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ABSTRACT

An abstract of the dissertation of Jennifer Ann Noll for the Doctor of Philosophy in 

Mathematics Education presented July 12,2007.

Title: Graduate Teaching Assistants’ Statistical Knowledge for Teaching

This dissertation explores graduate teaching assistants’ (TAs’) statistical 

knowledge for teaching. Data collection methods that enabled the exploration of TA s’ 

statistical knowledge for teaching include: (a) a task-based web survey administered to 

68 TAs from 18 universities across the United States; and, (b) a series of three task- 

based interviews with a subset of five TAs from the larger survey population. Through 

qualitative research methods consistent with a constant comparative approach (Glaser 

and Strauss, 1967), I investigated the ways in which TAs reason about sampling tasks, 

and how they think about teaching and student learning in relation to sampling ideas.

Building on past research in statistics education on K-12 and tertiary students, and 

K-12 teachers, I present conceptual frameworks that characterize how TAs’ reason 

about sampling concepts within experimental data and statistical inference contexts. 

Specifically, I discuss: (1) tensions TAs’ appeared to experience between their 

knowledge of theoretical probability models and their expectations of experimental 

data; and, (2) a spectrum of reasoning about statistical inference that ranged from no 

conception of repeated sampling to strong conceptions of repeated sampling. Using 

research on teacher knowledge, and the construct of mathematical knowledge for 

teaching (Ball, Lubienski, & Mewborn, 2001), I propose a model for what statistical
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knowledge for teaching sampling concepts might look like. I use this model to discuss 

the statistical knowledge for teaching demonstrated by the TAs in this study and to 

suggest areas in need of improvement. I discuss the implications of research on TAs’ 

statistical knowledge for teaching on graduate and undergraduate education and 

directions for future research in this area of stochastics education.
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CHAPTER 1 

INTRODUCTION

Increasingly, introductory college statistics is required for many majors and 

enrollment in introductory college statistics courses has been steadily increasing for 

the past decade (Luzter, Maxwell, & Rodi, 2000). Many college students will not have 

had any exposure to statistics in their K-12 curriculum because, although efforts have 

been underway to include statistics in the curriculum (National Council of Teachers of 

Mathematics [NCTM], 2000), only fairly recently have these efforts taken root. As 

more non-mathematics and non-statistics majors enroll in introductory statistics 

courses, teachers are faced with the challenge of teaching students that have 

increasingly diverse educational backgrounds. Students who enter introductory college 

statistics classes with an insufficient knowledge base are likely to experience difficulty 

comprehending the different statistical tests and procedures required in such a course. 

In addition, many undergraduate statistics courses are taught by mathematics or 

statistics graduate teaching assistants (TAs) (Luzter, Maxwell, & Rodi, 2000). While 

TAs teaching undergraduate statistics courses is not inherently problematic, it is not 

uncommon for TAs who majored in mathematics as undergraduates to enter graduate 

school having never taken a statistics course. Also, many TAs receive little 

preparation, orientation, or professional development before they begin their first 

teaching assignments (Belnap, 2005; Speer, 2001).
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Undergraduate students with insufficient knowledge base and graduate TAs with 

insufficient background and experience represent two immediate challenges in the 

teaching of introductory statistics at colleges and universities. Although the focus of 

this research study is to consider in detail the second issue -  that of TA background 

and experience, let me briefly address the first issue -  that of student knowledge base. 

While the number of students taking introductory statistics is on the rise, the general 

population remains, for the most part, statistically illiterate1 (Ben-Zvi & Garfield,

2004). The problem of statistical literacy has been addressed in recent years by NCTM 

(2000), which called for the inclusion of statistics in K-12 curriculum. The 

introduction of statistics into the K-12 mathematics curriculum should aid in the 

promotion of statistical literacy among the general population and help prepare 

students entering college for introductory statistics classes. However, it will take time 

before such curricular changes are implemented in all schools, and more time still for 

new generations of students to graduate having adequate statistics backgrounds.

At the college level, statisticians and statistics educators, such as Cobb and Moore 

(1997), and Cobb (1998), have called for reform in both the structure and content of 

introductory statistics courses. Cobb and Moore argue that statistics is fundamentally 

different than mathematics. Specifically, Cobb suggests that, “[statistics is the science 

of data production and data analysis, and data analysis is an interpretive activity, albeit

1 Statistical literacy is generally defined as the ability to organize statistical information, read 
information presented in tables and graphs, understand basic statistical concepts, and critically analyze 
statistical information typically found in newspapers and magazines. Thus, statistical illiteracy suggests 
the inability to process and understand basic statistical information. A more thorough explanation of 
statistical literacy will be provided in Chapter 2.
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one that seeks to orient itself within a rigorous deductive framework” (Cobb, 1998, p. 

3). Where mathematics can be abstracted to the point at which it is void of context, 

statistics cannot be stripped of its context without losing meaning. According to Cobb 

and Moore, this fundamental difference between statistics and mathematics has major 

implications for teaching statistics. In particular, introductory statistics should not be 

taught the way mathematics is often taught, devoid of context and focused on 

theorems, proofs, and procedures. Cobb and Moore argue that statistics must be taught 

with context in the forefront, and statistics courses should be focused on data 

production and analysis rather than abstracting theorems and statistical tests. But how 

are statistics courses being taught and by whom? This question points to the second 

fundamental challenge in teaching introductory college statistics courses -  teacher 

knowledge and experience.

This study addresses the issue of teacher knowledge and experience. Specifically, 

the primary purpose of this study is to investigate TAs’ statistical knowledge for 

teaching. In order to successfully implement reforms and teach introductory statistics 

courses in ways that serve the needs of the student body and the greater population, we 

need qualified teachers with an interest in stochastics2 education and a sound 

understanding of the subject matter. Herein lies a very significant challenge for 

statistics educators for several reasons. First, many introductory statistics courses are 

taught by TAs with mathematics, rather than statistics backgrounds, who have little 

experience teaching, and more pressing priorities as graduate students. Second, there

21 use stochastics to refer to both probability and statistics, in the manner of Shaughnessy (1992).
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tend to be few opportunities for TAs to participate in professional development for 

their teaching. Third, we know very little about beginning TAs’ statistical knowledge 

for teaching. The most we can assume is that they are likely to teach in ways similar to 

how they were taught, and these methods may be at odds with current reform efforts.

1.1 Origin of R esearch Q uestions

There are many efforts underway to better understand student thinking, and to improve 

and reform the content of introductory college statistics courses (Chance, delMas, & 

Garfield, 2004; Cobb, 1993; Cobb & Moore, 1997; Ternpelaar, 2002). For example, 

Chance, delMas, and Garfield (2004) investigated physical and computer simulations 

to provide students experience with authentic data production and analysis; Cobb 

(1993) reviewed a number of experimental statistics curricular projects. These 

research efforts point to ways that undergraduate statistics courses can be restructured 

in order to improve students’ statistical thinking and development. The restructuring 

of undergraduate statistics courses requires new ways of teaching. Yet, little research 

has been done to address the preparation of teachers of college statistics. In order for 

statistics reform efforts to be successful, a greater understanding of teachers’ 

conceptions is needed. Although this knowledge base is growing for K-12 teachers 

(Canada, 2004; Makar & Confrey 2004; Mickelson & Heaton, 2004; Watson, 2001; 

Watson & Moritz, 1997), it is lacking for teachers of undergraduate statistics. For 

instance, there are no studies about TAs’ knowledge of statistics or how to teach 

statistics. Improvement and reform of undergraduate statistics courses can only evolve 

so far without a consideration of the role of TAs.
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In thinking about ways to improve undergraduate statistics education, it is clear 

that the role of TAs is both a necessary topic to consider and a wide-open topic for 

research. Considering TAs’ role in undergraduate statistics education, I wondered 

what statistical knowledge for teaching is necessary and sufficient for teaching in a 

manner that supports student learning and achievement. In order to narrow my field of 

study, I decided to concentrate on TAs’ statistical knowledge for teaching sampling 

concepts3. My specific research questions are:

1. How do TAs understand sampling concepts? In particular,

a. How do TAs conceptualize samples, the act of sampling and sampling 

distributions?

b. How do TAs conceptualize the connections between sampling and 

statistical inference?

c. How do TAs conceptualize the connections between probability and 

sampling concepts?

2. What knowledge base do TAs have of content and students? That is, what 

knowledge do TAs have of common student solution strategies or 

difficulties?

To be clear, all of these research questions address TAs’ statistical knowledge for 

teaching with respect to the concepts of sampling. The goal of this research is to 

characterize TAs’ statistical knowledge for teaching sampling processes by

The reason for choosing sampling concepts is discussed shortly.
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constructing an explanation for how TAs reason about sampling, connections they 

draw between sampling and other areas of the statistics curriculum, and how they 

understand student thinking in this area. My focus on sampling concepts is intentional 

and significant. Sampling concepts are foundational and motivate statistical inference 

processes. Further, sampling concepts are abstract and difficult to mentally unpack, 

making them fertile ground for investigating TA reasoning in this domain. I elaborate 

further on the importance of studying sampling in the next section.

The research questions presented here aim to unite research on teacher knowledge, 

research on graduate teaching assistants, and research on probability and statistics 

education in the domain of sampling. It is reasonable to wonder if it makes sense to 

unite these seemingly distinct research areas and if this union has any importance or 

relevance to mathematics education. In the next section, I address the rationale for 

tying together research on undergraduate statistics education, in the domain of 

sampling with research on TAs’ knowledge.

1.2 Rationale

1.2.1 Why Study Undergraduate Statistics Education?

Unfortunately, much of the research literature indicates that many adults are 

statistically illiterate and experience difficulty making informed decisions when 

confronted with quantitative information (Ben-Zvi & Garfield, 2004; The National 

Council on Education and the Disciplines [NCED], 2001). Issues of equity are 

intimately tied to statistical literacy, and statistical literacy is a necessary component 

for equal participation in a democratic society (NCED, 2001). Understanding public
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issues, managing personal finances, and making personal health care decisions all 

require some level of statistical competence. In addition, many professions and higher 

paying jobs require statistical knowledge. At the post-secondary level more and more 

students are required to take introductory statistics in their degree programs. 

Enrollment in elementary statistics courses (non-calculus based) at four-year colleges 

and universities in the United States rose 18% from Fall of 1995 to Fall of 2000, and 

by 45% from 1990 levels (Luzter, Maxwell, & Rodi, 2000).

Undoubtedly the increased use of statistics in different careers, the increased 

enrollment in introductory statistics at the collegiate level, the increased use of 

statistics in today’s media, and issues of equity constitute four major driving forces 

behind the mathematics education community’s recent concern with the teaching and 

learning of probability and statistics. Ben-Zvi & Garfield (2004) suggest that, “[bjeing 

able to properly evaluate evidence (data) and claims based on data is an important skill 

that all students should learn as part of their educational programs” (p. 8). Such 

concerns over statistical literacy have prompted the NCTM (2000) to place increased 

attention on the promotion of statistical literacy and stochastics education in The 

Principles and Standards fo r  School Mathematics. In fact, NCTM echoes Ben-Zvi and 

Garfield’s argument:

Statistics are often misused to sway public opinion on issues or to 
misrepresent the quality and effectiveness of commercial products.
Students need to know about data analysis and related aspects of 
probability in order to reason statistically—skills necessary to becoming 
informed citizens and intelligent consumers (p. 47).
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Yet, statistical ideas can be counterintuitive, students may have difficulty with the 

underlying mathematics, and students may rely on faulty intuitions when solving 

problems (Ben-Zvi & Garfield, 2004). Misconceptions in reasoning about probability 

and statistics are quite common even among those with considerable statistical training 

(Kahneman & Tversky, 1972; Konold, Pollatsek, Well, Lohmeier, & Lipson, 1993; 

Tversky & Kahneman, 1971). When one considers the increased use of statistics and 

data in today’s society, the rise in statistics enrollment at colleges and universities, the 

importance of statistical literacy for equal participation in a-democratic society, and 

the challenges of teaching statistics, it is evident that research efforts are critically 

needed in the area of stochastics education.

1.2.2 Why Focus on Sampling Concepts?

Statistical inference is the central focus for college-level introductory probability 

and statistics courses. Statistical inference is the process by which conclusions about a 

particular population are drawn from evidence provided by a sample of the population 

(Pfannkuch, 2005). Using statistical inference to make conclusions about different 

populations is commonplace in all fields today. For instance, statistical inference is 

used in medical science to make predictions about disease or surgeries, voter polls to 

make predictions about a candidate’s success, and insurance to make predictions about 

accident rates.

Clearly statistical inference is an important skill for data-driven societies, and 

therefore is a key topic in introductory statistics courses. Yet, research suggests that
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there are substantial gaps in students’ understanding of statistical inference (Chance, 

delMas, & Garfield, 2004; Pfannkuch, 2005). Part of the difficulty lies in students’ 

ability to make connections between probability models and statistical inference. In 

order for students to make salient connections between probability and statistical 

inference, they need a strong foundational understanding of distribution, variability, 

samples, and sampling distributions (Chance, delMas, & Garfield, 2004; Pfannkuch,

2005).

The discussion above suggests that an understanding of sampling concepts and 

processes is necessary for developing a robust understanding of statistical inference.

Yet, sampling concepts can be quite difficult because they contain several layers of 

abstraction that must be understood before connections can be made between sampling 

and statistical inference techniques. Before discussing some of the difficulties in 

understanding sampling concepts, I briefly elaborate on what I mean by the 

terminology sampling concepts and processes. When I refer to sampling concepts and 

processes I am referring to samples, the act of sampling, sampling distributions, and/or 

measures of center (such as mean, median, and mode) and spread (such as range, 

variance, and standard deviation) associated with particular samples or sampling 

distributions. A sample is defined as a subset of a population. Statistical inferences 

made about a population are only reliable if the information obtained in the sample is 

representative of the population from which it was drawn. A typical way to collect 

representative samples is through the process of random sampling, meaning each 

element of the population has an equally likely chance of being included in the
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sample. Also, smaller samples tend to be more variable (in the sense of spread around 

the mean) and thus have the potential to be less representative of the population. Thus, 

unpacking the concept of sample in relation to statistical inference entails knowledge 

of the definition, as well as understanding how to find representative samples and the 

consequences of obtaining biased samples.

The distribution o f a sample represents the outcomes for a particular sample drawn 

from a population. For example, suppose a population consists of 200 introductory 

college statistics students from a large lecture hall course. Pick a random sample of 15 

students from this class and note their scores on the midterm exam. The sample 

consists of 15 students’ test scores. The graph shown in Figure 1 is a representation of 

the distribution of those 15 students’ test scores.

Figure 1: Distribution of a Sample
Test Scores m u
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Sample_of_15 Jntroductory_Statistics_T  est_Scores

This information could be useful for finding the mean test score for the 15 students 

and/or a measure for how much each student deviated from the mean score. Thus, an 

understanding of, and an ability to compute, measures of center, shape, and spread is 

necessary in order to reason and draw inferences about the distribution of a sample.

Although statistical inferences are often based on information obtained from a 

single sample, the theory behind this process is based on the idea of repeated sampling
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and the image of a sample as a particular case in a group of similar cases (Saldanha, & 

Thompson, 2003). Repeated sampling is necessary for the generation of a sampling 

distribution. A sampling distribution is the distribution of sample statistics (such as 

means, proportions, counts, etcetera) from all possible samples of size n drawn from 

the population. For instance, consider the example used in the preceding paragraph of 

the 200 introductory college statistics students. Suppose the sampling process is 

repeated over and over again -  that is, random samples of size 15 are taken from this 

population. The mean test score for each sample is computed and the sample is 

replaced back into the population before sampling again. Once all possible 

combinations of 15 students are collected and their mean scores are marked, the 

distribution of those means represents the sampling distribution for this population of 

introductory college students’ mean test scores.

Sampling distributions have two important properties: the mean of the sampling 

distribution is equal to the mean of the population, and the standard deviation of the 

sampling distribution is equal to the standard deviation of the population divided by 

the square root of the sample size. For the introductory statistics class example, one 

would not bother to find all possible sample test scores of size 15 from the 

introductory statistics class because the population mean and standard deviation (i.e., 

the mean test score and standard deviation for the class of 200 statistics students) can 

actually be computed. However, in most situations it would be impossible to compute 

the true population parameters. Instead, population parameters must be estimated by a 

single sample or several samples, so properties of sampling distributions are important

11



for understanding how those estimates are derived. Sampling distributions are 

inherently challenging because they require the act of repeated sampling and creating 

a distribution of sample statistics, such as the mean. Further, examining measures of 

center for a sampling distribution involves the added abstraction of computing the 

mean for a distribution of means, and examining standard deviation requires an 

understanding of how to compare standard deviations between samples and a 

recognition that the standard deviation of the sampling distribution is less than the 

standard deviation of the population.

Knowledge of repeated sampling, sampling distributions, and their properties sets 

the stage for understanding formal statistical inference procedures, such as computing 

confidence intervals. Confidence intervals provide an interval estimate for a 

population parameter, have a measure of reliability associated with their estimate, and 

are computed on the information provided by a single sample. The reliability measure 

(confidence level) for the confidence interval is based on the act of repeated sampling 

and is defined as “the relative frequency with which the interval estimate encloses the 

population parameter when the estimator is used repeatedly a very large number of 

times” (McClave & Sincich, 2000, p. 282).

The preceding paragraphs provide an outline of: (a) how I use sampling 

terminology; (b) what distinctions exist between relevant terms; (c) the conceptual 

complexity of sampling; and, (d) the importance of sampling concepts for building the 

foundations of statistical inference. Without an understanding of the sampling process, 

the distinction between the distribution of a sample and a sampling distribution, and
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variability within and between samples, it is unlikely that students will develop 

informal or formal understandings of statistical inference.

Given that an understanding of the concepts of sampling are foundational to 

understanding statistical inference and that these concepts are rather complex, it is 

important to investigate TAs’ reasoning and understand how they unpack these 

concepts. Specifically, how do TAs specify the important aspects of sampling and in 

what ways do they connect sampling concepts to other aspects of the statistics 

curriculum? How do TAs articulate ideas of sampling and what do they know about 

student thinking in this area?

1.2.3 Why Study Mathematics Graduate Teaching Assistants?

Introductory college statistics is likely to be the first exposure many students have 

to statistics. Students will form their attitudes and beliefs about the use of statistics 

from these beginning courses. In addition, introductory statistics courses are a 

recruiting ground for future statisticians (Moore, 2005). Thus, these introductory 

courses serve a critical function. At many universities, TAs teach the bulk of the 

introductory statistics courses or teach recitation sections for large lecture classes. In 

fact, the 2000 CBMS survey revealed that in the United States, TAs taught 21% and 

24% of elementary statistics students in Ph.D. granting statistics departments and 

mathematics departments, respectively. TAs taught 43% of introductory statistics 

sections consisting of less than 36 students (Lutzer, Maxwell, & Rodi, 2000). Further, 

many TAs will be future professors teaching the next generation of mathematicians,
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statisticians, and mathematics teachers. Thus, TAs have the potential to play a critical 

role in undergraduate statistics education and the promotion of statistical literacy 

among college students.

As TAs serve a critical role in undergraduate statistics education, successful efforts 

toward reforming undergraduate statistics and mathematics courses cannot be 

achieved without the inclusion of TAs. Yet, research on TAs’ knowledge of the 

teaching and learning of mathematics is sparse at best. Speer, Gutmann, & Murphy 

(2005) argue that teachers’ teaching practices form early in their careers, and so there 

exists a need for research on TAs’ knowledge, as well as the implementation of 

professional development programs for fostering good teaching practices among TAs. 

The importance of the introductory statistics course in promoting statistical literacy, 

the complex nature of sampling concepts, and the central role of TAs in the teaching 

of introductory statistics provides a strong case that research addressing TAs’ 

statistical knowledge for teaching sampling concepts is an important topic for the 

mathematics education community to consider.

In summary, the elevated role that statistics is given in our increasingly data driven 

society makes it an important educational topic of research. Given that the sampling 

process is fundamental to basic statistical reasoning, it is important that this topic 

receive attention in the research literature. Furthermore, given that universities and 

colleges have an important role to play in educating students and preparing them for a 

variety of careers, it is natural to look toward improving college teaching. Studying
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TAs’ statistical knowledge for teaching of sampling processes is an important first 

step in making improvements in the teaching of undergraduate statistics.

1.3 C hapter A bstracts

In Chapter 2 ,1 provide a review of the background theories and literature relevant 

to my research project. Chapter 2 is presented in three sections. In Section 2 .1 ,1 

discuss my guiding philosophy of learning -  radical constructivism, and I discuss the 

impact of this philosophy on my research. In Section 2 .2 ,1 review the research 

literature on stochastics education. Specifically, I discuss the constructs of statistical 

thinking, statistical literacy, and statistical reasoning. These constructs are essential 

features that serve to frame my discussion of statistical knowledge for teaching. 

Statistical literacy provides a picture of the statistical knowledge necessary for 

participation in a democratic society. Statistical thinking illuminates “normative” 

modes of statistical inquiry; that is, the type of thinking employed by statisticians in 

their work. Statistical reasoning provides insight into how individuals reason about 

statistics, and suggests models of developmental stages. In Section 2 .3 ,1 address 

research on teacher knowledge. There is little research on TAs, and no prior research 

on statistics TAs. However, I examine research on teacher knowledge, and 

frameworks for successful teaching and professional development. Research on 

teacher knowledge serves as a useful basis for investigating TAs’ knowledge. Finally, 

I meld research on statistics education with research on teacher knowledge as a means 

for framing this research on statistical knowledge for teaching.

15



In Chapter 3 , 1 provide a discussion of my research methodology, study design, 

and analysis procedures. This chapter is presented in five sections. In Section 3 .1 ,1 

provide a general overview of my data collection methods and rationale for those 

methods. Specifically, I address how the different elements o f  Chapter 2 work together 

to frame my study. In Section 3 .2 ,1 discuss the design of the research instruments 

used in this study. In Section 3 .3 ,1 discuss participant selection methods. In Section

3 .4 ,1 discuss my data analysis methods. In Section 3 .5 ,1 address issues of validity in 

this study.

In Chapter 4 , 1 present the first of three themes that emerged from this research. A 

major finding of this study is that TAs experienced difficulties reasoning about 

experimental data. Specifically, TAs appeared to experience tension between their 

knowledge of theoretical models and their expectations for experimental data. In this 

Chapter I discuss the nature and source of this tension and the ways in which TAs 

tried to resolve their tensions. The Chapter is presented in two sections. In Section 4.1, 

I provide a conceptual analysis and framework for TAs reasoning with respect to two 

related tasks -  The Prediction and Real/Fake Tasks4, which entail sampling from a 

known population, and examining the likelihood of four experimental sampling 

distributions. Also, I use this framework to discuss how the TAs in this study reasoned 

about these tasks. In Section 4 .2 ,1 provide a conceptual analysis and framework for 

TAs reasoning with respect to the Mystery Mixture Task5, which entails making

The Prediction and Real/Fake Tasks can be found in the appendix. 
s The Mystery Mixture Task can be found in the appendix.
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decisions from four empirically collected sampling distributions. I use this framework 

to discuss how the TAs in this study reasoned about that task. The conceptual 

frameworks developed in this chapter are end products to this study and suggest a 

model of how TAs may reason and think about experimental data in a sampling 

situation.

In Chapter 5 ,1 present the second of three themes that emerged from this research. 

A second major finding of this study is that the TAs in this study appeared to reason 

about certain sampling and statistical inference tasks along a spectrum, ranging from 

no connection to stronger connections of a long-term relative frequency interpretation 

of probability. Also, TAs reasoned differently along this spectrum depending on the 

context. This Chapter is presented in three sections. In Section 5 .1 ,1 provide a general 

overview of two different interpretations of probability -  a frequency and a subjective 

interpretation. I discuss these interpretations with respect to two different tasks used in 

this study -  The Unusual Sample and Gallup Poll Tasks6, which entail investigating 

samples of different size and confidence intervals. In Section 5 .2 ,1 provide a 

conceptual analysis and framework for the Unusual Sample Task and discuss TAs’ 

responses to the task in light of the framework. In Section 5 .3 ,1 provide a conceptual 

analysis and framework for the Gallup Poll Task and analyze TAs responses with this 

framework. The conceptual frameworks developed in this chapter are end products to 

this study and suggest a model of how TAs may reason and think about the

6 The Unusual Sample and Gallup Poll Tasks can be found in the appendix.
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connections between sampling and probability, and sampling, probability and 

statistical inference.

In Chapter 6 ,1 present the final theme of this research -  the implications of TAs’ 

subject matter knowledge and knowledge of content and students on their statistical 

knowledge for teaching. The chapter is presented in three sections. In Section 6 .1 ,1 

present a model for what necessary statistical knowledge for teaching sampling topics 

might look like. This model is built from the existing research literature7 on stochastics 

education and teacher knowledge, as well as the findings presented in Chapters 4  and 

5. In Section 6 .2 ,1 analyze the data in light of this model and discuss the types of 

knowledge the TAs in this study demonstrated. In Section 6 .3 ,1 briefly address the 

issue of TAs’ beliefs. Beliefs and knowledge are intimately linked, and although my 

primary interest was in TAs’ knowledge for teaching sampling, particular TAs’ beliefs 

about teaching and learning came through strongly in this study.

In Chapter 7 , 1 present the overall findings from this study and concluding 

remarks. Chapter 7 is presented in four sections. In Section 7 .1 ,1 discuss the overall 

findings and conclusions. In Section 7 .2 ,1 discuss the study’s contributions and 

implications. In Section 7 .3 ,1 discuss the study’s limitations. In Section 7 .4 ,1 discuss 

directions for future research on statistics TAs.

This literature is discussed in Chapter 2.
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CHAPTER 2 

BACKGROUND THEORY AND LITERATURE REVIEW

The purpose of this chapter is to elaborate on the theoretical perspectives and 

background literature that inform and frame my research, both in design and analysis. 

This chapter is presented in three sections. In Section 2 .1 ,1 discuss the overarching 

philosophical position that guides my research -  radical constructivism. This 

philosophical position serves to orient my beliefs about the goals and purposes of 

stochastics education, and it provides a model for conducting research, particularly 

with respect to data collection and analysis methods. In Section 2 .2 ,1 review relevant 

research literature on stochastics education. In particular, I discuss three constructs -  

statistical thinking, statistical literacy and statistical reasoning -  in relation to 

sampling that frame this study on a detailed level. In Section 2 .3 ,1 address research on 

teacher knowledge. In general, there is little research on TAs. However, a review of 

research on teachers and teaching is particularly important because there are many 

similarities between beginning TAs and teachers. Thus, the research on teacher 

knowledge provides a foundation for examining TAs’ knowledge.

2.1 Radical Constructivism

At the meta-level, a radical constructivist theory of learning guides this study. A 

central tenet of radical constructivism is that individuals construct their own 

knowledge of the world through their experiences. Von Glasersfeld (1990, 1995) 

traces the roots of radical constructivism to skeptics of the philosophical tradition of
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the pursuit for absolute truth. According to von Glasersfeld (1990) skeptics of absolute 

truth, such as Xenophanes (6th Century B.C.), have argued over the years that absolute 

truth is

based on the assumption that whatever ideas or knowledge we have must 
have been derived in some way from our experience, which includes 
sensing, acting, and thinking. If this is the case, we have no way of 
checking the truth of our knowledge with the world presumed to be lying 
beyond our experiential interface, because to do this, we would need an 
access to such a world that does not involve our experiencing it (1990, p. 
20).

This view of knowledge requires letting go of the idea of absolute truth, yet it does not 

necessarily lead to solipsism. Radical constructivism offers a reconstruction of 

knowledge. That is, rather than view knowledge as an absolute truth that a learner 

must acquire, a radical constructivist views the individual as constructing his/her own 

knowledge through his/her experiences and/or interactions with the outside world.

Von Glasersfeld suggests two basic principles of radical constructivism, which he 

derived from the works of Piaget (1971). The principles are,

a. Knowledge is not passively received either through the senses or by 
way of communication. Knowledge is actively built up by the 
cognizing subject.

b.
i. A function of cognition is adaptive, in the biological sense of 

the term, tending toward fit or viability;

ii. Cognition serves the subject’s organization of the experiential 
world, not the discovery of an objective ontological reality. 
(1990, p. 23)

Of course, these principles represent a working theory and should not be construed as 

absolute truth. These principles leave open the question of how knowledge is
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constructed, and how individuals may work together as a community toward shared 

knowledge.

First, I address how knowledge is constructed for a radical constructivist. 

According to von Glasersfeld’s (1995) interpretation of Piaget’s epistemology, 

cognitive change takes place through the process of assimilation and accommodation. 

Assimilation is the process by which a particular experience is fit into an already 

existing conceptual structure by the person having the experience. Accommodation is 

the process of revising and restructuring one’s existing conceptual structures. 

According to von Glasersfeld, learning takes place through an action scheme. The 

scheme consists of recognizing a particular situation, and reacting to the situation with 

the expectation that the reaction produces previously experienced results (p.65). For 

von Glasersfeld, recognizing the situation necessitates the process of assimilation, and 

a person will respond to the situation with a specific activity that he or she has used 

previously in similar situations. However, if unable to assimilate information, the 

person will experience perturbation, which will lead to accommodation and finally to 

equilibrium. For von Glasersfeld, this type of model for concept construction provides 

a viable model for how a person might come to know something.

The second point that needs to be addressed is that of viability. Some critics of 

constructivism suggest that such a model allows us to construct any reality we like.

But to this von Glasersfeld (1990, 1995) argues that the construction of one’s 

knowledge or view of reality is subject to constraints. Avoiding contradiction is one 

constraint that prevents us from constructing any reality we like. In addition, von
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Glasersfeld (1990) argues that “[e]very individual’s abstraction of experiential items is 

constrained (and thus guided) by social interaction and the need of collaboration and 

communication with other members of the group in which he or she grows up” (p. 26). 

Thus, as a community the goal is to find compatible versions of knowledge or 

explanation of phenomena, and to be flexible enough to modify these versions as new 

experiences suggest different explanations.

The view of knowledge and learning presented here has implications for how one 

thinks about statistics and what it means to engage in statistical activity (Davis, Maher, 

& Noddings, 1990). For example, a view of knowledge as absolute truth that exists 

outside of one’s mind, and can be discovered through the act of learning, might lead to 

a belief that statistical procedures are important for securing correct answers. But to 

question this view of absolute truth the way that a radical constructivist would 

suggests alternative approaches to the study of statistics. Engaging in problem solving 

activities, grounded in data and context, and looking for possible explanations to 

problems is another way to approach statistics. Thus, my orientation towards radical 

constructivism impacts the way I view fundamental components of statistics, and the 

goals and purposes of statistics education.

Consequently, the use of constructivism as a guiding philosophy impacted my 

research design and analysis. This philosophy oriented me toward investigating TAs’ 

perceptions, purposes, and ways of working out statistical and pedagogical problems, 

rather than simply investigating their final answers to problems, so that I could 

understand their thinking at a deeper level. The methodological implications of this
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position are such that task-based surveys would not suffice to gather a rich 

characterization of TAs’ statistical knowledge for teaching. Hence, I use both 

interview and survey data in order to build a viable model of TA reasoning and a 

representation of TAs’ models of student reasoning. I elaborate further on my research 

methodologies in Chapter 3. The lens of radical constructivism also impacted my 

literature review in that I sought out research with a similar guiding philosophy to 

provide frameworks and tools for my research; this literature is addressed in the 

sections that follow.

2.2 R esearch on S tochastics Education

Research in the field of probability and statistics education has experienced an 

unprecedented boom over the past decade. The growth of research in this field is due 

in part to the growth of statistics as a discipline, NCTlvf s (2000) call for the inclusion 

of probability and statistics in school curriculum, and conferences, such as the 

International Conference on Teaching Statistics (ICOTS), devoted exclusively to 

stochastics education. In this section on stochastics education, I discuss three 

constructs from the literature -  statistical literacy, statistical thinking, and statistical 

reasoning -  which support the design of my research tasks and my analysis of the 

data. These constructs are examined with reference to sampling concepts and their 

relationship to statistical inference. These three constructs provide a framework for the 

type and quality of knowledge that is necessary for well-developed statistical 

knowledge for teaching.
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2.2.1 Statistical Literacy

As societies become more information-based, technologically minded, and

globally oriented, their citizens will need to have a solid understanding of basic

statistics to meet society’s demands and to make well-informed decisions. But what

are the basic statistics required for informed citizenship? Probability and statistics

educators have been addressing this question through the construct of statistical

literacy. According to Gal (2003), the construct of statistical literacy is geared toward

consumers of statistics, where such consumption usually takes place through the

media, internet sites, newspapers, and magazines. Just as literacy is often defined as

basic reading and writing skills, statistical literacy includes the basic skills necessary

for understanding statistical information. Still, the term basic conjures up images of

minimal skills; statistical literacy is in many ways much more than this. According to

Ben-Zvi and Garfield (2004),

These skills include being able to organize data, construct and display 
tables, and work with different representations of data. Statistical literacy 
also includes an understanding of concepts, vocabulary, and symbols, and 
includes an understanding of probability as a measure of uncertainty (p.7).

Wallman’s (1993) definition, echoed by Watson and Moritz (2000a) and similar to

that of Ben-Zvi and Garfield, states that, “[sjtatistical literacy is the ability to

understand and critically evaluate statistical results that permeate our daily lives -

coupled with the ability to appreciate the contributions that statistical thinking can

make in public and private, professional and personal decisions” (p. 1). Gal (2002)

suggests that statistical literacy requires the “ability to interpret and critically evaluate
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statistical information, data-related arguments, or stochastic phenomena...” (p.2). 

Further, statistical literacy requires the ability to discuss or communicate one’s 

reactions, understandings, or opinions regarding the implications of such statistical 

information (Gal, p.3). Each of these authors’ definitions suggests that to be 

statistically literate one must be able to read, organize, interpret, critically evaluate, 

and appreciate statistical information presented to the public through the media. Of 

course, statistical information can be represented in a variety of ways, such as 

graphical and tabular forms, so statistical literacy also requires an understanding of 

different representations.

One specific feature necessary for statistical literacy is informal8 statistical 

inference skills. Jacobs (1997) argues that statistical inference is essential for 

effectively dealing with statistics encountered in the media. Put simply, statistical 

inference is an attempt to draw conclusions about a population from data provided by 

a sample (Pfannkuch, p.267, 2005). However, as I noted in the introduction, a sound 

understanding of sampling concepts is necessary for an informal and formal 

understanding of statistical inference. Watson and Moritz (2000a) argue that, “[a]n 

understanding of sampling is fundamental to statistical literacy. Statistics are 

commonly based on sample data, where sampling methods affect the quality of data 

collected and subsequent inferences about populations” (p. 109). Jacobs’ (1997) echoes 

this sentiment, “[o]ne of the main determinants of the validity of statistical inference is

By informal I mean understanding the concept of statistical inference through an understanding of 
repeated sampling and the image of a distribution of sample statistics. In contrast, I take a formal 
understanding to mean the additional understanding of the processes and procedures for finding 
confidence intervals and conducting hypothesis tests.
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sampling” (p. 2). Thus, an understanding of samples and sampling distributions is 

necessary for critical consumption of statistics in popular media.

Statistical literacy, as defined by these researchers, requires a rather sophisticated 

way of looking at data. This level of sophistication is important because of the 

expectations placed on adults living in industrialized societies. Statistical literacy 

serves both individuals and their communities because such knowledge supports 

informed public debate, improves people’s ability to make decisions regarding chance- 

based situations, and provides an awareness of social trends, such as crime, population 

growth, and the spread of diseases (Gal, 2003). Thus, statistical literacy is important in 

the day-to-day functioning of citizens in industrialized nations, and it is my contention 

that statistical literacy skills should play an integral role in introductory college 

statistics courses.

Given that the concepts of sampling are key to developing statistical literacy and 

statistical inference skills, I argue that ideas of sampling should be highlighted 

throughout instruction. Unfortunately, most introductory statistics courses move too 

quickly toward formal aspects of statistical inference, and issues pertaining to 

statistical literacy, such as appropriate methods for “consuming statistics” found in 

common literature -  newspapers and magazines -  are not explicitly addressed as part 

of the introductory statistics curriculum. Specifically addressing these issues will 

enable learners not only to acquire statistical literacy skills, but also move beyond 

these skills, gaining a deeper understanding of statistical inference. As students 

develop informal understandings of sampling and statistical inference, and then evolve
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to more formal methods of statistical inquiry, they progress toward what Gal (2003) 

refers to as producers and consumers of statistics. To be both a consumer and 

producer of statistics entails formal methods of statistical analysis, such as posing a 

research question, designing an experiment, gathering data, using formal statistical 

processes to analyze data, and drawing conclusions from the analysis. This level of 

knowledge is addressed through the construct of statistical thinking.

2.2.2 Statistical Thinking

The earliest beginnings of statistical thinking were traced to John Graunt, who 

studied the sources and causes of the plague in the mid 1600’s (Pfannkuch & Wild, 

2004). In the years following Graunt’s work there was a general notion that public 

policies should be informed by data, rather than the authority of the church or local 

government. The emergence of statistics and statistical thinking required a shift in the 

accepted thinking of the day; it required a questioning attitude and inductive thinking. 

Statistical thinking emerged because of the realization that data analysis could deepen 

and strengthen our knowledge of a particular situation and that probability models 

could be used for modeling and predicting group behavior. As statisticians realized 

that probability models could be applied to a variety of domains, and as technological 

tools developed, the field of statistics matured (Pfannkuch & Wild). Today we are a 

society inundated with data and it is difficult to imagine life without statistics.

Statistics is distinctly different than mathematics, and different ways of thinking 

are needed in order to effectively explore and analyze data. After studying the



historical development of statistics and observing statisticians in their work,

Pfannkuch & Wild (2004) noticed five fundamental features of statistical thinking:

1. Recognition of the need for data

2. Transnumeration

3. Consideration of variation

4. Reasoning with statistical models

5. Integrating the statistical and contextual (p. 18-20)

According to Pfannkuch and Wild, in the first component of statistical thinking, there 

is a recognition that data need to be properly gathered because decisions cannot be 

made on anecdotal evidence. An understanding of how to properly gather data is 

essential to the sampling process and the attainment of valid and reliable statistics. The 

second component, transnumeration, entails finding measures that reflect the 

characteristics of the real situation, transforming the data into summaries and/or 

graphical representations, and finding meaning in the data. Shaughnessy (2007) 

elaborates on Pfannkuch and Wild’s introduction of the term transnumeration, 

suggesting that a different representation of the data “can reveal entirely new or 

different features that were previously hidden” (p. 963). Third, consideration of 

variation requires the ability to understand the causes and potential sources of 

variation in the data. In addition, this third component requires an understanding of 

how to act on variation -  whether it should be ignored, planned for, or controlled.

Cobb and Moore (1997) also stress the importance of variation in statistics. ‘The focus 

on variability naturally gives statistics a particular content that sets it apart from
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mathematics itself and from other mathematical sciences” (Cobb & Moore, 1997, 

p.801). The fourth component, reasoning with statistical models, requires the ability to 

make use of aggregate data, rather than reason about individual elements. This 

component also requires the ability to recognize patterns and relationships, and create 

dialogue between models and data. The final component of statistical thinking requires 

the ability to connect and integrate data within a particular context. Pfannkuch and 

Wild’s argument that context plays a central role in statistical literacy is echoed by 

Cobb and Moore. They state, “[s]tatistics requires a different kind of thinking, because 

data are not just numbers, they are numbers with a context” (p. 801).

Pfannkuch and Wild (2004) also noticed that statisticians cycle through the 

components of statistical thinking as they engage in their work. Initially statisticians 

enter the planning stage, where they investigate a problem and make plans for 

collecting and analyzing data. When data is collected, the statistician must find ways 

of representing or characterizing the data. She must consider variation in the process. 

She must also question and critically examine the models and underlying assumptions. 

In general, Pfannkuch and Wild suggest that a statistician must have curiosity, 

imagination and skepticism in order to adequately model behavior and solve problems. 

Pfannkuch and Wild’s characterization of statistical thinking is consistent with Ben- 

Zvi and Garfield’s (2004) definition of statistical thinking as “an understanding of 

why and how statistical investigations are conducted and the ‘big ideas’ that underlie 

statistical investigations” (p. 7). Pfannkuch and Wild’s commentary makes an 

important contribution to statistics education by providing a global model of statistical
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thinking. Their model characterizes the types of thinking necessary for statisticians 

and teachers of statistics. In addition, this model is a pedagogical tool. An 

understanding of the historical development of statistical thinking and the components 

necessary for successful statistical inquiry provide statistics educators with an explicit 

picture of the types of thinking that need to be developed by students in order for them 

to be both consumers and producers of statistics.

In reflecting on the constructs of statistical literacy and statistical thinking there is 

certainly a link between them in the sense that both entail a critical eye when 

examining statistical information and require an understanding of the key concepts of 

sampling processes. If teachers can structure classrooms in ways that promote the 

development of statistical thinking, then students will have the opportunity to develop 

questioning attitudes, construct their own understandings of statistical processes, and 

think like statisticians (Pfannkuch & Wild, 2004). I turn now to a discussion of the 

construct of statistical reasoning and what the research does suggest about students’ 

statistical development.

2.2.3 Statistical Reasoning

According to Ben-Zvi and Garfield (2004), statistical reasoning “may be defined 

as the way people reason with statistical ideas and make sense of statistical 

information” (p.7). As statistical thinking incorporates the “big ideas” or global view 

of the process of statistical inquiry and a picture of the types of thinking and 

knowledge structures required of statisticians and statistics educators, statistical
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reasoning provides a local view of how students make sense of statistical information 

in a particular situation. As research in statistics education has blossomed, building 

blocks for understanding sampling concepts have been identified and numerous 

cognitive models for describing types of student reasoning have emerged. Many of 

these models overlap and different groups of researchers identify and describe similar 

types of student reasoning (Shaughnessy, 2007). As the research presented here is 

concerned with TAs’ statistical knowledge for teaching sampling concepts, it is 

important to examine the research literature on K-12 and undergraduate students’ 

reasoning in this area. Insight into the necessary knowledge components for 

understanding ideas of sampling, common conceptual difficulties, and cognitive 

models all serve as tools for framing and justifying the research methodologies in 

Chapter 3.

Building blocks to understanding sampling concepts 

A natural first step in thinking about students’ conceptual development of 

sampling processes is to wonder what conceptual building blocks are necessary for a 

profound understanding of sampling. A thorough review of the literature (Chance, 

delMas, & Garfield, 2004; Heid, Perkinson, Peters, & Fratto, 2005; Pfannkuch, 2005; 

Reading & Shaughnessy, 2004; Saldanha & Thompson, 2003; Shaughnessy, 2007; 

Shaughnessy & Chance, 2005; Watson & Moritz, 2000b) suggests several key features 

necessary for developing concepts of sampling and connecting ideas of sampling to 

statistical inference. Figure 2 represents my synthesis of the necessary knowledge
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components for a well-developed understanding of sampling as gleaned from the 

stochastics education literature.

Figure 2: Knowledge Components of Sampling

1. Definition of Sample
a. Sample as a subset of the population
b. Sample as pan of a larger collection of other samples from the 

same population
2. Proper Sampling Methods

a. Random sampling
b. Sources of bias in sampling

3. Measures of Center
a. Mode/ Median/ Mean

4. Measures of Spread
a. Range/ Interquartile range
b. Variance/ absolute deviation/ standard deviation

5. Attend to and coordinate multiple aspects of a distribution 
Simultaneously

a. Coordinating measures of center, spread and shape to reason 
informally or formally about a distribution

6. Sampling Distributions
a. Definition of sampling distribution
b. Distinction between the distribution of a sample of observations 

and the distribution of sample statistics
c. Distinction between empirical and theoretical sampling 

distributions
7. Properties Of the Normal Distribution

a. Shape, center and spread
b. More than just a bell curve

8. The role of sampling in the creation of confidence intervals
a. Interpreting level of confidence through a perspective that 

supportethe image ofrepeatedsampling and a long-term

9. The role of confidence intervals in making statistical claims
a. Connection between confidence intervals and hypothesis tests

10. The role of variability
a. Recognition of variability within and between samples

i. Variability of sample statistics in a sampling 
distribution

b. As sample size increases sample variability decreases -  Law of 
Large Numbers

c. Balance between variability and representativeness
L Understanding bounded variability
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The knowledge components presented here aid in the design of the research tasks 

(see Chapter 3). These concepts are not trivial -  they require the ability to combine 

and integrate a multitude of statistical topics. Furthermore, the knowledge components 

addressed here form a basis for the development of the Central Limit Theorem, as well 

as the formal processes of statistical inference, such as confidence intervals and 

hypothesis tests -  key components of introductory statistics. Notice that knowledge 

components 5 ,8 , and 10 are in bold; I highlight these components for three reasons. 

First, the three knowledge components highlighted in Figure 2 were emphasized by 

multiple researchers (Bakker & Gravemeijer, 2004; Chance, delMas, & Garfield,

2004; Makar & Confrey, 2004; Pfannkuch, 2005; Reading & Shaughnessy, 2004; 

Saldanha & Thompson, 2003; Shaughnessy, 2007; Shaughnessy & Chance, 2005; 

Watson & Moritz, 2000a&b) as core elements necessary for a profound understanding 

of sampling and the development of statistical literacy and statistical thinking. Second, 

the researchers above observed that the highlighted knowledge components shown in 

Figure 2 were particularly difficult concepts for students9. Third, the knowledge 

components highlighted in Figure 2 foreshadow the key role they play in this study. I 

elaborate further on the knowledge components presented in Figure 2 in the next 

section, when I discuss student reasoning, because it provides an opportunity to 

specify these knowledge components by grounding them in particular statistics 

contexts. I begin that discussion by examining what the research says about students’

9 rmThat these features are problematic for students is discussed in detail in the next subsection -  Student 
Reasoning and Developmental Difficulties.
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difficulties with sampling processes, and the challenges that knowledge components 5, 

8, and 10, exhibited in Figure 2, present for students.

Student Reasoning and Developmental Difficulties

As Figure 2 represented my synthesis of the research literature on the necessary 

building blocks for understanding sampling and statistical inference problems, Figure 

3 represents my synthesis of the literature (Bakker & Gravemeijer, 2004; Chance, 

delMas, & Garfield, 2004; Pfannkuch, 2005; Reading & Shaughnessy, 2000, 2004; 

Rubin, Bruce and Tenney (1991); Saldanha & Thompson, 2003; Shaughnessy, 2007; 

Shaughnessy & Chance, 2005; Watson & Moritz, 2000a&b) pertaining to the types of 

difficulties students are likely to experience as they develop their understandings of 

sampling and statistical inference. Notice that for each conceptual building block, 

there appears to be a corresponding conceptual hurdle for students10.

101 specify more carefully the common conceptual hurdles in the following subsections sections on 
student reasoning, by grounding them in the context of different sampling tasks.
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Figure 3: Common Difficulties in Students’ Development of Sampling

Common Difficulties and Misconceptions in Students’ Reasoning and 
Development of Sampling Concepts

versus
statistical use of the term random and the term sample 

o Difficulty recognizing Sources of bias in sampling 
Difficulty with the added level of abstraction required for 
understanding sampling distributions

o Difficulty with the difference between a distribution of a 
sample and the distribution of a collection of sample 
statistics

theoretical sampling distributions (a sophisticated concept 
-  difficulty documented in teachers (Heid et al„ 2005))

• Difficulty attending to multiple aspects of a distribution
o Overly focused on modes or other measures of center 
o Overly focused on variability or individual data points 
o Focus on shape ~ Difficulty making distinctions between

the normal and other symmetric shaped distributions
* Difficulty finding * balance between sample representativeness 

and samplevariability
o Difficulty understanding the role of sample size in 

sampling variability
* Do hot expect a difference in variability for 

different size samples or believe that large 
samples have more variability 

o Difficulty relating a long-term relative frequency view

problems
in the creation

confidence intervals
o

of error -  maintaining an image of repeating the 
sampling process

I highlight in bold students’ difficulties with: (a) the role of variability; (b) the role 

of sampling in interpreting confidence intervals; and, (c) coordinating multiple
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attributes of a distribution simultaneously. These particular difficulties are highlighted 

for three primary reasons. First, as I mentioned at the end of the previous section 

multiple researchers have observed that these components are particularly difficult for 

students. Second, Liu and Thompson (2005), Makar and Confrey (2004), and Heid, 

Perkinson, Peters and Fratto (2005) observed that the role of sampling and sampling 

distributions and their relationship to confidence intervals were difficult concepts for 

secondary teachers. Third, these features also prove to be difficult and challenging for 

TAs11. In the sections that follow, I elaborate in more detail about the types of 

difficulties students and/or teachers have with the role of variability, the role of 

sampling in the creation of confidence intervals, and coordinating multiple attributes 

of a distribution.

The Role o f  Variability

In reviewing the work of Chance, delMas, and Garfield (2004), Pfannkuch (2005), 

Reading and Shaughnessy (2000,2004), Rubin, Bruce and Tenney (1991),

Shaugnessy (2007), Saldanha and Thompson (2003), and Watson and Moritz 

(2000a&b), it is clear that variation is a major component for understanding sampling 

processes. Recall that this characteristic is also one of the five components of 

statistical thinking (Pfannkuch & Wild, 2004) and a necessary component for the 

development of statistical literacy (Watson & Moritz 2000a, Jacobs, 1997). It also is a 

rather difficult and elusive concept for students to grasp.

11 This paper will address this third point and provide evidence in the analysis section of the types of 
difficulties TAs experienced with these conceptual building blocks.
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Before discussing student conceptions of variation I briefly discuss issues of 

variability in sampling and the relationship between sample size and sample 

variability. In probability theory, the Law of Large Numbers states that “the relative 

frequency of the number of times that an outcome occurs when an experiment is 

replicated over and over again (i.e., a large number of times) approaches the true (or 

theoretical) probability of the outcome” (McClave & Sincich, 2000, p. 102). Figure 4 is 

a representation of this relative frequency perspective.

Figure 4: Visual Representation of the Law of Large Numbers

Relative
Frequency

-79 -small n '  '  large n
n -  Sample Size 

As n increases the relative frequency stabilizes

In a sampling context, the Law of Large Numbers implies that the larger the 

sample, the more likely it is that the sample is representative of the population in its
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characteristics, such as mean and standard deviation (assuming the sample was chosen 

randomly). To illustrate the relationship between variability and sample size, consider 

a ja r  containing 10000 candies, 7500 red and 2500 yellow. Now consider a sample of 

10 candies versus a sample of 1000 candies picked at random from the jar. By the Law 

of Large Numbers, the larger sample of 1000 candies is more likely to approximate the 

true ratio of red to yellow candies in the container. In addition, an unusual ratio, say 2 

reds to 8 yellows, is more likely to come from the smaller sample of 10 candies. 

Another way to make sense of variability in this context is to imagine the distribution 

of all possible sample statistics taken from samples of size n. As n increases, the 

standard error of the sampling distribution decreases, resulting in a greater 

concentration of sample statistics in a closer proximity to the population mean.

A finding of major consequence in the research literature is that students’ 

conceptions of sampling fall within a spectrum, which posits representativeness at one 

end and variability at the other (Jacobs, 1997; Kahneman & Tversky, 1972; Konold, 

1989, 1991; Rubin, Bruce, & Tenney, 1991; Reading & Shaughnessy, 2000 & 2004; 

Shaughnessy, Watson, Moritz, & Reading, 1999; Watson & Kelly, 2004). As students 

traverse this continuum, they must grapple with the role that sample size and sample 

selection methods play in the variability of sampling processes. Unfortunately, much 

of the research indicates that many students reason at the extremes of this spectrum 

and not in the middle. That is, students experience a difficult time with the concept of 

bounded variability (in the sense of Saldanha & Thompson, 2003; Thompson, Liu, & 

Saldanha, 2007).
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On the one hand, students have a tendency to believe that there is more variability 

in sampling situations than is probable. Jacobs’ (1997) studied the ways in which 

Grade 4  and 5 students evaluate sampling methods in the context of surveys. She 

observed that children had difficulty with the concept of simple random sampling 

because they were overly focused on the possibility of obtaining an unusual sample. 

For example, the children in her study expressed concern that a simple random sample 

of grade 4 children would be unfair because the sample might end up consisting of all 

girls. The children’s concern that the sample would be unfair, due to the chance of 

getting all girls or all boys, indicates that they were overly focused on extreme values, 

thinking that such samples were more likely to happen than probability suggests.

In their study of 12th grade students (N = 12), Rubin, Bruce, and Tenney (1991)

likewise observed the tendency for students to expect too much variability in sampling

situations, and to focus too heavily on rare occurrences. For example, Rubin, Bruce,

and Tenney asked students the following question,

Four hundred campers are to be divided into two teams, red and blue, for a 
track meet. One counselor says that the campers should be divided between 
the two teams using the following method: You put all the campers’ names 
into a hat and mix them up real well. Then you pick one name at a time out 
of the hat. The first name picked goes to the red team, the second to the 
blue, the third to the red, and so on. Another counselor argues that the 
campers should be divided according to how fast they can run so that the 
teams have about the same number of fast and slow runners. They argue 
back and forth.

Show me how many fast and slow runners you think would get on each 
team using the two methods. You can assume there are 200 fast and 200 
slow runners (p. 17).
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Most of the students in their study claimed that picking names out of a hat could 

produce fair teams, yet most of the students also believed that teams with 150 fast 

runners and 50 slow runners would be quite likely. The majority of the responses that 

students gave as “likely” for the break down of the two teams were in fact extremely 

unlikely to occur. According to Rubin, Bruce and Tenney the majority of the “likely” 

responses given by students would occur less frequently than 1 in 100 samples.

On the other hand, students have a tendency to believe that samples are identical to 

the parent population. Rubin, Bruce, and Tenney (1991) also observed that many 

students believe a sample provides all the information one needs about a population 

because they fail to think about issues of variability. To illustrate, Rubin, Bruce, and 

Tenney posed the following Gummy Bear problem to the same group of 12,h grade 

students (N = 12),

Suppose you took your little brother or sister to an Easter parade in Boston. 
At the parade, the “Easter Bunny” handed out packets of Gummy Bears to 
all the kids. Each packet had 6 Gummy Bears in it. To make up the 
packets, the Easter Bunny took 2 million green Gummy Bears and 1 
million red Gummy Bears, put them in a very big barrel and mixed them up 
from night until morning. Then he spent the next few hours making up the 
packets of six Gummy Bears. He did this by grabbing a handful of Gummy 
Bears and filling as many packets as he could. Then he reached into the 
barrel and took another handful, and so on, until all the packets were filled 
with 6 Gummy Bears. When you get home from the parade, you open up 
your packet.

1. How many green Gummy Bears do you think might be in your 
packet? Can you tell me how you got that?

2. Do you think all the kids got that many greens? Can you explain 
that to me?

3. If you could look at the packets of 100 kids, how many kids do you 
think got n (the number from above) greens?

40



4. How many different color combinations of red and green Gummy 
Bears are there?

5. Out of 100 kids, how many do you think got 0 green? 1 green? 2 
green? 3 green? 4 green? 5 green? 6 green? (p. 16)

All of the students interviewed recognized the ratio of red to green Gummy Bears. 

Using the ratio as their reason, all of the students answered four  to the first question. 

While all of the students also recognized that four green Gummy Bears would not be 

present in every packet, their reasons were different. Students tended to evoke failures 

in the Easter Bunny’s sampling procedure to explain the variability, rather than raising 

the concept of random error. For example, some students mentioned that Gummy 

Bears are sticky so a bunch of green might all get stuck together. What is particularly 

telling are the estimates students gave for the number of kids they suspected would 

have four green Gummy Bears in their packets. Students tended to think that more 

than 75 out of 100 kids would have exactly four green Gummy Bears in their packets. 

Figure 5 shows the theoretical binomial probability distribution for the Gummy Bear 

problem, along with an example of a typical student response for the number of 

packets containing 0, 1 ,2 ,3 ,4 ,5 , and 6 green Gummy Bears. Notice that in this 

problem students had a tendency to be overly focused on center.
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Figure 5: Gummy Bear Sampling Distributions 

(Reproduced from: Rubin, Bruce, & Tenney, 1991, p. 22) 

Gummy Bear Repeated Sampling

■Theoretical Distribution 
■Student Predictions

Number of Green Gummy Beam

In a comparable sampling task, Shaughnessy, Ciancetta, and Canada (2004a)

observed similar results in 6-12* grade students (N = 272). The task reads as follows:

Suppose you have a container with 100 candies in it. 60 are red, and 40 are 
yellow. The candies are all mixed up in the container. You pull out a 
handful of 10 candies. Suppose that 50 students each pulled out 10 candies, 
from the bowl, wrote down the number of reds, put them back, mixed them 
up. Of the 50 students, how many of them do you think would get:

0 reds and 10 yellows?________
1 reds and 9 yellows?________
2 reds and 8 yellows?________
3 reds and 7 yellows?________
4 reds and 6 yellows?________
5 reds and 5 yellows?________
6 reds and 4 yellows?________
7 reds and 3 yellows?________
8 reds and 2 yellows?________
9 reds and 1 yellow? __

10 reds and 0 yellows?________

Total 50
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In this task, there was a tendency for Students to either stack up their responses in the 

center with narrow distributions, or to create wide distributions, expecting at least one 

handful for each possibility -  0 through 10 red candies. When students created ‘wide’ 

distributions they either (a) created a fairly uniform distribution by evenly distributing 

across all outcomes, or (b) more often, students stacked most of the outcomes at the 

center and placed just a few outcomes in the extreme locations. Figure 6 shows the 

distribution for a ‘narrow’ response and Figure 7 shows the distribution for a ‘wide’ 

response that is stacked on the center.

Figure 6: Candy Mixture -  Narrow Center Focus

Candy Mixture Repeated Sampling

igl Distribution 
H  ■  Student Prediction

■Theoretical

Number of Red Candies
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Figure 7: Candy Mixture -  Wide Center Focus

Candy Mixture Repeated Sampling

H Theoretical 
Distribution 

B  Student Prediction

Number of Red Candies

The two examples presented here reflect the tension that students experience between 

representativeness and variability in the sampling process, and their tendency to 

position themselves at one extreme or the other on a spectrum of representativeness to 

variability. This suggests that the concept of bounded variability in sampling is not 

trivial.

Kahneman and Tversky (1971, 1972), and Watson and Moritz (2000a&b) also

observed students’ belief that a sample, however small or poorly collected, is

completely representative of the population from which it is drawn. For example,

Kahneman and Tversky (1972) asked college students to consider two different sized

hospitals and make a prediction about the number of baby boys bom each day at the

hospitals over the course of a year. The problem is shown below.

A certain town is served by two hospitals. In the larger hospital about 45 
babies are born each day, and in the smaller hospital about 15 babies are 
bom each day. As you know, about 50 percent of all babies are boys. 
However, the exact percentage varies from day to day. Sometimes it may 
be higher than 50 percent, sometimes lower.
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For a period of 1 year, each hospital recorded the days on which more than 
60 percent of the babies bom were boys. Which hospital do you think 
recorded more such days?

a. The larger hospital
b. The smaller hospital
c. About the same (that is, within 5 percent of each other) (p. 443). 

Of the 95 undergraduate students in Kahneman and Tversky’s study, 21 picked choice 

(a), 21 picked choice (b), and 53 picked choice (c). Choice (c), picked by the majority 

of students, serves as an illustration of what Kahneman and Tversky termed the 

representativeness heuristic, because it suggests that students believe the number of 

boys bom at both the large and small hospitals is equally representative of the general 

population (that is, an equal number of boys and girls). In actuality, one should expect 

the smaller hospital, with fewer babies bom each day, to have more variability from 

day to day.

Watson and Moritz (2000a&b) used a comparable task to that of Kahneman and 

Tversky’s (1972) with students in grades 3-11. In Watson and Moritz’s (2000b) 

problem, students were told that researchers were studying the weights of grade 5 

children.

Researchers went to two schools, one school in the center of the city and 
one school in the country. Each school had about half girls and half boys. 
The researchers took a random sample of 50 children from the city school, 
and 20 children from the country school. One of these samples was 
unusual: it had more than 80% boys. Is it more likely to have come from:

1. The large sample of 50 from the city school, or
2. The small sample of 20 from the country school, or
3. Are both samples equally likely to have been the unusual sample? 

(p. 52)
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Watson and Moritz achieved results similar to those of Kahneman and Tversky. That 

is, the most common response from students was that both samples are equally likely 

to be the unusual one. Student explanations indicated that if the sampling process is 

random, then there is no reason to suspect an unusual sample from either group. 

Students’ choices in these tasks suggest that they fail to recognize the role of sample 

size in sample variability.

Konold and his colleagues (Konold, 1989; Konold, 1991; Konold, Pollatsek, Well, 

Lohmeier, & Lipson, 1993) found compelling evidence that supports the findings of 

Kahneman and Tversky (1972), and Watson and Moritz (2000b) with the added 

benefit of explaining why students might be inclined to think that the sample size does 

not affect sample variability. Konold (1989,1991) suggested that students might 

reason about situations of uncertainty in a non-probabilistic manner, thinking that they 

must “successfully predict the outcome of a single trial” (1991, p. 146), rather than 

thinking about long-term relative frequency and/or a distribution of sample statistics. 

Students that interpret a sampling problem as pertaining to the particular sample, 

rather than an image of repeated samples, are likely to reason that it is not impossible 

for either the large or small sample to be unusual, and therefore there is no way to tell 

which of the two individual samples will be unusual. Konold referred to this form of 

reasoning as the “outcome approach”. Gigerenzer’s (1991,1996) work supports the 

argument made by Konold. Gigerenzer argued that if a student responded that both 

hospitals are equally likely to have an unusually high number of baby boys bom, and 

the student was making that decision based on his understanding that he was to predict
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which of those individual samples was going to be unusual, then this response would 

be legitimate. That is, Gigerenzer argued that a subjective view of probability, rather 

than a frequency perspective, might be a more natural inclination for individuals as 

they reason about uncertainty in particular contexts.

In sum, the research of Jacobs (1997), Rubin, Bruce and Tenney (1991),

Kahneman and Tversky (1972), Shaughnessy et al. (2004a), and Watson and Moritz 

(2000a&b) strongly suggest that students tend to fall at the extremes of this variability 

-  representativeness spectrum. That is, on the one hand, some students become overly 

focused on variability and the occurrence of extreme values in the sampling process, 

concluding that little can be inferred from a sample. On the other hand, some students 

become overly focused on representativeness, and as a result they fail to see instances 

of bias in sampling due to poor data collection methods or variability due to random 

error. Rubin, Bruce, and Tenney noticed that the same student would be overly 

focused on centers in one problem and then variability in another. This suggests that 

context plays an important role in the way students approach a problem. In some 

instances, students might feel as though they are being asked to predict with certainty 

the outcome of a single event and in other instances they might be inclined to think 

about a distribution of possible outcomes. Konold (1989, 1991) and Gigerenzer (1991, 

1996) also observed students’ inclinations toward interpreting probabilities from a 

subjective, non-probabilistic perspective in certain contexts.

Also worth noting is that students’ difficulty resolving tensions between sample 

representativeness and sample variability span grade levels, from elementary to
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college students. It would seem that tensions experienced by students between one 

extreme and the other needs to be addressed in the classroom in order for students to 

develop some intuition for both the role of expectation and variability. Shaughnessy 

(2007) notes that if students have opportunities to experiment with sampling activities, 

they are often able to resolve these tensions so that they can make statistically 

educated decisions when confronted with information from a sample.

The Role o f  Sampling

The developmental transition from samples to sampling distributions proves to be 

a rather abstract and difficult concept for students (Batanero, Tauber, & Sanchez,

2004; Chance, delMas, & Garfield, 2004; Shaughnessy & Chance, 2005). Sampling 

distributions remain a nebulous concept for most students because it “requires students 

to combine earlier course topics such as sample, population, distribution, variability, 

and sampling” (Chance, delMas, & Garfield, 2004, p.295), which many students may 

have a tentative understanding of at best. Shaughnessy and Chance noted students’ 

confusion between the concepts of samples and sampling distributions, and between 

empirical and theoretical sampling distributions. Shaughnessy and Chance suggest that 

students may experience confusion over the different terms or by the extended level of 

abstraction in understanding that the mean of a sampling distribution is the mean of a 

collection of means. In addition, in their work with secondary teachers, Heid et al. 

(2005) observed that the distinction between empirical and theoretical sampling 

distributions was difficult for teachers to grasp.
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Saldanha and Thompson (2003) distinguish two ways in which students might 

conceive of samples and sampling. The first image of sample “entails images of 

repeating the sampling process and an image of variability among its outcomes” 

(p.257). The second image simply views a sample as a subset of a population.

Saldanha and Thompson argue that the former image supports reasoning about 

distributions and the development of statistical inference because it relates the 

particular sample at hand to the larger picture of all possible samples, viewing it as 

one particular case from a group of similar cases. Saldanha and Thompson argue that 

the latter conception of sample takes a singular approach to the problem and students 

with such an image tend to focus on individual samples, believing they must predict 

the outcome of an event with absolute certainty. That is, this singular approach to 

sampling problems is likely to lead to an interpretation consistent with Konold’s 

(1989) “outcome approach”. Saldanha and Thompson suggest that viewing the sample 

as one particular case from the larger group of sample statistics lays the foundation for 

the examination of a distribution of sample statistics, and for using that distribution as 

the foundation for statistical inference claims.

Despite students’ difficulties reasoning about sampling concepts, and the 

importance placed on sampling concepts by the statistics education community, 

Watson and Moritz (1997) found that the teachers they studied did not see a need to 

introduce sampling in their lessons. In particular, introducing sampling in connection 

with statistical inference was non-existent among the teachers. In addition, Liu and 

Thompson (2005), and Makar and Confrey (2004) found that secondary teachers’
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knowledge of sampling in connection to statistical inference was tenuous. Makar and 

Confrey indicated that the teachers in their study experienced difficulty comparing 

sampling distributions and making informal statistical inference based on their 

reasoning about the properties of the different distributions. Makar and Confrey 

suggested that this difficulty was in part due to teachers experiencing problems with 

thinking about variability within and between sampling distributions.

Liu and Thompson (2005) investigated teachers’ informal and formal

understandings of statistical inference. Specifically, they investigated teachers’

knowledge of confidence intervals, including confidence level and margin of error.

Liu and Thompson used the following task in assessing teachers’ understandings:

Stan’s statistics class was discussing a Gallup poll of 500 TN voters’ 
opinions regarding the creation of state income tax. The poll stated, “... the 
survey showed that 36% of Tennessee voters think a state income tax is 
necessary to overcome future budget problems. The poll had a margin of 
error of ± 4%.”

Stan said that the margin of error being 4% means that between 32% and 
40% of TN voters believe an income tax is necessary. Is Stan’s 
interpretation a good one? If so, explain. If not, what should it be? (p. 4)

While none of the teachers in Liu’s and Thompson’s study believed that Stan’s 

interpretation was completely correct, all teachers initially gave incorrect alternative 

interpretations. A correct interpretation would be: if we took random samples of size 

500 and we repeated this process 100 times, then approximately 93 of those times the 

sample proportion ± 4% would capture the true population proportion. Unfortunately, 

Liu found that some teachers interpreted the problem as x%  of sample proportions
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would fall within 32% to 40%. Other teachers did not understand that they could find 

the confidence level using a statistical table for the standard normal distribution, or 

they just assumed the confidence level to be 95%. Finally, other teachers expressed the 

idea that the population proportion changed from sample to sample, rather than the 

sample proportion. Liu argued that confidence intervals and margin of error requires 

an understanding of sampling and an image of repeated sampling, which these 

teachers lacked.

As universities become responsible for quality undergraduate education, professors 

and TAs will be accountable for their teaching. This study begins a research base on 

tertiary teachers’ conceptions of statistics. As it is likely that there are similarities 

between secondary teachers’ and TAs’ knowledge of statistical concepts, it is 

important to understand how teachers reason about sampling as a basis for studying 

TAs. The literature presented here provides several potential tasks, and features of the 

sampling process and its relation to statistical inference that would be both interesting 

and significant to address with TAs. In addition, frameworks built on research about 

students’ and secondary teachers’ reasoning provides a foundational structure from 

which to analyze TA responses to similar sampling tasks.

Coordinating Multiple Aspects o f  a Distribution

The ability to reason distributionally is stressed by statistics education researchers 

(Bakker & Gravemeijer, 2004; Shaughnessy, 2007; Shaughnessy et al., 2005) as an
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important building block12 for understanding sampling concepts. Yet, this same 

research shows that students struggle to coordinate multiple attributes of a distribution 

as a means for answering statistical questions. Students have a tendency to focus on 

individual data points or the mode of a data set (Bakker & Gravemeijer, 2004;

Reading & Shaughnessy, 2004).

Shaughnessy et al. (2004a&b, 2005) noted three common features in the 

development of students’ statistical reasoning -  additive, proportional, and 

distributional and developed a framework around their observations. Additive 

reasoners attend to individual frequencies of the sample or sampling distribution. For 

example, students who reason additively tend to focus on the mode, as it is the most 

frequent value. Proportional reasoners primarily use the underlying ratios of the 

population as they reason in sampling situations. Distributional reasoners focus on two 

or more aspects of the sample or sampling distribution. For example, a distributional 

reasoner might attend to both the population proportion and the shape, or the 

population proportion and the variability, as they reason in a sampling context. A 

visual model of the coding framework developed by Shaughnessy et al. is shown in 

Figure 8.

12 Recall knowledge component 5 in Figure 2.
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Figure 8: Types of Student Reasoning in the Context of Sampling Distributions 

Conceptual Framework of Shaughnessy et al. (2004,2005)

Other (0)

Shape(2)

The coding framework used by Shaughnessy et al. (2004 a & b, 2005) also 

contained a transitional reasoning category for students who exhibited a higher level 

of reasoning than additive, but were still unable to attend to underlying population 

proportions. For example, a student who focused on the range or the shape of a 

distribution, yet made no explicit mention of the underlying population proportion, 

indicated that the student was able to focus on more than just individual elements of 

the data. The Other category was used for idiosyncratic and off-task responses. Each 

stage of reasoning corresponds to a numeric code so that students’ responses could be 

scored from 0 to 4. These codes are hierarchal and a higher code indicates a more 

sophisticated response.
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To illustrate the features of this conceptual framework, consider the Mystery 

Mixture Task (see Figure 9) given to 6-12 grade students in the Shaughnessy et al. 

(2004a&b, 2005) study.

Figure 9: Mystery Mixture Task

The graphs below all came from a class that is trying to estimate a mystery mixture o f  
1000 red and yellow candies in a large jar. They pulled 50 samples of size 10 (recording 
the number o f reds and then replacing and remixing each time). Here are the graphs for 
the number of reds for four groups from that class.(Graph £BB&flROn •. BHUii 1 Graph 2 H

, i-1
: 1•
;.-i. .. 4- -i-llll,-T —*  " i i " -f ■ i i  'T1 ........ . - i-i-i..,r ,J
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a) What do you think die mixture in the jar might be?
b) Explain why you think this.

Student responses on this task ranged from additive and proportional responses, to 

distributional responses. For example, several additive reasoners picked either 200 or
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300 reds because these represented the two modal values among the four graphs. 

Proportional reasoners tended to look for the median or mean value in each of the 

graphs and then average them. Finally, distributional reasoners tended to look for the 

median or mean for each of the graphs, but coupled that response with attention to the 

overall shape or spread of the graphs. These students either provided a point estimate, 

based on their overall sense of the center and range of the graphs, or, more promising, 

an interval estimate for the mixture, using the idea of a confidence interval informally 

as a means for capturing the population parameter, while expressing a sense for the 

variability in the data set.

Other researchers (Bakker & Gravemeijer 2004; Reading and Shaughnessy, 2004; 

Saldanha & Thompson, 2003) have characterized types of student reasoning in a 

similar manner to the additive, proportional, and distributional reasoning constructs 

used by Shaughnessy et al. (2004a&b, 2005). It seems that these are useful constructs 

for characterizing student reasoning; thus, I draw on this framework as a beginning 

data analysis tool in investigating TAs’ statistical knowledge for teaching.

2.2.4 Summary

The construct of statistical literacy is useful for characterizing the type of 

statistical knowledge that all educated adults should have. The construct of statistical 

thinking is useful for characterizing the type of knowledge needed by statisticians and 

statistics educators. The construct of statistical reasoning is useful for understanding 

the ways in which students’ reason and potential sources of difficulty in the
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development of statistical literacy and thinking skills. These constructs are also 

interrelated in that statistical literacy and statistical thinking both require, at least on an 

informal level, the ability to: (1) reason proportionally; (2) coordinate multiple 

attributes of a distribution; (3) compare and contrast sampling distributions; and, (4) 

use features (1) -  (3) to draw acceptable inferences. Furthermore, students should be 

able to apply these features of knowledge with experimental data and maintain a 

serious consideration of bounded variation. Pfannkuch (2005) suggests that these four 

features, along with a consideration of variation, play a fundamental role in the 

teaching of probability and statistics, and thus, these features are also connected to 

statistical reasoning. These features must be developed by students in order to 

facilitate their evolution into statistically literate adults, and, in some cases, 

statisticians, if they continue to learn more formal statistical processes.

The research presented in this section indicates that students, and in some cases 

teachers, have a difficult time with certain aspects of these knowledge components 

(Recall Figures 2 and 3). Specifically, coordinating multiple attributes of a 

distribution, conceptualizing sampling distributions, making inferences about different 

populations, and maintaining a sense of bounded variability throughout, present 

challenges in developing students’ statistical literacy and thinking skills. If these 

statistical building blocks are problematic for teachers, then it is less likely that 

teachers will be successful at developing these conceptions in their students. Further, 

if teachers are not aware of the necessary building blocks for understanding sampling 

and the types of developmental stages in students’ reasoning, then they are less likely
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to highlight salient features of statistical thinking in their lessons, putting students at a 

disadvantage for developing robust statistical literacy and/or thinking skills. It is 

natural to wonder about TAs’ knowledge of these features both in terms of their own 

understanding of statistics and their knowledge of student reasoning.

Thus, the research presented here serves to frame my investigation into TAs’ 

statistical knowledge for teaching by: (1) providing a model of necessary knowledge 

components for teaching statistics; (2) providing tasks for measuring students’ and 

teachers’ knowledge of sampling concepts and the role of sampling in statistical 

inference; and, (3) providing initial frameworks for analyzing TAs’ reasoning. In 

particular, the model I suggest for TAs’ statistical knowledge for teaching requires 

both statistical literacy and statistical thinking expertise, which necessarily includes 

the knowledge components discussed in Figure 1 of this section. I turn now to more 

general research on teacher knowledge.

2.3 R esearch on Teacher Knowledge

In this section I examine teacher knowledge relevant to the present study. As this 

study is concerned with TAs, it was natural to look at existing literature on TAs. 

However, a few notable exceptions are Belnap (2005), DeFranco and McGivney- 

Burelle (2001), and Speer (2001). Belnap (2005), and DeFranco and McGivney- 

Burelle (2001) studied TAs’ beliefs about teaching and learning more generally. 

Belnap studied the impact of training and professional development on TAs’ beliefs 

and their teaching experiences. DeFranco and McGivney-Burelle’s examined twenty- 

two TAs who participated in five seminar classes. These classes addressed issues of

57



pedagogy, curriculum, assessment, and epistemology. Although DeFranco and 

McGivney-Burelle found that TAs’ beliefs about the teaching and learning of 

mathematics changed significantly by the end of the seminar, they were not able to put 

new beliefs into action in ways that would inform and change their teaching practices. 

Speer’s (2001) research focused on TAs’ beliefs and perspectives within the specific 

context of teaching reform calculus. Speer was interested in the relationships between 

TAs’ beliefs and their moment-to-moment decisions in class. Speer argued that 

professional development more narrowly focused on a particular content domain 

might have a more substantial impact on TAs’ beliefs and practices. In fact, Speer 

(2001) argued that the success of Cognitively Guided Instruction13 (CGI) was in part 

due to its extended focus on very specific content area and the understanding that 

people make sense of new information through their existing knowledge, beliefs, and 

practices.

The brevity of research on TAs suggests that this is a ripe area open to 

investigating and in need of a foundation. To build an infrastructure for research on 

TAs’ statistical knowledge for teaching requires an investigation of the literature 

pertaining to mathematics teachers’ knowledge because there are likely to be 

similarities between mathematics teachers, particularly secondary teachers, and TAs.

In fact, Belnap (2005) suggested that TAs pass through many of the same 

developmental stages in learning to teach as do novice K-12 teachers.

13 Cognitively Guided Instruction is a research program that investigated teachers’ pedagogical content 
knowledge and beliefs of addition and subtraction through a professional development program. It will 
be discussed in detail later in the section.
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In this section, I examine research on teacher knowledge that is relevant to the 

present study. I discuss a brief history of research on teaching and progress to research 

on teacher knowledge relevant to the current study. I discuss the constructs of 

pedagogical content knowledge (PCK) and mathematical knowledge for teaching 

(MKT), as well as research that employs these constructs. In addition, I discuss the 

constructs of procedural and conceptual knowledge. The PCK, MKT, and procedural 

and conceptual constructs are useful in the present study, so I conclude this section 

with a discussion of how these constructs meld with the research base discussed in the 

prior section on stochastics education.

2.3.1 History of Research on Teachers and Teaching

Prior to the 1980’s, a process-product paradigm represented the educational 

research philosophy of the day. In this model the process is considered effective 

teaching behaviors and the product is considered student achievement. Researchers 

were interested in teaching behaviors that produced gains in student achievement 

(Koehler & Grouws, 1992). For instance, studies examined teaching behaviors, such 

as the amount of time devoted to practice activities, or the frequency of manipulatives 

used during class (Koehler & Grouws). Begle’s (1979) work is another example of 

this type of process-product research and a frequently cited study in mathematics 

education literature. Begle studied the number of mathematics courses teachers had as 

a proxy for student achievement. Based on these types of studies, researchers designed 

instructional materials to aid teachers as they identified particular teacher behaviors
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that correlated with student achievement (Koehler & Grouws, 1992; Shavelson, Webb, 

& Burstein, 1986).

In the 1980’s, researchers began asking different types of research questions and 

recognized that the process-product paradigm was insufficient for constructing more 

meaningful understandings of the complex act of teaching. The process-product 

paradigm was criticized for its limited view of the teaching process and role of the 

teacher (Shavelson, Webb, & Burstein 1986; Shulman, 1986). Research in the area of 

teaching evolved in the 1980’s and 1990’s to include more qualitative research on 

teachers’ thought processes - teachers’ theories, beliefs, knowledge, and decision

making processes (Clark & Peterson, 1986).

2.3.2 Pedagogical Content Knowledge and Mathematical Knowledge for 

Teaching

One significant change in research on teacher knowledge was Shulman’s (1986) 

pedagogical content knowledge (PCK) paradigm. Shulman described how past 

research on teacher knowledge either focused on teachers’ specific content knowledge 

or their pedagogical knowledge. That is, research either focused on the number of 

mathematics courses a teacher had and/or their mathematics test scores; or, research 

focused on teachers’ classroom management and/or their organization and 

presentation of instructional plans as an indication of teachers’ abilities to teach 

mathematics. Shulman’s PCK provided a link between content and pedagogy.

Shulman provided a compelling argument that the expert knowledge of a
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mathematician is not sufficient for teaching mathematics, and that qualities such as 

classroom management, which is completely void of subject matter, would be 

insufficient for a thorough understanding of the knowledge required to teach 

mathematics. In particular, Shulman defined PCK as content knowledge that “goes 

beyond knowledge of the subject matter per se to the dimension of subject matter 

knowledge fo r  teaching” (p. 9). That is, for Shulman, PCK was a type of content 

knowledge that embodied the “teachability” of the material to students that are 

encountering the concepts for the first time.

Shulman’s (1986) concept of PCK significantly impacted the work of Ball and her 

colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003; Ball, Lubienski & Mewborn, 

2001; Hill, Rowan & Ball, 2005) and their introduction of the construct mathematical 

knowledge fo r  teaching (MKT). Shulman’s PCK and Ball and her colleagues’ MKT 

are similar in that both constructs highlight the special knowledge mathematics 

teachers need in order to successfully do their jobs; however, Ball and her colleagues 

expand and refine Shulman’s original work in at least three ways. First, the past 

decade of work by Ball and her colleagues represents a significant and original 

contribution to the development of a characterization of the mathematical knowledge 

necessary specifically for teaching elementary mathematics curriculum. Second, Ball 

and her colleagues argue that research on teachers’ knowledge must be situated in 

practice and grounded in research on student thinking in order to significantly 

contribute toward a shared understanding of the mathematical knowledge necessary 

and sufficient for successful teaching. Third, Ball and her colleagues deconstruct MKT
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into four primary components: (1) common content knowledge, (2) specialized content 

knowledge, (3) knowledge of content and students, and (4) knowledge of content and 

teaching.

Ball (2005) defines common content knowledge as “the mathematical knowledge 

and skill expected of any well-educated adult”, including the ability to “recognize 

wrong answers, spot inaccurate definitions in textbooks, use notation correctly and the 

ability to do the work assigned to students” (p. 13). Ball defines specialized content 

knowledge as “the mathematical knowledge and skill needed by teachers in their work 

and beyond that expected of any well-educated adult” including the ability to “analyze 

errors and evaluate alternative ideas, give mathematical explanations and use 

mathematical representations, and be explicit about mathematical language and 

practices” (p. 14). Ball defines knowledge of content and students, and knowledge of 

content and teaching, as knowledge that combines knowledge of content and students 

or content and teaching, respectively (pp. 16-18). This combination of knowledge 

includes the ability to “interpret students’ incomplete thinking” (p. 16) and “sequence 

content for instruction” (p. 18). The components of mathematical knowledge for 

teaching developed by Ball and her colleague’s (Ball, Hill & Bass, 2005; Ball & Bass, 

2003; Ball, Lubienski & Mewbom, 2001; Hill, Rowan & Ball, 2005) contribute to my 

framework of statistical knowledge for teaching by illuminating foundational 

components necessary for teaching any subject -  content knowledge and knowledge of 

content and students. Also, their model provides a methodological consideration for 

the current study to consider -  research design that enables the investigation of TAs’
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knowledge of content and students. These contributions are further specified at the end 

of Section 2.3.

The Cognitively Guided Instruction (CGI) research (Carpenter, Fennema,

Peterson, & Carey, 1988; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; 

Peterson, Fennema, Carpenter, & Loef, 1989; Fennema, Carpenter, Franke, Levi, 

Jacobs, & Empson, 1996) in the 1980’s and 1990’s, and the work of Even (1993), are 

illustrations of the shift toward characterizing the special type of knowledge needed by 

teachers in their work. The CGI studies focused on whether or not teachers’ 

knowledge of research on student thinking in a particular content domain could form 

the basis for classroom instruction, and if such instruction would yield positive gains 

in student achievement (Fennema & Franke, 1992; Fennema, Peterson, Chiang, Loef, 

1989). Teachers’ mathematical knowledge for teaching was in part assessed by their 

ability to make distinctions between different types of addition and subtraction word 

problems, and their general knowledge of student strategies for solving addition and 

subtraction problems. The CGI researchers found that the students of teachers who 

exhibited more robust knowledge of different types of addition and subtraction 

problems and the types of student solution strategies scored higher in word-problem 

assessment. However, the difference between students’ computational assessment 

scores revealed no difference between teachers with and without robust knowledge of 

different types of (a) addition and subtraction problems, and (b) student solution 

strategies.
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Even (1993) investigated secondary teachers knowledge within in the content 

domain of functions. She used the constructs of PCK and the work of CGI to frame 

her study. In fact, Even’s work incorporated many components that would later be 

discussed by Ball and her colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003;

Ball, Lubienski & Mewborn, 2001; Hill, Rowan & Ball, 2005) through the construct 

of MKT. Even used both questionnaires and follow-up interviews to gather data on 

secondary teachers’ knowledge. Tasks included asking teachers to first provide a 

definition of function and then to provide an alternative definition for a student who 

struggled to understand the first definition. Also, Even provided examples of student 

work and asked teachers to determine if the student was right or wrong and why.

These kinds of tasks allowed Even to evaluate teachers’ subject matter knowledge and 

their knowledge of student solution strategies. Asking teachers for their definition of 

function, for example, allowed Even to determine the teachers’ knowledge of function. 

In addition, asking for an alternative version of the definition provided Even the 

opportunity to examine teachers’ content knowledge, by assessing the depth of their 

understanding of function, as well as teachers’ knowledge of content and students, by 

assessing the repertoire of explanations they have for students.

2.3.3 Procedural and Conceptual Constructs of Knowledge

Other researchers (Eisenhart, Borko, Underhill, Brown, Jones, & Agard, 1993) 

studied teacher knowledge through the constructs of procedural and conceptual 

knowledge. Eisenhart et al. used Hiebert’s (1986) definitions for conceptual and
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procedural knowledge because these definitions are regularly used by the larger 

mathematics education community as a means for communicating about these 

constructs. Hiebert defines conceptual knowledge as “knowledge that is rich in 

relationships” (p. 3), and procedural knowledge as knowledge of “the formal 

language, or symbol representation system” and knowledge of “the algorithms, or 

rules for completing mathematical tasks” (p. 6). Although the dichotomy between 

these two types of knowledge is artificial, and the distinctions between procedural and 

conceptual knowledge are certainly more interconnected in practice, it is useful for 

discussion purposes to examine different types and qualities of knowledge.

Eisenhart et al. (1993) argued that the novice teachers in their study spent more 

time teaching for procedural knowledge than conceptual knowledge. Eisenhart et al. 

found that although the teachers in their study expressed interest in teaching for 

conceptual knowledge, a number of factors made it more challenging for these 

teachers to actually teach in a manner that would support the development of 

conceptual knowledge. In particular, Eisenhart et al. suggested three factors which 

limited teachers’ abilities to teach for conceptual knowledge: (1) teachers’ own limited 

conceptual knowledge; (2) expectations placed on novice teachers by their cooperating 

teachers and their school district influenced novice teachers’ priorities toward 

covering all of the procedural skills laid out in the curriculum and preparing students 

for standardized tests before emphasizing conceptual knowledge; and, (3) novice 

teachers were influenced to teach procedural skills first because this teaching 

philosophy appeared to be supported in the department by cooperating teachers and by
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administrators. As a result of the present study, I suggest another potential limiting 

factor -  a teacher’s prior experiences learning mathematics is likely to influence the 

type and quality of mathematics they work to develop in their students; Even (1993) 

also makes this argument.

2.3.4 Coordinating PCK, MKT, Procedural and Conceptual Knowledge

Fennema and Franke (1992) put forth the model shown in Figure 10 as a viable 

framework for illustrating the dynamic and integrated features of teacher knowledge. 

Specific features in Figure 10, such as knowledge o f mathematics and knowledge o f  

learners’ cognitions in mathematics, represent the type of knowledge components 

originally mentioned by Shulman (1986) and later refined by Ball and her colleagues 

(Ball, Hill & Bass, 2005; Ball & Bass, 2003; Ball, Lubienski & Mewborn, 2001; Hill, 

Rowan & Ball, 2005) into the construct of mathematical knowledge for teaching. 

Inside teachers’ context specific knowledge resides their understanding of the 

procedures and concepts for a particular mathematical domain and the ways in which 

they connect those procedure and concepts to other areas of the mathematics curricula 

-  the ‘big ideas’. Also included here are teachers’ abilities to apply this knowledge to 

novel mathematical problems and teaching situations. Teachers’ knowledge of student 

reasoning and development in relation to a particular mathematical topic is also 

interconnected with their context specific knowledge.
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Figure 10: Model of Teacher Knowledge

Fennema & Franke’s (1992) Model of Teacher Knowledge (p. 162)

Beliefs

Context
specific

knowledge

Knowledge of 
learners’ cognitions

in mathematics

In addition, Fennema and Franke’s framework presents a picture of how beliefs 

mediate the features of teacher knowledge. The issue of beliefs is addressed in this last 

subsection.

2.3.5 Teachers’ Beliefs

The constructs of belief and knowledge are too closely connected to parse out in 

tidy categories, and often the words are used interchangeably. The research literature
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(e.g., Thompson, 1992; Pajares, 1992; Kagan, 1992) suggests that knowledge may be 

a form of belief, but one that has been accepted by the larger community as shared 

truth. According to these researchers, in order to characterize something as 

knowledge, there are certain criteria, established by the research community, which 

must be met. Beliefs, however, are not necessarily accepted by the larger community 

and remain personal in nature. Thompson articulates two main distinctions between 

beliefs and knowledge. Beliefs “can be held with varying degrees of conviction” and 

“beliefs are not consensual” (Thompson, 1992, p. 129).

In this study, I use knowledge to mean those beliefs that have undergone scrutiny 

by the established research community and are able to withstand that scrutiny. It is 

clear from the literature that beliefs and knowledge are intertwined, making it difficult 

to study one without necessarily looking at the other. However, the work of Ball and 

her colleagues (Ball, Lubienski, & Mewborn, 2001; Ball & Bass, 2003; Hill, Rowan, 

& Ball, 2005), CGI (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, 

Fennema, Peterson, Chiang, & Loef, 1989; Peterson, Fennema, Carpenter, & Loef, 

1989; Fennema, Carpenter, Franke, Levi, Jacobs, & Empson, 1996), and Even (1993), 

provide a model for assessing teachers’ mathematical knowledge for teaching against 

research literature on students’ mathematical reasoning. For example, Ball and her 

colleagues, CGI, and Even used students’ alternative ways of approaching 

mathematical tasks, as evidenced by the research literature, as a means for assessing 

teacher knowledge of content, and knowledge of content and students.
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2.3.6 Summary

The work of Ball and her colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003; 

Ball, Lubienski & Mewborn, 2001; Ball & McDiarmid, 1990; Hill, Rowan & Ball, 

2005), CGI (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, Fennema, 

Peterson, Chiang, & Loef, 1989; Peterson, Fennema, Carpenter, & Loef, 1989; 

Fennema, Carpenter, Franke, Levi, Jacobs, & Empson, 1996), and Eisenhart et al. 

(1993) pertains to the mathematical knowledge necessary for teaching elementary 

school mathematics, and Even’s (1993) study pertains to secondary teachers’ concept 

of function. However, the models provided by these researchers are useful for thinking 

about the necessary knowledge for teaching introductory statistics courses. First, 

fusing the constructs of common content knowledge, specialized content knowledge, 

and knowledge of content and students/teaching with the constructs of statistical 

literacy, statistical thinking, and statistical reasoning, respectively, provide a 

framework for investigating TAs’ statistical knowledge for teaching. Figure 11 

provides a visual representation of this framework. I highly specify the framework 

referenced here in Chapter 6, because this framework in large part emerged from my 

analysis of the data.
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Figure 11: Model of Statistical Knowledge for Teaching 

Model for Statistical Knowledge for Teaching

Statistical Literacy Skills 
Common Content Knowledge

a) Understand common statistical terms
b) Read and make sense Of statistics to the media
c) Ability to be a critical consumer of statistics
d) informal statistical inference skills

Statistical Thinlong 
Specialized Content Knowledge

a) Deep and well connected 
knowledge Of introductory 
statistics material 
descriptive & inferential

b) Consumer and producer of 
statistics — Design 
experiments, collect data, 
analyze data, draw

Knowledge of Content and 
Students

a) Alternative solution strategies
b) Common student reasoning 

paths
c) Common conceptual hurdles

Second, the work of Ball and her colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 

2003; Ball, Lubienski & Mewborn, 2001; Ball & McDiarmid, 1990; Hill, Rowan &
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Ball, 2005), CGI (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, Fennema, 

Peterson, Chiang, & Loef, 1989; Peterson, Fennema, Carpenter, & Loef, 1989; 

Fennema, Carpenter, Franke, Levi, Jacobs, & Empson, 1996), and Eisenhart et al. 

(1993) provide a methodological model for assessing teacher knowledge of content 

and students. Specifically, using hypothetical student work as the basis for task-based 

interviews provides a means for assessing teachers’ content knowledge and their 

knowledge of content and students, as compared to the research community’s 

knowledge of content and students.

2.4 Chapter C onclusions

In conclusion, this chapter provides an overview of the theories and literature that 

support my research. Radical constructivism provides a guiding philosophy, which 

impacts my perspectives on how learning takes place, how teaching can best support 

such learning, and the overarching purpose of statistics education. First, my 

epistemological assumptions function on a meta-level, orienting my research design 

and analysis in order to support the creation of a viable model for TAs’ statistical 

content knowledge. My review of the statistics education literature highlights the 

importance of research on sampling concepts. In my review of the literature, I 

synthesized the features necessary for building a profound understanding of sampling, 

and identified types of student difficulties that emerge as students’ statistical reasoning 

develops. In addition, I identified a useful framework for investigating reasoning about 

empirical sampling distributions (Shaughnessy et al. 2004a&b, 2005) and another for 

investigating the relationship of statistical inference to sampling (Liu & Thompson,
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2005). These themes, gleaned from the research literature, provided a structural 

framework for engineering my research instruments and for orienting my data 

analysis. This structural framework enabled me to create a viable model of TA 

reasoning on a micro-level.

Second, a constructivist epistemology has implications to theories of teaching. If

an individual learns by constructing his or her own knowledge through experiences,

then a natural implication for teaching would be that instruction should begin with

students’ understandings. Maher and Alston (1990) discuss the implications of

constructivism on teaching. They state,

An important foundation for constructing even more complex systems of 
knowledge about teaching includes the building of systems of knowledge 
about the following:

How children interpret the ideas in school mathematics;
What kinds of strategies children invent and use; and 
How to interpret the kinds of errors children make.

Attention to these behaviors better enables the teacher to aid the student in 
building more powerful constructions (p. 150). •

Although Maher and Alston’s comments are in reference to K-12 grade students, they

are appropriate for college teaching as well. I believe that college students should also

be actively involved in constructing appropriate understandings of key probability and

statistics concepts. Further, I do not believe that most college students will leave

introductory statistics with meaningful and useful understandings of statistics if they

are only shown processes and procedures for finding solutions to routine problems.

Students need to be actively engaged in sampling activities, computer simulations, and
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class discussions about the messiness of data collection and analysis of data in order to 

construct a deeper understanding and appreciation of the field of statistics. Pfannkuch 

(2005), and Cobb and Moore (1997) argue that students need to be able to think like 

statisticians, and I believe that active engagement in these types of activities can lead 

to such thinking. These are the core beliefs that guide my research.

The work of Ball and her colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003; 

Ball, Lubienski & Mewborn, 2001; Ball & McDiarmid, 1990; Hill, Rowan & Ball, 

2005), CGI (Carpenter, Fennema, Peterson, & Carey, 1988; Carpenter, Fennema, 

Peterson, Chiang, & Loef, 1989; Peterson, Fennema, Carpenter, & Loef, 1989; 

Fennema, Carpenter, Franke, Levi, Jacobs, & Empson, 1996), and Even (1993) 

provide support for the position I outlined in the preceding paragraph. The work of 

these researchers melded with the research on student reasoning and the type of 

knowledge structures students need in order to develop statistical literacy and thinking 

skills provides a micro-level structure for researching TAs’ statistical knowledge for 

teaching. Specifically, Ball and her colleagues, CGI, and Even provided two 

methodological considerations useful to this study. First, the focus on a specific 

mathematical content area allowed these researchers to develop a more robust 

characterization of teacher knowledge in the teaching of a particular topic. Second, 

using hypothetical student responses as a proxy for understanding TAs’ content 

knowledge and knowledge of content and students proves to be a valid and reliable 

methodological tool. In addition, the research presented in this chapter on teacher 

knowledge provided an analysis tool for examining TAs’ statistical knowledge for
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teaching. In Chapter 3 , 1 elaborate further about the ways in which I used the research 

presented here to design this research study and analyze the data.
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CHAPTER 3

RESEARCH DESIGN, METHODOLOGY AND ANALYSIS

As described in Chapter 1, the primary purpose of this study was to characterize 

TAs’ statistical knowledge for teaching sampling processes. In particular, I 

investigated: 1) How TAs understand the concepts of sampling; 2) How TAs 

conceptualize the relationship between sampling and statistical inference; 3) How TAs 

relate sampling and statistical inference concepts to probability; and, 4) TAs’ 

knowledge of content and students. In this chapter I detail the research methodology, 

design, and analysis for this study. This chapter is presented in five sections. In 

Section 3 .1 ,1 provide a general overview of the research design, data collection 

methods, and rationale for these methods. In Section 3 .2 ,1 discuss the research 

instruments. In Section 3 .3 ,1 discuss participant selection. In Section 3 .4 ,1 discuss 

how data analysis was conducted, including a detailed outline of the phases of the 

analysis. In Section 3 .5 ,1 address issues of validity in this research project.

3.1 R esearch Methodology and Design

One of the primary purposes of this study was to develop a rich and detailed 

understanding of TAs’ subject matter knowledge of sampling. This goal, guided by a 

constructivist epistemology implied building a viable model of TAs’ reasoning about 

sampling processes. For a constructivist this means composing a framework of TAs’ 

conceptions via my interpretations of TAs’ spoken words and/or written work. The 

second primary goal of this study was to investigate TAs’ knowledge of content and
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students, including common conceptual difficulties. In my investigation of TAs’ 

conceptions of sampling, the primary focus was in building a viable model of how 

TAs perceive of sampling processes; it was not to suggest a system of knowledge that 

TAs should have. However, in my investigation of the necessary statistical knowledge 

for teaching and TAs’ knowledge of content and students, it was my intention to build 

a model for the types of knowledge that need to be well-developed in order to achieve 

effective teaching. In order to achieve this goal, I grounded my investigation with 

statistics education research centered on student reasoning. This approach was also 

guided by a constructivist epistemology in the following sense: for a teacher to 

effectively facilitate students’ constructions of knowledge, the teacher must know 

something about how his/her students learn.

3.1.1 Framing the Research Design: Interplay between this research 

study, a constructivist epistemology, and prior research in stochastics 

education and teacher knowledge

My review of the research on students’ and teachers’ statistical reasoning about 

sampling is germane to my research goals and my guiding constructivist epistemology 

because it enabled me to find (a) sampling tasks that have been shown to be valid and 

reliable for constructing models of student and/or teacher reasoning, and (b) 

frameworks for aiding in the preliminary analysis of TAs’ reasoning. It is not 

unreasonable to assume that TAs will have similar stages in their statistical 

development as students of statistics and K-12 teachers, although it may be true that
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TAs are already at a more advanced stage. However, this conjecture has not been 

tested. Thus, tasks were reproductions of, or modeled after, many of the tasks 

discussed in the literature review (see Chapter 2) in order to engage TAs in activities 

and discourse that would support building viable models of TA knowledge.

In addition, the literature review of students’ and teachers’ statistical reasoning 

pointed to common conceptual difficulties, and to knowledge structures that all adults 

should have -  statistical literacy, and knowledge structures necessary for statistics 

teachers and statisticians -  statistical thinking. These two features of my literature 

review, coupled with the research on teacher knowledge, provided support for 

developing a model of statistical knowledge necessary for effective teaching, and as a 

means for assessing TAs’ knowledge of content and students. Also, the research on 

teacher knowledge provided a methodological approach of using hypothetical student 

tasks as a means for investigating teachers’ thinking about their students’ learning. 

Figure 12 represents my conceptual map for the interaction between a constructivist 

epistemology, the research on student and teacher reasoning about sampling, research 

on teacher knowledge, and how these elements frame my research design and analysis.
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Figure 12: Methodological Model

inform my research design and analysis
to

Macro I^VekRadical Constructivism 
Philosophy of teaming -  learner constructs his/her knowledge 
Impacts what it means to “know something” and how I investigate TAs’

■ Impacts my view of the purpose of statistics education and what it 
means to engage in statistical activity 

• Impacts my view on teaching practices and what constitutes statistical 
knowledge for teaching

Implication 1: Build* viable model of TAs’ 
conceptions ofsampling processes, not a 
model of what they should know

• Research designmiistprovide rich sources 
of TAs’ interpretations and reasoning

Implication 2: Teachers most know something 
abouthow stodentslearnin orderto&cilitate 
construction of students’ knowiedge

• Research design must provide rich sources of
TAs’ interpretations of student thinking and use 
existing research on student reasoning as a basis 
for examining TAs’ knowledge

MicroLevel: Research on Stochastics Education and Teacher Knowledge
Implication 1:
• Research design -  use task based interviews/surveys that have been shown in the 

past to be valid and reliable for measuring students’ and K-I2 teachers’ 
conceptions of sampling

• Analysis -  begin with Shaughnessy et al. (2004,2005) framework for examining
TAs’ reasoning on experimental graphs and liti and Thompson’s (2005) 
framework for statistical inference tasks

Implication 2:
• Research design -  use research methodology of CGI and Even (1993) by creating 

hypothetical student responses grounded in my synthesis of building blocks & 
common student difficulties

• Analysis -  use the common building blocks, common misconceptions and 
conceptual frameworksasa means for comparison to TAs’ interpretations of 
student reasoning.
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3.1.2 Data Collection Methods

In order to achieve the goals outlined in the preceding paragraphs, I first used a 

task-based web survey followed by a series of three 80-minute interviews with a small 

subset taken from the larger group of survey participants. The surveys provided me the 

opportunity to gather, from a larger, more diverse group of TAs, general information 

about their educational backgrounds and certain limited information on how they 

reason in sampling contexts. Also, the surveys provided me the opportunity to find 

volunteer interview participants. The interviews supplied opportunities to follow up 

with TAs’ interpretations and responses to the survey tasks and to continue to build a 

viable model of TAs’ statistical knowledge for teaching by engaging TAs in (a) 

statistical conversations about sampling processes in a variety of contexts, and (b) 

conversations about the teaching and learning of sampling concepts. The series of 

three interviews with each interview participant is what allowed me to achieve a 

detailed, fine-grained analysis of these TAs’ statistical knowledge for teaching 

sampling. Repeated interviews with the same TAs allowed for corroboration of 

findings. Taken together, the surveys and interview series enabled me to triangulate 

the data, because I was able to gather snapshots at different moments in time of the 

ways in which TAs reasoned about comparable sampling tasks and how they reasoned 

across a variety of sampling tasks.

In addition to the surveys providing baseline information about TAs’ conceptions 

of sampling processes, TAs’ responses informed the first interview questions.
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Although tentative interview protocols were in place, in some sense interview tasks 

were modified in order to adjust to information on TA reasoning that emerged from 

the survey and needed to be further clarified or specified. For example, the second and 

third interviews were modified when the data from prior interviews suggested a 

compelling idea that needed further illumination in order to build viable models of 

TAs’ statistical knowledge for teaching. The interview case studies that emerged in 

this study serve as exemplars for characterizing TAs’ knowledge of sampling 

processes, and may provide statistics educators’ insight into areas of undergraduate 

and graduate statistics education deserving careful attention.

3.2 Survey and Interview Instrum ents

Table 1 shows the sequence of data collection that took place during the fall of 

2006. The tasks are located in the appendix. First I describe the survey tasks and 

follow with a description of the interview tasks.

Table 1: Data Collection Timeline
Tasks

Survey September 2006

Unusual Sample Task 
Prediction Task 
Real/Fake Task

Interview 1 October 2006
Discussion and follow-up 
questions to survey tasks

Interview 2 October 2006
Mystery Mixture Task 

Terminology

Interview 3 November 2006
Gallup Poll Task 

Background information
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3.2.1 Survey Tasks

The Unusual Sample Task is borrowed from Watson (2004, p. 281), and was 

discussed in Chapter 2. The Unusual Sample Task addresses the relationship between 

sample size and sample variability and connections between probability and sampling. 

The Prediction Task was borrowed from an interview task previously used on a 

National Science Foundation (NSF) research grant, titled Students’ Conceptions o f  

Variability, see Shaughnessy et al. (2004 a & b). This task assesses distributional 

reasoning, knowledge of theoretical and empirical sampling distributions from a 

known population, probability structures, and the balance between sample variability 

and sample representativeness. The second part of the Prediction Task was modeled 

after Even’s (1993) work on teachers’ pedagogical content knowledge of functions. As 

I mentioned in Chapter 2, Even provided examples of student work and asked teachers 

to respond to the student work. Thus, for the second portion of the Prediction Task, I 

provided TAs with hypothetical student predictions, typical.of student work as 

evidenced by the Shaughnessy et al. study (2004a&b), and asked TAs to respond to 

the student predictions. This portion of the task addresses TAs’ content knowledge of 

empirical sampling distributions, but in addition it provides an opportunity to learn 

about TAs’ knowledge of content and students. The Real/Fake Task is borrowed from 

an interview task previously used in a NSF research grant, titled Students’

Conceptions o f  Variability, see Shaughnessy et al. (2004a&b). This task assesses TAs’ 

knowledge of empirical sampling distributions and variability within and between 

sampling distributions.
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3.2.2 Interview Tasks

The first interview was designed as a follow-up to the survey. First, I followed up 

on the Unusual Sample Task. Giving TAs an opportunity to discuss how they 

interpreted the task and share more detail about their thought processes provided more 

information from which to build a model of TAs’ knowledge with respect to this type 

of task. It is important to determine how robust TAs’ knowledge of sampling concepts 

are. In addition, by introducing a differing response used by other TAs, I attempted to 

introduce some cognitive conflict for TAs during the interview setting in order to get a 

sense for the depth of their understanding. Introducing a hypothetical TA or student 

response was also meant to assess TAs’ knowledge of common conceptual hurdles in 

these problems. Given that students struggle with the role that sample size plays in 

sampling variability, it is important to establish whether or not TAs explicitly link this 

task to the idea of sampling bias and sample size and to recognize that this is a 

difficult concept for students. Therefore, I also asked TAs how they thought students 

might respond to the Unusual Sample Task and what types of difficulties they thought 

students might have.

Second, I followed up on the Prediction Task. TAs had the opportunity to provide 

their interpretation of the task and why they responded the way they did. In particular, 

research suggests that students often experience tension between representativeness 

and variability. By providing examples of student predictions and asking TAs to 

elaborate on their reasons for deciding whether a student prediction was reasonable or 

unreasonable, I was able to get a sense of TAs’ knowledge of content and students.
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Third, I followed up on the Real/Fake Task. This task addresses TAs 

understanding of empirical sampling distributions. I attempted to introduce cognitive 

conflict by adding opposing views of other TA responses. In addition, I asked an 

alternative version of the task, where TAs rated the four sampling distributions from 

most likely to occur during the experiment to least likely to occur. The alternate 

phrasing allowed me to determine if changing the wording of the problem made a 

difference in how TAs interpreted the problem and how they would make their 

identifications. Finally, I asked TAs to discuss the types of difficulties students might 

experience with the Real/Fake Task, as well as what solution strategies they might 

employ.

The second interview provided an additional opportunity to build a model for 

thinking about TAs’ statistical knowledge for teaching sampling. The Mystery 

Mixture Task is borrowed from a NSF research grant, titled Students’ Conceptions o f  

Variability, see Shaughnessy et al. (2004 a & b). I asked TAs to estimate the number 

of red candies in a ja r  of red and yellow candies. This task again addresses TAs’ 

understanding of empirical sampling distributions and their relation to confidence 

intervals and statistical inference. In addition, during the second interview I asked TAs 

to discuss statistics terminology and how they might explain certain definitions and 

concepts to students. This allowed me to gain a deeper sense for how TAs thought 

about particular statistical concepts and their knowledge of how to introduce these 

topics to students.
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The Gallup Poll Task was introduced during the third interview and was borrowed 

from Liu and Thompson (2005). This task addresses TAs’ knowledge of sampling and 

its relation to confidence intervals, including the concepts of confidence level and 

margin of error. I also provided hypothetical student responses in order to assess TAs’ 

knowledge of different interpretations of confidence interval and their understanding 

of students’ differing perceptions of margin of error and confidence level. Finally, 

during the third interview I asked TAs to discuss how they thought of good teaching. 

Specifically, I asked TAs to describe (1) their past learning experiences; (2) what they 

liked or did not like about their past teachers; (3) influential teachers; and, (4) what, 

for them, made a teacher influential.

3.2.3 Summary

To summarize, the research instruments were designed to engage TAs in activities 

and discourse that would support the development of a model of their subject matter 

knowledge of sampling processes and their knowledge of content and students. The 

survey and interview tasks were developed with two main purposes in mind. First, 

tasks were designed to illicit discussion around the core conceptual components 

necessary for an understanding of samples, sampling distributions, and the relationship 

between sampling and statistical inference. Second, tasks were designed to assess 

TAs’ knowledge of, and to promote discourse around, the common conceptual hurdles 

that students experience as they leam about ideas of sampling. Table 2 provides a map
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for how each survey and interview task addresses the particular conceptual building 

blocks and common student difficulties that were identified in Chapter 2.

Table 2: Correspondence between tasks and knowledge components

Conceptual Building 
Blocks

Corresponding Conceptual 
Difficulties

Corresponding Survey & 
Interview Tasks

Definition of Sample Difficulty with colloquial versus 
statistical use of the term

The Unusual Sample Task & 
Terminology

Proper Sampling Methods Difficulty with random selection 
and/or recognizing bias in the 
sampling process

The Unusual Sample Task & 
Terminology

Coordinate multiple 
attributes of distributions

Difficulty coordinating multiple 
attributes -  overly focused on 
center, shape or spread

The Prediction Task, 
Real/Fake Task, & Mystery 
Mixture Task

Sampling Distributions Difficulty with empirical versus 
theoretical models -  bounded 
variability

The Prediction Task, 
Real/Fake Task, Mystery 
Mixture Task, Terminology, 
Unusual Sample Task, & 
Gallup Poll Task

Relationship between 
sampling variability and 
sample size

Difficulty recognizing as sample 
size increases sample variability 
decreases -  no image of 
repeating the sampling process

The Unusual Sample Task

Role of sampling in 
statistical inference

Difficulty interpreting 
confidence intervals with long
term relative frequency 
perspective and an image of a 
distribution of sample statistics

The Mystery Mixture Task, 
& Gallup Poll Task

3.3 Survey and Interview Participants

3.3.1 Survey Participants

Sixty-eight graduate teaching assistants from 18 universities around the United 

States participated in the task-based web survey. The survey participants comprise a 

convenience sample in which participation was voluntary. Participant eligibility 

required TAs be enrolled in a graduate statistics, mathematics, mathematics education
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or related graduate program. Universities were targeted for solicitation wherever 

contacts existed between the researcher and the university.

In the Fall of 2006, TAs were sent a link to the web survey via email. 

Approximately one week after the initial solicitation email, TAs received one 

reminder notice. TAs who participated in the survey were entered into a raffle to win 

an iPod®. Survey participants were required to leave their name and email in order to 

be entered into the raffle, but this information was kept confidential, and identifying 

information was removed from survey responses. Table 3 and Figure 13 provide 

demographic summary information on the survey participants. There were 

approximately equal numbers of male and female participants. Notice that a ‘typical’ 

survey participant was in his/her 20’s, and spoke English as a first language.

Table 3: Demographic information on survey participants
English as a Second Language Gender

Yes 14 (21%) Male 36 (53%)

No 54 (79%) Female 32 (47%)

Total 68 (100 %) Total 68 (100%)
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Figure 13: Age Distribution for Survey Participants

Age distribution for survey participants

18-21 22-25 26-29 30-33 34-37 > 38
years years years years years years

Age

Table 4 provides information on the survey participants’ mathematics and statistics 

background. Approximately 80% of survey participants were enrolled in a graduate 

statistics program at the time of the survey and 97% had taken at least one graduate 

statistics course. In addition, 85.3% of survey participants had taught their own section 

or worked as a recitation instructor for an introductory college statistics course.

Table 4: Mathematics and statistics background of survey participants
Undergraduate

Degree
Current Field of Study Number of 

Undergraduate 
Statistics Courses

Number of  
Graduate Statistics 

Courses

Statistics 12
(17.6%)

Statistics 54
(79.4%)

0 courses 6
(8.8%)

0 courses 2
(2.9%)

Mathematics 39
(57.4%)

Mathematics 7
(10.3%)

1-3 courses 30
(44.1%)

1-3
courses

19
(27.9%)

Mathematics
Education

1
(1.5%)

Mathematics
Education

3
(4.4%)

4-7 courses 18
(26.5%)

4-7
courses

9
(13.2%)

Other 16
(23.5%)

Other 4
(5.9%)

8-11
courses

10
(14.7%)

8-11
courses

15
(22.1%)

More than 
11 courses

4
(5.9%)

More 
than 11 
courses

23
(33.8%)
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The background information on these survey participants suggests that I reached 

my targeted population, in the sense that the majority of my participants were graduate 

students with at least one graduate statistics course, and who had some experience 

teaching undergraduate introductory statistics.

3.3.2 Interview Participants

The interview participants consisted of a subset of five TAs from the larger survey 

population. All interview participants were from the same university. As with the 

survey participants, the interview participants comprised a convenience sample. 

Interview participants volunteered to participate and received a $15 stipend per 

interview for their time. The eligibility requirements for interview participants were 

(a) having taken at least one graduate statistics course, and (b) having taught 

introductory college statistics at least one time. Interviews took place over a two- 

month period during the Fall of 2006. Video and audio recordings were conducted 

with two interview participants. Three interview participants consented only to audio 

recordings. Interview participants were given pseudonyms, and the video and audio 

recordings were kept locked in the researchers filing cabinet.

In order to preserve the confidentiality of the interview participants, I use 

pseudonyms: Amanda, Sandy, Joe, Andy, and Sam14. Further, I do not match up 

detailed information about the majors and backgrounds for each TA. Rather, I provide

14 In the analysis chapters, Chapters 4 ,5 , and 6, Sam enters the discussion only periodically. Sam is 
often omitted from the discussion because he did not articulate his thoughts as clearly as the other TAs 
and hence did not add much depth to the discussion. It is worth pointing out that Sam spoke English as 
a second language and tended to be shy about speaking; therefore, there was not enough substance from 
his interviews to warrant including him in every discussion.



background information as a group for the five TAs15. The demographic break down 

for the interview participants is as follows: two females and three males, two 

international students who spoke English as a second language, and an age range from 

27 to 38 years of age. Table 5 shows the mathematics and statistics background and 

fields of study for the five interview participants.

Table 5: Background Information of Interview Participants

Program Major Number of 
undergraduate 

statistics courses

Number of graduate 
statistics courses

Ph.D. 3 Statistics 3 0 courses 2 1 course 1

Master 2 Mathematics 1 1-3 courses 1 8-11 courses 1

Mathematics
Education

1 4-7 courses 2 More than 11 
courses

3

The teaching background for the five interview participants is as follows: two of the 

TAs had taught the first quarter of introductory college statistics16 only one time, one 

TA taught the first quarter of introductory statistics three times, and two TAs had 

taught both quarters of the introductory college statistics course multiple times. In 

addition, one TA taught a 400/500 level statistics for engineers course one time.

3.4 Data A nalysis

In this section I describe my data analysis methods. The analytic approach I 

employed is consistent with grounded theory methods (Glaser and Strauss, 1967), in

15 Interested researchers can contact the author of this dissertation directly should that information be 
necessary for some reason.
16 The university where this research took place was on the quarter system. The first term of 
introductory statistics at this particular university covered introductory probability, Binominal and 
Poisson distributions, descriptive statistics, the Central Limit Theorem, and basic confidence intervals. 
The second term continues work with statistical inference -  confidence intervals and hypothesis testing.
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which data analysis is an iterative process where hypothesis are generated, reflected 

upon, and modified over several cycles until increasingly stable and viable hypotheses 

emerge. Using this approach to data analysis I: (1) reviewed the data and formulated 

initial descriptions and hypotheses of TAs’ understandings in each task; (2) tested the 

viability of my initial hypotheses by searching the data for conflicting or supporting 

evidence; and, (3) revised my initial hypotheses on the basis of the conflicting or 

supporting evidence gathered in my searches. By reiterating this cycle of investigation, 

my hypotheses developed into stable and viable models for characterizing TAs’ 

statistical knowledge for teaching.

The data corpus for analysis included 68 survey responses and 15 (1-1.5 hour 

long) video and/or audio taped interviews, three interviews for each of the five TAs. 

First, I evaluated TAs’ performance on the survey by scoring their responses to tasks 

against a pre-established set of criteria grounded in a normative response17. Second, I 

examined the survey data and formulated initial impressions concerning TAs’ 

conceptions of sampling ideas and knowledge for teaching statistics. Following my 

initial examinations of the surveys, I triangulated with the interview data sources in 

order to test initial impressions gathered in the survey data. -In my initial examination 

of the interview data, I looked for evidence that would refute or support my initial 

impressions of the survey data. I also created new impressions and conjectures of TA 

reasoning from initial reviews of the interview data because it was more detailed and

17 The normative criteria for assessing the survey data are discussed in the conceptual analyses o f the 
tasks in Chapters 4  and 5.
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richer than the survey data, and provided a different insight into TA thinking. As I 

iterated this procedure of reviewing the survey and interview data with a critical eye 

toward my conjectures, I was able to locate themes in the data and to build stable 

hypotheses.

3.4.1 Level 1: Preliminary Examination of Survey and Interview Data

In my first pass of the survey data, I scored surveys based on criteria established 

prior to the distribution of the surveys. The criteria were established by comparison of 

normative response to non-normative responses. In my second pass through the survey 

data, I categorized TAs’ responses on the Prediction and Real/Fake Tasks according to 

the conceptual framework of Shaughnessy et al. (2004a&b, 2005), making note of 

cases that did not fit into this framework. Cases that did not fit into this framework 

were reviewed again in order to create hew categories of responses and to begin the 

initial revision of the framework of Shaughnessy et al. for modeling TAs’ statistical 

reasoning. In my third pass through the survey data, I looked for themes in TAs’ 

reasoning and compared TAs scored responses to types of reasoning employed.

My first pass of the interview data consisted of writing a reflection of what 

transpired immediately following each interview. Later, I reviewed the video/audio 

data, taking notes of interesting excerpts and again writing a summary of what 

transpired during the interviews. I then compared my initial.reflections with my first 

review of the interview data. During this comparison I looked for places of agreement
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or disagreement in my initial reflections after the interview and my observations 

during the first viewing of the interview data.

3.4.2 Level 2: Transcription Analysis

At this level of analysis I created verbatim transcripts of all the interview data. As 

I created transcripts, I highlighted excerpts that appeared to express direct evidence of 

(a) TAs’ reasoning about a sampling task, and/or (b) how they thought about student 

learning. I highlighted places where there appeared to be miscommunication so that, if 

possible, I could follow up on those conversations in subsequent interviews. I took 

extensive notes for where there appeared to be agreement or disagreement in my 

application and refinement of the framework of Shaughnessy et al. (2004a&b, 2005) 

and/or Liu and Thompson’s framework18, and where appropriate I compared these 

notes with the categories of reasoning I created from the survey responses.

3.4.3 Level 3: Detailed Coding Analysis

Upon completion of the transcripts and first series of extensive notes about TAs’ 

thinking, I read through the transcripts again. During this time I looked for evidence 

that would confirm or refute the categories I had created for TAs’ reasoning and for 

TAs’ knowledge of content and students. I refined my categories for characterizing 

TAs’ statistical knowledge for teaching. I compared reasoning across different tasks 

and I compared the reasoning of different interview participants. I created concept

18 Shaughnessy’s framework was applied to the Prediction, Real/Fake and Mystery Mixture Tasks. Liu 
and Thompson’s framework was applied to the Gallup Poll Task.
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maps for charting their reasoning paths and sought to explain reasons for apparent 

contradictions in TAs’ thinking. Following this, I wrote preliminary summaries of the 

types of thinking that appeared to be emerging and how that thinking might best be 

modeled. In these summaries I included both broad and detailed categories of 

reasoning, similarities and/or difference in survey and interview codes, and a 

comparison of types of reasoning among the interview participants.

3.4.4 Level 4: Chronicling Emerging Themes

At this point, I was ready to tell the story of how the survey and interview 

participants reasoned about the sampling tasks, and how they thought about student 

learning. I reviewed my prior layers of analysis, fine-tuning my coding scheme as I 

progressed through this review and reflection period. I sought to clarify and refine the 

summaries I created in Level 3. At this point, compelling themes emerged about how 

TAs: (1) reasoned with experimental sampling distributions; (2) reasoned about 

sampling and statistical inference; and, (3) reasoned about student learning and 

teaching in these contexts. In particular, the following themes form the basis of the 

next three chapters of analysis: (1) TAs experienced tension reasoning with 

experimental data; (2) TAs reasoned about sampling experiments and statistical 

inference on a spectrum ranging from no conception of repeated sampling to strong 

conceptions of repeated sampling; and, (3) TAs displayed limited statistical 

knowledge for teaching as a result of limitations in their subject matter knowledge 

and/or their knowledge of content and students.
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3.5 Issues of Validity

In order to ensure that my analysis yielded credible results, issues of validity have 

remained in the forefront for both the design and analysis of this research project. 

First, collecting multiple forms of data -  survey and interview, and conducting 

multiple interviews with the same participants over an extended period of time, 

enabled the collection of rich and detailed information on TAs that should serve to 

triangulate data and corroborate findings. Second, with each level of analysis I looked 

for alternative explanations for TAs’ responses, and for contrasting cases that did not 

fit within the coding scheme. As rival explanations entered the scene during the 

analysis, I revised both the coding scheme and subsequent interviews in order to test 

alternative explanations.
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OVERVIEW OF CHAPTERS 4, 5, & 6

Chapters 4 ,5 , and 6 comprise my analysis of the data. These three chapters 

address the two overarching goals of this study -  an investigation of TAs’ statistical 

content knowledge and their knowledge for teaching statistics. These three Chapters 

specifically address the model of statistical knowledge for teaching that I briefly 

outlined in Chapter 2 (recall Figure 11). Chapters 4  and 5 address my investigation of 

TAs’ statistical content knowledge. I detail my analysis of TAs’ thinking and 

reasoning on the survey and interview tasks. In particular, I discuss two themes that 

emerged from my analysis of the data: 1) TAs in this study appeared to experience 

tension, which they could not always resolve, between their knowledge of theoretical 

models and experimental data; and, 2) TAs in this study appeared to have different 

ways of interpreting sampling and/or confidence interval problems. In Chapter 4 , 1 

discuss the first of these themes, characterizing how these TAs thought about 

experimental situations and the ways in which they used information from 

experimental data to answer statistical questions. In particular, I discuss tensions that 

TAs appeared to experience in their expectations for experimental sampling 

distributions. In Chapter 5 ,1 discuss the second theme, providing my interpretation of 

how these TAs thought about ideas in sampling and statistical inference. In particular,

I discuss the ways in which probability entered into TAs’ reasoning about sampling 

and statistical inference tasks.
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In Chapter 6 ,1 discuss the implications of TAs’ subject matter knowledge and 

knowledge of content and students on their statistical knowledge for teaching. This 

chapter is presented in three sections. In Section 6 .1 ,1 provide a framework for 

necessary statistical knowledge for teaching sampling. In Section 6 .2 ,1 compare my 

model of TAs’ interpretations of sampling ideas (as illuminated in Chapters 4 and 5) 

with those advocated by the statistical community. I argue that if TAs’ thinking 

integrates multiple attributes of a distribution and if their reasoning about sampling 

ideas agrees with the norms set by the statistics community, then they are more likely 

to have a robust knowledge for teaching statistical ideas. In this section, I also discuss 

another component of TAs’ statistical knowledge for teaching -  TAs’ knowledge of 

content and students19. After discussing TAs’ statistical knowledge for teaching, I shift 

to the final section, Section 6.3, TAs’ beliefs about teaching and learning. Although 

the focus of this dissertation study is about TAs’ statistical knowledge for teaching, 

not TAs’ beliefs about teaching, there is too much overlap between these two 

constructs not to address TAs’ beliefs. During the interviews, TAs overwhelmingly 

discussed their beliefs about how statistics should be taught, or about their view on 

how students learn. Thus, in this section I present a brief argument for the ways in 

which the type and quality of TAs’ subject-matter knowledge, along with their own 

experiences learning mathematics and statistics, appeared to influence their beliefs 

about how statistics should be taught and how they thought about student learning.

19 Knowledge of content and students is one component, used in the manner of Ball (2005).
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CHAPTER 4

TENSIONS TAs’ EXPERIENCED BETWEEN THEORETICAL MODELS AND 

EXPERIMENTAL DATA

The purpose of this chapter is to highlight the first of two significant themes that 

emerged in my analysis of the data on TAs’ statistical knowledge. This theme relates 

to how these TAs reasoned about experimental data. In this chapter I investigate how 

TAs understood probability distributions, sampling distributions and how they applied 

their knowledge of theory to experimental data. In particular, I observed that TAs 

appeared to experience tensions between theoretical models and experimental data, 

which they could not always resolve. The Prediction Task, Real/Fake Task, and 

Mystery Mixture Task (see appendix for tasks) required TAs to make decisions or 

predictions from, or about, experimental data. These tasks were used in this study to 

investigate TAs’ knowledge in five key component areas: (1) measures of center, (2) 

measures of spread/variability, (3) measures of shape, (4) balance between sample 

variability and sample representativeness, and (5) the concept of sampling distribution 

and distinction between theoretical and empirical sampling distributions. Recall that I 

identified these five key component areas during my review of the literature as 

necessary building blocks for a robust and thorough understanding of sampling 

processes (see Figure 2, Chapter 2).

This chapter is presented in two sections -  one for the Prediction and Real/Fake 

Task, and one for the Mystery Mixture Task. In Section 4 .1 ,1 provide a conceptual
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analysis and framework for the Prediction and Real/Fake Tasks, followed by an 

interpretation of TAs’ reasoning via the framework. In Section 4 .2 ,1 provide a 

conceptual analysis and framework for the Mystery Mixture Task, followed by an 

interpretation of TAs’ reasoning. The analysis of TAs’ reasoning in these sections 

highlight the key theme addressed in this chapter. It is important to note that the 

conceptual analysis and framework for each task, partially built on existing research 

literature, developed and emerged from my analysis of the data. The conceptual 

analyses and frameworks are the means through which I illustrate how these TAs 

reasoned about sampling processes, and thus constitute an end product to this study.

4.1 Prediction & Real/Fake Tasks

I begin with a conceptual analysis of the Prediction and Real/Fake Tasks and 

follow with a discussion on TAs’ reasoning about these tasks. The discussion on TAs’ 

reasoning highlights the central theme of this chapter -  the difficulties TAs 

experienced in reasoning with experimental data.

4.1.1 Conceptual Analysis & Framework for the Prediction Task

The Prediction Task first appeared on my survey instrument and then formed the 

basis for follow-up questions in the first interview with TAs. The task is shown in 

Figure 14.

98



Figure 14: Prediction Task

PREDICTION TASK
A jar contains 1000 candies, 750 are red and 250 are yellow. The candies 
are mixed well. Suppose that you pull a random sample of 10 candies 
from the jar, record the number of reds, put the candies back in the jar and 
mix them up. Suppose you do this 50 times. How many times out of 50 do 
you think you would get a handful of 10 candies with:

Number of Red Candles in 
Handfuls of 10

Prediction

0 red candies
1 red candies
2 red candies
3 red candies
4 red candies
5 red candies
6 red candies
7 red candies
8 red candies
9 red candies
10 red candies
Total 50

This task is a sampling task in which the underlying population proportion is known 

and the interest is in making a prediction about what is likely to occur in 50 samples of 

size 10. Assuming that a TA is highly likely to recognize the ratio of red to yellow 

candies, there are then three probable paths for making a prediction: (1) using only 

proportional reasoning and arguing based solely on the attribute of center; (2) using an 

informal distributional argument with at least two of the three attributes of the 

distribution -  center, spread and shape; and, (3) connecting the sampling problem to 

the underlying probability structure and using a formal probability distribution
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argument. To reason using a formal or informal probability distribution argument 

requires an understanding of the underlying proportion in order to appropriately 

anchor the distribution at its center. Figure 15 shows my conceptual framework for 

reasoning about the Prediction Task.

Figure 15: Conceptual Framework for the Prediction Task

Formal Probability 
Distribution

■ Hypergeometric 
Distribution

■ Binomial 
Distribution

Proportional Reasoning
■ The jar contains 75% red candies and 25% yellow candies
■ Translates to expectation that the majority of the handfuls will contain 7 or 8 reds

Informal Probability 
Distribution

Center Center
& &

spread shape

Center, spread & shape

Formal and Informal 
Probability 
Distribution

■ Formal probability 
distribution & 
informal discussion 
of distribution’s 
attributes

In the following sections I elaborate on the types of reasoning outlined in this 

conceptual framework for the Prediction Task. For each of these types of reasoning I 

describe the reasoning paths and arguments that TAs employed as a result of a thought 

experiment about the task. Following a deeper articulation of Proportional, Informal 

Probability Distribution, and Formal Probability Distribution reasoning, I discuss a
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continuum scale on which these types of reasoning can be applied to resolve the 

tension between a theoretical model and experimental data.

Proportional Reasoning Argument

Attending mostly to the ratio of red to yellow candies, a proportional reasoning 

argument implies that the jar is 75% red. The ratio of red to yellow candies provides 

an indication that most of the samples would be expected to' contain between seven 

and eight red candies -  the center for this distributions. The frequency with which one 

predicts values at seven and eight red candies is a function of how much variability 

one expects in the 50 trials. So although with a proportional reasoning argument 

explicit attention is on the ratio of red to yellow candies, there is some implicit 

acknowledgement of variation. The amount to which variability from trial to trial is 

acknowledged could range from no acknowledgement (prediction for 50 trials is 

stacked at seven and eight red candies only) to acknowledging every possible outcome 

(placing at least one occurrence in each outcome, 0 to 10 red candies).

Informal Probability Distribution Argument

Reasoning with explicit attention to the ratio of red to yellow candies and at least 

one additional attribute of the empirical sampling distribution, spread, and/or shape, 

forms the basis for an informal probability distribution argument as a result of the 

thought experiment. Here variability becomes explicitly acknowledged and takes the 

form of a discussion about shape and/or spread of the empirical sampling distribution. 

A shape argument might include a discussion that the distribution has a particular
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shape -  e.g., left-skewed or symmetric around the center. A shape argument may also 

include a discussion about sample to sample variability, or the variability in the 

frequencies for the experimental sampling distribution (e.g., the change in vertical 

height of the bars of the experimental sampling distribution histogram from four red 

candies to five red candies for instance). A spread argument might include a 

discussion about the range of likely outcomes, standard deviation, or a focus on the 

left and/or right ends of the distribution.

Formal Probability Distribution Argum ent

If during the thought experiment the TA connects the sampling task to a theoretical 

probability distribution, then the hypergeometric or binomial are likely candidates to 

serve as a model distribution in the candy jar context. In a hypergeometric distribution, 

three assumptions must be satisfied: (a) the population is finite; (b) each element in the 

population can be characterized as a success or a failure; and, (c) a sample of size n is 

selected without replacement in such a way that each element is equally likely to be 

chosen. In the Prediction Task, the population of 1000 is clearly finite, and a success 

can be characterized as drawing a red candy and a failure as not drawing a red candy. 

When a sample of size 10 is picked, it can be assumed that each candy was equally 

likely to be chosen (since the jar was well mixed and candies were randomly selected), 

and the 10 candies are picked without replacement (so we are not picking the first 

candy out and replacing it before picking the second candy). With the assumptions of 

the hypergeometric model satisfied, the formula shown in Equation 1 can be applied,
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where N  is the size of the population, n is the sample size, M  is the number of 

successes in the population, and x  is the number of successes in the sample.

Equation 1

P(X = x) = ■

N - M

\ n ~ x  y

Equation 1 expresses the theoretical likelihood of obtaining a sample, containing x  

successes from a population containing M  successes. Finally, in order to find the 

expected value for zero red candies through ten red candies for 50 samples of size 10, 

one multiplies the probability for a single sample by 50. Table 6 shows the 

approximate distribution of reds according to the hypergeometric probability 

distribution. The values in the table are rounded to the nearest whole number because 

in the context of the problem a handful either contains x  red candies or it does not (a 

handful of x  red candies cannot happen a half time, for example).

Table 6: Hypergeometric Probability Distribution

Number of reds in a handful of 10 Expected Number of Occurrences
0 0
1 0
2 0
3 0
4 1
5 3
6 '7
7 13
8 14
9 9
10 3
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If instead a connection is made to a binomial probability distribution, then four 

assumptions must be met: (a) the population might be infinite, but the experiment 

consists of a specified number of individual trials; (b) each trial results in a success or 

a failure; (c) each trial is independent so that an outcome on one trial does not 

influence the outcome of another trial; and, (d) the probability of success on each trial 

is constant. In the Prediction Task, the population is finite, but the size of 1000 is large 

and the experiment consists of exactly 50 trials. Further, one could imagine the 

experiment such that each trial consists of a sample of size 10, where each of the 10 

candies is picked out one at a time, its color is noted, and then the candy is replaced 

before picking out the next candy. With this image, each trial is independent, and the 

process of picking out one candy at a time creates a set of 10 smaller trials in each one 

of the larger trials, where the probability of success from trial to trial is constant. 

Alternatively, one could imagine that picking out all 10 candies, one at a time without 

replacing them, will not dramatically alter the probabilities given that the handful of 

10 is so small compared to the population of 1000 candies. With the assumptions of 

the binomial satisfied (or approximately satisfied), the formula shown in Equation 2 

can be applied, where n is the number of trials, x  is the number of successes (red 

candies) in n trials, and p  is the probability of success.

Equation 2

P(X  = X) =
\ x y

p x{ \ - p ) n
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Equation 2 expresses the theoretical likelihood of obtaining x  successes from a 

population with probability of success p. Using the binomial probability distribution 

model the predicted values match the values of the hyper geometric probability 

distribution model to the first decimal place. Thus the whole number values provided 

in Table 1 from the hypergeometric model agree with the whole number values 

provided by the binomial model. Regardless of choosing the hypergeometric or the 

binomial probability distribution models, the probability function yields a distribution 

with approximately 54% of occurrences at the center of the population (seven and 

eight red candies), a shape that is left-skewed, and an interval range of seven units 

(i.e., an expectation that handfuls will contain between four and ten red candies).

These three attributes provide a theoretical basis for an expected center, shape, and 

spread for the data set.

Connecting Theoretical Expectations to Experimental Data

Regardless of the reasoning strategy, a TA must consider sample to sample 

variability and/or variability between empirical sampling distributions in order to 

understand what is likely to happen during the course of the experiment. That is, 

knowledge of the concept of bounded variability (in the sense of Saldanha & 

Thompson, 2003) -  that balance between sample representativeness and variability (in 

the sense of Rubin et al., 1991) -  is necessary for reasoning about experimental data. 

This notion may not be part of a TAs’ conceptualization, and even if this 

conceptualization is present it may be misconstrued. That is to say, a TA may not
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expect any variability among outcomes, or have a sense for variability that is not 

bounded, and may not be particularly surprised by unusual outcomes. Thus, there is a 

continuum with which one can think about the variation in outcomes from one trial to 

the next. For example, in a proportional reasoning argument attention is focused on the 

ratio of red to yellow candies, but how does that translate into how many outcomes are 

placed at seven and eight red candies? Similarly, the expected outcomes provided in 

Table 1 are based on a theoretical model and in an experimental situation there will be 

some variability from one trial of size 10 to another trial of size 10. The tension 

resides in not knowing how much variability to expect from one trial to the next. If a 

TA does not have a robust knowledge of the concept of bounded variability, this 

tension will not be resolved. Questions that may follow when making predictions 

about experimental data from a theoretical model or a known population proportion 

include:

■ What would an unusual prediction look like?

■ How much variability can be expected in the percentage of occurrences 

at the center?

■ How much variability can be expected in the left-skew shape?

■ Will the shape of the graph be ‘smooth’, or will there be variability in 

frequency from one outcome to the next?

■ How much variability can be expected in the range?

■ How narrow or wide could the range be before it is considered 

unusual?
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Answers to these questions are likely to be person specific. A T A ’s understanding of 

an unusual trial of 50 is likely to reside on a continuous scale ranging from an exact to 

inexact mapping with the theoretical probability distribution model. Figure 16 

provides a representation of such a scale. An inexact mapping would indicate that the 

TA’s expectations of the experimental data differ considerably from the theoretical 

model in shape, center and/or spread. An exact mapping would indicate that a TA’s 

expectations of the experimental data match exactly with the theoretical model in 

shape, center, and/or spread. If a TA tends to believe that th.e experimental data will be 

similar to the theoretical model, but expects some variability, then such an image 

would fall closer to the right on the scale represented in Figure 16.

Figure 16: Continuum scale for describing variability in experimental data

Scale for Thinking about Variability in Experimental Data

Along the continuum, 
expectations for the center, 
shape, and/or spread change 
(left to tight) from more 
severe to less severe 
deviations from the theoretical 
model.

Expectation that 
anything can happen in 
the experiment -  
Unbounded Variability 
■ Expects wide or 

narrow interval 
range (spread 
changes)

• Expects variable 
frequencies (shape 
changes)

* Expects location of 
center to change

Expects little to no 
variation. Predictions match 
exactly to the theoretical 

, model (center, shape, and 
spread)

Exact Mapping
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Further, a TA’s interpretation is likely to be based on a number of factors including 

their knowledge and understanding of the theoretical distribution, their intuition, and 

their experiences working with experimental data.

In order to set up criteria for which to compare and contrast TA’s predictions, I 

returned to the underlying hypergeometric probability distribution for this experiment. 

A re-examination of the distribution in Table 1 suggests that: (1) approximately 27/50 

or 54% of the handfuls contain seven or eight red candies; (2) approximately 86% of 

the handfuls contain between six and nine red candies; and, (3) the outcomes range 

from four to ten red candies. Yet, in experimental situations there will be some 

variability in the distribution; thus, I expect experimental data to look similar to, but 

not exactly like the theoretical model. Experimental data tend to have some variability 

in frequency rather than nice smooth shapes, and in this context we expect whole 

number values rather than fractional values as outcomes. Thus, the underlying 

probability structure and the context provided a natural set of criteria from which to 

compare and investigate TAs’ predictions. Using the predicted center, shape, and 

spread provided by this distribution, I created a set of four criteria (built partially from 

criteria established by Shaughnessy et al., 2004 a & b) for evaluating how exact to 

inexact a TA’s prediction was. Since the theoretical model provides an expected 27 

outcomes at seven and eight red candies, fewer than 20 or more than 34 outcomes at 

seven and eight red candies produce graphs too uniform (less than 20) or too narrowly 

focused on center (more than 34) and thus, toward the inexact end of the continuum. 

These types of graphs would be more unusual. Between 24 and 30 outcomes at seven
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and eight red candies is toward the exact end of the continuum and 20 to 34 outcomes 

is toward the middle of the continuum. See Figure 17.

Figure 17: Criteria for Assessing Prediction Task

Prediction Task: Four Criteria for Assessing TAs* Predictions
•  Whole number versus decimal predictions.
* Percentage of outcomes centered at 7 and 8 red candies.

o Less than 20 (40%) or more than (34) 68% of the outcomes 
placed at seven or eight red candies is an inexact 
interpretation for experimental data.

o Between 20 (40%) and 34 (68%) of the outcomes at seven
or eight red candies would be tnore towards the middle of 
the continuum.

o Between 24(48%) and 30 (60%) of the outcomes at seven 
or eight red candies would be more towards the right of the 
continuum, exact end of the continuum.

• Interval range for die 50 trials of ten (spread)
o An interval length of three or less, or nine or more would 

fall at the far left (inexact) end of the continuum. It suggests 
an ‘anything goes’ perspective (nine or more), or a narrow 
focus on center perspective (three or less). No sense of 
bounded variability.

o An interval length of four, five, or eight would fall more in 
the middle of the continuum.

o An interval length of six or seven would be at the exact end 
of scale.

* Shape of the distribution for 50 trials of size ten
o The greater the variability in frequencies from one outcome 

(x-value) to the next, the farther left the prediction is on the 
continuum. In particular, a drop in frequency of more than 9 
units from 7 to 6 red candies or from 8 to 9 red candies 
would be considered a significant deviation from the shape 
of the theoretical. Also, predicting similar outputs for 6,7,
8, and 9 red candies would produce a shape too uniform.
For example, if a TA predicted 10 handfuls with 6 red and 9 
red and 12 handfuls with 7 red and 8 red. That is, 
approximately 80-92% of handfuls should fall within 6 to 9 
red candies, less or more than this will create a more 
unlikely Shape/spread.
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I now turn to a conceptual analysis of the Real/Fake Task. In part, the analysis for 

the Prediction Task still holds for an examination of the Real/Fake graphs because the 

experimental situation is the same. The underlying probability structure is the same 

and the task could be examined using such a structure, or using less formal arguments 

based on one or more attributes of the distribution. Yet, the Real/Fake Task forces an 

examination of experimental data, so the continuum discussed previously is especially 

relevant in this situation.

4.1.2 Conceptual Analysis & Framework for the Real/Fake Task

The Real/Fake Task is an extension of the Prediction Task. The experimental 

situation is the same -  there is a population of 1000 candies, 750 red and 250 yellow. 

The experiment consists of 50 trials of 10, but in this task TAs were presented with the 

graphs of four experimental sampling distributions and asked to identify which graphs 

were real (produced by simulation or performing the experiment) and which graphs 

were fake (produced by a student who did not do the experiment) (see Figure 18).
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Figure 18: Real/Fake Graphs

{graph 1 1
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0 2 4 6
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8 10

Later in the interviews the question was rephrased and TAs were asked to rate the 

graphs from most likely to least likely. This task is essentially about detecting 

suggested fraud by identifying classes of graphs that are more likely to occur and 

classes of graphs that are less likely to occur. Graphs 1 and 3 were manufactured 

( ‘fake’) and Graphs 2 and 4 were generated by computer simulation (‘real’) 

(Shaughnessy et al., 2004a&b). Graph 1 was designed with an appropriate range, but 

shifted to the left. Thus, Graph 1 has an unusually high number of outcomes at four
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and below and too few at nine and ten. Graph 3 was designed to have a smooth 

distribution in frequency and a range that is unusually wide.

A Model o f Reasoning about the Real! Fake Task

There were three primary reasoning paths which TAs employed to justify their 

real/fake decisions: (1) attention to a single attribute -  shape, center, outlier, or spread;

(2) attention to two or more attributes, using an informal distributional argument; and,

(3) attention to the underlying probability distribution -  left or right end of the 

distribution. Figure 19 provides a visual model for this conceptual framework.

Figure 19: Real/Fake Task Conceptual Reasoning Framework

Shape

Single Attribute

Center Spread

Formal Probability Two or more
Distribution Argument Attributes

Hypergeometric or Binomial Distributional reasoning with
(Probability of obtaining four or fewer any combination of shape.
reds in bandful, or nine or more reds center or spread
in handful)

TAs could focus on a single attribute (shape, center, or spread) of the distribution. 

If the focus is on shape, then attention could be directed toward the variability in 

frequencies on the graphs of each empirical sampling distribution (i.e., the varying
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heights on the graph of the empirical sampling distribution as one moves from left to 

right). If the focus is on measures of center, then attention could be directed toward the 

mode, median, mean, or any combination thereof. Table 7 shows the mode, median, 

and mean for each of the four graphs.

Table 7: Measures of Center for Real/Fake Graphs

Measures of Center Graph 1 Graph 2 Graph 3 Graph 4

Mode 7 7 7 &8 8

Median 7 8 7 8

Mean 6.54 7.62 6.92 7.5

The mode and the median are not particularly helpful measures of center for detecting 

which graphs are fabricated, in that the mode and median for each graph is either a 

seven or an eight. The mean could be helpful because one can make a comparison of 

the mean of each graph against the expected mean of 7.5, based on the population 

proportion. If the focus is on spread, then attention could be directed toward the range, 

interquartile range (IQR), variance, standard deviation, or the left and/or right ends of 

the distribution. Table 8 shows the range, IQR, and standard deviation for each of the 

experimental graphs.

Table 8: Measures of Spread for Real/Fake Graphs

Measure of Spread Graph 1 Graph 2 Graph 3 Graph 4 Theoretical
Model

Range 6 6 8 7 6

IQR 2 2 2 2 1

Standard Deviation 1.54 1.56 1.93 1.46 1.36
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The different measures of spread, range, IQR, and standard deviation may not be 

as helpful for detecting the real graphs versus the fake graphs. The overall range of the 

data set is not large, and the standard deviation would be more time consuming to 

compute during a survey or interview situation. However, a focus on the outlying ends 

of the distribution in this situation may be helpful in distinguishing the real graphs 

from the fake. An estimation of the likelihood of handfuls containing few (0 ,1 ,2 , or 

3) red candies, or the likelihood of handfuls containing many (9 or 10) red candies, 

could be of use in distinguishing the real graphs from the fake graphs. Reasoning with 

two or more attributes of the distribution constitutes an informal distribution 

argument.

In a formal probability distribution argument, the TA relates the situation back to 

the theoretical probability model. The context for the Real/Fake Task is the same as 

the Prediction Task, so either the hyper geometric or binomial could serve as the 

underlying probability structure. In using the underlying probability structure as a tool 

for determining the real graphs from the fake graphs, a number of probabilities could 

be computed: (a) the probability of getting six or more handfuls containing four or 

fewer reds20 (Graphs 1 & 3); (b) the probability of getting 17 handfuls containing nine 

or more reds (Graph 2); or, (c) the probability of getting two handfuls containing nine 

or more reds (Graph 1). Using a binomial probability distribution for 50 trials of the 

experiment, the probability of obtaining four or fewer reds is approximately

20 All of the TAs from the survey using a formal probability distribution argument discussed the 
extremely low probability of getting too many handfuls with four or fewer reds. I discuss this in more 
detail in the next section.
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0.019193288. Thus, the probability of six or more trials resulting in four or fewer reds 

is the summation of:

50"\

V6 y
(0.019193288)^1 -  0.019193288)44 « 0.00033862 (1)

50"
(0.019193288)7 (1 -  0.019193288)43 « 0.000041652 (2)

^50^ 

v8 y
(0.019193288)8 (1 -  0.019193288)42 « 0.000004381 (3)

^50^ 

V9 /
(0.019193288)’ (1 -  0.019193288)41 « 0.0000004001 (4)

^50^
v10,

(0.019193288) (1 -  0.019193288)40 » 0.0000000321 (5)

Summing (1) through (5) is approximately 0.0003851. Investigating the left end of the 

distribution in this manner demonstrates the unlikelihood of graphs like Graph 1 and 

Graph 3. The probability of obtaining nine or more reds is approximately 0.2426. 

Thus, the probability of 17 out of 50 trials resulting in nine or more reds is:

(50^
17

(0.2426)17(1 -  0.2426)33 * 0.0358261

Comparing this probability with the previous probability for obtaining six or more 

handfuls with four or fewer red provides further evidence that types of graphs like 

Graphs 1 and 3 are less likely. That is, the probabilities calculated here provide 

evidence that it is less likely to pull out a few (six or more) handfuls containing four or 

fewer reds than it is to pull out many (17) handfuls containing nine or more reds.
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Connecting Theoretical Expectations to Experimental Data

In addition to the manner in which a TA reasons about the graph (single attribute, 

informal distribution, or formal probability distribution), a TA either expects or does 

not expect the experimental distributions to match up with the theoretical model, and 

their own image of the theoretical model could be different than the actual model. The 

TA’s expectations about experimental data and their own image of the theoretical 

model play a stronger role in the TA’s decisions about the real/fake graphs compared 

to the Prediction Task. In the Prediction Task, TAs could simply provide the 

theoretical predictions calculated from the hypergeometric or binomial models, or TAs 

could provide a prediction based on what they think might actually occur during the 

experiment The Prediction Task is open-ended in that respect. However, in the 

Real/Fake Task, TAs are forced to make decisions about experimental data (real and 

non-real); thus, their expectations of experimental data and their concept image (in the 

sense of Tall & Vinner, 1981) of the theoretical model have a greater impact on their 

choices.

Having presented a conceptual analysis and framework for the Prediction and 

Real/Fake Tasks, I set forth with a discussion about how the TAs reasoned in this 

context, grounded in the conceptual analyses. I begin with a discussion of how TAs 

reasoned about the Prediction Task and move to how they reasoned about the 

Real/Fake Task. I focus on the ways in which TAs did or did not use their knowledge 

of the underlying probability structure to resolve tensions when examining 

experimental data. TAs’ expectations of experimental data and their own concept
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image of the theoretical model appear to be particularly germane to their ability to 

resolve tensions between theoretical models and experimental data. In particular, TAs’ 

conceptions of variability in this context appeared to be a key source of tension that 

they could not always resolve in a statistically coherent manner. I begin with a 

discussion of the survey results, followed by more robust analysis from four interview 

participants.

4.1.3 TA Thinking and Reasoning about the Prediction Task

Of the TAs who participated in my survey, 79.4% (N=68) used either an informal 

or formal distributional argument to support their prediction on the Prediction Task 

(see Table 9).

Table 9: Justifications for the Prediction Task
Formal Probability 

Distribution
Informal Probability 

Distribution
Center Other 

(Not able to code)
Total

45 (66.2%) 9(13.2%) 6 (9%) 8(11.8%) 68 (100%)

Most of these TAs used either a binomial or hypergeometric probability distribution 

argument. A few TAs argued informally about the ratio of reds to yellows in the ja r 

coupled with comments such as “distributes evenly around the center”, or “goes down 

on either side from the center”. The responses from the survey provide some 

indication that these TAs are comfortable reasoning distributionally and can determine 

underlying probability structures in this context. However, many of the TAs in this 

study appeared to be situated at the left end of the continuum, in that they provided 

predictions where the spread is more consistent with an inexact mapping to the
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theoretical. Table 10 shows that approximately 54% of the TAs in this study provided 

predictions that matched my four established criteria (whole number, center, shape, 

and range -  recall Figure 17). About 6% of TAs deviated solely from the whole 

number criteria. The remaining TAs provided predictions that disagreed with at least 

one or more criteria related to the distribution, situating them closer to the left end of 

the continuum with predictions that deviate more radically from the theoretical model 

in at least one attribute.

Table 10: Prediction Task - Ranking TAs’ Predictions

Number of Matches with Four Criteria
0 1 2 3 4 Total

7 (10.3%) 1(1.5%) 9(13.2%) 14(20.6%) 37(54.4%) 68 (100%)

Approximately 24% of TAs in this study provided predictions that deviated from the 

range criteria. These TAs provided ranges eight or more units wide, indicating that 

these TAs may expect a wider range in experimental data than the theoretical model 

suggests is likely. That is, perhaps these TAs did not have a mental scheme for the 

concept of bounded variation -  the balance between sample variability and sample 

representativeness. This finding is consistent with studies involving K-12 students 

(Reading & Shaughnessy, 2004; Rubin et al., 1991; Saldanha & Thompson, 2003).

Table 11 provides the reason codes and number of matches to my four criteria for 

four of the TAs I interviewed. On the survey, Sandy and Andy provided formal 

probability distribution arguments, Amanda provided an informal distributional 

argument, and Joe provided a proportional argument. During the interviews it became
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clear that Amanda also used a formal probability distribution argument and Joe an 

informal probability distribution argument. Only Sandy’s and Joe’s predictions 

matched all four of my criteria.

Table 11: Four Case Studies -  Type of Reasoning Employed and Number of 

Matches to Prediction Task Criteria

Amanda Sandy Joe Andy
Reasoning Code Informal Formal Proportional Formal
based on the survey Distributional Distributional Distributional
Reasoning Code Formal Formal Informal Formal
based on the 
interview

Distributional Distributional Distributional Distributional

Whole Number 
Criteria

✓ ✓ ✓

Center Criteria ✓ ✓ ✓ ✓
Shape Criteria ✓ ✓ ✓ ✓
Range Criteria ✓ ✓ ✓

Andy’s prediction did not map to my whole number criteria, and Amanda’s prediction 

did not map to my range criteria because her range is greater than eight units (2 red 

candies to 10 red candies). Table 12 shows the predictions provided by Amanda, 

Sandy, Joe and Andy.
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Table 12: Interview Participants ’ Predictions for Prediction Task

Predictions
Number of Red Candies in 

Handfuls of 10
Amanda Sandy21 Joe Andy

Ored 0 0 0 0
1 red 0 0 0 0
2 red 1 0 0 0
3 red 1 0 1 0.1
4  red 1 1 1 0.8
5 red 3 3 3 2.9
6 red 7 8 9 7.3
7 red 12 13 12 12
8 red 12 14 12 14
9 red 9 9 9 9.4
10 red 3 3 3 2.8

Andy used the hypergeometric model to calculate his predictions. He did not round 

to the nearest whole number despite the candy jar context, suggesting a purely 

theoretical, rather than an experimental prediction. Sandy also used the 

hypergeometric model to calculate her prediction, but she rounded to the nearest 

whole number because of the context. The prediction provided by Sandy is typical of 

the predictions TAs provided in the survey -  approximately 54% of TAs on the survey 

provided literally the same prediction. Joe reasoned with a proportional argument on 

the survey, but his prediction is similar to Sandy’s. The main distinction between Joe’s 

prediction and Sandy’s is that Joe made his distribution symmetric around the 

population proportion. Finally, Amanda’s prediction is also similar to Sandy’s, but it

21 Sandy s prediction sums to 51; this is her error. It appears that she may have rounded up from 7  to 8 
handfuls containing six red candies after she applied the hypergeometric model.
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spreads further out into the left tail. Amanda predicts one occurrence where there will 

be two red candies and one occurrence where there will be three red candies.

During the first interview I followed up with these four TAs to get a better sense of 

how they thought about the Prediction Task. From the interview it was clear that 

Amanda, Sandy, and Andy could relate the Prediction Task to the binomial or 

hypergeometric probability distribution. Amanda, Sandy, and Andy were aware of the 

conditions on each of these distributions, and that the population of candies was large 

enough to allow for a binomial approximation. I begin with'a discussion about 

Sandy’s and Andy’s approaches to the Prediction Task. I will follow with a discussion 

of Amanda’s approach and conclude with Joe’s approach.

Sandy’s and Andy’s Approach: Hypergeometric Distribution

Sandy and Andy both used the hypergeometric distribution, and their predictions 

reflect the outcomes calculated from that distribution. The Prediction Task appeared 

to be a relatively straightforward application of the hypergeometric for Andy and 

Sandy. They both knew the probability distribution formula and the conditions that 

needed to be met before it could be applied. When I questioned them about using the 

binomial model instead of the hypergeometric model they both recognized that either 

model is appropriate in this context because of the large population (N =  1000) and 

the small sample size (n =10).

Amanda’s Approach: Binomial Distribution
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Amanda’s survey response was coded as informal probability distribution, but

there was strong evidence from our conversation during the interview that she did in 

fact use the binomial to help her make her predictions.

Interview 1: Prediction Task:

Am anda Well you’ re looking at 750 red and 250 yellow, so on average 
T m expecting between 7 and 8 reds per handful, based on the percentage of 
red and yellows that are in the jar of 1000 candies. Given that the ratio is 
pretty skewed in the red direction, I ’m most likely going to be pulling reds 
out of this ja r given that there are 750 to the 250 yellow. I did not think that 
it was reasonable that on any one of my draws that I* m going to have no 
red candies o r evenT red candy. I’m thinking ever) time I reach in I’m 
going to have a red candy. I think the probability of getting no red candies 
is excruciatingly small. So I think that out of the 50 it’s not going to 
happen. I know that on average each handful of 10 are going to have about 
7 or 8. So I lumped most of my 50 into 7 and 8 [red candies] and then I;

calculations.
Interviewer: So what kind of calculations?
Amanda* I did some binomial calculations.
Interviewer* Alright, so why binomial?
Amanda: Because I have essentially two outcomes. I have red and yellow.
I have the probability of red occurring and the probability of yellow 
occurring, .75 versus .25. And I’m going to reach in and grab 10, and I 
want to know what the probability is o f getting a certain amount o f them 
fed, And then I can use that to examine all 50.

The first highlighted utterances in the previous excerpt provides some explicit

evidence that Amanda recognized the ratio of red to yellows in the jar, and that there

would be some amount of spread around that center. Amanda recognized the ratio of

red to yellow and how the distribution was skewed toward red candies. This

knowledge seemed to provide Amanda with a sense for how unlikely it was for the

experiment to produce handfuls containing zero or one red candy. Amanda was able to

discuss multiple aspects of the distribution. She used her knowledge of the ratio of red
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to yellow and her understanding of variability from trial to trial as a means for making 

her predictions around seven and eight red candies. In fact, the second and third 

highlighted utterances suggest that she used a binomial probability distribution to help 

her with her calculations. In the last highlighted utterance she provides justification for 

using a binomial probability distribution by discussing two of the four assumptions of 

the binomial probability distribution -  each trial results in one of two outcomes and 

the probability for each of those outcomes is constant from trial to trial.

Joe’s Approach: Informal Distribution

On the survey, Joe’s justification for his predictions focused primarily on the ratio 

of red to yellow candies in the jar. This remained his primary focus during the 

interview as well, yet Joe did have a sense that there would be some variation from 

handful to handful and he had a particular image of the shape of the distribution. Thus, 

Joe appeared to reason overall with an informal distribution argument.

Interview 1: Prediction Task:

Joe So I thought because 3/4 of them are red and 1/4 of them are yellow in 
the jar, the most likely, if I grab 10 of them, is 7.5, or between 7 and 8 \red 
candies]. So if I kept doing this I expected to see between 7 and 8 equally 
likely, and those the most likely to g e t So then I just made up some 
numbers from there. I thought 9 and 6 [red candies in a handful o f  10] 
were right next to them [7 and 8 red candies in a handful o f 10] so I gave 
it 9. And these are just guesses. I didn’t do the math.
Interviewer: So it looks like you kind of made it symmetrical around that 
7.5?
Joe: Yeah, and then a bit of a tail out here [to the left]. I mean the chance 
of getting 0 red candies is phenomenally low so 1 just didn’t expect to see 
any one of those in 50 trials.
Interviewer: You didn’ t do any calculations. You just did this about 
reasoning the number of reds to yellows in the jar.... Some folks were using
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different distributions, like the binomial and the hypergeometric when they 
were doing this problem. So would you use one of those? Do you think one 
of those are appropriate here?
Joe: [Laughs] To tell you the truth, I don’t know enough about them. I 
don’t, kndW What those distijbuttpns are o rd o  really. I mean it felt really 
disconnected from the rest of the material like this is a formula we are 
presenting. Now it’s plug and chug and go.

There are three main points of interest in the previous excerpt. First, in the first 

highlighted utterance, Joe was primarily reasoning by the ratio of red to yellow, noting 

that % of the jar contains red candies. At the same time, Joe had some strong intuitions 

for spread around that center value. Although Joe did not directly articulate the idea of 

variability or spread in this excerpt, he attended to that attribute of distribution, 

particularly when he indicated how unlikely it was to grab 10 candies without a  single 

red in the handful.

Second, implicit in Joe’s discussion is the attribute of shape. Joe’s attention to 

shape can be seen in his utterances about having an equal number of occurrences on 

seven and eight red candies followed by an equal drop to the left of seven red candies 

and to the right of eight red candies. In fact, it is not by chance that Joe made his 

distribution symmetric about seven and eight red candies. It appears that Joe believed 

the shape of the distribution would be symmetric. Joe’s image of the shape of the 

distribution is a point that deserves further attention because it is unclear from Joe’s 

utterances if he believed that graphs of experimental data have the same smooth shape 

as the underlying theoretical model. Joe’s prediction might be a projection of his 

image of the theoretical model, the experimental data or both.
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Finally, Joe did not make a connection to an underlying probability structure in the 

Prediction Task context When I asked Joe about using a binomial or hypergeometric 

distribution to think about the Prediction Task, the last highlighted utterance suggests 

that he was not familiar enough with these distributions to comment on how they 

might relate to the Prediction Task. On an intuitive level, Joe appears to have a strong 

sense of shape, center and spread for a distribution of data, but he has not connected 

these attributes to a formal probability structure.

4.1.4 TAs’ Thinking and Reasoning about the Real/Fake Task

There was an unusual shift in TAs’ reasoning from the Prediction Task to the 

Real/Fake Task that provided the First indications that these TAs might experience 

tension when making decisions about experimental data. Given that most TAs in this 

study used a formal or informal probability distribution argument to justify their 

responses to the Prediction Task, I expected a similar justification for their decisions 

on the Real/Fake Task. Yet, TAs tended to justify their choices on the Real/Fake Task 

based on a single attribute of the distribution. Only 17.7% (N=68) of TAs used a 

formal or informal distributional argument to justify their real/fake identifications, 

compared to 79.4% on the Prediction Task (see Table 13).
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Table 13: Real/Fake Task Responses
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Total 14
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Table 13 shows the distribution of the types of reasoning TAs employed, crossed 

with their number of correct identifications. There are two columns for Single 

Attribute reasoning. The first column groups together TAs that used the same single 

attribute (center or spread) of the distribution as their primary reasoning for all 

real/fake graphs with those that used a single attribute (center, shape, or spread), but 

that attribute may have been different for different graphs (e.g., Shape for Graph 3 and 

Spread for Graph 1). Many, TAs based their decisions in the Real/Fake Task on the 

attribute of shape. In fact, 53% of TAs used a shape argument only to justify their 

real/fake identifications and another 10% used a shape argument to justify their
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identification for Graph 3 and a different single attribute for the other graphs (e.g., 

center). This is an interesting result in light of the fact that 0% used a shape argument 

on the Prediction Task. Perhaps TAs’ focus on shape is a result of the graphical 

display of the experimental data.

Recall that Graphs 1 and 3 were manufactured ( ‘fake’), while Graphs 2 and 4  were 

generated by computer simulation ( ‘real’). Table 14 shows the distribution for the 

number of matches in TAs’ identifications.

Table 14: Correct Identifications in the Real/Fake Task

0 matches 1 matches 2 matches 3 matches 4 matches Total
3 (4.4%) 4(5.9%) 24 (35.3%) 18 (26.5%) 19 (27.9%) 68 (100%)

Approximately 46% of the TAs taking this survey provided 0 ,1 , or 2 matches. One’s 

chances of guessing and getting two matches are 50%. This means that close to half 

the TAs performed no better than they would have if they had simply guessed which 

graphs were real and which were made-up. In addition, 16 of the 18 TAs who got 

three matches based their decision solely on shape. In general, these TAs marked 

Graph 3 as made-up since its shape was ‘too smooth’ and the other three as plausible 

because the ‘bumps’, ‘ups & downs’, and general ‘unevenness’ are more likely to 

happen in a real sampling situation. To focus on one aspect of the distribution in these 

graphs is not sufficient for making a determination about whether or not a graph of 

experimental data is likely to be fraudulent. Those TAs who used some form of 

distributional argument made correct identifications on all four graphs (with one 

exception getting 3 matches). It seems likely that in order to successfully identify
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unlikely classes of graphs requires the ability to coordinate multiple attributes of a 

distribution and the ability to maintain a sense of bounded variability for the outcomes 

of the experiment. Interestingly, the TAs’ main criteria for accepting a graph as real 

appeared to be based on unevenness in the frequency of the graph, which most TAs 

expected because of “natural variation in the sampling process”. That is, the basis of 

TAs’ attention to variability appeared to be grounded in the shape of the graphs. In 

particular, TAs appeared to focus on the variability in the vertical heights of the 

distribution, rather than on variability in a statistical sense.

Table 15 provides a closer examination of four of the TAs I interviewed. Table 10 

shows the number of matches in the TA’s prediction with my four criteria for the 

Prediction Task, the reasoning code assigned to their justification on the Prediction 

Task, the number of correct identifications on the Real/Fake Task, and the reasoning 

code assigned to their justification on the Real/Fake Task. Amanda, Sandy, Joe and 

Andy’s responses to the Prediction Task and the Real/Fake Task were representative 

of the majority of TAs’ responses on the survey.

Table 15: Comparison of responses from Prediction Task to Real/Fake Task

TA Prediction Task 
(Number of matches 

on 4 criteria)

Justification for 
Prediction

Number of 
Matches on 
Real/Fake

Justification
for

Real/Fake

Amanda Matched 3 criteria Formal Distributional 2 Shape

Sandy Matched 4  criteria Formal Distributional 3
Shape

Joe Matched 4  criteria Informal
Distributional 2

Shape

Andy Matched 3 criteria Formal Distributional 2 Shape
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Each of these TAs used formal or informal distributional arguments to justify their 

predictions, yet when they examined the real/fake graphs they made their 

identifications based primarily on shape. These TAs, like many of the TAs in the 

survey, used language like Graph 3 is “too perfect” or “too smooth” to be real, 

whereas Graph 1 (or one of the other graphs) has “ups & downs” or “natural 

variability”, so it is likely to be real. These types of shape-oriented responses are 

similar to the shape oriented responses of middle and secondary school students on the 

Real/Fake Task (Shaughnessy et al., 2004b). From reading the survey responses alone, 

I could not be sure whether when TAs used the phrase “natural variability” they were 

referring to the variability in the frequencies for each graph (i.e., changes in the 

vertical heights), or if they were referring to variability in terms of variance. Evidence 

from the interview data suggests that such references were describing changes in 

frequency because during the interviews each TA appeared to describe natural 

variability in terms of changes in frequency from one outcome to the next; indeed, 

variance never entered the conversation. Torok and Watson (2000) found similar 

results in their work with K-12 students.

In the subsections that follow, I discuss TAs’ thinking about the Real/Fake Task.

In particular, I discuss how these TAs primarily focused on shape, and how that focus 

influenced their decision-making process in light of their image of the theoretical 

model and how closely they expected experimental data to match the theoretical 

model. Second, I discuss the tensions TAs experienced as they attempted to make 

decisions based on experimental data.
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Focus on Shape: “Graph 3 is too perfect”

Each of the TAs I interviewed primarily focused on the attribute of shape in order 

to distinguish a fraudulent graph from an actual computer generated graph. Amanda, 

Sandy, Andy and Joe identified Graph 3 as made-up because its shape is “too perfect” 

to be real. In the excerpts that follow, I chronicle what each of these TAs had in mind 

by the phrase “too perfect”. First, I begin with an exchange that provides some insight 

into what Amanda meant by “too perfect”. The highlighted utterances suggest that the 

steady, smooth increase from the left of the graph to the center, followed by the 

steady, smooth decrease from the center to the right of the graph, is the type of shape 

Amanda expects to see in theoretical models.

Interview 1: Real/Fake Task:

Interview er: When you say Graph 3 is too perfect, what do you mean by 
too perfect?
Am anda: I expect xn a real graph that they’re not going to be m order 0 ,1 , 
2 3 ,4  etcetera. Some are going to be higher.than the one next to them and 
some are going to be lower.
Interview er: So the even steps up in frequency?
Am anda: Yes, it goes up very smoothly. It doesn’t have any dips in terms 
of 0 [red candies] up to the 7, 8 [red candies] and then from the 7, 8 [red 
candies] it’s decreasing back down. And that just strikes me as too perfect. 
Compare that to Graph 1 where we increase [infrequency] from 3 to 4  
[red candies] but then we decrease fipnt '4  to 5  [red candies]. So it 
increases roo smoothly and too evenly. I just don’t buy this. It’s not 
monotonic. Monotonic is not the right word because it dips back down, but 
on either side of 7 and 8 it’s monotonic. It’s just increasing and then just 
decreasing. Which if I could repeat the experiment to infinity, I might 
expect to happen.

Also notice that Amanda compares the smoothness of Graph 3 to the unevenness in 

Graph 1. In the next exchange, it appears that Amanda identified Graph 1 as real, in
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large part because of the dips in frequency, something she seemed to expect in 

experimental data.

Interview 1: Real/Fake Task:

Interview er: So is this [Graph 3] also your image of what the ideal graph 
would look like, sort of in line with your own predictions?
Am anda: Yes.
Interview er: So, it’s almost like you’re telling me, and I don’t want to put 
words into your mouth, but Graph number 3 is sort of the way the 
theoretical graph would look to you?
Am anda: Yes. Yes. Yes it is.
Interview er: And experimentally this is...
Am anda: Not going to happen [laughs].
Interview er: [Laughs]. So Graphs 1 and 4 were real because they have 
these things that do occur experimentally?
Amanda: Yeah, all these little quirks. We have in Graph 1, more piled on 
4  [red candies] than we do on 5  [red candies]. Graph 4 we don’t have 
anything at 5 [red candies], these are things that occur in an actual testing

In this excerpt, Amanda indicates that experimental graphs will have “quirks” like 

gaps or dips up and down in the frequency as we move from left to right. Thus, her 

main criteria for identifying the real versus the fake graphs appears to be based on 

‘quirky’ shapes that she expects to get in experimental situations.

Sandy and Andy also indicated that Graph 3 was “too perfect” to be real, and 

Graph 3, at least in terms of shape, seemed to match their image of the theoretical 

distribution.

Interview 1: Real/Fake Task:

Interview er: What do you mean by too perfect? Because that’s something 
a lot of TAs said about this one [pointing to Graph 3]?
Sandy: Because, too perfect is like what you expect it to have this shape 
[drawing a left skewed curve over the bar graph].
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Interviewer: And you think of the four of these [graphs] this one [Graph 
3] is closest to the theoretical distribution?
Sandy: Because it has look [makes a  sketch o f  a left skewed distribution 
over the Graph 5] this kind of shape, you see - close to 0 and then mounds 
up and then decreases.

Interview 1: Real/Fake Task:

Andy:... It’s not ideal. I expect it to have [makes a gesture -  draws a 
distribution curve in the air with lots o f  vertical ups and downs].... j | j j  
going to have like defects, all sorts of holes, funny anomalies. Like you 
know, like maybe a case out here [pointing to the 1 ,2 , and 3 red candies 
range on graph I]  or maybe like this one [pointing to Graph 1 a t the 3 ,4 , 
and 5 red candies spots], like this divot [where Graph 1 dips down a t 5], 
Where if the student was cheating, you know if that’s the case, then they’re 
going to do something more like this [pointing to Graph 3]. Where you are 
going to have a nice up curve. I mean you could almost draw a nice curve 
over this.
Interviewer: So is this what you mean by too perfect? One of my 
questions for you is that you wrote that the last two graphs seemed too 
perfect.
Andy: That’s what I mean, too close to the ideal when it’s such a small 
sample.

In both of these excerpts, Sandy and Andy made similar comments as those made by 

Amanda about the qualities of the ‘ideal’ graph. It seems that Amanda, Sandy, and 

Andy expect theoretical models to have a nice smooth shape, but they expect 

experimental data to have more variability in the frequency. That is, these TAs appear 

to expect increases and decreases in frequency, rather than a constant increase 

followed by a constant decrease. Also, like Amanda, Andy provided some indication 

of his image of experimental data. Andy’s utterance about graphs of experimental data 

having “defects”, “holes” or other anomalies appeared to be in reference to changes in 

frequency. There was no evidence that Amanda, Sandy, and Andy attended to other 

attributes of the distribution during our conversations.
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Like Amanda, Sandy, and Andy, Joe also focused on the shape of Graph 3. Joe 

suggested Graph 3 was made-up because it was “too normal looking”.

Interview 1: Real/Fake Task:

Interview er: You said that Graphs 1 and 4  were real and Graphs 2 and 3 
were made-up. Tell me a little bit more about what you mean by Graph 3 
looks way too normal?
Joe: Yeah, I use the normal to mean regular because the normal 
distribution has some characteristics.... I would expect over time if I was 
doing these 50 trials of 10 and I did a bunch of them, I would expect those 
averages to  look somethingJike this [pointing to Graph 3].
Interview er: Okay, so ihis is your image of the theoretical distribution for 
this problem?
Joe: Fairly close, I mean getting two reds [points to the frequency o f  2 in  
the 2 red candies slot] I’m not sure about the numbers, how those worked 
out. It seemed fairly unlikely, but I didn’t run any numbers on this

The first highlighted utterance suggests that Graph 3 is Joe’s image of the theoretical

model, at least in shape. In this respect, Joe’s initial reactions to the Real/Fake Task

are similar to the reactions of Amanda, Sandy and Andy. Yet, there is some evidence

that Joe also attended to the tail of the distribution in Graph 3 when he mentioned the

likelihood of pulling out a handful containing two reds. Joe’s attention to the left tail is

important because it provides explicit evidence that he looked at Graph 3 as the ideal

graph more strictly in terms of shape rather than any other aspects of the distribution.

He recognized that some of the outcomes, in particular the number of handfuls

containing two red candies, might, in fact, be quite unlikely. He could not say for sure

how likely certain outcomes were, however, because he did not have the

computational tools yet.
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Amanda’s, Sandy’s, Andy’s and Joe’s articulations of the shape of Graph 3 during 

the interviews suggest that the shape of Graph 3 fit their image of the shape of the 

theoretical model. In addition, their images of the shape of the theoretical model map 

to the actual shape of the theoretical model -  a left-skewed distribution. Also, from 

these excerpts it appears that each of these four TAs did not expect the shape of 

experimental data to exactly match with the shape of the theoretical model. I did not 

find any evidence in the interview excerpts to suggest that these TAs focused on and 

incorporated other attributes of the distribution, such as center and spread, in making 

their determination.

Influence o f  Shape on TAs’ Real! Fake Decisions

Formulating the different components of TA reasoning within the previously 

discussed conceptual framework and continuum scale for this task, Figure 20 provides 

a mapping of reasoning that appeared to lead each of these TAs to reject Graph 3.
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Figure 20: Influence of Shape in Real/Fake Task

Focus on Single Attribute of the Distribution

TAs' image of the shape of 
the theoretical matches the 
actual theoretical

TA docs not expect an exact 
match between the shape of 
experimental data and 
theoretical model

AND

Conclusion: Graph 3 is 
made-up

It appears that each of these TAs concluded Graph 3 was ‘fake’ because their image of 

the shape of the theoretical graph matches closely with the actual shape of the 

theoretical model, and their expectations for the shape of experimental data fell 

somewhere on the continuum from expecting large deviations to small deviations.

That is, they did not expect the shape of experimental data to exactly match that of the 

theoretical model. Yet, a focus solely on shape was not especially helpful for making 

determinations about the other three graphs. Table 16 shows the graphs that each TA 

deemed ‘fake’ and ‘real’. It appears that a focus on shape alone is likely to create 

agreement only for determining that Graph 3 is made-up.
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Table 16: Real/Fake Identifications

TA Graphs identified as real Graphs identified as fake
Amanda 1 & 4 2 & 3
Sandy 1, 2, & 4 3
Andy 1 & 2 3 & 4
Joe 1 & 4 2 & 3

Amanda believed that Graphs 1 and 4 were real, while Graphs 2 and 3 were made-

up, because Graphs 1 and 4 had more “quirks”.

Interview 1: Real/Fake Task:

Interview er: So Graph 1 and 4 were real because they have these things 
that do occur experimentally?
Am anda: Yeah, all these little quirks. We have in Graph 1, more piled on 
4  fred candies] than we do on 5 [redcandies). Graph 4  we don’t have 
anything at 5. These are things that occur m an actual testing situation

Whereas Amanda believed the gap at five red candies on Graph 4 was something

likely to occur in actual experiments, Andy believed that the divot at the eight red

candies spot on Graph 2 was the kind of defect one could expect in experimental data.

Interview 1: Real/Fake Task:

Interview er: So when you talk about defects is that, like when you talked 
about Graph 2 as being biased some how...
Andy: Yeah, it’s biased. Look at how it’s wandered away from the mean 
[pointing to the low number o f  values on the 8 reds spot].

Further, in contrast to Amanda, Andy believed that since the divot at the five red

candies spot on Graph 4 was the only ‘defect’ in Graph 4, it could be made-up.

Interview 1: Real/Fake Task:

Interview er: So you said this one [Graph 4] was fake for the same reason? 
Andy: Okay, let me see. This one. Oh, I don’t know. I would say this one 
is a liftle  more marginal, but if  you forced me to put it in a category' I’d say
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maybe it’s fake, just because you can draw the curve over top of it. And if 
you’re, and it depends on how skilled the fraud person is. They may say, ‘I 
know you can’t get a perfect one so I’ 11 put a defect in’. So there’s my 
defect [points to the gap at S o n  Graph 4\. You know. You didn’t get any 
at 5. It’s,<i defect from Jheidealand now the fraud is undetectable.

Andy believed that Graphs 3 and 4 were made-up because the shape of Graph 3 was

clearly “too perfect” and the shape of Graph 4 was close to the ideal except for one

“defect”. However, Andy did not feel as confident in identifying Graph 4 as a ‘fake’

(notice in the first highlighted utterance in the preceding excerpt).

Joe used a similar argument for why Graph 2 could be ‘fake’. Except that the 

defect for Joe was the divot at eight red candies on Graph 2, rather than the divot at 

five red candies on Graph 4.

Interview 1: Real/Fake Task:

Interview er: And you said Graph 2 was fake for kind of a similar reason? 
Joe: Yeah, so you know. It looked a little too normal. It had this divot here 
[Graph 2 a t the 8 red candies spot]. And again, this is the psychology of 
the student than the actual distribution. Because I would think, you know if 
the student was faking the data, not actually doing the tnals, but just faking 
i t  This [Graph 2 ] would be a little more clever than this [Graph 3] tn that 
the student would say ‘okay, it’s not going to be exactly that so I’ll mess it 
up a  little bit’. And I thought that, really I wanted to pick two that were 
fake and two that weren’t, is part of what motivated me.

Like Andy, Joe thought that a clever student would throw a requisite defect into

his/her graph. Yet, they both gravitated to different defects and suggested that except

for the small defect, the graphs followed a nice smooth shape, like the theoretical, and

were thus likely to be made-up.

On her survey, Sandy marked Graphs 1, 2, and 4  as real because they all had 

shapes that deviated in some fashion from the “perfect” shape of Graph 3.
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Interview 1: Real/Fake Task:

Sandy: So here you said the classes conducted the experiment. Since the 
class conducted the expciiment, this is what I belic\e So again this is 
something that I believe because I didn’t do this kind of stuff, you know. 
But I believe that m nature when you try things they are supposed to be 
more randomly than the theoretical. So, these seemed like something 
reasonable, for me, to happen because they have this weird shape {points to 
Graphs 1 ,2  and4]. But who knows? Maybe you are lucky and get here 
[points at Graph 3}.

Like Andy and Joe, Sandy seemed to be expressing some uncertainty in her response. 

Each of these TAs seemed convinced that Graph 3 was fraudulent because it was too 

smooth, but the other graphs had some deviations in frequency that made the shape 

differ from the theoretical model.

These deviations in frequency seemed to create a source of tension for the TAs as 

they set out to determine which of the other graphs could possibly be fraudulent. The 

source of the tension is over how “different” the graphs of the experimental data can 

be from the theoretical model without being considered unusual. For a statistician, this 

tension is resolved through robust knowledge of the concept of bounded variability. 

That is, a deep understanding of the balance between sample representativeness and 

sample variability. The TAs in this study resolved this tension by looking at the 

‘unevenness’ in the frequencies of each graph. Focusing on the ‘unevenness’ in 

frequencies is helpful for determining that Graph 3 is ‘fake’, but this method becomes 

problematic for making determinations about the other graphs, especially when there 

is no attention on the center and spread of the graph. For instance, Graph 1 has more 

variation in frequency, but its center is unusually low and there are too many outcomes
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with four or fewer reds to be plausible. Graphs 2 and 4 have less variation in 

frequency, making it difficult to eliminate or retain these graphs on that basis alone.

In addition, these TAs seemed to rely on a subjective determination of how closely 

the shape fit the theoretical shape in order to justify their responses. In particular, 

Amanda, Andy, and Joe resolved this tension by choosing a graph (or graphs) that 

they believed either modeled the type of defects one could expect in experimental data 

and labeled that graph as ‘real’, or they chose a graph that they believed resembled the 

theoretical model with the exception of one small defect and labeled that graph as 

‘fake’. Sandy resolved this tension by choosing to consider all the remaining graphs as 

‘real’ because they all contained some variation in their shape as compared to the 

theoretical model.

Follow-up Questions: Alternative Wording of the ReaUFake Task

After my initial follow-up questions about the Real/Fake Task in the interviews, I 

changed the wording of the problem and asked TAs to rate the graphs from most likely 

to least likely. I wanted to know if the new phrasing of the problem would change how 

TAs perceived the task. In general, it did not. These TAs continued to think about the 

task in terms of what they expected to see in experimental data, mostly from a shape 

point of view. However, the extended discussion around the likelihood of the different 

graphs in the Real/Fake Task provided additional insight into TAs’ thinking about 

experimental data and how they resolve their tension between experimental data and 

the theoretical model.
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In the subsections that follow, I discuss the reasoning of Amanda, Sandy, Andy, 

and Joe in light of the conceptual framework, continuum of expectations for 

experimental data, and TAs’ own image of the theoretical model discussed earlier in 

the chapter. I begin with a discussion of Amanda, followed by Sandy, Andy and Joe.

Amanda

When I asked Amanda to rate the graphs from most likely to least likely she 

responded that Graph 3 was least likely for the same reasop.it was fake - “too perfect”. 

Amanda thought that Graphs 1 and 4 were most likely and Graphs 2 and 3 least likely. 

There is evidence in our conversation around the most likely/least likely phrasing that 

Amanda also attended to the ends of the distribution. Amanda focused on the number 

of handfuls containing nine and ten red candies, and the number of handfuls 

containing two, three or four red candies. Amanda seemed to expect fewer handfuls 

containing nine and ten red candies than she expected containing two, three, or four 

red candies.

Interview 1: Real/Fake Task:

Interviewer: Okay, so why are Graphs 1 and 4 more likely to happen for 
you than the other two graphs?
Amanda: I think for the same reasons I felt like two and three were the 
fakes. Graph 2 doesrf t have* lot o f variation occttnring... We are 
incredibly heavy lumped i t  the 9  and 10 reds. And I’m uncomfortable with 
that, even though I realize in Graph 4 we have quite a concentration on the 
9 red candies. But in Graph.2, nothing is gomg on below 4, which makes 
me uncomfortable.
Interviewer: Why?
Amanda: Because I think it should, something... at least one observation 
below 4  should occur.
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In this excerpt Amanda decides that Graph 2 is less likely to occur because of the large 

number of handfuls containing nine and ten red candies. Amanda is also surprised that 

there are no handfuls containing fewer than four red candies in Graph 2.

I wanted to know if Amanda was relating the reasoning she employed for the 

Prediction Task to the Real/Fake Task. In particular, I wanted to know if she was 

thinking back to her own predictions or to the binomial probability structure that she 

used as a means to justify her predictions. I questioned Amanda about how her 

predictions for the Prediction Task related to her identifications for the real/fake 

graphs in order to see in what way these tasks were connected for her.

Interview 1: Real/Fake Task:

Interviewer: So if I go back to your predictions [I bring back the 
prediction task where Amanda made some predictions for SO samples o f  
10 with the same population o f candies as the reallfake] you have one 
observation at four and then you have a prediction of one for 2 red candies 
and a prediction of one for 3 red candies and nothing else. So when you 
place these one’s here, you’ re pretty certain that at least one of them is 
going to happen? Because when I see this I could also think, 2 red candies 
you’ve only got a one here. It might happen, but it might not. It’s a low 
probability.
Amanda: Well yes, Pm expecting to  see something down here. Especially 
taken in conjunction with the fact that I have, how many are piled here on 
9? A lot. Twelve, oh, 11 in the 9 slots on Graph 2, and 6 in the 10 slot. And 
I feel like this is a little disproportionate. I’ve got nothing here [in 2 Js, 3*s 
and4 ’r] and a  fot going on at 9. and IQ. And I would feel more 
comfortable. Watch this. This is ju st going to be awful* If I  removed some 
off 9  and 10 and moved them over here [to the 2 ,3  and 4  red candy slots] 
so that it looked more like Graph 3* The theoretical one [laughs] that I 
think is implausible.... I’m having abattle in my head about theoretically 
what I expect to happen, which would look like Graph 3, and reasonably in 
practice what I have seen happen Okay, I have not performed this exact 
experiment, but I’ve spent many, many hours drawing samples on a 
computer and seeing what they look like. And I’m talking about way more 
than 50 samples and they’re always a little quirky. So what’s occurring
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here is a battle between what I theoretically know should be going on and 
what I realistically know should be going on.

I believe that this excerpt contains some important insight into Amanda’s thinking.

First, in this exchange, Amanda indicated that she was having a difficult time

resolving her understanding of the theoretical model with her understanding of

experimental data (see last highlighted utterance in the previous excerpt). Second,

there is some indication in her utterances that Amanda believed there should be more

balance between the number of handfuls containing nine or ten red candies and the

number of handfuls containing two, three, or four red candies. In fact, in trying to

create the balance that she expected to see between the two, three, and four versus the

nine and ten red candies slots for Graph 2, Amanda realized that she ended up creating

Graph 3, her image of the ideal graph. I believe that these utterances provide some

evidence that Graph 3 is Amanda’s image of the theoretical model, not just in shape,

but in spread too. I conjecture that Amanda is struggling with the balance between

sample representativeness and sample variability, and that she may not have a

sufficiently strong sense of bounded variability. Although Amanda recognized the

underlying probability structure as binomial and used that structure to help her

calculate the expected values, she made her predictions more spread out than the

binomial probability function indicates as likely. Amanda’s predictions ranged from

one handful containing two red candies to three handfuls containing ten red candies.

Further, in the previous excerpt, Amanda indicated that she expects to see at least one

handful containing fewer than four red candies. Graph 3 was manufactured to have an
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unusually large number of handfuls, six out of 50, containing four or fewer red 

candies. Yet Amanda’s utterance indicated that she was drawn to Graph 3 not only in 

terms of its shape, but precisely because it contains some draws with four or fewer red 

candies.

The internal struggle that Amanda expressed in her examination of the real/fake 

graphs between the two, three, and four red candies range, versus the nine and ten red 

candies range can also be seen in her response to the hypothetical student predictions 

on the Prediction Task. In the following exchange, I asked Amanda about her opinions 

regarding Hypothetical Student l ’s prediction (see Table 17).

Table 17: Hypothetical Student 1 ’s Predictions

Number of Red Candies in 
Handfuls of 10

Hypothetical Predictions 
Student 1

0 0
1 0
2 0
3 0
4 0
5 5
6 9
7 15
8 18
9 3
10 0

TOTAL 50

Interview 1: Prediction Task:

Interviewer: Can I ask what’s more troubling to you, the prediction of 0 at 
the 10 red candies place or the prediction of 0’s here at the 0 through 4  red 
candies. Or is it equal?
Amanda: More troubling to me is the 0’s in the 3 to 4  red candies region. I 
think, Yeah, O’s in  the 3  to 4  region are more troubling to me because 
conceptually this is how it works for me. 1 see this giant bowl and its all 
speckled red and yellow. It’s just as difficult for me to think o f  reaching in
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and drawing 10 red candies as it is for me reaching in and grabbing 0  red l 
candies. So it’s less troubling for me that they don* t feel that that is a 
reasonable outcome so they mark it 0, that’s not going to happen. But 1' m
perfectly comfortable thinking I’m going to reach into this bowl and grab 4 
red candies and 6 yellow. And that they don’t mark that at all, that they 
anticipate 0 of those outcomes.

In this excerpt Amanda indicated that she imagined getting a handful with 10 red

candies is as unlikely as getting a handful with 0 red candies. From my perspective, it

appeared that Amanda was ignoring the ratio of red candies to yellow candies in the

jar. Amanda’s reasoning appeared inconsistent because she showed knowledge of the

ratio of red to yellow candies and understood the underlying binomial probability

structure, yet she appeared to expect to see as many or more handfuls containing two,

three, or four red candies as handfuls containing nine or ten red candies. However, it

seems that because Amanda’s own concept image of the theoretical model was more

spread out than the actual theoretical model, her reasoning was consistent from her

perspective.

I continued to question her on how she visualized each end of the distribution, and 

asked her to make reference back to her own predictions. After considering these 

questions, her thinking changed slightly. Amanda indicated that it would be more 

difficult to get a handful with zero red candies than a handful with ten red candies. 

However, I think that Amanda still struggled with her image for pulling out two, three, 

or four red candies versus nine or ten red candies.

Interview 1: Prediction Task:
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Interviewer: So from your perspective, how you imagine the situation, do 
you have a harder time imagining reaching in and pulling out 1 red candy 
or 10 red candies?
Amanda: Yes, 1 have a difficult time imagining either one of those 
scenarios happening, but I have a harder time wi th 1 red versus 10, 
Interviewer: Because of the likelihoods?
Amanda: Right, when I imagine my big bowl of candies and how red it’s 
going to look.
Interviewer: And what about 3 red candies in your handful or 10 red 
candies?
Amanda: I have a  harder time imagining 10 red candies.
Interviewer: Okay. So you're thinking it's  more likely rnagom g to get 3 
red oaii^eS?
Amanda: Omm, just in a visualtzlng sense. Yeah.
Interviewer: Okay, so when you say that, in a visualizing sense, that might 
not have anything to do with how the actual theoretical probabilities work 
out?
Amanda: Right, exactly.
Interviewer: Okay. Do you feel like you have a tension between the actual 
probabilities and this visualizing sense?
Amanda: Certainly. Certainly. And actually when you phrase it in terms of 
do you feel like it would be more likely, then instantly my gut reaction is to 
say, ‘well 1 can’t say that because I would have to sit down and calculate 
probabilities’. Umm, but just in my mind’s  eye visualizing way. 
Interviewer: Okay. And what about 4  red candies versus 10 red candies? 
Or 4  red candies versus 9 red candies?
Amanda: i hayea harder time imagining 10 versus 4. Umm, and f don’t 
know ab£ut jhe 4  versus 9 .1 don’t knowyvhy, but I don’t  fcnow that one of 
those ts hatderfor me to imagine. They might be more on par with each 
other for some reason.

This exchange shows that Amanda is thinking more about the proportion of reds to

yellows in the jar because she made explicit reference to how red the jar looks. For

this reason, she indicates that she more easily visualizes getting a handful containing

all ten reds than she can see getting a handful with zero or one red candy. Yet, the

strength of that image did not aid her in visualizing pulling out a handful of three or

four red candies versus ten red candies. In fact, the probability for pulling out ten red
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candies is larger than for three or four red candies, and ten red candies is closer to the 

expected value than three or four red candies. Yet, Amanda’s image of the situation 

makes ten an extreme, and thus harder for her to visualize than three or four red 

candies.

Amanda also recognized that her image of the situation might, in fact, be different 

than how the actual computed probabilities would work out. The previous exchange 

sheds light into Amanda’s image of the candy jar context and how that image 

influenced her own prediction and her identifications for the real/fake graphs. I believe 

the difference between Amanda’s image of the theoretical model and that of the actual 

theoretical model is in part what led to the inability to resolve the tension she 

experienced between the theoretical model and the experimental data. This is why she 

rejected Graph 2 as plausible because she visualizes more handfuls containing three 

and four red candies than containing nine and ten red candies. That is, she envisions 

more variability than is likely to occur in a sampling situation. Although the ideal 

graph for this population would yield a shape similar to Graph 3, it would not have as 

high a concentration for two, three, and four red candies, yet this distinction was not 

part of Amanda’s concept image (in the sense of Tall & Vinner, 1981).

Figure 21 provides a map of my interpretation of Amanda’s reasoning path based 

on applying the conceptual framework and the continuum scale, developed in the 

conceptual analysis section, with Amanda’s own image of the theoretical model in the 

candy jar context. The excerpts in this section provide strong evidence that Amanda 

focused on the attributes of shape and spread in her examination of the real/fake
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graphs. Yet, she did not appear to apply these attributes together to provide an 

informal distributional argument. Rather, she appeared to focus on one attribute at a 

time. The coordination of multiple attributes of a distribution was difficult for her in 

this task. Rubin et al. (1991) observed this same difficulty in high school students. 

Amanda primarily used shape in her discussion for why she believed Graph 3 was 

made-up (or unlikely) and Graphs 1 and 4  were real (see conclusions in her reasoning 

path in Figure 21). Amanda primarily used spread in her discussion for why she 

believed Graph 2 was made-up (see conclusions in her reasoning path in Figure 21). 

There was no contradiction for Amanda because her image of shape matched up with 

the theoretical, but her image of spread did not. In addition, she expected more 

deviation from the theoretical model in shape, but less deviation from the theoretical 

in spread.
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Figure 21: Real/Fake Task -  Amanda’s Approach

Amanda’s Reasoning Path:

Amanda Focused on Single Attributes of the Distribution

ANDAND

Shape

Amanda’

theoretical
model

Reject Graph 3 -  ‘too perfect’ 
Accept Graphs 1 & 4 -  variable 
frequencies 
Undecided -  Graph 2

Reject Graph 2 -  Not enough 
handfuls with 4 or fewer red 
Accept Graphs 1 & 4-m ore 
handfuls containing 4 or 
fewer red and fewer handfuls 
with 9 & 10 red 
Undecided -  Graph 3

Amanda appeared to experience internal conflict between her image of the 

theoretical model and her image of the experimental data. As the reasoning path in 

Figure 21 shows, her shape argument alone would not suffice to make a decision for 

Graph 2, since the graph does not have severe changes in frequency and at the same
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time the graph is not completely smooth. As a result, Amanda needed to consider 

another attribute of the distribution. By focusing on the spread and looking at the ends 

of the distribution, she was able to make a conclusion about Graph 2 that did not lead 

to any contradictions with her conclusions about Graphs 1 and 4. That is, because 

Graphs 1 and 4 have fewer handfuls containing nine’s and ten’s and more handfuls 

containing three’s and four’s they still appear plausible. The internal conflict arises 

when she considered her expectation for getting more three’s and four’s and fewer 

nine’s and ten’s in light of Graph 3. Amanda realized that in order for her to believe 

that Graph 2 is plausible, she would want to see some of the nine’s and ten’s shift to 

the three’s and four’s. At the same time, she recognized that such a shift would make 

Graph 2 look more like Graph 3, which she believed to be fabricated because o f its 

perfect shape. As a result of Amanda’s image of the theoretical as having more spread 

than it actually does, and her belief that the spread for the experimental data should 

match more closely to the theoretical, she experienced conflict in her examinations of 

Graphs 2 and 3.

Andy

When I asked Andy to rate the graphs from most likely to least likely he responded 

that Graph 3 was least likely for the same reason it was fake, “too perfect”. It did not 

appear that Andy’s reasoning changed as a result of the rephrasing.

Interview 1: Real/Fake Task:

Interviewer: What if I asked this question a different way. Suppose I said 
these are 4 simulations that took place. Same scenario, 50 samples of size
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10,250 yellow, 750 red and I asked you to rank these from most likely to 
occur to least likely to occur. So if you had to rate these, what order would 
you put them in?
Andy: Okay, well again it’s based on how I am translating this -  what 
would I expect the simulation to look like?
Interviewer: Yeah.
Andy: Okay, so I’m doing a simulation and my uncertainty is, I don’t 
know if I’ve coded it correctly. That may be a reasonable way to look at 
this... .If 1 get something like this [points to Graph 3], 1 go no way. I did 
something wrong. Or if it’s someone else’s code, I’m wondering did you 
really do the simulation or ate you just pulling the ideal case?

Andy still believed that Graph 3 was the least likely graph to happen in this

experiment because he viewed it as the ideal, at least with respect to its shape. He also

believed that Graph 4 was less likely to happen than Graphs 1 and 2, but he did not

appear to feel as strongly about this choice. The next exchange shows that from

Andy’s perspective, Graph 4  seemed ideal except the gap at five red candies, which

made it suspicious from his point of view.

Interview 1: Real/Fake Task:

Andy: . .What’s wrong with this one [Graph 4]1 Well it’s missing the 5. 
It's not too unreasonable. I don’t know. It just still feels too perfect. Eveni 
though it’s missing the 5, it feels like it's ideal except for the gap. Gosh, 
what happened to the 5? I was sort of expecting there to be a 5  and then 
there wasn’t  So that’s the only thing that feels genuine. The rest o f it juste 
doesn’t feel genuine.

Andy suggested that Graphs 1 and 2 would be more likely. Yet when Andy says 

that Graph 4 “just doesn’t feel genuine”, there is strong evidence that Andy is using 

his beliefs about the experimental situation rather than his statistical knowledge to 

make his determination. The next exchange reveals that he could not decide which of
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those two graphs would be the most likely, but that they each contained enough 

anomalies from the theoretical model not to raise his suspicions.

Interview 1: Real/Fake Task:

Andy: The most expected simulation given the sizes of everything. Well 
let’s see. I don't know between these two {points to Graphs 1 and2]. I 
can’t really tell between the two what would be the most likely. This one 
[Graph T\ seems, well the three is kind of small. It’s far from the mean. 
This one [Graph 2] is sort of biased in funny way [pointing to th ed ip a t8 i 
red candies]. I don’t know. I’d have a difficult time telling between these 
two.
Interviewer: So you would rate these two as the most likely [Graphs 1 
and 211
Andy: Yeah, those are the most likely. I would definitely think.... Do I 
suspect that, you know, if I see something like this or this [Graphs 1 and 
2] that I’ve written the code wrong or something, and it’s going to generate 
garbage. Would I be able to tell? Well if it generated all the same value, it’s 
screwed up. I detect something is screwed up. But, if I get a picture like 
this [pointo to Graph 21  it’s not ideal; h it  I never expected the ideal I 
might not be too surprised, and think yeah, I coded it correctly. It’s not 
triggering an, ‘I better go and find the bug’.

This exchange suggests to me that Andy does not expect an exact match with the

theoretical model and he appears to be situated a bit more toward the inexact end of

the continuum. Further, Andy’s image of the shape of the theoretical appears to map to

the shape of the actual theoretical model. However, from our conversations there was

not enough evidence to conclude if Andy’s image of the other attributes of the

distribution, such as center or spread, matched the actual theoretical model. Figure 22

provides a mapping of my interpretation of Andy’s reasoning path based on applying

the conceptual framework and the continuum scale, developed in the conceptual

analysis section, with Andy’s own image of the theoretical model in the candy jar

context.
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Figure 22: Real/Fake Task- Andy’s Approach

Andy ’s Reasoning Path:

Aiidy focused on a single attribute of die distribution

Shape
' ^

r  > f  . . A
Andy’s image of the shape of Andy expects the shape of
the theoretical model matches AND experimental data to vary more
the actual theoretical model considerably compared to the

shape of the theoretical model
V  J v .. y

Andy’s conclusions:
■ Graph 3 and 4  are less likely to occur 

in a simulation
■ Graphs l  and 2 are morc likely to

Sandy

As previously discussed, Sandy initially focused on the shape of the graphs. On the 

survey, Sandy identified Graphs 1,2, and 4 as ‘real’ because they had variability in 

their frequencies, but she identified Graph 3 as ‘fake’ because it was “too perfect” to 

be ‘real’. As with Amanda, there is no evidence in Sandy’s survey response or her 

initial responses in the interview that her decisions about the real/fake graphs were 

based on her knowledge of the underlying probability structure, which she used to 

answer the Prediction Task. After Sandy provided her initial response and 

interpretation of the Real/Fake Task, I directed our conversation back to the Prediction 

Task in order to understand whether or not this information played any role in her 

decision making process.
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Interview 1: Real/Fake Task:

Interviewer: Now before you talked about Student l ’s predictions as 
unreasonable because they had nothing for 10 reds [Referring back to the 
Prediction task]. But this graph [Graph i ]  has nothing for 10 reds, how 
come you didn’t say this one was fake?
Sandy: Again, becausel’trr Mnkiflg that experimentally that that m ight 
happen; I don’t  know because here I have only three [referring back to her 
prediction for the number of handfuls with 10 red candies].
Interviewer: And what about all the ones down here [pointing to the 
number of handfuls that have four or fewer reds in Graph 1]1 
Sandy: Yeah, 1 don’t know1.: I had a really hard time with thesegraphs.

Figure 23 provides a model for my interpretation of Sandy’s reasoning at the start of

our discussion of the Real/Fake Task.

Figure 23: Real/Fake Task -  Sandy’s 1st Approach

Sandy’s

Sandy began with a focus on a single attribute of the distribution

Shape

Sandy ’s image of the Shape 
of the theoretical matches 
theactualtheoretical

Sandy does not expect an 
exact match between the 
shape of experimental data 
and theoretical model

AND

Conclusion: Graph 3 is made- 
up, graphs 1,2, & 4 could be

Like Amanda, Sandy also appeared to experience difficulty resolving her 

understanding of the theoretical model with the experimental graphs. However, when I 

rephrased the question in terms of rating the graphs from most likely to least likely,

153



Sandy felt more comfortable applying her knowledge of the underlying probability 

structure and comparing her own predictions based on the hypergeometric distribution 

to the real/fake graphs. Perhaps the most likely/least likely phrasing helped her to 

make a connection back to a probability statement.

Interview 1: Real/Fake Task:

Sandy: Rate one through four? So I believe I would say Graph 2 is one 
[most likely]. [Then Sandy marks Graph 4 as 2nd most likely followed by 
graph 1 and then last Graph 3].... So here [Graph 2] I can see 
experimentally that it’s close to what! have [comparing her predictions tm 
Graph 2’s outcomes]. Again, Graph 3 is too perfect to be true. What I 
expect to see experimentally is something close to what I have, but not 
exactly like what I have This means 0’s here [points to lower end o f the 
graph], peaking and then going down. Graph 1 is a three because this is 
three [number of times 3 red candies occurred], this is four [number o f  
times 4 red candies occurred], pretty unlikely.

In this exchange, Sandy literally examined her predictions and compared those

predictions with the graphs in the Real/Fake Task. By using her predictions, based on

the theoretical probability structure, she was able to make conclusions about which

types of graphs would be more likely than others. Her final choices agreed with the

task design -  Graphs 1 and 3 are made-up, and Graphs 2 and 4  are created by

computer simulation. She also articulated that in general she expected outcomes

similar to her own predictions, but not exact replicas. Figure 24 shows a model for my

interpretation of Sandy’s reasoning at the end of our discussion of the Real/Fake Task.

154



Figure 24: Real/Fake Task -  Sandy’s 2"d Approach

Sandy’s reasoning path at the end of the interview conversation:

Formal hypergeometric probability distribution & her 
predictions for 50 trials of size 10 based on that model

Sandy focused on the underlying probability structure

Conclusions: Graphs like 1 & 3 are 
less likely than graphs like 2 & 4

Joe

Joe’s responses on the Real/Fake Task, as noted earlier, share some similarities to 

the responses of Amanda, Sandy, and Andy in that he was overly focused on the shape 

of Graph 3 and considered it the shape of the theoretical model. Yet, as the interview 

conversation around the Real/Fake Task continued, it becomes more evident that Joe’s 

reasoning in this context also differs in some significant ways. Specifically, when I 

rephrased the real/fake wording to the most likely/least likely wording, my 

conversation with Joe went in a most unexpected direction. Rather than rating Graph 3 

as least likely, as Amanda, Sandy, and Andy had done, Joe rated Graph 3 as most 

likely.

Interview 1: Real/Fake Task:
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Joe: Oh yeah, that’s a significantly different question. From most likely to 
least likely, I Would do I*1 most likely [Graph $]. This is 2nd most likely 
[Graph 2]. This is 3rd most likely [Graph 4], and this is 4th most likely 
[Graph i ] .

I was quite puzzled by Joe’s ordering. His utterances in the previous exchange suggest 

that the graphs he considers made-up were the graphs he thought would be most likely 

to happen in the experiment. Joe’s ordering of the graphs seemed to contradict his 

decisions about which graphs were ‘real’ and which were ‘fake’. Yet, from Joe’s 

perspective there was no contradiction because, as the next exchange reveals, he was 

thinking about the graphs “from the psychology of the student”.

Interview 1: Real/Fake Task:

Joe: . . .  If I’m seeing studenf work though, there’s an additionallevel of 
context there. So seeing something like this [Graph 3] would make me 
suspicious, And this was posed in that context, so that’s why there was the 
discrepancy of, I would be suspicious of this given it’s student work versus 
I think this is the most likely given a  computer generated model. Yeah.

It appears that Joe expected a student to know what the shape of the theoretical model

would look like and that it would be the most likely shape to get in an experimental

situation. Also worth mentioning is that in Joe’s last utterance he seems to suggest that

computer generated models will match theoretical distributions. This may indicate that

Joe falls at the exact end of the continuum, expecting a match between experimental

data and theoretical models.

As Joe continued to discuss the reasons for his ordering of the graphs, there also 

appeared to be a contradiction in his belief that there would not be many handfuls 

containing few reds and his belief that Graph 3 was most likely.
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Interview 1: Real/Fake Task:

Interviewer: In other words this is the least likely [pointing to Graph I]? 
Joe: Yeah, just because there’s 3  here [3 wUh
0 here \0 handfuls with 10 red candies].
Interviewer: So here you’re concentrating on this particular graph as least 
likely because you know from your intuition that it’s less likely you’re 
going to get a handful with 4 or 3 or 2 red candies and more likely you’ll 
get something with 10, is that what you are saying?
Joe: Yeah, yeah* If we assume the computer is a perfect srandom generator 
1 would expect the most likely outpiit to match this distribution that I have 
m my head.

Two points are worth noting here. The first being that Joe again provided explicit 

evidence that he expects experimental data to match up closely with the theoretical 

model. This can be seen in his last highlighted utterance where he suggests that if the 

“computer is a perfect random generator” then it will produce simulations that match 

the distribution in his head. The second interesting component in this exchange is that 

Joe rated Graph 1 as least likely because it had too many handfuls with two, three or 

four red candies and not enough with all 10 red candies. Yet, he did not use this same 

reasoning to suggest Graph 3 is less likely. Instead Joe argues that Graph 3 is most 

likely because it matches the shape of the theoretical distribution he has in his mind’s 

eye. Further questioning provided possible reasons why this apparent contradiction 

was not a contradiction in Joe’s mind.

Interview 1: Real/Fake Task:

Interviewer: So let me ask you this. When you made your decision on 
Graph 1 you focused on the number of handfuls with 3 red candies versus 
the number of handfuls with 10 red candies. But if I look at Graph 3, 
there’s a pretty similar number that are down here [Ipoint to Graph 3 at 
the 2 ,3  and 4 red candies spot] that are down here [pointing back to 
Graph 1 in the 3 and 4 red candies spot} . So how come Graph 3 makes it
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to your most likely category, whereas Graph 1 made it to your least likely 
and one of your reasons was the number that were at 4 or fewer reds in a 
handful? Does that make sense what I’m saying?
Joe: Yeah, that does make sense. So, i f  we look here [Graph 3] at 4 ’s and 
below there are 7  of them. And here [Graph 1] at 4’s and below there are 6 
of them, And those are very d ose  numbers, just one away [laughs].... But 
here [Graph 1] we have kind of a divot [at the 5 red candies spot] and then 
it goesup [atthe 4  red candies spot] then it drops to nothing [as Joe says 
this he draws curve over Graph 7], And .it’s  not unlikely, I just thipktMs 
[Graph 3} is  more likely [draws nice curve over Graph 3].
Interviewer: So it’s more about the shape for you?
Joe: It’s  inoreabout the shape for me because of] my minimal experience 
with these. So the tool I have is  what kind of shape do I expect

I believe that this excerpt reveals some interesting insight into Joe’s thinking and 

the tensions that he experienced between the theoretical model and the experimental 

data. Although Joe recognized the ratio of red to yellow candies and had strong 

intuitions about the chances of pulling out 10 reds versus 3 or 4  reds, his predominant 

form of reasoning was based on shape. In addition, Joe’s attention to shape was with 

respect to changes in frequency, similar to that of Amanda, Sandy, and Andy. Joe 

attended to the ‘ups and downs’ in the frequency in Graph 1 from the three, to the 

four, to the five red candies spot. In contrast to Amanda, Sandy, and Andy, Joe 

believed that ‘ups and downs’ in frequency was an indication of unlikely graphs and 

that smooth curves, such as that exhibited in Graph 3, was an indication of likely 

graphs. That is to say, it appears that Joe believed that the theoretical model was the 

one that was most likely to happen in the experiment and he primarily focused on the 

shape of that theoretical model. Figure 25 shows a model for my interpretation of 

Joe’s reasoning at the end of our discussion of the Real/Fake Task.
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Figure 25: Real/Fake Task -  Joe’s Approach

Joe’s Reasoning Path:

Joe Focuses on the Two Attributes of the Distribution

ANDAND

SpreadShape

Joe expects 
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data to
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of the shape
of the
theoretical
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matches
actual
theoretical
model

Joe’s image of 
the spread for 
the theoretical

matches with 
the actual 
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Joe’s Conclusion:
• Graph 3 is most likely -  shape fits with the theoretical
• Graph 1 is least likely -spread deviates too much from the theoretical
* Graph 2 is more likely since it’s shape is closest to graph 3, & range is closer 

to theoretical, from Joe‘s perspective
* Graph 4 in less likely since it’s shape deviates more from graph 3, dt has a 

range that deviates more from theoretical, from Joe’s perspective

4.1.4 Summary for Prediction Task and Real/Fake Task

The difference in the way TAs in this study appeared to reason about the 

Prediction Task as compared to the Real/Fake Task is a particularly compelling result 

of my study. As highlighted throughout this analysis, most of these TAs appeared to 

be able to reason using formal and/or informal attributes of the distribution in order to 

justify their predictions for the Prediction Task. However, few TAs used such
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arguments to justify their decisions in the Real/Fake Task. TAs tended to use shape as 

their primary justification for why certain graphs were ‘fake’ or less likely to occur 

and why certain graphs were ‘real’ or more likely to occur. Some TAs also employed 

a range/spread argument when they could not make a decision based solely on shape. 

Yet, these alternative arguments were only secondary, and if such an argument 

contradicted with their image for the shape of the experimental data, shape appeared to 

hold more power in their final decision. For example, when Joe decided Graph 1 was 

unlikely because of the large number of handfuls with four or fewer reds, he 

abandoned that reasoning path and pursued a purely shape argument to conclude that 

Graph 3 was likely.

The salience of shape over the other attributes of distribution seem, in part, related 

to how these TAs thought about variability in this context. Rather than focusing on the 

concept of bounded variability, TAs appeared to expect graphs that have more 

unevenness in frequencies to be more likely. The Real/Fake Task was not a routine 

application of a binomial or hypergeometric model for these TAs, which may explain 

why they had a difficult time quantifying their expectations for the experimental 

sampling distributions. As a result, TAs tended to rely on their subjective beliefs for 

what might happen in the experiment. I suspect that if TAs had practice actually 

engaging in such an experiment, their subjective beliefs would probably tend toward a 

strong notion of bounded variability in a more statistical sense. Finally, the primary 

focus on shape in justifying real/fake identifications could be the result of the task
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providing graphical displays of data. It would be interesting to see how TAs would 

respond to this same task if the data were presented in tabular form.

Also compelling is that TAs’ decision-making process for identifying real/fake 

graphs appeared to be a function of their images of the theoretical model compared to 

the actual model, and how closely they expected experimental data to map to the 

underlying probability distribution model. It appeared that of the TAs I interviewed, 

most of their images of the shape of the theoretical model matched closely to the shape 

of the actual theoretical model. Unfortunately, for the most part it remained unclear 

how their images of the other attributes of the distribution mapped to the actual 

theoretical distribution. Finally, there was some variation from TA to TA in their 

individual expectations for how close a mapping they expected between the 

experimental data and the theoretical model. For instance, on the one hand, Amanda, 

Sandy, and Andy seemed to expect something similar, but not exact, particularly with 

respect to shape. On the other hand, Joe expected a close match in shape between the 

experimental data and the theoretical model.

A final point worth mentioning is that TAs expressed some distress in making 

their decisions about the real/fake graphs. In fact some TAs, like Amanda, explicitly 

expressed their decision-making process as a mental battle between what they 

expected from the theoretical model and what they expected or experienced in 

experimental data. This tension appeared to remain as TAs continued to interact with 

the interview tasks involving experimental data, like the Mystery Mixture Task, for 

instance.
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4.2 Mystery Mixture Task

The Mystery Mixture Task followed the Prediction and Real/Fake Task in the first 

interview. The scenario was similar to that of the Prediction and Real/Fake Task: there 

were 1000 red and yellow candies in a ja r  and four groups of students took 50 samples 

of size 10. For each sample of size 10 the groups recorded the number of reds, 

replaced the candies in the ja r and remixed before drawing the next sample of size 10. 

TAs were shown the four student recorded graphs (see Figure 26), one from each 

group, and were asked to use that information to predict the' number of red candies in 

the jar. That is, I asked TAs to make an inference about the value of a population 

parameter on the basis of empirical sampling distributions. The jar contained 350 red 

and 650 yellow candies, but this information was not disclosed to TAs.

Figure 26: Mystery Mixture Graphs
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The purpose of this task was to provide TAs another opportunity to interact with 

experimental sampling distributions and thus afford myself another opportunity to 

investigate the ways in which TAs reason about the graphs of experimental data.

4.2.1 Conceptual Analysis of the Mystery Mixture Task

In the Mystery Mixture Task, the underlying population proportion is unknown so 

one cannot routinely apply the binomial or hypergeometric probability distributions 

models and arrive at an exact solution. The TAs in this study focused on one or more 

attributes of the distribution to determine an estimator for the population proportion. 

As with the Prediction and Real/Fake Tasks, a TA may focus on a single attribute of 

the distribution or multiple attributes. Further, a TA may employ a single graph or 

multiple graphs to justify their point estimates. Figure 27 shows my conceptual 

framework for how TAs reasoned on the Mystery Mixture Task.
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Figure 27: Conceptual Framework for Mystery Mixture Task 

. TAs’ '

TAs’ Estimate is Based on Informaitkm from a Single Graph

Shape Center
|1

Mode

Median or Mean

(Implicit knowledge that a better estimate can be obtained with mote information)

Center 

Modal Average

Median or IVean Average

Focus on Multiple Measures erf Center & Average of Averages

Notice that the attributes of shape and center are the only attributes displayed in this 

conceptual framework. That is because none of the TAs I interviewed focused on the 

spread of the distribution. I suspect that the reason for this is the wording of the task. 

In this task, TAs were asked to provide a population parameter for the number of red 

candies in the jar, leading to a natural focus on measures of center.
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Table 18 shows the mode, median, and mean for each graph, as well as the average 

of the three centers over the four graphs. Of course, the mode is the quickest method 

for visually assessing the population parameter, but within the statistical community 

the mode is generally considered a less sophisticated and less accurate predictor for 

the population parameter. The median and the mean for each graph provide more 

accurate estimations of the population parameter (|i=3.5).

Table 18: Measures of Center for Mystery Mixture Graphs

Mode Median Mean
Graph 1 2 3 3.1
Graph 2 3 3 3.26
Graph 3 2 4 3.72
Graph 4 3 3 3.56
Average 2.5 3.25 3.41

The median, being the middle data value, would not take too long to calculate for 

this task -  one could simply count in 25 data points from the left or the right The 

mean would take more time to compute for this task, but could be visually estimated 

by assessing where the balancing point would be for the data. However, the graphs 

obtained from each of the 50 trials of 10 also provide an indication that the distribution 

is right-skewed. This observation indicates that mean, or center of mass, is pulled to 

the right because of the long tail of the distribution. Figure 28 shows a right-skew 

distribution and the location of the median, f t ,  and the mean, (I.

Figure 28: Right-skewed distribution

ft n
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4.2.2 TA Thinking and Reasoning about the Mystery Mixture Task

My analysis of the responses of four of the TAs I interviewed provide more 

support for my conjecture that TAs’ experience tension in working with experimental 

data, and as a result, tend to resort to less sophisticated types of reasoning, such as 

shape or mode. I begin the discussion with the initial reactions of Amanda and Joe. 

Amanda and Joe were mainly focused on the modes of each of the graphs and used a 

modal average to provide an estimate for the number of red candies in the jar. I follow 

with a discussion of Sandy’s reasoning. Sandy used a shape argument and indicated 

that the shape was reverse from that of the Prediction and Real/Fake Task. Ultimately 

though, Sandy did not want to provide a specific answer to this problem because 

without a calculation it would not be precise. Finally, I end this section with a 

discussion of Andy’s reasoning. Andy focused on the means of the graphs and 

appeared to approximate the average of the four means.

Amanda & Joe: Modal Average

The following exchange shows Amanda’s initial reaction to the Mystery Mixture 

Task. It appears that she is inclined toward computing a modal average. Since two of 

the graphs have a mode of three and two graphs have a mode of two, Amanda 

provided an estimate of 250 red candies.

Interview 2: Mystery Mixture Task:

Amanda: These are awfully conflicting graphs.
Interviewer: Why?
Amanda: ‘ Cause we have two where three is clearly dominant, and two
where two is clearly dominant.
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Interview er: So you’re looking at the modes of the graphs?
Am anda: Right. Sorry the modes. Sjo in Graphs'2 and |4w e’ve gof at modo 
o f 3  and iitG i^phs l;and 3 we’ve got a  mode of 2. Alright, I ’ m going for 
250 reds, 750 yellows.

As Amanda continued to engage with the task her attention wandered from the two

and three red candies spot to four red candies. However, any information that she

gleaned from observing the other outcomes in these four empirical sampling

distributions did not appear to prove convincing enough for her to ultimately change

her prediction.

Interview 2: Mystery Mixture Task:

A m anda: And I would even be inclined to, no see they’re red ly  
conflicting for me because, I  would also be inclined to say 300 red, 700 
yellow. Or maybe somewhere in between those two predictions. We clearly 
have cohcehtration at 2  and 3, And oh kind of 4. Which is drawing wm to  
the300 versus 700; But then that doesn’t explain these graphs {Graphs 1 
and 3] that have modes a t 2. Which is why I said 250.
Interview er: So 250 is you sort of splitting the two modes?
Am anda: Right. Well noneof these graphs has a mode a t 4 , which is 
pushing m e to  having between 250 and 300 or maybe even 200 to 300 red. 
[Longpause]. Graph 2 we have some symmetry around 3, but taking this 
in conjunction with the other graphs I’m still kind of leaning toward. Sorry 
this is all the thought that went into picking 250 versus 750. And Graph 3 
I’m going to take as an anomaly that we only got 2  readings fm S & e d  
candies). I think that's a freakishly bad, unfortunate sample and the other 3 
graphs are leading me between 250 and 300 red.

In the previous exchange, Amanda did take note of the large concentration of handfuls

containing four red candies, yet because the mode was never located at four, she

decided to ignore that information in the end. Amanda also provided an informal

confidence interval of 200 to 300, or 250 to 300 red candies based on the modal
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values. She was moderately troubled by Graph 3 having so few handfuls with three red

candies, but she considered the situation as an anomaly.

The following exchange reveals that Joe’s initial prediction and justification is

similar to Amanda’s.

Interview 2: Mystery Mixture Task:

Joe: Ilo o k  at the curves and there’s a spike at 3, spike a t 3, [Joe pointsto 
the mpdesofGrapfa2 and4] spike at 2, and a  spike a t 2 [Joe points td 
the modes of Graphs I and3\. Som aybe there’s more like 250 [red#]. 
Interview er: So you’re looking at the spikes and basically you’re telling 
me that on Graph 2 and 4 the spikes occur at 3, those would be the modes? 
And then on Graph 1, the mode is 2?
Joe: And Graph 3 the mode’s at 2.
Interviewer: And you are averaging those two?
Joe: Right. Yeah, and actually the first thing I looked at was the shape of 
these curves and how there’s. It’s kind of a peak right around in here 
[draws curves over each o f  the graphs and appears to point to the 2 ’s and  
3 's  fo r  the peak].
Interviewer: 2’s and 3 ’s?
Joe: Yeah. Right around in here [Joe points to the peaks fo r  each o f  the 
fo u r  graphs]. I’d say it’s the opposite, 250 red to 750 yellow.

It appears that Joe used the words ‘spike’ and ‘peak’ to talk generally about the modes
m

of each of the graphs and perhaps even where the largest clump of data fell. It appears 

that he averaged the modes of two and three to come up with his estimate of 250 red. 

Thus, Amanda and Joe focused primarily on the modes of each graph and took the 

average mode for the four graphs to justify their predictions of 250 red candies in the 

jar. They reasoned using all four graphs, but only one attribute of the distribution -  

center. Also, they focused on only one measure of center, the mode. Again, the focus 

on measures of center is not surprising given that the task asks for a point estimate. 

However, the fact that Amanda and Joe focused primarily on the modes to make their
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decisions is surprising given their statistics backgrounds. Perhaps the graphical 

displays of data played a hand in their focus on modes since it is easy to detect in a 

visual presentation of data. It would be interesting to provide a similar question to TAs 

with data presented in tables to see if this presentation would change their approach to 

the problem.

Sandy: Focused on Shape 

From the beginning of this task, Sandy appeared visibly stressed. Sandy liked 

performing exact calculations; she did not like making estimations. Sandy initially 

began the conversation by discussing the shape of the graphs.

Interview 2: Mystery Mixture Task:

Interviewer: This is a Mystery Mixture Task. It doesn’t tell you what the 
mix of candies are in the jar. We only know that there are 1000 candies, red 
and yellow. They’re graphing the number of reds just how we graphed here 
[ireferring to the Real!Fake Task]...
Sandy: SojiqW I have no elye. So now it seems that you get it skewed to 
the rig h t So before l  had 75(Jred. Okay, I had 750 red. 1 go tit skewed to  
the left and 25Gyellow. rm  ju st drinking that to see it like that I should 
have red smaller than yellow*
•  •  •

Interviewer: So would it be the same mix, but the reverse? 750 yellow and 
250 red?
Sandy: Ncj, i ’m notsvre about that I cannot, I can see that for example 
here [Sandy points to Graph 4] it peaks at 2 and 3. If I reversed ,] knew 
that before it peaked a t 7 and S [in the ReaVFake Task]. Just by looking, at 
this graph [Sandy points to Graph 4 again]. So it might be, it might be the 
same if I’m looking jpsj here you know [Sandy points to Graph 4\.

Sandy started the conversation saying that she “had no clue”. She also reiterated to me 

that she did not have experience working with experimental data. It appears that 

Sandy’s attention was focused on the shape of the four graphs. She noticed the skewed
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right distribution and that Graph 4 had peaks at two and three. Sandy compared the 

real/fake graphs to Graph 4  in the Mystery Mixture Task. She noted that the real/fake 

graphs peaked at seven and eight red candies and that there were more red candies in 

the jar than yellow. Sandy went on to suggest that since Graph 4 in the Mystery 

Mixture Task peaked at two and three red candies that perhaps this jar contained fewer 

yellow candies than red. I thought that Sandy might be inclined to reverse the mixtures 

in the ja r based on her comparisons between the two tasks. Yet, Sandy was careful not 

to estimate the number of red in the jar. She indicated that the mixture could be the 

reverse of the real/fake mixture, but she could not say for sure.

At this point in the conversation Sandy was only using one graph, Graph 4, to 

reason about the mixture in the jar. I asked Sandy about the other graphs and how she 

might come to a decision based on all the information provided. I believe the 

following exchange provides an indication that Sandy was not comfortable gleaning 

information about the mixture using all four graphs provided.

Interview 2: Mystery Mixture Task:

Interviewer: What if you look at all of them together [referring to all 4  
graphs on the page]?
Sandy: This one [pointing to Graph 3 at the dip at 3 redcandies] doesn’t 
tellm eanything. And,here fins one also [points at Graphl] because it’s 
ltke'4 is close to 3 [referring to Graph 1, the number of samples with 3 
red candies is equivalent to the number of samples with four red 
candies]. You see. So l ’ra not sure.
Interviewer: What if instead of trying to predict the exact amount you 
were just trying to come up with a confidence interval, like the number of 
red is between such and such, that you would feel pretty confident you 
would capture it.
Sandy: I cannot do that.
Interviewer: No?
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Sandy: No and I don’t like to do that.
Interviewer: Because it’s too iffy?
Sandy: Exactly.I don’t like, I, so how I approach problems in give tm  the 
informsdonl-will apply the formulas, I will give you the spswefc And I’m 
confident o f doing that

From this exchange it appears that Sandy disregarded Graph 3 as providing useful

information because of the unusually low number of outcomes at 3 red candies in

comparison to the other graphs. Sandy does not specifically state this as her reason,

but she pointed to the dip at three red candies when she indicated that Graph 3 did not

provide her any information. Other TAs mentioned the gap at three red candies on

Graph 3 as troubling, but they did not seem as quick to discredit it. Sandy also

suggested that Graph 1 did not provide her any useful information because the number

of outcomes for three red candies was the same as for four red candies. It is

unfortunate that I did not probe more into this comment because it is unclear why

Sandy viewed equal outcomes of three and four red candies'as troubling, especially in

light of the fact that Graph 2 has an equal number of outcomes at two and four red

candies and Graph 3 has an equal number of outcomes at four and five red candies. It

appears that the four experimental graphs provided conflicting information that

paralyzed Sandy’s ability to obtain useful information from the data. Sandy was not

able to coordinate her actions on one graph to all four graphs. The last utterances

suggest that Sandy is not interested in making estimations. She prefers to apply a

specific formula and obtain an answer.

Sandy did not appear interested in working with the Mystery Mixture Task as it 

was, so she tried to turn the problem into something she felt more comfortable with.
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Interview 2: Mystery Mixture Task:

Sandy: What you can think is like you have different populations. Four 
populations like that [pointing to each o f  the graphs]. Four different 
populations and you go and in each population you collect a sample and 
you jttm tto  see if the average o f people who have attribute one in the first 
population is  equal to the average o f people who have attribute one in the 
second population, third and fourth. You can do that, that type of test.

The previous exchange provides evidence that Sandy appeared to be comfortable with

thinking that each of the four graphs represented samples from different populations

and the problem of interest was to test whether the means for each population are the

same. I found it interesting that Sandy did not want to think that all four graphs were

from the same population, so I continued to question her on this point. The next

exchange provides some insight into why having four collections from the same

population troubled Sandy.

Interview 2: Mystery Mixture Task:

Interviewer: What if these are all from the same population?
Sandy: All from the same population and you collect?
Interview er: Yeah, like the information in Graph 1 is what I collected and 
the information in Graph 2 is what you collected. It’s all about the same 
group of people. With all of that information could we get an idea about 
what percentage of the population had that attribute? Like what percentage 
of the population was red versus...
Sandy: Pm  confused right now because normally if you want to conduct a 
test you have one population, You’ll go ahead and collect one sample. 
Interview er: But in stats don’t we talk about repeated sampling?
Sandy: N o.... If you want to conduct this test, you are looking for the 
proportion of people who have red hair, you know. You want to know if 
the proportion of people who have red hair is equal to say 75% or different 
than 0.75. How do you conduct this test? You go and collect one sample.... 
So you go and collect one sample, so right now if you are telling npte you 
collect four samples \ don’t know what to do with four samples. [Laughs] 
You tonoiv.
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Interviewer: Yeah. I understand that because we always do one sample 
right? But if  we had more than one sample? Wouldn’t that give us more

From Sandy’s statistical experience, collecting multiple samples is not an 

appropriate statistical technique. During the exchange, Sandy suggested that she did 

not know what to do with four samples. That utterance also suggests that Sandy may 

have thought about each one of the graphs as one sample and not as 50 samples of size 

10. Sandy did not believe more samples meant more information. It appears that 

Sandy does not have a strong conception of sampling distributions in the point 

estimate context. This lack of conception of sampling distributions is consistent with 

her reasoning in the Unusual Sample Task (see Chapter 5). Her experience of taking a 

single sample and performing a test on that sample appears to have influenced how 

she thinks about data collection and the information that can be gleaned from the data. 

For Sandy, if there are multiple samples the information could be conflicting and/or it 

will be unclear how to perform the appropriate statistical test.

Andy: Estimating the mean

Andy appeared to focus his attention on the attribute of center. But unlike Amanda 

and Joe, the mean, not the mode, was Andy’s choice for estimating the number of red 

candies in the jar.

Interview 2: Mystery Mixture Task:

Andy: Okay. My first response if you want me to talk it through, since 
we’re on video. The three, you know these [Graphs, 1 ,2  and 4] are all 
suggesting if I were to draw the curve I’d say three-ish. Where’s the mean ’
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I’m looking, that’s about three [Andy’s mental estimate o f  the mean o f  
Graph 1]. Boy that sure looks like if  s close to three [mean o/G raph 2], 
man it’s even symmetric about that [symmetricabout 3 red candies}. 
Maybe a little more than 3 like 3.5 [Andy's mental estimate o f  the mean 
fo r  Graph 4]. Maybe 350 reds [points to Graph 4\ o r300 reds [points to 
Graph2]. And then it’s like boy this [points to Graph 3] really blows my 
theory. It’s like what happened? Then again, it’s like what on earth 
happened here? How do you get all these two’s and four’s, but the three’s 
just sort of don’t happen. Things happen. But maybe I’ve got to throw that 
out. It just seems so extreme and unlikely. If it happened by chance or 
maybe there was some other factor.
Interviewer: Okay, so you might throw Graph 3 out altogether?
Andy: Well I might. I don’t know. I’m not in favor of throwing data out 
entirely if there’s information there. I don’t like throwing out information. 
So if there’s a defect, one way to fill it in is to say just redistribute these 
and knock this one over a little bit. Because they’re not saying it can’t be 
three. This one fGraph 3] jsuc$$istenfcwith t|te theory th&fcif$3 point, I 
don’t  kaow3*5or something. It’s nett inconsistent. It’s ju stld n d o f funny. 
It’s silent on whether it’s 3 ornot. Look at, what’s the median. Even 
though this is  a biased distribution and the median is not a  great 
approximation for the mean, but it’s nqt a bad place tp start

Andy did not appear to experience any tensions with the experimental graphs for this

task. Unprompted, Andy was the only TA to discuss mean and median values for the

graphs rather than the mode. Andy first provided an estimation of the means for each

graph. His estimations resulted in him providing an approximation of 300 to 350 red

candies (recall that the actual population parameter is 350 red candies). Andy also

discussed the possibility of looking at the medians, especially for Graph 3. Andy did

express concern about Graph 3. In particular, he was troubled by the low number of

handfuls containing three red candies in light of the information provided by the other

three graphs. Yet, this anomaly did not hinder Andy’s ability to provide an estimation

of the number of red candies in the jar. Andy suggested that this graph could be

thrown out, or mentally redistributed by moving some of the outcomes at two and four
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red candies to the three red candies spot. Also, Andy seemed to believe that Graph 3 

was still consistent with the theory that the mean was between 3 and 3.5. This 

statement suggests that he may have been mentally estimating the balancing point for 

Graph 3, or thinking about where the median might fall for Graph 3.

Amanda: Pushed to Estimate Means 

In the following exchange, I asked Amanda to describe any other elements that 

influenced her prediction for the Mystery Mixture.

Interview 2: Mystery Mixture Task:

Interview er: Is there anything else that’s influencing you? Any shape or 
spread ideas? And you talked a little bit about shape with the symmetry on 
Graph 2.
Am anda: A little bit of symmetry around the 3, right. They all have this 
similar distribution where the tail is on the right. Which you’ve had me 
staring at that other picture for so long, where it’s the reverse of what my 
prediction was with the tail on the left. So that might be effecting what I’m 
thinking about, but really all I’m consciously processing right now are 
really where these concentrations are. I p d  momentarily m ake^cofiscjous 
effort at examining the distributions acrbssfthp other numbers. I can tell 
you right now that my brain froze up and 1 didn’t know how to process that 
information sp my brain went back to;fh;e <|)npentratioo around the ̂  and 
the’B. jSrit really did jnakebn effort for a minute to consider s, 6 ,a n d 7  
[red candies spots] on these graphs, b u tit didn’t feel. God I’ve never had 
to  pick apart how l  think about these things. But I instantly had a  feeling of 
uncertainty about how to get any information about that, so I immediately 
Went back to the m ode
Interview er: So kind of on a gut level you could go back to the modes and 
be able to say something.
Am anda: Right, right.

The highlighted utterances suggest that Amanda did attend to the other outcomes in

the distribution, but because she did not feel comfortable she returned to the modal

average, where she felt confident using that information to make some sort of
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prediction about the mixture of red and yellow candies. I think this excerpt provides 

some indication of the tension Amanda experienced when she was trying to glean 

information from experimental data. Amanda’s comment “God I’ve never had to pick 

apart how I think about these things” is also worth noting. It suggests that she has not 

had to think deeply about “simple” statistical ideas, such as finding a point estimate 

from some experimental data sets. Her comment is a strong indication that sampling 

concepts and processes are, in fact, quite complex. Also, Amanda’s comment suggests 

that creating dialog that probes deeper into topics of sampling are important for 

developing a more robust knowledge of sampling22.

I asked Amanda what she would do if she could take the Mystery Mixture Task 

home with her and was under no pressure to solve it. The highlighted utterances in the 

following exchange indicate that Amanda would use more sophisticated forms of 

reasoning about the graphs, such as identifying the means and medians, and/or 

aggregating the data from all four graphs.

Interview 2: Mystery Mixture Task:

Interview er: Okay, if you had more time, or you were going to take this 
home with you, what kinds of things would you look at if you were going 
to ponder this for a little bit?
Am anda: I don’t know. I’m trained to run diagnostics. So I m ight look a t 
the average for each graph. Maybe the tjiedian for each graph and see  how 
those compare to each other. Maybe the average of the averages. Because I 
think you know in  some fashion you should be able to fuse alffour graphs 
to be able to come up with d reasonable estimate,of what’s going on.

22 This point will be discussed in more detail in Chapter 7 -  directions for future research.
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I pushed Amanda in the interview for a visual estimation of the means for the four

graphs. As the following exchange reveals, she did not like to make estimations and

preferred to provide exact answers.

Interview 2: Mystery Mixture Task:

Interview er: If you had to visually, could you point to where you would 
see the means for each of the graphs? Or the medians, since you brought 
that up? Is that asking too much?
Am anda: Q hGoct [Longpause]. You’re talking to somebody who really 
has to, like it’s  important to  me to sit down and caieulate stuff. LilrePm  
really uncotofortable with saying, ‘oh,^think the mean is rightabout there*.
[Laughs].

After pushing on Amanda a bit more to estimate the means for the four graphs she 

finally yields, but toward the end she was guessing more than estimating.

Interview 1: Mystery Mixture Task:

Amanda: flight now, Pm  even freezing up o q . how the mean compares to 
the mode when you have skewness going on [Amanda draws a  sketch,  see 
Figure 29\. So the mean should be to the right of the mode when the tail is 
in the nght. So, I don’t do well under pressure. You’re lucky you’re not 
one of my professors or this would be dribble coming out of my mouth. 
And I also have a hard time with the visualization, knowing that it’s 
stacked. I think the mean is, I’m going to slice it nght here. Sprfbr 
reference dint was Graph 1. f  think maybe somewhere between 3 .5 and 4. 
3,5 and Pm  sticking with i t  Graph 2 ,4 .1 dontt know at this point P m  just 
trying to give you answers. Hot uneducated answers, but I don’t  feel redly 
confident about what Pm saying. 4.5 for Graph 3, Because Pm  not 
counting x’s or anything.

Figure 29: A m anda’s sketch of skewed left d istribution
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Interviewer: But you are talking about these as being the means? 
Amanda: Means. Yes. Not medians. I would really have to sit here and 
count x 's  to do that. And I’ingoing to go with 4  again on Graph 4. 
Interviewer: Okay. So doing that, does that change your initial prediction, 
or is this visualizing the means too fuzzy without calculations to make you 
change your predictions?
Amanda: Yeah, I don’t really feel very comfortable, which is odd. I don’t 
know which one of them would be more accurate in my estimation, but I 
feel really unttoipfortable out of a  bunch of trying to select where the 
mean is. But if they nil tended to focus arould the 4  and If I felt with any 
confidence that that was correct [long paus^  No I’m going toleave it.

Table 19 shows a comparison for Amanda’s estimations of the means for each of

the four sampling distributions compared to the actual means of those distributions.

Table 19: Comparison of Amanda’s estimation of means

Graphs Amanda’s estimation of the mean Actual mean
1 3.5 3.1
2 4 3.26
3 4.5 3.72
4 4 3.56

Amanda’s estimations for the means were not exact, and in particular in relation to 

Graph 3 her mean was quite high at 4.5 red candies. However, her estimations did 

indicate that the means were above three red candies. I thought that after Amanda 

estimated the means for each graph she would increase her estimate of the number of 

red candies in the jar. Yet, Amanda did not have enough confidence in the exactness 

of her estimates to change her prediction from 250 reds in the jar to something at least 

slightly larger, despite the fact that her mental estimates of the mean suggested that the 

population parameter was likely to be larger than 250 red candies. This suggests that 

Amanda had poor imagery of mean as a balance point (i.e., a center of mass). Amanda 

preferred to use the modes because she could calculate the modal average exactly.
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4.2.3 Summary of the Mystery Mixture Task

There are two main points that deserve emphasis from my analysis of TAs’ 

thinking and reasoning about the Mystery Mixture Task. The first point is that three of 

the four TAs experienced difficulties as they attempted to use the experimental data to 

make a decision about the population of red and yellow candies. Like the Real/Fake 

Task, the Mystery Mixture Task provided another context in which these TAs were 

forced to confront experimental data and make decisions based on the experimental 

information. On the one hand, Amanda, Joe, and Sandy all appeared to experience 

some level of frustration and tension in trying to make sense of the four experimental 

graphs, Amanda and Joe used a modal average and Sandy used a shape argument in 

order to resolve the tension. By using mode as the measure of center, Amanda’s and 

Joe’s predictions for the number of red candies differed from the population of red 

candies by 100. Sandy never provided a definitive estimate. She would only suggest 

that the skewed right shape implied more yellow candies than red. On the other hand, 

Andy did not appear to experience the same frustration or tension that the other three 

TAs experienced. He did not seem compelled to provide an exact mean value. Rather, 

he made a visual approximation for each of the graphs at somewhere between 3 and 

3.5, which allowed him to provide a strong overall estimate for the number of reds in 

the jar.

Andy’s experience with this task compared to the other three TAs leads to a 

second point that deserves emphasis, estimation skills. I found that several TAs, both 

on the survey and in the interviews, expressed distaste for estimation. This is
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surprising as estimation is the crux of statistical inference. Yet, TAs are trained to use 

formal methods of estimation and the Mystery Mixture Task pushed them to make 

informal estimations. Several TAs on the survey mentioned that they used calculators 

on the Prediction Task in order to produce exact answers. Amanda did not feel 

confident in her estimates of the means for each graph in the Mystery Mixture Task. 

Also, at several different points during the three interviews, Sandy expressed a dislike 

for the interview tasks because she did not have an exact formula to follow (i.e., 

formulas that would provide ‘exact’ answers). I believe that this distaste for providing 

approximations is part of the graduate school culture. Mathematical and statistical 

coursework instills in TAs the desire to produce exact answers and to avoid 

estimation. Of course in many respects this is important in the work in which 

statisticians and mathematicians engage, but it is also important to have strong 

estimations skills. NCTM (2000) emphasizes the importance of computational 

fluency, strong estimation skills, and the sense of when it might be appropriate to 

provide estimates. The ability to mentally estimate the mean and/or median for each of 

the mystery mixture graphs allows one to provide a fairly accurate and quick 

approximation of the number of red candies in the jar. I believe that graduate 

mathematics and statistics courses are not likely to spend time working with 

experimental data, discussing processes for making decisions based on multiple 

samples or making use of estimation techniques. Thus, lack of experience with this 

type of problem is likely to account for the tensions these TAs experienced. I argue 

that TAs could benefit from professional development workshops in which they had
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the opportunity to perform repeated sampling experiments, create graphs of 

experimental sampling distributions, and use the information gathered from a 

collection of samples to make inferences about the population from which the sample 

came.

4.3 Chapter 4 Conclusions

Taken as a whole, the Prediction Task, Real/Fake Task, and Mystery Mixture Task 

provide some interesting insights into how these TAs reasoned from a theoretical 

model to experimental data or from experimental data to a theoretical model. With 

only a few exceptions, the survey and interview participants had knowledge of the 

underlying probability structure in the candy jar context and appeared to be capable of 

attending to multiple aspects of the distribution. This is not surprising given that these 

TAs had all taken at least one graduate statistics course. In fact, it is surprising that 

there were a few TAs who did not demonstrate knowledge of the hypergeometric or 

binomial probability distribution. Yet, despite TAs’ knowledge of formal probability 

distributions and their understanding of measures of center, shape, and spread, many 

of the survey and interview participants did not appear to access this wealth of 

knowledge when making decisions about the Real/Fake Task and three of the 

interview participants did not access this knowledge when making decisions about the 

Mystery Mixture Task. This is a surprising and unexpected finding.

These TAs, perhaps from lack of experience or lack of focused experience with 

experimental data, encountered considerable tension as they attempted to make 

inferences about the likelihood of certain types of outcomes in 50 trials of size 10 or
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about an unknown population parameter. The source of this tension seemed to reside 

in their lack of knowledge of the concept of bounded variability. These TAs seemed to 

resolve their tensions by falling back on more simplistic ways of analyzing the 

experimental data in order to draw a conclusion. In the Real/Fake Task, the population 

proportion is known and the goal is to investigate which classes of graphs are less 

likely to occur as a result of the experiment. The TAs in this study largely focused on 

the shape of the distribution for each graph in order to make their decision. TAs 

appeared to focus on the unevenness in frequencies of each empirical sampling 

distribution on the Real/Fake Task. This expectation appeared to be a driving force 

behind TAs’ decision-making processes. Torok and Watson (2000) observed this 

tendency in middle and high school students. In addition, TAs own images of the 

theoretical model shaped their conclusions.

In the Mystery Mixture Task the population proportion is unknown and the goal is 

to investigate what the population parameter is likely to be. The TAs in this study 

focused on measures of center or the shape of the graphs in making their predictions.

In particular, Sandy focused on the skewed shape of the distribution, but only seemed 

to feel comfortable arguing that there were more yellow candies than red. Amanda and 

Joe used a single measure of center, the mode, and took a modal average in order to 

justify their predictions. Finally, Andy focused on measures of center, the median and 

mean, and looked at the average of these in order to justify his prediction.

While none of these methods for examining the Real/Fake or Mystery Mixture 

Tasks is incorrect, it is surprising that with the arsenal of statistical knowledge
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available to them, for the most part they chose to only use the most simplistic of 

techniques. And by simplistic techniques I mean readily accessible to a layperson or 

someone with little to no prior statistical experience. In fact, the tendency for TAs to 

use shape and/or mode to justify their decisions to the Real/Fake and Mystery Mixture 

Task are consistent with the types of reasoning Shaughnessy et al. (2004a&b, 2005) 

observed in middle and secondary students. TAs who did use slightly more 

sophisticated techniques or incorporated multiple attributes of the distribution into 

their response tended to provide responses on par with the task design. For example, 

Andy provided the closest approximation to the Mystery Mixture simply by using the 

mean and median, which are more sophisticated and reliable measures of center than 

the mode.

The findings presented in this chapter have significant implications for TAs’ 

statistical knowledge for teaching. The fact that these TAs experienced difficulty 

accessing and applying their knowledge of distributions in an experimental context 

suggests a limitation in TAs’ ability to teach their students how to connect core 

concepts to an experimental context. Chapter 6 addresses the potential impact of the 

findings in this chapter on undergraduate statistics education. Prior to engaging in that 

discussion, I turn to the second significant theme related to TAs’ statistical content 

knowledge: the different ways TAs appeared to interpret sampling and statistical 

inference problems.
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CHAPTER 5

TAS’ CONTENT KNOWLEDGE OF SAMPLING AND STATISTICAL 

INFERENCE

The purpose of this chapter is to highlight the second significant theme that 

emerged in my analysis of the data on TAs’ statistical knowledge. This theme relates 

to how the TAs in this study reasoned about sampling and statistical inference tasks, 

and how they conceived of the relationship between probability and sampling, and 

probability and statistical inference. In particular, the TAs in my study appeared to 

reason about these tasks along a developmental spectrum, ranging from no connection 

to stronger connections of a long-term relative frequency interpretation of probability. 

TAs who did not connect statistical inference concepts to long-term relative 

frequencies appeared to reason in a manner consistent with Konold’s (1989) outcome 

approach or Kahneman and Tversky’s (1972) representative heuristic. In addition,

TAs’ reasoning appeared to be situational and depended on their understanding of a 

particular context.

This chapter is partitioned into three main sections. In Section 5 .1 ,1 briefly 

describe the rationale for the two tasks discussed in this chapter, the Unusual Sample 

Task and the Gallup Poll Task. I also provide an overview of two different 

interpretations of probability -  frequency and subjective. I discuss the implications of 

each view of probability on interpreting sampling and statistical inference problems.
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In Section 5 .2 ,1 provide a conceptual analysis for the Unusual Sample Task, followed 

by excerpts of TAs’ reasoning on the sampling task that highlight the two views of the 

sampling context that emerged in my study. In Section 5 .3 ,1 provide a conceptual 

analysis for the Gallup Poll Task, followed by excerpts of TAs’ reasoning on this 

statistical inference task that highlight two different views of confidence level that 

emerged from my study.

5.1 Two Different Interpretations of Probability

Both the Unusual Sample Task and the Gallup Poll Task were included in the task 

based interviews for TAs in this study because these tasks serve as proxies for 

assessing TAs’ understandings of: (1) the connection between probability and 

sampling, and probability and statistical inference; 2) the role of sample size in 

sampling variability; and, (3) the image of repeatability of the sampling process (i.e., 

the recognition that statistical inferences are based on long-term relative frequencies). 

Recall that these three knowledge components were identified in my review of the 

research literature (see Chapter 2) as essential for a robust understanding of sampling 

processes and their relation to statistical inference.

There is a strong relationship between probability and inferential statistics. An 

illustration of the relationship between probability and inferential statistics is shown in 

Figure 30 (Devore, 2004, p.6). In inferential statistics, information about the properties 

of the population is not known, but the properties of a sample can be used to draw 

conclusions about the population (Devore, 2004). For example, suppose 350 voters in 

a sample of 500 voters gave the president a low approval rating. The true percentage
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of voters in the entire population who disapprove of the president’s work is unknown,

problems, information about the properties of the population is known and that 

information is used to answer questions about a sample taken from that population.

For example, if an experiment consists of rolling a fair die, then the question, “What is 

the likelihood that a six is rolled?”, can be answered. This may appear to be a 

straightforward question, but how one interprets such a probability statement (i.e., a 

likelihood statement) is a key issue in this chapter. I turn now to a discussion of two 

different interpretations for a probability statement.

A frequency interpretation of probability is based on long-term relative 

frequencies. This interpretation is widely accepted by the larger statistical community 

and forms the basis for introductory probability and statistical inference curricula as 

well for more advanced study. A long-term relative frequency approach to probability

but the sample is used to make inferences about the population. In probability

Figure 30: Relationship between probability and statistics

Probability

Population

Sample

Inferential
Statistics
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assumes an experimental situation that can be performed repeatedly, where each

repetition is performed in an identical manner and each outcome is independent of the

previous outcomes. A long-term relative frequency interpretation for rolling a fair die,

like in the example from the previous paragraph, is that if one were to roll a die under

identical conditions, a large number of times, then over the long run one could expect

the relative frequency of any given number to approach 1/6. To generalize this

perspective, consider an experiment performed n times and some event A that may

occur on some replications of the experiment. Suppose event A occurs n(A) times.

Then the ratio of n(A)ln is the relative frequency. Devore (2004) provides the

following standard interpretation of the long-term relative frequency in this situation.

Empirical evidence, based on the results of many of these sequences of 
repeatable experiments, indicates that as n grows large, the relative 
frequency of n(A)/n stabilizes. That is, as n gets arbitrarily large, the 
relative frequency approaches a limiting value we refer to as the 
limiting relative frequency of the event A. The objective interpretation 
of probability identifies this limiting relative frequency (p. 60).

This view of probability indicates that when probabilities are applied to events, they 

are meant to suggest what is likely to happen when the experiment is conducted a 

large number of times. The Law of Large Numbers captures the essence of the long

term relative frequency view of probability/identifying what is likely to happen when 

an experiment is repeated a large number of times. In addition, this view of 

probability, based on the long-term relative frequencies of events, also serves as the 

basis of interpretation in inferential statistics. Evidence from my data analysis suggests
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that some TAs maintained this perspective of probability when approaching certain 

tasks.

An alternative interpretation of probability is one where the experimental situation 

is not understood to be repeatable and probability statements are made according to an 

individual’s degree of belief that an event will occur once and only once. This 

interpretation of probability is often referred to as subjective probability (Winkler, 

1972). In my analysis of the data, it appears that some TAs expressed a belief of 

probability with reference to the particular individual event. Thus, these TAs’ 

perspectives appear more similar to this subjective interpretation of probability. In this 

chapter, I use TAs’ own interpretations of the Unusual Sample Task and Gallup Poll 

Task to highlight the extent to which TAs connected probability to sampling and/or 

statistical inference, and what, if any, evidence exists for how these TAs interpreted 

probability statements. Also, I show that TAs’ interpretations of probability and its 

relation to sampling and statistical inference appeared to depend on the particular 

context.

5.2 The Unusual Sam ple Task

The Unusual Sample Task is a sampling problem. The task was given to all TAs 

who took the survey, and formed the basis for follow-up discussion for those TAs who 

participated in the interviews. The task served as a means for investigating TAs’ 

thinking on sampling and its relation to probability. The task is shown in Figure 31.
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Figure 31: Unusual Sample Task

The Unusual Sample Task

Researchers from Erie County in Buffalo were studying the weight of Grade 5 
children, The researchers went to 2 schools: one school was in the center of the city 
and one school was in the country. Each school had about half girts and half boys. 
The researchers took a random sample from each school: 50 children from the city 
school, 20 children from the country school. One of these samples was unusual 
because it had more than 80% boys. Is the unusual sample more likely to be the 
large sample of 50 from the city school, the small sample of 20 from the country 
school, or are both samples equally likely to be the unusual sample?

5.2.1 Conceptual Analysis of the Unusual Sample Task

The conceptual analysis and framework I provide here, built partially from 

existing research literature, developed during my analysis of the data. There are three 

general categories of reasoning on this task: (1) Outcome Approach (observed by 

Konold, 1989), (2) Probability Theory, and (3) Sampling Distribution. Figure 32 

provides a visual representation of this conceptual framework. I begin with the 

Outcome Approach and continue discussing each approach in order.

189



Figure 32: Conceptual Framework for the Unusual Sample Task 

Unusual Sample Task Reasoning Framework

Predict with certainty what will actually happen

Outcome Approach

Taking repeated samples and 
building sampling distributions

Sampling Distributions

Connects one or both approaches to 
long-term relative frequencies

Probability
Distribution

Probability Theory

LLN

In the Outcome Approach interpretation of the problem, one views the sample of 

20 from the country school and the sample of 50 from the city school as individual 

units -  one sample of size 20 and one sample of size 50. The focus is to predict 

whether the particular sample of 20 from the country school is more or less likely to 

be unusual than the particular sample of size 50 from the city school. Such an 

interpretation of the problem fits with a subjective interpretation of probability 

because there is no image of repeating the sampling experiment and thinking about 

what is likely to occur over the long run; rather, the desire is to predict which of these 

particular samples is the unusual one. This interpretation is likely to lead to the 

conclusion that both samples are equally likely to be unusual based on the logic that if
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the ratio of boys to girls in the populations are the same and the samples are random, 

then any outcome is a possibility for either sample; thus, there is no way to tell for 

certain. This is the type of logic observed by Konold (1989) and Konold et al. (1993). 

However, it could be possible that a person would reason according to the Outcome 

Approach and answer that the small sample is more likely to be unusual or that the 

large sample is more likely to be unusual. In this sense a decision for the small or large 

sample could be based on a ‘hunch’ or some probability calculation, yet the focus is 

still on the individual’s certainty in the particular samples and determining which one 

will be unusual versus which one is likely to be unusual.

The Probability Theory category can be broken up into three components23. First, 

one could connect this situation to a probability distribution -  in particular, a binomial 

probability distribution, because the assumptions of the binomial are approximately 

satisfied. Then the probability that the sample of 50 contains 80% boys could be 

computed and compared to the probability that the sample of 20 contains 80% boys. 

Applying the binomial probability distribution to the city school yields the following 

likelihood estimate that the unusual sample is the one of size 50: 

f50N
v4 0 ,

(O.sy^O.S)10 « 0.0000912. Applying the binomial probability distribution to the 

country school yields the following chance of the unusual sample coming from the

23 I use components to suggest three different subsections of reasoning that fit within the Probability 
Theory category and do not necessarily imply a linear ordering to these stages, although this is a 
possibility.

191



sample of 20:
^2(A

-  -  16

v1 6 ,
(0.5) (0.5) « 0.004. While neither sample is very likely to

contain 80% boys, it is certainly less likely to happen in the sample of size 50. 

Applying the binomial probability distribution to this sampling problem requires: (a) 

an understanding that the assumptions of repeated sampling (where the experimental 

unit is of size one), independence, and sampling with replacement or large population 

sizes are warranted; and, (b) an ability to connect ideas of sampling to probabilities. A 

TA would not necessarily have to have an interpretation of probability consistent with 

a long-term relative frequency to apply this formula. In a sense, this calculation would 

be a fairly routine procedure for a statistics TA, and without knowing how the TA 

interpreted the information about the underlying population proportions (i.e., the 

probability of obtaining a boy as being 0.5) or the probabilities obtained from the 

calculations, it would be unclear whether an image of long-term relative frequencies 

was unequivocally part of the TAs’ mental scheme.

A second Probability Theory perspective includes relating the Unusual Sample 

Task to the Law of Large Numbers (LLN), or to the concept that as sample size 

increases, sample variability or standard deviation tends to decrease. Again, citing the 

LLN or this relationship between sample size and sample variability need not entail a 

view of probability as a long-term relative frequency because one could simply be 

recollecting how a theorem is applied without a full conception of the imagery or 

reasons behind the theorem. In addition, one might have an understanding that a 

sample of size one will either yield a boy or girl, and if the entire population were
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sampled, the true population parameter would be obtained. Yet, a person with such an 

understanding might not have a sense for what happens in between these two 

extremes.

A third Probability Theory perspective entails an argument using a probability 

distribution and/or the LLN, with explicit evidence of a long-term relative frequency 

perspective. Here the focus is on repeating the experiment, but in this case the unit of 

the experiment is size 1. So the sample of size 20 is seen as 20 repetitions of size 1, 

and the sample of size 50 is seen as 50 repetitions of size 1. The probability 

distribution argument here yields the same probabilities as above (0.000092 for the 

sample of size 50 and 0.004 for the sample of size 20). However, the mental imagery 

explicitly connects to the idea of repeating the experiment and to the interpretation of 

the two probabilities obtained. Similarly using the LLN with an explicit connection to 

long-term relative frequencies suggests that as the sample size increases (i.e., as the 

number of trials of this experiment increases), the relative frequency of the event tends 

toward the true mean. This imagery leads to the conclusion that the small sample is 

more likely to be unusual. A visual image for this interpretation is shown in Figure 33.
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Figure 33: Law of Large Numbers
1 f  •

Relative
Frequency

small n '  large n "
n = Sample Size 

As n increases the relative frequency stabilizes

In the Sampling Distribution category, the focus is on repeating the experiment, 

but the unit of the experiment is a sample of size 20 and a sample of size 50. Taking 

repeated samples of size 20 from the country school and of size 50 from the city 

school, over and over again, and each time computing the value of the sample statistic 

-  number of boys, enables the construction of the sampling distributions for the 

samples of size 20 and for the samples of size 50. In this case, the sample of 20 and 

the sample of 50 are each seen as a particular case from larger classes, each consisting 

of all the different sample possibilities for those sample sizes. This imagery, together 

with that of the sampling distributions for each sample size, also leads to the
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conclusion that the small sample is more likely to be unusual. A visual image for this 

interpretation is shown in Figure 34.

Figure 34: Distributions of sample statistics

Sampling Distribututions: 
A - Samples o f Size 50 
B - Samples o f Size 20

The sampling distribution for the samples of size 20 will be more spread out, and thus 

it is more likely to grab a random sample (from all those possible samples) with a 

sample proportion further from the center (and more unusual). This image certainly 

entails the idea of long-term relative frequency of probability and could also be 

connected to LLN.

5.2.2 TA Reasoning about the Unusual Sample Task

Table 20 shows the survey responses to the Unusual Sample Task along with a 

synopsis of how TAs reasoned about the task. Table 20 shows that 55 of the 68 TAs 

who took the survey indicated that the small sample is more likely to be unusual. In 

addition, 46 of those 55 TAs indicated that sample size plays an important role in 

sampling variability; in particular, as the sample size increases, the sampling 

variability decreases.

195



Table 20: Survey responses to the Unusual Sample Task
TAs’ Reasoning

TAs Response

Small sample is more 
likely to be unusual

Both samples equally 
likely to be unusual

Large sample is more 
likely to be unusual

Equal ratio & 
Random 
sampling

0

11 (16.2%)

0

Probability
Distribution

6 (8.8%)

0

0

Law of 
Large 

Numbers

46 (67.6%)

0

0

Other

3 (4.4%)

1 (1.5%) 

1(1.5%)

Totals

55 (80.9%)

12(17.6%) 

1 (1.5%)

Many TAs cited the Law of Large Numbers for their reason or provided a simple 

sentence such as, “as sample size increases the standard deviation decreases” or “as 

sample size increases the percentage of boys to girls evens out”. Invoking the Law of 

Large Numbers or the two previous explanations is suggestive of a long-term relative 

frequency perspective. However, there are at least two difficulties with drawing such a 

conclusion. First, it is unclear if TAs merely echoed a response they’ve heard before. 

Second, it is unclear how TAs interpreted their solutions to the problem. That is, when 

a TA answers the question, ‘which sample is likely to be unusual?’, does their 

interpretation entail the aspect of certainty or likelihood from a long-term relative 

frequency perspective?

Twelve TAs responded that both samples were equally likely to be unusual, and 

one TA indicated that the large sample was more likely to be unusual. Eleven of the 12 

“equally likely” responses suggested that because both school populations had an
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equal ratio of boys and girls and the samples were randomly drawn, there was no 

reason to suspect that either sample was more likely to be unusual. The response of 

these 11 TAs provides some indication that these TAs did not view the sample of size 

50 and the sample of size 20 as one particular case of many possible sample cases. 

That is, these TAs may not have interpreted this problem as being related to the long

term relative frequencies. Rather, these TAs may have been answering the question: 

“For these two particular samples, one of size 20 and one of size 50, is one more 

likely to be unusual than the other?”.

During the first interview, I followed up on the Unusual Sample Task with the 

intention of gaining a clearer articulation and understanding of TAs’ interpretations of 

the task. Table 21 shows the survey responses to the Unusual Sample Task for the five 

TAs I interviewed.

Table 21: Interview Responses to the Unusual Sample Task

TA Response Reason
Amanda Both samples equally 

likely to be unusual
“We are told that both schools have approximately the 
same percentage of boys and girls, so neither is more 
likely to have produced the unusual sample.”

Sandy Both samples equally 
likely to be unusual

“Each school had about half girls and half boys.”

Joe Small sample more likely 
to be unusual

“Higher sample sizes are less likely to show weird 
things when taking a random sample than smaller ones. 
(.5)A20 is much larger than (.5)A50, for example.”

Andy Small sample more likely 
to be unusual

“Law of Large Numbers.” (No explanation)

Sam Small sample more likely 
to be unusual

“It has a small sample size. If I choose 2% of the 
students randomly, the probability that they will all be 
boys will be higher, as compared to choosing a higher 
percentage.”
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Joe, Andy, and Sam indicated that the small sample was more likely to be unusual. Joe 

suggests that larger samples are less likely to “show weird things”, and Sam seemed to 

simply state that a smaller sample size is more likely to produce all boys. Implicit in 

Joe’s and Sam’s suggestions could be the recognition that as the sample size increases 

the sampling variability decreases, a major consequence of the LLN. Yet, this 

understanding is not explicit in Joe’s and Sam’s justifications. Andy merely cited the 

LLN as his justification. In addition, Joe provided what appears to be a binomial 

probability distribution argument. Amanda and Sandy indicated that both samples 

were equally likely to be unusual because of the equal ratio of boys to girls in the 

population. The type of responses provided by these TAs makes it difficult to draw 

any conclusions about how TAs actually interpret a probability statement, or in what 

ways they relate this sampling problem to probability. It is also difficult to draw any 

conclusions about their having any explicit sense of variability.

At the beginning of the interview I asked each of these TAs to explain how they 

interpreted the problem and to elaborate on the reasons for their choices. I believe that 

the follow-up questions and subsequent TA responses provide evidence that Sandy 

and Amanda reasoned about this task from an Outcome Approach, and that Andy, Joe, 

and Sam reasoned about this task from Probability Theory. There is some evidence 

that Andy and Sam reasoned from a Probability Theory perspective with long-term 

relative frequency imagery. There is no evidence that any of these TAs reasoned with 

a Sampling Distribution approach, and it is difficult to infer from the data whether or 

not the long-term relative frequency perspective was explicit in Joe’s mental scheme.
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First, I examine the responses of Andy, Joe, and Sam and follow with the responses of 

Amanda and Sandy. I group the interview responses in this way because of the 

commonalities in the TAs’ responses.

TA reasoning: Andy, Joe, and Sam

Andy’s interview responses to the Unusual Sample Task suggest that he reasoned

about this problem in terms of long-term relative frequencies of events. In the first

exchange, Andy referenced the extreme cases in his discussion of the problem. The

following excerpt provides Andy’s initial explanation of the problem during the

interview.

Interview 1: Unusual Sample Task:

Interviewer: So my first question for you is to walk me through how you 
interpreted the problem and how you went about solving it.
Andy: Okay, well I started with the base. I started with the extreme cases 
and said suppose there was only one child in the sample. You know if the 
small sample contains a single child then its either going to be 0% boys of 
100% boys. The small samples are going to have these extremes. If you 
take a large sample where there is 50% boys and 50% girls in the general 
population, the larger sample you get, the closer you are going to get to 
50%. Well that’s the Law of Large Numbers. You are going to tend toward 
tlie average of the population.

Andy seems to connect this problem to the Law of Large Numbers and his 

understanding that large samples tend to be less variable than small samples. Andy’s 

discussion of the extreme case (highlighted in the above excerpt), where a sample of 

size one is collected, suggests that he at least has some image of the ends of this long

term relative frequency process. His utterance that “the larger sample you get, the

closer you are going to get to 50%”, together with his use of the word “tend”, is also
/
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an indication that he conceptualizes the entire process where the limiting relative

frequency value points to the population parameter. When I pushed Andy about his 

use of the LLN, indicating that some TAs did not think an application of the LLN was 

appropriate for the Unusual Sample Task, Andy continued to argue from this 

perspective.

Interview 1: Unusual Sample Task:

Interviewer: There were two main things that came out on this survey. 
People responding exactly as you did. They didn’t necessarily cite the Law 
of Large Numbers, but they walked me through something similar to what 
you did. And then there were other TAs that responded that both samples 
were equally likely. So that both samples would be equally likely, and one 
response for this that appeared often was that the samples were randomly 
chosen and that the difference between the sample sizes 20 and 50 wasn’t 
significantly large enough to matter. How might you respond to that TA? 
Do you agree or disagree?
Andy: Well, I ’d have to disagree because again you go to the extreme. I t’s 
not significant between a 50 and a 20 -  well one’s more than twice the 
other, that’s going to tend [Andy's emphasis} to be significant.... It’s not 
about sampling the entire, exhaustively sampling the population. It’s about 
taking a sub-sample. The larger the sub-sample, the more likely you are to 
get the true average, the population average. The smaller the sample the 
less likely, you tend [Andy's emphasis] to get extremes.

Here Andy’s utterances suggest looking at different sub-samples from the population

and the process of taking larger sub-samples as a means for approaching the

population average. Further, Andy seemed to emphasize the words “tend” and “more

likely” during the discussion. His language is suggestive of the long-term relative

frequency process although he does not use those words explicitly.
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Sam did not articulate his position as clearly as Andy, but the following excerpt 

also suggests that Sam viewed the Unusual Sample Task with an understanding of the 

consequence of the LLN and a long-term relative frequency perspective.

Interview 1: Unusual Sample Task:

Sam: ... Say we have 20,000 PSU students and I collect the heights of 
every student. Then I know for sure the average height. If I can collect a 
sample of 10,000 [heights] I will be closer; to collecting all heights than if I 
only collect a sample of 100 [heights], SO this larger sample will give a 
better approximation of mean height [of all PSU students]. If I only collect 
one sample [a sample o f size one], I just get one height and it may pot be 
very accurate.

Like Andy, Sam referenced the extreme cases, a sample of size one, and compared 

that to the entire population. Sam also mentioned what might happen in between 

during this process. He suggests that a sample of 10,000 is closer to the entire 

population than a sample of size 100 and that as this sample size increases, the larger 

sample will tend to be more accurate. When I pressed Sam about his reasoning, and 

suggested that some TAs argued that the difference in sample size was not large 

enough to matter, he did not appear comfortable arguing his case. In addition, Sam’s 

utterance that a “larger sample will give a better approximation of the mean height” is 

also suggestive of the Outcome Approach perspective in that Sam uses the words will 

give rather than is likely to give. It is difficult from the data to assess how Sam 

intended the words will give. In the same manner it is difficult to assess from the data 

how Andy intended the phrases tends to or is likely. Phrasing that is often used to 

discuss probability or limiting values, such as likely or tends, are used in a plethora of
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non-stochastic ways in the English language; thus in hindsight I should have probed 

these TAs about what they meant by those phrases.

Joe’s survey response, “Higher sample sizes are less likely to show weird things 

when taking a random sample than smaller ones. (.5)20 is much larger than (.5)50, for 

example” suggests that he was using both the LLN and a probability distribution 

argument. During the interview, Joe referenced the extreme cases. The following 

exchange is Joe’s initial explanation for how he reasoned about the Unusual Sample 

Task.

Interview 1: Unusual Sample Task:

Interviewer: Talk me through how you thought about this problem and 
how you went about solving it.
Joe: Sure, I mean the general rule is, as the sample size increases your 
distribution curve approaches the population. If your sample is as big as the 
population it’s going to be die population . . .So if the population is 50/50 
boys and girls, as the number of boys and girls we pick goes up, the closer 
we’ll get to 50/50. But if we just pick one kid, it’s either a boy or a girl and 
we have 100% boys or 100% girls.
Interviewer: Okay, you had this .5 raised to the 20th power is larger than .5 
raised to the 50th power on your survey. So I’m kind of wondering how 
these calculations, how does that show what you just explained to me?
Joe: Yeah. This is just a sense-making thing. I mean that would kind of be 
the chance of having all girls or all boys in a sample of 2 0 .1 think. I’d have 
to, I mean yeah, right?.. .Well, we had a 50/50 chance when we were 
pulling our sample from the population. So if  you just pull one {child) it’s 
50%. The chance of getting two girls is 25%, .5 times .5. The chance of 
getting 3 girls is 1.25. I ’m sorry . 125. So the chance o f getting 20 girls is .5 
raised to the 20. That was a sense-making thing. Even though this is an 
exceptionally small number [.5 raised to the 20] it is still much larger than 
this number [,5 raised to the 50].

In the first highlighted utterance above, Joe discussed the extreme case of picking only

one student and that the student would have to be either a boy or a girl. He also
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discussed the end of the process whereby the sample consists of the entire population 

and thus, the population parameter is obtained. However, Joe does not articulate what 

happens in between these two extremes. There is no explicit evidence in his initial 

utterances that he has an image of repeatability consistent with a long-term relative 

frequency perspective. Also, his first utterance, where Joe says, “the general rule is ...” 

suggests that he may merely have invoked a formula or a procedural process.

As I asked Joe more about the computations he provided on his survey, his 

response suggests that he related the Unusual Sample Task to a binomial probability 

distribution problem (although he did not explicitly use this terminology) in which he 

mentally estimated the probability of getting 100% boys or girls in a sample of 20, 

versus 100% boys or girls in a sample of 50. The second highlighted portion of the 

excerpt above implies that Joe thought about the sample of size 20 as 20 trials and 

compared that to what was likely to happen in 50 trials. To each trial, he assigned the 

probability of success as 0.5 and made an implicit assumption that each trial was 

independent so that he could multiply the probabilities together. For instance, when 

Joe says the chance of getting two girls is 0.5 times 0.5, or 25%, he was treating the 

sampling situation as approximately binomial, where the probability of success is 0.5. 

By looking at the probability of getting 100% boys in the sample of size 20 versus the 

sample of size 50, Joe was able to infer that the likelihood of getting a sample of 80% 

boys is likely to be larger in the small sample of size 20. However, his binomial 

probability distribution approach does not provide any indication of how he 

interpreted the probabilities obtained from his calculations. In addition, his response
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that smaller samples tend to be “weird” may be the result of his application of the 

formula, rather than a deep understanding of the LLN and an image of long-term 

relative frequencies.

When I pressed Joe about his decision and suggested that some TAs responded 

that both samples were equally likely, he appeared unable to provide a clearly 

articulated justification for his choice.

Interview 1: Unusual Sample Task:

Interviewer: So when I think back to the survey and how TAs responded, 
they responded pretty much how you just did or this way, that both samples 
would be equally likely to be the unusual one. And one person reasoned 
that the samples were randomly chosen and that the difference between the 
sample sizes 20 and 50 wasn’t significantly large enough to matter. How 
might you respond to that TA? Do you agree or disagree?
Joe: I don’t know enough about the math to know if 20 and 50 are close 
enough. And I don’t know what enough would be here. Yeah, I don’t know 
what kind of null hypothesis there would be for that. So I’d want to do 
some math before disagreeing, but my intuition is that i t ’s more likely to 
come from the smaller sample size, giveq that the population in the schools 
are both 50/50 boys and girls. If I ’m taking 50 from one and 20 from the 
other, the 20 is more likely to be weird than the 50. But I don’t know if it’s 
statistically significant there.

Joe had strong intuitions for this problem. In the highlighted utterance above he says

that his intuition tells him the smaller sample size is more likely to be unusual. Yet, he

could not provide a clear articulation of the process by which the values of the statistic

for large samples converge toward the population parameter. Without a more robust

understanding of the LLN and a relative frequency perspective of probability, he

seemed unsure about how to disagree when I played devil’s advocate.
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In sum, Andy, Joe, and Sam all used a Probability Approach to reason about the 

Unusual Sample Task, but there were distinctions and differences within that 

approach. Andy and Sam appealed more to the LLN suggesting that as sample size 

increases the sample estimate tends toward the population parameter. There is some 

evidence from Andy’s and Sam’s utterances that they had a long-term relative 

frequency interpretation of the process. Joe appealed more to the underlying binomial 

probability structure to reason and there was no evidence in Joe’s utterances that he 

had a mental image of repeatability or long-term relative frequencies. It would have 

been beneficial to have asked Andy, Sam, and Joe what they meant by “likely” or 

“tends to” because such questioning may have provided stronger evidence of how 

each of these TAs interpreted probability statements.

TA reasoning: Amanda and Sandy

Amanda’s and Sandy’s interpretations of the Unusual Sample Task stand in stark 

contrast with the interpretations provided by Andy, Joe, and Sam. Both Amanda and 

Sandy appear to perceive the situation from a single outcome perspective, although 

perhaps to differing degrees. Amanda’s survey response suggests that she did not think 

either sample was more likely to be the unusual sample, and although this remained 

her bottom line during the interview, it also became apparent that she considered the 

role of sample size in her response.

Interview 1: Unusual Sample Task:

Interviewer: Take a minute to read over the first question from the survey.
Your response is here. So reread the problem and your response, and then
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walk me through how you thought about the problem and how you solved 
it.

Amanda: I feel like I cannot tell. There’s certainly a lot of different ideas 
that float around in my head, but in the end I keep coming back to that we 
were told in the general populations we had 50% boys, 50% girls or close 
enough. So I’ve considered things like since it’s the extra information we 
have to go on, the sample size, would it be less likely the large sample I 
take the more representative it’s going to be of the general population. So 
would it be less likely that the 50 students would be more closely split 
50/50 than the 20 students [she has this backwards here, but I  think she is 
ju s t misspeaking as later she goes on to say it correctly ]. But I don’t feel 
confident enough to say that there’s enough information there for me to say 
that one of them is more likely to have produced an odd sample. Because I 
don’t think 50 is that large. I know in our textbooks we talk about 30 being 
a large sample, but I dop’t feel like 50 is very big.
Interviewer: So kind of what I’m hearing you saying is that 50/20 is not 
enough to make you feel confident that you could say. So if this had been 
100/20 would that be different for you in terms of answering this? 
Amanda: If there was a dramatic difference and the 50 was larger* say 
100.1 might lean more heavily on the assumption that the larger the sample 
I take the more it’s going to mimic the distribution it came from and I 
would be able to say that it’s probably closer to 50/50 than the 20 sample 
would be.

On the survey, Amanda responded that both samples were equally likely to be the 

unusual sample because the ratio of both populations was roughly 50/50, and the 

samples were randomly drawn. However, in this excerpt we see that Amanda also 

considered the role that sample size plays in sampling variability. Yet, because 

Amanda did not think the difference in sample sizes was significant, she returned to 

the fact that the ratio of boys to girls was 50/50. For Amanda, the difference in size 

between the two samples would need to be much larger in order for her to believe that 

the large sample would be more representative of the population. In addition, when I 

raised an alternative response to the problem and suggested the Law of Large
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Numbers, Amanda did not appear surprised by the use of the LLN in this context. She 

also recognized that the situation could be examined with a binomial probability 

distribution. The following exchange took place after I brought up the LLN.

Interview 1: Unusual Sample Task:

Interviewer: Okay, so let me tell you first that pretty much most responses 
fell between the small sample as the unusual one, or both samples are 
equally likely to be the unusual one. Some folks that said the small sample 
would be more likely to be the unusual one and used the Law of Large 
Numbers. What would you say to a person who argued the opposite of you, 
and said I think the unusual sample is from the sample of 20 because of the 
law of large numbers?
Amanda: [Laughs]. The Law of Large Numbers. Because of the Law of 
Large Numbers?
Interviewer: Yeah.
Amanda: Okay, so the weak Law of Large Numbers says that a value is 
going to center around... that it’s going to converge to its mean, right? 
Interviewer: Yeah.
Amanda: And I could possibly be way off on this, but large numbers 
implies to me that this is occurring as n gets larger. It makes me completely 
doubt myself when you say well somebody else said blady blah. But it’s 
my understanding that when we are talking about the Law of Large 
Numbers it’s going to be true as the sample size grows. ...Wait, wait I ’m 
putting it all together. I ’m putting all the pieces together. So the person 
would be saying the 20 is more likely to be the unusual one because of the 
Law of Large Numbers, because as my sample size grows I have to get 
focused in around that average value. Which is what I ’m saying. Did I say 
it backwards? That the 50 would be less likely because it’s a larger sample 
its going to be more representative of the general population versus the 20 
being a smaller sample is not necessarily as accurate a representation of the 
population. So the 20 ...[laughs] I really hope I didn’t just say all of that 
backwards. So the 20, if I had to pick one, it would be 20 to be more likely 
to produce the off sample. Just because it’s smaller than 50 and as our 
sample size grows we’re going to narrow in on that 50/50 girls/boys. But 
50 in my mind, and this is not based on anything other than comfort level, 
does not strike me as large enough to say, ‘yes in this situation 50 is more 
likely to be the good sample versus 20 the bad sample’.
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Initially Amanda appeared nervous and doubted her response when I indicated that 

some TAs concluded the small sample was more likely to be the unusual one because 

of the Law of Large Numbers. However, Amanda seemed inclined to agree with these 

other TAs that the large sample would tend to be more representative of the original 

population, although she did not seem to feel comfortable with this conclusion because 

the difference in sample sizes was not significant enough for  her.

Amanda also recognized the underlying probability structure, but she did not 

appear to use it as she worked through the problem.

Interview 1: Unusual Sample Task:

Interviewer: Okay, is there anything in stats that allows you to determine 
something like this, like if that would be a large enough difference to 
actually answer a question like this with determination?
Amanda: [Long pause], I believe so. I think I spent a lot of time on this 
question tryiiig to think if there was a way that I could calculate to make 
me feel good about my answer. But certainly you could break this down 
into a binomial problem where you’re looking at your sample and you’re 
told the population is about half and half. So if you’re looking at boys and 
girls you know the probability of getting boys and girls. So of your sample 
of 20, what’s the probability that you’re going to get more than 80% boys? 
Versus if you had a sample size of 50, what’s the probability that you’re 
going to get more than 80% boys? And you could do a comparison of how 
those probabilities turn out. I mean clearly they’re not going to be equal. I 
imagine not because the differences in sample sizes, but without sitting 
down and performing a test like that I’pi not willing to say that one is more 
likely than another.

Amanda discussed the underlying binomial probability structure of the problem and 

appeared to be able to view the problem from a number of perspectives. In this last 

exchange she showed flexibility by looking at the sample of 20 as 20 trials and the 

sample of 50 as 50 trials, where each trial has a 50% chance of producing a boy and a
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50% chance of producing a girl. Yet, her main focus appeared to be on the difference 

in sample sizes between the two samples, and her ability to know for certain if one 

sample versus another sample would be more likely to be unusual. The bottom line is 

that without an exact calculation, Amanda rested on her gut level intuition and her 

desire to answer, ‘which sample will be unusual?’, rather than ‘which sample is likely, 

in the probabilistic sense, to be unusual?’. It appeared that Amanda wanted to be able 

to make her choice with absolute certainty rather than probabilistically with 

likelihoods.

Like Amanda, Sandy also believed that both samples were equally likely to be the 

unusual one, and Sandy seemed intent on answering the question of which sample will 

be unusual, rather than which sample is likely to be unusual. Yet, whereas Amanda 

seemed comfortable looking at the Unusual Sample Task from a number of 

perspectives, Sandy appeared to compartmentalize her knowledge of probability and 

sampling. She did not see a connection between the Unusual Sample Task and the 

underlying probability structure or its relation to the Law of Large Numbers. The 

following exchange provides some insight into Sandy’s perspective of the Unusual 

Sample Task.

Interview 1: Unusual Sample Task:

Interviewer: So here is the first problem from the survey. Here is the 
problem along with your response. Will you walk me through how you 
interpreted the problem and how you solved it?
Sandy: We are told that we got a sample and one of the samples had 80% 
boys. But we don’t know, we have no information how the population of 
those two schools are. If I would have been told that the population, you
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know something in the population I would have maybe changed my 
answer.
Interviewer: So what is it about the population? Is it like a specific size for 
a population or...
Sandy: No, no, no size. You know like a school has more boys in general 
than girls.
Interviewer: But it says each school had about half girls and half boys. 
Sandy: Yeah, exactly so that’s it. That was my reason.
Interviewer: Okay that’s what you were putting down here [pointing to 
Sandy’s explanation] because each school had about 50/50. Why would it 
be different?
Sandy: Yeah, Yeah. That’s how I see the problem. Because you collect a 
random simple. It’s random definitely you can have all kinds of situations. 
You could have more boys than girls, and equal number of girls and boys 
or more girl s than boys.
Interviewer: So what if you were told that the city school had more boys? 
Sandy: Then I would have thought that the sample with more boys comes 
from the city school because I was told that it had more boys. Because you 
know that sometimes there were schools that were only for boys or only for 
girls and at some point they changed. And said ah, in the school of boys we 
are going to start accepting girls, so definitely in the years beginning of that 
process they would have more boys than girls.

This exchange suggests that Sandy was intent on determining whether the particular

sample of 20 or the particular sample of 50 was unusual. In the first highlighted

utterance, Sandy focused on the fact that the samples from each school were randomly

selected making all kinds of outcomes possible; thus, for Sandy it would be impossible

to determine for the particular samples drawn which would be unusual. In this

utterance Sandy appeared to provide an acknowledgement of her expectations for

variability in this situation and she did not appear to place any boundaries on that

variation. From my interpretation, Sandy’s understanding was that since only one

random sample was collected there was no reason to believe that one sample versus

another, no matter the difference in sample size, was more likely to be unusual. This
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view is consistent with Konold’s (1989) Outcome Approach in that Sandy appeared to

be answering the question, ‘Which sample will be unusual’?

When I brought up a TA response that differed from hers, she discredited it

quickly, as seen in the following exchange.

Interview 1: Unusual Sample Task:

Interviewer: Some of the TAs taking this survey answered exactly how 
you did, but some answered that the small sample from the country 
school...
Sandy: No I see no reason for that.
Interviewer: Well, one TA used the Law of Large Numbers for his reason. 
Sandy: The Law of Large Numbers.... I don’t really see that. I don’t  see 
the relationship because this problem is about collecting a sample, you 
know.
Interviewer: Okay, so if we are flipping a coin. Let’s look at the flipping 
the coin example. If we’re flipping a coin 20 times versus 100 times, is it 
more likely that we’ll get half and half 20 of the times?
Sandy: If you, if you flip like this, you said how many? 20 times. 
Interviewer: Yeah.
Sandy: Versus 100 times. Here [pointing to the 100 times written on a 
sheet o f  paper] the probability will be closer to 0.5 than here {pointing to 
the 20 flips written on a sheet o f  paper]., ..So here the probabilities are 
much more closer. The more times you flip the coin the closer the 
probability of heads to tails comes to 0.5. Yes, I remember now. I read at 
some point an example. It was some guy who was in prison and he flipped 
a coin, I don’t know, I believe 5000 times or something like that... .Look he 
flipped so many times and it was the probability and so on and the students 
were able to see how the probability approaches 0.5 the more number of 
times you flip the coin.
Interviewer: But you don’t think that’s the same here because you have 
50/50 boys/girls?
Sandy: Yes, yes you have 50/50 boys/girls, but it’s not a problem about 
um m ... .It’s not a similar problem. I don’t think. Not from my point of 
view. You just go and you saptple some people randomly, randomly. 
Interviewer: So flipping a coin, are you relating that more to probability 
versus this as being a random sampling?
Sandy: Yeah. I don’t know, but I ’m thinking like that.... Because like here 
[referring to the coin problem] you are doing the same thing over and oyer 
again. While here [referring to the sampling problem o f  boys and girls]
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you go and take a sample, a random sample. You’re riot supposed to go 
again and go again. If you get 80% boys you get 80% boys. Maybe if I go 
like 20,000 times to get my sample to be close to 50% boys, maybe I will 
get it, I don’t know. ...Yeah that’s how I see it. Because if I go and I 
sample once, how it’s normally to be done. You want to be unbiased, am I 
right? You have to be unbiased, so you go and you sample. It’s not ah, 
umm a question about do you like your sample or not because otherwise 
you’ll be biased and you won’t be able to have a correct test done. [She's 
referring to the fa c t that i f  we related the sampling situation to flipping  
the coin we'd have to sample many times before the probability would 
approach the 50150 mark, but we do not sample many times in reality and 
we cannot sample many times until we get a sample that suits us because 
this would bias our results]. . ..I was told that each school had half girls 
and half boys. I have no reason, if I pick 20 randomly or if I pick 100 
randomly, I have no reason to believe that I will approach 80% boys more 
in one versus another.

I believe the previous exchange reveals that Sandy viewed the Unusual Sample Task

as a sampling problem and did not see a connection between probability and sampling

in this context. In the first highlighted utterance, Sandy suggested that the Unusual

Sample Task was a sampling task, unrelated to the concept of the Law of Large

Numbers. When we discussed a coin-flipping example, she saw the applicability to the

Law of Large Numbers, but she did not see any connection between the Unusual

Sample Task and the coin-flipping example because she did not think of the sample of

20 as 20 trials. Sandy did not think it was appropriate to relate the Unusual Sample

Task to an underlying probability structure, nor did she think it was appropriate to

think about repeating the sampling process. In fact, Sandy was adamant that the coin

flipping example and the Unusual Sample Task were distinctly different because in the

coin flipping example you needed to repeat the flip over and over again in order for

the relative frequency to become close to the population ratio, and in the Unusual
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Sample Task there was no possibility for repeating the sampling process (nor was 

there an image of hypothetical repeated sampling) (see the fifth and sixth highlighted 

utterances in the previous excerpts). That is to say, it appeared that Sandy wanted to 

predict the outcome of the particular samples drawn in this experiment and thought 

about the sample of 20 as its own unit and the sample of 50 as its own unit, not as 

independent trials. Sandy's image of the Unusual Sample Task did not appear to 

include hypothetically repeating the experiment and examining the long-term relative 

frequencies. Rather, her conceptual image included the concept of a random sample, 

her knowledge that both populations contained 50% boys and 50% girls, and her 

understanding that she was being asked to predict what would happen after collecting 

one sample of size 20 and one sample of size 50. From this perspective, Sandy argued 

that it was not possible to know which sample would be more likely to be unusual. 

Sandy’s response provides strong evidence that her interpretation of the Unusual 

Sample Task was from a subjective probability interpretation, a measure of her degree 

of belief for what outcomes would occur in each sample.

Summary o fT A  Reasoning about the Unusual Sample Task 

In sum, about 81% of TAs on the survey and three out of five TAs I interviewed 

used a Probability Theory approach to argue that the small sample is more likely to be 

unusual. Yet, there was not enough information available in the data to conclude much 

about how TAs interpreted the probability statement. However, what is particularly 

compelling is that there is strong evidence that two of the five TAs I interviewed did
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not have robust knowledge of the relationship between sample size and sampling 

variability, and reasoned about the Unusual Sample Task using the Outcome 

Approach. The utterances provided by Amanda and Sandy certainly suggest that their 

responses were based on the degree to which they believed they could predict the 

outcome for this one unique event. Given that the samples were randomly selected and 

the ratio of boys to girls at each school was the same, Amanda and Sandy argued that 

there would be no way to tell which sample was more likely to be unusual. In prior 

studies (Kahneman & Tversky, 1972; Konold, 1989; Watson & Moritz, 2000) using 

this type of sampling task, researchers found that students often use the Outcome 

Approach, and respond that both samples are equally likely to be unusual. These 

studies have involved K-12 through tertiary students. Also, these prior studies 

indicated that students who reasoned that both samples were equally likely to be 

unusual did so because they were trying to say something about the particular samples 

collected in the study, and did not think about the concept of repeated sampling. This 

study provides initial empirical evidence that some graduate TAs in statistics also 

reason about sampling problems using the Outcome Approach.

5.3 The Gallup Poll Task

The primary purpose for including the Gallup Poll Task in this study was to 

investigate TAs’ understanding of confidence intervals and the ways in which they 

may or may not connect ideas of probability and repeated sampling to statistical 

inference. As a place to begin an investigation of TAs’ understanding of confidence
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intervals, I initially asked them to provide an interpretation of margin of error in the 

following task (see Figure 35).

Figure 35: Gallup Poll Task

Gallup Poll Task

Your statistics class was discussing a Gallup poll of 500 Oregon voters’ opinions 
regarding the creation of a state sales tax. The poll stated, “...the survey showed 
that 30% of Oregon voters think a state sales tax is necessary to overcome 
budget problems”. The poll had a margin of error of ± 4%. Discuss the meaning 
of margin of error in this context

The Gallup Poll Task provided an opportunity for gathering information on TAs’ 

thinking around confidence intervals. After TAs provided their own interpretation of 

margin of error and confidence interval in the Gallup Poll Task, they were shown 

hypothetical student interpretations (Students A through F, see Figure 36) and asked to 

comment on the reasonableness of each interpretation.

Figure 36: Hypothetical Student Interpretations

Gallup Poll Task: Hypothetical Student Interpretations of Margin of Error 
Student A says: The margin of error being 4% means that between 32% and 40% of all 
Oregon voters believe an income tax is necessary.
Student B says: We don’t know if the interval 32% to 40% contains the true percentage 
of voters that believe an income tax is necessary, but if we sample 100 times, about 94 of 
those times the interval would capture the true percentage of voters.
Student C says: The interval 32% to 40% will be off about 4% of the time, or 4 out of 
100 times.
Student D says: If you performed repeated samples of 500 voters, the proportion of 
voters in favor of sales tax in these samples would fall within the interval 32% to 40%, the 
majority of the time.
Student E says: I can be 95% sure that all the sample statistics will fall within ± 4% of 
the unknown population parameter.
Student F says: The interval 36% ± 4% has a high probability (approximately 95%) of 
being repeated if the sample was repeated.
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Many of the hypothetical student interpretations I developed were based on Liu’s 

(2004) conceptual framework for investigating teachers’ conceptions of margin of 

error in a polling context. The hypothetical student responses served two main 

functions. First, they provided an additional opportunity to gather information about 

how TAs thought about confidence intervals. Second, they provided an opportunity to 

gather information on TAs’ knowledge of content and students (this will be discussed 

in Chapter 6). In addition to the hypothetical student interpretations of margin of error, 

I asked TAs to discuss the confidence level for the Gallup Poll Task and I provided 

two hypothetical student interpretations of confidence level and asked TAs to respond 

to each of these interpretations (see Figure 37).

Figure 37: Hypothetical Student Responses to Confidence level

Gallup Poll Task: Investigating Confidence Level

Hypothetical Student 1: A 95% confidence level means that you can 
be 95% confident that the particular interval found in the survey 
captures the population proportion. Do you agree or disagree with this 
student’s interpretation of confidence? Explain.
Hypothetical Student 2: A 95% confidence level means that you are 
95% confident in the estimation process. That is, 95% of the time you 
get good interval estimates that capture the population proportion. Do 
you agree or disagree with this student’s interpretation of confidence? 
Explain.
What would the confidence level be for this Gallup poll?

How do you interpret confidence level in this context?

In the sections that follow, I provide a conceptual analysis for understanding 

confidence intervals from two different perspectives -  a frequency perspective and a 

subjective perspective. Following the conceptual analysis, I discuss in more detail the
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different hypothetical student responses. Finally I discuss how the five TAs I 

interviewed thought about the Gallup Poll Task and how they responded to the 

different hypothetical student interpretations.

5.3.1 Conceptual Analysis of Confidence Intervals

Confidence intervals are an important component of inferential statistics because a 

point estimate alone does not provide any indication of how close the estimate might 

be to the population parameter. A confidence interval, then, is an interval estimate 

together with an associated measure of reliability. From a frequency interpretation of 

probability, a robust appreciation of confidence intervals requires an image of 

repeating the experiment over and over again, and thinking about the long-term 

relative frequency of the number of interval estimates that would capture the 

population parameter. Consider a random experiment with n independent repetitions 

from a finite population with mean p  and standard deviation c. Then the values X,, 

X2,..., Xa of the random variable X  represent the various means from the n repeated 

trials. Applying the Central Limit Theorem, as n increases, the sampling distribution 

of means will be approximately normal with expected value p  and standard deviation

— X  — LI
aHn. Standardizing X , the mean of the sampling distribution, gives Z  ----- — which

has a standard normal distribution with an area under the curve of 0.95 within ±1.96 

standard deviations of the mean. This yields the following probability statement:
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P ( - 1.96 < ^ - T ^  <1.96) = 0.95 (1)

%
Solving the inequality in (1) for p. we get the following standard formula for 

confidence intervals:

P ( X - \ . 9 6 y ^ < j i < X  + 1 .9 6 ° / ^ )  = 0.95 (2)

The probability that the random interval in (2) contains p. is 0.95 because at this point

the problem is strictly a probability problem and the X  is a random variable that has 

not been realized in the experiment. The problem becomes statistical in nature once a 

random sample is collected and the value of X  becomes known. At this point, the 

interval has known endpoints, and it is not acceptable to say with 95% confidence that 

the particular interval calculated contains |x, even though that might be tempting to 

conclude (Devore, 2004; Hogg & Craig, 1995). The population parameter, |x, is a 

constant and the particular interval computed either includes |X or it does not. Thus, the

interpretation of a 95% confidence interval

relies on the long-run relative frequency interpretation of probability: To say that an 
event A has probability 0.95 is to say that if the experiment on which A is defined is 
performed over and over again, in the long run A will occur 95% of the time (Devore, 
2004, p. 285).

That is, if the sampling process is repeated many times, one can expect that 95% of the 

resultant confidence intervals would include jx. Figure 38 shows a visualization of the 

repeated sampling concept in relation to the creation of a 95% confidence interval 

(Devore, 2004, p. 285).
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Figure 38: Repeated sampling and statistical inference
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A common alternative interpretation of a 95% confidence interval is that the

particular interval calculated from the sample has a 95% chance of containing p.

From a mathematical perspective, this interpretation has a different meaning than the

frequency perspective in that the level of confidence is in the specific interval, rather

than in the method by which confidence intervals are produced. This interpretation

would be consistent with a subjective interpretation of probability. In the statistical

community, confidence intervals with a subjective (also known as Bayesian)

interpretation are called credible intervals (Winkler, 1972). According to Winkler, in

the subjective interpretation the statistician makes a probabilistic judgment about the

population parameter, whereas in the frequency interpretation the statistician makes a

probabilistic judgment about the sample statistic (p. 394).

5.3.2 Hypothetical Student Interpretations

As noted at the beginning of this section, after TAs provided their own

interpretations to the Gallup Poll Task, I provided them several alternative
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hypothetical student interpretations. I discuss each of them in more detail here, 

beginning with the coherent interpretations.

. Coherent Hypothetical Student Interpretations

Liu (2004) examined an accepted textbook interpretation of confidence interval 

and the possible ways it could be recast to either an equivalent coherent interpretation 

based on the image of repeated sampling or to alternative interpretations. Recall that a 

standard coherent interpretation of confidence interval says: if we repeat the sampling 

process a large number of times, then Y% (where Y is typically 90, 95, or 99%) of the 

intervals, sample statistic +  margin o f error, will contain the true population 

parameter. Hypothetical Student B’s interpretation, “we don’t know if the interval 

32% to 40% contains the true percentage of voters that believe a sales tax is necessary, 

but if we sampled 100 times, about 94 of those times the interval would capture the 

true percentage of voters”, typifies this textbook interpretation of confidence interval 

in the context of the Gallup Poll Task.

An equivalent definition used by Liu (2004) in her teaching experiment states that 

the interval, population parameter {p) ±  margin o f error, captures x%  of the sample 

statistics ( p) .  Hypothetical Student E ’s interpretation of the poll’s margin of error, “I 

can be 95% sure that all the sample statistics will fall within ±  4% of the unknown 

population parameter”, is representative of this alternative construal. Notice that the 

standard text interpretation, p -  E < p <  p  + E  (wherep  is the true population 

parameter, p  is a sample statistic, and E is the margin of error), is algebraically
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equivalent to: p - E  < p  <p + E. In many respects, thinking about the percentage of

sample statistics that are within a certain distance of the unknown population 

parameter is a more natural way to approach an interpretation of confidence intervals 

with the conceptual entailment of the sampling distribution. The image in this 

approach is to take a sample and compute its sample statistic, take another sample and 

compute the new sample statistic, and do this over and over again, until a large subset 

of the sampling distribution (the distribution of all possible samples of size n) has been 

collected. The mean of this sampling distribution is approximately equal to the 

population parameter, p, because of the natural properties of sampling distributions. 

Further, for large n, the sampling distribution is approximately normal and the interval 

around p, which contains 95% of the sample statistics, can be examined. See Figure 

39 (taken from McClave & Sincich, 2000, p. 280).

In addition, I added Hypothetical Student 2’s interpretation of confidence level as 

a coherent interpretation, which places the confidence within the method, identifying

Figure 39: Sampling Distribution of x-bar

(where x-bar represent sample statistics)

m
Approximately .95
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the random error associated with the sampling process. Student 2’s interpretation says, 

“A 95% confidence level means that you are 95% confident in the estimation process. 

That is, 95% of the time you get good interval estimates that capture the population 

proportion”. From a relative frequency perspective, the first sentence in Hypothetical 

Student 2 ’s response means the same thing as the second sentence. This is a powerful 

understanding of confidence level that I argue should be developed in students.

Incoherent Hypothetical Student Interpretations

Liu (2004) also suggests several alternative interpretations of confidence interval 

and margin of error. Of course, she includes among her list of different interpretations 

the classic interpretation of confidence intervals that does not entail an image of 

repeated sampling; that is, the view that the true population parameter is inside the 

interval, sample statistic ± margin o f error. Hypothetical Student A ’s interpretation,

“The margin of error being 4% means that between 32% and 40% of all Oregon voters 

believe an income tax is necessary” exemplifies this view of margin of error and 

confidence intervals. I consider this view problematic from an educational standpoint 

because it: (a) does not explicitly mention the level of confidence; and, (b) contains an 

implicit assumption that the population parameter moves. From a statistics education 

stand point, it is preferable for students to develop a conception that supports the 

interpretations of both Student B and E because taken together such a construal 

provides students the understanding of the power of sampling distributions in making 

statistical inferences. Also, an understanding of Student B’s and E’s interpretations
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entails, at least implicitly, an expectation of variability among sample statistic values. I 

added Hypothetical Student l ’s interpretation of confidence level as an analog to 

Student A ’s interpretation of margin of error. Hypothetical Student l ’s response is a 

common interpretation for confidence level, in the same way that Hypothetical 

Student A ’s interpretation of margin of error represents a common view. Thus, 

Hypothetical Student l ’s interpretation is also troubling because the confidence is 

placed within the particular interval calculated from the sample.

In addition, Liu (2004) provides other alternative interpretations of margin of error 

and confidence intervals that include a conception of repeated sampling, but represent 

incoherent ways of thinking about confidence intervals. For example, Liu suggests one 

could interpret margin of error with an image of the repeatability of the sampling 

process, but believe that the interval obtained in a particular sample will contain some 

percentage, x, of all the other sample statistics; that is, sample statistic + margin o f  

error captures x%  of all sample statistics. I created Hypothetical Student D ’s 

interpretation of the poll’s margin of error, “if you performed repeated samples of 500 

voters, the proportion of voters in favor of sales tax in these samples would fall within 

the interval 32% to 40%, the majority of the time”, as a reflection of this incoherent 

concept of margin of error. I added two additional incoherent images of margin of 

error and confidence intervals. First, Hypothetical Student F’s interpretation of the 

poll’s margin of error, “the interval 36% ± 4% has a high probability (approximately 

95%) of being repeated if the sample was repeated”, suggests an image that entails a

view of repeated sampling, but expects the particular interval computed from the one
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particular sample to have a high probability of being repeated. Second, in Hypothetical 

Student C’s interpretation of the poll’s margin of error, “the interval 32% to 40% will 

be off about 4% of the time, or 4 out of 100 times”, it is not clear whether an image of 

repeated sampling is present. Hypothetical Student C also uses the 4% margin of error 

in two different ways: Student C correctly used the 4% margin of error to compute the 

upper and lower limits of the confidence interval, (32,40), but then incorrectly used 

the 4% to suggest a level of confidence in the chosen interval’s predictive power (“off 

4% of the time”).

5.3.3 TAs’ Reasoning about the Gallup Poll Task

In this section I examine TAs’ responses to the Gallup Poll Task and to the 

different hypothetical student interpretations. I suggest that TAs appeared to reason on 

a continuum from strong images of repeated sampling in relation to confidence 

intervals to no image of repeated sampling. I begin this section with a discussion of 

TAs’ initial responses to the Gallup Poll Task, followed by a discussion of how TAs 

interacted with the hypothetical student interpretations. This order allows me to 

provide a picture of how TAs’ interpretations changed as a result of their thinking 

about the hypothetical student interpretations. Also, this presentation provides me the 

opportunity to illuminate the continuum of TAs’ responses, ranging from strong 

images to no images of repeated sampling. Please note that I do not discuss each TA ’s 

response to every hypothetical student, as this would be too time consuming. Rather, I
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provide responses that highlight key aspects of TAs’ thinking related to this concept of 

repeated sampling.

TAsf Initial Responses to the Gallup Poll Task

Amanda is the only TA who began her discussion of the Gallup Poll Task with an 

interpretation of margin of error and confidence that provides some indication that she 

held an image of repeated sampling.

Interview 3: Gallup Poll Task:

Amanda: Well, in the most simplistic terms that means that 36% is our 
point estimate and our cushion provides room for 32 to 40%. It doesn’t tell 
us much about what level of confidence they’re using.... There’s error 
Involved in the sampling process, it’s not an exact representation of your 
population. So with whatever level of confidence they chose we’re looking 
at an estimate of the proportion being between .32 and .40.

Amanda’s unprompted initial discussion of margin of error raises the notion of

confidence and of “error involved in the sampling process”. Although this information

is not sufficient for inferring that Amanda holds an image of repeated sampling, she is

the only TA to raise the issue of confidence in relation to the sampling process rather

than in regards to the specific interval found from the sample statistic in her initial

utterances.

In comparing Amanda’s initial response to the Gallup Poll Task with Andy’s and 

Joe’s responses, there appears to be a subtle, yet significant, distinction in their 

interpretations. Andy’s initial interpretation of margin of error in the Gallup Poll Task 

is provided in the following exchange.

Interview 3: Gallup Poll Task:
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Andy: Okay. So there’s some true value. And so this is establishing this 
confidence interval so we’re saying our confidence interval is 36 minus 4, 
which would be 32%, to 36 plus 4, or 40%. So we are saying with some 
degree of unstated confidence, nobody’s saying what it is at this point, the 
true value is between 32 and 40.

Joe’s initial response to the Gallup Poll Task was similar to Andy’s in that he came up

with the interval around p  = 36% and indicated that there is some uncertainty in this

interval.

Interview 3: Gallup Poll Task:

Joe: We’re between 32 and 40 kind of in a statistical way. We can never be 
entirely confident on what the situation is when we are not reading all the, 
everyone’s opinion in the state, but we’re fairly confident in our confidence 
interval that it’s about 36%.

Andy’s and Joe’s interpretations of margin of error suggest that they are aware that 

the poll has some unstated level of confidence and that the interval (32,40) may not 

contain the true percentage of Oregon voters that believe a state sales tax is necessary. 

However, it is not clear from either excerpt whether Andy or Joe held implicit images 

of repeated sampling. In fact, Andy’s utterance, “with some level of confidence the 

true value is between 32 and 40”, suggests an image that the particular interval 

obtained contains the population parameter. However, Andy and Joe used language for 

describing confidence intervals that is commonly employed by those with a frequency 

interpretation and those with a subjective interpretation of probability; thus, it is 

difficult to tell how Andy and Joe actually conceptualize the situation. The difference 

between Amanda’s initial response and the initial responses given by Andy and Joe is 

subtle. Yet, Amanda’s reference to error in the sampling process, compared to Andy’s
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and Joe’s references to error in the particular interval calculated, could be an 

indication that Amanda has different mental schemas around the concept of 

confidence interval than do Andy and Joe.

Sandy’s and Sam’s initial interpretations are distinguishable from Amanda’s, and 

Andy’s and Joe’s interpretations because Sandy and Sam did not make an explicit 

reference to the confidence level, nor to the concept of repeated sampling. Sandy ’s 

initial interpretation of margin of error and confidence interval are shown in the 

following exchange.

Interview 3: Gallup Poll Task:

Sandy: .. .So 36%, so I know p . Let me try, if I will write the confidence 
interval for proportion [See Sandy’s work, Figure 40]. I’m not very sure I 
don’t remember if this is it. [Longpause]. Confidence interval for 
proportion. I know it’s a z. Ahh, it’s p , q , over n [instead o f p  and q 
which she had before].

Figure 40: Sandy’s Confidence Interval

Sandy’s response continued: ...So margin of error, we call this margin of
I pa

error [underlines the z J —  ]•••■ Okay, okay, okay Jennifer. So 36%
V n

plus/minus .04 and I get the confidence interval. So I have, when I do the 
minus, .32, when I do the plus, .4. So what happened was, the margin of 
error helped me to get the confidence interval because I know the p . So I 
get the confidence interval, so now I know that the proportion of Oregon 
people who think a sales tax is necessary to overcome the budget problems 
is between 32% and 40%.
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Sandy approached the problem by trying to recollect the formula for confidence 

interval for proportion. After Sandy recalled the formula, she provided a common 

interpretation for confidence interval, which suggested the population parameter 

would be in the interval 32 to 40, as seen in the last highlighted utterance from the 

previous excerpt. Sandy made no mention of how confident she could be in her 

prediction or any other additional utterances that would be helpful for understanding 

whether or not she had an image of repeated sampling.

Like Sandy, Sam attempted to use a formula for confidence intervals in order to 

compute the confidence interval for the Gallup Poll Task. Sam tried to describe the 

process of adding and subtracting 4% to p = 36% , unfortunately he could not 

recollect the exact formula for a confidence interval for proportions, and he could not 

provide me with the interval (32,40). It seemed that Sam did not have an alternative 

way of articulating his thinking about confidence intervals, other than through a 

formula. Thus, from his initial utterances alone, I was unable to gather enough 

information to speculate about his understanding of confidence intervals. Figure 41 

shows the progress Sam made on re-creating the formula for confidence intervals for 

proportions.

Figure 41: Sam’s Confidence Interval

228



During our conversation Sam displayed a highly procedural understanding of 

confidence intervals and suggested he needed to know the formula for confidence 

intervals involving proportions in order to discuss the Gallup Poll Task. Perhaps Sam 

does not view confidence intervals as being of the form, sample statistic ±  margin o f  

error, because Sam appeared to focus on the specific formula for a confidence interval 

for proportions.

TAs’ Responses to Hypothetical Student A ’s Interpretation o f  Margin o f Error 

As Amanda interacted with the hypothetical student responses, this image of 

repeated sampling became more explicit in her utterances. Take, for example, 

Amanda’s reaction to Hypothetical Student A ’s interpretation, that the margin of error 

being 4% means that between 32% and 40% of all Oregon voters believe an income 

tax is necessary.

Interview 3: Gallup Poll Task:

Amanda: I think that, I think that this is a very common interpretation. I 
don’t think it’s fully accurate, but I think conceptually it’s how we process 
information, like 32% plus or minus 4%.
Interviewer: What do you think is inaccurate about it?
Amanda: That the true proportion might not be between 32 and 40%. 
Interviewer: And that’s not explicit in the statement?
Amanda: Right. That with a certain level of confidence the true proportion 
will be between 32 and 40%, but the truth of the matter is that the true 
proportion is either in this interval or it’s not and this way of talking about 
it I think is very common.... I think it’s a very nuanced idea to start talking 
about the fact, and you have to, but still it’s very nuanced to discuss the 
fact that what does a confidence interval really mean and it takes a 
while.... You know let’s assume 95% confidence, with 95% confidence we 
can assume the true proportion would be between 32 and 40%, but that 
we’re actually talking about 95% of all samples would capture the true 
proportion and either oUr sample did of it did not.... I think there is nuance
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to it that leaves you with the impression that the true value is definitely 
between 32 and 40%, and it might be but with a certain level of confidence 
it will be.

In this excerpt Amanda indicated that Hypothetical Student A ’s interpretation is 

incomplete because it does not mention confidence level or the fact that our interval 

may not contain the true proportion. In addition, the highlighted utterance at the end of 

the exchange is where Amanda provided an explicit image of repeated sampling, 

indicating that 95% of all samples would capture the population parameter.

Unfortunately, Hypothetical Student A ’s response was not as useful in providing 

deeper insight into the mental schemes of Andy, Joe, Sandy, and Sam. For example, 

Andy and Joe both commented that Hypothetical Student A neglected to mention 

confidence level, which they had previously addressed in their initial interpretations, 

but there was nothing in Hypothetical Student A ’s response that pushed Andy or Joe 

to make explicit their notions of the process of creating confidence intervals. Andy’s 

and Joe’s responses to Hypothetical Student A ’s interpretation are shown in the 

following exchanges.

Interview 3: Gallup Poll Task:

Andy: The margin of error being 4% means that between 32 and 40% of 
all Oregon voters believe an income tax is necessary. Yeah they’ve got part 
of it. They talked about that’s the interval. They didn’t talk about 
confidence nature of it.

Interview 3: Gallup Poll Task:

Joe: Yeah, if this question was worth 10 points I would say this is 8 or 9 
points.
Interviewer: Okay. How come?
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Joe: Because between makes me think that they haven’t  quite got it. The 
±4% doesn’t say it’s necessarily between here [the 32 to 40% 
interval].... But the actual number of Oregon voters who believe that, is 
likely [Joe’s emphasis in phrasing] between 32 and 40%. And the way 
they’ve stated this I, I haven’t seen that likeliness captured and that’s an 
important part of it.
Interviewer: Okay, so it’s like they are losing a few points in your mind 
because they’re saying it with surety and not likelihoodl 
Joe: Yeah.... It’s still possible you know that we’ve just polled people iri 
downtown Portland and they all live in a commune, qhd it doesn’t really 
reflect the entirety of, of voters in Oregon.

Andy and Joe noted that Student A failed to mention how confident he/she was 

that the interval calculated would capture the population parameter. Yet, Andy’s and 

Joe’s initial utterances and their responses to Student A ’s interpretation of margin of 

error remain ambiguous on the issue of repeated sampling. Taking a conservative 

approach in characterizing their understandings of confidence intervals suggests that 

their confidence is in relation to the specific interval (32,40) gathered from this one 

sample, rather than confidence in the sampling process.

A second point worth noting in Joe’s excerpt is his response to why a confidence 

interval may not capture the population parameter. In the final highlighted utterance, 

Joe suggested biased polling as a reason for why the interval might not be a good 

reflection of the population parameter. This utterance leads me to wonder how Joe 

understands the type of error represented in a particular confidence level. That is, does 

Joe view such error as pertaining to sampling bias or to natural random error? I am not 

addressing this question in my study, and although Joe’s utterance provides some 

evidence that he views the 5% error (in a 95% confidence interval) to be a result of 

sampling bias, it is unclear whether he also thinks about natural random error.
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Hypothetical Student A ’s response was also not useful for gaining a deeper 

understanding of how Sandy and Sam conceptualized confidence intervals. In essence, 

Hypothetical Student A ’s interpretation corresponded with Sandy’s initial 

interpretation. Although Sam had not provided a clear articulation of how he 

interpreted confidence intervals, I suspected Sam had a similar notion of confidence 

interval as Hypothetical Student A because of his focus on finding a formula for 

computing the confidence interval. Given that Hypothetical Student A ’s interpretation 

was similar to Sandy’s and Sam’s initial interpretations, the conversation did not lead 

toward an explicit conversation around their interpretations of confidence level. At 

that point during the interview, all that could be inferred from my conversations with 

Sandy and Sam was that their interpretations of confidence interval most closely 

matched Hypothetical Student A ’s interpretation. Take for instance the following 

exchanges, which demonstrate that Sandy and Sam found Student A ’s interpretation 

acceptable because it was essentially the same interpretation they were trying to 

articulate to me in their initial response to the task.

Interview 3: Gallup Poll Task:

Interviewer: Student A says that the margin of error being 4% means that 
between 32% and 40% of all Oregon voters believe an income tax is 
necessary.
Sandy: Yeah because, so he pinpointed correctly the confidence interval. 
And he specified all Oregon voters.
Interviewer: Meaning?
Sandy: The true population proportion.

Interview 3: Gallup Poll Task:
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Sam: Oh, Okay. Yeah. Yeah, that was what I was explaining the first time. 
...Yeah, I think that should be this confidence interval. You know you 
asked me about confidence interval before and I wasn’t able to explain. So 
that should be the interval, confidence interval goes with margin of error.
So you are bringing my mind back to this.

Based on Sandy’s and Sam’s initial interpretations of the Gallup Poll Task and

their acceptance of Hypothetical Student A ’s interpretation, it appears that Sandy and

Sam do not think about confidence level, nor do they appear to have mental schemes

that entail repeated sampling. Rather, Sandy and Sam appear to believe that the

population parameter is contained in the interval obtained from the sample statistic

36%. Sandy’s and Sam’s utterances so far indicate a perspective more closely aligned

with a subjective interpretation of probability. However, it is wise to be cautious with

such an interpretation of these TAs’ thinking because Student A ’s interpretation is

often used as a shorthand interpretation by statisticians, who, in fact, hold a long-term

relative frequency perspective.

TA s’ Responses to the other Hypothetical Student Interpretations 

The remaining Hypothetical Student interpretations, Students B-F, entailed some 

aspect of repeated sampling. These tasks pushed TAs toward being more explicit 

about their thinking around the concept of confidence level and enabled me to gain 

deeper insight into how they conceived of the role of repeated sampling in the creation 

of confidence intervals. For example, Sandy’s, Andy’s, Sam’s and Joe’s responses to 

Hypothetical Student B ’s interpretation helped to clarify where their reasoning would 

be placed on a spectrum ranging from strong images to no image of repeated
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sampling. Also, TAs’ responses to Hypothetical Student E and Hypothetical Student’s 

1 and 2 provided a more detailed picture of TAs’ reasoning about confidence intervals. 

I begin with a discussion of how Sandy, Andy, Sam and Joe responded to 

Hypothetical Student B’s interpretation. I follow with a discussion about TAs’ 

responses to Hypothetical Student E and end with a discussion about TAs’ responses 

to Hypothetical Students 1 and 2.

TAs’ Responses to Hypothetical Student B ’s Interpretation

As Sandy investigated Hypothetical Student B’s response, there was increasing 

evidence that her concept image of confidence intervals did include confidence level 

and repeated sampling, although these ideas were not explicit in her initial utterances. 

As Sandy continued to engage in the Gallup Poll Task, and the issues of confidence 

level and repeated sampling were addressed in the hypothetical student responses, she 

began to make these ideas explicit in her utterances.

When I asked Sandy about Student B’s interpretation of margin of error, and 

confidence intervals she initially appeared perplexed. The following exchange shows 

her initial reaction was to reiterate her own interpretation of confidence interval.

Interview 3: Gallup Poll Task:

Interviewer: So, Student B says: we don’t know if the interval 32% to 
40% contains the true percentage of voters that believe an income tax is 
necessary, but if we sample 100 times, about 94 of those times the interval 
would capture the true percentage of voters.
Sandy: Oh my God I am tired and this is so wordy I don’t know.
[Laughs]. [Sandy reads the problem out loud again] We don’t know if the 
interval contains the true percentage of voters? But we know that this 
should contain the true percentage of voters because [pauseJ.
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Interviewer: Why, what tells us we know that?
Sandy: Okay. So you have a confidence level. You are 95% confident that 
the true proportion is there [Sandy points to the CZ]. Of course there is this 
5% where you can be off. So I’m not sure right now if “we don’t know” 
refers to that [the 5% ]....When you speak about confidence interval you 
have to state how confident you are that that is where your true population 
parameter is located.

Prior to investigating Student B’s interpretation of margin of error, Sandy did not 

mention the issue of confidence level. It appeared that she either believed the interval 

obtained would contain p, or she implicitly had some unstated level of confidence in 

mind but did not articulate it. However, as Sandy considered Student B’s 

interpretation, the issue of confidence level surfaced explicitly. In the first highlighted 

utterance she suggested that the interval should contain the true percentage of voters, 

but she paused and then explicitly mentioned that this would be true with some level 

of confidence. The third and fourth highlighted utterances give some indication of how 

Sandy made sense of confidence level. Sandy stated that the 95% confidence interval 

means that you are confident that the true proportion is inside the interval. Again, this 

interpretation makes it difficult to determine whether or not Sandy’s image of 

confidence level entails repeated sampling.

As Sandy continued to examine Student B’s interpretation, she began to express a 

more explicit image of confidence level that did entail repeated sampling.

Interview 3: Gallup Poll Task:

Interviewer: So, is there a way for us to figure out what the confidence 
level for this problem would be?
Sandy: Yes, yes we could. Okay so we know this number .04. We know 
that [points to p  ], we know that [points to q ], we know this [points to n]
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we can find z [looking at her expression fo r  margin o f error in the CI\. 
And if we find z, we can get alpha.
Interviewer: So then when they say 94 times out of 100 could they mean 
something like your 95% that you were using when you talked about this? 
Sandy: But if we sample 100 times, but I’m not sure about 94. Ahh, I 
believe that maybe that is what he is trying to say. If I sample 100 times, 
94% of the times the interval will capture the true percentage. Ahh, I 
believe that’s it. Maybe if I will find this z and I will see that 94% is the 
confidence level that means that is what he wanted to say. That you cannot 
be sure 100 percent, but in 94% of the cases you could be.
Interviewer: Okay. Is that what 95% means when you were putting it there 
[referring to her earlier comments on 95% Confidence level]!
Sandy: Yeah. It’s 95% of the time, so you know you want to repeat and 
repeat and repeat.
Interviewer: The sampling process?
Sandy: The sampling process. Compute this | | ,  compute the confidence 
interval, compute the confidence interval, compute the confidence interval 
and you will see that if you use a certain level you will see that in 95% of 
the cases that’s, you will know in 95% of your cases that’s where the true 
percentage of the population will be.

In this last exchange, Sandy makes specific reference to 95% confidence as being 

related to the sampling process, but prior to this excerpt her responses suggested that 

the interval obtained in the particular sample would contain (with some level of 

confidence) the population parameter. Sandy’s last highlighted utterance provides 

strong imagery of repeating the sample 100 times, and that 95 of those 100 times the 

interval estimates will capture the population parameter. It is difficult to say if her shift 

to repeated sampling occurred as a result of my questioning or if my questions 

prompted her to make her tacit assumptions more explicit. In any event, this excerpt 

provides explicit evidence that Sandy was thinking about repeating the sampling 

process and that her understanding of confidence level was in regard to that sampling 

process.
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Hypothetical Student B’s interpretation of margin of error also provided more 

explicit evidence that Andy, Joe and Sam did not have concept images of repeated 

sampling in relation to confidence intervals. For example, as Andy interacted with the 

different hypothetical student responses he appeared to wonder why each of these 

students discussed the idea of repeated sampling, and he wondered where students 

would have developed such an image. His reactions provided stronger evidence 

suggesting that he imagined the confidence level related to the specific interval 

gathered from a single sample. The following exchange is Andy’s reaction to 

Hypothetical Student B’s interpretation of margin of error.

Interview 3: Gallup Poll Task:

Interviewer: Okay, another student said we don’t know if the interval 32% 
to 40% contains the true percentage of voters that believe an income tax is 
necessary, but if we sample 100 times about 94% of those times the 
interval would capture the true percentage of voters.
Andy: Wait a second. [Longpause]. Yes, it’s true that we don’t know that 
this interval contains the true percentage. If we are going to sample 100 
times, 94% of those will be in this interval. [Andy reads the second part o f  
the student’s response aloud]. Yeah, that’s not what it says though. [Long 
pause].
Interviewer: That’s not what confidence interval says or...
Andy: Yeah that’s not what this confidence interval says. It doesn’t say a 
thing about re-sampling. It doesn’t imply re-sampling. It talks about the 
margin of error and I’m going to stick with my definition [laughs] that it’s 
not related to the re-sampling or the hypothetical re-sampling of it.

In this exchange, Andy appeared surprised to see an interpretation of confidence

interval based on repeated sampling (hypothetical or otherwise) and he believed that

this student’s response was incoherent.
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I continued to question Andy on the idea of repeated sampling in my follow-up 

questions in order to establish if he had any conception that repeated sampling is an 

implicit part of the theory behind the concept of confidence intervals. The following 

conversation took place.

Interview 3: Gallup Poll Task:

Interviewer: So I guess my question is, you are saying in here [in the  
Gallup Poll statement] that there is sort of an implied confidence level. 
Could there also be an implied idea of repeated sampling?
Andy: There could be, but I ’ve never understood it to be th^t way. Maybe 
it is and I ’ve always just misinterpreted it.
Interviewer: Okay, but at the moment you’re kind of thinking...
Andy: At the moment I need to berate them for being totally wrong 
[laughs].
Interviewer: [Laughs], Okay, because they are bringing in this idea of 
repeated sampling?
Andy: Right.
Interviewer: So you’re saying sure they’re right here we don’t know if the 
32 to 40 is going to capture the true proportion?
Andy: Right we don’t, we never know. That’s the whole point about 
confidence -  we’re pretty sure, but we don’t know.

In this exchange, Andy explicitly stated that he did not think about the idea of 

repeated sampling in relation to confidence intervals. In the last highlighted utterance, 

Andy’s remark, that the interval obtained from the sample might not capture the 

population parameter but that the confidence level indicates how likely it is, suggests 

that his Confidence is in the particular interval computed from the sample.

Like Andy, Sam appeared perplexed by the notion of repeated sampling in relation 

to confidence intervals.

Interview 3: Gallup Poll Task:
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Interviewer: So Student B said that, ‘we don’t know if the interval 32% to 
40% contains the true percentage of voters that believe an income tax is 
necessary, but if we were to sample 100 times, about 94 of those times this 
interval 32% to 40% would capture the true percentage of voters’.
Sam: Okay, so why should you go and sample 100 times? I mean that 
would be a waste of time.
Interviewer: It would be a waste of time? So is what they are saying 
incorrect or just that it’s not feasible?
Sam: ...My view, I would use the formulas, like if you know margin of 
error. I mean I would go for using the margin of error for calculating this. 
Interviewer: Okay. So between Student A ’s response and Student B ’s, you 
would say Student A is a better response?
Sam: Yeah, Student A was the response I gave as one of my answers. At 
first I wasn’t that sure, but definitely I would go with that.

Sam did not like Student B’s interpretation because he thought that sampling 100

times would be a waste of time. Sam’s response to Student B’s interpretation seems to

suggest that he did not have an image of repeated sampling in this context. Yet, it

could also indicate that he believed that Student B was literally suggesting sampling

100 times, rather than a hypothetical image of repeated sampling that supports the

conception of confidence level. It is also interesting that Sam indicated he would stick

with the formula for calculating margin of error. Sam’s initial attempts to recollect a

specific formula for confidence intervals for proportions, followed by his response that

it was best to stick with the formula, indicates that he was not comfortable providing

interpretations for what these interval estimates represent. Rather, he was more

concerned with using a procedure to find an interval estimate.

Joe’s response to Hypothetical Student B’s interpretation suggests that he was 

perhaps familiar with the notion of repeated sampling in relation to confidence 

intervals, but that he did not think it was a constructive way of interpreting confidence
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intervals. In the following exchange, Joe’s utterances suggest that his mental scheme 

fit more closely Student A ’s, with the added caveat that one can never know for sure, 

but can be pretty sure the interval we get around our sample statistic captures the 

population parameter.

Interview 3: Gallup Poll Task:

Joe: ...This [Student B ’s response] is a half way formal answer, if that 
makes sense. That’s how I think of it. This [Student A] I think is, in a 
certain sense, a better answer because it captures the meaning of what’ s 
going on here.
Interviewer: Student A does?
Joe: Yeah. And like the realistic meaning when I read a newspaper ahd I’m 
thinking about what stati sties reported mean. Yeah, because if I ’m looking 
at a poll and I ’m sampling people from the poll, ...I ’m not thinking what 
happened if I took another sample of 100 voters. That is important from a 
statistics and a test taking sense, but in a reading a newspaper and figuring 
out the world sense that’s notthe useful way to think about i t  
Interviewer: Why?
Joe: The useful way to think about it is how many people think a sales tax 
is necessary. What does this statistic mean? 36% think it is, with a margin 
of error of ±4%.
Interviewer: So there is no image of sampling, the sample being repeated 
in this way. It sort of sounds like you’re saying you’re trying to make a 
decision -  do Oregon voters want a sales tax based off this one sample? 
Joe: Right....This [Student A ’s response]captures the meaning and the 
interpretation that’s important contextually for an educated layperson.

What is particularly compelling in this exchange is Joe’s argument that Student 

A ’s response captures the meaning of confidence interval that is important for students 

and/or educated citizens. What seems to be important for Joe when reading a poll is to 

be able to predict, with some level of confidence, how likely the population parameter 

is to be contained within the interval estimate. This last excerpt suggests that Joe’s 

mental schema appears to be more closely aligned with Student A ’s interpretation,
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which is a subjective interpretation of probability. From both a pedagogical and 

statistical perspective, I disagree with Joe’s argument that Student A ’s interpretation 

captures the meaning that is important for an educated citizen because I believe that 

students should have a fundamental understanding of the conceptual process entailed 

in sampling and statistical inference. This point is discussed further in Chapter 6.

TAs’ Responses to Hypothetical Student E ’s Interpretation 

Hypothetical Student E’s interpretation of margin of error provided another 

opportunity to examine TAs’ understandings of confidence intervals. For example, 

Amanda’s frequency interpretation of confidence level became more apparent in her 

discussion of Hypothetical Student E’s interpretation of the Gallup Poll Task. Recall 

that Student E ’s interpretation is an alternative coherent image of confidence interval, 

in which the visualization is on the distribution of sample statistics. From my 

discussions with the TAs, Amanda was the only one who appeared to connect Student 

E ’s interpretation to Student B’s, and to suggest that Student E’s was coherent and 

consistent with Student B’s (the more standard interpretation of confidence interval 

found in introductory texts). The following exchange shows how Amanda used the 

concept of sampling distributions in order to make her decision regarding the validity 

of Student E’s interpretation.

Interview 3: Gallup Poll Task:

Amanda: I ’m trying to visualize. I’ve now drawn a picture of a 
distribution of ^ '/cen tered  at (X... And if I mark that margin of error 
around (I then absolutely what I ’ve just captured is the 95% of Upvalues 
surrounding |i because I’ve counted the appropriate number of standard
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deviations on either side of ji away to capture 95%. So that actually would 
be 1.96 standard deviations around each side of ft and that’s exactly what 
that would do is capture 95% of the ... And if I bring it back to fi 
because I’m more comfortable that way, then this [pointing to the graph  
she ju s t sketched, see Figure 42] would be the sampling distribution of x

Figure 42: Gallup Poll Task -  Amanda’s Sampling Distribution

A m anda’s Response Continued: So sampling for Hjcentered at ft and the 
margin o f error is counting so many standard deviations away from, well 
whatever you decided to center it around. In the confidence interval it’s 
counting standard deviations centered at Hi. But if you think about the 
actual sampling distribution, and then counting out the margin of error oh 
either side, then precisely what you’ve done is captured 95% of the most 
common values. This is the link when you’re talking about fi’s. It’s the link 
between two-tailed test and confidence intervals. So I feel comfortable with 
him saying then that 95% of my sample statistics, so my point estimates, 
would fall into this region surrounding my true parameter.

In the first highlighted portion of the excerpt, Amanda suggests that she needed to 

visualize what this student is saying. She drew a sampling distribution of sample 

means, shown in Figure 42. In the second highlighted portion of the excerpt, Amanda 

explicitly made a connection between the sampling distribution and a 95% confidence 

interval. That is, she was able to display the distribution of sample statistics and 

examine the percentage of those statistics that should fall within a certain distance of 

the population parameter. This is a strong indication that Amanda’s mental scheme of
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confidence intervals entailed sampling distributions and her notion of confidence level 

was with reference to the process by which intervals are produced.

Sandy approached Hypothetical Student E’s interpretation differently than 

Amanda. Sandy was able to show mathematically that Student E’s interpretation was 

logically equivalent to the standard textbook interpretation. Yet, Sandy ultimately 

rejected it as an acceptable interpretation because Student E’s interpretation was not 

how textbooks interpreted margin of error. In addition, Amanda reasoned through 

Student E’s interpretation from the perspective of the sampling distribution whereas 

Sandy, being proficient with symbolic manipulation, reasoned about it from an 

algebraic point of view, shown in the following exchange.

Interview 3: Gallup Poll Task:

Sandy: Yeah. Can I say vice a versa? Can I move this here? [Long pause]. 
So I will get p . Okay, I will just take it by each part.... Hmm, yeah you 
can say that. [See Figure 43 fo r  Sandy’s written work].

Figure 43: Gallup Poll Task -  Sandy’s Work
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Although Sandy concludes that Student E’s statement is equivalent to Student B’s 

interpretation, she does not appear comfortable concluding that Student E ’s 

interpretation is statistically sound.

Interview 3: Gallup Poll Task:

Sandy: Yeah, but normally we want to say that the true one is between the 
statistic ± the error. Because your interest is, so what I’m trying to say to 
my student is that you’re not interested in what’s up with the statistics for 
the sample because you know what is going on. If you want, go collect a 
sample and you know exactly the value of | | ,  a, whatever. Your interest is 
about the population parameter -  that’s what you don’t know. So I believe 
that he just reversed here. 95%, first of all it’s not 95, its 94, and that sure, 
that the population proportion will fall within ± 4 of the sample p . ... Yeah, 
they wanted to say something here.... The sample statistics is betweenp  
+E and p-E, but we don’t interpret like that because we don’t know p  apd 
you know |§ . So I don’t agree with this Jennifer.

Sandy indicated that she would not accept this interpretation because she believes the 

student is confused about the parameter of interest. The first highlighted utterance 

from this excerpt suggests that Sandy expects to see the form typically displayed in a 

statistics text because the primary interest is in the population parameter. Sandy’s 

utterances in this last exchange suggest that because we do not know the population 

parameter, it does not make sense to talk about placing an interval around the 

unknown population parameter. This suggests that perhaps Sandy is not connecting 

the confidence interval to the sampling distribution. Sandy determined that Student 

B ’s and E ’s interpretations were equivalent algebraically, whereas Amanda 

determined the equivalence through the use of the sampling distribution of sample 

statistics; perhaps Sandy’s image of the connections between sampling distributions 

and confidence intervals is not as robust as Amanda’s image in this context.
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Andy, Joe and Sam did not think that Student E’s interpretation was a valid or 

coherent interpretation. For Joe and Sam, Student E’s interpretation deviated from 

Student A ’s interpretation, and they both identified most closely with Student A ’s 

interpretation. In addition, Andy and Sam vehemently opposed any interpretation that 

mentioned repeated sampling. Andy did mention that Student E ’s interpretation was a 

nice, natural way to think about margin of error, but he thought it was an incorrect 

way of thinking about it.

Interview 3: Gallup Poll Task:

Andy: .. .Okay, so they’re assuming it’s 9 5 ,1 think. Fall within ± 4%, now 
you see ± 4% of the unknown population parameter that’s got things a little 
confused because this is 36. It’s the 36 that’s + 4.. ..The unknown thing is 
just that, it’s unknown. It’s not as though we are going to get within ±  4% 
of it. We’re here [pointing to interval around 36, the sample 
proportion].... And this [StudentE ’s statementJ seems like a nice way to 
talk about it. It’s like well we are chasing this thing and we can get within 
±4%  of it, right, with 95% confidence, right. And it’s a good way to think 
about it. It’s just not how it’s defined....It’s easy to hold in your head. I ’m 
chasing my goal. I ’m going to get within this percentage of my goal, great. 
Well, bad luck because that’s not how it’s defined.

Andy suggested that Student E’s interpretation is a natural way of thinking about

confidence intervals because we want to be able to say something about the population

parameter, but he did not believe that this interpretation was coherent. There is some

evidence in this excerpt that suggests that Andy did not have an image of repeated

sampling and the distribution of sample statistics in relation to the concept of

confidence intervals, which could account for why he did not find Student E’s

interpretation coherent. For example, the second and third highlighted utterances from
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the excerpt above do not suggest the imagery of a collection of sample statistics within 

a certain distance of the population parameter. Rather, the imagery in those 

highlighted utterances is suggestive of a single sample statistic from the particular 

sample within four units of the unknown population parameter. In particular, Andy’s 

utterance “we are chasing this thing and we can get to within ± 4% of it, right, with 

95% confidence, right” is suggestive of the latter imagery.

77b'’ Responses to Hypothetical Students 1 & 2

Although I intended the use of Hypothetical Student l ’s response for confidence 

level to be inconsistent to that of Hypothetical Student 2’s response, Amanda did not 

see it that way. To me, Hypothetical Student l ’s response is suggestive of confidence 

in the particular interval obtained in the sample and Hypothetical Student 2’s response 

is suggestive of confidence based in how many of these intervals capture the 

population parameter over the long run. Yet, the following excerpts show that Amanda 

perceived the two interpretations as the same.

Interview 3: Gallup Poll Task -  Response to Student 1:

Amanda: This is okay. If 95% of the point estimates are going to 
fall within the margin of error of the true parameter, then 95% of 
the intervals are going to capture the true parameter.

Interview 3: Gallup Poll -  Response to Student 2:

Amanda: .. .But then this explanation that 95% of the tirrie you get good 
interval estimates that capture the population proportion. I feel like that’s 
saying the same thing the other student said-
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In justifying her approval of Student l ’s response, Amanda appeared to go back to the 

duality expressed between Student B’s and E’s phrasing of margin of error to make a 

case that Student 1 ’s interpretation of confidence level was consistent. Amanda stated 

that 95% of sample statistics fall within a certain distance of the population parameter, 

and that means the same as 95% of the confidence intervals capturing the population 

parameter. Thus, it appears that Amanda read Student l ’s interpretation as saying that 

95% of the confidence intervals capture the population parameter, not that there is a 

95% chance that the population parameter, p, is inside the particular confidence 

interval obtained from the sample.

Like Amanda, Sandy thought that Student l ’s interpretation was acceptable; 

however, she found it incomplete. In the next exchange, Sandy’s image of repeated 

sampling is quite explicit.

Interview 3: Gallup Poll:

Sandy: Yeah, and that’s how we interpreted the confidence interval, you 
know in my class [a statistics class Sandy was enrolled in]. Because the 
more textbook interpretation is like in 95, if you repeat the sampling 
process 95% of the times, you’ll capture in your confidence interval the 
tnie parameter, population parameter. We just had this discussion in the 
stats class I’m taking, and I learned of the repeating the sampling process, 
but our professor said that it is okay to use this, ‘I am 95% confident that’ 
[points to the student’s interpretation o f confidence level that we ju s t  
read].
Interviewer: That the interval you just got captures the population 
proportion?
Sandy: Yeah, yeah. And I believe that maybe this is not very exact. 
Interviewer: So why, what is lacking in this?
Sandy: I am 95% confident, because you miss saying that you have to 
sample many, many times. Yob know.
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Sandy indicated that Student l ’s interpretation was acceptable and was even used 

as a convenient shorthand interpretation by her professor in a statistics course. This 

convenient shorthand interpretation is one reason why it is so difficult to tell from TAs 

utterances whether or not the image of repeated sampling is present. The vocabulary 

of the shorthand interpretation does not make explicit the assumptions of repeated 

sampling, and Sandy recognized that this shorthand interpretation neglects the concept 

of repeated sampling. Sandy indicated that maybe such a discussion already took place 

in the classroom and that perhaps the student was using this abbreviated version, but 

she also suggested that a student might miss this interpretation.

Of the five TAs I interviewed, Andy appeared to agree most closely with 

Hypothetical Student l ’s interpretation of confidence level specifically because the 

interpretation did not make mention of repeated sampling.

Interview 3: Gallup Poll Task:

Andy: So a student says that a 95% confidence level means that you can be 
95% confident that the particular interval found in the survey, that one 
[points to the intervalfrom the Gallup poll\, captures the population 
proportion. Well I agree, but only because it’s almost a truism. You know 
it’s like yes that’s absolutely true that blue equals blue, but I have 
something to tell you about this like you’re not really saying anything 
new.... But at least they ’ve got this other part. They ’ve got that the 
population proportion is in that interval and the other student’s [referring 
to Students A -E  on previous page with Gallup poll\ don’t have that 
concept.

Andy found this student’s statement to be redundant, but that it was better than any of 

the prior student interpretations. In the second highlighted utterance Andy suggested 

that Student 1 “gets” something that the other students did not “get”. What Student 1
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understands, from Andy’s point of view, is that the population proportion is in the 

interval (with some amount of confidence). I believe that overall, Andy’s response to 

this task strongly suggests that he did not have an image of a distribution of sample 

statistics in relation to confidence intervals.

Hypothetical Student 2 ’s interpretation was given to TAs because it expresses an 

interpretation of confidence level in relation to confidence in the sampling process, 

rather than the particular interval captured from the sample. Yet, Amanda was the only 

TA to recognize this phrasing. In addition, she recognized that the choice of wording 

could be construed by others as questioning the survey process, rather than the 

sampling process. The following exchange shows Amanda’s response to Hypothetical 

Student 2 ’s interpretation.

Interview 3: Gallup Poll -  Response to Student 2:

Amanda: [Longpause]. Yes, I think the phrasing 95% confident in the 
estimation process is a little weird.
Interviewer: What do you find weird about that one?
Amanda: The estimation process? That I ’m declaring some aniount of 
confidence in what the way the sample was gathered? [Laughs] Yeah, that 
speaks to me on levels that aren’t really about crunching the numbers, but I 
don’t know almost the integrity of the people who performed the survey or 
something [laughs]. But then this explanation that 95% of the time you get 
good interval estimates that capture die population proportion. I feel like 
that’s saying the same thing the Other student said.

Given that Amanda read into Student l ’s interpretation a tacit assumption of repeated

sampling, she perceived it to be essentially the same interpretation as Student 2

offered and she saw no inconsistencies, as evidenced by her utterances in relation to
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Student 1 (at the beginning of this subsection) and the last two sentences in the 

previous excerpt.

However, Amanda argued that Student 2’s interpretation could be construed as 

questioning the polling procedures. She suggested that the phrasing “confidence in the 

estimation process” made her think that the student was questioning the integrity of 

the people conducting the poll. Although Amanda was able to see past this source of 

confusion based on the rest of Student 2 ’s interpretation, this phrasing appeared to be 

bothersome to the other TAs as well. For example, Andy, Joe, and Sandy were 

confused by Student 2’s response and suggested that the “process” of the survey is not 

under question when interpreting confidence level. The following exchange with Andy 

illustrates the type of confusion that Andy, Joe and Sandy appeared to experience as 

they reasoned through Student 2’s interpretation.

Interview 3: Gallup Poll:

Andy: Let’s see so what’s going on here with this one... .The first thing 
I’m thinking is that the 95% confident in the estimation process. It’s not 
saying that. They could be 100% confident in the process. They could use 
that process every single time. They just they really like it. It says nothing 
about how confident they are in the process. The process works perfectly.
It could be perfect for all we know. It’s just that when you only sample a 
limited number of Oregonians you just don’t get to know the truth. What 
you really wanted was to sample all of them, but that’s just impractical so 
this is the whole point of the confidence interval. You’re going to take a 
small, a smaller set that you could actually manage. You could be wrong. 
And so you’ve got to say how wrong are you likely to be given that, 
assuming that your process is perfect. Because the process has all kinds of 
problems, like the person that goes up and asks is really smelly, you know. 
And it’s like, yeah sure tax me just get out of my face, you know. Or it’s 
totally a spun question. It’s like would you like to be bludgeoned if we 
don’t tax you. I mean the way they spin the question* or the order in which 
it’s asked. The process may have lots of faults, but it’s not at issue.
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I think that Andy’s response to Student 2 ’s interpretation suggests that he read 

“confidence in the estimation process” as questioning the way the survey was 

conducted, rather than the random error associated with collecting repeated samples. 

That is, Andy did not have an image of an idealized sampling experiment that could be 

repeated. Amanda suggested that the wording of Hypothetical Student 2 ’s 

interpretation could be a source of confusion in the problem and it could account for 

why Andy, Joe and Sandy discredited Student 2’s interpretation.

Summary o f TA Reasoning about the Gallup Poll Task

Reflecting back on TAs’ responses as a whole, there appears to be a continuum 

from which these TAs reasoned about the Gallup Poll Task, ranging from explicit and 

robust connections of confidence intervals to the distribution of sample statistics 

(Amanda), to less explicit and robust connections of confidence intervals to the 

distribution of sample statistics (Sandy), and finally to little or no connection to the 

distribution of sample statistics, but rather to confidence in the particular interval 

obtained in the sample (Andy, Joe, and Sam). It is not surprising that TAs would not 

explicitly discuss confidence level or an interpretation that entails repeated sampling 

in their interpretations, as often these ideas are implicitly understood (or assumed to be 

understood) in the conversation. Sandy’s interpretation of confidence interval 

appeared to be at the other end of the spectrum from Amanda’s interpretation in their 

initial responses. For example, based on TAs’ initial utterances to the Gallup Poll
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Task, Sandy, on the one hand, appeared to interpret the confidence interval as an 

interval that would contain p.. Amanda, on the other hand, appeared to interpret

confidence intervals with an associated level of confidence in the sampling process.

Yet, the problem with drawing this conclusion is that often statisticians have a tacit 

conceptualization of confidence level and repeated sampling, and the common 

vocabulary for discussing confidence intervals does not make explicit these tacit 

assumptions.

Using hypothetical student responses that did explicitly mention confidence level 

and repeated sampling forced these TAs to be more explicit about their meanings. In 

particular, Andy’s, Joe’s, and Sam’s responses to the different hypothetical student 

predictions more strongly demonstrated that their conceptual images of confidence 

intervals were different than Amanda’s and Sandy’s. That is, Amanda and Sandy 

appeared to hold a frequency interpretation, whereas Andy, Joe, and Sam appeared to 

hold a subjective interpretation. Andy and Sam appeared generally surprised by the 

idea of repeated sampling in relation to the concept of confidence intervals. This is a 

rather surprising finding given the number of graduate statistics courses each of these 

TAs had and that they had each taught the first term of introductory statistics. In 

addition, Joe did not think that the concept of repeated sampling was an important idea 

to take away from the topic of confidence intervals, even if such an underlying image 

is statistically correct.
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5.4 Conclusions

Taken together, the information about TAs’ thinking gleaned from the interview 

conversations around the Unusual Sample and Gallup Poll Tasks suggest that there is a 

wide spectrum of ways in which these TAs conceptualize sampling and confidence 

interval problems. It is surprising that some of these TAs did not appear to see a 

connection between: (1) probability and sampling; (2) long-term relative frequencies 

of events and sample size; or, (3) repeated sampling and statistical inference. At least 

two TAs in this study (there may have been more in the survey, but there is not 

enough evidence to tell) reasoned using the Outcome Approach on the Unusual 

Sample Task. Three TAs in this study did not see a connection between repeated 

sampling and statistical inference. Frequency versus subjective approaches to 

probability lies at the heart of these differing interpretations. A frequency 

interpretation of probability relies on the long-term relative frequency of an event in 

order to assign probabilities to uncertain events. A subjective interpretation of 

probability relies on the degree of belief that a particular situation will occur once and 

only once to assign probabilities to uncertain events. These two different views of the 

underlying notion of probability result in different approaches to probability problems 

and how probability relates to ideas of sampling and statistical inference.

Further, one TA made pedagogical statements about how students should interpret 

confidence intervals that is in direct conflict with what the statistics education 

community actually advocates. That is, Joe suggested that confidence in the particular 

interval obtained in the sample was the important idea students needed to take away.

253



This is in direct conflict with statistics educators’ call for developing an understanding 

of the connection between a distribution of sample statistics and statistical inference 

claims (Heid et al., 2005; Liu, 2004; Saldanha & Thompson, 2003). The pedagogical 

implications of TAs’ content knowledge of sampling and statistical inference is 

discussed in Chapter 6.

Another compelling finding in this chapter is that each context posed a new 

situation to these TAs -  in some cases a frequency view appeared dominant and in 

other cases a subjective view appeared dominant. For example, on the one hand, 

Amanda seemed to employ an Outcome Approach in reasoning about the Unusual 

Sample Task. That is, she appeared intent on answering the question of which sample 

would be unusual for that particular instance, rather than viewing that particular 

sample as one case of a larger set of possible samples. On the other hand, Amanda 

appeared more inclined toward a frequency approach as she reasoned through the 

Gallup Poll Task. She specifically discussed confidence level in relation to the concept 

of repeated sampling and what could be expected to happen in 95 out of 100 samples. 

Sandy also appeared more inclined toward an Outcome Approach as she reasoned 

through the Unusual Sample Task, and more inclined toward a repeated sampling 

perspective as she worked through the Gallup Poll Task. For Andy, the inclinations 

were reversed. In the Unusual Sample Task he appeared to take a frequency approach, 

raising the issue of the Law of Large Numbers and discussing the process by which 

larger samples tend to resemble the population parameter. Yet, in the Gallup Poll
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Task, Andy did not find the student responses that entailed an image of repeated 

sampling to be coherent.

The fact that different types of reasoning were invoked by different contexts begs 

the question, why? Why would certain contexts lead a TA to reason from an image of 

repeated sampling, and other contexts lead a TA to reason about the outcome of the 

particular event? Of course, there are numerous variables at play here. For example, 

two possible variables that would influence TAs’ reasoning are: (1) TAs’ prior 

background and experiences working with these types of problems or more standard 

problems from introductory statistics curriculum (or higher-level statistics); and, (2) 

how TAs made sense of these prior experiences. I conjecture that TAs would be more 

likely to make a connection between repeated sampling and the distribution of sample 

statistics in relation to the Gallup Poll Task because this image is explicitly mentioned 

in introductory statistics texts, whereas using a distribution of sample statistics to 

reason about the Unusual Sample Task is less likely to be part of undergraduate or 

graduate coursework or textbook materials. In addition, I conjecture that most of these 

TAs may not be explicitly aware of how they are interpreting a probability statement 

or relating it to sampling and statistical inference problems, because often the focus in 

coursework is on calculations not on interpretations. Also, certain probability 

assumptions may be so implicit in instruction that students (including graduate 

students) are not picking up on them.

Understanding how TAs (and other graduate students) might reason in different 

contexts could be useful for professors as they think about how to support the kind of
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reasoning desired of graduate students that has come to be accepted by the larger 

statistics community. In addition, knowing how TAs reason in the different contexts 

presented by these tasks sheds light on their statistical knowledge for teaching. Is that 

knowledge developed enough so as to support the type and quality of undergraduate 

learning for which statistics educators are calling? In the next chapter (Chapter 6) I 

discuss the issue of TAs’ statistical knowledge for teaching. In particular, I use the 

information gleaned from this chapter to discuss how different ways in which TAs 

reasoned through these tasks could either support or hinder undergraduate statistics 

education.
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CHAPTER 6

TAS’ SUBJECT MATTER KNOWLEDGE AND KNOWLEDGE OF CONTENT 

AND STUDENTS: IMPLICATIONS FOR TEACHING STATISTICS

The two previous chapters addressed the first goal of my study -  an investigation 

of TAs’ statistical content knowledge. The primary purpose of this chapter is to 

address the second goal of my study -  an investigation of TAs’ statistical knowledge 

for teaching. To be clear, TAs’ statistical knowledge for teaching is deeply intertwined 

with TAs’ statistical content knowledge. They are addressed in separate chapters for 

ease of presentation; however, I draw heavily on the findings of the two previous 

chapters in my discussion of TAs’ statistical knowledge for teaching. In Chapter 4 , 1 

discussed the difficulties TAs appeared to experience in their attempts to connect a 

theoretical model to experimental data, and to make decisions using multiple sampling 

distributions created from an experiment. In Chapter 5 ,1 discussed the different ways 

in which TAs interpreted sampling and statistical inference tasks. In this chapter, I 

argue that TAs’ difficulties making decisions about or with experimental data, and 

their different interpretations of sampling and statistical inference tasks, have profound 

consequences on their statistical knowledge for teaching. In addition, I argue that in 

order to better support student learning, TAs should also have knowledge of students’ 

statistical development and common conceptual hurdles. That is to say, in this chapter
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I shift my analytical lens by focusing on some of the implications of the findings of 

Chapters 4 and 5 on TAs’ statistical knowledge for teaching.

This chapter is presented in three main sections. In section 6 .1 ,1 review and make 

more explicit the framework for statistical knowledge for teaching that was developed 

in Chapter 2. This framework constitutes an end product of this study in that it 

emerged as a result of my data analysis; yet this framework is supported by existing 

mathematics and statistics education research literature and the melding of research on 

mathematical knowledge for teaching with the constructs of statistical literacy, 

thinking and reasoning. In section 6 .2 ,1 use my framework of statistical knowledge 

for teaching to highlight elements of TAs’ statistical knowledge for teaching that need 

further development. In section 6 .3 ,1 address TAs’ beliefs about teaching statistics 

and how students learn statistics. Although investigating TAs’ beliefs was not part of 

my primary research goals, TAs provided information on their beliefs about teaching 

and learning during the interviews. Beliefs and knowledge are constructs that are 

intimately connected, making it impossible to ignore the issue of TAs’ beliefs within 

this study. Thus, this chapter concludes by discussing the ways in which TAs’ content 

knowledge and their own learning experiences likely influence their beliefs about how 

to teach statistics and how students learn statistics.

6.1 A Framework for TAs’ Statistical Knowledge for Teaching

One of the primary goals of this study is to investigate TAs’ statistical knowledge 

for teaching. Recall, from my review of the literature (Chapter 2), the work of Ball and 

her colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003; Ball, Lubienski &
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Mewbora, 2001; Ball & McDiarmid, 1990; Hill, Rowan & Ball, 2005) on 

mathematical knowledge for teaching, the work of Eisenhart et al. (1993) on teachers’ 

procedural and conceptual knowledge, and the constructs of statistical literacy (Gal, 

2004; Watson & Callingham, 2003) and statistical thinking (Pfannkuch & Wild,

2004). Melding these multiple constructs I lay a foundation for what statistical 

knowledge for teaching sampling and statistical inference topics may look like. After 

presenting this model in section 6.1.1,1 discuss how it can be further specified in 

relation to the survey and interview tasks used in this study. I argue that TAs need 

substantial content knowledge, and knowledge of students’ ways of thinking and 

common developmental paths in order to develop a robust understanding of statistics 

in their students.

6.1.1 Components of Statistical Knowledge for Teaching

The purpose of this section is to make a contribution to statistics education 

research by putting forth a framework that characterizes some critical components of 

statistical knowledge for teaching. It is certainly beyond the scope of this study to 

tackle a complete characterization of the necessary content knowledge for teaching 

introductory statistics. Yet, this study begins the development of a characterization of 

the statistical knowledge necessary for teaching by examining the key aspects of 

content knowledge and knowledge o f content and students needed for teaching 

sampling and statistical inference topics.

259



Recall from Chapter 2 that Ball and her colleagues (Ball, Hill & Bass, 2005; Ball 

& Bass, 2003; Ball, Lubienski & Mewborn, 2001; Ball & McDiarmid, 1990; Hill, 

Rowan & Ball, 2005) frame the construct of mathematical knowledge for teaching into 

four components: (1) common content knowledge, (2) specialized content knowledge, 

(3) knowledge of content and students, and (4) knowledge of content and teaching24, 

Also recall that Eisenhart et al. use the constructs of procedural and conceptual 

knowledge to describe the types and qualities of teacher knowledge. These two 

frameworks serve as a useful starting point for an examination of statistical knowledge 

for teaching, yet they require refinement and revision in order to be useful for 

describing the type and quality of knowledge that statistics TAs (and teachers) should 

have. In the Subsections that follow, I propose three components necessary for strong 

statistical knowledge for teaching -  statistical literacy, statistical thinking, and 

knowledge o f content and students. It is important to keep in mind that these three 

components are intimately intertwined, and it is not a useful exercise to neatly parse 

out TAs’ knowledge into each distinct component. Rather these three constructs are 

useful for framing a discussion about what statistical knowledge for teaching looks 

like, developing methods for assessing TAs’ statistical knowledge for teaching, and 

developing mentoring opportunities for TAs that enable them to improve their 

statistical knowledge for teaching.

Statistical Literacy as Common Content Knowledge

24 Ball’s fourth component, knowledge of content and teaching, is beyond the scope of this study.
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Ball (2005) defines common content knowledge as “the mathematical knowledge 

and skill expected of any well-educated adult” (p. 13). Ball and her colleagues (Ball, 

Hill & Bass, 2005; Ball & Bass, 2003; Ball, Lubienski & Mewborn, 2001; Ball & 

McDiarmid, 1990; Hill, Rowan & Ball, 2005) research interests are in elementary 

school mathematics, so for them common content knowledge includes the ability to 

add, subtract, multiply, and divide real numbers. In the statistics education research 

community (Gal, 2003 & 2004; Ben-Zvi & Garfield, 2004; Watson & Callingham, 

2003), the construct of statistical literacy serves as an illustration of common content 

knowledge. Recall from my review of the literature (Chapter 2) that statistical literacy 

is defined as the ability to be an educated consumer of statistics (Gal, 2004). That is, 

every educated adult in our society should be able to read, organize, interpret and 

critically evaluate statistical information presented by the media, internet sites, 

newspapers, and magazines (Gal, 2003 & 2004; Ben-Zvi & Garfield, 2004; Watson & 

Moritz, 2000; Watson & Callingham, 2003). In order to make sense of statistical 

information found in different media sources, the construct of statistical literacy 

includes conceptual and procedural knowledge of measures of center, conceptual 

knowledge of variability in statistical sampling, estimation skills, the ability to 

coordinate multiple attributes of a distribution, conceptual knowledge of a distribution 

of sample statistics, and the idea of repeated sampling. Watson and Moritz suggested a 

three-tiered hierarchy for statistical literacy: understanding basic statistical 

terminology, understanding terminology when it appears in social contexts, and the 

ability to question statistical claims in these contexts (p. 11). Watson and Moritz argue
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that by the time a student graduates from high school he/she should be able to reason 

at the third level.

Statistical Thinking as Specialized Content Knowledge

Ball et al. (2005) define specialized content knowledge as “the mathematical 

knowledge and skill needed by teachers in their work and beyond that expected of any 

well-educated adult” (p. 22). Statistics TAs’ (and teachers’) knowledge should extend 

beyond statistical literacy skills if they are to teach statistics well. Statistics TAs need 

to be what Gal (2004) refers to as producers and consumers of statistics. That is, in 

addition to statistical literacy skills, statistics TAs need to know the formal procedures 

and tools of probability, sampling and statistical inference in order to engage in their 

own research and to teach. Additional content knowledge is also important as a means 

for understanding the “big ideas” and connections between and among statistical 

concepts, and as a means for articulating statistical explanations in the classroom. The 

“big ideas” can be described by Pfannkuch and Wild’s (2004) construct of statistical 

thinking, which broadly describes the “statistical enquiry cycle, ranging from problem 

formulation to the communication of conclusions” (p.41). Shaughnessy (2007) 

suggests that statistical thinking can be thought of as normative thinking; that is the 

type of statistical thinking used by statisticians and accepted by the statistics 

community. Statistical thinking requires sufficiently deep knowledge of the 

procedures and concepts of a typical introductory statistics curriculum, including basic 

probability, sampling, and statistical inference and the relationships between these
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concepts. In addition, statistical thinking requires knowledge of how to pose a well- 

specified research question or problem, design an experiment, collect data, analyze 

data and draw conclusions from the analysis. The omnipresence of variation must be 

kept in mind throughout this process, including possible sources of variability, and 

ways to control and/or quantify variability (Pfannkuch & Wild, 2004).

Knowledge o f  Content and Students 

Ball and her colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003) define the 

construct of knowledge o f content and students. They suggest that this knowledge 

includes knowledge of common student misconceptions, identifying student errors and 

possible reasons for those errors, and knowing how students are likely to approach 

certain mathematical tasks. This component of statistical knowledge for teaching 

consists of TAs’ (teachers’) knowledge of students’ statistical development within 

particular statistical domains. In my literature review (Chapter 2), I identified and 

compiled a list of common student misconceptions and stumbling blocks to statistical 

thinking25 (see Figure 44).

25 Recall that the difficulties highlighted in bold are particularly relevant to this study because of their 
prevalence in students, high school teachers, and the TAs in this study.
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Figure 44: Common Difficulties in Understanding Sampling Concepts

Common Difficulties and Misconceptions in Students' Reasoning and 
Development of Sampling Concepts

■ Difficulty with the concept of random sample
o Difficulty distinguishing between the colloquial versus 

statistical use of the term random and the term sample 
o Difficulty recognizing sources of bias in sampling

■ Difficulty with the added level of abstraction required for 
understanding sampling distributions

o Difficulty with the difference between a distribution of a 
sample and the distribution of a collection of sample 
statistics

o Difficulty with the distinction between empirical and 
theoretical sampling distributions (a sophisticated concept 
-  difficulty documented in teachers (Heid et al., 2005))

■ Difficulty attending to multiple aspects of a distribution
o Overly focused on modes or other measures of center 
o Overly focused on variability or individual data points
o Focus on shape -  Difficulty making distinctions between

the normal and other symmetric shaped distributions
* Difficulty finding a balance between sample representativeness 

and sample variability
o Difficulty understanding the role of sample size in 

sampling variability
■ Do not expect a difference fat variability for

different size samples or believe that large 
samples have more variability 

o Difficulty relating a long-term relative frequency view 
of probability to sampling and statistical inference 
problems

a Difficulty understanding the role of sampling in the creation 
confidence intervals

o Difficulty conceptualizing confidence level and margin 
of error -  maintaining an image of repeating the 
sampling process

■ Difficulty with the concept of the Central Limit Theorem
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I argue that TAs (and teachers) should have knowledge of the conceptual 

difficulties that students are likely to experience and the erroneous reasoning they may 

be likely to apply in order to provide instruction that can support student learning. I 

argue that if instruction employs student errors or common misconceptions as a place 

to begin statistical conversations in the classroom in such a way as to make explicit the 

subtle conceptual underpinnings of statistical topics, then students will be more likely 

to develop statistical literacy and thinking skills.

Interplay o f  the Components o f  Statistical Knowledge fo r  Teaching 

The Venn diagram, shown in Figure 45, provides a visual representation of my 

model for statistical knowledge for teaching. This model illustrates the key 

components of this knowledge, which I teased apart in the preceding paragraphs, yet 

expresses the overlap between these constructs. I mentioned places of overlap in 

Chapter 2 when I first discussed the constructs of statistical literacy and statistical 

thinking. For example, statistical thinking implies statistical literacy skills because it 

requires the ability to be both a consumer and a producer of statistics. Thus, statistical 

thinking is contained inside statistical literacy. In addition, certain aspects related to 

knowledge o f  content and students overlap with statistical literacy and statistical 

thinking. For instance, knowledge of alternative solution strategies is necessary for the 

working statistician who needs to see a problem from multiple vantage points or 

communicate findings to clients who do not have a statistics background.
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Figure 45: Model of Statistical Knowledge for Teaching 

Model for Statistical Knowledge for Teaching

Statistical Literacy Skills 
Common Content Knowledge

a) Understand common statistical terms
b) Read and make sense of statistics in the media
c) Ability to be a critical consumer of statistics
d) Informal statistical inference skills

S tatistica l T hinking
Specialized Content Knowledge

Deep and well connected 
knowledge of introductory 
statistics material -  
descriptive & inferential 
Consumer and producer of 
statistics — Design 
experiments, collect data, 
analyze data, draw

Knowledge of Content and 
Students

a )  Alternative solution strategies
b ) Common student reasoning

c )  Common conceptual hurdles

I argue that it is also useful to think about these constructs as part of a connected 

spiral. The evolution of TAs’ knowledge in one component propels their knowledge in
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the other components. For instance, as TAs gain a deeper understanding of the 

introductory statistics curriculum, they are likely to begin to see connections between 

different statistical ideas, which may, in turn, enhance their ability to make sense of 

statistical information presented in the media or in students’ alternative solution 

strategies. This example could flow in the opposite direction as well; that is, sorting 

through students’ questions or solution strategies may force a TA to think more deeply 

about a particular statistical topic, enabling the development of the TA’s statistical 

content knowledge.

6.1.2 Applying my Framework of Statistical Knowledge for Teaching to 

the Interview Tasks

In this section I apply my framework to the interview tasks. In particular, I 

elaborate on the statistical knowledge necessary for teaching the statistical concepts 

present in the Prediction, Real/Fake, and Mystery Mixture Tasks. I follow with an 

elaboration of this framework for the Unusual Sample and Gallup Poll Tasks. 

Specifically, this section is presented in four parts. The first part examines statistical 

content knowledge -  statistical literacy and statistical thinking skills -  necessary for 

teaching sampling ideas related to the Prediction, Real/Fake, and Mystery Mixture 

Tasks. The second section examines knowledge o f content and students in relation to 

sampling topics. The third section examines the statistical content knowledge 

necessary for teaching concepts of sample variability and the relationship between 

sampling and statistical inference as conceived of in the Unusual Sample and Gallup
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Poll Tasks. The fourth section discusses knowledge of content and students in relation 

to sampling and statistical inference ideas.

Statistical Content Knowledge fo r  Teaching: Prediction, Real!Fake, and Mystery

Mixture Tasks

In Chapter 4 ,1 provided a thorough conceptual analysis for the Prediction, 

Real/Fake, and Mystery Mixture Tasks. These analyses have the added advantage of 

serving as an aid to my framework for statistical knowledge for teaching in a sampling 

context. That is, the conceptual analyses help to specify the different components of 

statistical content knowledge necessary for teaching these tasks. Salient features that 

arose in my conceptual analysis for these three tasks are: (1) reasoning with measures 

of center, spread, or shape; (2) reasoning distributionally -  informal or formal; and, (3) 

reasoning about experimental versus theoretical sampling distributions, particularly 

with reference to variability. I discussed each of these components in detail throughout 

Chapter 4. To remind the reader, I raise again a few of the key ideas.

■ Reasoning with measures of center 

o Mode, median

o Mean -  Proportional reasoning, mean as balance point (center of

n

o Averaging the averages 

■ Reasoning with measures of spread 

o Range, Interquartile range
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o Standard deviation, variance

■ Reasoning with measures of shape

o Symmetric and skewed shapes -  location of measures of center for 

different shaped distributions

■ Informal Distributional Reasoning

o Combining one or more of center, shape, and spread to reason about 

a distribution

■ Formal Distributional Reasoning

o Formal probability structures and assumptions for applying 

different probability models

■ Experimental versus Theoretical Sampling Distributions

o Consideration of variability within and among sampling 

distributions

■ Sense of bounded variability or balance between variability 

and representativeness

■ Role of sample size in sampling variability

■ Image of repeatability of the sampling process

Indeed, knowledge of these features is important when reasoning throughout statistics, 

not just for these tasks. Knowledge of the informal features described above represent 

important components of statistical literacy because they entail the ability to (1) reason 

proportionally, (2) make sense of graphical information, (3) compare and contrast

269



graphs informally (by center, shape and spread arguments), and (4) understand the role 

that variability plays in experimental data. Each of these components is necessary for 

becoming an informed consumer of statistics. Knowledge of both the formal and 

informal features represent important components of statistical thinking, because taken 

together such knowledge structures provide a connection between the conceptual and 

procedural entailments, and the ‘big ideas’ of introductory statistics curriculum.

It is also important to note that the Prediction, Real/Fake and Mystery Mixture 

Tasks are somewhat open-ended tasks, to which there are no “right” or “wrong” 

answers; however, for each of these tasks there exist solutions that are certainly more 

likely than others. In the Real/Fake and Mystery Mixture Tasks, the experiment was 

performed via computer simulation (except in the case of the two fake graphs, which 

were manufactured by the researchers; Shaughnessy et al., 2004a&b). Thus, these 

tasks provided TAs an opportunity to investigate and make comparisons among 

experimental sampling distributions and to draw appropriate conclusions from those 

investigations. This focus on ‘messy’ experimental data and how to draw conclusions 

from such data are also key elements in the development of statistical literacy and 

statistical thinking because in real-world applications there can be numerous 

difficulties with the sampling process that influence how a statistician draws 

conclusions and/or how the lay public should interpret findings presented in the media.
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TAs’ Knowledge o f  Content and Students: Prediction, Real!Fake, and Mystery

Mixture Tasks

Prior research (Shaughnessy et al., 2004a&b, 2005) suggests that middle and 

secondary students may reason about the Prediction, Real/Fake and Mystery Mixture 

Tasks by focusing on one attribute of the distribution (mode, shape, or spread), or 

reasoning additively -  justifying their predictions on the fact that there are more red 

candies in the jar. In addition, some students become overly focused on measures of 

center and others become overly focused on variability. Other statistics educators have 

documented this tendency for students to struggle between the idea of sample 

representativeness and sample variability as well (Rubin et al., 1991). Figure 46, is a 

representation of the conceptual framework developed by Shaughnessy et al.26.

26 Recall that this research study was discussed in detail in Chapter 2
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Figure 46: Conceptual Framework for Reasoning about Experimental Sampling

Distributions

Conceptual Framework of Shaughnessy et al. (2004,2005) 

Other (0)

Shi

dditive (1)

Transitional Stage 
Mode (2) Variation (2)

Median/Mean (3)Median/Mean (3) y r  
Proportional

(Explicit connection between the sample and population %)

Transitional Stage 
Mode (2)

Distributional (4)

Past research investigating students’ thinking and reasoning about these tasks 

provide a foundation from which to examine TAs’ knowledge of content and students. 

The conceptual framework developed by Shaughnessy et al. (2004a&b, 2005) 

suggests that TAs (and other teachers of statistics) need to be aware that students may 

not have proportional reasoning skills or be able to apply them in this context. 

Students may use additive reasoning, or focus on a single attribute of the distribution 

such as shape, center (mode) or spread to make their predictions. TAs need to have 

knowledge of student difficulties and the types of reasoning students are likely to 

employ in order to provide instruction that can support student learning, using student
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errors or common misconceptions as a place to begin statistical conversations in the 

classroom.

The research findings described above influenced the interview tasks for TAs. 

Recall that after TAs provided their own predictions in the Prediction Task, they were 

given the hypothetical predictions of two students and asked to comment on the 

reasonableness of those predictions (see Table 22).

Table 22

Number of Red Candies in 
Handfuls of 10 

(Mixture: 750 red & 250 yellow)

Hypothetical 
Student l ’s 
Predictions

Hypothetical 
Student 2 ’s 
Predictions

0 red candies 0 1
1 red candies 0 1
2 red candies 0 1
3 red candies 0 1
4 red candies 0 2
5 red candies 5 3
6 red candies 9 4
7 red candies 15 17
8 red candies 18 18
9 red candies 3 1
10 red candies 0 1
TOTAL 50 50

Both hypothetical student predictions were designed to have reasonable and 

unreasonable qualities, relative to what normative models predict. Student l ’s 

prediction was designed to be more reasonable than Student 2 ’s prediction. However, 

Student l ’s prediction was designed to be slightly too focused on the center, 

containing a substantial decline in outcomes from the left and right of the center at 

seven and eight red candies. Also, Student l ’s prediction was designed with a more 

narrow range than might be expected. Student 2 ’s prediction was designed to be much
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too variable, containing an outcome in every possible location. In addition, Student 2’s 

prediction was also too focused on the center at seven and eight red candies. The 

outcomes drop substantially on either side of the seven and eight red candy spots. I use 

the language “design” in reference to the hypothetical student responses, yet these 

responses came from actual student work and represented typical student responses 

(Shaughnessy, personal communication 2006).

In the Real/Fake Task, Shaughnessy et al. (2004a&b, 2005) noticed that many of 

the students relied on the shape, modes, or the most extreme values in order to justify 

whether or not a graph was ‘real’ or ‘fake’. Just as I observed with TAs, many of the 

students in Shaughnessy’s study either expected the shape of the experimental graphs 

to be ideal ( ‘smooth’) or they did not. In addition, the students either expected to have 

fewer or more outcomes with 9 and 10 red candies, or fewer or more outcomes with 2, 

3, and 4 red candies. In the Mystery Mixture Task, Shaughnessy et al. observed that: 

(1) students experienced difficulty reasoning about multiple attributes of the 

distribution simultaneously; and, (2) many students, especially in the middle grades, 

tended to use modal averages.

Statistical Content Knowledge fo r  Teaching: The Unusual Sample and Gallup Poll

Tasks

In Chapter 5 ,1 provided a thorough conceptual analysis for the Unusual Sample 

and Gallup Poll Tasks. The conceptual analyses helps to specify the different 

components of statistical content knowledge necessary for teaching these tasks. Salient
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features that arose in my conceptual analysis for these two tasks are: (1) the image of 

repeating the sampling process; and, (2) interpreting sampling and statistical inference 

concepts with a long-term relative frequency perspective of probability. I discussed 

each of these components in detail throughout Chapter 5. To remind the reader, I raise 

again a few of the key ideas.

■ Connecting the Law of Large Numbers to sampling contexts

o The role of sample size in sampling variability

■ The hypothetical repeating of the sampling process

o Image of a distribution of sampling statistics 

o Knowledge that there is random, chance error in the sampling 

process and that this can be quantified with a long-term relative 

frequency view of probability

These key ideas are important for both an informal and formal understanding of 

the conceptual entailments of statistical inference. TAs should have knowledge of the 

conceptual underpinnings of each task, as well as how to apply formal theorems and 

techniques, such as the Law of Large Numbers and confidence interval formulas. It is 

also important to note that the Unusual Sample and Gallup Poll Tasks provided TAs 

an opportunity to make sense of statistical information in a contextual setting. In 

particular, the Gallup Poll Task represents the type of statistical information that adults 

in our society would encounter in different media sources. Thus, this task is also 

significant from a statistical literacy perspective.
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TAs’ Knowledge o f Content and Students: The Unusual Sample and Gallup Poll

Tasks

In Chapter 2 ,1 discussed a number of research studies that indicate students’ 

proclivities toward interpreting sampling and statistical inference problems, like the 

Unusual Sample and Gallup Poll Tasks, as pertaining to the particular sample, rather 

than interpreting such problems from the image of a distribution of sample statistics 

(Kahneman &Tversky, 1971,1972; Konold, 1989; Watson, 2004). Specifically, these 

past research studies indicate that students (K-12 and college) have a tendency to 

believe that large and small samples have the same amount of variability. That is, 

students fail to understand the role of sample size in sampling variability. In addition, 

students have trouble understanding the added level of abstraction in the concept of 

sampling distributions and fail to apply the image of a collection of sample statistics to 

sampling and statistical inference problems (Saldanha & Thompson, 2003).

Past research investigating K-12 and college students’ thinking and reasoning 

about these tasks provide a foundation from which to examine TAs’ knowledge of 

content and students. The research suggests that TAs (and other teachers of statistics) 

need to be aware that students: (1) may not have the necessary scaffolding in place to 

understand sampling distributions on a conceptual level; (2) may not apply an image 

of sampling distributions to sampling and statistical inference problems; and, (3) may 

not understand the relationship between sample size and sample variability. Such 

information about student reasoning could enable TAs to develop instruction that can 

support student learning of these particularly challenging concepts.
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The statistics education research on content and students discussed here influenced 

the interview tasks and questions. After TAs provided their own response to the 

Unusual Sample Task, I asked them to describe any difficulties students might have 

with that task. For the Gallup Poll Task, I provided a number of hypothetical student 

responses and asked TAs to comment on the reasonableness of these responses. Some 

of the hypothetical responses were valid interpretations of confidence interval, but 

others where incoherent or suggested the confidence was in the particular interval 

from the sample and not in the sampling process (see Chapter 5 for the specific 

hypothetical student interpretations).

Summary

This section addressed key features of content knowledge -  statistical literacy and 

statistical thinking -  and knowledge o f content and students. These features are 

important for TAs’ statistical knowledge for teaching, and have been identified by 

other statistics education researchers as important for learners of statistics. For 

instance, Pfannkuch (2005) argues that the following components need to be 

developed in order for students to develop informal and formal understandings of 

inference:

1. Reasoning with measures of center

2. Distributional reasoning

3. Sampling reasoning
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4. Drawing an acceptable conclusion based on informal inference (p.

275)

Pfannkuch also mentions that these concepts be developed using real data and a 

constant consideration of variation. Students must be able to reason with “messy” data 

sets and develop an understanding of bounded variability -  that balance between 

sample representativeness and sample variability.

Pfannkuch (2005) suggests that by grade 10, students should have well-developed 

informal inference skills. That is, the ability to describe, interpret, and compare 

variability in data sets, rather than determine in a probabilistic sense how likely an 

event is to occur (p. 279). Pfannkuch’s argument is important because it suggests that 

these informal inference concepts are necessary for developing students’ statistical 

literacy skills and creating educated and informed consumers of statistics. With such 

instruction, students who desire to develop their statistical knowledge toward a more 

formal level of statistical inquiry are likely to have the underlying imagery and 

conceptual underpinnings in place to support the transition to formal statistical 

inference techniques. At this level, students leam the formal probability distributions 

and how to model different phenomenon using formal probability structures. Students 

should develop a deeper conceptualization that “random variation is described 

mathematically by probability” (Pfannkuch, 2005, p. 279), in the sense of repeated 

sampling. I believe that Pfannkuch’s comment can be interpreted via understanding 

the balance between sample variability and representativeness, or the concept of
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bounded variability discussed by Rubin et al. (1991) and Saldanha and Thompson 

(2003), respectively. That is, students need to have a sense for an expected variability 

among sample outcomes and among experimental sampling distributions. Students 

should learn more formalized concepts and procedures for discussing variability, such 

as standard deviation and variance. Students should learn procedures for finding 

confidence intervals and conducting hypothesis tests, and be able to interpret ideas of 

confidence level and margin of error.

Pfannkuch’s (2005) pedagogical model for developing informal and formal 

knowledge of statistical inference in high school students has much in common with 

my model for necessary content knowledge for teaching introductory statistics. If 

these knowledge components set the stage for the development of statistical literacy 

skills and the pathway toward more formal understandings of statistical inference in 

students, it seems reasonable that these are exactly the type of knowledge structures 

that should already be well developed by TAs.

In sum, I argue that TAs should have knowledge of the salient features mentioned 

for the Prediction, Real/Fake, Mystery Mixture, Unusual Sample, and Gallup Poll 

Tasks, be able to apply that knowledge in novel settings, and draw appropriate 

conclusions. Such knowledge structures would certainly be an indication that TAs had 

well-developed statistical literacy and statistical thinking skills. In addition, TAs 

should be able to articulate this knowledge base verbally and to know something about 

students’ development in this area. Taken together, such a skill set would entail 

necessary content knowledge for teaching these types of sampling concepts.

279



6.2 An Analysis of TAs’ Statistical Knowledge for Teaching

Now that I have provided a framework for the statistical knowledge necessary for 

teaching, I use this framework to analyze TAs’ statistical knowledge for teaching. In 

sections 6.2.1 and 6 .2 .2 ,1 return to the themes presented in Chapters 4 and 5. These 

chapters discussed a number of key statistical ideas with which the TAs in this study 

had difficulty and they implied areas in which TAs had limited statistical literacy and 

statistical thinking skills. I discuss how TAs’ difficulties with this content translate 

into limited statistical knowledge for teaching. In section 6.2.3,1 discuss TAs’ 

knowledge of content and students.

6.2.1 TAs’ Statistical Content Knowledge: Prediction, Real/Fake and 

Mystery Mixture Tasks

Chapter 4 revealed that TAs’ content knowledge, as evidenced by their responses 

to the Prediction, Real/Fake and Mystery Mixture Tasks, was not as robust as my 

framework for necessary statistical content knowledge for teaching recommends. 

Recall from Chapter 4 that TAs appeared to experience tension when making 

decisions based on data collected from an experiment. In particular, some key 

difficulties expressed by the TAs in this study include:

■ Difficulty thinking about variability in the experimental data in a 

statistically coherent manner

o Difficulty with notion of bounded variability -  balance between 

variability and representativeness
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■ Overly focused on variability in the frequencies of the 

graphs

■ Difficulty using a probability function to identify classes of 

graphs that are less likely or more likely to occur as a result 

of the experiment.

■ Difficulty attending to multiple attributes of the distribution simultaneously 

or reasoning with multiple graphs

■ Difficulty estimating the mean of a graphical distribution.

I argue that the key difficulties TAs experienced with these tasks is troubling from 

a pedagogical point of view. These TAs experienced some of the common difficulties 

researchers (Rubin et al., 1991; Shaughnessy et al. 2004a&b, 2005; Watson & Moritz, 

2000) have identified in students (see Figure 44 in Section 6.1 for compilation of 

student difficulties). That TAs experienced these difficulties suggests that their 

statistical literacy and statistical thinking skills are not deeply developed. Of course, 

statistical thinking could be described as a lifetime goal; yet, some of the difficulties 

these TAs experienced are troubling given their level of experience in graduate 

statistics courses. Thus, TAs’ difficulties with these tasks are problematic from a 

graduate statistics education point of view because their graduate coursework has not 

been successful at fine-tuning TAs’ statistical content knowledge. It is also 

problematic from an undergraduate statistics education point of view because these 

TAs are teaching statistics to undergraduate students. I argue that if TAs’ experience
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the very problems that statistics educators are attempting to correct in students, then 

TAs are not well positioned to provide quality instruction in these areas. This 

conjecture is supported by research on teacher knowledge; for example, Eisenhart et 

al. (1993) and Even (1993) each made similar arguments based on their research of K- 

12 teachers.

To illustrate my position more clearly, I revisit the key difficulties TAs’ 

experienced and discuss more specifically how these difficulties are problematic from 

a pedagogical perspective.

ReallFake Task: Focus on Shape

Recall that both on the survey, and during the interview many TAs focused on the 

shapes of the graphs as a means for determining which graphs were ‘real’ and which 

were ‘fake’. More in-depth questioning during the interviews revealed that TAs 

appeared focused on the variability in frequencies, in the sense of uneven frequencies 

as one reads the graph from left to right. In addition, the TAs I interviewed expressed 

their struggle with making conclusions about experimental data. For instance, recall 

Amanda’s struggle as she attempted to make her real/fake justifications.

Interview 1: Real/Fake Task:

Amanda: ...I ’m having a battle in my head about theoretically what I 
expect to happen, which would look like Graph 3, and reasonably ip 
practice what I have seen happen.

TAs experienced tension that they could not always resolve between their 

expectations of the graphs of experimental data and their knowledge of the theoretical

282



model. The source of this tension appeared to be TAs’ difficulty mitigating their 

expectations for variability versus representativeness in experimental data. With the 

exception of Joe, the TAs I interviewed did not expect an exact match between the 

graphs of experimental data and the theoretical model. Yet, they did not seem to have 

a strong statistical sense of how the graphs of experimental data should vary. These 

TAs focused on variability in frequencies, rather than statistical variability. This focus 

translates into TAs’ attention on the single attribute of shape in the data. In particular, 

these TAs focused on the extent to which the shape of the experimental sampling 

distributions was smooth or uneven as a basis for making their real/fake 

identifications. I argue that this is problematic for teaching informal notions of 

variability. Given a data set, these TAs are likely able to compute the variance and 

standard deviation; yet, how can they provide a strong conceptual understanding to 

their students if they cannot discuss statistical variability in this context?

The work of Eisenhart et al. (1993) provides evidence of a teacher that becomes 

confused by the conceptual underpinnings of multiplication of decimals. As a result of 

her confusion, the teacher indicates that a visual approach to the problem would 

confuse students so she indicates that she would use a procedural approach when 

teaching decimal multiplication. Their finding suggests that when teachers do not 

understand the conceptual underpinnings of a topic they are more likely to teach 

procedures for finding correct solutions and avoid discussions about the concept or the 

reasons for a particular procedure. Thus, it seems reasonable to assume that if TAs do 

not have a strong conceptual understanding of variability or how to use their
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knowledge of variability to reason about experimental data sets, then they are unlikely 

to implement instruction for developing this knowledge in students.

As I mentioned, Joe indicated that he believed Graph 3 was the most likely of the 

four graphs because he expected the graphs of experimental sampling distributions to 

match closely to the theoretical model.

Interview 1: Real/Fake Task:

Joe: Yeah, yeah. If we assume the computer is a perfect random generator 
I would expect the most likely output to match this distribution that I have 
in my head.

Joe’s conception that the experimental distribution should match that closely to the 

theoretical model for 50 trials of 10 is problematic because it suggests that perhaps Joe 

tends toward a belief that a collection of data from an experiment is overly 

representative of the population distribution. Recall that this perception has been 

documented in the literature (Rubin et al., 1991) in middle and secondary students. It 

seems likely that if Joe shares a common statistical misconception with middle and 

secondary students, that he will have difficulty developing instructional activities to 

combat this misconception.

Finally, the times that TAs did attend to other attributes of the distribution, they 

did not seem to coordinate the attributes, and their point of focus tended to be 

problematic. For example, Amanda did, at times, focus on variability in terms of the 

spread of the distribution; however, she appeared to expect more outcomes of two, 

three and four red candies than is likely to occur. Recall the following exchanges
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where Amanda discussed her expectations for pulling out two, three and four red

candies versus nine and ten red candies.

Interview 1: Prediction Task:

Interviewer: And what about 3 red candies in your handful or 10 red 
candies?
Amanda: I have a harder time imagining 10 red candies.
Interviewer: Okay. So you’re thinking it’s more likely I ’m going to get 3 
red candies?
Amanda: Umm, just in a visualizing sense. Yeah.

Interview 1: Real/Fake Task:

Interviewer: Okay, so why are Graphs 1 and 4 more likely to happen for 
you than the other two graphs?
Amanda: I think for the same reasons I felt like two and three were the 
fakes. Graph 2 doesn’t have a lot of variation occurring.... We are 
incredibly heavy lumped in the 9 and 10 reds.... But in Graph 2, nothing is 
going on below 4, which makes me uncoipfortable.
Interviewer: Why?
Amanda: Because I think it shodld, something... at least one observation 
below 4  should occur... I’ve got nothing here [in 2%  3 ’s and 4 ’s] and a 
lot going on at 9 and 10. And I would feel more comfortable. Watch this. 
This is just going to be awful. If I removed some off 9 and 10 and moved 
them over here [to the 2 ,3  and 4  red candy slots] so that it looked more 
like Graph 3. The theoretical one [laughs] that I think is implausible....
1 ’m having a battle in my head about theoretically what I expect to happen, 
which would look like Graph 3, and reasonably in practice what I have 
seen happen.

These excerpts (as well as the other evidence provided in Chapter 4) suggest that 

Amanda’s visualization of the distribution may not map well to the actual theoretical 

distribution, or that she does not have a strong conception of bounded variability, or 

both. Amanda appears to expect more outcomes of two, three, and four red candies 

than outcomes of nine or ten red candies. This discrepancy could certainly pose a 

problem in the classroom as Amanda attempts to draw upon her conceptual
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knowledge/image of the situation to create learning experiences for her students. It 

would be difficult for Amanda to engage students in a didactically rich discussion 

around the real/fake graphs given that Amanda is tom between her image of the 

theoretical model, the actual theoretical model, and what she expects to see happen in 

an experimental situation. In addition, she does not appear comfortable using her 

statistical knowledge to resolve her tension. Again, there is support for my conjecture 

that limitations in TAs’ statistical content knowledge translate to limitations in TAs’ 

abilities to teach these concepts in the work of Eisenhart et al. (1993) and Even (1993).

Mystery Mixture Task: Coordinating Multiple Aspects o f  a Distribution and  

Reasoning with Multiple Experimental Distributions

Like the Real/Fake Task, to successfully solve the Mystery Mixture Task requires 

a deeper level of knowledge entailing both procedural and conceptual knowledge. The 

Mystery Mixture Task requires the ability to inspect experimental data and make 

inferences about the population parameter. No particular procedure or algorithm can 

be applied to determine the exact population parameter. Instead one must rely on their 

knowledge of distribution, and big picture ideas like: (1) measures of center, shape, 

and spread; and, (2) informal and/or formal probability distribution arguments. Recall 

that Amanda, Joe, and Sandy experienced difficulty using the four experimental 

sampling distributions in the Mystery Mixture Task to provide a point estimate (or 

interval estimate) for the proportion of red candies in the population. Amanda and Joe 

used modal averages to justify their predictions, and Sandy reasoned primarily by
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shape, but only used one of the four graphs. These results are similar to the 

observations by Shaughnessy et al. (2004b, 2005) in the middle and secondary 

students they studied.

Amanda, Joe, and Sandy’s reasoning on the Mystery Mixture Task suggests that 

they had limited conceptual and procedural understanding in reasoning with multiple 

experimental sampling distributions, which hindered their ability to solve this task 

well. For example, Amanda and Joe did not use the median and/or mean to estimate 

the population parameter; rather, they focused on the modes of each graph and found 

the modal average. Whereas Joe never mentioned any other attributes of the 

distributions in forming his estimate, the next exchange shows that Amanda at least 

attempted to look at other aspects of the distribution.

Interview 1: Mystery Mixture Task:

Amanda: I did momentarily make a conscious effort at examining the 
distributions across the other numbers. I can tell you right now that my 
brain froze up and I didn’t know how to process that information so my 
brain went back to the concentration around the 2 and the 3. So I really did 
make an effort for a minute to consider s, 6, and 7 [red candies spots] on 
these graphs, but it didn’t feel. God I’ve never had to pick apart how I think 
about these things. But I instantly had a feeling of uncertainty about how to 
get any information about that, so I immediately went back to the mode. 
Interviewer: So kind of on a gut level you could go back to the modes and 
be able to say something.
Amanda: Right, right.

Amanda abandoned her attempt to use multiple measures of center or other attributes

of the distribution. The previous excerpt suggests that she felt uncomfortable about

how to get useful statistical information from the distribution. While there is nothing

inherently wrong with taking the modal average for each of the four graphs to get an
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estimate for the number of red candies in the jar, it is only one way of estimating that 

population parameter. Further, the median and/or mean provide better approximations 

to the population parameter.

Joe and Amanda certainly have enough knowledge to find their own solution to 

this problem and to provide a justification for their prediction. However, Joe and 

Amanda do not appear to have a deep conceptual knowledge necessary for solving this 

task. They were not able to use more sophisticated measures of center or coordinate 

aspects of the distribution to yield a better point estimate in this context. For example, 

neither seemed to recognize mean as a balance point and use that knowledge to 

estimate the means for each graph visually. In fact, recall that when Amanda was 

pushed to estimate the mean of each graph, she struggled. Amanda used the shape of 

the sampling distributions to discuss the location of the different measures of center, 

but did not seem to know how to use that information in helping her make her 

prediction. The difficulty Joe and Amanda experienced applying their knowledge of 

distributions, and, in particular, measures of center in a novel sampling situation are 

likely to hinder their abilities to use the task effectively in instruction. For example, 

with their limited knowledge, how would they engage their students in a discussion 

about applying past knowledge of measures of center to a new situation? There is 

support for this conjecture in the research of Eisenhart et al. (1993). Eisenhart et al. 

noted that the teacher, Ms. Daniels, they studied rarely taught for conceptual 

knowledge, despite her interest in doing so, and this was largely due to her own 

limited conceptual understanding of the material.
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Recall that Sandy experienced difficulty reconciling how to use all four

experimental sampling distributions for estimating the population parameter.

Interview 1: Mystery Mixture Task:

Sandy: So now I have no clue. So now it seems that you get it skewed to 
the right. So before I had 750 red. Okay, I had 750 red. I got it skewed to 
the left and 250 yellow. I’m just thinking that to see it like that I should 
have red smaller than yellow.
•  •  •

Interviewer: So would it be the same mix, but the reverse? 750 yellow and 
250 red?
Sandy: No, I’m not sure about that I cannot. I can see that for example 
here [Sandy points to Graph 4] it peaks at 2 and 3, If I reverse it, I knew 
that before it peaked at 7 and 8 [in the reallfake task]. Just by looking at 
this graph [Sandy points to Graph 4 again]. So it might be, it might be the 
same if I’m looking just here you know [Sandy points to Graph 4\.

Sandy did not have sufficient conceptual knowledge of distribution to apply or transfer

that knowledge to a new situation. Other than her observation of the modes on Graph

4, she did not make an attempt to compute any measure of center for each of the

graphs or average a measure of center for the four graphs. She also appeared paralyzed

by having more sample information than she was used to and did not know how to

process all that information during the interview. Sandy expressed her dislike for this

problem because it did not have a set way for her to proceed.

Interview 1: Mystery Mixture Task:

Sandy: ...So how I approach problems is give me the information. I will 
apply the formulas. I will give you the answer. And I’m confident of doing 
that.

I believe that at the center of Sandy’s dislike for the Mystery Mixture Task is that she 

is used to attacking problems on a procedural level and she feels uncomfortable when
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a problem does not fit within in a recognized format. Her limited conceptual 

knowledge of distribution, and her inability to apply her procedural knowledge for 

finding the median and mean of a data set in a novel setting is problematic for her own 

personal development and for developing deeper levels of knowledge in students. 

Specifically, Sandy would be taxed if she were to center a lesson around the Mystery 

Mixture Task because she would not have the ability to

■ Solve this task confidently herself

■ Recognize that more samples provide more information

■ Use students’ different ways of approaching the problem as a basis for 

class discussion

■ Recognize acceptable alternative solution strategies

Summary

The TAs in this study experienced difficulty with these tasks because reasoning 

about experimental data using multiple attributes of the distribution and maintaining a 

statistical sense of bounded variability was problematic for them. This is obviously 

problematic for their statistical literacy and thinking, yet it is also troubling from a 

pedagogical perspective. Even’s (1993) research suggests that teachers “pedagogical 

decisions -  the questions they ask, activities they design, students’ suggestions they 

follow -  are based, in part, on their subject-matter knowledge” (p. 113). Thus, I also 

argue that the limitations in TAs’ content knowledge as described in Chapters 4  and 5 

(reviewed briefly again here) translate to insufficient knowledge for: (1) designing
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quality statistical instruction; and, (2) making judgments about the reasonableness of 

student predictions/decisions. Specifically, I claim that the following set of questions 

would be appropriate questions to raise when thinking about how to solve the 

Prediction, Real/Fake and Mystery Mixture Tasks, and could serve as pedagogical 

tools for developing students’ informal and formal statistical reasoning skills:

■ How much variability can be expected from handful to handful and/or trial 

to trial?

■ How many outcomes can be expected in the left and right ends of the 

distribution?

■ What would an unusual number of low or high outcomes be?

■ What interval contains 80-90% of the data?

■ What shape can be expected for the experimental distributions?

■ What would an unusual shape look like?

■ What would constitute an unusual center?

* How do the mode, median and mean relate to each other in a skewed- 

left/skewed-right distribution?

■ How can the means for each graph be visually estimated?

■ How unusual is the dip at 3 red candies on Graph 3 in the Mystery Mixture 

Task?
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These questions address the key features of statistical literacy and thinking mentioned 

at the outset of this chapter. Yet, these were not questions that the TAs in this study 

were sufficiently prepared to address for themselves or their students.

6.2.2 TAs’ Statistical Content Knowledge: The Unusual Sample and 

Gallup Poll Tasks

Chapter 5 revealed that TAs’ content knowledge, as evidenced by their responses 

to the Unusual Sample and Gallup Poll Tasks, was not as robust as my framework for 

necessary statistical content knowledge for teaching recommends. Recall in Chapter 5, 

I discussed the following key struggles among TA participants:

■ Interpreting sampling and statistical inference problems from an image 

of repeated sampling rather than from an image of the particular sample 

collected

o Relating probability from a long term relative frequency 

perspective to sampling and statistical inference problems 

o Image of a distribution of sample statistics 

o Random, chance error in the sampling process

The sources of TAs’ difficulties with the Unusual Sample and Gallup Poll Tasks have 

been observed in secondary and tertiary students, as well as high school teachers 

(Kahneman & Tversky, 1971; Konold, 1989; Liu, 2004; Rubin et al., 1991; Saldanha 

& Thompson, 2003). Again, I contend that if TAs experience the same conceptual 

difficulties as beginning statistics students, then they are not well positioned to address
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these developmental stumbling blocks in instruction. This contention is supported in 

the research literature, for example, Ball, Hill, and Bass (2005) and Eisenhart et al. 

(1993). I turn now to a more detailed discussion of the key difficulties TAs 

experienced during their work on the Unusual Sample and Gallup Poll Tasks and the 

ways in which this is problematic in instruction.

The Unusual Sample Task: Probability & the Image o f  Repeated Sampling  

Recall that Amanda and Sandy both answered the Unusual Sample Task by 

suggesting that it was not possible to tell which sample is likely to be more unusual 

because the ratio of boy to girls in both school is the same. In Chapter 5 ,1 argued that 

the way Amanda and Sandy approached the task suggested that it was probable they 

were answering the question which sample will be more unusual, and because they 

could not tell for sure, they marked both samples are equally likely to be the unusual 

sample. This, in and of itself, is problematic because it suggests, at least on an 

unconscious level, that Amanda and Sandy are interpreting probability in this context 

as pertaining to the particular sample obtained and not to an image of repeated 

sampling based on long-term relative frequencies. If Amanda and Sandy experience 

this difficulty then they will be unable to recognize this problematic thinking in their 

students. In addition, they will likely be ineffective at addressing the conceptual 

underpinning related to this task; that is, the role that sample size plays in sampling 

variability. If Amanda and Sandy do not see the importance of the distribution of 

sample statistics in relation to sampling tasks, then they are unlikely to highlight this
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key feature of statistical inquiry during instruction. This is a fundamental concept, 

which is necessary for understanding variability in sampling distributions from 

different size samples, and in connecting sample size to statistical inference. Thus, it is 

important in the development of statistical literacy and thinking.

Sandy’s content knowledge limitations are further reaching than Amanda’s. 

Whereas Amanda recognized a relationship between the Unusual Sample Task and a 

Binomial probability distribution, Sandy did not see such a connection. Recall from 

Chapter 5 the following exchange, where Sandy argued that this task did not relate to 

probability.

Interview 1: Unusual Sample Task:

Interviewer: Some of the TAs taking this survey answered exactly how 
you did, but some answered that the small sample from the country 
school...
Sandy: No I see no reason for that.
Interviewer: Well, one TA used the Law of Large Numbers for his reason. 
Sandy: The Law of Large Numbers.... I don’t really see that. I don’t see 
the relationship because this problem is about collecting a sample, you 
know....Yes. Yes, you have 50/50 boys/girls, but it’s not a problem about 
u m m ... .It’s not a similar problem. I don’t think. Not from my point of 
view. You just go and you sample some people randomly, randomly.... 
Because like here [referring to the coin problem] you are doing the same 
thing over and over again. While here [referring to the sampling problem 
of boys and girls] you go and take a sample, a random sample. You’re not 
supposed to go again and go again.

Sandy’s knowledge appeared compartmentalized and she did not see a connection

between sampling and probability. Even (1993) noticed this same

“compartmentalization phenomenon” in her work studying teachers’ conceptions of

functions. Even suggested that inconsistencies in teachers’ conceptions of function
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might be explained by conflicting schemes in their cognitive structures, which are 

stimulated by different contexts. In Sandy’s case, she did not demonstrate flexibility to 

conceptualize her sample of 20 children as 20 trials and her sample of 50 children as 

50 trials, where each trial could result in a boy or girl. Again, this is problematic from 

a pedagogical point of view because Sandy would not recognize the application of the 

Law of Large Numbers as a valid approach to the problem. In addition, she would lack 

the ability to develop those connections in her students.

The Gallup Poll Task: Probability & the Image o f  Repeated Sampling 

The Gallup Poll Task requires an understanding of the procedures for finding a 

confidence interval, margin of error and confidence level, and the conceptual 

underpinnings of how to interpret the information the interval provides and what the 

confidence level means. The procedural aspects of this task did not appear problematic 

for these TAs. Amanda, Sandy, Joe, and Andy were all comfortable calculating the 

confidence interval using the point estimate and margin of error. Joe and Andy were 

unfamiliar with the procedure for calculating the confidence level for the poll, yet they 

seemed confident that if they were given the formula they would be able to “figure it 

out”. It was the conceptual underpinnings for how to interpret confidence level that 

appeared problematic for Andy and Joe, not the procedures for calculating confidence 

intervals. The work of Eisenhart et al. (1993) suggests that if TAs do not have a strong 

conceptual understanding of confidence level, then it is likely to translate into a TAs’ 

inability to develop students’ conceptual understanding of confidence intervals.
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Recall that in Chapter 5 I discussed how Andy’s initial responses to the Gallup 

Poll Task suggested that he interpreted the confidence level as being related to the 

particular interval calculated from the sample statistic. Also recall that Andy appeared 

rather surprised by the hypothetical student responses that suggested an image of 

repeated sampling. The following exchange provides strong evidence that Andy did 

not view confidence level as being related to an image of the sampling distribution and 

long-term relative frequency interpretation of probability.

Interview 3: Gallup Poll Task:

Interviewer: Okay, another student said we don’t know if the interval 32% 
to 40% contains the true percentage of voters that believe an income tax is 
necessary, but if we sample 100 times about 94% of those times the 
interval would capture the true percentage of voters.
Andy: Wait a second. [Longpause]. Yes, it’s true that we don’t know that 
this interval contains the true percentage. If we are going to sample 100 
times, 94% of those will be in this interval. [Andy reads the second part o f  
the student’s response aloud]... .Yeah that’s not what this confidence 
interval says. It doesn’t say a thing about re-sampling. It doesn’t imply re
sampling. It talks about the margin of error and I’m going to stick with my 
definition [laughs], that it’s not related to the re-sampling or the 
hypothetical re-sampling of it.
•  •  •

Interviewer: Could there also be an implied idea of repeated sampling? 
Andy: There could be, but I ’ve never understood it to be that way. Maybe 
it is and I’ve always just misinterpreted it.

Like Andy, Joe also did not suggest an interpretation of confidence level consistent 

with an image of repeating the sampling process and the collection of a distribution of 

sample statistics.

In addition, as Joe negotiated through the hypothetical student responses, he 

presented an argument for why a view of confidence level consistent with a subjective
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interpretation made more pedagogical sense. That is, Joe argued that it was important 

for students to interpret the confidence level as being related to how likely the 

particular interval obtained from the sample was to capture the population parameter.

Interview 3: Gallup Poll Task:

Joe: .. .This [Student A] I think is, in a certain sense, a better answef 
because it captures the meaning of what’s going on here.
Interviewer: Student A does?
Joe: Yeah. And like the realistic meaning when I read a newspaper and I’m 
thinking about what statistics reported m ean...The useful way to think 
about it is how many people think a sales tax is necessary. What does this 
statistic mean? 36% think it is, with a margin of error of ±4%.
...This [Student A^s response] captures the meaning and the interpretation 
that’s important contextually for an educated layperson.

Joe and Andy did not appear to interpret confidence intervals in a manner 

consistent with a long-term relative frequency perspective. That is, they did not appear 

to have an image of the distribution of sample statistics in relation to the level of 

confidence. Their image of the confidence as pertaining to the particular sample is 

problematic from a pedagogical point of view because they are likely to: (1) provide 

their students with a subjective interpretation of confidence; (2) neglect the importance 

of a distribution of sample statistics and the image of repeated sampling in their 

presentations of the material; (3) neglect to make connections between probability 

with a long-term relative frequency perspective and statistical inference; and, (4) 

dismiss alternative student interpretations based on repeated sampling.
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Summary

On the one hand, TAs should know that the interval they calculate does not 

necessarily capture the true population parameter. That is, there is some level of error 

associated with the confidence interval, and the level of error is with respect to the 

random error associated with the sampling process, not with respect to the particular 

interval computed. TAs should have knowledge that the confidence level relates to 

confidence in the sampling process, meaning if the experiment were repeated over and 

over again (a large number of times) the confidence level is the percentage of intervals 

that capture the population parameter. For statistics educators (Chance, delMas, & 

Garfield, 2004; Konold, 1989; Liu, 2004; Pfannkuch, 2005; Rubin et al., 1991; 

Saldanha & Thompson, 2003) this conceptual knowledge of confidence intervals is 

fundamental for statistical literacy skills and serves as a basis for understanding more 

formal statistical inference procedures. The importance of this repeated sampling 

perspective in the statistics education community translates to an important didactic 

theme to develop in instruction. It seems logical that these TAs were not in a position 

to support this key knowledge component in students given that it did not appear to be 

an explicit part of their mental schemas. Other researchers have argued that limited 

subject matter knowledge translates to limited mathematical knowledge for teaching 

(Ball, Hill, & Bass, 2005; Eisenhart et al, 1993; Even, 1993). In addition, TAs’ 

reasoning appeared to be situational and depended on their own understanding of a
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particular context. TAs situation dependent reasoning has been observed by Even 

(1993) in her work with secondary teachers. Thus, TAs did not appear to be cognizant 

of how they were interpreting these ideas, or even that this debate in how to interpret 

probabilities existed in the statistics community.

On the other hand, it is not surprising that the image of a distribution of sample 

statistics was not explicitly (or even implicitly) part of TAs’ mental schema because 

these ideas (1) are not trivial, (2) may not have been explicit in their own 

undergraduate and/or graduate statistics education, and (3) tend to be 

underemphasized in introductory statistics texts. There is certainly evidence for my 

second point from Sandy. Sandy mentioned numerous times that at the time of our 

interviews she was enrolled in a graduate statistics course (for non-statistics majors27) 

that essentially presented the introductory statistics curriculum in a condensed manner 

and from a more sophisticated mathematical perspective28. The following exchange 

shows one instance of how this class impacted Sandy’s conceptual knowledge of 

confidence intervals.

Interview 3: Gallup Poll:

Sandy: .. .Because the more textbook interpretation is like in 95, if you 
repeat the sampling process 95% of the times, you’ll capture in ydur 
confidence interval the true parameter, population parameter. We just had 
this discussion in the stats class I ’m taking, and I learned of the repeating 
the sampling process, but our professor said that it is okay to use this, ‘I ant 
f)5% confident.that’ [points to the student’s interpretation o f  confidence 
level that we ju s t read].

27 The course was a graduate statistics course for engineers and computer science majors.
28 Essentially, the course was calculus based.
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Interviewer: That the interval you just got captures the population 
proportion?
Sandy: Yeah, yeah. And I believe that maybe this is not very exact.

In this exchange Sandy articulates the difference between having confidence in the 

particular interval versus confidence in the sampling process. Sandy was in her last 

term of a graduate program in statistics and had over 11 graduate statistics courses, yet 

it was not until this statistics course for non-majors that she encountered the idea of 

repeated sampling in a way that began to connect for her.

In addition, it is worth noting that in the previous exchange Sandy also indicated 

that the professor communicated either interpretation was “okay”. The fact that 

professors often use, as shorthand, an expression that conveys confidence in the 

particular interval is problematic both for undergraduate and graduate education 

because while a statistics professor may have an implicit image of repeated sampling 

in his/her mental scheme, it is likely to go unnoticed by students. The same 

pedagogical problem resides in undergraduate statistics texts, which often ignore or 

downplay the idea of repeated sampling in their discussions of confidence intervals. 

Take for instance Larson and Faber’s (2000) Elementary Statistics: Picturing the 

World and More, which fails to mention the image of repeated sampling in the 

interpretation of confidence level. I suggest that the implicit image of repeated 

sampling in relation to confidence intervals makes it difficult for both graduate and 

undergraduate students to develop the explicit imagery of repeated sampling that 

statistics educators advocate so strongly for.
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6.2.3 Knowledge of Content and Students

Using the construct of knowledge o f content and students, developed by Ball and 

her colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003; Ball, Lubienski & 

Mewbom, 2001; Ball & McDiarmid, 1990; Hill, Rowan & Ball, 2005), as the third 

component in my framework, and the compilation of common difficulties and 

misconceptions students (and teachers) experience, which I synthesized in Chapter 2 

(see Figure 44, Section 6.1), I examine TAs’ knowledge of content and students. I 

begin with the Prediction, Real/Fake, and Mystery Mixture Tasks and then follow with 

the Unusual Sample and Gallup Poll Tasks. I conclude with some methodological 

comments about particular tasks that seemed better suited to eliciting information from 

TAs about their knowledge of content and students.

Analysis o f  TAs’ Knowledge o f Content and Students: Prediction, ReallFake, and

Mystery Mixture Tasks

Table 23 provides an overview of the common student difficulties to which the 

TAs in this study attended. Notice that TAs only demonstrated knowledge of students’ 

tendencies to be overly focused on either measures of center or measures of 

variability, although this is not to say that they did not express other types of 

pedagogical knowledge.
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Table 23: Knowledge of Content and Students -  Prediction, Real/Fake, &

Mystery Mixture Tasks

Common Developmental Hurdles for 
Students in Prediction, Real/Fake, and 
Mystery Mixture Tasks

Evidence of TAs’ Knowledge of 
Content and Students

Amanda Sandy Joe Andy

Difficulty attending to multiple attributes of the 
distribution
(1) Overly focused on measures of center -  

especially modes
(2) Overly focused on measures of variability
(3) Focus primarily on shape

✓ (1) ✓ (2) ✓(2) ✓(2)

Difficulty with the balance between 
representativeness and variability & recognizing the 
role of sample size in variability of samples and 
sampling distributions
Difficulty recognizing the distinction between a 
sample of observations and a sample of statistics

TAs’ knowledge o f content and students, in regards to students’ tendencies to be 

overly focused on either measures of center or variability, was expressed during their 

responses to the hypothetical student predictions from the Prediction Task. I did not 

find evidence of TAs’ knowledge of content and students during our conversations 

about the Real/Fake and Mystery Mixture Tasks. I suggest two reasons for why TAs 

did not demonstrate knowledge of content and students for these two tasks. First, it is 

possible that the task design did not elicit responses from TAs that could provide 

evidence of their knowledge. In the Prediction Task, TAs were provided with 

hypothetical student responses and asked to discuss those specific responses, whereas 

in the Real/Fake and Mystery Mixture Tasks TAs were asked to discuss the types of
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difficulties students would be likely to experience with the task. I discuss this 

methodological consideration in more detail in the section summary. The second 

possible reason that TAs did not express knowledge of content and students for these 

two tasks is that TAs experienced some of the same common difficulties as students 

studying statistics. I turn now to an analysis of the knowledge of content and students 

for which TAs expressed some evidence.

Amanda was the only TA out of five interviewed who explicitly recognized that 

Hypothetical Student l ’s predictions seemed overly representative at the expense of 

sample variability (see Appendix for Hypothetical Student l ’s prediction).

Interview 1: Prediction Task

Interviewer: For Student 1, you marked their prediction as reasonable.
Can you explain why?
Amanda: Okay, so this indicates 0 out of the 50 will result in 0 through 4 
red candies and then 0 for 10’s. It’s too extreme for me. It’s all so heavily 
lumped in the 7 and 8 ’s, and right around the 7 and 8’s. So it’s too 
concentrated around 7 and 8. We have nothing going on for 0 through 4 
1red candies] and 10 [red candies] either that’s why I don’t think it’s a 
great prediction. The reason I think it’s reasonable is because we are 
talking about an introductory stats student and clearly this student is able to 
identify we’re going to have heavy draws, that a lot of our 50 draws are 
going to result in 7 or 8 red candies. Then you even see a little downward 
dispersion from 7 to 8, not a great dispersion, but. I would be perfectly 
happy if an introductory stats student was able to put that much of the 
puzzle together.

The previous excerpt reveals that Amanda’s criteria for a reasonable prediction from 

introductory statistics students were that they recognize the appropriate location of the 

center, place most of the outcomes near the center, and have some amount of 

dispersion around the center. Yet, Amanda maintained that Student l ’s prediction
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needed improvement in the distribution around the center because his/her prediction 

was too narrowly focused at the center -  “heavily lumped in the 7 and 8’s and right 

around the 7 and 8’s”.

Amanda also noticed that Hypothetical Student 2 ’s prediction was overly 

concentrated around the center, but again she said that she would consider it a 

reasonable prediction.

Interview 1: Prediction Task

Amanda: Well again, we have what I consider a very nice concentration 
around 7 and 8, which makes me happy that they were able to get that 
much out of the problem. Then it bothers me a little bit that it drops 
dramatically. We have 18 counts for 8 red candies, and 1 count for 9 red 
candies. And I’m not very comfortable with that. .. It just so happens that I 
don’t feel comfortable with the drop they’ve created from the 8 red candies 
to the 9 red candies.... I feel like the concentration at 7 and 8 red candies 
being 17 and 18 is top high.

On the one hand, Amanda noticed students’ tendencies to focus too much on measures

of center. I observed Amanda’s consideration of this tendency again during the third

interview when she discussed her knowledge of content and students with reference to

statistical inference concepts (this discussion is postponed until the end of this

section). On the other hand, Amanda did not appear to be bothered by the extreme

variability in Hypothetical Student 2’s prediction. I asked her directly about the wide

range of Student 2 ’s prediction when it did not come up naturally in her utterances.

Interview 1: Prediction Task

Interviewer: Okay, is there anything, because you talked before about how 
unlikely it is for you to get 0 or 1 red, and I know they only have 1 here, 
but is there anything troubling to you about them having that 1 there?
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Amanda: No. No, that doesn’t trouble me at all. Because I debated 0 or 1 
red candies, so it doesn’t bother me at all that they chose to put 1 in 
there.... And if you can develop the notion, even just vaguely, that I ’m 
going to have most of my, it’s going to be much more likely that its going 
to 7 and 8 then it is to get 0 or 10. So I want most o f  my draws to go into 7 
and 8. And I want the least of them to go into 0 and 10.... Then 0 and 10, 
say these are going to be the least common or the most extreme, and then 
filling in the gaps between what you expect to happen a lot and what you 
expect to happen a little.

Again, there is evidence in this excerpt that Amanda did not see a problem with 

outcomes in the 0 or 1 red candies spot because she struggled with these placements as 

well. Amanda’s utterances about visualizing the situation with the majority of 

outcomes at 7 and 8 red candies and the fewest outcomes at 0 and 10 red candies 

provides further evidence supporting my earlier conjecture that Amanda’s concept 

image is of a distribution with a wider range and more outcomes below five red 

candies than the actual distribution for this context. Given that Amanda stmggled with 

her own visualization of the Prediction Task context versus the outcomes predicted by 

the binomial probability distribution, it is not surprising that Amanda did not 

recognize this as problematic in student work.

The three previous excerpts with Amanda not only provide evidence of her 

knowledge of content and students with respect to some students’ tendencies to 

become overly focused on centers, but it also provides evidence of her thinking about 

introductory statistics students’ developmental maturity. For example, at the end of the 

first excerpt, Amanda suggests that Student l ’s prediction is reasonable and that she 

“would be perfectly happy if an introductory stats student was able to put that much of 

the puzzle together”. In the second excerpt, Amanda again suggests that Student 2 ’s
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prediction is reasonable and says that it “makes me happy that they were able to get 

that much out of the problem”. These statements provide some insight into Amanda’s 

ideas about what introductory statistics students are capable of doing. These ideas 

influence how she assesses student work. There is little evidence to suggest that 

Amanda’s notions about students’ capabilities are grounded in any educational theory, 

at least she did not demonstrate that knowledge during the interview conversations. 

Rather, Amanda’s judgments about students’ abilities are likely based on her own 

beliefs, perhaps grounded in her own learning experiences, and/or her observations of 

students during her classroom teaching experiences29.

Joe, Sandy, and Andy also discussed the variability of Student 2 ’s prediction. Joe 

and Sandy pointed out the unreasonableness of placing a “ 1” in each of the values 0 

through 3 red candies. Joe appeared primarily focused on the extreme left value of 0 

red candies. The next exchange shows that Joe recognized how unlikely this student’s 

prediction was and why a student might place at least one value in each outcome.

Interview 1: Prediction Task

Joe: The chance of getting 0 [red] is, in a hancjful of 10 jf J do 50 grabs, of 
getting that once, is phenomenally low.
Interviewer: Okay, so this student has an unrealistic idea?
Joe: Yeah, and because there is something in each block, I look at that and 
I mem. What I think is that the student said there has to be one 
everywhere, and I know we’re going to get a peak right here, so I think 
that’s good. Bhi just b ed^se  we have a tail doesn’t mean we are expecting 
to see anything in it. I saw some bad mathematics there.

29 Beliefs are discussed in more detail in Section 6.3 of this chapter.
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The last two highlighted utterances provide some evidence that Joe had knowledge 

that students might be tempted to place an outcome in every spot just because the 

possibility for such an outcome existed, regardless of how unlikely it was. This 

suggests that perhaps Joe could, at least in this situation, view the problem from the 

perspective of a novice student.

Sandy recognized that Hypothetical Student 2 ’s predictions containing at least one 

outcome in every place were unlikely, especially in the left end of the distribution.

Interview 1: Prediction Task

Sandy: This one is totally, totally off. I look here, so the probability of 
getting in a draw 0 ,1 ,2  or 3 [red candies] is  very small. So I believe it is 
very hard, even if you have the jar of candies near you and you want to 
conduct this experiment. I believe it’s very hard to get this situation that 
this student came up with.
Interviewer: So what do you think the student is thinking? Why would 
they do this?
Sandy: My only answer is that in fact they could have no cliie what is 
goipg on. You know.

Sandy last utterance in this excerpt could suggest that she does not place much value 

on knowledge students may bring with them to class -  thinking that students are 

“clueless”, or it could suggest that she did not have any sense for why a student might 

have this difficulty. The latter interpretation is not surprising in the sense that Sandy 

did not do this experiment with her class and she is not studying developments in 

statistics education for her degree program. However, it is unfortunate from a 

statistical knowledge for teaching perspective because this particular stumbling block 

has been well documented in the research literature (Reading & Shaughnessy, 2004; 

Rubin et al., 1991), and combating this difficulty is relevant to statistical literacy
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efforts. Specifically, aiming to increase people’s awareness of how they think about 

the probabilities of highly unlikely events; for example, their chances for winning the 

lottery.

Andy’s response to Hypothetical Student 2 ’s prediction is distinctly different than 

the other TAs I interviewed in the sense that the context of the classroom setting 

appeared to be essential in order for him to place judgment on students’ work. In the 

next exchange, Andy initially responded that Student 2 ’s prediction was reasonable 

because the student had a general sense that the data would be clumped between seven 

and eight red candies and then would disperse to the left and right. Yet, as our 

conversation continued it became clear that the purpose of the instructional setting 

determined how Andy decided upon his criteria forjudging the reasonableness of a 

student’s prediction.

Interview 1: Prediction Task

Andy: ...Here their tails are thin. The tail [pointing to 0 and 1 red], if you 
look at this as representing the tail it’s thin. It’s not 0, but then for a lot of 
students the difference between 0 and 1 is small. So maybe their sort of 
mentally rounding up just a little bit, and they didn’t round up to two or 
three or anything like that.
Interviewer: Okay, so if this was a two here [for the number o f  handfuls 
with 1 red candy]. So I ’d like to push you to see if this is reasonable? What 
would be unreasonable for you?
Andy: In that case, it would depend on what I expect them to understand.
If this is a year later, then I’m not expecting them to remember the exact 
distribution or run a calculation. I’m just expecting them to remember the 
feel of it. And this is real fat, most likely here. Here at 7.5 they’ve really 
straddled it. They ’ ve really got a sense that 7.5 is a big deal. They know 
something is happening right there, that’s where the action is. Then the 
action dies off out here. It’s just sort of noise, they got 0’s or 1. 
Interviewer: But you’re not bothered by the fact that this is now spread all 
the way out to the tail [in Student 2]?
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Andy: I’m not worried about that, because if you mentally picture the 
distribution it’s got a big fat center and thin tails. That thinness to a student 
at this level, they’re not thinking about 1020. They’re not going to go to 
that level.
Interviewer: Do we want them to be?
Andy: That depends on where they need to be focused. Do I want them to 
be able to look at this problem and have a gut feel for it or are we looking 
for more precision out of them?...Yeajh, if.the focus is precision and 
likelihood, then a 1 is ridiculous. A mental sketch, yeah I think that’s 
reasonable.... Again with the caveat that we haven’t had the discussion of 
small numbers. Because that’s its own discussion. To talk about how 
unlikely something is. If it’s my goal to say hey don’t get screwed by the 
lottery then we are going to have that discussion. Then if this becomes this 
business of putting a one out here at this extreme then that becomes totally 
unacceptable.

Notice that Andy’s criteria for a reasonable student prediction are based on his 

instructional goals. For instance, Andy initially speaks about the situation in terms of 

his expectations of a student a year after completing his statistics course. In this case, 

he would expect them to remember the general feel for the problem and thus, 

providing a prediction that roughly agrees in center, shape, and spread is sufficient. 

However, Andy indicates that if the goal of instruction was on precision or how to be 

an educated gambler, then he agrees that Student 2 ’s predictions of 0 ,1 , and 2 red 

candies each happening one time is unacceptable.

That Andy’s criteria forjudging student work depended on his goals for 

instruction and were highly situational is evidence of general pedagogical knowledge. 

In part the previous excerpt shows that Andy distinguished between short and long 

term goals of instruction, something that the other TAs in this study did not appear to 

do during the interviews. It is unclear what might account for this difference in
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response. Andy had approximately the same number of years of teaching experience 

as the other TAs, yet he seemed to show more thought in his instructional goals.

In the Real/Fake and Mystery Mixture Tasks, I could not find evidence of TA s’ 

knowledge of content and students that mapped to findings in the statistics education 

research community. However, TAs did express beliefs about learning and teaching in 

responding to the pedagogical questions related to these tasks. For example, Sandy did 

not believe that she would use the Real/Fake Task in the classroom. The following 

exchange reveals why.

Interview 1: Real/Fake Task

Sandy: I believe it’s confusing. And then what’s the message? You want 
your students to get some concepts clear, or just to know that everything is 
possible and everything can be interpreted in different ways? It’s not white. 
It’s not black. It’s like today is pink [laughs].

Sandy’s utterances indicate that she did not think this task would be a good teaching

tool because it did not have a “correct” answer and was too open to interpretation. Joe

expressed a similar sentiment as Sandy, in that he also thought the task was too

confusing to give to students. Sandy’s and Joe’s suggestions that the task is too

confusing is an indication of their own confusion in how to approach the task.

Eisenhart et al. (1993) noticed the same preference in their case study teacher, Ms.

Daniels, for avoiding problems that she found difficult herself. In addition, the

previous excerpt with Sandy suggests that her view of teaching and learning is

through a clear step-by-step approach, rather than through messy applied problems.
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However, Sandy did indicate a preference for letting students actually perform the 

experiment with the added caveat that she had enough class time.

Other times TAs expressed an indication that there could be many places a student 

would become stuck on a particular task, but could not specify a particular source of 

confusion. For instance, on the Mystery Mixture Task, Andy indicated that students 

would express their lack of knowledge for how to begin such a problem.

Interview 2: Mystery Mixture Task

Andy: Oh God they’d have all kinds of difficulties. Let’s see how many 
kinds of difficulties might people have? Let me count the ways. They are 
going to have.... I ’m going to get questions like, or statements like: ‘I just 
don’t know where to begin’. T just don’t get it’. So ask probing questions 
and the answer is still, ‘I just don’t get it’. Then you have to plan some 
more things. But I think for any person actually physically doing the 
experiment and then even though you get these protests of ‘I just don’t get 
it’, physically having done it they at least have it in their bones*■ right.... 
Whereas if they haven’t done t|ie experiment then they just have no clues, 
they are nowhere near it.

Andy did not discuss specific problems that might occur or types of reasoning students 

might employ to solve the task. Instead, he suggested general difficulties, like students 

who “just don’t know where to begin”. Yet, there is evidence of strong pedagogical 

knowledge in his utterances. For instance, Andy advocates for having students do the 

experiment because he suggests that such work provides students a basis for thinking 

about the task that they would not otherwise have. Andy suggests that after having 

done the experiment then when a student does not know where to begin, there is a 

foundation in place for him to start asking probing questions. These utterances suggest 

that Andy was thinking about instruction with students as the focal point, rather than
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some outside curriculum as dictated by a textbook or departmental syllabus. Andy was 

also the only TA who did not add the caveat, “if there is time”, after suggesting he 

would do the experiment with his class, perhaps an indication that hands-on 

experiments were more important instructional tools for him than the other TAs.

Analysis o f  TAs’ Knowledge o f  Content and Students: The Unusual Sample and

Gallup Poll Tasks

Table 24 shows where TAs provided explicit evidence of knowledge of content 

and students. Notice that, in general, I did not find evidence of TAs’ knowledge of 

content and students in this context. I found no evidence in my analysis of TAs’ 

discussion of content and students during the Unusual Sample Task that would 

indicate they had knowledge of the common developmental hurdles shown in Table 

24. However, I did find some evidence that Amanda and Sandy were cognizant of 

student difficulties interpreting confidence intervals during our discussion of the 

Gallup Poll Task. I also found evidence of other types of pedagogical knowledge.
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Table 24: Knowledge of Content and Students -  Unusual Sample & Gallup Poll

Tasks

Common Developmental Hurdles for 
Students in the Unusual Sample & 
Gallup Poll Tasks

Evidence of TAs’ Knowledge of 
Content and Students

Amanda Sandy Joe Andy

Difficulty understanding the role of sample size 
in sampling variability
(1) Do not expect a difference in variability for 

different size samples or believe large 
samples are more variable

(2) Difficulty relating a long-term relative 
frequency view of probability to sampling 
and statistical inference tasks

Difficulty understanding the role of sampling in 
the creation of confidence intervals 
(1) Do not maintain an image of repeated 

sampling

✓ (1) ✓ d )

Difficulty recognizing the distinction between a 
sample of observations and a sample of statistics

On the one hand, the lack of evidence of TAs’ knowledge of content and students 

on the Unusual Sample Task as compared to the Gallup Poll Task could be partly due 

to the difference in task methodology. In the Unusual Sample Task, I asked TAs to 

speculate on the types of difficulties students would be likely to encounter, whereas in 

the Gallup Poll Task I provided specific hypothetical student interpretations for TAs to 

consider. On the other hand, the lack of evidence could also be due to the fact that 

some of these TAs experienced the same difficulties that the statistics education 

research community has documented in students. This factor has been proposed by 

Even (1993) in her work with teachers. For example, it is not surprising that Amanda
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and Sandy did not display knowledge of student difficulties with the relationship 

between sample size and sample variability in relation to the Unusual Sample Task 

because they displayed this same difficulty. Likewise it is not surprising that Joe and 

Andy displayed no evidence of student difficulties with interpreting confidence 

intervals with an image of repeated sampling because, like many students, Joe and 

Andy appeared to express confidence in the particular interval obtained in the sample, 

rather than confidence in the sampling process. That is, Andy and Joe did not maintain 

an image of repeated sampling in their interpretation of confidence level. Further,

Andy and Joe appeared dismayed by hypothetical student responses that suggested 

repeated sampling.

Amanda and Sandy did maintain an image of repeating the sampling process in 

their interpretations of confidence level and they appeared to recognize that this 

interpretation might be difficult for students to grasp. For example, in the next 

exchange I asked Amanda about the reasonableness of Student A ’s interpretation and 

she began a conversation of how subtle the idea of confidence level is. That Amanda 

recognized that this is a common interpretation of confidence interval for beginning 

statistics students is significant evidence of her knowledge of content and students in 

this context.

Interview 3: Gallup Poll Task

Interviewer: So the first student says that the margin of error being 4% 
means that between 32% and 40% of all Oregon voters believe an income 
tax is necessary.
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Amanda: I think that. I think that this is a very common interpretation. I 
don’t think it’s fully accurate, but I think conceptually it’s how we process 
information, like 32% plus or minus 4%.
Interviewer: What do you think is inaccurate about it?
Amanda: That with a certain level of confidence the true proportion will 
be between 32 and 40%, but the truth of the matter is that the true 
proportion is either in this interval or its not. And this way of talking about 
it I think is very common. I think it’s even okay because it’s the way 
people process the information and I think it makes the most sense. ... 
What does a confidence interval really mean? And it takes a while. And I 
think I’m pretty lenient with my students about it to, about the way they 
phrase it. About, I try to get them in the habit of when they say it, you 
know let’s assume 95% confidence, with 95% confidence we can assume 
the true proportion would be between 32 and 40%, but that we’re actually 
talking about 95% of all samples would capture the true proportion and 
either our sample did or it did not.

Notice that Amanda decided this student’s interpretation is acceptable, but 

incomplete. Amanda appeared to recognize that Student A’s interpretation is a natural 

way in which people tend to process the idea of confidence intervals. Here Amanda 

distinguished between what she considered an acceptable common interpretation for a 

novice or layperson and a more formal understanding of confidence interval. In the 

previous section Amanda provided an indication of what she believes that students are 

capable of in relation to the Prediction Task. In the previous excerpt there is again 

evidence of Amanda expressing her beliefs about her students’ abilities. Amanda 

suggested that beginning statistics students are not likely to have the mathematical 

maturity to understand the subtleties in how confidence intervals are interpreted.

Sandy suggested that interpreting the confidence interval from the perspective of 

the particular sample is acceptable if the student knows the meaning behind the
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interpretation is in relation to repeating the sampling process. The following exchange

shows Sandy’s response to Hypothetical Student l ’s interpretation of confidence level.

Interview 3: Gallup Poll Task

Interviewer: So now I have two different students’ interpretations of 
confidence level and so I would like to know if you agree or disagree with 
these students’ interpretations. So the first one is: 95% confidence level 
means that you can be 95% confident that the particular interval you found 
in the survey captures the population proportion.
Sandy: . . .Because the more textbook interpretation is like in 95, if you 
repeat the sampling process, 95% of the times you’ll capture in your 
confidence interval the true parameter, population parameter. We just had 
this discussion in the stats class I’m taking, and I learned of the repeating 
the sampling process, but our professor said that it is okay to use this, ‘I am 
95% confident that’ [points to the student’s interpretation o f confidence 
level that we ju s t read]. And I believe that maybe this is not very exact. 
Interviewer: To say this is not very exact?
Sandy: I believe so, but...
Interviewer: So why, what is lacking in this?
Sandy: I am 95% confident* because, ahh, you miss saying that you have 
to sample many, many times. You know.... I’m thinking if someone knows 
what it means and uses this I’m 95% confident {Student l ’s interpretation] 
it’s okay because he knows what is behind. But I’m afraid a student might 
take this literally without knowing that in fact there is something else, like 
you have to repeat the process many, many times and 95% of the times you 
capture this parameter.

Sandy indicated that Student l ’s interpretation is acceptable, but imprecise. I have

previously noted that at the time of the interview Sandy was enrolled in a graduate

statistics course for non-statistics majors. Sandy cited that her professor used the same

interpretation as shorthand as evidence that Student l ’s interpretation is acceptable.

Sandy’s suggestion that the common shorthand notation is acceptable because her

professor used that interpretation is consistent with Lortie’s (1975) idea of

“apprenticeship of observation”. Having observed her own professor interpreting a
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similar situation to the Gallup Poll Task in the same manner as Student 1 provided 

Sandy justification for using that response with her own students. That is, Sandy cited 

her professor’s use of a similar interpretation to that of Student l ’s as a basis for 

justifying the use of that interpretation in the classroom. In the last highlighted 

utterance Sandy indicated that missing from this interpretation is the idea of repeating 

the sampling process. Sandy suggested that as long as students understand that concept 

there is no reason to state it each time. Yet, Sandy also recognized the potential for an 

introductory statistics student to miss this interpretation.

When TAs did not supply knowledge of common student difficulties or 

developmental paths as indicated by the research literature, they tended to display 

some general pedagogical knowledge and/or beliefs about the task or how students 

leam. For instance, Joe suggested that the Unusual Sample Task was too wordy and 

that this would confuse students.

Interview 1: The Unusual Sample Task

Joe: I mean* yeah, all the J^ngMfee. And I’m sure if I saw this tape again I 
would be confusing, conflating the words that I want to use for the 
concepts.

Amanda expressed a similar concern about students’ abilities to weed out the 

extraneous information.

Interview 1: The Unusual Sample Task

Amanda: In my experience there are too many words.
Interviewer: Too many words for students?
Amanda: Yes, they get bogged down in, there’s so much information here 
that is not really necessary to the question at hand. Or maybe it is. I don’t 
know. Maybe city schools versus rural schools makes a difference. I ’m not
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provided with knowledge that it’s making any difference here. That would 
be extraneous. There are so many pieces of information here that you don’t 
need in order to evaluate this question. Not that I would be willing to 
extract any of it or remove any of it before showing it because in a real 
research situation there’s going to be lots of information that you don’t 
need and you have to be able to pick out what you do need but I can tell 
you that my students, from my experience, would get hung up on all tbis 
other information. It would totally freak them out, and I feel like 
specifically, and this is awful, it’s not formulaic enough a question.

Although Amanda and Joe did not display specific knowledge of common student

difficulties, they did show general pedagogical knowledge in this instance in the sense

that they recognized that students might have trouble solving any type of task that was

overly wordy, or, as Amanda noted, “not formulaic enough”. This knowledge could

also be considered some general mathematical knowledge for teaching in that they

recognized that students tend to have trouble with applications or novel mathematical

tasks.

Summary

In general, I did not find evidence that TAs had substantial knowledge of common 

student difficulties or developmental stages. I have already alluded to two potential 

reasons for the paucity of TA knowledge in this area. I raise those reasons again here 

and add a third reason. First, these TAs experienced some of the same difficulties that 

have been observed in middle, secondary, and tertiary students. I documented specific 

difficulties TAs experienced with the interview tasks in Chapters 4  and 5, which 

included: (1) difficulty reasoning with experimental data sets, (2) recognizing 

appropriate variability in experimental sampling distributions, (3) recognizing the role
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of sample size in sample variability, and (4) applying the image of a distribution of 

sample statistics to sampling and statistical inference problems. It seems logical that if 

these TAs experience difficulty with these concepts, then they will not recognize them 

as problematic in students. This argument has been made by other researchers as well, 

for instance, Ball, Hill and Bass (2005) with elementary mathematics teachers and 

Even (1993) with secondary mathematics teachers. Certainly this is problematic from 

a pedagogical standpoint because these TAs lacked a deeper content knowledge from 

which to think about statistics and how to teach it.

Second, these TAs were still relatively new teachers. The TAs in my study had all 

been teaching for at least three years, but some of them had only taught the first term 

of introductory statistics one time -  Joe and Andy, for instance. Amanda and Sandy 

had taught the first and second terms of introductory statistics more than twice. It is 

plausible to suspect that it takes some amount of time teaching a course before 

noticing prevalent problematic reasoning or developmental stages in students.

Third, there is a methodological consideration. The Prediction and Gallup Poll 

Tasks allowed me to achieve some insight into TAs’ knowledge of content and 

students, whereas the Real/Fake, Mystery Mixture, and Unusual Sample Tasks did not. 

There was a fundamental difference in the task design that could explain the difference 

in the outcomes. For the Prediction and Gallup Poll Tasks, there were hypothetical 

student responses that followed after TAs gave their own responses. TAs were asked 

to discuss the specific hypothetical student responses, which seemed to set up a 

situation in which TAs addressed a particular strength or inadequacy in the student’s
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work. In contrast, after TAs provided their own solutions to the Real/Fake, Mystery 

Mixture, and Unusual Sample Tasks, I asked TAs how they thought students might 

respond to these tasks and what kinds of difficulties students might experience. The 

open wording of these questions might explain why TAs tended to discuss general 

problems that they believed students might have, their personal opinions of the task, 

and/or their beliefs about teaching and student learning, rather than specifying 

particular difficulties. The fact that TAs did express their beliefs about teaching and 

student learning is both interesting and compelling, which is why the last section of 

this chapter addresses the issue of TAs’ beliefs.

Before addressing the issue of TAs’ beliefs there is one final point that deserves 

mention here. Although TAs did not display specific knowledge of content and 

students in relation to sampling concepts, they did display other forms of pedagogical 

knowledge. For example, Andy displayed pedagogical knowledge when he discussed 

his goals for instruction as determining how he would judge the reasonable of a 

student’s prediction to the Prediction Task. That is, Andy suggested that his purpose 

for teaching a particular topic and his desired outcomes in terms of student knowledge 

determined the focus of classroom instruction and set the criteria for how his students 

are assessed. Joe and Amanda provide a second illustration of TAs’ pedagogical 

knowledge. Both Joe and Amanda suggested students would struggle with word 

problem tasks, which are set in context and contain extraneous information. Joe and 

Amanda noted that students experience difficulties with word problems because they 

do not know how to determine which information is critical and which information is
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extraneous. That TAs displayed other forms of pedagogical knowledge is important 

because it shows that TAs think about their students’ learning. Using TAs’ 

pedagogical knowledge could be a good place to begin professional development and 

the work toward improving TAs’ knowledge of content and students.

6.3 TAs’ Beliefs about Teaching and Student Learning

The primary goal of this study was to investigate TAs’ statistical knowledge for 

teaching, not to investigate TAs’ beliefs about the teaching and learning of statistics. 

However, the constructs of knowledge and beliefs are intimately intertwined. During 

the interviews, TAs’ beliefs about teaching and student learning surfaced. The purpose 

of this final section is to address the issue of TAs’ beliefs within this study.

To begin, I argue that TAs’ prior experiences learning mathematics influences the 

way in which they conduct their own classes. Teachers’ prior learning experiences is 

not addressed by Eisenhart et al. (1993) as a limiting factor in teachers’ ability and/or 

interest in teaching for conceptual knowledge versus procedural knowledge; yet, this 

factor appeared important in shaping TAs’ methods of instruction and their beliefs 

about learning. Ball and McDiarmid (1990) and Even (1993) discussed the tendency 

of teachers to teach in a similar manner to how they were taught. I speculate that these 

TAs primarily had experience in mathematics courses where the focus was on 

procedural knowledge first and only secondarily on conceptual knowledge. Further, I 

argue that these prior educational experiences are likely to result in TAs espousing 

similar pedagogical practices. This final section of Chapter 6 is organized into two 

sections. In the first section, I discuss in more detail TAs’ prior mathematical
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experiences and their characterizations of effective teaching. In the second section, I 

discuss the possible influence of TAs’ prior experiences on their beliefs about teaching 

and learning.

6.3.1 TAs’ Prior Mathematical Experiences & Characterizations of 

Effective Teaching

Each of the TAs in my study suggested that defining characteristics of effective 

teaching included the ability to clearly explain difficult mathematical processes, 

clearly connect concepts to processes, and to challenge students. From this defining 

characteristic, it seemed clear that the TAs in this study concerned themselves with 

imparting both procedural and conceptual knowledge to their students, yet their 

responses to many of the interview tasks suggested they were more focused on 

procedural knowledge. In this section, I use conversations from Amanda and Sandy to 

highlight my discussion on TAs’ beliefs about teaching and learning. I choose 

Amanda and Sandy because they provided the clearest articulation of their beliefs 

about teaching and learning. The interview data and information gleaned from Andy, 

Joe, and Sam did not provide discrepant or corroborating evidence. They are not 

included in the discussion simply because they did not articulate their beliefs to the 

same extent as Sandy and Amanda, making it difficult to draw any conclusions.

In the following exchange, Amanda describes two influential mathematics teachers 

she had as an undergraduate. It is worth noting in this exchange that Amanda
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emphasized qualities such as her teachers being challenging but fair, and her teachers’

clear explanations as positive qualities in these teachers.

Interviewer: Could you describe an influential teacher that you had as an 
undergraduate and how you think that teacher might characterize good 
teaching?
Amanda: Yes, ‘Dr. S’, or equally so ‘Dr. O ’. I have to split them because I 
try to, in my own teaching, I don’t try to embody them, but I notice things 
that I do that they did. ‘Dr. S’ was a terrifying teacher that everybody just 
warned you about how scary he was. I remember sitting down for my first 
exam with that man and felt like I had been sitting in the wrong class all 
term and not recognizing any of the material on the test. He was very 
demanding and very challenging. He certainly didn’t give you anything 
that looked like it came out of the book. But he was also incredibly fair. I 
remember getting a 42 on that test and it was a B, so he was incredibly fair 
as well. His focus was driven by not did you get a problem correct, but how 
did you approach the problem. You know what tools did you pull out to 
approach the problem. Did you conceptualize it correctly, not did you 
arrive at a correct answer. .... And Dr. O, Dr. O was, I swear the man 
opened his mouth and God spoke through him because I understood every 
Word the man ever said about anything. I had almost zero need for my 
textbooks. I never really had questions. Everything he ever said was so 
clear and so easy to understand and I pray every day that I’m explaining
things as well as he could explain them I think they would think good
teaching is being very challenging and demanding excellence from your 
students, or demanding thoughtfulness from your students.

Amanda suggested that Dr. S was concerned with the process of problem solving 

more than obtaining a correct answer, but this does not necessarily indicate a focus on 

the conceptual underpinnings of a problem. Dr. S might have focused on the 

conceptual underpinnings, or the steps in the process, or both. Amanda alludes to 

conceptual understanding as his focus, but there is not enough information from this 

excerpt to make this conclusion. Amanda admired the clarity of Dr. O ’s explanations, 

which is of course an important quality for effective teaching. However, Amanda’s 

utterances about never having to use her textbook, and never having questions, raises
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some questions for me about her image of effective teaching. In particular, Amanda’s 

comments lead me to wonder if she sees the teacher as the center of the classroom, 

with the job of imparting wisdom on her students through crystal clear lectures, rather 

than teacher as facilitator, whose job it is to pose questions for students to answer and 

with which to struggle? There is not enough information in Amanda’s utterances about 

good teaching to infer much about her philosophy of teaching.

Sandy indicated that she did not have a high school30, undergraduate, or graduate

(for her first master’s degree in mathematics) teacher that she liked, or that she felt

embodied good teaching. Sandy suggested that her prior teachers of mathematics were

only interested in putting theorems and their proofs on the board and students were left

to solve problems on their own. In the following exchange, Sandy explained what

mathematics was like for her in high school.

Sandy: The manuals back home, so you have each section is mostly 
theory, no examples. And then you have at the end of each section tons of 
problems. And they will just come, paint on the board the theory and then 
you are left alone to figure out how to solve the problems. So it’s very 
hard, very hard. So we used to have some books only with problems and 
sometimes problem solutions for those problems, and that’s how I got it. 
Basically I was learning by myself math in high school. I was reading 
books, you know and reading solution books, reading solutions to problems 
to leam how to solve problems.

Sandy suggested that her undergraduate and first graduate school experiences were

much the same. Sandy’s utterances in this excerpt suggest to me that she learned

mathematics by teaching herself the procedures using textbooks that contained

example problems with solutions. Sandy expressed her frustration that the teachers she

30 Sandy went to a private high school in her home country that specialized in mathematics and science.
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had did not connect the theory or concepts with the problems she was required to 

solve. Sandy did mention an influential teacher, ‘Dr. J ’, from her graduate studies 

program in statistics. The following exchange indicates that Sandy liked that he 

challenged students, but that he explained the concepts in a way that made sense to 

her.

Sandy: He tries to explain the concepts. He doesn’t just paint the concept. 
Okay, so this is it. He tries to explain and interpret the concepts and that’s 
what makes him good. He challenges, I believe he challenges the students.
I remember when I first started and I took the intro to math stat. I was 
challenged to do the homework for that class, and the exams they were 
challenging. I believe it’s a very good balance. I believe he gives, but he 
also asks for back, and if you miss, it’s points off.

Notice that Amanda’s and Sandy’s descriptions of the characteristics of effective

teaching were similar; that is, good teachers present material clearly, connect concepts

and processes, and challenge students. Yet, each of these features could mean different

things to different people. Thus, it is difficult to infer too much from such a brief

description of these TAs’ mathematical learning experiences. However, Amanda’s and

Sandy’s descriptions of good teaching, coupled with some of their interview responses

about student learning, may provide some initial clues into their beliefs about teaching

and learning.

6.3.2 The Influence of TAs’ Prior Experiences on their Beliefs about 

Teaching and Learning

I conjecture that Amanda’s and Sandy’s prior learning experiences, which seemed 

focused primarily on procedures and processes, lead to a theory of learning whereby
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procedural skills and processes are considered the first steps to learning mathematics, 

and that over time, and after much practice, the conceptual knowledge filters in. The 

fact that Amanda and Sandy espoused beliefs about teaching and learning based on 

their prior learning experiences is not unique. For example, Lortie (1975), and Nathan 

and Koedinger (2000) observed that teachers’ beliefs about teaching and learning are 

often rooted in their prior learning experiences.

During our discussion about good teaching, Amanda did not articulate how she 

learned mathematics, but in her responses to some of my interview tasks on student 

thinking, Amanda provided both an explicit and implicit view of her beliefs of how 

students learn statistics. In particular, she discussed how she sees conceptual 

knowledge following from procedural knowledge because this is the way she learned. 

For example, during our discussion of the Unusual Sample Task, Amanda suggested 

that students would have difficulty with the task because it was not procedural enough.

Interview 1: Unusual Sample Task:

Amanda: ...I feel like specifically, and t^is is awful, it’s not formulaic 
enough a question.

As the conversation continued, Amanda expressed the importance of both procedural 

and conceptual knowledge and a view for how she believed students’ mathematical 

development might occur.

Interview 1: Unusual Sample Task:

Interviewer: With like a definite way to proceed, that they can go? 
Amanda: Yes. Its not even, I don’t even. I ’m questioning myself every 
step of the way. Did I think about that correctly? Did I assume too much 
information? D id.. .there are a million places that I feel like I’m getting off
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track. And those aren’t even questions that they know to ask themselves.
So for, especially for a 243, 244 student, it’s such a delicate level because 
its stuff that is so, it’s so foreign. It’s not like any math they have ever seen 
before. I find they need something more formulaic to work through. 
Especially with statistics it takes a lot of time before the full concepts come 
together, and I think it’s important to get them thinking. To introduce ideas 
that are just generating conversation about what’s going on here, but I also 
think it’s important to go through a rigorous process, and that, that starts to 
lead to an understanding of why something is occurring.

In the highlighted utterances Amanda suggested that students need something more

formulaic to work through when new mathematical ideas are presented to them, but

that conversations centered about statistical concepts were important toward building

conceptual knowledge. I realized that Amanda was emphasizing both mastery of skills

and an understanding of underlying relationships, but that she appeared to be focused

on mastery of skills first. I asked her about how she envisioned the conceptual

knowledge building from the procedural knowledge.

Interview 1: Unusual Sample Task:

Interviewer: The process of repeating the steps over and over again is 
what leads to...
Amanda: Yes, but that could just be because that’s what happened for me 
in all of my mathematical experience. I just repeat something over and over 
and over. Even if I don’t know why I’m doing something, and then as I 
grow through my mathematical understanding I begin to understand. Oh 
this is why I’m doing step 8. This is why I’m doing step 9, and why they fit 
together. And this is why I get a good result, or a result I need, or whatever. 
And I think for a lot of statistical ideas it’s too much to ask a student things 
that are really abstract. Or maybe they are not really abstract, but just that 
foreign. I don’t know if it’s fair to ask them to explain something on a 
conceptual level. They can explain something on a function level: this is 
my variable of interest, I’m looking for the probability of something 
occurring, I’m going to use this formula because I know its binomial 
because there was only two outcomes. And you repeat this process over 
and over again, and the conceptual part of the why its occurring the way 
that it is starts to build.
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Amanda was quite explicit in her belief that mathematical understanding on a

conceptual level grows from mathematical understanding on a procedural level. 

Amanda recognized that this is how her own mathematical development occurred and 

so it seemed reasonable to her that this might also be how her students’ mathematical 

development might occur. Thus, Amanda recognized a need for discussing the 

conceptual entailments of a particular statistical idea in the classroom, but she focused 

first on processes and did not necessarily believe that students should be held 

accountable for conceptual understanding in the same way that they should be for 

procedural understanding. As Amanda discussed her experiences teaching the Central 

Limit Theorem, her view of learning mathematics (based on her own mathematical 

experiences) continued to present itself.

Interview 2: Terminology - Central Limit Theorem

Am anda: I don’t think, any. I don’t think I ’ve ever had many students 
really get a grip on the Central Limit Theorem. I think it’s very, it’s a very 
lofty idea to them. It’s probably the only place in 243/244 where you dig 
out some theoiy. Everything else is like here are the rules, follow the rules. 
But we rely on the Central Limit Theorem and I don’t know how other 
teachers address it, but I, I always remind them we can do this because of 
the Central Limit Theorem, and I’ll do a quick refresher on the Central 
Limit Theorem. But I think it’s too, I think it’s too abstract for them to 
really get a grip on. Like in terms of mathematical maturity they’re 
probably at the level where they just want the rules. They want to follow 
the rules. I don’t think any of my students ever really process what the 
Central Limit Theorem means.

Here again, Amanda made a distinction between teaching statistical rules versus the

concepts and the underlying structure of those rules. Amanda recognized that the

Central Limit Theorem is more abstract than most of the other material presented in
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introductory statistics texts, and she decidedly believed that most students at that level 

are only able to make sense of the procedural aspects of the material.

Through these exchanges it seems reasonable to infer that Amanda has developed 

a theory for how students leam grounded in her own learning experiences. That theory 

appears to inform her that students leam concepts through the repetition of procedures 

and so teaching procedures is what leads to students’ eventual conceptual 

understanding. My conversations with Amanda indicated that she focuses first on rules 

and procedures with her students, discusses the “how” and “whys”, but does not hold 

students accountable for deeper conceptual knowledge. Even (1993) also noticed this 

tendency for teachers to teach students rules by which they can get the right answers 

without needing to understand the concepts.

Sandy certainly suggested that she learned mathematics by working on problems 

over and over again and comparing her work tp solutions manuals when available. 

There is also evidence from the interviews that Sandy stressed procedural knowledge 

over conceptual knowledge in her teaching practices. For example, during the first 

interview I asked Sandy if she would use a question like the Unusual Sample Task 

with her own class, and as the following excerpt reveals, she decidedly would not.

Interview 1: Unusual Sample Task:

Sandy: No, I don’t believe so. Because I believe when someone learns it’s 
good to have problems with straight answers and not dubious questions 
like this one, which makes people think okay what is the right answer. I 
believe when I want to leam something I want to leam based on clear 
questions. You know, such that I get the concepts and later on if I want to 
think back of those concepts or I want to try to interpret or see them from a 
different point of view, maybe I will. But in introductory stats when they
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are just learning I believe that this is very confusing. I don’t know if I 
would give this question in class. Normally when you give a question in 
class, you should have an answer, a good answer. So I don’t believe I will 
have a good enough answer.
Interviewer: So that your students would have a clear path?
Sandy: Yeah, right. I believe that’s what I don’t like. Clearly what I don’t 
like is for students to go back with fuzzy concepts, not giving the concepts 
straight in their heads. I believe that’s not good. If it’s a literature class 
where you go and start reading the poetry and you say what you think. 
Everyone can think different ways or how you feel about it. But it’s not. 
It’s a math class basically. Statistics is math, and I expect to give straighter 
answers.

In this excerpt Sandy argued that this task is not appropriate as a learning tool because 

it is not a straightforward question with a straightforward answer. She indicated that 

she prefers learning in a ‘straightforward’ manner. Although Sandy used the noun 

“concept” (in the first highlighted excerpt) to describe what was being learned, her 

discussion is more consistent with learning a “procedure” because her conversation 

around the term suggested learning a systematic approach rather than an abstract idea. 

The second time that Sandy used the noun “concept”, it is more consistent with the 

actual definition of the word, where she indicated she might view the topic from a 

different vantage point, but she seemed to suggest this only after the procedure is 

taught.

It is also worth noting that a teacher-centered view of teaching and learning 

radiates through Sandy’s response -  specifically in the second highlighted utterance, 

where she discusses the importance of the teacher having a good answer. The 

metaphor that emerges in this utterance is teacher as authority. That is, the students 

need to look to the teacher to have an exact answer so if Sandy does not have an exact
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answer, then it is not a good problem for her class. Sandy’s response also makes me 

wonder if she conceives of the act of statistical inquiry as black and white, in that 

every problem has an optimal process that leads to the “correct” solution. Certainly 

her comment about having a good answer coupled with other comments she made 

throughout the interviews, like her comments to the Mystery Mixture Task in the 

following paragraph, for instance, suggest a black and white view of statistical inquiry.

During the Mystery Mixture Task, Sandy again indicated that she is confident in 

applying formulas and getting correct answers, but she does not like questions where 

there is no obvious path to follow for a solution. In the following exchange, I asked 

Sandy to provide an informal confidence interval for the proportion of red candies in 

the jar after she refused to provide a point estimate.

Interview 1: Mystery Mixture Task:

Interviewer: What if instead of trying to predict the exact amount you 
were just trying to come up with a confidence interval of like the number 
of red is between such and such that you would feel pretty confident you 
would capture it?
Sandy: I cannot do that.
Interviewer: No?
Sandy: No and I don’t like to do that.
Interviewer: Because it’s too iffy?
Sandy: Exactly. I don’t like. I, so how I approach problems is give me the 
information I will apply the formulas. I will give you the answer. And I’m 
confident of doing that.

The highlighted excerpt reveals Sandy’s personal preference for procedural knowledge

and her own confidence in working out procedural problems. Indeed, during the

interview when I asked Sandy more open-ended statistical questions or estimation
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questions she did not enjoy solving them, and struggled with, applying her knowledge 

of statistics to non-routine problems.

On the one hand, Amanda and Sandy espoused good teaching practices as 

imparting both procedural and conceptual knowledge. Yet, both Amanda and Sandy 

struggled more with the conceptual tasks (Real/Fake, Mystery Mixture, Unusual 

Sample Tasks). They appeared to have stronger procedural knowledge than conceptual 

knowledge (although this was not the case for all tasks) and their discussions of their 

teaching practices suggested more of an emphasis on procedural knowledge. This 

finding is consistent with Eisenhart et al. (1993). On the other hand, when the TAs had 

an opportunity to explore statistical ideas from a more conceptual point of view, they 

did so. For example, when I asked Sandy to describe the term standard deviation she 

provided both a procedural and conceptual explanation.

Interview 3: Terminology:

Sandy: Okay. So I have an example for that, so standard deviation. Let’s 
suppose that you did, ahh, let’s suppose you did regression. y=a+bx and 
this is weight [Sandy points to the y-variable] based on what? Something, 
an x-value. And then you compute the mean squared error and you take the 
square root of that, which is the standard deviation. So how can you 
interpret that? You say on average your prediction, let’s suppose that you 
get 41bs, you say on average your prediction for weight is 4  lbs off. That’s 
how you interpret....So basically the standard deviation is telling you how 
far away from the mean value, the mean weight, you are in your 
calculation.

In the first part of the highlighted utterance, Sandy is focused on a value for standard 

deviation, which is computed in a particular manner, but as she continued, she 

provided a strong interpretation of the underlying image of the term standard
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deviation. I asked Sandy if that is how she explained standard deviation to her 

students, but as the following excerpt reveals, this image of standard deviation only 

recently became part of her repertoire.

Interview 3: Terminology:

Interviewer: Is that how you’ve explained it to your students before? 
Sandy: No ahh, it just came to my mind right now because I ’m taking this 
class with ‘Dr. J ’ and I had the exam yesterday. And yesterday I was 
looking through about what I did. You know I didn’t take before 243,244 
[undergraduate introductory statistics]. And I believe I told you before 
that not always I realize exactly how to explain some concepts. And it was 
good for me to go to see how he explains some concepts, and standard 
deviation. Somehow it’s a little bit hard for students to grasp because when 
you introduce standard deviation you introduce variance. And in fact you 
show it like that [Sandy writes the form ula fo r  variance on her sheet].
You know, you show this formula and thteitthfcy are, they get somehow 
stuck, you know with the fact that variance is that formula, that 
complicated formula you know. And they don’t really, so somehow they 
focus on the formula and they don’t get the right interpretation of standard 
deviation which is square root of that [points to the variance formula], 
which is telling you how far away your observations are from the mean.

The graduate statistics course for non-statistics majors that Sandy was enrolled in at

the time of our interviews appeared to be a strong influence on her statistical

knowledge for teaching. Prior to her new idea for discussing standard deviation, Sandy

indicated that she introduced standard deviation strictly procedurally, by showing the

formula for variance and then taking the square root of that formula. Once Sandy

broadened her own conceptual knowledge of standard deviation, and was exposed to a

new model for introducing the topic by an expert professor, Sandy revised her

teaching repertoire. Her modes of instruction for developing procedural and

conceptual knowledge in students were enriched. Sandy’s discussion about the image
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of repeating the sampling process in relation to confidence intervals, mentioned in 

Section 6.2, is another example of how this class influenced Sandy’s statistical 

knowledge for teaching. Sandy also suggested that this course helped her view other 

introductory statistics ideas from a new perspective as well.

6.4 C onclusions

In this chapter I presented a model of the necessary statistical knowledge for 

teaching -  statistical literacy, statistical thinking, and knowledge o f content and 

students. My primary contention is that TAs are in a better position to support student 

learning in statistics if they have strong subject matter knowledge, including 

procedural and conceptual knowledge, as well as the “big ideas” related to different 

statistical concepts and the connections among concepts. That is, TAs need well- 

developed statistical literacy and thinking skills and should be familiar with common 

conceptual hurdles. This conjecture is not novel, and has been made by other 

mathematics education researchers in other areas of the mathematics education 

curriculum -  Ball and her colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003;

Ball, Lubienski & Mewbom, 2001; Ball & McDiarmid, 1990; Hill, Rowan & Ball, 

2005), and Eisenhart et al. (1993), for example.

Although the TAs in this study showed evidence of having strong statistical 

content knowledge, each of the TAs had limitations and/or gaps in their knowledge. 

Key limitations in TAs’ statistical reasoning include:

■ Ability to reason with experimental data sets

o Thinking about variability in experimental data
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o Coordinating multiple aspects of the distribution

■ Maintaining an image of a distribution of sample statistics in relation to 

sampling and statistical inference problems

■ Recognizing the relationship between sample size and sample 

variability

TAs’ content knowledge limitations and/or gaps are likely to translate into content 

knowledge limitations in students because TAs are not prepared to address these key 

concepts in instruction. It is likely that TAs can avoid addressing certain difficulties 

they might have with the statistics content by not using open-ended statistical tasks or 

non-routine problems in the curriculum. TAs can teach the statistical procedures for 

routine problems without much difficulty, but does that count as quality teaching?

Given that these TAs experienced some of the same key difficulties as middle, 

secondary, and tertiary students, I argue that these concepts are not trivial and need to 

be more explicit in instruction. That is, statistics courses should emphasize reasoning 

with experimental data, a consideration of variation and sampling distributions 

throughout the curriculum. In addition, statistics teaching assistants and other statistics 

graduate students may benefit from an introductory statistics course prior to taking, or 

concurrent with taking, their first graduate mathematical statistics course. For instance, 

the graduate statistics course for non-statistics majors, in which Sandy was enrolled, 

seemed to positively impact her statistical thinking and subsequently her teaching. 

Perhaps taking or assisting an expert professor with a condensed calculus-based
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introductory probability and statistics course would provide TAs an opportunity to 

improve their statistical literacy and thinking skills. In fact, the next logical step for 

research in this area could be an investigation into whether taking or assisting with 

such a course would improve TAs’ statistical knowledge for teaching and positively 

impact undergraduate student achievement.

The second piece of this chapter consisted of a discussion of TAs’ beliefs about 

teaching and learning. It was not my intention to study TAs’ beliefs, but due to some 

of the methodology of certain open-ended interview tasks, TAs discussed their beliefs 

about how students leam. It is interesting that these discussions tended to also reveal 

how these TAs preferred their own learning to be structured and how they found they 

learned best from their own professors. For example, Amanda tended to learn a 

particular concept as a result of repeating a procedure over and over again; as a result, 

she tended to equate the long struggle over learning the procedures and the reasons for 

each step as what led to her eventual conceptual understanding of a topic. It seemed 

that this led Amanda to believe that students need to leam the procedures first, which 

is mostly all we can expect from them at an introductory level.

My ability to draw conclusions about TAs’ beliefs and the impact of those beliefs 

on their teaching is certainly limited in the sense that my research tasks were not 

aimed at identifying beliefs and I did not observe TAs teaching in order to confirm or 

disconfirm the information on beliefs gathered from the interviews. The information 

on TA beliefs was an added bonus in this study. However, since it was not the primary 

research focus and sporadically surfaced during the interviews, there is not substantial
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evidence on TAs’ beliefs about teaching and learning from which to support an 

interpretation of how those beliefs specifically influenced their thinking about 

teaching and learning. The information TAs did provide is useful for thinking about 

how this information could be used to frame future studies on TAs’ beliefs and 

knowledge for teaching statistics. Certainly an entire study could be devoted to TAs’ 

beliefs about how students leam statistics concepts and procedures. I turn now to the 

final conclusions of my study -  the implications this study has for undergraduate and 

graduate statistics education, directions for future research, and the limitations of my 

study.
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CHAPTER 7 

CONCLUSIONS

This concluding chapter highlights the central findings on TAs’ statistical 

knowledge for teaching sampling concepts. This chapter is presented in four sections. 

In Section 7 .1 ,1 discuss the central findings of this research study. In Section 7 .2 ,1 

discuss the study’s contributions and implications. In Section 7 .3 ,1 discuss the study’s 

limitations. In Section 7 .4 ,1 conclude the chapter with a discussion that points to 

potential relevant future research.

7.1 Central Findings

In Chapters 1 and 2 ,1 discussed the importance of sampling in the development of 

statistical literacy and statistical thinking skills. In addition, I argued that in order to 

improve undergraduate statistics education, statistics educators needed to begin an 

investigation into TAs’ statistical knowledge for teaching, because TAs play an 

integral role in undergraduate education. In order to contribute to the research base on 

the teaching of undergraduate statistics, the goal of this dissertation study, as described 

in Chapter 1, was to investigate and characterize TAs’ statistical knowledge for 

teaching sampling concepts. Specifically, my aim was to better understand: (1) how 

TAs reason about sampling processes; (2) TAs’ understandings of the relationships 

between sampling and probability, and sampling and statistical inference; and, (3) how 

TAs think about teaching and student learning in the context of sampling.
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In order to achieve my research goals, I conducted a thorough review of the 

existing research literature on statistical literacy, thinking and reasoning, as well as 

teacher knowledge. This background literature provided the following structure for my 

study: (a) models of students’ and teachers’ reasoning about sampling processes and 

how those processes relate to statistical inference; (b) models for the types of 

reasoning necessary for statistical literacy and statistical thinking skills -  both of 

which are necessary for statisticians and teachers of statistics; and, (c) methods for 

constructing models of reasoning and assessing teacher knowledge of content and 

students. The details of this structure were meticulously discussed in Chapters 2 and 3.

The results of my research were parsed out into three chapters -  one for each of 

the salient findings from this study. I review those findings here, beginning with 

Chapter 4.

7.1.1 Chapter 4: Tensions TAs experienced between theoretical models 

and experimental data

In Chapter 4 ,1 provided a conceptual analysis and framework for reasoning about 

empirical sampling distributions from a series of sampling tasks -  the Prediction, 

Real/Fake, and Mystery Mixture Tasks. The conceptual framework of Shaughnessy et 

al. (2004a&b, 2005) provided the initial foundation for my examination; however, I 

refined and modified this framework in order to make it applicable and useful as a 

means for understanding TAs’ reasoning about sampling processes. The end product 

enabled me to discuss what constitutes a coherent and robust understanding of
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sampling processes in the context of reasoning about empirical sampling distributions 

produced from a sampling experiment, and the ways in which this reasoning might 

develop from less sophisticated reasoning.

In prior research using the same tasks, Shaughnessy et al. (2004a&b, 2005) 

observed that middle and secondary school students struggled to coordinate multiple 

attributes of a distribution. Furthermore, they often focused on individual data points 

and modal values to reason about, and draw conclusions from, the graphs of the 

empirical sampling distributions. There were exceptions to Shaughnessy et al.’s 

findings; specifically, many of the students that participated in the teaching episodes 

were able to coordinate multiple attributes of the distribution in their arguments. There 

is compelling evidence from the survey and interview data from this study, presented 

in detail in Chapter 4, that TAs experienced similar difficulty in coordinating multiple 

attributes of the experimental sampling distributions as they reasoned about the 

different tasks. This is a surprising and rather unexpected result.

To be clear, the TAs in this study reasoned about the Prediction Task with a higher 

level of sophistication than what was observed in the middle and secondary students in 

the study conducted by Shaughnessy et al. (2004a&b, 2005). The majority of survey 

participants and all of the interview participants used either a formal or informal 

probability distribution argument to make their predictions for the Prediction Task. 

However, when confronted with experimental data from a similar sampling context, as 

in the Real/Fake and Mystery Mixture Tasks, TAs experienced considerable difficulty 

applying more sophisticated statistical reasoning. TAs tended to revert back to single
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attributes such as the shape of the graph or the modal values to make statistical 

decisions. In large part, TAs’ difficulties reasoning about the experimental sampling 

distributions appeared to be rooted in their tensions over how much variability to 

expect in the experiment. TAs had a tendency to focus on the variability in the 

frequencies of the bars in the histograms of experimental sampling distributions, rather 

than statistical variation. TAs also experienced difficulty deciding how to use all four 

sampling distributions to better determine the population parameter during the 

Mystery Mixture Task. Specifically, Amanda, Sandy, Sam, and Joe experienced 

difficulty estimating the means/medians of graphical distributions of data and tended 

to rely on the modal values of one or more graphs in making their predictions.

In Chapter 4 , 1 suggested that TAs did not have a strong sense for how much 

variability to expect from sample to sample or from experimental sampling 

distribution to experimental sampling distribution. In fact, it appeared that several TAs 

expected much more variability than is likely to occur. That is, TAs did not think 

about placing bounds on variability in the experiment. Saldanha and Thompson (2003) 

alluded to this idea of bounded variability in their characterizations of K-12 students’ 

reasoning about sampling problems. Rubin et al. (1991) also alluded to the idea of 

bounded variability in their discussion of a spectrum of student reasoning ranging 

from overly focused on sample representativeness to overly focused on sample 

variability. In this study, bounded variability served as a useful explanatory construct 

for discussing TAs’ reasoning in experimental sampling situations. Bounded 

variability as an explanatory construct could serve as a useful tool in future studies or
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in teaching experiments as a means for discussing TAs’ reasoning about variability in 

different sampling situations.

Maintaining a sense of bounded variability is fundamentally important in making 

decisions about experimental data. Without an understanding of expected variability 

within and between samples and experimental sampling distributions TAs will likely 

experience difficulty applying their knowledge of statistical variation to experimental 

data sets, and distinguishing between more likely and less likely outcomes. This 

suggests that TAs may need more experiences working with experimental data sets to 

gain some intuition for the expected variability from sample to sample or from 

sampling distribution to sampling distribution. In addition, working with experimental 

data may provide TAs an opportunity to apply the statistical knowledge they are 

learning in their graduate course work to experimental situations.

7.1.2 Chapter 5: TAs’ knowledge of sampling and statistical inference

In Chapter 5 ,1 provided a conceptual analysis and framework for reasoning about 

sampling and statistical inference in the context of two specific tasks -  the Unusual 

Sample Task, and the Gallup Poll Task, respectively. The prior research of Kahneman 

and Tversky (1972), Konold (1989), and Watson and Moritz (2000a) provided a basis 

for investigating TAs’ knowledge of the role between sampling variability and sample 

size. The conceptual framework of Liu and Thompson (2005) provided the initial 

foundation for my examination of TAs’ understanding of statistical inference. 

However, I refined and modified these frameworks in order to make them applicable
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and useful as a means for understanding TAs’ reasoning about sampling and the role 

that sampling processes play in statistical inference. The end product enabled me to 

discuss what constitutes a coherent and robust understanding of sampling processes 

and statistical inference, and the ways in which TAs’ interpretations of these tasks 

influences their solution to the problem.

In tasks comparable to the Unusual Sample Task, Kahneman and Tversky (1972), 

Konold (1989) and Watson and Moritz (2000a) found that students from elementary 

school through college struggle to understand the relationship between sample size 

and sample variability. Often students believe that large samples are likely to have the 

same amount of variability as small samples. Konold suggested that this is a result of 

the way in which students interpret the question being asked. Konold found evidence 

to support the conjecture that students often believe they are being asked to determine 

whether the large or small sample will be more unusual. From this perspective, 

students often reason that it is not possible to determine whether a large or small 

sample is more likely to be unusual, since a possibility exists for either sample to 

produce unusual outcomes.

Although the survey results indicated that most TAs reasoned about the Unusual 

Sample Task from a perspective of likelihood and used the Law of Large Numbers as 

support for their reasoning, it is difficult to determine whether or not these TAs in fact 

had a long-term relative frequency perspective of probability, because of the brevity of 

their responses. However, a small percentage of survey participants did indicate that 

both samples were equally likely to be unusual, and provided responses consistent
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with Konold’s (1989) outcome approach. The interviews provided stronger evidence 

that at least two of the TAs in this study, Amanda and Sandy, reasoned by the outcome 

approach on the Unusual Sample Task.

In addition, three TAs, Andy, Joe, and Sam, also appeared to reason using the 

outcome approach on the Gallup Poll Task. That is, these TAs suggested that the 

confidence level was in reference to the individual samples, rather than the distribution 

of sample statistics. Furthermore, these TAs reasoned differently in different contexts. 

The interview data strongly suggests that these TAs did not have a robust 

understanding of the hypothetical repetition of the sampling process, that this process 

builds a distribution of sample statistics, and/or how this concept underscores the 

foundation of statistical inference.

I suggest, in accordance with Saldanha and Thompson (2003, in press), that the 

concept of repeated sampling is an elemental image necessary for coherent 

understandings of statistical inference. The results of Chapter 5 suggest that the 

concept of repeated sampling is foundational and must be developed in statistics 

instruction in the middle, secondary and tertiary grades in order to facilitate students’ 

learning of statistical inference in a coherent manner. That repeated sampling is a 

foundational aspect of statistical inference is akin to the foundational concept of 

partitioning for developing a coherent understanding of fractions, or the foundational 

concept of rates of change for developing a coherent understanding of differential 

calculus.
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7.1.3 Chapter 6: TAs’ Statistical Knowledge for Teaching Sampling

In Chapter 6 ,1 proposed a model for describing the types and quality of necessary 

statistical knowledge for teaching sampling. This model was built by fusing the 

constructs of statistical literacy, thinking and reasoning from the stochastics education 

research with current research on teacher knowledge, most notably with addition of 

the construct of mathematical knowledge for teaching from the work of Ball and her 

colleagues (Ball, Hill & Bass, 2005; Ball & Bass, 2003; Ball, Lubienski & Mewbom, 

2001; Ball & McDiarmid, 1990; Hill, Rowan & Ball, 2005), and the work of Eisenhart 

et al. (1993) on teachers’ procedural and conceptual knowledge. The visual 

representation from this model is shown again in Figure 47. This model was then 

applied toward my examination of the interview participants’ statistical knowledge for 

teaching.
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Figure 47: Model of Statistical Knowledge for Teaching 

Model for Statistical Knowledge for Teaching

Statistical Literacy Skills 
Common Content Knowledge

a) Understand common statistical terms
b) Read and make sense of statistics in the media
c) Ability to be a  critical consumer of statistics
d) Informal statistical inference skills

Statistical Thinking 
Specialized Content Knowledge

a) Deep and well connected 
knowledge of introductory 
statistics material -  
descriptive & inferential 
Consumer and producer of 
statistics — Design 
experiments, collect data, 
analyze data, draw

b

Knowledge of Content and 
Students

a )  Alternative solution strategies
b) Common student reasoning

c ) Common conceptual hurdles

The findings related in Chapters 4 and 5 reveal that TAs may not have as robust a 

content knowledge as necessary for teaching introductory statistics. Concepts may not
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be well connected and/or TAs may have non-normative views about expected 

variability within experimental data and/or how to interpret sampling and statistical 

inference problems. TAs’ difficulties are likely to transfer to student difficulties and 

may limit TAs’ ability to develop students’ statistical literacy and thinking skills. In 

addition, TAs did not have strong knowledge of content and students, including the 

types of difficulties students are likely to experience with certain topics and the 

developmental stages they are likely to pass through. That TAs lack knowledge of 

content and students is not surprising in that TAs are not necessarily studying issues in 

statistics education and have not taught the introductory statistics enough times to be 

familiar with particular student difficulties. Yet, it may be appropriate for TAs to have 

some exposure to research on students’ statistical reasoning in their orientation courses 

in order for them to develop strong teaching skills.

7.2 Contributions and Implications

There are two key contributions that this study offers to the statistics education 

community. First, the conceptual analysis and frameworks that emerged for how TAs 

reasoned about sampling processes constitutes a significant contribution to the 

statistics education community for the following reasons: (1) this research extends 

aspects of the research literature on students’ and teachers’ conceptions of sampling; 

(2) this is the first study on TAs’ statistical knowledge for teaching and fills a void in 

the research literature; and, (3) this study has the potential to improve undergraduate 

statistics education by improving TAs’ statistical knowledge for teaching. In Chapter

1 ,1 identified the importance of making improvements in undergraduate statistics
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education and the importance of considering the role of TAs in undergraduate 

statistics education. This study has made the first contribution in considering the role 

of TAs in undergraduate statistics education.

The frameworks, presented in Chapters 4 ,5  and 6, advance our understanding of 

reasoning about sampling processes and what constitutes strength and depth of 

understanding. For example, I demonstrated that the elemental images of bounded 

variability and repeated sampling appear foundational to developing a coherent 

understanding of statistical inference. Thus, these concepts provide explanatory 

constructs that need to be explicitly targeted in instruction. The frameworks also 

indicate alternative, non-normative ways of reasoning that TAs use for understanding 

sampling and the relationship between sampling and statistical inference. Taken 

together, the frameworks constitute a tool for thinking about how TAs reason and how 

to support the development of strong conceptions of sampling and statistical inference. 

In addition, that TAs experienced certain difficulties in reasoning about sampling and 

statistical inferences is surprising and suggests that sampling concepts are not trivial. 

Reasoning about experimental data and, in particular, resolving the tensions between 

representativeness and variability, and understanding how a distribution of sample 

statistics can be applied to numerous concepts in statistics, all prove to be rather 

challenging endeavors, even for people with considerable statistical experiences.

A second significant contribution this study offers is the framework that emerged 

for thinking about TAs’ statistical knowledge for teaching. Statistics educators have 

called for reform and improvement in K-12 as well as undergraduate statistics
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education (Shaughnessy, 2007) in order to promote statistical literacy and thinking 

skills among all students. Achieving this goal requires research efforts aimed at better 

understanding student thinking, and research efforts aimed at better understanding the 

statistical knowledge necessary for effective teaching. My framework points to 

characteristics such as content knowledge and knowledge of students’ statistical 

development that would enable the emergence of profound statistical knowledge for 

teaching skills. Specifically, I characterized: (a) normative ways of thinking about 

sampling that are necessary for teaching sampling topics; (b) non-normative ways in 

which TAs may conceive of sampling processes or their relation to statistical 

inference; (c) ways in which TAs thought about student learning; and, (d) whether or 

not TAs’ knowledge of content and students mapped to the statistics education 

community’s knowledge of content and students.

In light of the findings from Chapters 4 and 5, compelling evidence exists that 

suggests particular concepts which need to be addressed in TAs’ graduate school 

experience in order to enable the maturation of their statistical thinking skills. Most of 

the TAs in this study had taken multiple graduate statistics courses, and yet they 

appeared to experience difficulty applying more sophisticated forms of statistical 

reasoning in novel settings. TAs reverted back to statistically naive forms of 

reasoning, such as shape and modal values, in attempting to make decisions based on 

experimental information. In addition, TAs did not appear to have a robust knowledge 

of the importance of a distribution of sample statistics in sampling and statistical 

inference topics. Thus, perhaps more abstract, graduate level work is not sufficient for

349



enabling the evolution of TAs’ understandings of sampling topics. Specifically, I 

argue that TAs could benefit from the opportunity to make conjectures about sampling 

tasks, perform sampling experiments to test those conjectures, and then reflect upon 

the results. These hands-on experiments may enable a deeper, richer development of 

TAs’ reasoning about variability of experimental data. These experiences may lead to 

a deeper understanding of the effects of sample size on sample variability, the 

applicability of a distribution of sample statistics to the foundations of statistical 

inference, and the application of their formal statistical training to novel experimental 

situations.

The frameworks on TAs’ reasoning about sampling and on the necessary 

knowledge for teaching sampling concepts may also provide insights for the 

construction of professional development or mentoring opportunities for TAs teaching 

introductory statistics courses. One strategy for professional development gleaned 

from this dissertation study would include engaging TAs in sampling tasks like the 

ones used in this research in order to:

■ Strengthen TAs’ ability to apply their knowledge of distribution to 

experimental situations.

■ Provide TAs the opportunity to grapple with and strengthen their 

understanding of variability within experimental situations.

■ Provide TAs the opportunity to consider on a deeper level their 

interpretations of probability in different contexts and to make connections
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between probability and sampling concepts, and probability and statistical

inference.

■ Provide TAs the opportunity to explore models of student reasoning and 

common conceptual hurdles to understanding sampling topics as a basis for 

effecting change in TAs’ teaching practices.

7.3 Limitations

Of course, all empirical studies have limitations. In hindsight there are several 

limitations to this study. First, the ability to generalize my results to a larger 

population of TAs is limited. My participants could not be randomly selected and 

comprised a convenience sample. In addition, I was unable to collect information 

about the larger population of TAs from each of the universities that comprised my 

survey pool. For example, I could not obtain information on the age, gender, English 

as a second language, or statistics backgrounds of all the mathematics and statistics 

TAs from the 18 universities that participated in my study. This information would 

have been useful in order to gauge whether or not the subset of TAs that participated 

in my study from each university were representative of the larger group of TAs at 

each university. Also, in some cases I had only 2 participants from one university and 

12 participants from another university, making it difficult to compare across 

universities. However, given that the limitations I observed in TAs’ reasoning have 

been observed in K-12 students and K-12 teachers, I highly suspect that the difficulties 

experienced by these TAs are not unusual.
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Second, I was unable to test my conjectures about using sampling tasks like the 

ones in the present study as a means for improving TAs’ statistical content knowledge. 

Thus, there is no information on whether engaging TAs in these types of hands-on 

tasks would improve their statistical knowledge for teaching. Third, I was unable to 

test my conjectures about the necessary statistical knowledge for effective teaching on 

student achievement. The research of Ball and her colleagues (Ball, Hill & Bass, 2005; 

Ball & Bass, 2003; Ball, Lubienski & Mewbom, 2001; Ball & McDiarmid, 1990; Hill, 

Rowan & Ball, 2005) points to higher student achievement among students whose 

teachers have higher scores on the mathematical knowledge for teaching assessment 

created by Ball and her colleagues. Unfortunately, there is no data available on 

whether my suggested improvements for TAs’ statistical knowledge for teaching 

would translate into gains in student achievement.

Finally, the methodology of providing hypothetical student responses proved 

successful in eliciting TAs’ content knowledge, and their knowledge of content and 

students. Unfortunately, in certain tasks I asked rather open-ended questions about the 

types of difficulties TAs expected students to have. These open-ended questions 

provided interesting information on TAs’ beliefs about teaching and how students 

learn, but it did not access TAs’ knowledge of student development in the same way 

that the hypothetical student responses did. In retrospect I would have developed more 

hypothetical student responses for each task. I believe this would have provided a 

clearer picture of TAs’ knowledge of content and students.
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7.4 Suggestions for Future Research

There are many directions for future research that could enable a greater 

understanding of TAs’ statistical knowledge for teaching, and what features of their 

statistical knowledge for teaching could result in gains in student achievement. An 

obvious next step for this research would be to conduct a seminar or teaching 

experiment using the same research tasks to study the effects of such an experience on 

TAs’ statistical reasoning. There is some evidence from the interview data that 

suggests this could result in positive outcomes in TA reasoning. For example, there 

were times during the interviews when TAs mentioned that they had never “ had to 

pick apart ” how they thought about certain ideas which were raised during the 

interviews. The interview participants often said things like “wait, I’m putting all the 

pieces together”, or “I’ve never thought about that before”. These comments suggest 

that the tasks challenged TAs to make sense of subtle concepts that they had perhaps 

taken for granted in the past. It also suggests that TAs were engaged in a learning 

experience during the interview conversations.

A natural next step in this research would be to develop a seminar for TAs that 

would engage them in sampling tasks, activities and conversations around student 

thinking and learning in this area. In addition, assessments could be designed that 

would measure TAs’ statistical knowledge for teaching. A large comparison study 

between seminar participants and non-participants and their students’ achievement 

could be conducted in order to see if the seminar was effective in improving TAs’ 

statistical knowledge for teaching, and subsequently students’ statistical knowledge.
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APPENDIX

TASKS

Prediction Task

PREDICTION TASK
A jar contains 1000 candies, 750 are red and 250 are yellow. The candies 
are mixed well. Suppose that you pull a random sample of 10 candies 
from the jar, record the number of reds, put the candies back in the jar and 
mix them up. Suppose you do this 50 times. How many times out of 50 do 
you think you would get a handful of 10 candies with:

Number of Red Candies in 
Handfuls of 10

Prediction

0 red candies
1 red candies
2 red candies
3 red candies
4 red candies
5 red candies
6 red candies
7 red candies
8 red candies
9 red candies
10 red candies
Total 50
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Hypothetical Student Responses for the Prediction Task

The table below shows the predictions of two introductory statistics students

Number of Red Candies 
in Handfuls of 10

Predictions 
Student 1

Predictions 
Student 2

0 red candies 0 1
1 red candies 0 1
2 red candies 0 1
3 red candies 0 1
4 red candies 0 2
5 red candies 5 3
6 red candies 9 4
7 red candies 15 17
8 red candies 18 18
9 red candies 3 1
10 red candies 0 1
TOTAL 50 50

a) In your statistical opinion, Student 1 gave a(n):

□  Reasonable prediction □  Unreasonable prediction 

Explain how you came to this decision.

If you think this student’s prediction is unreasonable explain what the 
student was thinking that could have resulted in an unreasonable 
prediction:

b) In your statistical opinion, Student 2 gave a(n):

□  Reasonable prediction □  Unreasonable prediction 

Explain how you came to this decision:

If you think this student’s prediction is unreasonable explain what the 
student was thinking that could have resulted in an unreasonable 
prediction:

365



Real/Fake Task 

Real/Fake Task:
A class conducted an experiment, pulling 50 samples of 10 candies from a jar with 750 red and 250 
yellows, and graphed the number of reds. However, in this class some of the groups ‘cheated’ and did not 
really do the experiment, they just made up a graph. Here are some of the students’ graphs from that class. 
Which graphs do you think are real? Which graphs do you think are made-up? Explain the reasons for your 
choices.

Number_ofJ?e<bJton<Jfub_ofj o
2 4 6 8
Number>of_Retb_Handfub_of_10

0 10

2 4  6
NuBtber_ofJled3_Hindfuls_of_10

2 4 6 8
Numb«_ofJtedJLH*ndfuta_of_ 10

0 d0 10 10
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Mystery Mixture Task

Mystery Mixture Task
The graphs below all came from a class that is trying to estimate a mystery mixture of 
1000 red and yellow candies in a large jar. They pulled 50 samples of size 10 (recording 
the number of reds and then replacing and remixing each time). Here are the graphs for 
the number of reds for four groups from that class.

| Graph

6 80  Z
Number_of_Red_Candles_ln_Handfuls_of_10

4 10

Graph 2 1

0 2 4 6 8 10
Number_ofJ?ed_Candies _in_Handfuls_of_10

! Graph 3 SilNXll .............■......... ...........................

*....\  i .....1...1 .....i — ?— r . t ....f I I 11f 3  ,— ^

Number_of_Re<t,Candies_in_Han(lfuls_of_10  N um ber_of_R ed_C andies_ in_H andfu ls_of_ l 0

a) What do you think the mixture in the jar might be?
b) Explain why you think this.
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The Unusual Sample Task

The Unusual Sample Task

Researchers from Erie County in Buffalo were studying the weight of Grade 5 
children. The researchers went to 2 schools: one school was in the center of the city 
and one school was in the country. Each school had about half girls and half boys. 
The researchers took a random sample from each school: 50 children from the city 
school, 20 children from the country school. One of these samples was unusual 
because it had more than 80% boys. Is the unusual sample more likely to be the 
large sample of 50 from the city school, the small sample of 20 from the country 
school, or are both samples equally likely to be the unusual sample?

Gallup Poll Task

Gallup Poll Task
Your statistics class was discussing a Gallup poll of 500 Oregon voters’ opinions 
regarding the creation of a state sales tax. The poll stated, “...the survey showed 
that 36% of Oregon voters think a state sales tax is necessary to overcome budget 
problems”. The poll had a margin of error of ± 4%. Discuss the meaning of 
margin of error in this context
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Gallop Poll Task: Hypothetical Student Interpretations of Margin of Error 
Student A says: The margin of error being 4% means that between 32% and 40% of all Oregon 
voters believe an income tax is necessary.
Student B says: We don’t know if the interval 32% to 40% contains the true percentage of voters 
that believe an income tax is necessary, but if we sample 100 times, about 94 of those times the 
interval would capture the true percentage of voters.
Student C says: The interval 32% to 40% will be off about 4% of the time, or 4  out of 100 times. 
Student D says: If you performed repeated samples of 500 voters, the proportion of voters in favor 
of sales tax in these samples would fall within the interval 32% to 40%, the majority of the time. 
Student E says: I can be 95% sure that all the sample statistics will fall within ± 4% of the 
unknown population parameter.
Student F says: The interval 36% ± 4% has a high probability (approximately 95%) of being 
repeated if the sample was repeated.

Gallup Poll Task: Investigating Confidence Level

Hypothetical Student 1: A 95% confidence level means that you can be 95% confident that 
the particular interval found in the survey captures the population proportion. Do you agree 
or disagree with this student’s interpretation of confidence? Explain.
Hypothetical Student 2: A 95% confidence level means that you are 95% confident in the 
estimation process. That is, 95% of the time you get good interval estimates that capture the 
population proportion. Do you agree or disagree with this student’s interpretation of 
confidence? Explain.
What would the confidence level be for this Galluip poll?
How do you interpret confidence level in this context?
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