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Abstract

Transportation is a key driver of any national economy. In the United States,

the transportation sector contributes $1.3 trillion to the economy, of which freight

transportation represents more than 50%. Trucks alone account for more than 70%

freight movements in the United States. In addition to worsening stress at ports

of entry and traffic congestion in the system, freight also accounts for nearly one-

third of the greenhouse gas emissions in the United States. Emerging transportation

technologies like electric unmanned aerial vehicles (or drones) and electric vehicles

can provide a more sustainable alternative to combat greenhouse gas emissions and

reduce the congestion in the transportation network.

This dissertation extends the frontier in planning and real-time resource alloca-

tion in logistics systems that utilize emerging transportation technologies to move

freight. A common theme throughout the dissertation is uncertainty. In network

planning problems, uncertainty stems from inherent variation in problem parameters

or the potential unavailability of data. In real-time operations, uncertainty arises

due to the dynamic nature of the problem as the information is gradually revealed

over time. The dissertation considers four application problems spanning both pub-

lic sector and corporate applications. These problems involve a network planning

component or a real-time operations component or both. The real-time operations

are modeled as online resource allocation problems and multi-armed bandits-based

reinforcement learning methodologies are proposed. The contributions are made by
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developing novel problem formulations for each problem and proposing two new multi-

armed bandit problems. A performance regret bound is also obtained for one of the

proposed multi-armed bandit problems.

The four application problems are now very briefly described. The first applica-

tion considers a network planning problem for locating electric drones equipped with

automatic external defibrillators (AED) in an effort to combat out-of-hospital cardiac

arrests in a service region. The second application considers a facility location and

dynamic resource allocation problem applicable to a logistics company expanding to

offer instant delivery using electric drones. The third application also considers a

facility location and dynamic resource allocation problem but in the context of re-

lief prepositioning and their equitable distribution post-disaster. Finally, the fourth

application considers a dynamic truckload pickup and delivery problem in a service

area using a fleet of electric trucks.
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1 Introduction

1.1 Background

Transportation is a key driver of a nation’s economy. The demand for transporta-

tion, including all expenditures related to transportation-related goods and services,

contributed $1.9 trillion to the US economy in 2019, representing an 8.9% share of

the GDP (U.S. Department of Transportation, Bureau of Transportation Statistics,

2021). Just accounting for transportation services, the transportation sector con-

tributed $1.3 trillion in which freight transportation represents slightly over a 50%

share ($651.2 billion). As many sectors are dependent on freight transportation, the

national GDP is highly correlated with the trends in freight volumes (see Figure 1.1).

The trends in freight volumes are captured using the Freight Transportation Service

Index (TSI) developed by the Bureau of Transportation Statistics (BTS) which is

calculated monthly. According to BTS research, the changes in Freight TSI occur

before changes in the economy, making it an important economic indicator.

1



Figure 1.1: Quarterly trends of the US GDP and Freight Transportation Service
Index from year 2000 onward

With a significant contribution to the GDP, the ability to move freight efficiently

in, around, and out of a region has a direct implication on the regional economy.

However historically, freight planning has received insufficient consideration in the

transportation planning process (U.S. Department of Transportation, 2020). Com-

bined with the growth in foreign trade spurred by the globalization of supply chains

and containerization, the amount of freight moving through the nation has exploded

resulting in stresses to not only the points of entry but the transportation network in

general (U.S. Department of Transportation, Federal Highway Administration, 2012).

At $368 billion, trucking is the highest contributor to the GDP in the $1.3 tril-
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lion transportation services sector (U.S. Department of Transportation, Bureau of

Transportation Statistics, 2021). Trucks transported 11.84 billion tons of freight

which represents 72.5% share of domestic tonnage shipped (American Trucking As-

sociation, 2019). Trucking is also the favored mode of freight transportation, with a

mode share of greater than 50% when travel distances are less than 2000 miles (U.S.

Department of Transportation, 2020). However, this dominance is not reflected in

its use of data analytics to improve the efficiency and performance of its business

operations (Wang et al., 2018). Improvements in information and communication

technologies provide opportunities for using real-time information for improving the

efficiency and optimizing the performance of freight systems, which is the central

theme of this dissertation. Moreover, the advancements in truck-related freight lo-

gistics can also be applicable, under certain contexts, to the closely related fields

of emergency services management, humanitarian logistics, ride-hailing/ride-sharing

services, and package/food delivery services. To this end, the current work models

freight movement in several application contexts.

1.2 Research Contributions

This work broadly contributes to planning and the real-time resource allocations

in freight logistics systems. The freight systems employ emerging transportation

technologies like battery-operated unmanned aerial vehicles (UAVs) or drones and

electric freight vehicles. The application of these freight systems are considered in

3



the context of both for-profit corporate operations like instant delivery logistics and

truckload delivery markets, and in public sector and/or non-profit based operations

like emergency services management and humanitarian logistics. The major research

contributions resulting from this dissertation are:

• Development of a two-stage methodology: As a part of this methodology,

in the first stage, we locate facilities and/or allocate resources to them. In the

second stage, requests arrive in an online manner and the goal is to allocate

request to the located facilities. The fulfillment of requests lead to consumption

of resources at the facility. The goal during the second stage is maximization

of cumulative rewards obtained through successful allocation adhering to the

resource budget constraints at the facilities. We use multi-armed bandits for

designing the request allocation policy in the second stage. The development of

this methodology contributes to limited research in two stage location-allocation

models which use adaptive online policy for dynamic decision-making in the

second stage. To the best of authors’ knowledge, this is the first application of

multi-armed bandits for designing the second stage online adaptive policy for

transport-related applications.

This model is employed two studies: first, facility location and dynamic resource

allocation for incorporating instant delivery logistics in an existing company’s

last-mile supply-chain; and second, it is utilized for setting distribution centers

and prepositioning scarce relief supply and their equitable distribution in post-

4



disaster operations.

• Equitable linear contextual bandits with knapsacks: A new multi-armed

bandit (MAB) framework is proposed to learn an allocation policy in an online

manner for while ensuring equity and considering globalized resource consump-

tion budget (or, knapsack) constraints. We call this problem equitable linear

contextual bandits with knapsack (E-linCBwK) problem. This framework is

applied to obtain equitable distribution of scarcely available relief packages in

post-disaster scenarios in an dynamic-stochastic setting. The fair or equitable

distribution is rooted in the concept of envy Foley (1966), which is commonly

used in public welfare applications. We propose a solution algorithm for E-

linCBwK and obtain a sub-linear regret bound for the algorithm by formulating

the E-linCBwK problem as an existing MAB problem proposed by Agrawal and

Devanur (2016).

• Linear contextual blocking bandits with context-dependent delays:

We formulate a new multi-armed bandit problem for the allocation of vehicles

for real-time pickups and drop-offs. Examples of such problems include truck-

load operations at a carrier company, ride-hailing services, and online food or

freight delivery platforms. Here, we wish to learn the allocation of vehicles to

each request. Once the vehicle is assigned, it cannot service other requests,

and hence, it is “blocked”. In addition, this “blocked” time is dependent on

request characteristics. We propose a new methodology to solve this problem

5



based on blocking bandits (Basu et al., 2019, 2021). Specifically, we formulate

linear contextual blocking bandits with context-dependent delays. We consider

that both the revenue and the “blocked” times are linearly dependent on the

context. The context would include information on route characteristics, traf-

fic conditions, driver history, etc. We also propose an upper confidence bound

algorithm to solve this problem.

The minor contributions of this dissertation are:

• Robust Multi-Period Maximum Coverage Facility Location Consid-

ering Coverage Reliability: We propose a new facility location problem with

an objective of maximizing coverage considering coverage reliability constraints.

The coverage reliability constraint is a chance-constraint that limits the prob-

ability of failure, and is commonly adopted by emergency medical services and

fire departments as a performance measure. We use robust optimization and

multiple periods to disentangle the uncertainty into two parts: estimation uncer-

tainty, and temporal variation. A case study in the Portland, OR metropolitan

area is analyzed for employing unmanned aerial vehicles (UAVs) or drones to

deliver defibrillators in the region to combat out-of-hospital cardiac arrests. In

our context, multiple periods represent periods with different wind speed and

direction distributions. Further, we propose a novel Monte-Carlo simulation

scheme to evaluate the value of adding robustness and multiple time periods.
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• Stratified knapsacks in equitable linear contextual bandits with knap-

sacks (E-linCBwK): The bandit with knapsacks (Agrawal and Devanur, 2016;

Badanidiyuru et al., 2013) literature pose a limitation that the bandit episode

ends when the first knapsack constraint is violated, independent of current re-

source consumption in other knapsack constraints. While this assumption is

true when dealing with “globalized” knapsack constraints (i.e., exhaustion of

any resource constraint would mean successful allocation can no longer hap-

pen. Alternatively, resource consumption in such constraints is almost always

positive and non-zero, irrespective of the arm chosen). The assumption does

not hold for, “stratified” constraints, i.e., exhaustion of a resource constraint

does not necessarily imply that successful allocation can no longer happen. Or

alternatively, resource consumption may be positive or zero and is dependent

upon the choice of the arm. Additionally, the behavior of such constraints is

already known based on the application. For example, consider 3 arms rep-

resenting 3 facilities, and each facility has one type of resource which is used.

This bandit problem will have 3 knapsack constraints, each one measuring the

resource consumption at a single facility. Here, the exhaustion of resource at a

facility does not mean that no further demand requests can be satisfied.

We tackle this issue by introducing changing the context distribution after each

set of stratified knapsacks is exhausted. The bandit algorithm has a “no-play”

arm which can be used realize 0 reward and 0 resource consumption. Once a

7



set of stratified knapsacks is exhausted, we change the context distribution such

that the corresponding arms would become unavailable for the rest of the time

horizon. Essentially, this would mean that we are denying a demand request

from our above illustrative example. Time-varying contexts would allow that

context generation from a time-dependent unknown distribution. Therefore, we

can modify the context such that the facility with an exhausted resource can

no longer serve, and that the “no-play” is available only when no facility can

serve a demand request.

• Tackling budget loss during Z estimation in equitable linear contex-

tual bandits with knapsacks (E-linCBwK): A Lagrangian-like penalty pa-

rameter needs to be estimated in the linear contextual bandits with knapsacks

(linCBwK) framework (Agrawal and Devanur, 2016) to relax the budget con-

straints and obtain upper confidence bounds for reward as in standard multi-

armed bandit problems. For linCBwK, Agrawal and Devanur (2016) propose

to a small multi-armed bandit instance with T0 rounds, and having a uniform

budget of T0 (essentially, an unconstrained setting). Once, Z is estimated,

the learning happens over the remaining (T − T0) rounds with each knapsack

constraint having a budget of (B − T0). However, in most instances, the bud-

get T0 allocated for Z computation is rarely ever completely used. Wasting

these resources would especially be detrimental in a scenario when resources

are expensive or complete resource utilization is critical (example, medical sce-

8



narios, post-disaster conditions). Therefore, for our E-linCBwK framework, we

consider that the remaining resources at the end of Z computation for bandit

learning after round T0.

• Electric truckload pickup and delivery problem: We study a novel prob-

lem by considering fleet electrification in the conventional dynamic truckload

pick-up and delivery problem. The aim of the problem is to tackle the common

challenges which are related to fleet electrification like longer recharging times

and limited charging infrastructure, which are more profound when consider-

ing electric freight vehicles. The important feature here is the consideration

of recharging decisions during route construction for each dynamically-arriving

request. For the computational analysis, we consider a service area of 200×200

miles which has five uncapacitated charging stations available. In the nominal

scenario, we consider that the fleet consists of 10 electric freight vehicles and

the request allocation decisions are made by a central command while incurring

distance-based, time-based, recharging, and delay costs.

1.3 Organization

This work proposes contributions to planning and the real-time day-to-day opera-

tions of freight logistics systems. The contributions are also made broadly to the

fields of emergency services management and humanitarian logistics, with our spe-

cific applications having a freight component associated with them. The chapters
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having a planning component only are presented first, followed by chapters with both

planning and real-time operations components, and finally, chapters with only real-

time operations components are present. Finally, the dissertation concludes with a

summary of the research and a discussion on avenues for future work.

Chapter 2 presents a robust multi-period maximum coverage facility location

problem considering coverage reliability constraints. Coverage reliability constraints

are a result of strict service standards adopted by emergency services like fire de-

partments and ambulance services. We apply this model to combat cardiac events

through the supply of automatic external defibrillators (AEDs) using AED-enabled

unmanned aerial vehicles (UAVs). The UAVs are strategically deployed throughout

the service region such that the coverage of the service is maximized subject to the

coverage reliability constraints.

Chapter 3 presents a facility location and dynamic resource allocation problem for

instant delivery logistics. With recent advancements in drone delivery infrastructure

and the industry push towards instant delivery logistics, this chapter presents facility

location and resource (product and battery capacity for UAVs) allocation at facilities.

During the real-time operations, the allocated resources are utilized to meet demands

arriving in a stochastic manner. We propose a multi-armed bandit formulation for

tackling the real-time resource allocation problem. The goal is to maximize revenue

generation while considering resource consumption constraints.

Chapter 4 presents a facility location and dynamic resource allocation problem
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for humanitarian logistics. The chapter proposes an equitable relief prepositioning

and distribution problem in post-disaster scenarios by building upon the framework

developed in Chapter 3. A new multi-armed bandit framework explicitly considering

an equity-based objective and resource budget constraints is proposed to solve the

second stage dynamic resource allocation problem. We obtain a sub-linear perfor-

mance regret bound of the proposed algorithm by showing that our problem can be

modeled as an existing multi-armed bandit problem. Computational analyses are

conducted on a case study based in the Portland Urban Metro area affected by the

Cascadia Subduction Zone earthquake.

Chapter 5 proposes a new multi-armed bandit problem: linear contextual block-

ing bandits with context-dependent delays (linCBB). The problem is applied to the

truckload pickup and delivery problem. A carrier operates a fleet of trucks in a

prespecified region. Full truckload pickup and delivery jobs arrive in a stochastic

manner. Every job allocation to a truck results in a reward and a ”blocked” time

when the truck cannot be used. We operate under the assumption that the reward

and ”blocked” times are linearly dependent on the context which consists of job and

fleet characteristics.
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2.1 Introduction

Public service agencies like hospitals, fire, rescue, and police departments are re-

quired to maintain high levels of service. For example, fire-related incidents require
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90% reliability for a 4-minute response time (NFPA, 2020). Similarly, in the case of

emergency medical services, the US Emergency Medical Services Act of 1997 requires

a 95% response rate within 10 minutes (Lutter et al., 2017). In the United Kingdom,

the National Health Service aims at serving 75% and 95% of demands in 8 and 14

minutes, respectively (Budge et al., 2010). As transportation systems are dynamic

and stochastic an inherent uncertainty in travel time is present. This uncertainty in

travel time leads to uncertainty in facility or demand coverage.

Drone or unmanned aerial vehicle (UAV) deliveries are being explored as a

quicker, more cost-effective, and more reliable alternative for time-sensitive medi-

cal deliveries, emergency scenarios, humanitarian logistics, and other agricultural,

security, and military applications (Ayamga et al., 2021; Nyaaba and Ayamga, 2021).

Large corporations such as Amazon have secured operational licenses and begun field

trials (Leonard, 2020). In addition, there is support from federal programs, such

as the Federal Aviation Authority’s UAS-BEYOND program (FAA, 2021), to test

medical applications including delivery of automatic external defibrillators (AEDs),

medical prescriptions, and medical emergency response. These medical applications

are being field tested in the states of Nevada, North Carolina, and North Dakota,

respectively.

Drones have some advantages when compared to traditional ground transporta-

tion modes. They can arrive faster by taking more direct paths and avoiding ground-

based obstructions or congestion. For ground vehicles, congestion and associated
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delays are key sources of travel time uncertainty. But for drone deliveries uncertain-

ties arise because of weather conditions, mainly from uncertainty about wind speed

and direction (Glick et al., 2022).

The effect of stochasticity in environmental factors on the performance of emer-

gency departments is hard to quantify exactly, in addition to being data-intensive.

However, reliable estimates for expected values (like, mean and variance) and ex-

trema (like, minimum and maximum) are much easier to obtain. This is much more

true for strategic decisions like facility location when the planning periods are longer.

Robust optimization (RO) is a distribution-free approach that allows for incorporat-

ing stochasticity with limited information using uncertainty sets. The splitting of a

planning period into multiple smaller periods would disaggregate uncertainties and

possibly aid RO in tackling them.

This paper considers a robust multi-period maximum coverage facility location

problem considering coverage reliability (MP-R) to improve decision-making. The

coverage reliability constraints are captured using the chance constraints which pro-

vide probabilistic constraint satisfaction guarantee. The final model is developed by

integrating the chance constrained approach with robust optimization, similar to Lut-

ter et al. (2017), and expanded to multiple time periods. The contributions of this

paper are:

• Developing a compact mixed-integer linear programming formulation for MP-R

using polyhedral uncertainty sets (Bertsimas and Sim, 2004).
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• Developing a case study in the Portland, OR metropolitan area to locate drone-

launch sites to deliver defibrillators, considering uncertainty in travel times aris-

ing due to variation in wind speeds and directions.

• Analyzing the value of adding robustness and multiple time periods using a

novel Monte-Carlo simulation scheme.

A brief literature review is presented in the next section, followed by the develop-

ment of the mathematical model. The case study is developed and the computational

analyses are discussed. Finally, the paper ends with brief conclusions and recommen-

dations for future research.

2.2 Literature Review

A plethora of research has already been conducted in the field of emergency medical

response. A vast majority of research has been focused around using ground vehicles

(i.e., traditional ambulances) for optimizing coverage (Azizan et al., 2012; Enayati

et al., 2018; Erdoğan et al., 2010; Schmid and Doerner, 2010), survival rates (Erkut

et al., 2008; Zaffar et al., 2016), amount of relocation (Enayati et al., 2018; Naoum-

Sawaya and Elhedhli, 2013; Schmid and Doerner, 2010), and crew shifts Erdoğan

et al. (2010). Detailed literature reviews on ambulance location are presented in Ar-

inghieri et al. (2017), Başar et al. (2012), and Li et al. (2011). Recently, there has

been increasing interest around the usage of air-based vehicles for emergency med-
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ical operations: AED-enabled drones for out-of-hospital cardiac arrests (Pulver and

Wei, 2018; Pulver et al., 2016), drones supplying emergency relief packages (Chauhan

et al., 2019, 2021), helicopters (Garner and van den Berg, 2017), and air ambulances

(Røislien et al., 2017). This study focuses on locating AED-enabled drones for tack-

ling out-of-hospital cardiac events in a planning region using a multi-period facility

location formulation incorporating reliability in coverage.

Multi-period variants of traditional facility location problems have been studied

for various contexts since the seminal work of (Ballou, 1968). Nickel and Saldanha-da

Gama (2019) provides a review of multi-period facility location problems (MPFLP),

and Vatsa and Jayaswal (2021) provides a brief review of studies considering uncer-

tainties in MPFLP literature. Vatsa and Jayaswal (2021) note that while demand

and cost uncertainties are widely tackled in the MPFLP literature, research tack-

ling supply-side uncertainties (example, coverage capabilities) is relatively scarce.

Kim et al. (2019) propose a MPFLP with drones considering uncertainty in flight

distances. The study assumes that the probability of drone’s successful return to

the launch station is not time-period-dependent and that the time-periods are long

enough that all drone trips complete in a time-period. Ghelichi et al. (2021) proposes

a multi-stop drone location and scheduling problem for medical supply delivery. The

study assumes deterministic travel speed for drones (i.e., ignoring weather conditions)

in multiple periods, and time-periods are short and a drone-trip is assumed to last

over multiple time periods. Our study assumes that the probability of timely arrival
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at a demand location from a launch site is dependent on the time period, and that

the time-periods are long enough that drones trips can be completed in a time period.

Erdoğan et al. (2010) state that appropriately defining coverage and incorporat-

ing uncertainty in travel times are the most important considerations in ambulance

location. This study defines coverage based on the importance of covering the demand

point. Therefore, the coverage importance metric can be a function of various pop-

ulation parameters like size and demographics, and other characteristics like history

of emergency requests and equity considerations. Additionally, in most regions, the

emergency response systems are required to maintain adequate service standards. We

model the service standard reliability constraint as a chance constraint on probability

of timely arrival for each demand point. Therefore, a demand point is considered cov-

ered only if the service standard reliability requirements are met for all time periods

of the planning period.

The probability of timely arrival at a demand point is linked to the uncertainty in

drone travel times which stems from variations in wind speed and directions. Due to

dependency on environmental factors, the estimated values of probabilities of timely

arrival are not deterministic, rather uncertain. Tackling parameter uncertainty has

been a focus of the mathematical programming community for a long time. Two

major approaches exist for tackling uncertainty: stochastic optimization (SO) and

robust optimization (RO). SO assumes that a probability distribution of the uncer-

tainty is available, whereas RO assumes no underlying distribution of the uncertainty
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and considers it to be deterministic and set-based (Ben-Tal et al., 2009; Bertsimas

et al., 2011). A set-based uncertainty structure of RO leads to better computational

tractability than SO (Bertsimas et al., 2011). RO immunizes the solution from any

manifestation of uncertainty in the described uncertainty set. In general, the larger

the size of the uncertainty set, the lower is the objective value (considering maxi-

mization objective) and the lower is the probability of constraint violation (Bertsimas

et al., 2011). This trade-off between expected objective values and constraint viola-

tion can be controlled by varying the size of the uncertainty set. Here, we use RO

using polyhedral uncertainty sets (Bertsimas and Sim, 2004) to tackle uncertainty

while maintaining computational tractability. This approach ensures that the robust

counterpart of our linear optimization problem is also linear. We refer the interested

reader to (Ben-Tal et al., 2009; Bertsimas et al., 2011; Delage and Ye, 2010; Gabrel

et al., 2014; Goh and Sim, 2010; Gorissen et al., 2015) for a more comprehensive

picture of RO.

2.3 Problem Description

This section first describes the modeling of the coverage reliability constraint and its

assumptions. Later, we formulate a deterministic multi-period maximum coverage

facility location problem with coverage reliability (abbreviated as MP-D). Finally, we

provide a robust formulation of MP-D (abbreviated as MP-R) which accounts for

uncertainty in the values of coverage failure probabilities.

18



Consider a set of demand points (represented as I) each with coverage importance

ci, a set of facilities (represented as J), and a set of all time periods (represented as

T ). Let A be a |I| × |J | 1-0 accessibility matrix describing if the demand point i

can be covered by a facility j. We use atij to represent the probabilistic nature of the

(i, j) element of A in time period t ∈ T , while, Aij is used for the deterministic initial

state of (i, j) element of the matrix A. More specifically, if Aij = 1, then, atij = 1

with probability (1− ptij), and atij = 0 with probability ptij. If Aij = 0, then, atij = 0

always. Let, p̄tij be our estimate of ptij. Now, the service reliability requirement of

achieving a service standard α can then be stated as

Pr

[∑
j∈Si

atij ≥ 1

]
≥ α , (2.3.1)

where Si = {j ∈ J |Aij = 1}. The above equation potentially considers all the

facilities that can access demand point i ∈ I. As a consequence, we assume that all

the accessible facilities respond to the demand at location i. Under the assumption

of independence among the values in A, equation (2.3.1) can modified as

Pr

[∑
j∈Si

atij ≥ 1

]
= 1−

∏
j∈Si

ptij ≡ 1−
∏
j∈Si

p̄tij ≥ α (2.3.2)

For the above discussion, we have assumed that p̄tij completely describe the distri-

bution of variables atij. However, there are errors endemic to sampling (environmental

factors) and measurement while estimating the value of ptij. Therefore, the values of
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ptij may not be known with complete certainty. We tackle this issue while formulating

the MP-R model.

For MP-D and MP-R, the decision-making agency wishes to locate a maximum

of q facilities in each time-period to maximize the cumulative coverage importance

achieved subject to coverage requirements described. Additionally, opened facility

locations can be shifted between time periods subject to a facility relocation cost

budget constraint.

2.3.1 Nomenclature

Sets and Indices

I Set of all demand points (i ∈ I)

J Set of all candidate facility locations (j, k ∈ J)

T Set of all time periods (t ∈ T := {1, 2, . . . , |T |})
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Parameters

ci Coverage importance of demand point i ∈ I; ci ≥ 0

Aij

1, if the demand point i ∈ I can be covered by facility j ∈ J , and 0,

otherwise

Si

Set of facilities j ∈ J that can cover the demand point i ∈ I;

Si = {j ∈ J |Aij = 1} ∀ i ∈ I

p̄tij

Nominal probability of failure of covering demand point i ∈ I by

facility j ∈ J in time period t ∈ T ; 0 < ptij ≤ 1

p̂tij

Maximum deviation from nominal probability of failure of covering

demand point i ∈ I by facility j ∈ J in time period t ∈ T ;

0 ≤ p̂tij < ptij + p̂tij ≤ 1

q Maximum number of facilities that can be located; q ∈ Z+ ∪ {0}

α Required coverage threshold; 0 ≤ α ≤ 1

Γt
i

Maximum number of delivery paths to demand point i that can achieve

worst-case probability of failure simultaneously in time period t ∈ T ;

Γt
i ∈ Z+ ∪ {0}

f t
jk

Cost associated with shifting the facility from location j ∈ J to location

k ∈ J at the beginning of time period t ∈ T

B Facility shifting cost budget
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Decision Variables

xi

1, if demand location i ∈ I is covered with given coverage threshold; 0,

otherwise

ytj

1, if candidate facility location j ∈ J is open during time period t ∈ T ;

and 0, otherwise

ztjk

1, if a facility is moved from location j ∈ J to location k ∈ J at the

beginning of time period t ∈ T\{1}; and 0, otherwise

2.3.2 Deterministic Formulation

Objective:

max
x,y,z

∑
i∈I

cixi (2.3.3)

Subject to:

∏
j∈Si

(p̄tij)
ytj ≤ (1− α)xi ∀ i ∈ I, t ∈ T (2.3.4)

∑
j∈J

ytj ≤ q ∀ t ∈ T (2.3.5)

∑
t∈T\{1}

∑
j∈J

∑
k∈J

f t
jkz

t
jk ≤ B (2.3.6)

∑
k∈J

ztjk = yt−1
j ∀ j ∈ J, t ∈ T\{1} (2.3.7)
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∑
j∈J

ztjk = ytk ∀ k ∈ J, t ∈ T\{1} (2.3.8)

xi ∈ {0, 1} ∀ i ∈ I (2.3.9)

ytj ∈ {0, 1} ∀ j ∈ J, t ∈ T (2.3.10)

ztjk ∈ {0, 1} ∀ j, k ∈ J, t ∈ T\{1} (2.3.11)

For the deterministic formulation, we assume that ptij = p̄tij. Equation (2.3.3)

represents maximizing coverage importance. In equation (2.3.4), the demand point

i ∈ I is covered only if the probability of failure to cover it is less than (1 − α) for

all time periods t ∈ T . Note that all accessible open facilities respond to meet the

demand at point i ∈ I. Equation (2.3.5) enforces that no more than q facilities can

be opened.

Equation (2.3.6) is a generalized cost constraint relating to the shifting facility

locations. Note that using f t
jj = 0 for all j ∈ J, t ∈ T\{1}, and 1, otherwise, would

limit the total number of facility location shifts to B. Equations (2.3.7) and (2.3.8)

are transportation allocation constraints. Equations (2.3.9)–(2.3.11) are variable def-

initions. However, the formulation is not linear due to equation (2.3.4). Applying

logarithm function on both sides of equation (2.3.4) yields:

∑
j∈Si

wt
ijy

t
j ≤ βxi ∀ i ∈ I, t ∈ T (2.3.12)
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where wt
ij and β represent log(p̄tij) and log(1−α), respectively. The above formulation

(equations 2.3.3 and 2.3.5–2.3.12) is referred to as the deterministic multi-period

facility location problem considering coverage reliability, abbreviated as MP-D. MP-

D is an integer linear program and can be solved using standard MIP solvers.

2.3.3 Robust Formulation

The parameter ptij represents the probability that the facility j ∈ J , in time period

t ∈ T , will fail to cover the demand point i ∈ I in a given service time threshold

τ . However, due to sampling errors stemming from environmental factors like vari-

ations in travel times throughout the day, the estimated values of parameters ptij

are uncertain. Later, in the presented case study of delivering AED-enabled drones,

this variation occurs primarily due to changing wind speeds and directions. As the

complete probability distribution of ptij is arduous to obtain in comparison to the

bounds of its variation, we use a robust optimization using polyhedral uncertainty

sets (Bertsimas and Sim, 2004) to incorporate this uncertainty. Let, p̂tij be the maxi-

mum deviation of p̄tij. For our robust model, we assume that ptij ∈ [p̄tij − p̂tij, p̄
t
ij + p̂tij].

Of all facilities servicing demand point i, up to Γt
i facilities observe worst-case failure

probabilities (i.e., ptij = p̄tij + p̂tij), whereas the rest observe nominal failure probabil-

ities (i.e., ptij = p̄tij). This allocation happens in such a way that the probability of

failing to serve demand point i is maximized.

24



Objective:

max
x,y,z

∑
i∈I

cixi (2.3.13)

Subject to:

max
{U⊆Si,|U |≤Γi}

[∏
j∈U

(p̄tij + p̂tij)
ytj

∏
j∈Si\U

(p̄tij)
ytj

]
≤ (1− α)xi ∀ i ∈ I, t ∈ T (2.3.14)

∑
j∈J

ytj ≤ q ∀ t ∈ T (2.3.15)

∑
t∈T\{1}

∑
j∈J

∑
k∈J

f t
jkz

t
jk ≤ B (2.3.16)

∑
k∈J

ztjk = yt−1
j ∀ j ∈ J, t ∈ T\{1} (2.3.17)

∑
j∈J

ztjk = ytk ∀ k ∈ J, t ∈ T\{1} (2.3.18)

xi ∈ {0, 1} ∀ i ∈ I (2.3.19)

ytj ∈ {0, 1} ∀ j ∈ J, t ∈ T (2.3.20)

ztjk ∈ {0, 1} ∀ j, k ∈ J, t ∈ T\{1} (2.3.21)

Equation (2.3.13) represents the maximization of coverage importance. Incor-

porating uncertainty in the failure probabilities in equation (2.3.4) yields (2.3.14).

The left hand side (lhs) of equation (2.3.14) seeks to find the absolute worst-case

probability of failure such that at most Γi facilities servicing the demand point i ∈ I
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can individually observe worst-case failure probability. Demand point i ∈ I is con-

sidered covered only if the left-hand side of equation (2.3.14) is less than (1 − α).

Generally, incorporating robustness into a problem imparts conservatism by realizing

worst-case objective value subject to certain criteria (Ben-Tal and Nemirovski, 1999;

Bertsimas and Sim, 2004). This leads to the robustness sub-problem being in conflict

with the overall objective. Here, worst-case realizations of failure probability in equa-

tion (2.3.14) reduce the chance of the demand point i being covered, and while the

overall objective (2.3.13) want to increase the chances of demand point i being cov-

ered. In other words, the current formulation is a bilevel optimization problem which

cannot be solved directly using MIP solvers. Dualizing the robustness sub-problem

would overcome this issue and align both objectives correctly, and yield a single level

mixed-integer linear problem. Equations (2.3.15)-(2.3.21) have the same meaning as

equations (2.3.5)-(2.3.11). Taking the logarithm of (2.3.14) yields:

max
{U⊆Si,|U |≤Γi}

[∑
j∈U

log(p̄tij + p̂tij) · ytj +
∑

j∈Si\U

log(p̄tij) · ytj
]
≤ log(1− α) · xi,

∀ i ∈ I, t ∈ T

(2.3.22)

Let, ŵt
ij, w

t
ij, and β represent log(p̄tij + p̂tij), log(p̄

t
ij), and log(1−α), respectively.

Note that ŵt
ij ≥ wt

ij. Rewriting ŵt
ij as w

t
ij +(ŵt

ij −wt
ij), we re-write equation (2.3.22)

26



as:

∑
j∈Si

wt
ijy

t
j + max

{U⊆Si,|U |≤Γi}

[∑
j∈U

(ŵt
ij − wt

ij) · ytj

]
≤ βxi ∀ i ∈ I, t ∈ T (2.3.23)

The optimization problem described on the lhs of equation (2.3.23) can be written

as:

For each i ∈ I, t ∈ T :

SP t
i : max

γ

∑
j∈Si

wt
ijy

t
j +

∑
j∈Si

(ŵt
ij − wt

ij)y
t
jγ

t
ij (2.3.24)

∑
j∈Si

γt
ij ≤ Γt

i (2.3.25)

γt
ij ∈ {0, 1} ∀ j ∈ Si (2.3.26)

The constraint coefficient matrix of the above sub-problem is totally unimodular,

and Γt
i are non-negative integer values. Therefore, γ

t
ij can be linearized to the interval

[0,1] without loss of optimality. Let, θti and σt
ij be the dual variables associated with

equations (2.3.25) and the upper bound of equation (2.3.26), respectively. Taking the

dual of the formulation represented by equations (2.3.24)-(2.3.26), yields:

For each i ∈ I, t ∈ T :

SPDt
i : min

σ,θ

∑
j∈Si

wt
ijy

t
j +

∑
j∈Si

σt
ij + Γt

iθ
t
i (2.3.27)
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σt
ij + θti ≥ (ŵt

ij − wt
ij)yj ∀ j ∈ Si (2.3.28)

σt
ij ≥ 0 ∀ j ∈ Si (2.3.29)

θti ≥ 0 (2.3.30)

Strong duality, along with the totally unimodular property, ensures that prob-

lems SPDt
i (equations (2.3.27)-(2.3.30)) and SP t

i (equations (2.3.24)-(2.3.26)), and

consequently also the lhs of equation (2.3.14), are equivalent. Incorporating SPDt
i in

the equation (2.3.23), updates the robust formulation (equations (2.3.13), (2.3.15)-

(2.3.21), (2.3.23)) to:

Objective:

max
x,y,z,σ,θ

∑
i∈I

cixi (2.3.31)

Subject to:

∑
j∈Si

wt
ijy

t
j +

∑
j∈Si

σt
ij + Γt

iθ
t
i ≤ βxi ∀ i ∈ I, t ∈ T (2.3.32)

σt
ij + θti ≥ (ŵt

ij − wt
ij)y

t
j ∀ j ∈ Si, i ∈ I, t ∈ T (2.3.33)∑

j∈J

ytj ≤ q ∀ t ∈ T (2.3.34)

∑
t∈T\{1}

∑
j∈J

∑
k∈J

f t
jkz

t
jk ≤ B (2.3.35)
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∑
k∈J

ztjk = yt−1
j ∀ j ∈ J, t ∈ T\{1} (2.3.36)

∑
j∈J

ztjk = ytk ∀ k ∈ J, t ∈ T\{1} (2.3.37)

xi ∈ {0, 1} ∀ i ∈ I (2.3.38)

ytj ∈ {0, 1} ∀ j ∈ J, t ∈ T (2.3.39)

ztjk ∈ {0, 1} ∀ j, k ∈ J, t ∈ T\{1} (2.3.40)

σt
ij ≥ 0 ∀ i ∈ I, j ∈ J, t ∈ T (2.3.41)

θti ≥ 0 ∀ i ∈ I, t ∈ T (2.3.42)

The above formulation is referred to as the robust maximum coverage facility lo-

cation problem considering coverage reliability, abbreviated as MP-R. MP-R is a

mixed-integer linear program and can be solved using open-source or commercially-

available MIP solvers. For cases when |T | is large, the computational times using

a MIP solver could be prohibitively large. The authors recommend decomposition-

based methodologies for such cases. For example, applying Lagrangian relaxation to

equations (2.3.32) and (2.3.33) decomposes MP-R into four sub-problems, of which

three can be trivially solved. The development of computationally-efficient heuristics

is left as a future research endeavor.
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2.4 Computational Analysis

This section first describes the experimental setting of the case study conducted

in Portland, OR metropolitan area. Later, three types of analysis are conducted:

computational performance, the evaluating the value of considering robustness and

multiple periods using a Monte Carlo simulation scheme, and finally, incorporating

equity in decision-making.

Figure 2.1: Locations of demand points and facility locations in Portland Metro Area

The feasibility of using UAVs or drones for delivering defibrillators to demand

points in the Portland, OR metropolitan area is evaluated here. The Portland Metro

service area consists of 122 ZIP Code Tabulation Areas (ZCTA) which act as demand

points, and 104 community centers which act as potential launch sites as detailed in
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Chauhan et al. (2019) and shown in Figure 2.1. We evaluate drones against two service

standards: the National Fire Protection Association’s emergency response standard

of providing coverage reliability of 90% within in a response time of 4 minutes (NFPA,

2020), abbreviated as SS1; and, the 1997 US Emergency Medical Services Act service

response standard of providing coverage reliability of 95% within a response time of 10

minutes (Lutter et al., 2017), abbreviated as SS2. Two service standards are selected

to evaluate the effect of increasing response time on system performance and the value

of data disaggregation using multiple time periods. All drones are equipped with an

AED which weighs 1.5 kg each (Philips, 2022). A major factor leading to uncertainty

in drone response times is wind speed and direction. The calculation of bounds of

probability of failure (lower bound: p best; upper bound: p worst) for delivering from

a launch site to a demand point is carried out using procedure described in Algorithm

2.1, similar to Glick et al. (2022), with sample size n = 10, 000. The upper bound

of probability of failure (p worst) is considered as worst-case probability (p̄ + p̂).

The nominal probability of failure (p̄) is an average of bounds of variation weighted

according to the distribution of wind directions.

A demand point is considered accessible by a launch site if the following two

conditions are met. First, the amount of battery expended to go to the demand

point and come back is less than the total available battery in the nominal scenario

(calculated using the formula provided in Figliozzi (2017)). The total battery capac-

ity of the drone is divided in two parts: total available battery and battery safety
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Algorithm 2.1 Calculating bounds of probability of failure

Input: Input sample size n, wind speed and direction distributions for each time
period t ∈ T , maximum possible wind speed (v wind max), probability distribution
of wind directions, response time (τ), drone travel speed (v drone), and distance
(dist act) and delivery angle from facility j to demand point i.

Output: p nominal, p worst

1: Calculate wt[i, j, t] which is the probability that the wind direction is not aligned
with the delivery direction (i.e. difference is greater than 90◦) from facility j to
demand point i in time period t using the input information. t ∈ T

2: Generate windspeeds[t], an array of size n, following a lognormal distribution
with given input parameters and a maximum value of v wind max.

3: dist best = (v drone+ windspeeds[t]) · τ
4: dist worst = (v drone− windspeeds[t]) · τ i ∈ I j ∈ J
5: p best[i, j, t] = max{len(where(dist best < dist act[i, j])), 1}/n
6: p worst[i, j, t] = max{len(where(dist worst < dist act[i, j])), 1}/n
7: p nominal[i, j, t] = (1− wt[i, j, t]) · p best[i, j, t] + wt[i, j, t] · p worst[i, j, t]

factor. As in Chauhan et al. (2019), we assume that drones ignore obstacles in ur-

ban landscape and travel over Euclidean distances, and that the energy consumed

in VTOL operations are accommodated in battery safety factor. Second, the time

required to reach the demand point in the most favorable wind direction and speed is

less than the provided response time. The coverage importance metric is dependent

on the normalized population of the demand point. The ZCTA population estimates

for the demand points were adopted from 2017 American Community Survey 5-year

estimates (Census-Bureau and American-FactFinder, 2018).

The summary of parameter specifications is provided below (Figliozzi, 2017; Glick

et al., 2022).

• Maximum available battery: 777 Wh

• Battery Safety Factor: 20% of maximum available battery (Total available bat-
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tery = maximum available battery − battery safety factor = 621.6 Wh)

• Sum of drone tare and battery mass: 10.1 kg

• Lift-to-drag ratio: 2.8445

• Total power transfer efficiency: 0.66

• Nominal travel speed of drone: 20 meters per second (mps)

• Maximum number of drones serving demand point i in time period t that can

achieve worst-case probability of failure (Γt
i): 1

• ci = Normalized population of demand point i

=

⌈
100× population of demand point i

maximum population of demand points

⌉
, where ⌈u⌉ represents the ceiling

function, i.e. the least integer greater than or equal to u.

• Wind speed and direction distributions (see Figure 2.2) are available openly at

https://github.com/drc1807/RMP-MCFLP-CR

• Maximum possible wind speed: 68 miles per hour (30.3987 mps)

• The planning period is one year. In Portland, the wind direction is primarily in

the NW direction in the summer months (April through September). Whereas,

in winter months (October through March), the wind primarily flows in the

ESE direction (see Figure 2.2). We investigate the value of using a multi-period

formulation with T = {Summer, Winter} over a single-period formulation with

T = {Whole Year}.
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(a) Summer (b) Winter

Figure 2.2: Wind direction distribution in Portland, OR

The model coverage (in %) is given as:

Model Coverage =
Objective Value of Model∑

i∈I
ci

× 100 (2.4.1)

The cost of shifting a facility located at j ∈ J in time period (t−1) to a location

k ∈ J, k ̸= j in time period t is considered to be 1, and 0, if the location does not

change. Alternatively put, f t
jj = 0 ∀ j ∈ J, t ∈ T\{1}, and 1, otherwise. This limits

the total number of facility location shifts to the facility shifting cost budget B. The

default value of B used here is ⌊0.35q⌋, where q is the maximum number of drone

launch sites that can be opened.

The experiments are performed on four models: MP-R, MP-D, MP-R with

T = {Whole Year} (abbreviated as SP-R), and MP-D with T = {Whole Year} (ab-
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breviated as SP-D) considering a planning period of a whole year. Models are solved

using Gurobi Gurobi Optimization (2020) in Python interface on a Windows 10 desk-

top with Intel i7-7700K processor and CPU specifications of 3.6 GHz, 4 cores, 8 logical

processors, and 32 GB of RAM. Experiments to evaluate the computational efficiency

with an increasing number of drone launch sites (q) are conducted, followed by the

evaluation of the value added by robustness and granularity of information (through

multiple time periods). Additionally, the effect of adding equity in decision-making

is explored.

2.4.1 Computational Efficiency

Prohibitive computational times can often be a barrier to model adoption in real

life. In our case, the planning period is fairly large (a whole year), and therefore, no

computational time limit was adopted for Gurobi. All the four models, for both service

standards and given default values of parameters, converged in less than 2 hours for a

range of q values, indicating that the development of time-efficient heuristics was not

required. The model coverage values with their computational times are provided in

Table 2.1.
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Table 2.1: Computational Efficiency

Service
q

Model Coverage (%) Computational Time (sec)
Standard MP-R MP-D SP-R SP-D MP-R MP-D SP-R SP-D

SS1

3 12.57 15.76 12.9 15.76 32 6 2 1
6 24.37 27.41 24.64 28.19 109 15 3 1
9 33.52 37.93 34.62 38.8 416 17 3 1
12 41.9 47.02 42.64 48.36 444 33 2 1
15 49.28 53.9 49.37 55.6 44 23 2 1
20 55.45 62.31 55.21 62.99 49 8 2 1
25 59.92 67.19 59.09 67.4 44 4 2 1
30 62.28 68.36 62.1 68.56 5 4 1 1
35 62.28 68.5 62.28 68.71 2 1 1 1

SS2

3 35.37 44.85 39.09 46.31 5736 152 38 2
6 62.69 69.99 64.75 72.53 3937 152 64 1
9 75.8 82.18 77.26 83.02 1342 26 44 1
12 82.6 86.23 83.28 87.84 569 40 67 1
15 87.01 89.6 87.19 90.91 694 44 32 1
20 90.73 93.38 90.88 93.95 274 108 20 1
25 92.58 94.73 92.76 95.68 45 48 9 1
30 93.21 95.23 93.36 96.39 31 2 14 1
35 93.38 95.29 93.53 96.63 2 1 1 1

Note:
SS1 is providing 90% coverage reliability in a response time of 4 minutes
SS2 is providing 95% coverage reliability in a response time of 10 minutes

The effect of adding additional time periods is found to be more profound than

the effect of adding robustness to the formulation. On average, for SS1, adding ro-

bustness increases computational time by 5.2 times, whereas adding additional time-

period increases computational times by 37.0 times. For SS2, these values are 24.5

times and 49.5 times, respectively. The primary reason behind this is the number

of constraints added to the model. A multi-period formulation requires the facility

transfer variables z which adds 2 · |J | · |T\{1}| facility matching equality constraints
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along with a facility relocation budget constraint. Additionally, |T | − 1 simultaneous

coverage reliability constraints are also added which further deteriorates computa-

tional performance. On the other hand, adding robustness adds more variables and

constraints to the model, but the constraints are computationally simpler. The ac-

cessibility matrix A is more sparse for the SS1 models than SS2 models, which leads

to better computational performance.

The addition of multiple periods to the formulation decreases the model coverage

by a little amount (0.8% on average). This is because the satisfaction of multiple

coverage reliability constraints is required for demand point coverage. As expected,

adding robustness decreases the model coverage by a significant amount (4.9% on

average) as a consequence of accounting for worst-case scenarios.

2.4.2 Value of developing multi-period formulation and adding robust-

ness

The value of using more information (through adding robustness and multiple time

periods) in a model is evaluated in this section utilizing a Monte-Carlo simulation-

based (MCS) framework. Generally, adding robustness to a formulation reduces the

model coverage but should provide for better real-life performance, thereby reducing

the gap between what is expected (model coverage) and what happens (simulated

coverage). Similarly, having potentially different facility location layouts in different

time periods should boost simulated coverage.
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An MCS framework is proposed to quantify the value of using additional infor-

mation. In an MCS scenario s, the time period is ts, and n = 1000 values of wind

directions and speeds are randomly generated. In our case, an MCS scenario s can be

thought of as a day of the year, and n is the number of wind speed and direction ob-

servations made throughout the day. Therefore, for multi-period formulations, ts =

‘Summer’ with probability 183
365

and ts = ‘Winter’ with probability 182
365

. For single-

period formulations, ts = ‘Whole Year’ with probability 1. Depending on the value of

ts, the wind speeds are generated as in Algorithm 2.1 and wind directions are chosen

as per the distributions of the time period. These angles and speeds are combined

with the originally projected delivery angles and nominal drone delivery speed to find

effective drone speed. The effective drone speeds are then utilized to determine the

realizations of the probability of failure for the scenarios (p̃s).

The solutions obtained from the robust and the deterministic formulations for

the variable y are denoted by y∗. The new values for the variable x (denoted by x̃)

and the actual coverage are calculated using y∗ and p̃s. For multi-period formulation,

the facility location layout is determined by the simulation time period ts. A total of

100 MCS scenarios are evaluated and the algorithm for the described MCS is detailed

in Algorithm 2.2.
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Algorithm 2.2 Monte Carlo simulation for evaluating coverage

Input: Input number of MCS scenarios (MCS s), number of wind speed and
direction observations per scenario (n), probability distribution of time periods t ∈ T
(π), other model input parameters.

Output: simulated coverage

1: Solve the model and determine y∗, the optimum values of decision variable y
2: Determine Ji, the set of open and accessible facilities for each demand point i ∈ I
3: s = 1
4: simulated coverage = zeros(MCS s) s ≤MCS s
5: Randomly select simulation time period ts, such that ts = t with probability πt

6: Generate windspeeds[ts], an array of n elements, as in Algorithm 2.1
7: Generate windangles[ts], an array of n elements, based on the probability distri-

bution in time period ts

8: Determine effective delivery angles and effective drone speeds using vector algebra.
9: For each i, j combination, calculate dist covsij, an array of length n describing

distances covered by drones using effective delivery angles and effective drone
speeds.

10: For each i, j combination, calculate p̃sij = length(where(dist covsij <
dist act[i, j]))/n

11: w̃s = log(p̃s)

12: x̃s = zeros(length(I)) i ∈ I
∑
j∈Ji

w̃s
ijy

∗
j ≤ β

13: x̃s
i = 1

14: simulated coverage[s] =

∑
i∈I cix̃

s
i∑

i∈I ci
× 100

15: s + = 1

The simulated coverage values for all four models with default values are pre-

sented in Table 2.2. For SS1 (providing 90% coverage reliability in 4 minutes), extend-

ing to multi-period formulation improves average simulated coverage by 0.29 times

on average for robust models, and by 0.41 times on average for deterministic models.

Whereas for SS2 (providing 95% coverage reliability in 10 minutes), the improve-

ments in average simulated coverage are by 0.02 times for robust models, and by

0.24 times for deterministic models. The improvements are higher when the response
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Table 2.2: Value of extending to multi-period formulation and adding robustness

Model q
SS1 SS2

Model Simulated Cov. (%) Model Simulated Cov. (%)
Cov. (%) Min Ave Max Cov. (%) Min Ave Max

MP-R

3 12.57 5.96 9.28 11.11 35.37 21.42 26.47 32.6
6 24.37 13.89 16.59 19.55 62.69 36.59 46.01 56.38
9 33.52 16.3 22.3 26.97 75.8 56.08 63.44 67.07
12 41.9 24.52 29.96 35.67 82.6 66.18 72.25 79.38
15 49.28 32.39 37.82 44.85 87.01 72.77 75.36 79.02
20 55.45 35.58 45.26 53.67 90.73 72.62 78.47 85.97
25 59.92 43 48.71 54.68 92.58 77.26 81.81 89.09
30 62.28 48.99 52.58 56.05 93.21 77.98 83.21 88.86
35 62.28 50.92 53.26 56.53 93.38 86.41 90.91 92.7

MP-D

3 15.76 5.81 8.56 10.25 44.85 23.27 24.75 28.07
6 27.41 7.9 14.03 19.43 69.99 14.96 31.01 45.74
9 37.93 14.66 21.79 28.22 82.18 45.05 51.95 60.25
12 47.02 19.22 27.83 35.43 86.23 47.44 55.65 66.15
15 53.9 24.76 32.04 39.81 89.6 41.87 51.32 64.99
20 62.31 25.3 35.16 44.31 93.38 50.48 60.82 71.48
25 67.19 34.45 40.98 47.5 94.73 68.33 74.49 78.55
30 68.36 37.22 46.33 55.69 95.23 67.04 77.36 84.77
35 68.5 40.88 48.01 58.19 95.29 77.83 83.27 90.67

SP-R

3 12.9 1.1 3.54 7.87 39.09 19.34 28.89 32.93
6 24.64 10.37 11.96 18.06 64.75 36.92 42.25 52.18
9 34.62 14.36 17.66 24.67 77.26 52.89 62.33 68.47
12 42.64 23.81 28.73 34.92 83.28 58.88 65.28 74.91
15 49.37 26.91 34.26 43 87.19 68.98 77.46 83.37
20 55.21 29.05 40.63 50.63 90.88 70.98 78.71 84.86
25 59.09 40.05 45.95 53.93 92.76 77.18 80.4 82.93
30 62.1 42.01 50.33 57.33 93.36 76.28 81.65 89.06
35 62.28 46.84 52.95 58.94 93.53 87.34 89.74 91.87

SP-D

3 15.76 3.93 4.53 6.23 46.31 18.98 22.57 26.82
6 28.19 3.72 6.44 9.92 72.53 22.56 29.9 37.4
9 38.8 7 11.68 16.78 83.02 32.06 41.54 47.94
12 48.36 14.75 22.49 31.35 87.84 30.78 38.76 44.73
15 55.6 19.19 25.42 32.75 90.91 29.14 38.72 46.28
20 62.99 21.22 29.61 38.53 93.95 30.13 40.03 48.81
25 67.4 32.03 40.82 47.94 95.68 54.02 57.29 63.29
30 68.56 33.97 42.47 50.83 96.39 61.29 67.56 74.76
35 68.71 39.6 48.4 54.08 96.63 72.82 77.38 80.39

Cov. = Coverage
SS1 is providing 90% coverage reliability in a response time of 4 minutes
SS2 is providing 95% coverage reliability in a response time of 10 minutes
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time is short because the importance of choosing the right set of facility locations

increases. An explanatory factor would be that multi-period formulation allows for

more flexibility by allowing changing facility locations for different periods. The ex-

tent of facility relocation is depicted in Figure 2.3. The results reveal that at least

40% of the relocation budget is used when 15 or more facilities are opened. To further

investigate the role of facility relocation, consider the visualization of facility location

by season for MP-R SS2 model with q = 15, as an example, in Figure 2.4. Based on

the wind patterns in Portland (see Figure 2.2), we expect the facilities in the summer

season to provide better coverage reliability to demand locations in the west and/or

north directions of them. As a result, the facility locations should be skewed a little

bit towards the eastern and/or southern region of the operational area. Similarly,

the locations in the winter season should be skewed a little bit towards the western

and/or northern region. For our considered example, we indeed note that the centroid

of facility locations opened in summer only is to the east of the centroid of facility

locations opened in winter only, which is in agreement with our hypothesis.

For SS1, the improvements in average simulated coverage achieved by adding

robustness to multi-period and single-period formulations are by 0.14 times and 0.28

times, respectively. For SS2, the improvements in average simulated coverage are

by 0.23 times and 0.51 times for multi-period and single-period formulations, respec-

tively. The improvement by adding robustness to a multi-period formulation is lower

as more detailed information has been accounted which leads to lower variability in
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(a) SS1 (b) SS2

Figure 2.3: Facility relocations in multi-period formulation (B represents maximum
allowable facility relocations)

Figure 2.4: Facility relocation and model coverage for MP-R (SS2; q = 15)

42



data in each time period. Similarly, the variability in distance traveled by drone

would increase with an increase in response time which leads to greater variability in

failure probabilities. Therefore, the benefit obtained by adding robustness is greater

when response times are longer. Overall, going from a single-period deterministic

(SP-D) formulation to a multi-period robust (MP-R) formulation leads to an average

simulated coverage improvement of 0.60 times and 0.54 times for SS1 and SS2, re-

spectively. Figures 2.5 and 2.6 show model solution and an MCS simulation solution

(having simulated coverage close to the average value) for SP-D and MP-R, respec-

tively, for SS2 and q = 15. Accommodating uncertainty in decision-making leads to

the consolidation of facilities towards the central core of the Portland Metro Area.

Shorter travel distances lead to better coverage reliability in in the MP-R model.

Figure 2.7 shows the ratio of average simulated coverage to the model coverage

(ASC-to-MC). The closer the values to 1 the better, as it indicates that the expected

performance is close to real-life simulated scenarios. Accounting for robustness and/or

extending to multi-period formulation leads to better outcomes on this metric. The

ratio has a generally positive correlation with increasing values of q. This is expected,

as with more opened facilities, the access to a demand point improves, and therefore,

the coverage reliability also improves.
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Figure 2.5: Opened Facility Locations and Demand Point Coverage for SP-D (SS2;
q = 15)

Figure 2.6: Opened Facility Locations and Demand Point Coverage for MP-R (SS2;
q = 15; Γt

i = 1)
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(a) SS1 (b) SS2

Figure 2.7: Ratio of average simulated coverage to model coverage

Table 2.3 shows the sensitivity of increasing conservatism on the coverage. For

SS1, increasing robustness by increasing Γt
i from 1 to 2 does not change the average

simulated coverage much (-0.01 times). For SS2, this results in slightly better average

simulated coverage (0.04 times). Computational times on the other hand typically

increased with an increase in the budget of robustness. However, all models still

converged in 8 hours, which is still not much considering a planning period of one

year. Figure 2.8 shows the variation of computational times with the budget of

robustness.
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Table 2.3: Sensitivity to increasing conservatism in decision-making for multi-period
formulation

Γt
i q

SS1 SS2
Model Simulated Cov. (%) Model Simulated Cov. (%)

Cov. (%) Min Ave Max Cov. (%) Min Ave Max

0

3 15.76 5.81 8.56 10.25 44.85 23.27 24.75 28.07
6 27.41 7.90 14.03 19.43 69.99 14.96 31.01 45.74
9 37.93 14.66 21.79 28.22 82.18 45.05 51.95 60.25
12 47.02 19.22 27.83 35.43 86.23 47.44 55.65 66.15
15 53.90 24.76 32.04 39.81 89.60 41.87 51.32 64.99
20 62.31 25.30 35.16 44.31 93.38 50.48 60.82 71.48
25 67.19 34.45 40.98 47.50 94.73 68.33 74.49 78.55
30 68.36 37.22 46.33 55.69 95.23 67.04 77.36 84.77
35 68.50 40.88 48.01 58.19 95.29 77.83 83.27 90.67

1

3 12.57 5.96 9.28 11.11 35.37 21.42 26.47 32.60
6 24.37 13.89 16.59 19.55 62.69 36.59 46.01 56.38
9 33.52 16.30 22.30 26.97 75.80 56.08 63.44 67.07
12 41.90 24.52 29.96 35.67 82.60 66.18 72.25 79.38
15 49.28 32.39 37.82 44.85 87.01 72.77 75.36 79.02
20 55.45 35.58 45.26 53.67 90.73 72.62 78.47 85.97
25 59.92 43.00 48.71 54.68 92.58 77.26 81.81 89.09
30 62.28 48.99 52.58 56.05 93.21 77.98 83.21 88.86
35 62.28 50.92 53.26 56.53 93.38 86.41 90.91 92.70

2

3 12.57 5.96 9.28 11.11 33.85 23.96 25.98 31.62
6 22.35 8.61 15.13 20.89 59.92 41.21 48.19 55.27
9 30.99 16.12 21.36 25.74 73.60 57.54 63.83 69.49
12 39.18 26.88 29.39 32.48 80.51 73.48 76.81 79.35
15 45.65 32.99 38.29 45.11 85.40 75.27 79.28 82.39
20 52.23 39.72 46.24 52.62 89.81 81.85 85.18 87.84
25 56.59 43.12 49.16 53.87 92.01 82.54 86.01 86.86
30 60.07 48.72 51.70 55.13 93.00 85.04 88.45 91.00
35 61.92 51.37 54.68 58.46 93.38 87.19 89.53 90.20

Significant improvements in range of variation in simulated coverage as well as

in the ratio ASC-to-MC were found, especially for larger values of q. These results

are as expected as accounting for more amount of uncertainty should lead to reduced
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model coverage (due to increased conservatism) and less variability in results (due to

reduced probability of constraint violation). Therefore, finding a trade-off by changing

the budget of robustness (Γt
i) can help improve the simulated coverage values, and

reduce its gap from the model coverage. For example, Figure 2.9 shows variation

in model and average simulated coverage with increasing value of Γt
i for MP-R SS1

model with q = 35. It can be noticed that the gap between the model and average

simulated coverage is the minimum when Γt
i = 4.

(a) SS1 (b) SS2

Figure 2.8: Computational times for varying values of Γt
i in multi-period formulation

Figure 2.9: Model and Average Simulated Coverage with increasing values of budget
of robustness Γt

i (MP-R SS1 with q = 35)
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Figure 2.10: Opened Facility Locations and Demand Point Coverage for MP-R (SS2;
q = 15; Γt

i = 2)

Figure 2.10 shows model solution and an MCS simulation solution (having sim-

ulated coverage close to the average value) for MP-R with Γt
i = 2 (SS2 and q = 15).

Increasing conservatism further consolidates facilities around the central core com-

pared to the case when Γt
i = 1 in MP-R, leading to better outcomes in terms of

simulated coverage.

2.4.3 Incorporating equity in decision-making

For the previous sections, the coverage importance was just based on the normalized

population of the demand points. However, it is possible to incorporate equity-related

weights to determine coverage importance. For our case study, it can be considered

that the facility locations that are not opened still have a defibrillator available onsite,
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just that they can not be transported. Therefore, distance to the nearest potential

facility location could be considered as a metric of equity, as in Mesa et al. (2003). The

larger the minimum distance to a potential facility location from a demand point, the

less equitable it is, and the more coverage importance it should get. The normalized

inequity metric is calculated as:

• Distance to closest possible drone launch site from demand point i: mindist(i)

• Normalized inequity metric of demand point i

=

⌈
100×mindist(i)

maximum value of mindist(i)

⌉

For calculating the coverage importance metric, 50% weightage is assumed for

both, the normalized population parameter, and the normalized inequity metric.

Other parameters are set to their default values. The summary of results is shown in

Figure 2.11. The simulated coverage values when equity is included are much lower

than the values when equity is not included. When equity is included, the demand

points far away from potential facility locations are given more importance, but, most

of them can not even be accessed in the target response times (i.e. |Si| is a very small

number). The spatial distribution of facilities and the demand coverage when equity

is included is shown in figure 2.12 for the MP-R SS2 model with q = 15. It can

be noticed that the figures 2.6 and 2.12 are very similar, covering almost the same

demand points and most facilities opened at the same spot. A primary reason for

this is the distribution of facility locations and demand points. The demand points
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(a) SS1 (b) SS2

Figure 2.11: Effect of incorporating equity on simulated coverage

outside the more densely populated central core are located too far away from the

potential facility locations. For the response times used in our case study, it does not

make a practical difference if equity is included or not. However, for longer response

times, equity inclusion could be beneficial (longer response times lead to larger values

of |Si|, which make it easier to meet service reliability target for all demand points).

(Aringhieri et al., 2017) state that equity is still one of the most challenging

concerns for emergency medical services. More comprehensive methodologies that

explicitly address equity concerns should be explored. Previous works in facility

location have addressed equity by using metrics based on distance, exclusion, and

conditional value-at-risk in model formulation Sirupa (2021).
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Figure 2.12: Opened Facility Locations and Demand Point Coverage for MP-R with
equity inclusion (SS2; q = 15; Γt

i = 1)

2.5 Conclusion

This paper proposes a robust multi-period maximum covering facility location prob-

lem with coverage reliability (MP-R). MP-R is a generalized variant of the robust

uncertain set covering the problem proposed by Lutter et al. (2017). The problem

incorporates uncertainty in travel times via chance constraints and uses robust opti-

mization using polyhedral uncertainty sets to tackle uncertainty. More conservative

solutions can be obtained by increasing the value of parameter Γt
i.

A case study of the use of unmanned aerial vehicles (UAVs) or drones to deliver

defibrillators in the Portland Metro Area is proposed. The uncertainty in drone

travel times is a product of natural variability in wind speeds and directions. In
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Portland, the wind characteristics (speed and direction) change drastically between

the summer months (April to September) and winter months (October to March).

Therefore, multiple periods are thought of as a discretization of recurring planning

intervals (here, one whole year). We evaluate the effect of extending from a single

period formulation (a whole year) to a multi-period formulation (two different time

periods: summer and winter).

The value of adding robustness and extending to a multi-period formulation was

evaluated utilizing a novel Monte-Carlo simulation scheme. The results highlighted

that utilizing a multi-period formulation was particularly beneficial when response

time thresholds were short or when uncertainty is not accounted for in the model. On

the other hand, adding robustness to the deterministic models was more beneficial for

single-period formulations or when response time thresholds were longer. Combining

these different strengths led to an increase in average simulated coverage of MP-R by

57% compared to the deterministic single-period formulation (SP-D). Geographically,

accounting for uncertainty (in MP-R) consolidates the facility locations towards the

dense central core of the metro area compared to more spread out locations in SP-D.

A more compact facility layout in MP-R improves the level of service in the central

core of the metro area leading to superior simulated coverage.

For the MP-R model, a sensitivity analysis on the facility relocation cost budget

showed very minor changes in model coverage as well as simulated coverage values.

This implies that simply providing the model with more detailed information by dis-
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cretizing over the planning period (even when facility relocation is not allowed) is

helpful rather than providing the average information of the planning period. From

our case study, when the response times are shorter, we recommend that an exist-

ing SP-D model should be extended to MP-R (i.e., incorporating uncertainty and

discretizing to multiple periods). When the response times are longer, only incor-

porating uncertainty in the SP-D model is sufficient and multiple periods are not

necessary.

The presented formulation can be used to analyze equity gaps and the need

for additional resources. Analysis of distance-based equity inclusion in the objective

yielded poorer coverage values. Equity inclusion increases the coverage importance

of demand points further away from potential drone launch sites, but response times

used in our study were too short for these points to be covered reliably. Geographi-

cally, equity inclusion did not affect the facility locations and demand point coverage

significantly. However, for longer response times than used in this study, equity in-

clusion could be beneficial.

Even with the MP-R model providing the best performance, a significant gap ex-

ists between model coverage and the simulated coverage values. A major contributing

factor is the assumption of independence among the failure probabilities. While some

of the gap can be addressed by adjusting the budget of uncertainty and increasing

the number of opened facilities, there is still a need to account for correlation in

failure probabilities. Additionally, the study assumed that all the accessible open
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facilities respond to the demand while not considering the possible unavailability of a

drone at a located launch site. Future studies should also focus on including capacity

considerations at located launch sites.
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3.1 Introduction

E-commerce usage has become ever-ubiquitous now, especially due to social isolation

requirements during the COVID-19 pandemic. A shift towards digital shopping has
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resulted in double-digit retail e-commerce growth rates (32.1% growth from 2019 Q4

to 2020 Q4) compared to single-digit in total retail growth (6.9% growth from 2019 Q4

to 2020 Q4) (U.S. Census Bureau, 2021). In recent years, the delivery time thresholds

for online purchases have also become intensive, with various e-commerce platforms

providing same-day delivery options. Now, even options for 2-hour (Walmart, Ama-

zon Prime Now, Walmart, Space NK) and 1-hour delivery (Instacart Express, Shipt,

Alibaba Fresh Hema, buymie.eu) exist, with the industry gearing towards an instant

(30-minute or better) delivery goal (Amazon Prime Air, Getir, Wolt). One of the vi-

able alternatives for instant delivery right now is a UAV/drone. With the numerous

large corporations including Amazon, Walmart, UPS, DHL, and Kroger heavily in-

vesting in drone technology, the growth in this sector has surpassed previous forecasts

(Aouad, 2019). The higher operational speed and better cost-effectiveness of drones

compared to traditional ground vehicles (Chiang et al., 2019) would be beneficial as

extant logistics systems are stressed with increased demand from e-commerce growth.

This work delves into facility location and resource allocation for including in-

stant delivery logistics into a company’s operations. We assume that the instant de-

liveries (or, time-sensitive deliveries) are fulfilled through a battery-operated drone.

While the non-time-sensitive orders can either be fulfilled by a drone from the lo-

cated facilities or a truck from the central warehouse. The system consists of a set of

facilities that can act as both “dark” stores (or micro fulfillment centers), and drone

operations sites. During the planning stage, the facilities are located and resources
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(product and battery capacity) are allocated such that it maximizes the total profit

based on the deterministic information available. Once the facilities are set up, dur-

ing the operational stage, the orders are received and real-time decisions are made

regarding which facility and mode of transport would be used for fulfillment on an

order-wise basis. Therefore, the goal in the operational stage is the adaptive learn-

ing of allocation of each order to maximize the cumulative profits while respecting

resource capacity constraints.

Powell (2019) summarizes the work done by various communities on stochastic

optimization. Focusing on online sequential decision-making communities, Markov

decision processes, Q-learning, and approximate dynamic programming are formed

based on state transition functions like Bellman’s equation. These methods learn

over time through multiple iterations over these states. In our problem, we model

consumption of non-replenishable resources over time, and therefore, a state of the

system does not recur. Additionally, the above methods use maximization of terminal

reward as the objective function which is not the case for our problem. These nuances

make the above approaches not suitable for our problem.

Multi-armed bandits is an online decision-making framework that maximizes the

cumulative reward over the learning period (Powell, 2019). Multi-armed bandits can

also be equipped with “context” that provide information available before making

decisions, and “knapsacks” that can account for globalized resource consumption

associated with the decisions (Slivkins, 2019). The above characteristics make multi-
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armed bandits a suitable approach for our problem.

The key contributions of this study are: (i) formulating the instant delivery

logistics problem as a two-stage problem – offline facility location with online re-

source allocation; (ii) while most of the previous logistics research has focused on

time-aggregated dynamic resource allocation (Gu et al., 2020), we consider dynamic

resource allocation at an order-level, which could be potentially beneficial for re-

ducing delivery times (because of no lag in decision-making); and (iii) exploring a

multi-armed bandit approach to effectively learn how to allocate orders to facilities in

real-time and maximize the cumulative profits, and comparing it with other strategies.

The rest of the paper is organized as follows: the next section covers the relevant

literature spanning the fields of facility location for stochastic demand, and dynamic

resource allocation problems. Next, the problem description and formulation along

with the dynamic resource allocation strategies are discussed. Later, computational

experiments are conducted on test datasets. The final section concludes the work and

provides avenues for further research.

3.2 Literature Review

In this section, we focus on primarily on facility location problems and dynamic

resource allocation.
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3.2.1 Facility Location Problems

Facility location has been one of the classical Operations Research problems and is

one of the first prominent decisions that impact tactical and operational strategies for

all organizations. An extensive number of books as well as review articles have been

dedicated to facility location research: (Daskin, 2011; Farahani et al., 2010; ReVelle

and Eiselt, 2005). Further, application-specific facility location reviews for humani-

tarian relief (Dönmez et al., 2021), healthcare and emergency location (Ahmadi-Javid

et al., 2017), and urban-based applications (Farahani et al., 2019) are also available.

Mukundan and Daskin (1991) is one of the earliest works to explicitly consider

maximizing profit (others implicitly considered maximizing profit as an alternative to

minimizing cost). They consider joint location and sizing problems while considering

cover-based constraints for facilities based on their size. Profit is defined as the dif-

ference between revenue and cost. We extend the problem considered by Mukundan

and Daskin (1991) in two ways: firstly, by considering a continuum of facility size.

This is achieved by converting costs in the objective functions to budget constraints.

Therefore, the objective function in our work consists of only revenue-based terms.

Secondly, we enforce capacity constraints derived from product and battery capacity

allocations. Further, our problem does not consider coverage as a function of in-

vestment level as the facilities considered here are “dark-stores” which only cater to

internet-based orders. The range of the facility is determined by explicitly modeling
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energy consumption in battery-operated drones.

Ambulance location literature is rich in two-stage facility location models where

ambulances are located offline and their allocations to demand points (and ambulance

relocation) are made in real-time (Gendreau et al., 2001; Schmid, 2012). For the real-

time allocation, either offline policies are used as in Gendreau et al. (2001), or adaptive

online policies using methods like approximate dynamic programming are developed

as in Schmid (2012). The above works model allocation decision for ambulances to

a request and then, their relocation decisions. The unavailability of ambulances for

a request due to being busy or excessive travel time is modeled, but the researchers

do not consider the modeling of non-replenishable resource consumption (like cost

budgets). In this work, facility location decisions are made offline and we develop an

adaptive online policy using a multi-armed bandits approach for allocation of requests

to appropriate fulfillment facility. Additionally, the unavailability of drones (due to

range considerations) and trucks (for instant fulfillment requests) is modeled, and non-

replenishable resource consumption related to routing costs and product capacity at

individual facilities is considered.

3.2.2 Dynamic Resource Allocation

Resource allocation problems are widely observed: assigning a vehicle to a demand

point in vehicle routing problems (VRP), a personnel to a job, etc. In the context of

VRP, Bektaş et al. (2014) concisely defines dynamic problems as problems in which
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information is revealed gradually over time, rather than all at once (static problems).

Here, we use the same definition for resource allocation problems, and use the words

“dynamic” and “online” interchangeably.

In operations research, dynamic resource allocation problems are generally tack-

led by formulating them as multi-stage stochastic programs (MSSP) (Guo et al.,

2020). Several AI-based techniques have also been explored for online resource al-

location problems which include Q-learning (Jiang et al., 2019; Yu et al., 2021),

multi-armed bandits (Badanidiyuru et al., 2013; Villar et al., 2015), online algo-

rithms (Devanur et al., 2019), and approximate dynamic programming (ADP) (Yu

et al., 2019). Recently, (Powell, 2019) summarized the commonalities of various com-

munities of stochastic and/or dynamic optimization and noted that adaptive learning

algorithms based on dynamic programming (Q-learning, ADP, stochastic dual dy-

namic programming for MSSP) fall under the category of state-dependent problems

with a terminal reward objective. Additionally, they observed that contextual bandits

lend themselves well to several state-dependent problems with a cumulative reward

objective. In this study, we explore a multi-armed bandit framework for dynamic re-

source allocation. Badanidiyuru et al. (2013) first proposed a multi-armed framework

with universal budget constraints, which explicitly accommodates budget constraints

in decision-making. Specifically, we use linear contextual bandits with knapsacks

proposed by Agrawal and Devanur (2016) and extrapolate results to accommodate

restricted “arm” availability arising from drone range constraints.
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Focusing on delivery-related applications, Mallick et al. (2017) discuss recom-

mendation systems for a carrier in truckload freight exchange marketplaces with con-

straints on arriving back at the origin within the planning period. Guo et al. (2020)

studied drone-truck combined instant delivery logistics (90-minute grocery delivery)

and proposed to solve it as a multi-stage stochastic program. Here, all the orders in

a 30-minute interval were considered for allocation and routing. The truck and drone

resources were available at each time interval for allocation (i.e., they are replenished).

Similar assumptions have been made in humanitarian logistics applications (Yu et al.,

2019, 2021), where a constant amount of resources to be distributed (food, medical

kits) are made available every time period. However, in our study, a total product

inventory and battery capacity are allocated to each open facility for the planning

period and these are not replenished during the operational stage. Additionally, the

above research addresses catering demand in each time interval. Our study differs by

allocating demand at an order level, which would improve delivery time performance

for instant orders, and is also adequate considering the limited payload capacity of

drones (Moshref-Javadi and Winkenbach, 2021).

Availability-related constraints are adequately tackled in dynamic fleet manage-

ment literature (Lin et al., 2018), where drivers available at any time period are

varying. However in this study, we assume that a sufficient amount of drones are

placed at facilities and trucks are central warehouses that vehicle-related availabil-

ity constraints and congestion effects can be safely ignored, to emphasize more on
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the allocation of facility and mode of delivery to a request. (Shavarani et al., 2019)

studied a congested facility location problem for drone delivery with a case study im-

plementation in San Francisco. The results show that for the system with 30 minute

wait time, drone acquisition costs only accounted for about 12% of recharging infras-

tructure setup and operation costs. We consider that the drone acquisition costs are

already considered in the drone operations facility opening and operation costs.
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3.3 Problem Description

This section presents the maximum profit facility location problem for online demand

satisfaction which is applicable for a logistics company employing UAVs/drones for

last-mile delivery. We propose a two-stage framework wherein the planning stage, we

locate facilities and allocate resources (product and battery capacity) to them with

an a priori estimate of consumer demand. With the facilities located, and resources

allocated, in the operational stage, the consumers place orders dynamically and we

use multi-armed bandits for making real-time decisions to maximize the cumulative

revenue while consuming resources. Note that the resources allocated at the end of

the planning stage are not replenished in the operational stage. We consider two

types of consumers: time-sensitive and regular. For time-sensitive customers, the

demand must be met instantly, else, the demand is lost. For the regular customers,

the demand must be fulfilled but instant deliveries are not mandatory.

3.3.1 Stage 1: Planning Stage

The online demand satisfaction problem is defined over a finite planning horizon.

There are two modes of delivery available: drone delivery and traditional ground-

based delivery. The drone-based deliveries are achieved by locating facilities that

act as both products holding storerooms as well as drone launching stations. The

ground-based deliveries are fulfilled using trucks located at a central warehouse. We
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assume that there are enough drones/trucks at each facility that congestion effects

can be neglected. The time-sensitive orders are fulfilled instantly (for example, 30

minutes or less), and the regular orders are fulfilled within a predetermined level of

service (example, 1-day delivery or 2-day delivery). The time-sensitive orders are,

therefore, assumed to be satisfied only using drones, while the regular orders can be

delivered by either drones or trucks.

Let G denote the set of demand points. During the planning stage, each demand

point can be considered as a small geographical region (for example, ZIP code, Census

tract, etc.). Let nS
g and nR

g denote the anticipated number of time-sensitive and

regular orders from point g ∈ G, respectively. Let Fg denote the set of all deliveries

to point g ∈ G, i.e. Fg = {1, . . . , nS
g , n

S
g + 1, . . . , nS

g + nR
g }. During the facility

location (or, planning) stage, we do not take temporal aspects into consideration,

and therefore, can consider both types of deliveries together.

Let ogf denote the order weight of f th (∈ Fg) order from demand point g ∈

G. We assume each order can weigh up to omax. During the planning stage, ogf

could take the form of using representative weights for different weight categories

(therefore, obtaining the number of orders for different weight categories), and during

the operational stage, the demand can assume the continuum of values up to omax.

The parameters cDgf and cTgf denote the estimated profit for satisfying the f th order of

demand point g ∈ G using drones and trucks, respectively.

The drone-based deliveries are carried out from potential facility locations spread
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through the service area. The set of all potential facility locations is represented byH.

A maximum of p number of facilities can be opened. This parameter is prescribed con-

sidering leasing costs, recharging infrastructure setup costs, drone acquisition costs,

and other related costs. A total of α amount of commodity and β amount of battery

capacity (for drones) are available for distribution among open facilities. If a facility

is opened, then a minimum of αmin and βmin amount of product and battery capacity

must be allocated to it.

We assume that the drones only make one-to-one deliveries (from facility to

demand point and back), as drones would be allocated at an order level during the

operational stage. Let, bghf be the battery consumption order to travel from a facility

h ∈ H to a point g ∈ G and back while delivering the f th order, and Bdrone be the

battery capacity of the drone. To be on a bit on the conservative side, we simplify

bghf to bgh (the battery consumption obtained using order weight of omax). The set

Gh = {g ∈ G : bgh ≤ Bdrone} describes the set of demand points that are accessible

from a facility h ∈ H.

The truck-based deliveries are satisfied from a central warehouse. During the

planning horizon, there are a maximum of |M | truck trips available (M denotes the

set of truck trips) which are determined based on the predetermined level of service,

for example, an average of 2 truck trips per day over the planning period of 300 days

yields |M | = 600. The capacity of each truck (in the number of packages that can be

delivered in each trip) is Btruck which is determined based on actual truck capacity,
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operator working hours constraints, etc. Each truck trip can be considered as a

traveling salesman problem, and therefore, truck trip routing costs can be estimated

using continuous approximation (Langevin et al., 1996). For a warehouse located

‘d0’ distance away from the center of the service area (of size A), the continuous

approximation trip cost is given as:

mth Truck Trip Cost = k1nm + k2d0 (1nm>0) + k3
√
nmA

where, nm is the number of customers serviced on the mth (∈ M) trip, A is the

size of service area, and k1, k2, k3 are the proportionality constants. The term (1nm>0)

is the Heaviside step function with value 1 when nm > 0, and 0 otherwise. The first

term represents time costs (related to customer service times), and the second and

third terms combined are distance related costs.

As the truck trip costs are concave, the best allocation is by consolidating as

many assignments on a trip as possible. It is given that each truck can serve up to

Btruck customers per trip, and a total routing cost budget is Brouting. Then, the best

allocation occurs when the first m∗ truck trips each serves Btruck customers, and the

remaining routing budget is utilized on the (m∗ + 1)th truck trip. The value of m∗ is

given as:

m∗ :=

⌊
Brouting

k1Btruck + k2d0 + k3
√
BtruckA

⌋
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Therefore, instead of incorporating a non-linear non-convex routing cost con-

straint, we can incorporate a simpler (and slightly conservative) linear constraint by

limiting the total number of truck-based deliveries to ω = (min{|M |,m∗} ·Btruck).

Now, we discuss the decision variables for the planning stage optimization prob-

lem. The binary variable yh is 1 if a facility is opened at location h ∈ H. Let the

variables uh and zh denote the product and battery capacity allocated to facility

h ∈ H, respectively. The binary variable xhgf is 1 if f th (∈ Fg) order of point g ∈ G

is met by facility h ∈ H using drone delivery, and the binary variable wgf be 1 if

f th (∈ Fg) order of point g ∈ G is met using truck delivery. Finally, the facility

location problem can be described as:

max
u,w,x,y,z

∑
h∈H

∑
g∈G

∑
f∈Fg

cDgfxhgf +
∑
g∈G

∑
f∈Fg

cTgfwgf (3.3.1)

∑
h∈H

yh ≤ p (3.3.2)

∑
h∈H

uh ≤ α (3.3.3)

uh ≤ αyh ∀ h ∈ H (3.3.4)

uh ≥ αminyh ∀ h ∈ H (3.3.5)∑
g∈Gh

∑
f∈Fg

ogfxhgf ≤ uh ∀ h ∈ H (3.3.6)

∑
h∈H

zh ≤ β (3.3.7)

zh ≤ βyh ∀ h ∈ H (3.3.8)
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zh ≥ βminyh ∀ h ∈ H (3.3.9)∑
g∈Gh

∑
f∈Fg

bghxhgf ≤ zh ∀ h ∈ H (3.3.10)

∑
h∈H

xhgf + wgf ≤ 1 ∀ f ∈ Fg, g ∈ G (3.3.11)

∑
g∈G

∑
f∈Fg

wgf ≤ ω (3.3.12)

xhgf ∈ {0, 1} ∀ f ∈ Fg, g ∈ G, h ∈ H (3.3.13)

wgf ∈ {0, 1} ∀ f ∈ Fg, g ∈ G (3.3.14)

yh ∈ {0, 1} ∀ h ∈ H (3.3.15)

uh, zh ≥ 0 ∀ h ∈ H (3.3.16)

The objective function (3.3.1) aims to maximize the cumulative profit achieved

by the delivery system. Equation (3.3.2) constrains the number of open facilities

to a maximum of p. Equations (3.3.3) and (3.3.7) ensure that a total amount of

product and battery capacity allocated is less than α and β (the overall budgets),

respectively. Equations (3.3.4) and (3.3.5) ensure that product is only inventoried at

open facilities, and that at least a minimum of αmin amount of product is inventoried

when a facility is opened. Equations (3.3.8) and (3.3.9) enforce similar constraints to

battery capacity, i.e., battery capacity can only be allocated to open facilities and at

least a minimum of βmin amount of battery capacity is allocated at an open facility.

Equation (3.3.6) ensures that no more demand than the product inventory at a facility
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is met. Similarly, equation (3.3.10) constrains the battery consumption to be less than

the battery capacity of the facility. Note that equations (3.3.6) and (3.3.10) take drone

delivery range into consideration. Equation (3.3.11) ensures that a particular order

can be satisfied by at most one facility using a drone or by using truck-based delivery.

Constraint (3.3.12) limits the total number of truck based deliveries to ω. Equations

(3.3.13)-(3.3.16) are variable definitions.

After finding an optimal solution, it is modified by allocating the remaining slack

in product (equation (3.3.3)) and battery capacity (equation (3.3.7)). The slack is

allocated such that it maximizes the minimum value of product and battery capacity

at an open facility.

3.3.2 Stage 2: Operational Stage

At the end of stage 1, we have a solution for the planning stage problem, given by

the tuple (x∗, w∗, y∗, u∗, z∗). Let, the set of all opened facilities be represented by

set H ′ := {h ∈ H : y∗h = 1}. The product inventory and battery capacity located

at an open facility h ∈ H ′ are given by u∗
h and z∗h, respectively, which would be

used for drone-based deliveries. The regular (i.e., non-time-sensitive) orders can also

be fulfilled through the central warehouse using truck-based delivery (a maximum

of ω number of regular order deliveries can be fulfilled). Order fulfillment leads to

consumption of these resources (product, battery, truck) which are not replenished

during the entirety of the operational stage. The goal during the operational stage
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is to maximize cumulative profit by allocating orders arriving in an online manner to

either one of the located facilities for drone delivery, or to the central warehouse for

a truck delivery (only for regular orders), such that no more than available resources

are utilized.

During the operational stage, uncertainties stem from various sources: the prob-

ability of an order being from demand location g ∈ G, the probability of an order

being time-sensitive, the order weight distribution from demand location g ∈ G, the

battery consumption distribution while using drones for delivering an order, and the

profit distributions of time-sensitive and regular orders. However, in any market,

these values cannot be known with absolute certainty and need to be learned by im-

plementing field trials. We explore three strategies for this online operational stage

problem: first, a multi-armed bandits-based approach; second, an allocation heuristic

designed from the solution of the planning stage optimization problem; and third,

two random choice heuristics based on the random choice among available options

for an order. Based on the context of our problem, we use the words “profits” and

“rewards” synonymously here.

Currently, there is no option of non-fulfillment of an order (possibly due to net-

work congestion) and can be a part of future research. As a performance measurement

here, we study the maximization of cumulative profit until the first resource constraint

is violated considering the allocation of each order independent of its profit and re-

source consumption. Alternatively put, the episode ends at the first instance of a
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facility (or central warehouse) running out of a resource. Instant delivery logistics

would typically be adopted for a relatively small geographical area (like a metropoli-

tan area). In such cases, orders received after the first instance of exhaustion of

resources could lead to denial of service based on geography, which cannot be the

case for practical applications. Also, this stopping criterion would indicate the need

for resources to be replenished for uninterrupted service.

Multi-armed bandits

Multi-armed bandits are a reinforcement learning framework wherein the agent learns

by exploring given set of options (a.k.a. “arms”) such that the cumulative reward

achieved is maximized. Here, specifically, we use linear contextual bandits with knap-

sacks (linCBwK), proposed by (Agrawal and Devanur, 2016). The linCBwK allows

us to choose only from a subset of arms (as all open facilities are not available to each

order placed) while accounting for constraints consisting of the product inventory and

battery consumption budgets at each facility, and overall truck routing.

A linCBwK problem has five components to it. The first is the K number of

arms or actions. Here, these actions represent options for each order: drone delivery

from a located facility, or truck delivery from the central warehouse. Therefore, we

have K = |H ′|+ 1 arms, and [K] := {h ∀ h ∈ H ′} ∪ {truck} is the set of all arms.

The second is time horizon or total number of decision-making events T . Here,

each time/event t ∈ {1, 2, . . . , T} represents an order placed in real-time by demand
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point gt ∈ G (assumed i.i.d. to unknown distribution Dg, abbreviated as gt
iid∼ Dg).

Let, λt (derived from λt|gt
iid∼ Dλ

gt) be 1 if the order is time-sensitive and requires

instant delivery, and 0, otherwise. Note that the demand points outside the drone-

based coverage region can only place regular orders. Then, for each h ∈ H ′, taking

the current environmental factors into account, we observe the battery consumption,

btgth (btgth|gt
iid∼ Db

gth
) for all h ∈ H ′. All of the above information is available before

making the allocation decision for event t.

The third is the context. Context represents all information that we have prior

to making a decision. At each event t, we observe an m-dimensional context vector

for each arm a ∈ [K], represented by xt(a) ∈ [0, 1]m. Let the context matrix Xt :=

{xt(a)∀a ∈ [K]} ∈ [0, 1]m×K . For our case, we observe a m = K dimensional context

for each arm. The K ×K diagonal context matrix is constructed as:

Xt[h, h] :=


1 if btgth ≤ Bdrone

0 otherwise

, ∀ h ∈ H ′

Xt[truck, truck] :=


1 if λt = 0

0 otherwise
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Agrawal and Devanur (2016) state that when the context matrix is a K-dimen-

sional identity matrix, linCBwK emulates the bandits with knapsacks (BwK) problem

(Badanidiyuru et al., 2013). We extrapolate this result to consider a BwK problem

with restricted arm availability. The above definition of context only allows arms with

context equal to 1 to be available for selection. While defining context, we ensure that

the truck arm is only available for regular deliveries. Additionally, we consider that

the demand points outside the drone-based coverage can only place regular orders.

The above definition allows for the availability of at least one arm for selection by the

algorithm.

The fourth component of linCBwK problem is reward. At time t, a scalar reward

rt(at) ∈ [0, 1] is realized after playing action at ∈ [K]. Without loss of generality, we

assume that the reward for fulfilling a time-sensitive delivery is cS ∈ (0, 1], and a

regular delivery is cR ∈ [0, cS) irrespective of which action is chosen. This assumption

can be relaxed to model rewards that are a function of the ordering demand point gt

and the action at chosen.

The fifth component of linCBwK is knapsacks constraints, or globalized budget

constraints. For our problem, there are d = (2·|H ′|+1) universal knapsack constraints.

The first |H ′| constraints represent the product consumption at facility h ∈ H ′ with

budgets u∗
h, the second |H ′| constraints represent the battery consumption at facility

h ∈ H ′ with budgets z∗h, and the last knapsack constrains the total number of truck

deliveries to a budget ω (as described in Stage 1). If at time t, the truck arm is
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chosen, then, 0 amount of product (Uh), 0 amount of battery (Bh) resources, and

1 unit of truck delivery resources are used. If the truck-delivery arm is not chosen,

then let ht denote the chosen facility for fulfillment of demand. When ht is chosen,

(otgt · eht) amount of product, (btgtht
· eht) amount of battery resource, and 0 unit of

truck delivery resources are consumed. Here, eht is a |H ′| × 1 matrix with value 1 for

the row where h = ht, and 0, otherwise. Let I truckt be 1 if the truck-delivery arm is

chosen at time t, and 0, otherwise.

The bandit optimization problem that we are tackling here is given as:

max
e,Itruck

T∑
t=1

[{
cSλt + cR(1− λt)

}
(1− I truckt )

+ cR(1− λt)I
truck
t

] (3.3.17)

T∑
t=1

otgt · eht · (1− I truckt ) ≤ u∗
h ∀ h ∈ H ′ (3.3.18)

T∑
t=1

btgtht
· eht · (1− I truckt ) ≤ z∗h ∀ h ∈ H ′ (3.3.19)

T∑
t=1

I truckt ≤ ω (3.3.20)

At time t, upon selection of arm at, let vt(at) be the d-dimensional resource

consumption vector. As a reminder, we allow only payloads up to omax. Also note

that for chosen arm, the value of btgtht
is always less than or equal to Bdrone. Therefore,

we can use the above values to normalize resource consumption vector vt(at) in the

range [0,1], a requirement to implement linCBwK. The first set of transformations
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are given as:

Transformations I:

PC knapsacks: otgt ←
otgt
omax

u∗
h ←

u∗
h

omax

BC knapsacks: btgtht
←

btgtht

Bdrone

z∗h ←
z∗h

Bdrone

where, PC refers to product consumption, and BC refers to battery consumption.

The other required transformation for linCBwK is a uniform value of budget for each

knapsack constraint. Therefore, we scale each knapsack so that its budget to the

lowest value after the above transformations. The new budget, B, is given as:

B = min
{
min{u∗

h : h ∈ H ′},min{z∗h : h ∈ H ′}, ω
}

The transformations to make the budget the same for all knapsack constraints

are:

Transformations II:

PC knapsacks: otgt ←
B

u∗
h

otgt ; u∗
h ← B

BC knapsacks: btgtht
← B

z∗h
btgtht

; z∗h ← B

Truck knapsack: I truckt ← B

ω
I truckt ; ω ← B
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We make the following two assumptions about context, rewards, and resource

consumption vectors in linCBwK (Agrawal and Devanur, 2016):

• In every round t, the tuple {xt(a), rt(a),vt(a)}Ka=1 is generated from an unknown

distribution D, independent of everything in previous rounds. The procedure

used for generating contexts, rewards, and resource consumption for our instant

delivery logistics problem satisfies this assumption.

• There exists an unknown vector µ∗ ∈ [0, 1]m×1 and a matrix W∗ ∈ [0, 1]m×d

such that for every arm a, given contexts xt(a), and history Ht−1 before time t,

E[rt(a)|xt(a), Ht−1] = µT
∗ xt(a)

E[vt(a)|xt(a), Ht−1] = WT
∗ xt(a)

(3.3.21)

The decision-making flow of the linCBwK algorithm consists of five major steps:

observing the context matrix Xt, obtaining optimistic estimates of µ∗ and W∗ us-

ing the l2-regularized norms of previously observed values of rewards and resource

consumption, arm selection using an expected reward penalized with expected re-

source consumption, realizing the values of reward and resource consumption for the

selected arm, and finally, updating the penalty weights using multiplicative weight

update (MWU) algorithm (Agrawal and Devanur, 2016). The detailed algorithm is in

Algorithm 3.1. Like all multi-armed bandit algorithms, the performance is measured

by the complexity of the cumulative regret. For linCBwK, the regret is measured

from the optimal static policy (Agrawal and Devanur, 2016), obtained from solving
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a static stochastic optimization problem.

Algorithm 3.1 Algorithm for linCBwK

Input: B, T0, T , (1− δ) confidence level, MWU algorithm parameter ϵ
Output: at, rt,vt

1: Input parameters:
2: Compute Z which satisfies assumptions presented in (Agrawal and Devanur, 2016)
3: Initialize B′ = B − T0, T

′ = T − T0

4: Initialize t = 1, θ1,j =
1

1+d
, ∀ j ∈ {1, 2, . . . , d} t ≤ T ′

5: Observe context Xt

6: For every a ∈ [K], compute µ̃t(a) and W̃t(a) (the optimistic estimates of µ∗ and
W∗) as:

µ̃t(a) := arg max
µ∈Ct,0

xt(a)
Tµ, where, µ̂t := M−1

t

t−1∑
i=1

xi(ai)ri(ai)
T

where, Ct,0 :=
{
µ ∈ Rm×1 : ∥µ− µ̂t∥Mt ≤ radiust

}
(3.3.22)

W̃t(a) := arg minW∈Gt
xt(a)

TWθt, where, Ŵt := M−1
t

t−1∑
i=1

xi(ai)vi(ai)
T

where, Gt :=
{
Rm×d : wj ∈ Ct,j

}
where, Ct,j :=

{
w ∈ Rm×1 : ∥w − ŵtj∥Mt ≤ radiust

}
(3.3.23)

7: Play arm at := argmax
a∈[K]

xt(a)
T
(
µ̃t(a)− ZW̃t(a)θt

)
8: Observe reward rt(at) and resource consumption vt(at)
9: If for some j ∈ {1, . . . , d},

∑
t′≤t vt′(at′) · ej ≥ B, then EXIT. (Note: ej is a d× 1

matrix with value 1 for jth row, and 0, otherwise)
10: Update θt+1 using MWU algorithm, and with gt(θt) := θt ·

(
vt(at)− B

T
1
)
, as: for

all j ∈ {1, 2, . . . , d}

θt+1,j =
wt,j

1 +
∑

j wt,j

where wt,j =

{
wt−1,j(1 + ϵ)gt,j if gt,j > 0,

wt−1,j(1− ϵ)−gt,j if gt,j ≤ 0

(3.3.24)

11: t+ = 1
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Planning Stage Optimization Allocation (PSOA) Heuristic

The planning stage optimization allocation (PSOA) heuristic uses the insights ob-

tained from the solution of the optimization problem solved in Stage 1 to derive a

policy. Particularly, 2|G| different policies are derived depending upon the demand

point g ∈ G placing an order, and the order being time-sensitive or not. The policies

are given as:

For all g ∈ G, h ∈ H:

pPSOA
g,λ (h) =



q1h(x
∗) if,

∑
a∈H′

∑
f∈F

x∗
agf > 0, λ = 1

q2h(x
∗, w∗) if,

∑
a∈H′

∑
f∈F

x∗
agf > 0, λ = 0

0 otherwise

q1h(x
∗) =

∑
f∈F x∗

hgf∑
a∈H′

∑
f∈F x∗

agf

q2h(x
∗, w∗) =

∑
f∈F

nR
g

nS
g+nR

g
x∗
hgf∑

a∈H′
∑

f∈F
nR
g

nS
g+nR

g
x∗
agf +

∑
f∈F w∗

gf

(3.3.25)

For all g ∈ G:

pPSOA
g,λ (truck) =


1−

∑
h∈H′

pPSOA
g,λ (h) if, λ = 0

0 otherwise

(3.3.26)
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where, λ = 1 for time-sensitive deliveries, and λ = 0 for regular deliveries. Note

that as the type of orders (time-sensitive or regular) are not differentiated in the Stage

1 optimization problem, some demand points which can be covered through drone-

based deliveries may only be served using the truck delivery option. As a result,

these demand point could place a time-sensitive order and the PSOA heuristic would

not know what to do. In such cases, the PSOA heuristic collects a reward of 0, and

consumes 0 units of all the resources (product, battery, and truck-delivery). The

algorithm for PSOA is presented in Algorithm 3.2.

Algorithm 3.2 PSOA Heuristic

Input: B, T0, T
Output: at, rt,vt

1: Initialize parameters B′ = B − T0, and T ′ = T − T0.
2: Initialize t = 1 t ≤ T ′

3: Observe ordering demand point gt, time-sensitivity of order λt, and context Xt.
4: Select an arm at ∈ [K] chosen randomly with probability of choosing at is

pPSOA
gt,λt

(at) at ∈ H ′ and Xt[at, at] = 1
5: Play the selected arm at
6: Observe reward rt(at) and resource consumption vt(at) λt = 1
7: Randomly select and play an arm at such that Xt[at, at] = 1
8: Observe reward rt(at) and resource consumption vt(at)
9: Play the truck arm, i.e, at = truck

10: Observe reward rt(at) and resource consumption vt(at)
11: If for some j ∈ {1, . . . , d},

∑
t′≤t vt′(at′) · ej ≥ B, then EXIT. (Note: ej is a d× 1

matrix with value 1 for jth row, and 0, otherwise)
12: t+ = 1

Random Choice (RC) Heuristic

The random choice (RC) heuristic chooses one of the available options randomly in

a weighted manner upon observing the context based on random choice among the
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available alternative at each time t. The nominal probability of choosing the “truck”

arm for a regular order is pRC
truck = ω∑

g∈G nR
g
. The algorithm is presented in Algorithm

3.3.

Algorithm 3.3 RC Heuristic

Input: B, T0, T , (1− δ) confidence level, MWU algorithm parameter ϵ
Output: at, rt,vt

1: Input parameters B′, and T ′.
2: Initialize t = 1 t ≤ T ′

3: Observe ordering demand point gt, time-sensitivity of order λt, and context Xt.
4: Calculate the set of facilities available for drone deliveries, i.e., Havail := {h ∈

H ′ |Xt[h, h] = 1} |Havail| > 0 λt = 1
5: Play one of the available facility arms each with probability 1

|Havail|
6: Play the arm “truck” with probability pRC

truck, and one of the available facility
arms each with probability 1

|Havail|
(1− pRC

truck)
7: Play arm “truck”
8: Observe reward rt(at) and resource consumption vt(at)
9: If for some j ∈ {1, . . . , d},

∑
t′≤t vt′(at′) · ej ≥ B, then EXIT. (Note: ej is a d× 1

matrix with value 1 for jth row, and 0, otherwise)
10: t+ = 1

Blind Random Choice (BRC) Heuristic

The blind random choice (BRC) heuristic works like the RC heuristics, except that

it does not have access to even the input parameters of the problem (nS, nR, ω).

Therefore, at any time t, the BRC heuristic chooses one of the available arms randomly

in a unweighted manner (i.e., each of the available arms has an equal probability of

being selected).
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3.4 Computational Experiments

The analysis is conducted on standard p-median test instances, adopted from Os-

man and Christofides (1994), each consisting of 50 locations that act both as demand

points (represented by set G) and potential facility locations (represented by set H)

on a randomly generated on a 100 × 100 grid (here, units are assumed to be kilo-

meters). For the current planning period, the anticipated number of times-sensitive

(nS
g ) and regular (nR

g ) deliveries are random integers in the interval [8,12] and [8,12],

respectively. The estimated demand for each order is randomly selected from a dis-

crete uniform distribution from 0.5 kg to 2.25 kg in the interval of 0.25 kg. Euclidean

distances are used for distance computations. The battery consumption for a trip

from facility h ∈ H to demand point g ∈ G and back is calculated as in Figliozzi

(2017) assuming a payload of omax = 5 lbs (2.27 kg). The overall energy efficiency

and the lift-to-drag ratio of the drone are 0.66 and 2.89, respectively. The battery

capacity of the drone is 1410 Wh, and a maximum battery utilization factor of 0.8 is

used. Thereby, the effective battery capacity of the drone (Bdrone) is 1128 Wh. The

values of parameters α, β, αmin, βmin, and p are chosen to be 2500, 800 ·Bdrone, 800,

350 ·Bdrone, and 3, respectively. Considering the truck routing budget, the maximum

number of orders that can be fulfilled by truck delivery (i.e., ω) is determined to be

400. We do not consider congestion effects in the current study and assume that

enough drones/trucks are available at each operational facility.
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The solution of the planning stage problem determines the initial state of the

operational stage problem (i.e. K, d,m, andB can be calculated). For bandit learning

using linCBwK, the (1 − δ) confidence interval for estimating unknown parameters

is taken to be 95%. The total number of orders (T ) is assumed to be 1000, and the

initial learning iterations (T0) is assumed to bem
√
T (rounded to the nearest integer).

The above value of T0 ensures that the linCBwK algorithm maintains the regret

bound provided by Agrawal and Devanur (2016). The online learning parameter, ϵ,

is assumed to be
√

(d+ 1)/T , as proposed by Agrawal and Devanur (2016).

Unknown to the linCBwK algorithm, for the nominal case, we assume that the

estimated values of time-sensitive and regular deliveries used in the planning stage

are off by at most ρS = 30% and ρR = 10% compared to the actual simulation values

observed during the operational stage. Therefore, for the simulations, the probabil-

ity of a demand point ordering and the order being time-sensitive is determined by

calculating simulation values of time-sensitive (ñS
g ) and regular (ñR

g ) deliveries from

demand point g ∈ G is set to:

For all g ∈ G:

ñS
g ∈ Uniform

[
1

1 + ρS
nS
g ,

1

1− ρS
nS
g

]
ñR
g ∈ Uniform

[
1

1 + ρR
nR
g ,

1

1− ρR
nR
g

]
P (gt = g) =

ñS
g + ñR

g∑
g∈G ñS

g + ñR
g
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P (λgt = 1 | gt = g) =


ñS
g

ñS
g + ñR

g

; g can be served using drones

0 ; g cannot be served using drones

At time t ∈ {1, 2, . . . , T}, the ordering demand point gt = g with probability

P (gt = g), and the order is time-sensitive with probability P (λgt = 1 | gt = g).

Unknown to the algorithms, we define parameters ϕ1
g, ϕ

2
g ∈ Uniform(0.5, 5) ∀ g ∈

G. The demand (ogt) is randomly chosen in the interval [0, omax] from the beta

distribution omax · Beta(ϕ1
gt , ϕ

2
gt), where, omax is the maximum weight of an order.

The battery consumption at time t (i.e., btgth), between a demand point gt ∈ G and

facility h ∈ H ′ is assumed to vary in the interval [bgh− b̂gh, bgh+ b̂gh], where, bgh is the

nominal battery consumption (used in the planning stage), and b̂gh is the maximum

variation is battery consumption. The value of b̂gh is assumed to be an integer in the

interval [0.1bgh, 0.3bgh]. Similar assumptions are made in Chauhan et al. (2021).

During the simulations, each instance is run 10 times to account for randomness

in demand, time sensitivity, order weight, and battery consumption generation. Table

3.1 shows the cumulative reward achieved. All instances opened 2 facilities for drone

delivery and had a truck-delivery option for regular orders. The linCBwK provides

the best rewards, slightly over 7% additional rewards with respect to the trailing

PSOA heuristic. This result is as expected as the linCBwK dynamically updates

the expected rewards and resource consumption, and weighs them appropriately for

decision-making. The BRC heuristic follows PSOA, and RC has the worst outcome
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with respect to cumulative rewards. We hypothesized that the RC heuristic would

perform better than BRC heuristic because of the weighted probability while choosing

the delivery option. With a lower number of arms, for our computational experiments,

the BRC heuristic uses the truck-based delivery option less intensively than RC which

improves its performance. The same trend is observed for the successful number of

allocations as seen in Figure 3.1.

Figure 3.1: Number of successful allocations: average line with the standard deviation
band (T = 1000, T0 = 95)
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Table 3.1: Cumulative reward obtained through successful allocations (T = 1000, T0 = 95)

Instance
linCBwK PSOA BRC RC

Min Ave Max Min Ave Max Min Ave Max Min Ave Max
0 364.5 400.6 426.8 347.9 375.8 407.6 268.8 290 306.2 228 249.2 279.2
1 521.9 533.4 543.5 471.5 511.4 533.1 345.5 369.6 395.8 266.6 288.6 315.5
2 357.2 377.4 408.1 334.6 360 393.6 259.1 280.5 306.8 231.6 246.7 264.8
3 453.8 493.8 533.6 366.1 410.5 435 301.9 343.2 366 239.9 272.2 281.8
4 432.9 461.4 485.6 374.3 399.9 440.4 288.4 324.1 355.4 245.6 264.6 293.3
5 342.8 375.3 412.1 316.3 346.3 386 260.6 276.9 288.2 220.1 238.6 254
6 464.5 475.7 501 442.2 470.3 514.4 311.1 333.3 354.1 251.2 271.7 318.8
7 401.8 438.9 469.8 378.4 408.2 436.8 293.3 305.2 323 235.9 259.6 282.6
8 462.9 487.1 506.5 483.3 507.9 530 322.3 338.7 353.1 241.2 273.9 302.7
9 455.9 465.4 480 386 419.6 456.2 288.5 321.8 346.9 246.3 264.9 287.5

Overall 342.8 450.9 543.5 316.3 421 533.1 259.1 318.3 395.8 220.1 263 318.886



The values ρS and ρR show the maximum deviation of the estimate used in the

Stage 1 optimization problem from the simulated values used in Stage 2. The pair

(ρS, ρR) = (0.0, 0.0) implies that there was no estimation error during the planning

stage. Figure 3.2 shows the effect of uncertainty on the performance of the heuris-

tics, based on all 10 instances. As the amount of observed uncertainty increases, all

heuristics perform slightly better. A likely reason for this observation is that the

higher diversity in the demand generation provides more opportunities to facilities

that are used less often. This would delay the resource consumption violation at a

more intensively used facility.

Figure 3.2: Cumulative rewards with varying the amount of uncertainty in estimating
the number and type of deliveries (ρS,ρR): average line with the standard deviation
band (T = 1000, T0 = 95)

3.4.1 Portland Metro Area Case Study

For the Portland Metro Area case study, we consider Walmart expanding its ser-
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vice options to offer instant delivery to its Walmart+ service subscribers (simi-

lar to Amazon’s Prime subscription). The 26 Walmart stores in and around the

Portland Metro are considered the potential drone-based fulfillment center candi-

dates. The 90 centroids of the ZIP Code Tabulation Areas (ZCTAs) in the Port-

land Metro Area that can be serviced by drones are considered as the demand loca-

tions. The locations of Walmart stores and ZCTAs used in the study are available

at https://github.com/drc1807/MPFL DRA. The latest estimate of Walmart+ sub-

scriber base in the USA is 60.78 million (PYMTS, 2021). Assuming geographically

uniform subscriber base in the US and monthly ordering behavior results in 13840

anticipated daily deliveries in Portland Metro Area. We consider a planning period

of one day. The proportion of time-sensitive deliveries at each demand point is ran-

domly distributed in the interval [0.4,0.7]. The values of parameters α and β is set

to 28000 and 13000 ·Bdrone, respectively. For the operational stage, the total number

of orders (T ) is set to 15000, and the amount of uncertainty is chosen as ρS = 30%

and ρR = 10%. We explore three cases by changing the number of opened facilities

(p) from 2 to 4. The values of αmin/omax, βmin/Bdrone, and ω are selected to be the

smallest multiple of 50 greater than (p + 1)0.5T 0.75. These values ensure that the

regret bound conditions for linCBwK mentioned by (Agrawal and Devanur, 2016) are

met. Other parameters are the same as described for the p-median instances. The

solutions of the planning stage optimization problem are shown in Figure 3.3.
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(a) p = 2

(b) p = 3
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(c) p = 4

Figure 3.3: Planning stage optimization problem solutions for Portland Metro Area

Figure 3.4 shows the variation in cumulative rewards achieved by various algo-

rithms with the number of opened facilities. Here as well, the linCBwK algorithm

performs best. A slight decrease in cumulative reward with increasing p is expected

as the effective number of deliveries used for all algorithms, T ′ (= T − T0), decreases

with increasing p. In this regard, PSOA gives a stable performance. However, a sig-

nificant improvement in accumulated profits is experienced by linCBwK, BRC, and

RC for p = 3. A primary reason for the improved performance is the availability

of all facilities for almost every order (see Figure 3.3(b)) as well as proportionate

distribution of product and battery resources among the facilities. As p increases,
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the minimum amount of resource allocation at facilities also increases. This means

that the facilities available to a smaller proportion of demand points have more re-

dundant capacity, and the more readily available facilities face scarcity of resources.

This causes a drop in performance of linCBwK, BRC, and RC when p = 4 due to the

outlying facility serving only two demand points. By numbers, linCBwK beats the

second-best approach by 11.2%, 13.2%, and 25.1%, on average, as p increases from 2

to 4, respectively.

Figure 3.4: Cumulative rewards with varying the number of opened facilities (p):
average line with the standard deviation band (T = 15000, T0 = (p+ 1)

√
T )

3.5 Conclusions

This paper investigates a facility location and online demand allocation problem ap-

plicable to a logistics company expanding to instant delivery using UAV/drones. The

problem consists of two stages: a planning stage, and an operational stage. Dur-

ing the planning stage, the company wishes to locate micro-fulfillment centers which
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serve the dual purpose of product storage and drone operations. We present a profit-

maximizing mixed-integer linear program that accounts for product capacity, battery

capacity, and routing cost constraints. During the operational stage, the orders arrive

in an online manner and real-time decisions are made for the satisfaction of demand

with an objective of maximizing cumulative profits while respecting the resource

budget constraints. To the best of the authors’ knowledge, this work is the first ap-

plication in logistics considering non-replenishable resource consumption constraints

in real-time decision-making.

We explore a multi-armed bandit framework that explicitly accounts for global

knapsack constraints. We extrapolate results from extant literature to account for

restricted “arm” availability in the framework arising from drone range constraints.

The multi-armed bandit framework is compared with a heuristic policy derived from

the planning stage optimization solution (PSOA heuristic), and two heuristics based

on random choice. The analysis on standard test instances shows that the multi-

armed bandit framework beats the second-best PSOA heuristic by accumulating 7%

more profits, on average. An application of this problem to Portland Metro Area with

a larger time horizon yields similar results with the multi-armed bandit framework

performing the best, beating the second-best approach by at least 11.2%.

The present work can be expanded in various aspects. Currently, the model does

not accommodate the non-fulfillment of time-sensitive orders or provide an incentive

to switch to regular orders. This may be an important feature due to possible net-
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work congestion issues or drone availability issues. In this study, we assumed that

enough drones are available at each facility, which may not be the case in many ap-

plications. Availability-related constraints are effectively tackled in the dynamic fleet

management literature and can be a possible extension of this work.
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4.1 Introduction

Natural disasters are outcomes of severe weather events, or natural hazard events

(e.g., volcanic eruptions, earthquakes, etc.), that lead to significant effects on society;

specifically, situations in which society is overwhelmed and the end results are con-

siderable impacts on societal health and safety, the economy, and the environment

itself (Banholzer et al., 2014; Prasad and Francescutti, 2017). In 2020, although the
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number of fatalities was down compared to the previous year (2019), the number of

natural disasters increased by about 14% with a total estimated cost in losses of ap-

proximately $268 billion (AON, 2021; Insurance Information Institute, 2021a). Of the

top five events, in terms of losses, three occurred in the United States, with estimated

losses of $30.8 billion (Insurance Information Institute, 2021b).

In the United States, specifically, there were approximately 250 deaths and $119

billion in economic losses due to natural disasters in 2020 (AON, 2021). These losses

were a result of a variety of natural disasters, including hurricanes, wildfires, torna-

does, winter storms, severe convective storms, and flooding. With such losses, natural

disaster preparedness has become a priority for the U.S. Department of Homeland

Security (U.S. Department of Homeland Security, 2021). Of particular note is the

dedication paid to responses in the event that a natural disaster occurs, where a pri-

mary focus is on meeting the needs of a community that is impacted by a natural

disaster. This focus consists of emergency preparedness (e.g., first responders) to save

lives, protect property, protect the environment itself, and provide other basic needs

required by a community that is at the center of a natural disaster. To accommodate

and provide these basic needs of communities, resilient infrastructure and the ability

to continue to ship and deliver goods as needed are vital.

Although the type of natural disaster varies by geographical location, all com-

munities in the United States can be impacted and experience substantial losses. It

is not possible to prevent a natural disaster, but the ability to mitigate losses can
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be achieved by being better prepared when a natural disaster occurs. The found-

ing motivation for this study is the state of Oregon in the United States preparing

for the long-overdue Cascadia Subduction Zone (CSZ) earthquake. The odds for a

great earthquake (M8.7-M9.3) are 7-15% and a very large earthquake (M8.3-M8.6)

are about 37% in the next fifty years (Oregon Seismic Safety Policy Advisory Com-

mission, 2013). The impact of the earthquake is expected to be catastrophic with

fatality estimates ranging from 1,250 to greater than 10,000 and direct and indirect

economic losses of $30 billion. The humanitarian logistics research has claimed the

first 72 hours after the disaster as the golden period for saving lives Sheu (2007,

2014); Yu et al. (2021). After the potential CSZ earthquake in Oregon, it is expected

that even restoration to minimally operable (for medical and humanitarian aid only)

backbone network connectivity would take 24-72 hours. Considering the widespread

impact, scarcity of resources would also be experienced, which makes the equitable

distribution of the limited available resources imperative.

In this study, we model a novel equitable resource distribution problem (ERDP)

for post-disaster scenarios. As the network connectivity might be limited, we con-

sider that a drone-only infrastructure is set up for providing medical and humanitarian

aid. We propose a two-stage framework and explicitly consider that the resources are

scarce compared to the demand. The first stage models the pre-disaster stage. It

considers that the demand would be catered at relief shelters and the decisions re-

garding the location of distribution centers and prepositioning amounts must be made
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with the objective of minimizing inequity. The occurrence of the disaster triggers the

second stage of the model. In the second post-disaster stage, the relief shelters place

requests for resources in an online manner. The decision-making agency needs to al-

locate the requests to distribution centers for satisfaction to minimize inequity while

acknowledging the resource budget constraints at the distribution centers, and the

transportation-related constraints. We apply this model to a case study based in

Portland Urban Metro in Oregon in preparation for the anticipated CSZ earthquake.

The rest of the article is organized as follows: Section 4.2 reviews the relevant

literature and describes the novelty of this research. Section 4.3 provides the for-

mulation of the proposed two-stage model. Section 4.4 first describes the Portland

case study and analyzes the computational performance of the proposed approach

with two other heuristic methods. Finally, Section 4.5 concludes the research by

summarizing the finding and providing directions for future research.

4.2 Literature Review

Our proposed Equitable Resource Distribution Problem (ERDP) consists of a two-

stage formulation for determining the distribution center locations and prepositioning

amounts in the pre-disaster phase, and equitable online request allocation in the post-

disaster phase. The literature review consists of three parts. As our application falls

under the umbrella of humanitarian logistics, the first part is devoted to that. The

second part presents a review of online resource allocation applications in the field

97



of logistics. And finally, the third part reviews the equity considerations in facility

location and resource allocation problems.

4.2.1 Humanitarian Logistics

Humanitarian logistics (HL) refers to efficient and cost-effective planning, inventory

control, and distribution of goods or materials for the primary purpose of alleviating

the suffering of vulnerable populace (Thomas and Kopczak, 2005). The past two

decades have seen a surge in HL research and several review papers have synthesized

research findings (Altay and Green III, 2006; Leiras et al., 2014; Minas et al., 2020).

Additionally, several narrow-focus reviews on facility location (Boonmee et al., 2017;

Dönmez et al., 2021), vehicle routing (Anuar et al., 2021), and network restoration

and recovery operations (Çelik, 2016) decisions for HL are also available.

Holgúın-Veras et al. (2012) further segregates the field of HL based on the event

planning horizon. The first is humanitarian operations that focus on long-term dis-

aster recovery and humanitarian assistance, where the primary goal is mostly opera-

tional efficiency. Whereas the other is humanitarian operations focusing on short-term

disaster response which are characterized by a stark difference in operational envi-

ronments: “... chaotic settings where urgent needs, life-or-death decisions and scarce

resources are the norm.” The second type of operation, described as post-disaster

humanitarian logistics (PD-HL), forms the focus of the current study.

Two of the important criteria in PD-HL are capturing the dynamic (or, time-
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dependent) nature of the problem, and capturing uncertainty. The dynamic nature is

typically captured using multi-period formulations (Loree and Aros-Vera, 2018; Pérez-

Rodŕıguez and Holgúın-Veras, 2016; Rawls and Turnquist, 2012). The uncertainty is

typically captured using two-stage stochastic programs (Aghajani and Torabi, 2019;

Tofighi et al., 2016; Torabi et al., 2018), and recently two-stage robust programs (Zhu

et al., 2022). However, research considering both of the criteria together is relatively

scarce with (Rawls and Turnquist, 2012) modeling the multi-period stochastic model

for HL operations. However, the problem is modeled as a single-level problem, and

therefore, the characteristic of uncertainty realization (typically, found in two-stage

formulations) is absent. In this study, we consider a two-stage formulation that models

the facility location and inventory decisions in the pre-disaster first stage, and the

resource allocation decisions are modeled in a dynamic manner in the post-disaster

second stage.

Additionally, as the road infrastructure can be unavailable up to several days

post-disaster, research efforts have been made to consider the possibility of drone

deliveries for disaster management and humanitarian relief. The interested reader

referred to Rejeb et al. (2021) and Daud et al. (2022) for an extensive review on this

topic. For this study, we assume that the requests are fulfilled using a drone-only

infrastructure. The effect of uncertainty in drone parameters is generally associated

with accessibility loss. Various approaches have been proposed in the literature.

Kim et al. (2019) model uncertain flight distance for drones and enforce a reliability
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constraint on successful return, and the function is payload-independent. Chauhan

et al. (2021) model uncertainty in battery consumption and initial battery availability

with payload-dependent battery consumption function. Zhu et al. (2022) consider the

effect of uncertain demand on drone battery consumption. Chauhan et al. (2022a)

models drone range as a function of wind speed and direction distributions for a

probabilistic representation of accessibility. In this study, we consider an approach

similar to Chauhan et al. (2022a) wherein the accessibility between a distribution

center and a relief shelter is probabilistically defined and is unknown to the decision-

making agent initially.

4.2.2 Online Resource Allocation

Resource allocation problems are ubiquitous with applications in widespread fields

like communication, cloud infrastructure, internet, energy markets, transportation,

inventory management, logistics, and others. Here, we focus on problems where in-

formation is gradually revealed over time and are called online (or, dynamic) resource

allocation problems.

Classical operations research-based methods model dynamic resource allocation

problems as multi-stage stochastic problems Guo et al. (2020). Several AI-based

methods have also been explored for dynamic resource allocation: Q-learning (Yu

et al., 2019, 2021), multi-armed bandits (Badanidiyuru et al., 2013; Chauhan et al.,

2022b; Villar et al., 2015), approximate dynamic programming (Yu et al., 2019), and
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online algorithms (Devanur et al., 2011). Powell (2019) summarized the commonali-

ties among various fields of stochastic optimization and argues that the principles of

bandit problems should become a core dimension of mainstream stochastic optimiza-

tion. In this study, we propose an equitable multi-armed bandit framework based

on the linear contextual bandits with knapsacks problem proposed by Agrawal and

Devanur (2016).

Focusing the work on Yu et al. (2021) propose an online resource allocation prob-

lem in the context of PD-HL in the first 72-hours of the disaster event. They consider

a local relief shelter that receives a constant amount of resources in each time period

(assumed to be one hour) which are distributed among the affected areas. They as-

sume that the affected areas produce the same demand in each time period. They

propose a Q-learning approach that learns through iterating over the entire time

period multiple times. We also propose an online resource allocation problem for

PD-HL in the first 72-hour period. However, we consider a prior planning stage for

prepositioning available supplies at multiple distribution centers which must deliver

supplies to the relief shelters. The demand from each relief shelter can be different

and arrives in a dynamic manner. The primary difference is that learning and perfor-

mance happen together, and can only be performed one time, as would be the case in

actual disasters. We achieve these online learning and resource allocation decisions

by adopting a multi-armed bandits approach.

Recently, Chauhan et al. (2022b) proposed a similar two-stage framework for
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facility location and dynamic resource allocation, and used a multi-armed bandit ap-

proach. They considered the application premise of instant delivery logistics with

the objective of maximizing profits. While our proposed framework is similar, we

consider the application of resource distribution in post-disaster conditions with the

equity-based objective. Several other nuanced differences are discussed later in Sec-

tion 4.3.

4.2.3 Equity

Equity among the demand nodes is always a crucial aspect of planning in HL appli-

cations. Dönmez et al. (2021) observed that equity has been primarily considered in

the HL literature using two main inequity metrics: demand satisfaction (or, service

level) and accessibility. One of the ways to incorporate demand-based equity is by ei-

ther ensuring complete demand satisfaction (Aslan and Çelik, 2019; Kim et al., 2019;

Yahyaei and Bozorgi-Amiri, 2019) or considering deprivation costs (Cotes and Can-

tillo, 2019; Loree and Aros-Vera, 2018; Paul and Wang, 2019; Rivera-Royero et al.,

2020). Holgúın-Veras et al. (2013) and Shao et al. (2020) provide an extensive liter-

ature on modeling of deprivation costs for PD-HL.

Another common methodology is a Rawlsian approach (Rawls, 2020) in which the

worst-off element is controlled. For example, in the case of demand equity, minimum

demand satisfaction levels can be set, or in the case of accessibility, a maximum travel

distance threshold can be adopted. Most commonly the accessibility-based constraints
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are modeled in a Rawlsian manner to account for network discontinuity and loss of

infrastructure and are commonly applied in coverage-based models. Alternatively, the

Rawlsian approach can also be applied to objective functions, for example, minimizing

the maximum travel distance as in the case of modeling emergency medical services.

Several research efforts in humanitarian relief operations have explored social

welfare utility functions as an indicator of fairness and equity (Balcik et al., 2014;

Campbell et al., 2008; Huang et al., 2012; Lien et al., 2014). All of these works consider

that an agency has a social welfare function available and how that choice of objective

function has a significant impact on resource allocation decisions. In contrast, Rey

et al. (2018) do not make any assumptions for a social welfare function and instead

propose envy-freeness as a fairness criterion for humanitarian relief operations based

on the idea of envy (Foley, 1966; Varian, 1974). Envy-freeness models fair allocation

of resources considering all people as equal and needing equal access. In our study, we

adopt envy-based criteria for fairness and aim to minimize the total deviation from

fair allocation in a stochastic system.
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4.3 Problem Description and Formulation

4.3.1 Stage 1: Facility Location and Relief Supply Prepositioning in Pre-

Disaster Phase

Consider an agency planning to provide medical aid in post-disaster scenarios in a

service area. The planning horizon of the operations is assumed to be the first 72-

hours after the disaster event. The agency has determined the locations of the relief

shelters (RSs) from where the relief operations would be carried out. Let G (indexed

using g) represent the set of all RS locations. The planning agency believes that there

will be a Dg number of medical aid packages of uniform weight and size (henceforth,

referred to as “product”) will be required at RS g ∈ G. It is assumed that an adequate

number of medical personnel are readily available at (or, can be transported to) each

RS location.

The agency has access to a total of α amount of product, and budgets P F and

PD for setting up the supplies at distribution centers (DCs) and their transportation

post-disaster, respectively. It is known that cFh and cDgh are the cost for setting up a

DC h ∈ H and the unit-cost for transporting product from DC h ∈ H to RS g ∈ G,

respectively. Without loss of generality, we assume that cFh , c
D
gh ∈ [0, 1] ∀ g ∈ G, h ∈

H. In the effort for disaster preparedness, the agency wishes to determine which

distribution centers to set up and how much relief supplies to preposition at each

distribution center.

104



A major consideration for the agency is the equitable or fair distribution of

products post-disaster, primarily due to the scarcity of resources in comparison to the

total demand. We choose the envy-freeness principle to guide the resource allocation

decisions since it is a widely used resource allocation scheme for the public sector and

social welfare applications (Foley, 1966; Rey et al., 2018).

Depending on the disaster considered, ground transportation may not be avail-

able for use in response to the disaster. In this study, we consider that only the

aerial transportation option is available for use. Specifically, for this study, we em-

ploy battery-operated UAVs/drones. Additionally, for the sake of simplicity in model

formulation, we assume that the amount of drone battery capacity available is much

greater than the total amount of product available. Alternatively put, we consider

that the product is the strictly limiting resource, and not drone battery capacity.

Therefore, we do not consider constraints referring to the allocation of drone battery

capacity at located facilities. However, depending on the application, they can be

easily integrated into the decision-making process (see, Chauhan et al. (2022b) as an

example).

Envy-Free Fair Distribution

We now formally define envy as used in this study. We know that Dg is the demand

of RS g ∈ G. We say that an RS g ∈ G envies another RS g′ ∈ G if envy Egg′ > 0. We
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define envy Egg′ of node g to g′ as:

Egg′ := min{Dg, Rg′} −Rg ∀ g, g′ ∈ G (4.3.1)

where, Rg defines the amount of product received at RS g ∈ G. Hence, the RS

g ∈ G envies RS g′ ∈ G if and only if it experiences unsatisfied demand (i.e., Dg > Rg)

and it is receives less product than RS g′ ∈ G (i.e., Rg′ > Rg) (Foley, 1966; Varian,

1974).

For our problem, we are given a total of α amount of product that needs to be

distributed among all RSs. We say that each RS g ∈ G should receive Fg amount of

product for the system to be envy-free (or, equitable). Algorithm 4.1 describes the

process to obtain the envy-free fair distribution F := {Fg ∀ g ∈ G}, and is similar to

the approach presented in Rey et al. (2018).

Algorithm 4.1 Envy-Free Fair Distribution

Input: Set G, Dg ∀ g ∈ G, α
Output: Set F

1: G ′ := set G sorted in non-decreasing order of Dg

2: Fg ← 0 ∀ g ∈ G |G ′| > 0
3: g ← G ′[0] α/|G ′| ≤ Dg

4: Fg ← α/|G ′|
5: Fg ← Dg

6: α← α− Fg

7: G ′ ← G ′\{g}
8: F := {Fg ∀ g ∈ G}
9: return F
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Summary of Nomenclature

Sets and Indices

G Set of all relief shelter locations (indexed as g ∈ G)

H Set of all potential distribution center locations (indexed as h ∈ H)
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Parameters

α
total amount of product (units) available for prepositioning

(α ∈ Z+ ∪ {0})

αmin

minimum amount of product (units) prepositioning required at an

opened distribution center (αmin ∈ Z+ ∪ {0})

P F

budget available for setting up product supply at distribution centers

(P F ≥ 0)

PD

budget available for the transportation of product from distribution

centers to relief shelters (PD ≥ 0)

cFh cost of setting up distribution center h ∈ H (cFh ∈ [0, 1])

cDgh

unit cost of transporting product to relief shelter g ∈ G from distribution

center h ∈ H (cDgh ∈ [0, 1])

Dg estimated demand (units) at relief shelter g ∈ G (Dg ∈ Z+ ∪ {0})

Fg

envy-free fair allocation determined for relief shelter g ∈ G using

Algorithm 4.1 (Fg ≥ 0)

qgh one-way travel distance to RS g ∈ G from DC h ∈ H (qgh ≥ 0)

Q one-way delivery range of the vehicle (Q ≥ 0)

Agh

1, if RS g ∈ G can be accessed by DC h ∈ H (i.e., qgh ≤ Q), and M (a

very large number), otherwise.
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Decision Variables

ugh product received at relief shelter g ∈ G from distribution center h ∈ H

yh 1, if distribution center h ∈ H, and 0, otherwise

zh amount of product prepositioned at distribution center h ∈ H

Eg deviation from fair allocation at relief shelter g ∈ G

Formulation

We consider an objective of minimizing the total deviation of the resource allocation

plan from the envy-free fair allocation, as shown in Equation 4.3.2.

min
x,y,z,E

∑
g∈G

Eg (4.3.2)

Equations (4.3.3) and (4.3.4) represent the cost budget constraints for setting up

DCs and transportation of product from DCs to RSs, respectively.

∑
h∈H

cFh yh ≤ P F (4.3.3)

∑
g∈G

∑
h∈H

cDghugh ≤ PD (4.3.4)

Equation (4.3.5) completely prepositions the product at facilities. Equations

(4.3.6) and (4.3.7) ensure that the product is allocated at only opened DCs and that
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the minimum prepositioning requirements are met.

∑
h∈H

zh = α (4.3.5)

zh ≤ αyh ∀ h ∈ H (4.3.6)

zh ≥ αminyh ∀ h ∈ H (4.3.7)

Equation (4.3.8) constrains the amount of product distributed from a DC to be

less than the amount of product prepositioned there. Similarly, the equation (4.3.9)

ensures that a RS does not receive more product than its demand.

∑
g∈G

Aghugh ≤ zh ∀ h ∈ H (4.3.8)

∑
h∈H

Aghugh ≤ Dg ∀ g ∈ G (4.3.9)

Equations (4.3.10) and (4.3.11) measure deviation of product received at a RS

from its fair allocation.

Eg ≥ Fg −
∑
h∈H

ugh ∀ g ∈ G (4.3.10)

Eg ≥ −Fg +
∑
h∈H

ugh ∀ g ∈ G (4.3.11)
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Finally, Equations (4.3.12)-(4.3.15) represent variable definitional constraints.

yh ∈ {0, 1} ∀ h ∈ H (4.3.12)

zh ≥ 0 ∀ h ∈ H (4.3.13)

ugh ≥ 0 ∀ g ∈ G, h ∈ H (4.3.14)

Eg ≥ 0 ∀ g ∈ G (4.3.15)

Based on the structure of the problem, choosing cost-related parameters intelli-

gently can allow the modeling of specific situations. Consider the following cases:

(i) Choosing cFh as 1. This changes the interpretation of Equation 4.3.3 to ensuring

that a maximum of P F facilities can be opened.

(ii) Choosing cDgh as 1 and PD > α. This assumption essentially ensures that trans-

portation cost constraint (Equation 4.3.4) is never a binding constraint at opti-

mality (and, therefore, not a limiting resource). When PD = α, transportation

cost will be a limiting constraint along with product prepositioning constraint

(Equation 4.3.5). This situation also provides an alternative interpretation as

follows: during the distribution of product from DC to RS, one complete battery

pack is utilized by the drone (serving in a radius Q from an opened DC). This

is a conservative assumption as multiple drone trips might be possible. Then,

PD refers to the total number of drone battery packs available. Additionally

when PD = α, we assume that zh number of drone battery packs are located at
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each facility.

Note that we model the planning stage problem using a deterministic formula-

tion. However, the approach can be generalized to consider parameter uncertainty

(demand, costs, accessibility) by using stochastic programming or robust optimization

methodologies.

4.3.2 Stage 2: Stochastic Distribution of Relief Supplies in Post-Disaster

Phase

The Stage 1 problem deals with the planning for a natural disaster. Therefore, before

the disaster event is observed, we know the location-allocation plan for each distribu-

tion center (DC), distribution details, and the lowest deviation from fair allocation

possible, i.e., the solution tuple {u∗, y∗, z∗, E∗} is known. Let, H′ := {h ∈ H : y∗h = 1}

be the set of all opened DCs. The medical care package inventory at DC h ∈ H′ is

given by z∗h. As budgeted in the planning stage, the transportation cost budget for

package distribution is given by PD.

The planning horizon for the operational stage (Stage 2) problem is 72-hours.

This planning period is alternatively represented by the total number of requests re-

ceived during the event horizon and is represented using T (set T := {1, 2, . . . , T}. We

abuse the notation a little bit here and use t to also represent the time when the tth

request (∈ T ) arrives. During the operational stage, a major source of uncertainty is

about the demand generation at relief shelters (RSs). We assume the probability that
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RS g ∈ G places a request at time t ∈ T is drawn from an unknown static distribution

P . Another source of uncertainty is the delivery range Q of the delivery vehicle. For

ground-based vehicles, this would be affected by the post-disaster event loss of infras-

tructure in the road transportation network. For unmanned aerial vehicles (UAVs)

(or, drones), the delivery range is affected by weather conditions, mostly by wind

speed and directions (Glick et al., 2022). Additionally, there might be uncertainties

related to transportation costs for package distribution. As the requests for medical

care packages arrive in an online manner, the uncertainty is realized stochastically.

For the online operational stage problem, we explore three methodologies: first, a

multi-armed bandits-based approach; second, a random-choice heuristics; and third,

a deterministic allocation policy.

The objective of the operational stage problem is the minimization of the sum of

deviations from envy-free fair distribution while respecting the package consumption

constraints at each opened DC. Later, we show that the operational stage objective is

equivalent to the maximization of the cumulative number of successful allocations of

incoming requests. This is especially an attractive property as almost all multi-armed

bandit frameworks are designed for maximizing cumulative rewards.

The organization of this section is as follows: first, we discuss the methodology for

incorporating and evaluating fairness, and then, the methodologies for online resource

allocation are discussed.
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Incorporating Equity

In this study, we incorporate equity in decision-making by adjusting the non-skipping

probability of a request placed by RS g ∈ G. Let gt ∈ G denote the RS placing a

request at time t ∈ T , D̂t
g denote the number of requests received from RS g ∈ G up

to time and including (t − 1) ∈ T , and demand generation probability distribution

P̂ t be the realization of the unknown static probability distribution P at time t ∈ T .

We calculate P̂ t as:

P̂ t(gt = g) :=
D̂t

g∑
g∈G D̂

t
g

≡
D̂t

g

t
∀ g ∈ G (4.3.16)

Let D̃T−t
g denote the expected number of requests that would be placed by the

RS g ∈ G in the remaining planning horizon T − t. We estimate D̃T−t
g as:

D̃T−t
g := max

{⌈
T − t

t
D̂t

g

⌉
, 1

}
≡ max

{⌈
(T − t) · P̂ t(gt = g)

⌉
, 1

}
∀ g ∈ G

(4.3.17)

Note that D̃T−t
g is a function of the realized demand generation probability dis-

tribution P̂ t. The above definition allows D̃T−t
g to have a minimum value of 1 for

stability. Let ẑth denote the number of remaining medical care packages at DC h ∈ H′

at the start of time t ∈ T , and F̃ t
g denote the envy-free fair allocation of remaining

packages at t ∈ T for the remainder of the planning horizon. Let λt
g denote the non-
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skipping probability of a request placed by RS g ∈ G at time t ∈ T . The non-skipping

probabilities at time t ∈ T are calculated as:

λt
g =

F̃ t
g

D̃T−t
g

∀ g ∈ G (4.3.18)

Intuitively, this means that by skipping a (1 − λt
g) proportion of demand from

the RS g ∈ G (i.e., D̃T−t
g ), we would remain with an expected F̃ t

g requests, which if

successfully allocated would lead to an envy-free allocation. The expression can be

easily modified to include considerations like the probability of failure to reach RS

g ∈ G (multiply by the reciprocal of the estimated failure probability value).

We assume that that λt
g are updated after every TFU requests, and we call this

event as fairness update. Fairness update is presented in Algorithm 4.2. We initialize

the non-skipping probabilities as: λ1
g = Fg/Dg ∀ g ∈ G using the planning stage

(Stage 1) problem parameters.

Algorithm 4.2 Fairness Update

Input: Set G, time t ∈ T \{1}, fairness update frequency TFU , observed demands
D̂t

g ∀g ∈ G, total remaining resources
∑

h∈H′ ẑth
Output: Non-skipping probabilities λt

g ∀ g ∈ G
1: if t%TFU = 0 then
2: Calculate estimated remaining demands D̃T−t

g ∀g ∈ G using Equation (4.3.17).

3: Calculate envy-free fair allocations F̃ t
g ∀g ∈ G using Algorithm 4.1 (inputs G,

D̃t
g ∀g ∈ G,

∑
h∈H′ ẑth)

4: Update non-skipping probabilities λt
g := F̃ t

g/D̃
T−t
g ∀ g ∈ G (Equation (4.3.18))

5: else
6: Do not update non-skipping probabilities, i.e., λt

g = λt−1
g ∀ g ∈ G

7: end if
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Proposition 1 When t is large enough, the non-skipping probabilities λt
g ∀g ∈ G

converge to their (unknown) expected values.

Proof. As demands are randomly sampled from the unknown static distribution

P , we know that the expected value of D̂t
g is t · P(gt = g). Using this we estimate the

realized demand generation probability distribution P̂ t using Equation (4.3.16). As

the demands are randomly sampled from P , it can be shown that P̂ t converges to P

for a large enough t. Note, as the sample represents a random sample of a multinomial

distribution, we obtain the same estimate for P̂ t using maximum likelihood theory.

Extending the observations, the expected value of remaining demand D̃T−t
g is

given as (T − t) ·P(gt = g). As the variable D̃T−t
g can only assume integral values, we

estimate it using Equation (4.3.17). Additionally, a minimum value of 1 is adopted

for numerical stability (as division by 0 is not defined). Therefore, for a large enough

t, the estimated D̃T−t
g also converges to its expected value. As D̃T−t

g converges, the

estimation of fair distribution of remaining resources at time t, F̃ t
g , would also converge

to its true expected value.

The terminal expected values of demands at location g ∈ G is given as D̄T
g =

T · P(gt = g). Therefore, the expected value of terminal envy-free fair distribution

(denoted using F̄ T
g ) can be calculated using expected demands T · P(gt = g) ∀g ∈ G

and total available packages α. Therefore, by satisfying an expected F̄ T
g /D̄

T
g pro-

portion of requests placed by location g ∈ G we can achieve fair distribution. We

denote this expected non-skipping probability value for each demand location g ∈ G
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as λ̄g. We extend the observation by assuming that the total available packages are

used uniformly across the planning horizon. Therefore, at time t ∈ T , the remaining

expected demand at location g ∈ G would be D̄T−t
g = (T − t) · P(gt = g), and the

expected value of total packages available would be (T − t) · α. Let, F̄ t
g denote the

envy-free fair distribution of remaining resources at time t. Let λt
g be the estimate of

λ̄g at time t (calculated using (4.3.18)). The following relationship holds:

λt
g :=

F̃ t
g

D̃T−t
g

≈
F̄ t
g

D̄T−t
g

≡
F̄ T
g

D̄T
g

= λ̄g ∀ g ∈ G, t is large enough

□

Corollary 1 The objective of maximizing the cumulative successful allocation in the

operational stage is equivalent to the proposed objective of minimizing the sum of

deviation from fair allocation.

Proof. From Proposition 1, we know that the non-skipping probabilities con-

verge to their expected value which results in the minimization of the sum of devia-

tions from fair distribution. Therefore, the successful allocation of the λt
g proportion

of demand generated by location g ∈ G that is not skipped would also lead to the min-

imization of cumulative deviation from fair distribution. Now, consider the demand

requests that are skipped to be an unsuccessful allocation. Therefore, more generally,

the maximization of cumulative successful allocation is equivalent to minimizing the

sum of deviations from fair allocation.
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□

Equitable Linear Contextual Bandits with Knapsacks

Multi-armed bandits are a reinforcement-learning framework that maximizes the cu-

mulative rewards at the end of the time horizon by exploring the “arms” (i.e., a set

of options). The problems, therefore, inherently exhibit an explore-exploit tradeoff.

Here, specifically, we use a modified version of linear contextual bandits with knap-

sacks (linCBwK) proposed by Agrawal and Devanur (2016), which we call equitable

linCBwK (E-linCBwK). Like linCBwK, E-linCBwK allows to explicitly account for

budget constraints (which represent utilization of medical care packages at each DC,

and the overall transportation cost constraint) while allowing to maximize rewards

by choosing a subset of options. Recently, Chauhan et al. (2022b) used the linCBwK

framework to model dynamic resource allocation of demands to facilities for drone-

based instant delivery logistics operations with the objective of maximizing profits. A

major difference is that E-linCBwK models the minimization of total deviation from

fair distribution instead of maximizing profits. We also show that the E-linCBwK

maintains the same regret bound as linCBwK. Typically, the linCBwK ends at the

first instance of a budget constraint violation (i.e., the first instance when either

the medical care packages exhaust at a DC, or the transportation cost constraint is

violated). However, deliveries are still possible until the medical care packages are

available at a DC and the transportation cost constraint is not violated and should be
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considered given the critical nature of our problem (resource allocation immediately

after a disaster event). We consider this extension for E-linCBwK but do not provide

a new regret bound for the extension.

An E-linCBwK problem consists of five components, the same as a linCBwK

problem. The first is the K number of arms or actions. Here, these actions represent

options for each request, i.e., drone delivery from an opened DC. Therefore, we have

K = |H′| arms and [K] := {h ∀ h ∈ H′} is the set of all arms. Additionally, the

algorithm consists of an implicitly modeled “no-op” arm which represents that no

action must be taken (or equivalently, the request should be skipped).

The second is the planning horizon of the problem or total number of decision-

making events represented using T . Here, each time/event t ∈ T := {1, 2, . . . , T}

represents an order placed in real-time by demand point gt ∈ G (which is assumed

i.i.d. from unknown distribution P , abbreviated as gt
iid∼ P). Due to stochasticity in

weather conditions, let At
gth

(At
gth
|gt, h

iid∼ DA
gth

) be 1 if the request placed by RS gt

can fulfilled by drone delivery from DC h ∈ H′, and 0, otherwise. Therefore, the set

of DCs that can access the RS gt at time t is given as H ′t
gt

:= {h ∈ H′ : At
gth

= 1}.

Let ctgth (ctgth|gt, h
iid∼ Dc

gth
) be the transportation cost for the satisfying the request

placed by RS gt at time t from DC h ∈ H′ (w.l.o.g., we assume that ctgth ∈ [0, 1]).

Additionally, at time t, let ẑth represent the remaining medical care packages at DC

h ∈ H′. All of the above information is available before making the allocation decision

for event t.
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The third is the context. Context is a representation of the information that is

available prior to making a decision. We observe an m-dimensional context vector

for each arm a ∈ [K] for each event t, represented by xt(a) ∈ [0, 1]m. Let the context

matrix Xt := {xt(a) ∀a ∈ [K]} ∈ [0, 1]m×K . For our application, we observe an

m = K dimensional context for each arm. The K × K diagonal context matrix is

constructed as:

Xt[h, h] :=


1 if ẑth > 0 and h ∈ H′t

gt

0 otherwise

, ∀ h ∈ H′ (4.3.19)

Agrawal and Devanur (2016) state that when the context matrix is a K-dimen-

sional identity matrix, linCBwK emulates the bandits with knapsacks (BwK) problem

(Badanidiyuru et al., 2013). Similar to Chauhan et al. (2022b), we extrapolate this

result to consider a BwK problem with restricted arm availability for E-linCBwK. The

above definition of context only allows arms with context equal to 1 to be available

for selection. Alternatively, choosing an arm with context equal to 0 is equivalent to

choosing the “no-op” arm. We consider that an arm a ∈ [K] is available if it has

packages available and can successfully deliver a package to RS gt.

The reward is the fourth component of an E-linCBwK problem. At time t, the

agent receives a scalar reward rt(at) ∈ [0, 1] after playing action at ∈ [K]. The

objective of the bandit problem is to maximize cumulative rewards. Per Corollary 1,
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we can represent our considered objective of minimizing the sum of deviation from fair

allocation to maximizing the cumulative successful allocations. We define a successful

allocation as choosing an arm at such that Xt[at, at] = 1. Without loss of generality,

we assume that the reward for a successful allocation is 1.

The fifth component of E-linCBwK is globalized budget constraints (or, knapsack

constraints). For our application, there are d = (|H′| + 1) universal knapsack con-

straints. The first |H′| constraints represent the medical care package consumption

at facility h ∈ H′ with budgets z∗h. The last knapsack represents the transportation

cost constraint and has a budget value of PD. At time t, let DC ht represent the arm

chosen by the algorithm. If Xt[ht, ht] = 1, eht amount of medical care packages are

consumed, and the cost for transportation is ctgtht
. Here, eht is a |H ′| × 1 vector with

value 1 where h = ht, and 0, otherwise. If Xt[ht, ht] = 0, the action is equivalent to

using the “no-op” arm and a total of 0 units of medical care packages are consumed

at DCs, and no transportation cost is incurred.

The bandit optimization problem that we are tackling here is given as:

max
I

∑
t∈T

1 ·Xt[h, h] · Iht (4.3.20)

s.to.
∑
t∈T

1 ·Xt[h, h] · Iht ≤ z∗h ∀ h ∈ H′ (4.3.21)

∑
t∈T

∑
h∈H′

ctgth ·Xt[h, h] · Iht ≤ PD (4.3.22)

∑
h∈H′

Iht = 1 ∀ t ∈ T (4.3.23)
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Iht ∈ {0, 1} ∀ h ∈ H′, t ∈ T (4.3.24)

The objective (Equation (4.3.20)) is to maximize the cumulative successful al-

location. Equation (4.3.21) represents medical care package consumption at opened

DCs, and Equation (4.3.22) represents the transportation cost budget constraint.

Equations (4.3.21) and (4.3.22) together represent the knapsack constraints for our

E-linCBwK problem. Equations (4.3.23) and (4.3.24) represent the basic decision

space for choosing the fulfillment option.

At time t, upon selection of arm at, let vt(at) be the d-dimensional resource

consumption vector. One of the requirements for implementing linCBwK is that the

vector vt(at) must be in the range [0,1]. This condition is satisfied as each request

consumes up to 1 unit of the medical care package, and in the planning stage, w.l.o.g,

we assumed that the transportation costs are in the range [0,1]. Another requirement

for linCBwK is a uniform budget value for all the knapsack constraints. Therefore, we

scale each knapsack so that its budget is equal to the lowest value of all the budgets.

The new budget, B, is given as:

B = min
{
min{z∗h : h ∈ H ′}, PD

}
(4.3.25)

The transformations to make the budget the same for all knapsack constraints

are:
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Package consumption knapsacks: 1 ·Xt[h, h]←
B

z∗h
· 1 ·Xt[h, h]; z∗h ← B

(4.3.26)

Transportation cost knapsack: ctgth ·Xt[h, h]←
B

ω
· ctgth ·Xt[h, h]; PD ← B

(4.3.27)

There are three major changes in E-linCBwK compared to linCBwK:

• Foremost is the objective in consideration. The E-linCBwK considers minimiza-

tion of the sum of deviation from the fair distribution. Using Corollary 1, we

show that the equivalent objective is maximizing the cumulative successful allo-

cations which can be modeled using the existing linCBwK. Critical to achieving

the equity-based objective is the modeling of non-skipping probabilities which

requires certain requests to be skipped. While the “no-op” arm is generally

available in the linCBwK framework, mandatory skipping is not considered.

• The second is the termination criteria. The linCBwK ends at the first in-

stance of a knapsack constraint being violated. This stems from an inherent

assumption that choosing an arm leads to resource consumption for all the

knapsack constraints, i.e., “globalized” knapsacks. However, we deal with the

case of “stratified” knapsacks instead of “globalized” knapsacks, meaning that

the resource consumption vector is usually very sparse, and the indices of zero
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resource consumption are known for all arms. Specifically, consider a case when

we know that transportation cost would be the last constraint to be violated

(i.e, PD ≥ α). In such a case, the resource allocation can go on until medical

care packages are exhausted at all DCs instead of the first instance of medical

care package exhaustion at any opened DC. This is incorporated using a time-

varying context distribution, as detailed in Equation (4.3.19). Note that the

context distribution is static until the first package consumption knapsack is

violated.

• The third is tackling budget loss while estimating the penalty parameter Z. In

linCBwK, the first T0 requests are dedicated to the exploration of the solution

space and determining the penalty parameter Z. The Lagrangian-like parameter

Z is used to calculate the reward estimates penalized with estimated resource

consumption for the later T ′ = T − T0 requests. A budget of B0 = T0 is

dedicated during the initial T0 so as to model a constraint-free bandit problem.

Later, only a budget of B′ = B −B0 is available for the remaining T ′ requests.

Given the critical nature of our application, we consider that all the remaining

resources after the first T0 requests are available for the later T
′ requests so that

no resources are wasted.

The E-linCBwK decision-making procedure has six major steps. The first is

observing the context matrix Xt, and the second is obtaining optimistic estimates of

µ∗ and W∗ using the l2-regularized norms of previously observed values of rewards
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and resource consumption. The third is arm selection using an expected reward

penalized with expected resource consumption and the fourth is realizing the values of

reward and resource consumption for the selected arm. The fifth step is updating the

penalty weights using the multiplicative weight update (MWU) algorithm (Agrawal

and Devanur, 2016). Until the fifth step, the procedure is very similar to linCBwK.

And finally, the sixth step is applying the fairness update (Algorithm 4.2). The

detailed algorithm is in Algorithm 4.3. Like all multi-armed bandit algorithms, the

performance is measured by the complexity of the cumulative regret. For linCBwK,

the regret is measured from the optimal static policy (Agrawal and Devanur, 2016),

obtained from solving a static stochastic optimization problem. We show that the

regret bound E-linCBwK until the violation of the first knapsack constraint, we show

that the problem can be modeled using a linCBwK framework.

Proposition 2 Until the first instance of a knapsack constraint violation, E-linCBwK

can be modeled as the linCBwK problem, originally proposed by Agrawal and Devanur

(2016).

Proof. The following two assumptions about context, rewards, and resource

consumption vectors are made for linCBwK (Agrawal and Devanur, 2016):

• In every round t, until the first instance of a knapsack constraint violation,

the tuple {xt(a), rt(a),vt(a)}Ka=1 is generated from an unknown distribution D,

independent of everything in previous rounds. The procedure used for gener-
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ating contexts, rewards, and resource consumption for our equitable resource

distribution problem for post-disaster scenarios satisfies this assumption.

• There exists an unknown vector µ∗ ∈ [0, 1]m×1 and a matrix W∗ ∈ [0, 1]m×d

such that for every arm a, given contexts xt(a), and history Ht−1 before time t,

E[rt(a)|xt(a), Ht−1] = µT
∗ xt(a), E[vt(a)|xt(a), Ht−1] = WT

∗ xt(a) (4.3.28)

To prove the proposition, we first show that the uncertain parameters in the E-

linCBwK also satisfy the above assumptions. Secondly, we show that the budget loss

upgrade would only improve the regret bound. Finally, we show a way to incorporate

the E-linCBwK into the linCBwK framework.

We already described that for any request t ∈ T , the realization of demand point

(gt), accessibility (At
gh), and transportation costs (ctgh) are drawn from an unknown

independent distribution. The only remaining parameters are the non-skipping prob-

abilities, λt
g. Using Proposition 1, we can show that λt

g adequately estimate the

expected non-skipping probabilities, λ̄g, which are unknown constants. Therefore,

the parameters λt
g are also drawn a static unknown distribution.

In linCBwK, during the first T0 requests which are used to estimate the penalty

parameter Z, a budget of B0 = T0 is allocated. For the remaining T ′ = T − T0

requests, only a budget of B′ = B − B0 is available. For E-linCBwK, we transfer

the remaining budgets after the T0 requests to the budget for the next T ′ requests.
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We again rescale the budgets to a uniform value of B′′ after the first T0 requests.

Therefore, the following relationship is true, B′′ ≥ B′, and the regret bound for the

new problem would only improve.

For E-linCBwK, we assumed that the demand points are generated from an

unknown distribution P . Now, consider the following reformulation consisting of

|G|+1 demand points, of the fist |G| are the same as the original problem and the last

demand point is always inaccessible. We denote the new set of demand points using

G ′. During the operational stage, consider that the demand points g′ ∈ G ′ are sampled

from an unknown static distribution P ′ which follows the following relationship with

the original problem.

P ′(gt = g) = λt
g · P(gt = g) ∀ g ∈ G

P ′(gt = |G ′|) = 1−
∑
g∈G

P ′(gt = g)

Now, for the new problem, as the last point is always inaccessible, the context

matrix is always a zero matrix, and therefore, would always result in the selection of

the “no-op” arm which is mathematically equivalent to skipping a request.

□
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Corollary 2 Until the first instance of a knapsack constraint violation, E-linCBwK

has at least the same regret bound as the linCBwK problem.

Proof. A direct consequence of Proposition 2.

□

Algorithm 4.3 E-linCBwK Algorithm

Input: K, m, d, B, T , (1− δ) confidence level, MWU algorithm parameter ϵ
Output: Decisions I

1: Obtain decisions I for time t = {1, 2, . . . , T0}, parameter Z, and non-skipping
probabilities λT0

g g ∈ G, remaining packages at DCs ẑT0
h h ∈ H′, and remaining

transportation cost budget P̂D
T0

using Algorithm 4.4.

2: Initialize t = 1, θ1,j =
1

1+d
, ∀ j ∈ {1, 2, . . . , d}, radt =

√
m log

(
d+tmd

δ

)
+
√
m

3: Initialize B′ = B − T0, T
′ = T − T0 t ≤ T ′

4: Observe the RS placing the request, gT0+t. Update D̂T0+t = D̂T0+t−1 + egT0+t

5: if rand[0, 1] ≥ λt
gt then

6: The context Xt is a K ×K matrix of zeros
7: else
8: Observe context Xt

9: end if
10: For every a ∈ [K], compute µ̃t(a) and W̃t(a) (the optimistic estimates of µ∗ and

W∗) as:

µ̃t(a) := arg max
µ∈Ct,0

xt(a)
Tµ, where, µ̂t := M−1

t

t−1∑
i=1

xi(ai)ri(ai)
T

where, Ct,0 :=
{
µ ∈ Rm×1 : ∥µ− µ̂t∥Mt ≤ radt

}
where, Mt = identity(K) +

t−1∑
i=1

xi(ai)xi(ai)
T

(4.3.29)

W̃t(a) := arg minW∈Gt
xt(a)

TWθt, where, Ŵt := M−1
t

t−1∑
i=1

xi(ai)vi(ai)
T

where, Gt :=
{
Rm×d : wj ∈ Ct,j

}
where, Ct,j :=

{
w ∈ Rm×1 : ∥w − ŵtj∥Mt ≤ radt

}
(4.3.30)
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11: Play the arm at := arg maxa∈[K]xt(a)
T
(
µ̃t(a)− ZW̃t(a)θt

)
, Update I t = eat

12: Observe reward rt(at) and resource consumption vt(at)
13: Update ẑT0+t = ẑT0+t−1 − eat ·Xt[at, at] and P̂D

T0+t− = cT0+t
gT0+tat

·Xt[at, at]

14: Update θt+1 using MWU algorithm, and with gt(θt) := θt ·
(
vt(at)− B

T
1
)
, as:

θt+1,j =
wt,j

1 +
∑

j wt,j

,

where, wt,j =

{
wt−1,j(1 + ϵ)gt,j if gt,j > 0,

wt−1,j(1− ϵ)−gt,j if gt,j ≤ 0.
, ∀ j ∈ {1, 2, . . . , d}

(4.3.31)

15: Apply fairness update using Algorithm 4.2 with inputs G, t, TFU , D̂
t
gt∀g ∈ G,∑

h∈H′ ẑth
16: t+ = 1

Algorithm 4.4 E-linCBwK Algorithm − Z Computation

Input: K, m, d, B, T , TFU , (1− δ) confidence level
Output: Decisions I for times t ∈ {1, 2, . . . , T0}, parameter Z, non-skipping

probabilities λT0
g ∀g ∈ G, remaining packages at DCs ẑT0

h h ∈ H′, and remaining

transportation cost budget P̂D
T0

1: Definition: M -norm of a vector µ is ∥µ∥M :=
√

µTMµ, where M is PSD matrix.

2: Initialize t = 1, T0 = ⌈m
√
T ⌉, γ = 2mT

T0

√
T0 log(T0) log

(
T0d
δ

)
,

3: Initialize D̂0
g = 0 ∀g ∈ G, λ1

g = Fg/Dg ∀g ∈ G, ẑ0h = z∗h ∀h ∈ H′, P̂D
0 = PD t ≤ T0

4: Observe the RS placing the request, gt. Update D̂t = D̂t−1 + egt rand[0, 1] ≥ λt
gt

5: The context Xt is a K ×K matrix of zeros
6: Observe context Xt

7: Calculate best arm play probability distribution pt as:

pt := arg max
p∈∆[K]

∥Xtp∥M−1
t
, where, Mt = identity(K) +

t−1∑
i=1

Xipi (4.3.32)

8: Play arm at = argmaxa∈[K] ∥xt(a)∥M−1
t
, Update I t = eat

9: Observe reward rt(at) and resource consumption vt(at)
10: Update ẑt = ẑt−1 − eat ·Xt[at, at] and P̂D

t − = ctgtat ·Xt[at, at]

11: Construct estimate µ̂t, Ŵt of µ∗,W∗ as:

µ̂t := M−1
t

t−1∑
i=1

(Xipi)ri(ai), Ŵt := M−1
t

t−1∑
i=1

(Xipi)vi(ai)
T (4.3.33)
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12: Apply fairness update using Algorithm 4.2 with inputs G, t, TFU , D̂
t
gt∀g ∈ G,∑

h∈H′ ẑth
13: t+ = 1
14: Calculate ˆOPT

γ
as:

ˆOPT
γ
:=

max
π

T

T0

T0∑
i=1

µ̂T
i Xiπ(Xi)

s.to.
T

T0

T0∑
i=1

ŴT
i Xiπ(Xi) ≤ B + γ

(4.3.34)

15: Set Z = 2
[

ˆOPT
2γ

+2γ
B

]

4.4 Computational Experiments

Natural disasters are a part of any region. In the state of Oregon in the United States,

a major threat is the expected Cascadia Subduction Zone earthquake with odds of

7-15% for a great earthquake (M8.7-M9.3) and about 37% for a very large earthquake

(M8.3-M8.6) in the next fifty years (Oregon Seismic Safety Policy Advisory Commis-

sion, 2013). For our analysis, we consider that the decision-making agency is based in

the Portland Urban Metro Area as determined by the region’s Urban Growth Bound-

ary (abbreviated as Portland UGB). As per the 2020 decennial census, more than 1.5

million people reside in the Portland UGB.

The State of Oregon has set up Seismic Rehabilitation Grant Program to support

seismic rehabilitation of critical buildings, particularly school districts and emergency

facilities. Since its inauguration in 2019, 110 grants (cumulative value of over $220

million) have been awarded. In addition to the seismic resiliency of structures, the
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availability of large open spaces would be important for setting up relief shelters (RSs)

for carrying out medical relief operations post-disaster. For this study, we consider

that RSs are set up at high schools and TriMet transit centers (local transportation

authority) which apart from the above factors, are also strategically located and

locally recognizable. During the planning stage (Stage 1), we assume that medical

care is provided to people from the nearest RS, or alternatively, people access the

nearest RS post-disaster and that the entire population is reachable. We consider

hospitals in the region as potential distribution center sites for prepositioning medical

care packages. These are locations are mapped in Figure 4.1, and detailed information

is available openly at https://github.com/drc1807/ERD PDS.

Figure 4.1: Portland Metro Area Urban Growth Boundary

According to the Oregon Seismic Resilience Plan 2013 (Oregon Seismic Safety

Policy Advisory Commission, 2013), for the Portland UGB region, Tier 1 seismic
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lifeline routes1 would become minimally operational2 in 24-72 hours of the seismic

event. In the disaster response literature, 72 hours is also considered critical time

saving most lives (Sheu, 2007, 2014; Yu et al., 2021). Therefore, we consider a 72-

hour time horizon for the study. As ground transportation infrastructure would likely

be unavailable during this period, we consider that unmanned aerial vehicles (UAVs)

or drones are employed to deliver medical care packages during this time horizon.

We assume that all medical care packages to be transported from DCs to RSs have

the same weight of 5 kg each. We consider that the deliveries are carried out using

an electric battery-operated drone, as studied in Figliozzi (2017) and Chauhan et al.

(2021), with a battery capacity of 777 Wh and a range of 36 km (22.37 miles) at a 5 kg

payload. Assuming a maximum battery utilization factor of 80%, we get the effective

one-way range of the drone to be 14.4 km (8.9 miles). During the first 72-hour period,

we assume that 150,000 medical care packages would be required (approximately

10% of the population). However, based on funding limitations, medical personnel

availability, and other factors, we consider that only 120,000 medical care packages

are available for distribution to RSs in the time period and that a minimum of 20,000

medical care packages should be prepositioned at each opened facility.

For the sake of simplicity, we make the following two generalizable assumptions:

(i) Firstly, we consider that the cost of setting up a distribution center (cFh ) is

1Tier 1 is a small backbone system that allows access to all vulnerable regions, major population
centers, and areas considered vital for rescue and recovery operations.

2A minimum level of service is restored, primarily for the use of emergency responders, repair
crews, and vehicles transporting food and other critical supplies
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1, and therefore, the budget available for setting up distribution centers (P F )

corresponds to the maximum number of facilities that can be opened.

(ii) Secondly, we assume the unit cost of transportation from any DC to RS which

corresponds to the utilization of one complete drone battery pack on each trip.

This is a conservative assumption as multiple drone trips might be possible

while utilizing a single battery pack (refer to Chauhan et al. (2021)). Further,

we consider that the total budget available for transportation (PD) (which is

equivalent to the total number of drone battery packs available) is equal to the

number of medical care packages available for distribution. It is implied that

the number of drone battery packs prepositioned at a facility is equal to the

number of medical care packages prepositioned there.

The solution of the planning stage problem determines the initial state of the

operational stage (Stage 2) problem (i.e., the parameters K, m, and B can be deter-

mined). The generalizable assumption (ii) allows us to ignore the overall transporta-

tion cost constraint in the online allocation problem. Therefore, d = K instead of

(K + 1). For the operational stage, we consider that a total of T = 150, 000 requests

arrive stochastically. At the time t ∈ {1, 2, 3, . . . , T}, the RS placing the request is

determined from a probability distribution P , which is unknown to the algorithms.

For the case study, we assume that the unknown distribution P is indicative of the

intensity of the natural disaster, and therefore, affects the radius around RS in which

medical care is provided. In general, the greater the intensity of the disaster, the more
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people are injured and the infrastructure affected, and therefore, the lower the radius

from where medical care can be accessed at an RS. For the planning stage, we assume

that the people access the nearest RS or that the people are accessed from the near-

est RS (we call this “closest”) (covers the entire population: 1.56 million). For the

operational stage, we assume the intensity of the natural disaster is such that people

within 2 miles can access an RS or can be accessed from RS (we call this “radius 2.0”)

(covers 1.46 million people). These distributions are shown graphically in Figure 4.2.

We consider that fairness updates are applied after every 2,000 requests (i.e., about

every hour; the average number of requests obtained every hour is 2083.3).

Figure 4.2: Demand Distributions

For bandit learning using E-linCBwK, in accordance to Agrawal and Devanur

(2016), the (1 − δ) confidence interval for estimating the reward and resource con-

sumption is taken to be 95%, the online learning parameter (ϵ) is assumed to be 0.1,

and the initial exploration iterations (T0), which are used to estimate the penalizing
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parameter Z, are assumed to be ⌈m
√
T ⌉.

E-linCBwK is compared to two other heuristic methods. The first is a random

choice (RC) policy which chooses one of the accessible DCs randomly if the request is

not skipped. The second is a nearest available facility (NAF) allocation policy which

allocates the demand to the nearest accessible DC if the request is not skipped. If

there are no accessible DCs for a request, then the request is skipped for both RC

and NAF policies. During the simulations, the instance is run 10 times to account

for inherent randomness in the demand generation. We define regret (R(t)) as total

deviation from the envy-free fair distribution that can be achieved up to request

number t ∈ {1, 2, . . . , T}, and therefore, is calculated whenever the fairness update is

applied. Additionally, we define the regret-to-request ratio as the ratio of regret R(t)

to the number of requests received t. Figure 4.3 shows the evolution of regret of the

three algorithms during the problem horizon. The results show that the E-linCBwK

algorithm is able to achieve a strongly sub-linear regret to almost the end of the

planning horizon.

Next, we investigate the value of introducing non-skipping probabilities by com-

paring E-linCBwK with a scenario that does not allow for request skipping, i.e., all

requests are available for allocation. Figure 4.4 shows the regret evolution in both

the cases. It can be noted that not allowing for skipping increases the deviation from

fair allocation dramatically as requests are increased. However, the E-linCBwK No

Skip policy observes an inflection point when the request t = α = 120, 000 requests
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are received. Even though all requests are open to being allocated, the demands are

under-satisfied by the E-linCBwK No Skip algorithm because of the usage of the “no-

op” arm, whereas, the fair allocation would require complete demand satisfaction up

to this point (as all requests can be potentially allocated). After the t = α requests

mark, the fair allocation requirement proportions would drop for most demand points,

and therefore, close the gap leading to improvement in the objective. The massive

gap between the E-linCBwK and the E-linCBwK No Skip policies further highlights

the importance of our contribution to introducing non-skipping probabilities.

(a) Regret (b) Regret-to-request Ratio

Figure 4.3: Empirical Regret of the Algorithms (average line with standard deviation
band)
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(a) Regret (b) Regret-to-request Ratio

Figure 4.4: Empirical Regret of the Algorithms (average line with standard deviation
band)

4.4.1 Sensitivity to Post-Disaster Relief Shelter Demand Distributions

Post-disaster relief shelter demand distribution is an indicator of the intensity of the

natural event. Greater intensity of the natural disaster would lead to increased injury

rates as well as the increased loss of infrastructure, and therefore, greater would

be the impairment of accessibility. For the greatest intensity, we consider that the

accessibility during the planning horizon (72-hour period after the event) would be

limited to a 0.5-mile radius around each relief shelter (we call this “radius 0.5”).

Similarly, other scenarios are radius 1.0 and radius 2.0. As a benchmark, we also

consider the case that all people access the closest relief shelter post-disaster (we call

this ”closest”), which is considered as the demand distribution for the planning stage

(stage 1) problem for all the cases. The demand distributions are shown in Figure

4.5. All the other parameters are the same as used in the nominal scenario.
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Figure 4.5: Demand Distributions for Sensitivity Analysis. The standard deviation
(SD) is measured for the difference of the distribution from “closest” demand distri-
bution. The Pearson correlation coefficient (CORR) shows correlation between the
distribution and “closest” demand distribution (average line with standard deviation
band).

Figure 4.6 shows the evolution of the regret for the algorithms for all the four

post-disaster demand distribution scenarios. The trends remain similar to the nomi-

nal scenario, with E-linCBwK performing the best, followed by NAF and then, RC.

Figure 4.7 shows the regret evolution for E-linCBwK for the four different demand

distribution scenarios. As the standard deviation of the operational stage (stage

2) demand distribution increases (and correlation reduces) from the planning stage

(stage 1) demand distribution, the accumulated regret increases, which is as expected.

While the algorithm maintains sublinear regret, the change of unknown stage 2 dis-
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tribution from “closest” (as planned in stage 1) to “radius 0.5” (maximum difference

from stage 1 demand distribution assumption) results in a regret increase of about

78%.

(a) Regret (b) Regret-to-request Ratio

Figure 4.6: Empirical regret of all the algorithm for all post-disaster demand distri-
bution scenarios combined (average line with standard deviation band)

(a) Regret (b) Regret-to-request Ratio

Figure 4.7: Empirical regret of E-linCBwK algorithm for all four post-disaster demand
distribution scenarios (average line with standard deviation band)
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4.4.2 Sensitivity to Fairness Update Frequency

This subsection evaluates the effect of changes in the frequency of fairness update

iterations on the performance of the algorithms. The fairness update is an integral

part of the algorithms as observes the ordering frequency of the relief shelters, and

accordingly updates the beliefs about the remaining demand at each relief shelter, and

how can the remaining resources be equitably distributed. The higher the fairness

update frequency, the larger would be the difference between the sampled distribution

from the actual stage 2 distribution. However, a greater number of opportunities are

available to calibrate the remaining demand at relief shelters and update their non-

skipping probabilities. For the nominal scenario, it was assumed that the fairness

update is applied every 2,000 requests. In this section, we additionally evaluate

the effect on regret when the fairness update is applied every 1,000 requests, 5,000

requests, and 10,000 requests. The rest of the parameters are the same as chosen for

the nominal scenario.

Figure 4.8 shows the regret for the three algorithms for the four different fre-

quencies of fairness update combined. The overall trend of regret evolution remains

the same as the nominal scenario. Figure 4.9 shows the regret for the E-linCBwK

algorithm for each fairness update frequency separately. The regret evolution for the

fairness update frequencies up to every 5,000 requests is the same for the most part

of the planning horizon. Even though the regret when the fairness update is applied
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every 10,000 requests is a bit high during most of the planning horizon, the terminal

regret achieved using the different fairness update frequencies is similar (see Figure

4.10). On average, the fairness update frequency of every 2,000 gives the least termi-

nal regret, and the frequency of every 1,000 requests gives the most terminal regret

(difference of 2%). One of the reasons that the results here show a minimal sensitivity

to the fairness update frequency is the assumption of a static demand distribution

for the operational stage problem. While this can be justified when time horizons

are shorter, we believe this feature would play greater importance when the planning

horizons are longer leading to time-dependent demand distributions. The study of

time-dependent demand distributions is left as a future research endeavor.

(a) Regret (b) Regret-to-request Ratio

Figure 4.8: Empirical regret of all the algorithm for all fairness update frequencies
combined (average line with standard deviation band)
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(a) Regret (b) Regret-to-request Ratio

Figure 4.9: Empirical regret of E-linCBwK algorithm for all four fairness update
frequencies (average line with standard deviation band)

Figure 4.10: Terminal regret achieved using various fairness update frequencies (av-
erage line with standard deviation band)

4.4.3 Sensitivity to the Number of Opened Distribution Centers

This subsection investigates the effect of the number of opened facilities on the re-

gret evolution of the algorithms. the key trade-off here is that increasing the number

of opened facilities increases the initial accessibility to relief shelters by potentially

providing them to be served with a couple of different distribution centers. While

opening more facilities also reduces the number of packages prepositioned at a distri-
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bution center, potentially leading to early exhaustion and hampering the accessibility

in the later stages.

Figure 4.11 shows the regret evolution of algorithms for a different number of

opened facilities combined. A difference here is that the RC algorithm provides better

regret than NAF when a higher number of facilities are opened. However, their ter-

minal regret is much greater than the terminal regret achieved by E-linCBwK. Figure

4.12 shows the regret evolution for E-linCBwK algorithm for each different number

of opened distribution centers. On average, the terminal regret for E-linCBwK de-

creases by 59% when P F increases from 4 to 5, and further by 5% as P F increases

from 5 to 6. The E-linCBwK algorithm maintains strongly sublinear regret for the

entire time horizon when the number of opened facilities is 6, with an average termi-

nal regret of 1159. Alternatively, the results mean that the E-linCBwK algorithm is

able to achieve a total deviation from a fair allocation which is less than 1% of the

total number of packages (120,000) distributed.

(a) Regret (b) Regret-to-request Ratio

Figure 4.11: Empirical regret of all the algorithm for different number of opened DCs
combined (average line with standard deviation band)
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(a) Regret (b) Regret-to-request Ratio

Figure 4.12: Empirical regret of E-linCBwK algorithm for increasing number of
opened DCs (average line with standard deviation band)

4.5 Conclusions

This research presents a novel two-stage facility location and dynamic resource alloca-

tion problem for relief prepositioning and their equitable distribution in post-disaster

conditions. Without loss of generalization, we only consider scenarios where the to-

tal amount of resources available for distribution is less than the total demand for

resources. We assume that complete fairness or equity is achieved by obtaining an

envy-free allocation among the demands at relief shelter (RSs) locations. During the

first stage, the planning stage, the distribution centers (DCs) are located and the

relief supplies are prepositioned among them considering facility opening cost, trans-

portation cost, and allocation constraints. We consider the objective of minimizing

the total deviation from envy-free allocation under the assumption of demand dis-

tribution. During the second stage, the operational stage, the requests for resources

arrive in an online manner. The centralized command makes an allocation decision
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regarding which DC should be utilized or if the request should be rejected, with the

objective of minimizing total deviation from envy-free fair allocation in an online

manner.

The planning stage problem, representing the pre-disaster phase, is formulated

as a mixed-integer linear program. The solution to the planning stage problem is used

to initialize the operational stage problem, which onsets just after the disaster. To

solve the dynamic resource allocation problem in the second stage, we propose a new

multi-armed bandit framework, namely the equitable linear contextual bandits with

knapsacks (E-linCBwK). An integral part of the E-linCBwK methodology is the non-

skipping probability (λ) for requests arriving from each RS. We find the maximum

likelihood estimates of the non-skipping probabilities. The estimates are then used

to show that the E-linCBwK problem, which has an equity-based objective, can be

modeled as an existing multi-armed bandit problem proposed by Agrawal and Deva-

nur (2016) with an objective of maximizing the successful allocations. Consequently,

we also obtain a sub-linear regret bound for the E-linCBwK algorithm.

The computational analysis is conducted on a case study based in Portland Urban

Metro Area. A major threat to the region is the expected Cascadia Subduction Zone

earthquake with odds of about 44-52% for an earthquake greater than magnitude 8.3

in the next fifty years. The analysis shows the E-linCBwK performs much better than

the two other simpler heuristics based on random choice and nearest available facility

assignment, respectively. The importance of introducing non-skipping probabilities
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(λ) is highlighted by comparing E-linCBwK with its No Skip version. The results

show that the terminal total deviation from fair allocation is higher in the No Skip

version by an order of magnitude. Sensitivity analyses on the variation in post-

disaster demand distributions, fairness update frequencies, and the number of opened

DCs show that E-linCBwK consistently achieves terminal total deviation from the

fair allocation which is less than 3.5% of the total number of packages distributed

(which is 120,000) for all cases.

This research could be expanded in various research directions in the future.

The use of stratified knapsack constraints is proposed in this research (in contrast

to the globalized knapsacks in the extant literature) which to allow the utilization of

resources until all the facilities run out of them. However, in the current study, the

algorithm regret bounds are proven until the violation of the first knapsack constraint.

Future methodological research can dedicate efforts to effectively incorporating strat-

ified knapsacks in the multi-armed bandit literature. Additionally, we consider do

not consider the effect of network recovery in the 72-hour period. For Portland,

the estimated recovery for a backbone network is less than 72 hours, and therefore,

some network recovery can be expected. As road infrastructure becomes available

new avenues for effective resource distribution both drones and trucks should also be

investigated.
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5 Linear Contextual Blocking Bandits with Context-dependent Delays:

An Application to Real-time Electric Truckload Pick-up and Delivery
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5.1 Introduction

Trucking is the most dominant mode of freight transportation in the United States:

collecting $791.7 billion in gross revenue (80.1% of the nation’s freight bill), and ac-

counting for 11.84 billion tonnes of freight (72.5% of total freight tonnage) [American

Trucking Association (2019)]. However, this dominance is not reflected in its use of
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data analytics to improve the efficiency and performance of its business operations

[Wang et al. (2018)]. Improvements in information and communication technologies

provide opportunities for using real-time information for improving the efficiency and

optimizing the performance of freight systems. For maximizing profits, a carrier needs

to increase revenues and cut down costs. Most revenue maximization studies focus

on optimizing load pricing and procurement in freight marketplaces while the opti-

mization of load allocation and routing forms a major portion of research focusing

on cost minimization. In this study, we focus only on the load allocation and routing

aspect for a carrier. For further details on load pricing and procurement in freight

marketplaces, the reader is referred to Figliozzi et al. (2003), Figliozzi et al. (2005),

Huang and Xu (2013), Kuyzu et al. (2015), and Wang et al. (2018).

Unsurprisingly, the transportation sector is a major contributor to the anthro-

pogenic U.S. greenhouse gas (GHG) emissions accounting for 29% [US EPA (2021)].

Emissions from light-duty, medium-duty, and heavy-duty trucks comprise 82% of

all transportation sector emissions. To aid the emissions cause, some researchers

have focused on minimizing emissions from conventional freight vehicles while rout-

ing [Figliozzi (2010), Bektaş and Laporte (2011), Jabali et al. (2012)], whereas others

have focused on cleaner alternatives [Pelletier et al. (2016), Pelletier et al. (2019)].

With lower GHG emissions and noise, electric freight vehicles (EFVs) provide a more

sustainable alternative for freight delivery [Pelletier et al. (2019)]. Despite their envi-

ronmental benefits, EFVs face significant issues in integration in the goods delivery
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schemes due to high initial investment cost, limited range and payload, and long

recharging times. This study proposes the usage of EFVs for freight logistics consid-

ering their range and recharging time limitations.

In this study, we focus on a dynamic electric truckload pickup and delivery prob-

lem (E-TPDP) wherein each request arrives in a stochastic manner and has to be

transported directly from its pickup to the delivery location. The loads are trans-

ported using electric freight vehicles (EFVs), and, only one request can be served at

a time by a vehicle typically due to vehicle capacity constraints. Previous efforts on

the truckload pickup and delivery problem (TPDP) employing conventional vehicles

have tacked the problem using rolling horizon framework [Yang et al. (1999),Yang

et al. (2004)], and approximate dynamic programming [Godfrey and Powell (2002),

Topaloglu and Powell (2006), Simao et al. (2009), Wang et al. (2018)]. For the case of

conventional vehicle TPDP, the route of the truck for each request is always known:

the starting point of the truck to the pick-up location to the delivery location. As

the range of the conventional truck is large, fuel stations are widely available, and

refueling operations are quick, the time spent rerouting and refueling is considered to

be negligible. But, in the case of EFVs, due to limited range, long recharging times,

and relatively scarce charging infrastructure, recharging decisions affect route con-

struction. In this work, we propose a novel multi-armed bandit (MAB) methodology

to tackle this problem. The MAB formulation can be applied to TPDP directly, and

to E-TPDP with an additional preprocessing step for route construction.
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The literature on ride-hailing systems is also close to the TPDP. The interested

reader is referred to Agatz et al. (2012) and Mourad et al. (2019) for a review of vari-

ous ride-hailing/ride-sharing services and solution methods available. However, there

is limited literature considering fleet electrification (example, Chen et al. (2016); Ia-

cobucci et al. (2019); Kang et al. (2017)). Three of the closest works to our case here

are Shi et al. (2019), Al-Kanj et al. (2020), and Kullman et al. (2021). All three works

consider the operation of an electric ride-hailing fleet under a centralized command

and consider decisions relating to the assignment of requests to a vehicle, recharg-

ing, and repositioning. Al-Kanj et al. (2020) and Kullman et al. (2021) additionally

consider the option of rejecting a request, unlike Shi et al. (2019). In this study, we

consider the operation of the fleet under a centralized command and consider the

assignment and recharging-related decisions. We consider that the requests received

in the E-TPDP are a result of successful procurement in spot truckload markets, and

as a result, requests cannot be considered for rejection, and delay-based costs are

incurred. The commonly cited technical challenges associated with fleet electrifica-

tion are long recharging times and limited charging infrastructure (Kullman et al.,

2021). These problems are exacerbated when considering the larger size and special

equipment needs of EFVs. Additionally, the larger service areas (and therefore also,

longer trip distances) make it imperative to consider recharging decisions in route

construction and assignment. Generally, most approaches in ride-hailing consider

aggregation of requests in a time interval and then decisions are made for all these
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requests together (example, Shi et al. (2019) consider 6-min intervals and Al-Kanj

et al. (2020) consider 15-min intervals). In this study, like Kullman et al. (2021), we

consider decision-making at a request level to avoid any unnecessary delays.

Basu et al. (2019) proposed a new multi-armed bandit setting for resource alloca-

tion wherein an arm observes a known “blocked” time when it would be unavailable

for selection, every time it is selected. This problem is named the blocking ban-

dits problem. This is relevant to transportation resource utilization-related problems

wherein the resource is unavailable when it is being used. Example applications in-

clude bike-sharing, ride-hailing, and truckload operations. Recently, many extensions

of blocking bandits setting are proposed considering combinatorial action play (Atsi-

dakou et al., 2021; Simchi-Levi et al., 2021), adversarial rewards Bishop et al. (2020),

decaying rewards Simchi-Levi et al. (2021), stochastic delays Atsidakou et al. (2021);

Simchi-Levi et al. (2021), and matroid constraints (Papadigenopoulos and Carama-

nis, 2021). Of particular interest is the extension considered by Basu et al. (2021).

They propose contextual blocking bandits, where the player observes a context before

the arm selection stage. The context represents the information available apriori to

decision-making and affects the reward obtained. The delays are not dependent on

the context. Their proposed methodology is tractable only when the set of possible

contexts is small enough, and therefore, becomes prohibitive when the context has

a high dimension, or when it captures continuous characteristics like time (which

require fine discretization for practical purposes). Here, we propose a linear contex-
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tual blocking bandits (linCBB) problem, where we consider that both the reward

and “blocked” times are linearly dependent on the context (the linear relationship is

not known). The linearity assumption helps tackle high-dimensional contexts with

continuous components. We apply this methodology for load allocation in E-TPDP.

The linCBB methodology can potentially also be extended to incorporate congestion

in the instant drone delivery logistics, and the operation of ride-hailing services and

instant food delivery platforms.

The rest of the article is organized as follows: Section 5.2 describes the prob-

lem and provides an online formulation of the problem. The remainder of the section

formulates a load allocation policy using the proposed linear contextual blocking ban-

dits with context-dependent delays framework and describes the route construction

preprocessing step required when using electric freight vehicles. Section 5.3 describes

the setting for the computational analysis of the proposed approach. Finally, section

5.4 concludes the article and provides directions for future work.

5.2 Problem Description and Formulation

A truckload carrier company owns and operates a fleet of K electric freight vehicles

(EFVs) (represented by the set K) in a region. The carrier receives requests for truck-

load moves (hereafter, jobs) in real-time within the prespecified region of operation,

and wishes to maximize its cumulative rewards over a time horizon of T requests

(represented by the set T := {1, 2, . . . , T}). The EFVs can serve only one load at
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a time. Due to the limited range of EFVs, we also consider recharging decisions for

EFVs. This problem is named the Real-Time Electric Truckload Pick-up and Delivery

Problem (E-TPDP). We assume that the requests are a result of successful bids by

the carrier company in spot markets. Spot market contracts are short-term contracts

for serving unfilled or urgent shipments and form a significant portion of all truckload

contracts (Wang et al., 2018). Load procurement by the carrier in the spot markets

is outside the scope of the current study. Additionally, we also assume that we know

the locations of charging infrastructure in the region and that there will not be any

wait time at the charging stations. Optimal location and incorporation of congestion

at charging stations can be a part of future studies. It is also assumed that we can

compute battery consumption along a route based on the job characteristics. We first

discuss the load allocation strategy formulated using linear contextual blocking ban-

dits. This can be used for both E-TPDP and TPDP. Then, we discuss the recharging

decision and route construction strategy required specifically for E-TPDP.

5.2.1 Load allocation using linear contextual blocking bandits

A job t ∈ T comes associated with a pick-up location, a delivery location, and load

weight. We abuse the notation a little bit here, and also refer to the time that the

job arrives as t. At time t, we know the earliest time when and the location where an

EFV a ∈ K would become available, along with its expected state of charge or battery

level. For now, we assume that recharging decisions and potential routes for EFVs
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are known. Therefore, we consider that the job t ∈ T comes associated with a context

xt(a) (xt(a) ∈ Rm, ∥xt(a)∥2 ≤ 1) for each EFV a ∈ K. The context includes informa-

tion relating to recharging decision, route characteristics, load characteristics, traffic

conditions, expected battery consumption, etc. We define Xt := {xt(a) ∀ a ∈ K}.

We assume that the context Xt observed in round t is sampled from an unknown dis-

tribution, independent from previous rounds. Observing this context Xt, the carrier

instructs EFV at to serve the job which results in a reward of µat,t(xt(at)) ∈ [0, 1] and

a blocked time of dat,t(xt(at)) ∈ N. The blocked time represents the time EFV would

be unavailable due to fulfillment of job request. Note that we consider both the reward

and the blocked time to be context-dependent. So, given a context X, the optimal

policy π∗(X) for the described contextual blocking bandit problem (abbreviated as

CBB; first proposed by Basu et al. (2021)) is obtained by solving:

max
π

∑
a∈K

µa,t(x(a))πa(x(a))

da,t(x(a))πa(x(a)) ≤ 1 ∀ a ∈ K∑
a∈K

πa(x(a)) ≤ 1

πa(x(a)) ≥ 0 ∀ a ∈ K

(5.2.1)

The goal of the problem is to find a policy π(X) that maximizes rewards under

context X. The blocking time equation ensures that the (fluidized) average playing

rate of arm a under context X is less than 1/da,t(x(a)).
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As the possible number of contexts can be very large, we operate under a linear

realizability assumption for rewards and blocking times. There exist unknown weight

vectors θ∗µ, θ
∗
d ∈ Rm (∥θ∗µ∥2 ≤ 1 and ∥θ∗d∥2 ≤ 1) such that:

E(µa,t|xt(a)) = xt(a)
T θ∗µ ∀ a ∈ K, t ∈ T

E(da,t|xt(a)) = cxt(a)
T θ∗d ∀ a ∈ K, t ∈ T

(5.2.2)

where, c is the scaling factor for blocking times. Substituting the linear realiz-

ability assumptions (5.2.2) into the formulation (5.2.1) results in:

max
∑
a∈K

xt(a)
T θµπa(x(a))

cxt(a)
T θdπa(x(a)) ≤ 1 ∀ a ∈ K∑
a∈K

πa(x(a)) ≤ 1

πa(x(a)) ≥ 0 ∀ a ∈ K

(5.2.3)

We refer to the above problem (5.2.3) as linear contextual blocking bandit prob-

lem with context-dependent delays, abbreviated as linCBB. We now penalize the
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blocking time constraint which results in:

max
∑
a∈K

(xt(a)
T θµ − cλaxt(a)

T θd)πa(x(a)) +
∑
a∈K

λa

∑
a∈K

πa(x(a)) ≤ 1

πa(x(a)) ≥ 0 ∀ a ∈ K

(5.2.4)

where λa are the penalty parameters. The above problem (5.2.4) can be seen

as a variant of the linear contextual bandit problem (abbreviated as linCB), first

described by Chu et al. (2011). In addition to estimating the unknown weight vectors

(θ) and the arm-play policy (π), as required for linCB, our problem linCBB also needs

to learn the optimal values of the penalty parameters (λ). A similar application of

penalty parameters is also adopted by Agrawal and Devanur (2016) for solving the

linear contextual bandit with knapsacks problem, where the knapsack constraints

were penalized. An algorithm based on upper confidence bounds to solve linCBB

for a planning horizon of T requests is described in Algorithm 5.1. The penalty

parameters are learned through the multiplicative weight update, a fast and efficient

online learning algorithm proposed by Arora et al. (2012). Note that Algorithm

5.1 can be applied directly for the TPDP, and can be applied to E-TPDP once the

recharging decisions are made and the potential route for each EFV is constructed.
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5.2.2 Recharging decisions and route construction for E-TPDP

For the case of conventional vehicle TPDP, the route of the truck for each request is

always known: the starting point of the truck to the pick-up location to the delivery

location. As the range of the conventional truck is large, fuel stations are widely

available, and refueling operations are quick, the time spent on refueling is considered

to be negligible. But, in the case of EFVs, due to limited range, long recharging

times, and relatively scarce charging infrastructure, recharging decisions affect route

construction. Therefore, route construction considering recharging is essential for

E-TPDP.

A job received at time t comes associated with a pick-up location lt1, drop-off

location lt2, and load weight wt. At time t, we know that the EFV a ∈ K would be

available earliest at time τa,t ≥ t and location lat0 with state of charge/ battery level

qat0 (kWh). Each EFV a ∈ K is assumed to have a maximum battery capacity of Q

(kWh).
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Algorithm 5.1 linCBB-UCB

Input: αµ, αd ∈ R+, K ∈ N (set represented by K), m ∈ N, cT ∈ R+ (time-based
cost)

Output: {at, µat,t, dat,t} ∀ t = 1, 2, . . . , T

1: A← Im {the m×m identity matrix}
2: bµ, bd ← 0m {m-dimensional vector of zeros}
3: Initialize λa =

KcT
(K+1)

∀ a ∈ K, and wa,0 = 1 ∀ a ∈ K t = 1, 2, . . . , T
4: Update the set of available arms Kt Kt is not empty
5: θtµ ← A−1bµ, θ

t
d ← A−1bd

6: Observe context Xt ∈ Rm×K a ∈ Kt

7: Computes the upper confidence bounds pt,a as:

pt,a ←
(
xt(a)

T θtµ + αµ

√
xt(a)TA−1xt(a)

)
−

cλa

(
xt(a)

T θtd − αd

√
xt(a)TA−1xt(a)

)
8: Choose action at = argmaxa pt,a, ties broken arbitrarily
9: Observe reward µat,t and the corresponding blocking time dat,t
10: Update the online learning weights wa,t as:

wa,t ←


wa,t−1(1 + ε)

da
c
−xt(a)Tθtd if

da
c
− xt(a)

Tθtd ≥ 0

wa,t−1(1− ε)
da
c
−xt(a)Tθtd if

da
c
− xt(a)

Tθtd < 0

∀ a ∈ K

11: λa ← KcTwa,t

1+
∑

a∈K wa,t
∀ a ∈ K

12: A← A+ xt(at)xt(at)
T

13: bµ ← bµ + xt(at)µat,t, bd ← bd + xt(at)(dat,t/c)

There are N charging stations (represented by set [N ]) available to the carrier

in its region of operation. We assume that each EFV has two charging opportunities

while potentially serving the job request: at most once between the EFV’s earliest

available location lat0 and pick-up location lt1, and at most once between pick-up lo-

cation lt1 and delivery location lt2. When an EFV decides to visit a charging station,

we assume that it departs only after being fully charged at a constant rate of ηQ
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(hr/kWh). We assume that the total recharging cost consists of a base fee of cBQ

($) and a charging fee of cCQ ($/kWh). Therefore, if an EFV arrives at a charging

station with a battery level of q (kWh) at time τ , we assume that it departs at a

battery level of Q at time τ + (Q − q)ηQ and pays [cBQ + cCQ(Q − q)] as the total

recharging cost.

The recharging decision and route construction problem for an EFV a ∈ K is

assumed to occur on a directed sub-graph Ga,t of the operational region which consists

of the following nodes: lat0 , l
t
1, l

t
2, a layer of N charging station nodes between lat0 and

lt1, and a layer of N charging station nodes between lt1 and lt2. Directed paths exist

between lat0 and lt1, one directly (representing no recharging) and other N through

the charging stations. Similarly, directed paths exist between lt1 and lt2, one directly

(representing no recharging) and other N through the charging stations. Additionally,

recharging operations are charging stations nodes can be representing by splitting the

nodes and representing recharging operations over an arc. Note that an EFV travels

with a zero payload between nodes lat0 and lt1, and with a payload wt between nodes

lt1 and lt2.

Let, cD ($/mile) and cT ($/hr) represent the unit distance- and time-based cost,

respective. We assume that the directed arcs in the graph Ga,t are pre-computed

shortest paths considering both distance- and time-based costs. It is assumed the

we can accurately calculate the payload-dependent battery consumption on an arc

of graph Ga,t. As distance and travel time are known for all arcs of Ga,t, we know
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that the cost incurred on non-recharging arcs is the sum of distance- and time-based

costs and the cost incurred on recharging arcs is the sum of total recharging cost and

the time-based cost. It is an operational requirement that an EFV arrives at the

delivery location with a minimum battery level of Qthr. The graph Ga,t is pictorially

represented in Figure 5.1.

Finally, the recharging decision and route construction problem for an EFV can

be modeled as a shortest path problem with battery threshold constraint. The nomen-

clature is summarized below:

Sets and Indices

V Set of all nodes (u, v ∈ V )

VQ Set of nodes representing end of recharging operations (VQ ⊂ V )

A′ Set of all arcs ((u, v) ∈ A′)

AQ Set of arcs representing recharging operations (AQ ⊂ A′)

FSu

Set of nodes in the set V which are in the forward star of node u ∈ V ,

i.e., set of all nodes such that there exists an arc (u, v) ∈ A′

RSu

Set of nodes in the set V which are in the reverse star of node u ∈ V , i.e.,

set of all nodes such that there exists an arc (v, u) ∈ A′
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Figure 5.1: Graph Ga,t
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Parameters

lat0 Node representing starting point of EFV

lt1 Node representing pick-up location of the job request

lt2 Node representing delivery location of the job request

cat,Fuv

Sum of distance- and time-based costs of traversing on arc (u, v) ∈ A′\AQ

($)

qat,Fuv Battery consumption on non-recharging arc (u, v) ∈ A′\AQ (kWh)

cT Unit time-based cost ($/hour)

cBQ Base fee for recharging ($)

cCQ Unit recharging cost at charging station ($/kWh)

ηQ Constant recharging rate at charging station (hour/kWh)

qat0 Battery level of EFV at node lat0 (kWh)

Q Maximum battery capacity of the EFV (kWh)

Qthr

Minimum battery level required when reaching the delivery location

(node lt2) (kWh)

Decision Variables

yatuv 1, if the arc (u, v) ∈ A′ is chosen to be traversed, and 0, otherwise

zatu Battery level of the EFV at node u ∈ V (kWh)
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The formulation for the shortest path problem with battery threshold constraint

is now presented.

CSP a,t :

min
y,z

∑
(u,v)∈A′\AQ

cFuvy
at
uv +

∑
(u,v)∈AQ

[
cTηQ(z

at
v − zatu ) + cBQ + cCQ(z

at
v − zatu )

]
yatuv

(5.2.5)

s.to.
∑

v∈FSu

yatuv −
∑

v∈RSu

yatvu =



1 if u = lat0

−1 if u = lt2

0 if u ∈ V \{la,t0 , lt2}

(5.2.6)

zatlat0 = qat0 (5.2.7)

zatv = Q ∀ v ∈ VQ (5.2.8)

zlt2 ≥ Qthr (5.2.9)∑
u∈RSv

(zu − qFuv) · yatuv = zatv ∀ v ∈ V \
{
VQ ∪ {la,t0 }

}
(5.2.10)

yatuv ∈ {0, 1} ∀ (u, v) ∈ A′ (5.2.11)

zatu ≥ 0 ∀ u ∈ V (5.2.12)

Equation 5.2.5 represents the objective of minimizing cost. The first term consists

of costs on non-recharging arcs, and the second term represents the recharging-related

costs. Equation 5.2.6 represent the shortest path selection constraints. Equation 5.2.7

ensures that battery level at the starting node is qat0 , and equation 5.2.8 ensures that

the EFV departs with a fully charged battery after recharging. Equation 5.2.9 en-
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sures that the battery level at the delivery location is greater than the minimum

required battery level Qthr. Equation 5.2.10 represents the battery level conservation

constraints. It ensures that the EFV’s battery levels are correctly computed at each

node over the selected route. Equations 5.2.11 and 5.2.12 are variable definitions.

Equation 5.2.12 ensures that an EFV would never run out of battery on the selected

route. The non-linearity in the objective function and Equation 5.2.10 can be lin-

earized by introducing new variables to yield a mixed-integer linear program (MILP),

and then, can be solved using a MILP solver. When the problem is solved, we know

the potential route for an EFV for the demand request. This information is utilized

for generating context for the linCBB framework proposed in the previous section.

5.2.3 A note on battery consumption and recharging in EFVs

A plethora of research on battery consumption and recharging in electric vehicles is

available. The energy consumption in EFVs is dependent on the power required to

accelerate and overcome rolling resistance, aerodynamic drag, and grade resistance

(Davis and Figliozzi, 2013). This power is dependent on the curb weight and the

payload of the EFV. Concerning the payload, Pelletier et al. (2019) shows that the

battery consumption in EFV is a linear function of the payload. While Al-Kanj

et al. (2020) assumes that the battery consumption can be computed based on trip

characteristics, and assumes no explicit relationship with payload. In this study,

we follow the battery consumption relationship proposed by Pelletier et al. (2019),
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however, any function for calculation of battery consumption can be adopted for

modeling.

In the context of electric vehicle routing problem (E-VRP), Pelletier et al. (2019)

assume that charging is not allowed on the vehicle tour, and that the vehicles are

charged once and fully before they leave the depot. E-VRPs considering recharging

can be divided on basis two recharging policies: full-recharging and partial recharg-

ing. The full-recharge policy literature consists of research that assumes constant

recharging time [Conrad and Figliozzi (2011), Adler and Mirchandani (2014), Hof

et al. (2017)] which may indicate battery swapping operations, and recharging at

constant rate [Schneider et al. (2014), Goeke and Schneider (2015), Desaulniers et al.

(2016), Hiermann et al. (2016)] where the charging time is dependent on initial bat-

tery level and the recharging rate. The partial recharging policy literature considers

capability for partial recharging of electric vehicles and have adopted linear charging

function [Felipe et al. (2014), Keskin and Çatay (2016), Desaulniers et al. (2016),

Schiffer and Walther (2017), Al-Kanj et al. (2020)] and non-linear charging functions

with partial charging policies [Montoya et al. (2017), Froger et al. (2019)]. This study

assumes a full-recharging policy with linear recharging function. Incorporating partial

recharging policy can be a part of future research.

In addition, we assume that the freight carrier has access to charging infrastruc-

ture in the region and that the locations of charging stations are known. The optimal

location of charging stations in a region is out of the scope of the current study. We
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also assume that an unlimited number of EFVs can recharge at a charging station.

Similar assumptions are made in Montoya et al. (2017) and Al-Kanj et al. (2020).

5.3 Computational Experiments

For the computational experiments, we assume that a trucking carrier operates a fleet

of K electric freight vehicles (EFV) (represented by set K) in a service area. The

trucking company caters to requests for truckload pick-up and delivery, as procured

from spot markets, which must be instantaneously serviced. The planning horizon of

the problem is T requests, and we assume that a request/job arrives every hour (i.e.,

constant inter-arrival time). We abuse the notation a little bit and denote both the

request number and the time it arrives by t ∈ {1, 2, . . . , T}.

The service area is assumed to be flat and rectangular with dimensions of 100

miles × 100 miles. The EFVs travel over Manhattan distances over the grid at a

constant speed of 50 miles per hour. The origin (lt1) and destination (lt2) points for

job t are uniformly generated integer values over the grid, such that the Manhattan

distance between them is at least req distmin. We assume that req distmin is 50

miles. Initially, all EFVs are located at a central depot located at [50,50] and are

fully charged. We consider that charging infrastructure is available at the central

depot as well as at four additional locations: [20,20], [20,80], [80,20], and [80,80].

The fleet of EFVs is considered to be Freightliner eM2 electric box trucks [Freight-

liner (2021)] with a GVWR of up to 33,000 lb. As data about curb weight of eM2
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truck is unavailable, we assume its value to be 16,500 lbs (about 3000 lbs higher than

similar non-electric Freightliner truck). For any request, the payload weight (wt)

is assumed to be a uniformly distributed integer between 2000 lb and a maximum

payload (wmax) of 16,500 lb.

The Freightliner eM2 trucks have a usable battery capacity of 315 kWh with a

fully-loaded range of 230 miles. Additionally, with Freightliner’s proprietary charging

infrastructure, 80% of battery capacity can be charged in 60 minutes. Based on the

data, for our experiments, we assume that the battery capacity of each truck (Q) is

250 kWh (≈80% of 315 kWh), and assume that it can be fully charged in 1 hour (i.e.

charging rate ηQ = 1/250 hr/kWh). Based on the assumed value of Q, we get a fully-

loaded range (rangefull) of 180 miles (≈80% of 230 miles), and assume that the range

at zero-payload (rangezero) is 250 miles. As in Pelletier et al. (2019), we assume that

the battery consumption is linearly dependent on the payload. Specifically, we utilize

the following relationship for calculating the payload-dependent battery consumption

rate (ϕ(wt)):

ϕ(wt) =
Q

rangezero
+

wt

wmax
·
(

Q

rangefull
− Q

rangezero

)
(5.3.1)

The payload dependent battery consumption (q(wt)) over a travel distance of

dist (miles) can then be calculated as ϕ(wt) · dist (kWh).

The distance-based unit cost (cD) and time-based unit cost (cT ) are derived from
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the ATRI 2020 marginal cost estimates [Leslie and Murray (2021)]. The parameter

cD is assumed to be $0.60/mile and is obtained by discounting driver-based costs

($0.74/mile) and fuel costs ($0.31/mile) from the 2020 marginal cost estimate of

$1.65/mile. Similarly, the parameter cT is assumed to be $30/hr and only considers

the driver-related costs from the ATRI 2020 marginal cost estimate. The unit cost

for the delay in arrival at the request origin location (lt1) from the moment the re-

quest is received is also assumed to be cT . The base fee for recharging (cBQ) at the

charging station is considered to be $2.50, and the charging fee (cCQ) is considered

to be $0.24/kWh (twice the on-peak rate of $0.12/kWh in Portland, OR, to consider

additional charging infrastructure-related costs).

For catering a request/job t, there are phases: the request arrival phase, the

allocation decision phase, and the post-decision phase.

A job received at time t comes associated with a pick-up location lt1, drop-off

location lt2, and load weight wt. During the request arrival phase, we consider each

truck a ∈ K for servicing the job t from its earliest available location lat0 having

remaining battery capacity of qat0 . Battery-constrained shortest paths are constructed

for each truck a ∈ K by solving the CSP a,t formulation (equations 5.2.5-5.2.12).

Based on the solution, we extract the following information for each truck a ∈ K at

time t: the total travel distance, denoted by EFV distat, and the time to reach the

origin point of the request (lt1), denoted by EFV time req originat. We define the
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context xt(a) with m = 2 for arm a ∈ K as:

xt(a) :=
1√
2


req distmin

EFV distat

time req originmax − EFV time req originat

time req originmax

 , ∀ a ∈ K (5.3.2)

where time req originmax represents the theoretical maximum time for an EFV

to reach the origin of the request. For our case, that would correspond to the time

required to travel the maximum possible distance in the service area along with the

time required to fully charge the EFV once (as we assume that an EFV can only

charge once before reaching the request origin node). The maximum shortest path

distance considering a detour to a recharging station to reach the origin node from

any location in the service area is 200 miles (EFV location and request origin location

are on diagonally opposite ends, and as we consider travel over Manhattan distances,

additional detour distance is zero). As we assume a constant travel speed of 50 miles

per hour, the time spent on traveling is 4 hours. The maximum possible time for

recharging is etaQ ·Q, which for our case is 1 hour. Therefore, time req originmax is

5 hours.

The next is the allocation decision phase. The solution algorithms observe the

context before making a decision. The linCBB-UCB algorithm chooses to play an

available (i.e., unblocked arm) with the highest value of UCB index, as shown in

Algorithm 5.1. The linCBB-UCB algorithm is compared against a simple greedy
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rule that selects an available arm with the least value of arrival delay. This rule is

named “greedy-AD”. Alternatively put, greedy-AD chooses an available arm with

the highest value of the second context argument.

Upon making the allocation decision, we arrive at the post-decision phase. Dur-

ing the post-decision phase, the reward and the delay for the chosen arm are realized.

Unknown to the algorithms, the total costs for each arm a ∈ K for job t, denoted as

total costat, are calculated from their shortest path solutions as:

total costat =

(
cD + ccharge +

cT

speed

)
· EFV distat + ρ · EFV time req originat

(5.3.3)

where, speed is the constant traveling speed, here 50 miles per hour, ccharge is the

average cost of recharging the battery per unit distance, and ρ denotes the penalty

for delay in arrival at the pickup location of the request. For the nominal scenario,

we consider ρ = cT . The range of the EFV at average payload is 206 miles, and the

cost of a full recharge is $62.5 (cBQ+cCQQ = $62.5). For our case, the value of ccharge

comes out to be $0.30/mile. Let, total costtmin be the minimum total cost for serving

job t, and at be the arm chosen by an algorithm. Then, the realized reward rt and

delay dt for that algorithm are:

rt :=


1 if total costatt = total costtmin

0 otherwise

(5.3.4)
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dt :=

⌈
EFV distatt

speed

⌉
+ random{1, 2} (5.3.5)

where, random{1, 2} takes the value 1 or 2 with equal probability. Additionally,

we update the earliest available time (EAT a,t), earliest available location (la,t0 ), and

remaining battery capacity (qa,t0 ) for each EFV a ∈ K before going forward to the

next request t+ 1 as:

EAT a,t+1 =


EAT a,t +min{1, dt} if a = at

EAT a,t + 1 otherwise

, ∀ a ∈ K (5.3.6)

la,t+1
0 =


lt2 if a = at

la,t0 otherwise

, ∀ a ∈ K (5.3.7)

qa,t+1
0 =


zat∗lt2

if a = at

qa,t0 otherwise

, ∀ a ∈ K (5.3.8)

where, zat∗
lt2

is the battery level at the request destination location lt2 as obtained

from the optimal solution of CSP a,t (equations 5.2.5-5.2.12).

It is to be noted that the request characteristics (pick-up location, delivery lo-

cation, and payload weight), reward function, and delay function are considered to

be the same for both the solution algorithms (linCBB-UCB and greedy-AD). How-

ever, due to different allocation decisions, both algorithms have different states, and

therefore, the context, as well as the total costs for both the algorithms, would be
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different.

The computational analysis is conducted considering a planning horizon of T =

20, 000, and a fleet of K = 10 EFVs. Results are reported for ten instance runs. We

assume the value of the online learning parameter ε (for linCBB-UCB, see Algorithm

5.1) as 0.1. The growth of cumulative reward normalized by the number of requests

received is shown in Figure 5.2. It can be noted that the linCBB-UCB reward growth

as a function of time is better than linear growth, suggesting a slightly sub-linear

regret of the linCBB-UCB algorithm. The greedy-AD reward growth on the other

end is slightly sub-linear. This leads to a stronger performance of linCBB-UCB over

greedy-AD with increasing time.

(a) t ≤ 5000 (b) t ≥ 5000

Figure 5.2: Ratio of cumulative reward normalized by the number of requests received
(t) (average line with standard deviation band)

Next, a sensitivity analysis of the size of the EFV fleet is conducted. The results

are summarized in Table 5.1 at various time horizons and fleet sizes. To reiterate,

the reward is set to 1 if the vehicle that would observe the least cost is selected
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(considering that all the past requests were served), and 0, otherwise. Therefore,

there are two opposing factors to reward accrual. As the fleet size increases, trivially,

the identification of the best possible EFV arm becomes difficult. On the other hand,

the fraction of time that the best possible EFV is busy reduces thereby aiding the

growth of reward. The results show that the latter is a more prominent contributor

to reward growth. Figure 5.3 shows the growth of the ratio of cumulative rewards

achieved by both algorithms for varying fleet sizes. It can be noted that for the

varying fleet sizes of 8, 10, and 12, the linCBB-UCB algorithm gathers 5.7%, 7.5%,

and 8.5% more rewards, respectively, compared to the greedy-AD algorithm.

(a) t ≤ 5000 (b) t ≥ 5000

Figure 5.3: Growth of ratio of cumulative reward obtained by linCBB-UCB to greedy-
AD with increasing number of requests (average line with standard deviation band)
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Table 5.1: Sensitivity of Cumulated Rewards to EFV Fleet Size

K
linCBB-UCB greedy-AD

T =5000 T =10000 T =15000 T =20000 T =5000 T =10000 T =15000 T =20000

8
Min 2419 4947 7384 9901 2309 4704 7043 9361
Ave 2465 5001 7506 10030 2377 4744 7098 9483
Max 2514 5076 7612 10164 2413 4800 7149 9575

10
Min 2781 5697 8615 11557 2672 5373 8027 10734
Ave 2855 5790 8725 11666 2728 5437 8135 10852
Max 2953 5855 8870 11831 2773 5478 8207 10927

12
Min 3074 6235 9410 12631 2844 5760 8708 11653
Ave 3117 6303 9503 12724 2929 5857 8793 11727
Max 3174 6379 9571 12819 2988 5936 8884 11806

Note: K denotes the EFV fleet size174



A sensitivity analysis on the penalty cost for the delay in pickup (ρ) for a request

is presented in Table 5.2 for various time horizons and penalty values. The analysis

considers variation in the range of 50%-150% of the nominal value (the nominal value

of ρ is the time-based cost cT = $30/hr) and considers the fleet size (K) of 10. It

is expected that an increase in the penalty would reduce the gap between the two

algorithms, as greedy-AD explicitly prioritizes myopic arrival delay. Figure 5.4 shows

the growth of the ratio of cumulative rewards achieved by both algorithms for varying

arrival delay penalty values. The increase in the final reward obtained by the linCBB-

UCB algorithm in comparison to the greedy-AD algorithm reduces from 8.4% to 6.2%

as the penalty values increased from $15/hr (50% of nominal value) to $45/hr (150%

of nominal value). However, linCBB-UCB still improves the reward collection ratio

with increasing numbers of requests received.

(a) t ≤ 5000 (b) t ≥ 5000

Figure 5.4: Growth of ratio of cumulative reward obtained by linCBB-UCB to greedy-
AD with increasing number of requests (line represents average of ten instance runs)
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Table 5.2: Sensitivity of Cumulated Rewards to EFV Arrival Delay Penalty

ρ
linCBB-UCB greedy-AD

T =5000 T =10000 T =15000 T =20000 T =5000 T =10000 T =15000 T =20000
Min 2779 5617 8541 11489 2620 5253 7854 10541

15 Ave 2810 5700 8606 11538 2664 5303 7964 10645
Max 2860 5780 8678 11625 2704 5364 8128 10811
Min 2807 5696 8559 11534 2651 5307 7979 10670

22.5 Ave 2843 5759 8672 11602 2703 5384 8071 10762
Max 2876 5837 8743 11660 2754 5512 8199 10905
Min 2781 5697 8615 11557 2672 5373 8027 10734

30 Ave 2855 5790 8725 11666 2728 5437 8135 10852
Max 2953 5855 8870 11831 2773 5478 8207 10927
Min 2777 5703 8612 11562 2711 5411 8064 10783

37.5 Ave 2850 5773 8726 11678 2742 5459 8206 10944
Max 2920 5842 8840 11824 2775 5542 8292 11047
Min 2838 5734 8676 11620 2707 5420 8133 10867

45 Ave 2855 5791 8739 11705 2754 5495 8262 11026
Max 2872 5841 8792 11789 2788 5564 8346 11098

Note: ρ denotes the penalty for delay in arrival at the request pickup location ($/hr)
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5.4 Conclusions

Recently, Basu et al. (2019) proposed a blocking bandits problem wherein the arm

becomes “blocked” upon play and remains unavailable for the subsequent rounds

defined by the delay. As one of the extensions of the framework, Basu et al. (2021)

proposed contextual blocking bandits problem wherein the reward obtained is context-

dependent and the delays are context-independent. In this study, we extend these

frameworks by considering that both rewards and delays are linearly dependent on

the context. The proposed extension allows the consideration of a very large number

of contexts in a scalable manner. We also propose an upper confidence bound policy

(called linCBB-UCB) to solve the linear contextual blocking bandits with context-

dependent delays problem.

We apply this framework to the dynamic truckload pickup and delivery problem

while considering fleet electrification. We consider that the requests are a result of

successful procurement in spot truckload markets, and only request allocations need

to be made via a central command. Due to the larger size of electric freight vehicles

and longer trip distances, the fleet electrification challenges of long recharging times

and limited compatible charging infrastructure are more profound in our case. As a

result, the recharging decisions must be considered in route construction as well as

request allocation.

The computational experiments are considered on a synthetic service area of
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200×200 miles which contains five uncapacitated charging stations. In the nominal

scenario, we consider that the fleet consists of 10 electric freight vehicles (EFVs),

and the request allocation decisions are made by a central command while incur-

ring distance-based, time-based, recharging, and delay costs. The cumulative reward

represents the number of requests for which the least cost EFV is chosen (after the

costs are realized), irrespective of their availability status. The performance of the

linCBB-UCB algorithm is compared against a greedy allocation policy (called greedy-

AD) that myopically selects the best available EFV which minimizes arrival delay at

the pickup location. The computational experiments elicit that cumulative rewards

increase faster than linearly suggesting a sub-linear regret. Whereas for greedy-AD

policy, cumulative rewards in a sub-linear manner, indicating poorer performance.

For T = 20, 000 total requests and a fleet size of 10, linCBB-UCB obtains 7.5% more

rewards than greedy-AD policy, on average. Sensitivity analyses on fleet size and

arrival delay penalty are also conducted.

There are several ways in which the current research can be expanded. The

current study does not incorporate the relocation feature when an EFV is not serving

a request. The impact of the feature could be significant especially as more service

request history is accumulated. A minor extension could be incorporating multiple

charges between two key locations which become essential for larger service areas. An

extension to a combinatorial bandit setting could allow the selection of multiple arms

at a single instance which could result in improved fleet management.
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6 Summary and Directions for Future Research

The transportation industry is on the cusp of a revolution. Within the past

decade, the industry saw the rise of electric vehicles, connected vehicles and infras-

tructure, bike share systems and shared micro-mobility, ride-hailing/ride-sharing plat-

forms, and crowdsourced delivery. And now, we head to a future where automated

vehicles, autonomous delivery robots, and drone-based deliveries will be a reality. In

addition to these technologies being potentially transformative for human life, they

also hold an opportunity to aid efforts in realizing national priorities like reducing

greenhouse gas emissions and congestion. The use of transportation network model-

ing and decision analytics can help us realize the most benefit from the interactions

of these technological innovations with the transportation networks. Uncertainty is

intrinsic to such systems due to natural stochasticity or insufficient information. In-

corporating and tackling uncertainty in network modeling formed the core of this

dissertation. More narrowly, this dissertation discussed decision-making in freight lo-

gistics systems utilizing emerging transportation technologies like electric-unmanned

aerial vehicles and electric trucks. More specifically, through four application scenar-

ios, the planning and real-time resource allocation in such systems are studied while

considering different sources of uncertainty.

Chapter 2 discussed a network planning problem utilizing unmanned aerial ve-
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hicles (UAVs) (or drones) equipped with automatic external defibrillators (AEDs) to

combat out-of-hospital cardiac arrests. The chapter presented a robust multi-period

facility location model for locating drones to maximize service coverage. The cover-

age of a demand location was defined using a coverage reliability constraint modeled

using a chance constraint. The primary source of coverage uncertainty for drones was

due to environmental factors, namely wind speed and direction. The uncertainty was

captured using two methodological frameworks. Primarily, the uncertainty was cap-

tured using the robust optimization (RO) framework utilizing polyhedral uncertainty

sets. In addition to their superior computational tractability, polyhedral uncertainty

sets were chosen also because controlling the conservatism (using a budget of uncer-

tainty) in decision-making is very intuitive. Secondly, the planning period is split into

multiple smaller periods to disaggregate some uncertainty that arises from seasonality

to aid RO in tackling them.

The computational analysis was conducted for the Portland Metro area. The

results showed that extending to a multi-period formulation, rather than using average

information in a single period, was particularly beneficial for shorter response times

or when uncertainty in coverage probabilities was not considered. Accounting for

uncertainty in decision-making improved coverage significantly while also reducing

variability in simulated coverage, especially when response times are longer. Going

from a single-period deterministic formulation to a multi-period robust formulation

boosts the simulated coverage values by 57%, on average.
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The study made several assumptions, like independence in coverage probabili-

ties and that all facilities in the designated radius respond to an event. For future

research, correlation in coverage probabilities should be considered to improve model

realism and performance. Additionally, queue-based models could be explored for

considering the dynamic nature of cardiac events. From a computational standpoint,

new algorithms should be explored to improve tractability especially when the number

of periods is larger.

Chapters 3 and 4 discussed network planning problems along with their real-time

operational component. Both chapters utilized drones as a means to deliver package

items to the customers in two different contexts.

Chapter 3 presented an application consisting of a logistics company expanding

its delivery options to include instant delivery (for example, within 30 minutes). It

was considered that requests for instant delivery could only be satisfied using drones,

while regular requests (for example, same-day or next-day) could be satisfied using

either drones or conventional delivery trucks. During the planning stage, the com-

pany needs to decide which facilities to upgrade to accommodate new infrastructure

and inventory due to the new fulfillment option. Once the company sets up the in-

frastructure, the operational stage begins wherein the customer starts placing orders

in an online manner. The central command dynamically made decisions regarding if

and from where the request needs to be fulfilled to maximize the cumulative profits

while considering resource budget constraints at facilities. The planning stage prob-
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lem was formulated as a mixed-integer linear program. A multi-armed bandits-based

(MAB) methodology was adopted for the operational stage wherein the uncertainties

arising from stochasticity in demand, request type, and drone battery consumption

were considered.

The computational analysis was carried out first on the standard p-median in-

stances. The proposed MAB methodology was compared to three other heuristics

and resulted in 7% additional profit from the second-best approach, on average. A

sensitivity analysis elicited that all four methodologies were able to effectively tackle

increasing variation in demand. Then, an analysis was carried out for the Portland

Metro area for a larger operational period. The MAB methodology again provided the

best performance, beating the second-best approach by as much as 25%, on average.

Chapter 4 presented an application consisting of an agency planning for short-

term disaster response by prepositioning relief packages pre-disaster and carrying out

their distribution post-disaster. This problem was formulated as a two-stage problem,

similar to Chapter 3, by considering the planning stage to be the pre-disaster phase

and the operational stage to be the post-disaster phase. A prime difference here is

that instead of maximizing profits, the agency here aims for the equitable distribution

of scarce resources. As the primary motive of post-disaster humanitarian logistics is

saving human lives, only horizontal equity was considered here. The fairness (or,

equity) in distribution was modeled using the concept of envy. During the planning

stage, distributions centers are set up and resources allocated to them for post-disaster
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distribution. The incidence of the disaster triggers the operational stage, where the

agency strived to achieve an envy-free resource distribution in the service area in a

dynamic setting.

Similar to Chapter 3, the planning stage was modeled as a mixed-integer linear

program to achieve fair distribution in a static sense. A new MAB methodology

(called, equitable linear contextual bandits with knapsacks, or E-linCBwK) with an

equity-based objective for the operational stage wherein the uncertainties arising from

stochasticity in demand were considered. A critical component of the E-linCBwK was

deciding which requests to deny to ensure equity while distributing scarce resources.

This was captured using the non-skipping probabilities for requests arriving from each

relief shelter, which were updated dynamically as more information was available.

Additionally, the performance regret bound for the E-linCBwK is also derived.

The computational analysis was conducted on a case study based in the Portland

Urban Metro area, motivated by the efforts undertaken by the state of Oregon to

improve seismic resilience against the expected magnitude 9.0 earthquake off the

Pacific coast. The analysis showed that E-linCBwK performs much better than the

two other heuristics. The importance of introducing non-skipping probabilities was

highlighted by comparing E-linCBwK with its version that did not allow request

skipping. The results show that the terminal total deviation from fair allocation is

higher in the “No Skip” version by an order of magnitude. Sensitivity analyses on

the variation in post-disaster demand distributions, fairness update frequencies, and
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the number of opened DCs showed that E-linCBwK consistently achieved terminal

total deviation from the fair allocation which was less than 3.5% of the total number

of packages distributed for all cases.

Chapters 3 and 4 proposed a novel two-stage methodology and a new multi-armed

bandit problem. While some of the limitations in Chapter 3 are tackled in Chapter 4,

there are still avenues for improvement. A primary assumption in both the studies is

that enough drones are available such that drone availability is not an issue. However,

for practical applications, it is important to consider such capacity constraints. Chap-

ter 4 explicitly considered stratification of resource constraints by each facility in the

operational stage, however, the regret bound is only derived until the first instance

of constraint violation. Future research in multi-armed bandits should dedicate ef-

forts to effectively incorporating stratified resource budget constraints. Specifically

for Chapter 4, a drone-only infrastructure is considered. However, as time passes,

road infrastructure is recovered and therefore, could provide new avenues for resource

distribution.

Chapter 5 discussed truckload allocation for the dynamic pickup and delivery

problem. We considered that a carrier operated a fleet of electric trucks in a region

and the central command was tasked with allocating the truckload move requests,

successfully procured from spot markets, in the region. A new MAB framework

(called, linear contextual blocking bandits, or linCBB) was proposed for the truckload

allocation problem that can handle the large context space in a scalable manner
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while explicitly considering unavailability constraints. The challenges related to fleet

electrification made it imperative to consider recharging decisions while routing and

load allocation. The routing affected the context for linCBB, which in turn affected

the rewards and the unavailable times. An upper confidence bound (UCB) algorithm

was proposed to solve the linCBB problem.

The computational analysis was conducted on a synthetic service area of size

200×200 miles. The request allocation decisions are made by a central command while

incurring distance-based, time-based, recharging, and delay costs. The performance

of the linCBB-UCB algorithm was compared against a greedy allocation policy (called

greedy-AD) that myopically selects the best available electric truck which minimizes

arrival delay at the pickup location. The computational analysis elicited that linCBB-

UCB achieved a sub-linear regret and obtained 7.5% more rewards than the greedy-

AD policy, on average. Sensitivity analyses on fleet size and arrival delay penalty were

also conducted. There are several opportunities to expand this research. Firstly, the

relocation feature is not modeled when the electric trucks in not actively serving a

request. This could have important implications especially as more service request

history is accumulated. Further, a combinatorial bandit setting could be explored

as it allows the selection of multiple arms at a single instance which could result in

improved fleet management.
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T. Bektaş, P. P. Repoussis, and C. D. Tarantilis. Chapter 11: Dynamic vehicle routing

problems. In P. Toth and D. Vigo, editors, Vehicle Routing: Problems, Methods,

and Applications, Second Edition, pages 299–347. SIAM, 2014.

A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Op-

erations research letters, 25(1):1–13, 1999. doi: 10.1016/S0167-6377(99)00016-4.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton uni-

versity press, 2009. doi: 10.1515/9781400831050.

D. Bertsimas and M. Sim. The price of robustness. Operations research, 52(1):35–53,

2004. doi: 10.1287/opre.1030.0065.

D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust

optimization. SIAM review, 53(3):464–501, 2011. doi: 10.1137/080734510.

N. Bishop, H. Chan, D. Mandal, and L. Tran-Thanh. Adversarial blocking bandits.

Advances in Neural Information Processing Systems, 33:8139–8149, 2020.

C. Boonmee, M. Arimura, and T. Asada. Facility location optimization model for

emergency humanitarian logistics. International Journal of Disaster Risk Reduc-

tion, 24:485–498, 2017.

S. Budge, A. Ingolfsson, and D. Zerom. Empirical analysis of ambulance travel times:

the case of calgary emergency medical services. Management Science, 56(4):716–

723, 2010. doi: 10.1287/mnsc.1090.1142.

188



A. M. Campbell, D. Vandenbussche, and W. Hermann. Routing for relief efforts.

Transportation science, 42(2):127–145, 2008.
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