. The optimization algorithm takes this human validation file
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as input along with the original frequency data files to optimize the detection algorithm

parameters accordingly.

5.3.1 Synchrophasor Data and Frequency Archive

The Power Engineering Lab at Portland State University maintains a data archive with

almost three years of PMU data. The data archive has voltage magnitude and phase, current

magnitude and phase, and frequency measurements against timestamps saved in comma

separated values (csv) format. It has a variety of events and normal frequency data files. A

set of frequency data files from the archive was compiled, containing events, non-events, and

quasi-events to be used as a reference for testing and development of the detection algorithm.

For this purpose, event date and time information provided by Portland General Electric

(PGE) was used as reference to extract some of the frequency files from the archive that

corresponded to the events as declared by Salem Smart Power Center and NERC authorities.

5.3.2 Expert Evaluation Decision Rules

The set of test files extracted from the archive was presented to a group of experts for

evaluation. For improved performance of the algorithm, the group of experts can be chosen

as industry or academic professionals with a relevant background. Moreover, a set of

decision rules can be defined for declaring the file as either an event or not. This ensures a

consistency in evaluation pattern and avoids ambiguous cases. The evaluation was carried

out using an online survey where each frequency and its slew rate plot from the set of

test files was presented to the experts. Their evaluation for each of the candidate plots
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was recorded. The survey considers the expertise level of every participant to weigh their

assessments. The experts’ opinions for each candidate plot were recorded as either under-

frequency event, over-frequency event, or non-event. The survey then produces a human

validation file in csv format containing file name, experts names, and their assessment. A

final evaluation of the frequency file was then provided using weighted assessment of the

experts. A sample human validation file is tabulated in Table 5.1.

Table 5.1: A sample human validation file containing file names, experts’ assessments, and final declarations

Name Expert 1 Expert 2 Expert 3 Is_event

2019-08-02-15-34_11.csv Over frequency event Over frequency event Over frequency event True

2019-10-03-18-20_5183.csv Under frequency event Under frequency event Under frequency event True

2019-10-27-03-22_12196.csv Under frequency event Under frequency event Under frequency event True

2019-12-17-11-48_12529.csv Under frequency event Under frequency event Under frequency event True

2019-09-05-08-51_7722.csv Not an event Not an event Not an event False

2019-09-18-10-15_582.csv Not an event Not an event Not an event False

2019-09-18-22-15_732.csv Not an event Not an event Not an event False

2019-09-29-01-12_3769.csv Not an event Not an event Not an event False

2019-10-24-01-51_11277.csv Under frequency event Under frequency event Under frequency event True

2019-10-04-08-10_5356.csv Not an event Not an event Not an event False

2021-01-16-01-20_538.csv Not an event Not an event Not an event False

2021-01-16-04-02_554.csv Not an event Not an event Not an event False

2021-02-08-08-33_40.csv Not an event Not an event Not an event False

2021-01-13-02-03_116.csv Under frequency event Under frequency event Under frequency event True

2021-02-08-13-50_3.csv Not an event Over frequency event Over frequency event True

2021-02-10-16-21_302.csv Not an event Not an event Not an event False

2021-01-12-09-29_18.csv Not an event Under frequency event Under frequency event True

2019-09-01-02-27_5418.csv Not an event Not an event Not an event False

2019-09-01-02-30_5419.csv Not an event Not an event Not an event False

2019-09-01-02-32_5420.csv Not an event Not an event Not an event False

48



Figure 5.2: Performance evaluation of detection algorithm based on binary classification metrics

5.4 Detection Algorithm Performance Evaluation

Performance of the detection algorithm is evaluated against the assessment of industry

experts using a set of performance evaluation metrics [56]. Evaluations metrics are calculated

using binary classification metrics. The binary classification metrics and performance

evaluations metrics are discussed below. Figure 5.2 shows a flowchart that depicts the
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performance evaluation of detection algorithm based on binary classification metrics by

comparing algorithm output with expert assessment.

5.4.1 Binary Classification

The event detection algorithm is tested on the same set of frequency files used for the expert

evaluation. Results of the algorithm are compared with human validation assessments to

form binary classification metrics as explained below.

True Positive (TP): the algorithm correctly identifies an event, as declared by the

expert.

True Negative (TN): the algorithm correctly identifies a non-event frequency deviation,

as declared by the expert.

False Positive (FP): the algorithm incorrectly identifies an event that is declared as

non-event by the expert.

False Negative (FN): the algorithm does not identify an event that is declared an event

by the expert.

5.4.2 Evaluation Metrics

Binary classification is used to calculate evaluation metrics to assess the performance of

event detection algorithm against experts’ evaluation.

• Accuracy measures the algorithm’s performance in terms of classifying events and
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non-events correctly. Value ranges from 0% to 100%, higher value is better.

Accuracy =
TP + TN

SampleSize
× 100% (5.6)

• Sensitivity measures the capability to correctly detect events. Value ranges from 0%

to 100%, higher value is better.

Sensitivity =
TP

TP + FN
× 100% (5.7)

• Precision measures how many of the positively identified events are actual events.

Value ranges from 0% to 100%, higher value is better.

Precision =
TP

TP + FP
× 100% (5.8)

• Specificity measures the ability of the algorithm to differentiate between event and

non-event and correctly identify normal frequency deviation that does not indicate an

event. Value ranges from 0% to 100%, higher value is better.

Specificity =
TN

TN + FP
× 100% (5.9)

• False Discovery Rate measures the tendency to falsely identify an event. It is equiva-

lent to 1− Precision. Unlike Accuracy, Sensitivity, Precision, and Specificity,

a lower value of FDR is desirable.

FDR =
FP

TP + FP
× 100% (5.10)
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5.5 Frequency Response Test Station

Once a detection algorithm is developed and tested offline using archived PMU data, the

next step is to verify its performance for real-time event detection. The Power Engineering

Lab at PSU has a Frequency Response Test Station that provides real-time event detection

and testing capabilities. Figure 5.3 shows a representation of the Frequency Response

Test Station. The test station comprises two SEL-351 PMUs, an SEL-3555 Real-time

Automation Controller (RTAC), an NHR-9410 Grid Simulator, and an SEL-2407 GPS

clock with antenna. PMUs are the most sophisticated time-synchronized tool used in power

systems for advance situational awareness applications. The development in computer

technology and deployment of GPS have played a major role in the advancement of PMU

technology. A thorough knowledge of the system dynamics has been made possible by the

growing deployment of PMUs. In recent years, PMUs have been widely used for detection of

power system events due to their capability of recording GPS-synchronized synchrophasors

at high sampling rates.

PMU-1 is connected to 120/208 V power supply to monitor and record electrical quanti-

ties and save it in the Power Engineering Lab data archive. PMU-2 is connected to the Grid

Simulator to take frequency measurements during testing of the detection algorithm. The

Grid Simulator has four-quadrant power transfer capabilities and can be used to replicate

any frequency event. This provides a sophisticated tool to simulate different power system

conditions for detection algorithm testing. The RTAC can be programmed with an event

detection algorithm to evaluate its performance in real-time. The Frequency Response Test
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Station provides an advanced system to test and evaluate event detection algorithms for

historical events without the need to wait for actual events to occur on the grid.

Figure 5.3: PSU real-time Frequency Response Test Station

5.6 Implementation of Optimization Algorithms

5.6.1 Objective Function

For any optimization algorithm, the problem needs to be expressed mathematically, which is

referred to as an objective function. The optimization process can then be cast into a maxi-

mization or minimization problem, wherein the objective function needs to be maximized or

minimized respectively. For this work, the optimization is applied to the detection algorithm

to improve its performance by adjusting its five tunable parameters, which can be evaluated

with the performance evaluation metrics discussed in Subsection 5.4.2. Thus the objective

function for this work can be formulated using a sum of evaluation metrics, which makes
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the optimization process a maximization problem to maximize the performance evaluation

metrics. Only four evaluation metrics are included in the objective function i.e. Accuracy,

Sensitivity, Precision, and Specificity. For the sake of simplicity, False Discovery Rate is not

included in the objective function. Apart from simplicity, another reason is that the value

of FDR will automatically decline if Precision increases. Objective function is given by

Eq. 5.11.

Max(Accuracy + Sensitivity + Precision+ Specificity) (5.11)

Where the evaluation metrics are defined by Eq. 5.6-5.9. The evaluation metrics are affected

by the parameters of the detection algorithm. Variation in any parameter is reflected in the

performance. By maximizing the objective function (evaluation metrics), the optimization

algorithm basically optimizes the parameters of the detection algorithm that will improve its

performance. Since each of the evaluation metrics measures the algorithm’s ability in terms

of TP , FP , TN , and FN , different BAs might focus on different evaluation metric as per

their requirements. For instance, a BA may need to maximize Precision and Specificity

to reduce the number of FP and prevent unwarranted triggering of frequency response

assets. Therefore, objective function can be formulated using a weighted sum of the four

evaluation metrics with the highest weight assigned to the evaluation metric of interest for a

specific BA.

5.6.2 GWO Algorithm Development

1. The optimization algorithm starts by initializing a random population of search agents.

The number of search agents and iterations are set. Dimension of the optimization
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problem is set to the number of variables on which the objective function depends.

Since there are five parameters to optimize as discussed in Section 5.2, the dimension

is set to 5. A boundary of the search space is defined. A position matrix of dimension

Nw × Nd is generated, where Nw represents the number of search agents (wolves)

and Nd represents dimension of the problem (5 in this case). The position of each

search agent in the position matrix is defined by five parameters to be optimized. The

search agent with the best position, i.e. set of parameters, will produce a high fitness

score as described by the objective function, and will be designated as the α search

agent. The second best and the third best will be designated as β and δ respectively.

2. The main loop starts with checking the position of each search agent against the

boundary defined for each parameter in step one. If any of the optimized parameters

violates the set boundary limits, it is rounded off to the corresponding upper or lower

limit. This is an important step especially for optimizing window size since the event

detection speed depends on the window size. By changing the search space boundary

for window size, an optimal trade-off can be achieved between detection speed and

accuracy.

3. The fitness value for each search agent with a position vector containing five parame-

ters is calculated using the objective function. Based on the fitness value, the three

best search agents are identified.
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Figure 5.4: GWO algorithm flow diagram
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4. After labeling the three best solutions, the value of GWO parameter a is calculated in

every iteration. This is an important step. During the course of iterations, a decreases

linearly from 2 to 0. This parameter dictates the value of GWO coefficient vector A⃗

that simulates the divergence of grey wolves in the search space and convergence to

find a better prey.

5. In the next step, the value of GWO coefficients A and C are calculated for every

search agent in each dimension (for each optimized parameter) using Eq. 3.3 and 3.4.

The position of each search agent is updated using Eq. 3.5, 3.6, and 3.7. In every

iteration, α, β, and δ update their positions according to the prey and the remaining

search agents update their position according to α, β, and δ.

6. With the updated position matrices, the next iteration begins and the loop continues

until an end criteria is met or the loop ends. At the end of the optimization process,

the position matrix of the search agent α represents the optimized parameters of the

detection algorithm. Figure 5.4 describes the GWO process with a flow diagram.

5.6.3 PSO Algorithm Development

The flow of PSO algorithm is similar to that of GWO algorithm. Both the algorithms start

with a random population of search agents and evaluate objective function for each search

agent. Omitting the details already discussed for GWO, the process of PSO algorithm is

described below.
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Figure 5.5: PSO algorithm flow diagram
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1. The algorithm begins with a population of particles in a D-dimensional (D = 5 in this

case) search space with random positions and velocities. Both the position matrix and

velocity matrix has dimensions Np ×Nd, where Np represents number of particles

and Nd represents dimension of the problem.

2. The main loop starts with defining a boundary for each dimension of the search space

and rounding off each parameter that exceeds the boundary to the nearest limit.

3. The objective function is evaluated for each particle having a 5-dimensional position

vector. If the current fitness of a particle i is greater than its previous best, update the

previous best fitness pBestScorei to the current fitness and previous best position

⃗pBesti to the current position. Similarly, if the current fitness is greater than the

previous best achieved by any particle in the swarm, update the swarm best fitness

gBestScore to the current fitness and swarm best position ⃗gBest to the current

position.

4. Update coefficient of inertia w, calculate velocity for each particle according to Eq. 4.3,

and move each particle in the search space according to Eq. 4.4. The setting of the PSO

simulation parameters i.e. w, c1, and c2, is well-discussed in the literature [57, 58].

High values of c1 and c2, and a low value of w will discourage exploration and cause

premature convergence of the particles. To realize a balance between exploration and

exploitation, both c1 and c2 are set to 2, and w is linearly decreased from a maximum

set value (0.9) to a minimum set value (0.2) over the course of iterations [59].
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5. With the updated position of the particles, the algorithm moves to the next iteration

and the loop continues to evaluate the new positions until an end criteria is met. At the

end of the optimization process, gBestScore represents the best fitness and ⃗gBest

represents the best position (5 optimized parameters). Figure 5.5 describes the PSO

process with a flow diagram.

5.6.4 Challenge: Processing Time

Each frequency file in the data archive contains 18,000 measurements. For better perfor-

mance of the detection algorithm, the sample space chosen for parameter optimization

should be large containing events, non-events, and quasi-events. As an example, a sample

size with 20 frequency files having 18,000 measurements each will result in a data set of

360,000 measurements. Processing this much data over many iterations for optimization

takes an enormous amount of time. The processing time increases dramatically with the

number of iterations and sample size. Several approaches were adopted to address this

challenge. Since the frequency archive files are in csv format, instead of reading frequency

measurements from those files in each iteration, all the frequency measurements were stored

in arrays to be readily available and promptly accessed for processing. Similarly, in each

iteration, the optimization algorithm processes all data in each frequency file to look for

events and compare them with the human validation file in order to calculate fitness. The

algorithm was forced to move to the next file when an event is detected in a specific file, by

calculating slew in run time and checking for events. This helped reduce the processing time

associated with calculating slew over a complete file having 18,000 measurements when an
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event can be in the beginning or middle of the file. The main two approaches that consider-

ably reduced the optimization processing time are discussed below in Subsection 5.6.5 and

5.6.6.

5.6.5 Data Curtailment

Events do no happen frequently in power systems and thus most of the frequency measure-

ments in the frequency archive files represent normal frequency. One way to reduce the

processing time was to remove the redundant frequency data representing normal frequency

and ultimately diminish the data size. This techniques was implemented using the idea

that a sudden rise or drop of slew indicates a frequency disturbance. In the beginning of

the optimization algorithm, slew rate was calculated for all the files, and all the data not

representing any considerable slew change were removed from the files. A step-by-step

procedure of data curtailment is explained below.

1. Read data from all frequency files.

2. Calculate slew rate for all files.

3. Identify maximum and minimum slew value in a file along with the index.

4. Compare magnitude of the maximum value with the minimum value and identify the

greater one. This shows if the file represent an under-frequency disturbance or an

over-frequency disturbance.

5. Label index of the greater value as x.
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6. Keep l1 number of measurements before x and disregard the data before x − l1. If

x− l1 < 0, set x− l1 = 0. Selection of l1 is critical to avoid degraded performance.

7. Keep l2 number of measurements before x and disregard the data before x + l2. If

x+ l2 > file size, set x+ l2 = file size. Selection of l2 is critical to avoid degraded

performance.

8. Repeat the process for each file.

Adopting this approach caused a significant reduction in the processing time, almost

85%. There is a minimum limit for l1 and l2, below which performance will deteriorate.

5.6.6 Memoization

Memoization is a programming optimization technique used in dynamic programming to

accelerate performance and reduce computation time. It caches the results of recursive

functions and returns the stored value when needed later. It reduces the time complexities

from exponential to polynomial by avoiding re-computation of results. Memoization is

mostly applied when a costly function is executed continually, possibly with the same inputs.

Since both GWO and PSO algorithms involve random numbers with a possibility that the

same position matrix (detection parameters) may be passed to the fitness function repeatedly,

memoization is implemented to avoid repeated calculations. Every time the fitness function

is called, it checks the memory for the same arguments. If a fitness value already exists for

the same inputs, it returns that value. If not, it computes the fitness and stores it against the

position matrix to be used later.
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6 Results & Discussion

A Python development environment was used to implement and test the event detection

and optimization algorithms. A sample set of 50 frequency files consisting of events, non-

events, and quasi-events, recorded at 30 samples per second, was used from the PMU data

archive to run simulations and validate the performance of the GWO and PSO-based tuning

algorithms. The human validation file and the corresponding frequency files were provided

to both optimization algorithms. The obtained optimized coefficients were validated by

evaluating the performance of the detection algorithm using those coefficients. Two versions

of the human validation file were used for the sample set - one with evaluation of both

experts and non-experts, and one with evaluation of only experts. The effect of the expert

evaluation process and consistency in event definition was highlighted by comparing the

results obtained from both versions of the human validation. The detection speed achieved

using optimized parameters is fast enough to trigger frequency control assets within a short

time after the onset of an event.

6.1 Performance Evaluation

The sample set consists of 50 files with 21 events and 29 non-events. The upper and lower

boundary of the solution space for each of the five parameters is given in Table 6.1. Selection

of an appropriate window size is critical to achieve a trade-off between performance and
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detection speed. A large window produces a smooth slew rate and improves performance

but it reduces detection speed. Therefore, the upper bound for the slew window is restricted

to 8 seconds to achieve improved performance with reasonable detection speed. The

corresponding human validation file for the sample set was created from the evaluation of

three experts. Table 6.2 shows the adjusted parameters using GWO and PSO.

Table 6.1: Boundary of the search space for the five dimensional optimization problem

Window (samples) Point Separation Slew Diff Series Over Event Threshold

Upper Bound 250 30 0.0002 30 0.0001

Lower Bound 100 3 1× 10−7 3 1× 10−6

Table 6.2: Adjusted parameters using GWO and PSO

Window (samples) Point Separation Slew Diff Series Over Event Threshold

GWO 216 3 0.000003 13 0.0000378

PSO 150 25 0.00005966 20 0.0000001

A comparison of the best solutions obtained using GWO and PSO along with the

simulation parameters is presented in Table 6.3. The maximum possible fitness value is 400,

as given by Eq 5.11.

Table 6.3: Comparison of best solutions obtained with GWO and PSO

Algorithm Iterations Search Agents Fitness
Sample Set

Size No. of Events
No. of

non-events

GWO 50 10 383 50 21 29

PSO 50 10 359 50 21 29

GWO outperformed PSO. The maximum fitness achieved by PSO was less than that

achieved by GWO. The convergence curves for both GWO and PSO are shown in Figure 6.1.
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The optimized parameters were used in the detection algorithm and tested for the 50 files.

GWO-optimized parameters produced superior results. Out of 21 events, 20 were detected

correctly. Since occurrence of events in power systems is a rare phenomenon, one of the

most important features of a detection algorithm is to identify normal frequency deviations

and not issue false detection signals. Precision and Specificity, which account for false

positives, are the best metrics for considering issuance of false detections. The proposed

algorithm was capable of differentiating between events and minor frequency deviations.

Performance evaluation metrics and binary classification are given in Table 6.4.

Table 6.4: Performance evaluation metrics obtained using GWO and PSO-based parameter adjustment

Algorithm
Accuracy

(%)
Sensitivity

(%)
Precision

(%)
Specificity

(%)
FDR
(%) TP FP FN TN

GWO 96 95 95 97 5 20 1 1 28

PSO 92 85 95 97 5 18 1 3 28

An Accuracy of more than 95% was achieved with GWO-optimized parameters, as

presented in Table 6.4. Considering Precision, a value of 95% implies that one out of 29

non-events was falsely given as an event. This can happen if the frequency deviation is more

severe like an event. The frequency file that was falsely detected as an event is shown in

Fig 6.2. The frequency increases from 59.965 Hz to 60.01 Hz (0.045 Hz) in 9 seconds. The

abrupt deviation in frequency gives rise to a spike in the slew rate, although the frequency

is oscillating within permissible band. Some utilities might be interested in detecting such

abrupt deviations, depending on the system conditions.

For optimization, initially a large solution space was chosen with increased number of

iterations. The upper and lower bounds for all parameters were found to be conservative
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Figure 6.1: Convergence curve for GWO and PSO for the sample set with 50 files. GWO achieved higher
fitness value.

for different types of events. Therefore, the solution space limits were reduced to improve

convergence speed with fewer iterations without compromising performance. With a

relatively smaller solution space, the optimization algorithms were able to produce the same

results in a considerably shorter time.

GWO performed better than PSO for this problem as it was able to produce better

results for a sample set where PSO failed to achieve the highest possible fitness. This fact is

supported by the No Free Lunch Theorem [60], which proved that no single meta-heuristic

can perform effectively for all optimization problems. This particularly means that an

algorithm may have superior performance for some set of optimization problems but poor

performance for another set of problems.
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Figure 6.2: An abrupt deviation in frequency giving rise to a spike in the slew rate and false detection signal.

6.2 Event Detection Speed

For determining the speed of the detection algorithm, six random event files were chosen

from the sample set. Using the GWO-optimized parameters, the frequency measurement

point at which the algorithm identifies the event in an under-frequency event is highlighted

in Figure 6.3.

After the fault inception, the number of frequency measurements it takes for the detection

algorithm to issue event detection signal for each sample file are presented in Table 6.7. The

sample set imported from the PMU data archive was recorded at 30 samples per second. For

real-time implementation of detection algorithm in the RTAC, the samples will be taken from

streaming PMU data instead of pre-recorded files. Table 6.7 also presents the detection time
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Figure 6.3: The frequency sample (red dot) at which the algorithm detected an event.

Table 6.5: Event detection speed in terms of frequency samples and seconds for files recorded at 30 samples
per second.

File Fault Inception Point Event Detection Point
Detection Time

(no. of. samples)
Detection Time

(sec)

1 10502 10525 23 0.76

2 15653 15677 24 0.8

3 6165 6198 33 1.1

4 7060 7097 37 1.23

5 15692 15744 52 1.73

6 6062 6096 34 1.13

in seconds using the data sampling rate. The detection speed varies for different frequency

events depending on the slew rate of the frequency event curve. If the frequency curve

becomes normal for some time during a decline, the detection algorithm will take longer to

declare it as an event.
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The sample files were recorded with a sampling rate of 30 samples per second. To

determine the detection speed for a higher sampling rate, the frequency data were interpolated

to make it look like they were recorded at 60 samples per second. The same six files were

subject to linear interpolation in Python. Each interpolated file had twice the number of

samples as the original file, i.e., 36,000. Figure 6.4 shows an interpolated file against the

original file along with the sample at which event is detected for both files, respectively.

The interpolated files were given to the GWO algorithm to obtain updated parameters.

The same fitness value and performance metrics were obtained but the detection parameters

derived were different because of an increased sampling rate. Event detection time was

then determined for these files using the updated optimized parameters. Table 6.6 presents

detection time both in terms of number of samples and seconds for the new files.

Table 6.6: Event detection speed in terms of frequency samples and seconds for interpolated files.

File Fault Inception Point Event Detection Point
Detection Time

(no. of. samples)
Detection Time

(sec)
Improvement

(sec)

1 21004 21040 36 0.6 0.16

2 31312 31346 34 0.56 0.24

3 12330 12375 45 0.75 0.35

4 14124 14165 41 0.68 0.55

5 31384 31417 33 0.55 1.18

6 12124 12174 50 0.83 0.3

The number of samples it takes for the detection algorithm to identify an event remains

almost the same even if the data sampling rate is increased. It is justified by the fact that

detection algorithm parameters are adjusted according to the new sampling rate and hence

the slew difference threshold will be lower for higher sampling rates owing to the temporal
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Figure 6.4: An interpolated frequency file against the original file. Red and black dots highlight the sample at
which event is detected, respectively.

closeness of samples. The adjustment of parameters is carried out automatically by the GWO

algorithm when it processes the highly sampled files. With the advent of synchrophasor

technology, PMUs can now record data at up to 120 samples per second. Thus, detection

speed can be further improved with higher PMU sampling rates. This improvement in

the detection speed with the increase in PMU sampling rate can be utilized in low inertia

systems. The decline in system synchronous inertia causes frequency events to exhibit

higher ROCOF, thus necessitating higher detection speed.

70



6.3 Effect of Inconsistent Expert Evaluation

The consistency in event assessment during expert evaluation is of critical importance. Since

the optimization algorithms produce optimized parameters to enable the detection algorithm

to perform detection according to the human validation, there should be clear decision rules

for declaring what quantifies as an event. As the detection algorithm relies on slew rate,

which depends on the rate of change of frequency, consistency in event assessment will

ensure uniform evaluation pattern and avoid ambiguous cases. If two similar frequency

curves are assessed differently by the human experts, the detection algorithm will not be

able to differentiate between them and we can expect a false positive or false negative signal.

This emphasizes the fact that assessment should be carried out by experts with relevant

experience who have better knowledge of power systems. As discussed earlier, the sample

set had two versions of human validation created by semi-experts and experts. Table 6.3 and

6.4 present the results for expert evaluation. The performance of optimization and detection

algorithms for semi-expert evaluation is discussed below. GWO has been used to identify

the effect of inconsistent expert evaluation because it performed better than PSO.

The same sample set with 50 files was processed by the GWO algorithm with a new

human validation file containing assessment of semi-experts. In the new human validation

file, 29 files were assessed as events and 21 as non-events by the semi-experts. Due to

inconsistency in the event assessment process, the maximum fitness achieved was 345 as

presented in Table 6.7.

The new adjusted parameters were used in the detection algorithm and tested. Table 6.8
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Table 6.7: Fitness value achieved for the same sample set with semi-expert event assessment.

Iterations Search Agents Fitness Sample set size No. of Events No. of non-events

50 10 345 50 29 21

presents the performance evaluation metrics and binary classification. The performance of

detection algorithm has been deteriorated due to false detection of two candidate frequency

curves. This is reflected in the decline of Precision and Specificity. False positives need to

be avoided as they lead to the unwarranted triggering of frequency response assets.

Table 6.8: Performance evaluation metrics obtained for the same sample set using optimized parameters for
semi-expert event assessment.

Accuracy (%) Sensitivity (%) Precision (%) Specificity (%) FDR (%) TP FP FN TN

84 79 92 90 8 23 2 6 19

Such an ambiguity caused by the inconsistency in event assessment process is shown

in Figure 6.5. Although the change in frequency as well as the rate of change of frequency

is almost the same for both the plots, the frequency instability on the left is assessed as

an over-frequency event whereas the one on the right is assessed as a non-event by the

semi-experts. In such a situation, the optimization algorithm cannot reach a best possible

solution that can clearly differentiate between the two cases and hence the fitness value

drops.
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Figure 6.5: Example of an inconsistency in the event assessment process.
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7 Conclusion

A constant growth in the installation of renewable energy sources and retirement of large

conventional generators have posed a threat to the frequency regulation capabilities of

modern electrical grid due to a decline in rotational inertia and primary frequency response.

Power systems are required to maintain frequency within a permissible band around the

nominal value for secure, reliable, and economic operation. To address the unprecedented

challenges that have arisen as a consequence of electrical grid modernization, researchers

have focused on the advance computational tools and frequency control mechanisms to

improve monitoring of and response to frequency events within modern power systems.

With the development of synchrophasor technology, many existing frequency event

detection techniques leverage the high sampling rate of PMUs to enable system operators to

have real-time knowledge of power system networks. Automatic event detection in power

systems has engaged researchers lately and an extensive work is reported in literature about

this topic. However, most of the work reported in the literature need measurement data from

multiple buses in the network for reliable operation and cannot differentiate between an

actual event and minor deviations.

The definition of an event may vary for different balancing authorities depending upon

their critical stability limits. An event detection algorithm should be able to be configured

for each balancing authority to match the definition of an event as defined by their experts.
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Contemporary event detection algorithms reported in the literature are not able to be config-

ured and operated according to the system conditions. This work presented a configurable

event detection method using least-sum-of-squares linear regression whose parameters can

be tuned to match the definition of frequency events as specified by experts for a balancing

authority. The proposed algorithm has the capability to be implemented in an automation

controller to use streaming PMU data for real-time event detection and trigger dispatchable

frequency response assets.

Two swarm intelligence-based optimization algorithms, GWO and PSO, were applied

to automate the parameters tuning process. Each optimization algorithm uses experts’ as-

sessment of frequency events along with the original frequency files as inputs and produces

optimized parameters of the detection algorithm as output which are used for detection of

events as desired by the experts. Performance of both algorithms were compared and anal-

ysed for a sample set containing 50 frequency files. GWO gave better results for the problem

and outperformed PSO. The detection algorithm was able to identify frequency events in

less than a second after inception of a frequency event. Detection speed can be further

improved with higher PMU sampling rates. Effect of inconsistency in the event assessment

process by human experts was also demonstrated by using semi-expert assessment, which

degraded the performance. Performance of both the detection and optimization algorithms

was validated by using recorded PMU data from PSU data archive. The proposed event

detection framework facilitates the configuration of the detection algorithm to enable its

operation according to the detection requirement of a BA.
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Future work may involve the implementation of the proposed event detection algorithm in

an automation controller, such as the SEL-3555 Real-time Automation Controller. Using the

optimized parameters, the detection algorithm can be validated for real-time event detection

with streaming PMU data. The Frequency Response Test Station at Power Engineering

Lab offers real-time event detection and testing capabilities. The Grid Simulator enables

replication of archived frequency data that can be used by RTAC for real time testing.

Another related work could be using another detection technique, including a wavelet

transform or filtering-based approach. Although GWO has proved its efficacy in various

problems, future research may focus on a new swarm-intelligence or classical optimization

algorithm for parameter adjustment. The performance of the new algorithm can then be

compared with this work. Another tangential study may include triggering a dispatchable

frequency response asset upon an event detection.
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Appendix : Python Code

The python functions for the proposed event detection and optimization framework are

available on GitHub:

Event Detection Algorithm for Power Systems - GitHub

Information about GitHub repository

Fresp _v3.py Event Detection Algorithm with five tunable parameters

GWO _event _detection.py GWO algorithm for parameter adjustment

PSO _event _detection.py PSO algorithm for parameter adjustment

Human Validation 50.csv Human validation file for a sample set of 50 frequency files used for this work
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https://github.com/umar-fresp/tuneable_event_detection_algorithm_for_power_systems
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