
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

5-8-2008

Advanced Algorithms for VLSI: Statistical Circuit Advanced Algorithms for VLSI: Statistical Circuit

Optimization and Cyclic Circuit Analysis Optimization and Cyclic Circuit Analysis

Osama Neiroukh
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Neiroukh, Osama, "Advanced Algorithms for VLSI: Statistical Circuit Optimization and Cyclic Circuit
Analysis" (2008). Dissertations and Theses. Paper 6150.
https://doi.org/10.15760/etd.8010

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/6150
https://doi.org/10.15760/etd.8010
mailto:pdxscholar@pdx.edu

ADVANCED ALGORITHMS FOR VLSI:

STATISTICAL CIRCUIT OPTIMIZATION

AND

CYCLIC CIRCUIT ANALYSIS

by

OSAMA NEIROUKH

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
@2008

DISSERTATION APPROVAL

The abstract and dissertation of Osama N eiroukh for the Doctor of Philoso­

phy in Electrical and Computer Engineering were presented May 8, 2008, and

accepted by the dissertation committee and the doctoral program.

COMMITTEE APPROVALS

Xi ,

Representative of the Office of Graduate Studies

DOCTORAL PROGRAM APPROV. L:

Malgorzata C

Electrical and Computer Engineering Ph.D. Program

ABSTRACT

An abstract of the dissertation of Osama Neiroukh for the Doctor of Philosophy

in Electrical and Computer Engineering presented May 8, 2008.

Title: Advanced Algorithms for VLSI: Statistical Circuit Optimization and

Cyclic Circuit Analysis

This work focuses on two emerging fields in VLSI. The first is use of

statistical formulations to tackle one of the classical problems in VLSI design

and analysis domains, namely gate sizing. The second is on analysis of non­

traditional digital systems in the form of cyclic combinational circuits.

In the first part, a new approach for enhancing the process-variation tol­

erance of digital circuits is described. We extend recent advances in statistical

timing analysis into an optimization framework. Our objective is to reduce the

performance variance of a technology-mapped circuit where delays across el­

ements are represented by random variables which capture the manufacturing

variations. We introduce the notion of statistical critical paths, which account

for both means and variances of performance variation. An optimization en-

gine is used to size gates with a goal of reducing the timing variance along the

statistical critical paths. Circuit optimization is carried out using a gain-based

gate sizing algorithm that terminates when constraints are satisfied or no further

improvements can be made. We show optimization results that demonstrate an

average of 72% reduction in performance variation at the expense of average

20% increase in design area.

In the second part, we tackle the problem of analyzing cyclic circuits.

Compiling high-level hardware languages can produce circuits containing com­

binational cycles that can never be sensitized. Such circuits do have well­

defined functional behavior, but wreak havoc with most tools, which assume

acyclic combinational logic. As such, some sort of cycle-removal step is usu­

ally necessary. We present an algorithm able to quickly and exactly charac­

terize all combinational behavior of a cyclic circuit. It used a combination of

explicit and implicit methods to compute input patterns that make the circuit

behave combinationally. This can be used to restructure the circuit into an

acyclic equivalent, report errors, or as an optimization aid. Experiments show

our algorithm runs several orders of magnitude faster than existing ones on

real-life cyclic circuits, making it useful in practice.

2

Dedicated to my wife Sophia.

Acknowledgments

I wish to thank my parents who saw to it that I get the best education

possible without regard to the financial burdens imposed by such a pursuit. My

wife and children have exhibited immeasurable patience as my doctoral degree

spanned the better part of eight years while I juggled a multitude ofresponsibil­

ities to God, family, work, and community in addition to a full time job. Several

people at Portland State University influenced my education and inspired me

in different ways. My advisor Dr Xiaoyu Song helped provided valuable input

along the years that positively affected my research direction, my publications,

and overall steps towards degree completion. The first course I took at PSU

was with Dr Perkowski who is a great inspiration to anyone looking for re­

search advice. He brings high passion to electrical engineering despite having

spent decades in the field. The remainder of the faculty on my PhD committee

have also provided useful inputs that shaped my output. Thanks are due to Intel

Corporation who provide financial support for continuing education and foster

a continuous improvement attitude.

ii

Table of Contents

Acknowledgments

List of Tables

List of Figures

Chapter 1. Introduction

Chapter 2. Statistical Optimizations of Digital Circuits

2.1 Introduction . . .

2.2 Literature Survey

2.2.1 Statistical Yield Optimization

2.2.2 Gate Sizing

2.2.3 SSTA: Statistical Static Timing Analysis

2.3 SSTA Overview

111

ii

vii

viii

1

8

8

9

10

11

14

16

2.3.1 Introduction to SSTA

2.3.2 Challenges and Assumptions in SSTA .

2.4 SSTA-based Circuit Optimization: Problem Overview

2.4.1 Problem Formulation.

2.4.2 Overview of Research

2.5 Statistical Gate Sizing

2.5.1 Overview of Algorithm

16

19

21

21

26

28

28

2.5.2 FULLSSTA: Full Statistical Static Timing Analysis 29

2.5.3 FASSTA: Fast Statistical Static Timing Analysis 34

2.5.3.1 Statistical Critical Path Identification

2.5.3.2 Subcircuit extraction and ranking

2.5.4 Experimental results .

2.5.5 Concluding Remarks .

2.5.6 Benefits of Research

2.6 Summary

39

43

44

49

49

50

Chapter 3. An Efficient Algorithm for Analysis of Cyclic Circuits 52

3.1 Introduction 52

lV

3.2 Notation and Definitions .

3.3 Literature Survey

3.3.1 Origins of Cyclic Circuits

3 .3 .2 Analysis of Cyclic Circuits

3.3.3 Synthesis of Cyclic Circuits

55

57

57

58

60

3 .3 .4 Most Recent Publications on Analysis of Cyclic Circuits 61

3.4 Types of Cycles .

3.5 Our Circuit Model

3.6 Combinational Circuits

3. 7 Finding a Combinational Cover for a Cyclic Circuit

3.7.1 Theoretical Background

3. 7 .2 Searching for combinational behavior

3. 7 .3 Merging partial assignments

3. 7.4 Another Example .

3.8 Experimental Results ..

3.9 Benefits of Proposed Research

3.10 Conclusions

V

62

63

65

68

68

71

73

79

83

83

83

3.11 Summary. 86

Chapter 4. Conclusions 90

4.1 Statistical Optimization of Digital Circuits 90

4.2 An Efficient Algorithm for Analysis of Cyclic Circuits . 92

Bibliography 94

Vl

2.1

2.2

List of Tables

Experimental Results: A= 3

Experimental Results: A= 9, runtime is in minutes

45

46

3.1 Comparison with Edwards [22] 84

vu

List of Figures

2.1 Mapping from circuit to timing graph for timing analysis. . . 17

2.2 Examples of cumulative and probability distribution functions

for a circuit's timing.

2.3 Example of circuit output Delay PDFs

2.4 Example of circuit output Delay CDFs

2.5 Overview of Statistical Sizer Algorithm

2.6 Extracting Subcircuit Cost for Statistical Sizer .

2. 7 Probabilistic event representing delay at a given edge in an

19

25

26

30

31

SSTA timing graph . 31

2.8 Shift with scaling and grouping techniques to perform convolu-

tion of input and gate-delay PDFs to compute the output-delay

PDF . 32

vm

2.9 Tracing worst negative statistical slack (WNSS) path. Num­

bers in parenthesis are (µ, o-) of arrival time. The shaded nodes

indicate the WNSS using our method. 40

2.10 Normalized Mean-Std Variation for C432 at different >... The

x-axis shows the mean while the y-axis has the standard variation. 48

3.1

3.2

3.3

A trivial cyclic circuit and its truth table

Cyclic circuit for illustrating definitions

Rivest's Circuit

53

56

58

3.4 Cyclic circuit arising from resource sharing due to Stok [56] 59

3 .5 Examples of true and false cycles 63

3.6 The three-valued simulation algorithm, which takes a circuit

(G, I, W), an input function x, and an infinite schedule of gates

s. It evaluates gates until it reaches a fixed point using EVAL,

which updates a single (NAND) gate.

3.7 (a) A cyclic circuit. (b) Partial assignments and their induced

frontiers-the boundary between defined and X-valued gates

66

after applying inputs. 67

lX

3.8 Our algorithm for finding a minimal set of PAs for a circuit

(SCC) that together cover all its combinational behavior. 72

3.9 Illustration of merging PAs at a gate. 77

3.10 Our PA merging algorithm: return a set of PAs that apply non-

controlling values to every input of a gate. 80

3.11 Small cyclic circuit for illustrating partial assignment extraction 81

3.12 PAs from applying controlling values to each input in isolation.

All frontiers are either gate V or gate Z 88

3.13 Partial assignment extraction on a small cyclic circuit (a) POS

and final ISOP for frontier gate V. (b) POS and ISOP for Z. (c)

A minimal set of partial assignments that reproduce all combi-

national behavior. 89

X

Chapter 1

Introduction

Advances in VLSI technology continue to present both challenging and

exciting opportunities for advanced research in electrical and computer engi­

neering. Moore's law has continued to motivate designers to keep fulfilling

its prediction by continually shrinking down device geometries and packing

more devices per square micron while meeting numerous challenges brought

on by the most recent technologies. These challenges include several param­

eters such as power density and dissipation, supply voltage droop, and relia­

bility under wide operating conditions. However, the most pressing difficulty

facing designers today is the decreasing correlation between physical verifi­

cation (PV) models used in pre-silicon design and optimization and behavior

of manufactured circuits on silicon. Manufacturing variations and its adverse

effect on predictability on silicon behavior have spurred designers to seek new

tools and methodologies to deal with these variations in order to better predict

1

performance of circuits during design cycle.

This dissertation focuses on two emerging fields in VLSI. The first is

use of statistical formulations to tackle one of the classical problems in VLSI

design and analysis domains, namely gate sizing. The second is on analysis

of non-traditional digital systems in the form of cyclic combinational circuits.

Neither field is really new, early publications in both topics can be traced back

to the 60's and 70's as our literature survey will show. However, both fields

have received renewed interest recently, with statistical approaches in particu­

lar featured prominently at all major CAD conferences nowadays and getting

increased coverage in journals.

Usage of statistical approaches has been well-known in parametric yield

analysis for post-manufacturing die sorting and analysis, but had not made its

foray yet into pre-silicon analysis or optimization areas. It began to receive

increased focus around the tum of the 21st century when Physical Verification

(PV) models of pre-silicon behavior started to diverge substantially from ac­

tual silicon measurements. The field has exploded in the past 5 years, with

almost every analysis or optimization problem in VLSI revisited from a sta­

tistical perspective. It remains to be seen whether this is merely an academic

curiosity or whether statistical analysis and optimization techniques will nar­

row the widening gap between pre-silicon models and post-silicon behavior.

2

As of this writing, IBM is the only company which has publicly claimed to

deploy statistical static timing analysis in pre-silicon PV models of industrial

circuits [32, 33]. It is not clear to what extent does IBM use this methodology,

and whether it merely augmented or completely replaced standard static tim­

ing tools as the golden timing verification model. At the same time, the field

cannot be neglected. At least for the time being, it provides a rich field for re­

search, though competition is stiff with numerous researchers both in academia

and industry attacking a variety of CAD problems using statistical techniques

very aggressively.

Cyclic circuits appear to have been a black sheep of digital circuits.

Convincing examples of cyclic circuits that had provably less gates than any

acyclic equivalents have been around for decades. Nevertheless, cyclic circuits

have not received much attention in industry as candidates for deployment in

real-life ASICs or custom designs. While circuits that have registers (flops or

latches) that depend on current state for future state and output calculation are

commonplace in state machine design, purely combinational cyclic circuits are

not intuitive to reason about. Despite this, the lure of area savings and po­

tential for other advantages has continued to spur researchers to study these

circuits. More recently, a synthesis engine was proposed that produces cyclic

implementations at an area saving compared to traditional synthesis. The re-

3

search was well-accepted, receiving best paper award at Design Automation

Conference in 2003 [49].

An alternate motivation for tackling cyclic circuits arises during pro­

cessing of high level hardware modeling languages such as ESTEREL [8].

Some of the literature on cyclic circuit analysis was contributed by researchers

who were trying to grapple with ESTEREL and other synchronous program­

ming languages such as LUSTRE [25] and ARGOS [36]. Synthesizing these

languages into digital circuits often yields loops that are difficult for regular

CAD tools to handle. Ability to handle cycles became imperative for compi­

lation of these languages, forcing researchers to find ways to take out these

cycles as a post-processing step before handing off these circuits to other tools.

This dissertation tackles both areas separately. The first part focuses on

usage of statistical analysis in a digital circuit optimization setting. The main

contribution is an adaptation of well-known gate sizing techniques to use a

statistical timing model toward reducing the performance variation of a circuit

at design time. The second part of this dissertation investigates more efficient

methods for analysis of cyclic circuits. We note that the two topics are distinct

with no overlap in our context.

At a high level, there are similarities in the two research areas we pro-

4

pose here. Both problems involve netlist level analysis and optimization at the

gate-level granularity. Gate sizing is NP-complete while cyclic circuit anal­

ysis is considered to be co-NP-complete. There are also distinct differences

between the two areas. Gate sizing belongs to the class of electronic design

automation problems, while cyclic circuit analysis is an enumeration problem

as we will show.

There are advantages to tackling such disparate problems as part of a

single PhD research. The field of IC design is increasingly becoming more

vertical, with design, analysis and verification becoming strongly coupled with

an expectation that a designer can move between these area with ease. Another

rationale here was that a practitioner in the field of VLSI design would do

well to understand in depth both analysis and design optimization domains of

CAD techniques from an algorithmic and practical perspective as they present

uniquely different challenges. Our characterization below of the differences

is rather subjective but reflects the author's combined industrial and academic

experience with these fields.

Automated circuit optimization techniques are much more heuristics

based, with many decisions and tunings that can work for one design but not

other designs. In addition, there is a possibility of oscillations or other unex­

pected problems where the algorithm seems to go astray. Given that most of the

5

problems EDA tools attempt to solve are NP-complete, a thorough understand­

ing of the challenges of overcoming local optima and explaining otherwise odd

outputs is a daily struggle for any engineer attempting to use and steer EDA

design tools. This has been a perennial component of this author's job at In­

tel as an automation design engineer covering automated synthesis, placement,

sizing, and routing tools. The research that was done in this field has helped

the author tremendously with understanding the difficult tradeoffs these tools

are juggling especially as the given timing, area, and power constraints that are

usually impossible to meet at once.

The chief challenge with analysis techniques in CAD is reducing run­

time while keeping peak memory usage within reasonable bounds. Analysis

algorithms have different requirements than optimization algorithms. A design

optimization algorithm might be successful even if terminates due to exceed­

ing acceptable runtime or runs out of memory and stops earlier than it would

otherwise having achieved a satisfactory result. On the other hand, an anal­

ysis algorithm must complete its execution; a partial result is of no value in

practice. This makes data representation and programming methodology used

critical to a successful implementation. Usage of existing technologies such as

SAT, BDD manipulation, and ATPG techniques should be considered as much

as possible by mapping the given problem into one of these formulations. This

6

enables designers to reuse efficient solvers that are publicly available for each

of these formulations and improving the state of the art by focusing on the

unique problem at hand.

The rest of this dissertation is structured as follows. Chapter 2 starts

with an overview of statistical analysis and optimization of digital circuits. It

presents an extensive literature survey covering the topic and gives an introduc­

tion of the problem we addressed and motivation for it. It presents our proposed

algorithm for statistical gate sizing and provides experimental results and de­

tailed analysis of the algorithm's performance on tested circuits. Chapter 3

presents a literature survey on cyclic circuits and presents motivation for the

problem we tackle. We provide theoretical underpinnings for our circuit model

and present our original algorithm for cyclic circuit analysis as well in-depth

step-by-step review of how it works in practice with aid of examples. Finally

chapter 4 gives concluding remarks about our contributions and directions for

future research.

7

Chapter 2

Statistical Optimizations of Digital Circuits

2.1 Introduction

Recent advances in VLSI have continued to shrink device geometries at

a steady rate in accordance with Moore's Law. However, this advancement has

also been accompanied by increasing variations in the performance of fabri­

cated circuits. Numerous factors have contributed to this trend including clock

PLL jitter, noise, PV model inaccuracies, and manufacturing variations. Nev­

ertheless, it is often desirable to manufacture ASICs on advanced technology

nodes due to substantial increase in available device count, reduction in power

consumption, higher yields and lower costs due to the larger 300mm wafers.

Researchers have recently focused on statistical analysis approaches in

an attempt to grapple with these sources of performance variations. Statistical

static timing analysis (SSTA) is a modification of static timing analysis (STA)

8

for determining delay across a circuit. SSTA models delay arcs across gates

as random variables rather than discrete values which are used in regular STA.

SSTA propagate timing constraints across a circuit using probability distribu­

tion functions (pdfs). A virtual sink is often used for all the circuits' outputs

producing a single pdf that represents delay across the circuit.

When this research was first conceived, a substantial focus had gone

into the analysis aspect of this problem [1,28]. However, research into statis­

tical optimization of circuits had been surprisingly diminutive. Circuit opti­

mization was done in [29] by using LANCELOT [17] but had severe limitation

on circuit size and used unrealistically simple gate delay models. A concept

of criticality of gates was used in [27] but did not address the variance of the

timing path delays. A transistor level approach was presented in [4]. Several

yield-specific techniques were presented in [21].

2.2 Literature Survey

An extensive review of prior work on areas related to this research area

was undertaken before research into this area was started. Below is a summary

of contributions in this field. It should be noted that research into application

of statistical techniques to mainstream EDA problems continues to advance

9

at a very rapid pace, with almost all major CAD conferences dedicating at

least one or two sessions to statistical analysis and optimization approaches.

For example, the entire 2004 ACM/IEEE TAU Workshop on Timing Issues in

the Specification and Synthesis of Digital Systems was dedicated to statistical

approaches to timing analysis. Many topics that had previously appeared to

mature such as static timing analysis, power analysis, and gate-level design

optimization are now being re-examined using statistical formulations. We

survey publications in a number of research thrusts below. However, we stress

that such a survey is only a sampling of what is rapidly becoming a vast body

of literature covering all aspects of electronic design and analysis.

2.2.1 Statistical Yield Optimization

A wide variety of methods for yield optimization has been developed

over the last few decades. A comprehensive reference that covers an expo­

sition of representative techniques is [21]. Traditional statistical optimization

methods define the yield as the probability of a random variable that represents

a performance metric belonging to an acceptability region. This acceptability

region can be expressed as a multi-dimensional integral which is typically eval­

uated by Monte-Carlo based methods or by relying on analytical expressions

for the circuit performance parameters of interest. Monte-Carlo techniques are

far too expensive to deploy for digital circuit design due to the dimensionality

of the statistical space.

While Monte-Carlo techniques find many uses in analysis of circuits,

they are rarely deployed in a circuit optimization context. Modeling of per­

formance metrics such delay along with possible variations using analytical

expressions is also intractable especially in deep submicron technologies. In

light of this, we found that traditional yield optimization techniques while be­

ing highly useful in parametric yield contexts are not directly usable for the

problem at hand.

2.2.2 Gate Sizing

Gate sizing has been studied extensively in the literature. Gate sizing

is typically performed after technology mapping during logic synthesis and re­

peated several times during the physical design process. The aim of gate sizing

is to assign sizes to all gates in a circuit such that some objective function is

satisfied, possibly under some constraints. Typical formulations include min­

imizing area or power subject to a maximum delay constraint. Various gate

delay models have been proposed in the literature such as Load-Independent

Delay Model (LIDM) and Load Dependent Delay Model (LDDM).

11

The choice of which gate delay model to use has a direct impact on

choice and efficacy of the gate sizing algorithm to be deployed. Since the

output load of a gate has a great impact on delay across it, LIDM is of little

value in real optimization contexts. Gate sizing has been shown to be NP­

complete under LDDM which rules out finding globally optimal solutions for

real-life circuits which consist of tens to hundreds of thousands of gates.

Research in circuit sizing has been carried out both at the transistor as

well as gate level. Transistor level sizing is more accurate but presumes ability

to size and therefore adjust layout on a per transistor basis, which is becoming

less common due to layout complexity of recent processes. It is also limited

to smaller circuits compared to gate-level approaches. Gate sizing relies on

standard cell libraries that can come from library vendors which are designed

in discrete sizes, laid out, and pre-characterized for timing, area and power. A

typical cell characterization produces lookup tables for every input-pin output­

pin transition. Timing characterization tables represent input slope and output

capacitance as inputs with output slopes and delay through gate as outputs.

Gate sizing algorithms can be classified into one of two categories:

global approaches and local approaches. Global approaches solve gate sizing

in the continuous domain by relying on optimization techniques such as con­

vex programming with posynomials [23], linear programming [5], sequential

12

quadratic programming [37], or Lagrangian Relaxation [13]. While these ap­

proaches can claim a globally optimum solution, they have two drawbacks. The

presumption of a convex problem where a single global optimum exists is not

supported by practical evidence. More importantly, library gates tend to come

in pre-determined discrete sizes and solving the problem in the continuous do­

main requires snapping back size assignments to closest available gate sizes.

Since standard cell library gates tend to be sized in a geometric progression

of drive strength, this discretization may assign drive strengths significantly

different from the values obtained in the continuous domain. Advantages of

global approaches include a global solution without oscillations and faster run­

time compared to local approaches.

Local sizing approaches assign gate sizes using local gain-based or

greedy heuristics. Examples of this approach are available in [14, 19,40]. Most

of these algorithms share several common elements. The critical path, some­

times referred to as the Worst Negative Slack (WNS) path, is usually targeted

for optimization. We note that the WNS path can change as the optimization

proceeds so the path being evaluated for resizing must be updated at specific in­

tervals in the optimization iteration. The algorithms can be run in a constrained

mode where delay for example is optimized first then area is recovered as far as

possible without violating a delay constraint. Other constraints can be similarly

13

satisfied either during optimization by not violating some cost/benefit ratio or

in a recovery mode after unconstrained optimization.

Coudert [19] argues that accurate delay models make gate sizing a

non-linear, non-convex, constrained, discrete optimization problem. Our ex­

perience corroborates this assertion, especially for deep-submicron technolo­

gies which are the target domain for this research. Many of the commercial

tools for logic and physical synthesis such as Design Compiler® and Physical

Compiler® from Synopsys@ also use local approaches for gate sizing as these

approaches are more accurate despite being slower than global approaches.

2.2.3 SSTA: Statistical Static Timing Analysis

The earliest paper that suggested a statistical approach to timing anal­

ysis known to the author is [41]. The author attempted to determine the dis­

tribution of delay from source to sink of an acyclic directed graph that had

probability distributions associated with its elements. However, the focus on

use of statistical approaches in timing analysis is relatively new. Pioneering

works in this field appeared in [11, 20, 30].

While difficulties in deterministic timing analysis such as false path de­

tection carry into statistical approaches, the latter also introduce their own set

14

of challenges. In particular, deterministic timing analysis relies on two opera­

tions for propagating timing through a network, sum and max. The summing

operation adds arrival times at inputs of gates to delays from those input pins

to the output. The max operation decides which of these to propagate for max

frequency analysis. Performing these calculations on pdfs is more expensive

computationally than their counterparts in the deterministic case. Moreover,

the degree of correlation between two pdfs arriving at a gate's inputs due to

reconvergent fanouts needs be taken into account for accurate calculations.

In the past few years statistical techniques for timing analysis of digi­

tal circuits have received tremendous focus with representative works includ­

ing [2, 12, 34, 47]. A recent paper [9] reviews many of the the recent devel­

opments in SSTA. It discusses its underlying models and assumptions, then

surveys the major approaches, and closes by discussing its remaining key chal­

lenges. It also has a large number of references which constitute a compendium

ofrecent publications on statistical techniques in timing analysis and optimiza­

tion.

15

2.3 SSTA Overview

This section provides an overview of statistical timing analysis based

on [9]. For more in-depth treatments, the reader is referred to the recent

overview paper [9] and the references that paper cites.

2.3.1 Introduction to SSTA

Traditional timing analysis abstracts a timing graph from a combina­

tional circuit as follos. The nodes of the timing graph represent primary in­

puts/ outputs of the circuit and gate input/ output pins. The edge of the tim­

ing graph represent the timing elements of the circuit, namely, the gate input­

pinoutput-pin delay and wire delay from a driver to a receiver, as shown in Fig­

ure 2.1.

The weight on these edges represents the delay of the corresponding

timing element. For a combinational circuit, it is convenient to connect all

primary inputs to a virtual source node with virtual edges having weight equal

to the input arrival times. Similarly, all the primary outputs are connected to a

virtual sink node through virtual edges with weights representing the required

arrival times. The resulting timing graph, therefore, has a single source and

sink node.

16

Figure 2.1: Mapping from circuit to timing graph for timing analysis.

SSTA uses the same fundamental concept but uses random variables

(RVs) to model gate delays. The random variables capture the uncertainty

introduced by the manufacturing variations which are prevalent in deep submi­

cron technologies. A formal definition of statistical timing analysis follows.

Definition 1. A timing graph G = N, E, n8 , n1 is a directed graph having

exactly one source node ns and one sink node nf, where N is a set of nodes,

and E is a set of edges. The weight associated with an edge corresponds to

either the gate delay or the interconnect delay. The timing graph is said to be

a statistical timing graph if ith edge weight di is an RV.

17

In traditional DSTA, the most basic goal of the analysis is to find the

maximum delay between the source node and the sink node of a timing graph,

which is the delay of the longest path in the circuit. When modeling process­

induced delay variations, the sample space is the set of all manufactured dies.

In this case, the device parameters will have different values across this sample

space, hence the critical path and its delay will change from one die to the next.

Therefore, the delay of the circuit is also an RV, and the first task of SSTA

is to compute the characteristics of this RV. This is performed by computing

its probability-distribution function (PDF) or cumulative-distribution function

(CDF) (see Figure 2.2). Alternatively, only specific statistical characteristics of

the distribution, such as its mean and standard deviation, can be computed.

Note that the CDF and the PDF can be derived from one another through

differentiation and integration. Given the CDF of circuit delay of a design and

the required performance constraint the anticipated yield can be determined

from the CDF. Conversely, given the CDF of the circuit delay and the required

yield, the maximum frequency at which the set of yielding chips can be oper­

ated at can be found.

18

1
performance
yield

F(t)

P(D~t)= F(t) = fo/(t)dt

t>i----"----.......1-------.......
f(t)

.Jof(t)dt = I

Figure 2.2: Examples of cumulative and probability distribution functions for

a circuit's timing.

2.3.2 Challenges and Assumptions in SSTA

This section goes through various underlying assumptions and chal­

lenges pertaining to usage of SSTA in digital circuits

• Gates versus wires: Most literature to date presumes that gates are far

more susceptible to variations than interconnects. There is some evi­

dence for this in what little real silicon data has surfaced. As such, in

this work, we will also stay with this assumption, modelling gate delays

as random variables and ignoring wire delays as they do not impact our

analysis or optimization

19

• Normal distributions: Again, we find that most literature assumes that

gate delays can be represented by random variables. As [9] notes, normal

or Gaussian distributions are found to be the most commonly observed

distributions for RVs, and a number of elegant analytical results exist for

them in the statistics literature. Hence, most of the research in SSTA

assumed normal distributions for physical device parameters, electrical

device parameters, gate delays, and arrival times. However, some phys­

ical device parameters may have significantly nonnormal distributions.

Moreover, one of the two operations dominant in timing analysis, the

max operator, is nonlinear and produces a nonnormal distribution when

applied to two normal distributions. Nonnormal delay and arrival-time

distributions introduce significant challenges for efficient SSTA.

• Correlation: Due to reconvergent fanouts from the same gate, inputs ar­

riving at a given gate may have some common sources. This must be

accounted for if we are to produce exact timing analysis. As per [9], the

input arrival times at the reconvergent node become dependent on each

other because of the shared edge delay. This dependence leads to so­

called topological correlation between the arrival times and complicates

the maximum operation at the reconvergent node. To perform accurate

analysis, the SSTA algorithm must capture and propagate this correla-

20

tion so that it is correctly accounted for during the computation of the

maximum function.

2.4 SSTA-based Circuit Optimization: Problem Overview

This section will provide an overview of the problem we propose to

solve and provide a mathematical formulation and motivation for this research

direction.

2.4.1 Problem Formulation

The starting point for our problem is a technology mapped digital cir­

cuit. Without loss of generality, this paper focuses on combinational circuits.

We ignore interconnect delay though accounting for them can be readily ac­

commodated. This is in line with other published literature and practical find­

ings, as analysis of manufactured circuits indicates devices are much more sus­

ceptible to manufacturing variations than interconnect nets.

Our method uses discrete probability distribution functions (pdfs) through-

out.

Definition 2. A discrete pdf for random variable X is defined as one or more

21

points where

f(x) = Pr(X = x)

The mean and variance of a discrete random variable are given by

µx = I:xd(xi)

aJ = L(xi - µx)2 f(xi)

(2.1)

(2.2)

(2.3)

We shall also use the cumulative distribution function (cdf) to illustrate con­

cepts and results. The cdf for a discrete random variable X is defined as

F(x) = Pr(X:::; x) (2.4)

We assume that every gate delay in the circuit is represented by a nor­

mally distributed random variable which is consistent with other published lit­

erature. In line with other researchers, we focus our work on gate delays and

sizes and ignore second order factors such as slope propagation or capacitance

variations. We shall have more to say about modeling of transistor variations

in the conclusions chapter.

Both the mean and standard deviation of delay through a bigger gate

are less than those of a smaller gate. Arrival times are propagated throughout

the circuit as pdfs.

22

We define the unconstrained timing variance minimization problem for

a circuit as

Minimize CYb (2.5)

where

µo = Mean (RVo)

CYi = Variance (RV0)

RV0 = Max (R¼) where the Max is the statistical Max operator on random variables
iEOUT

R¼ = Random variable representing propagated arrival time of output oi

OUT= { o1 , o2 , · · · , ON} are the circuits outputs

As we shall see later, due to the gain-based nature of the algorithm we propose,

a constrained version is possible by terminating it once certain constraints are

satisfied. From this point onwards, we shall focus on the unconstrained prob­

lem without loss of generality. However, in the course of making local opti­

mization, we show how a user-defined weight multiplier can in fact steer the

optimization towards different goals.

We note that the random variable RV0 characterizes the mean and vari­

ance of the entire circuit. It should be highlighted that a circuit may have multi­

ple outputs with close mean delays but different variances. ln this case, all such

23

outputs will contribute to the overall variance cr3c of the circuits performance.

Alternatively, an output with the highest variance may have a much smaller

mean than other outputs and reducing its variance will have minimal effect on

overall variance of the circuits performance. Any algorithm that attempts to al­

ter RV0 must account for both means and variances of delays simultaneously.

Figure 2.3 gives PDF plots of RV0 at different optimization points

while Figure 2.4 provides the equivalent plots using CDFs instead of PDFs.

The original line represents a pdf obtained by optimizing a circuit with a goal

of minimizing the mean of the longest delay in the circuit. Such a circuit will

typically exhibit the widest spread in performance due to high usage of smaller

devices which exhibit more manufacturing variability. Depending on target

application of circuit, such a performance variance around the center can rep­

resent undesirable uncertainty that should be minimized. In [48] reduction of

uncertainty was shown to be a key strategy for designing leading edge indus­

trial designs. Decreasing variance can increase the overall yield of a design.

An example of this is optimization 1 in Figure 2.3 which yields more func­

tional units at period T relative to the original design. However, our technique

is quite general and is not limited to yield optimization.

Decreasing performance variance is also desirable on several other ac­

counts even if it means relaxing the original timing targets. For example, cir-

24

I
X

I
T

Figure 2.3: Example of circuit output Delay PDFs

cuits on the original curve to the left of X in Figure 2.3 below will exhibit unde­

sirable variance in power consumption due to both dynamic and leakage power

variations. These variations in tum contribute uncertainties in thermal dissi-

pation and reliability verification. The effects of such performance variations

can adversely product qualification and time-to-market. In such instances, the

second optimization design criteria shown in Figure 2.3 labeled optimization

2 can be more desirable due to better tolerance to manufacturing variations.

Our research is aimed at providing designers with a statistically aware gate siz­

ing methodology that allows arbitrary tradeoffs between mean and variance of

RVo.

25

••••
0000

00 •!.L:,.,··4 JfL< _P

Original i c/

Optimization 1 .. 4 f
Optimization 2 ;j. __ ? / f

/; 0

,;: / ¢
Li. -~

c·s· • 6
A.f's. .. (1°

Figure 2.4: Example of circuit output Delay CDFs

2.4.2 Overview of Research

We propose a gate sizing algorithm that uses statistical delay models

for gates. We propose to extend local gate sizing approaches in such a way that

they can be run in a statistical mode. Our choice of using a local gain-based

sizing approach is based on our experience with real-life libraries that are al­

most exclusively characterized as lookup-tables which use input-slope/output­

capacitance as inputs and produce output-slope/delay-across-gate. Such li­

braries do not lend themselves to accurate modeling with analytical formulae.

Our specific objective with this sizing is to improve the reliability of the final

circuit by reducing the spread of uncertainty in the timing model as produced

26

by statistical static timing analysis (SSTA).

The primary focus of our research is on reducing the variations of a

digital circuit as measured by statistical static timing analysis (SSTA) before

manufacturing. Our success criteria is reduction of (J' of the SSTA distribution

measured at a virtual sink of all the outputs of the circuits. An obvious way to

reduce variations would be to prohibit usage of all devices smaller than a given

dimension as smallest devices exhibit the most variation. However, this is not

a very practical approach, since usage of these devices for non-critical paths

saves both area and power. Instead, we show that variations in such devices

can in fact be canceled out by appropriately sizing up subsequent gates with

tolerable increases in circuit area.

Regular gain-based sizing algorithms operate on the worst negative

slack (WNS) paths, continuously updating them as the algorithm proceeds. Our

approach introduces concept of worst negative statistical slack paths (WNSS).

These paths are the statistical counterpart of well known WNS paths, except

that they track both mean and variance of delay. Our research enables a de­

signer to chose appropriate tradeoffs between mean and variance of delay for a

given circuit.

Optimization engines typically use different timing engines for opti-

27

mization versus final analysis. The core of an optimization algorithm requires

a fast engine for evaluating sizing or other optimization choices. We expect

that a side-product of our research will be a fast engine for performing statis­

tical static timing analysis on small circuit segments. We use a more accurate

but slower engine for analysis and tracking ofWNSS paths which relies on the

sampled PDF for propagation of timing edges while keeping the faster engine

which uses point values for mean and standard variation for the core of the

optimization engine.

2.5 Statistical Gate Sizing

Our research in this area combines statistical techniques as well as cir­

cuit optimization using gate sizing. This section will provide an overview of

the proposed algorithm, develop the mathematical apparatus needed for algo­

rithm implementation, present experimental results and analysis thereof. We

also highlight benefits of research in context of design automation.

2.5.1 Overview of Algorithm

We studied several deterministic sizing techniques to evaluate their fit­

ness as a basis for statistical sizing. Our preference for accurate gate delay

28

models steered us away from methods [13, 37, 58], which require convex an­

alytical expressions for gate delays. Such models not adequately capture the

nonlinearities in current and foreseeable DSM technologies where manufac­

turing variations are prevalent. The main procedure of our approach is shown

in Figure 2.5, with supporting function shown in Figure 2.6. This builds on

the deterministic algorithms presented in [19,40] which are quite versatile and

form basis of commercially available optimization tools. The next sections

show how we deal with new challenges that arise when timing constraints are

represented by random variables.

2.5.2 FULLSSTA : Full Statistical Static Timing Analysis

Our full statistical analysis engine is based on [34]. This approach dis­

cretizes pdfs at a user controlled sampling rate. We used 10-15 samples per pdf

as a reasonable tradeoff between accuracy and speed. Note that the discrete

PDFs are renormalized after sampling to ensure that the sum of the probabil­

ities for the discrete events is equal to one. An example of a discrete pdf for

delay is given in Figure 2.7

The operations sum and max are performed on discrete pdfs using shift­

ing, scaling, and min/max reduction. An example of this process is shown

29

1: procedure STATISTICAL SIZER(Circuit C)

2: repeat

3: Run FULLSSTA on C

4: Trace critical path (WNSS) of C I> WNSS is dynamic

5: foreach g E (gates on WNSS)

6: extract subcircuit S around g

7: SB= Cost(S)

8: GC = CurrentSize(g)

9: GB=GC

10: foreach IE (sizes of g)

11: g in S +- I

12: SN= Cost(S)

13: if SN < SB then

14: GB=I

15: SB=SN

16: if GB -=J GC then 1> Better size was found

17: g.nextSize +- GB t> Schedule g for resizing

18: Resize scheduled gates

19: until constraints met or no further improvement

Figure 2.5: Overview of Statistical Sizer Algorithm

30

1: function CosT(Subcircuit S)

2: Perform FASSTA on S

3: Return ObjectiveFunction(S)

Figure 2.6: Extracting Subcircuit Cost for Statistical Sizer

1

The probability of arriving at time 2
= 2/(2+3+3+2\2/10

1-o-O +--
~ 3/10 3/10

2/10112/10
1- o I __ I •

2 3 4 5
Arrival time Arrival times

(a) a probablistic event (b) a probablistic event group

3 3

I 11 I
2 3 4 5

Arrival times

(c) probability ratios

Figure 2.7: Probabilistic event representing delay at a given edge in an SSTA

timing graph

31

1 1 1 1

I I I I
.,,..,,, 2345 ..

.,,.' 11111
Cell Delay .,,. ,,,.. .,,. 1 I I I I

.,,. _ 1 3456
1

1
J1 l L .,,.Shift witl}._sc.afing 1 1 1 1 1 1

__ J:l. .-- 11 1111
.-'l......,2,._..3_4~------ - - - ~I 4 5 6 7

,.,,,, -- - 111 1111
/ -- 111 1111

,,. :::..,,..:: - - - - - - - -1-,. I l 6 7 8
,,,.,,,._,,.._- ------ 111
111-r a,111

I I I I .!:: I I T 4 + I I
____ §-1T313TI __. _.__.__ __ ., 1- o e T 2 I I 2 T

1 2 3 4 1 1- 0 C> 11 - - - 11

..

..

..

..
2345678

Figure 2.8: Shift with scaling and grouping techniques to perform convolution

of input and gate-delay PDFs to compute the output-delay PDF

in Figure 2.8.

The approach utilizes discrete sum and maximum operations for arrival­

time propagation. In the case of a degenerate or deterministic input-delay dis­

tribution, the sum operation is simple, and the output-delay PDF is obtained by

simply shifting the gate-delay distribution by the input delay. However, in the

case where the input-delay PDF is nondegenerate, a set of shifted output-delay

distributions is generated, as shown in [34]. Each of these shifted PDFs corre-

32

sponds to a discrete event from the input-delay PDF. This set of shifted PDFs

is then combined using Bayes theoremthe shifted PDFs are first scaled, where

the scaling factor is the probability of the associated discrete input event. The

scaled events are then grouped by summing the probability at each of the dis­

crete time points. The actual probability of an event can be obtained by dividing

the total value for each discrete point of the PDF by the sum of the numbers

corresponding to all the events in each discrete PDF. The overall computation

can be expressed as

i=oo

fs(t) = L fx(i)fy(i - t) = fx(t) ® fy(t) (2.6)
i=-00

where s = x + y, and implies that the PDF of the sum of two RVs can be

expressed as a convolution of their PDFs. The statistical maximum is computed

using the relation

(2.7)

where z = maximum(x, y), f and F represent the PDF and CDF of the RV,

respectively, and x and y are assumed to be independent. The previous equation

expresses mathematically that the probability that the maximum of two discrete

RVs has a value t0 is equal to the probability that one of the RVs has a value

equal to t0 and the other has a value less than or equal to t0 .

33

In addition to propagating pdfs, we also calculate the mean and variance

at every node and store these values for use in the fast timing engine (FASSTA).

This component in our algorithm can be updated as needed to track the latest

emerging research in statistical timing analysis and represents the outer loop

for our iterations.

2.5.3 FASSTA: Fast Statistical Static Timing Analysis

As we pointed out in 2.3, statistical analysis methods such as FULLS STA

are expensive and impractical for use alone in an optimization setting. This

section presents new approximations for fast statistical static timing analysis

(FASSTA). This allows us to quickly evaluate costs of subcircuits in the body

of the optimization algorithm. The two operations needed in static timing anal­

ysis are sum and max. The FAS STA engine relies on the point values for means

and delays calculated in FULLSSTA rather than the complete discrete pdf rep­

resentations.

We start with two normally distributed independent random variables A

and B with expected values µA and µBand with variances a~ and a1 respec­

tively. Let random variable C be the sum of A and B. The mean and variance

34

of C are given by:

(2.8)

2 2 2
0-c = 0-A +a-B (2.9)

To calculate the max, we shall expand on the formulation in [15]. We

use the following notation:

1 ~x 2

cp(x) = --e-2
vl2ir

(2.10)

<I>(x) = [~ cp(t)dt (2.11)

(2.12)

(2.13)
a

35

The first two moments of max(A, B) are given by

(2.14)

(2.15)

The variance of max(A, B) is given by

Var max(A,B) = V2 - vf (2.16)

These formulae cannot be evaluated directly because the integrals do

not have analytical expressions. We found them to be expensive to compute

numerically. Instead, we derive next an original approximation on how they

can be avoided altogether and show bounds for the magnitude of approximation

error. We reformulate the integral:

<I>(x) = 1: tp(t)dt (2.17)

<I>(x) = 1: tp(t)dt + 1x tp(t)dt (2.18)

1 1 X
<I> (x) = - + - er f (-)

2 2 y2
(2.19)

36

where er f denotes the error function. To calculate the error function, we use

the following quadratic approximation [59] which is accurate to two decimal

places

0.lx(4.4 - x) 0:::; x:::; 2.2

2.2 < X < 2.6 (2.20)

0.50x ?: 2.6

We also note that the error function is odd:

er f(-x) = -er f(x) (2.21)

These formulae give us a quick method to approximate the error function for

any value. We substitute this approximation in Eq 2.15. We note that if

(2.22)

37

then

<I>(a) ~ 1 (2.23)

<I>(-a) ~ 0 (2.24)

cp(a) ~ 0 (2.25)

and we have

(2.26)

(2.27)

which gives

(2.28)

Var max(A,B) ~ a! (2.29)

Similarly, for

(2.30)

38

then

V ~ 2 ar max(A,B) ~ CJ B

(2.31)

(2.32)

We observed that in the vast majority cases, one of Eq 2.22 or Eq 2.30

would apply obviating need for any calculation for max, while in other cases

the approximations above provide quick estimates. These formulae assume

independence of random variables which does not always hold. However, this

approach emphasizes speed while retaining a reasonable degree of accuracy for

small subcircuits. We stress that this approach is only used for the inner loop of

the optimizations, while the outer loop relies on the more accurate discrete pdfs

manipulation approach that can track correlations due to reconvergent paths

using Principal Component Analysis [12] or other methods as long as runtime

is managed appropriately.

2.5.3.1 Statistical Critical Path Identification

As was pointed out in Section 2.2.2, circuit optimization engines typi­

cally focus their effort on the critical or WNS path to improve the performance

39

Figure 2.9: Tracing worst negative statistical slack (WNSS) path. Numbers in

parenthesis are (µ, a) of arrival time. The shaded nodes indicate the WNSS

using our method.

of the circuit. This section describes how we extend this concept to trace the

Worst Negative Statistical Slack (WNSS) path in a circuit.

Consider a circuit consisting of 6 gates such as the one shown in Fig­

ure 2.9. The first number in the parenthesis represents the statistical mean of

delay for that arc while the second one represents the standard variation. We

wish to determine the critical path with the biggest contribution to the vari­

ance at the output of node X. We note that, unlike the deterministic case, one

cannot simply pick the input with the higher mean or variance to determine

which input is most responsible for the variance at the output. This is due to

the non-linearity of the statistical max operation where all inputs contribute to

40

the output max. This is in contrast with deterministic max operation where

only the maximum of the inputs contributes to the output.

We proceed to solve this problem by considering the sensitivity of the

variance at the output of a node with respect to the inputs as follows. Start­

ing from a given gate, we compare its inputs pair-wise. If either of Eq 2.22

or Eq 2.30 are satisfied, then we pick the input with the higher mean as clearly

having the dominant influence on the output of this gate. If neither of these

equations is satisfied, we compare

av ar max(A,B)

aµA

versus

av ar max(A,B)

aµB

(2.33)

(2.34)

Our justification for taking the partial derivatives with respect to the means

of the delays is that the variances have a random component not under our

direct control. On the other hand, using available gate sizes for a given circuit

function gives us a direct ability to control means of delays.

One approach to obtaining these sensitivities is to differentiate Eq 2.33-

Eq 2.34 directly. We found the resultant expressions to be complex requiring

expensive floating-point computations not suited for the core of our optimiza­

tion engine. Instead, we chose to use an approximation for differentiation as

41

follows. Rewriting

(2.35)

We use a forward finite-difference formula to approximate the partial deriva­

tive:

8V ar max(A,B)
-----~

8µA

f(µA + h, µB, J A+ g, JB) - f(µA, µB, J A, Js)
h

(2.36)

We used values for h of the order of 1 % of the mean. It should be noted that

µ and J along a given path are correlated and one cannot expect to change one

value without the other being impacted. The change in J A that can result out

of altering µA is indicated by g. We also note that it is impossible in general

to determine g accurately as the relationship between µ and J along a given

path is governed by a combination of gate performance variations inversely

proportional to their dimensions as well unsystematic random variations that

are unpredictable. For purposes of ranking inputs, the following linear approx­

imation linking these two was found to be adequate:

(2.37)

We used values for c equal to those assumed to relate mean delay through a

gate to its variance.

42

2.5.3.2 Subcircuit extraction and ranking

For every gate being evaluated for resizing, our algorithm extracts a

subcircuit around this gate based on a user-controlled depth. We have found

that using two levels of transitive fanins and fanouts is sufficiently accurate

without being too costly to evaluate. However, this is one of the many knobs

that can be altered at will as a tradeoffbetween runtime and accuracy.

For every available size for this gate, we use FASS TA to calculate mean

and variance of delay at the outputs of this subcircuit. We derive a cost function

that allows us to rank the the relative merits of gate sizing in this subcircuit

quickly as follows. For all outputs of the subcircuit 0 1 ... On, we calculate a

weighted sum of mean and standard variation:

(2.38)

where ,\ is a user-specified weight multiplier that ranks relative importance of

minimizing standard variation against mean of delay. By choosing higher val­

ues for ,\ , the user can place more emphasis on variance reduction. We provide

more analysis on effect of varying,\ in the conclusions section at the end of the

paper. The cost of the subcircuit is given by the maximum of Cost(Oi) across

all outputs. We then pick the gate size that minimizes subcircuit cost across all

gate sizes for candidate gate.

43

2.5.4 Experimental results

The approach introduced above was implemented in Java and run on an

Intel PC running at 2.53 GHz. We tested the algorithm on various circuits from

the ISCAS benchmarks and various sized ALU circuits.

The circuits were first synthesized using Design Compiler [57] using

an industrial 90nm lookup-table based standard cell library with 6-8 sizes per

gate type. In line with other researchers, we added variations to the gate delays

based on [16,43]. Two variations components were added to the gate delays:

one proportional to delay through gate and another random source correspond­

ing to unsystematic manufacturing variations.

Table 2.1 shows the results of our optimization for two representative

multiplier values, ,\ = 3 and ,\ = 9. The ratio of CY to µ obtained by optimizing

for mean delay is shown in the first column entitled original. We then ran our

algorithm at various values for multiplier ,\(7). Results are shown for optimiza­

tion under two different values for ,\ , 3 and 9. We observed that increasing ,\

any further could not yield further reduction in variance in general though the

highest value for ,\ was different for different circuits. This is due to the unsys­

tematic variations whose effects cannot be totally eliminated regardless of gate

sizes deployed.

44

Table 2.1: Experimental Results:). = 3

Circuit Original ..\ = 3, runtime is in minutes

Name Gates a-jµ ~(J ~µ a/µ ~A Runtime (mins)

alul 234 0.124 +4% -54% 0.055 +16% 1.5

alu2 161 0.147 +3% -71% 0.041 +14% 1.3

alu3 215 0.127 +7% -61% 0.046 +16% 1.5

c432 203 0.093 +2% -58% 0.038 +11% 1.6

c499 381 0.077 +5% -63% 0.027 +13% 1.5

c880 301 0.092 +4% -57% 0.038 +17% 1.5

c1355 378 0.081 +5% -63% 0.057 +13% 1.7

c1908 563 0.076 +3% -44% 0.041 +7% 3.7

c2670 820 0.068 +2% -42% 0.039 +11% 9.8

c3540 1245 0.062 +4% -56% 0.026 +12% 14.7

c5315 2318 0.043 +2% -36% 0.027 +12% 36

c6288 2980 0.021 +1% -28% 0.015 +5% 44

c7552 2763 0.043 +2% -50% 0.021 +11% 31

45

Table 2.2: Experimental Results: ,\ = 9, runtime is in minutes

Circuit Original .\=9

Name Gates o-/µ b.CJ D.µ a/µ .6.A Runtime (mins)

alul 234 0.124 +6% -80% 0.023 +24% 1.6

alu2 161 0.147 +4% -86% 0.020 +29% 1.4

alu3 215 0.127 +9% -75% 0.029 +25% 1.7

c432 203 0.093 +4% -75% 0.022 +21% 1.7

c499 381 0.077 +8% -76% 0.017 +21% 1.8

c880 301 0.092 +5% -79% 0.018 +23% 1.7

cl355 378 0.081 +7% -71% 0.022 +19% 1.9

c1908 563 0.076 +4% -71% 0.021 +16% 3.8

c2670 820 0.068 +7% -76% 0.015 +18% 9.1

c3540 1245 0.062 +8% -70% 0.017 +21% 13.1

c5315 2318 0.043 +7% -68% 0.013 +15% 34

c6288 2980 0.021 +2% -47% 0.011 +9% 41

c7552 2763 0.043 +4% -66% 0.014 +17% 33

46

Figure 2.10 shows a plot ofµ against a for various values of,\ for circuit

C432. As the multiplier,\ is increased, the mean is increased in exchange for a

gradual reduction in standard variation of delay across the circuit.

Several observations can be made from these results. Our algorithm

consistently reduces the standard variation while increasing mean delay and

area. This behavior is expected since our algorithm favors bigger gate sizes that

reduce the variance of delay across them. The algorithms focus on minimizing

variance also causes it to upsize gates near the outputs to reduce the overall

variance at circuits output. This is done even if that path does not have the

highest mean delay which is in contrast to a worst mean-delay optimizer which

would not upsize such gates. This increases overall delay due to higher loading

slowing down predecessor gates.

Another important observation is that the number of gates along a tim­

ing path is inversely proportional to the variance along that path and the ability

to optimize it away. Paths with a shorter number of gates tend to be more sus­

ceptible to variations. The smaller ALU circuits exhibit significant variations

as a percentage of their mean. Our algorithm can reduce this variation substan­

tially but at a higher increase in area. On the other hand, circuit C6288 which

is a l 6x 16 bit multiplier has the longest depth of any of the circuits in the table.

We note that it has the lowest improvement due to its already low a toµ ratio.

47

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

0.99 1.01 1.02 1.03 1.04

anat1on or

axis shows the mean while the y-axis has the standard variation.

48

1.05

ex-

2.5.5 Concluding Remarks

We introduced a new concept of a worst negative statistical slack path

and derived a procedure for tracing and optimizing such paths. In the pro­

cess, we also derived a new approximation for the max operation on random

variables for use in circuit optimization. Our approach allows us to steer the

optimization process towards different mean-variance goals. The significance

of this work is that it can be used during design cycle to increase tolerance

for the effects of manufacturing variations by trading off circuit delay and

area requirements for reduced timing variance with user controlled weights.

We demonstrated efficacy of our approach on ISCAS benchmarks with con­

sistent variance reduction in exchange for moderate increases in area and low

increases in mean delays.

2.5.6 Benefits of Research

As previously mentioned, our research can be deployed where pre­

dictability of performance of a manufactured circuit is of paramount impor­

tance. Manufacturing variations from pre-silicon PV models causes variance in

power consumption due to both dynamic and leakage power variations. These

variations in turn contribute uncertainties in thermal dissipation and reliability

49

verification. The effects of such performance variations can adversely product

qualification and time-to-market. In such instances, our proposed optimization

becomes more desirable due to better tolerance to manufacturing variations.

Our research is aimed at providing designers with a statistically aware gate siz­

ing methodology that allows arbitrary tradeoffs between mean and variance of

the delays across a circuit. It can be seen as adding a third tradeoff vector in

addition to the well known area-timing tradeoffs designers work with.

2.6 Summary

Most recent deep submicron manufacturing technologies exhibit both

inter- and intra-die variations, some of which are systematic and others which

are random. The aggregate of these variations poses a significant challenge

for circuit designers, who can either make worst case assumptions on all de­

sign axes such as delay, area, and power which severely limit the design space

and may comer it into a wrong design point. Alternately, designers can use

mean values of delays in the design phase with an expectation of widespread

variations in silicon performance. Our proposed research is targeted to help

designers navigate the available design space by using statistical models in the

analysis and optimization of the circuit before it reaches silicon. We introduce

50

a new concept of a worst negative statistical slack path and plan to derive a pro­

cedure for tracing and optimizing such paths. In the process, we also derive a

new approximation for the max operation on random variables for use in circuit

optimization. Our approach allows us to steer the optimization process toward

different mean-variance goals. The significance of this work is that it can be

used during design cycle to increase tolerance for the effects of manufactur­

ing variations by trading off circuit delay and area requirements for reduced

timing variance with user controlled weights. We demonstrated fidelity of our

approach on ISCAS benchmarks with variance reduction in exchange for in­

creases in area and low increases in mean delays.

51

Chapter 3

An Efficient Algorithm for Analysis of Cyclic

Circuits

3.1 Introduction

Cyclic circuits are those which contain loops or cycles within them.

We will present a more formal definition later on in the chapter. An example

of a cyclic circuit is shown in Figure 3 .1. Cyclic circuits can be produced

inadvertently during high-level synthesis from high level hardware languages

such as ESTEREL [8]. They are also the most compact representation for

certain circuits such as arbiters [50].

A key challenge for cyclic circuits is that correct operation is only guar­

anteed in specific cases. For certain input patterns, such circuits are well­

behaved (functional), i.e., do not exhibit oscillations or state-holding behavior.

52

a b M N

0 0 0 0

0 1 0 1

1 0 X X

1 1 1 1

Figure 3.1: A trivial cyclic circuit and its truth table

Despite this, most circuit analysis tools forbid the presence of cycles. The cen­

tral challenge of cyclic circuits is their data-dependent evaluation order, mean­

ing their gates have no topological order. This causes difficulties for many tools

such as static timing analyzers that rely on such a static order. Furthermore, ap­

plying regular logic simulation to these circuits is cumbersome.

Consider the small cyclic circuit in Figure 3.1. From its truth table,

we see the circuit is well-behaved unless a = 1 and b = 0. It is impossible to

predict with certainty how the circuit behaves when presented with this pattern.

For all other input patterns, the circuit behaves combinationally because the

feedback loop is broken by a controlling input on one of the gates.

We shall use the tenninology of partial assignments for our exposi-

53

tion. A partial assignment is an assignment to one or more inputs to the loop;

{ a = 0} is one such partial assignment. Our proposed algorithm will produce

a set of partial assignments that provide a concise representation of the con­

ditions under which a cyclic circuit is well-behaved. For example, the set of

partial assignments { { a = 0}, { b = l}} constitutes necessary and sufficient

conditions for combinational operation of the circuit in Figure 3 .1: at least one

of these must hold in order for the circuit to operate functionally.

In this research, we propose a novel algorithm that can rapidly identify

all possible combinational behavior of a cyclic circuit. The algorithm takes a

circuit containing one or more loops and produces a set of partial assignments

that represent every condition under which the circuit behaves combinationally.

Our algorithm relies on the fact that gates such as ANDs and ORs have con­

trolling inputs (0 and 1 respectively) that break feedback loops to aggressively

prune the search space. The set of partial assignments our algorithm produces

can be used to rule out non-constructive operation of circuits produced by high

level compilers such as Esterel [6], or they can be used to create an equivalent

acyclic circuit [22].

54

3.2 Notation and Definitions

This section defines the basic terminology needed for an exposition of

material on cyclic circuits.

We represent circuits with a directed graph (digraph). A digraph G is

a pair (V, E) where V is a set of vertices and E is a set of edges. An edge

is an element of V x V with distinct vertices. We represent a circuit as a

digraph whose vertices correspond to gates and whose edges correspond to

nets. A controlling value for a gate G is the value that applied to any input

of G uniquely determines G's output independent of other inputs. To simplify

our exposition, we only consider simple logic gates: NOT, AND/NAND, and

OR/NOR. This is not a limitation as more complex gates can be represented as

combinations of these gates. Loops or cycles are formally defined using graph

theory in terms of strongly connected components.

Definition 3. A strongly connected component (SCC) of a digraph G = (V, E)

is a maximal subset of vertices C ~ V such that any vertex in C is reachable

from any other vertex in C. Inputs of an SCC are inputs of gates that are part

of the SCC that are not driven by gates inside the SCC.

Figure 3.2 shows a circuit with a single SCC. Nets a, b, and care inputs

to the SCC. When analyzing an input circuit, we first decompose it into secs

55

a

b y z

C

Figure 3.2: Cyclic circuit for illustrating definitions

using a standard algorithm [18]. We note that finding SCCs in a circuit is linear

in the size of the circuit. If the input circuit contains more than one SCC, we

consider each SCC separately in a topological order.

Our analysis methodology and logic simulation use a ternary domain

consisting of {O, 1, X} where X denotes an unknown digital value.

Definition 4 (Malik [35]). A circuit is combinational for an input assignment

if three-valued simulation starting with all internal nodes set to X resolves the

output of every gate in the circuit to either O or l under the assignment.

Literature on cyclic circuits also refers to this behavior as "well-behaved"

and "constructive" [51]. Combinational behavior is equivalent to stating that

the circuit behaves as if it were acyclic with no X's and no oscillations.

56

3.3 Literature Survey

An extensive review of prior work on cyclic circuits was undertaken.

Below is a summary of contributions in this field covering period from 1960 to

late 2005.

3.3.1 Origins of Cyclic Circuits

Short [55] is earliest published work to suggest that cyclic structures

can save area in relay networks. In 1970, Kautz [31] showed that the minimal

form of certain circuits contained combinational loops. Rivest [50] came to a

similar conclusion, suggesting that combinational loops are more than just a

nuisance. Rivest's circuits were the first convincing example of cyclic circuits

that were provably smaller than any equivalent acyclic versions. An example is

shown in Figure 3.3. This circuit can be extended to use n inputs and produce

2n unique outputs.

Stok [56] observed how cyclic circuits can arise from resource-sharing

in high-level synthesis. An example of such a circuit is given in Figure 3.4.

The function of this circuit can be described as

0 = if (c) then F(G(x)) else G(F(x))

Note that G and F can be any operators such as shifters, adders, or

57

Figure 3.3: Rivest's Circuit

multipliers and may have additional operand inputs. Stok stipulated that an

equivalent acyclic circuit would be always bigger due to need to duplicate op­

erator circuits.

3.3.2 Analysis of Cyclic Circuits

Malik's work [35] on analyzing combinational circuits was the forerun­

ner with respect to analysis of cyclic circuits. Malik showed an equivalence be­

tween combinational cyclic circuits and least-fixed-points in three-valued sim­

ulation. Shiple, Berry, and Touati [51] extended this idea and applied it to the

Esterel language [6, 7], whose hardware translation [8] often produces combi­

national cycles. Their approach uses a symbolic state-space traversal followed

by an O(n2
) replication procedure to remove cycles. Their enhancement to

Malik's algorithm relies on Bourdoncle's [10] algorithm for reducing number

58

0

0 -/----

0

Figure 3.4: Cyclic circuit arising from resource sharing due to Stok [56]

59

of simulation iterations. However, Bourdoncle 's algorithm provides a general

framework for static scheduling of strongly connected components. Our pro­

posed algorithm pays more attention to both the structure and function of the

circuit. We also believe that our proposed algorithm when coupled with the

resynthesis technique of Edwards [22] will produce smaller circuits.

Shiple et. al. [52] also extended their analysis to combinational cy­

cles within sequential circuits. The BDD-based algorithm of Halbwachs and

Maraninchi [26] takes a brute-force approach, ignoring the structure of the cir­

cuit. Namjoshi and Kurshan [42] take a very different approach, showing that

any fixed-point is interesting, not just the least. Their analysis merely answers

whether a circuit is combinational.

3.3.3 Synthesis of Cyclic Circuits

Recently, Riedel and Bruck [49] applied Rivest's observations to syn­

thesize very compact combinational circuits that contain cycles. As part of

their synthesis step, they check whether the circuit they generated is combi­

national using a fairly expensive BDD construction; our proposed algorithm

could potentially be used in that setting. More practically, the cyclic combi­

national circuits they generate have topologies complex enough to stymie the

60

de-cyclification algorithm of Edwards [22], which this work will build on.

3.3.4 Most Recent Publications on Analysis of Cyclic Circuits

The algorithm of Edwards [22] for de-cyclification consists of two steps.

The first step enumerates all combinational behavior in a cyclic circuit. The re­

sult of this step are necessary and sufficient conditions under which the circuit

is well-behaved, or combinational. This search get exponentially slower as the

circuits get bigger, and fails to terminate except on the smallest circuits. The

second step in Edwards' algorithm collects the acyclic fragments implied by

the first step and combines them into a single acyclic circuit.

An algorithm was proposed in [3] for combinationality checks. How­

ever, the algorithm presumes existence of an acyclic equivalent circuit apriori

and merely checks for equivalence against this circuit. Our approach doesn't

presume existence of such a circuit, and is in fact directed at producing an

equivalent acyclic circuit.

Another approach that was presented in [24] infers level-sensitive latches

to make cyclic circuit acyclic. This approach changes the semantics of the cir­

cuit from a combinational circuit to a synchronous one, and cannot claim to

produce a drop-in equivalent circuit to the original version. There is a substan-

61

tial area penalty which the authors admit to being bounded by double the area

of the original loop. In addition, the authors did not attempt their approach on

more complex cyclic circuits such as those produced by CYCLIFY [49].

3.4 Types of Cycles

Cycles encountered in circuits might be divided into two types, which

we shall call true cycles and false cycles.

True cycles are those where presence or absence of a logical cycle de­

pends on the input vector into the circuit. The simple cyclic circuit in Figure 3.5

is an example of a true cycle. This cycle can can be sensitized when a = 1 and

b = 0.

False cycles are those which only exist in a topological sense, but can

never be sensitized electrically regardless of input pattern. An example is

shown in Figure 3.5. Some CAD tools are able to deal this type of circuit

using a so called false path mechanism, which explicitly indicate to the tool to

ignore such a path. Tools that are known to handle such a concept include most

static timing analysis engines. However, not all tools contain such a feature.

For example, cyclic circuits are often problematic for test generation tools, and

require manual intervention. Alternatively, one is left with creating an acyclic

62

7

-i=-=-1 -0 ! =1-
7 r-
~-~--7

,0 ,-./-O

T
0

(a) A true cycle (b) A false cycle

Figure 3.5: Examples of true and false cycles

version as the only way to pass such circuits through these tools. Our proposed

research supports the latter, by enabling creation of equivalent acyclic circuits

with same inputs and outputs as the original circuit but without the troublesome

cycles.

3.5 Our Circuit Model

We use a simple gate-level circuit model: a circuit C is a tuple C =

(G, I, W) where G is a finite set of gates, I is a finite set of primary inputs, and

W ~ (GU I) x G is the set of wires. Each gate computes the logical NAND of

its inputs; we assume more complex gates have been dismantled into NANDs.

63

Note that primary inputs have no incoming edges. We consider every gate to

be an output.

We treat nodes as taking one of three values: 0, 1, and J__ The first two

values are self-explanatory; we write J_ instead of the X usually used in three­

valued logic simulation to emphasize the connection with lattices and partial

orders.

The three wire values are partially ordered with a relation ~ that sat­

isfies J_ r;;;; 0 and J_ r;;;; 1 and is transitive (x r;;;; y and y r;;;; z implies x r;;;; z),

reflexive (x r;;;; x), and anti-symmetric (x r;;;; y and y r;;;; x implies x = y).

The relation ~ can be thought of as an information ordering: J_ is less­

defined than O or 1, but neither O r;;;; 1 nor 1 r;;;; 0 since both represent the

same amount of information, i.e., a defined value. The pointwise extension of

this relation to vectors reinforces this intuition: (x1 , ... , Xn) r;;;; (y1 , ... , Yn) iff

x 1 r;;;; y1, ... , and Xn r;;;; Yn• More informally, if X r;;;; Y, then each element of

Y is either the same as its counterpart in X or a J_ has become a O or 1. Any Os

or ls in X must also be in Y.

Definition 5. A controlling value for a gate G is the non-J_ value that applied

to any input of G uniquely sets G's output to a non-J_ value independent of

assignment to other inputs.

64

It follows from this definition that for a gate's output to be set to non-_L,

either all inputs must be set to non-controlling values or at least one input must

be set to a controlling value. For a NAND gate, 0 is a controlling value and 1

is non-controlling.

Definition 6. A strongly connected component (SCC) of a circuit C is a maxi­

mal subset of gates V ~ G such that there is a path of wires from any gate in

V to any other gate in V. Inputs of an SCC are inputs of gates that are part of

the SCC that are not driven by gates inside the SCC.

3.6 Combinational Circuits

Like Malik [35], we say a circuit C = (G, I, W) is combinational for

an input x if f(C, x)(g) -=J _L_ for all g E G (i.e., three-valued simulation

does not lead to any _L-valued gates). Again, because of Shiple [54], this is

equivalent to insisting that the circuit always stabilizes and never holds state for

any delay assignment. Literature on cyclic circuits also refers to this behavior

as "well-behaved" and "constructive" [53].

Since we consider all gate outputs to be primary outputs, our definition

of combinational insists that every part of the circuit stabilizes. This is actually

a conservative definition of combinational behavior: if the environment does

65

function SIMULATE((G, I, W), x, s)

x(n) if n EI,
vo(n) =

l if n E G.

i - 0

while for some g, EVAL(W, v, g) -=f v

is--i+l

return vi

function EVAL(W, v, g)

0 if v(d) = 1 for all d s.t. (d, g) E W,

0 = 1 if v(d) = 0 for some d s.t. (d, g) E W,

J_ otherwise.

Let v'(g) = o and v'(n) = v(n) otherwise.

return v'

Figure 3.6: The three-valued simulation algorithm, which takes a circuit

(G, I, W), an input function x, and an infinite schedule of gates s. It eval­

uates gates until it reaches a fixed point using EVAL, which updates a single

(NAND) gate.

66

Partial Induced

Assignment Frontier

{a= 1} {V}

{a= 0, b = 1} {Y,W}

{c = O} {}

(a) (b)

Figure 3.7: (a) A cyclic circuit. (b) Partial assignments and their induced

frontiers-the boundary between defined and X-valued gates after applying

inputs.

not observe the output of, say, an oscillator, should its presence really matter?

Arguments can be made on both sides, but we stipulate that a designer who

wants a combinational circuit does not want any state-holding or oscillatory

behavior period.

Our goal is to produce an acyclic circuit whose behavior matches that

of a cyclic circuit for inputs that are combinational. We assume that non­

combinational behavior, if any, was unintended and treat inputs that induce

it as don't-care patterns.

67

Figure 3. 7 shows a circuit consisting of a single SCC whose inputs are

a, b, and c. When analyzing a circuit, we first decompose it into SCCs using a

standard algorithm [18]. If the input circuit contains more than one SCC, we

consider each SCC separately in a topological order.

3. 7 Finding a Combinational Cover for a Cyclic Circuit

We now present our original algorithm for efficiently extracting a cover

for all combinational behavior of a cyclic circuit.

3. 7 .1 Theoretical Background

Definition 7. Let the set { x 1 , ... , xn} represent the inputs into an SCC. We

define a partial assignment (PA) as a set

In this work, we are only concerned with partial assignments to inputs

of SCCs. A PA is always associated with some SCC. A valid PA for the circuit

in Figure 3.7 is an assignment to one or more of the inputs { a, b, c }, such as

{a= O}, {b = 0, c = 1 }, and {b = 1, c = 1 }.

We shall rely on the following two theorems that are key to the cor-

68

rectness and efficiency of our algorithm. These were first presented in Ed­

wards [22].

Theorem 1 (Edwards [22]). For a circuit with a strongly connected component

(SCC) to behave combinationally, at least one input to a gate in the SCC must

be driven to a controlling value.

For example, controlling assignments to SCC inputs for the circuit in

Figure 3.7 are a= 0, b = 0, and c = 0. Theorem 1 tells us that at least one of

these is required for combinational behavior.

Theorem 2 (Edwards [22]). If a partial assignment p is combinational, then

any further assignments that do not contradict any in p can also be computed

combinationally by the circuit fragment implied by p.

Consider the PA { c = 0} applied to Figure 3.7. This breaks the con­

nectivity of the SCC, making the circuit behave combinationally. This theo­

rem indicates that additional assignments beyond { c = 0} cannot reverse the

combinational behavior already implied by this PA. This permits us to avoid

further consideration of acyclic PAs once we have identified them. This sup­

ports one of our objectives for the algorithm: generation of minimal PAs that

capture all combinational behavior. We explain the notion of minimal PAs in

Section 3.7.3.

69

The main difficulty with SCCs is lack of order in which they can be

analyzed as SCC gates cannot be sorted topologically. To get around this, we

first introduce a novel device which greatly simplifies SCC analysis.

Definition 8. The cyclic controllability frontier of a PA, or frontier for short, is

the set ofSCC gates that have at least one non-1- input but whose output is 1-.

The frontier captures the notion of a boundary between gates whose

output is defined and those whose output is not. A frontier is always associated

with a PA. When calculating the frontier for a PA, we use ternary simulation to

propagate partial assignments from SCC inputs as far as possible then check for

cyclic behavior. Figure 3. 7b lists some frontiers induced by partial assignments

for the circuit in Figure 3.7a.

Theorem 3. A PA makes an SCC combinational if and only if its frontier is

empty.

Proof If part: If the frontier is empty, then either no gates have any inputs

assigned or none have an output of L From Theorem 1, we know that at least

one gate must be driven by a controlling value for combinational behavior. If

none have an output of 1-, then the circuit under that PA is combinational by

definition.

70

Only if part: This follows directly from definition of combinational

behavior. □

This theorem tells us that non-empty frontiers only exist in presence of

SCCs. For example, the PA { c = O} in Figure 3.7 yields an empty frontier.

Stated differently, we broke the loop without having to assign specific values

to the inputs { a, b}.

3. 7 .2 Searching for combinational behavior

We use Theorem 1 to seed our search space with a pool of PAs, each

corresponding to a controlling assignment to an SCC input. Any combinational

behavior is guaranteed to be present in supersets of one or more of these PAs.

Our algorithm proceeds by recording the frontier associated with each PA and

uses them to look for opportunities to merge PAs in an attempt to find empty

frontiers.

Figure 3.8 shows our technique for identifying all combinational be­

havior. The algorithm takes a circuit with any number of SCCs and produces

a set of PAs under which the circuit is combinational. These PAs control SCC

inputs.

The algorithm attacks one SCC at a time (line 4), finding a minimal set

71

1: A= 0
2: K=0
3: Clear F

4: while circuit has SCCs

5: Find next SCC

t> Set of acyclic PAs, the eventual result

t> All known cyclic PAs, used for merging

t> A map from frontier gate ----, set of PAs

6:

7:

8:

9:

P = controlling values for sec inputs

while P-/= 0
t> Initial PAs

10:

11:

12:

13:

14:

15:

16:

17:

18:

G=0
foreachp E P

simulate p

t> Frontier gates for this iteration

t> Consider each candidate PA

if circuit is combinational under p then

addp to A

else

addp to K t> Remember the PA for merging

foreach gate g in the frontier induced by p

add g to G t> Record the frontier gate

add p to F (g) t> Remember p induced g

P=0 t> Compute new candidate PAs

19: foreach frontier gate g E G

20: if IF(g)I > 1 then t> Need :2: 2 PAs to merge

21: add each PA from mergeAtGate(K, g) to P

22: return A

Figure 3.8: Our algorithm for finding a minimal set of PAs for a circuit (SCC)

that together cover all its combinational behavior.

72

of covering partial assignments for each. For each SCC, it begins by consider­

ing PAs that place a single controlling value on each SCC input (line 6), then

enters into a loop (lines 7-21) which alternates between testing whether any of

the currently-considered PAs (set P) induce combinational behavior (lines 10-

17) and attempting to merge already-observed PAs (set K) to generate a new

set of PAs (lines 18-21). Its goal in this second phase is to break logjams by

combining PAs to set the outputs of the latest set of frontier gates it has discov­

ered. The map F records PAs that affect frontier gates: if g is a gate, then F(g)

is the set of all PAs that put at least one non-controlling value at an input of g.

The algorithm in Figure 3.8 is guaranteed to find all combinational be­

havior within the subject circuit. Starting from individual controlling inputs

into SCCs, our frontiers allow us to identify all opportunities where PAs can

merge to extend controllability over more gates in an SCC. As we merge these

PAs and continue the searching, other acyclic PAs are explored. We continue

this cycle of search and merge terminating when we fail to generate new PAs.

3. 7 .3 Merging partial assignments

Here, we describe a key operation used in our main algorithm (Fig­

ure 3.8): the generation of new PAs to break the logjam at a frontier gate.

73

Given a set of PAs and a gate, the algorithm in Figure 3 .10 generates a set of

PAs that apply non-controlling values to every input of the gate, thus setting its

output. This algorithm is the key improvement over the technique we presented

earlier [44].

We store PAs in a simulated state that captures all assigned nodes and

their values. The main algorithm (Figure 3.8) only tries to merge PAs for a gate

when at least two PAs set an input on the gate. Merging attempts to produce

new PAs by propagating known values across these frontier gates to extend the

set of gates whose output is not _l_.

Consider the example in Figure 3.9. (Figure 3.9b) shows a 3-input

(frontier) gate g for PAs p0 , ... , p4 . As always, these PAs control inputs (here

a, ... , f) to the SCC that contains g, not usually the gate's inputs. Note that a

gate can only be a frontier for a PA if that PA puts a non-controlling value on

one or more of the gate's inputs. We wish to consider merging these PAs to

extend the frontier beyond g. A desirable merge of PAs at a gate g must be

1. a gate cover: merged PAs must define every input of g.

2. consistent: merged PAs must not contain conflicting assignments to in­

puts. In Figure 3.9, PAs p1 and p4 cannot be combined due to a conflict­

ing assignment for b.

74

3. complete: PAs must be merged such that all permissible combinations

are considered. The example in Figure 3.9 provides some degrees of

freedom to cover every input that must all be considered. This ensures

that our final PAs encapsulate both necessary and sufficient conditions

for combinational behavior.

4. minimal: merged PAs must not contain any PA that can be removed while

satisfying the previous conditions. For example, the merge candidate

p0 U p3 U p4 is rejected since p0 dominates p4 (i.e., p0 controls both first

and third gate inputs; p4 only controls the third). This condition keeps the

final output PAs as concise as possible by not including redundant con­

ditions. Such redundancy when present has two drawbacks: it burdens

subsequent stages of the algorithm as it increases memory usage and it

also makes testing of merge conditions against other candidate PAs more

tedious.

The gate cover, consistency, and completeness conditions are necessary

for correctness (without the first two, the analysis does not make sense; the

third one guarantees we do not miss any necessary PAs), but minimality is

merely desirable-it improves both the running time of our algorithm and the

quality of the final result. Our algorithm satisfies the first three conditions and

75

approximates the minimality by computing an irredundant sum-of-products, as

we describe below.

We can merge PAs by merely verifying that there are no conflicts to the

assigned primary inputs of the SCC. In other words, we do not need to check

for conflicts of every internal node. This greatly speeds our consistency check

procedure.

The argument for this is a proof by contradiction. Let two partial as­

signments A and B have non-conflicting controlling assignments to SCC in­

puts, and assume some intermediate node I has conflicting values under as­

signments A and B (i.e., one is 0, the other 1; there is no conflict if either is

l_). The gate that produces I must either have one input set to a controlling

value or all inputs set to non-controlling values. We can repeat the analysis on

those input(s) until we find conflicting inputs at SCC inputs, which contradicts

the original assumption.

Merging PAs is an instance ofbinate covering problem (BCP) because

we must cover all gate inputs and because conflicts between PAs prevent certain

combinations, making it binate. However, our need for a complete enumeration

is not typical of BCPs.

Figure 3.10 shows our algorithm for merging PAs. We construct a BDD

76

Name Assignments

Po {a= 1}

Pl {b = 0, c = 1}

P2 {c=l,d=l}

P3 {e = O}

PoP1P20-
p4 {b = 1, f = 1} Pl p3

PoP4

(a) (b)

(Po+ P1 + P2)(P1 + p3)(Po + p4)(P1 + P4)

(c)

(PoP1P4) + (PoP1P3) + (P1P2P3P4)

(d)

Po Up1

Po Up3

{a=l,b=O,c=l}

{a= 1, e = O}

{b = 1 c = 1 d = l e = 0 f = 1}
' ' ' '

(e)

Figure 3.9: Illustration of merging PAs at a gate.

77

comprising our covering problem at the gates and the conflicts therein as a

product of sums (POS). The covering at each gate input is encoded as a sum

term comprising all PAs that can control that input. By definition, these are all

non-controlling input assignments, as otherwise the PA would have continued

past this gate. To set the gate's output to a deterministic value, it is necessary

that we select PAs covering all the gate's inputs, hence the sum of products.

However, we must account for the PAs containing conflicting and therefore

non-compatible assignments to the inputs into the SCC. We thus augment our

POS expression with clauses which capture the conflicts as pair-wise sums of

negation of PAs that conflict.

We then use the Minato-Morreale algorithm [38] to generate an irredun­

dant sum of products in ZDD [39] form. We use these to continue propagation.

Note that the addition of conflicts causes the irredundant sum of products to

contain negated terms, which we discard.

Figure 3.9 illustrates this working on an example. The five PAs in Fig­

ure 3.9a control the inputs of the three-input AND gate in Figure 3.9b. Our

merging algorithm (Figure 3 .10) starts by expressing the constraint at the AND

gate as a product of sums (Figure 3.9c): each input must be controlled by at

least one PA (the first three terms) and conflicting PAs (i.e., those that insist on

contradictory assignments to inputs: here p1 sets b = 0 and p4 sets b = 1, so

78

both p1 and p4 are illegal together) are prohibited. Next, these constraints are

transformed to an irredundant sum-of-products (Figure 3.9d). Finally, nega­

tions are removed from each term in the ISOP, leading to a new set of PAs

Figure 3.9e. By construction, each of these PAs controls all three gate inputs

and has no conflicting input assignments.

3. 7.4 Another Example

We will use the cyclic circuit in Figure 3 .11 to illustrate use of frontiers

for extraction of PAs as well as how negated literals arise and how we deal with

them.

We start by applying a controlling value to each input separately. Fig­

ure 3.12 summarizes the results. Note that when a is 0, the circuit is combina­

tional since the feedback path is broken, so we include the assignment { a = 0}

as part of our minimal cover and will not consider any further assignments that

contain {a= O} (Theorem 2).

Consider setting b = 0. Although this is a controlling value for gate R

(its output becomes O regardless of Q), by itself this is not enough to force the

whole circuit to behave combinationally because a O on R is a non-controlling

value on the OR gate V. Each of the assignments c = 0 and d = 0 also have

79

1: function MERGEATGATE(K, g)

2:

3:

R=(/J

POS= 1

4: foreach input i of gate g

1> Generated set of PAs

1> Product of Sums

5: Pi= PAs in K that set i and induce gas a frontier

6: if Pi = (JJ then return (/J 1> Cannot control some input

7: P = VPi
Vi

8: POS = POS I\ P

9: foreach Conflicting PA pairs {Pi, Pj} E K

10: POS = POS I\ (Pi V Pj)

11: zddISOP = ISOP(POS)

12: remove negated literals and duplicates from zddISOP

13: add products to R

14: return R

Figure 3.10: Our PA merging algorithm: return a set of PAs that apply non-

controlling values to every input of a gate.

80

Figure 3.11: Small cyclic circuit for illustrating partial assignment extraction

a frontier of V. Similar analysis shows different assignments to e, f, and g all

yielding Z as their frontier.

The SCC input g has both O and 1 present as controlling assignments

since it is connected to a NAND and an OR. Constructing a PA that includes

such conflicting assignments is meaningless. Our algorithm tracks and caches

conflicting partial assignments to guard against composing a PA from such

conflicting assignments. As we stated previously, positive and negated literals

in our initial POS indicate presence or absence of PAs respectively; we do not

use negated literals to imply inverting the individual assignments within a given

PA.

Next, we analyze the frontiers we have obtained from logic simulation.

Only two gates, V and Z, appear in any frontier; we will attempt to set the out­

puts of these gates by judiciously combining sets of PAs that might completely

81

define values at inputs of these gates. At every frontier gate, we compose a

covering problem in the form of a product of sums (POS), where each sum

represents candidate PAs that define a given input of that gate. We add to this

POS pair-wise conflicts between PAs that cannot be merged.

At gate V, the top input can only be defined by assignment p1, so this

becomes the first sum term in our POS: Figure 3.13a. The lower input can be

defined by either of p2 or p3 , so we add (p2 + p3) as our second sum term.

We note that none of these assignments conflict, so there is no need to add any

additional assignments. As a matter of computation runtime though, we have

found that adding conflicts does not materially affect the subsequent AllSat

computation. The alternative which is to compute and add only relevant con­

flicts at every frontier gate input was found empirically to be more expensive.

We store conflicting assignments in a cache which we update as we create new

assignments. These are added to all POS expressions. This is not shown in Fig­

ure 3.13 for brevity, where we only show relevant conflicts. Similar analysis at

gate Z yields the POS shown in Figure 3.13d.

Our algorithm now computes all satisfying assignments to each of the

POS expressions at frontier gates. We remove negated literals as well as iden­

tical products from within each sum. The output of this computation is shown

next to each POS in Fig. 3.13a and 3.13b. This computation yields three new

82

PAs. Each leads to an empty frontier and (therefore) an acyclic circuit. Our

algorithm terminates and returns the partial assignments listed in Figure 3. l 3c.

3.8 Experimental Results

3.9 Benefits of Proposed Research

As already described in Section 3.3, cyclic circuits show up often in

domain of high level language synthesis. As such, one immediate application

of this research is in synthesis post-processing steps that eliminate cycles. A

second application of our research is analysis of cyclic circuits produced by

cyclic synthesis engines such as CYCLIFY [49]. Most circuit analysis engines

are incapable of handling the outputs of such circuits directly. Our algorithm

when combined with other published algorithms can produce small equivalent

acyclic circuits that are guaranteed to reproduce the combinational behavior of

the original cyclic circuits.

3.10 Conclusions

We presented a new algorithm for identifying all the combinational be­

havior of a cyclic circuit. The algorithm is useful for evaluating cyclic specifi-

83

Table 3.1: Comparison with Edwards [22]

Example Gates Edwards [22] Our Approach Acyclic

Total SCC PAs Time PAs Time PAs

arbiters 213 25 257 1.3s 25 0.ls 14

arbiter6 248 30 745 8 29 0.1 16

arbiter7 283 35 2205 69 33 0.2 18

arbiters 318 40 6581 656 37 0.3 20

expo 124 69 54517 2868 23260 2.0 338

exlo 150 47 43777 2341 232 1.0 10

garyo 177 32 - > lh 290 0.6 11

planeto 253 51 - > lh 1489 0.3 22

s14880 272 61 - > lh 588 0.2 89

table3o 311 49 - > lh 3604 1.0 38

84

cations that often arise from high-level synthesis [6, 7]. One application of our

algorithm is transforming cyclic combinational circuits to an acyclic equiva­

lent; it replaces the first half of the procedure described by Edwards [22].

The chief contribution of our work is a speed improvement of several

orders of magnitude over Edwards [22] due to much more clever pruning of the

search space and use of implicit method for merging PAs. It is therefore able

to deal with practical-sized cyclic circuits.

Our algorithm analyzes all possible inputs into SCCs without consider­

ing whether such patterns can in fact occur in the original circuit (i.e., whether

they are controllability don't-cares). This saves us from performing an image

computation on the surrounding circuit, making the analysis much faster. How­

ever, it is possible that considering the don't-care set would reduce the number

of PAs we consider and further speed the search. We have yet to explore the

trade-off between computing don't-cares and reducing the number of PAs.

Independent of these further refinements, we have presented a practical

algorithm that is able to quickly characterize all the combinational behavior of

a realistic-sized cyclic circuit. Our intended application is the construction of

an acyclic equivalent of a cyclic circuit to make it palatable to existing synthesis

tools, but we believe our algorithm has other important applications in analysis

85

and formal equivalence verification of cyclic circuits.

3.11 Summary

Compiling high-level hardware languages can produce circuits contain­

ing combinational cycles that can never be sensitized. Such circuits do have

well-defined functional behavior, but wreak havoc with most logic synthesis

and timing tools, which assume acyclic combinational logic. As such, some

sort of cycle-removal step is usually necessary for handling these circuits.

Cyclic circuits have also been shown to the most compact representa­

tion for certain classes of circuits. This property was exploited recently by the

synthesis engine of Riedel and Bruck [49], which won the best paper award

at DAC-2003. It remains to be seen whether cyclic circuits will ever get used

in ASICs or microprocessors due to complexity of enhancing all CAD tools to

support them. While the area saving are attractive, the need for a non-standard

static timing methodology might make such circuits outside reach of most de­

signers and automated design flows. At the same time, synthesizing circuits

into cyclic forms may reveal interesting properties about these circuits that can

be exploited for analysis and optimization back in the acyclic domain.

Our research advanced addresses an important requirement for both ar-

86

eas above by providing a bridge from cyclic to acyclic circuits.

87

Label Assignment Frontier At Frontier Acyclic

Po {a= O} {} ✓

Pl {b = O} {V} R=O

P2 {c = O} {V} U=O

p3 {d = 1} {V} U=O

p4 {e = O} {Z} W=l

p5 {f = 1} {Z} X= 1

P6 {g = O} {Z} y = 1

P7 {g = 1} {Z} X= 1

Figure 3.12: PAs from applying controlling values to each input in isolation.

All frontiers are either gate V or gate Z

88

(p1)(P2 + p3) ~ (P1P2) + (P1P3)

(a)

(p4) (p5 + P7) (p5) (p5 + P1) ~ (p4p5p5)

(b)

Product Term Assignment

Po {a=0}

P1P2 { b = 0' C = 0}

P1P3 {b=0,d=l}

p4p5p5 {e = O,f = l,g = 0}

(c)

Figure 3 .13: Partial assignment extraction on a small cyclic circuit (a) POS and

final ISOP for frontier gate V. (b) POS and ISOP for Z. (c) A minimal set of

partial assignments that reproduce all combinational behavior.

89

Chapter 4

Conclusions

4.1 Statistical Optimization of Digital Circuits

We introduced a new concept of a worst negative statistical slack path

and derived a procedure for tracing and optimizing such paths. In the pro­

cess, we also derived a new approximation for the max operation on random

variables for use in circuit optimization. Our approach allows us to steer the

optimization process towards different mean-variance goals. The significance

of this work is that it can be used during design cycle to increase tolerance

for the effects of manufacturing variations by trading off circuit delay and

area requirements for reduced timing variance with user controlled weights.

We demonstrated fidelity of our approach on ISCAS benchmarks with con­

sistent variance reduction in exchange for moderate increases in area and low

increases in mean delays.

90

A large number of publications advocating statistical approaches con­

tinues to appear at every major CAD and VLSI conference. It is difficult to

predict where this research will end up. By and far, the most significant gap

in this research is in availability of bottom up transistor variations models in

practice and how these variations manifest at the gate, circuit, and system level.

Genuine fabrication data about transistor variations is very highly guarded by

the companies and foundries. While it is mathematically convenient to assume

that variations are guassian in nature and proceed with analysis and optimiza­

tion using this assumption, we have no idea how closely this matches reality.

In perviewing literature on statistical approaches, the author has yet to find a

bottom up driven models describing variations corresponding to a true deep

submicron technology node such as 65nm or 45nm. Notwithstanding the in­

tellectual property concerns, it is imperative that we strive to continue further

research around more realistic data and build up bottom up models with more

basis in reality on how electronic designs vary in response to transistor level

variations. Publications arising out of this work are [46].

91

4.2 An Efficient Algorithm for Analysis of Cyclic Circuits

We presented a new algorithm for identifying all the combinational be­

havior of a cyclic circuit. The algorithm is useful for evaluating cyclic specifi­

cations that often arise from high-level synthesis [6, 7]. One application of our

algorithm is transfonning cyclic combinational circuits to an acyclic equiva­

lent; it replaces the first half of the procedure described by Edwards [22].

The chief contribution of our work is a speed improvement of several

orders of magnitude over Edwards [22] due to much more clever pruning of

the search space. It is therefore able to deal with practical-sized cyclic circuits.

Our algorithm analyzes all possible inputs into SCCs without consider­

ing whether such patterns can in fact occur in the original circuit (i.e., whether

they are controllability don't-cares). This saves us from performing an image

computation on the surrounding circuit, making the analysis much faster. How­

ever, it is possible that considering the don't-care set would reduce the number

of PAs we consider and further speed the search. We have yet to explore the

trade-off between computing don't-cares and reducing the number of PAs.

Although our algorithm performs quite well, it can be improved further.

The current performance bottleneck arises when merging PAs at a frontier gate

to produce more PAs to consider. Most of our PAs are generated here and most

92

are later discarded. A more clever approach, perhaps Espresso-based, might

reduce both the number of new PAs generated and the time it takes to derive

them.

Independent of these further refinements, we have presented a practical

algorithm that is able to quickly characterize all the combinational behavior of

a realistic-sized cyclic circuit. Our intended application is the construction of

an acyclic equivalent of a cyclic circuit to make it palatable to existing synthesis

tools, but we believe our algorithm has other important applications in analysis

and formal equivalence verification of cyclic circuits. Publications arising out

of this work are [44] and [45].

93

Bibliography

[1] ACM/IEEE. ACM/IEEE TAU Workshop, 2004.

[2] Aseem Agarwal, David Blaauw, Vladimir Zolotov, and Sarma Vrudhula.

Statistical timing analysis using bounds and selective enumeration. In

TAU '02: Proceedings of the 8th ACM/IEEE international workshop on

Timing issues in the specification and synthesis of digital systems, pages

16--21, New York, NY, USA, 2002. ACM Press.

[3] Vineet Agarwal, Navneeth Kankani, Ravishankar Rao, Sarvesh Bhard­

waj, and Janet Wang. An efficient combinationality check technique for

the synthesis of cyclic combinational circuits. In Proc. of ASP-DAC,

2005.

[4] Xiaoliang Bai, Chandu Visweswariah, and Philip N. Strenski.

Uncertainty-aware circuit optimization. In DAC '02: Proceedings of

the 39th conference on Design automation, pages 58-63, New York, NY,

USA, 2002. ACM Press.

94

[5] Michel R. C. M. Berkelaar and Jochen A.G. Jess. Gate sizing in MOS

digital circuits with linear programming. In EURO-DAC '90: Proceed­

ings of the conference on European design automation, pages 217-221,

Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[6] G. Berry. The constructive semantics of pure Esterel. Draft book, 1999.

[7] G. Berry. The foundations of Esterel. MIT Press, 2000.

[8] Gerard Berry. Esterel on hardware. Philosophical Transactions of the

Royal Society of London. Series A, 339:87-103, April 1992. Issue 1652,

Mechanized Reasoning and Hardware Design.

[9] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statistical timing

analysis: From basic principles to state of the art. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, 27(4):589-

607, April 2008.

[10] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. Lec­

ture Notes in Computer Science, 735:128-141, 1993.

[11] R. B. Brawhear, N. Menezes, C. Oh, L. Pillage,, and R. Mercer. Predict­

ing circuit performance using circuit-level statistical timing analysis. In

European Design and Test Conference, 1994, pages 332-337, 1994.

95

[12] Hongliang Chang and Sachin S. Sapatnekar. Statistical timing analy­

sis considering spatial correlations using a single Pert-like traversal. In

2003 International Coriference on Computer-Aided Design (ICCAD '03),

November 9-13, 2003, San Jose, CA, USA, pages 621-626, 2003.

[13] Chung-Ping Chen, Chris C. N. Chu, and D. F. Wong. Fast and exact si­

multaneous gate and wire sizing by Lagrangian relaxation. In JCCAD

'98: Proceedings of the 1998 IEEE/ACM international conference on

Computer-aided design, pages 617-624, New York, NY, USA, 1998.

ACM Press.

[14] De-Sheng Chen and Majid Sarrafzadeh. An exact algorithm for low

power library-specific gate re-sizing. In DAC '96: Proceedings of the

33rd annual coriference on Design automation, pages 783-788, New

York, NY, USA, 1996. ACM Press.

[15] C. E. Clark. The greatest of a finite set of random variables. In Operations

Research, volume 9, pages 145-162, 1961.

[16] J. Cong. Challenges and opportunities for design innovations in nanome­

ter technologies, 1997.

96

[17] A. R. Conn, N. I. M. Gould, and Ph L. Toint. Lancelot: A FORTRAN

Package for Large-Scale Nonlinear Optimization (Release A). Springer­

Verlag New York, Inc., Secaucus, NJ, USA, 1992.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms. MIT Press, second edition, 2001.

[19] Olivier Coudert. Gate sizing for constrained delay/power/area optimiza­

tion. IEEE Trans. Very Large Scale Integr. Syst., 5(4):465-472, 1997.

[20] Srinivas Devadas, Homg-Fei Jyu, Kurt Keutzer, and Sharad Malik. Statis­

tical timing analysis of combinational circuits. In ICCD '92: Proceedings

of the 1991 IEEE International Conference on Computer Design on VLSI

in Computer & Processors, pages 38-43, Washington, DC, USA, 1992.

IEEE Computer Society.

[21] S. W. Director and W. Maly, editors. Statistical Approach to VLSI. Else­

vier Science B.V., 1994.

[22] S. Edwards. Making cyclic circuits acyclic. In Proc. Design Automation

Conference, pages 159-162, 2003.

[23] J.P. Fishburn. LATTIS: an iterative speedup heuristic for mapped logic.

In DAC '92: Proceedings of the 29th ACM/IEEE conference on Design

97

automation, pages 488-491, Los Alamitos, CA, USA, 1992. IEEE Com­

puter Society Press.

[24] A. Gupta and Charley Selvidge. Acyclic modeling of combinational

loops. In Proc. International Conference on Computer-Aided Design,

2005.

[25] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous

dataflow programming language Lustre. Proceedings of the IEEE,

79(9):1305-1320, September 1991.

[26] N. Halbwachs and F. Maraninchi. On the symbolic analysis of combina­

tional loops in circuits and synchronous programs. In Proc. Euromicro,

pages345-348, 1995.

[27] Masanori Hashimoto and Hidetoshi Onodera. A performance optimiza­

tion method by gate sizing using statistical static timing analysis. In ISP D

'00: Proceedings of the 2000 international symposium on Physical de­

sign, pages 111-116, New York, NY, USA, 2000. ACM Press.

[28] IEEE Computer Society / ACM. 2003 International Conference on

Computer-Aided Design (ICCAD '03), November 9-13, 2003, San Jose,

CA, USA, 2003.

98

[29] E. Jacobs and M. Berkelaar. Gate sizing using a statistical delay model.

In Proc. Design and Test in Europe, pages 283-291, 2000.

[30] Homg-Fei Jyu and Sharad Malik. Statistical timing optimization of com­

binational logic circuits. In Proceedings of the 1993 IEEE International

Coriference on Computer Design on VLSI in Computer & Processors,

Washington, DC, USA, 1993. IEEE Computer Society.

[31] W. Kautz. The necessity of closed circuit loops in minimal combinational

circuits. IEEE Trans. Comput., C-19:162-164, February 1970.

[32] David Lammers. Designers wary as IBM em-

braces statistical timing. EE Times Online, 2004.

http://www.eetimes.com/story/OEG20040209S0006.

[33] David Lammers. IBM uses EinsStat statisti-

cal analysis timing tool. EE Times Online, 2004.

http://www.eedesign.com/news/ show Article.jhtml ?articleid= 1760163 6.

[34] Jing-Jia Liou, Kwang-Ting Cheng, Sandip Kundu, and Angela Krstic.

Fast statistical timing analysis by probabilistic event propagation. In DAC

'OJ: Proceedings of the 38th conference on Design automation, pages

661-666, New York, NY, USA, 2001. ACM Press.

99

http://www.eetimes.com/story/OEG20040209S0006
http://www.eedesign.com/news/show

[35] S. Malik. Analysis of cyclic combinational circuits. IEEE Trans.

Computer-Aided Design, 13(7):950-956, July 1994.

[36] F. Maraninchi. The Argos language: graphical representation of automata

and description of reactive systems. In Proc. International Conference on

Visual Languages, Kobe, Japan, 1991.

[37] Noel Menezes, Ross Baldick, and Lawrence T. Pileggi. A sequential

quadratic programming approach to concurrent gate and wire sizing. In

ICCAD '95: Proceedings of the 1995 IEEE/ACM international confer­

ence on Computer-aided design, pages 144-151, Washington, DC, USA,

1995. IEEE Computer Society.

[38] Shin-ichi Minato. Fast generation of irredundant sum-of-products forms

from binary decision diagrams. In Proceedings the Synthesis and Simu­

lation Meeting and Internation Exchange (SASIMI), pages 64-73, Kobe,

Japan, April 1992.

[39] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combi­

natorial problems. pages 272-277, 1993.

100

[40] Rajeev Murgai. Logic Synthesis and Verification, chapter Technology­

based transformations, pages 141-165. Kluwer Academic Publishers,

Norwell, MA, USA, 2002.

[41] Arthur Nadas. Probabilistic PERT. In IBM journal of research and de­

velopment, pages 339-347, 1978.

[42] Kedar S. Namjoshi and Robert P. Kurshan. Efficient analysis of cyclic

definitions. In Computer Aided Verification, volume 1633 of LNCS, pages

394-405, Trento, Italy, July 1999.

[43] Sani Nassif. Delay variability: sources, impact, and trends. In Proceed­

ings of ISSCC, 2000.

[44] Osama Neiroukh, Stephen A. Edwards, and Xioyu Song. An efficient

algorithm for the analysis of cyclic circuits. In Proceedings of the Sym­

posium on VLSI (ISVLSI), pages 303-308, Karlsruhe, Germany, March

2006.

[45] Osama Neiroukh, Stephen A. Edwards, and Xioyu Song. Transforming

cyclic circuits into equivalent acyclic circuits. Submitted to IEEE Trans­

actions on Computer Aided Design, in review.

101

[46] Osama Neiroukh and Xiaoyu Song. Improving the process-variation tol­

erance of digital circuits using gate sizing and statistical techniques. In

DATE '05: Proceedings of the conference on Design, Automation and

Test in Europe, pages 294-299, Washington, DC, USA, 2005. IEEE Com­

puter Society.

[4 7] Michael Orshansky and Kurt Keutzer. A general probabilistic framework

for worst case timing analysis. In DAC '02: Proceedings of the 39th

conference on Design automation, pages 556-561, New York, NY, USA,

2002. ACM Press.

[48] Stephen E. Rich, Matthew J. Parker, and Jim Schwartz. Reducing the

frequency gap between asic and custom designs: a custom perspective.

In DAC 'OJ: Proceedings of the 38th conference on Design automation,

pages 432-437, New York, NY, USA, 2001. ACM Press.

[49] M. Riedel and J. Bruck. The synthesis of cyclic combinational circuits.

In Proc. Design Automation Conference, pages 163-168, 2003.

[50] Ronald L. Rivest. The necessity of feedback in minimal monotone com­

binational circuits. IEEE Trans. Comp., 26(6):606-607, 1977.

102

[51] T. Ship le, G. Berry, and H. Touati. Constructive analysis of cyclic circuits.

In Proc. European Design and Test Conj, pages 328-333, 1996.

[52] T. R. Shiple, V. Singha!, R. K. Brayton, and A. L. Sangiovanni­

Vincentelli. Analysis of combinational cycles in sequential circuits.

In Proc. IEEE International Symposium Circuits and Systems (ISCAS),

pages 592-595, 1996.

[53] Thomas R. Shiple, Gerard Berry, and Herve Touati. Constructive anal­

ysis of cyclic circuits. In Proceedings of the European Design and Test

Conference, pages 328-333, Paris, France, March 1996.

[54] Thomas Robert Shiple. Formal Analysis of Synchronous Circuits. PhD

thesis, October 1996. Memorandum UCB/ERL M96/76.

[55] R. A. Short. A theory of relations between sequential and combinational

realizations of switching functions. Technical report, Stanford Electronics

Laboratories, 1960.

[56] L. Stok. False loops through resource sharing. In Proc. International

Conference on Computer-Aided Design, pages 345-348, 1992.

[57] Synopsys Corporation. Design Compiler.

103

[58] Hiran Tennakoon and Carl Sechen. Gate sizing using lagrangian relax­

ation combined with a fast gradient-based pre-processing step. In IC­

CAD '02: Proceedings of the 2002 IEEE/ACM international conference

on Computer-aided design, pages 395-402, New York, NY, USA, 2002.

ACM.

[59] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC

Press, 1999.

104

	Advanced Algorithms for VLSI: Statistical Circuit Optimization and Cyclic Circuit Analysis
	Let us know how access to this document benefits you.
	Recommended Citation

	ProQuest Dissertations

