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ABSTRACT 

An abstract of the dissertation of Osama Neiroukh for the Doctor of Philosophy 

in Electrical and Computer Engineering presented May 8, 2008. 

Title: Advanced Algorithms for VLSI: Statistical Circuit Optimization and 

Cyclic Circuit Analysis 

This work focuses on two emerging fields in VLSI. The first is use of 

statistical formulations to tackle one of the classical problems in VLSI design 

and analysis domains, namely gate sizing. The second is on analysis of non

traditional digital systems in the form of cyclic combinational circuits. 

In the first part, a new approach for enhancing the process-variation tol

erance of digital circuits is described. We extend recent advances in statistical 

timing analysis into an optimization framework. Our objective is to reduce the 

performance variance of a technology-mapped circuit where delays across el

ements are represented by random variables which capture the manufacturing 

variations. We introduce the notion of statistical critical paths, which account 

for both means and variances of performance variation. An optimization en-



gine is used to size gates with a goal of reducing the timing variance along the 

statistical critical paths. Circuit optimization is carried out using a gain-based 

gate sizing algorithm that terminates when constraints are satisfied or no further 

improvements can be made. We show optimization results that demonstrate an 

average of 72% reduction in performance variation at the expense of average 

20% increase in design area. 

In the second part, we tackle the problem of analyzing cyclic circuits. 

Compiling high-level hardware languages can produce circuits containing com

binational cycles that can never be sensitized. Such circuits do have well

defined functional behavior, but wreak havoc with most tools, which assume 

acyclic combinational logic. As such, some sort of cycle-removal step is usu

ally necessary. We present an algorithm able to quickly and exactly charac

terize all combinational behavior of a cyclic circuit. It used a combination of 

explicit and implicit methods to compute input patterns that make the circuit 

behave combinationally. This can be used to restructure the circuit into an 

acyclic equivalent, report errors, or as an optimization aid. Experiments show 

our algorithm runs several orders of magnitude faster than existing ones on 

real-life cyclic circuits, making it useful in practice. 
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Chapter 1 

Introduction 

Advances in VLSI technology continue to present both challenging and 

exciting opportunities for advanced research in electrical and computer engi

neering. Moore's law has continued to motivate designers to keep fulfilling 

its prediction by continually shrinking down device geometries and packing 

more devices per square micron while meeting numerous challenges brought 

on by the most recent technologies. These challenges include several param

eters such as power density and dissipation, supply voltage droop, and relia

bility under wide operating conditions. However, the most pressing difficulty 

facing designers today is the decreasing correlation between physical verifi

cation (PV) models used in pre-silicon design and optimization and behavior 

of manufactured circuits on silicon. Manufacturing variations and its adverse 

effect on predictability on silicon behavior have spurred designers to seek new 

tools and methodologies to deal with these variations in order to better predict 

1 



performance of circuits during design cycle. 

This dissertation focuses on two emerging fields in VLSI. The first is 

use of statistical formulations to tackle one of the classical problems in VLSI 

design and analysis domains, namely gate sizing. The second is on analysis 

of non-traditional digital systems in the form of cyclic combinational circuits. 

Neither field is really new, early publications in both topics can be traced back 

to the 60's and 70's as our literature survey will show. However, both fields 

have received renewed interest recently, with statistical approaches in particu

lar featured prominently at all major CAD conferences nowadays and getting 

increased coverage in journals. 

Usage of statistical approaches has been well-known in parametric yield 

analysis for post-manufacturing die sorting and analysis, but had not made its 

foray yet into pre-silicon analysis or optimization areas. It began to receive 

increased focus around the tum of the 21st century when Physical Verification 

(PV) models of pre-silicon behavior started to diverge substantially from ac

tual silicon measurements. The field has exploded in the past 5 years, with 

almost every analysis or optimization problem in VLSI revisited from a sta

tistical perspective. It remains to be seen whether this is merely an academic 

curiosity or whether statistical analysis and optimization techniques will nar

row the widening gap between pre-silicon models and post-silicon behavior. 
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As of this writing, IBM is the only company which has publicly claimed to 

deploy statistical static timing analysis in pre-silicon PV models of industrial 

circuits [32, 33]. It is not clear to what extent does IBM use this methodology, 

and whether it merely augmented or completely replaced standard static tim

ing tools as the golden timing verification model. At the same time, the field 

cannot be neglected. At least for the time being, it provides a rich field for re

search, though competition is stiff with numerous researchers both in academia 

and industry attacking a variety of CAD problems using statistical techniques 

very aggressively. 

Cyclic circuits appear to have been a black sheep of digital circuits. 

Convincing examples of cyclic circuits that had provably less gates than any 

acyclic equivalents have been around for decades. Nevertheless, cyclic circuits 

have not received much attention in industry as candidates for deployment in 

real-life ASICs or custom designs. While circuits that have registers (flops or 

latches) that depend on current state for future state and output calculation are 

commonplace in state machine design, purely combinational cyclic circuits are 

not intuitive to reason about. Despite this, the lure of area savings and po

tential for other advantages has continued to spur researchers to study these 

circuits. More recently, a synthesis engine was proposed that produces cyclic 

implementations at an area saving compared to traditional synthesis. The re-
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search was well-accepted, receiving best paper award at Design Automation 

Conference in 2003 [ 49]. 

An alternate motivation for tackling cyclic circuits arises during pro

cessing of high level hardware modeling languages such as ESTEREL [8]. 

Some of the literature on cyclic circuit analysis was contributed by researchers 

who were trying to grapple with ESTEREL and other synchronous program

ming languages such as LUSTRE [25] and ARGOS [36]. Synthesizing these 

languages into digital circuits often yields loops that are difficult for regular 

CAD tools to handle. Ability to handle cycles became imperative for compi

lation of these languages, forcing researchers to find ways to take out these 

cycles as a post-processing step before handing off these circuits to other tools. 

This dissertation tackles both areas separately. The first part focuses on 

usage of statistical analysis in a digital circuit optimization setting. The main 

contribution is an adaptation of well-known gate sizing techniques to use a 

statistical timing model toward reducing the performance variation of a circuit 

at design time. The second part of this dissertation investigates more efficient 

methods for analysis of cyclic circuits. We note that the two topics are distinct 

with no overlap in our context. 

At a high level, there are similarities in the two research areas we pro-
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pose here. Both problems involve netlist level analysis and optimization at the 

gate-level granularity. Gate sizing is NP-complete while cyclic circuit anal

ysis is considered to be co-NP-complete. There are also distinct differences 

between the two areas. Gate sizing belongs to the class of electronic design 

automation problems, while cyclic circuit analysis is an enumeration problem 

as we will show. 

There are advantages to tackling such disparate problems as part of a 

single PhD research. The field of IC design is increasingly becoming more 

vertical, with design, analysis and verification becoming strongly coupled with 

an expectation that a designer can move between these area with ease. Another 

rationale here was that a practitioner in the field of VLSI design would do 

well to understand in depth both analysis and design optimization domains of 

CAD techniques from an algorithmic and practical perspective as they present 

uniquely different challenges. Our characterization below of the differences 

is rather subjective but reflects the author's combined industrial and academic 

experience with these fields. 

Automated circuit optimization techniques are much more heuristics 

based, with many decisions and tunings that can work for one design but not 

other designs. In addition, there is a possibility of oscillations or other unex

pected problems where the algorithm seems to go astray. Given that most of the 
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problems EDA tools attempt to solve are NP-complete, a thorough understand

ing of the challenges of overcoming local optima and explaining otherwise odd 

outputs is a daily struggle for any engineer attempting to use and steer EDA 

design tools. This has been a perennial component of this author's job at In

tel as an automation design engineer covering automated synthesis, placement, 

sizing, and routing tools. The research that was done in this field has helped 

the author tremendously with understanding the difficult tradeoffs these tools 

are juggling especially as the given timing, area, and power constraints that are 

usually impossible to meet at once. 

The chief challenge with analysis techniques in CAD is reducing run

time while keeping peak memory usage within reasonable bounds. Analysis 

algorithms have different requirements than optimization algorithms. A design 

optimization algorithm might be successful even if terminates due to exceed

ing acceptable runtime or runs out of memory and stops earlier than it would 

otherwise having achieved a satisfactory result. On the other hand, an anal

ysis algorithm must complete its execution; a partial result is of no value in 

practice. This makes data representation and programming methodology used 

critical to a successful implementation. Usage of existing technologies such as 

SAT, BDD manipulation, and ATPG techniques should be considered as much 

as possible by mapping the given problem into one of these formulations. This 
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enables designers to reuse efficient solvers that are publicly available for each 

of these formulations and improving the state of the art by focusing on the 

unique problem at hand. 

The rest of this dissertation is structured as follows. Chapter 2 starts 

with an overview of statistical analysis and optimization of digital circuits. It 

presents an extensive literature survey covering the topic and gives an introduc

tion of the problem we addressed and motivation for it. It presents our proposed 

algorithm for statistical gate sizing and provides experimental results and de

tailed analysis of the algorithm's performance on tested circuits. Chapter 3 

presents a literature survey on cyclic circuits and presents motivation for the 

problem we tackle. We provide theoretical underpinnings for our circuit model 

and present our original algorithm for cyclic circuit analysis as well in-depth 

step-by-step review of how it works in practice with aid of examples. Finally 

chapter 4 gives concluding remarks about our contributions and directions for 

future research. 
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Chapter 2 

Statistical Optimizations of Digital Circuits 

2.1 Introduction 

Recent advances in VLSI have continued to shrink device geometries at 

a steady rate in accordance with Moore's Law. However, this advancement has 

also been accompanied by increasing variations in the performance of fabri

cated circuits. Numerous factors have contributed to this trend including clock 

PLL jitter, noise, PV model inaccuracies, and manufacturing variations. Nev

ertheless, it is often desirable to manufacture ASICs on advanced technology 

nodes due to substantial increase in available device count, reduction in power 

consumption, higher yields and lower costs due to the larger 300mm wafers. 

Researchers have recently focused on statistical analysis approaches in 

an attempt to grapple with these sources of performance variations. Statistical 

static timing analysis (SSTA) is a modification of static timing analysis (STA) 
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for determining delay across a circuit. SSTA models delay arcs across gates 

as random variables rather than discrete values which are used in regular STA. 

SSTA propagate timing constraints across a circuit using probability distribu

tion functions (pdfs). A virtual sink is often used for all the circuits' outputs 

producing a single pdf that represents delay across the circuit. 

When this research was first conceived, a substantial focus had gone 

into the analysis aspect of this problem [1,28]. However, research into statis

tical optimization of circuits had been surprisingly diminutive. Circuit opti

mization was done in [29] by using LANCELOT [17] but had severe limitation 

on circuit size and used unrealistically simple gate delay models. A concept 

of criticality of gates was used in [27] but did not address the variance of the 

timing path delays. A transistor level approach was presented in [ 4]. Several 

yield-specific techniques were presented in [21]. 

2.2 Literature Survey 

An extensive review of prior work on areas related to this research area 

was undertaken before research into this area was started. Below is a summary 

of contributions in this field. It should be noted that research into application 

of statistical techniques to mainstream EDA problems continues to advance 
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at a very rapid pace, with almost all major CAD conferences dedicating at 

least one or two sessions to statistical analysis and optimization approaches. 

For example, the entire 2004 ACM/IEEE TAU Workshop on Timing Issues in 

the Specification and Synthesis of Digital Systems was dedicated to statistical 

approaches to timing analysis. Many topics that had previously appeared to 

mature such as static timing analysis, power analysis, and gate-level design 

optimization are now being re-examined using statistical formulations. We 

survey publications in a number of research thrusts below. However, we stress 

that such a survey is only a sampling of what is rapidly becoming a vast body 

of literature covering all aspects of electronic design and analysis. 

2.2.1 Statistical Yield Optimization 

A wide variety of methods for yield optimization has been developed 

over the last few decades. A comprehensive reference that covers an expo

sition of representative techniques is [21]. Traditional statistical optimization 

methods define the yield as the probability of a random variable that represents 

a performance metric belonging to an acceptability region. This acceptability 

region can be expressed as a multi-dimensional integral which is typically eval

uated by Monte-Carlo based methods or by relying on analytical expressions 

for the circuit performance parameters of interest. Monte-Carlo techniques are 



far too expensive to deploy for digital circuit design due to the dimensionality 

of the statistical space. 

While Monte-Carlo techniques find many uses in analysis of circuits, 

they are rarely deployed in a circuit optimization context. Modeling of per

formance metrics such delay along with possible variations using analytical 

expressions is also intractable especially in deep submicron technologies. In 

light of this, we found that traditional yield optimization techniques while be

ing highly useful in parametric yield contexts are not directly usable for the 

problem at hand. 

2.2.2 Gate Sizing 

Gate sizing has been studied extensively in the literature. Gate sizing 

is typically performed after technology mapping during logic synthesis and re

peated several times during the physical design process. The aim of gate sizing 

is to assign sizes to all gates in a circuit such that some objective function is 

satisfied, possibly under some constraints. Typical formulations include min

imizing area or power subject to a maximum delay constraint. Various gate 

delay models have been proposed in the literature such as Load-Independent 

Delay Model (LIDM) and Load Dependent Delay Model (LDDM). 
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The choice of which gate delay model to use has a direct impact on 

choice and efficacy of the gate sizing algorithm to be deployed. Since the 

output load of a gate has a great impact on delay across it, LIDM is of little 

value in real optimization contexts. Gate sizing has been shown to be NP

complete under LDDM which rules out finding globally optimal solutions for 

real-life circuits which consist of tens to hundreds of thousands of gates. 

Research in circuit sizing has been carried out both at the transistor as 

well as gate level. Transistor level sizing is more accurate but presumes ability 

to size and therefore adjust layout on a per transistor basis, which is becoming 

less common due to layout complexity of recent processes. It is also limited 

to smaller circuits compared to gate-level approaches. Gate sizing relies on 

standard cell libraries that can come from library vendors which are designed 

in discrete sizes, laid out, and pre-characterized for timing, area and power. A 

typical cell characterization produces lookup tables for every input-pin output

pin transition. Timing characterization tables represent input slope and output 

capacitance as inputs with output slopes and delay through gate as outputs. 

Gate sizing algorithms can be classified into one of two categories: 

global approaches and local approaches. Global approaches solve gate sizing 

in the continuous domain by relying on optimization techniques such as con

vex programming with posynomials [23], linear programming [5], sequential 
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quadratic programming [37], or Lagrangian Relaxation [13]. While these ap

proaches can claim a globally optimum solution, they have two drawbacks. The 

presumption of a convex problem where a single global optimum exists is not 

supported by practical evidence. More importantly, library gates tend to come 

in pre-determined discrete sizes and solving the problem in the continuous do

main requires snapping back size assignments to closest available gate sizes. 

Since standard cell library gates tend to be sized in a geometric progression 

of drive strength, this discretization may assign drive strengths significantly 

different from the values obtained in the continuous domain. Advantages of 

global approaches include a global solution without oscillations and faster run

time compared to local approaches. 

Local sizing approaches assign gate sizes using local gain-based or 

greedy heuristics. Examples of this approach are available in [14, 19,40]. Most 

of these algorithms share several common elements. The critical path, some

times referred to as the Worst Negative Slack (WNS) path, is usually targeted 

for optimization. We note that the WNS path can change as the optimization 

proceeds so the path being evaluated for resizing must be updated at specific in

tervals in the optimization iteration. The algorithms can be run in a constrained 

mode where delay for example is optimized first then area is recovered as far as 

possible without violating a delay constraint. Other constraints can be similarly 
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satisfied either during optimization by not violating some cost/benefit ratio or 

in a recovery mode after unconstrained optimization. 

Coudert [19] argues that accurate delay models make gate sizing a 

non-linear, non-convex, constrained, discrete optimization problem. Our ex

perience corroborates this assertion, especially for deep-submicron technolo

gies which are the target domain for this research. Many of the commercial 

tools for logic and physical synthesis such as Design Compiler® and Physical 

Compiler® from Synopsys@ also use local approaches for gate sizing as these 

approaches are more accurate despite being slower than global approaches. 

2.2.3 SSTA: Statistical Static Timing Analysis 

The earliest paper that suggested a statistical approach to timing anal

ysis known to the author is [ 41]. The author attempted to determine the dis

tribution of delay from source to sink of an acyclic directed graph that had 

probability distributions associated with its elements. However, the focus on 

use of statistical approaches in timing analysis is relatively new. Pioneering 

works in this field appeared in [ 11, 20, 30]. 

While difficulties in deterministic timing analysis such as false path de

tection carry into statistical approaches, the latter also introduce their own set 
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of challenges. In particular, deterministic timing analysis relies on two opera

tions for propagating timing through a network, sum and max. The summing 

operation adds arrival times at inputs of gates to delays from those input pins 

to the output. The max operation decides which of these to propagate for max 

frequency analysis. Performing these calculations on pdfs is more expensive 

computationally than their counterparts in the deterministic case. Moreover, 

the degree of correlation between two pdfs arriving at a gate's inputs due to 

reconvergent fanouts needs be taken into account for accurate calculations. 

In the past few years statistical techniques for timing analysis of digi

tal circuits have received tremendous focus with representative works includ

ing [2, 12, 34, 47]. A recent paper [9] reviews many of the the recent devel

opments in SSTA. It discusses its underlying models and assumptions, then 

surveys the major approaches, and closes by discussing its remaining key chal

lenges. It also has a large number of references which constitute a compendium 

ofrecent publications on statistical techniques in timing analysis and optimiza

tion. 
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2.3 SSTA Overview 

This section provides an overview of statistical timing analysis based 

on [9]. For more in-depth treatments, the reader is referred to the recent 

overview paper [9] and the references that paper cites. 

2.3.1 Introduction to SSTA 

Traditional timing analysis abstracts a timing graph from a combina

tional circuit as follos. The nodes of the timing graph represent primary in

puts/ outputs of the circuit and gate input/ output pins. The edge of the tim

ing graph represent the timing elements of the circuit, namely, the gate input

pinoutput-pin delay and wire delay from a driver to a receiver, as shown in Fig

ure 2.1. 

The weight on these edges represents the delay of the corresponding 

timing element. For a combinational circuit, it is convenient to connect all 

primary inputs to a virtual source node with virtual edges having weight equal 

to the input arrival times. Similarly, all the primary outputs are connected to a 

virtual sink node through virtual edges with weights representing the required 

arrival times. The resulting timing graph, therefore, has a single source and 

sink node. 
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Figure 2.1: Mapping from circuit to timing graph for timing analysis. 

SSTA uses the same fundamental concept but uses random variables 

(RVs) to model gate delays. The random variables capture the uncertainty 

introduced by the manufacturing variations which are prevalent in deep submi

cron technologies. A formal definition of statistical timing analysis follows. 

Definition 1. A timing graph G = N, E, n8 , n1 is a directed graph having 

exactly one source node ns and one sink node nf, where N is a set of nodes, 

and E is a set of edges. The weight associated with an edge corresponds to 

either the gate delay or the interconnect delay. The timing graph is said to be 

a statistical timing graph if ith edge weight di is an RV. 
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In traditional DSTA, the most basic goal of the analysis is to find the 

maximum delay between the source node and the sink node of a timing graph, 

which is the delay of the longest path in the circuit. When modeling process

induced delay variations, the sample space is the set of all manufactured dies. 

In this case, the device parameters will have different values across this sample 

space, hence the critical path and its delay will change from one die to the next. 

Therefore, the delay of the circuit is also an RV, and the first task of SSTA 

is to compute the characteristics of this RV. This is performed by computing 

its probability-distribution function (PDF) or cumulative-distribution function 

(CDF) (see Figure 2.2). Alternatively, only specific statistical characteristics of 

the distribution, such as its mean and standard deviation, can be computed. 

Note that the CDF and the PDF can be derived from one another through 

differentiation and integration. Given the CDF of circuit delay of a design and 

the required performance constraint the anticipated yield can be determined 

from the CDF. Conversely, given the CDF of the circuit delay and the required 

yield, the maximum frequency at which the set of yielding chips can be oper

ated at can be found. 

18 



1 
performance 
yield 

F(t) 

P(D~t)= F(t) = fo/(t)dt 

t>i----"----.......1-------....... 
f(t) 

.Jof(t)dt = I 

Figure 2.2: Examples of cumulative and probability distribution functions for 

a circuit's timing. 

2.3.2 Challenges and Assumptions in SSTA 

This section goes through various underlying assumptions and chal

lenges pertaining to usage of SSTA in digital circuits 

• Gates versus wires: Most literature to date presumes that gates are far 

more susceptible to variations than interconnects. There is some evi

dence for this in what little real silicon data has surfaced. As such, in 

this work, we will also stay with this assumption, modelling gate delays 

as random variables and ignoring wire delays as they do not impact our 

analysis or optimization 
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• Normal distributions: Again, we find that most literature assumes that 

gate delays can be represented by random variables. As [9] notes, normal 

or Gaussian distributions are found to be the most commonly observed 

distributions for RVs, and a number of elegant analytical results exist for 

them in the statistics literature. Hence, most of the research in SSTA 

assumed normal distributions for physical device parameters, electrical 

device parameters, gate delays, and arrival times. However, some phys

ical device parameters may have significantly nonnormal distributions. 

Moreover, one of the two operations dominant in timing analysis, the 

max operator, is nonlinear and produces a nonnormal distribution when 

applied to two normal distributions. Nonnormal delay and arrival-time 

distributions introduce significant challenges for efficient SSTA. 

• Correlation: Due to reconvergent fanouts from the same gate, inputs ar

riving at a given gate may have some common sources. This must be 

accounted for if we are to produce exact timing analysis. As per [9], the 

input arrival times at the reconvergent node become dependent on each 

other because of the shared edge delay. This dependence leads to so

called topological correlation between the arrival times and complicates 

the maximum operation at the reconvergent node. To perform accurate 

analysis, the SSTA algorithm must capture and propagate this correla-
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tion so that it is correctly accounted for during the computation of the 

maximum function. 

2.4 SSTA-based Circuit Optimization: Problem Overview 

This section will provide an overview of the problem we propose to 

solve and provide a mathematical formulation and motivation for this research 

direction. 

2.4.1 Problem Formulation 

The starting point for our problem is a technology mapped digital cir

cuit. Without loss of generality, this paper focuses on combinational circuits. 

We ignore interconnect delay though accounting for them can be readily ac

commodated. This is in line with other published literature and practical find

ings, as analysis of manufactured circuits indicates devices are much more sus

ceptible to manufacturing variations than interconnect nets. 

Our method uses discrete probability distribution functions (pdfs) through-

out. 

Definition 2. A discrete pdf for random variable X is defined as one or more 
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points where 

f(x) = Pr(X = x) 

The mean and variance of a discrete random variable are given by 

µx = I:xd(xi) 

aJ = L(xi - µx )2 f(xi) 

(2.1) 

(2.2) 

(2.3) 

We shall also use the cumulative distribution function ( cdf) to illustrate con

cepts and results. The cdf for a discrete random variable X is defined as 

F(x) = Pr(X:::; x) (2.4) 

We assume that every gate delay in the circuit is represented by a nor

mally distributed random variable which is consistent with other published lit

erature. In line with other researchers, we focus our work on gate delays and 

sizes and ignore second order factors such as slope propagation or capacitance 

variations. We shall have more to say about modeling of transistor variations 

in the conclusions chapter. 

Both the mean and standard deviation of delay through a bigger gate 

are less than those of a smaller gate. Arrival times are propagated throughout 

the circuit as pdfs. 
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We define the unconstrained timing variance minimization problem for 

a circuit as 

Minimize CYb (2.5) 

where 

µo = Mean (RVo) 

CYi = Variance ( RV0 ) 

RV0 = Max (R¼) where the Max is the statistical Max operator on random variables 
iEOUT 

R¼ = Random variable representing propagated arrival time of output oi 

OUT= { o1 , o2 , · · · , ON} are the circuits outputs 

As we shall see later, due to the gain-based nature of the algorithm we propose, 

a constrained version is possible by terminating it once certain constraints are 

satisfied. From this point onwards, we shall focus on the unconstrained prob

lem without loss of generality. However, in the course of making local opti

mization, we show how a user-defined weight multiplier can in fact steer the 

optimization towards different goals. 

We note that the random variable RV0 characterizes the mean and vari

ance of the entire circuit. It should be highlighted that a circuit may have multi

ple outputs with close mean delays but different variances. ln this case, all such 
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outputs will contribute to the overall variance cr3c of the circuits performance. 

Alternatively, an output with the highest variance may have a much smaller 

mean than other outputs and reducing its variance will have minimal effect on 

overall variance of the circuits performance. Any algorithm that attempts to al

ter RV0 must account for both means and variances of delays simultaneously. 

Figure 2.3 gives PDF plots of RV0 at different optimization points 

while Figure 2.4 provides the equivalent plots using CDFs instead of PDFs. 

The original line represents a pdf obtained by optimizing a circuit with a goal 

of minimizing the mean of the longest delay in the circuit. Such a circuit will 

typically exhibit the widest spread in performance due to high usage of smaller 

devices which exhibit more manufacturing variability. Depending on target 

application of circuit, such a performance variance around the center can rep

resent undesirable uncertainty that should be minimized. In [ 48] reduction of 

uncertainty was shown to be a key strategy for designing leading edge indus

trial designs. Decreasing variance can increase the overall yield of a design. 

An example of this is optimization 1 in Figure 2.3 which yields more func

tional units at period T relative to the original design. However, our technique 

is quite general and is not limited to yield optimization. 

Decreasing performance variance is also desirable on several other ac

counts even if it means relaxing the original timing targets. For example, cir-
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Figure 2.3: Example of circuit output Delay PDFs 

cuits on the original curve to the left of X in Figure 2.3 below will exhibit unde

sirable variance in power consumption due to both dynamic and leakage power 

variations. These variations in tum contribute uncertainties in thermal dissi-

pation and reliability verification. The effects of such performance variations 

can adversely product qualification and time-to-market. In such instances, the 

second optimization design criteria shown in Figure 2.3 labeled optimization 

2 can be more desirable due to better tolerance to manufacturing variations. 

Our research is aimed at providing designers with a statistically aware gate siz

ing methodology that allows arbitrary tradeoffs between mean and variance of 

RVo. 
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Figure 2.4: Example of circuit output Delay CDFs 

2.4.2 Overview of Research 

We propose a gate sizing algorithm that uses statistical delay models 

for gates. We propose to extend local gate sizing approaches in such a way that 

they can be run in a statistical mode. Our choice of using a local gain-based 

sizing approach is based on our experience with real-life libraries that are al

most exclusively characterized as lookup-tables which use input-slope/output

capacitance as inputs and produce output-slope/delay-across-gate. Such li

braries do not lend themselves to accurate modeling with analytical formulae. 

Our specific objective with this sizing is to improve the reliability of the final 

circuit by reducing the spread of uncertainty in the timing model as produced 
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by statistical static timing analysis (SSTA). 

The primary focus of our research is on reducing the variations of a 

digital circuit as measured by statistical static timing analysis (SSTA) before 

manufacturing. Our success criteria is reduction of (J' of the SSTA distribution 

measured at a virtual sink of all the outputs of the circuits. An obvious way to 

reduce variations would be to prohibit usage of all devices smaller than a given 

dimension as smallest devices exhibit the most variation. However, this is not 

a very practical approach, since usage of these devices for non-critical paths 

saves both area and power. Instead, we show that variations in such devices 

can in fact be canceled out by appropriately sizing up subsequent gates with 

tolerable increases in circuit area. 

Regular gain-based sizing algorithms operate on the worst negative 

slack (WNS) paths, continuously updating them as the algorithm proceeds. Our 

approach introduces concept of worst negative statistical slack paths (WNSS). 

These paths are the statistical counterpart of well known WNS paths, except 

that they track both mean and variance of delay. Our research enables a de

signer to chose appropriate tradeoffs between mean and variance of delay for a 

given circuit. 

Optimization engines typically use different timing engines for opti-
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mization versus final analysis. The core of an optimization algorithm requires 

a fast engine for evaluating sizing or other optimization choices. We expect 

that a side-product of our research will be a fast engine for performing statis

tical static timing analysis on small circuit segments. We use a more accurate 

but slower engine for analysis and tracking ofWNSS paths which relies on the 

sampled PDF for propagation of timing edges while keeping the faster engine 

which uses point values for mean and standard variation for the core of the 

optimization engine. 

2.5 Statistical Gate Sizing 

Our research in this area combines statistical techniques as well as cir

cuit optimization using gate sizing. This section will provide an overview of 

the proposed algorithm, develop the mathematical apparatus needed for algo

rithm implementation, present experimental results and analysis thereof. We 

also highlight benefits of research in context of design automation. 

2.5.1 Overview of Algorithm 

We studied several deterministic sizing techniques to evaluate their fit

ness as a basis for statistical sizing. Our preference for accurate gate delay 
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models steered us away from methods [13, 37, 58], which require convex an

alytical expressions for gate delays. Such models not adequately capture the 

nonlinearities in current and foreseeable DSM technologies where manufac

turing variations are prevalent. The main procedure of our approach is shown 

in Figure 2.5, with supporting function shown in Figure 2.6. This builds on 

the deterministic algorithms presented in [19,40] which are quite versatile and 

form basis of commercially available optimization tools. The next sections 

show how we deal with new challenges that arise when timing constraints are 

represented by random variables. 

2.5.2 FULLSSTA : Full Statistical Static Timing Analysis 

Our full statistical analysis engine is based on [34]. This approach dis

cretizes pdfs at a user controlled sampling rate. We used 10-15 samples per pdf 

as a reasonable tradeoff between accuracy and speed. Note that the discrete 

PDFs are renormalized after sampling to ensure that the sum of the probabil

ities for the discrete events is equal to one. An example of a discrete pdf for 

delay is given in Figure 2.7 

The operations sum and max are performed on discrete pdfs using shift

ing, scaling, and min/max reduction. An example of this process is shown 
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1: procedure STATISTICAL SIZER(Circuit C) 

2: repeat 

3: Run FULLSSTA on C 

4: Trace critical path (WNSS) of C I> WNSS is dynamic 

5: foreach g E (gates on WNSS) 

6: extract subcircuit S around g 

7: SB= Cost(S) 

8: GC = CurrentSize(g) 

9: GB=GC 

10: foreach IE (sizes of g) 

11: g in S +- I 

12: SN= Cost(S) 

13: if SN < SB then 

14: GB=I 

15: SB=SN 

16: if GB -=J GC then 1> Better size was found 

17: g.nextSize +- GB t> Schedule g for resizing 

18: Resize scheduled gates 

19: until constraints met or no further improvement 

Figure 2.5: Overview of Statistical Sizer Algorithm 
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1: function CosT(Subcircuit S) 

2: Perform FASSTA on S 

3: Return ObjectiveFunction(S) 

Figure 2.6: Extracting Subcircuit Cost for Statistical Sizer 
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Figure 2.7: Probabilistic event representing delay at a given edge in an SSTA 

timing graph 

31 



1 1 1 1 

I I I I 
.,,..,,, 2345 .. 

.,,.' 11111 
Cell Delay .,,. ,,,.. .,,. 1 I I I I 

.,,. _ .... 1 3456 
1

1 
J1 l L .,,.Shift witl}._sc.afing 1 1 1 1 1 1 

__ J:l. .-- 11 1111 
_.-'l......_,2,._..3_4~------ - - - ~I 4 5 6 7 

,.,,,, -- - 111 1111 
/ -- 111 1111 

_,,. :_::..,,..:: - - - - - - - -1-,. I l 6 7 8 
,,,.,,,._,,.._- ------ 111 
111-r a,111 

I I I I .!:: I I T 4 + I I 
____ §-1T313TI __. ......... _.__.__ __ ., 1- o e T 2 I I 2 T 

1 2 3 4 1 1- 0 C> 11 - - - 11 

.. 

.. 

.. 

.. 
2345678 

Figure 2.8: Shift with scaling and grouping techniques to perform convolution 

of input and gate-delay PDFs to compute the output-delay PDF 

in Figure 2.8. 

The approach utilizes discrete sum and maximum operations for arrival

time propagation. In the case of a degenerate or deterministic input-delay dis

tribution, the sum operation is simple, and the output-delay PDF is obtained by 

simply shifting the gate-delay distribution by the input delay. However, in the 

case where the input-delay PDF is nondegenerate, a set of shifted output-delay 

distributions is generated, as shown in [34]. Each of these shifted PDFs corre-
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sponds to a discrete event from the input-delay PDF. This set of shifted PDFs 

is then combined using Bayes theoremthe shifted PDFs are first scaled, where 

the scaling factor is the probability of the associated discrete input event. The 

scaled events are then grouped by summing the probability at each of the dis

crete time points. The actual probability of an event can be obtained by dividing 

the total value for each discrete point of the PDF by the sum of the numbers 

corresponding to all the events in each discrete PDF. The overall computation 

can be expressed as 

i=oo 

fs(t) = L fx(i)fy(i - t) = fx(t) ® fy(t) (2.6) 
i=-00 

where s = x + y, and implies that the PDF of the sum of two RVs can be 

expressed as a convolution of their PDFs. The statistical maximum is computed 

using the relation 

(2.7) 

where z = maximum(x, y), f and F represent the PDF and CDF of the RV, 

respectively, and x and y are assumed to be independent. The previous equation 

expresses mathematically that the probability that the maximum of two discrete 

RVs has a value t0 is equal to the probability that one of the RVs has a value 

equal to t0 and the other has a value less than or equal to t0 . 
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In addition to propagating pdfs, we also calculate the mean and variance 

at every node and store these values for use in the fast timing engine (FASSTA). 

This component in our algorithm can be updated as needed to track the latest 

emerging research in statistical timing analysis and represents the outer loop 

for our iterations. 

2.5.3 FASSTA: Fast Statistical Static Timing Analysis 

As we pointed out in 2.3, statistical analysis methods such as FULLS STA 

are expensive and impractical for use alone in an optimization setting. This 

section presents new approximations for fast statistical static timing analysis 

(FASSTA). This allows us to quickly evaluate costs of subcircuits in the body 

of the optimization algorithm. The two operations needed in static timing anal

ysis are sum and max. The FAS STA engine relies on the point values for means 

and delays calculated in FULLSSTA rather than the complete discrete pdf rep

resentations. 

We start with two normally distributed independent random variables A 

and B with expected values µA and µBand with variances a~ and a1 respec

tively. Let random variable C be the sum of A and B. The mean and variance 
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of C are given by: 

(2.8) 

2 2 2 
0-c = 0-A +a-B (2.9) 

To calculate the max, we shall expand on the formulation in [15]. We 

use the following notation: 

1 ~x 2 

cp(x) = --e-2 
vl2ir 

(2.10) 

<I>(x) = [~ cp(t)dt (2.11) 

(2.12) 

(2.13) 
a 
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The first two moments of max(A, B) are given by 

(2.14) 

(2.15) 

The variance of max(A, B) is given by 

Var max(A,B) = V2 - vf (2.16) 

These formulae cannot be evaluated directly because the integrals do 

not have analytical expressions. We found them to be expensive to compute 

numerically. Instead, we derive next an original approximation on how they 

can be avoided altogether and show bounds for the magnitude of approximation 

error. We reformulate the integral: 

<I>(x) = 1: tp(t)dt (2.17) 

<I>(x) = 1: tp(t)dt + 1x tp(t)dt (2.18) 

1 1 X 
<I> ( x) = - + - er f (-) 

2 2 y2 
(2.19) 
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where er f denotes the error function. To calculate the error function, we use 

the following quadratic approximation [59] which is accurate to two decimal 

places 

0.lx(4.4 - x) 0:::; x:::; 2.2 

2.2 < X < 2.6 (2.20) 

0.50x ?: 2.6 

We also note that the error function is odd: 

er f(-x) = -er f(x) (2.21) 

These formulae give us a quick method to approximate the error function for 

any value. We substitute this approximation in Eq 2.15. We note that if 

(2.22) 
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then 

<I>(a) ~ 1 (2.23) 

<I>(-a) ~ 0 (2.24) 

cp(a) ~ 0 (2.25) 

and we have 

(2.26) 

(2.27) 

which gives 

(2.28) 

Var max(A,B) ~ a! (2.29) 

Similarly, for 

(2.30) 

38 



then 

V ~ 2 ar max(A,B) ~ CJ B 

(2.31) 

(2.32) 

We observed that in the vast majority cases, one of Eq 2.22 or Eq 2.30 

would apply obviating need for any calculation for max, while in other cases 

the approximations above provide quick estimates. These formulae assume 

independence of random variables which does not always hold. However, this 

approach emphasizes speed while retaining a reasonable degree of accuracy for 

small subcircuits. We stress that this approach is only used for the inner loop of 

the optimizations, while the outer loop relies on the more accurate discrete pdfs 

manipulation approach that can track correlations due to reconvergent paths 

using Principal Component Analysis [12] or other methods as long as runtime 

is managed appropriately. 

2.5.3.1 Statistical Critical Path Identification 

As was pointed out in Section 2.2.2, circuit optimization engines typi

cally focus their effort on the critical or WNS path to improve the performance 
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Figure 2.9: Tracing worst negative statistical slack (WNSS) path. Numbers in 

parenthesis are (µ, a) of arrival time. The shaded nodes indicate the WNSS 

using our method. 

of the circuit. This section describes how we extend this concept to trace the 

Worst Negative Statistical Slack (WNSS) path in a circuit. 

Consider a circuit consisting of 6 gates such as the one shown in Fig

ure 2.9. The first number in the parenthesis represents the statistical mean of 

delay for that arc while the second one represents the standard variation. We 

wish to determine the critical path with the biggest contribution to the vari

ance at the output of node X. We note that, unlike the deterministic case, one 

cannot simply pick the input with the higher mean or variance to determine 

which input is most responsible for the variance at the output. This is due to 

the non-linearity of the statistical max operation where all inputs contribute to 
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the output max. This is in contrast with deterministic max operation where 

only the maximum of the inputs contributes to the output. 

We proceed to solve this problem by considering the sensitivity of the 

variance at the output of a node with respect to the inputs as follows. Start

ing from a given gate, we compare its inputs pair-wise. If either of Eq 2.22 

or Eq 2.30 are satisfied, then we pick the input with the higher mean as clearly 

having the dominant influence on the output of this gate. If neither of these 

equations is satisfied, we compare 

av ar max(A,B) 

aµA 

versus 

av ar max(A,B) 

aµB 

(2.33) 

(2.34) 

Our justification for taking the partial derivatives with respect to the means 

of the delays is that the variances have a random component not under our 

direct control. On the other hand, using available gate sizes for a given circuit 

function gives us a direct ability to control means of delays. 

One approach to obtaining these sensitivities is to differentiate Eq 2.33-

Eq 2.34 directly. We found the resultant expressions to be complex requiring 

expensive floating-point computations not suited for the core of our optimiza

tion engine. Instead, we chose to use an approximation for differentiation as 
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follows. Rewriting 

(2.35) 

We use a forward finite-difference formula to approximate the partial deriva

tive: 

8V ar max(A,B) 
-----~ 

8µA 

f(µA + h, µB, J A+ g, JB) - f(µA, µB, J A, Js) 
h 

(2.36) 

We used values for h of the order of 1 % of the mean. It should be noted that 

µ and J along a given path are correlated and one cannot expect to change one 

value without the other being impacted. The change in J A that can result out 

of altering µA is indicated by g. We also note that it is impossible in general 

to determine g accurately as the relationship between µ and J along a given 

path is governed by a combination of gate performance variations inversely 

proportional to their dimensions as well unsystematic random variations that 

are unpredictable. For purposes of ranking inputs, the following linear approx

imation linking these two was found to be adequate: 

(2.37) 

We used values for c equal to those assumed to relate mean delay through a 

gate to its variance. 
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2.5.3.2 Subcircuit extraction and ranking 

For every gate being evaluated for resizing, our algorithm extracts a 

subcircuit around this gate based on a user-controlled depth. We have found 

that using two levels of transitive fanins and fanouts is sufficiently accurate 

without being too costly to evaluate. However, this is one of the many knobs 

that can be altered at will as a tradeoffbetween runtime and accuracy. 

For every available size for this gate, we use FASS TA to calculate mean 

and variance of delay at the outputs of this subcircuit. We derive a cost function 

that allows us to rank the the relative merits of gate sizing in this subcircuit 

quickly as follows. For all outputs of the subcircuit 0 1 ... On, we calculate a 

weighted sum of mean and standard variation: 

(2.38) 

where ,\ is a user-specified weight multiplier that ranks relative importance of 

minimizing standard variation against mean of delay. By choosing higher val

ues for ,\ , the user can place more emphasis on variance reduction. We provide 

more analysis on effect of varying,\ in the conclusions section at the end of the 

paper. The cost of the subcircuit is given by the maximum of Cost( Oi) across 

all outputs. We then pick the gate size that minimizes subcircuit cost across all 

gate sizes for candidate gate. 
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2.5.4 Experimental results 

The approach introduced above was implemented in Java and run on an 

Intel PC running at 2.53 GHz. We tested the algorithm on various circuits from 

the ISCAS benchmarks and various sized ALU circuits. 

The circuits were first synthesized using Design Compiler [57] using 

an industrial 90nm lookup-table based standard cell library with 6-8 sizes per 

gate type. In line with other researchers, we added variations to the gate delays 

based on [16,43]. Two variations components were added to the gate delays: 

one proportional to delay through gate and another random source correspond

ing to unsystematic manufacturing variations. 

Table 2.1 shows the results of our optimization for two representative 

multiplier values, ,\ = 3 and ,\ = 9. The ratio of CY to µ obtained by optimizing 

for mean delay is shown in the first column entitled original. We then ran our 

algorithm at various values for multiplier ,\(7). Results are shown for optimiza

tion under two different values for ,\ , 3 and 9. We observed that increasing ,\ 

any further could not yield further reduction in variance in general though the 

highest value for ,\ was different for different circuits. This is due to the unsys

tematic variations whose effects cannot be totally eliminated regardless of gate 

sizes deployed. 
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Table 2.1: Experimental Results: ). = 3 

Circuit Original ..\ = 3, runtime is in minutes 

Name Gates a-jµ ~(J ~µ a/µ ~A Runtime (mins) 

alul 234 0.124 +4% -54% 0.055 +16% 1.5 

alu2 161 0.147 +3% -71% 0.041 +14% 1.3 

alu3 215 0.127 +7% -61% 0.046 +16% 1.5 

c432 203 0.093 +2% -58% 0.038 +11% 1.6 

c499 381 0.077 +5% -63% 0.027 +13% 1.5 

c880 301 0.092 +4% -57% 0.038 +17% 1.5 

c1355 378 0.081 +5% -63% 0.057 +13% 1.7 

c1908 563 0.076 +3% -44% 0.041 +7% 3.7 

c2670 820 0.068 +2% -42% 0.039 +11% 9.8 

c3540 1245 0.062 +4% -56% 0.026 +12% 14.7 

c5315 2318 0.043 +2% -36% 0.027 +12% 36 

c6288 2980 0.021 +1% -28% 0.015 +5% 44 

c7552 2763 0.043 +2% -50% 0.021 +11% 31 
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Table 2.2: Experimental Results: ,\ = 9, runtime is in minutes 

Circuit Original .\=9 

Name Gates o-/µ b.CJ D.µ a/µ .6.A Runtime (mins) 

alul 234 0.124 +6% -80% 0.023 +24% 1.6 

alu2 161 0.147 +4% -86% 0.020 +29% 1.4 

alu3 215 0.127 +9% -75% 0.029 +25% 1.7 

c432 203 0.093 +4% -75% 0.022 +21% 1.7 

c499 381 0.077 +8% -76% 0.017 +21% 1.8 

c880 301 0.092 +5% -79% 0.018 +23% 1.7 

cl355 378 0.081 +7% -71% 0.022 +19% 1.9 

c1908 563 0.076 +4% -71% 0.021 +16% 3.8 

c2670 820 0.068 +7% -76% 0.015 +18% 9.1 

c3540 1245 0.062 +8% -70% 0.017 +21% 13.1 

c5315 2318 0.043 +7% -68% 0.013 +15% 34 

c6288 2980 0.021 +2% -47% 0.011 +9% 41 

c7552 2763 0.043 +4% -66% 0.014 +17% 33 
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Figure 2.10 shows a plot ofµ against a for various values of,\ for circuit 

C432. As the multiplier,\ is increased, the mean is increased in exchange for a 

gradual reduction in standard variation of delay across the circuit. 

Several observations can be made from these results. Our algorithm 

consistently reduces the standard variation while increasing mean delay and 

area. This behavior is expected since our algorithm favors bigger gate sizes that 

reduce the variance of delay across them. The algorithms focus on minimizing 

variance also causes it to upsize gates near the outputs to reduce the overall 

variance at circuits output. This is done even if that path does not have the 

highest mean delay which is in contrast to a worst mean-delay optimizer which 

would not upsize such gates. This increases overall delay due to higher loading 

slowing down predecessor gates. 

Another important observation is that the number of gates along a tim

ing path is inversely proportional to the variance along that path and the ability 

to optimize it away. Paths with a shorter number of gates tend to be more sus

ceptible to variations. The smaller ALU circuits exhibit significant variations 

as a percentage of their mean. Our algorithm can reduce this variation substan

tially but at a higher increase in area. On the other hand, circuit C6288 which 

is a l 6x 16 bit multiplier has the longest depth of any of the circuits in the table. 

We note that it has the lowest improvement due to its already low a toµ ratio. 
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2.5.5 Concluding Remarks 

We introduced a new concept of a worst negative statistical slack path 

and derived a procedure for tracing and optimizing such paths. In the pro

cess, we also derived a new approximation for the max operation on random 

variables for use in circuit optimization. Our approach allows us to steer the 

optimization process towards different mean-variance goals. The significance 

of this work is that it can be used during design cycle to increase tolerance 

for the effects of manufacturing variations by trading off circuit delay and 

area requirements for reduced timing variance with user controlled weights. 

We demonstrated efficacy of our approach on ISCAS benchmarks with con

sistent variance reduction in exchange for moderate increases in area and low 

increases in mean delays. 

2.5.6 Benefits of Research 

As previously mentioned, our research can be deployed where pre

dictability of performance of a manufactured circuit is of paramount impor

tance. Manufacturing variations from pre-silicon PV models causes variance in 

power consumption due to both dynamic and leakage power variations. These 

variations in turn contribute uncertainties in thermal dissipation and reliability 

49 



verification. The effects of such performance variations can adversely product 

qualification and time-to-market. In such instances, our proposed optimization 

becomes more desirable due to better tolerance to manufacturing variations. 

Our research is aimed at providing designers with a statistically aware gate siz

ing methodology that allows arbitrary tradeoffs between mean and variance of 

the delays across a circuit. It can be seen as adding a third tradeoff vector in 

addition to the well known area-timing tradeoffs designers work with. 

2.6 Summary 

Most recent deep submicron manufacturing technologies exhibit both 

inter- and intra-die variations, some of which are systematic and others which 

are random. The aggregate of these variations poses a significant challenge 

for circuit designers, who can either make worst case assumptions on all de

sign axes such as delay, area, and power which severely limit the design space 

and may comer it into a wrong design point. Alternately, designers can use 

mean values of delays in the design phase with an expectation of widespread 

variations in silicon performance. Our proposed research is targeted to help 

designers navigate the available design space by using statistical models in the 

analysis and optimization of the circuit before it reaches silicon. We introduce 
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a new concept of a worst negative statistical slack path and plan to derive a pro

cedure for tracing and optimizing such paths. In the process, we also derive a 

new approximation for the max operation on random variables for use in circuit 

optimization. Our approach allows us to steer the optimization process toward 

different mean-variance goals. The significance of this work is that it can be 

used during design cycle to increase tolerance for the effects of manufactur

ing variations by trading off circuit delay and area requirements for reduced 

timing variance with user controlled weights. We demonstrated fidelity of our 

approach on ISCAS benchmarks with variance reduction in exchange for in

creases in area and low increases in mean delays. 
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Chapter 3 

An Efficient Algorithm for Analysis of Cyclic 

Circuits 

3.1 Introduction 

Cyclic circuits are those which contain loops or cycles within them. 

We will present a more formal definition later on in the chapter. An example 

of a cyclic circuit is shown in Figure 3 .1. Cyclic circuits can be produced 

inadvertently during high-level synthesis from high level hardware languages 

such as ESTEREL [8]. They are also the most compact representation for 

certain circuits such as arbiters [50]. 

A key challenge for cyclic circuits is that correct operation is only guar

anteed in specific cases. For certain input patterns, such circuits are well

behaved (functional), i.e., do not exhibit oscillations or state-holding behavior. 
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a b M N 

0 0 0 0 

0 1 0 1 

1 0 X X 

1 1 1 1 

Figure 3.1: A trivial cyclic circuit and its truth table 

Despite this, most circuit analysis tools forbid the presence of cycles. The cen

tral challenge of cyclic circuits is their data-dependent evaluation order, mean

ing their gates have no topological order. This causes difficulties for many tools 

such as static timing analyzers that rely on such a static order. Furthermore, ap

plying regular logic simulation to these circuits is cumbersome. 

Consider the small cyclic circuit in Figure 3.1. From its truth table, 

we see the circuit is well-behaved unless a = 1 and b = 0. It is impossible to 

predict with certainty how the circuit behaves when presented with this pattern. 

For all other input patterns, the circuit behaves combinationally because the 

feedback loop is broken by a controlling input on one of the gates. 

We shall use the tenninology of partial assignments for our exposi-
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tion. A partial assignment is an assignment to one or more inputs to the loop; 

{ a = 0} is one such partial assignment. Our proposed algorithm will produce 

a set of partial assignments that provide a concise representation of the con

ditions under which a cyclic circuit is well-behaved. For example, the set of 

partial assignments { { a = 0}, { b = l}} constitutes necessary and sufficient 

conditions for combinational operation of the circuit in Figure 3 .1: at least one 

of these must hold in order for the circuit to operate functionally. 

In this research, we propose a novel algorithm that can rapidly identify 

all possible combinational behavior of a cyclic circuit. The algorithm takes a 

circuit containing one or more loops and produces a set of partial assignments 

that represent every condition under which the circuit behaves combinationally. 

Our algorithm relies on the fact that gates such as ANDs and ORs have con

trolling inputs (0 and 1 respectively) that break feedback loops to aggressively 

prune the search space. The set of partial assignments our algorithm produces 

can be used to rule out non-constructive operation of circuits produced by high 

level compilers such as Esterel [6], or they can be used to create an equivalent 

acyclic circuit [22]. 
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3.2 Notation and Definitions 

This section defines the basic terminology needed for an exposition of 

material on cyclic circuits. 

We represent circuits with a directed graph (digraph). A digraph G is 

a pair (V, E) where V is a set of vertices and E is a set of edges. An edge 

is an element of V x V with distinct vertices. We represent a circuit as a 

digraph whose vertices correspond to gates and whose edges correspond to 

nets. A controlling value for a gate G is the value that applied to any input 

of G uniquely determines G's output independent of other inputs. To simplify 

our exposition, we only consider simple logic gates: NOT, AND/NAND, and 

OR/NOR. This is not a limitation as more complex gates can be represented as 

combinations of these gates. Loops or cycles are formally defined using graph 

theory in terms of strongly connected components. 

Definition 3. A strongly connected component (SCC) of a digraph G = (V, E) 

is a maximal subset of vertices C ~ V such that any vertex in C is reachable 

from any other vertex in C. Inputs of an SCC are inputs of gates that are part 

of the SCC that are not driven by gates inside the SCC. 

Figure 3.2 shows a circuit with a single SCC. Nets a, b, and care inputs 

to the SCC. When analyzing an input circuit, we first decompose it into secs 
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a 

b y z 

C 

Figure 3.2: Cyclic circuit for illustrating definitions 

using a standard algorithm [18]. We note that finding SCCs in a circuit is linear 

in the size of the circuit. If the input circuit contains more than one SCC, we 

consider each SCC separately in a topological order. 

Our analysis methodology and logic simulation use a ternary domain 

consisting of {O, 1, X} where X denotes an unknown digital value. 

Definition 4 (Malik [35]). A circuit is combinational for an input assignment 

if three-valued simulation starting with all internal nodes set to X resolves the 

output of every gate in the circuit to either O or l under the assignment. 

Literature on cyclic circuits also refers to this behavior as "well-behaved" 

and "constructive" [51]. Combinational behavior is equivalent to stating that 

the circuit behaves as if it were acyclic with no X's and no oscillations. 
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3.3 Literature Survey 

An extensive review of prior work on cyclic circuits was undertaken. 

Below is a summary of contributions in this field covering period from 1960 to 

late 2005. 

3.3.1 Origins of Cyclic Circuits 

Short [55] is earliest published work to suggest that cyclic structures 

can save area in relay networks. In 1970, Kautz [31] showed that the minimal 

form of certain circuits contained combinational loops. Rivest [50] came to a 

similar conclusion, suggesting that combinational loops are more than just a 

nuisance. Rivest's circuits were the first convincing example of cyclic circuits 

that were provably smaller than any equivalent acyclic versions. An example is 

shown in Figure 3.3. This circuit can be extended to use n inputs and produce 

2n unique outputs. 

Stok [56] observed how cyclic circuits can arise from resource-sharing 

in high-level synthesis. An example of such a circuit is given in Figure 3.4. 

The function of this circuit can be described as 

0 = if (c) then F(G(x)) else G(F(x)) 

Note that G and F can be any operators such as shifters, adders, or 
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Figure 3.3: Rivest's Circuit 

multipliers and may have additional operand inputs. Stok stipulated that an 

equivalent acyclic circuit would be always bigger due to need to duplicate op

erator circuits. 

3.3.2 Analysis of Cyclic Circuits 

Malik's work [35] on analyzing combinational circuits was the forerun

ner with respect to analysis of cyclic circuits. Malik showed an equivalence be

tween combinational cyclic circuits and least-fixed-points in three-valued sim

ulation. Shiple, Berry, and Touati [51] extended this idea and applied it to the 

Esterel language [6, 7], whose hardware translation [8] often produces combi

national cycles. Their approach uses a symbolic state-space traversal followed 

by an O(n2
) replication procedure to remove cycles. Their enhancement to 

Malik's algorithm relies on Bourdoncle's [10] algorithm for reducing number 
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Figure 3.4: Cyclic circuit arising from resource sharing due to Stok [56] 
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of simulation iterations. However, Bourdoncle 's algorithm provides a general 

framework for static scheduling of strongly connected components. Our pro

posed algorithm pays more attention to both the structure and function of the 

circuit. We also believe that our proposed algorithm when coupled with the 

resynthesis technique of Edwards [22] will produce smaller circuits. 

Shiple et. al. [52] also extended their analysis to combinational cy

cles within sequential circuits. The BDD-based algorithm of Halbwachs and 

Maraninchi [26] takes a brute-force approach, ignoring the structure of the cir

cuit. Namjoshi and Kurshan [ 42] take a very different approach, showing that 

any fixed-point is interesting, not just the least. Their analysis merely answers 

whether a circuit is combinational. 

3.3.3 Synthesis of Cyclic Circuits 

Recently, Riedel and Bruck [ 49] applied Rivest's observations to syn

thesize very compact combinational circuits that contain cycles. As part of 

their synthesis step, they check whether the circuit they generated is combi

national using a fairly expensive BDD construction; our proposed algorithm 

could potentially be used in that setting. More practically, the cyclic combi

national circuits they generate have topologies complex enough to stymie the 

60 



de-cyclification algorithm of Edwards [22], which this work will build on. 

3.3.4 Most Recent Publications on Analysis of Cyclic Circuits 

The algorithm of Edwards [22] for de-cyclification consists of two steps. 

The first step enumerates all combinational behavior in a cyclic circuit. The re

sult of this step are necessary and sufficient conditions under which the circuit 

is well-behaved, or combinational. This search get exponentially slower as the 

circuits get bigger, and fails to terminate except on the smallest circuits. The 

second step in Edwards' algorithm collects the acyclic fragments implied by 

the first step and combines them into a single acyclic circuit. 

An algorithm was proposed in [3] for combinationality checks. How

ever, the algorithm presumes existence of an acyclic equivalent circuit apriori 

and merely checks for equivalence against this circuit. Our approach doesn't 

presume existence of such a circuit, and is in fact directed at producing an 

equivalent acyclic circuit. 

Another approach that was presented in [24] infers level-sensitive latches 

to make cyclic circuit acyclic. This approach changes the semantics of the cir

cuit from a combinational circuit to a synchronous one, and cannot claim to 

produce a drop-in equivalent circuit to the original version. There is a substan-
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tial area penalty which the authors admit to being bounded by double the area 

of the original loop. In addition, the authors did not attempt their approach on 

more complex cyclic circuits such as those produced by CYCLIFY [ 49]. 

3.4 Types of Cycles 

Cycles encountered in circuits might be divided into two types, which 

we shall call true cycles and false cycles. 

True cycles are those where presence or absence of a logical cycle de

pends on the input vector into the circuit. The simple cyclic circuit in Figure 3.5 

is an example of a true cycle. This cycle can can be sensitized when a = 1 and 

b = 0. 

False cycles are those which only exist in a topological sense, but can 

never be sensitized electrically regardless of input pattern. An example is 

shown in Figure 3.5. Some CAD tools are able to deal this type of circuit 

using a so called false path mechanism, which explicitly indicate to the tool to 

ignore such a path. Tools that are known to handle such a concept include most 

static timing analysis engines. However, not all tools contain such a feature. 

For example, cyclic circuits are often problematic for test generation tools, and 

require manual intervention. Alternatively, one is left with creating an acyclic 
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(a) A true cycle (b) A false cycle 

Figure 3.5: Examples of true and false cycles 

version as the only way to pass such circuits through these tools. Our proposed 

research supports the latter, by enabling creation of equivalent acyclic circuits 

with same inputs and outputs as the original circuit but without the troublesome 

cycles. 

3.5 Our Circuit Model 

We use a simple gate-level circuit model: a circuit C is a tuple C = 

( G, I, W) where G is a finite set of gates, I is a finite set of primary inputs, and 

W ~ (GU I) x G is the set of wires. Each gate computes the logical NAND of 

its inputs; we assume more complex gates have been dismantled into NANDs. 
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Note that primary inputs have no incoming edges. We consider every gate to 

be an output. 

We treat nodes as taking one of three values: 0, 1, and J__ The first two 

values are self-explanatory; we write J_ instead of the X usually used in three

valued logic simulation to emphasize the connection with lattices and partial 

orders. 

The three wire values are partially ordered with a relation ~ that sat

isfies J_ r;;;; 0 and J_ r;;;; 1 and is transitive (x r;;;; y and y r;;;; z implies x r;;;; z), 

reflexive (x r;;;; x), and anti-symmetric (x r;;;; y and y r;;;; x implies x = y). 

The relation ~ can be thought of as an information ordering: J_ is less

defined than O or 1, but neither O r;;;; 1 nor 1 r;;;; 0 since both represent the 

same amount of information, i.e., a defined value. The pointwise extension of 

this relation to vectors reinforces this intuition: (x1 , ... , Xn) r;;;; (y1 , ... , Yn) iff 

x 1 r;;;; y1, ... , and Xn r;;;; Yn• More informally, if X r;;;; Y, then each element of 

Y is either the same as its counterpart in X or a J_ has become a O or 1. Any Os 

or ls in X must also be in Y. 

Definition 5. A controlling value for a gate G is the non-J_ value that applied 

to any input of G uniquely sets G's output to a non-J_ value independent of 

assignment to other inputs. 
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It follows from this definition that for a gate's output to be set to non-_L, 

either all inputs must be set to non-controlling values or at least one input must 

be set to a controlling value. For a NAND gate, 0 is a controlling value and 1 

is non-controlling. 

Definition 6. A strongly connected component (SCC) of a circuit C is a maxi

mal subset of gates V ~ G such that there is a path of wires from any gate in 

V to any other gate in V. Inputs of an SCC are inputs of gates that are part of 

the SCC that are not driven by gates inside the SCC. 

3.6 Combinational Circuits 

Like Malik [35], we say a circuit C = (G, I, W) is combinational for 

an input x if f(C, x)(g) -=J _L_ for all g E G (i.e., three-valued simulation 

does not lead to any _L-valued gates). Again, because of Shiple [54], this is 

equivalent to insisting that the circuit always stabilizes and never holds state for 

any delay assignment. Literature on cyclic circuits also refers to this behavior 

as "well-behaved" and "constructive" [53]. 

Since we consider all gate outputs to be primary outputs, our definition 

of combinational insists that every part of the circuit stabilizes. This is actually 

a conservative definition of combinational behavior: if the environment does 
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function SIMULATE((G, I, W), x, s) 

x(n) if n EI, 
vo(n) = 

_l_ if n E G. 

i - 0 

while for some g, EVAL(W, v, g) -=f v 

is--i+l 

return vi 

function EVAL(W, v, g) 

0 if v(d) = 1 for all d s.t. (d, g) E W, 

0 = 1 if v(d) = 0 for some d s.t. (d, g) E W, 

J_ otherwise. 

Let v'(g) = o and v'(n) = v(n) otherwise. 

return v' 

Figure 3.6: The three-valued simulation algorithm, which takes a circuit 

(G, I, W), an input function x, and an infinite schedule of gates s. It eval

uates gates until it reaches a fixed point using EVAL, which updates a single 

(NAND) gate. 
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Partial Induced 

Assignment Frontier 

{a= 1} {V} 

{a= 0, b = 1} {Y,W} 

{c = O} {} 

(a) (b) 

Figure 3.7: (a) A cyclic circuit. (b) Partial assignments and their induced 

frontiers-the boundary between defined and X-valued gates after applying 

inputs. 

not observe the output of, say, an oscillator, should its presence really matter? 

Arguments can be made on both sides, but we stipulate that a designer who 

wants a combinational circuit does not want any state-holding or oscillatory 

behavior period. 

Our goal is to produce an acyclic circuit whose behavior matches that 

of a cyclic circuit for inputs that are combinational. We assume that non

combinational behavior, if any, was unintended and treat inputs that induce 

it as don't-care patterns. 

67 



Figure 3. 7 shows a circuit consisting of a single SCC whose inputs are 

a, b, and c. When analyzing a circuit, we first decompose it into SCCs using a 

standard algorithm [ 18]. If the input circuit contains more than one SCC, we 

consider each SCC separately in a topological order. 

3. 7 Finding a Combinational Cover for a Cyclic Circuit 

We now present our original algorithm for efficiently extracting a cover 

for all combinational behavior of a cyclic circuit. 

3. 7 .1 Theoretical Background 

Definition 7. Let the set { x 1 , ... , xn} represent the inputs into an SCC. We 

define a partial assignment (PA) as a set 

In this work, we are only concerned with partial assignments to inputs 

of SCCs. A PA is always associated with some SCC. A valid PA for the circuit 

in Figure 3.7 is an assignment to one or more of the inputs { a, b, c }, such as 

{a= O}, {b = 0, c = 1 }, and {b = 1, c = 1 }. 

We shall rely on the following two theorems that are key to the cor-
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rectness and efficiency of our algorithm. These were first presented in Ed

wards [22]. 

Theorem 1 (Edwards [22]). For a circuit with a strongly connected component 

(SCC) to behave combinationally, at least one input to a gate in the SCC must 

be driven to a controlling value. 

For example, controlling assignments to SCC inputs for the circuit in 

Figure 3.7 are a= 0, b = 0, and c = 0. Theorem 1 tells us that at least one of 

these is required for combinational behavior. 

Theorem 2 (Edwards [22]). If a partial assignment p is combinational, then 

any further assignments that do not contradict any in p can also be computed 

combinationally by the circuit fragment implied by p. 

Consider the PA { c = 0} applied to Figure 3.7. This breaks the con

nectivity of the SCC, making the circuit behave combinationally. This theo

rem indicates that additional assignments beyond { c = 0} cannot reverse the 

combinational behavior already implied by this PA. This permits us to avoid 

further consideration of acyclic PAs once we have identified them. This sup

ports one of our objectives for the algorithm: generation of minimal PAs that 

capture all combinational behavior. We explain the notion of minimal PAs in 

Section 3.7.3. 
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The main difficulty with SCCs is lack of order in which they can be 

analyzed as SCC gates cannot be sorted topologically. To get around this, we 

first introduce a novel device which greatly simplifies SCC analysis. 

Definition 8. The cyclic controllability frontier of a PA, or frontier for short, is 

the set ofSCC gates that have at least one non-1- input but whose output is 1-. 

The frontier captures the notion of a boundary between gates whose 

output is defined and those whose output is not. A frontier is always associated 

with a PA. When calculating the frontier for a PA, we use ternary simulation to 

propagate partial assignments from SCC inputs as far as possible then check for 

cyclic behavior. Figure 3. 7b lists some frontiers induced by partial assignments 

for the circuit in Figure 3.7a. 

Theorem 3. A PA makes an SCC combinational if and only if its frontier is 

empty. 

Proof If part: If the frontier is empty, then either no gates have any inputs 

assigned or none have an output of L From Theorem 1, we know that at least 

one gate must be driven by a controlling value for combinational behavior. If 

none have an output of 1-, then the circuit under that PA is combinational by 

definition. 
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Only if part: This follows directly from definition of combinational 

behavior. □ 

This theorem tells us that non-empty frontiers only exist in presence of 

SCCs. For example, the PA { c = O} in Figure 3.7 yields an empty frontier. 

Stated differently, we broke the loop without having to assign specific values 

to the inputs { a, b}. 

3. 7 .2 Searching for combinational behavior 

We use Theorem 1 to seed our search space with a pool of PAs, each 

corresponding to a controlling assignment to an SCC input. Any combinational 

behavior is guaranteed to be present in supersets of one or more of these PAs. 

Our algorithm proceeds by recording the frontier associated with each PA and 

uses them to look for opportunities to merge PAs in an attempt to find empty 

frontiers. 

Figure 3.8 shows our technique for identifying all combinational be

havior. The algorithm takes a circuit with any number of SCCs and produces 

a set of PAs under which the circuit is combinational. These PAs control SCC 

inputs. 

The algorithm attacks one SCC at a time (line 4), finding a minimal set 
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1: A= 0 
2: K=0 
3: Clear F 

4: while circuit has SCCs 

5: Find next SCC 

t> Set of acyclic PAs, the eventual result 

t> All known cyclic PAs, used for merging 

t> A map from frontier gate ----, set of PAs 

6: 

7: 

8: 

9: 

P = controlling values for sec inputs 

while P-/= 0 
t> Initial PAs 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

G=0 
foreachp E P 

simulate p 

t> Frontier gates for this iteration 

t> Consider each candidate PA 

if circuit is combinational under p then 

addp to A 

else 

addp to K t> Remember the PA for merging 

foreach gate g in the frontier induced by p 

add g to G t> Record the frontier gate 

add p to F (g) t> Remember p induced g 

P=0 t> Compute new candidate PAs 

19: foreach frontier gate g E G 

20: if IF(g)I > 1 then t> Need :2: 2 PAs to merge 

21: add each PA from mergeAtGate(K, g) to P 

22: return A 

Figure 3.8: Our algorithm for finding a minimal set of PAs for a circuit (SCC) 

that together cover all its combinational behavior. 
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of covering partial assignments for each. For each SCC, it begins by consider

ing PAs that place a single controlling value on each SCC input (line 6), then 

enters into a loop (lines 7-21) which alternates between testing whether any of 

the currently-considered PAs (set P) induce combinational behavior (lines 10-

17) and attempting to merge already-observed PAs (set K) to generate a new 

set of PAs (lines 18-21). Its goal in this second phase is to break logjams by 

combining PAs to set the outputs of the latest set of frontier gates it has discov

ered. The map F records PAs that affect frontier gates: if g is a gate, then F(g) 

is the set of all PAs that put at least one non-controlling value at an input of g. 

The algorithm in Figure 3.8 is guaranteed to find all combinational be

havior within the subject circuit. Starting from individual controlling inputs 

into SCCs, our frontiers allow us to identify all opportunities where PAs can 

merge to extend controllability over more gates in an SCC. As we merge these 

PAs and continue the searching, other acyclic PAs are explored. We continue 

this cycle of search and merge terminating when we fail to generate new PAs. 

3. 7 .3 Merging partial assignments 

Here, we describe a key operation used in our main algorithm (Fig

ure 3.8): the generation of new PAs to break the logjam at a frontier gate. 
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Given a set of PAs and a gate, the algorithm in Figure 3 .10 generates a set of 

PAs that apply non-controlling values to every input of the gate, thus setting its 

output. This algorithm is the key improvement over the technique we presented 

earlier [ 44]. 

We store PAs in a simulated state that captures all assigned nodes and 

their values. The main algorithm (Figure 3.8) only tries to merge PAs for a gate 

when at least two PAs set an input on the gate. Merging attempts to produce 

new PAs by propagating known values across these frontier gates to extend the 

set of gates whose output is not _l_. 

Consider the example in Figure 3.9. (Figure 3.9b) shows a 3-input 

(frontier) gate g for PAs p0 , ... , p4 . As always, these PAs control inputs (here 

a, ... , f) to the SCC that contains g, not usually the gate's inputs. Note that a 

gate can only be a frontier for a PA if that PA puts a non-controlling value on 

one or more of the gate's inputs. We wish to consider merging these PAs to 

extend the frontier beyond g. A desirable merge of PAs at a gate g must be 

1. a gate cover: merged PAs must define every input of g. 

2. consistent: merged PAs must not contain conflicting assignments to in

puts. In Figure 3.9, PAs p1 and p4 cannot be combined due to a conflict

ing assignment for b. 
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3. complete: PAs must be merged such that all permissible combinations 

are considered. The example in Figure 3.9 provides some degrees of 

freedom to cover every input that must all be considered. This ensures 

that our final PAs encapsulate both necessary and sufficient conditions 

for combinational behavior. 

4. minimal: merged PAs must not contain any PA that can be removed while 

satisfying the previous conditions. For example, the merge candidate 

p0 U p3 U p4 is rejected since p0 dominates p4 (i.e., p0 controls both first 

and third gate inputs; p4 only controls the third). This condition keeps the 

final output PAs as concise as possible by not including redundant con

ditions. Such redundancy when present has two drawbacks: it burdens 

subsequent stages of the algorithm as it increases memory usage and it 

also makes testing of merge conditions against other candidate PAs more 

tedious. 

The gate cover, consistency, and completeness conditions are necessary 

for correctness (without the first two, the analysis does not make sense; the 

third one guarantees we do not miss any necessary PAs), but minimality is 

merely desirable-it improves both the running time of our algorithm and the 

quality of the final result. Our algorithm satisfies the first three conditions and 
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approximates the minimality by computing an irredundant sum-of-products, as 

we describe below. 

We can merge PAs by merely verifying that there are no conflicts to the 

assigned primary inputs of the SCC. In other words, we do not need to check 

for conflicts of every internal node. This greatly speeds our consistency check 

procedure. 

The argument for this is a proof by contradiction. Let two partial as

signments A and B have non-conflicting controlling assignments to SCC in

puts, and assume some intermediate node I has conflicting values under as

signments A and B (i.e., one is 0, the other 1; there is no conflict if either is 

l_). The gate that produces I must either have one input set to a controlling 

value or all inputs set to non-controlling values. We can repeat the analysis on 

those input(s) until we find conflicting inputs at SCC inputs, which contradicts 

the original assumption. 

Merging PAs is an instance ofbinate covering problem (BCP) because 

we must cover all gate inputs and because conflicts between PAs prevent certain 

combinations, making it binate. However, our need for a complete enumeration 

is not typical of BCPs. 

Figure 3.10 shows our algorithm for merging PAs. We construct a BDD 
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Name Assignments 

Po {a= 1} 

Pl {b = 0, c = 1} 

P2 {c=l,d=l} 

P3 {e = O} 

PoP1P20-
p4 {b = 1, f = 1} Pl p3 

PoP4 

(a) (b) 

(Po+ P1 + P2)(P1 + p3)(Po + p4)(P1 + P4) 

(c) 

(PoP1P4) + (PoP1P3) + (P1P2P3P4) 

(d) 

Po Up1 

Po Up3 

{a=l,b=O,c=l} 

{a= 1, e = O} 

{b = 1 c = 1 d = l e = 0 f = 1} 
' ' ' ' 

(e) 

Figure 3.9: Illustration of merging PAs at a gate. 
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comprising our covering problem at the gates and the conflicts therein as a 

product of sums (POS). The covering at each gate input is encoded as a sum 

term comprising all PAs that can control that input. By definition, these are all 

non-controlling input assignments, as otherwise the PA would have continued 

past this gate. To set the gate's output to a deterministic value, it is necessary 

that we select PAs covering all the gate's inputs, hence the sum of products. 

However, we must account for the PAs containing conflicting and therefore 

non-compatible assignments to the inputs into the SCC. We thus augment our 

POS expression with clauses which capture the conflicts as pair-wise sums of 

negation of PAs that conflict. 

We then use the Minato-Morreale algorithm [38] to generate an irredun

dant sum of products in ZDD [39] form. We use these to continue propagation. 

Note that the addition of conflicts causes the irredundant sum of products to 

contain negated terms, which we discard. 

Figure 3.9 illustrates this working on an example. The five PAs in Fig

ure 3.9a control the inputs of the three-input AND gate in Figure 3.9b. Our 

merging algorithm (Figure 3 .10) starts by expressing the constraint at the AND 

gate as a product of sums (Figure 3.9c): each input must be controlled by at 

least one PA (the first three terms) and conflicting PAs (i.e., those that insist on 

contradictory assignments to inputs: here p1 sets b = 0 and p4 sets b = 1, so 
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both p1 and p4 are illegal together) are prohibited. Next, these constraints are 

transformed to an irredundant sum-of-products (Figure 3.9d). Finally, nega

tions are removed from each term in the ISOP, leading to a new set of PAs 

Figure 3.9e. By construction, each of these PAs controls all three gate inputs 

and has no conflicting input assignments. 

3. 7.4 Another Example 

We will use the cyclic circuit in Figure 3 .11 to illustrate use of frontiers 

for extraction of PAs as well as how negated literals arise and how we deal with 

them. 

We start by applying a controlling value to each input separately. Fig

ure 3.12 summarizes the results. Note that when a is 0, the circuit is combina

tional since the feedback path is broken, so we include the assignment { a = 0} 

as part of our minimal cover and will not consider any further assignments that 

contain {a= O} (Theorem 2). 

Consider setting b = 0. Although this is a controlling value for gate R 

(its output becomes O regardless of Q), by itself this is not enough to force the 

whole circuit to behave combinationally because a O on R is a non-controlling 

value on the OR gate V. Each of the assignments c = 0 and d = 0 also have 
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1: function MERGEATGATE(K, g) 

2: 

3: 

R=(/J 

POS= 1 

4: foreach input i of gate g 

1> Generated set of PAs 

1> Product of Sums 

5: Pi= PAs in K that set i and induce gas a frontier 

6: if Pi = (JJ then return (/J 1> Cannot control some input 

7: P = VPi 
Vi 

8: POS = POS I\ P 

9: foreach Conflicting PA pairs {Pi, Pj} E K 

10: POS = POS I\ (Pi V Pj) 

11: zddISOP = ISOP(POS) 

12: remove negated literals and duplicates from zddISOP 

13: add products to R 

14: return R 

Figure 3.10: Our PA merging algorithm: return a set of PAs that apply non-

controlling values to every input of a gate. 
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Figure 3.11: Small cyclic circuit for illustrating partial assignment extraction 

a frontier of V. Similar analysis shows different assignments to e, f, and g all 

yielding Z as their frontier. 

The SCC input g has both O and 1 present as controlling assignments 

since it is connected to a NAND and an OR. Constructing a PA that includes 

such conflicting assignments is meaningless. Our algorithm tracks and caches 

conflicting partial assignments to guard against composing a PA from such 

conflicting assignments. As we stated previously, positive and negated literals 

in our initial POS indicate presence or absence of PAs respectively; we do not 

use negated literals to imply inverting the individual assignments within a given 

PA. 

Next, we analyze the frontiers we have obtained from logic simulation. 

Only two gates, V and Z, appear in any frontier; we will attempt to set the out

puts of these gates by judiciously combining sets of PAs that might completely 

81 



define values at inputs of these gates. At every frontier gate, we compose a 

covering problem in the form of a product of sums (POS), where each sum 

represents candidate PAs that define a given input of that gate. We add to this 

POS pair-wise conflicts between PAs that cannot be merged. 

At gate V, the top input can only be defined by assignment p1, so this 

becomes the first sum term in our POS: Figure 3.13a. The lower input can be 

defined by either of p2 or p3 , so we add (p2 + p3 ) as our second sum term. 

We note that none of these assignments conflict, so there is no need to add any 

additional assignments. As a matter of computation runtime though, we have 

found that adding conflicts does not materially affect the subsequent AllSat 

computation. The alternative which is to compute and add only relevant con

flicts at every frontier gate input was found empirically to be more expensive. 

We store conflicting assignments in a cache which we update as we create new 

assignments. These are added to all POS expressions. This is not shown in Fig

ure 3.13 for brevity, where we only show relevant conflicts. Similar analysis at 

gate Z yields the POS shown in Figure 3.13d. 

Our algorithm now computes all satisfying assignments to each of the 

POS expressions at frontier gates. We remove negated literals as well as iden

tical products from within each sum. The output of this computation is shown 

next to each POS in Fig. 3.13a and 3.13b. This computation yields three new 
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PAs. Each leads to an empty frontier and (therefore) an acyclic circuit. Our 

algorithm terminates and returns the partial assignments listed in Figure 3. l 3c. 

3.8 Experimental Results 

3.9 Benefits of Proposed Research 

As already described in Section 3.3, cyclic circuits show up often in 

domain of high level language synthesis. As such, one immediate application 

of this research is in synthesis post-processing steps that eliminate cycles. A 

second application of our research is analysis of cyclic circuits produced by 

cyclic synthesis engines such as CYCLIFY [ 49]. Most circuit analysis engines 

are incapable of handling the outputs of such circuits directly. Our algorithm 

when combined with other published algorithms can produce small equivalent 

acyclic circuits that are guaranteed to reproduce the combinational behavior of 

the original cyclic circuits. 

3.10 Conclusions 

We presented a new algorithm for identifying all the combinational be

havior of a cyclic circuit. The algorithm is useful for evaluating cyclic specifi-
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Table 3.1: Comparison with Edwards [22] 

Example Gates Edwards [22] Our Approach Acyclic 

Total SCC PAs Time PAs Time PAs 

arbiters 213 25 257 1.3s 25 0.ls 14 

arbiter6 248 30 745 8 29 0.1 16 

arbiter7 283 35 2205 69 33 0.2 18 

arbiters 318 40 6581 656 37 0.3 20 

expo 124 69 54517 2868 23260 2.0 338 

exlo 150 47 43777 2341 232 1.0 10 

garyo 177 32 - > lh 290 0.6 11 

planeto 253 51 - > lh 1489 0.3 22 

s14880 272 61 - > lh 588 0.2 89 

table3o 311 49 - > lh 3604 1.0 38 
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cations that often arise from high-level synthesis [6, 7]. One application of our 

algorithm is transforming cyclic combinational circuits to an acyclic equiva

lent; it replaces the first half of the procedure described by Edwards [22]. 

The chief contribution of our work is a speed improvement of several 

orders of magnitude over Edwards [22] due to much more clever pruning of the 

search space and use of implicit method for merging PAs. It is therefore able 

to deal with practical-sized cyclic circuits. 

Our algorithm analyzes all possible inputs into SCCs without consider

ing whether such patterns can in fact occur in the original circuit (i.e., whether 

they are controllability don't-cares). This saves us from performing an image 

computation on the surrounding circuit, making the analysis much faster. How

ever, it is possible that considering the don't-care set would reduce the number 

of PAs we consider and further speed the search. We have yet to explore the 

trade-off between computing don't-cares and reducing the number of PAs. 

Independent of these further refinements, we have presented a practical 

algorithm that is able to quickly characterize all the combinational behavior of 

a realistic-sized cyclic circuit. Our intended application is the construction of 

an acyclic equivalent of a cyclic circuit to make it palatable to existing synthesis 

tools, but we believe our algorithm has other important applications in analysis 

85 



and formal equivalence verification of cyclic circuits. 

3.11 Summary 

Compiling high-level hardware languages can produce circuits contain

ing combinational cycles that can never be sensitized. Such circuits do have 

well-defined functional behavior, but wreak havoc with most logic synthesis 

and timing tools, which assume acyclic combinational logic. As such, some 

sort of cycle-removal step is usually necessary for handling these circuits. 

Cyclic circuits have also been shown to the most compact representa

tion for certain classes of circuits. This property was exploited recently by the 

synthesis engine of Riedel and Bruck [ 49], which won the best paper award 

at DAC-2003. It remains to be seen whether cyclic circuits will ever get used 

in ASICs or microprocessors due to complexity of enhancing all CAD tools to 

support them. While the area saving are attractive, the need for a non-standard 

static timing methodology might make such circuits outside reach of most de

signers and automated design flows. At the same time, synthesizing circuits 

into cyclic forms may reveal interesting properties about these circuits that can 

be exploited for analysis and optimization back in the acyclic domain. 

Our research advanced addresses an important requirement for both ar-
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eas above by providing a bridge from cyclic to acyclic circuits. 
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Label Assignment Frontier At Frontier Acyclic 

Po {a= O} {} ✓ 

Pl {b = O} {V} R=O 

P2 {c = O} {V} U=O 

p3 {d = 1} {V} U=O 

p4 {e = O} {Z} W=l 

p5 {f = 1} {Z} X= 1 

P6 {g = O} {Z} y = 1 

P7 {g = 1} {Z} X= 1 

Figure 3.12: PAs from applying controlling values to each input in isolation. 

All frontiers are either gate V or gate Z 
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(p1)(P2 + p3) ~ (P1P2) + (P1P3) 

(a) 

(p4) (p5 + P7) (p5) (p5 + P1) ~ (p4p5p5) 

(b) 

Product Term Assignment 

Po {a=0} 

P1P2 { b = 0' C = 0} 

P1P3 {b=0,d=l} 

p4p5p5 {e = O,f = l,g = 0} 

(c) 

Figure 3 .13: Partial assignment extraction on a small cyclic circuit (a) POS and 

final ISOP for frontier gate V. (b) POS and ISOP for Z. (c) A minimal set of 

partial assignments that reproduce all combinational behavior. 
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Chapter 4 

Conclusions 

4.1 Statistical Optimization of Digital Circuits 

We introduced a new concept of a worst negative statistical slack path 

and derived a procedure for tracing and optimizing such paths. In the pro

cess, we also derived a new approximation for the max operation on random 

variables for use in circuit optimization. Our approach allows us to steer the 

optimization process towards different mean-variance goals. The significance 

of this work is that it can be used during design cycle to increase tolerance 

for the effects of manufacturing variations by trading off circuit delay and 

area requirements for reduced timing variance with user controlled weights. 

We demonstrated fidelity of our approach on ISCAS benchmarks with con

sistent variance reduction in exchange for moderate increases in area and low 

increases in mean delays. 
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A large number of publications advocating statistical approaches con

tinues to appear at every major CAD and VLSI conference. It is difficult to 

predict where this research will end up. By and far, the most significant gap 

in this research is in availability of bottom up transistor variations models in 

practice and how these variations manifest at the gate, circuit, and system level. 

Genuine fabrication data about transistor variations is very highly guarded by 

the companies and foundries. While it is mathematically convenient to assume 

that variations are guassian in nature and proceed with analysis and optimiza

tion using this assumption, we have no idea how closely this matches reality. 

In perviewing literature on statistical approaches, the author has yet to find a 

bottom up driven models describing variations corresponding to a true deep 

submicron technology node such as 65nm or 45nm. Notwithstanding the in

tellectual property concerns, it is imperative that we strive to continue further 

research around more realistic data and build up bottom up models with more 

basis in reality on how electronic designs vary in response to transistor level 

variations. Publications arising out of this work are [ 46]. 
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4.2 An Efficient Algorithm for Analysis of Cyclic Circuits 

We presented a new algorithm for identifying all the combinational be

havior of a cyclic circuit. The algorithm is useful for evaluating cyclic specifi

cations that often arise from high-level synthesis [6, 7]. One application of our 

algorithm is transfonning cyclic combinational circuits to an acyclic equiva

lent; it replaces the first half of the procedure described by Edwards [22]. 

The chief contribution of our work is a speed improvement of several 

orders of magnitude over Edwards [22] due to much more clever pruning of 

the search space. It is therefore able to deal with practical-sized cyclic circuits. 

Our algorithm analyzes all possible inputs into SCCs without consider

ing whether such patterns can in fact occur in the original circuit (i.e., whether 

they are controllability don't-cares). This saves us from performing an image 

computation on the surrounding circuit, making the analysis much faster. How

ever, it is possible that considering the don't-care set would reduce the number 

of PAs we consider and further speed the search. We have yet to explore the 

trade-off between computing don't-cares and reducing the number of PAs. 

Although our algorithm performs quite well, it can be improved further. 

The current performance bottleneck arises when merging PAs at a frontier gate 

to produce more PAs to consider. Most of our PAs are generated here and most 
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are later discarded. A more clever approach, perhaps Espresso-based, might 

reduce both the number of new PAs generated and the time it takes to derive 

them. 

Independent of these further refinements, we have presented a practical 

algorithm that is able to quickly characterize all the combinational behavior of 

a realistic-sized cyclic circuit. Our intended application is the construction of 

an acyclic equivalent of a cyclic circuit to make it palatable to existing synthesis 

tools, but we believe our algorithm has other important applications in analysis 

and formal equivalence verification of cyclic circuits. Publications arising out 

of this work are [44] and [45]. 
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